MSP430FR58xx, MSP430FR59xx, And MSP430FR6xx Family User's Guide (Rev. O) MSP430FR58xx 59xx 6xx User

user_guide%20for%20msp430fr6989

User_Guide_slau367o

MSP430UsersGuide

MSP430FR59xx%20User%20Guide

UserGuideMSP430FR5994

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 1021

DownloadMSP430FR58xx, MSP430FR59xx, And MSP430FR6xx Family User's Guide (Rev. O) MSP430FR58xx 59xx 6xx User
Open PDF In BrowserView PDF
MSP430FR58xx, MSP430FR59xx, and
MSP430FR6xx Family

User's Guide

Literature Number: SLAU367O
October 2012 – Revised December 2017

Contents
Preface....................................................................................................................................... 45
1

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)....................... 47
1.1
1.2
1.3

1.4

1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

1.13

1.14

1.15

1.16

2

System Control Module (SYS) Introduction ............................................................................
System Reset and Initialization ...........................................................................................
1.2.1 Device Initial Conditions After System Reset ..................................................................
Interrupts ....................................................................................................................
1.3.1 (Non)Maskable Interrupts (NMIs) ...............................................................................
1.3.2 SNMI Timing .......................................................................................................
1.3.3 Maskable Interrupts ...............................................................................................
1.3.4 Interrupt Processing...............................................................................................
1.3.5 Interrupt Nesting ...................................................................................................
1.3.6 Interrupt Vectors ...................................................................................................
1.3.7 SYS Interrupt Vector Generators ................................................................................
Operating Modes ...........................................................................................................
1.4.1 Low-Power Modes and Clock Requests .......................................................................
1.4.2 Entering and Exiting Low-Power Modes LPM0 Through LPM4 .............................................
1.4.3 Low-Power Modes LPM3.5 and LPM4.5 (LPMx.5) ...........................................................
Principles for Low-Power Applications ..................................................................................
Connection of Unused Pins ...............................................................................................
Reset Pin (RST/NMI) Configuration .....................................................................................
Configuring JTAG Pins ....................................................................................................
Vacant Memory Space ....................................................................................................
Boot Code ...................................................................................................................
Bootloader (BSL) ...........................................................................................................
JTAG Mailbox (JMB) System ............................................................................................
1.12.1 JMB Configuration ...............................................................................................
1.12.2 JMBOUT0 and JMBOUT1 Outgoing Mailbox.................................................................
1.12.3 JMBIN0 and JMBIN1 Incoming Mailbox.......................................................................
1.12.4 JMB NMI Usage ..................................................................................................
JTAG and SBW Lock Mechanism Using the Electronic Fuse ........................................................
1.13.1 JTAG and SBW Lock Without Password .....................................................................
1.13.2 JTAG and SBW Lock With Password .........................................................................
Device Descriptor Table ...................................................................................................
1.14.1 Identifying Device Type..........................................................................................
1.14.2 TLV Descriptors ..................................................................................................
1.14.3 Calibration Values ................................................................................................
SFR Registers ..............................................................................................................
1.15.1 SFRIE1 Register .................................................................................................
1.15.2 SFRIFG1 Register ...............................................................................................
1.15.3 SFRRPCR Register ..............................................................................................
SYS Registers ..............................................................................................................
1.16.1 SYSCTL Register ................................................................................................
1.16.2 SYSJMBC Register ..............................................................................................
1.16.3 SYSJMBI0 Register ..............................................................................................
1.16.4 SYSJMBI1 Register ..............................................................................................

Contents

48
48
50
50
51
51
51
52
53
53
54
56
58
59
59
61
62
62
62
63
63
63
63
64
64
64
64
64
65
65
65
66
67
68
72
73
74
75
76
77
78
79
79

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

1.16.5
1.16.6
1.16.7
1.16.8
1.16.9

2

2.3

Power Management Module (PMM) Introduction ......................................................................
PMM Operation .............................................................................................................
2.2.1 VCORE and the Regulator ..........................................................................................
2.2.2 Supply Voltage Supervisor .......................................................................................
2.2.3 Supply Voltage Supervisor - Power-Up ........................................................................
2.2.4 LPM3.5 and LPM4.5 ..............................................................................................
2.2.5 Brownout Reset (BOR) ...........................................................................................
2.2.6 RST/NMI ............................................................................................................
2.2.7 PMM Interrupts ....................................................................................................
2.2.8 Port I/O Control ....................................................................................................
PMM Registers .............................................................................................................
2.3.1 PMMCTL0 Register (offset = 00h) [reset = 9640h] ...........................................................
2.3.2 PMMCTL1 Register (offset = 02h) [reset = 9600h] ...........................................................
2.3.3 PMMIFG Register (offset = 0Ah) [reset = 0000h] .............................................................
2.3.4 PM5CTL0 Register (offset = 10h) [reset = 0001h] ............................................................

84
85
85
85
86
86
86
87
87
87
88
89
90
91
92

Clock System (CS) Module .................................................................................................. 93
3.1
3.2

3.3

4

80
80
81
81
82

Power Management Module (PMM) and Supply Voltage Supervisor (SVS) ................................. 83
2.1
2.2

3

SYSJMBO0 Register ............................................................................................
SYSJMBO1 Register ............................................................................................
SYSUNIV Register ...............................................................................................
SYSSNIV Register ...............................................................................................
SYSRSTIV Register .............................................................................................

Clock System Introduction ................................................................................................ 94
Clock System Operation................................................................................................... 96
3.2.1 CS Module Features for Low-Power Applications ............................................................ 96
3.2.2 LFXT Oscillator .................................................................................................... 96
3.2.3 HFXT Oscillator .................................................................................................... 97
3.2.4 Internal Very-Low-Power Low-Frequency Oscillator (VLO).................................................. 98
3.2.5 Module Oscillator (MODOSC) ................................................................................... 98
3.2.6 Digitally Controlled Oscillator (DCO)............................................................................ 98
3.2.7 Operation From Low-Power Modes, Requested by Peripheral Modules .................................. 99
3.2.8 CS Module Fail-Safe Operation ................................................................................ 100
3.2.9 Synchronization of Clock Signals .............................................................................. 102
CS Registers .............................................................................................................. 103
3.3.1 CSCTL0 Register ................................................................................................ 104
3.3.2 CSCTL1 Register ................................................................................................ 104
3.3.3 CSCTL2 Register ................................................................................................ 105
3.3.4 CSCTL3 Register ................................................................................................ 106
3.3.5 CSCTL4 Register ................................................................................................ 107
3.3.6 CSCTL5 Register ................................................................................................ 109
3.3.7 CSCTL6 Register ................................................................................................ 110

CPUX

.............................................................................................................................. 111

4.1
4.2
4.3

MSP430X CPU (CPUX) Introduction ...................................................................................
Interrupts ...................................................................................................................
CPU Registers ............................................................................................................
4.3.1 Program Counter (PC) ..........................................................................................
4.3.2 Stack Pointer (SP) ...............................................................................................
4.3.3 Status Register (SR) ............................................................................................
4.3.4 Constant Generator Registers (CG1 and CG2) .............................................................
4.3.5 General-Purpose Registers (R4 to R15) ......................................................................
Addressing Modes ........................................................................................................
4.4.1 Register Mode ....................................................................................................
4.4.2 Indexed Mode ....................................................................................................

4.4

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Contents

112
114
115
115
115
117
118
119
121
122
123
3

www.ti.com

4.5

4.6

5

5.3

7.5
7.6
7.7
7.8
7.9
7.10

FRAM Controller Overview .............................................................................................. 285
FRAM Introduction ........................................................................................................
FRAM Organization.......................................................................................................
FRCTL Module Operation ...............................................................................................
Programming FRAM Devices ...........................................................................................
7.4.1 Programming FRAM With JTAG or Spy-Bi-Wire ............................................................
7.4.2 Programming FRAM With the Bootloader (BSL) ............................................................
7.4.3 Programming FRAM With a Custom Solution ...............................................................
Wait State Control ........................................................................................................
7.5.1 Wait State and Cache Hit .......................................................................................
FRAM ECC ................................................................................................................
FRAM Write Back ........................................................................................................
FRAM Power Control .....................................................................................................
FRAM Cache ..............................................................................................................
FRCTL Registers .........................................................................................................
7.10.1 FRCTL0 Register ...............................................................................................
7.10.2 GCCTL0 Register ...............................................................................................
7.10.3 GCCTL1 Register ...............................................................................................

287
287
287
288
288
288
288
288
289
289
289
289
290
291
292
293
294

FRAM Controller A (FRCTL_A) ........................................................................................... 295
8.1
8.2

4

268
270
271
272
273
274
277
280
280
281
282
284

FRAM Controller (FRCTL) .................................................................................................. 286
7.1
7.2
7.3
7.4

8

32-Bit Hardware Multiplier (MPY32) Introduction .....................................................................
MPY32 Operation .........................................................................................................
5.2.1 Operand Registers...............................................................................................
5.2.2 Result Registers .................................................................................................
5.2.3 Software Examples ..............................................................................................
5.2.4 Fractional Numbers ..............................................................................................
5.2.5 Putting It All Together ...........................................................................................
5.2.6 Indirect Addressing of Result Registers ......................................................................
5.2.7 Using Interrupts ..................................................................................................
5.2.8 Using DMA........................................................................................................
MPY32 Registers .........................................................................................................
5.3.1 MPY32CTL0 Register ...........................................................................................

FRAM Controller Overview ................................................................................................. 285
6.1

7

128
132
134
135
136
138
138
143
154
155
157
209
252

32-Bit Hardware Multiplier (MPY32) ..................................................................................... 267
5.1
5.2

6

4.4.3 Symbolic Mode ...................................................................................................
4.4.4 Absolute Mode ...................................................................................................
4.4.5 Indirect Register Mode ..........................................................................................
4.4.6 Indirect Autoincrement Mode ...................................................................................
4.4.7 Immediate Mode .................................................................................................
MSP430 and MSP430X Instructions ...................................................................................
4.5.1 MSP430 Instructions ............................................................................................
4.5.2 MSP430X Extended Instructions ..............................................................................
Instruction Set Description ...............................................................................................
4.6.1 Extended Instruction Binary Descriptions.....................................................................
4.6.2 MSP430 Instructions ............................................................................................
4.6.3 Extended Instructions ...........................................................................................
4.6.4 Address Instructions .............................................................................................

FRAM
FRAM
8.2.1
8.2.2
8.2.3

Contents

Controller A (FRCTL_A) Introduction ..........................................................................
Controller A (FRCTL_A) Operation ............................................................................
FRCTL_A Error Detection ......................................................................................
Programming FRAM Memory Devices ........................................................................
Access Control ...................................................................................................

296
296
296
297
297

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

8.3
8.4
8.5
8.6

9

9.3
9.4

9.5
9.6

9.7

Memory Protection Unit (MPU) Introduction ..........................................................................
MPU Segments ...........................................................................................................
9.2.1 Main Memory Segments ........................................................................................
9.2.2 IP Encapsulation Segment .....................................................................................
9.2.3 Segment Border Setting ........................................................................................
9.2.4 IP Encapsulation Border Settings..............................................................................
9.2.5 Information Memory .............................................................................................
MPU Access Management Settings ....................................................................................
MPU Violations ............................................................................................................
9.4.1 Interrupt Vector Table and Reset Vector .....................................................................
9.4.2 Violation Handling ...............................................................................................
MPU Lock ..................................................................................................................
How to Enable MPU and IPE Segments ..............................................................................
9.6.1 IP Encapsulation (IPE) Instantiation Using IPE Signatures ................................................
9.6.2 IP Encapsulation Removal .....................................................................................
MPU Registers ............................................................................................................
9.7.1 MPUCTL0 Register ..............................................................................................
9.7.2 MPUCTL1 Register ..............................................................................................
9.7.3 MPUSEGB2 Register ...........................................................................................
9.7.4 MPUSEGB1 Register ...........................................................................................
9.7.5 MPUSAM Register...............................................................................................
9.7.6 MPUIPC0 Register ..............................................................................................
9.7.7 MPUIPSEGB2 Register .........................................................................................
9.7.8 MPUIPSEGB1 Register .........................................................................................

309
310
310
311
312
313
314
314
315
315
315
315
315
316
317
318
319
320
321
322
323
325
326
327

RAM Controller (RAMCTL) ................................................................................................. 328
10.1
10.2

10.3

11

299
299
300
301
302
304
306

Memory Protection Unit (MPU) ........................................................................................... 308
9.1
9.2

10

FRAM ECC ................................................................................................................
FRAM Power Control .....................................................................................................
FRAM Cache ..............................................................................................................
FRCTL_A Registers ......................................................................................................
8.6.1 FRCTL0 Register (Offset = 0h) [reset = 9600h] .............................................................
8.6.2 GCCTL0 Register (Offset = 4h) [reset = 4h] .................................................................
8.6.3 GCCTL1 Register (Offset = 6h) [reset = 0h] .................................................................

RAM Controller (RAMCTL) Introduction ...............................................................................
RAMCTL Operation.......................................................................................................
10.2.1 Considerations for Complete Power Down ..................................................................
10.2.2 DACCESSIE and DACCESSIFG Bits in RCCTL1 Register...............................................
RAMCTL Registers .......................................................................................................
10.3.1 CTL0 Register (Offset = 0h) [reset = 6900h] ................................................................
10.3.2 CTL1 Register (Offset = 2h) [reset = 0h] ....................................................................

329
329
329
329
331
332
334

DMA Controller ................................................................................................................. 335
11.1
11.2

Direct Memory Access (DMA) Introduction ............................................................................
DMA Operation ............................................................................................................
11.2.1 DMA Addressing Modes .......................................................................................
11.2.2 DMA Transfer Modes ..........................................................................................
11.2.3 Initiating DMA Transfers .......................................................................................
11.2.4 Halting Executing Instructions for DMA Transfers..........................................................
11.2.5 Stopping DMA Transfers.......................................................................................
11.2.6 DMA Channel Priorities ........................................................................................
11.2.7 DMA Transfer Cycle Time .....................................................................................
11.2.8 Using DMA With System Interrupts ..........................................................................
11.2.9 DMA Controller Interrupts .....................................................................................
11.2.10 Using the eUSCI_B I2C Module With the DMA Controller ...............................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Contents

336
338
338
339
345
346
346
346
347
347
347
348
5

www.ti.com

11.3

12

12.3

12.4

364
365
365
365
365
365
366
366
368
368
369
369
371
384
384
385
385
386
386
386
387
387
387
388
388
388
389

Capacitive Touch I/O Introduction ......................................................................................
Capacitive Touch I/O Operation ........................................................................................
CapTouch Registers ......................................................................................................
13.3.1 CAPTIOxCTL Register (offset = 0Eh) [reset = 0000h] .....................................................

391
392
393
394

AES256 Accelerator .......................................................................................................... 395
14.1
14.2

6

Digital I/O Introduction ...................................................................................................
Digital I/O Operation ......................................................................................................
12.2.1 Input Registers (PxIN)..........................................................................................
12.2.2 Output Registers (PxOUT) ....................................................................................
12.2.3 Direction Registers (PxDIR) ...................................................................................
12.2.4 Pullup or Pulldown Resistor Enable Registers (PxREN) ..................................................
12.2.5 Function Select Registers (PxSEL0, PxSEL1) ..............................................................
12.2.6 Port Interrupts ...................................................................................................
I/O Configuration ..........................................................................................................
12.3.1 Configuration After Reset ......................................................................................
12.3.2 Configuration of Unused Port Pins ...........................................................................
12.3.3 Configuration for LPMx.5 Low-Power Modes ...............................................................
Digital I/O Registers ......................................................................................................
12.4.1 P1IV Register ...................................................................................................
12.4.2 P2IV Register ...................................................................................................
12.4.3 P3IV Register ...................................................................................................
12.4.4 P4IV Register ...................................................................................................
12.4.5 PxIN Register ...................................................................................................
12.4.6 PxOUT Register ................................................................................................
12.4.7 PxDIR Register..................................................................................................
12.4.8 PxREN Register ................................................................................................
12.4.9 PxSEL0 Register ................................................................................................
12.4.10 PxSEL1 Register ..............................................................................................
12.4.11 PxSELC Register ..............................................................................................
12.4.12 PxIES Register ................................................................................................
12.4.13 PxIE Register ..................................................................................................
12.4.14 PxIFG Register ................................................................................................

Capacitive Touch I/O ......................................................................................................... 390
13.1
13.2
13.3

14

349
350
352
353
354
355
356
357
359
360
361
362

Digital I/O ......................................................................................................................... 363
12.1
12.2

13

11.2.11 Using ADC12 With the DMA Controller ....................................................................
DMA Registers ............................................................................................................
11.3.1 DMACTL0 Register .............................................................................................
11.3.2 DMACTL1 Register .............................................................................................
11.3.3 DMACTL2 Register .............................................................................................
11.3.4 DMACTL3 Register .............................................................................................
11.3.5 DMACTL4 Register .............................................................................................
11.3.6 DMAxCTL Register .............................................................................................
11.3.7 DMAxSA Register ..............................................................................................
11.3.8 DMAxDA Register ..............................................................................................
11.3.9 DMAxSZ Register...............................................................................................
11.3.10 DMAIV Register ...............................................................................................

AES Accelerator Introduction............................................................................................
AES Accelerator Operation ..............................................................................................
14.2.1 Load the Key (128-Bit, 192-Bit, or 256-Bit Key Length) ...................................................
14.2.2 Load the Data (128-Bit State) .................................................................................
14.2.3 Read the Data (128-Bit State) ................................................................................
14.2.4 Trigger an Encryption or Decryption .........................................................................

Contents

396
397
398
398
399
399

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

14.3

15

15.4

16.3

17.3

425
425
426
426
427
429
430
430
431
431
433
433
434
434
434
436
436

........................................................... 443

LEA Introduction ..........................................................................................................
LEA Operation.............................................................................................................
17.2.1 Use the LEA in Programs......................................................................................
17.2.2 Where to Get the DSP Library ................................................................................
17.2.3 Where to Start ...................................................................................................
LEA Registers .............................................................................................................

444
444
445
446
446
446

Ultrasonic Sensing Solution (USS, USS_A) .......................................................................... 447
18.1
18.2

18.3

19

Cyclic Redundancy Check (CRC32) Module Introduction ...........................................................
CRC Checksum Generation .............................................................................................
16.2.1 CRC Standard and Bit Order ..................................................................................
16.2.2 CRC Implementation ...........................................................................................
16.2.3 Assembler Examples ...........................................................................................
CRC32 Register Descriptions ...........................................................................................
16.3.1 CRC32 Registers ...............................................................................................

Low-Energy Accelerator (LEA) for Signal Processing
17.1
17.2

18

Cyclic Redundancy Check (CRC) Module Introduction ..............................................................
CRC Standard and Bit Order ............................................................................................
CRC Checksum Generation .............................................................................................
15.3.1 CRC Implementation ...........................................................................................
15.3.2 Assembler Examples ...........................................................................................
CRC Registers ............................................................................................................
15.4.1 CRCDI Register .................................................................................................
15.4.2 CRCDIRB Register .............................................................................................
15.4.3 CRCINIRES Register...........................................................................................
15.4.4 CRCRESR Register ............................................................................................

CRC32 Module.................................................................................................................. 432
16.1
16.2

17

400
401
402
403
403
403
403
414
415
417
418
419
420
421
422
423

CRC Module ..................................................................................................................... 424
15.1
15.2
15.3

16

14.2.5 Encryption .......................................................................................................
14.2.6 Decryption .......................................................................................................
14.2.7 Decryption Key Generation ....................................................................................
14.2.8 AES Key Buffer .................................................................................................
14.2.9 Using the AES Accelerator With Low-Power Modes .......................................................
14.2.10 AES Accelerator Interrupts ...................................................................................
14.2.11 DMA Operation and Implementing Block Cipher Modes .................................................
AES Accelerator Registers ..............................................................................................
14.3.1 AESACTL0 Register............................................................................................
14.3.2 AESACTL1 Register............................................................................................
14.3.3 AESASTAT Register ...........................................................................................
14.3.4 AESAKEY Register .............................................................................................
14.3.5 AESADIN Register .............................................................................................
14.3.6 AESADOUT Register ..........................................................................................
14.3.7 AESAXDIN Register ............................................................................................
14.3.8 AESAXIN Register ..............................................................................................

Introduction ................................................................................................................
Operation of the USS Module ...........................................................................................
18.2.1 Auto Mode and Register Mode ...............................................................................
18.2.2 Control Signals ..................................................................................................
Debug Features ...........................................................................................................

448
449
451
452
454

Universal USS Power Supply (UUPS) .................................................................................. 455
19.1
19.2
19.3

Introduction ................................................................................................................ 456
USS Power-up Sequence ............................................................................................... 457
USS Power States ........................................................................................................ 458

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Contents

7

www.ti.com

19.4

19.5
19.6
19.7

20

20.3

20.4
20.5
20.6

Introduction ................................................................................................................
OSC Control Register (HSPLLUSSXTCTL) ...........................................................................
20.2.1 OSCEN Bit .......................................................................................................
20.2.2 OSCTYPE Bit ...................................................................................................
20.2.3 OSCSTATE Bit .................................................................................................
20.2.4 XTOUTOFF Bit ..................................................................................................
PLL Control (CTL) Register .............................................................................................
20.3.1 PLLM[5:0] Bits...................................................................................................
20.3.2 PLLINFREQ Bit ................................................................................................
20.3.3 PLL_LOCK Bit ..................................................................................................
20.3.4 USSXT Control Register .......................................................................................
Start-up Sequence of the USSXT Oscillator ..........................................................................
20.4.1 USSXT Start-up Behavior .....................................................................................
Interrupts ...................................................................................................................
HSPLL Registers..........................................................................................................
20.6.1 HSPLLIIDX Register (Offset = 0h) [reset = 0h] .............................................................
20.6.2 HSPLLMIS Register (Offset = 2h) [reset = 0h] .............................................................
20.6.3 HSPLLRIS Register (Offset = 4h) [reset = 0h] ..............................................................
20.6.4 HSPLLIMSC Register (Offset = 6h) [reset = 0h]............................................................
20.6.5 HSPLLICR Register (Offset = 8h) [reset = 0h] ..............................................................
20.6.6 HSPLLISR Register (Offset = Ah) [reset = 0h] .............................................................
20.6.7 HSPLLDESCLO Register (Offset = Ch) [reset = 110h] ....................................................
20.6.8 HSPLLDESCHI Register (Offset = Eh) [reset = BD10h]...................................................
20.6.9 HSPLLCTL Register (Offset = 10h) [reset = 4000h] .......................................................
20.6.10 HSPLLUSSXTLCTL Register (Offset = 12h) [reset = 100h] .............................................

476
477
477
477
477
477
478
478
478
478
478
478
479
479
480
481
482
483
484
485
486
487
488
489
491

Sequencer for Acquisition, Programmable Pulse Generator, and Physical Interface (SAPH,
SAPH_A) .......................................................................................................................... 492
21.1
21.2

8

460
460
461
462
462
463
463
464
465
466
467
468
469
470
471
472
473

High-Speed PLL (HSPLL) ................................................................................................... 475
20.1
20.2

21

Interface to the ASQ (Acquisition Sequencer) ........................................................................
19.4.1 Start New Measurements ......................................................................................
19.4.2 Stop Measurement Before Completion .....................................................................
19.4.3 USS Power State After Completion of Measurements ....................................................
19.4.4 UUPSCTL.USSPWRUP Bit and UUPSCTL.USS_BUSY Bit .............................................
Interrupts ...................................................................................................................
Debug Mode ...............................................................................................................
UUPS Registers...........................................................................................................
19.7.1 UUPSIIDX Register (Offset = 0h) [reset = 0h] ..............................................................
19.7.2 UUPSMIS Register (Offset = 2h) [reset = 0h]...............................................................
19.7.3 UUPSRIS Register (Offset = 4h) [reset = 0h] ...............................................................
19.7.4 UUPSIMSC Register (Offset = 6h) [reset = 0h] .............................................................
19.7.5 UUPSICR Register (Offset = 8h) [reset = 0h] ...............................................................
19.7.6 UUPSISR Register (Offset = Ah) [reset = 0h]...............................................................
19.7.7 UUPSDESCLO Register (Offset = Ch) [reset = 110h] .....................................................
19.7.8 UUPSDESCHI Register (Offset = Eh) [reset = BA10h] ....................................................
19.7.9 UUPSCTL Register (Offset = 10h) [reset = 800h] ..........................................................

Introduction ................................................................................................................
Programmable Pulse Generator (PPG or PPG_A) Block ...........................................................
21.2.1 Pulse Generation ...............................................................................................
21.2.2 Single Tone Generation........................................................................................
21.2.3 Dual Tone Generation..........................................................................................
21.2.4 Trill Tone Generation ...........................................................................................
21.2.5 Multi Tone Generation .........................................................................................
21.2.6 Excitation Pulse Frequency on PPG or PPG_A ............................................................

Contents

493
494
495
495
496
497
498
500

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

21.3

21.4

21.5
21.6
21.7
21.8

21.2.7 Extra Excitation Pulse Frequency on PPG_A ...............................................................
21.2.8 Test Tone Generation ..........................................................................................
Physical Interface (PHY) Block .........................................................................................
21.3.1 Output Channels (CH0_OUT and CH1_OUT) ..............................................................
21.3.2 Trim Registers for the Output Drivers and Termination Resistors .......................................
21.3.3 Input Channels (CH0_IN and CH1_IN) ......................................................................
Acquisition Sequencer (ASQ) ...........................................................................................
21.4.1 Time Counter ...................................................................................................
21.4.2 Six Time Mark Events .........................................................................................
21.4.3 Triggering the ASQ .............................................................................................
21.4.4 Auto Mode and Register Mode ...............................................................................
Ultra-Low-Power Bias Mode.............................................................................................
Interrupts Triggers .......................................................................................................
DMA Triggers .............................................................................................................
SAPH and SAPH_A Registers ..........................................................................................
21.8.1 SAPHIIDX/SAPH_AIIDX Register (Offset = 0h) [reset = 0h] ..............................................
21.8.2 SAPHMIS/SAPH_AMIS Register (Offset = 2h) [reset = 0h]...............................................
21.8.3 SAPHRIS/SAPH_ARIS Register (Offset = 4h) [reset = 0h] ...............................................
21.8.4 SAPHIMSC/SAPH_AIMSC Register (Offset = 6h) [reset = 0h] ...........................................
21.8.5 SAPHICR/SAPH_AICR Register (Offset = 8h) [reset = 0h] ...............................................
21.8.6 SAPHISR/SAPH_AISR Register (Offset = Ah) [reset = 0h] ...............................................
21.8.7 SAPHDESCLO/SAPH_ADESCLO Register (Offset = Ch) [reset = 10h] ................................
21.8.8 SAPHDESCHI/SAPH_ADESCHI Register (Offset = Eh) [reset = 5553h] ...............................
21.8.9 SAPHKEY/SAPH_AKEY Register (Offset = 10h) [reset = 0h] ............................................
21.8.10 SAPHOCTL0/SAPH_AOCTL0 Register (Offset = 12h) [reset = 0h] ....................................
21.8.11 SAPHOCTL1/SAPH_AOCTL1 Register (Offset = 14h) [reset = 0h] ....................................
21.8.12 SAPHOSEL/SAPH_AOSEL Register (Offset = 16h) [reset = 5h] .......................................
21.8.13 SAPHCH0PUT/SAPH_ACH0PUT Register (Offset = 20h) [reset = 0h]................................
21.8.14 SAPHCH0PDT/SAPH_ACH0PDT Register (Offset = 22h) [reset = 0h]................................
21.8.15 SAPHCH0TT/SAPH_ACH0TT Register (Offset = 24h) [reset = 0h] ....................................
21.8.16 SAPHCH1PUT /SAPH_ACH1PUT Register (Offset = 26h) [reset = 0h] ...............................
21.8.17 SAPHCH1PDT/SAPH_ACH1PDT Register (Offset = 28h) [reset = 0h]................................
21.8.18 SAPHCH1TT/SAPH_ACH1TT Register (Offset = 2Ah) [reset = 0h] ...................................
21.8.19 SAPHMCNF/SAPH_AMCNF Register (Offset = 2Ch) [reset = 2h] .....................................
21.8.20 SAPHTACTL/SAPH_ATACTL Register (Offset = 2Eh) [reset = 0h] ....................................
21.8.21 SAPHICTL0 /SAPH_AICTL0 Register (Offset = 30h) [reset = 90h] ....................................
21.8.22 SAPHBCTL/SAPH_ABCTL Register (Offset = 34h) [reset = A1h]......................................
21.8.23 SAPHPGC/SAPH_APGC Register (Offset = 40h) [reset = 0h] .........................................
21.8.24 SAPHPGLPER/SAPH_APGLPER Register (Offset = 42h) [reset = 0h] ...............................
21.8.25 SAPHPGHPER/SAPH_APGHPER Register (Offset = 44h) [reset = 0h] ..............................
21.8.26 SAPHPGCTL/SAPH_APGCTL Register (Offset = 46h) [reset = 11h] ..................................
21.8.27 SAPHPPGTRIG/SAPH_APPGTRIG Register (Offset = 48h) [reset = 0h] .............................
21.8.28 SAPH_AXPGCTL Register (Offset = 4Ah) [reset = 0h] ..................................................
21.8.29 SAPH_AXPGLPER Register (Offset = 4Ch) [reset = 0h] ................................................
21.8.30 SAPH_AXPGHPER Register (Offset = 4Eh) [reset = 0h] ................................................
21.8.31 SAPHASCTL0/SAPH_AASCTL0 Register (Offset = 60h) [reset = 0h] .................................
21.8.32 SAPHASCTL1/SAPH_AASCTL1 Register (Offset = 62h) [reset = 0h] .................................
21.8.33 SAPHASQTRIG/SAPH_AASQTRIG Register (Offset = 64h) [reset = 0h] .............................
21.8.34 SAPHAPOL/SAPH_AAPOL Register (Offset = 66h) [reset = 0h] .......................................
21.8.35 SAPHAPLEV /SAPH_AAPLEV Register (Offset = 68h) [reset = 0h] ...................................
21.8.36 SAPHAPHIZ /SAPH_AAPHIZ Register (Offset = 6Ah) [reset = 0h] ....................................
21.8.37 SAPHATM_A/SAPH_AATM_A Register (Offset = 6Eh) [reset = 0h] ...................................
21.8.38 SAPHATM_B/SAPH_AATM_B Register (Offset = 70h) [reset = 0h] ...................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Contents

500
500
501
501
502
503
507
508
509
509
510
511
512
512
513
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
537
539
540
541
542
544
545
546
547
548
550
552
553
554
555
556
557
9

www.ti.com

21.8.39
21.8.40
21.8.41
21.8.42
21.8.43
21.8.44
21.8.45

22

22.3
22.4
22.5

Introduction ................................................................................................................
SDHS Functional Operation .............................................................................................
22.2.1 Input Multiplexer ................................................................................................
22.2.2 Third-Order Modulator .........................................................................................
22.2.3 Digital Output ....................................................................................................
22.2.4 Data Transfer Controller (DTC) and Internal Data Buffer .................................................
22.2.5 PGA Gain Control ..............................................................................................
22.2.6 SDHS Power and Conversion Control .......................................................................
22.2.7 TRIGEN Bit and SDHS_LOCK Bit ............................................................................
22.2.8 AUTOSSDIS (Auto Conversion Start Disable) Bit ..........................................................
22.2.9 INTDLY (Interrupt Delay) bits .................................................................................
22.2.10 Total Sample Size .............................................................................................
22.2.11 Window Comparator ..........................................................................................
22.2.12 Conditions to Stop Data Conversion........................................................................
Interrupts ...................................................................................................................
22.3.1 IIDX, Interrupt Vector Generator ..............................................................................
Debug Mode ...............................................................................................................
SDHS Registers...........................................................................................................
22.5.1 SDHSIIDX Register (Offset = 0h) [reset = 0h] ..............................................................
22.5.2 SDHSMIS Register (Offset = 2h) [reset = 0h]...............................................................
22.5.3 SDHSRIS Register (Offset = 4h) [reset = 0h] ...............................................................
22.5.4 SDHSIMSC Register (Offset = 6h) [reset = 0h] .............................................................
22.5.5 SDHSICR Register (Offset = 8h) [reset = 0h] ...............................................................
22.5.6 SDHSISR Register (Offset = Ah) [reset = 0h]...............................................................
22.5.7 SDHSDESCLO Register (Offset = Ch) [reset = 110h] .....................................................
22.5.8 SDHSDESCHI Register (Offset = Eh) [reset = BB10h] ....................................................
22.5.9 SDHSCTL0 Register (Offset = 10h) [reset = 8001h] .......................................................
22.5.10 SDHSCTL1 Register (Offset = 12h) [reset = 0h] ..........................................................
22.5.11 SDHSCTL2 Register (Offset = 14h) [reset = 0h] ..........................................................
22.5.12 SDHSCTL3 Register (Offset = 16h) [reset = 0h] ..........................................................
22.5.13 SDHSCTL4 Register (Offset = 18h) [reset = 0h] ..........................................................
22.5.14 SDHSCTL5 Register (Offset = 1Ah) [reset = 0h] .........................................................
22.5.15 SDHSCTL6 Register (Offset = 1Ch) [reset = 19h] ........................................................
22.5.16 SDHSCTL7 Register (Offset = 1Eh) [reset = Fh] .........................................................
22.5.17 SDHSDT Register (Offset = 22h) [reset = 0h] .............................................................
22.5.18 SDHSWINHITH Register (Offset = 24h) [reset = 0h] .....................................................
22.5.19 SDHSWINLOTH Register (Offset = 26h) [reset = 0h] ....................................................
22.5.20 SDHSDTCDA Register (Offset = 28h) [reset = 0h] .......................................................

566
566
567
567
568
575
577
579
581
585
586
587
588
589
591
591
591
592
593
594
595
597
598
599
600
601
602
604
605
606
607
608
610
611
612
613
614
615

Metering Test Interface (MTIF) ............................................................................................ 616
23.1
23.2

10

558
559
560
561
562
563
564

Sigma-Delta High Speed (SDHS) ......................................................................................... 565
22.1
22.2

23

SAPHATM_C/SAPH_AATM_C Register (Offset = 72h) [reset = 0h] ...................................
SAPHATM_D/SAPH_AATM_D Register (Offset = 74h) [reset = 0h] ...................................
SAPHATM_E/SAPH_AATM_E Register (Offset = 76h) [reset = 0h] ...................................
SAPHATM_F/SAPH_AATM_F Register (Offset = 78h) [reset = 0h] ...................................
SAPHTBCTL/SAPH_ATBCTL Register (Offset = 7Ah) [reset = 0h] ....................................
SAPHATIMLO/SAPH_AATIMLO Register (Offset = 7Ch) [reset = 0h].................................
SAPHATIMHI/SAPH_AATIMHI Register (Offset = 7Eh) [reset = 0h]...................................

MTIF Introduction .........................................................................................................
MTIF Operation ...........................................................................................................
23.2.1 MTIF and RTC_C ...............................................................................................
23.2.2 Initialization of the MTIF .......................................................................................
23.2.3 Setting the Pulse Rate .........................................................................................
23.2.4 Reading Pulse Counter ........................................................................................

Contents

617
618
618
619
619
620

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

23.3
23.4

24

24.3

WDT_A Introduction ......................................................................................................
WDT_A Operation ........................................................................................................
24.2.1 Watchdog Timer Counter (WDTCNT) ........................................................................
24.2.2 Watchdog Mode ................................................................................................
24.2.3 Interval Timer Mode ............................................................................................
24.2.4 Watchdog Timer Interrupts ....................................................................................
24.2.5 Fail-Safe Features ..............................................................................................
24.2.6 Operation in Low-Power Modes ..............................................................................
WDT_A Registers .........................................................................................................
24.3.1 WDTCTL Register ..............................................................................................

633
635
635
635
635
635
636
636
637
638

Timer_A ........................................................................................................................... 639
25.1
25.2

25.3

26

620
620
620
621
621
621
622
623
624
625
626
627
628
629
630
631

Watchdog Timer (WDT_A) .................................................................................................. 632
24.1
24.2

25

23.2.5 Synchronizing Pulse Generator Timing to Application .....................................................
23.2.6 Various Resets During MTIF Operation .....................................................................
23.2.7 PUC Reset During Register Access..........................................................................
23.2.8 Enabling the Pulse Generator and the Pulse Counter .....................................................
MTIF Block Diagram......................................................................................................
23.3.1 Test Interface Input .............................................................................................
MTIF Registers ............................................................................................................
23.4.1 MTIFPGCNF Register (Offset = 0h) [reset = 6970h] .......................................................
23.4.2 MTIFPGKVAL Register (Offset = 2h) [reset = 6900h] .....................................................
23.4.3 MTIFPGCTL Register (Offset = 4h) [reset = 6900h] .......................................................
23.4.4 MTIFPGSR Register (Offset = 6h) [reset = 0h] .............................................................
23.4.5 MTIFPCCNF Register (Offset = 8h) [reset = 9600h] .......................................................
23.4.6 MTIFPCR Register (Offset = Ah) [reset = 0h]...............................................................
23.4.7 MTIFPCCTL Register (Offset = Ch) [reset = 0h] ...........................................................
23.4.8 MTIFPCSR Register (Offset = Eh) [reset = 0h] .............................................................
23.4.9 MTIFTPCTL Register (Offset = 10h) [reset = F00h] .......................................................

Timer_A Introduction .....................................................................................................
Timer_A Operation .......................................................................................................
25.2.1 16-Bit Timer Counter ...........................................................................................
25.2.2 Starting the Timer ...............................................................................................
25.2.3 Timer Mode Control ............................................................................................
25.2.4 Capture/Compare Blocks ......................................................................................
25.2.5 Output Unit ......................................................................................................
25.2.6 Timer_A Interrupts ..............................................................................................
Timer_A Registers ........................................................................................................
25.3.1 TAxCTL Register ...............................................................................................
25.3.2 TAxR Register ...................................................................................................
25.3.3 TAxCCTLn Register ............................................................................................
25.3.4 TAxCCRn Register ............................................................................................
25.3.5 TAxIV Register ..................................................................................................
25.3.6 TAxEX0 Register ...............................................................................................

640
642
642
642
643
646
648
652
654
655
656
657
659
659
660

Timer_B ........................................................................................................................... 661
26.1
26.2

Timer_B Introduction .....................................................................................................
26.1.1 Similarities and Differences From Timer_A .................................................................
Timer_B Operation .......................................................................................................
26.2.1 16-Bit Timer Counter ...........................................................................................
26.2.2 Starting the Timer ...............................................................................................
26.2.3 Timer Mode Control ............................................................................................
26.2.4 Capture/Compare Blocks ......................................................................................
26.2.5 Output Unit ......................................................................................................
26.2.6 Timer_B Interrupts ..............................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Contents

662
662
664
664
664
665
668
671
675
11

www.ti.com

26.3

27

28.3

Real-Time Clock RTC_B Introduction ..................................................................................
RTC_B Operation .........................................................................................................
28.2.1 Real-Time Clock and Prescale Dividers .....................................................................
28.2.2 Real-Time Clock Alarm Function .............................................................................
28.2.3 Reading or Writing Real-Time Clock Registers .............................................................
28.2.4 Real-Time Clock Interrupts ....................................................................................
28.2.5 Real-Time Clock Calibration ..................................................................................
28.2.6 Real-Time Clock Operation in LPM3.5 Low-Power Mode .................................................
RTC_B Registers .........................................................................................................
28.3.1 RTCCTL0 Register .............................................................................................
28.3.2 RTCCTL1 Register .............................................................................................
28.3.3 RTCCTL2 Register .............................................................................................
28.3.4 RTCCTL3 Register .............................................................................................
28.3.5 RTCSEC Register – Hexadecimal Format ..................................................................
28.3.6 RTCSEC Register – BCD Format ............................................................................
28.3.7 RTCMIN Register – Hexadecimal Format ...................................................................
28.3.8 RTCMIN Register – BCD Format .............................................................................
28.3.9 RTCHOUR Register – Hexadecimal Format ................................................................
28.3.10 RTCHOUR Register – BCD Format ........................................................................
28.3.11 RTCDOW Register ............................................................................................
28.3.12 RTCDAY Register – Hexadecimal Format .................................................................
28.3.13 RTCDAY Register – BCD Format...........................................................................
28.3.14 RTCMON Register – Hexadecimal Format ................................................................
28.3.15 RTCMON Register – BCD Format ..........................................................................
28.3.16 RTCYEAR Register – Hexadecimal Format ...............................................................
28.3.17 RTCYEAR Register – BCD Format .........................................................................
28.3.18 RTCAMIN Register – Hexadecimal Format ...............................................................
28.3.19 RTCAMIN Register – BCD Format .........................................................................
28.3.20 RTCAHOUR Register – Hexadecimal Format ............................................................
28.3.21 RTCAHOUR Register – BCD Format ......................................................................
28.3.22 RTCADOW Register ..........................................................................................
28.3.23 RTCADAY Register – Hexadecimal Format ...............................................................
28.3.24 RTCADAY Register – BCD Format .........................................................................
28.3.25 RTCPS0CTL Register ........................................................................................
28.3.26 RTCPS1CTL Register ........................................................................................
28.3.27 RTCPS0 Register .............................................................................................
28.3.28 RTCPS1 Register .............................................................................................
28.3.29 RTCIV Register ................................................................................................
28.3.30 BIN2BCD Register ............................................................................................
28.3.31 BCD2BIN Register ............................................................................................

688
690
690
690
691
691
693
694
695
697
698
699
699
700
700
701
701
702
702
703
703
703
704
704
705
705
706
706
707
707
708
709
709
710
711
712
712
713
714
714

Real-Time Clock C (RTC_C) ............................................................................................... 715
29.1

12

RTC Overview ............................................................................................................. 686

Real-Time Clock B (RTC_B) ............................................................................................... 687
28.1
28.2

29

677
678
680
681
683
684
685

Real-Time Clock (RTC) Overview ........................................................................................ 686
27.1

28

Timer_B Registers ........................................................................................................
26.3.1 TBxCTL Register ...............................................................................................
26.3.2 TBxR Register ...................................................................................................
26.3.3 TBxCCTLn Register ............................................................................................
26.3.4 TBxCCRn Register .............................................................................................
26.3.5 TBxIV Register ..................................................................................................
26.3.6 TBxEX0 Register ...............................................................................................

Real-Time Clock (RTC_C) Introduction ................................................................................ 716

Contents

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

29.2

29.3

29.4

RTC_C Operation .........................................................................................................
29.2.1 Calendar Mode ..................................................................................................
29.2.2 Real-Time Clock and Prescale Dividers ....................................................................
29.2.3 Real-Time Clock Alarm Function ............................................................................
29.2.4 Real-Time Clock Protection ...................................................................................
29.2.5 Reading or Writing Real-Time Clock Registers ............................................................
29.2.6 Real-Time Clock Interrupts ....................................................................................
29.2.7 Real-Time Clock Calibration for Crystal Offset Error.......................................................
29.2.8 Real-Time Clock Compensation for Crystal Temperature Drift ...........................................
29.2.9 Real-Time Clock Operation in LPM3.5 Low-Power Mode .................................................
RTC_C Operation - Device-Dependent Features ....................................................................
29.3.1 Counter Mode ...................................................................................................
29.3.2 Real-Time Clock Event/Tamper Detection With Time Stamp .............................................
RTC_C Registers .........................................................................................................
29.4.1 RTCCTL0_L Register ..........................................................................................
29.4.2 RTCCTL0_H Register ..........................................................................................
29.4.3 RTCCTL1 Register .............................................................................................
29.4.4 RTCCTL3 Register .............................................................................................
29.4.5 RTCOCAL Register ............................................................................................
29.4.6 RTCTCMP Register ............................................................................................
29.4.7 RTCNT1 Register ...............................................................................................
29.4.8 RTCNT2 Register ...............................................................................................
29.4.9 RTCNT3 Register ...............................................................................................
29.4.10 RTCNT4 Register .............................................................................................
29.4.11 RTCSEC Register – Calendar Mode With Hexadecimal Format .......................................
29.4.12 RTCSEC Register – Calendar Mode With BCD Format .................................................
29.4.13 RTCMIN Register – Calendar Mode With Hexadecimal Format ........................................
29.4.14 RTCMIN Register – Calendar Mode With BCD Format ..................................................
29.4.15 RTCHOUR Register – Calendar Mode With Hexadecimal Format .....................................
29.4.16 RTCHOUR Register – Calendar Mode With BCD Format ...............................................
29.4.17 RTCDOW Register – Calendar Mode ......................................................................
29.4.18 RTCDAY Register – Calendar Mode With Hexadecimal Format .......................................
29.4.19 RTCDAY Register – Calendar Mode With BCD Format .................................................
29.4.20 RTCMON Register – Calendar Mode With Hexadecimal Format ......................................
29.4.21 RTCMON Register – Calendar Mode With BCD Format ................................................
29.4.22 RTCYEAR Register – Calendar Mode With Hexadecimal Format .....................................
29.4.23 RTCYEAR Register – Calendar Mode With BCD Format ...............................................
29.4.24 RTCAMIN Register – Calendar Mode With Hexadecimal Format ......................................
29.4.25 RTCAMIN Register – Calendar Mode With BCD Format ................................................
29.4.26 RTCAHOUR Register.........................................................................................
29.4.27 RTCAHOUR Register – Calendar Mode With BCD Format .............................................
29.4.28 RTCADOW Register – Calendar Mode ....................................................................
29.4.29 RTCADAY Register – Calendar Mode With Hexadecimal Format .....................................
29.4.30 RTCADAY Register – Calendar Mode With BCD Format ...............................................
29.4.31 RTCPS0CTL Register ........................................................................................
29.4.32 RTCPS1CTL Register ........................................................................................
29.4.33 RTCPS0 Register .............................................................................................
29.4.34 RTCPS1 Register .............................................................................................
29.4.35 RTCIV Register ................................................................................................
29.4.36 BIN2BCD Register ............................................................................................
29.4.37 BCD2BIN Register ............................................................................................
29.4.38 RTCSECBAKx Register – Hexadecimal Format ..........................................................
29.4.39 RTCSECBAKx Register – BCD Format ....................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Contents

718
718
718
718
719
720
720
722
723
725
726
726
729
731
734
735
736
737
737
738
739
739
739
739
740
740
741
741
742
742
743
743
743
744
744
745
745
746
746
747
747
748
749
749
750
751
753
753
754
755
755
756
756
13

www.ti.com

29.4.40
29.4.41
29.4.42
29.4.43
29.4.44
29.4.45
29.4.46
29.4.47
29.4.48
29.4.49
29.4.50
29.4.51
29.4.52

30

30.4

Enhanced Universal Serial Communication Interface A (eUSCI_A) Overview ...................................
eUSCI_A Introduction – UART Mode ..................................................................................
eUSCI_A Operation – UART Mode ....................................................................................
30.3.1 eUSCI_A Initialization and Reset .............................................................................
30.3.2 Character Format ...............................................................................................
30.3.3 Asynchronous Communication Format ......................................................................
30.3.4 Automatic Baud-Rate Detection ..............................................................................
30.3.5 IrDA Encoding and Decoding .................................................................................
30.3.6 Automatic Error Detection .....................................................................................
30.3.7 eUSCI_A Receive Enable .....................................................................................
30.3.8 eUSCI_A Transmit Enable ....................................................................................
30.3.9 UART Baud-Rate Generation .................................................................................
30.3.10 Setting a Baud Rate ..........................................................................................
30.3.11 Transmit Bit Timing - Error calculation .....................................................................
30.3.12 Receive Bit Timing – Error Calculation .....................................................................
30.3.13 Typical Baud Rates and Errors ..............................................................................
30.3.14 Using the eUSCI_A Module in UART Mode With Low-Power Modes .................................
30.3.15 eUSCI_A Interrupts in UART Mode .........................................................................
30.3.16 DMA Operation ................................................................................................
eUSCI_A UART Registers ...............................................................................................
30.4.1 UCAxCTLW0 Register .........................................................................................
30.4.2 UCAxCTLW1 Register .........................................................................................
30.4.3 UCAxBRW Register ............................................................................................
30.4.4 UCAxMCTLW Register ........................................................................................
30.4.5 UCAxSTATW Register .........................................................................................
30.4.6 UCAxRXBUF Register .........................................................................................
30.4.7 UCAxTXBUF Register .........................................................................................
30.4.8 UCAxABCTL Register ..........................................................................................
30.4.9 UCAxIRCTL Register...........................................................................................
30.4.10 UCAxIE Register ..............................................................................................
30.4.11 UCAxIFG Register ............................................................................................
30.4.12 UCAxIV Register ..............................................................................................

765
765
767
767
767
767
770
771
772
773
773
774
776
777
777
778
780
781
782
783
784
785
786
786
787
788
788
789
790
791
792
793

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode ............................... 794
31.1
31.2
31.3

14

757
757
758
758
759
759
760
760
761
761
762
762
763

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode ............................ 764
30.1
30.2
30.3

31

RTCMINBAKx Register – Hexadecimal Format...........................................................
RTCMINBAKx Register – BCD Format ....................................................................
RTCHOURBAKx Register – Hexadecimal Format........................................................
RTCHOURBAKx Register – BCD Format .................................................................
RTCDAYBAKx Register – Hexadecimal Format ..........................................................
RTCDAYBAKx Register – BCD Format ....................................................................
RTCMONBAKx Register – Hexadecimal Format .........................................................
RTCMONBAKx Register – BCD Format ...................................................................
RTCYEARBAKx Register – Hexadecimal Format ........................................................
RTCYEARBAKx Register – BCD Format ..................................................................
RTCTCCTL0 Register ........................................................................................
RTCTCCTL1 Register ........................................................................................
RTCCAPxCTL Register ......................................................................................

Enhanced Universal Serial Communication Interfaces (eUSCI_A, eUSCI_B) Overview .......................
eUSCI Introduction – SPI Mode ........................................................................................
eUSCI Operation – SPI Mode ...........................................................................................
31.3.1 eUSCI Initialization and Reset ................................................................................
31.3.2 Character Format ...............................................................................................
31.3.3 Master Mode ....................................................................................................

Contents

795
795
797
797
798
798

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

31.4

31.5

32

31.3.4 Slave Mode ......................................................................................................
31.3.5 SPI Enable .......................................................................................................
31.3.6 Serial Clock Control ............................................................................................
31.3.7 Using the SPI Mode With Low-Power Modes ...............................................................
31.3.8 eUSCI Interrupts in SPI Mode ................................................................................
eUSCI_A SPI Registers ..................................................................................................
31.4.1 UCAxCTLW0 Register .........................................................................................
31.4.2 UCAxBRW Register ............................................................................................
31.4.3 UCAxSTATW Register .........................................................................................
31.4.4 UCAxRXBUF Register .........................................................................................
31.4.5 UCAxTXBUF Register .........................................................................................
31.4.6 UCAxIE Register ................................................................................................
31.4.7 UCAxIFG Register ..............................................................................................
31.4.8 UCAxIV Register ................................................................................................
eUSCI_B SPI Registers ..................................................................................................
31.5.1 UCBxCTLW0 Register .........................................................................................
31.5.2 UCBxBRW Register ............................................................................................
31.5.3 UCBxSTATW Register .........................................................................................
31.5.4 UCBxRXBUF Register .........................................................................................
31.5.5 UCBxTXBUF Register .........................................................................................
31.5.6 UCBxIE Register ...............................................................................................
31.5.7 UCBxIFG Register ..............................................................................................
31.5.8 UCBxIV Register ................................................................................................

799
800
800
801
801
803
804
805
806
807
808
809
810
811
812
813
814
814
815
815
816
816
817

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode ................................ 818
32.1
32.2
32.3

32.4

Enhanced Universal Serial Communication Interface B (eUSCI_B) Overview ...................................
eUSCI_B Introduction – I2C Mode ......................................................................................
eUSCI_B Operation – I2C Mode ........................................................................................
32.3.1 eUSCI_B Initialization and Reset .............................................................................
32.3.2 I2C Serial Data ..................................................................................................
32.3.3 I2C Addressing Modes .........................................................................................
32.3.4 I2C Quick Setup .................................................................................................
32.3.5 I2C Module Operating Modes .................................................................................
32.3.6 Glitch Filtering ...................................................................................................
32.3.7 I2C Clock Generation and Synchronization ..................................................................
32.3.8 Byte Counter ....................................................................................................
32.3.9 Multiple Slave Addresses ......................................................................................
32.3.10 Using the eUSCI_B Module in I2C Mode With Low-Power Modes .....................................
32.3.11 eUSCI_B Interrupts in I2C Mode ............................................................................
eUSCI_B I2C Registers ..................................................................................................
32.4.1 UCBxCTLW0 Register .........................................................................................
32.4.2 UCBxCTLW1 Register .........................................................................................
32.4.3 UCBxBRW Register ............................................................................................
32.4.4 UCBxSTATW ....................................................................................................
32.4.5 UCBxTBCNT Register .........................................................................................
32.4.6 UCBxRXBUF Register .........................................................................................
32.4.7 UCBxTXBUF ....................................................................................................
32.4.8 UCBxI2COA0 Register .........................................................................................
32.4.9 UCBxI2COA1 Register .........................................................................................
32.4.10 UCBxI2COA2 Register .......................................................................................
32.4.11 UCBxI2COA3 Register .......................................................................................
32.4.12 UCBxADDRX Register .......................................................................................
32.4.13 UCBxADDMASK Register ...................................................................................
32.4.14 UCBxI2CSA Register .........................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Contents

819
819
820
821
821
822
823
824
834
834
836
836
837
837
841
842
844
846
846
847
848
848
849
850
850
851
851
852
852
15

www.ti.com

32.4.15 UCBxIE Register .............................................................................................. 853
32.4.16 UCBxIFG Register ............................................................................................ 855
32.4.17 UCBxIV Register .............................................................................................. 857

33

REF_A ............................................................................................................................. 858
33.1
33.2

33.3

34

34.3

ADC12_B Introduction ...................................................................................................
ADC12_B Operation ......................................................................................................
34.2.1 12-Bit ADC Core ................................................................................................
34.2.2 ADC12_B Inputs and Multiplexer .............................................................................
34.2.3 Voltage References ............................................................................................
34.2.4 Auto Power Down ..............................................................................................
34.2.5 Sample Frequency Mode Selection ..........................................................................
34.2.6 Sample and Conversion Timing ..............................................................................
34.2.7 Conversion Memory ............................................................................................
34.2.8 ADC12_B Conversion Modes .................................................................................
34.2.9 Operation in LPM3 and LPM4 ................................................................................
34.2.10 Window Comparator ..........................................................................................
34.2.11 Using the Integrated Temperature Sensor .................................................................
34.2.12 ADC12_B Grounding and Noise Considerations .........................................................
34.2.13 ADC12_B Calibration .........................................................................................
34.2.14 ADC12_B Interrupts ..........................................................................................
ADC12_B Registers ......................................................................................................
34.3.1 ADC12CTL0 Register (offset = 00h) [reset = 0000h] ......................................................
34.3.2 ADC12CTL1 Register (offset = 02h) [reset = 0000h] ......................................................
34.3.3 ADC12CTL2 Register (offset = 04h) [reset = 0020h] ......................................................
34.3.4 ADC12CTL3 Register (offset = 06h) [reset = 0000h] ......................................................
34.3.5 ADC12MEMx Register (x = 0 to 31) .........................................................................
34.3.6 ADC12MCTLx Register (x = 0 to 31) ........................................................................
34.3.7 ADC12HI Register (offset = 0Ah) [reset = 0FFFh] .........................................................
34.3.8 ADC12LO Register (offset = 08h) [reset = 0000h] .........................................................
34.3.9 ADC12IER0 Register (offset = 12h) [reset = 0000h] .......................................................
34.3.10 ADC12IER1 Register (offset = 14h) [reset = 0000h] .....................................................
34.3.11 ADC12IER2 Register (offset = 16h) [reset = 0000h] .....................................................
34.3.12 ADC12IFGR0 Register (offset = 0Ch) [reset = 0000h] ...................................................
34.3.13 ADC12IFGR1 Register (offset = 0Eh) [reset = 0000h] ...................................................
34.3.14 ADC12IFGR2 Register (offset = 10h) [reset = 0000h] ...................................................
34.3.15 ADC12IV Register (offset = 18h) [reset = 0000h] .........................................................

866
868
868
869
869
870
870
870
873
874
879
879
880
881
882
882
884
890
892
894
895
896
897
899
899
900
902
904
905
907
909
910

Comparator E (COMP_E) Module ........................................................................................ 912
35.1
35.2

16

859
860
860
860
862
863

ADC12_B ......................................................................................................................... 865
34.1
34.2

35

REF_A Introduction .......................................................................................................
Principle of Operation ....................................................................................................
33.2.1 Low-Power Operation ..........................................................................................
33.2.2 Reference System Requests ..................................................................................
REF_A Registers .........................................................................................................
33.3.1 REFCTL0 Register (offset = 00h) [reset = 0000h] .........................................................

COMP_E Introduction ....................................................................................................
COMP_E Operation ......................................................................................................
35.2.1 Comparator ......................................................................................................
35.2.2 Analog Input Switches .........................................................................................
35.2.3 Port Logic ........................................................................................................
35.2.4 Input Short Switch ..............................................................................................
35.2.5 Output Filter .....................................................................................................
35.2.6 Reference Voltage Generator .................................................................................
35.2.7 Port Disable Register (CEPD) ................................................................................

Contents

913
914
914
914
914
914
915
916
917

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

35.3

36

917
917
920
921
922
923
924
926
927

LCD_C Controller.............................................................................................................. 928
36.1
36.2

36.3

37

35.2.8 Comparator_E Interrupts ......................................................................................
35.2.9 Comparator_E Used to Measure Resistive Elements .....................................................
COMP_E Registers .......................................................................................................
35.3.1 CECTL0 Register (offset = 00h) [reset = 0000h] ...........................................................
35.3.2 CECTL1 Register (offset = 02h) [reset = 0000h] ...........................................................
35.3.3 CECTL2 Register (offset = 04h) [reset = 0000h] ...........................................................
35.3.4 CECTL3 Register (offset = 06h) [reset = 0000h] ...........................................................
35.3.5 CEINT Register (offset = 0Ch) [reset = 0000h] .............................................................
35.3.6 CEIV Register (offset = 0Eh) [reset = 0000h] ...............................................................
LCD_C Introduction.......................................................................................................
LCD_C Operation .........................................................................................................
36.2.1 LCD Memory ....................................................................................................
36.2.2 LCD Timing Generation ........................................................................................
36.2.3 Blanking the LCD ...............................................................................................
36.2.4 LCD Blinking.....................................................................................................
36.2.5 LCD Voltage And Bias Generation ...........................................................................
36.2.6 LCD Outputs.....................................................................................................
36.2.7 LCD Interrupts ...................................................................................................
36.2.8 Static Mode ......................................................................................................
36.2.9 2-Mux Mode .....................................................................................................
36.2.10 3-Mux Mode ....................................................................................................
36.2.11 4-Mux Mode ....................................................................................................
36.2.12 6-Mux Mode ....................................................................................................
36.2.13 8-Mux Mode ....................................................................................................
LCD_C Registers .........................................................................................................
36.3.1 LCDCCTL0 Register ...........................................................................................
36.3.2 LCDCCTL1 Register ...........................................................................................
36.3.3 LCDCBLKCTL Register ........................................................................................
36.3.4 LCDCMEMCTL Register .......................................................................................
36.3.5 LCDCVCTL Register ...........................................................................................
36.3.6 LCDCPCTL0 Register ..........................................................................................
36.3.7 LCDCPCTL1 Register ..........................................................................................
36.3.8 LCDCPCTL2 Register ..........................................................................................
36.3.9 LCDCPCTL3 Register ..........................................................................................
36.3.10 LCDCCPCTL Register ........................................................................................
36.3.11 LCDCIV Register ..............................................................................................

929
931
931
932
933
933
934
937
938
940
941
942
943
944
945
947
952
954
955
956
957
959
959
960
960
961
961

Extended Scan Interface (ESI) ............................................................................................ 962
37.1
37.2

37.3

ESI Introduction ...........................................................................................................
ESI Operation .............................................................................................................
37.2.1 ESI Analog Front End ..........................................................................................
37.2.2 ESI Timing State Machine .....................................................................................
37.2.3 ESI Pre-Processing and State Storage ......................................................................
37.2.4 TimerA Output Stage ...........................................................................................
37.2.5 ESI Processing State Machine................................................................................
37.2.6 ESI Debug Register ............................................................................................
37.2.7 ESI Interrupts ....................................................................................................
37.2.8 Overview of ESI Applications .................................................................................
ESI Registers ..............................................................................................................
37.3.1 ESIDEBUG1 Register ..........................................................................................
37.3.2 ESIDEBUG2 Register ..........................................................................................
37.3.3 ESIDEBUG3 Register ..........................................................................................
37.3.4 ESIDEBUG4 Register ..........................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Contents

963
964
964
971
976
977
978
982
982
983
990
991
991
991
992
17

www.ti.com

37.3.5
37.3.6
37.3.7
37.3.8
37.3.9
37.3.10
37.3.11
37.3.12
37.3.13
37.3.14
37.3.15
37.3.16
37.3.17
37.3.18
37.3.19
37.3.20
37.3.21
37.3.22
37.3.23
37.3.24

38

ESIDEBUG5 Register .......................................................................................... 992
ESICNT0 Register .............................................................................................. 993
ESICNT1 Register .............................................................................................. 993
ESICNT2 Register .............................................................................................. 994
ESICNT3 Register .............................................................................................. 994
ESIIV Register ................................................................................................. 995
ESIINT1 Register .............................................................................................. 996
ESIINT2 Register .............................................................................................. 998
ESIAFE Register ............................................................................................. 1000
ESIPPU Register ............................................................................................ 1002
ESITSM Register ............................................................................................ 1003
ESIPSM Register ............................................................................................ 1005
ESIOSC Register ............................................................................................ 1006
ESICTL Register ............................................................................................. 1007
ESITHR1 Register ........................................................................................... 1009
ESITHR2 Register ........................................................................................... 1009
ESIDAC1Rx Register (x = 0 to 7) ......................................................................... 1010
ESIDAC2Rx Register (x = 0 to 7) ......................................................................... 1010
ESITSMx Register (x = 0 to 31) ........................................................................... 1011
Extended Scan Interface Processing State Machine Table Entry (ESI Memory) ................... 1013

Embedded Emulation Module (EEM).................................................................................. 1014
38.1
38.2

38.3

Embedded Emulation Module (EEM) Introduction ..................................................................
EEM Building Blocks ....................................................................................................
38.2.1 Triggers .........................................................................................................
38.2.2 Trigger Sequencer ............................................................................................
38.2.3 State Storage (Internal Trace Buffer) .......................................................................
38.2.4 Cycle Counter..................................................................................................
38.2.5 EnergyTrace++™ Technology ...............................................................................
38.2.6 Clock Control ..................................................................................................
38.2.7 Debug Modes ..................................................................................................
EEM Configurations .....................................................................................................

1015
1017
1017
1017
1017
1017
1018
1018
1018
1018

Revision History ...................................................................................................................... 1020

18

Contents

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

List of Figures
1-1.

BOR, POR, and PUC Reset Circuit ...................................................................................... 49

1-2.

Interrupt Priority............................................................................................................. 50

1-3.

Interrupt Processing........................................................................................................ 52

1-4.

Return From Interrupt ...................................................................................................... 53

1-5.

Operation Modes ........................................................................................................... 57

1-6.

Devices Descriptor Table.................................................................................................. 66

1-7.

SFRIE1 Register

1-8.
1-9.
1-10.
1-11.
1-12.
1-13.
1-14.
1-15.
1-16.
1-17.
1-18.
2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
3-11.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.

........................................................................................................... 73
SFRIFG1 Register.......................................................................................................... 74
SFRRPCR Register ........................................................................................................ 75
SYSCTL Register .......................................................................................................... 77
SYSJMBC Register ........................................................................................................ 78
SYSJMBI0 Register ........................................................................................................ 79
SYSJMBI1 Register ........................................................................................................ 79
SYSJMBO0 Register....................................................................................................... 80
SYSJMBO1 Register....................................................................................................... 80
SYSUNIV Register ......................................................................................................... 81
SYSSNIV Register ......................................................................................................... 81
SYSRSTIV Register........................................................................................................ 82
PMM Block Diagram ....................................................................................................... 84
Voltage Failure and Resulting PMM Actions ........................................................................... 85
PMM Action at Device Power-Up ........................................................................................ 86
PMMCTL0 Register ........................................................................................................ 89
PMMCTL1 Register ........................................................................................................ 90
PMMIFG Register .......................................................................................................... 91
PM5CTL0 Register ......................................................................................................... 92
Clock System Block Diagram ............................................................................................. 95
Module Request Clock System ........................................................................................... 99
Oscillator Fault Logic ..................................................................................................... 101
Switch MCLK From DCOCLK to LFXTCLK ........................................................................... 102
CSCTL0 Register ......................................................................................................... 104
CSCTL1 Register ......................................................................................................... 104
CSCTL2 Register ......................................................................................................... 105
CSCTL3 Register ......................................................................................................... 106
CSCTL4 Register ......................................................................................................... 107
CSCTL5 Register ......................................................................................................... 109
CSCTL6 Register ......................................................................................................... 110
MSP430X CPU Block Diagram ......................................................................................... 113
PC Storage on the Stack for Interrupts ................................................................................ 114
Program Counter.......................................................................................................... 115
PC Storage on the Stack for CALLA ................................................................................... 115
Stack Pointer .............................................................................................................. 116
Stack Usage ............................................................................................................... 116
PUSHX.A Format on the Stack ......................................................................................... 116
PUSH SP, POP SP Sequence .......................................................................................... 116
SR Bits ..................................................................................................................... 117
Register-Byte and Byte-Register Operation ........................................................................... 119
Register-Word Operation ................................................................................................ 119

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Figures

19

www.ti.com

4-12.

Word-Register Operation ................................................................................................ 120

4-13.

Register – Address-Word Operation ................................................................................... 120

4-14.

Address-Word – Register Operation ................................................................................... 121

4-15.

Indexed Mode in Lower 64KB ........................................................................................... 123

4-16.

Indexed Mode in Upper Memory

124

4-17.

Overflow and Underflow for Indexed Mode

125

4-18.
4-19.
4-20.
4-21.
4-22.
4-23.
4-24.
4-25.
4-26.
4-27.
4-28.
4-29.
4-30.
4-31.
4-32.
4-33.
4-34.
4-35.
4-36.
4-37.
4-38.
4-39.
4-40.
4-41.
4-42.
4-43.
4-44.
4-45.
4-46.
4-47.
4-48.
4-49.
4-50.
4-51.
4-52.
4-53.
4-54.
4-55.
4-56.
4-57.
4-58.
4-59.
4-60.
20

.......................................................................................
...........................................................................
Example for Indexed Mode ..............................................................................................
Symbolic Mode Running in Lower 64KB ..............................................................................
Symbolic Mode Running in Upper Memory ...........................................................................
Overflow and Underflow for Symbolic Mode ..........................................................................
MSP430 Double-Operand Instruction Format.........................................................................
MSP430 Single-Operand Instructions ..................................................................................
Format of Conditional Jump Instructions ..............................................................................
Extension Word for Register Modes ...................................................................................
Extension Word for Non-Register Modes ..............................................................................
Example for Extended Register or Register Instruction .............................................................
Example for Extended Immediate or Indexed Instruction ...........................................................
Extended Format I Instruction Formats ................................................................................
20-Bit Addresses in Memory ............................................................................................
Extended Format II Instruction Format .................................................................................
PUSHM and POPM Instruction Format ................................................................................
RRCM, RRAM, RRUM, and RLAM Instruction Format ..............................................................
BRA Instruction Format ..................................................................................................
CALLA Instruction Format ...............................................................................................
Decrement Overlap .......................................................................................................
Stack After a RET Instruction ...........................................................................................
Destination Operand—Arithmetic Shift Left ...........................................................................
Destination Operand—Carry Left Shift .................................................................................
Rotate Right Arithmetically RRA.B and RRA.W ......................................................................
Rotate Right Through Carry RRC.B and RRC.W ....................................................................
Swap Bytes in Memory...................................................................................................
Swap Bytes in a Register ................................................................................................
Rotate Left Arithmetically—RLAM[.W] and RLAM.A .................................................................
Destination Operand-Arithmetic Shift Left .............................................................................
Destination Operand-Carry Left Shift ..................................................................................
Rotate Right Arithmetically RRAM[.W] and RRAM.A ................................................................
Rotate Right Arithmetically RRAX(.B,.A) – Register Mode ..........................................................
Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode ....................................................
Rotate Right Through Carry RRCM[.W] and RRCM.A ..............................................................
Rotate Right Through Carry RRCX(.B,.A) – Register Mode ........................................................
Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode ..................................................
Rotate Right Unsigned RRUM[.W] and RRUM.A.....................................................................
Rotate Right Unsigned RRUX(.B,.A) – Register Mode ..............................................................
Swap Bytes SWPBX.A Register Mode ................................................................................
Swap Bytes SWPBX.A In Memory .....................................................................................
Swap Bytes SWPBX[.W] Register Mode ..............................................................................
Swap Bytes SWPBX[.W] In Memory ...................................................................................
Sign Extend SXTX.A .....................................................................................................
Sign Extend SXTX[.W] ...................................................................................................

List of Figures

126
128
129
130
138
139
140
143
143
144
145
146
146
147
148
148
148
148
174
193
195
196
197
198
205
205
232
233
234
235
237
237
239
241
241
242
243
247
247
248
248
249
249

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

5-1.

MPY32 Block Diagram ................................................................................................... 269

5-2.

Q15 Format Representation ............................................................................................. 274

5-3.

Q14 Format Representation ............................................................................................. 274

5-4.

Saturation Flow Chart .................................................................................................... 276

5-5.

Multiplication Flow Chart ................................................................................................. 278

5-6.

MPY32CTL0 Register .................................................................................................... 284

7-1.

FRAM Controller Block Diagram ........................................................................................ 287

7-2.

FRAM Power Control Diagram .......................................................................................... 290

7-3.

FRCTL0 Register ......................................................................................................... 292

7-4.

GCCTL0 Register ......................................................................................................... 293

7-5.

GCCTL1 Register ......................................................................................................... 294

8-1.

FRCTL_A Block Diagram ................................................................................................ 296

8-2.

FRAM Power Control Diagram .......................................................................................... 300

8-3.

FRCTL0 Register ......................................................................................................... 302

8-4.

GCCTL0 Register ......................................................................................................... 304

8-5.

GCCTL1 Register ......................................................................................................... 306

9-1.

Memory Protection Unit Overview ...................................................................................... 309

9-2.

Segment Border Register ................................................................................................ 310

9-3.

Example of Segment Border Register Fixed Bits When FRAM Size = 128KB ................................... 310

9-4.

Example of Segment Border Register Fixed Bits When FRAM Size = 256KB

310

9-5.

Segmentation of Main Memory

311

9-6.
9-7.
9-8.
9-9.
9-10.
9-11.
9-12.
9-13.
9-14.
10-1.
10-2.
10-3.
11-1.
11-2.
11-3.
11-4.
11-5.
11-6.
11-7.
11-8.
11-9.
11-10.
11-11.
11-12.
11-13.
11-14.
11-15.
12-1.

..................................
.........................................................................................
IP Encapsulation Access Rights Equivalent Schematic .............................................................
MPUCTL0 Register .......................................................................................................
MPUCTL1 Register .......................................................................................................
MPUSEGB2 Register ....................................................................................................
MPUSEGB1 Register ....................................................................................................
MPUSAM Register........................................................................................................
MPUIPC0 Register .......................................................................................................
MPUIPSEGB2 Register ..................................................................................................
MPUIPSEGB1 Register ..................................................................................................
RAM Power Mode Transitions Into and Out of LPM3 or LPM4.....................................................
CTL0 Register .............................................................................................................
CTL1 Register .............................................................................................................
DMA Controller Block Diagram .........................................................................................
DMA Addressing Modes .................................................................................................
DMA Single Transfer State Diagram ...................................................................................
DMA Block Transfer State Diagram ....................................................................................
DMA Burst-Block Transfer State Diagram .............................................................................
DMACTL0 Register .......................................................................................................
DMACTL1 Register .......................................................................................................
DMACTL2 Register .......................................................................................................
DMACTL3 Register .......................................................................................................
DMACTL4 Register .......................................................................................................
DMAxCTL Register .......................................................................................................
DMAxSA Register ........................................................................................................
DMAxDA Register ........................................................................................................
DMAxSZ Register .........................................................................................................
DMAIV Register ...........................................................................................................
P1IV Register..............................................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Figures

312
319
320
321
322
323
325
326
327
329
332
334
337
338
340
342
344
352
353
354
355
356
357
359
360
361
362
384
21

www.ti.com

12-2.

P2IV Register.............................................................................................................. 384

12-3.

P3IV Register.............................................................................................................. 385

12-4.

P4IV Register.............................................................................................................. 385

12-5.

PxIN Register.............................................................................................................. 386

12-6.

PxOUT Register........................................................................................................... 386

12-7.

PxDIR Register ............................................................................................................ 386

12-8.

PxREN Register........................................................................................................... 387

12-9.

PxSEL0 Register .......................................................................................................... 387

12-10. PxSEL1 Register .......................................................................................................... 387
12-11. PxSELC Register ......................................................................................................... 388
12-12. PxIES Register ............................................................................................................ 388
12-13. PxIE Register .............................................................................................................. 388
12-14. PxIFG Register ............................................................................................................ 389
13-1.

Capacitive Touch I/O Principle .......................................................................................... 391

13-2.

Capacitive Touch I/O Block Diagram................................................................................... 392

13-3.

CAPTIOxCTL Register ................................................................................................... 394

14-1.

AES Accelerator Block Diagram ........................................................................................ 396

14-2.

AES State Array Input and Output

14-3.

AES Encryption Process for 128-Bit Key .............................................................................. 400

14-4.

AES Decryption Process Using AESOPx = 01 for 128-Bit Key

14-5.

AES Decryption Process Using AESOPx = 10 and 11 for 128-bit Key ............................................ 402

14-6.

ECB Encryption ........................................................................................................... 405

14-7.

ECB Decryption ........................................................................................................... 406

14-8.

CBC Encryption ........................................................................................................... 407

14-9.

CBC Decryption ........................................................................................................... 408

.....................................................................................
....................................................

397
401

14-10. OFB Encryption ........................................................................................................... 410
14-11. OFB Decryption ........................................................................................................... 411
14-12. CFB Encryption

...........................................................................................................

412

14-13. CFB Decryption ........................................................................................................... 413
14-14. AESACTL0 Register ...................................................................................................... 415
14-15. AESACTL1 Register ...................................................................................................... 417
14-16. AESASTAT Register

.....................................................................................................

418

14-17. AESAKEY Register ....................................................................................................... 419
14-18. AESADIN Register........................................................................................................ 420
14-19. AESADOUT Register..................................................................................................... 421
14-20. AESAXDIN Register ...................................................................................................... 422
14-21. AESAXIN Register ........................................................................................................ 423
15-1.

LFSR Implementation of CRC-CCITT Standard, Bit 0 is the MSB of the Result ................................. 425

15-2.

Implementation of CRC-CCITT Using the CRCDI and CRCINIRES Registers

15-3.
15-4.
15-5.
15-6.
16-1.
16-2.
16-3.
16-4.
16-5.
16-6.
22

..................................
CRCDI Register ...........................................................................................................
CRCDIRB Register .......................................................................................................
CRCINIRES Register.....................................................................................................
CRCRESR Register ......................................................................................................
LFSR Implementation of CRC-CCITT as Defined in Standard (Bit 0 is MSB) ....................................
LFSR Implementation of CRC32-ISO3309 as Defined in Standard (Bit 0 is MSB) ..............................
CRC32DIW0 Register ....................................................................................................
CRC32DIW1 Register ....................................................................................................
CRC32DIRBW0 Register ................................................................................................
CRC32DIRBW1 Register ................................................................................................

List of Figures

427
430
430
431
431
433
433
437
437
438
438

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

16-7.

CRC32INIRESW0 Register.............................................................................................. 439

16-8.

CRC32INIRESW1 Register.............................................................................................. 439

16-9.

CRC32RESRW0 Register ............................................................................................... 440

16-10. CRC32RESRW1 Register ............................................................................................... 440
16-11. CRC16DIW0 Register .................................................................................................... 441
16-12. CRC16DIRBW0 Register ................................................................................................ 441
16-13. CRC16INIRESW0 Register.............................................................................................. 442
16-14. CRC16RESRW0 Register ............................................................................................... 442
17-1.

LEA System Block Diagram ............................................................................................. 444

18-1.

USS and USS_A Block Diagram

449

18-2.

USS and USS_A Submodule Connections

450

19-1.
19-2.
19-3.
19-4.
19-5.
19-6.
19-7.
19-8.
19-9.
19-10.
19-11.
19-12.
19-13.
20-1.
20-2.
20-3.
20-4.
20-5.
20-6.
20-7.
20-8.
20-9.
20-10.
20-11.
20-12.
21-1.
21-2.
21-3.
21-4.
21-5.
21-6.
21-7.
21-8.
21-9.
21-10.
21-11.
21-12.
21-13.

.......................................................................................
...........................................................................
USS/USS_A Block Diagram .............................................................................................
UUPS Block Diagram ....................................................................................................
USS Power State Control Flow ........................................................................................
USS Power Control ......................................................................................................
UUPSIIDX Register .......................................................................................................
UUPSMIS Register .......................................................................................................
UUPSRIS Register .......................................................................................................
UUPSIMSC Register .....................................................................................................
UUPSICR Register .......................................................................................................
UUPSISR Register .......................................................................................................
UUPSDESCLO Register .................................................................................................
UUPSDESCHI Register ..................................................................................................
UUPSCTL Register .......................................................................................................
USS or USS_A Block Diagram .........................................................................................
HSPLL Block Diagram ...................................................................................................
HSPLLIIDX Register ......................................................................................................
HSPLLMIS Register ......................................................................................................
HSPLLRIS Register ......................................................................................................
HSPLLIMSC Register ....................................................................................................
HSPLLICR Register ......................................................................................................
HSPLLISR Register ......................................................................................................
HSPLLDESCLO Register ................................................................................................
HSPLLDESCHI Register .................................................................................................
HSPLLCTL Register ......................................................................................................
HSPLLUSSXTLCTL Register ...........................................................................................
USS or USS_A Block Diagram .........................................................................................
PPG or PPG_A Block Diagram .........................................................................................
PPG or PPG_A Internal State Diagrams for Single Tone ...........................................................
PPG Single Tone Generation With SAPHPGC.PPOL = 0 (Starts With High Polarity) ..........................
PPG Single Tone Generation With SAPHPGC.PPOL = 1 (Starts With Low Polarity) ...........................
PPG_A State Diagram for Dual Tone ..................................................................................
PPG_A Dual Tone Generation With SAPHPGC.PPOL = 1 (Starts With Low Polarity)..........................
PPG_A State Diagram for Trill Tone ...................................................................................
PPG_A Trill Tone Generation With SAPHPGC.PPOL = 1 (Starts With Low Polarity) ...........................
PPG_A Software Flow Chart for Multi Tone ..........................................................................
PPG_A Multi Tone Generation With SAPHPGC.PPOL = 1 (Starts With Low Polarity) .........................
PHY Output Pins ..........................................................................................................
SAPH or SAPH_A Analog Input Signal Chain ........................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Figures

456
457
459
460
465
466
467
468
469
470
471
472
473
476
476
481
482
483
484
485
486
487
488
489
491
494
494
495
496
496
497
497
498
498
499
499
501
503
23

www.ti.com

21-14. Before Excitation .......................................................................................................... 504
21-15. Excitation................................................................................................................... 505
21-16. Before Reception

.........................................................................................................

506

21-17. Reception .................................................................................................................. 507
21-18. ASQ Block Diagram ...................................................................................................... 508
21-19. Auto Mode and Register Mode Example .............................................................................. 511
21-20. Ultra-Low-Power Bias Mode Example ................................................................................. 512
21-21. SAPHIIDX/SAPH_AIIDX Register ...................................................................................... 515
21-22. SAPHMIS/SAPH_AMIS Register ....................................................................................... 516
21-23. SAPHRIS/SAPH_ARIS Register ........................................................................................ 517
21-24. SAPHIMSC/SAPH_AIMSC Register ................................................................................... 518
21-25. SAPHICR/SAPH_AICR Register

.......................................................................................

519

21-26. SAPHISR/SAPH_AISR Register ........................................................................................ 520

..........................................................................
SAPHDESCHI/SAPH_ADESCHI Register ............................................................................
SAPHKEY/SAPH_AKEY Register ......................................................................................
SAPHOCTL0/SAPH_AOCTL0 Register ...............................................................................
SAPHOCTL1/SAPH_AOCTL1 Register ...............................................................................
SAPHOSEL/SAPH_AOSEL Register ..................................................................................
SAPHCH0PUT/SAPH_ACH0PUT Register ...........................................................................
SAPHCH0PDT/SAPH_ACH0PDT Register ...........................................................................
SAPHCH0TT/SAPH_ACH0TT Register ...............................................................................
SAPHCH1PUT/SAPH_ACH1PUT Register ...........................................................................
SAPHCH1PDT/SAPH_ACH1PDT Register ...........................................................................
SAPHCH1TT/SAPH_ACH1TT Register ...............................................................................
SAPHMCNF/SAPH_AMCNF Register .................................................................................
SAPHTACTL/SAPH_ATACTL Register................................................................................
SAPHICTL0/SAPH_AICTL0 Register ..................................................................................
SAPHBCTL/SAPH_ABCTL Register ...................................................................................
SAPHPGC/SAPH_APGC Register .....................................................................................
SAPHPGLPER/SAPH_APGLPER Register ...........................................................................
SAPHPGHPER/SAPH_APGHPER Register ..........................................................................
SAPHPGCTL/SAPH_APGCTL Register ...............................................................................
SAPHPPGTRIG/SAPH_APPGTRIG Register ........................................................................
SAPH_AXPGCTL Register ..............................................................................................
SAPH_AXPGLPER Register ............................................................................................
SAPH_AXPGHPER Register............................................................................................
SAPHASCTL0/SAPH_AASCTL0 Register ............................................................................
SAPHASCTL1/SAPH_AASCTL1 Register ............................................................................
SAPHASQTRIG/SAPH_AASQTRIG Register ........................................................................
SAPHAPOL/SAPH_AAPOL Register ..................................................................................
SAPHAPLEV/SAPH_AAPLEV Register ...............................................................................
SAPHAPHIZ/SAPH_AAPHIZ Register .................................................................................
SAPHATM_A/SAPH_AATM_A Register ...............................................................................
SAPHATM_B/SAPH_AATM_B Register ...............................................................................
SAPHATM_C/SAPH_AATM_C Register ..............................................................................
SAPHATM_D/SAPH_AATM_D Register ..............................................................................
SAPHATM_E/SAPH_AATM_E Register ...............................................................................
SAPHATM_F/SAPH_AATM_F Register ...............................................................................

21-27. SAPHDESCLO/SAPH_ADESCLO Register
21-28.
21-29.
21-30.
21-31.
21-32.
21-33.
21-34.
21-35.
21-36.
21-37.
21-38.
21-39.
21-40.
21-41.
21-42.
21-43.
21-44.
21-45.
21-46.
21-47.
21-48.
21-49.
21-50.
21-51.
21-52.
21-53.
21-54.
21-55.
21-56.
21-57.
21-58.
21-59.
21-60.
21-61.
21-62.
24

List of Figures

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
537
539
540
541
542
544
545
546
547
548
550
552
553
554
555
556
557
558
559
560
561

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

21-63. SAPHTBCTL/SAPH_ATBCTL Register................................................................................ 562
21-64. SAPHATIMLO/SAPH_AATIMLO Register............................................................................. 563
21-65. SAPHATIMHI/SAPH_AATIMHI Register

..............................................................................

564

22-1.

USS Block Diagram ...................................................................................................... 566

22-2.

SDHS Block Diagram

22-3.

Sigma-Delta Principle .................................................................................................... 568

22-4.

CIC7 Filter Structure ...................................................................................................... 569

22-5.

SDHS Filter Frequency Response, SDHSCTL1.OSR = 10

569

22-6.

SDHS Filter Frequency Response Within fs, SDHSCTL1.OSR = 10

570

22-7.
22-8.
22-9.
22-10.
22-11.
22-12.
22-13.
22-14.
22-15.
22-16.
22-17.
22-18.
22-19.
22-20.
22-21.
22-22.
22-23.

....................................................................................................

........................................................
..............................................
Digital Filter Block Diagram..............................................................................................
SDHS Filter Frequency Response, SDHSCTL1.OSR = 20 ........................................................
SDHS Filter Frequency Response Within fs, SDHSCTL1.OSR = 20 ..............................................
SDHS Filter Frequency Response within fs, SDHSCTL1.OSR = 40 ..............................................
SDHS Filter Frequency Response within fs, SDHSCTL1.OSR = 80 ..............................................
SDHS Filter Frequency Response within fs, SDHSCTL1.OSR = 160 .............................................
Bits Selection From Filter to the Data Register (SDHSCTL0.DALGN = 0)........................................
Bits Selection From Filter to the Data Register (SDHSCTL0.DALGN = 1)........................................
Data Output Path .........................................................................................................
SDHS Power and Conversion Trigger Source .......................................................................
SDHS Operation in Register Mode (SDHSCTL0.TRGSRC = 0) ...................................................
SDHS Operation as Part of USS Measurement (SDHSCTL0.TRGSRC = 1) ....................................
Example Using SDHSCTL3.TRIGEN Bit (SDHSCTL0.AUTOSSDIS = 0).........................................
Example Using SDSCTL3.TRIGEN bit (SDHSCTL0.AUTOSSDIS = 1) ...........................................
Conversion Start and Stop When SDHSCTL0.AUTOSSDIS = 0 ...................................................
Conversion Start and Stop When SDHSCTL0.AUTOSSDIS = 1 ...................................................
First Interrupt Position With SDHSCTL0.INTDLY = 2 ................................................................

567

570
571
571
572
572
573
574
575
577
579
580
581
583
584
585
586
586

22-24. SDHSCTL0.AUTOSSDIS = 0, SDHSCTL2.SMPCTLOFF = 0, SDHSCTL0.INTDLY = 0, Total Sample
Size is Controlled by SDHSCTL2.SMPSZ ............................................................................ 587
22-25. SDHSCTL0.AUTOSSDIS = 1, SDHSCTL2.SMPCTLOFF = 0, SDHSCTL0.INTDLY = 0, Total Sample
Size is Controlled by SDHSCTL2.SMPSZ............................................................................. 588
22-26. SDHSCTL0.AUTOSSDIS = 1, SDHSCTL2.SMPCTLOFF = 0, SDHSCTL0.INTDLY = m, Total Sample
Size is Controlled by SDHSCTL2.SMPSZ............................................................................. 588
22-27. SDHSIIDX Register ....................................................................................................... 593
22-28. SDHSMIS Register ....................................................................................................... 594

.......................................................................................................
SDHSIMSC Register .....................................................................................................
SDHSICR Register .......................................................................................................
SDHSISR Register .......................................................................................................
SDHSDESCLO Register .................................................................................................
SDHSDESCHI Register ..................................................................................................
SDHSCTL0 Register .....................................................................................................
SDHSCTL1 Register .....................................................................................................
SDHSCTL2 Register .....................................................................................................
SDHSCTL3 Register .....................................................................................................
SDHSCTL4 Register .....................................................................................................
SDHSCTL5 Register .....................................................................................................
SDHSCTL6 Register .....................................................................................................
SDHSCTL7 Register .....................................................................................................
SDHSDT Register ........................................................................................................
SDHSWINHITH Register ................................................................................................

22-29. SDHSRIS Register
22-30.
22-31.
22-32.
22-33.
22-34.
22-35.
22-36.
22-37.
22-38.
22-39.
22-40.
22-41.
22-42.
22-43.
22-44.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Figures

595
597
598
599
600
601
602
604
605
606
607
608
610
611
612
613
25

www.ti.com

614

22-46.

615

23-1.
23-2.
23-3.
23-4.
23-5.
23-6.
23-7.
23-8.
23-9.
23-10.
23-11.
23-12.
23-13.
24-1.
24-2.
25-1.
25-2.
25-3.
25-4.
25-5.
25-6.
25-7.
25-8.
25-9.
25-10.
25-11.
25-12.
25-13.
25-14.
25-15.
25-16.
25-17.
25-18.
25-19.
25-20.
25-21.
26-1.
26-2.
26-3.
26-4.
26-5.
26-6.
26-7.
26-8.
26-9.
26-10.
26-11.
26

...............................................................................................
SDHSDTCDA Register ...................................................................................................
MTIF Use Case ...........................................................................................................
MTIF Pulse Diagram .....................................................................................................
MTIF Internal Interfaces..................................................................................................
MTIF Block Diagram......................................................................................................
MTIFPGCNF Register ....................................................................................................
MTIFPGKVAL Register ..................................................................................................
MTIFPGCTL Register ....................................................................................................
MTIFPGSR Register .....................................................................................................
MTIFPCCNF Register ....................................................................................................
MTIFPCR Register .......................................................................................................
MTIFPCCTL Register ....................................................................................................
MTIFPCSR Register ......................................................................................................
MTIFTPCTL Register.....................................................................................................
Watchdog Timer Block Diagram ........................................................................................
WDTCTL Register ........................................................................................................
Timer_A Block Diagram ..................................................................................................
Up Mode ...................................................................................................................
Up Mode Flag Setting ....................................................................................................
Continuous Mode .........................................................................................................
Continuous Mode Flag Setting ..........................................................................................
Continuous Mode Time Intervals .......................................................................................
Up/Down Mode ............................................................................................................
Up/Down Mode Flag Setting ............................................................................................
Output Unit in Up/Down Mode ..........................................................................................
Capture Signal (SCS = 1)................................................................................................
Capture Cycle .............................................................................................................
Output Example – Timer in Up Mode ..................................................................................
Output Example – Timer in Continuous Mode ........................................................................
Output Example – Timer in Up/Down Mode ..........................................................................
Capture/Compare Interrupt Flag ........................................................................................
TAxCTL Register..........................................................................................................
TAxR Register .............................................................................................................
TAxCCTLn Register ......................................................................................................
TAxCCRn Register .......................................................................................................
TAxIV Register ............................................................................................................
TAxEX0 Register..........................................................................................................
Timer_B Block Diagram ..................................................................................................
Up Mode ...................................................................................................................
Up Mode Flag Setting ....................................................................................................
Continuous Mode .........................................................................................................
Continuous Mode Flag Setting ..........................................................................................
Continuous Mode Time Intervals .......................................................................................
Up/Down Mode ............................................................................................................
Up/Down Mode Flag Setting ............................................................................................
Output Unit in Up/Down Mode ..........................................................................................
Capture Signal (SCS = 1)................................................................................................
Capture Cycle .............................................................................................................

22-45. SDHSWINLOTH Register

List of Figures

617
618
618
621
623
624
625
626
627
628
629
630
631
634
638
641
643
643
644
644
644
645
645
646
647
647
649
650
651
652
655
656
657
659
659
660
663
665
665
666
666
666
667
667
668
669
669

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

26-12. Output Example – Timer in Up Mode .................................................................................. 672
26-13. Output Example – Timer in Continuous Mode ........................................................................ 673
26-14. Output Example – Timer in Up/Down Mode

..........................................................................

674

26-15. Capture/Compare TBxCCR0 Interrupt Flag ........................................................................... 675
26-16. TBxCTL Register.......................................................................................................... 678
26-17. TBxR Register ............................................................................................................. 680
26-18. TBxCCTLn Register ...................................................................................................... 681
26-19. TBxCCRn Register ....................................................................................................... 683
26-20. TBxIV Register ............................................................................................................ 684
26-21. TBxEX0 Register.......................................................................................................... 685
28-1.

RTC_B Block Diagram ................................................................................................... 689

28-2.

RTCCTL0 Register ....................................................................................................... 697

28-3.

RTCCTL1 Register ....................................................................................................... 698

28-4.

RTCCTL2 Register ....................................................................................................... 699

28-5.

RTCCTL3 Register ....................................................................................................... 699

28-6.

RTCSEC Register

28-7.
28-8.
28-9.
28-10.
28-11.
28-12.
28-13.
28-14.
28-15.
28-16.
28-17.
28-18.
28-19.
28-20.
28-21.
28-22.
28-23.
28-24.
28-25.
28-26.
28-27.
28-28.
28-29.
28-30.
28-31.
28-32.
29-1.
29-2.
29-3.
29-4.
29-5.
29-6.
29-7.

........................................................................................................
RTCSEC Register ........................................................................................................
RTCMIN Register .........................................................................................................
RTCMIN Register .........................................................................................................
RTCHOUR Register ......................................................................................................
RTCHOUR Register ......................................................................................................
RTCDOW Register .......................................................................................................
RTCDAY Register ........................................................................................................
RTCDAY Register ........................................................................................................
RTCMON Register........................................................................................................
RTCMON Register........................................................................................................
RTCYEAR Register.......................................................................................................
RTCYEAR Register.......................................................................................................
RTCAMIN Register .......................................................................................................
RTCAMIN Register .......................................................................................................
RTCAHOUR Register ....................................................................................................
RTCAHOUR Register ....................................................................................................
RTCADOW Register .....................................................................................................
RTCADAY Register.......................................................................................................
RTCADAY Register.......................................................................................................
RTCPS0CTL Register ....................................................................................................
RTCPS1CTL Register ....................................................................................................
RTCPS0 Register .........................................................................................................
RTCPS1 Register .........................................................................................................
RTCIV Register ...........................................................................................................
BIN2BCD Register ........................................................................................................
BCD2BIN Register ........................................................................................................
RTC_C Block Diagram (RTCMODE = 1) ..............................................................................
RTC_C Offset Error Calibration and Temperature Compensation Scheme ......................................
RTC_C Functional Block Diagram in Counter Mode (RTCMODE = 0) ............................................
RTCCTL0_L Register ....................................................................................................
RTCCTL0_H Register ....................................................................................................
RTCCTL1 Register .......................................................................................................
RTCCTL3 Register .......................................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Figures

700
700
701
701
702
702
703
703
703
704
704
705
705
706
706
707
707
708
709
709
710
711
712
712
713
714
714
717
724
726
734
735
736
737
27

www.ti.com

29-8.

RTCOCAL Register....................................................................................................... 737

29-9.

RTCTCMP Register ...................................................................................................... 738

29-10. RTCNT1 Register ......................................................................................................... 739
29-11. RTCNT2 Register ......................................................................................................... 739
29-12. RTCNT3 Register ......................................................................................................... 739
29-13. RTCNT4 Register ......................................................................................................... 739

........................................................................................................
........................................................................................................
RTCMIN Register .........................................................................................................
RTCMIN Register .........................................................................................................
RTCHOUR Register ......................................................................................................
RTCHOUR Register ......................................................................................................
RTCDOW Register .......................................................................................................
RTCDAY Register ........................................................................................................
RTCDAY Register ........................................................................................................
RTCMON Register........................................................................................................
RTCMON Register........................................................................................................
RTCYEAR Register.......................................................................................................
RTCYEAR Register.......................................................................................................
RTCAMIN Register .......................................................................................................
RTCAMIN Register .......................................................................................................
RTCAHOUR Register ....................................................................................................
RTCAHOUR Register ....................................................................................................
RTCADOW Register .....................................................................................................
RTCADAY Register.......................................................................................................
RTCADAY Register.......................................................................................................
RTCPS0CTL Register ....................................................................................................
RTCPS1CTL Register ....................................................................................................
RTCPS0 Register .........................................................................................................
RTCPS1 Register .........................................................................................................
RTCIV Register ...........................................................................................................
BIN2BCD Register ........................................................................................................
BCD2BIN Register ........................................................................................................
RTCSECBAKx Register..................................................................................................
RTCSECBAKx Register..................................................................................................
RTCMINBAKx Register ..................................................................................................
RTCMINBAKx Register ..................................................................................................
RTCHOURBAKx Register ...............................................................................................
RTCHOURBAKx Register ...............................................................................................
RTCDAYBAKx Register..................................................................................................
RTCDAYBAKx Register..................................................................................................
RTCMONBAKx Register .................................................................................................
RTCMONBAKx Register .................................................................................................
RTCYEARBAKx Register ................................................................................................
RTCYEARBAKx Register ................................................................................................
RTCTCCTL0 Register ....................................................................................................
RTCTCCTL1 Register ....................................................................................................
RTCCAPxCTL Register ..................................................................................................
eUSCI_Ax Block Diagram – UART Mode (UCSYNC = 0)...........................................................

29-14. RTCSEC Register

740

29-16.

741

29-17.
29-18.
29-19.
29-20.
29-21.
29-22.
29-23.
29-24.
29-25.
29-26.
29-27.
29-28.
29-29.
29-30.
29-31.
29-32.
29-33.
29-34.
29-35.
29-36.
29-37.
29-38.
29-39.
29-40.
29-41.
29-42.
29-43.
29-44.
29-45.
29-46.
29-47.
29-48.
29-49.
29-50.
29-51.
29-52.
29-53.
29-54.
29-55.
30-1.
28

740

29-15. RTCSEC Register

List of Figures

741
742
742
743
743
743
744
744
745
745
746
746
747
747
748
749
749
750
751
753
753
754
755
755
756
756
757
757
758
758
759
759
760
760
761
761
762
762
763
766

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

30-2.

Character Format ......................................................................................................... 767

30-3.

Idle-Line Format........................................................................................................... 768

30-4.

Address-Bit Multiprocessor Format ..................................................................................... 769

30-5.

Auto Baud-Rate Detection – Break/Synch Sequence

30-6.
30-7.
30-8.
30-9.
30-10.
30-11.
30-12.
30-13.
30-14.
30-15.
30-16.
30-17.
30-18.
30-19.
30-20.
30-21.
30-22.
30-23.
31-1.
31-2.
31-3.
31-4.
31-5.
31-6.
31-7.
31-8.
31-9.
31-10.
31-11.
31-12.
31-13.
31-14.
31-15.
31-16.
31-17.
31-18.
31-19.
31-20.
32-1.
32-2.
32-3.
32-4.
32-5.
32-6.
32-7.

...............................................................
Auto Baud-Rate Detection – Synch Field..............................................................................
UART vs IrDA Data Format .............................................................................................
Glitch Suppression, eUSCI_A Receive Not Started ..................................................................
Glitch Suppression, eUSCI_A Activated ...............................................................................
BITCLK Baud-Rate Timing With UCOS16 = 0 ........................................................................
Receive Error ..............................................................................................................
UCAxCTLW0 Register ...................................................................................................
UCAxCTLW1 Register ...................................................................................................
UCAxBRW Register ......................................................................................................
UCAxMCTLW Register ..................................................................................................
UCAxSTATW Register ...................................................................................................
UCAxRXBUF Register ...................................................................................................
UCAxTXBUF Register....................................................................................................
UCAxABCTL Register ....................................................................................................
UCAxIRCTL Register.....................................................................................................
UCAxIE Register ..........................................................................................................
UCAxIFG Register ........................................................................................................
UCAxIV Register ..........................................................................................................
eUSCI Block Diagram – SPI Mode .....................................................................................
eUSCI Master and External Slave (UCSTEM = 0) ...................................................................
eUSCI Slave and External Master ......................................................................................
eUSCI SPI Timing With UCMSB = 1 ...................................................................................
UCAxCTLW0 Register ...................................................................................................
UCAxBRW Register ......................................................................................................
UCAxSTATW Register ...................................................................................................
UCAxRXBUF Register ...................................................................................................
UCAxTXBUF Register....................................................................................................
UCAxIE Register ..........................................................................................................
UCAxIFG Register ........................................................................................................
UCAxIV Register ..........................................................................................................
UCBxCTLW0 Register ...................................................................................................
UCBxBRW Register ......................................................................................................
UCBxSTATW Register ...................................................................................................
UCBxRXBUF Register ...................................................................................................
UCBxTXBUF Register....................................................................................................
UCBxIE Register ..........................................................................................................
UCBxIFG Register ........................................................................................................
UCBxIV Register ..........................................................................................................
eUSCI_B Block Diagram – I2C Mode ..................................................................................
I2C Bus Connection Diagram ............................................................................................
I2C Module Data Transfer ................................................................................................
Bit Transfer on I2C Bus ...................................................................................................
I2C Module 7-Bit Addressing Format ...................................................................................
I2C Module 10-Bit Addressing Format..................................................................................
I2C Module Addressing Format With Repeated START Condition .................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Figures

770
770
771
773
773
774
778
784
785
786
786
787
788
788
789
790
791
792
793
796
798
799
801
804
805
806
807
808
809
810
811
813
814
814
815
815
816
816
817
820
821
822
822
822
823
823
29

www.ti.com

32-8.

I C Time-Line Legend .................................................................................................... 825

32-9.

I2C Slave Transmitter Mode ............................................................................................. 826

2

32-10. I2C Slave Receiver Mode ................................................................................................ 827

.....................................................................................
I C Master Transmitter Mode ............................................................................................
I2C Master Receiver Mode ...............................................................................................
I2C Master 10-Bit Addressing Mode ....................................................................................
Arbitration Procedure Between Two Master Transmitters ...........................................................
Synchronization of Two I2C Clock Generators During Arbitration ..................................................
UCBxCTLW0 Register ...................................................................................................
UCBxCTLW1 Register ...................................................................................................
UCBxBRW Register ......................................................................................................
UCBxSTATW Register ...................................................................................................
UCBxTBCNT Register ...................................................................................................
UCBxRXBUF Register ...................................................................................................
UCBxTXBUF Register....................................................................................................
UCBxI2COA0 Register ...................................................................................................
UCBxI2COA1 Register ...................................................................................................
UCBxI2COA2 Register ...................................................................................................
UCBxI2COA3 Register ...................................................................................................
UCBxADDRX Register ...................................................................................................
UCBxADDMASK Register ...............................................................................................
UCBxI2CSA Register.....................................................................................................
UCBxIE Register ..........................................................................................................
UCBxIFG Register ........................................................................................................
UCBxIV Register ..........................................................................................................
REF_A Block Diagram ...................................................................................................
REFCTL0 Register .......................................................................................................
ADC12_B Block Diagram ................................................................................................
Analog Multiplexer T-Switch .............................................................................................
Extended Sample Mode Without Internal Reference in 12-Bit Mode ..............................................
Extended Sample Mode With Internal Reference in 12-Bit Mode ..................................................
Pulse Sample Mode First Conversion or Where ADC12MSC = 0 in 12-Bit Mode ...............................
Pulse Sample Mode Subsequent Conversions in 12-Bit Mode .....................................................
Analog Input Equivalent Circuit .........................................................................................
Single-Channel Single-Conversion Mode, ADC12ISSH = 0 ........................................................
Sequence-of-Channels Mode, ADC12ISSH = 0 ......................................................................
Repeat-Single-Channel Mode, ADC12ISSH = 0 .....................................................................
Repeat-Sequence-of-Channels Mode, ADC12ISSH = 0 ............................................................
Typical Temperature Sensor Transfer Function ......................................................................
ADC12_B Grounding and Noise Considerations .....................................................................
ADC12CTL0 Register ....................................................................................................
ADC12CTL1 Register ....................................................................................................
ADC12CTL2 Register ....................................................................................................
ADC12CTL3 Register ....................................................................................................
ADC12MEMx Register ...................................................................................................
ADC12MCTLx Register ..................................................................................................
ADC12HI Register ........................................................................................................
ADC12LO Register .......................................................................................................

32-11. I2C Slave 10-Bit Addressing Mode
32-12.
32-13.
32-14.
32-15.
32-16.
32-17.
32-18.
32-19.
32-20.
32-21.
32-22.
32-23.
32-24.
32-25.
32-26.
32-27.
32-28.
32-29.
32-30.
32-31.
32-32.
32-33.
33-1.
33-2.
34-1.
34-2.
34-3.
34-4.
34-5.
34-6.
34-7.
34-8.
34-9.
34-10.
34-11.
34-12.
34-13.
34-14.
34-15.
34-16.
34-17.
34-18.
34-19.
34-20.
34-21.
30

2

List of Figures

828
830
832
833
833
834
842
844
846
846
847
848
848
849
850
850
851
851
852
852
853
855
857
859
863
867
869
871
871
872
872
872
875
876
877
878
880
881
890
892
894
895
896
897
899
899

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

34-22. ADC12IER0 Register ..................................................................................................... 900
34-23. ADC12IER1 Register ..................................................................................................... 902
34-24. ADC12IER2 Register ..................................................................................................... 904
34-25. ADC12IFGR0 Register ................................................................................................... 905
34-26. ADC12IFGR1 Register ................................................................................................... 907
34-27. ADC12IFGR2 Register ................................................................................................... 909
34-28. ADC12IV Register ........................................................................................................ 910
35-1.

Comparator_E Block Diagram .......................................................................................... 913

35-2.

Comparator_E Sample-And-Hold ....................................................................................... 915

35-3.

RC-Filter Response at the Output of the Comparator ............................................................... 916

35-4.

Reference Generator Block Diagram

35-5.
35-6.
35-7.
35-8.
35-9.
35-10.
35-11.
35-12.
35-13.
36-1.
36-2.
36-3.
36-4.
36-5.
36-6.
36-7.
36-8.
36-9.
36-10.
36-11.
36-12.
36-13.
36-14.
36-15.
36-16.
36-17.
36-18.
36-19.
36-20.
36-21.
36-22.
37-1.
37-2.
37-3.
37-4.
37-5.
37-6.
37-7.

..................................................................................
Transfer Characteristic and Power Dissipation in a CMOS Inverter and Buffer ..................................
Temperature Measurement System ....................................................................................
Timing for Temperature Measurement Systems......................................................................
CECTL0 Register .........................................................................................................
CECTL1 Register .........................................................................................................
CECTL2 Register .........................................................................................................
CECTL3 Register .........................................................................................................
CEINT Register ...........................................................................................................
CEIV Register .............................................................................................................
LCD Controller Block Diagram ..........................................................................................
LCD Memory for Static and 2-Mux to 4-Mux Mode - Example for 160 Segments ...............................
LCD Memory for 5-Mux to 8-Mux Mode - Example for 160 Segments ............................................
Bias Generation ...........................................................................................................
Example Static Waveforms ..............................................................................................
Example 2-Mux Waveforms .............................................................................................
Example 3-Mux Waveforms .............................................................................................
Example 4-Mux Waveforms .............................................................................................
Example 6-Mux Waveforms .............................................................................................
Example 8-Mux, 1/3 Bias Waveforms (LCDLP = 0) ..................................................................
Example 8-Mux, 1/3 Bias Low-Power Waveforms (LCDLP = 1) ...................................................
LCDCCTL0 Register .....................................................................................................
LCDCCTL1 Register .....................................................................................................
LCDCBLKCTL Register ..................................................................................................
LCDCMEMCTL Register .................................................................................................
LCDCVCTL Register .....................................................................................................
LCDCPCTL0 Register ....................................................................................................
LCDCPCTL1 Register ....................................................................................................
LCDCPCTL2 Register ....................................................................................................
LCDCPCTL3 Register ....................................................................................................
LCDCCPCTL Register ...................................................................................................
LCDCIV Register..........................................................................................................
ESI Block Diagram........................................................................................................
ESI Analog Front End AFE1 Block Diagram ..........................................................................
ESI Analog Front End AFE2 Block Diagram ..........................................................................
Excitation and Sample-And-Hold Circuitry ............................................................................
Analog Input Equivalent Circuit .........................................................................................
Analog Front-End Output Timing .......................................................................................
Analog Hysteresis With DAC Registers................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Figures

916
917
918
918
921
922
923
924
926
927
930
931
932
935
940
941
942
943
944
945
946
952
954
955
956
957
959
959
960
960
961
961
963
965
966
967
968
969
970
31

www.ti.com

37-8.
37-9.
37-10.
37-11.
37-12.
37-13.
37-14.
37-15.
37-16.
37-17.
37-18.
37-19.
37-20.
37-21.
37-22.
37-23.
37-24.
37-25.
37-26.
37-27.
37-28.
37-29.
37-30.
37-31.
37-32.
37-33.
37-34.
37-35.
37-36.
37-37.
37-38.
37-39.
37-40.
37-41.
37-42.
37-43.
37-44.
37-45.
38-1.

32

................................................................................. 972
Test Cycle Insertion ...................................................................................................... 975
Timing State Machine Example ......................................................................................... 976
Pre-Processing Unit ...................................................................................................... 977
Timer_A Output Stage of the Analog Front End ...................................................................... 977
ESI Processing State Machine Block Diagram ....................................................................... 978
Simplest PSM State Diagram (ESIV2SEL=1) ......................................................................... 981
LC Sensor Oscillations ................................................................................................... 983
Sensor Connections For The Oscillation Test ........................................................................ 984
LC Sensor Connections For The Envelope Test ..................................................................... 985
LC Sensor Connections For the Envelope Test ...................................................................... 986
Resistive Sensor Connections .......................................................................................... 987
Sensor Position and Quadrature Signals (S1=PPUS1, S2=PPUS2) .............................................. 988
Quadrature Decoding State Diagram .................................................................................. 988
ESIDEBUG1 Register .................................................................................................... 991
ESIDEBUG2 Register .................................................................................................... 991
ESIDEBUG3 Register .................................................................................................... 991
ESIDEBUG4 Register .................................................................................................... 992
ESIDEBUG5 Register .................................................................................................... 992
ESICNT0 Register ........................................................................................................ 993
ESICNT1 Register ........................................................................................................ 993
ESICNT2 Register ........................................................................................................ 994
ESICNT3 Register ........................................................................................................ 994
ESIIV Register............................................................................................................. 995
ESIINT1 Register ......................................................................................................... 996
ESIINT2 Register ......................................................................................................... 998
ESIAFE Register ........................................................................................................ 1000
ESIPPU Register ........................................................................................................ 1002
ESITSM Register ........................................................................................................ 1003
ESIPSM Register ........................................................................................................ 1005
ESIOSC Register ........................................................................................................ 1006
ESICTL Register ........................................................................................................ 1007
ESITHR1 Register....................................................................................................... 1009
ESITHR2 Register....................................................................................................... 1009
ESIDAC1Rx Register ................................................................................................... 1010
ESIDAC2Rx Register ................................................................................................... 1010
ESITSMx Register....................................................................................................... 1011
Extended Scan Interface Processing State Machine Table Entry Register ..................................... 1013
Large Implementation of EEM ......................................................................................... 1016
Timing State Machine Block Diagram

List of Figures

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

List of Tables
1-1.

Interrupt Sources, Flags, and Vectors ................................................................................... 53

1-2.

Operation Modes ........................................................................................................... 58

1-3.

Requested vs Actual LPM................................................................................................. 58

1-4.

Connection of Unused Pins ............................................................................................... 62

1-5.

Tag Values .................................................................................................................. 67

1-6.

REF Calibration Tags ...................................................................................................... 68

1-7.

ADC Calibration Tags...................................................................................................... 69

1-8.

Random Number Tags

1-9.

BSL Configuration Tags ................................................................................................... 70

1-10.

BSL_COM_IF Values ...................................................................................................... 70

1-11.

BSL_CIF_CONFIG Values ................................................................................................ 71

1-12.

SFR Registers .............................................................................................................. 72

1-13.

SFRIE1 Register Description ............................................................................................. 73

1-14.

SFRIFG1 Register Description ........................................................................................... 74

1-15.

SFRRPCR Register Description.......................................................................................... 75

1-16.

SYS Registers .............................................................................................................. 76

1-17.

SYSCTL Register Description ............................................................................................ 77

1-18.

SYSJMBC Register Description .......................................................................................... 78

1-19.

SYSJMBI0 Register Description.......................................................................................... 79

1-20.

SYSJMBI1 Register Description.......................................................................................... 79

1-21.

SYSJMBO0 Register Description ........................................................................................ 80

1-22.

SYSJMBO1 Register Description ........................................................................................ 80

1-23.

SYSUNIV Register Description ........................................................................................... 81

1-24.

SYSSNIV Register Description ........................................................................................... 81

1-25.

SYSRSTIV Register Description ......................................................................................... 82

2-1.

PMM Registers ............................................................................................................. 88

2-2.

PMMCTL0 Register Description .......................................................................................... 89

2-3.

PMMCTL1 Register Description .......................................................................................... 90

2-4.

PMMIFG Register Description ............................................................................................ 91

2-5.

PM5CTL0 Register Description

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.
3-10.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.

....................................................................................................

70

.......................................................................................... 92
HFFREQ Settings .......................................................................................................... 97
System Clocks, Power Modes, and Clock Requests ................................................................ 100
CS Registers .............................................................................................................. 103
CSCTL0 Register Description ........................................................................................... 104
CSCTL1 Register Description ........................................................................................... 104
CSCTL2 Register Description ........................................................................................... 105
CSCTL3 Register Description ........................................................................................... 106
CSCTL4 Register Description ........................................................................................... 107
CSCTL5 Register Description ........................................................................................... 109
CSCTL6 Register Description ........................................................................................... 110
SR Bit Description ........................................................................................................ 117
Values of Constant Generators CG1, CG2............................................................................ 118
Source and Destination Addressing .................................................................................... 121
MSP430 Double-Operand Instructions................................................................................. 139
MSP430 Single-Operand Instructions .................................................................................. 139
Conditional Jump Instructions ........................................................................................... 140
Emulated Instructions .................................................................................................... 140

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Tables

33

www.ti.com

4-8.
4-9.
4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
5-1.
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
6-1.
7-1.
7-2.
7-3.
7-4.
8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11.
9-12.
9-13.
9-14.
9-15.
9-16.
34

.....................................................................
MSP430 Format II Instruction Cycles and Length ....................................................................
MSP430 Format I Instructions Cycles and Length ...................................................................
Description of the Extension Word Bits for Register Mode..........................................................
Description of Extension Word Bits for Non-Register Modes .......................................................
Extended Double-Operand Instructions................................................................................
Extended Single-Operand Instructions.................................................................................
Extended Emulated Instructions ........................................................................................
Address Instructions, Operate on 20-Bit Register Data .............................................................
MSP430X Format II Instruction Cycles and Length ..................................................................
MSP430X Format I Instruction Cycles and Length ...................................................................
Address Instruction Cycles and Length ................................................................................
Instruction Map of MSP430X ............................................................................................
Result Availability (MPYFRAC = 0, MPYSAT = 0) ...................................................................
OP1 Registers .............................................................................................................
OP2 Registers .............................................................................................................
SUMEXT and MPYC Contents..........................................................................................
Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0) ............................................
Result Availability in Saturation Mode (MPYSAT = 1) ...............................................................
MPY32 Registers .........................................................................................................
Alternative Registers .....................................................................................................
MPY32CTL0 Register Description ......................................................................................
FRAM Controller Overview ..............................................................................................
FRCTL Registers .........................................................................................................
FRCTL0 Register Description ...........................................................................................
GCCTL0 Register Description ..........................................................................................
GCCTL1 Register Description ..........................................................................................
FRAM memory Access Speed .........................................................................................
FRAM Power Mode Transition ..........................................................................................
FRCTL_A Registers ......................................................................................................
FRCTL0 Register Field Descriptions ...................................................................................
GCCTL0 Register Field Descriptions ..................................................................................
GCCTL1 Register Field Descriptions ..................................................................................
Address Comparator Bit Selection .....................................................................................
IP Encapsulation Access Rights ........................................................................................
MPU Border Selection Example 64KB (004000h to 013FFFh) .....................................................
Segment Access Rights..................................................................................................
Access Rights to IVT .....................................................................................................
IPE Signatures ............................................................................................................
IPE_Init_Structure ........................................................................................................
MPU Registers ............................................................................................................
MPUCTL0 Register Description.........................................................................................
MPUCTL1 Register Description.........................................................................................
MPUSEGB2 Register Description ......................................................................................
MPUSEGB1 Register Description ......................................................................................
MPUSAM Register Description .........................................................................................
MPUIPC0 Register Description .........................................................................................
MPUIPSEGB2 Register Description....................................................................................
MPUIPSEGB1 Register Description....................................................................................
Interrupt, Return, and Reset Cycles and Length

List of Tables

141
141
142
143
144
145
147
149
150
151
152
153
154
270
271
271
272
275
276
282
283
284
285
291
292
293
294
298
299
301
302
304
306
310
312
313
314
315
316
317
318
319
320
321
322
323
325
326
327

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

10-1.

RAMCTL Registers ....................................................................................................... 331

10-2.

CTL0 Register Field Descriptions....................................................................................... 332

10-3.

CTL1 Register Field Descriptions....................................................................................... 334

11-1.

DMA Transfer Modes..................................................................................................... 339

11-2.

DMA Trigger Operation .................................................................................................. 346

11-3.

Maximum Single-Transfer DMA Cycle Time .......................................................................... 347

11-4.

DMA Registers ............................................................................................................ 350

11-5.

DMACTL0 Register Description......................................................................................... 352

11-6.

DMACTL1 Register Description......................................................................................... 353

11-7.

DMACTL2 Register Description......................................................................................... 354

11-8.

DMACTL3 Register Description......................................................................................... 355

11-9.

DMACTL4 Register Description......................................................................................... 356

11-10. DMAxCTL Register Description ......................................................................................... 357
11-11. DMAxSA Register Description .......................................................................................... 359
11-12. DMAxDA Register Description .......................................................................................... 360

..........................................................................................
DMAIV Register Description.............................................................................................
I/O Configuration ..........................................................................................................
I/O Function Selection ....................................................................................................
Digital I/O Registers ......................................................................................................
P1IV Register Description ...............................................................................................
P2IV Register Description ...............................................................................................
P3IV Register Description ...............................................................................................
P4IV Register Description ...............................................................................................
PxIN Register Description ...............................................................................................
PxOUT Register Description ............................................................................................
P1DIR Register Description .............................................................................................
PxREN Register Description ............................................................................................
PxSEL0 Register Description ...........................................................................................
PxSEL1 Register Description ...........................................................................................
PxSELC Register Description ...........................................................................................
PxIES Register Description ..............................................................................................
PxIE Register Description ...............................................................................................
PxIFG Register Description .............................................................................................
CapTouch Registers ......................................................................................................
CAPTIOxCTL Register Description .....................................................................................
AES Operation Modes Overview .......................................................................................
'AES trigger 0-2' Operation When AESCMEN = 1 ...................................................................
AES and DMA Configuration for ECB Encryption ....................................................................
AES DMA Configuration for ECB Decryption ........................................................................
AES and DMA Configuration for CBC Encryption ....................................................................
AES and DMA Configuration for CBC Decryption ...................................................................
AES and DMA Configuration for OFB Encryption ....................................................................
AES and DMA Configuration for OFB Decryption ...................................................................
AES and DMA Configuration for CFB Encryption ....................................................................
AES and DMA Configuration for CFB Decryption ...................................................................
AES256 Registers ........................................................................................................
AESACTL0 Register Description .......................................................................................
AESACTL1 Register Description .......................................................................................

11-13. DMAxSZ Register Description
11-14.
12-1.
12-2.
12-3.
12-4.
12-5.
12-6.
12-7.
12-8.
12-9.
12-10.
12-11.
12-12.
12-13.
12-14.
12-15.
12-16.
12-17.
13-1.
13-2.
14-1.
14-2.
14-3.
14-4.
14-5.
14-6.
14-7.
14-8.
14-9.
14-10.
14-11.
14-12.
14-13.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Tables

361
362
365
366
371
384
384
385
385
386
386
386
387
387
387
388
388
388
389
393
394
397
404
405
406
407
408
410
411
412
413
414
415
417
35

www.ti.com

14-14. AESASTAT Register Description ....................................................................................... 418
14-15. AESAKEY Register Description......................................................................................... 419
14-16. AESADIN Register Description ......................................................................................... 420
14-17. AESADOUT Register Description ...................................................................................... 421
422

14-19. AESAXIN Register Description

423

15-1.

429

15-2.
15-3.
15-4.
15-5.
16-1.
16-2.
16-3.
16-4.
16-5.
16-6.
16-7.
16-8.
16-9.
16-10.
16-11.
16-12.
16-13.
17-1.
17-2.
18-1.
18-2.
18-3.
18-4.
19-1.
19-2.
19-3.
19-4.
19-5.
19-6.
19-7.
19-8.
19-9.
19-10.
19-11.
19-12.
19-13.
19-14.
19-15.
19-16.
20-1.
20-2.
20-3.
36

.......................................................................................
.........................................................................................
CRC Registers ............................................................................................................
CRCDI Register Description.............................................................................................
CRCDIRB Register Description .........................................................................................
CRCINIRES Register Description ......................................................................................
CRCRESR Register Description ........................................................................................
CRC32 Registers .........................................................................................................
CRC32DIW0 Register Description......................................................................................
CRC32DIW1 Register Description......................................................................................
CRC32DIRBW0 Register Description ..................................................................................
CRC32DIRBW1 Register Description ..................................................................................
CRC32INIRESW0 Register Description ...............................................................................
CRC32INIRESW1 Register Description ...............................................................................
CRC32RESRW0 Register Description .................................................................................
CRC32RESRW1 Register Description .................................................................................
CRC16DIL0 Register Description.......................................................................................
CRC16DIRBW0 Register Description ..................................................................................
CRC16INIRESW0 Register Description ...............................................................................
CRC16RESRW0 Register Description .................................................................................
LEA Command Groups ..................................................................................................
DSP Library and MSPWare Versions for the LEA....................................................................
Auto Mode and Register Mode .........................................................................................
Time Mark Events ........................................................................................................
USS_PWRREQ Signal Source .........................................................................................
Control Signals Among USS Submodules ............................................................................
USS Power State .........................................................................................................
USS Power States and State Changes ................................................................................
Device Power Modes and USS Power States ........................................................................
Internal Control Signals ..................................................................................................
ASQ Trigger ...............................................................................................................
Power States After Measurement Completion .......................................................................
UUPS Registers...........................................................................................................
UUPSIIDX Register Field Descriptions ................................................................................
UUPSMIS Register Field Descriptions .................................................................................
UUPSRIS Register Field Descriptions .................................................................................
UUPSIMSC Register Field Descriptions ...............................................................................
UUPSICR Register Field Descriptions .................................................................................
UUPSISR Register Field Descriptions .................................................................................
UUPSDESCLO Register Field Descriptions...........................................................................
UUPSDESCHI Register Field Descriptions ...........................................................................
UUPSCTL Register Field Descriptions.................................................................................
HSPLL Registers..........................................................................................................
HSPLLIIDX Register Field Descriptions ...............................................................................
HSPLLMIS Register Field Descriptions ................................................................................

14-18. AESAXDIN Register Description

List of Tables

430
430
431
431
436
437
437
438
438
439
439
440
440
441
441
442
442
445
446
451
451
452
453
458
459
460
460
461
462
464
465
466
467
468
469
470
471
472
473
480
481
482

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

20-4.

HSPLLRIS Register Field Descriptions ................................................................................ 483

20-5.

HSPLLIMSC Register Field Descriptions .............................................................................. 484

20-6.

HSPLLICR Register Field Descriptions ................................................................................ 485

20-7.

HSPLLISR Register Field Descriptions ................................................................................ 486

20-8.

HSPLLDESCLO Register Field Descriptions

487

20-9.

HSPLLDESCHI Register Field Descriptions

488

20-10.
20-11.
21-1.
21-2.
21-3.
21-4.
21-5.
21-6.
21-7.
21-8.
21-9.
21-10.
21-11.
21-12.
21-13.
21-14.
21-15.
21-16.
21-17.
21-18.
21-19.
21-20.
21-21.
21-22.
21-23.
21-24.
21-25.
21-26.
21-27.
21-28.
21-29.
21-30.
21-31.
21-32.
21-33.
21-34.
21-35.
21-36.
21-37.
21-38.
21-39.
21-40.
21-41.

.........................................................................
..........................................................................
HSPLLCTL Register Field Descriptions ...............................................................................
HSPLLUSSXTLCTL Register Field Descriptions .....................................................................
Trim Registers .............................................................................................................
Supply to the Rx Multiplexer ............................................................................................
Time Mark Events ........................................................................................................
Auto Mode and Register Mode .........................................................................................
SAPH Registers ...........................................................................................................
SAPHIIDX/SAPH_AIIDX Register Field Descriptions ................................................................
SAPHMIS/SAPH_AMIS Register Field Descriptions .................................................................
SAPHRIS/SAPH_ARIS Register Field Descriptions .................................................................
SAPHIMSC/SAPH_AIMSC Register Field Descriptions .............................................................
SAPHICR/SAPH_AICR Register Field Descriptions .................................................................
SAPHISR/SAPH_AISR Register Field Descriptions .................................................................
SAPHDESCLO/SAPH_ADESCLO Register Field Descriptions ....................................................
SAPHDESCHI/SAPH_ADESCHI Register Field Descriptions ......................................................
SAPHKEY/SAPH_AKEY Register Field Descriptions................................................................
SAPHOCTL0/SAPH_AOCTL0 Register Field Descriptions .........................................................
SAPHOCTL1/SAPH_AOCTL1 Register Field Descriptions .........................................................
SAPHOSEL/SAPH_AOSEL Register Field Descriptions ............................................................
SAPHCH0PUT/SAPH_ACH0PUT Register Field Descriptions .....................................................
SAPHCH0PDT/SAPH_ACH0PDT Register Field Descriptions .....................................................
SAPHCH0TT/SAPH_ACH0TT Register Field Descriptions .........................................................
SAPHCH1PUT/SAPH_ACH1PUT Register Field Descriptions .....................................................
SAPHCH1PDT/SAPH_ACH1PDT Register Field Descriptions .....................................................
SAPHCH1TT/SAPH_ACH1TT Register Field Descriptions .........................................................
SAPHMCNF/SAPH_AMCNF Register Field Descriptions ...........................................................
SAPHTACTL/SAPH_ATACTL Register Field Descriptions .........................................................
SAPHICTL0/SAPH_AICTL0 Register Field Descriptions ............................................................
SAPHBCTL/SAPH_ABCTL Register Field Descriptions.............................................................
SAPHPGC/SAPH_APGC Register Field Descriptions ...............................................................
SAPHPGLPER/SAPH_APGLPER Register Field Descriptions ....................................................
SAPHPGHPER/SAPH_APGHPER Register Field Descriptions....................................................
SAPHPGCTL/SAPH_APGCTL Register Field Descriptions ........................................................
SAPHPPGTRIG/SAPH_APPGTRIG Register Field Descriptions ..................................................
SAPH_AXPGCTL Register Field Descriptions ........................................................................
SAPH_AXPGLPER Register Field Descriptions ......................................................................
SAPH_AXPGHPER Register Field Descriptions .....................................................................
SAPHASCTL0/SAPH_AASCTL0 Register Field Descriptions ......................................................
SAPHASCTL1/SAPH_AASCTL1 Register Field Descriptions ......................................................
SAPHASQTRIG/SAPH_AASQTRIG Register Field Descriptions ..................................................
SAPHAPOL/SAPH_AAPOL Register Field Descriptions ............................................................
SAPHAPLEV/SAPH_AAPLEV Register Field Descriptions .........................................................
SAPHAPHIZ/SAPH_AAPHIZ Register Field Descriptions ..........................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Tables

489
491
502
504
509
510
513
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
537
539
540
541
542
544
545
546
547
548
550
552
553
554
555
37

www.ti.com

556

21-43.

557

21-44.
21-45.
21-46.
21-47.
21-48.
21-49.
21-50.
22-1.
22-2.
22-3.
22-4.
22-5.
22-6.
22-7.
22-8.
22-9.
22-10.
22-11.
22-12.
22-13.
22-14.
22-15.
22-16.
22-17.
22-18.
22-19.
22-20.
22-21.
22-22.
22-23.
22-24.
22-25.
22-26.
22-27.
22-28.
22-29.
22-30.
22-31.
23-1.
23-2.
23-3.
23-4.
23-5.
23-6.
23-7.
23-8.
23-9.
38

........................................................
SAPHATM_B/SAPH_AATM_B Register Field Descriptions ........................................................
SAPHATM_C/SAPH_AATM_C Register Field Descriptions ........................................................
SAPHATM_D/SAPH_AATM_D Register Field Descriptions ........................................................
SAPHATM_E/SAPH_AATM_E Register Field Descriptions ........................................................
SAPHATM_F/SAPH_AATM_F Register Field Descriptions .........................................................
SAPHTBCTL/SAPH_ATBCTL Register Field Descriptions .........................................................
SAPHATIMLO/SAPH_AATIMLO Register Field Descriptions ......................................................
SAPHATIMHI /SAPH_AATIMHI Register Field Descriptions .......................................................
Data Format ...............................................................................................................
PGA Gain Table...........................................................................................................
Control Signals for Power and Conversion ............................................................................
USS Auto Mode and Register Mode ...................................................................................
SDHSCTL3.TRIGEN Bit and SDHSCTL5.SDHS_LOCK Bit ........................................................
Timing of the SDHS_LOCK bit ..........................................................................................
Conversion Control Mode................................................................................................
Conversion Control Mode................................................................................................
SDHS Conversion Stop Conditions ....................................................................................
SDHS Response to Conversion Stop Signals When Data Conversion is Not Running .........................
SDHS Registers...........................................................................................................
SDHSIIDX Register Field Descriptions ................................................................................
SDHSMIS Register Field Descriptions .................................................................................
SDHSRIS Register Field Descriptions .................................................................................
SDHSIMSC Register Field Descriptions ...............................................................................
SDHSICR Register Field Descriptions .................................................................................
SDHSISR Register Field Descriptions .................................................................................
SDHSDESCLO Register Field Descriptions...........................................................................
SDHSDESCHI Register Field Descriptions ...........................................................................
SDHSCTL0 Register Field Descriptions ...............................................................................
SDHSCTL1 Register Field Descriptions ...............................................................................
SDHSCTL2 Register Field Descriptions ...............................................................................
SDHSCTL3 Register Field Descriptions ...............................................................................
SDHSCTL4 Register Field Descriptions ...............................................................................
SDHSCTL5 Register Field Descriptions ...............................................................................
SDHSCTL6 Register Field Descriptions ...............................................................................
SDHSCTL7 Register Field Descriptions ...............................................................................
SDHSDT Register Field Descriptions ..................................................................................
SDHSWINHITH Register Field Descriptions ..........................................................................
SDHSWINLOTH Register Field Descriptions .........................................................................
SDHSDTCDA Register Field Descriptions ............................................................................
PGFS Values ..............................................................................................................
MTIF Initialization .........................................................................................................
Setting the Pulse Rate ...................................................................................................
Reading the Pulse Rate ..................................................................................................
MTIF Registers ............................................................................................................
MTIFPGCNF Register Field Descriptions .............................................................................
MTIFPGKVAL Register Field Descriptions ............................................................................
MTIFPGCTL Register Field Descriptions ..............................................................................
MTIFPGSR Register Field Descriptions ...............................................................................

21-42. SAPHATM_A/SAPH_AATM_A Register Field Descriptions

List of Tables

558
559
560
561
562
563
564
573
577
579
579
582
582
585
587
589
590
592
593
594
595
597
598
599
600
601
602
604
605
606
607
608
610
611
612
613
614
615
619
619
619
620
622
623
624
625
626

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

23-10. MTIFPCCNF Register Field Descriptions.............................................................................. 627
23-11. MTIFPCR Register Field Descriptions ................................................................................. 628
23-12. MTIFPCCTL Register Field Descriptions .............................................................................. 629

...............................................................................
MTIFTPCTL Register Field Descriptions ..............................................................................
WDT_A Registers .........................................................................................................
WDTCTL Register Description ..........................................................................................
Timer Modes ..............................................................................................................
Output Modes .............................................................................................................
Timer_A Registers ........................................................................................................
TAxCTL Register Description ...........................................................................................
TAxR Register Description ..............................................................................................
TAxCCTLn Register Description ........................................................................................
TAxCCRn Register Description .........................................................................................
TAxIV Register Description ..............................................................................................
TAxEX0 Register Description ...........................................................................................
Timer Modes ..............................................................................................................
TBxCLn Load Events .....................................................................................................
Compare Latch Operating Modes ......................................................................................
Output Modes .............................................................................................................
Timer_B Registers ........................................................................................................
TBxCTL Register Description ...........................................................................................
TBxR Register Description ..............................................................................................
TBxCCTLn Register Description ........................................................................................
TBxCCRn Register Description .........................................................................................
TBxIV Register Description ..............................................................................................
TBxEX0 Register Description ...........................................................................................
RTC Overview .............................................................................................................
RTC_B Registers .........................................................................................................
RTCCTL0 Register Description .........................................................................................
RTCCTL1 Register Description .........................................................................................
RTCCTL2 Register Description .........................................................................................
RTCCTL3 Register Description .........................................................................................
RTCSEC Register Description ..........................................................................................
RTCSEC Register Description ..........................................................................................
RTCMIN Register Description ...........................................................................................
RTCMIN Register Description ...........................................................................................
RTCHOUR Register Description ........................................................................................
RTCHOUR Register Description ........................................................................................
RTCDOW Register Description .........................................................................................
RTCDAY Register Description ..........................................................................................
RTCDAY Register Description ..........................................................................................
RTCMON Register Description .........................................................................................
RTCMON Register Description .........................................................................................
RTCYEAR Register Description ........................................................................................
RTCYEAR Register Description ........................................................................................
RTCAMIN Register Description .........................................................................................
RTCAMIN Register Description .........................................................................................
RTCAHOUR Register Description ......................................................................................

23-13. MTIFPCSR Register Field Descriptions
23-14.
24-1.
24-2.
25-1.
25-2.
25-3.
25-4.
25-5.
25-6.
25-7.
25-8.
25-9.
26-1.
26-2.
26-3.
26-4.
26-5.
26-6.
26-7.
26-8.
26-9.
26-10.
26-11.
27-1.
28-1.
28-2.
28-3.
28-4.
28-5.
28-6.
28-7.
28-8.
28-9.
28-10.
28-11.
28-12.
28-13.
28-14.
28-15.
28-16.
28-17.
28-18.
28-19.
28-20.
28-21.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Tables

630
631
637
638
643
648
654
655
656
657
659
659
660
665
670
671
671
677
678
680
681
683
684
685
686
695
697
698
699
699
700
700
701
701
702
702
703
703
703
704
704
705
705
706
706
707
39

www.ti.com

28-22. RTCAHOUR Register Description ...................................................................................... 707
28-23. RTCADOW Register Description ....................................................................................... 708
28-24. RTCADAY Register Description ........................................................................................ 709
28-25. RTCADAY Register Description ........................................................................................ 709
710

28-27. RTCPS1CTL Register Description

711

28-28.

712

28-29.
28-30.
28-31.
28-32.
29-1.
29-2.
29-3.
29-4.
29-5.
29-6.
29-7.
29-8.
29-9.
29-10.
29-11.
29-12.
29-13.
29-14.
29-15.
29-16.
29-17.
29-18.
29-19.
29-20.
29-21.
29-22.
29-23.
29-24.
29-25.
29-26.
29-27.
29-28.
29-29.
29-30.
29-31.
29-32.
29-33.
29-34.
29-35.
29-36.
29-37.
29-38.
40

.....................................................................................
.....................................................................................
RTCPS0 Register Description ..........................................................................................
RTCPS1 Register Description ..........................................................................................
RTCIV Register Description .............................................................................................
BIN2BCD Register Description .........................................................................................
BCD2BIN Register Description .........................................................................................
RTCCAPx Pin Configuration ............................................................................................
RTC_C Registers .........................................................................................................
RTC_C Event and Tamper Detection Registers ......................................................................
RTC_C Real-Time Clock Counter Mode Aliases .....................................................................
RTCCTL0_L Register Description ......................................................................................
RTCCTL0_H Register Description......................................................................................
RTCCTL1 Register Description .........................................................................................
RTCCTL3 Register Description .........................................................................................
RTCOCAL Register Description ........................................................................................
RTCTCMP Register Description ........................................................................................
RTCNT1 Register Description ..........................................................................................
RTCNT2 Register Description ..........................................................................................
RTCNT3 Register Description ..........................................................................................
RTCNT4 Register Description ..........................................................................................
RTCSEC Register Description ..........................................................................................
RTCSEC Register Description ..........................................................................................
RTCMIN Register Description ...........................................................................................
RTCMIN Register Description ...........................................................................................
RTCHOUR Register Description ........................................................................................
RTCHOUR Register Description ........................................................................................
RTCDOW Register Description .........................................................................................
RTCDAY Register Description ..........................................................................................
RTCDAY Register Description ..........................................................................................
RTCMON Register Description .........................................................................................
RTCMON Register Description .........................................................................................
RTCYEAR Register Description ........................................................................................
RTCYEAR Register Description ........................................................................................
RTCAMIN Register Description .........................................................................................
RTCAMIN Register Description .........................................................................................
RTCAHOUR Register Description ......................................................................................
RTCAHOUR Register Description ......................................................................................
RTCADOW Register Description .......................................................................................
RTCADAY Register Description ........................................................................................
RTCADAY Register Description ........................................................................................
RTCPS0CTL Register Description .....................................................................................
RTCPS1CTL Register Description .....................................................................................
RTCPS0 Register Description ..........................................................................................
RTCPS1 Register Description ..........................................................................................

28-26. RTCPS0CTL Register Description

List of Tables

712
713
714
714
730
731
733
733
734
735
736
737
737
738
739
739
739
739
740
740
741
741
742
742
743
743
743
744
744
745
745
746
746
747
747
748
749
749
750
751
753
753

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

29-39. RTCIV Register Description ............................................................................................. 754

.........................................................................................
.........................................................................................
RTCSECBAKx Register Description ...................................................................................
RTCSECBAKx Register Description ...................................................................................
RTCMINBAKx Register Description ....................................................................................
RTCMINBAKx Register Description ....................................................................................
RTCHOURBAKx Register Description .................................................................................
RTCHOURBAKx Register Description .................................................................................
RTCDAYBAKx Register Description ...................................................................................
RTCDAYBAKx Register Description ...................................................................................
RTCMONBAKx Register Description...................................................................................
RTCMONBAKx Register Description...................................................................................
RTCYEARBAKx Register Description .................................................................................
RTCYEARBAKx Register Description .................................................................................
RTCTCCTL0 Register Description .....................................................................................
RTCTCCTL1 Register Description .....................................................................................
RTCCAPxCTL Register Description....................................................................................
Receive Error Conditions ................................................................................................
Modulation Pattern Examples ...........................................................................................
BITCLK16 Modulation Pattern ..........................................................................................
UCBRSx Settings for Fractional Portion of N = fBRCLK/Baud Rate ...................................................
Recommended Settings for Typical Crystals and Baud Rates .....................................................
UART State Change Interrupt Flags ...................................................................................
eUSCI_A UART Registers ...............................................................................................
UCAxCTLW0 Register Description .....................................................................................
UCAxCTLW1 Register Description .....................................................................................
UCAxBRW Register Description ........................................................................................
UCAxMCTLW Register Description ....................................................................................
UCAxSTATW Register Description .....................................................................................
UCAxRXBUF Register Description .....................................................................................
UCAxTXBUF Register Description .....................................................................................
UCAxABCTL Register Description .....................................................................................
UCAxIRCTL Register Description ......................................................................................
UCAxIE Register Description............................................................................................
UCAxIFG Register Description..........................................................................................
UCAxIV Register Description............................................................................................
UCxSTE Operation .......................................................................................................
eUSCI_A SPI Registers ..................................................................................................
UCAxCTLW0 Register Description .....................................................................................
UCAxBRW Register Description ........................................................................................
UCAxSTATW Register Description .....................................................................................
UCAxRXBUF Register Description .....................................................................................
UCAxTXBUF Register Description .....................................................................................
UCAxIE Register Description............................................................................................
UCAxIFG Register Description..........................................................................................
UCAxIV Register Description............................................................................................
eUSCI_B SPI Registers ..................................................................................................
UCBxCTLW0 Register Description .....................................................................................

29-40. BIN2BCD Register Description

755

29-41. BCD2BIN Register Description

755

29-42.

756

29-43.
29-44.
29-45.
29-46.
29-47.
29-48.
29-49.
29-50.
29-51.
29-52.
29-53.
29-54.
29-55.
29-56.
30-1.
30-2.
30-3.
30-4.
30-5.
30-6.
30-7.
30-8.
30-9.
30-10.
30-11.
30-12.
30-13.
30-14.
30-15.
30-16.
30-17.
30-18.
30-19.
31-1.
31-2.
31-3.
31-4.
31-5.
31-6.
31-7.
31-8.
31-9.
31-10.
31-11.
31-12.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Tables

756
757
757
758
758
759
759
760
760
761
761
762
762
763
772
774
775
776
779
781
783
784
785
786
786
787
788
788
789
790
791
792
793
797
803
804
805
806
807
808
809
810
811
812
813
41

www.ti.com

31-13. UCBxBRW Register Description ........................................................................................ 814
31-14. UCBxSTATW Register Description ..................................................................................... 814
31-15. UCBxRXBUF Register Description ..................................................................................... 815
31-16. UCBxTXBUF Register Description ..................................................................................... 815
31-17. UCBxIE Register Description............................................................................................ 816
31-18. UCBxIFG Register Description.......................................................................................... 816
31-19. UCBxIV Register Description............................................................................................ 817
32-1.

Glitch Filter Length Selection Bits ...................................................................................... 834

32-2.

I2C State Change Interrupt Flags ....................................................................................... 839

32-3.

eUSCI_B Registers ....................................................................................................... 841

32-4.

UCBxCTLW0 Register Description ..................................................................................... 842

32-5.

UCBxCTLW1 Register Description ..................................................................................... 844

32-6.

UCBxBRW Register Description ........................................................................................ 846

32-7.

UCBxSTATW Register Description ..................................................................................... 846

32-8.

UCBxTBCNT Register Description ..................................................................................... 847

32-9.

UCBxRXBUF Register Description ..................................................................................... 848

32-10. UCBxTXBUF Register Description ..................................................................................... 848
849

32-12. UCBxI2COA1 Register Description

850

32-13.

850

32-14.
32-15.
32-16.
32-17.
32-18.
32-19.
32-20.
33-1.
33-2.
34-1.
34-2.
34-3.
34-4.
34-5.
34-6.
34-7.
34-8.
34-9.
34-10.
34-11.
34-12.
34-13.
34-14.
34-15.
34-16.
34-17.
34-18.
35-1.
35-2.
42

....................................................................................
....................................................................................
UCBxI2COA2 Register Description ....................................................................................
UCBxI2COA3 Register Description ....................................................................................
UCBxADDRX Register Description .....................................................................................
UCBxADDMASK Register Description .................................................................................
UCBxI2CSA Register Description ......................................................................................
UCBxIE Register Description............................................................................................
UCBxIFG Register Description..........................................................................................
UCBxIV Register Description............................................................................................
REF_A Registers .........................................................................................................
REFCTL0 Register Description .........................................................................................
ADC12_B Conversion Result Formats .................................................................................
Conversion Mode Summary .............................................................................................
ADC12_B Registers ......................................................................................................
ADC12CTL0 Register Description ......................................................................................
ADC12CTL1 Register Description ......................................................................................
ADC12CTL2 Register Description ......................................................................................
ADC12CTL3 Register Description ......................................................................................
ADC12MEMx Register Description .....................................................................................
ADC12MCTLx Register Description ....................................................................................
ADC12HI Register Description ..........................................................................................
ADC12LO Register Description .........................................................................................
ADC12IER0 Register Description ......................................................................................
ADC12IER1 Register Description ......................................................................................
ADC12IER2 Register Description ......................................................................................
ADC12IFGR0 Register Description ....................................................................................
ADC12IFGR1 Register Description ....................................................................................
ADC12IFGR2 Register Description ....................................................................................
ADC12IV Register Description ..........................................................................................
COMP_E Registers .......................................................................................................
CECTL0 Register Description ...........................................................................................

32-11. UCBxI2COA0 Register Description

List of Tables

851
851
852
852
853
855
857
862
863
873
874
884
890
892
894
895
896
897
899
899
900
902
904
905
907
909
910
920
921

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

35-3.

CECTL1 Register Description ........................................................................................... 922

35-4.

CECTL2 Register Description ........................................................................................... 923

35-5.

CECTL3 Register Description ........................................................................................... 924

35-6.

CEINT Register Description ............................................................................................. 926

35-7.

CEIV Register Description ............................................................................................... 927

36-1.

Differences Between LCD_B and LCD_C ............................................................................. 929

36-2.

Bias Voltages and external Pins ........................................................................................ 936

36-3.

LCD Voltage and Biasing Characteristics ............................................................................. 937

36-4.

LCD_C Control Registers ................................................................................................ 947

36-5.

LCD_C Memory Registers for Static and 2-Mux to 4-Mux Modes ................................................. 948

36-6.

LCD Blinking Memory Registers for Static and 2-Mux to 4-Mux Modes

36-7.
36-8.
36-9.
36-10.
36-11.
36-12.
36-13.
36-14.
36-15.
36-16.
36-17.
36-18.
37-1.
37-2.
37-3.
37-4.
37-5.
37-6.
37-7.
37-8.
37-9.
37-10.
37-11.
37-12.
37-13.
37-14.
37-15.
37-16.
37-17.
37-18.
37-19.
37-20.
37-21.
37-22.
37-23.
37-24.
37-25.
37-26.

.......................................... 949
LCD Memory Registers for 5-Mux to 8-Mux .......................................................................... 950
LCDCCTL0 Register Description ....................................................................................... 952
LCDCCTL1 Register Description ....................................................................................... 954
LCDCBLKCTL Register Description.................................................................................... 955
LCDCMEMCTL Register Description .................................................................................. 956
LCDCVCTL Register Description ....................................................................................... 957
LCDCPCTL0 Register Description ..................................................................................... 959
LCDCPCTL1 Register Description ..................................................................................... 959
LCDCPCTL2 Register Description ..................................................................................... 960
LCDCPCTL3 Register Description ..................................................................................... 960
LCDCCPCTL Register Description ..................................................................................... 961
LCDCIV Register Description ........................................................................................... 961
ESICAX and ESISH Input Selection ................................................................................... 968
Selected Output Bits...................................................................................................... 969
Selected DAC Registers ................................................................................................. 970
DAC Register Select When TESTDX=1 ............................................................................... 971
TSM State Duration ...................................................................................................... 974
TSM Example Register Values ......................................................................................... 975
ESI Interrupts .............................................................................................................. 982
Quadrature Decoding PSM Table ...................................................................................... 989
ESI Registers .............................................................................................................. 990
ESIDEBUG1 Register Description ...................................................................................... 991
ESIDEBUG2 Register Description ...................................................................................... 991
ESIDEBUG3 Register Description ...................................................................................... 991
ESIDEBUG4 Register Description ...................................................................................... 992
ESIDEBUG5 Register Description ...................................................................................... 992
ESICNT0 Register Description .......................................................................................... 993
ESICNT1 Register Description .......................................................................................... 993
ESICNT2 Register Description .......................................................................................... 994
ESICNT3 Register Description .......................................................................................... 994
ESIIV Register Description .............................................................................................. 995
ESIINT1 Register Description ........................................................................................... 996
ESIINT2 Register Description ........................................................................................... 998
ESIAFE Register Description .......................................................................................... 1000
ESIPPU Register Description .......................................................................................... 1002
ESITSM Register Description.......................................................................................... 1003
TSM Start Trigger ACLK Divider ...................................................................................... 1004
ESIPSM Register Description ......................................................................................... 1005

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

List of Tables

43

www.ti.com

.........................................................................................
ESICTL Register Description ..........................................................................................
ESITHR1 Register Description ........................................................................................
ESITHR2 Register Description ........................................................................................
ESIDAC1Rx Register Description .....................................................................................
ESIDAC2Rx Register Description .....................................................................................
ESITSMx Register Description ........................................................................................
Extended Scan Interface Processing State Machine Table Entry Description ..................................
EEM Configurations .....................................................................................................

37-27. ESIOSC Register Description
37-28.
37-29.
37-30.
37-31.
37-32.
37-33.
37-34.
38-1.

44

List of Tables

1006
1007
1009
1009
1010
1010
1011
1013
1019

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Preface
SLAU367O – October 2012 – Revised December 2017

Read This First
About This Manual
This manual describes the modules and peripherals of the MSP430FR58xx and MSP430FR59xx family of
devices. Each description presents the module or peripheral in a general sense. Not all features and
functions of all modules or peripherals may be present on all devices. In addition, modules or peripherals
may differ in their exact implementation between device families, or may not be fully implemented on an
individual device or device family.
Pin functions, internal signal connections, and operational parameters differ from device to device. Consult
the device-specific data sheet for these details.

Related Documentation From Texas Instruments
For related documentation, see the MSP430 web site: http://www.ti.com/msp430

FCC Warning
This equipment is intended for use in a laboratory test environment only. It generates, uses, and can
radiate radio frequency energy and has not been tested for compliance with the limits of computing
devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable
protection against radio frequency interference. Operation of this equipment in other environments may
cause interference with radio communications, in which case the user at his own expense will be required
to take whatever measures may be required to correct this interference.

Notational Conventions
Program examples are shown in a special typeface; for example:
MOV
XOR

#255,R10
@R5,R6

Glossary
Abbreviation

Description

ACLK

Auxiliary clock

ADC

Analog-to-digital converter

BOR

Brownout reset

BSL

Bootloader; see www.ti.com/msp430 for application reports

CPU

Central processing unit

DAC

Digital-to-analog converter

DCO

Digitally controlled oscillator

dst

Destination

FLL

Frequency locked loop

GIE Modes

General interrupt enable

INT(N/2)

Integer portion of N/2

I/O

Input/output

ISR

Interrupt service routine

LSB

Least-significant bit

LSD

Least-significant digit

LPM

Low-power mode; also named PM for power mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Read This First

45

Register Bit Conventions

www.ti.com

Abbreviation

Description

MAB

Memory address bus

MCLK

Master clock

MDB

Memory data bus

MSB

Most-significant bit

MSD

Most-significant digit

NMI

(Non)-Maskable interrupt; also split to UNMI (user NMI) and SNMI (system NMI)

PC

Program counter

PM

Power mode

POR

Power-on reset

PUC

Power-up clear

RAM

Random access memory

SCG

System clock generator

SFR

Special function register

SMCLK

Subsystem master clock

SNMI

System NMI

SP

Stack pointer

SR

Status register

src

Source

TOS

Top of stack

UNMI

User NMI

WDT

Watchdog timer

z16

16-bit address space

Register Bit Conventions
Each register is shown with a key indicating the accessibility of the each individual bit and the initial
condition:
Register Bit Accessibility and Initial Condition
Key

Bit Accessibility

rw

Read/write

r

Read only

r0

Read as 0

r1

Read as 1

w

Write only

w0

Write as 0

w1

Write as 1

(w)

No register bit implemented; writing a 1 results in a pulse. The register bit always reads as 0.

h0

Cleared by hardware

h1

Set by hardware

-0,-1

Condition after PUC

-(0),-(1)

Condition after POR

-[0],-[1]

Condition after BOR

-{0},-{1}

Condition after brownout

Trademarks
is a trademark of ~ Texas Instruments.
is a trademark of ~IAR.

46

Read This First

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 1
SLAU367O – October 2012 – Revised December 2017

System Resets, Interrupts, and Operating Modes,
System Control Module (SYS)
The system control module (SYS) is available on all devices. The basic features of SYS are:
• Brownout reset (BOR) and power on reset (POR) handling
• Power up clear (PUC) handling
• (Non)maskable interrupt (SNMI or UNMI) event source selection and management
• User data-exchange mechanism through the JTAG mailbox (JMB)
• Bootloader (BSL) entry mechanism
• Configuration management (device descriptors)
• Interrupt vector generators for reset and NMIs
Topic

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16

...........................................................................................................................
System Control Module (SYS) Introduction ..........................................................
System Reset and Initialization ............................................................................
Interrupts ..........................................................................................................
Operating Modes ................................................................................................
Principles for Low-Power Applications .................................................................
Connection of Unused Pins .................................................................................
Reset Pin (RST/NMI) Configuration .......................................................................
Configuring JTAG Pins .......................................................................................
Vacant Memory Space ........................................................................................
Boot Code .........................................................................................................
Bootloader (BSL)................................................................................................
JTAG Mailbox (JMB) System ..............................................................................
JTAG and SBW Lock Mechanism Using the Electronic Fuse ...................................
Device Descriptor Table ......................................................................................
SFR Registers ....................................................................................................
SYS Registers ....................................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

Page

48
48
50
56
61
62
62
62
63
63
63
63
64
65
72
76

47

System Control Module (SYS) Introduction

1.1

www.ti.com

System Control Module (SYS) Introduction
SYS is responsible for the interaction between various modules throughout the system. The functions that
SYS provides for are not inherent to the modules themselves. Address decoding, bus arbitration, interrupt
event consolidation, and reset generation are some examples of the many functions that SYS provides.

1.2

System Reset and Initialization
The system reset circuitry is shown in Figure 1-1 and sources a brownout reset (BOR), a power-on reset
(POR), and a power-up clear (PUC). Different events trigger these reset signals and different initial
conditions exist depending on which signal was generated.
A
•
•
•
•
•

BOR is a device reset. A BOR is generated only by the following events:
Powering up the device
Low signal on the RST/NMI pin when configured in the reset mode
Wake-up event from LPMx.5 (that is, LPM3.5 or LPM4.5) mode
SVSH low condition, when enabled (see the PMM and SVS chapter for details)
Software BOR event (see the PMM and SVS chapter for details)

A POR is always generated when a BOR is generated, but a BOR is not generated by a POR. The
following events trigger a POR:
• BOR signal
• Software POR event (see the PMM and SVS chapter for details)
A PUC is always generated when a POR is generated, but a POR is not generated by a PUC. The
following events trigger a PUC:
• POR signal
• Watchdog timer expiration when watchdog mode only (see the WDT_A chapter for details)
• Watchdog timer password violation (see the WDT_A chapter for details)
• FRAM memory password violation (see the FRAM Controller chapter for details)
• Power Management Module password violation (see the PMM and SVS chapter for details)
• Memory Protection Unit password violation (see the MPU chapter for details)
• Memory segment violation (see the MPU chapter for details)
• Clock System password violation (see the Clock System chapter for details)
• Fetch from peripheral area
• Uncorrectable FRAM bit error detection
NOTE: The number and type of resets available may vary from device to device. See the devicespecific data sheet for all reset sources available.

48

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

System Reset and Initialization

www.ti.com
BOR shadow
s

Delay

brownout circuit

s clr

from port
wakeup logic
EN

PMMRSTIFG
s clr

RST/NMI
SYSNMI
notRST

Delay

BOR

Delay

POR

PMMBORIFG
s clr

PMMSWBOR event

SVSHIFG
s
from SVSH

SVSHE

PMMPORIFG
s
PMMSWPOR event
WDTIFG
s
Watchdog Timer

MCLK

… .

Module
PUCs

PUC Logic

Figure 1-1. BOR, POR, and PUC Reset Circuit

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

49

System Reset and Initialization

www.ti.com

1.2.1 Device Initial Conditions After System Reset
After a BOR, the initial device conditions are:
• The RST/NMI pin is configured in the reset mode. See Section 1.7 for details on configuring the
RST/NMI pin.
• I/O pins are switched to input mode as described in the Digital I/O chapter.
• Other peripheral modules and registers are initialized as described in their respective chapters.
• Status register (SR) is reset.
• The watchdog timer powers up active in watchdog mode.
• Program counter (PC) is loaded with the boot code address and boot code execution begins at that
address. See Section 1.10 for more information regarding the boot code. Upon completion of the boot
code, the PC is loaded with the address contained at the SYSRSTIV reset location (0FFFEh).
After a system reset, user software must initialize the device for the application requirements. The
following must occur:
• Initialize the stack pointer (SP), typically to the top of RAM when available, otherwise FRAM location.
• Initialize the watchdog to the requirements of the application.
• Configure peripheral modules to the requirements of the application.
NOTE: A device that is unprogrammed or blank is defined as having its reset vector value, residing
at memory address FFFEh, equal to FFFFh. Upon system reset of a blank device, the device
automatically enters operating mode LPM4. See Section 1.4 for information on operating
modes and Section 1.3.6 for details on interrupt vectors.

1.3

Interrupts
The interrupt priorities are fixed and defined by the arrangement of the modules in the connection chain as
shown in Figure 1-2. Interrupt priorities determine what interrupt is taken when more than one interrupt is
pending simultaneously.
There are three types of interrupts:
• System reset
• (Non)maskable
• Maskable
BOR

...

RST/NMI
BOR/POR/PUC
circuit

CPU

POR
PUC

Password violations
high priority

.. . ..

System NMI
User NMI
Module_A_int
Module_B_int

low priority

INT
GIE

NMI
Interrupt
daisy chain
and vectors

Module_C_int
Module_D_int

MAB - 6LSBs

Figure 1-2. Interrupt Priority

50

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Interrupts

www.ti.com

NOTE: The types of interrupt sources available and their respective priorities change from device to
device. See the device-specific data sheet for all interrupt sources and their priorities.

1.3.1 (Non)Maskable Interrupts (NMIs)
In general, NMIs are not masked by the general interrupt enable (GIE) bit. Two levels of NMIs are
supported — system NMI (SNMI) and user NMI (UNMI). The NMI sources are enabled by individual
interrupt enable bits. When an NMI interrupt is accepted, other NMIs of that level are automatically
disabled to prevent nesting of consecutive NMIs of the same level. Program execution begins at the
address stored in the NMI vector as shown in Section 1.3.6. To allow software backward compatibility to
users of earlier MSP430 families, the software may, but does not need to, reenable NMI sources. The
block diagram for NMI sources is shown in Section 1.3.
A UNMI interrupt can be generated by following sources:
• An edge on the RST/NMI pin when configured in NMI mode
• An oscillator fault occurs
A
•
•
•

SNMI interrupt can be generated by following sources:
FRAM errors (see the FRAM Controller chapter for details)
Vacant memory access
JTAG mailbox (JMB) event
NOTE: The number and types of NMI sources may vary from device to device. See the devicespecific data sheet for all NMI sources available.

1.3.2 SNMI Timing
Consecutive SNMIs that occur at a higher rate than they can be handled (interrupt storm) allow the main
program to execute one instruction after the SNMI handler is finished with a RETI instruction, before the
SNMI handler is executed again. Consecutive SNMIs are not interrupted by UNMIs in this case. This
avoids a blocking behavior on high SNMI rates.

1.3.3 Maskable Interrupts
Maskable interrupts are caused by peripherals with interrupt capability. Each maskable interrupt source
can be disabled individually by an interrupt enable bit, or all maskable interrupts can be disabled by the
general interrupt enable (GIE) bit in the status register (SR).
Each individual peripheral interrupt is discussed in its respective module chapter in this manual.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

51

Interrupts

www.ti.com

1.3.4 Interrupt Processing
When an interrupt is requested from a peripheral and the peripheral interrupt enable bit and GIE bit are
set, the interrupt service routine is requested. Only the individual enable bit must be set for (non)maskable interrupts (NMI) to be requested.
1.3.4.1

Interrupt Acceptance

The interrupt latency is six cycles, starting with the acceptance of an interrupt request, and lasting until the
start of execution of the first instruction of the interrupt service routine, as shown in Figure 1-3. The
interrupt logic executes the following:
1. Any currently executing instruction is completed.
2. The PC, which points to the next instruction, is pushed onto the stack.
3. The SR is pushed onto the stack.
4. The interrupt with the highest priority is selected if multiple interrupts occurred during the last
instruction and are pending for service.
5. The interrupt request flag resets automatically on single-source flags. Multiple source flags remain set
for servicing by software.
6. All bits of SR are cleared except SCG0, thereby terminating any low-power mode. Because the GIE bit
is cleared, further interrupts are disabled.
7. The content of the interrupt vector is loaded into the PC; the program continues with the interrupt
service routine at that address.

SP

Before
Interrupt

After
Interrupt

Item1

Item1

Item2

TOS

Item2
PC
SP

SR

TOS

Figure 1-3. Interrupt Processing

NOTE: Enable and Disable Interrupt
Due to the pipelined CPU architecture, setting the general interrupt enable (GIE) requires
special care.

•
•

•

•

The instruction immediately after the enable interrupts instruction (EINT) is
always executed, even if an interrupt service request is pending.
Include at least one instruction between the clear of an interrupt enable or
interrupt flag and the EINT instruction. For example: Insert a NOP instruction in
front of the EINT instruction.
Include at least one instruction between DINT and the start of an code
sequence that requires protection from interrupts. For example: Insert a NOP
instruction after the DINT.
Never clear the general interrupt enable (GIE) immediately after setting it. Insert
at least one instruction in between such sequence.

The rules above apply to all instructions that set or clear the general interrupt enable bit. Not
following these rules might result in unexpected CPU execution.

52

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Interrupts

www.ti.com

1.3.4.2

Return From Interrupt

The interrupt handling routine terminates with the instruction:
RETI //return from an interrupt service routine

The return from the interrupt takes five cycles to execute the following actions and is illustrated in
Figure 1-4.
1. The SR with all previous settings pops from the stack. All previous settings of GIE, CPUOFF, and so
on are now in effect, regardless of the settings used during the interrupt service routine.
2. The PC pops from the stack and begins execution where it was interrupted.
Before

After
Return From Interrupt

Item1

Item1
SP

Item2

Item2

PC
SP

TOS

PC
TOS

SR

SR

Figure 1-4. Return From Interrupt

1.3.5 Interrupt Nesting
Interrupt nesting is enabled if the GIE bit is set inside an interrupt service routine. When interrupt nesting
is enabled, any interrupt occurring during an interrupt service routine interrupts the routine, regardless of
the interrupt priorities.

1.3.6 Interrupt Vectors
The interrupt vectors are located in the address range 0FFFFh to 0FF80h, for a maximum of 64 interrupt
sources. A vector is programmed by the user and points to the start location of the corresponding interrupt
service routine. Table 1-1 is an example of the interrupt vectors available. See the device-specific data
sheet for the complete interrupt vector list.
Table 1-1. Interrupt Sources, Flags, and Vectors
Interrupt Source

Interrupt Flag

System Interrupt

Word Address

Priority

Reset:
power up, external reset
watchdog,
FRAM password

...
WDTIFG
FRCTLPW

...
Reset

...
0FFFEh

...
Highest

System NMI:
JTAG Mailbox

JMBINIFG, JMBOUTIFG

(Non)maskable

0FFFCh

…

User NMI:
NMI
oscillator fault

...
NMIIFG
OFIFG

...
(Non)maskable
(Non)maskable

...
0FFFAh

...
…

Device specific

0FFF8h

…

...

...

...

...

...

Watchdog timer

WDTIFG

Maskable

...

...

...

Device specific

…

…

…

Lowest

Reserved

Maskable

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

53

Interrupts

www.ti.com

Some interrupt enable bits and interrupt flags, as well as control bits for the RST/NMI pin, are located in
the special function registers (SFR). The SFR are located in the peripheral address range and are byte
and word accessible. See the device-specific data sheet for the SFR configuration.
1.3.6.1

Alternate Interrupt Vectors

On devices that contain RAM, it is possible to use the RAM as an alternate location for the interrupt vector
locations. Setting the SYSRIVECT bit to '1' in SYSCTL causes the interrupt vectors to be remapped to the
top of RAM. The total RAM size varies depending on the device configurations and could include one or
multiple RAM sections. The alternate location is always the highest address of the entire RAM space
available in the device. Note that the SYSRIVECT bit is automatically cleared on a BOR, so the default
reset vector location (0FFFEh) will be used after a BOR before setting the SYSRIVECT bit to '1'.

1.3.7 SYS Interrupt Vector Generators
SYS collects all system NMI (SNMI) sources, user NMI (UNMI) sources, and BOR, POR, or PUC (reset)
sources of all the other modules. They are combined into three interrupt vectors. The interrupt vector
registers SYSRSTIV, SYSSNIV, SYSUNIV are used to determine which flags requested an interrupt or a
reset. The interrupt with the highest priority of a group, when enabled, generates a number in the
corresponding SYSRSTIV, SYSSNIV, SYSUNIV register. This number can be directly added to the
program counter, causing a branch to the appropriate portion of the interrupt service routine. Disabled
interrupts do not affect the SYSRSTIV, SYSSNIV, SYSUNIV values. Reading SYSRSTIV, SYSSNIV,
SYSUNIV register automatically resets the highest pending interrupt flag of that register. If another
interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. Writing to
the SYSRSTIV, SYSSNIV, SYSUNIV register automatically resets all pending interrupt flags of the group.

54

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Interrupts

www.ti.com

1.3.7.1

SYSSNIV Software Example

The following software example shows the recommended use of SYSSNIV. The SYSSNIV value is added
to the PC to automatically jump to the appropriate routine. For SYSRSTIV and SYSUNIV, a similar
software approach can be used. The following is an example for a generic device. Vectors can change in
priority for a given device. The device-specific data sheet should be referenced for the vector locations. All
vectors should be coded symbolically to allow for easy portability of code.
SNI_ISR:

ADD
RETI
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

&SYSSNIV,PC
DBD_ISR
ACCTIM_ISR
RSVD1_ISR
RSVD2_ISR
RSVD3_ISR
RSVD4_ISR
ACCV_ISR
VMA_ISR
JMBI_ISR
JMBO_ISR
SBD_ISR

DBD_ISR:
...
RETI
ACCTIM_ISR:
...
RETI
RSVD1_ISR:
...
RETI
RSVD2_ISR:
...
RETI
RSVD3_ISR:
...
RETI
RSVD4_ISR:
...
RETI
ACCV_ISR:
...
RETI
VMA_ISR:
...
RETI
JMBI_ISR:
...
JMBO_ISR:
...
RETI
SBD_ISR:
...
RETI

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

;
;
;
;
;
;
;
;
;
;
;
;
;

Add offset to jump table
Vector 0: No interrupt
Vector 2: DBDIFG
Vector 4: ACCTIMIFG
Vector 6: Reserved for future usage.
Vector 8: Reserved for future usage.
Vector 10: Reserved for future usage.
Vector 12: Reserved for future usage.
Vector 14: ACCVIFG
Vector 16: VMAIFG
Vector 18: JMBINIFG
Vector 20: JMBOUTIFG
Vector 22: SBDIFG

;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

Vector 2: DBDIFG
Task_2 starts here
Return
Vector 4
Task_4 starts here
Return
Vector 6
Task_6 starts here
Return
Vector 8
Task_8 starts here
Return
Vector 10
Task_10 starts here
Return
Vector 12
Task_12 starts here
Return
Vector 14
Task_14 starts here
Return
Vector 16
Task_16 starts here
Return
Vector 18
Task_18 starts here
Vector 20
Task_20 starts here
Return
Vector 22
Task_22 starts here
Return

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

55

Operating Modes

1.4

www.ti.com

Operating Modes
The MSP430 family is designed for ultralow-power applications and uses different operating modes shown
in Figure 1-5.
The operating modes take into account three different needs:
• Ultra-low power
• Speed and data throughput
• Minimization of individual peripheral current consumption
The low-power modes LPM0 through LPM4 are configured with the CPUOFF, OSCOFF, SCG0, and
SCG1 bits in the SR. The advantage of including the CPUOFF, OSCOFF, SCG0, and SCG1 mode-control
bits in the SR is that the present operating mode is saved onto the stack during an interrupt service
routine. Program flow returns to the previous operating mode if the saved SR value is not altered during
the interrupt service routine. Program flow can be returned to a different operating mode by manipulating
the saved SR value on the stack inside of the interrupt service routine. When setting any of the modecontrol bits, the selected operating mode takes effect immediately. Peripherals operating with any disabled
clock are disabled until the clock becomes active. Peripherals may also be disabled with their individual
control register settings. All I/O port pins, RAM, and registers are unchanged. Wakeup from LPM0 through
LPM4 is possible through all enabled interrupts.
When LPMx.5 (LPM3.5 or LPM4.5) is entered, the voltage regulator of the Power Management Module
(PMM) is disabled. All RAM and register contents are lost. Although the I/O register contents are lost, the
I/O pin states are locked upon LPMx.5 entry. See the Digital I/O chapter for further details. Wakeup from
LPM4.5 is possible through a power sequence, a RST event, or from specific I/O. Wakeup from LPM3.5 is
possible through a power sequence, a RST event, RTC event, or from specific I/O.
NOTE: The TEST/SBWTCK pin is used to enable the connection of external development tools with
the device through Spy-Bi-Wire or JTAG debug protocols. The connection is usually enabled
when the TEST/SBWTCK is high. When the connection is enabled the device enters a
debug mode. In the debug mode the entry and wake-up times to and from low power modes
may be different compared to normal operation. Pay careful attention to the real-time
behavior when using low power modes with the device connected to a development tool!
See the EEM chapter for further details.

56

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Operating Modes

www.ti.com

LPMx.5:
VCORE = off
(all modules off,
LPM3.5: RTC on)

From active mode
LPM3.5 only

Brownout
fault

RTC wakeup

Port wakeup
Security
violation

RST/NMI
(Reset wakeup)
‡

RST/NMI
(Reset event)

SW BOR
event

BOR
Load
calibration data

SVSH fault

SW POR
event
POR

WDT Active
Time expired, Overflow

PMM, WDT, CS, FRAM
Password violation

FRAM
Uncorrectable Bit Error

PUC
Memory
Segment violation

Peripheral area fetch

CPUOFF=1
OSCOFF=0
SCG0=0
SCG1=0

Active Mode: CPU is Active
Various Modules are active

PMMREGOFF = 1
to LPMx.5

†

†

LPM0:
CPU/MCLK = off
ACLK = on
VCORE = on

†

†
†

CPUOFF=1
OSCOFF=0
SCG0=1
SCG1=0

CPUOFF=1
OSCOFF=0
SCG0=0
SCG1=1

LPM1:
CPU/MCLK = off
ACLK = on
VCORE = on

CPUOFF=1
OSCOFF=1
SCG0=1
SCG1=1

CPUOFF=1
OSCOFF=0
SCG0=1
SCG1=1

LPM2:
CPU/MCLK = off
ACLK = on
VCORE = on

LPM4:
CPU/MCLK = off
ACLK = off
VCORE = on

LPM3:
CPU/MCLK = off
ACLK = on
VCORE = on

Events
Operating modes/Reset phases
† Any enabled interrupt and NMI performs this transition
‡ An enabled reset always restarts the device

Arbitrary transitions

Figure 1-5. Operation Modes

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module (SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

57

Operating Modes

www.ti.com

Table 1-2. Operation Modes
SCG1
0

(1)

SCG0
0

OSCOFF

(1)

CPUOFF

0

0

(1)

Mode

CPU and Clocks Status (2)

Active

CPU, MCLK are active.
ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
DCO is enabled if sources ACLK, MCLK, or SMCLK (SMCLKOFF = 0).
DCO bias is enabled if DCO is enabled or DCO sources MCLK or SMCLK (SMCLKOFF =
0).

0

0

0

1

LPM0

CPU, MCLK are disabled.
ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
DCO is enabled if sources ACLK or SMCLK (SMCLKOFF = 0).
DCO bias is enabled if DCO is enabled or DCO sources MCLK or SMCLK (SMCLKOFF =
0).

0

1

0

1

LPM1

CPU, MCLK are disabled.
ACLK is active. SMCLK optionally active (SMCLKOFF = 0).
DCO is enabled if sources ACLK or SMCLK (SMCLKOFF = 0).
DCO bias is enabled if DCO is enabled or DCO sources MCLK or SMCLK (SMCLKOFF =
0).

1

0

0

1

LPM2

CPU, MCLK are disabled.

1

1

0

1

LPM3

1

1

1

1

LPM4

CPU and all clocks are disabled.

1

1

1

1

LPM3.5

When PMMREGOFF = 1, regulator is disabled. No memory retention. In this mode, RTC
operation is possible when configured properly. See the RTC module for further details.

1

1

1

1

LPM4.5

When PMMREGOFF = 1, regulator is disabled. No memory retention. In this mode, all
clock sources are disabled; that is, no RTC operation is possible.

ACLK is active. SMCLK is disabled.
CPU, MCLK are disabled.
ACLK is active. SMCLK is disabled.

(1)
(2)

This bit is automatically reset when exiting low-power modes. See Section 1.4.2 for details.
The low-power modes and, hence, the system clocks can be affected by the clock request system. See the Clock System chapter for
details.

1.4.1 Low-Power Modes and Clock Requests
A peripheral module requests its clock sources automatically from the clock system (CS) module if it is
required for its proper operation, regardless of the current power mode of operation. Refer to the
"Operation From Low-Power Modes, Requested by Peripheral Modules" section in the Clock System
chapter.
Because of the clock request mechanism the system might not reach the low-power modes requested by
the bits set in the CPU's status register SR as listed in Table 1-3.
Table 1-3. Requested vs Actual LPM

58

Requested LPM
(SR Bits according to
Table 1-2)

Actual LPM...
If No Clock Requested

If Only ACLK Requested

If SMCLK Requested

LPM0

LPM0

LPM0

LPM0

LPM1

LPM1

LPM1

LPM1

LPM2

LPM2

LPM2

LPM0

LPM3

LPM3

LPM3

LPM1

LPM4

LPM4

LPM3

LPM1

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Operating Modes

www.ti.com

1.4.2 Entering and Exiting Low-Power Modes LPM0 Through LPM4
An enabled interrupt event wakes the device from low-power operating modes LPM0 through LPM4. The
program flow for exiting LPM0 through LPM4 is:
• Enter interrupt service routine
– The PC and SR are stored on the stack.
– The CPUOFF, SCG1, and OSCOFF bits are automatically reset.
• Options for returning from the interrupt service routine
– The original SR is popped from the stack, restoring the previous operating mode.
– The SR bits stored on the stack can be modified within the interrupt service routine returning to a
different operating mode when the RETI instruction is executed.
; Enter LPM0 Example
BIS
#GIE+CPUOFF,SR
; ...
;
; Exit LPM0 Interrupt Service Routine
BIC
#CPUOFF,0(SP)
RETI

; Enter LPM3 Example
BIS
#GIE+CPUOFF+SCG1+SCG0,SR
; ...
;
; Exit LPM3 Interrupt Service Routine
BIC
#CPUOFF+SCG1+SCG0,0(SP)
RETI

; Enter LPM4 Example
BIS
#GIE+CPUOFF+OSCOFF+SCG1+SCG0,SR
; ...
;
; Exit LPM4 Interrupt Service Routine
BIC
#CPUOFF+OSCOFF+SCG1+SCG0,0(SP)
RETI

; Enter LPM0
; Program stops here

; Exit LPM0 on RETI

; Enter LPM3
; Program stops here

; Exit LPM3 on RETI

; Enter LPM4
; Program stops here

; Exit LPM4 on RETI

1.4.3 Low-Power Modes LPM3.5 and LPM4.5 (LPMx.5)
The low-power modes LPM3.5 and LPM4.5 (LPMx.5 (1)) give the lowest power consumption on a device.
In LPMx.5, the core LDO of the device is switched off. This has the following effects:
• Most of the modules are powered down.
– In LPM3.5, only modules powered by the RTC LDO continue to operate. At least an RTC module is
connected to the RTC LDO. Refer to the device's data sheet for other modules (if any) that are
connected to the RTC LDO.
– In LPM4.5 the RTC LDO and the connected modules are switched off.
• The register content of all modules and the CPU is lost.
• The SRAM content is lost.
• A wake-up from LPMx.5 causes a complete reset of the core.
• The application must initialize the complete device after a wake-up from LPMx.5.
The wake-up time from LPMx.5 is much longer than the wake-up time from any other power mode (see
the device-specific data sheet). This is because the core domain must power up and the device internal
initialization must be done. In addition, the application must be initialized again. Therefore, use LPMx.5
only when the application is in LPMx.5 for a long time.
(1)

The abbreviation "LPMx.5" is used in this document to indicate both LPM3.5 and LPM4.5.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

59

Operating Modes

www.ti.com

Compute Through Power Loss (CTPL) is a utility API set that leverages FRAM to enable ease of use with
LPMx.5 low-power modes and provides a powerful shutdown mode that allows an application to save and
restore critical system components when a power loss is detected. Visit FRAM embedded software utilities
for MSP ultra-low-power microcontrollers for details.
1.4.3.1

Enter LPMx.5

Do the following steps to enter LPMx.5:
1. Store any information that must be available after wakeup from LPMx.5 in FRAM.
2. For LPM4.5 set all ports to general-purpose I/Os (PxSEL0 = 00h and PxSEL1 = 00h).
For LPM3.5 if the LF crystal oscillator is used do not change the settings for the I/Os shared with the
LF-crystal-oscillator. These pins must be configured as LFXIN and LFXOUT. Set all other port pins to
general-purpose I/Os with PxSEL0 and PxSEL1 bits equal to 0.
3. Set the port pin direction and output bits as necessary for the application.
4. To enable a wakeup from an I/O do the following:
a. Select the wakeup edge (PxIES)
b. Clear the interrupt flag (PxIFG)
c. Set the interrupt enable bit (PxIE)
5. For LPM3.5 the modules that stay active must be enabled. For example, the RTC must be enabled if
necessary. Only modules connected to the RTC LDO can stay active.
6. For LPM3.5 if necessary enable any interrupt sources from these modules as wakeup sources. Refer
to the corresponding module chapter.
7. Disable the watchdog timer WDT if it is enabled and in watchdog mode. If the WDT is enabled and in
watchdog mode, the device does not enter LPMx.5.
8. Clear the GIE bit:
BIC #GIE, SR

9. Do the following steps to set the PMMREGOFF bit in the PMMCTL0 register:
a. Write the correct PMM password to get write access to the PMM control registers.
MOV.B #PMMPW_H, &PMMCTL0_H

b. Set PMMREGOFF bit in the PMMCTL0 register.
BIS.B #PMMREGOFF, &PMMCTL0_L

c. Optionally, disable the SVS during LPMx.5 by clearing the SVSHE bit in PMMCTL0.
BIC.B #SVSHE, &PMMCTL0_L

d. Write an incorrect PMM password to disable the write access to the PMM control registers.
MOV.B #000h, &PMMCTL0_H

10. Enter LPMx.5 with the following instruction:
BIS #CPUOFF+OSCOFF+SCG0+SCG1, SR

After this process, the device enters LPM3.5 if modules connected to the RTC LDO are enabled, and it
enters LPM4.5 if none of the modules connected to the RTC LDO are enabled.
1.4.3.2

Exit and Wake up From LPM3.5

The following conditions cause an exit from LPM3.5:
• A wake-up event on an I/O if configured and enabled. The interrupt flag of the corresponding port pin is
set (PxIFG). The PMMLPM5IFG bit is set.
• A wake-up event from a module connected to the RTC LDO if enabled. The corresponding interrupt
flag in the module is set. The PMMLPM5IFG bit is set.
• A wake-up signla from the RST pin.
• A power cycle. Either the SVSHIFG or none of the PMMIFGs is set.

60

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Principles for Low-Power Applications

www.ti.com

Any exit from LPM3.5 causes a BOR. The program execution starts at the address the reset vector points
to. PMMLPM5IFG = 1 indicates a wakeup from LPM3.5, or the System Reset Vector Word register
(SYSRSTIV) can be used to decode the reset condition (see the device data sheet).
After the wakeup from LPM3.5, the state of the I/Os and the modules connected to the RTC LDO are
locked and remain unchanged until the application clears the LOCKLPM5 bit in the PM5CTL0 register.
Do the following steps after a wakeup from LPM3.5:
1. Initialize the registers of the modules connected to the RTC LDO exactly the same way as they were
configured before the device entered LPM3.5 but do not enable the interrupts.
2. Initialize the port registers exactly the same way as they were configured before the device entered
LPM3.5 but do not enable port interrupts.
3. If the LF-crystal-oscillator was used in LPM3.5 the corresponding I/Os must be configured as LFXIN
and LFXOUT. The LF-crystal-oscillator must be enabled in the clock system (see the clock system CS
chapter).
4. Clear the LOCKLPM5 bit in the PM5CTL0 register.
5. Enable port interrupts as necessary.
6. Enable module interrupts.
7. After enabling the port and module interrupts the wake-up interrupt will be serviced as a normal
interrupt.
1.4.3.3

Exit and Wake up From LPM4.5

The following conditions will cause an exit from LPM4.5:
• A wakeup event on an I/O if configured and enabled. The interrupt flag of the corresponding port pin is
set (PxIFG). The PMMLPM5IFG bit is set.
• A wakeup from the RST pin.
• A power-cycle. Either the SVSHIFG or none of the PMMIFGs is set.
Any exit from LPM4.5 causes a BOR. The program execution starts at the address the reset vector points
to. PMMLPM5IFG = 1 indicates a wakeup from LPM4.5, or the System Reset Vector Word register
(SYSRSTIV) can be used to decode the reset condition (see the device data sheet).
After the wake-up from LPM4.5 the state of the I/Os are locked and remain unchanged until the
application clears the LOCKLPM5 bit in the PM5CTL0 register.
Do the following steps after a wakeup from LPM4.5:
1. Initialize the port registers exactly the same way as they were configured before the device entered
LPM4.5, but do not enable port interrupts.
2. Clear the LOCKLPM5 bit in the PM5CTL0 register.
3. Enable port interrupts as necessary.
4. After enabling the port interrupts the wake-up interrupt will be serviced as a normal interrupt.
If a crystal oscillator is needed after a wakeup from LPM4.5, configure the corresponding pins and start
the oscillator after clearing the LOCKLPM5 bit.

1.5

Principles for Low-Power Applications
Often, the most important factor for reducing power consumption is using the device clock system to
maximize the time in LPM3 or LPM4 modes whenever possible.
• Use interrupts to wake the processor and control program flow.
• Peripherals should be switched on only when needed.
• Use low-power integrated peripheral modules in place of software driven functions. For example,
Timer_A and Timer_B can automatically generate PWM and capture external timing with no CPU
resources.
• Calculated branching and fast table lookups should be used in place of flag polling and long software
calculations.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

61

Connection of Unused Pins

•
•

www.ti.com

Avoid frequent subroutine and function calls due to overhead.
For longer software routines, single-cycle CPU registers should be used.

If the application has low duty cycle and slow response time events, maximizing time in LPMx.5 can
further reduce power consumption significantly.

1.6

Connection of Unused Pins
The correct termination of all unused pins is listed in Table 1-4.
Table 1-4. Connection of Unused Pins (1)

(1)

(2)

1.7

Pin

Potential

AVCC

DVCC

Comment

AVSS

DVSS

Px.0 to Px.7

Open

RST/NMI

DVCC or VCC

PJ.0/TDO
PJ.1/TDI
PJ.2/TMS
PJ.3/TCK

Open

The JTAG pins are shared with general-purpose I/O function (PJ.x). If not being used, these
should be switched to port function, output direction. When used as JTAG pins, these pins
should remain open.

TEST

Open

This pin always has an internal pulldown enabled.

Switched to port function, output direction (PxDIR.n = 1)
47-kΩ pullup or internal pullup selected with 2.2-nF (10-nF (2)) pulldown

Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin
connection guidelines.
The pulldown capacitor should not exceed 2.2 nF when using devices in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools
like FET interfaces or GANG programmers. If JTAG or Spy-Bi-Wire access is not needed, up to a 10-nF pulldown capacitor may
be used.

Reset Pin (RST/NMI) Configuration
The reset pin can be configured as a reset function (default) or as an NMI function through the Special
Function Register (SFR), SFRRPCR. Setting SYSNMI causes the RST/NMI pin to be configured as an
external NMI source. The external NMI is edge sensitive and its edge is selectable by SYSNMIIES.
Setting the NMIIE enables the interrupt of the external NMI. Upon an external NMI event, the NMIIFG is
set.
The RST/NMI pin can have either a pullup or pulldown present or not. SYSRSTUP selects either pullup or
pulldown, and SYSRSTRE causes the pullup or pulldown to be enabled or not. If the RST/NMI pin is
unused, it is required to have either the internal pullup selected and enabled or an external resistor
connected to the RST/NMI pin as shown in Table 1-4.
There is a digital filter that suppresses short pulses on the reset pin to avoid unintended resets of the
device. The minimum reset pulse duration is specified in the device data sheet. The filter is active only if
the pin is configured in its reset function. The filter is disabled if the pin is used as an external NMI source.

1.8

Configuring JTAG Pins
The JTAG pins are shared with general-purpose I/O pins. After a BOR, the SYSJTAGPIN bit in the
SYSCTL register is cleared. With SYSJTAGPIN cleared, the pins with JTAG functionality are configured
as general-purpose I/O. In this case only a special sequences on the TEST and RST/NMI pins enables
the JTAG functionality. As long as the TEST pin is pulled to DVCC, the pins remain in their JTAG
functionality. If the TEST pin is released to DVSS, the shared JTAG pins revert to general-purpose I/Os.
If SYSJTAGPIN = 1, the JTAG pins are permanently configured to 4-wire JTAG mode and remain in this
mode until another BOR occurs. Use this feature early in your software if the MSP430 is part of a JTAG
chain. Note, that this also disables the Spy-Bi-Wire mode.
The SYSJTAGPIN is a write only once function. Clearing it by software is not possible.

62

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Vacant Memory Space

www.ti.com

1.9

Vacant Memory Space
Vacant memory is nonexistent memory space. Accesses to vacant memory space generate a system
(non)maskable interrupt (SNMI) when enabled (VMAIE = 1). Reads from vacant memory results in the
value 3FFFh. In the case of a fetch, this is taken as JMP $. Fetch accesses from vacant peripheral space
result in a PUC. After the boot code is executed, the boot code memory behaves like vacant memory
space and causes an NMI on access.

1.10 Boot Code
The boot code loads factory stored calibration values of the oscillator and reference voltages. In addition,
it checks for a bootloader (BSL) entry sequence. The boot code is always executed after a BOR.

1.11 Bootloader (BSL)
The BSL is software that is executed after start-up when a certain BSL entry condition is applied. The BSL
lets the user communicate with the embedded memory in the microcontroller during the prototyping phase,
final production, and in service. All memory mapped resources, the programmable memory, the data
memory (RAM), and the peripherals, can be modified by the BSL as required.
A basic BSL program is provided by TI and resides in ROM at memory space 01000h through 017FFh.
The BSL supports the commonly used UART protocol with RS232 interfacing, allowing flexible use of both
hardware and software. Depending on the device, additional BSL communication interfaces are supported.
For details of the available and configured BSL communication interfaces, see Section 1.14.3.5.
To use the BSL, a specific BSL entry sequence must be applied to the RST/NMI and TEST pins. A correct
entry sequence causes SYSBSLIND to be set. An added sequence of commands initiates the desired
function. A bootloader session can be exited by continuing operation at a defined user program address or
by applying the standard reset sequence. Access to the device memory through the BSL is protected
against misuse by a user-defined password.
Two BSL signatures, BSL Signature 1 (memory location 0FF84h) and BSL Signature 2 (memory location
0FF86h) reside in FRAM and can be used to control the behavior of the BSL. Writing 05555h to BSL
Signature 1 or BSL Signature 2 disables the BSL function and any access to the BSL memory space
causes a vacant memory access as described in Section 1.9. Most BSL commands require the BSL to be
unlocked by a user-defined password. An incorrect password erases the device memory as a security
feature. Writing 0AAAAh to both BSL Signature 1 and BSL Signature 2 disables this security feature. This
causes a password error to be returned by the BSL, but the device memory is not erased. In this case,
unlimited password attempts are possible.
For more details, see the MSP430FR57xx, MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, and
MSP430FR69xx Bootloader (BSL) User's Guide.
Some JTAG commands are still possible after the device is secured, including the BYPASS command
(see IEEE Std 1149-2001) and the JMB_EXCHANGE command, which allows access to the JTAG
Mailbox System (see Section 1.12 for details).

1.12 JTAG Mailbox (JMB) System
The SYS module provides the capability to exchange user data through the regular JTAG test/debug
interface. The idea behind the JMB is to have a direct interface to the CPU during debugging,
programming, and test that is identical for all devices of this family and uses only few or no user
application resources. The JTAG interface was chosen because it is available on all devices and is a
dedicated resource for debugging, programming, and test.
Applications of the JMB are:
• Providing entry password for device lock or unlock protection
• Run-time data exchange (RTDX)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

63

JTAG Mailbox (JMB) System

www.ti.com

1.12.1 JMB Configuration
The JMB supports two transfer modes: 16-bit and 32-bit. Setting JMBMODE enables 32-bit transfer mode.
Clearing JMBMODE enables 16-bit transfer mode.

1.12.2 JMBOUT0 and JMBOUT1 Outgoing Mailbox
Two 16-bit registers are available for outgoing messages to the JTAG port. JMBOUT0 is only used when
using 16-bit transfer mode (JMBMODE = 0). JMBOUT1 is used in addition to JMBOUT0 when using 32-bit
transfer mode (JMBMODE = 1). When the application wishes to send a message to the JTAG port, it
writes data to JMBOUT0 for 16-bit mode, or JMBOUT0 and JMBOUT1 for 32-bit mode.
JMBOUT0FG and JMBOUT1FG are read only flags that indicate the status of JMBOUT0 and JMBOUT1,
respectively. When JMBOUT0FG is set, JMBOUT0 has been read by the JTAG port and is ready to
receive new data. When JMBOUT0FG is reset, the JMBOUT0 is not ready to receive new data.
JMBOUT1FG behaves similarly.

1.12.3 JMBIN0 and JMBIN1 Incoming Mailbox
Two 16-bit registers are available for incoming messages from the JTAG port. Only JMBIN0 is used when
in 16-bit transfer mode (JMBMODE = 0). JMBIN1 is used in addition to JMBIN0 when using 32-bit transfer
mode (JMBMODE = 1). When the JTAG port wishes to send a message to the application, it writes data
to JMBIN0 for 16-bit mode, or JMBIN0 and JMBIN1 for 32-bit mode.
JMBIN0FG and JMBIN1FG are flags that indicate the status of JMBIN0 and JMBIN1, respectively. When
JMBIN0FG is set, JMBIN0 has data that is available for reading. When JMBIN0FG is reset, no new data is
available in JMBIN0. JMBIN1FG behaves similarly.
JMBIN0FG and JMBIN1FG can be configured to clear automatically by clearing JMBCLR0OFF and
JMBCLR1OFF, respectively. Otherwise, these flags must be cleared by software.

1.12.4 JMB NMI Usage
The JMB handshake mechanism can be configured to use interrupts to avoid unnecessary polling if
desired. In 16-bit mode, JMBOUTIFG is set when JMBOUT0 has been read by the JTAG port and is
ready to receive data. In 32-bit mode, JMBOUTIFG is set when both JMBOUT0 and JMBOUT1 has been
read by the JTAG port and are ready to receive data. If JMBOUTIE is set, these events cause a system
NMI. In 16-bit mode, JMBOUTIFG is cleared automatically when data is written to JMBOUT0. In 32-bit
mode, JMBOUTIFG Is cleared automatically when data is written to both JMBOUT0 and JMBOUT1. In
addition, the JMBOUTIFG can be cleared when reading SYSSNIV. Clearing JMBOUTIE disables the NMI
interrupt.
In 16-bit mode, JMBINIFG is set when JMBIN0 is available for reading. In 32-bit mode, JMBINIFG is set
when both JMBIN0 and JMBIN1 are available for reading. If JMBOUTIE is set, these events cause a
system NMI. In 16-bit mode, JMBINIFG is cleared automatically when JMBIN0 is read. In 32-bit mode,
JMBINIFG Is cleared automatically when both JMBIN0 and JMBIN1 are read. In addition, the JMBINIFG
can be cleared when reading SYSSNIV. Clearing JMBINIE disables the NMI interrupt.

1.13 JTAG and SBW Lock Mechanism Using the Electronic Fuse
A device can be protected from unauthorized access by restricting accessibility of JTAG commands that
can be transferred to the device by the JTAG and SBW interface. This is achieved by programming the
electronic fuse. When the device is protected, the JTAG and SBW interface still remains functional, but
JTAG commands that give direct access into the device are completely disabled. There are two ways to
lock the device. Both of these require the programming of two signatures that reside in FRAM. JTAG
Signature 1 (memory location 0FF80h) and JTAG Signature 2 (memory location 0FF82h) control the
behavior of the device locking mechanism.
NOTE: When a device has been protected, Texas Instruments cannot access the device for a
customer return. Access is only possible if a BSL is provided with its corresponding key or an
unlock mechanism is provided by the customer.

64

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

JTAG and SBW Lock Mechanism Using the Electronic Fuse

www.ti.com

1.13.1 JTAG and SBW Lock Without Password
A device can be locked by writing 05555h to both JTAG Signature 1 and JTAG Signature 2. In this case,
the JTAG and SBW interfaces grant access to a limited JTAG command set that restricts accessibility into
the device. The only way to unlock the device in this case is to use the BSL to overwrite the JTAG
signatures with anything other than 05555h or 0AAAAh. Some JTAG commands are still possible after the
device is secured, including the BYPASS command (see IEEE1149-2001 Standard) and the
JMB_EXCHANGE command, which allows access to the JTAG Mailbox System (see Section 1.12 for
details).
NOTE: Signatures that have been entered do not take effect until the next BOR event has occurred,
at which time the signatures are checked.

1.13.2 JTAG and SBW Lock With Password
A device can also be locked by writing 0AAAAh to JTAG Signature 1 and writing JTAG Signature 2 with
any value except 05555h. In this case, JTAG and SBW interfaces grant access to a limited JTAG
command set that restricts accessibility into the device as in Section 1.13.1, but an additional mechanism
is available that can unlock the device with a user-defined password. In this case, JTAG Signature 2
represents a user-defined length in words of the user defined password. For example, a password length
of four words would require writing 0004h to JTAG Signature 2. The starting location of the password is
fixed at location 0FF88h. As an example, for a password of length 4, the password memory locations
would reside at 0FF88h, 0FF8Ah, 0FF8Ch, and 0FF8Eh.
The password is not checked after each BOR; it is checked only if a specific signature is present in the
JTAG incoming mailbox. If the JTAG incoming mailbox contains 0A55Ah and 01E1Eh in JMBIN0 and
JMBIN1, respectively, the device is expecting a password to be applied. The entered password is
compared to the password that is stored in the device password memory locations. If they match, the
device unlocks the JTAG and SBW to the complete JTAG command set until the next BOR event occurs.
NOTE: Memory locations 0FF80h through 0FFFFh may also be used for interrupt vector address
locations (see the device-specific data sheet). Therefore, if using the password mechanism
for JTAG and SBW lock, which uses address locations 0FF88h and higher, these locations
may also have interrupt vector addresses assigned to them. Therefore, the same values
assigned for any interrupt vector addresses must also be used as password values.

NOTE: Signatures that have been entered do not take effect until the next BOR event has occurred,
at which time the signatures are checked. For example, entering a correct password that
grants entry into the device followed by an incorrect password without a BOR sequence may
still grant access to the device.

1.14 Device Descriptor Table
Each device provides a data structure in memory that allows an unambiguous identification of the device.
The validity of the device descriptor can be verified by cyclic redundancy check (CRC). Figure 1-6 shows
the logical order and structure of the device descriptor table. The complete device descriptor table and its
contents can be found in the device-specific data sheet.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

65

Device Descriptor Table

www.ti.com

Descriptor start address
Info_length
CRC_length

Information block
CRC_value

DeviceID

Firmware revision

Device ID and Revision
Information

Hardware revision
Tag 1
Len 1
Value field 1

First TLV entry
(optional)

Additional TLV entries
(optional)
Tag N
Len N
Value field N

Final TLV entry
(optional)

Figure 1-6. Devices Descriptor Table

1.14.1 Identifying Device Type
The value read at address 00FF0h identifies the family branch of the device. All values starting with 80h
indicate a hierarchical structure consisting of the information block and a TLV tag-length-value (TLV)
structure containing the various descriptors. Any other value than 80h read at address location 00FF0h
indicates the device is of an older family and contains a flat descriptor beginning at location 0FF0h. The
information block (see Figure 1-6) contains the device ID, die revisions, firmware revisions, and other
manufacturer and tool related information.
The length of the descriptors represented by Info_length is computed as shown in Equation 1:
Length = 2Info_length in 32-bit words

(1)

For example, if Info_length = 5, then the length of the descriptors equals 128 bytes.

66

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Device Descriptor Table

www.ti.com

1.14.2 TLV Descriptors
The TLV descriptors follow the information block. Because the information block is always a fixed length,
the start location of the TLV descriptors is fixed for a given device family. For the MSP430FR57xx family,
this location is 01A08h. See the device-specific data sheet for the complete TLV structure and what
descriptors are available.
The TLV descriptors are unique to their respective TLV block and are always followed by the descriptor
block length.
Each TLV descriptor contains a tag field that identifies the descriptor type. Table 1-5 shows the currently
supported tags.
Table 1-5. Tag Values
Short Name

Value

LDTAG

01h

Legacy descriptor (1xx, 2xx, 4xx families)

Description

PDTAG

02h

Peripheral discovery descriptor

Reserved

03h

Reserved for future use

Reserved

04h

Reserved for future use

BLANK

05h

Blank descriptor

Reserved

06h

Reserved for future use

Reserved

07h

Reserved for future use

Reserved

08h

Unique Die Record

Reserved

09h-0Fh

Reserved

10h

Reserved

ADC12CAL

11h

ADC12 calibration (see Section 1.14.3.2 and Section 1.14.3.3)

Reserved for future use

REFCAL

12h

REF calibration (see Section 1.14.3.1)

ADC10CAL

13h

ADC10 calibration (see Section 1.14.3.2 and Section 1.14.3.3)

Reserved

14h

Reserved for future use

RANDTAG

15h

Random Number Seed (see Section 1.14.3.4)

Reserved

16h-1Bh

BSLTAG

1Ch

Reserved

1Dh-FDh

TAGEXT

FEh

Reserved for future use
BSL Configuration
Reserved for future use
Tag extender

Each tag field is unique to its respective descriptor and is always followed by a length field. The length
field is one byte if the tag value is 01h through 0FDh and represents the length of the descriptor in bytes.
If the tag value equals 0FEh (TAGEXT), the next byte extends the tag values, and the following two bytes
represent the length of the descriptor in bytes. In this way, a user can search through the TLV descriptor
table for a particular tag value, using a routine similar to the following pseudo code:
// Identify the descriptor ID (d_ID_value) for the TLV descriptor of interest:
descriptor_address = TLV_START address;
while ( value at descriptor_address != d_ID_value && descriptor_address != TLV_TAGEND &&
descriptor_address < TLV_END)
{
// Point to next descriptor
descriptor_address = descriptor_address + (length of the current TLV block) + 2;
}
if (value at descriptor_address == d_ID_value) {
// Appropriate TLV descriptor has been found!
Return length of descriptor & descriptor_address as the location of the TLV descriptor
} else {
// No TLV descriptor found with a matching d_ID_value
Return a failing condition
}

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

67

Device Descriptor Table

www.ti.com

1.14.3 Calibration Values
The TLV structure contains calibration values that can be used to improve the measurement capability of
various functions. The calibration values available on a given device are shown in the TLV structure of the
device-specific data sheet.
1.14.3.1 REF Calibration
Table 1-6 shows the REF calibration tags.
Table 1-6. REF Calibration Tags
REF
TAG
Calibration
Length
Low Byte
High Byte
Low Byte
High Byte
Low Byte
High Byte

12h
06h
CAL_ADC_12VREF_FACTOR
CAL_ADC_20VREF_FACTOR
CAL_ADC_25VREF_FACTOR

The calibration data for the REF module consists of three words, one word for each reference voltage
available (1.2 V, 2.0 V, and 2.5 V). The reference voltages are measured at room temperature. The
measured values are normalized by 1.2 V, 2.0 V, or 2.5 V before being stored into the TLV structure, as
shown in Equation 2:
V
CAL _ ADC _12VREF _ FACTOR = REF+ ´ 215
1.2V
VREF+
´ 215
CAL _ ADC _ 20VREF _ FACTOR =
2.0V
VREF+
´ 215
CAL _ ADC _ 25VREF _ FACTOR =
2.5V
(2)
In this way, a conversion result is corrected by multiplying it with the CAL_12VREF_FACTOR (or
CAL_20VREF_FACTOR, CAL_25VREF_FACTOR) and dividing the result by 215as shown in Equation 3
for each of the respective reference voltages:
1
ADC(corrected) = ADC(raw) ´ CAL _ ADC12VREF _ FACTOR ´
215
1
ADC(corrected) = ADC(raw) ´ CAL _ ADC20VREF _ FACTOR ´
215
1
ADC(corrected) = ADC(raw) ´ CAL _ ADC25VREF _ FACTOR ´
215
(3)
In the following example, the integrated 1.2-V reference voltage is used during a conversion.
• Conversion result: 0x0100 = 256 decimal
• Reference voltage calibration factor (CAL_12VREF_FACTOR) : 0x7BBB
The following steps show how the ADC conversion result can be corrected:
• Multiply the conversion result by 2 (this step simplifies the final division): 0x0100 x 0x0002 = 0x0200
• Multiply the result by CAL_12VREF_FACTOR: 0x200 x 0x7FEE = 0x00F7_7600
• Divide the result by 216: 0x00F7_7600 / 0x0001_0000 = 0x0000_00F7 = 247 decimal
1.14.3.2 ADC Offset and Gain Calibration
Table 1-7 shows the ADC calibration tags.

68

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Device Descriptor Table

www.ti.com

Table 1-7. ADC Calibration Tags
ADC
TAG
Calibration

ADC10: 13h
ADC12: 11h

Length

10h

Low Byte
High Byte
Low Byte
High Byte
Low Byte
High Byte
Low Byte
High Byte
Low Byte
High Byte
Low Byte
High Byte
Low Byte
High Byte
Low Byte
High Byte

CAL_ADC_GAIN_FACTOR
CAL_ADC_OFFSET
CAL_ADC_12T30
CAL_ADC_12T85
CAL_ADC_20T30
CAL_ADC_20T85
CAL_ADC_25T30
CAL_ADC_25T85

The offset of the ADC at room temperature is determined and stored as a twos-complement number in the
TLV structure. The offset error correction is done by adding the CAL_ADC_OFFSET to the conversion
result.

ADC (offset _ corrected ) = ADC (raw) + CAL _ ADC _ OFFSET

(4)

The gain of the ADC at room temperature with an external reference voltage of 2.5 V is calculated by
Equation 5:

CAL _ ADC _ GAIN _ FACTOR =

1
´ 215
GAIN

(5)

The conversion result is gain corrected by multiplying it with the CAL_ADC_GAIN_FACTOR and dividing
the result by 215 :

ADC ( gain _ corrected ) = ADC (raw) ´ CAL _ ADC _ GAIN _ FACTOR ´

1
215

(6)

If both gain and offset are corrected, the gain correction is done first:

ADC ( gain _ corrected ) = ADC (raw) ´ CAL _ ADC _ GAIN _ FACTOR ´

1
215

ADC ( final ) = ADC ( gain _ corrected ) + CAL _ ADC _ OFFSET

(7)

1.14.3.3 Temperature Sensor Calibration
The temperature sensor calibration data is part of the ADC tag as shown in Table 1-7.
The temperature sensor is calibrated using the internal voltage references. Each reference voltage (1.2 V,
2.0 V, or 2.5 V) contains a measured value for two temperatures (30°C ± 3°C and 85°C ± 3°C) and are
stored in the TLV structure. The characteristic equation of the temperature sensor voltage, in millivolts is:

VSENSE = TC SENSOR ´ Temp + VSENSOR

(8)

The temperature coefficient, TCSENSORin mV/°C, represents the slope of the equation. VSENSOR, in mV,
represents the y-intercept of the equation. Temp, in °C, is the temperature of interest.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

69

Device Descriptor Table

www.ti.com

The temperature (Temp, °C) can be computed as follows for each of the reference voltages used in the
ADC measurement:
æ
ö
85 - 30
Temp éë°C ùû = (ADC(raw) - CAL _ ADC _12T30 )´ ç
÷ + 30
è CAL _ ADC _12T85 - CAL _ ADC _12T30 ø
æ
ö
85 - 30
Temp éë°C ùû = (ADC(raw) - CAL _ ADC _ 20T30 )´ ç
÷ + 30
è CAL _ ADC _ 20T85 - CAL _ ADC _ 20T30 ø
æ
ö
85 - 30
Temp éë°C ùû = (ADC(raw) - CAL _ ADC _ 25T30 )´ ç
÷ + 30
è CAL _ ADC _ 25T85 - CAL _ ADC _ 25T30 ø

(9)

1.14.3.4 Random Number Seed
Table 1-8 shows the tags used for the random number seed.
Table 1-8. Random Number Tags
Random
Number

TAG

15h

Length

10h

16 bytes

128-bit random number seed

The random number stored as a seed for a deterministic random number generator is programmed during
test of the device. It is generated on the test system using a cryptographic random number generator.
1.14.3.5 BSL Configuration
Table 1-9 shows the tags used for the BSL configuration. The BSL configuration stores the communication
interface selection and corresponding communication interface settings. The Tag is optional for devices
only providing the basic UART BSL interface. The TAG length field is variable and determinated by the
length of the configuration option field BSL_CIF_CONFIG. The BSL configuration cannot be changed by
the user.
Table 1-9. BSL Configuration Tags
BSL Configuration

TAG

1Ch

Length

Depends on the BSL_COM_IF value (actual: 02h for UART or
I2C)

Low Byte

BSL_COM_IF

High Byte

BSL_CIF_CONFIG[0]

Low Byte

BSL_CIF_CONFIG[1] (optional)

High Byte

BSL_CIF_CONFIG[2] (optional)

Low Byte

BSL_CIF_CONFIG[3] (optional)

High Byte

BSL_CIF_CONFIG[4] (optional)

⋮

⋮

⋮

⋮

High Byte

BSL_CIF_CONFIG[n] (optional)

Table 1-10. BSL_COM_IF Values

70

BSL_COM_IF

Description

Length

00h

UART interface selected

02h

01h

I2C interface selected

02h

02h to FFh

Reserved for future communication interface

reserved

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Device Descriptor Table

www.ti.com

Table 1-10 shows the defined value for the BSL_COM_IF field. Depending on the selected communication
interface, the subsequent bytes in the BSL config tag are interpreted to configure the communication
interface. The interpretation is shown in Table 1-11. Unused bytes in BSL_CIF_CONFIG are defined as
00h.
Table 1-11. BSL_CIF_CONFIG Values
BSL_CIF_CONFIG_IF[n]

UART [BSL_COM_IF == 00h]

I2C [ BSL_COM_IF == 01h]

0

00h

I2C address (valid values: 0 to
7Fh)

1 to FFh

N/A

N/A

Table 1-11 shows the defined configuration options for the given BSL communication interface.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

71

SFR Registers

www.ti.com

1.15 SFR Registers
The SFRs are listed in Table 1-12. The base address for the SFRs is 00100h. Many of the bits inside the
SFRs are described in other chapters throughout this user's guide. These bits are marked with a note and
a reference. See the specific chapter of the respective module for details.
NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 1-12. SFR Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

SFRIE1

Interrupt Enable

Read/write

Word

0000h

Section 1.15.1

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0082h

Read/write

Byte

82h

Read/write

Byte

00h

Read/write

Word

001Ch

00h

SFRIE1_L (IE1)

01h

SFRIE1_H (IE2)

02h
02h

SFRIFG1_L (IFG1)

03h

SFRIFG1_H (IFG2)

04h

72

SFRIFG1

SFRRPCR

Interrupt Flag

Reset Pin Control

04h

SFRRPCR_L

Read/write

Byte

1Ch

05h

SFRRPCR_H

Read/write

Byte

00h

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Section 1.15.2

Section 1.15.3

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SFR Registers

www.ti.com

1.15.1 SFRIE1 Register
Interrupt Enable Register
Figure 1-7. SFRIE1 Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7
JMBOUTIE
rw-0

6
JMBINIE
rw-0

5
Reserved
r-0

4
NMIIE
rw-0

3
VMAIE
rw-0

2
Reserved
r0

1
OFIE (1)
rw-0

0
WDTIE (2)
rw-0

(1)
(2)

See the Clock System chapter for details.
See the WDT_A chapter for details.

Table 1-13. SFRIE1 Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved. Always reads as 0.

7

JMBOUTIE

RW

0h

JTAG mailbox output interrupt enable
0b = Interrupts disabled
1b = Interrupts enabled

6

JMBINIE

RW

0h

JTAG mailbox input interrupt enable
0b = Interrupts disabled
1b = Interrupts enabled

5

Reserved

R

0h

Reserved. Always reads as 0.

4

NMIIE

RW

0h

NMI pin interrupt enable
0b = Interrupts disabled
1b = Interrupts enabled

3

VMAIE

RW

0h

Vacant memory access interrupt enable
0b = Interrupts disabled
1b = Interrupts enabled

2

Reserved

R

0h

Reserved. Always reads as 0.

1

OFIE

RW

0h

Oscillator fault interrupt enable
0b = Interrupts disabled
1b = Interrupts enabled

0

WDTIE

RW

0h

Watchdog timer interrupt enable. This bit enables the WDTIFG interrupt for
interval timer mode. It is not necessary to set this bit for watchdog mode.
Because other bits in SFRIE1 may be used for other modules, it is
recommended to set or clear this bit using BIS.B or BIC.B instructions, rather
than MOV.B or CLR.B instruction.
0b = Interrupts disabled
1b = Interrupts enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

73

SFR Registers

www.ti.com

1.15.2 SFRIFG1 Register
Interrupt Flag Register
Figure 1-8. SFRIFG1 Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7
JMBOUTIFG
rw-(1)

6
JMBINIFG
rw-(0)

5
Reserved
r0

4
NMIIFG
rw-0

3
VMAIFG
rw-0

2
Reserved
r0

1
OFIFG (1)
rw-(1)

0
WDTIFG (2)
rw-0

(1)
(2)

See the Clock System chapter for details.
See the WDT_A chapter for details.

Table 1-14. SFRIFG1 Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved. Always reads as 0.

7

JMBOUTIFG

RW

1h

JTAG mailbox output interrupt flag
0b = No interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is
cleared automatically when JMBO0 has been written with a new message to the
JTAG module by the CPU. When in 32-bit mode (JMBMODE = 1), this bit is
cleared automatically when both JMBO0 and JMBO1 have been written with new
messages to the JTAG module by the CPU. This bit is also cleared when the
associated vector in SYSUNIV has been read.
1b = Interrupt pending, JMBO registers are ready for new messages. In 16-bit
mode (JMBMODE = 0), JMBO0 has been received by the JTAG module and is
ready for a new message from the CPU. In 32-bit mode (JMBMODE = 1) ,
JMBO0 and JMBO1 have been received by the JTAG module and are ready for
new messages from the CPU.

6

JMBINIFG

RW

0h

JTAG mailbox input interrupt flag
0b = No interrupt pending. When in 16-bit mode (JMBMODE = 0), this bit is
cleared automatically when JMBI0 is read by the CPU. When in 32-bit mode
(JMBMODE = 1), this bit is cleared automatically when both JMBI0 and JMBI1
have been read by the CPU. This bit is also cleared when the associated vector
in SYSUNIV has been read
1b = Interrupt pending, a message is waiting in the JMBIN registers. In 16-bit
mode (JMBMODE = 0) when JMBI0 has been written by the JTAG module. In
32-bit mode (JMBMODE = 1) when JMBI0 and JMBI1 have been written by the
JTAG module.

5

Reserved

R

0h

Reserved. Always reads as 0.

4

NMIIFG

RW

0h

NMI pin interrupt flag
0b = No interrupt pending
1b = Interrupt pending

3

VMAIFG

RW

0h

Vacant memory access interrupt flag
0b = No interrupt pending
1b = Interrupt pending

2

Reserved

R

0h

Reserved. Always reads as 0.

1

OFIFG

RW

1h

Oscillator fault interrupt flag
0b = No interrupt pending
1b = Interrupt pending

0

WDTIFG

RW

0h

Watchdog timer interrupt flag. In watchdog mode, WDTIFG clears itself upon a
watchdog timeout event. The SYSRSTIV can be read to determine if the reset
was caused by a watchdog timeout event. In interval mode, WDTIFG is reset
automatically by servicing the interrupt, or can be reset by software. Because
other bits in SFRIFG1 may be used for other modules, it is recommended to set
or clear WDTIFG by using BIS.B or BIC.B instructions, rather than MOV.B or
CLR.B instructions.
0b = No interrupt pending
1b = Interrupt pending

74

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SFR Registers

www.ti.com

1.15.3 SFRRPCR Register
Reset Pin Control Register
Figure 1-9. SFRRPCR Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7

6
Reserved
r0

5

4
Reserved
r(w (1))-1

3
SYSRSTRE
rw-1

2
SYSRSTUP
rw-1

1
SYSNMIIES
rw-0

0
SYSNMI
rw-0

r0
(1)

r0

On some devices this bit can be written, but it must always be written as 1.

Table 1-15. SFRRPCR Register Description
Bit

Field

Type

Reset

Description

15-5

Reserved

R

0h

Reserved. Always reads as 0.

4

Reserved

R(W (1))

1h

Reserved. Must be written as 1.

3

SYSRSTRE

RW

1h

Reset pin resistor enable
0b = Pullup or pulldown resistor at the RST/NMI pin is disabled.
1b = Pullup or pulldown resistor at the RST/NMI pin is enabled.

2

SYSRSTUP

RW

1h

Reset resistor pin pullup or pulldown
0b = Pulldown is selected.
1b = Pullup is selected.

1

SYSNMIIES

RW

0h

NMI edge select. This bit selects the interrupt edge for the NMI when SYSNMI =
1. Modifying this bit can trigger an NMI. Modify this bit when SYSNMI = 0 to
avoid triggering an accidental NMI.
0b = NMI on rising edge
1b = NMI on falling edge

0

SYSNMI

RW

0h

NMI select. This bit selects the function for the RST/NMI pin.
0b = Reset function
1b = NMI function

(1)

On some devices this bit can be written, but it must always be written as 1.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

75

SYS Registers

www.ti.com

1.16 SYS Registers
The SYS configuration registers are listed in Table 1-16 and the base address is 00180h. A detailed
description of each register and its bits is also provided. Each register starts at a word boundary. Either
word or byte data can be written to the SYS configuration registers.
NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 1-16. SYS Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

SYSCTL

System Control

Read/write

Word

0000h

Section 1.16.1

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

000Ch

Read/write

Byte

0Ch

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

00h

SYSCTL_L

01h

SYSCTL_H

06h
06h

SYSJMBC_L

07h

SYSJMBC_H

08h

SYSJMBI0

08h

SYSJMBI0_L

09h

SYSJMBI0_H

0Ah

SYSJMBI1

JTAG Mailbox Control

JTAG Mailbox Input 0

JTAG Mailbox Input 1

0Ah

SYSJMBI1_L

Read/write

Byte

00h

0Bh

SYSJMBI1_H

Read/write

Byte

00h

0Ch

Read/write

Word

0000h

0Ch

SYSJMBO0_L

Read/write

Byte

00h

0Dh

SYSJMBO0_H

Read/write

Byte

00h

0Eh

76

SYSJMBC

SYSJMBO0

SYSJMBO1

JTAG Mailbox Output 0

Read/write

Word

0000h

0Eh

SYSJMBO1_L

JTAG Mailbox Output 1

Read/write

Byte

00h

0Fh

SYSJMBO1_H

Read/write

Byte

00h

Section 1.16.2

Section 1.16.3

Section 1.16.4

Section 1.16.6

1Ah

SYSUNIV

User NMI Vector Generator

Read

Word

0000h

Section 1.16.7

1Ch

SYSSNIV

System NMI Vector Generator

Read

Word

0000h

Section 1.16.8

1Eh

SYSRSTIV

Reset Vector Generator

Read

Word

0002h

Section 1.16.9

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SYS Registers

www.ti.com

1.16.1 SYSCTL Register
SYS Control Register
Figure 1-10. SYSCTL Register
15

14

13

12

11

10

9

8

Reserved
r0
7

r0

r0

r0

r0

r0

r0

r0

6

5
SYSJTAGPIN
rw-[0]

4
SYSBSLIND
r-0

3
Reserved
r0

2
SYSPMMPE
rw-[0]

1
Reserved
r0

0
SYSRIVECT
rw-[0]

Reserved
r0

r0

Table 1-17. SYSCTL Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved. Always reads as 0.

7-6

Reserved

R

0h

Reserved. Always reads as 0.

5

SYSJTAGPIN

RW

0h

Dedicated JTAG pins enable. Setting this bit disables the shared functionality of
the JTAG pins and permanently enables the JTAG function. This bit can only be
set once. Once it is set it remains set until a BOR occurs.
0b = Shared JTAG pins (JTAG mode selectable using SBW sequence)
1b = Dedicated JTAG pins (explicit 4-wire JTAG mode selection)

4

SYSBSLIND

R

0h

BSL entry indication. This bit indicates a BSL entry sequence detected on the
Spy-Bi-Wire pins.
0b = No BSL entry sequence detected
1b = BSL entry sequence detected

3

Reserved

R

0h

Reserved. Always reads as 0.

2

SYSPMMPE

RW

0h

PMM access protect. This controls the accessibility of the PMM control registers.
Once set to 1, it only can be cleared by a BOR.
0b = Access from anywhere in memory
1b = Access only from the BSL segments

1

Reserved

R

0h

Reserved. Always reads as 0.

0

SYSRIVECT

RW

0h

RAM-based interrupt vectors
0b = Interrupt vectors generated with end address TOP of lower 64K FRAM
FFFFh
1b = Interrupt vectors generated with end address TOP of RAM, when RAM
available.
Note: On devices that contain RAM, it is possible to use the RAM as an alternate
location for the interrupt vector locations. Setting the SYSRIVECT bit to '1' in
SYSCTL causes the interrupt vectors to be remapped to the top of RAM. The
total RAM size varies depending on the device configurations and could include
one or multiple RAM sections. The alternate location is always the highest
address of the entire RAM space available in the device. Note that the
SYSRIVECT bit is automatically cleared on a BOR, so the default reset vector
location (0FFFEh) will be used after a BOR before setting the SYSRIVECT bit to
'1'. On devices with LEA, the highest RAM address may be part of the LEA
shared RAM. Care must be taken to avoid address conflicts if LEA is used in this
case.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

77

SYS Registers

www.ti.com

1.16.2 SYSJMBC Register
JTAG Mailbox Control Register
Figure 1-11. SYSJMBC Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7
JMBCLR1OFF
rw-(0)

6
JMBCLR0OFF
rw-(0)

5
Reserved
r0

4
JMBM0DE
rw-0

3
JMBOUT1FG
r-(1)

2
JMBOUT0FG
r-(1)

1
JMBIN1FG
rw-(0)

0
JMBIN0FG
rw-(0)

Table 1-18. SYSJMBC Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved. Always reads as 0.

7

JMBCLR1OFF

RW

0h

Incoming JTAG Mailbox 1 flag auto-clear disable
0b = JMBIN1FG cleared on read of JMB1IN register
1b = JMBIN1FG cleared by software

6

JMBCLR0OFF

RW

0h

Incoming JTAG Mailbox 0 flag auto-clear disable
0b = JMBIN0FG cleared on read of JMB0IN register
1b = JMBIN0FG cleared by software

5

Reserved

R

0h

Reserved. Always reads as 0.

4

JMBMODE

RW

0h

This bit defines the operation mode of JMB for JMBI0, JMBI1, JMBO0, and
JMBO1. Before switching this bit, pad and flush out any partial content to avoid
data drops.
0b = 16-bit transfers using JMBO0 and JMBI0 only
1b = 32-bit transfers using JMBO0 with JMBO1 and JMBI0 with JMBI1

3

JMBOUT1FG

R

1h

Outgoing JTAG Mailbox 1 flag. This bit is cleared automatically when a message
is written to the upper byte of JMBO1 or as word access (by the CPU, DMA,…)
and is set after the message was read through JTAG.
0b = JMBO1 is not ready to receive new data.
1b = JMBO1 is ready to receive new data.

2

JMBOUT0FG

R

1h

Outgoing JTAG Mailbox 0 flag. This bit is cleared automatically when a message
is written to the upper byte of JMBO0 or as word access (by the CPU, DMA,…)
and is set after the message was read through JTAG.
0b = JMBO0 is not ready to receive new data.
1b = JMBO0 is ready to receive new data.

1

JMBIN1FG

RW

0h

Incoming JTAG Mailbox 1 flag. This bit is set when a new message (provided
through JTAG) is available in JMBI1. This flag is cleared automatically on read of
JMBI1 when JMBCLR1OFF = 0 (auto clear mode). On JMBCLR1OFF = 1,
JMBIN1FG needs to be cleared by software.
0b = JMBI1 has no new data.
1b = JMBI1 has new data available.

0

JMBIN0FG

RW

0h

Incoming JTAG Mailbox 0 flag. This bit is set when a new message (provided
through JTAG) is available in JMBI0. This flag is cleared automatically on read of
JMBI0 when JMBCLR0OFF = 0 (auto clear mode). On JMBCLR0OFF = 1,
JMBIN0FG needs to be cleared by software.
0b = JMBI0 has no new data.
1b = JMBI0 has new data available.

78

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SYS Registers

www.ti.com

1.16.3 SYSJMBI0 Register
JTAG Mailbox Input 0 Register
Figure 1-12. SYSJMBI0 Register
15

14

13

12

11

10

9

8

rw-0

rw-0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

MSGHI
rw-0

rw-0

rw-0

rw-0

7

6

5

4
MSGLO

rw-0

rw-0

rw-0

rw-0

Table 1-19. SYSJMBI0 Register Description
Bit

Field

Type

Reset

Description

15-8

MSGHI

RW

0h

JTAG mailbox incoming message high byte

7-0

MSGLO

RW

0h

JTAG mailbox incoming message low byte

1.16.4 SYSJMBI1 Register
JTAG Mailbox Input 1 Register
Figure 1-13. SYSJMBI1 Register
15

14

13

12

11

10

9

8

MSGHI
rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

MSGLO
rw-0

rw-0

rw-0

rw-0

Table 1-20. SYSJMBI1 Register Description
Bit

Field

Type

Reset

Description

15-8

MSGHI

RW

0h

JTAG mailbox incoming message high byte

7-0

MSGLO

RW

0h

JTAG mailbox incoming message low byte

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

79

SYS Registers

www.ti.com

1.16.5 SYSJMBO0 Register
JTAG Mailbox Output 0 Register
Figure 1-14. SYSJMBO0 Register
15

14

13

12

11

10

9

8

rw-0

rw-0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

MSGHI
rw-0

rw-0

rw-0

rw-0

7

6

5

4
MSGLO

rw-0

rw-0

rw-0

rw-0

Table 1-21. SYSJMBO0 Register Description
Bit

Field

Type

Reset

Description

15-8

MSGHI

RW

0h

JTAG mailbox outgoing message high byte

7-0

MSGLO

RW

0h

JTAG mailbox outgoing message low byte

1.16.6 SYSJMBO1 Register
JTAG Mailbox Output 1 Register
Figure 1-15. SYSJMBO1 Register
15

14

13

12

11

10

9

8

MSGHI
rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

MSGLO
rw-0

rw-0

rw-0

rw-0

Table 1-22. SYSJMBO1 Register Description
Bit

Field

Type

Reset

Description

15-8

MSGHI

RW

0h

JTAG mailbox outgoing message high byte

7-0

MSGLO

RW

0h

JTAG mailbox outgoing message low byte

80

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SYS Registers

www.ti.com

1.16.7 SYSUNIV Register
User NMI Vector Register
Figure 1-16. SYSUNIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-0

r-0

r-0

r0

SYSUNIV
r0

r0

r0

r0

7

6

5

4
SYSUNIV

r0

r0

r0

r-0

Table 1-23. SYSUNIV Register Description
Bit

Field

Type

Reset

Description

15-0

SYSUNIV

R

0h

User NMI vector. Generates a value that can be used as address offset for fast
interrupt service routine handling. Writing to this register clears all pending user
NMI flags.
See the device-specific data sheet for a list of values.

1.16.8 SYSSNIV Register
System NMI Vector Register
Figure 1-17. SYSSNIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-0

r-0

r-0

r0

SYSSNIV
r0

r0

r0

r0

7

6

5

4
SYSSNIV

r0

r0

r0

r-0

Table 1-24. SYSSNIV Register Description
Bit

Field

Type

Reset

Description

15-0

SYSSNIV

R

0h

System NMI vector. Generates a value that can be used as address offset for
fast interrupt service routine handling. Writing to this register clears all pending
system NMI flags.
See the device-specific data sheet for a list of values.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

Copyright © 2012–2017, Texas Instruments Incorporated

81

SYS Registers

www.ti.com

1.16.9 SYSRSTIV Register
Reset Interrupt Vector Register
Figure 1-18. SYSRSTIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r (1)

r (1)

r (1)

r0

SYSRSTIV
r0

r0

r0

r0

7

6

5

4
SYSRSTIV

r0
(1)

r (1)

r0

r (1)

Reset value depends on reset source.

Table 1-25. SYSRSTIV Register Description
Bit

Field

Type

Reset

Description

15-0

SYSRSTIV

R

02h03Eh (1)

Reset interrupt vector. Generates a value that can be used as address offset for
fast interrupt service routine handling to identify the last cause of a reset (BOR,
POR, PUC) . Writing to this register clears all pending reset source flags.
See the device-specific data sheet for a list of values.

(1)

82

Reset value depends on reset source.

System Resets, Interrupts, and Operating Modes, System Control Module
(SYS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 2
SLAU367O – October 2012 – Revised December 2017

Power Management Module (PMM) and Supply Voltage
Supervisor (SVS)
This chapter describes the operation of the Power
Supply Voltage Supervisor (SVS). The PMM is family specific.
Topic

2.1
2.2
2.3

Management

Module

(PMM)

...........................................................................................................................

and

Page

Power Management Module (PMM) Introduction .................................................... 84
PMM Operation .................................................................................................. 85
PMM Registers ................................................................................................... 88

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Power Management Module (PMM) and Supply Voltage Supervisor (SVS)

Copyright © 2012–2017, Texas Instruments Incorporated

83

Power Management Module (PMM) Introduction

2.1

www.ti.com

Power Management Module (PMM) Introduction
PMM features include:
• Wide supply voltage (DVCC) range: 1.8 V to 3.6 V
• Generation of voltage for the device core (VCORE)
• Supply voltage supervisor (SVS) for DVCC
• Brownout reset (BOR)
• Software accessible power-fail indicators
• I/O protection during power-fail condition
The PMM manages all functions related to the power supply and its supervision for the device. Its primary
functions are first to generate a supply voltage for the core logic, and second, provide several
mechanisms for the supervision of the voltage applied to the device (DVCC).
The PMM uses an integrated low-dropout voltage regulator (LDO) to produce a secondary core voltage
(VCORE) from the primary one applied to the device (DVCC). In general, VCORE supplies the CPU, memories,
and the digital modules, while DVCC supplies the I/Os and analog modules. The VCORE output is maintained
using a dedicated voltage reference. The input or primary side of the regulator is referred to in this chapter
as its high side. The output or secondary side is referred to in this chapter as its low side.
Figure 2-1 shows the block diagram of the PMM.
RTC LDO

VRTC (32kHz Osc, RTC)

LDO

DVCC

SVSH

VCORE

Reference
Brownout

Figure 2-1. PMM Block Diagram

84

Power Management Module (PMM) and Supply Voltage Supervisor (SVS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

PMM Operation

www.ti.com

2.2

PMM Operation

2.2.1 VCORE and the Regulator
DVCC can be powered from a wide input voltage range, but the core logic of the device must be kept at a
voltage lower than what this range allows. For this reason, a regulator (LDO) has been integrated into the
PMM. The regulator derives the necessary core voltage (VCORE) from DVCC.
The regulator supports different load settings to optimize power. The hardware controls the load settings
automatically, according to the following criteria:
• Selected and active power modes
• Selected and active clocks
• Clock frequencies according to Clock System (CS) settings
• JTAG is active
In addition to the main LDO, an ultra-low-power regulator (RTC LDO) provides a regulated voltage to the
real-time clock module (including the 32-kHz crystal oscillator) and other ultra-low-power modules that
remain active during LPM3.5 when the main LDO is off.

2.2.2 Supply Voltage Supervisor
The high-side supervisor (SVSH) oversees DVCC. It is activate in all power modes by default. To disable
the SVSH in LPM3, LPM4, LPM3.5, and LPM4.5, set SVSHE = 0.
2.2.2.1

SVS Thresholds

As Figure 2-2 shows, there is hysteresis built into the supervision thresholds, such that the thresholds in
force depend on whether the voltage rail is going up or down.
The behavior of the SVS according to these thresholds is best portrayed graphically. Figure 2-2 shows
how the supervisors respond to various supply failure conditions.
Voltage
DVCC
SVSH_IT+
SVSH_IT-

BOR
Time

Figure 2-2. Voltage Failure and Resulting PMM Actions

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Power Management Module (PMM) and Supply Voltage Supervisor (SVS)

Copyright © 2012–2017, Texas Instruments Incorporated

85

PMM Operation

www.ti.com

2.2.3 Supply Voltage Supervisor - Power-Up
When the device is powering up, the SVSH function is enabled by default. Initially, DVCC is low, and
therefore the PMM holds the device in BOR reset. When the SVSH level is met, after a short delay the
BOR reset is released. Figure 2-3 shows this process.
Voltage
DVCC
SVSH_IT+

VCORE

Reset from SVSH

BOR

Time

Figure 2-3. PMM Action at Device Power-Up

2.2.4 LPM3.5 and LPM4.5
LPM3.5 and LPM4.5 are additional low-power modes in which the core voltage regulator of the PMM is
completely disabled, providing additional power savings. Because there is no power supplied to VCORE
during LPMx.5, the CPU and all digital modules including RAM are unpowered. This essentially disables
the entire device and thus the contents of the registers and RAM are lost. Any essential values should be
stored to FRAM before entering LPMx.5.
To enable LPMx.5 the PMMREGOFF bit in the PMMCTL0 register must be set.
The LOCKLPM5 bit in the PM5CTL0 register locks the I/O configuration and other LPMx.5 relevant
configurations after a wakeup from LPMx.5 until all the registers are configured again.
LPM3.5 and LPM4.5 can be configured with active SVS (SVSHE = 1) or with SVS disabled (SVSHE = 0).
Disabling the SVS results in lower power consumption, whereas enabling it provides the ability to detect
supply drops and getting a "wake-up" due to the supply drop below the SVS threshold. Note, the "wakeup" due to a supply failure would not be flagged as a LPMx.5 wake-up but as a SVS reset event. In
LPM4.5 enabling the SVS results additionally in an about 4 times faster start-up time than with disabled
SVS.
Refer to Section 1.4.3 for complete descriptions and uses of LPMx.5.
NOTE: In watchdog mode, the WDT_A prevents LPMx.5. Refer to Section 24.2.5.

2.2.5 Brownout Reset (BOR)
The primary function of the brownout reset (BOR) circuit occurs when the device is powering up. It is
functional very early in the power-up ramp, generating a BOR that initializes the system. It also functions
when no SVS is enabled and a brownout condition occurs. It sustains this reset until the input power is
sufficient for the logic, for proper reset of the system.

86

Power Management Module (PMM) and Supply Voltage Supervisor (SVS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

PMM Operation

www.ti.com

In an application, it may be desired to cause a BOR through software. Setting PMMSWBOR causes a
software-driven BOR. PMMBORIFG is set accordingly. Note that a BOR also initiates a POR and PUC.
PMMBORIFG can be cleared by software or by reading SYSRSTIV. Similarly, it is possible to cause a
POR through software by setting PMMSWPOR. PMMPORIFG is set accordingly. A POR also initiates a
PUC. PMMPORIFG can be cleared by software or by reading SYSRSTIV. Both PMMSWBOR and
PMMSWPOR are self clearing. See the SYS module for complete descriptions of BOR, POR, and PUC
resets.

2.2.6 RST/NMI
The external RST/NMI terminal is pulled low on a BOR reset condition. The RST/NMI can be used as
reset source for the rest of the application.

2.2.7 PMM Interrupts
Interrupt flags generated by the PMM are routed to the system NMI interrupt vector generator register,
SYSSNIV. When the PMM causes a reset, a value is generated in the system reset interrupt vector
generator register, SYSRSTIV, corresponding to the source of the reset. These registers are defined
within the SYS module. More information on the relationship between the PMM and SYS modules is
available in the SYS chapter.

2.2.8 Port I/O Control
The PMM provides a means of ensuring that I/O pins cannot behave in uncontrolled fashion during an
undervoltage event. During these times, outputs are disabled, both normal drive and the weak pullup or
pulldown function. If the CPU is functioning normally, and then an undervoltage event occurs, any pin
configured as an input has its PxIN register value locked in at the point the event occurs, until voltage is
restored. During the undervoltage event, external voltage changes on the pin are not registered internally.
This helps prevent erratic behavior from occurring.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Power Management Module (PMM) and Supply Voltage Supervisor (SVS)

Copyright © 2012–2017, Texas Instruments Incorporated

87

PMM Registers

2.3

www.ti.com

PMM Registers
The PMM registers are listed in Table 2-1. The base address of the PMM module can be found in the
device-specific data sheet. The address offset of each PMM register is given in Table 2-1.
The password defined in the PMMCTL0 register controls access to all PMM registers except PM5CTL0.
PM5CTL0 can be accessed without a password. After the correct password is written, the write access is
enabled (this includes byte access to the PMMCTL0 lower byte). The write access is disabled by writing a
wrong password in byte mode to the PMMCTL0 upper byte. Word accesses to PMMCTL0 with a wrong
password triggers a PUC. A write access to a register other than PMMCTL0 while write access is not
enabled causes a PUC.
NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 2-1. PMM Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

PMMCTL0

PMM control register 0

Read/write

Word

9640h

Section 2.3.1

00h

PMMCTL0_L

Read/write

Byte

40h

01h

PMMCTL0_H

Read/write

Byte

96h

02h

Read/write (1) Word
(1)

9600h

PMMCTL1_L

Read

Byte

00h

03h

PMMCTL1_H

Read (1)

Byte

96h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0001h

0Ah
0Bh
10h

88

PMM control register 1

02h
0Ah

(1)

PMMCTL1

PMMIFG

PMM interrupt flag register

PMMIFG_L
PMMIFG_H
PM5CTL0

Power mode 5 control register 0

10h

PM5CTL0_L

Read/write

Byte

01h

11h

PM5CTL0_H

Read/write

Byte

00h

Section 2.3.2

Section 2.3.3

Section 2.3.4

PMMCTL1 can be written as word only.

Power Management Module (PMM) and Supply Voltage Supervisor (SVS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

PMM Registers

www.ti.com

2.3.1 PMMCTL0 Register (offset = 00h) [reset = 9640h]
Power Management Module Control Register 0
Figure 2-4. PMMCTL0 Register
15

14

13

12

11

10

9

8
rw-0

PMMPW
rw-1

rw-0

rw-0

rw-1

rw-0

rw-1

rw-1

7
Reserved
rw-[0]

6
SVSHE
rw-[1]

5
Reserved
r0

4
PMMREGOFF
rw-[0]

3
PMMSWPOR
rw-(0)

2
PMMSWBOR
rw-[0]

1

0
Reserved

r0

r0

Table 2-2. PMMCTL0 Register Description
Bit

Field

Type

Reset

Description

15-8

PMMPW

RW

96h

PMM password. Always reads as 096h. Must be written with 0A5h to unlock the
PMM registers.

7

Reserved

RW

0h

Reserved. Must be written with 0.

6

SVSHE

RW

1h

High-side SVS enable.
0b = High-side SVS (SVSH) is disabled in LPM2, LPM3, LPM4, LPM3.5, and
LPM4.5. SVSH is always enabled in active mode, LPM0, and LPM1.
1b = SVSH is always enabled.

5

Reserved

R

0h

Reserved. Always reads as 0.

4

PMMREGOFF

RW

0h

Regulator off
0b = Regulator remains on when going into LPM3 or LPM4
1b = Regulator is turned off when going to LPM3 or LPM4. System enters
LPM3.5 or LPM4.5, respectively.

3

PMMSWPOR

RW

0h

Software POR. Setting this bit to 1 triggers a POR. This bit is self clearing.
0b = Normal operation
1b = Set to 1 to trigger a POR

2

PMMSWBOR

RW

0h

Software brownout reset. Setting this bit to 1 triggers a BOR. This bit is self
clearing.
0b = Normal operation
1b = Set to 1 to trigger a BOR

1-0

Reserved

R

0h

Reserved. Always reads as 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Power Management Module (PMM) and Supply Voltage Supervisor (SVS)

Copyright © 2012–2017, Texas Instruments Incorporated

89

PMM Registers

www.ti.com

2.3.2 PMMCTL1 Register (offset = 02h) [reset = 9600h]
Power Management Module Control Register 1
Figure 2-5. PMMCTL1 Register
15

14

13

12

11

10

9

8

rw-0

rw-1

rw-1

rw-0

3

2

1

0

rw-[0]

rw-[0]

rw-[0]

r0

Reserved
rw-1

rw-0

rw-0

rw-1

7

6

5

4
Reserved

rw-[0]

rw-[0]

rw-[0]

rw-[0]

Table 2-3. PMMCTL1 Register Description
Bit

Field

Type

Reset

Description

15-0

Reserved

R

9600h

Reserved. Always reads as 9600h.

90

Power Management Module (PMM) and Supply Voltage Supervisor (SVS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

PMM Registers

www.ti.com

2.3.3 PMMIFG Register (offset = 0Ah) [reset = 0000h]
Power Management Module Interrupt Flag Register
Figure 2-6. PMMIFG Register
15
PMMLPM5IFG
rw-{0}

14
Reserved
r0

13
SVSHIFG
rw-{0}

12

7

6

5

4

11
r0

10
PMMPORIFG
rw-[0]

9
PMMRSTIFG
rw-{0}

8
PMMBORIFG
rw-{0}

3

2

1

0

r0

r0

r0

r0

Reserved
r0
Reserved

r0

r0

r0

r0

Table 2-4. PMMIFG Register Description
Bit

Field

Type

Reset

Description

15

PMMLPM5IFG

RW

0h

LPMx.5 flag.
This bit has a specific reset conditions. This bit is only set if the system was in
LPMx.5 before.
The bit is cleared by software or by reading the reset vector word. A power
failure on the DVCC domain triggered by the high-side SVS (if enabled) or the
brownout clears the bit.
0b = Reset not due to wake-up from LPMx.5
1b = Reset due to wake-up from LPMx.5

14

Reserved

R

0h

Reserved. Always reads as 0.

13

SVSHIFG

RW

0h

High-side SVS interrupt flag.
This bit has a specific reset conditions.
The SVSHIFG interrupt flag is only set if the SVSH is the reset source; that is, if
DVCC dropped below the high-side SVS levels but remained above the
brownout levels. The bit is cleared by software or by reading the reset vector
word SYSRSTIV.
0b = Reset not due to SVSH
1b = Reset due to SVSH

12-11

Reserved

R

0h

Reserved. Always reads as 0.

10

PMMPORIFG

RW

0h

PMM software POR interrupt flag.
This bit has a specific reset conditions. This interrupt flag is only set if a software
POR (PMMSWPOR) is triggered.
The bit is cleared by software or by reading the reset vector word.
0b = Reset not due to PMMSWPOR
1b = Reset due to PMMSWPOR

9

PMMRSTIFG

RW

0h

PMM reset pin interrupt flag.
This bit has a specific reset conditions. This interrupt flag is only set if the
RST/NMI pin is the reset source.
The bit is cleared by software or by reading the reset vector word.
0b = Reset not due to reset pin
1b = Reset due to reset pin

8

PMMBORIFG

RW

0h

PMM software brownout reset interrupt flag.
This bit has a specific reset conditions. This interrupt flag is only set if a software
BOR (PMMSWBOR) is triggered.
The bit is cleared by software or by reading the reset vector word.
0b = Reset not due to PMMSWBOR
1b = Reset due to PMMSWBOR

7-0

Reserved

R

0h

Reserved. Always reads as 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Power Management Module (PMM) and Supply Voltage Supervisor (SVS)

Copyright © 2012–2017, Texas Instruments Incorporated

91

PMM Registers

www.ti.com

2.3.4 PM5CTL0 Register (offset = 10h) [reset = 0001h]
Power Mode 5 Control Register 0
Figure 2-7. PM5CTL0 Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7

6

5

3

2

1

r0

r0

r0

4
Reserved
r0

r0

r0

r0

0
LOCKLPM5
rw-{1}

Table 2-5. PM5CTL0 Register Description
Bit

Field

Type

Reset

Description

15-1

Reserved

R

0h

Reserved. Always reads as 0.

0

LOCKLPM5

RW

1h

Locks I/O pin and other LPMx.5 relevant (for example, RTC) configurations upon
exit from LPMx.5.
This bit is set by hardware and must be cleared by software. It cannot be set by
software.
After a power cycle I/O pins are locked in high-impedance state with input
Schmitt triggers disabled until LOCKLPM5 is cleared by the user software.
After a wake-up from LPMx.5 I/O pins and other LPMx.5 relevant (for example,
RTC) configurations are locked in their states configured before LPMx.5 entry
until LOCKLPM5 is cleared by the user software.
0b = I/O pin and LPMx.5 configurations unlocked.
1b = I/O pin and LPMx.5 configuration remains locked.

92

Power Management Module (PMM) and Supply Voltage Supervisor (SVS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 3
SLAU367O – October 2012 – Revised December 2017

Clock System (CS) Module
This chapter describes the operation of the clock system, which is implemented in all devices.
Topic

3.1
3.2
3.3

...........................................................................................................................

Page

Clock System Introduction .................................................................................. 94
Clock System Operation ..................................................................................... 96
CS Registers .................................................................................................... 103

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System (CS) Module

93

Clock System Introduction

3.1

www.ti.com

Clock System Introduction
The clock system module supports low system cost and low power consumption. Using three system
clock signals, the user can select the best balance of performance and power consumption. The clock
module can be configured to operate without any external components, with one or two external crystals,
or with resonators, under full software control.
The clock system module includes the following clock sources:
• LFXTCLK: Low-frequency oscillator that can be used either with low-frequency 32768-Hz watch
crystals, standard crystals, resonators, or external clock sources in the 50 kHz or below range. When
in bypass mode, LFXTCLK can be driven with an external square wave signal.
• VLOCLK: Internal very-low-power low-frequency oscillator with 10-kHz typical frequency
• DCOCLK: Internal digitally controlled oscillator (DCO) with selectable frequencies
• MODCLK: Internal low-power oscillator with 5-MHz typical frequency. LFMODCLK is MODCLK divided
by 128.
• HFXTCLK: High-frequency oscillator that can be used with standard crystals or resonators in the
4‑MHz to 24-MHz range. When in bypass mode, HFXTCLK can be driven with an external square
wave signal.
Four system clock signals are available from the clock module:
• ACLK: Auxiliary clock. The ACLK is software selectable as LFXTCLK, VLOCLK, or LFMODCLK. ACLK
can be divided by 1, 2, 4, 8, 16, or 32. ACLK is software selectable by individual peripheral modules.
• MCLK: Master clock. MCLK is software selectable as LFXTCLK, VLOCLK, LFMODCLK, DCOCLK,
MODCLK, or HFXTCLK. MCLK can be divided by 1, 2, 4, 8, 16, or 32. MCLK is used by the CPU and
system.
• SMCLK: Subsystem master clock. SMCLK is software selectable as LFXTCLK, VLOCLK, LFMODCLK,
DCOCLK, MODCLK, or HFXTCLK. SMCLK is software selectable by individual peripheral modules.
• MODCLK: Module clock. MODCLK may also be used by various peripheral modules and is sourced by
MODOSC.
• VLOCLK: VLO clock. VLOCLK may also be used directly by various peripheral modules and is sourced
by VLO.
NOTE: Not all devices contain both LFXT and HFXT clock sources. See the device-specific data
sheet for availability.

Figure 3-1 shows the block diagram of the clock system module.

94

Clock System (CS) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System Introduction

www.ti.com
ACLK_REQEN

ACLK_REQ
SELA

OSCOFF

3
Fault
Detection

LFXTBYPASS

ACLK Enable Logic
EN
3

11

LFXIN

LFXTCLK

000

0

010

rsvd
rsvd
rsvd
rsvd
rsvd

2

LFXOUT

DIVA
3

001

LFXT

LFXTDRIVE

011

Divider
/1/2/4/8/16/32

0

ACLK

100
1

101
110
111

MCLK_REQEN
MCLK_REQ
SELM

CPUOFF

3

MCLK Enable Logic
EN
Fault
Detection

HFXTBYPASS

3
000
001

11

HFXIN

HFXTCLK

0

011
100

Divider
/1/2/4/8/16/32

0

rsvd
rsvd

HFXT

HFXTDRIVE

MCLK

1

101

2

HFXOUT

DIVM
3

010

110
111

SMCLK_REQEN
SMCLK_REQ
VLOCLK

VLO

SELS

SMCLKOFF

3
DCOFSEL

DCORSEL

SMCLK Enable Logic

3

EN EN
3
000
DIVS
3

001
2.7/3.3/4/5.3/6.7/8 MHz

0

†

1

16/20/24 MHz

010

DCOCLK

011
100

Divider
/1/2/4/8/16/32

101

DCO

rsvd
rsvd

0

SMCLK

1

110
111
VLOCLK

MODOSC_REQEN

MODOSC_REQ
SELA OSCOFF

LFXTCLK

Unconditonal MODOSC
requests

3
MODOSC Enable
Logic
EN

MODOSC

LFMODCLK

/128

MODCLK

/1

† Not available on all devices

Figure 3-1. Clock System Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System (CS) Module

95

Clock System Operation

3.2

www.ti.com

Clock System Operation
After PUC, the CS module default configuration is:
• LFXT is selected as the oscillator source for LFXTCLK. LFXTCLK is selected for ACLK (SELAx = 0)
and ACLK is undivided (DIVAx = 0).
• DCOCLK is selected for MCLK and SMCLK (SELMx = SELSx = 3) and each are divided by 8
(DIVMx = DIVSx = 3).
• LFXIN and LFXOUT pins are set to general-purpose I/Os and LFXT remains disabled until the I/O
ports are configured for LFXT operation.
• HFXIN and HFXOUT pins are set to general-purpose I/Os and HFXT is disabled.
As previously stated, LFXT is selected by default, but LFXT is disabled. The crystal pins (LFXIN,
LFXOUT) are shared with general-purpose I/Os. To enable LFXT, the PSEL bits associated with the
crystal pins must be set. When a 32768-Hz crystal is used for LFXTCLK, the fault control logic
immediately causes ACLK to be sourced by LFMODCLK, and MCLK and SMCLK to be sourced by
MODCLK, because LFXT is not stable immediately (see Section 3.2.8).
Status register control bits (SCG0, SCG1, OSCOFF, and CPUOFF) configure the MCU operating modes
and enable or disable portions of the clock system module (see the System Resets, Interrupts, and
Operating Modes chapter). Registers CSCTL0 to CSCTL6 configure the CS module.
The CS module can be configured or reconfigured by software at any time during program execution. The
CS control registers are password protected to prevent inadvertent access.

3.2.1 CS Module Features for Low-Power Applications
Conflicting requirements typically exist in battery-powered applications:
• Low clock frequency for energy conservation and time keeping
• High clock frequency for fast response times and fast burst processing capabilities
• Clock stability over operating temperature and supply voltage
• Low-cost applications with less-constrained clock accuracy requirements
The CS module addresses these conflicting requirements by allowing the user to select from the three
available clock signals: ACLK, MCLK, and SMCLK. A flexible clock distribution and divider system is
provided to fine tune the individual clock requirements.

3.2.2 LFXT Oscillator
The LFXT oscillator supports ultra-low-current consumption using a 32768-Hz watch crystal. A watch
crystal connects to LFXIN and LFXOUT and requires external capacitors on both terminals. These
capacitors should be sized according to the crystal or resonator specifications. Different crystal or
resonator ranges are supported by LFXT by choosing the proper LFXTDRIVE settings.
The LFXT pins are shared with general-purpose I/O ports. At power up, the LFXT clock defaults to "on"
and is the source for ACLK. However, at power-up the LFXT pins default to general-purpose I/O mode,
therefore, the LFXT clock remains disabled until the pins associated with LFXT are configured for LFXT
operation. The configuration of the shared I/O is determined by the PSEL bit associated with LFXIN and
the LFXTBYPASS bit. Setting the PSEL bit causes the LFXIN and LFXOUT ports to be configured for
LFXT operation. If LFXTBYPASS is also set, LFXT is configured for bypass mode of operation, and the
oscillator that is associated with LFXT is powered down. In bypass mode of operation, LFXIN can accept
an external square-wave clock input signal, and LFXOUT is configured as a general-purpose I/O. The
PSEL bit associated with LFXOUT is a don't care.
If the PSEL bit associated with LFXIN is cleared, both LFXIN and LFXOUT ports are configured as
general-purpose I/Os, and LFXT is disabled.
LFXT is enabled under any of the following conditions:
• LFXT is a source for ACLK (SELAx = 0) and in active mode (AM) through LPM3 (OSCOFF = 0)
• LFXT is a source for MCLK (SELMx = 0) and in active mode (AM) (CPUOFF = 0)
• LFXT is a source for SMCLK (SELSx = 0) and in active mode (AM) through LPM1 (SMCLKOFF = 0)
96

Clock System (CS) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System Operation

www.ti.com

•
•

LFXTOFF = 0. LFXT enabled in active mode (AM) through LPM4.
LFXT is selected as the source for RTC, RTC is enabled (RTCHOLD = 0), and LPMx.5 is entered.
NOTE: If LFXT is disabled when entering into a low-power mode, it is not fully enabled and stable
upon exit from the low-power mode, because its enable time is much longer than the wakeup time. If the application requires or desires to keep LFXT enabled during a low-power
mode, the LFXTOFF bit can be cleared before entering the low-power mode. This causes
LFXT to remain enabled.

3.2.3 HFXT Oscillator
The HFXT high-frequency oscillator can be used with standard crystals or resonators in the 4 MHz to
24 MHz range. The HFXTDRIVE bits select the drive capability of HFXT. HFXTDRIVE bits can be used to
provide optimal settings for a given crystal characteristic. HFXT sources HFXTCLK. The HFFREQ bits
must be set for the appropriate frequency range of operation as show in Table 3-1 in crystal or bypass
modes of operation.
Table 3-1. HFFREQ Settings
HFXT Frequency Range

HFFREQ[1:0]

0 to 4 MHz

00

> 4 MHz to 8 MHz

01

> 8 MHz to 16 MHz

10

> 16 MHz to 24 MHz

11

NOTE: The HFXT HFFREQ bit settings are also used to control the Power Management Module
and must match the intended frequency of operation for proper functioning of the device as
listed in Table 3-1. In addition, these bits should be configured properly before use of HFXT
in either crystal or bypass modes of operation.

The HFXT pins are shared with general-purpose I/O ports. At power up, the default operation is HFXT
crystal operation. However, HFXT remains disabled until the ports shared with HFXT are configured for
HFXT operation. The configuration of the shared I/O is determined by the PSEL bit associated with HFXIN
and the HFXTBYPASS bit. Setting the PSEL bit causes the HFXIN and HFXOUT ports to be configured
for HFXT operation. If HFXTBYPASS is also set, HFXT is configured for bypass mode of operation, and
the oscillator associated with HFXT is powered down. In bypass mode of operation, HFXIN can accept an
external square-wave clock input signal, and HFXOUT is configured as a general-purpose I/O. The PSEL
bit that is associated with HFXOUT is a don't care.
If the PSEL bit associated with HFXIN is cleared, both HFXIN and HFXOUT ports are configured as
general-purpose I/Os, and HFXT is disabled.
HFXT is enabled under any of the following conditions:
• HFXT is a source for MCLK (SELMx = 5) and in active mode (AM) (CPUOFF = 0)
• HFXT is a source for SMCLK (SELSx = 5) and in active mode (AM) through LPM1 (SMCLKOFF = 0)
• HFXTOFF = 0. HFXT enabled in active mode (AM) through LPM4.
NOTE: If HFXT is disabled when entering into a low-power mode, it is not fully enabled and stable
upon exit from the low-power mode, because its enable time is much longer than the wakeup time. If the application requires or desires to keep HFXT enabled during a low-power
mode, the HFXTOFF bit can be cleared before entering the low-power mode. This causes
HFXT to remain enabled.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System (CS) Module

97

Clock System Operation

www.ti.com

3.2.4 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
The internal VLO provides a typical frequency of 10 kHz (see the device-specific data sheet for
parameters) without requiring a crystal. The VLO provides for a low-cost ultra-low-power clock source for
applications that do not require an accurate time base. To conserve power, VLO is powered down when
not needed and enabled only when required.
VLO is enabled under any of the following conditions:
• VLO is a source for ACLK (SELAx = 1) and in active mode (AM) through LPM3 (OSCOFF = 0)
• VLO is a source for MCLK (SELMx = 1) and in active mode (AM) (CPUOFF = 0)
• VLO is a source for SMCLK (SELSx = 1) and in active mode (AM) through LPM1 (SMCLKOFF = 0)
• VLOOFF = 0. VLO enabled in active mode (AM) through LPM4.
• VLO is selected as the source for RTC, RTC is enabled (RTCHOLD = 0), and LPMx.5 is entered.

3.2.5 Module Oscillator (MODOSC)
The CS module also supports an internal oscillator, MODOSC, that can be used by ACLK, MCLK, or
SMCLK, as well as by other modules in the system. It is also used as a fail-safe clock source as described
in Section 3.2.8. The MODOSC sources MODCLK and LFMODCLK.
To conserve power, MODOSC is powered down when not needed and is enabled only when required.
When the MODOSC source is required, the respective module requests it. MODOSC is enabled based on
unconditional and conditional requests. Setting MODOSCREQEN enables conditional requests.
Unconditional requests are always enabled. It is not necessary to set MODOSCREQEN for modules that
utilize unconditional requests; for example, ADC or fail-safe.
MODOSC is enabled under any of the following conditions:
• LFMODCLK is a source for ACLK (SELAx = 2) and in active mode (AM) through LPM3 (OSCOFF = 0)
• LFMODCLK or MODCLK is a source for MCLK (SELMx = 2, 4) and in active mode (AM)
(CPUOFF = 0)
• LFMODCLK or MODCLK is a source for SMCLK (SELSx = 2, 4) and in active mode (AM) through
LPM1 (SMCLKOFF = 0)
• During a fault detection (when fault detection enabled) and LFXT or HFXT is active.
• Unconditional requests from modules that require MODCLK; for example, ADC conversion clock when
selected as the source.
• LFMODCLK is used as the fail-safe source for the WDT in watchdog mode. Should the selected
source for ACLK or SMCLK not be available, the WDT automatically switches to LFMODCLK as its
clock source.
The ADC12 may optionally use MODOSC as a clock source for its conversion clock. The user chooses
the ADC12OSC as the conversion clock source. During a conversion, the ADC12 module issues an
unconditional request for the ADC12OSC clock source. Upon doing so, the MODOSC source is enabled, if
not already enabled from other modules' previous requests.

3.2.6 Digitally Controlled Oscillator (DCO)
The DCO is an integrated digitally controlled oscillator. The DCO has three frequency settings determined
by the DCOFSEL bits. Each frequency is trimmed at the factory. The DCO can be used as a source for
MCLK or SMCLK. See the device-specific data sheet for DCO characteristics.
The DCO frequency can be changed at any time, but care should be taken to ensure no other system
clock frequency constraints are exceeded with the new frequency selection. Any change in the DCOFSEL
or DCORSEL bits causes the DCOCLK to be held for four clock cycles before releasing the new value into
the system. This allows for the DCO to settle properly.

98

Clock System (CS) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System Operation

www.ti.com

3.2.7 Operation From Low-Power Modes, Requested by Peripheral Modules
A peripheral module requests its clock sources automatically from the CS module if required for its proper
operation, regardless of the current power mode of operation, as shown in Figure 3-2.
0

SMCLK_REQ

0

MCLK_REQ
0

0

ACLK_REQ

ACLK_REQ
MCLK_REQ
SMCLK_REQ

ACLK_REQ
MCLK_REQ
SMCLK_REQ

ACLK_REQ
MCLK_REQ
SMCLK_REQ

CS
Module n−2

Module n−1

Module n

SMCLK
MCLK
ACLK

Direct clock request
in Watchdog mode

WDTACLKON

WDTSMCLKON

Watch Dog Timer Module

Figure 3-2. Module Request Clock System
A peripheral module asserts one of three possible clock request signals based on its control bits:
ACLK_REQ, MCLK_REQ, or SMCLK_REQ. These request signals are based on the configuration and
clock selection of the respective module. For example, if a timer selects ACLK as its clock source and the
timer is enabled, the timer generates an ACLK_REQ signal to the CS system. The CS, in turn, enables
ACLK regardless of the power mode settings.
Any clock request from a peripheral module causes its respective clock off signal to be overridden, but
does not change the setting of the clock off control bit. For example, a peripheral module may require
ACLK that is currently disabled by the OSCOFF bit (OSCOFF = 1). The module can request ACLK by
generating an ACLK_REQ. This causes the OSCOFF bit to have no effect, thereby allowing ACLK to be
available to the requesting peripheral module. The OSCOFF bit remains at its current setting (OSCOFF =
1).
If the requested source is not active, the software NMI handler must take care of the required actions. For
the previous example, if ACLK was sourced by LFXT and LFXT was not enabled, an oscillator fault
condition occurs, and the software must handle the event. The watchdog, due to its security requirement,
actively selects the LFMODCLK source if the originally selected clock source is not available.
Due to the clock request feature, care must be taken in the application when entering low-power modes to
save power. Although the device enters the selected low-power mode, a clock request causes more
current consumption than the specified values in the data sheet. By default, the clock request feature is
enabled. The feature can be disabled for each system clock by clearing ACLKREQEN, MCLKREQEN, or
SMCLKREQEN for the respective clocks. This does not disable fail-safe clock requests; for example,
those of the watchdog timer or the clock system itself.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System (CS) Module

99

Clock System Operation

www.ti.com

The function of the ACLKREQEN, MCLKREQEN, and SMCLKREQEN bits are dependent upon which
power mode is selected; that is, they do not have an effect across all power modes. For example,
ACLKREQEN is used to enable or disable ACLK requests. It is effective only in LPM4, because ACLK is
always active in all other modes (AM, LPM0, LPM1, LPM2, LPM3). SMCLKREQEN is used to enable or
disable SMCLK requests. When SMCLKOFF = 0 and in AM, LPM0, or LPM1, it is a don't care, because
SMCLK is always on in these cases. For SMCLKOFF = 0 and in LPM2, LPM3, and LPM4,
SMCLKREQEN can be used to enable or disable SMCLK requests, because SMCLK is normally off in
these modes. When SMCLKOFF = 1, SMCLKREQEN can be used to enable or disable SMCLK requests,
because SMCLK is normally off in all power modes under this condition. This is summarized in Table 3-2.
Table 3-2. System Clocks, Power Modes, and Clock Requests
System Clocks
MCLK

SMCLK

ACLK

SMCLKOFF = 0

Mode
MCLKREQEN MCLKREQEN ACLKREQEN ACLKREQEN
= 0 and Clock = 1 and Clock = 0 and Clock = 1 and Clock
Requested
Requested
Requested
Requested

SMCLKOFF = 1

SMCLKREQEN
= 0 and Clock
Requested

SMCLKREQEN
= 1 and Clock
Requested

SMCLKREQEN
= 0 and Clock
Requested

SMCLKREQEN
= 1 and Clock
Requested

AM

Active

Active

Active

Active

Active

Active

Disabled

Active

LPM0

Disabled

Active

Active

Active

Active

Active

Disabled

Active

LPM1

Disabled

Active

Active

Active

Active

Active

Disabled

Active

LPM2

Disabled

Active

Active

Active

Disabled

Active

Disabled

Active

LPM3

Disabled

Active

Active

Active

Disabled

Active

Disabled

Active

LPM4

Disabled

Active

Disabled

Active

Disabled

Active

Disabled

Active

LPM3.5

Disabled

Disabled

Disabled (1)

Disabled

Disabled

Disabled

Disabled

Disabled

LPM4.5

Disabled

Disabled

Disabled

Disabled

Disabled

Disabled

Disabled

Disabled

(1)

LFXTCLK is available directly as the clock source to the RTC module.

3.2.8 CS Module Fail-Safe Operation
The CS module incorporates an oscillator-fault fail-safe feature. This feature detects an oscillator fault for
LFXT and HFXT as shown in Figure 3-3. The available fault conditions are:
• Low-frequency oscillator fault (LFXTOFFG) for LFXT
• High-frequency oscillator fault (HFXTOFFG) for HFXT
• External clock signal faults for all bypass modes; that is, LFXTBYPASS = 1 or HFXTBYPASS = 1
The crystal oscillator fault bits LFXTOFFG and HFXTOFFG are set if the corresponding crystal oscillator is
turned on and not operating properly. Once set, the fault bits remain set until reset in software, even if the
fault condition no longer exists. If the user clears the fault bits and the fault condition still exists, the fault
bits are automatically set; otherwise, they remain cleared.
The OFIFG oscillator-fault interrupt flag is set and latched at POR or when any oscillator fault (LFXTOFFG
or HFXTOFFG) is detected. When OFIFG is set and OFIE is set, the OFIFG requests a user NMI. When
the interrupt is granted, the OFIE is not reset automatically as it is in previous MSP430 families. It is no
longer required to reset the OFIE. NMI entry and exit circuitry removes this requirement. The OFIFG flag
must be cleared by software. The source of the fault can be identified by checking the individual fault bits.
If LFXT is sourcing any system clock (ACLK, MCLK, or SMCLK) and a fault is detected, the system clock
is automatically switched to LFMODCLK for its clock source. The LFXT fault logic works in all power
modes, including LPM3.5. Similarly, if HFXT is sourcing MCLK or SMCLK, and a fault is detected, the
system clock is automatically switched to MODCLK for its clock source. By default, the HFXT fault logic
works in all power modes except LPM3.5 or LPM4.5, because high-frequency operation in these modes is
not supported. The fail-safe logic does not change the respective SELA, SELM, and SELS bit settings.
The fail-safe mechanism behaves the same in normal and bypass modes. Reconfigure the CS settings
and follow the instructions in Section 1.4.3 after wakeup from LPM3.5 or LPM4.5, because all CS registers
are reset to default values.

100

Clock System (CS) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System Operation

www.ti.com
LFXT_OscFault
Set

LFXT_OF
Set
Q

Q
LFXTOFFG

Reset

Reset

HFXT_OscFault
Set

HFXT_OF
Set
Q

Q
HFXTOFFG

OscFault_Set

Reset

Set

Reset

OFIFG
NMIRS

Q

POR
Q
OscFault_Clr
Set

PUC

OFIE
Q

Q
Reset

NMI _ IRQA

Figure 3-3. Oscillator Fault Logic

NOTE: Fault conditions
LFXT_OscFault: When the fault detection logic is enabled (ENLFXTD = 1), this signal is set
after the LFXT oscillator has stopped operation and is cleared after operation resumes. The
fault condition causes LFXTOFFG to be set and remain set. If the user clears LFXTOFFG
and the fault condition still exists, LFXTOFFG remains set.
HFXT_OscFault: When the fault detection logic is enabled (ENHFXTD = 1), this signal is set
after the HFXT oscillator has stopped operation and is cleared after operation resumes. The
fault condition causes HFXTOFFG to be set and remain set. If the user clears HFXTOFFG
and the fault condition still exists, HFXTOFFG remains set.

NOTE: Fault logic
As long as a fault condition still exists, the OFIFG remains set. The application must take
special care when clearing the OFIFG signal. If no fault condition remains when the OFIFG
signal is cleared, the clock logic switches back to the original user settings before the fault
condition.

NOTE: The LFXT startup includes a counter that ensures that 1024 valid clock cycles have passed
before LFXT_OscFault signal is cleared. A valid cycle is any cycle that meets the frequency
requirement (fFault,LF) as outlined in the device specific data sheet. Any crystal fault restarts the
counter. It is recommended that the counter always be enabled, however the counter can be
disabled by clearing ENSTFCNT1.
Similarly, HFXT startup also includes a counter that ensures that 1024 valid clock cycles
have passed before HFXT_OscFault signal is cleared. This counter can be disabled by
clearing ENSTFCNT2.
The disabling of the counters is valid for bypass and normal modes of operation.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System (CS) Module

101

Clock System Operation

www.ti.com

3.2.9 Synchronization of Clock Signals
When switching ACLK, MCLK, or SMCLK from one clock source to the another, the switch is
synchronized to avoid critical race conditions (see Figure 3-4):
• The current clock cycle continues until the next rising edge.
• The clock remains high until the next rising edge of the new clock.
• The new clock source is selected and continues with a full high period.
Select
ACLK

DCOCLK

ACLK
MCLK

DCOCLK

Wait for
ACLK

ACLK

Figure 3-4. Switch MCLK From DCOCLK to LFXTCLK

102

Clock System (CS) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CS Registers

www.ti.com

3.3

CS Registers
The CS module registers are listed in Table 3-3. The base address can be found in the device-specific
data sheet.
The password defined in CSCTL0 controls access to the CS registers. After the correct password is
written, the write access to the CS registers is enabled. Write access is disabled by writing an incorrect
password in byte mode to the CSCTL0 upper byte.
NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 3-3. CS Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

CSCTL0

Clock System Control 0

Read/write

Word

9600h

Section 3.3.1

Read/write

Byte

00h

Read/write

Byte

96h

Read/write

Word

000Ch

Read/write

Byte

0Ch

Read/write

Byte

00h

Read/write

Word

0033h

00h

CSCTL0_L

01h

CSCTL0_H

02h

CSCTL1

02h

CSCTL1_L

03h

CSCTL1_H

04h

CSCTL2

Clock System Control 1

Clock System Control 2

04h

CSCTL2_L

Read/write

Byte

33h

05h

CSCTL2_H

Read/write

Byte

00h

06h

Read/write

Word

0033h

06h

CSCTL3_L

Read/write

Byte

33h

07h

CSCTL3_H

Read/write

Byte

00h

08h

CSCTL3

Read/write

Word

CDC9h

08h

CSCTL4_L

Read/write

Byte

C9h

09h

CSCTL4_H

Read/write

Byte

CDh

Read/write

Word

00C0h

Read/write

Byte

C0h

Read/write

Byte

00h

Read/write

Word

0007h

0Ah

CSCTL4

Clock System Control 3

CSCTL5

0Ah

CSCTL5_L

0Bh

CSCTL5_H

0Ch

CSCTL6

Clock System Control 4

Clock System Control 5

Clock System Control 6

0Ch

CSCTL6_L

Read/write

Byte

07h

0Dh

CSCTL6_H

Read/write

Byte

00h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Section 3.3.2

Section 3.3.3

Section 3.3.4

Section 3.3.5

Section 3.3.6

Section 3.3.7

Clock System (CS) Module

103

CS Registers

www.ti.com

3.3.1 CSCTL0 Register
Clock System Control 0 Register
Figure 3-5. CSCTL0 Register
15

14

13

12

11

10

9

8

rw-0

rw-1

rw-1

rw-0

3

2

1

0

r0

r0

r0

r0

CSKEY
rw-1

rw-0

rw-0

rw-1

7

6

5

4
Reserved

r0

r0

r0

r0

Table 3-4. CSCTL0 Register Description
Bit

Field

Type

Reset

Description

15-8

CSKEY

RW

96h

CSKEY password. Must always be written with A5h; a PUC is generated if any
other value is written. Always reads as 96h. After the correct password is written,
all CS registers are available for writing.

7-0

Reserved

R

0h

Reserved. Always reads as 0.

3.3.2 CSCTL1 Register
Clock System Control 1 Register
Figure 3-6. CSCTL1 Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

r0

4

3

1

r0

rw-[1]

2
DCOFSEL
rw-[1]

0
Reserved
r0

Reserved
r0

r0

r0

7
Reserved
r0

6
DCORSEL
rw-[0]

5
Reserved
r0

rw-[0]

Table 3-5. CSCTL1 Register Description
Bit

Field

Type

Reset

Description

15-7

Reserved

R

0h

Reserved. Always reads as 0.

6

DCORSEL

RW

0h

DCO range select. For high-speed devices, this bit can be written by the user.
For low-speed devices, it is always 0. See description of DCOFSEL bit for
details.

5-4

Reserved

R

0h

Reserved. Always reads as 0.

3-1

DCOFSEL

RW

6h

DCO frequency select. Selects frequency settings for the DCO. Values shown
below are approximate. Refer to the device-specific data sheet.
000b = If DCORSEL = 0: 1 MHz; If DCORSEL = 1: 1 MHz
001b = If DCORSEL = 0: 2.67 MHz; If DCORSEL = 1: 5.33 MHz
010b = If DCORSEL = 0: 3.5 MHz; If DCORSEL = 1: 7 MHz
011b = If DCORSEL = 0: 4 MHz; If DCORSEL = 1: 8 MHz
100b = If DCORSEL = 0: 5.33 MHz; If DCORSEL = 1: 16 MHz
101b = If DCORSEL = 0: 7 MHz; If DCORSEL = 1: 21 MHz
110b = If DCORSEL = 0: 8 MHz; If DCORSEL = 1: 24 MHz
111b = If DCORSEL = 0: Reserved. Defaults to 8 MHz. It is not recommended to
use this setting; If DCORSEL = 1: Reserved. Defaults to 24 MHz. It is not
recommended to use this setting

0

Reserved

R

0h

Reserved. Always reads as 0.

104

Clock System (CS) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CS Registers

www.ti.com

3.3.3 CSCTL2 Register
Clock System Control 2 Register
Figure 3-7. CSCTL2 Register
15

14

r0

r0

7
Reserved
r0

6

13
Reserved
r0

12

11

10

r0

r0

rw-0

5
SELS
rw-1

4

3
Reserved
r0

2

rw-0

rw-1

rw-0

9
SELA
rw-0
1
SELM
rw-1

8
rw-0
0
rw-1

Table 3-6. CSCTL2 Register Description
Bit

Field

Type

Reset

Description

15-11

Reserved

R

0h

Reserved. Always reads as 0.

10-8

SELA

RW

0h

Selects the ACLK source
000b = LFXTCLK when LFXT available, otherwise VLOCLK.
001b = VLOCLK
010b = LFMODCLK
011b = Reserved. Defaults to LFMODCLK. Not recommended
future compatibility.
100b = Reserved. Defaults to LFMODCLK. Not recommended
future compatibility.
101b = Reserved. Defaults to LFMODCLK. Not recommended
future compatibility.
110b = Reserved. Defaults to LFMODCLK. Not recommended
future compatibility.
111b = Reserved. Defaults to LFMODCLK. Not recommended
future compatibility.

for use to ensure
for use to ensure
for use to ensure
for use to ensure
for use to ensure

7

Reserved

R

0h

Reserved. Always reads as 0.

6-4

SELS

RW

3h

Selects the SMCLK source
000b = LFXTCLK when LFXT available, otherwise VLOCLK.
001b = VLOCLK
010b = LFMODCLK
011b = DCOCLK
100b = MODCLK
101b = HFXTCLK when HFXT available, otherwise DCOCLK.
110b = Reserved. Defaults to HFXTCLK. Not recommended for use to ensure
future compatibility.
111b = Reserved. Defaults to HFXTCLK. Not recommended for use to ensure
future compatibility.

3

Reserved

R

0h

Reserved. Always reads as 0.

2-0

SELM

RW

3h

Selects the MCLK source
000b = LFXTCLK when LFXT available, otherwise VLOCLK
001b = VLOCLK
010b = LFMODCLK
011b = DCOCLK
100b = MODCLK
101b = HFXTCLK when HFXT available, otherwise DCOCLK
110b = Reserved. Defaults to HFXTCLK. Not recommended for use to ensure
future compatibility.
111b = Reserved. Defaults to HFXTCLK. Not recommended for use to ensure
future compatibility.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System (CS) Module

105

CS Registers

www.ti.com

3.3.4 CSCTL3 Register
Clock System Control 3 Register
Figure 3-8. CSCTL3 Register
15

14

r0

r0

7
Reserved
r0

6

13
Reserved
r0

12

11

10

r0

r0

rw-0

5
DIVS
rw-1

4

3
Reserved
r0

2

rw-0

rw-1

rw-0

9
DIVA
rw-0
1
DIVM
rw-1

8
rw-0
0
rw-1

Table 3-7. CSCTL3 Register Description
Bit

Field

Type

Reset

Description

15-11

Reserved

R

0h

Reserved. Always reads as 0.

10-8

DIVA

RW

0h

ACLK source divider. Divides the frequency of the ACLK clock source.
000b = /1
001b = /2
010b = /4
011b = /8
100b = /16
101b = /32
110b = Reserved. Defaults to /32. Not recommended for use to ensure future
compatibility.
111b = Reserved. Defaults to /32. Not recommended for use to ensure future
compatibility.

7

Reserved

R

0h

Reserved. Always reads as 0.

6-4

DIVS

RW

3h

SMCLK source divider. Divides the frequency of the SMCLK clock source.
000b = /1
001b = /2
010b = /4
011b = /8
100b = /16
101b = /32
110b = Reserved. Defaults to /32. Not recommended for use to ensure future
compatibility.
111b = Reserved. Defaults to /32. Not recommended for use to ensure future
compatibility.

3

Reserved

R

0h

Reserved. Always reads as 0.

2-0

DIVM

RW

3h

MCLK source divider. Divides the frequency of the MCLK clock source.
000b = /1
001b = /2
010b = /4
011b = /8
100b = /16
101b = /32
110b = Reserved. Defaults to /32. Not recommended for use to ensure future
compatibility.
111b = Reserved. Defaults to /32. Not recommended for use to ensure future
compatibility.

106

Clock System (CS) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CS Registers

www.ti.com

3.3.5 CSCTL4 Register
Clock System Control 4 Register
Figure 3-9. CSCTL4 Register
15

14
HFXTDRIVE

rw-1

rw-1

7

6
LFXTDRIVE

rw-1

rw-1

13
Reserved
r0

12
HFXTBYPASS
rw-0

11

10

rw-1

5
Reserved
rw-0

4
LFXTBYPASS
rw-0

3
VLOOFF
rw-1

rw-1

9
Reserved
r0

8
HFXTOFF
rw-1

2
Reserved
r0

1
SMCLKOFF
rw-0

0
LFXTOFF
rw-1

HFFREQ

Table 3-8. CSCTL4 Register Description
Bit

Field

Type

Reset

Description

15-14

HFXTDRIVE

RW

3h

The HFXT oscillator current can be adjusted to its drive needs. This in
combination with the HFFREQ bits can be used for optimizing crystal power
based on crystal characteristics.
00b = Lowest current consumption
01b = Increased drive strength HFXT oscillator
10b = Increased drive strength HFXT oscillator
11b = Maximum drive strength HFXT oscillator

13

Reserved

R

0h

Reserved. Always reads as 0.

12

HFXTBYPASS

RW

0h

HFXT bypass select
0b = HFXT sourced from external crystal
1b = HFXT sourced from external clock signal

11-10

HFFREQ

RW

3h

The HFXT frequency selection. These bits must be set to the appropriate
frequency for crystal or bypass modes of operation.
00b = 0 to 4 MHz
01b = Greater than 4 MHz to 8 MHz
10b = Greater than 8 MHz to 16 MHz
11b = Greater than 16 MHz to 24 MHz

9

Reserved

R

0h

Reserved. Always reads as 0.

8

HFXTOFF

RW

1h

Turns off the HFXT oscillator
0b = HFXT is on if HFXT is selected through the port selection and HFXT is not
in bypass mode of operation
1b = HFXT is off if it is not used as a source for ACLK, MCLK, or SMCLK

7-6

LFXTDRIVE

RW

3h

The LFXT oscillator current can be adjusted to its drive needs.
00b = Lowest drive strength and current consumption LFXT oscillator
01b = Increased drive strength LFXT oscillator
10b = Increased drive strength LFXT oscillator
11b = Maximum drive strength and maximum current consumption LFXT
oscillator

5

Reserved

RW

0h

Reserved. Must be written as zero.

4

LFXTBYPASS

RW

0h

LFXT bypass select
0b = LFXT sourced from external crystal
1b = LFXT sourced from external clock signal

3

VLOOFF

RW

1h

VLO off. This bit turns off the VLO.
0b = VLO is on
1b = VLO is off if it is not used as a source for ACLK, MCLK, or SMCLK or if not
used as a source for the RTC in LPM3.5

2

Reserved

R

0h

Reserved. Always reads as 0.

1

SMCLKOFF

RW

0h

SMCLK off. This bit turns off the SMCLK.
0b = SMCLK on
1b = SMCLK off

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System (CS) Module

107

CS Registers

www.ti.com

Table 3-8. CSCTL4 Register Description (continued)
Bit

Field

Type

Reset

Description

0

LFXTOFF

RW

1h

LFXT off. This bit turns off the LFXT.
0b = LFXT is on if LFXT is selected through the port selection and LFXT is not in
bypass mode of operation
1b = LFXT is off if it is not used as a source for ACLK, MCLK, or SMCLK

108

Clock System (CS) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CS Registers

www.ti.com

3.3.6 CSCTL5 Register
Clock System Control 5 Register
Figure 3-10. CSCTL5 Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

r0

r0

1
HFXTOFFG
rw-(0)

0
LFXTOFFG
rw-(1)

Reserved
r0

r0

0

r0

7
ENSTFCNT2
rw-(1)

6
ENSTFCNT1
rw-(1)

5

4
Reserved

r0

r0

Table 3-9. CSCTL5 Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved. Always reads as 0.

7

ENSTFCNT2

RW

1h

Enable start counter for HFXT when available.
0b = Startup fault counter disabled. Counter is cleared.
1b = Startup fault counter enabled

6

ENSTFCNT1

RW

1h

Enable start counter for LFXT.
0b = Startup fault counter disabled. Counter is cleared.
1b = Startup fault counter enabled

5-2

Reserved

R

0h

Reserved. Always reads as 0.

1

HFXTOFFG

RW

0h

HFXT oscillator fault flag. If this bit is set, the OFIFG flag is also set. HFXTOFFG
is set if a HFXT fault condition exists. HFXTOFFG can be cleared through
software. If the HFXT fault condition still remains, HFXTOFFG is set.
0b = No fault condition occurred after the last reset
1b = HFXT fault; an HFXT fault occurred after the last reset

0

LFXTOFFG

RW

1h

LFXT oscillator fault flag. If this bit is set, the OFIFG flag is also set. LFXTOFFG
is set if a LFXT fault condition exists. LFXTOFFG can be cleared through
software. If the LFXT fault condition still remains, LFXTOFFG is set.
0b = No fault condition occurred after the last reset
1b = LFXT fault; an LFXT fault occurred after the last reset

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Clock System (CS) Module

109

CS Registers

www.ti.com

3.3.7 CSCTL6 Register
Clock System Control 6 Register
Figure 3-11. CSCTL6 Register
15

14

13

12

11

10

9

8
r0

Reserved
r0

r0

r0

r0

r0

r0

r0

7

6

5

4

3

2

1

0

MODCLKREQEN

SMCLKREQEN

MCLKREQEN

ACLKREQEN

rw-(0)

rw-(1)

rw-(1)

rw-(1)

Reserved
r0

r0

r0

r0

Table 3-10. CSCTL6 Register Description
Bit

Field

Type

Reset

Description

15-4

Reserved

R

0h

Reserved. Always reads as 0.

3

MODCLKREQEN

RW

0h

MODCLK clock request enable. Setting this enables conditional module requests
for MODCLK.
0b = MODCLK conditional requests are disabled
1b = MODCLK conditional requests are enabled

2

SMCLKREQEN

RW

1h

SMCLK clock request enable. Setting this enables conditional module requests
for SMCLK.
0b = SMCLK conditional requests are disabled
1b = SMCLK conditional requests are enabled

1

MCLKREQEN

RW

1h

MCLK clock request enable. Setting this enables conditional module requests for
MCLK.
0b = MCLK conditional requests are disabled
1b = MCLK conditional requests are enabled

0

ACLKREQEN

RW

1h

ACLK clock request enable. Setting this enables conditional module requests for
ACLK.
0b = ACLK conditional requests are disabled
1b = ACLK conditional requests are enabled

110

Clock System (CS) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 4
SLAU367O – October 2012 – Revised December 2017

CPUX
This chapter describes the extended MSP430X 16-bit RISC CPU (CPUX) with 1MB memory access, its
addressing modes, and instruction set.
NOTE: The MSP430X CPUX implemented on this device family, formally called CPUXV2, has in
some cases, slightly different cycle counts from the MSP430X CPUX implemented on the
2xx and 4xx families.

Topic

...........................................................................................................................

4.1
4.2
4.3
4.4
4.5
4.6

MSP430X CPU (CPUX) Introduction ....................................................................
Interrupts.........................................................................................................
CPU Registers ..................................................................................................
Addressing Modes ............................................................................................
MSP430 and MSP430X Instructions ....................................................................
Instruction Set Description ................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

Page

112
114
115
121
138
154

111

MSP430X CPU (CPUX) Introduction

4.1

www.ti.com

MSP430X CPU (CPUX) Introduction
The MSP430X CPU incorporates features specifically designed for modern programming techniques, such
as calculated branching, table processing, and the use of high-level languages such as C. The MSP430X
CPU can address a 1MB address range without paging. The MSP430X CPU is completely backward
compatible with the MSP430 CPU.
The MSP430X CPU features include:
• RISC architecture
• Orthogonal architecture
• Full register access including program counter (PC), status register (SR), and stack pointer (SP)
• Single-cycle register operations
• Large register file reduces fetches to memory.
• 20-bit address bus allows direct access and branching throughout the entire memory range without
paging.
• 16-bit data bus allows direct manipulation of word-wide arguments.
• Constant generator provides the six most often used immediate values and reduces code size.
• Direct memory-to-memory transfers without intermediate register holding
• Byte, word, and 20-bit address-word addressing
The block diagram of the MSP430X CPU is shown in Figure 4-1.

112

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MSP430X CPU (CPUX) Introduction

www.ti.com
MDB − Memory Data Bus
19

Memory Address Bus − MAB
0

16 15

R0/PC Program Counter

0

R1/SP Pointer Stack

0

R2/SR Status Register
R3/CG2 Constant Generator
R4

General Purpose

R5

General Purpose

R6

General Purpose

R7

General Purpose

R8

General Purpose

R9

General Purpose

R10

General Purpose

R11

General Purpose

R12

General Purpose

R13

General Purpose

R14

General Purpose

R15

General Purpose
20

16
Zero, Z
Carry, C
Overflow,V
Negative,N

dst

src
16/20-bit ALU

MCLK

Figure 4-1. MSP430X CPU Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

113

Interrupts

4.2

www.ti.com

Interrupts
The MSP430X has the following interrupt structure:
• Vectored interrupts with no polling necessary
• Interrupt vectors are located downward from address 0FFFEh.
The interrupt vectors contain 16-bit addresses that point into the lower 64KB memory. This means all
interrupt handlers must start in the lower 64KB memory.
During an interrupt, the program counter (PC) and the status register (SR) are pushed onto the stack as
shown in Figure 4-2. The MSP430X architecture stores the complete 20-bit PC value efficiently by
appending the PC bits 19:16 to the stored SR value automatically on the stack. When the RETI instruction
is executed, the full 20-bit PC is restored making return from interrupt to any address in the memory range
possible.
Item n−1

SPold

PC.15:0
SP

PC.19:16

SR.11:0

Figure 4-2. PC Storage on the Stack for Interrupts

114

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPU Registers

www.ti.com

4.3

CPU Registers
The CPU incorporates 16 registers (R0 through R15). Registers R0, R1, R2, and R3 have dedicated
functions. Registers R4 through R15 are working registers for general use.

4.3.1 Program Counter (PC)
The 20-bit Program Counter (PC, also called R0) points to the next instruction to be executed. Each
instruction uses an even number of bytes (2, 4, 6, or 8 bytes), and the PC is incremented accordingly.
Instruction accesses are performed on word boundaries, and the PC is aligned to even addresses.
Figure 4-3 shows the PC.
19

16 15

1
Program Counter Bits 19 to 1

0
0

Figure 4-3. Program Counter
The PC can be addressed with all instructions and addressing modes. A few examples:
MOV.W

#LABEL,PC

; Branch to address LABEL (lower 64KB)

MOVA

#LABEL,PC

; Branch to address LABEL (1MB memory)

MOV.W

LABEL,PC

; Branch to address in word LABEL
; (lower 64KB)

MOV.W

@R14,PC

; Branch indirect to address in
; R14 (lower 64KB)

ADDA

#4,PC

; Skip two words (1MB memory)

The BR and CALL instructions reset the upper four PC bits to 0. Only addresses in the lower 64KB
address range can be reached with the BR or CALL instruction. When branching or calling, addresses
beyond the lower 64KB range can only be reached using the BRA or CALLA instructions. Also, any
instruction to directly modify the PC does so according to the used addressing mode. For example,
MOV.W #value,PC clears the upper four bits of the PC, because it is a .W instruction.
The PC is automatically stored on the stack with CALL (or CALLA) instructions and during an interrupt
service routine. Figure 4-4 shows the storage of the PC with the return address after a CALLA instruction.
A CALL instruction stores only bits 15:0 of the PC.
SPold

Item n
PC.19:16

SP

PC.15:0

Figure 4-4. PC Storage on the Stack for CALLA
The RETA instruction restores bits 19:0 of the PC and adds 4 to the stack pointer (SP). The RET
instruction restores bits 15:0 to the PC and adds 2 to the SP.

4.3.2 Stack Pointer (SP)
The 20-bit Stack Pointer (SP, also called R1) is used by the CPU to store the return addresses of
subroutine calls and interrupts. It uses a predecrement, postincrement scheme. In addition, the SP can be
used by software with all instructions and addressing modes. Figure 4-5 shows the SP. The SP is
initialized into RAM by the user, and is always aligned to even addresses.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

115

CPU Registers

www.ti.com

Figure 4-6 shows the stack usage. Figure 4-7 shows the stack usage when 20-bit address words are
pushed.
19

1
Stack Pointer Bits 19 to 1

MOV.W
MOV.W
PUSH
POP

2(SP),R6
R7,0(SP)
#0123h
R8

;
;
;
;

0
0

Copy Item I2 to R6
Overwrite TOS with R7
Put 0123h on stack
R8 = 0123h

Figure 4-5. Stack Pointer
Address

POP R8

PUSH #0123h

0xxxh

I1

I1

I1

0xxxh − 2

I2

I2

I2

0xxxh − 4

I3

SP

I3

I3

0123h

0xxxh − 6

SP

SP

0xxxh − 8

Figure 4-6. Stack Usage

SPold

Item n−1
Item.19:16

SP

Item.15:0

Figure 4-7. PUSHX.A Format on the Stack
The special cases of using the SP as an argument to the PUSH and POP instructions are described and
shown in Figure 4-8.
PUSH SP

POP SP

SPold
SP1

SPold

SP2

The stack pointer is changed after
a PUSH SP instruction.

SP1

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2 = SP1)

Figure 4-8. PUSH SP, POP SP Sequence

116

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPU Registers

www.ti.com

4.3.3 Status Register (SR)
The 16-bit Status Register (SR, also called R2), used as a source or destination register, can only be used
in register mode addressed with word instructions. The remaining combinations of addressing modes are
used to support the constant generator. Figure 4-9 shows the SR bits. Do not write 20-bit values to the
SR. Unpredictable operation can result.
15

9
Reserved

8
V

7
SCG1

0
OSC CPU
SCG0 OFF OFF GIE

N

Z C

rw-0

Figure 4-9. SR Bits
Table 4-1 describes the SR bits.
Table 4-1. SR Bit Description
Bit

Description

Reserved

Reserved

V

Overflow. This bit is set when the result of an arithmetic operation overflows the signed-variable range.
ADD(.B), ADDX(.B,.A),
ADDC(.B), ADDCX(.B.A),
ADDA

Set when:
positive + positive = negative
negative + negative = positive
otherwise reset

SUB(.B), SUBX(.B,.A),
SUBC(.B),SUBCX(.B,.A),
SUBA, CMP(.B),
CMPX(.B,.A), CMPA

Set when:
positive – negative = negative
negative – positive = positive
otherwise reset

SCG1

System clock generator 1. This bit may be used to enable or disable functions in the clock system depending on the
device family; for example, DCO bias enable or disable.

SCG0

System clock generator 0. This bit may be used to enable or disable functions in the clock system depending on the
device family; for example, FLL enable or disable.

OSCOFF

Oscillator off. When this bit is set, it turns off the LFXT1 crystal oscillator when LFXT1CLK is not used for MCLK or
SMCLK. In FRAM devices, CPUOFF must be 1 to disable the cyrstal oscillator.

CPUOFF

CPU off. When this bit is set, it turns off the CPU and requests a low-power mode according to the settings of bits
OSCOFF, SCG0, and SCG1.

GIE

General interrupt enable. When this bit is set, it enables maskable interrupts. When it is reset, all maskable interrupts
are disabled.

N

Negative. This bit is set when the result of an operation is negative and cleared when the result is positive.

Z

Zero. This bit is set when the result of an operation is 0 and cleared when the result is not 0.

C

Carry. This bit is set when the result of an operation produced a carry and cleared when no carry occurred.

NOTE: Bit manipulations of the SR should be done by the following instructions: MOV, BIS, and
BIC.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

117

CPU Registers

www.ti.com

4.3.4 Constant Generator Registers (CG1 and CG2)
Six commonly-used constants are generated with the constant generator registers R2 (CG1) and R3
(CG2), without requiring an additional 16-bit word of program code. The constants are selected with the
source register addressing modes (As), as described in Table 4-2.
Table 4-2. Values of Constant Generators CG1, CG2
Register

As

Constant

Remarks

R2

00

–

Register mode

R2

01

(0)

Absolute address mode

R2

10

00004h

+4, bit processing

R2

11

00008h

+8, bit processing

R3

00

00000h

0, word processing

R3

01

00001h

+1

R3

10

00002h

+2, bit processing

R3

11

FFh, FFFFh, FFFFFh

–1, word processing

The constant generator advantages are:
• No special instructions required
• No additional code word for the six constants
• No code memory access required to retrieve the constant
The assembler uses the constant generator automatically if one of the six constants is used as an
immediate source operand. Registers R2 and R3, used in the constant mode, cannot be addressed
explicitly; they act as source-only registers.
4.3.4.1

Constant Generator – Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the constant generator allows
the MSP430 assembler to support 24 additional emulated instructions. For example, the single-operand
instruction:
CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As = 00.
INC dst

is replaced by:
ADD #1,dst

118

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPU Registers

www.ti.com

4.3.5 General-Purpose Registers (R4 to R15)
The 12 CPU registers (R4 to R15) contain 8-bit, 16-bit, or 20-bit values. Any byte-write to a CPU register
clears bits 19:8. Any word-write to a register clears bits 19:16. The only exception is the SXT instruction.
The SXT instruction extends the sign through the complete 20-bit register.
Figure 4-10 through Figure 4-14 show the handling of byte, word, and address-word data. Note the reset
of the leading most significant bits (MSBs) if a register is the destination of a byte or word instruction.
Figure 4-10 shows byte handling (8-bit data, .B suffix). The handling is shown for a source register and a
destination memory byte and for a source memory byte and a destination register.
Register-Byte Operation

Byte-Register Operation

High Byte Low Byte
19 16 15
0
87
UnUnused
Register
used

High Byte

Memory

19 16 15
Memory

Low Byte

Unused

87

0

Unused

Operation

Register

Operation

Memory

0

0

Register

Figure 4-10. Register-Byte and Byte-Register Operation
Figure 4-11 and Figure 4-12 show 16-bit word handling (.W suffix). The handling is shown for a source
register and a destination memory word and for a source memory word and a destination register.
Register-Word Operation
High Byte Low Byte
19 16 15
0
87
UnRegister
used

Memory

Operation

Memory

Figure 4-11. Register-Word Operation

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

119

CPU Registers

www.ti.com
Word Register Operation
High Byte

Low Byte
Memory

19 16 15
Unused

87

0
Register

Operation

Register

0

Figure 4-12. Word-Register Operation
Figure 4-13 and Figure 4-14 show 20-bit address-word handling (.A suffix). The handling is shown for a
source register and a destination memory address-word and for a source memory address-word and a
destination register.
Register − Address-Word Operation
High Byte Low Byte
19 16 15
0
87
Register

Memory +2

Unused

Memory

Operation

Memory +2

0

Memory

Figure 4-13. Register – Address-Word Operation

120

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Addressing Modes

www.ti.com
Address-Word − Register Operation
High Byte Low Byte
19 16 15
0
87
Memory +2

Unused

Memory

Register

Operation

Register

Figure 4-14. Address-Word – Register Operation

4.4

Addressing Modes
Seven addressing modes for the source operand and four addressing modes for the destination operand
use 16-bit or 20-bit addresses (see Table 4-3). The MSP430 and MSP430X instructions are usable
throughout the entire 1MB memory range.
Table 4-3. Source and Destination Addressing
As, Ad Addressing Mode

Syntax

Description

00, 0

Register

Rn

01, 1

Indexed

X(Rn)

(Rn + X) points to the operand. X is stored in the next word, or stored in combination of
the preceding extension word and the next word.

01, 1

Symbolic

ADDR

(PC + X) points to the operand. X is stored in the next word, or stored in combination of
the preceding extension word and the next word. Indexed mode X(PC) is used.

01, 1

Absolute

&ADDR

The word following the instruction contains the absolute address. X is stored in the next
word, or stored in combination of the preceding extension word and the next word.
Indexed mode X(SR) is used.

10, –

Indirect Register

@Rn

Rn is used as a pointer to the operand.

11, –

Indirect
Autoincrement

@Rn+

Rn is used as a pointer to the operand. Rn is incremented afterwards by 1 for .B
instructions, by 2 for .W instructions, and by 4 for .A instructions.

11, –

Immediate

#N

Register contents are operand.

N is stored in the next word, or stored in combination of the preceding extension word
and the next word. Indirect autoincrement mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections. Most of the examples show
the same addressing mode for the source and destination, but any valid combination of source and
destination addressing modes is possible in an instruction.
NOTE:

Use of Labels EDE, TONI, TOM, and LEO
Throughout MSP430 documentation, EDE, TONI, TOM, and LEO are used as generic labels.
They are only labels and have no special meaning.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

121

Addressing Modes

www.ti.com

4.4.1 Register Mode
Operation:
Length:
Comment:
Byte operation:

Word operation:

Address-word
operation:
SXT exception:
Example:

The operand is the 8-, 16-, or 20-bit content of the used CPU register.
One, two, or three words
Valid for source and destination
Byte operation reads only the eight least significant bits (LSBs) of the source
register Rsrc and writes the result to the eight LSBs of the destination register Rdst.
The bits Rdst.19:8 are cleared. The register Rsrc is not modified.
Word operation reads the 16 LSBs of the source register Rsrc and writes the result
to the 16 LSBs of the destination register Rdst. The bits Rdst.19:16 are cleared.
The register Rsrc is not modified.
Address-word operation reads the 20 bits of the source register Rsrc and writes the
result to the 20 bits of the destination register Rdst. The register Rsrc is not
modified
The SXT instruction is the only exception for register operation. The sign of the low
byte in bit 7 is extended to the bits Rdst.19:8.
BIS.W R5,R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.
Before:

After:
Address
Space

21036h

xxxxh

21034h

D506h

Address
Space

Register

PC

R5

AA550h

21036h

xxxxh

R6

11111h

21034h

D506h

Register

PC

R5

AA550h

R6

0B551h

A550h.or.1111h = B551h

Example:

BISX.A R5,R6 ;

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit
contents of R6.
The extension word contains the A/L bit for 20-bit data. The instruction word uses
byte mode with bits A/L:B/W = 01. The result of the instruction is:
Before:

After:
Address
Space

Register

Address
Space

21036h

xxxxh

R5

AA550h

21036h

xxxxh

21034h

D546h

R6

11111h

21034h

D546h

21032h

1800h

21032h

1800h

PC

Register

PC

R5

AA550h

R6

BB551h

AA550h.or.11111h = BB551h

122

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Addressing Modes

www.ti.com

4.4.2 Indexed Mode
The Indexed mode calculates the address of the operand by adding the signed index to a CPU register.
The Indexed mode has four addressing possibilities:
• MSP430 instruction with Indexed mode in lower 64KB memory (see Section 4.4.2.1)
• MSP430 instruction with Indexed mode addressing memory above the lower 64KB memory (see
Section 4.4.2.2)
• MSP430X instruction with Indexed mode (see Section 4.4.2.3)
• MSP430X address instructions with Indexed mode (see Section 4.4.2.4)
4.4.2.1

MSP430 Instruction With Indexed Mode in Lower 64KB Memory

If the CPU register Rn points to an address in the lower 64KB of the memory range, the calculated
memory address bits 19:16 are cleared after the addition of the CPU register Rn and the signed 16-bit
index. This means the calculated memory address is always located in the lower 64KB and does not
overflow or underflow out of the lower 64KB memory space. The RAM and the peripheral registers can be
accessed this way and existing MSP430 software is usable without modifications as shown in Figure 4-15.
Lower 64KB
Rn.19:16 = 0
19 16 15

FFFFF

0
CPU Register Rn

0

S

16-bit byte index

16-bit signed index

Lower 64KB

10000
0FFFF

Rn.19:0

00000

16-bit signed add

0

Memory address

Figure 4-15. Indexed Mode in Lower 64KB
Length:
Operation:

Comment:
Example:

Source:
Destination:

Two or three words
The signed 16-bit index is located in the next word after the instruction and is added to
the CPU register Rn. The resulting bits 19:16 are cleared giving a truncated 16-bit
memory address, which points to an operand address in the range 00000h to 0FFFFh.
The operand is the content of the addressed memory location.
Valid for source and destination. The assembler calculates the register index and inserts
it.
ADD.B 1000h(R5),0F000h(R6);

This instruction adds the 8-bit data contained in source byte 1000h(R5) and the
destination byte 0F000h(R6) and places the result into the destination byte. Source and
destination bytes are both located in the lower 64KB due to the cleared bits 19:16 of
registers R5 and R6.
The byte pointed to by R5 + 1000h results in address 0479Ch + 1000h = 0579Ch after
truncation to a 16-bit address.
The byte pointed to by R6 + F000h results in address 01778h + F000h = 00778h after
truncation to a 16-bit address.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

123

Addressing Modes

www.ti.com
Before:

After:
Address
Space

4.4.2.2

Register

Address
Space

Register

1103Ah

xxxxh

R5

0479Ch

1103Ah

xxxxh

PC R5

0479Ch

11038h

F000h

R6

01778h

11038h

F000h

R6

01778h

11036h

1000h

11034h

55D6h

0077Ah

xxxxh

00778h

xx45h

0579Eh

xxxxh

0579Ch

xx32h

11036h

1000h

11034h

55D6h

01778h
+F000h
00778h

0077Ah

xxxxh

00778h

xx77h

0479Ch
+1000h
0579Ch

0579Eh

xxxxh

0579Ch

xx32h

PC

32h
+45h
77h

src
dst
Sum

MSP430 Instruction With Indexed Mode in Upper Memory

If the CPU register Rn points to an address above the lower 64KB memory, the Rn bits 19:16 are used for
the address calculation of the operand. The operand may be located in memory in the range Rn ±32KB,
because the index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or
underflow into the lower 64KB memory space (see Figure 4-16 and Figure 4-17).
Upper Memory
Rn.19:16 > 0
19

FFFFF

16 15

0

1 ... 15
Rn.19:0

CPU Register Rn

Rn ± 32KB
S

S

16-bit byte index

16-bit signed index
(sign extended to 20 bits)

Lower 64 KB

10000
0FFFF
20-bit signed add

00000

Memory address

Figure 4-16. Indexed Mode in Upper Memory

124

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Addressing Modes

www.ti.com

Rn.19:0

Rn.19:0

10000
0FFFF

Lower 64KB

Rn.19:0

±32KB

±32KB

FFFFF

Rn.19:0

0000C

Figure 4-17. Overflow and Underflow for Indexed Mode
Length:
Operation:

Comment:
Example:

Source:
Destination:

Two or three words
The sign-extended 16-bit index in the next word after the instruction is added to the
20 bits of the CPU register Rn. This delivers a 20-bit address, which points to an
address in the range 0 to FFFFFh. The operand is the content of the addressed
memory location.
Valid for source and destination. The assembler calculates the register index and
inserts it.
ADD.W 8346h(R5),2100h(R6) ;

This instruction adds the 16-bit data contained in the source and the destination
addresses and places the 16-bit result into the destination. Source and destination
operand can be located in the entire address range.
The word pointed to by R5 + 8346h. The negative index 8346h is sign extended,
which results in address 23456h + F8346h = 1B79Ch.
The word pointed to by R6 + 2100h results in address 15678h + 2100h = 17778h.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

125

Addressing Modes

www.ti.com
Before:

After:
Address
Space

Register

Address
Space

Register

1103Ah

xxxxh

R5

23456h

1103Ah

xxxxh

PC R5

23456h

11038h

2100h

R6

15678h

11038h

2100h

R6

15678h

11036h

8346h

11034h

5596h

1777Ah

xxxxh

17778h

2345h

1B79Eh

xxxxh

1B79Ch

5432h

11036h

8346h

11034h

5596h

15678h
+02100h
17778h

1777Ah

xxxxh

17778h

7777h

23456h
+F8346h
1B79Ch

1B79Eh

xxxxh

1B79Ch

5432h

PC

05432h
+02345h
07777h

src
dst
Sum

Figure 4-18. Example for Indexed Mode

4.4.2.3

MSP430X Instruction With Indexed Mode

When using an MSP430X instruction with Indexed mode, the operand can be located anywhere in the
range of Rn + 19 bits.
Length:
Operation:

Comment:
Example:

Source:
Destination:

126

CPUX

Three or four words
The operand address is the sum of the 20-bit CPU register content and the 20-bit
index. The 4 MSBs of the index are contained in the extension word; the 16 LSBs
are contained in the word following the instruction. The CPU register is not modified
Valid for source and destination. The assembler calculates the register index and
inserts it.
ADDX.A 12346h(R5),32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the destination
addresses and places the result into the destination.
Two words pointed to by R5 + 12346h which results in address 23456h + 12346h =
3579Ch.
Two words pointed to by R6 + 32100h which results in address 45678h + 32100h =
77778h.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Addressing Modes

www.ti.com

The extension word contains the MSBs of the source index and of the destination index and the A/L bit for
20-bit data. The instruction word uses byte mode due to the 20-bit data length with bits A/L:B/W = 01.
Before:

After:
Address
Space

4.4.2.4

2103Ah

xxxxh

21038h

2100h

21036h

Register

Address
Space

Register

23456h

2103Ah

xxxxh

PC R5

23456h

45678h

21038h

2100h

R6

45678h

2346h

21036h

2346h

21034h

55D6h

21034h

55D6h

21032h

1883h

21032h

1883h

7777Ah

0001h

7777Ah

0007h

77778h

2345h

45678h
+32100h
77778h

77778h

7777h

3579Eh

0006h

3579Eh

0006h

3579Ch

5432h

23456h
+12346h
3579Ch

3579Ch

5432h

R5
R6

PC

65432h
+12345h
77777h

src
dst
Sum

MSP430X Address Instructions With Indexed Mode

When using an MSP430X Address Instruction with Indexed mode, the operand is located in memory in the
range Rn ±32KB, because the index, X, is a signed 16-bit value.
Length:
Operation:

Comment:

Two words
The sign-extended 16-bit index in the next word after the instruction is added to the 20
bits of the CPU register Rn. This delivers a 20-bit address, which points to an address in
the range 0 to FFFFFh. The operand is the content of the addressed memory location.
Valid for source and destination. The assembler calculates the register index and inserts
it.

Example:

MOVA 8002h(R5),R6 ; // R5 = 0x100

Source:

This instruction loads the 20-bit data contained in the source address into destination
register.
Two words pointed to by R5 + 8002h and R5 + 8002h + 2h which results in address
00100h + F8002h (+2h) = F8102h and F8104h.
Register R6

Destination:

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

127

Addressing Modes

www.ti.com

4.4.3 Symbolic Mode
The Symbolic mode calculates the address of the operand by adding the signed index to the PC. The
Symbolic mode has three addressing possibilities:
• Symbolic mode in lower 64KB of memory
• MSP430 instruction with Symbolic mode addressing memory above the lower 64KB of memory.
• MSP430X instruction with Symbolic mode
4.4.3.1

Symbolic Mode in Lower 64KB

If the PC points to an address in the lower 64KB of the memory range, the calculated memory address
bits 19:16 are cleared after the addition of the PC and the signed 16-bit index. This means the calculated
memory address is always located in the lower 64KB and does not overflow or underflow out of the lower
64KB memory space. The RAM and the peripheral registers can be accessed this way and existing
MSP430 software is usable without modifications as shown in Figure 4-19.
Lower 64KB
PC.19:16 = 0
19 16 15

FFFFF

0
Program
counter PC

0

S

16-bit byte index

16-bit signed
PC index

PC.19:0

Lower 64KB

10000
0FFFF

00000

16-bit signed add

0

Memory address

Figure 4-19. Symbolic Mode Running in Lower 64KB
Operation:

Length:
Comment:
Example:

Source:

Destination:

128

CPUX

The signed 16-bit index in the next word after the instruction is added temporarily to
the PC. The resulting bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range 00000h to 0FFFFh. The
operand is the content of the addressed memory location.
Two or three words
Valid for source and destination. The assembler calculates the PC index and
inserts it.
ADD.B EDE,TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI. Bytes EDE and
TONI and the program are located in the lower 64KB.
Byte EDE located at address 0579Ch, pointed to by PC + 4766h, where the PC
index 4766h is the result of 0579Ch – 01036h = 04766h. Address 01036h is the
location of the index for this example.
Byte TONI located at address 00778h, pointed to by PC + F740h, is the truncated
16-bit result of 00778h – 1038h = FF740h. Address 01038h is the location of the
index for this example.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Addressing Modes

www.ti.com
Before:

After:
Address
Space

4.4.3.2

Address
Space

0103Ah

xxxxh

0103Ah

xxxxh

01038h

F740h

01038h

F740h

01036h

4766h

01034h

05D0h

0077Ah

xxxxh

00778h

xx45h

0579Eh

xxxxh

0579Ch

xx32h

PC

01036h

4766h

01034h

50D0h

01038h
+0F740h
00778h

0077Ah

xxxxh

00778h

xx77h

01036h
+04766h
0579Ch

0579Eh

xxxxh

0579Ch

xx32h

PC

32h
+45h
77h

src
dst
Sum

MSP430 Instruction With Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64KB memory, the PC bits 19:16 are used for the address
calculation of the operand. The operand may be located in memory in the range PC ± 32KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can overflow or underflow into
the lower 64KB memory space as shown in Figure 4-20 and Figure 4-21.
Upper Memory
PC.19:16 > 0
19

FFFFF

16 15

0
Program
counter PC

1 ... 15
PC.19:0

PC ±32KB
S

S

16-bit byte index

16-bit signed PC index
(sign extended to 20 bits)

Lower 64KB

10000
0FFFF
20-bit signed add

00000

Memory address

Figure 4-20. Symbolic Mode Running in Upper Memory

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

129

Addressing Modes

www.ti.com

PC.19:0

PC.19:0

±32KB

±32KB

FFFFF

PC.19:0

Lower 64KB

10000
0FFFF

PC.19:0

0000C

Figure 4-21. Overflow and Underflow for Symbolic Mode
Length:
Operation:

Comment:
Example:

ADD.W EDE,&TONI ;

Source:

This instruction adds the 16-bit data contained in source word EDE and destination
word TONI and places the 16-bit result into the destination word TONI. For this
example, the instruction is located at address 2F034h.
Word EDE at address 3379Ch, pointed to by PC + 4766h, which is the 16-bit result
of 3379Ch – 2F036h = 04766h. Address 2F036h is the location of the index for this
example.
Word TONI located at address 00778h pointed to by the absolute address 00778h

Destination:

130

Two or three words
The sign-extended 16-bit index in the next word after the instruction is added to the
20 bits of the PC. This delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the addressed memory location.
Valid for source and destination. The assembler calculates the PC index and
inserts it

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Addressing Modes

www.ti.com
Before:

After:
Address
Space

4.4.3.3

Address
Space

2F03Ah

xxxxh

2F03Ah

xxxxh

2F038h

0778h

2F038h

0778h

2F036h

4766h

2F034h

5092h

2F036h

4766h

2F034h

5092h

3379Eh

xxxxh

3379Ch

5432h

0077Ah
00778h

PC

2F036h
+04766h
3379Ch

3379Eh

xxxxh

3379Ch

5432h

xxxxh

0077Ah

xxxxh

2345h

00778h

7777h

PC

5432h
+2345h
7777h

src
dst
Sum

MSP430X Instruction With Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can be located anywhere in the
range of PC + 19 bits.
Length:
Operation:

Comment:
Example:

Source:

Destination:

Three or four words
The operand address is the sum of the 20-bit PC and the 20-bit index. The 4 MSBs
of the index are contained in the extension word; the 16 LSBs are contained in the
word following the instruction.
Valid for source and destination. The assembler calculates the register index and
inserts it.
ADDX.B EDE,TONI ;

This instruction adds the 8-bit data contained in source byte EDE and destination
byte TONI and places the result into the destination byte TONI.
Byte EDE located at address 3579Ch, pointed to by PC + 14766h, is the 20-bit
result of 3579Ch – 21036h = 14766h. Address 21036h is the address of the index
in this example.
Byte TONI located at address 77778h, pointed to by PC + 56740h, is the 20-bit
result of 77778h – 21038h = 56740h. Address 21038h is the address of the index in
this example.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

131

Addressing Modes

www.ti.com
Before:

Address Space

After:

Address Space

2103Ah

xxxxh

2103Ah

xxxxh

21038h

6740h

21038h

6740h

21036h

4766h

21036h

4766h

21034h

50D0h

21032h

18C5h

7777Ah

xxxxh

77778h

xx45h

3579Eh

xxxxh

3579Ch

xx32h

PC

21038h
+56740h
77778h

21036h
+14766h
3579Ch

21034h

50D0h

21032h

18C5h

7777Ah

xxxxh

77778h

xx77h

3579Eh

xxxxh

3579Ch

xx32h

PC

32h
+45h
77h

src
dst
Sum

4.4.4 Absolute Mode
The Absolute mode uses the contents of the word following the instruction as the address of the operand.
The Absolute mode has two addressing possibilities:
• Absolute mode in lower 64KB memory
• MSP430X instruction with Absolute mode
4.4.4.1

Absolute Mode in Lower 64KB

If an MSP430 instruction is used with Absolute addressing mode, the absolute address is a 16-bit value
and, therefore, points to an address in the lower 64KB of the memory range. The address is calculated as
an index from 0 and is stored in the word following the instruction The RAM and the peripheral registers
can be accessed this way and existing MSP430 software is usable without modifications.

132

Length:
Operation:
Comment:

Two or three words
The operand is the content of the addressed memory location.
Valid for source and destination. The assembler calculates the index from 0 and
inserts it.

Example:

ADD.W &EDE,&TONI ;

Source:
Destination:

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.
Word at address EDE
Word at address TONI

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Addressing Modes

www.ti.com
Before: Address Space

Address Space

xxxxh

xxxxh

2103Ah

21038h

7778h

21038h

7778h

21036h

579Ch

21034h

5292h

0777Ah
07778h

2103Ah

4.4.4.2

After:

21036h

579Ch

21034h

5292h

xxxxh

0777Ah

xxxxh

2345h

07778h

7777h

0579Eh

xxxxh

0579Eh

xxxxh

0579Ch

5432h

0579Ch

5432h

PC

PC

5432h
+2345h
7777h

src
dst
Sum

MSP430X Instruction With Absolute Mode

If an MSP430X instruction is used with Absolute addressing mode, the absolute address is a 20-bit value
and, therefore, points to any address in the memory range. The address value is calculated as an index
from 0. The 4 MSBs of the index are contained in the extension word, and the 16 LSBs are contained in
the word following the instruction.
Length:
Operation:
Comment:

Three or four words
The operand is the content of the addressed memory location.
Valid for source and destination. The assembler calculates the index from 0 and
inserts it.

Example:

ADDX.A &EDE,&TONI ;

Source:
Destination:

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.
Two words beginning with address EDE
Two words beginning with address TONI

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

133

Addressing Modes

www.ti.com
Before:

After:
Address
Space

Address
Space
2103Ah

xxxxh

2103Ah

xxxxh

21038h

7778h

21038h

7778h

21036h

579Ch

21036h

579Ch

21034h

52D2h

21034h

52D2h

21032h

1987h

21032h

1987h

7777Ah

0001h

7777Ah

0007h

77778h

2345h

77778h

7777h

3579Eh

0006h

3579Eh

0006h

3579Ch

5432h

3579Ch

5432h

PC

PC

65432h
+12345h
77777h

src
dst
Sum

4.4.5 Indirect Register Mode
The Indirect Register mode uses the contents of the CPU register Rsrc as the source operand. The
Indirect Register mode always uses a 20-bit address.
Length:
Operation:
Comment:

134

One, two, or three words
The operand is the content the addressed memory location. The source register
Rsrc is not modified.
Valid only for the source operand. The substitute for the destination operand is
0(Rdst).

Example:

ADDX.W @R5,2100h(R6)

Source:
Destination:

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.
Word pointed to by R5. R5 contains address 3579Ch for this example.
Word pointed to by R6 + 2100h, which results in address 45678h + 2100h = 7778h

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Addressing Modes

www.ti.com
Before:

After:
Address
Space

Register

Address
Space

Register

21038h

xxxxh

R5

3579Ch

21038h

xxxxh

PC R5

3579Ch

21036h

2100h

R6

45678h

21036h

2100h

R6

45678h

21034h

55A6h

21034h

55A6h

4777Ah

xxxxh

4777Ah

xxxxh

47778h

2345h

47778h

7777h

3579Eh

xxxxh

3579Eh

xxxxh

3579Ch

5432h

3579Ch

5432h

PC

45678h
+02100h
47778h

R5

5432h
+2345h
7777h

src
dst
Sum

R5

4.4.6 Indirect Autoincrement Mode
The Indirect Autoincrement mode uses the contents of the CPU register Rsrc as the source operand. Rsrc
is then automatically incremented by 1 for byte instructions, by 2 for word instructions, and by 4 for
address-word instructions immediately after accessing the source operand. If the same register is used for
source and destination, it contains the incremented address for the destination access. Indirect
Autoincrement mode always uses 20-bit addresses.
Length:
Operation:
Comment:
Example:

Source:
Destination:

One, two, or three words
The operand is the content of the addressed memory location.
Valid only for the source operand
ADD.B @R5+,0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.
Byte pointed to by R5. R5 contains address 3579Ch for this example.
Byte pointed to by R6 + 0h, which results in address 0778h for this example

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

135

Addressing Modes

www.ti.com
Before:

After:
Address
Space

Register

Address
Space

Register

21038h

xxxxh

R5

3579Ch

21038h

xxxxh

PC R5

3579Dh

21036h

0000h

R6

00778h

21036h

0000h

R6

00778h

21034h

55F6h

21034h

55F6h

0077Ah

xxxxh

0077Ah

xxxxh

00778h

xx45h

00778h

xx77h

3579Dh

xxh

3579Dh

xxh

3579Ch

32h

3579Ch

xx32h

PC

00778h
+0000h
00778h

R5

32h
+45h
77h

src
dst
Sum

R5

4.4.7 Immediate Mode
The Immediate mode allows accessing constants as operands by including the constant in the memory
location following the instruction. The PC is used with the Indirect Autoincrement mode. The PC points to
the immediate value contained in the next word. After the fetching of the immediate operand, the PC is
incremented by 2 for byte, word, or address-word instructions. The Immediate mode has two addressing
possibilities:
• 8-bit or 16-bit constants with MSP430 instructions
• 20-bit constants with MSP430X instruction
4.4.7.1

MSP430 Instructions With Immediate Mode

If an MSP430 instruction is used with Immediate addressing mode, the constant is an 8- or 16-bit value
and is stored in the word following the instruction.
Length:
Operation:
Comment:
Example:

Source:
Destination:

136

CPUX

Two or three words. One word less if a constant of the constant generator can be
used for the immediate operand.
The 16-bit immediate source operand is used together with the 16-bit destination
operand.
Valid only for the source operand
ADD #3456h,&TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.
16-bit immediate value 3456h
Word at address TONI

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Addressing Modes

www.ti.com
Before:

After:
Address
Space

4.4.7.2

Address
Space

2103Ah

xxxxh

2103Ah

xxxxh

21038h

0778h

21038h

0778h

21036h

3456h

21034h

50B2h

0077Ah
00778h

21036h

3456h

21034h

50B2h

xxxxh

0077Ah

xxxxh

2345h

00778h

579Bh

PC

PC

3456h
+2345h
579Bh

src
dst
Sum

MSP430X Instructions With Immediate Mode

If an MSP430X instruction is used with Immediate addressing mode, the constant is a 20-bit value. The 4
MSBs of the constant are stored in the extension word, and the 16 LSBs of the constant are stored in the
word following the instruction.
Length:

Three or four words. One word less if a constant of the constant generator can be
used for the immediate operand.
The 20-bit immediate source operand is used together with the 20-bit destination
operand.
Valid only for the source operand

Operation:
Comment:
Example:

ADDX.A #23456h,&TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.
20-bit immediate value 23456h
Two words beginning with address TONI

Source:
Destination:
Before:

After:
Address
Space

Address
Space
2103Ah

xxxxh

2103Ah

xxxxh

21038h

7778h

21038h

7778h

21036h

3456h

21036h

3456h

21034h

50F2h

21034h

50F2h

21032h

1907h

21032h

1907h

7777Ah

0001h

7777Ah

0003h

77778h

2345h

77778h

579Bh

PC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

PC

23456h
+12345h
3579Bh

src
dst
Sum

CPUX

137

MSP430 and MSP430X Instructions

4.5

www.ti.com

MSP430 and MSP430X Instructions
MSP430 instructions are the 27 implemented instructions of the MSP430 CPU. These instructions are
used throughout the 1MB memory range unless their 16-bit capability is exceeded. The MSP430X
instructions are used when the addressing of the operands or the data length exceeds the 16-bit capability
of the MSP430 instructions.
There are three possibilities when choosing between an MSP430 and MSP430X instruction:
• To use only the MSP430 instructions – The only exceptions are the CALLA and the RETA instruction.
This can be done if a few, simple rules are met:
– Place all constants, variables, arrays, tables, and data in the lower 64KB. This allows the use of
MSP430 instructions with 16-bit addressing for all data accesses. No pointers with 20-bit addresses
are needed.
– Place subroutine constants immediately after the subroutine code. This allows the use of the
symbolic addressing mode with its 16-bit index to reach addresses within the range of PC + 32KB.
• To use only MSP430X instructions – The disadvantages of this method are the reduced speed due to
the additional CPU cycles and the increased program space due to the necessary extension word for
any double-operand instruction.
• Use the best fitting instruction where needed.
Section 4.5.1 lists and describes the MSP430 instructions, and Section 4.5.2 lists and describes the
MSP430X instructions.

4.5.1 MSP430 Instructions
The MSP430 instructions can be used, regardless if the program resides in the lower 64KB or beyond it.
The only exceptions are the instructions CALL and RET, which are limited to the lower 64KB address
range. CALLA and RETA instructions have been added to the MSP430X CPU to handle subroutines in the
entire address range with no code size overhead.
4.5.1.1

MSP430 Double-Operand (Format I) Instructions

Figure 4-22 shows the format of the MSP430 double-operand instructions. Source and destination words
are appended for the Indexed, Symbolic, Absolute, and Immediate modes. Table 4-4 lists the 12 MSP430
double-operand instructions.
15

12
Op-code

11

8
Rsrc

7

6

Ad

B/W

5

4
As

0
Rdst

Source or Destination 15:0
Destination 15:0

Figure 4-22. MSP430 Double-Operand Instruction Format

138

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MSP430 and MSP430X Instructions

www.ti.com

Table 4-4. MSP430 Double-Operand Instructions
Mnemonic

S-Reg,
D-Reg

Operation

MOV(.B)

src,dst

ADD(.B)

src,dst

ADDC(.B)
SUB(.B)

Status Bits (1)
V

N

Z

C

src → dst

–

–

–

–

src + dst → dst

*

*

*

*

src,dst

src + dst + C → dst

*

*

*

*

src,dst

dst + .not.src + 1 → dst

*

*

*

*

SUBC(.B)

src,dst

dst + .not.src + C → dst

*

*

*

*

CMP(.B)

src,dst

dst - src

*

*

*

*

DADD(.B)

src,dst

src + dst + C → dst (decimally)

*

*

*

*

BIT(.B)

src,dst

src .and. dst

0

*

*

Z

BIC(.B)

src,dst

.not.src .and. dst → dst

–

–

–

–

BIS(.B)

src,dst

src .or. dst → dst

–

–

–

–

XOR(.B)

src,dst

src .xor. dst → dst

*

*

*

Z

AND(.B)

src,dst

src .and. dst → dst

0

*

*

Z

(1)

* = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

4.5.1.2

MSP430 Single-Operand (Format II) Instructions

Figure 4-23 shows the format for MSP430 single-operand instructions, except RETI. The destination word
is appended for the Indexed, Symbolic, Absolute, and Immediate modes. Table 4-5 lists the seven singleoperand instructions.
15

7
Op-code

6

5

B/W

4

0

Ad

Rdst

Destination 15:0

Figure 4-23. MSP430 Single-Operand Instructions
Table 4-5. MSP430 Single-Operand Instructions
Mnemonic

S-Reg,
D-Reg

Operation

RRC(.B)

dst

RRA(.B)

dst

PUSH(.B)
SWPB
CALL

Status Bits (1)
V

N

Z

C

C → MSB →.......LSB → C

0

*

*

*

MSB → MSB →....LSB → C

0

*

*

*

src

SP - 2 → SP, src → SP

–

–

–

–

dst

bit 15...bit 8 ↔ bit 7...bit 0

–

–

–

–

dst

Call subroutine in lower 64KB

–

–

–

–

TOS → SR, SP + 2 → SP

*

*

*

*

0

*

*

Z

RETI

TOS → PC,SP + 2 → SP

SXT
(1)

dst

Register mode: bit 7 → bit 8...bit 19
Other modes: bit 7 → bit 8...bit 15

* = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

139

MSP430 and MSP430X Instructions

4.5.1.3

www.ti.com

Jump Instructions

Figure 4-24 shows the format for MSP430 and MSP430X jump instructions. The signed 10-bit word offset
of the jump instruction is multiplied by two, sign-extended to a 20-bit address, and added to the 20-bit PC.
This allows jumps in a range of –511 to +512 words relative to the PC in the full 20-bit address space.
Jumps do not affect the status bits. Table 4-6 lists and describes the eight jump instructions.
15

13

12

Op-Code

10

Condition

9

8

S

0
10-Bit Signed PC Offset

Figure 4-24. Format of Conditional Jump Instructions
Table 4-6. Conditional Jump Instructions

4.5.1.4

Mnemonic

S-Reg,
D-Reg

Operation

JEQ, JZ

Label

Jump to label if zero bit is set

JNE, JNZ

Label

Jump to label if zero bit is reset

JC

Label

Jump to label if carry bit is set

JNC

Label

Jump to label if carry bit is reset

JN

Label

Jump to label if negative bit is set

JGE

Label

Jump to label if (N .XOR. V) = 0

JL

Label

Jump to label if (N .XOR. V) = 1

JMP

Label

Jump to label unconditionally

Emulated Instructions

In addition to the MSP430 and MSP430X instructions, emulated instructions are instructions that make
code easier to write and read, but do not have op-codes themselves. Instead, they are replaced
automatically by the assembler with a core instruction. There is no code or performance penalty for using
emulated instructions. The emulated instructions are listed in Table 4-7.
Table 4-7. Emulated Instructions
Instruction

Status Bits (1)

Explanation

Emulation

ADC(.B) dst

Add Carry to dst

ADDC(.B) #0,dst

*

*

*

*

BR dst

Branch indirectly dst

MOV dst,PC

–

–

–

–

CLR(.B) dst

Clear dst

MOV(.B) #0,dst

–

–

–

–

CLRC

Clear Carry bit

BIC #1,SR

–

–

–

0

CLRN

Clear Negative bit

BIC #4,SR

–

0

–

–

CLRZ

Clear Zero bit

BIC #2,SR

–

–

0

–

DADC(.B) dst

Add Carry to dst decimally

DADD(.B) #0,dst

*

*

*

*

DEC(.B) dst

Decrement dst by 1

SUB(.B) #1,dst

*

*

*

*

DECD(.B) dst

Decrement dst by 2

SUB(.B) #2,dst

*

*

*

*

DINT

Disable interrupt

BIC #8,SR

–

–

–

–

EINT

V

N

Z

C

Enable interrupt

BIS #8,SR

–

–

–

–

INC(.B) dst

Increment dst by 1

ADD(.B) #1,dst

*

*

*

*

INCD(.B) dst

Increment dst by 2

ADD(.B) #2,dst

*

*

*

*

(1)

140 CPUX

* = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MSP430 and MSP430X Instructions

www.ti.com

Table 4-7. Emulated Instructions (continued)

4.5.1.5

Status Bits (1)

Instruction

Explanation

Emulation

INV(.B) dst

Invert dst

XOR(.B) #–1,dst

*

*

*

*

NOP

No operation

MOV R3,R3

–

–

–

–

POP dst

Pop operand from stack

MOV @SP+,dst

–

–

–

–

RET

Return from subroutine

MOV @SP+,PC

–

–

–

–

RLA(.B) dst

Shift left dst arithmetically

ADD(.B) dst,dst

*

*

*

*

RLC(.B) dst

Shift left dst logically through Carry

ADDC(.B) dst,dst

*

*

*

*

SBC(.B) dst

V

N

Z

C

Subtract Carry from dst

SUBC(.B) #0,dst

*

*

*

*

SETC

Set Carry bit

BIS #1,SR

–

–

–

1

SETN

Set Negative bit

BIS #4,SR

–

1

–

–

SETZ

Set Zero bit

BIS #2,SR

–

–

1

–

TST(.B) dst

Test dst (compare with 0)

CMP(.B) #0,dst

0

*

*

1

MSP430 Instruction Execution

The number of CPU clock cycles required for an instruction depends on the instruction format and the
addressing modes used – not the instruction itself. The number of clock cycles refers to MCLK.
4.5.1.5.1 Instruction Cycles and Length for Interrupt, Reset, and Subroutines
Table 4-8 lists the length and the CPU cycles for reset, interrupts, and subroutines.
Table 4-8. Interrupt, Return, and Reset Cycles and Length
Execution Time
(MCLK Cycles)

Length of Instruction
(Words)

Return from interrupt RETI

5

1

Return from subroutine RET

4

1

Interrupt request service (cycles needed before first
instruction)

6

–

WDT reset

4

–

Reset (RST/NMI)

4

–

Action

4.5.1.5.2 Format II (Single-Operand) Instruction Cycles and Lengths
Table 4-9 lists the length and the CPU cycles for all addressing modes of the MSP430 single-operand
instructions.
Table 4-9. MSP430 Format II Instruction Cycles and Length
No. of Cycles
RRA, RRC
SWPB, SXT

PUSH

CALL

Length of
Instruction

Rn

1

3

4

1

SWPB R5

@Rn

3

3

4

1

RRC @R9

Addressing Mode

Example

3

3

4

1

SWPB @R10+

N/A

3

4

2

CALL #LABEL

X(Rn)

4

4

5

2

CALL 2(R7)

EDE

4

4

5

2

PUSH EDE

&EDE

4

4

6

2

SXT &EDE

@Rn+
#N

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

141

MSP430 and MSP430X Instructions

www.ti.com

4.5.1.5.3 Jump Instructions Cycles and Lengths
All jump instructions require one code word and take two CPU cycles to execute, regardless of whether
the jump is taken or not.
4.5.1.5.4 Format I (Double-Operand) Instruction Cycles and Lengths
Table 4-10 lists the length and CPU cycles for all addressing modes of the MSP430 Format I instructions.
Table 4-10. MSP430 Format I Instructions Cycles and Length
Addressing Mode

No. of Cycles

Length of
Instruction

Rm

1

1

MOV R5,R8

PC

3

1

BR R9

4

(1)

2

ADD R5,4(R6)

EDE

4

(1)

2

XOR R8,EDE

&EDE

4 (1)

2

MOV R5,&EDE

Rm

2

1

AND @R4,R5

PC

4

1

BR @R8

x(Rm)

5

(1)

2

XOR @R5,8(R6)

EDE

5 (1)

2

MOV @R5,EDE

(1)

Source
Rn

Destination

x(Rm)

@Rn

&EDE
@Rn+

Rm
PC

1

BR @R9+

2

XOR @R5,8(R6)

EDE

5 (1)

2

MOV @R9+,EDE

(1)

MOV #20,R9
BR #2AEh

3

MOV #0300h,0(SP)

EDE

5

(1)

3

ADD #33,EDE

&EDE

5 (1)

3

ADD #33,&EDE

Rm

3

2

MOV 2(R5),R7

PC

5

2

BR 2(R6)

6

(1)

3

MOV 4(R7),TONI

x(Rm)

6

(1)

3

ADD 4(R4),6(R9)

&TONI

6 (1)

3

MOV 2(R4),&TONI

Rm

3

2

AND EDE,R6

PC

5

2

BR EDE

TONI

6

(1)

3

CMP EDE,TONI

x(Rm)

6 (1)

3

MOV EDE,0(SP)

(1)

Rm
PC

6

3

MOV EDE,&TONI

3

2

MOV &EDE,R8

5

2

BR &EDE

TONI

6 (1)

3

MOV &EDE,TONI

x(Rm)

6 (1)

3

MOV &EDE,0(SP)

(1)

3

MOV &EDE,&TONI

&TONI

CPUX

MOV @R9+,&EDE

2
2

&TONI

142

2

2
3

TONI

(1)

5

5 (1)

x(Rm)

&EDE

ADD @R5+,R6

4

PC

EDE

XOR @R5,&EDE

1

5 (1)

Rm

x(Rn)

2

2

x(Rm)

&EDE
#N

5

Example

6

MOV, BIT, and CMP instructions execute in one fewer cycle.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MSP430 and MSP430X Instructions

www.ti.com

4.5.2 MSP430X Extended Instructions
The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space. Most
MSP430X instructions require an additional word of op-code called the extension word. Some extended
instructions do not require an additional word and are noted in the instruction description. All addresses,
indexes, and immediate numbers have 20-bit values when preceded by the extension word.
There are two types of extension words:
• Register or register mode for Format I instructions and register mode for Format II instructions
• Extension word for all other address mode combinations
4.5.2.1

Register Mode Extension Word

The register mode extension word is shown in Figure 4-25 and described in Table 4-11. An example is
shown in Figure 4-27.
15

12

11

10

1

0001

9
00

8

7

6

5

4

ZC

#

A/L

0

0

3

0
(n−1)/Rn

Figure 4-25. Extension Word for Register Modes
Table 4-11. Description of the Extension Word Bits for Register Mode
Bit

Description

15:11

Extension word op-code. Op-codes 1800h to 1FFFh are extension words.

10:9

Reserved

ZC

Zero carry

#

The executed instruction uses the status of the carry bit C.

1

The executed instruction uses the carry bit as 0. The carry bit is defined by the result of the final operation after
instruction execution.

Repetition

A/L

4.5.2.2

0

0

The number of instruction repetitions is set by extension word bits 3:0.

1

The number of instruction repetitions is defined by the value of the four LSBs of Rn. See description for bits 3:0.

Data length extension. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used data
length of the instruction.
A/L

B/W

Comment

0

0

Reserved

0

1

20-bit address word

1

0

16-bit word

1

1

8-bit byte

5:4

Reserved

3:0

Repetition count
#=0

These four bits set the repetition count n. These bits contain n – 1.

#=1

These four bits define the CPU register whose bits 3:0 set the number of repetitions. Rn.3:0 contain n – 1.

Non-Register Mode Extension Word

The extension word for non-register modes is shown in Figure 4-26 and described in Table 4-12. An
example is shown in Figure 4-28.
15
0

0

0

12

11

1

1

10

7

Source bits 19:16

6

5

4

A/L

0

0

3

0

Destination bits 19:16

Figure 4-26. Extension Word for Non-Register Modes
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

143

MSP430 and MSP430X Instructions

www.ti.com

Table 4-12. Description of Extension Word Bits for Non-Register Modes
Bit

Description

15:11

Extension word op-code. Op-codes 1800h to 1FFFh are extension words.

Source Bits The four MSBs of the 20-bit source. Depending on the source addressing mode, these four MSBs may belong to an
19:16
immediate operand, an index, or to an absolute address.
A/L

Data length extension. Together with the B/W bits of the following MSP430 instruction, the AL bit defines the used
data length of the instruction.
A/L

5:4

B/W Comment

0

0

Reserved

0

1

20-bit address word

1

0

16-bit word

1

1

8-bit byte

Reserved

Destination The four MSBs of the 20-bit destination. Depending on the destination addressing mode, these four MSBs may
Bits 19:16 belong to an index or to an absolute address.

NOTE:

B/W and A/L bit settings for SWPBX and SXTX

A/L
0
0
1
1
15

14

13

12

11

0

0

0

1

1

Op-code
XORX.A

B/W
0
1
0
1
10

SWPBX.A, SXTX.A
N/A
SWPB.W, SXTX.W
N/A
9

00

8

7

6

ZC

#

A/L

Rsvd

(n−1)/Rn

Ad

B/W

As

Rdst

Rsrc

5

4

3

2

1

0

R9,R8
1: Repetition count
in bits 3:0
0: Use Carry

0

0

0

14(XOR)
XORX instruction

1

1

0
9

0

01: Address word

0

0

0

0

0

1

0

8(R8)
Destination R8

Source R9
Destination
register mode

Source
register mode

Figure 4-27. Example for Extended Register or Register Instruction

144

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MSP430 and MSP430X Instructions

www.ti.com
15

14

13

12

11

0

0

0

1

1

10

9

8

7

6

Source 19:16

Op-code

Ad

Rsrc

5

4

3

2

1

0

A/L

Rsvd

Destination 19:16

B/W

As

Rdst

Source 15:0
Destination 15:0
XORX.A #12345h, 45678h(R15)

X(Rn)

18xx extension word
0

0

0

1

01: Address
word

@PC+

12345h
1

1

14 (XOR)

0 (PC)

1

0

0

4

1

3

15 (R15)

Immediate operand LSBs: 2345h
Index destination LSBs: 5678h

Figure 4-28. Example for Extended Immediate or Indexed Instruction

4.5.2.3

Extended Double-Operand (Format I) Instructions

All 12 double-operand instructions have extended versions as listed in Table 4-13.
Table 4-13. Extended Double-Operand Instructions
Mnemonic

Operands

Operation

MOVX(.B,.A)

src,dst

ADDX(.B,.A)

src,dst

ADDCX(.B,.A)
SUBX(.B,.A)

Status Bits (1)
V

N

Z

C

src → dst

–

–

–

–

src + dst → dst

*

*

*

*

src,dst

src + dst + C → dst

*

*

*

*

src,dst

dst + .not.src + 1 → dst

*

*

*

*

SUBCX(.B,.A)

src,dst

dst + .not.src + C → dst

*

*

*

*

CMPX(.B,.A)

src,dst

dst – src

*

*

*

*

DADDX(.B,.A)

src,dst

src + dst + C → dst (decimal)

*

*

*

*

BITX(.B,.A)

src,dst

src .and. dst

0

*

*

Z

BICX(.B,.A)

src,dst

.not.src .and. dst → dst

–

–

–

–

BISX(.B,.A)

src,dst

src .or. dst → dst

–

–

–

–

XORX(.B,.A)

src,dst

src .xor. dst → dst

*

*

*

Z

ANDX(.B,.A)

src,dst

src .and. dst → dst

0

*

*

Z

(1)

* = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

145

MSP430 and MSP430X Instructions

www.ti.com

The four possible addressing combinations for the extension word for Format I instructions are shown in
Figure 4-29.
15

14

13

12

11

10

9

8

7

6

5

4

0

0

0

1

1

0

0

ZC

#

A/L

0

0

n−1/Rn

0

B/W

0

0

dst

A/L

0

0

Op-code

0

0

0

src

1

1

src.19:16

Op-code

src

Ad

B/W

3

0

0

0

0

0

dst

As

src.15:0

0

0

0

1

1

0

0

0

src

Op-code

0

A/L

Ad

B/W

0

dst.19:16

0
As

dst

dst.15:0

0

0

0

1

1

src.19:16
src

Op-code

A/L
Ad

0

0

dst.19:16

As

B/W

dst

src.15:0
dst.15:0

Figure 4-29. Extended Format I Instruction Formats
If the 20-bit address of a source or destination operand is located in memory, not in a CPU register, then
two words are used for this operand as shown in Figure 4-30.
15
Address+2
Address

14

13

12

11

10

9

8

7

6

5

4

0 .......................................................................................0

3

2

1

0

19:16

Operand LSBs 15:0

Figure 4-30. 20-Bit Addresses in Memory

146

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MSP430 and MSP430X Instructions

www.ti.com

4.5.2.4

Extended Single-Operand (Format II) Instructions

Extended MSP430X Format II instructions are listed in Table 4-14.
Table 4-14. Extended Single-Operand Instructions
Status Bits (1)

Mnemonic

Operands

Operation

CALLA

dst

Call indirect to subroutine (20-bit address)

POPM.A

#n,Rdst

Pop n 20-bit registers from stack

1 to 16

POPM.W

#n,Rdst

Pop n 16-bit registers from stack

PUSHM.A

#n,Rsrc

Push n 20-bit registers to stack

PUSHM.W

#n,Rsrc

Push n 16-bit registers to stack

PUSHX(.B,.A)

src

Push 8-, 16-, or 20-bit source to stack

RRCM(.A)

#n,Rdst

Rotate right Rdst n bits through carry (16-, 20-bit register)

RRUM(.A)

#n,Rdst

Rotate right Rdst n bits unsigned (16-, 20-bit register)

RRAM(.A)

#n,Rdst

RLAM(.A)

#n,Rdst

RRCX(.B,.A)

dst

RRUX(.B,.A)
RRAX(.B,.A)

V

N

Z

C

–

–

–

–

–

–

–

–

1 to 16

–

–

–

–

1 to 16

–

–

–

–

1 to 16

–

–

–

–

–

–

–

–

1 to 4

0

*

*

*

1 to 4

0

*

*

*

Rotate right Rdst n bits arithmetically (16-, 20-bit register)

1 to 4

0

*

*

*

Rotate left Rdst n bits arithmetically (16-, 20-bit register)

1 to 4

*

*

*

*

Rotate right dst through carry (8-, 16-, 20-bit data)

1

0

*

*

*

Rdst

Rotate right dst unsigned (8-, 16-, 20-bit)

1

0

*

*

*

dst

Rotate right dst arithmetically

1

0

*

*

*

SWPBX(.A)

dst

Exchange low byte with high byte

1

–

–

–

–

SXTX(.A)

Rdst

Bit7 → bit8 ... bit19

1

0

*

*

Z

SXTX(.A)

dst

Bit7 → bit8 ... MSB

1

0

*

*

Z

(1)

n

* = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

The three possible addressing mode combinations for Format II instructions are shown in Figure 4-31.
15

14

13

12

11

10

9

8

7

6

5

4

0

0

0

1

1

0

0

ZC

#

A/L

0

0

n−1/Rn

B/W

0

0

dst

A/L

0

0

B/W

1

x

dst

A/L

0

0

dst.19:16

B/W

x

1

dst

Op-code

0

0

0

1

1

0

0

0

0

Op-code

0

0

0

1

1

0

0

0

0

Op-code

3

0

0

0

0

0

dst.15:0

Figure 4-31. Extended Format II Instruction Format

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

147

MSP430 and MSP430X Instructions

www.ti.com

4.5.2.4.1 Extended Format II Instruction Format Exceptions
Exceptions for the Format II instruction formats are shown in Figure 4-32 through Figure 4-35.
15

8

7

Op-code

4

3

n−1

0
Rdst − n+1

Figure 4-32. PUSHM and POPM Instruction Format
15

12
C

11

10

9

4

n−1

3

Op-code

0
Rdst

Figure 4-33. RRCM, RRAM, RRUM, and RLAM Instruction Format
15

12

11

8

7

4

3

0

C

Rsrc

Op-code

0(PC)

C

#imm/abs19:16

Op-code

0(PC)

#imm15:0 / &abs15:0

C

Rsrc

Op-code

0(PC)

index15:0

Figure 4-34. BRA Instruction Format
15

4

3

0

Op-code

Rdst

Op-code

Rdst
index15:0

Op-code

#imm/ix/abs19:16

#imm15:0 / index15:0 / &abs15:0

Figure 4-35. CALLA Instruction Format

148

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MSP430 and MSP430X Instructions

www.ti.com

4.5.2.5

Extended Emulated Instructions

The extended instructions together with the constant generator form the extended emulated instructions.
Table 4-15 lists the emulated instructions.
Table 4-15. Extended Emulated Instructions
Instruction

Explanation

Emulation

ADCX(.B,.A) dst

Add carry to dst

ADDCX(.B,.A) #0,dst

BRA dst

Branch indirect dst

MOVA dst,PC

RETA

Return from subroutine

MOVA @SP+,PC

CLRA Rdst

Clear Rdst

MOV #0,Rdst

CLRX(.B,.A) dst

Clear dst

MOVX(.B,.A) #0,dst

DADCX(.B,.A) dst

Add carry to dst decimally

DADDX(.B,.A) #0,dst

DECX(.B,.A) dst

Decrement dst by 1

SUBX(.B,.A) #1,dst

DECDA Rdst

Decrement Rdst by 2

SUBA #2,Rdst

DECDX(.B,.A) dst

Decrement dst by 2

SUBX(.B,.A) #2,dst

INCX(.B,.A) dst

Increment dst by 1

ADDX(.B,.A) #1,dst

INCDA Rdst

Increment Rdst by 2

ADDA #2,Rdst

INCDX(.B,.A) dst

Increment dst by 2

ADDX(.B,.A) #2,dst

INVX(.B,.A) dst

Invert dst

XORX(.B,.A) #-1,dst

RLAX(.B,.A) dst

Shift left dst arithmetically

ADDX(.B,.A) dst,dst

RLCX(.B,.A) dst

Shift left dst logically through carry

ADDCX(.B,.A) dst,dst

SBCX(.B,.A) dst

Subtract carry from dst

SUBCX(.B,.A) #0,dst

TSTA Rdst

Test Rdst (compare with 0)

CMPA #0,Rdst

TSTX(.B,.A) dst

Test dst (compare with 0)

CMPX(.B,.A) #0,dst

POPX dst

Pop to dst

MOVX(.B, .A) @SP+,dst

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

149

MSP430 and MSP430X Instructions

4.5.2.6

www.ti.com

MSP430X Address Instructions

MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode,
except for the MOVA instruction as listed in Table 4-16. Restricting the addressing modes removes the
need for the additional extension-word op-code improving code density and execution time. Address
instructions should be used any time an MSP430X instruction is needed with the corresponding restricted
addressing mode.
Table 4-16. Address Instructions, Operate on 20-Bit Register Data
Status Bits (1)

Mnemonic

Operands

Operation

V

N

Z

C

ADDA

Rsrc,Rdst

Add source to destination register

*

*

*

*

Move source to destination

–

–

–

–

Compare source to destination register

*

*

*

*

Subtract source from destination register

*

*

*

*

#imm20,Rdst
MOVA

Rsrc,Rdst
#imm20,Rdst
z16(Rsrc),Rdst
EDE,Rdst
&abs20,Rdst
@Rsrc,Rdst
@Rsrc+,Rdst
Rsrc,z16(Rdst)
Rsrc,&abs20

CMPA

Rsrc,Rdst
#imm20,Rdst

SUBA

Rsrc,Rdst
#imm20,Rdst

(1)

150

CPUX

* = Status bit is affected.
– = Status bit is not affected.
0 = Status bit is cleared.
1 = Status bit is set.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MSP430 and MSP430X Instructions

www.ti.com

4.5.2.7

MSP430X Instruction Execution

The number of CPU clock cycles required for an MSP430X instruction depends on the instruction format
and the addressing modes used, not the instruction itself. The number of clock cycles refers to MCLK.
4.5.2.7.1 MSP430X Format II (Single-Operand) Instruction Cycles and Lengths
Table 4-17 lists the length and the CPU cycles for all addressing modes of the MSP430X extended singleoperand instructions.
Table 4-17. MSP430X Format II Instruction Cycles and Length
Instruction

Execution Cycles, Length of Instruction (Words)
Rn

@Rn

@Rn+

#N

X(Rn)

EDE

&EDE

RRAM

n, 1

–

–

–

–

–

–

RRCM

n, 1

–

–

–

–

–

–

RRUM

n, 1

–

–

–

–

–

–

RLAM

n, 1

–

–

–

–

–

–

PUSHM

2+n, 1

–

–

–

–

–

–

PUSHM.A

2+2n, 1

–

–

–

–

–

–

POPM

2+n, 1

–

–

–

–

–

–

POPM.A

2+2n, 1

–

–

–

–

–

–

5, 1

6, 1

6, 1

5, 2

5 (1), 2

7, 2

7, 2

RRAX(.B)

1+n, 2

4, 2

4, 2

–

5, 3

5, 3

5, 3

RRAX.A

1+n, 2

6, 2

6, 2

–

7, 3

7, 3

7, 3

RRCX(.B)

1+n, 2

4, 2

4, 2

–

5, 3

5, 3

5, 3

RRCX.A

1+n, 2

6, 2

6, 2

–

7, 3

7, 3

7, 3

CALLA

(1)

PUSHX(.B)

4, 2

4, 2

4, 2

4, 3

5 ,3

5, 3

5, 3

PUSHX.A

5, 2

6, 2

6, 2

5, 3

7 (1), 3

7, 3

7, 3

POPX(.B)

3, 2

–

–

–

5, 3

5, 3

5, 3

POPX.A

4, 2

–

–

–

7, 3

7, 3

7, 3

(1)

Add one cycle when Rn = SP

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

151

MSP430 and MSP430X Instructions

www.ti.com

4.5.2.7.2 MSP430X Format I (Double-Operand) Instruction Cycles and Lengths
Table 4-18 lists the length and CPU cycles for all addressing modes of the MSP430X extended Format I
instructions.
Table 4-18. MSP430X Format I Instruction Cycles and Length
Addressing Mode
Source

Destination

Rn

.A

.B/.W/.A

Rm (1)

2

2

2

BITX.B R5,R8

PC

4

4

3

ANDX.A R5,4(R6)

5 (2)

7 (3)

3

XORX R8,EDE

(2)

(3)

Rm

152

5

6

2

ADDX @R9,PC

6 (2)

9 (3)

3

ANDX.A @R5,4(R6)

(2)

(3)

3

XORX @R8,EDE

3

BITX.B @R5,&EDE

3

4

2

BITX @R5+,R8

Rm

9

5

6

2

ADDX.A @R9+,PC

6 (2)

9 (3)

3

ANDX @R5+,4(R6)

(2)

(3)

EDE

6

3

XORX.B @R8+,EDE

&EDE

6 (2)

9 (3)

3

BITX @R5+,&EDE

Rm

3

3

3

BITX #20,R8

PC (4)

4

4

3

ADDX.A #FE000h,PC

(3)

(2)

9

x(Rm)

6

4

ANDX #1234,4(R6)

EDE

6 (2)

8 (3)

4

XORX #A5A5h,EDE

(2)

(3)

4

BITX.B #12,&EDE

Rm
(4)

6

8

8

4

5

3

BITX 2(R5),R8

6

7

(2)

3

SUBX.A 2(R6),PC

(3)

TONI

7

4

ANDX 4(R7),4(R6)

x(Rm)

7 (2)

10 (3)

4

XORX.B 2(R6),EDE

(2)

(3)

Rm
(4)

TONI

(4)

BITX @R5,R8

9 (3)

PC

(3)

BITX.W R5,&EDE

2

6 (2)

&TONI

(2)

3

4

7

6

PC

(1)

3

&EDE

&EDE

&EDE

5

7

EDE

x(Rm)

EDE

ADDX R9,PC

5

PC

x(Rn)

2

(3)

EDE

x(Rm)

#N

(2)

x(Rm)

PC

@Rn+

Examples

.B/.W

&EDE
@Rn

Length of
Instruction

No. of Cycles

7

4

10

4

BITX 8(SP),&EDE

5

3

BITX.B EDE,R8

10

6

7

3

ADDX.A EDE,PC

7 (2)

10 (3)

4

ANDX EDE,4(R6)

(2)

(3)

x(Rm)

7

4

ANDX EDE,TONI

&TONI

7 (2)

10 (3)

4

BITX EDE,&TONI

4

5

3

BITX &EDE,R8

Rm

10

PC (4)

6

7

3

ADDX.A &EDE,PC

TONI

7 (2)

10 (3)

4

ANDX.B &EDE,4(R6)

(2)

(3)

4

XORX &EDE,TONI

10 (3)

4

BITX &EDE,&TONI

x(Rm)

7

&TONI

7 (2)

10

Repeat instructions require n + 1 cycles, where n is the number of times the instruction is executed.
Reduce the cycle count by one for MOV, BIT, and CMP instructions.
Reduce the cycle count by two for MOV, BIT, and CMP instructions.
Reduce the cycle count by one for MOV, ADD, and SUB instructions.

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MSP430 and MSP430X Instructions

www.ti.com

4.5.2.7.3 MSP430X Address Instruction Cycles and Lengths
Table 4-19 lists the length and the CPU cycles for all addressing modes of the MSP430X address
instructions.
Table 4-19. Address Instruction Cycles and Length
Addressing Mode

MOVA

CMPA
ADDA
SUBA

Rn

1

1

1

1

CMPA R5,R8

PC

3

3

1

1

SUBA R9,PC

x(Rm)

4

–

2

–

MOVA R5,4(R6)

EDE

4

–

2

–

MOVA R8,EDE

&EDE

4

–

2

–

MOVA R5,&EDE

Rm

3

–

1

–

MOVA @R5,R8

PC

5

–

1

–

MOVA @R9,PC

Rm

3

–

1

–

MOVA @R5+,R8

PC

5

–

1

–

MOVA @R9+,PC

Rm

2

3

2

2

CMPA #20,R8

PC

3

3

2

2

SUBA #FE000h,PC

Rm

4

–

2

–

MOVA 2(R5),R8

PC

6

–

2

–

MOVA 2(R6),PC

Rm

4

–

2

–

MOVA EDE,R8

PC

6

–

2

–

MOVA EDE,PC

Rm

4

–

2

–

MOVA &EDE,R8

PC

6

–

2

–

MOVA &EDE,PC

Rn

#N

x(Rn)

EDE

&EDE

Example

CMPA
ADDA
SUBA

Destination

@Rn+

Length of Instruction
(Words)

MOVA
BRA

Source

@Rn

Execution Time
(MCLK Cycles)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

153

Instruction Set Description

4.6

www.ti.com

Instruction Set Description
Table 4-20 shows all available instructions:
Table 4-20. Instruction Map of MSP430X
000

040

080

RRC

RRC.
B

SWP
B

0xxx
10xx
14xx
18xx
1Cxx
20xx
24xx
28xx
2Cxx
30xx
34xx
38xx
3Cxx
4xxx
5xxx
6xxx
7xxx
8xxx
9xxx
Axxx
Bxxx
Cxxx
Dxxx
Exxx
Fxxx

154

CPUX

0C0
100
140
180
1C0
200
240
280
2C0
MOVA, CMPA, ADDA, SUBA, RRCM, RRAM, RLAM, RRUM
RRA.
PUS PUS
RRA
SXT
CALL
B
H
H.B
PUSHM.A, POPM.A, PUSHM.W, POPM.W

300

340

RETI

CALL
A

380

3C0

Extension word for Format I and Format II instructions
JNE, JNZ
JEQ, JZ
JNC
JC
JN
JGE
JL
JMP
MOV, MOV.B
ADD, ADD.B
ADDC, ADDC.B
SUBC, SUBC.B
SUB, SUB.B
CMP, CMP.B
DADD, DADD.B
BIT, BIT.B
BIC, BIC.B
BIS, BIS.B
XOR, XOR.B
AND, AND.B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.1 Extended Instruction Binary Descriptions
Detailed MSP430X instruction binary descriptions are shown in the following tables.
Instruction
Group

Instruction
15
MOVA

Instruction
Identifier

src or data.19:16
12

11

8

7

dst
4

3

0

src

0

0

0

0

dst

MOVA @Rsrc,Rdst

0

src

0

0

0

1

dst

MOVA @Rsrc+,Rdst

0

&abs.19:16

0

0

1

0

dst

MOVA &abs20,Rdst

0

0

src

0

1

1

dst

MOVA z16(Rsrc),Rdst

0

0

src

1

1

0

&abs.19:16

1

1

1

dst

MOVA Rsrc,z16(Rdst)

0

0

0

dst

MOVA #imm20,Rdst

0

0

1

dst

CMPA #imm20,Rdst

0

1

0

dst

ADDA #imm20,Rdst

0

1

1

dst

SUBA #imm20,Rdst

0

0

0

0

0

0

0

0

0

0

0

0

0

0

&abs.15:0
0
x.15:0
0

MOVA Rsrc,&abs20

&abs.15:0
0

0

0

0

src

0
x.15:0

0

0

0

0

imm.19:16

1
imm.15:0

CMPA

0

0

0

0

imm.19:16

ADDA

0

0

0

0

imm.19:16

SUBA

0

0

0

0

imm.19:16

MOVA

0

0

0

0

src

1

1

0

0

dst

MOVA Rsrc,Rdst

CMPA

0

0

0

0

src

1

1

0

1

dst

CMPA Rsrc,Rdst

ADDA

0

0

0

0

src

1

1

1

0

dst

ADDA Rsrc,Rdst

SUBA

0

0

0

0

src

1

1

1

1

dst

SUBA Rsrc,Rdst

1
imm.15:0
1
imm.15:0
1
imm.15:0

Instruction
Group

Instruction
15

Instruction
Identifier

Bit Loc. Inst. ID
12

11

10

9

8

7

dst
4

3

0

RRCM.A

0

0

0

0

n–1

0

0

0

1

0

0

dst

RRCM.A #n,Rdst

RRAM.A

0

0

0

0

n–1

0

1

0

1

0

0

dst

RRAM.A #n,Rdst

RLAM.A

0

0

0

0

n–1

1

0

0

1

0

0

dst

RLAM.A #n,Rdst

RRUM.A

0

0

0

0

n–1

1

1

0

1

0

0

dst

RRUM.A #n,Rdst

RRCM.W

0

0

0

0

n–1

0

0

0

1

0

1

dst

RRCM.W #n,Rdst

RRAM.W

0

0

0

0

n–1

0

1

0

1

0

1

dst

RRAM.W #n,Rdst

RLAM.W

0

0

0

0

n–1

1

0

0

1

0

1

dst

RLAM.W #n,Rdst

RRUM.W

0

0

0

0

n–1

1

1

0

1

0

1

dst

RRUM.W #n,Rdst

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX 155

Instruction Set Description
Instruction

www.ti.com
Instruction Identifier

15

dst

12

11

8

7

6

5

4

3

RETI

0

0

0

1

0

0

1

1

0

0

0

0

0

0

CALLA

0

0

0

1

0

0

1

1

0

1

0

0

dst

CALLA Rdst

0

0

0

1

0

0

1

1

0

1

0

1

dst

CALLA x(Rdst)

0

0

0

x.15:0
0

0

0

1

0

0

1

1

0

1

1

0

dst

CALLA @Rdst

0

0

0

1

0

0

1

1

0

1

1

1

dst

CALLA @Rdst+

0

0

0

1

0

0

1

1

1

0

0

0

&abs.19:16

CALLA &abs20

0

0

1

x.19:16

&abs.15:0
0

0

0

1

0

0

1

1

1

CALLA EDE
CALLA x(PC)

x.15:0
0

0

0

1

0

0

1

1

1

0

1

1

CALLA #imm20

imm.19:16

imm.15:0
Reserved

0

0

0

1

0

0

1

1

1

0

1

0

x

x

Reserved

0

0

0

1

0

0

1

1

1

1

x

x

x

x

PUSHM.A

0

0

0

1

0

1

0

0

n–1

PUSHM.W

0

0

0

1

0

1

0

1

POPM.A

0

0

0

1

0

1

1

0

POPM.W

0

0

0

1

0

1

1

1

156

CPUX

x

x

x

x

dst

PUSHM.A #n,Rdst

n–1

dst

PUSHM.W #n,Rdst

n–1

dst – n + 1

POPM.A #n,Rdst

n–1

dst – n + 1

POPM.W #n,Rdst

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2 MSP430 Instructions
The MSP430 instructions are listed and described on the following pages.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

157

Instruction Set Description

4.6.2.1

www.ti.com

ADC
* ADC[.W]
* ADC.B
Syntax

Add carry to destination
Add carry to destination
ADC dst or

ADC.W dst

ADC.B dst

Operation
Emulation

dst + C → dst
ADDC #0,dst
ADDC.B #0,dst

Description
Status Bits

Mode Bits
Example
ADD
ADC

Example
ADD.B
ADC.B

158

CPUX

The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.
N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if dst was incremented from 0FFFFh to 0000, reset otherwise
Set if dst was incremented from 0FFh to 00, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset
OSCOFF, CPUOFF, and GIE are not affected.
The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to by R12.
@R13,0(R12)
2(R12)

; Add LSDs
; Add carry to MSD

The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by R12.
@R13,0(R12)
1(R12)

; Add LSDs
; Add carry to MSD

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.2

ADD
ADD[.W]
ADD.B
Syntax

Add source word to destination word
Add source byte to destination byte
ADD src,dst or ADD.W src,dst
ADD.B src,dst

Operation
Description
Status Bits

Mode Bits
Example
ADD.W

Example

ADD.W
JC
...

Example

ADD.B
JNC
...

src + dst → dst
The source operand is added to the destination operand. The previous content of the
destination is lost.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
Ten is added to the 16-bit counter CNTR located in lower 64 K.
#10,&CNTR

; Add 10 to 16-bit counter

A table word pointed to by R5 (20-bit address in R5) is added to R6. The jump to label
TONI is performed on a carry.
@R5,R6
TONI

; Add table word to R6. R6.19:16 = 0
; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1. R6.19:8 = 0
@R5+,R6
TONI

; Add byte to R6. R5 + 1. R6: 000xxh
; Jump if no carry
; Carry occurred

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

159

Instruction Set Description

4.6.2.3

www.ti.com

ADDC
ADDC[.W]
ADDC.B
Syntax

Add source word and carry to destination word
Add source byte and carry to destination byte
ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

Operation
Description
Status Bits

Mode Bits
Example

ADDC.W

Example

ADDC.W
JC
...

Example

ADDC.B
JNC
...

160

CPUX

src + dst + C → dst
The source operand and the carry bit C are added to the destination operand. The
previous content of the destination is lost.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
Constant value 15 and the carry of the previous instruction are added to the 16-bit
counter CNTR located in lower 64 K.
#15,&CNTR

; Add 15 + C to 16-bit CNTR

A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry. R6.19:16 = 0
@R5,R6
TONI

; Add table word + C to R6
; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The
jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1. R6.19:8 = 0
@R5+,R6
TONI

; Add table byte + C to R6. R5 + 1
; Jump if no carry
; Carry occurred

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.4

AND
AND[.W]
AND.B
Syntax

Logical AND of source word with destination word
Logical AND of source byte with destination byte
AND src,dst or AND.W src,dst
AND.B src,dst

Operation
Description
Status Bits

Mode Bits
Example

MOV
AND
JZ
...

src .and. dst → dst
The source operand and the destination operand are logically ANDed. The result is
placed into the destination. The source operand is not affected.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The bits set in R5 (16-bit data) are used as a mask (AA55h) for the word TOM located in
the lower 64 K. If the result is zero, a branch is taken to label TONI. R5.19:16 = 0
#AA55h,R5
R5,&TOM
TONI

;
;
;
;

Load 16-bit mask to R5
TOM .and. R5 -> TOM
Jump if result 0
Result > 0

or shorter:
AND
JZ

Example

AND.B

#AA55h,&TOM
TONI

; TOM .and. AA55h -> TOM
; Jump if result 0

A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R5 is
incremented by 1 after the fetching of the byte. R6.19:8 = 0
@R5+,R6

; AND table byte with R6. R5 + 1

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

161

Instruction Set Description

4.6.2.5

www.ti.com

BIC
BIC[.W]
BIC.B
Syntax

Clear bits set in source word in destination word
Clear bits set in source byte in destination byte
BIC src,dst or BIC.W src,dst
BIC.B src,dst

Operation
Description
Status Bits

Mode Bits
Example
BIC

Example
BIC.W

Example
BIC.B

162

CPUX

(.not. src) .and. dst → dst
The inverted source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected.
N: Not affected
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
The bits 15:14 of R5 (16-bit data) are cleared. R5.19:16 = 0
#0C000h,R5

; Clear R5.19:14 bits

A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0
@R5,R7

; Clear bits in R7 set in @R5

A table byte pointed to by R5 (20-bit address) is used to clear bits in Port1.
@R5,&P1OUT

; Clear I/O port P1 bits set in @R5

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.6

BIS
BIS[.W]
BIS.B
Syntax

Set bits set in source word in destination word
Set bits set in source byte in destination byte
BIS src,dst or BIS.W src,dst
BIS.B src,dst

Operation
Description
Status Bits

Mode Bits
Example
BIS

Example
BIS.W

Example

BIS.B

src .or. dst → dst
The source operand and the destination operand are logically ORed. The result is placed
into the destination. The source operand is not affected.
N: Not affected
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
Bits 15 and 13 of R5 (16-bit data) are set to one. R5.19:16 = 0
#A000h,R5

; Set R5 bits

A table word pointed to by R5 (20-bit address) is used to set bits in R7. R7.19:16 = 0
@R5,R7

; Set bits in R7

A table byte pointed to by R5 (20-bit address) is used to set bits in Port1. R5 is
incremented by 1 afterwards.
@R5+,&P1OUT

; Set I/O port P1 bits. R5 + 1

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

163

Instruction Set Description

4.6.2.7

www.ti.com

BIT
BIT[.W]
BIT.B
Syntax

Test bits set in source word in destination word
Test bits set in source byte in destination byte
BIT src,dst or BIT.W src,dst
BIT.B src,dst

Operation
Description

Status Bits

Mode Bits
Example

BIT
JNZ
...

Example

BIT.W
JC
...

Example

BIT.B
JNC
...

164

CPUX

src .and. dst
The source operand and the destination operand are logically ANDed. The result affects
only the status bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared!
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
Test if one (or both) of bits 15 and 14 of R5 (16-bit data) is set. Jump to label TONI if this
is the case. R5.19:16 are not affected.
#C000h,R5
TONI

; Test R5.15:14 bits
; At least one bit is set in R5
; Both bits are reset

A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set. R7.19:16 are not affected.
@R5,R7
TONI

; Test bits in R7
; At least one bit is set
; Both are reset

A table byte pointed to by R5 (20-bit address) is used to test bits in output Port1. Jump
to label TONI if no bit is set. The next table byte is addressed.
@R5+,&P1OUT
TONI

; Test I/O port P1 bits. R5 + 1
; No corresponding bit is set
; At least one bit is set

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.8

BR, BRANCH
* BR,
BRANCH
Syntax
Operation
Emulation
Description

Status Bits
Example

Branch to destination in lower 64K address space
BR dst

dst → PC
MOV dst,PC

An unconditional branch is taken to an address anywhere in the lower 64K address
space. All source addressing modes can be used. The branch instruction is a word
instruction.
Status bits are not affected.
Examples for all addressing modes are given.

BR

#EXEC

; Branch to label EXEC or direct branch (for example #0A4h)
; Core instruction MOV @PC+,PC

BR

EXEC

; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR

&EXEC

;
;
;
;

BR

R5

; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5

BR

@R5

;
;
;
;

Branch to the address contained in the word
pointed to by R5.
Core instruction MOV @R5,PC
Indirect, indirect R5

BR

@R5+

;
;
;
;
;
;
;

Branch to the address contained in the word pointed
to by R5 and increment pointer in R5 afterwards.
The next time-S/W flow uses R5 pointer-it can
alter program execution due to access to
next address in a table pointed to by R5
Core instruction MOV @R5,PC
Indirect, indirect R5 with autoincrement

BR

X(R5)

;
;
;
;
;

Branch to the address contained in the address
pointed to by R5 + X (for example table with address
starting at X). X can be an address or a label
Core instruction MOV X(R5),PC
Indirect, indirect R5 + X

Branch to the address contained in absolute
address EXEC
Core instruction MOV X(0),PC
Indirect address

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

165

Instruction Set Description

4.6.2.9

www.ti.com

CALL
CALL
Syntax
Operation

Description

Status Bits
Mode Bits
Examples

CALL
CALL

Call a subroutine in lower 64 K
CALL dst

dst → tmp 16-bit dst is evaluated and stored
SP – 2 → SP
PC → @SP updated PC with return address to TOS
tmp → PC saved 16-bit dst to PC
A subroutine call is made from an address in the lower 64 K to a subroutine address in
the lower 64 K. All seven source addressing modes can be used. The call instruction is a
word instruction. The return is made with the RET instruction.
Status bits are not affected.
PC.19:16 cleared (address in lower 64 K)
OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.
Immediate Mode: Call a subroutine at label EXEC (lower 64 K) or call directly to address.
#EXEC
#0AA04h

; Start address EXEC
; Start address 0AA04h

Symbolic Mode: Call a subroutine at the 16-bit address contained in address EXEC.
EXEC is located at the address (PC + X) where X is within PC ± 32 K.
CALL

EXEC

; Start address at @EXEC. z16(PC)

Absolute Mode: Call a subroutine at the 16-bit address contained in absolute address
EXEC in the lower 64 K.
CALL

&EXEC

; Start address at @EXEC

Register mode: Call a subroutine at the 16-bit address contained in register R5.15:0.
CALL

R5

; Start address at R5

Indirect Mode: Call a subroutine at the 16-bit address contained in the word pointed to by
register R5 (20-bit address).
CALL

166

CPUX

@R5

; Start address at @R5

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.10 CLR
* CLR[.W]
* CLR.B
Syntax

Clear destination
Clear destination
CLR dst or

CLR.W dst

CLR.B dst

Operation

0 → dst

Emulation

MOV #0,dst
MOV.B #0,dst

Description
Status Bits
Example
CLR

Example
CLR

Example
CLR.B

The destination operand is cleared.
Status bits are not affected.
RAM word TONI is cleared.
TONI

; 0 -> TONI

Register R5 is cleared.
R5

RAM byte TONI is cleared.
TONI

; 0 -> TONI

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

167

Instruction Set Description

www.ti.com

4.6.2.11 CLRC
* CLRC
Syntax
Operation

Clear carry bit

Emulation
Description
Status Bits

BIC #1,SR

Mode Bits
Example

CLRC
DADD
DADC

168

CPUX

CLRC

0→C
The carry bit (C) is cleared. The clear carry instruction is a word instruction.
N: Not affected
Z: Not affected
C: Cleared
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter pointed to by
R12.

@R13,0(R12)
2(R12)

; C=0: defines start
; add 16-bit counter to low word of 32-bit counter
; add carry to high word of 32-bit counter

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.12 CLRN
* CLRN
Syntax
Operation

Clear negative bit

Emulation
Description

BIC #4,SR

Status Bits

Mode Bits
Example

SUBR

SUBRET

CLRN

0→N
or
(.NOT.src .AND. dst → dst)
The constant 04h is inverted (0FFFBh) and is logically ANDed with the destination
operand. The result is placed into the destination. The clear negative bit instruction is a
word instruction.
N: Reset to 0
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
The negative bit in the SR is cleared. This avoids special treatment with negative
numbers of the subroutine called.
CLRN
CALL
SUBR
......
......
JN
SUBRET
......
......
......
RET

; If input is negative: do nothing and return

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

169

Instruction Set Description

www.ti.com

4.6.2.13 CLRZ
* CLRZ
Syntax
Operation

Clear zero bit

Emulation
Description

BIC #2,SR

Status Bits

Mode Bits
Example

CLRZ

0→Z
or
(.NOT.src .AND. dst → dst)
The constant 02h is inverted (0FFFDh) and logically ANDed with the destination
operand. The result is placed into the destination. The clear zero bit instruction is a word
instruction.
N: Not affected
Z: Reset to 0
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
The zero bit in the SR is cleared.

CLRZ

Indirect, Auto-Increment mode: Call a subroutine at the 16-bit address contained in the
word pointed to by register R5 (20-bit address) and increment the 16-bit address in R5
afterwards by 2. The next time the software uses R5 as a pointer, it can alter the
program execution due to access to the next word address in the table pointed to by R5.
CALL

@R5+

; Start address at @R5. R5 + 2

Indexed mode: Call a subroutine at the 16-bit address contained in the 20-bit address
pointed to by register (R5 + X); for example, a table with addresses starting at X. The
address is within the lower 64KB. X is within ±32KB.
CALL

170

CPUX

X(R5)

; Start address at @(R5+X). z16(R5)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.14 CMP
CMP[.W]
CMP.B
Syntax

Compare source word and destination word
Compare source byte and destination byte
CMP src,dst or CMP.W src,dst
CMP.B src,dst

Operation

Description

Status Bits

Mode Bits
Example

CMP
JEQ
...

Example

CMP.W
JL
...

Example

CMP.B
JEQ
...

(.not.src) + 1 + dst
or
dst – src
The source operand is subtracted from the destination operand. This is made by adding
the 1s complement of the source + 1 to the destination. The result affects only the status
bits in SR.
Register mode: the register bits Rdst.19:16 (.W) resp. Rdst. 19:8 (.B) are not cleared.
N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).
OSCOFF, CPUOFF, and GIE are not affected.
Compare word EDE with a 16-bit constant 1800h. Jump to label TONI if EDE equals the
constant. The address of EDE is within PC + 32 K.
#01800h,EDE
TONI

; Compare word EDE with 1800h
; EDE contains 1800h
; Not equal

A table word pointed to by (R5 + 10) is compared with R7. Jump to label TONI if R7
contains a lower, signed 16-bit number. R7.19:16 is not cleared. The address of the
source operand is a 20-bit address in full memory range.
10(R5),R7
TONI

; Compare two signed numbers
; R7 < 10(R5)
; R7 >= 10(R5)

A table byte pointed to by R5 (20-bit address) is compared to the value in output Port1.
Jump to label TONI if values are equal. The next table byte is addressed.
@R5+,&P1OUT
TONI

; Compare P1 bits with table. R5 + 1
; Equal contents
; Not equal

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

171

Instruction Set Description

www.ti.com

4.6.2.15 DADC
* DADC[.W]
* DADC.B
Syntax

Add carry decimally to destination
Add carry decimally to destination
DADC dst or

DADC.W dst

DADC.B dst

Operation
Emulation

dst + C → dst (decimally)
DADD #0,dst
DADD.B #0,dst

Description
Status Bits

Mode Bits
Example

The
N:
Z:
C:

carry bit (C) is added decimally to the destination.
Set if MSB is 1
Set if dst is 0, reset otherwise
Set if destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise
V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.
The four-digit decimal number contained in R5 is added to an eight-digit decimal number
pointed to by R8.

CLRC
DADD
DADC

Example

R5,0(R8)
2(R8)

172

CPUX

Reset carry
next instruction's start condition is defined
Add LSDs + C
Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal number
pointed to by R8.

CLRC
DADD.B
DADC

;
;
;
;

R5,0(R8)
1(R8)

;
;
;
;

Reset carry
next instruction's start condition is defined
Add LSDs + C
Add carry to MSDs

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.16 DADD
* DADD[.W]
* DADD.B
Syntax

Add source word and carry decimally to destination word
Add source byte and carry decimally to destination byte
DADD src,dst or DADD.W src,dst
DADD.B src,dst

Operation
Description

Status Bits

Mode Bits
Example
DADD

Example

CLRC
DADD.W
DADD.W
JC
...

Example

CLRC
DADD.B

src + dst + C → dst (decimally)
The source operand and the destination operand are treated as two (.B) or four (.W)
binary coded decimals (BCD) with positive signs. The source operand and the carry bit C
are added decimally to the destination operand. The source operand is not affected. The
previous content of the destination is lost. The result is not defined for non-BCD
numbers.
N: Set if MSB of result is 1 (word > 7999h, byte > 79h), reset if MSB is 0
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (word > 9999h, byte > 99h), reset otherwise
V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.
Decimal 10 is added to the 16-bit BCD counter DECCNTR.
#10h,&DECCNTR

; Add 10 to 4-digit BCD counter

The eight-digit BCD number contained in 16-bit RAM addresses BCD and BCD+2 is
added decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5
contain the MSDs). The carry C is added, and cleared.

&BCD,R4
&BCD+2,R5
OVERFLOW

;
;
;
;
;

Clear carry
Add LSDs. R4.19:16 = 0
Add MSDs with carry. R5.19:16 = 0
Result >9999,9999: go to error routine
Result ok

The two-digit BCD number contained in word BCD (16-bit address) is added decimally to
a two-digit BCD number contained in R4. The carry C is added, also. R4.19:8 = 0

&BCD,R4

; Clear carry
; Add BCD to R4 decimally.
R4: 0,00ddh

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

173

Instruction Set Description

www.ti.com

4.6.2.17 DEC
* DEC[.W]
* DEC.B
Syntax

Decrement destination
Decrement destination
DEC dst or

DEC.W dst

DEC.B dst

Operation
Emulation

dst – 1 → dst
SUB #1,dst
SUB.B #1,dst

Description
Status Bits

Mode Bits
Example

The
N:
Z:
C:
V:

destination operand is decremented by one. The original contents are lost.
Set if result is negative, reset if positive
Set if dst contained 1, reset otherwise
Reset if dst contained 0, set otherwise
Set if an arithmetic overflow occurs, otherwise reset.
Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.
OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 1.
DEC

R10

; Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to
; memory location starting with TONI. Tables should not overlap: start of
; destination address TONI must not be within the range EDE to EDE+0FEh

L$1

MOV
MOV
MOV.B
DEC
JNZ

#EDE,R6
#255,R10
@R6+,TONI-EDE-1(R6)
R10
L$1

Do not transfer tables using the routine above with the overlap shown in Figure 4-36.
EDE

TONI
EDE+254

TONI+254

Figure 4-36. Decrement Overlap

174

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.18 DECD
* DECD[.W]
* DECD.B
Syntax

Double-decrement destination
Double-decrement destination
DECD dst or

DECD.W dst

DECD.B dst

Operation
Emulation

dst – 2 → dst
SUB #2,dst
SUB.B #2,dst

Description
Status Bits

Mode Bits
Example

The
N:
Z:
C:
V:

destination operand is decremented by two. The original contents are lost.
Set if result is negative, reset if positive
Set if dst contained 2, reset otherwise
Reset if dst contained 0 or 1, set otherwise
Set if an arithmetic overflow occurs, otherwise reset
Set if initial value of destination was 08001 or 08000h, otherwise reset
Set if initial value of destination was 081 or 080h, otherwise reset
OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 2.
DECD

;
;
;
;

R10

; Decrement R10 by two

Move a block of 255 bytes from memory location starting with EDE to
memory location starting with TONI.
Tables should not overlap: start of destination address TONI must not
be within the range EDE to EDE+0FEh

L$1

Example

MOV
MOV
MOV.B
DECD
JNZ

#EDE,R6
#255,R10
@R6+,TONI-EDE-2(R6)
R10
L$1

Memory at location LEO is decremented by two.
DECD.B

LEO

; Decrement MEM(LEO)

Decrement status byte STATUS by two
DECD.B

STATUS

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

175

Instruction Set Description

www.ti.com

4.6.2.19 DINT
* DINT
Syntax
Operation

Disable (general) interrupts

Emulation
Description

BIC #8,SR

DINT

0 → GIE
or
(0FFF7h .AND. SR → SR / .NOT.src .AND. dst → dst)

Status Bits
Mode Bits
Example

DINT
NOP
MOV
MOV
EINT

All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the SR. The result is placed into
the SR.
Status bits are not affected.
GIE is reset. OSCOFF and CPUOFF are not affected.
The general interrupt enable (GIE) bit in the SR is cleared to allow a nondisrupted move
of a 32-bit counter. This ensures that the counter is not modified during the move by any
interrupt.

COUNTHI,R5
COUNTLO,R6

; All interrupt events using the GIE bit are disabled
; Required due to pipelined CPU architecture
; Copy counter
; All interrupt events using the GIE bit are enabled

NOTE: Disable interrupt
Due to the pipelined CPU architecture, clearing the general interrupt enable (GIE) requires
special care.

•

•

Include at least one instruction between DINT and the start of an code
sequence that requires protection from interrupts. For example: Insert a NOP
instruction after the DINT.
Never clear the general interrupt enable (GIE) immediately after setting it. Insert
at least one instruction in between such sequence.

The rules above apply to all instructions that clear the general interrupt enable bit. Not
following these rules might result in unexpected CPU execution.

176

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.20 EINT
* EINT
Syntax
Operation

Enable (general) interrupts

Emulation
Description

BIS #8,SR

EINT

1 → GIE
or
(0008h .OR. SR → SR / .src .OR. dst → dst)

Status Bits
Mode Bits
Example

All interrupts are enabled.
The constant #08h and the SR are logically ORed. The result is placed into the SR.
Status bits are not affected.
GIE is set. OSCOFF and CPUOFF are not affected.
The general interrupt enable (GIE) bit in the SR is set.
PUSH.B
BIC.B
NOP
EINT

MaskOK

&P1IN
@SP,&P1IFG

BIT
#Mask,@SP
JEQ
MaskOK
......
BIC
#Mask,@SP
......
INCD
SP

;
;
;
;

Reset only accepted flags
Required due to pipelined CPU architecture
Preset port 1 interrupt flags stored on stack
other interrupts are allowed

; Flags are present identically to mask: jump

; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI
NOTE: Enable interrupt
Due to the pipelined CPU architecture, setting the general interrupt enable (GIE) requires
special care.

•
•

•

The instruction immediately after the enable interrupts instruction (EINT) is
always executed, even if an interrupt service request is pending.
Include at least one instruction between the clear of an interrupt enable or
interrupt flag and the EINT instruction. For example: Insert a NOP instruction in
front of the EINT instruction.
Never clear the general interrupt enable (GIE) immediately after setting it. Insert
at least one instruction in between such sequence.

The rules above apply to all instructions that set the general interrupt enable bit. Not
following these rules might result in unexpected CPU execution.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

177

Instruction Set Description

www.ti.com

4.6.2.21 INC
* INC[.W]
* INC.B
Syntax

Increment destination
Increment destination
INC dst or

INC.W dst

INC.B dst

Operation
Emulation
Description
Status Bits

Mode Bits
Example

INC.B
CMP.B
JEQ

178

CPUX

dst + 1 → dst
ADD #1,dst

The destination operand is incremented by one. The original contents are lost.
N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise
C: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
The status byte, STATUS, of a process is incremented. When it is equal to 11, a branch
to OVFL is taken.
STATUS
#11,STATUS
OVFL

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.22 INCD
* INCD[.W]
* INCD.B
Syntax

Double-increment destination
Double-increment destination
INCD dst or

INCD.W dst

INCD.B dst

Operation
Emulation
Description
Status Bits

Mode Bits
Example

dst + 2 → dst
ADD #2,dst

The destination operand is incremented by two. The original contents are lost.
N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise
C: Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise
V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
The item on the top of the stack (TOS) is removed without using a register.

.......
PUSH
R5
INCD

SP

;
;
;
;

R5 is the result of a calculation, which is stored
in the system stack
Remove TOS by double-increment from stack
Do not use INCD.B, SP is a word-aligned register

RET

Example
INCD.B

The byte on the top of the stack is incremented by two.
0(SP)

; Byte on TOS is increment by two

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

179

Instruction Set Description

www.ti.com

4.6.2.23 INV
* INV[.W]
* INV.B
Syntax

Invert destination
Invert destination
INV dst or

INV.W dst

INV.B dst

Operation
Emulation

.not.dst → dst
XOR #0FFFFh,dst
XOR.B #0FFh,dst

Description
Status Bits

Mode Bits
Example
MOV
INV
INC

Example
MOV.B
INV.B
INC.B

180

CPUX

The destination operand is inverted. The original contents are lost.
N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise
C: Set if result is not zero, reset otherwise ( = .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset
OSCOFF, CPUOFF, and GIE are not affected.
Content of R5 is negated (twos complement).
#00AEh,R5
R5
R5

;
; Invert R5,
; R5 is now negated,

R5 = 000AEh
R5 = 0FF51h
R5 = 0FF52h

Content of memory byte LEO is negated.
#0AEh,LEO
LEO
LEO

;
MEM(LEO) = 0AEh
; Invert LEO,
MEM(LEO) = 051h
; MEM(LEO) is negated, MEM(LEO) = 052h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.24 JC, JHS
JC
JHS
Syntax

Jump if carry
Jump if higher or same (unsigned)
JC label
JHS label

Operation

If C = 1: PC + (2 × Offset) → PC
If C = 0: execute the following instruction

Description

The carry bit C in the SR is tested. If it is set, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If C is reset, the instruction after the jump is executed.
JC is used for the test of the carry bit C.
JHS is used for the comparison of unsigned numbers.
Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected.
The state of the port 1 pin P1IN.1 bit defines the program flow.

Status Bits
Mode Bits
Example
BIT.B
JC
...

Example
CMP
JHS
...

Example
CMPA
JHS
...

#2,&P1IN
Label1

; Port 1, bit 1 set? Bit -> C
; Yes, proceed at Label1
; No, continue

If R5 ≥ R6 (unsigned), the program continues at Label2.
R6,R 5
Label2

; Is R5 >= R6? Info to C
; Yes, C = 1
; No, R5 < R6. Continue

If R5 ≥ 12345h (unsigned operands), the program continues at Label2.
#12345h,R5
Label2

; Is R5 >= 12345h? Info to C
; Yes, 12344h < R5 <= F,FFFFh. C = 1
; No, R5 < 12345h. Continue

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

181

Instruction Set Description

www.ti.com

4.6.2.25 JEQ, JZ
JEQ
JZ
Syntax

Jump if equal
Jump if zero
JEQ label
JZ label

Operation

If Z = 1: PC + (2 × Offset) → PC
If Z = 0: execute following instruction

Description

The zero bit Z in the SR is tested. If it is set, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If Z is reset, the instruction after the jump is executed.
JZ is used for the test of the zero bit Z.
JEQ is used for the comparison of operands.
Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected.
The state of the P2IN.0 bit defines the program flow.

Status Bits
Mode Bits
Example
BIT.B
JZ
...

Example
CMPA
JEQ
...

Example

ADDA
JZ
...

182

CPUX

#1,&P2IN
Label1

; Port 2, bit 0 reset?
; Yes, proceed at Label1
; No, set, continue

If R5 = 15000h (20-bit data), the program continues at Label2.
#15000h,R5
Label2

; Is R5 = 15000h? Info to SR
; Yes, R5 = 15000h. Z = 1
; No, R5 not equal 15000h. Continue

R7 (20-bit counter) is incremented. If its content is zero, the program continues at
Label4.
#1,R7
Label4

; Increment R7
; Zero reached: Go to Label4
; R7 not equal 0. Continue here.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.26 JGE
JGE
Syntax
Operation

Jump if greater or equal (signed)

Description

The negative bit N and the overflow bit V in the SR are tested. If both bits are set or both
are reset, the signed 10-bit word offset contained in the instruction is multiplied by two,
sign extended, and added to the 20-bit PC. This means a jump in the range -511 to +512
words relative to the PC in full Memory range. If only one bit is set, the instruction after
the jump is executed.
JGE is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JGE instruction is correct.
Note that JGE emulates the nonimplemented JP (jump if positive) instruction if used after
the instructions AND, BIT, RRA, SXTX, and TST. These instructions clear the V bit.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
If byte EDE (lower 64 K) contains positive data, go to Label1. Software can run in the full
memory range.

Status Bits
Mode Bits
Example

TST.B
JGE
...

Example

CMP
JGE
...

Example

CMPA
JGE
...

JGE label

If (N .xor. V) = 0: PC + (2 × Offset) → PC
If (N .xor. V) = 1: execute following instruction

&EDE
Label1

; Is EDE positive? V <- 0
; Yes, JGE emulates JP
; No, 80h <= EDE <= FFh

If the content of R6 is greater than or equal to the memory pointed to by R7, the program
continues a Label5. Signed data. Data and program in full memory range.
@R7,R6
Label5

; Is R6 >= @R7?
; Yes, go to Label5
; No, continue here

If R5 ≥ 12345h (signed operands), the program continues at Label2. Program in full
memory range.
#12345h,R5
Label2

; Is R5 >= 12345h?
; Yes, 12344h < R5 <= 7FFFFh
; No, 80000h <= R5 < 12345h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

183

Instruction Set Description

www.ti.com

4.6.2.27 JL
JL
Syntax
Operation

Jump if less (signed)

Description

The negative bit N and the overflow bit V in the SR are tested. If only one is set, the
signed 10-bit word offset contained in the instruction is multiplied by two, sign extended,
and added to the 20-bit PC. This means a jump in the range –511 to +512 words relative
to the PC in full memory range. If both bits N and V are set or both are reset, the
instruction after the jump is executed.
JL is used for the comparison of signed operands: also for incorrect results due to
overflow, the decision made by the JL instruction is correct.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
If byte EDE contains a smaller, signed operand than byte TONI, continue at Label1. The
address EDE is within PC ± 32 K.

Status Bits
Mode Bits
Example

CMP.B
JL
...

Example

CMP
JL
...

Example

CMPA
JL
...

184

CPUX

JL label

If (N .xor. V) = 1: PC + (2 × Offset) → PC
If (N .xor. V) = 0: execute following instruction

&TONI,EDE
Label1

; Is EDE < TONI
; Yes
; No, TONI <= EDE

If the signed content of R6 is less than the memory pointed to by R7 (20-bit address), the
program continues at Label5. Data and program in full memory range.
@R7,R6
Label5

; Is R6 < @R7?
; Yes, go to Label5
; No, continue here

If R5 < 12345h (signed operands), the program continues at Label2. Data and program
in full memory range.
#12345h,R5
Label2

; Is R5 < 12345h?
; Yes, 80000h =< R5 < 12345h
; No, 12344h < R5 <= 7FFFFh

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.28 JMP
JMP
Syntax
Operation
Description

Status Bits
Mode Bits
Example

MOV.B
JMP

Example

ADD
RETI
JMP
JMP
RETI

Jump unconditionally
JMP label

PC + (2 × Offset) → PC
The signed 10-bit word offset contained in the instruction is multiplied by two, sign
extended, and added to the 20-bit PC. This means an unconditional jump in the range
–511 to +512 words relative to the PC in the full memory. The JMP instruction may be
used as a BR or BRA instruction within its limited range relative to the PC.
Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected.
The byte STATUS is set to 10. Then a jump to label MAINLOOP is made. Data in lower
64 K, program in full memory range.
#10,&STATUS
MAINLOOP

; Set STATUS to 10
; Go to main loop

The interrupt vector TAIV of Timer_A3 is read and used for the program flow. Program in
full memory range, but interrupt handlers always starts in lower 64 K.
&TAIV,PC
IHCCR1
IHCCR2

;
;
;
;
;

Add Timer_A interrupt vector to PC
No Timer_A interrupt pending
Timer block 1 caused interrupt
Timer block 2 caused interrupt
No legal interrupt, return

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

185

Instruction Set Description

www.ti.com

4.6.2.29 JN
JN
Syntax
Operation
Description

Status Bits
Mode Bits
Example

TST.B
JN
...

Example

SUB
JN
...

Example

SUBA
JN
...

186

CPUX

Jump if negative
JN label

If N = 1: PC + (2 × Offset) → PC
If N = 0: execute following instruction
The negative bit N in the SR is tested. If it is set, the signed 10-bit word offset contained
in the instruction is multiplied by two, sign extended, and added to the 20-bit program
PC. This means a jump in the range -511 to +512 words relative to the PC in the full
memory range. If N is reset, the instruction after the jump is executed.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
The byte COUNT is tested. If it is negative, program execution continues at Label0. Data
in lower 64 K, program in full memory range.
&COUNT
Label0

; Is byte COUNT negative?
; Yes, proceed at Label0
; COUNT >= 0

R6 is subtracted from R5. If the result is negative, program continues at Label2. Program
in full memory range.
R6,R5
Label2

; R5 - R6 -> R5
; R5 is negative: R6 > R5 (N = 1)
; R5 >= 0. Continue here.

R7 (20-bit counter) is decremented. If its content is below zero, the program continues at
Label4. Program in full memory range.
#1,R7
Label4

; Decrement R7
; R7 < 0: Go to Label4
; R7 >= 0. Continue here.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.30 JNC, JLO
JNC
JLO
Syntax

Jump if no carry
Jump if lower (unsigned)
JNC label
JLO label

Operation

If C = 0: PC + (2 × Offset) → PC
If C = 1: execute following instruction

Description

The carry bit C in the SR is tested. If it is reset, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If C is set, the instruction after the jump is executed.
JNC is used for the test of the carry bit C.
JLO is used for the comparison of unsigned numbers.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
If byte EDE < 15, the program continues at Label2. Unsigned data. Data in lower 64 K,
program in full memory range.

Status Bits
Mode Bits
Example

CMP.B
JLO
...

Example

ADD
JNC
...

#15,&EDE
Label2

; Is EDE < 15? Info to C
; Yes, EDE < 15. C = 0
; No, EDE >= 15. Continue

The word TONI is added to R5. If no carry occurs, continue at Label0. The address of
TONI is within PC ± 32 K.
TONI,R5
Label0

; TONI + R5 -> R5. Carry -> C
; No carry
; Carry = 1: continue here

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

187

Instruction Set Description

www.ti.com

4.6.2.31 JNZ, JNE
JNZ
JNE
Syntax

Jump if not zero
Jump if not equal
JNZ label
JNE label

Operation

If Z = 0: PC + (2 × Offset) → PC
If Z = 1: execute following instruction

Description

The zero bit Z in the SR is tested. If it is reset, the signed 10-bit word offset contained in
the instruction is multiplied by two, sign extended, and added to the 20-bit PC. This
means a jump in the range –511 to +512 words relative to the PC in the full memory
range. If Z is set, the instruction after the jump is executed.
JNZ is used for the test of the zero bit Z.
JNE is used for the comparison of operands.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
The byte STATUS is tested. If it is not zero, the program continues at Label3. The
address of STATUS is within PC ± 32 K.

Status Bits
Mode Bits
Example

TST.B
JNZ
...

Example

CMP
JNE
...

Example

SUBA
JNZ
...

188

CPUX

STATUS
Label3

; Is STATUS = 0?
; No, proceed at Label3
; Yes, continue here

If word EDE ≠ 1500, the program continues at Label2. Data in lower 64 K, program in full
memory range.
#1500,&EDE
Label2

; Is EDE = 1500? Info to SR
; No, EDE not equal 1500.
; Yes, R5 = 1500. Continue

R7 (20-bit counter) is decremented. If its content is not zero, the program continues at
Label4. Program in full memory range.
#1,R7
Label4

; Decrement R7
; Zero not reached: Go to Label4
; Yes, R7 = 0. Continue here.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.32 MOV
MOV[.W]
MOV.B
Syntax

Move source word to destination word
Move source byte to destination byte
MOV src,dst or MOV.W src,dst
MOV.B src,dst

Operation
Description
Status Bits

Mode Bits
Example
MOV

Example

Loop

Example

Loop

src → dst
The source operand is copied to the destination. The source operand is not affected.
N: Not affected
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
Move a 16-bit constant 1800h to absolute address-word EDE (lower 64 K)
#01800h,&EDE

; Move 1800h to EDE

The contents of table EDE (word data, 16-bit addresses) are copied to table TOM. The
length of the tables is 030h words. Both tables reside in the lower 64 K.
MOV
MOV

#EDE,R10
@R10+,TOM-EDE-2(R10)

CMP
JLO
...

#EDE+60h,R10
Loop

;
;
;
;
;
;

Prepare pointer (16-bit address)
R10 points to both tables.
R10+2
End of table reached?
Not yet
Copy completed

The contents of table EDE (byte data, 16-bit addresses) are copied to table TOM. The
length of the tables is 020h bytes. Both tables may reside in full memory range, but must
be within R10 ± 32 K.
MOVA
MOV
MOV.B

#EDE,R10
#20h,R9
@R10+,TOM-EDE-1(R10)

DEC
JNZ
...

R9
Loop

;
;
;
;
;
;
;

Prepare pointer (20-bit)
Prepare counter
R10 points to both tables.
R10+1
Decrement counter
Not yet done
Copy completed

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

189

Instruction Set Description

www.ti.com

4.6.2.33 NOP
* NOP
Syntax
Operation
Emulation
Description
Status Bits

190

CPUX

No operation
NOP

None
MOV #0, R3

No operation is performed. The instruction may be used for the elimination of instructions
during the software check or for defined waiting times.
Status bits are not affected.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.34 POP
* POP[.W]
* POP.B
Syntax

Pop word from stack to destination
Pop byte from stack to destination
POP dst
POP.B dst

Operation

@SP → temp
SP + 2 → SP
temp → dst

Emulation

MOV @SP+,dst or MOV.W @SP+,dst
MOV.B @SP+,dst

Description

The stack location pointed to by the SP (TOS) is moved to the destination. The SP is
incremented by two afterwards.
Status bits are not affected.
The contents of R7 and the SR are restored from the stack.

Status Bits
Example
POP
POP

R7
SR

Example

The contents of RAM byte LEO is restored from the stack.

POP.B

Example

LEO

; The low byte of the stack is moved to LEO.

The contents of R7 is restored from the stack.

POP.B

Example

R7

; The low byte of the stack is moved to R7,
; the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the SR are restored from the stack.

POP.B

0(R7)

POP

SR

NOTE:

; Restore R7
; Restore status register

;
;
:
;
:
;
;

The low byte of the stack is moved to the
the byte which is pointed to by R7
Example:
R7 = 203h
Mem(R7) = low byte of system stack
Example:
R7 = 20Ah
Mem(R7) = low byte of system stack
Last word on stack moved to the SR

System stack pointer
The system SP is always incremented by two, independent of the byte suffix.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

191

Instruction Set Description

www.ti.com

4.6.2.35 PUSH
PUSH[.W]
PUSH.B
Syntax

Save a word on the stack
Save a byte on the stack
PUSH dst or

PUSH.W dst

PUSH.B dst

Operation
Description

Status Bits
Mode Bits
Example
PUSH
PUSH

Example

PUSH.B
PUSH.B

192

CPUX

SP – 2 → SP
dst → @SP
The 20-bit SP SP is decremented by two. The operand is then copied to the RAM word
addressed by the SP. A pushed byte is stored in the low byte; the high byte is not
affected.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
Save the two 16-bit registers R9 and R10 on the stack
R9
R10

; Save R9 and R10 XXXXh
; YYYYh

Save the two bytes EDE and TONI on the stack. The addresses EDE and TONI are
within PC ± 32 K.
EDE
TONI

; Save EDE
; Save TONI

xxXXh
xxYYh

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.36 RET
* RET
Syntax
Operation
Description

Status Bits
Mode Bits
Example

SUBR

Return from subroutine
RET

@SP →PC.15:0 Saved PC to PC.15:0.
PC.19:16 ← 0
SP + 2 → SP
The 16-bit return address (lower 64 K), pushed onto the stack by a CALL instruction is
restored to the PC. The program continues at the address following the subroutine call.
The four MSBs of the PC.19:16 are cleared.
Status bits are not affected.
PC.19:16: Cleared
OSCOFF, CPUOFF, and GIE are not affected.
Call a subroutine SUBR in the lower 64 K and return to the address in the lower 64 K
after the CALL.
CALL
...
PUSH
...
POP
RET

#SUBR

;
;
;
;
;
;

R14
R14

Call subroutine starting at SUBR
Return by RET to here
Save R14 (16 bit data)
Subroutine code
Restore R14
Return to lower 64 K

Item n
SP

SP

Item n

PCReturn

Stack before RET
instruction

Stack after RET
instruction

Figure 4-37. Stack After a RET Instruction

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

193

Instruction Set Description

www.ti.com

4.6.2.37 RETI
RETI
Syntax
Operation

Description

Status Bits

Mode Bits
Example
INTRPT

194

CPUX

Return from interrupt
RETI

@SP → SR.15:0
SP + 2 → SP
@SP → PC.15:0
SP + 2 → SP

Restore saved SR with PC.19:16
Restore saved PC.15:0
Housekeeping

The SR is restored to the value at the beginning of the interrupt service routine. This
includes the four MSBs of the PC.19:16. The SP is incremented by two afterward.
The 20-bit PC is restored from PC.19:16 (from same stack location as the status bits)
and PC.15:0. The 20-bit PC is restored to the value at the beginning of the interrupt
service routine. The program continues at the address following the last executed
instruction when the interrupt was granted. The SP is incremented by two afterward. No
interrupt flags are modified by this command.
N: Restored from stack
C: Restored from stack
Z: Restored from stack
V: Restored from stack
OSCOFF, CPUOFF, and GIE are restored from stack.
Interrupt handler in the lower 64 K. A 20-bit return address is stored on the stack.
PUSHM.A
...
POPM.A
RETI

#2,R14
#2,R14

;
;
;
;

Save R14 and R13 (20-bit data)
Interrupt handler code
Restore R13 and R14 (20-bit data)
Return to 20-bit address in full memory range

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.38 RLA
* RLA[.W]
* RLA.B
Syntax

Rotate left arithmetically
Rotate left arithmetically
RLA dst or

RLA.W dst

RLA.B dst

Operation
Emulation

C ← MSB ← MSB-1 .... LSB+1 ← LSB ← 0
ADD dst,dst
ADD.B dst,dst

Description

The destination operand is shifted left one position as shown in Figure 4-38. The MSB is
shifted into the carry bit (C) and the LSB is filled with 0. The RLA instruction acts as a
signed multiplication by 2.
An overflow occurs if dst ≥ 04000h and dst < 0C000h before operation is performed; the
result has changed sign.
W ord

15

0
0

C
Byte

7

0

Figure 4-38. Destination Operand—Arithmetic Shift Left

Status Bits

Mode Bits
Example
RLA

An overflow occurs if dst ≥ 040h and dst < 0C0h before the operation is performed; the
result has changed sign.
N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs; the initial value is 04000h ≤ dst < 0C000h,
reset otherwise
Set if an arithmetic overflow occurs; the initial value is 040h ≤ dst < 0C0h, reset
otherwise
OSCOFF, CPUOFF, and GIE are not affected.
R7 is multiplied by 2.
R7

Example

; Shift left R7

(x 2)

The low byte of R7 is multiplied by 4.

RLA.B
RLA.B

R7
R7

; Shift left low byte of R7
; Shift left low byte of R7

(x 2)
(x 4)

NOTE: RLA substitution
The assembler does not recognize the instructions:
RLA

@R5+

RLA.B

@R5+

RLA(.B) @R5

@R5+,-1(R5)

ADD(.B) @R5

They must be substituted by:
ADD

@R5+,-2(R5)

ADD.B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

195

Instruction Set Description

www.ti.com

4.6.2.39 RLC
* RLC[.W]
* RLC.B
Syntax

Rotate left through carry
Rotate left through carry
RLC dst or

RLC.W dst

RLC.B dst

C ← MSB ← MSB-1 .... LSB+1 ← LSB ← C

Operation
Emulation
Description

ADDC dst,dst

The destination operand is shifted left one position as shown in Figure 4-39. The carry bit
(C) is shifted into the LSB, and the MSB is shifted into the carry bit (C).
W ord

15

0

7

0

C
Byte

Figure 4-39. Destination Operand—Carry Left Shift
Status Bits

N:
Z:
C:
V:

Set if result is negative, reset if positive
Set if result is zero, reset otherwise
Loaded from the MSB
Set if an arithmetic overflow occurs; the initial value is 04000h ≤ dst < 0C000h,
reset otherwise
Set if an arithmetic overflow occurs; the initial value is 040h ≤ dst < 0C0h, reset
otherwise
OSCOFF, CPUOFF, and GIE are not affected.
R5 is shifted left one position.

Mode Bits
Example
RLC

R5

Example

; (R5 x 2) + C -> R5

The input P1IN.1 information is shifted into the LSB of R5.

BIT.B
RLC

#2,&P1IN
R5

Example

; Information -> Carry
; Carry=P0in.1 -> LSB of R5

The MEM(LEO) content is shifted left one position.

RLC.B

LEO

; Mem(LEO) x 2 + C -> Mem(LEO)

NOTE: RLA substitution
The assembler does not recognize the instructions:
RLC

@R5+

RLC.B

@R5+

RLC(.B) @R5

They must be substituted by:
ADDC

196

CPUX

@R5+,-2(R5)

ADDC.B

@R5+,-1(R5)

ADDC(.B) @R5

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.40 RRA
RRA[.W]
RRA.B
Syntax
Operation
Description

Rotate right arithmetically destination word
Rotate right arithmetically destination byte
RRA.B dst or
RRA.W dst
MSB → MSB → MSB–1 → ... LSB+1 → LSB → C
The destination operand is shifted right arithmetically by one bit position as shown in
Figure 4-40. The MSB retains its value (sign). RRA operates equal to a signed division
by 2. The MSB is retained and shifted into the MSB–1. The LSB+1 is shifted into the
LSB. The previous LSB is shifted into the carry bit C.
N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The signed 16-bit number in R5 is shifted arithmetically right one position.

Status Bits

Mode Bits
Example
RRA

R5

Example
RRA.B

; R5/2 -> R5

The signed RAM byte EDE is shifted arithmetically right one position.
EDE

; EDE/2 -> EDE
15

19
C

0

0

0

0

19
C

0

0

0

0

0

0

0

0

0

0

0

0

7

0

MSB

LSB

15

0

MSB

LSB

Figure 4-40. Rotate Right Arithmetically RRA.B and RRA.W

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

197

Instruction Set Description

www.ti.com

4.6.2.41 RRC
RRC[.W]
RRC.B
Syntax

Rotate right through carry destination word
Rotate right through carry destination byte
RRC dst or
RRC.W dst
RRC.B dst

C → MSB → MSB–1 → ... LSB+1 → LSB → C
The destination operand is shifted right by one bit position as shown in Figure 4-41. The
carry bit C is shifted into the MSB and the LSB is shifted into the carry bit C.
N: Set if result is negative (MSB = 1), reset otherwise (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
RAM word EDE is shifted right one bit position. The MSB is loaded with 1.

Operation
Description
Status Bits

Mode Bits
Example
SETC
RRC

; Prepare carry for MSB
; EDE = EDE >> 1 + 8000h

EDE
19
C

0

15
0

0

0

19
C

0

0

0

0

0

0

0

0

0

0

0

0

7

0

MSB

LSB

15

0

MSB

LSB

Figure 4-41. Rotate Right Through Carry RRC.B and RRC.W

198

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.42 SBC
* SBC[.W]
* SBC.B
Syntax

Subtract borrow (.NOT. carry) from destination
Subtract borrow (.NOT. carry) from destination
SBC dst or
SBC.W dst
SBC.B dst

Operation

dst + 0FFFFh + C → dst
dst + 0FFh + C → dst

Emulation

SUBC #0,dst
SUBC.B #0,dst

Description
Status Bits

Mode Bits
Example

SUB
SBC

@R13,0(R12)
2(R12)

Example

; Subtract LSDs
; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by
R12.

SUB.B
SBC.B
NOTE:

The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.
N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter pointed to by
R12.

@R13,0(R12)
1(R12)

; Subtract LSDs
; Subtract carry from MSD

Borrow implementation
The borrow is treated as a .NOT. carry:

Borrow
Yes
No

Carry Bit
0
1

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

199

Instruction Set Description

www.ti.com

4.6.2.43 SETC
* SETC
Syntax
Operation
Emulation
Description
Status Bits

Mode Bits
Example

DSUB

200

CPUX

Set carry bit
SETC

1→C
BIS #1,SR

The carry bit (C) is set.
N: Not affected
Z: Not affected
C: Set
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
Emulation of the decimal subtraction:
Subtract R5 from R6 decimally.
Assume that R5 = 03987h and R6 = 04137h.
ADD

#06666h,R5

INV

R5

SETC
DADD

R5,R6

;
;
;
;
;
;
;
;
;

Move content R5 from 0-9 to 6-0Fh
R5 = 03987h + 06666h = 09FEDh
Invert this (result back to 0-9)
R5 = .NOT. R5 = 06012h
Prepare carry = 1
Emulate subtraction by addition of:
(010000h - R5 - 1)
R6 = R6 + R5 + 1
R6 = 0150h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.44 SETN
* SETN
Syntax
Operation
Emulation
Description
Status Bits

Mode Bits

Set negative bit
SETN

1→N
BIS #4,SR

The negative bit (N) is set.
N: Set
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

201

Instruction Set Description

www.ti.com

4.6.2.45 SETZ
* SETZ
Syntax
Operation
Emulation
Description
Status Bits

Mode Bits

202

CPUX

Set zero bit
SETZ

1→N
BIS #2,SR

The zero bit (Z) is set.
N: Not affected
Z: Set
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.46 SUB
SUB[.W]
SUB.B
Syntax

Subtract source word from destination word
Subtract source byte from destination byte
SUB src,dst or SUB.W src,dst
SUB.B src,dst

Operation
Description

Status Bits

Mode Bits
Example
SUB

Example

SUB
JZ
...

Example

SUB.B

(.not.src) + 1 + dst → dst or dst – src → dst
The source operand is subtracted from the destination operand. This is made by adding
the 1s complement of the source + 1 to the destination. The source operand is not
affected, the result is written to the destination operand.
N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)
OSCOFF, CPUOFF, and GIE are not affected.
A 16-bit constant 7654h is subtracted from RAM word EDE.
#7654h,&EDE

; Subtract 7654h from EDE

A table word pointed to by R5 (20-bit address) is subtracted from R7. Afterwards, if R7
contains zero, jump to label TONI. R5 is then auto-incremented by 2. R7.19:16 = 0.
@R5+,R7
TONI

; Subtract table number from R7. R5 + 2
; R7 = @R5 (before subtraction)
; R7 <> @R5 (before subtraction)

Byte CNT is subtracted from byte R12 points to. The address of CNT is within PC ± 32K.
The address R12 points to is in full memory range.
CNT,0(R12)

; Subtract CNT from @R12

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

203

Instruction Set Description

www.ti.com

4.6.2.47 SUBC
SUBC[.W]
SUBC.B
Syntax

Subtract source word with carry from destination word
Subtract source byte with carry from destination byte
SUBC src,dst or SUBC.W src,dst
SUBC.B src,dst

Operation
Description

Status Bits

Mode Bits
Example

SUBC.W

Example

SUB
SUBC
SUBC

Example

SUBC.B

204

CPUX

(.not.src) + C + dst → dst or dst – (src – 1) + C → dst
The source operand is subtracted from the destination operand. This is done by adding
the 1s complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Used for 32, 48, and 64-bit
operands.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)
OSCOFF, CPUOFF, and GIE are not affected.
A 16-bit constant 7654h is subtracted from R5 with the carry from the previous
instruction. R5.19:16 = 0
#7654h,R5

; Subtract 7654h + C from R5

A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 points to the next 48-bit number afterwards. The
address R7 points to is in full memory range.
@R5+,0(R7)
@R5+,2(R7)
@R5+,4(R7)

; Subtract LSBs. R5 + 2
; Subtract MIDs with C. R5 + 2
; Subtract MSBs with C. R5 + 2

Byte CNT is subtracted from the byte, R12 points to. The carry of the previous instruction
is used. The address of CNT is in lower 64 K.
&CNT,0(R12)

; Subtract byte CNT from @R12

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.48 SWPB
SWPB
Syntax
Operation
Description

Swap bytes
SWPB dst

dst.15:8 ↔ dst.7:0
The high and the low byte of the operand are exchanged. PC.19:16 bits are cleared in
register mode.
Status bits are not affected
OSCOFF, CPUOFF, and GIE are not affected.
Exchange the bytes of RAM word EDE (lower 64 K)

Status Bits
Mode Bits
Example
MOV
SWPB

#1234h,&EDE
&EDE

; 1234h -> EDE
; 3412h -> EDE

Before SWPB
15

8

7

0

High Byte

Low Byte

After SWPB
15

8

7

0

Low Byte

High Byte

Figure 4-42. Swap Bytes in Memory
Before SWPB
19
16 15
x

8

7

High Byte

0
Low Byte

After SWPB
19

16

0

... 0

15

8
Low Byte

7

0
High Byte

Figure 4-43. Swap Bytes in a Register

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

205

Instruction Set Description

www.ti.com

4.6.2.49 SXT
SXT
Syntax
Operation
Description

Status Bits

Mode Bits
Example

MOV.B
SXT
ADD

Example

MOV.B
SXT
ADDA

206

CPUX

Extend sign
SXT dst

dst.7 → dst.15:8, dst.7 → dst.19:8 (register mode)
Register mode: the sign of the low byte of the operand is extended into the bits
Rdst.19:8.
Rdst.7 = 0: Rdst.19:8 = 000h afterwards
Rdst.7 = 1: Rdst.19:8 = FFFh afterwards
Other modes: the sign of the low byte of the operand is extended into the high byte.
dst.7 = 0: high byte = 00h afterwards
dst.7 = 1: high byte = FFh afterwards
N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The signed 8-bit data in EDE (lower 64 K) is sign extended and added to the 16-bit
signed data in R7.
&EDE,R5
R5
R5,R7

; EDE -> R5. 00XXh
; Sign extend low byte to R5.19:8
; Add signed 16-bit values

The signed 8-bit data in EDE (PC +32 K) is sign extended and added to the 20-bit data
in R7.
EDE,R5
R5
R5,R7

; EDE -> R5. 00XXh
; Sign extend low byte to R5.19:8
; Add signed 20-bit values

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.2.50 TST
* TST[.W]
* TST.B
Syntax

Test destination
Test destination
TST dst or

TST.W dst

TST.B dst

Operation

dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation

CMP #0,dst
CMP.B #0,dst

Description
Status Bits

Mode Bits
Example

R7POS
R7NEG
R7ZERO

Example

R7POS
R7NEG
R7ZERO

The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.
N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero, continue at
R7POS.
TST
JN
JZ
......
......
......

R7
R7NEG
R7ZERO

;
;
;
;
;
;

Test R7
R7 is negative
R7 is zero
R7 is positive but not zero
R7 is negative
R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive but not
zero, continue at R7POS.
TST.B
JN
JZ
......
.....
......

R7
R7NEG
R7ZERO

;
;
;
;
;
;

Test low
Low byte
Low byte
Low byte
Low byte
Low byte

byte of R7
of R7 is negative
of R7 is zero
of R7 is positive but not zero
of R7 is negative
of R7 is zero

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

207

Instruction Set Description

www.ti.com

4.6.2.51 XOR
XOR[.W]
XOR.B
Syntax

Exclusive OR source word with destination word
Exclusive OR source byte with destination byte
XOR src,dst or XOR.W src,dst
XOR.B src,dst

Operation
Description

Status Bits

Mode Bits
Example

XOR

Example
XOR

Example

XOR.B
INV.B

208

CPUX

src .xor. dst → dst
The source and destination operands are exclusively ORed. The result is placed into the
destination. The source operand is not affected. The previous content of the destination
is lost.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not. Z)
V: Set if both operands are negative before execution, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
Toggle bits in word CNTR (16-bit data) with information (bit = 1) in address-word TONI.
Both operands are located in lower 64 K.
&TONI,&CNTR

; Toggle bits in CNTR

A table word pointed to by R5 (20-bit address) is used to toggle bits in R6. R6.19:16 = 0.
@R5,R6

; Toggle bits in R6

Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE.
R7.19:8 = 0. The address of EDE is within PC ± 32 K.
EDE,R7
R7

; Set different bits to 1 in R7.
; Invert low byte of R7, high byte is 0h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3 Extended Instructions
The extended MSP430X instructions give the MSP430X CPU full access to its 20-bit address space.
MSP430X instructions require an additional word of op-code called the extension word. All addresses,
indexes, and immediate numbers have 20-bit values when preceded by the extension word. The
MSP430X extended instructions are listed and described in the following pages.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

209

Instruction Set Description

4.6.3.1

www.ti.com

ADCX
* ADCX.A
* ADCX.[W]
* ADCX.B
Syntax

Add carry to destination address-word
Add carry to destination word
Add carry to destination byte
ADCX.A dst
ADCX dst or
ADCX.B dst

Operation
Emulation

ADCX.W dst

dst + C → dst
ADDCX.A #0,dst
ADDCX #0,dst
ADDCX.B #0,dst

Description
Status Bits

Mode Bits
Example
INCX.A
ADCX.A

210

CPUX

The carry bit (C) is added to the destination operand. The previous contents of the
destination are lost.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
The 40-bit counter, pointed to by R12 and R13, is incremented.
@R12
@R13

; Increment lower 20 bits
; Add carry to upper 20 bits

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.2

ADDX
ADDX.A
ADDX.[W]
ADDX.B
Syntax

Add source address-word to destination address-word
Add source word to destination word
Add source byte to destination byte
ADDX.A src,dst
ADDX src,dst or ADDX.W src,dst
ADDX.B src,dst

Operation
Description
Status Bits

Mode Bits
Example

ADDX.A

Example

ADDX.W
JC
...

Example

ADDX.B
JNC
...

src + dst → dst
The source operand is added to the destination operand. The previous contents of the
destination are lost. Both operands can be located in the full address space.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
Ten is added to the 20-bit pointer CNTR located in two words CNTR (LSBs) and
CNTR+2 (MSBs).
#10,CNTR

; Add 10 to 20-bit pointer

A table word (16-bit) pointed to by R5 (20-bit address) is added to R6. The jump to label
TONI is performed on a carry.
@R5,R6
TONI

; Add table word to R6
; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) is added to R6. The jump to label TONI is
performed if no carry occurs. The table pointer is auto-incremented by 1.
@R5+,R6
TONI

; Add table byte to R6. R5 + 1. R6: 000xxh
; Jump if no carry
; Carry occurred

Note: Use ADDA for the following two cases for better code density and execution.
ADDX.A
ADDX.A

Rsrc,Rdst
#imm20,Rdst

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

211

Instruction Set Description

4.6.3.3

www.ti.com

ADDCX
ADDCX.A
ADDCX.[W]
ADDCX.B
Syntax

Add source address-word and carry to destination address-word
Add source word and carry to destination word
Add source byte and carry to destination byte
ADDCX.A src,dst
ADDCX src,dst or ADDCX.W src,dst
ADDCX.B src,dst

Operation
Description

Status Bits

Mode Bits
Example

src + dst + C → dst
The source operand and the carry bit C are added to the destination operand. The
previous contents of the destination are lost. Both operands may be located in the full
address space.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
Constant 15 and the carry of the previous instruction are added to the 20-bit counter
CNTR located in two words.

ADDCX.A

Example

CPUX

@R5,R6
TONI

; Add table word + C to R6
; Jump if carry
; No carry

A table byte pointed to by R5 (20-bit address) and the carry bit C are added to R6. The
jump to label TONI is performed if no carry occurs. The table pointer is auto-incremented
by 1.

ADDCX.B
JNC
...

212

; Add 15 + C to 20-bit CNTR

A table word pointed to by R5 (20-bit address) and the carry C are added to R6. The
jump to label TONI is performed on a carry.

ADDCX.W
JC
...

Example

#15,&CNTR

@R5+,R6
TONI

; Add table byte + C to R6. R5 + 1
; Jump if no carry
; Carry occurred

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.4

ANDX
ANDX.A
ANDX.[W]
ANDX.B
Syntax

Logical AND of source address-word with destination address-word
Logical AND of source word with destination word
Logical AND of source byte with destination byte
ANDX.A src,dst
ANDX src,dst or ANDX.W src,dst
ANDX.B src,dst

Operation
Description

Status Bits

Mode Bits
Example

MOVA
ANDX.A
JZ
...

src .and. dst → dst
The source operand and the destination operand are logically ANDed. The result is
placed into the destination. The source operand is not affected. Both operands may be
located in the full address space.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The bits set in R5 (20-bit data) are used as a mask (AAA55h) for the address-word TOM
located in two words. If the result is zero, a branch is taken to label TONI.
#AAA55h,R5
R5,TOM
TONI

;
;
;
;

Load 20-bit mask to R5
TOM .and. R5 -> TOM
Jump if result 0
Result > 0

or shorter:
ANDX.A
JZ

Example

ANDX.B

#AAA55h,TOM
TONI

; TOM .and. AAA55h -> TOM
; Jump if result 0

A table byte pointed to by R5 (20-bit address) is logically ANDed with R6. R6.19:8 = 0.
The table pointer is auto-incremented by 1.
@R5+,R6

; AND table byte with R6. R5 + 1

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

213

Instruction Set Description

4.6.3.5

www.ti.com

BICX
BICX.A
BICX.[W]
BICX.B
Syntax

Clear bits set in source address-word in destination address-word
Clear bits set in source word in destination word
Clear bits set in source byte in destination byte
BICX.A src,dst
BICX src,dst or BICX.W src,dst
BICX.B src,dst

Operation
Description

Status Bits

Mode Bits
Example
BICX.A

Example
BICX.W

Example
BICX.B

214

CPUX

(.not. src) .and. dst → dst
The inverted source operand and the destination operand are logically ANDed. The
result is placed into the destination. The source operand is not affected. Both operands
may be located in the full address space.
N: Not affected
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
The bits 19:15 of R5 (20-bit data) are cleared.
#0F8000h,R5

; Clear R5.19:15 bits

A table word pointed to by R5 (20-bit address) is used to clear bits in R7. R7.19:16 = 0.
@R5,R7

; Clear bits in R7

A table byte pointed to by R5 (20-bit address) is used to clear bits in output Port1.
@R5,&P1OUT

; Clear I/O port P1 bits

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.6

BISX
BISX.A
BISX.[W]
BISX.B
Syntax

Set bits set in source address-word in destination address-word
Set bits set in source word in destination word
Set bits set in source byte in destination byte
BISX.A src,dst
BISX src,dst or BISX.W src,dst
BISX.B src,dst

Operation
Description

Status Bits

Mode Bits
Example
BISX.A

Example
BISX.W

Example
BISX.B

src .or. dst → dst
The source operand and the destination operand are logically ORed. The result is placed
into the destination. The source operand is not affected. Both operands may be located
in the full address space.
N: Not affected
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
Bits 16 and 15 of R5 (20-bit data) are set to one.
#018000h,R5

; Set R5.16:15 bits

A table word pointed to by R5 (20-bit address) is used to set bits in R7.
@R5,R7

; Set bits in R7

A table byte pointed to by R5 (20-bit address) is used to set bits in output Port1.
@R5,&P1OUT

; Set I/O port P1 bits

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

215

Instruction Set Description

4.6.3.7

www.ti.com

BITX
BITX.A
BITX.[W]
BITX.B
Syntax

Test bits set in source address-word in destination address-word
Test bits set in source word in destination word
Test bits set in source byte in destination byte
BITX.A src,dst
BITX src,dst or BITX.W src,dst
BITX.B src,dst

Operation
Description
Status Bits

Mode Bits
Example
BITX.A
JNZ
...

Example

BITX.W
JC
...

Example

BITX.B
JNC
...

216

CPUX

src .and. dst → dst
The source operand and the destination operand are logically ANDed. The result affects
only the status bits. Both operands may be located in the full address space.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if the result is not zero, reset otherwise. C = (.not. Z)
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
Test if bit 16 or 15 of R5 (20-bit data) is set. Jump to label TONI if so.
#018000h,R5
TONI

; Test R5.16:15 bits
; At least one bit is set
; Both are reset

A table word pointed to by R5 (20-bit address) is used to test bits in R7. Jump to label
TONI if at least one bit is set.
@R5,R7
TONI

; Test bits in R7: C = .not.Z
; At least one is set
; Both are reset

A table byte pointed to by R5 (20-bit address) is used to test bits in input Port1. Jump to
label TONI if no bit is set. The next table byte is addressed.
@R5+,&P1IN
TONI

; Test input P1 bits. R5 + 1
; No corresponding input bit is set
; At least one bit is set

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.8

CLRX
* CLRX.A
* CLRX.[W]
* CLRX.B
Syntax

Clear destination address-word
Clear destination word
Clear destination byte
CLRX.A dst
CLRX dst or
CLRX.B dst

Operation
Emulation

CLRX.W dst

0 → dst
MOVX.A #0,dst
MOVX #0,dst
MOVX.B #0,dst

Description
Status Bits
Mode Bits
Example
CLRX.A

The destination operand is cleared.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
RAM address-word TONI is cleared.
TONI

; 0 -> TONI

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

217

Instruction Set Description

4.6.3.9

www.ti.com

CMPX
CMPX.A
CMPX.[W]
CMPX.B
Syntax

Compare source address-word and destination address-word
Compare source word and destination word
Compare source byte and destination byte
CMPX.A src,dst
CMPX src,dst or CMPX.W src,dst
CMPX.B src,dst

Operation
Description

Status Bits

Mode Bits
Example

CMPX.A
JEQ
...

Example

CMPX.W
JL
...

Example

CMPX.B
JEQ
...

(.not. src) + 1 + dst or dst – src
The source operand is subtracted from the destination operand by adding the 1s
complement of the source + 1 to the destination. The result affects only the status bits.
Both operands may be located in the full address space.
N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)
OSCOFF, CPUOFF, and GIE are not affected.
Compare EDE with a 20-bit constant 18000h. Jump to label TONI if EDE equals the
constant.
#018000h,EDE
TONI

; Compare EDE with 18000h
; EDE contains 18000h
; Not equal

A table word pointed to by R5 (20-bit address) is compared with R7. Jump to label TONI
if R7 contains a lower, signed, 16-bit number.
@R5,R7
TONI

; Compare two signed numbers
; R7 < @R5
; R7 >= @R5

A table byte pointed to by R5 (20-bit address) is compared to the input in I/O Port1.
Jump to label TONI if the values are equal. The next table byte is addressed.
@R5+,&P1IN
TONI

; Compare P1 bits with table. R5 + 1
; Equal contents
; Not equal

Note: Use CMPA for the following two cases for better density and execution.
CMPA
CMPA

218

CPUX

Rsrc,Rdst
#imm20,Rdst

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.10 DADCX
* DADCX.A
* DADCX.[W]
* DADCX.B
Syntax

Add carry decimally to destination address-word
Add carry decimally to destination word
Add carry decimally to destination byte
DADCX.A dst
DADCX dst or
DADCX.B dst

Operation
Emulation

DADCX.W dst

dst + C → dst (decimally)
DADDX.A #0,dst
DADDX #0,dst
DADDX.B #0,dst

Description
Status Bits

Mode Bits
Example

The carry bit (C) is added decimally to the destination.
N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset
if MSB is 0
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >
99h), reset otherwise
V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.
The 40-bit counter, pointed to by R12 and R13, is incremented decimally.

DADDX.A
DADCX.A

#1,0(R12)
0(R13)

; Increment lower 20 bits
; Add carry to upper 20 bits

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

219

Instruction Set Description

www.ti.com

4.6.3.11 DADDX
DADDX.A
DADDX.[W]
DADDX.B
Syntax

Add source address-word and carry decimally to destination address-word
Add source word and carry decimally to destination word
Add source byte and carry decimally to destination byte
DADDX.A src,dst
DADDX src,dst or DADDX.W src,dst
DADDX.B src,dst

Operation
Description

Status Bits

Mode Bits
Example

src + dst + C → dst (decimally)
The source operand and the destination operand are treated as two (.B), four (.W), or
five (.A) binary coded decimals (BCD) with positive signs. The source operand and the
carry bit C are added decimally to the destination operand. The source operand is not
affected. The previous contents of the destination are lost. The result is not defined for
non-BCD numbers. Both operands may be located in the full address space.
N: Set if MSB of result is 1 (address-word > 79999h, word > 7999h, byte > 79h), reset
if MSB is 0.
Z: Set if result is zero, reset otherwise
C: Set if the BCD result is too large (address-word > 99999h, word > 9999h, byte >
99h), reset otherwise
V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.
Decimal 10 is added to the 20-bit BCD counter DECCNTR located in two words.

DADDX.A

Example

CPUX

BCD,R4
BCD+2,R5
OVERFLOW

;
;
;
;
;

Clear carry
Add LSDs
Add MSDs with carry
Result >99999999: go to error routine
Result ok

The two-digit BCD number contained in 20-bit address BCD is added decimally to a twodigit BCD number contained in R4.

CLRC
DADDX.B

220

; Add 10 to 20-bit BCD counter

The eight-digit BCD number contained in 20-bit addresses BCD and BCD+2 is added
decimally to an eight-digit BCD number contained in R4 and R5 (BCD+2 and R5 contain
the MSDs).

CLRC
DADDX.W
DADDX.W
JC
...

Example

#10h,&DECCNTR

BCD,R4

; Clear carry
; Add BCD to R4 decimally.
; R4: 000ddh

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.12 DECX
* DECX.A
* DECX.[W]
* DECX.B
Syntax

Decrement destination address-word
Decrement destination word
Decrement destination byte
DECX.A dst
DECX dst or
DECX.B dst

Operation
Emulation

DECX.W dst

dst – 1 → dst
SUBX.A #1,dst
SUBX #1,dst
SUBX.B #1,dst

Description
Status Bits

Mode Bits
Example
DECX.A

The destination operand is decremented by one. The original contents are lost.
N: Set if result is negative, reset if positive
Z: Set if dst contained 1, reset otherwise
C: Reset if dst contained 0, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset
OSCOFF, CPUOFF, and GIE are not affected.
RAM address-word TONI is decremented by one.
TONI

; Decrement TONI

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

221

Instruction Set Description

www.ti.com

4.6.3.13 DECDX
* DECDX.A
* DECDX.[W]
* DECDX.B
Syntax

Double-decrement destination address-word
Double-decrement destination word
Double-decrement destination byte
DECDX.A dst
DECDX dst or
DECDX.B dst

Operation
Emulation

DECDX.W dst

dst – 2 → dst
SUBX.A #2,dst
SUBX #2,dst
SUBX.B #2,dst

Description
Status Bits

Mode Bits
Example

The destination operand is decremented by two. The original contents are lost.
N: Set if result is negative, reset if positive
Z: Set if dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset
OSCOFF, CPUOFF, and GIE are not affected.
RAM address-word TONI is decremented by two.

DECDX.A

222

CPUX

TONI

; Decrement TONI

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.14 INCX
* INCX.A
* INCX.[W]
* INCX.B
Syntax

Increment destination address-word
Increment destination word
Increment destination byte
INCX.A dst
INCX dst or
INCX.B dst

Operation
Emulation

INCX.W dst

dst + 1 → dst
ADDX.A #1,dst
ADDX #1,dst
ADDX.B #1,dst

Description
Status Bits

Mode Bits
Example
INCX.A

The destination operand is incremented by one. The original contents are lost.
N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise
C: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise
V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
RAM address-wordTONI is incremented by one.
TONI

; Increment TONI (20-bits)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

223

Instruction Set Description

www.ti.com

4.6.3.15 INCDX
* INCDX.A
* INCDX.[W]
* INCDX.B
Syntax

Double-increment destination address-word
Double-increment destination word
Double-increment destination byte
INCDX.A dst
INCDX dst or
INCDX.B dst

Operation
Emulation

INCDX.W dst

dst + 2 → dst
ADDX.A #2,dst
ADDX #2,dst
ADDX.B #2,dst

Description
Status Bits

Mode Bits
Example

The destination operand is incremented by two. The original contents are lost.
N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFEh, reset otherwise
Set if dst contained 0FFFEh, reset otherwise
Set if dst contained 0FEh, reset otherwise
C: Set if dst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if dst contained 0FFFEh or 0FFFFh, reset otherwise
Set if dst contained 0FEh or 0FFh, reset otherwise
V: Set if dst contained 07FFFEh or 07FFFFh, reset otherwise
Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
RAM byte LEO is incremented by two; PC points to upper memory.

INCDX.B

224

CPUX

LEO

; Increment LEO by two

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.16 INVX
* INVX.A
* INVX.[W]
* INVX.B
Syntax

Invert destination
Invert destination
Invert destination
INVX.A dst
INVX dst or
INVX.B dst

Operation
Emulation

INVX.W dst

.NOT.dst → dst
XORX.A #0FFFFFh,dst
XORX #0FFFFh,dst
XORX.B #0FFh,dst

Description
Status Bits

Mode Bits
Example
INVX.A
INCX.A

Example
INVX.B
INCX.B

The destination operand is inverted. The original contents are lost.
N: Set if result is negative, reset if positive
Z: Set if dst contained 0FFFFFh, reset otherwise
Set if dst contained 0FFFFh, reset otherwise
Set if dst contained 0FFh, reset otherwise
C: Set if result is not zero, reset otherwise ( = .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset
OSCOFF, CPUOFF, and GIE are not affected.
20-bit content of R5 is negated (twos complement).
R5
R5

; Invert R5
; R5 is now negated

Content of memory byte LEO is negated. PC is pointing to upper memory.
LEO
LEO

; Invert LEO
; MEM(LEO) is negated

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

225

Instruction Set Description

www.ti.com

4.6.3.17 MOVX
MOVX.A
MOVX.[W]
MOVX.B
Syntax

Move source address-word to destination address-word
Move source word to destination word
Move source byte to destination byte
MOVX.A src,dst
MOVX src,dst or MOVX.W src,dst
MOVX.B src,dst

src → dst
The source operand is copied to the destination. The source operand is not affected.
Both operands may be located in the full address space.
N: Not affected
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
Move a 20-bit constant 18000h to absolute address-word EDE

Operation
Description
Status Bits

Mode Bits
Example
MOVX.A

Example

Loop

; Move 18000h to EDE

The contents of table EDE (word data, 20-bit addresses) are copied to table TOM. The
length of the table is 030h words.
MOVA
MOVX.W

#EDE,R10
@R10+,TOM-EDE-2(R10)

CMPA
JLO
...

#EDE+60h,R10
Loop

Example

Loop

#018000h,&EDE

;
;
;
;
;
;

Prepare pointer (20-bit address)
R10 points to both tables.
R10+2
End of table reached?
Not yet
Copy completed

The contents of table EDE (byte data, 20-bit addresses) are copied to table TOM. The
length of the table is 020h bytes.
MOVA
MOV
MOVX.W

#EDE,R10
#20h,R9
@R10+,TOM-EDE-2(R10)

DEC
JNZ
...

R9
Loop

;
;
;
;
;
;
;

Prepare pointer (20-bit)
Prepare counter
R10 points to both tables.
R10+1
Decrement counter
Not yet done
Copy completed

Ten of the 28 possible addressing combinations of the MOVX.A instruction can use the
MOVA instruction. This saves two bytes and code cycles. Examples for the addressing
combinations are:
MOVX.A
MOVX.A
MOVX.A
MOVX.A
MOVX.A
MOVX.A

Rsrc,Rdst
#imm20,Rdst
&abs20,Rdst
@Rsrc,Rdst
@Rsrc+,Rdst
Rsrc,&abs20

MOVA
MOVA
MOVA
MOVA
MOVA
MOVA

Rsrc,Rdst
#imm20,Rdst
&abs20,Rdst
@Rsrc,Rdst
@Rsrc+,Rdst
Rsrc,&abs20

;
;
;
;
;
;

Reg/Reg
Immediate/Reg
Absolute/Reg
Indirect/Reg
Indirect,Auto/Reg
Reg/Absolute

The next four replacements are possible only if 16-bit indexes are sufficient for the
addressing:

226

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

MOVX.A
MOVX.A
MOVX.A
MOVX.A

z20(Rsrc),Rdst
Rsrc,z20(Rdst)
symb20,Rdst
Rsrc,symb20

MOVA
MOVA
MOVA
MOVA

z16(Rsrc),Rdst
Rsrc,z16(Rdst)
symb16,Rdst
Rsrc,symb16

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

;
;
;
;

Indexed/Reg
Reg/Indexed
Symbolic/Reg
Reg/Symbolic

CPUX

227

Instruction Set Description

www.ti.com

4.6.3.18 POPM
POPM.A
POPM.[W]
Syntax
Operation

Description

Status Bits
Mode Bits
Example
POPM.A

Example
POPM.W

228

CPUX

Restore n CPU registers (20-bit data) from the stack
Restore n CPU registers (16-bit data) from the stack
1 ≤ n ≤ 16
POPM.W #n,Rdst or POPM #n,Rdst
1 ≤ n ≤ 16
POPM.A: Restore the register values from stack to the specified CPU registers. The SP
is incremented by four for each register restored from stack. The 20-bit values from
stack (two words per register) are restored to the registers.
POPM.W: Restore the 16-bit register values from stack to the specified CPU registers.
The SP is incremented by two for each register restored from stack. The 16-bit values
from stack (one word per register) are restored to the CPU registers.
Note : This instruction does not use the extension word.
POPM.A: The CPU registers pushed on the stack are moved to the extended CPU
registers, starting with the CPU register (Rdst – n + 1). The SP is incremented by (n ×
4) after the operation.
POPM.W: The 16-bit registers pushed on the stack are moved back to the CPU
registers, starting with CPU register (Rdst – n + 1). The SP is incremented by (n × 2)
after the instruction. The MSBs (Rdst.19:16) of the restored CPU registers are cleared.
Status bits are not affected, except SR is included in the operation.
OSCOFF, CPUOFF, and GIE are not affected.
Restore the 20-bit registers R9, R10, R11, R12, R13 from the stack
POPM.A #n,Rdst

#5,R13

; Restore R9, R10, R11, R12, R13

Restore the 16-bit registers R9, R10, R11, R12, R13 from the stack.
#5,R13

; Restore R9, R10, R11, R12, R13

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.19 PUSHM
PUSHM.A
PUSHM.[W]
Syntax
Operation

Description

Status Bits
Mode Bits
Example
PUSHM.A

Example
PUSHM.W

Save n CPU registers (20-bit data) on the stack
Save n CPU registers (16-bit words) on the stack
1 ≤ n ≤ 16
PUSHM.W #n,Rdst or PUSHM #n,Rdst
1 ≤ n ≤ 16
PUSHM.A: Save the 20-bit CPU register values on the stack. The SP is decremented
by four for each register stored on the stack. The MSBs are stored first (higher
address).
PUSHM.W: Save the 16-bit CPU register values on the stack. The SP is decremented
by two for each register stored on the stack.
PUSHM.A: The n CPU registers, starting with Rdst backwards, are stored on the stack.
The SP is decremented by (n × 4) after the operation. The data (Rn.19:0) of the pushed
CPU registers is not affected.
PUSHM.W: The n registers, starting with Rdst backwards, are stored on the stack. The
SP is decremented by (n × 2) after the operation. The data (Rn.19:0) of the pushed
CPU registers is not affected.
Note : This instruction does not use the extension word.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
Save the five 20-bit registers R9, R10, R11, R12, R13 on the stack
PUSHM.A #n,Rdst

#5,R13

; Save R13, R12, R11, R10, R9

Save the five 16-bit registers R9, R10, R11, R12, R13 on the stack
#5,R13

; Save R13, R12, R11, R10, R9

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

229

Instruction Set Description

www.ti.com

4.6.3.20 POPX
* POPX.A
* POPX.[W]
* POPX.B
Syntax

Restore single address-word from the stack
Restore single word from the stack
Restore single byte from the stack
POPX.A dst
POPX dst or
POPX.B dst

Operation

Restore the 8-, 16-, 20-bit value from the stack to the destination. 20-bit addresses are
possible. The SP is incremented by two (byte and word operands) and by four
(address-word operand).

Emulation
Description

MOVX(.B,.A) @SP+,dst

Status Bits
Mode Bits
Example
POPX.W

Example
POPX.A

230

POPX.W dst

CPUX

The item on TOS is written to the destination operand. Register mode, Indexed mode,
Symbolic mode, and Absolute mode are possible. The SP is incremented by two or
four.
Note: the SP is incremented by two also for byte operations.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
Write the 16-bit value on TOS to the 20-bit address &EDE
&EDE

; Write word to address EDE

Write the 20-bit value on TOS to R9
R9

; Write address-word to R9

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.21 PUSHX
PUSHX.A
PUSHX.[W]
PUSHX.B
Syntax

Save single address-word to the stack
Save single word to the stack
Save single byte to the stack
PUSHX.A src
PUSHX src or
PUSHX.B src

Operation

Description

Status Bits
Mode Bits
Example
PUSHX.B

Example
PUSHX.A

PUSHX.W src

Save the 8-, 16-, 20-bit value of the source operand on the TOS. 20-bit addresses are
possible. The SP is decremented by two (byte and word operands) or by four (addressword operand) before the write operation.
The SP is decremented by two (byte and word operands) or by four (address-word
operand). Then the source operand is written to the TOS. All seven addressing modes
are possible for the source operand.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
Save the byte at the 20-bit address &EDE on the stack
&EDE

; Save byte at address EDE

Save the 20-bit value in R9 on the stack.
R9

; Save address-word in R9

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

231

Instruction Set Description

www.ti.com

4.6.3.22 RLAM
RLAM.A
RLAM.[W]
Syntax

Rotate left arithmetically the 20-bit CPU register content
Rotate left arithmetically the 16-bit CPU register content
1≤n≤4
1≤n≤4

RLAM.A #n,Rdst
RLAM.W #n,Rdst or RLAM #n,Rdst

C ← MSB ← MSB-1 .... LSB+1 ← LSB ← 0
The destination operand is shifted arithmetically left one, two, three, or four positions as
shown in Figure 4-44. RLAM works as a multiplication (signed and unsigned) with 2, 4,
8, or 16. The word instruction RLAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.
N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB (n = 1), MSB-1 (n = 2), MSB-2 (n = 3), MSB-3 (n = 4)
V: Undefined
OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit operand in R5 is shifted left by three positions. It operates equal to an
arithmetic multiplication by 8.

Operation
Description

Status Bits

Mode Bits
Example

RLAM.A

#3,R5
19

16
0000

C

C

; R5 = R5 x 8
15

0

MSB

LSB

19

0

MSB

LSB

0

0

Figure 4-44. Rotate Left Arithmetically—RLAM[.W] and RLAM.A

232

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.23 RLAX
* RLAX.A
* RLAX.[W]
* RLAX.B
Syntax

Rotate left arithmetically address-word
Rotate left arithmetically word
Rotate left arithmetically byte
RLAX.A dst
RLAX dst or
RLAX.B dst

RLAX.W dst

C ← MSB ← MSB-1 .... LSB+1 ← LSB ← 0

Operation
Emulation

ADDX.A dst,dst
ADDX dst,dst
ADDX.B dst,dst

Description

The destination operand is shifted left one position as shown in Figure 4-45. The MSB
is shifted into the carry bit (C) and the LSB is filled with 0. The RLAX instruction acts as
a signed multiplication by 2.
N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset
otherwise
OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R7 is multiplied by 2

Status Bits

Mode Bits
Example
RLAX.A

R7

; Shift left R7 (20-bit)
0

C

MSB

LSB

0

Figure 4-45. Destination Operand-Arithmetic Shift Left

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

233

Instruction Set Description

www.ti.com

4.6.3.24 RLCX
* RLCX.A
* RLCX.[W]
* RLCX.B
Syntax

Rotate left through carry address-word
Rotate left through carry word
Rotate left through carry byte
RLCX.A dst
RLCX dst or
RLCX.B dst

Operation
Emulation

RLCX.W dst

C ← MSB ← MSB-1 .... LSB+1 ← LSB ← C
ADDCX.A dst,dst
ADDCX dst,dst
ADDCX.B dst,dst

Description
Status Bits

Mode Bits
Example
RLCX.A

Example
RLCX.B

The destination operand is shifted left one position as shown in Figure 4-46. The carry
bit (C) is shifted into the LSB and the MSB is shifted into the carry bit (C).
N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Loaded from the MSB
V: Set if an arithmetic overflow occurs: the initial value is 040000h ≤ dst < 0C0000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 04000h ≤ dst < 0C000h;
reset otherwise
Set if an arithmetic overflow occurs: the initial value is 040h ≤ dst < 0C0h; reset
otherwise
OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R5 is shifted left one position.
R5

; (R5 x 2) + C -> R5

The RAM byte LEO is shifted left one position. PC is pointing to upper memory.
LEO

; RAM(LEO) x 2 + C -> RAM(LEO)
0

C

MSB

LSB

Figure 4-46. Destination Operand-Carry Left Shift

234

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.25 RRAM
RRAM.A
RRAM.[W]
Syntax

Rotate right arithmetically the 20-bit CPU register content
Rotate right arithmetically the 16-bit CPU register content
RRAM.A #n,Rdst
RRAM.W #n,Rdst or RRAM #n,Rdst

1≤n≤4
1≤n≤4

MSB → MSB → MSB–1 ... LSB+1 → LSB → C
The destination operand is shifted right arithmetically by one, two, three, or four bit
positions as shown in Figure 4-47. The MSB retains its value (sign). RRAM operates
equal to a signed division by 2, 4, 8, or 16. The MSB is retained and shifted into MSB-1.
The LSB+1 is shifted into the LSB, and the LSB is shifted into the carry bit C. The word
instruction RRAM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.
N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The signed 20-bit number in R5 is shifted arithmetically right two positions.

Operation
Description

Status Bits

Mode Bits
Example
RRAM.A

Example

#2,R5

; R5/4 -> R5

The signed 20-bit value in R15 is multiplied by 0.75. (0.5 + 0.25) × R15.

PUSHM.A
RRAM.A
ADDX.A
RRAM.A

#1,R15
#1,R15
@SP+,R15
#1,R15
16

19
C

C

0000

;
;
;
;

Save extended R15 on stack
R15 y 0.5 -> R15
R15 y 0.5 + R15 = 1.5 y R15 -> R15
(1.5 y R15) y 0.5 = 0.75 y R15 -> R15

15

0

MSB

LSB

19

0

MSB

LSB

Figure 4-47. Rotate Right Arithmetically RRAM[.W] and RRAM.A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

235

Instruction Set Description

www.ti.com

4.6.3.26 RRAX
RRAX.A
RRAX.[W]
RRAX.B
Syntax

Rotate right arithmetically the 20-bit operand
Rotate right arithmetically the 16-bit operand
Rotate right arithmetically the 8-bit operand
RRAX.A Rdst
RRAX.W Rdst
RRAX Rdst
RRAX.B Rdst
RRAX.A dst
RRAX dst or
RRAX.B dst

Operation
Description

Status Bits

Mode Bits
Example
RPT
RRAX.A

Example

236

CPUX

RRAX.W dst

MSB → MSB → MSB–1 ... LSB+1 → LSB → C
Register mode for the destination: the destination operand is shifted right by one bit
position as shown in Figure 4-48. The MSB retains its value (sign). The word instruction
RRAX.W clears the bits Rdst.19:16, the byte instruction RRAX.B clears the bits
Rdst.19:8. The MSB retains its value (sign), the LSB is shifted into the carry bit. RRAX
here operates equal to a signed division by 2.
All other modes for the destination: the destination operand is shifted right arithmetically
by one bit position as shown in Figure 4-49. The MSB retains its value (sign), the LSB
is shifted into the carry bit. RRAX here operates equal to a signed division by 2. All
addressing modes, with the exception of the Immediate mode, are possible in the full
memory.
N: Set if result is negative, reset if positive
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The signed 20-bit number in R5 is shifted arithmetically right four positions.
#4
R5

; R5/16 -> R5

The signed 8-bit value in EDE is multiplied by 0.5.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

RRAX.B

C

&EDE
19

8

7

0

0

0

MSB

LSB

19
C

C

; EDE/2 -> EDE

16

0000

15

0

MSB

LSB

19

0

MSB

LSB

Figure 4-48. Rotate Right Arithmetically RRAX(.B,.A) – Register Mode

C

C

C

7

0

MSB

LSB

15

0

MSB

LSB

31

20

0

0

19

0

MSB

LSB

Figure 4-49. Rotate Right Arithmetically RRAX(.B,.A) – Non-Register Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

237

Instruction Set Description

www.ti.com

4.6.3.27 RRCM
RRCM.A
RRCM.[W]
Syntax

Rotate right through carry the 20-bit CPU register content
Rotate right through carry the 16-bit CPU register content
1≤n≤4
1≤n≤4

RRCM.A #n,Rdst
RRCM.W #n,Rdst or RRCM #n,Rdst

Operation
Description

Status Bits

Mode Bits

238

CPUX

C → MSB → MSB–1 ... LSB+1 → LSB → C
The destination operand is shifted right by one, two, three, or four bit positions as
shown in Figure 4-50. The carry bit C is shifted into the MSB, the LSB is shifted into the
carry bit. The word instruction RRCM.W clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.
N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

Example

The address-word in R5 is shifted right by three positions. The MSB–2 is loaded with 1.

SETC
RRCM.A

Example

; Prepare carry for MSB-2
; R5 = R5 » 3 + 20000h

#3,R5

The word in R6 is shifted right by two positions. The MSB is loaded with the LSB. The
MSB–1 is loaded with the contents of the carry flag.

RRCM.W

#2,R6

; R6 = R6 » 2. R6.19:16 = 0

19
0

C

C

16

15

0

MSB

LSB

19

0

MSB

LSB

Figure 4-50. Rotate Right Through Carry RRCM[.W] and RRCM.A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

239

Instruction Set Description

www.ti.com

4.6.3.28 RRCX
RRCX.A
RRCX.[W]
RRCX.B
Syntax

Rotate right through carry the 20-bit operand
Rotate right through carry the 16-bit operand
Rotate right through carry the 8-bit operand
RRCX.A Rdst
RRCX.W Rdst
RRCX Rdst
RRCX.B Rdst
RRCX.A dst
RRCX dst or
RRCX.B dst

Operation
Description

Status Bits

Mode Bits
Example

SETC
RRCX.A

Example

240

CPUX

RRCX.W dst

C → MSB → MSB–1 ... LSB+1 → LSB → C
Register mode for the destination: the destination operand is shifted right by one bit
position as shown in Figure 4-51. The word instruction RRCX.W clears the bits
Rdst.19:16, the byte instruction RRCX.B clears the bits Rdst.19:8. The carry bit C is
shifted into the MSB, the LSB is shifted into the carry bit.
All other modes for the destination: the destination operand is shifted right by one bit
position as shown in Figure 4-52. The carry bit C is shifted into the MSB, the LSB is
shifted into the carry bit. All addressing modes, with the exception of the Immediate
mode, are possible in the full memory.
N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit operand at address EDE is shifted right by one position. The MSB is loaded
with 1.

EDE

; Prepare carry for MSB
; EDE = EDE » 1 + 80000h

The word in R6 is shifted right by 12 positions.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

RPT
RRCX.W

#12
R6

; R6 = R6 » 12. R6.19:16 = 0

19
C

8

0−−−−−−−−−−−−−−−−−−−−0

19
C

C

16

0

0

0

0

7

0

MSB

LSB

15

0

MSB

LSB

19

0

MSB

LSB

Figure 4-51. Rotate Right Through Carry RRCX(.B,.A) – Register Mode

C

C

C

7

0

MSB

LSB

15

0

MSB

LSB

31

20

0

0

19

0

MSB

LSB

Figure 4-52. Rotate Right Through Carry RRCX(.B,.A) – Non-Register Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

241

Instruction Set Description

www.ti.com

4.6.3.29 RRUM
RRUM.A
RRUM.[W]
Syntax

Rotate right through carry the 20-bit CPU register content
Rotate right through carry the 16-bit CPU register content
1≤n≤4
1≤n≤4

RRUM.A #n,Rdst
RRUM.W #n,Rdst or RRUM #n,Rdst

0 → MSB → MSB–1 ... LSB+1 → LSB → C
The destination operand is shifted right by one, two, three, or four bit positions as
shown in Figure 4-53. Zero is shifted into the MSB, the LSB is shifted into the carry bit.
RRUM works like an unsigned division by 2, 4, 8, or 16. The word instruction RRUM.W
clears the bits Rdst.19:16.
Note : This instruction does not use the extension word.
N: Set if result is negative
.A: Rdst.19 = 1, reset if Rdst.19 = 0
.W: Rdst.15 = 1, reset if Rdst.15 = 0
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB (n = 1), LSB+1 (n = 2), LSB+2 (n = 3), or LSB+3 (n = 4)
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The unsigned address-word in R5 is divided by 16.

Operation
Description

Status Bits

Mode Bits
Example
RRUM.A

Example

#4,R5

; R5 = R5 » 4. R5/16

The word in R6 is shifted right by one bit. The MSB R6.15 is loaded with 0.

RRUM.W

#1,R6

16

19
0000

C

; R6 = R6/2. R6.19:15 = 0
15

0

MSB

LSB

0

C 0

19

0

MSB

LSB

Figure 4-53. Rotate Right Unsigned RRUM[.W] and RRUM.A

242

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.30 RRUX
RRUX.A
RRUX.[W]
RRUX.B
Syntax

Shift right unsigned the 20-bit CPU register content
Shift right unsigned the 16-bit CPU register content
Shift right unsigned the 8-bit CPU register content
RRUX.A Rdst
RRUX.W Rdst
RRUX Rdst
RRUX.B Rdst

C=0 → MSB → MSB–1 ... LSB+1 → LSB → C
RRUX is valid for register mode only: the destination operand is shifted right by one bit
position as shown in Figure 4-54. The word instruction RRUX.W clears the bits
Rdst.19:16. The byte instruction RRUX.B clears the bits Rdst.19:8. Zero is shifted into
the MSB, the LSB is shifted into the carry bit.
N: Set if result is negative
.A: dst.19 = 1, reset if dst.19 = 0
.W: dst.15 = 1, reset if dst.15 = 0
.B: dst.7 = 1, reset if dst.7 = 0
Z: Set if result is zero, reset otherwise
C: Loaded from the LSB
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The word in R6 is shifted right by 12 positions.

Operation
Description

Status Bits

Mode Bits
Example
RPT
RRUX.W

#12
R6

; R6 = R6 » 12. R6.19:16 = 0

19
C

8

0−−−−−−−−−−−−−−−−−−−−0

7

0

MSB

LSB

0
19
C

0

16
0

0

0

15

0

MSB

LSB

0

C 0

19

0

MSB

LSB

Figure 4-54. Rotate Right Unsigned RRUX(.B,.A) – Register Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

243

Instruction Set Description

www.ti.com

4.6.3.31 SBCX
* SBCX.A
* SBCX.[W]
* SBCX.B
Syntax

Subtract borrow (.NOT. carry) from destination address-word
Subtract borrow (.NOT. carry) from destination word
Subtract borrow (.NOT. carry) from destination byte
SBCX.A dst
SBCX dst or
SBCX.B dst

SBCX.W dst

Operation

dst + 0FFFFFh + C → dst
dst + 0FFFFh + C → dst
dst + 0FFh + C → dst

Emulation

SBCX.A #0,dst
SBCX #0,dst
SBCX.B #0,dst

Description
Status Bits

Mode Bits
Example

SUBX.B
SBCX.B
NOTE:

The carry bit (C) is added to the destination operand minus one. The previous contents
of the destination are lost.
N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB of the result, reset otherwise
Set to 1 if no borrow, reset if borrow
V: Set if an arithmetic overflow occurs, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed to by
R12.
@R13,0(R12)
1(R12)

; Subtract LSDs
; Subtract carry from MSD

Borrow implementation
The borrow is treated as a .NOT. carry:

Borrow
Yes
No

244

CPUX

Carry Bit
0
1

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.32 SUBX
SUBX.A
SUBX.[W]
SUBX.B
Syntax

Subtract source address-word from destination address-word
Subtract source word from destination word
Subtract source byte from destination byte
SUBX.A src,dst
SUBX src,dst or SUBX.W src,dst
SUBX.B src,dst

Operation
Description

Status Bits

Mode Bits
Example
SUBX.A

Example

SUBX.W
JZ
...

Example

SUBX.B

(.not. src) + 1 + dst → dst or dst – src → dst
The source operand is subtracted from the destination operand. This is done by adding
the 1s complement of the source + 1 to the destination. The source operand is not
affected. The result is written to the destination operand. Both operands may be located
in the full address space.
N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow)
OSCOFF, CPUOFF, and GIE are not affected.
A 20-bit constant 87654h is subtracted from EDE (LSBs) and EDE+2 (MSBs).
#87654h,EDE

; Subtract 87654h from EDE+2|EDE

A table word pointed to by R5 (20-bit address) is subtracted from R7. Jump to label
TONI if R7 contains zero after the instruction. R5 is auto-incremented by two. R7.19:16 =
0.
@R5+,R7
TONI

; Subtract table number from R7. R5 + 2
; R7 = @R5 (before subtraction)
; R7 <> @R5 (before subtraction)

Byte CNT is subtracted from the byte R12 points to in the full address space. Address of
CNT is within PC ± 512 K.
CNT,0(R12)

; Subtract CNT from @R12

Note: Use SUBA for the following two cases for better density and execution.
SUBX.A
SUBX.A

Rsrc,Rdst
#imm20,Rdst

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

245

Instruction Set Description

www.ti.com

4.6.3.33 SUBCX
SUBCX.A
SUBCX.[W]
SUBCX.B
Syntax

Subtract source address-word with carry from destination address-word
Subtract source word with carry from destination word
Subtract source byte with carry from destination byte
SUBCX.A src,dst
SUBCX src,dst or SUBCX.W src,dst
SUBCX.B src,dst

Operation
Description

Status Bits

Mode Bits
Example

(.not. src) + C + dst → dst or dst – (src – 1) + C → dst
The source operand is subtracted from the destination operand. This is made by adding
the 1s complement of the source + carry to the destination. The source operand is not
affected, the result is written to the destination operand. Both operands may be located
in the full address space.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source operand
from a negative destination operand delivers a positive result, reset otherwise (no
overflow).
OSCOFF, CPUOFF, and GIE are not affected.
A 20-bit constant 87654h is subtracted from R5 with the carry from the previous
instruction.

SUBCX.A

Example

CPUX

@R5+,0(R7)
@R5+,2(R7)
@R5+,4(R7)

; Subtract LSBs. R5 + 2
; Subtract MIDs with C. R5 + 2
; Subtract MSBs with C. R5 + 2

Byte CNT is subtracted from the byte R12 points to. The carry of the previous instruction
is used. 20-bit addresses.

SUBCX.B

246

; Subtract 87654h + C from R5

A 48-bit number (3 words) pointed to by R5 (20-bit address) is subtracted from a 48-bit
counter in RAM, pointed to by R7. R5 auto-increments to point to the next 48-bit number.

SUBX.W
SUBCX.W
SUBCX.W

Example

#87654h,R5

&CNT,0(R12)

; Subtract byte CNT from @R12

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.34 SWPBX
SWPBX.A
SWPBX.[W]
Syntax

Swap bytes of lower word
Swap bytes of word
SWPBX.A dst
SWPBX dst or

Operation
Description

Status Bits
Mode Bits
Example

MOVX.A
SWPBX.A

Example

SWPBX.W dst

dst.15:8 ↔ dst.7:0
Register mode: Rn.15:8 are swapped with Rn.7:0. When the .A extension is used,
Rn.19:16 are unchanged. When the .W extension is used, Rn.19:16 are cleared.
Other modes: When the .A extension is used, bits 31:20 of the destination address are
cleared, bits 19:16 are left unchanged, and bits 15:8 are swapped with bits 7:0. When
the .W extension is used, bits 15:8 are swapped with bits 7:0 of the addressed word.
Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
Exchange the bytes of RAM address-word EDE
#23456h,&EDE
EDE

; 23456h -> EDE
; 25634h -> EDE

Exchange the bytes of R5

MOVA
SWPBX.W

#23456h,R5
R5

; 23456h -> R5
; 05634h -> R5

Before SWPBX.A
19
16 15

8

X

7

0

High Byte

Low Byte

After SWPBX.A
19

16

15

8

X

7

0

Low Byte

High Byte

Figure 4-55. Swap Bytes SWPBX.A Register Mode
Before SWPBX.A
31
20 19
16
X

X

After SWPBX.A
31
20 19
0

8

15

7

High Byte

16
X

Low Byte

8

15
Low Byte

0

7

0
High Byte

Figure 4-56. Swap Bytes SWPBX.A In Memory

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

247

Instruction Set Description

www.ti.com

Before SWPBX
19
16 15
X

8

7

High Byte

0
Low Byte

After SWPBX
19

16

15

0

8

7

Low Byte

0
High Byte

Figure 4-57. Swap Bytes SWPBX[.W] Register Mode
Before SWPBX
15

8

7

High Byte

0
Low Byte

After SWPBX
15

8
Low Byte

7

0
High Byte

Figure 4-58. Swap Bytes SWPBX[.W] In Memory

248

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.35 SXTX
SXTX.A
SXTX.[W]
Syntax

Extend sign of lower byte to address-word
Extend sign of lower byte to word
SXTX.A dst
SXTX dst or

SXTX.W dst

dst.7 → dst.15:8, Rdst.7 → Rdst.19:8 (Register mode)
Register mode: The sign of the low byte of the operand (Rdst.7) is extended into the bits
Rdst.19:8.
Other modes: SXTX.A: the sign of the low byte of the operand (dst.7) is extended into
dst.19:8. The bits dst.31:20 are cleared.
SXTX[.W]: the sign of the low byte of the operand (dst.7) is extended into dst.15:8.
N: Set if result is negative, reset otherwise
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (C = .not.Z)
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The signed 8-bit data in EDE.7:0 is sign extended to 20 bits: EDE.19:8. Bits 31:20
located in EDE+2 are cleared.

Operation
Description

Status Bits

Mode Bits
Example

SXTX.A

&EDE

; Sign extended EDE -> EDE+2/EDE

SXTX.A Rdst
19

16 15

8 7 6

0

S

SXTX.A dst
31
0

20 19
......

16 15

8 7 6

0

0

S

Figure 4-59. Sign Extend SXTX.A
SXTX[.W] Rdst
19

16 15

8

7

6

0

6

0

S

SXTX[.W] dst
15

8

7
S

Figure 4-60. Sign Extend SXTX[.W]

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

249

Instruction Set Description

www.ti.com

4.6.3.36 TSTX
* TSTX.A
* TSTX.[W]
* TSTX.B
Syntax

Test destination address-word
Test destination word
Test destination byte
TSTX.A dst
TSTX dst or
TSTX.B dst

TSTX.W dst

Operation

dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1

Emulation

CMPX.A #0,dst
CMPX #0,dst
CMPX.B #0,dst

Description
Status Bits

Mode Bits
Example

LEOPOS
LEONEG
LEOZERO

250

CPUX

The destination operand is compared with zero. The status bits are set according to the
result. The destination is not affected.
N: Set if destination is negative, reset if positive
Z: Set if destination contains zero, reset otherwise
C: Set
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
RAM byte LEO is tested; PC is pointing to upper memory. If it is negative, continue at
LEONEG; if it is positive but not zero, continue at LEOPOS.
TSTX.B
JN
JZ
......
......
......

LEO
LEONEG
LEOZERO

;
;
;
;
;
;

Test LEO
LEO is negative
LEO is zero
LEO is positive but not zero
LEO is negative
LEO is zero

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.3.37 XORX
XORX.A
XORX.[W]
XORX.B
Syntax

Exclusive OR source address-word with destination address-word
Exclusive OR source word with destination word
Exclusive OR source byte with destination byte
XORX.A src,dst
XORX src,dst or XORX.W src,dst
XORX.B src,dst

Operation
Description

Status Bits

Mode Bits
Example

XORX.A

Example
XORX.W

Example

XORX.B
INV.B

src .xor. dst → dst
The source and destination operands are exclusively ORed. The result is placed into
the destination. The source operand is not affected. The previous contents of the
destination are lost. Both operands may be located in the full address space.
N: Set if result is negative (MSB = 1), reset if positive (MSB = 0)
Z: Set if result is zero, reset otherwise
C: Set if result is not zero, reset otherwise (carry = .not. Zero)
V: Set if both operands are negative (before execution), reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
Toggle bits in address-word CNTR (20-bit data) with information in address-word TONI
(20-bit address)
TONI,&CNTR

; Toggle bits in CNTR

A table word pointed to by R5 (20-bit address) is used to toggle bits in R6.
@R5,R6

; Toggle bits in R6. R6.19:16 = 0

Reset to zero those bits in the low byte of R7 that are different from the bits in byte EDE
(20-bit address)
EDE,R7
R7

; Set different bits to 1 in R7
; Invert low byte of R7. R7.19:8 = 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

251

Instruction Set Description

www.ti.com

4.6.4 Address Instructions
MSP430X address instructions are instructions that support 20-bit operands but have restricted
addressing modes. The addressing modes are restricted to the Register mode and the Immediate mode,
except for the MOVA instruction. Restricting the addressing modes removes the need for the additional
extension-word op-code improving code density and execution time. The MSP430X address instructions
are listed and described in the following pages.

252

CPUX

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.4.1

ADDA
ADDA
Syntax

Add 20-bit source to a 20-bit destination register
ADDA Rsrc,Rdst
ADDA #imm20,Rdst

Operation
Description
Status Bits

Mode Bits
Example
ADDA
JC
...

src + Rdst → Rdst
The 20-bit source operand is added to the 20-bit destination CPU register. The previous
contents of the destination are lost. The source operand is not affected.
N: Set if result is negative (Rdst.19 = 1), reset if positive (Rdst.19 = 0)
Z: Set if result is zero, reset otherwise
C: Set if there is a carry from the 20-bit result, reset otherwise
V: Set if the result of two positive operands is negative, or if the result of two negative
numbers is positive, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
R5 is increased by 0A4320h. The jump to TONI is performed if a carry occurs.
#0A4320h,R5
TONI

; Add A4320h to 20-bit R5
; Jump on carry
; No carry occurred

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

253

Instruction Set Description

4.6.4.2

www.ti.com

BRA
* BRA
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits
Examples

BRA
BRA

Branch to destination
BRA dst

dst → PC
MOVA dst,PC

An unconditional branch is taken to a 20-bit address anywhere in the full address
space. All seven source addressing modes can be used. The branch instruction is an
address-word instruction. If the destination address is contained in a memory location
X, it is contained in two ascending words: X (LSBs) and (X + 2) (MSBs).
N: Not affected
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.
Immediate mode: Branch to label EDE located anywhere in the 20-bit address space or
branch directly to address.
#EDE
#01AA04h

; MOVA

#imm20,PC

Symbolic mode: Branch to the 20-bit address contained in addresses EXEC (LSBs) and
EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is within ±32 K.
Indirect addressing.
BRA

EXEC

; MOVA

z16(PC),PC

Note: If the 16-bit index is not sufficient, a 20-bit index may be used with the following
instruction.
MOVX.A

EXEC,PC

; 1M byte range with 20-bit index

Absolute mode: Branch to the 20-bit address contained in absolute addresses EXEC
(LSBs) and EXEC+2 (MSBs). Indirect addressing.
BRA

&EXEC

; MOVA

&abs20,PC

Register mode: Branch to the 20-bit address contained in register R5. Indirect R5.
BRA

R5

; MOVA

R5,PC

Indirect mode: Branch to the 20-bit address contained in the word pointed to by register
R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.
BRA

254

CPUX

@R5

; MOVA

@R5,PC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

Indirect, Auto-Increment mode: Branch to the 20-bit address contained in the words
pointed to by register R5 and increment the address in R5 afterwards by 4. The next
time the software flow uses R5 as a pointer, it can alter the program execution due to
access to the next address in the table pointed to by R5. Indirect, indirect R5.
BRA

@R5+

; MOVA

@R5+,PC. R5 + 4

Indexed mode: Branch to the 20-bit address contained in the address pointed to by
register (R5 + X) (for example, a table with addresses starting at X). (R5 + X) points to
the LSBs, (R5 + X + 2) points to the MSBs of the address. X is within R5 ± 32 K.
Indirect, indirect (R5 + X).
BRA

X(R5)

; MOVA

z16(R5),PC

Note: If the 16-bit index is not sufficient, a 20-bit index X may be used with the following
instruction:
MOVX.A

X(R5),PC

; 1M byte range with 20-bit index

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

255

Instruction Set Description

4.6.4.3

www.ti.com

CALLA
CALLA
Syntax
Operation

Description

Status Bits

Mode Bits
Examples

CALLA
CALLA

Call a subroutine
CALLA dst

dst → tmp 20-bit dst is evaluated and stored
SP – 2 → SP
PC.19:16 → @SP updated PC with return address to TOS (MSBs)
SP – 2 → SP
PC.15:0 → @SP updated PC to TOS (LSBs)
tmp → PC saved 20-bit dst to PC
A subroutine call is made to a 20-bit address anywhere in the full address space. All
seven source addressing modes can be used. The call instruction is an address-word
instruction. If the destination address is contained in a memory location X, it is
contained in two ascending words, X (LSBs) and (X + 2) (MSBs). Two words on the
stack are needed for the return address. The return is made with the instruction RETA.
N: Not affected
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
Examples for all addressing modes are given.
Immediate mode: Call a subroutine at label EXEC or call directly an address.
#EXEC
#01AA04h

; Start address EXEC
; Start address 01AA04h

Symbolic mode: Call a subroutine at the 20-bit address contained in addresses EXEC
(LSBs) and EXEC+2 (MSBs). EXEC is located at the address (PC + X) where X is
within ±32 K. Indirect addressing.
CALLA

EXEC

; Start address at @EXEC. z16(PC)

Absolute mode: Call a subroutine at the 20-bit address contained in absolute addresses
EXEC (LSBs) and EXEC+2 (MSBs). Indirect addressing.
CALLA

&EXEC

; Start address at @EXEC

Register mode: Call a subroutine at the 20-bit address contained in register R5. Indirect
R5.
CALLA

R5

; Start address at @R5

Indirect mode: Call a subroutine at the 20-bit address contained in the word pointed to
by register R5 (LSBs). The MSBs have the address (R5 + 2). Indirect, indirect R5.
CALLA

256

CPUX

@R5

; Start address at @R5

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

Indirect, Auto-Increment mode: Call a subroutine at the 20-bit address contained in the
words pointed to by register R5 and increment the 20-bit address in R5 afterwards by 4.
The next time the software flow uses R5 as a pointer, it can alter the program execution
due to access to the next word address in the table pointed to by R5. Indirect, indirect
R5.
CALLA

@R5+

; Start address at @R5. R5 + 4

Indexed mode: Call a subroutine at the 20-bit address contained in the address pointed
to by register (R5 + X); for example, a table with addresses starting at X. (R5 + X)
points to the LSBs, (R5 + X + 2) points to the MSBs of the word address. X is within R5
± 32 K. Indirect, indirect (R5 + X).
CALLA

X(R5)

; Start address at @(R5+X). z16(R5)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

257

Instruction Set Description

4.6.4.4

CLRA
* CLRA
Syntax
Operation
Emulation
Description
Status Bits
Example
CLRA

258

www.ti.com

CPUX

Clear 20-bit destination register
CLRA Rdst

0 → Rdst
MOVA #0,Rdst

The destination register is cleared.
Status bits are not affected.
The 20-bit value in R10 is cleared.
R10

; 0 -> R10

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.4.5

CMPA
CMPA
Syntax

Compare the 20-bit source with a 20-bit destination register
CMPA Rsrc,Rdst
CMPA #imm20,Rdst

Operation
Description

Status Bits

Mode Bits
Example

CMPA
JEQ
...

Example

CMPA
JGE
...

(.not. src) + 1 + Rdst or Rdst – src
The 20-bit source operand is subtracted from the 20-bit destination CPU register. This
is made by adding the 1s complement of the source + 1 to the destination register. The
result affects only the status bits.
N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB, reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)
OSCOFF, CPUOFF, and GIE are not affected.
A 20-bit immediate operand and R6 are compared. If they are equal, the program
continues at label EQUAL.
#12345h,R6
EQUAL

; Compare R6 with 12345h
; R6 = 12345h
; Not equal

The 20-bit values in R5 and R6 are compared. If R5 is greater than (signed) or equal to
R6, the program continues at label GRE.
R6,R5
GRE

; Compare R6 with R5 (R5 - R6)
; R5 >= R6
; R5 < R6

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

259

Instruction Set Description

4.6.4.6

DECDA
* DECDA
Syntax
Operation
Emulation
Description
Status Bits

Mode Bits
Example
DECDA

260

www.ti.com

CPUX

Double-decrement 20-bit destination register
DECDA Rdst

Rdst – 2 → Rdst
SUBA #2,Rdst

The destination register is decremented by two. The original contents are lost.
N: Set if result is negative, reset if positive
Z: Set if Rdst contained 2, reset otherwise
C: Reset if Rdst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset
OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R5 is decremented by 2.
R5

; Decrement R5 by two

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.4.7

INCDA
* INCDA
Syntax
Operation
Emulation
Description
Status Bits

Mode Bits
Example
INCDA

Double-increment 20-bit destination register
INCDA Rdst

Rdst + 2 → Rdst
ADDA #2,Rdst

The destination register is incremented by two. The original contents are lost.
N: Set if result is negative, reset if positive
Z: Set if Rdst contained 0FFFFEh, reset otherwise
Set if Rdst contained 0FFFEh, reset otherwise
Set if Rdst contained 0FEh, reset otherwise
C: Set if Rdst contained 0FFFFEh or 0FFFFFh, reset otherwise
Set if Rdst contained 0FFFEh or 0FFFFh, reset otherwise
Set if Rdst contained 0FEh or 0FFh, reset otherwise
V: Set if Rdst contained 07FFFEh or 07FFFFh, reset otherwise
Set if Rdst contained 07FFEh or 07FFFh, reset otherwise
Set if Rdst contained 07Eh or 07Fh, reset otherwise
OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R5 is incremented by two.
R5

; Increment R5 by two

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

261

Instruction Set Description

4.6.4.8

www.ti.com

MOVA
MOVA
Syntax

Move the 20-bit source to the 20-bit destination
MOVA Rsrc,Rdst
MOVA
MOVA
MOVA
MOVA
MOVA
MOVA
MOVA
MOVA

Operation
Description
Status Bits

Mode Bits
Examples
MOVA

#imm20,Rdst
z16(Rsrc),Rdst
EDE,Rdst
&abs20,Rdst
@Rsrc,Rdst
@Rsrc+,Rdst
Rsrc,z16(Rdst)
Rsrc,&abs20

src → Rdst
Rsrc → dst
The 20-bit source operand is moved to the 20-bit destination. The source operand is not
affected. The previous content of the destination is lost.
N: Not affected
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
Copy 20-bit value in R9 to R8
R9,R8

; R9 -> R8

Write 20-bit immediate value 12345h to R12
MOVA

#12345h,R12

; 12345h -> R12

Copy 20-bit value addressed by (R9 + 100h) to R8. Source operand in addresses (R9 +
100h) LSBs and (R9 + 102h) MSBs.
MOVA

100h(R9),R8

; Index: + 32 K. 2 words transferred

Move 20-bit value in 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs) to R12
MOVA

&EDE,R12

; &EDE -> R12. 2 words transferred

Move 20-bit value in 20-bit addresses EDE (LSBs) and EDE+2 (MSBs) to R12. PC
index ± 32 K.
MOVA

EDE,R12

; EDE -> R12. 2 words transferred

Copy 20-bit value R9 points to (20 bit address) to R8. Source operand in addresses
@R9 LSBs and @(R9 + 2) MSBs.
MOVA

262

CPUX

@R9,R8

; @R9 -> R8. 2 words transferred

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

Copy 20-bit value R9 points to (20 bit address) to R8. R9 is incremented by four
afterwards. Source operand in addresses @R9 LSBs and @(R9 + 2) MSBs.
MOVA

@R9+,R8

; @R9 -> R8. R9 + 4. 2 words transferred.

Copy 20-bit value in R8 to destination addressed by (R9 + 100h). Destination operand
in addresses @(R9 + 100h) LSBs and @(R9 + 102h) MSBs.
MOVA

R8,100h(R9)

; Index: +- 32 K. 2 words transferred

Move 20-bit value in R13 to 20-bit absolute addresses EDE (LSBs) and EDE+2 (MSBs)
MOVA

R13,&EDE

; R13 -> EDE. 2 words transferred

Move 20-bit value in R13 to 20-bit addresses EDE (LSBs) and EDE+2 (MSBs). PC
index ± 32 K.
MOVA

R13,EDE

; R13 -> EDE. 2 words transferred

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

263

Instruction Set Description

4.6.4.9

RETA
* RETA
Syntax
Operation

Return from subroutine

Emulation
Description

MOVA @SP+,PC

Status Bits

Mode Bits
Example

SUBR

264

www.ti.com

CPUX

RETA

@SP → PC.15:0 LSBs (15:0) of saved PC to PC.15:0
SP + 2 → SP
@SP → PC.19:16 MSBs (19:16) of saved PC to PC.19:16
SP + 2 → SP
The 20-bit return address information, pushed onto the stack by a CALLA instruction, is
restored to the PC. The program continues at the address following the subroutine call.
The SR bits SR.11:0 are not affected. This allows the transfer of information with these
bits.
N: Not affected
Z: Not affected
C: Not affected
V: Not affected
OSCOFF, CPUOFF, and GIE are not affected.
Call a subroutine SUBR from anywhere in the 20-bit address space and return to the
address after the CALLA
CALLA
...
PUSHM.A
...
POPM.A
RETA

#SUBR
#2,R14
#2,R14

;
;
;
;
;
;

Call subroutine starting at SUBR
Return by RETA to here
Save R14 and R13 (20 bit data)
Subroutine code
Restore R13 and R14 (20 bit data)
Return (to full address space)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Instruction Set Description

www.ti.com

4.6.4.10 SUBA
SUBA
Syntax

Subtract 20-bit source from 20-bit destination register
SUBA Rsrc,Rdst
SUBA #imm20,Rdst

Operation
Description

Status Bits

Mode Bits
Example

SUBA
JC
...

(.not.src) + 1 + Rdst → Rdst or Rdst – src → Rdst
The 20-bit source operand is subtracted from the 20-bit destination register. This is
made by adding the 1s complement of the source + 1 to the destination. The result is
written to the destination register, the source is not affected.
N: Set if result is negative (src > dst), reset if positive (src ≤ dst)
Z: Set if result is zero (src = dst), reset otherwise (src ≠ dst)
C: Set if there is a carry from the MSB (Rdst.19), reset otherwise
V: Set if the subtraction of a negative source operand from a positive destination
operand delivers a negative result, or if the subtraction of a positive source
operand from a negative destination operand delivers a positive result, reset
otherwise (no overflow)
OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R5 is subtracted from R6. If a carry occurs, the program continues at
label TONI.
R5,R6
TONI

; R6 - R5 -> R6
; Carry occurred
; No carry

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CPUX

265

Instruction Set Description

www.ti.com

4.6.4.11 TSTA
* TSTA
Syntax
Operation

Test 20-bit destination register

Emulation
Description

CMPA #0,Rdst

Status Bits

Mode Bits
Example

R7POS
R7NEG
R7ZERO

266

CPUX

TSTA Rdst

dst + 0FFFFFh + 1
dst + 0FFFFh + 1
dst + 0FFh + 1
The destination register is compared with zero. The status bits are set according to the
result. The destination register is not affected.
N: Set if destination register is negative, reset if positive
Z: Set if destination register contains zero, reset otherwise
C: Set
V: Reset
OSCOFF, CPUOFF, and GIE are not affected.
The 20-bit value in R7 is tested. If it is negative, continue at R7NEG; if it is positive but
not zero, continue at R7POS.
TSTA
R7
JN
R7NEG
JZ
R7ZERO
......
......
......

;
;
;
;
;
;

Test R7
R7 is negative
R7 is zero
R7 is positive but not zero
R7 is negative
R7 is zero

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 5
SLAU367O – October 2012 – Revised December 2017

32-Bit Hardware Multiplier (MPY32)
This chapter describes the 32-bit hardware multiplier (MPY32). The MPY32 module is implemented in all
devices.
Topic

5.1
5.2
5.3

...........................................................................................................................

Page

32-Bit Hardware Multiplier (MPY32) Introduction .................................................. 268
MPY32 Operation .............................................................................................. 270
MPY32 Registers .............................................................................................. 282

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

267

32-Bit Hardware Multiplier (MPY32) Introduction

5.1

www.ti.com

32-Bit Hardware Multiplier (MPY32) Introduction
The MPY32 is a peripheral and is not part of the CPU. This means its activities do not interfere with the
CPU activities. The multiplier registers are peripheral registers that are loaded and read with CPU
instructions.
The MPY32 supports:
• Unsigned multiply
• Signed multiply
• Unsigned multiply accumulate
• Signed multiply accumulate
• 8-bit, 16-bit, 24-bit, and 32-bit operands
• Saturation
• Fractional numbers
• 8-bit and 16-bit operation compatible with 16-bit hardware multiplier
• 8-bit and 24-bit multiplications without requiring a "sign extend" instruction
The MPY32 block diagram is shown in Figure 5-1.

268

32-Bit Hardware Multiplier (MPY32)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32) Introduction

www.ti.com
Accessible
Register

MPY
MPYS
MAC
MACS
MPY32H

MPY32L

MPYS32H

MPYS32L

MAC32H

MAC32L

MACS32H

MACS32L

31

16

OP1 (high word)

15

OP2
OP2H
0

OP1 (low word)

31

OP2L
16

OP2 (high word)

16-bit Multiplexer

15

0

OP2 (low word)

16-bit Multiplexer

16×16 Multiplier
OP1_32
OP2_32
MPYMx
MPYSAT
MPYFRAC
MPYC

2

Control
Logic

32-bit Adder

32-bit Demultiplexer

SUMEXT

RES3

RES2

RES1/RESHI

RES0/RESLO

32-bit Multiplexer

Figure 5-1. MPY32 Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

269

MPY32 Operation

5.2

www.ti.com

MPY32 Operation
The MPY32 supports 8-bit, 16-bit, 24-bit, and 32-bit operands with unsigned multiply, signed multiply,
unsigned multiply-accumulate, and signed multiply-accumulate operations. The size of the operands are
defined by the address the operand is written to and if it is written as word or byte. The type of operation is
selected by the address the first operand is written to.
The hardware multiplier has two 32-bit operand registers – operand one (OP1) and operand two (OP2),
and a 64-bit result register accessible through registers RES0 to RES3. For compatibility with the 16×16
hardware multiplier, the result of a 8-bit or 16-bit operation is accessible through RESLO, RESHI, and
SUMEXT, as well. RESLO stores the low word of the 16×16-bit result, RESHI stores the high word of the
result, and SUMEXT stores information about the result.
The result of a 8-bit or 16-bit operation is ready in three MCLK cycles and can be read with the next
instruction after writing to OP2, except when using an indirect addressing mode to access the result.
When using indirect addressing for the result, a NOP is required before the result is ready.
The result of a 24-bit or 32-bit operation can be read with successive instructions after writing OP2 or
OP2H starting with RES0, except when using an indirect addressing mode to access the result. When
using indirect addressing for the result, a NOP is required before the result is ready.
Table 5-1 summarizes when each word of the 64-bit result is available for the various combinations of
operand sizes. With a 32-bit-wide second operand, OP2L and OP2H must be written. Depending on when
the two 16-bit parts are written, the result availability may vary; thus, the table shows two entries, one for
OP2L written and one for OP2H written. The worst case defines the actual result availability.
Table 5-1. Result Availability (MPYFRAC = 0, MPYSAT = 0)
Result Ready in MCLK Cycles

Operation
(OP1 × OP2)

RES0

RES1

RES2

RES3

MPYC Bit

8/16 × 8/16

3

3

4

4

3

OP2 written

24/32 × 8/16

3

5

6

7

7

OP2 written

8/16 × 24/32
24/32 × 24/32

270

32-Bit Hardware Multiplier (MPY32)

After

3

5

6

7

7

OP2L written

N/A

3

4

4

4

OP2H written

3

8

10

11

11

OP2L written

N/A

3

5

6

6

OP2H written

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPY32 Operation

www.ti.com

5.2.1 Operand Registers
Operand one (OP1) has 12 registers (see Table 5-2) used to load data into the multiplier and also select
the multiply mode. Writing the low word of the first operand to a given address selects the type of multiply
operation to be performed, but does not start any operation. When writing a second word to a high-word
register with suffix 32H, the multiplier assumes a 32-bit-wide OP1, otherwise, 16 bits are assumed. The
last address written prior to writing OP2 defines the width of the first operand. For example, if MPY32L is
written first followed by MPY32H, all 32 bits are used and the data width of OP1 is set to 32 bits. If
MPY32H is written first followed by MPY32L, the multiplication ignores MPY32H and assumes a 16-bitwide OP1 using the data written into MPY32L.
Repeated multiply operations may be performed without reloading OP1 if the OP1 value is used for
successive operations. It is not necessary to rewrite the OP1 value to perform the operations.
Table 5-2. OP1 Registers
OP1 Register
MPY
MPYS
MAC
MACS

Operation
Unsigned multiply – operand bits 0 up to 15
Signed multiply – operand bits 0 up to 15
Unsigned multiply accumulate –operand bits 0 up to 15
Signed multiply accumulate – operand bits 0 up to 15

MPY32L

Unsigned multiply – operand bits 0 up to 15

MPY32H

Unsigned multiply – operand bits 16 up to 31

MPYS32L

Signed multiply – operand bits 0 up to 15

MPYS32H

Signed multiply – operand bits 16 up to 31

MAC32L

Unsigned multiply accumulate – operand bits 0 up to 15

MAC32H

Unsigned multiply accumulate – operand bits 16 up to 31

MACS32L

Signed multiply accumulate – operand bits 0 up to 15

MACS32H

Signed multiply accumulate – operand bits 16 up to 31

Writing the second operand to the OP2 initiates the multiply operation. Writing OP2 starts the selected
operation with a 16-bit-wide second operand together with the values stored in OP1. Writing OP2L starts
the selected operation with a 32-bit-wide second operand and the multiplier expects a the high word to be
written to OP2H. Writing to OP2H without a preceding write to OP2L is ignored.
Table 5-3. OP2 Registers
OP2 Register

Operation

OP2

Start multiplication with 16-bit-wide OP2 – operand bits 0 up to 15

OP2L

Start multiplication with 32-bit-wide OP2 – operand bits 0 up to 15

OP2H

Continue multiplication with 32-bit-wide OP2 – operand bits 16 up to 31

For 8-bit or 24-bit operands, the operand registers can be accessed with byte instructions. Accessing the
multiplier with a byte instruction during a signed operation automatically causes a sign extension of the
byte within the multiplier module. For 24-bit operands, only the high word should be written as byte. If the
24-bit operands are sign-extended as defined by the register, that is used to write the low word to,
because this register defines if the operation is unsigned or signed.
The high-word of a 32-bit operand remains unchanged when changing the size of the operand to 16 bit,
either by modifying the operand size bits or by writing to the respective operand register. During the
execution of the 16-bit operation, the content of the high-word is ignored.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

271

MPY32 Operation
NOTE:

www.ti.com

Changing of first or second operand during multiplication
By default, changing OP1 or OP2 while the selected multiply operation is being calculated
renders any results invalid that are not ready at the time the new operands are changed.
Writing OP2 or OP2L aborts any ongoing calculation and starts a new operation. Results that
are not ready at that time are also invalid for following MAC or MACS operations.
To avoid this behavior, the MPYDLYWRTEN bit can be set to 1. Then, all writes to any
MPY32 registers are delayed with MPYDLY32 = 0 until the 64-bit result is ready or with
MPYDLY32 = 1 until the 32-bit result is ready. For MAC and MACS operations, the complete
64-bit result should always be ready.
See Table 5-1 for how many CPU cycles are needed until a certain result register is ready
and valid for each of the different modes.

5.2.2 Result Registers
The multiplication result is always 64 bits wide. It is accessible through registers RES0 to RES3. Used
with a signed operation, MPYS or MACS, the results are appropriately sign extended. If the result
registers are loaded with initial values before a MACS operation, the user software must take care that the
written value is properly sign extended to 64 bits.
NOTE:

Changing of result registers during multiplication
The result registers must not be modified by the user software after writing the second
operand into OP2 or OP2L until the initiated operation is completed.

In addition to RES0 to RES3, for compatibility with the 16×16 hardware multiplier, the 32-bit result of a 8bit or 16-bit operation is accessible through RESLO, RESHI, and SUMEXT. In this case, the result low
register RESLO holds the lower 16 bits of the calculation result and the result high register RESHI holds
the upper 16 bits. RES0 and RES1 are identical to RESLO and RESHI, respectively, in usage and access
of calculated results.
The sum extension register SUMEXT contents depend on the multiply operation and are listed in Table 54. If all operands are 16 bits wide or less, the 32-bit result is used to determine sign and carry. If one of
the operands is larger than 16 bits, the 64-bit result is used.
The MPYC bit reflects the multiplier's carry as listed in Table 5-4 and, thus, can be used as 33rd or 65th
bit of the result, if fractional or saturation mode is not selected. With MAC or MACS operations, the MPYC
bit reflects the carry of the 32-bit or 64-bit accumulation and is not taken into account for successive MAC
and MACS operations as the 33rd or 65th bit.
Table 5-4. SUMEXT and MPYC Contents
Mode

272

SUMEXT

MPYC

MPY

SUMEXT is always 0000h.

MPYC is always 0.

MPYS

SUMEXT contains the extended sign of the result.
00000h = Result was positive or zero
0FFFFh = Result was negative

MPYC contains the sign of the result.
0 = Result was positive or zero
1 = Result was negative

MAC

SUMEXT contains the carry of the result.
0000h = No carry for result
0001h =

MPYC contains the carry of the result.
0 = No carry for result
1 = Result has a carry

MACS

SUMEXT contains the extended sign of the result.
00000h = Result was positive or zero
0FFFFh = Result was negative

MPYC contains the carry of the result.
0 = No carry for result
1 = Result has a carry

32-Bit Hardware Multiplier (MPY32)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPY32 Operation

www.ti.com

5.2.2.1

MACS Underflow and Overflow

The multiplier does not automatically detect underflow or overflow in MACS mode. For example, working
with 16-bit input data and 32-bit results (that is, using only RESLO and RESHI), the available range for
positive numbers is 0 to 07FFF FFFFh and for negative numbers is 0FFFF FFFFh to 08000 0000h. An
underflow occurs when the sum of two negative numbers yields a result that is in the range for a positive
number. An overflow occurs when the sum of two positive numbers yields a result that is in the range for a
negative number.
The SUMEXT register contains the sign of the result in both cases described above, 0FFFFh for a 32-bit
overflow and 0000h for a 32-bit underflow. The MPYC bit in MPY32CTL0 can be used to detect the
overflow condition. If the carry is different from the sign reflected by the SUMEXT register, an overflow or
underflow occurred. User software must handle these conditions appropriately.

5.2.3 Software Examples
Examples for all multiplier modes follow. All 8×8 modes use the absolute address for the registers,
because the assembler does not allow .B access to word registers when using the labels from the
standard definitions file.
There is no sign extension necessary in software. Accessing the multiplier with a byte instruction during a
signed operation automatically causes a sign extension of the byte within the multiplier module.
; 32x32 Unsigned Multiply
MOV
#01234h,&MPY32L
MOV
#01234h,&MPY32H
MOV
#05678h,&OP2L
MOV
#05678h,&OP2H
;
...

;
;
;
;
;

; 16x16 Unsigned Multiply
MOV
#01234h,&MPY
MOV
#05678h,&OP2
;
...

; Load 1st operand
; Load 2nd operand
; Process results

Load low word of
Load high word of
Load low word of
Load high word of
Process results

1st
1st
2nd
2nd

operand
operand
operand
operand

1st
1st
2nd
2nd

operand
operand
operand
operand

; 8x8 Unsigned Multiply. Absolute addressing.
MOV.B
#012h,&MPY_B
; Load 1st operand
MOV.B
#034h,&OP2_B
; Load 2nd operand
;
...
; Process results
; 32x32 Signed Multiply
MOV
#01234h,&MPYS32L
MOV
#01234h,&MPYS32H
MOV
#05678h,&OP2L
MOV
#05678h,&OP2H
;
...

;
;
;
;
;

; 16x16 Signed Multiply
MOV
#01234h,&MPYS
MOV
#05678h,&OP2
;
...

; Load 1st operand
; Load 2nd operand
; Process results

; 8x8 Signed Multiply. Absolute
MOV.B
#012h,&MPYS_B
;
MOV.B
#034h,&OP2_B
;
;
...
;

Load low word of
Load high word of
Load low word of
Load high word of
Process results

addressing.
Load 1st operand
Load 2nd operand
Process results

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

273

MPY32 Operation

www.ti.com

5.2.4 Fractional Numbers
The MPY32 provides support for fixed-point signal processing. In fixed-point signal processing, fractional
number are numbers that have a fixed number of digits after (and sometimes also before) the radix point.
To classify different ranges of binary fixed-point numbers, a Q-format is used. Different Q-formats
represent different locations of the radix point. Figure 5-2 shows the format of a signed Q15 number using
16 bits. Every bit after the radix point has a resolution of 1/2, and the most significant bit (MSB) is used as
the sign bit. The most negative number is 08000h and the maximum positive number is 07FFFh. This
gives a range from –1.0 to 0.999969482 ≈ 1.0 for the signed Q15 format with 16 bits.
15 bits
S

1
2

1
4

1
8

1
16

...

Fractional part
Radix point
Sign bit

Figure 5-2. Q15 Format Representation
The range can be increased by shifting the radix point to the right as shown in Figure 5-3. The signed Q14
format with 16 bits gives a range from –2.0 to 1.999938965 ≈ 2.0.
14 bits

S

1

1
2

1
4

1
8

1
16

...

Figure 5-3. Q14 Format Representation
The benefit of using 16-bit signed Q15 or 32-bit signed Q31 numbers with multiplication is that the product
of two number in the range from –1.0 to 1.0 is always in that same range.
5.2.4.1

Fractional Number Mode

Multiplying two fractional numbers using the default multiplication mode with MPYFRAC = 0 and
MPYSAT = 0 gives a result with two sign bits. For example, if two 16-bit Q15 numbers are multiplied, a
32-bit result in Q30 format is obtained. To convert the result into Q15 format manually, the first 15 trailing
bits and the extended sign bit must be removed. However, when the fractional mode of the multiplier is
used, the redundant sign bit is automatically removed, yielding a result in Q31 format for the multiplication
of two 16-bit Q15 numbers. Reading the result register RES1 gives the result as 16-bit Q15 number. The
32-bit Q31 result of a multiplication of two 32-bit Q31 numbers is accessed by reading registers RES2 and
RES3.
The fractional mode is enabled with MPYFRAC = 1 in register MPY32CTL0. The actual content of the
result registers is not modified when MPYFRAC = 1. When the result is accessed using software, the
value is left shifted one bit, resulting in the final Q formatted result. This allows user software to switch
between reading both the shifted (fractional) and the unshifted result. The fractional mode should only be
enabled when required and disabled after use.
In fractional mode, the SUMEXT register contains the sign extended bits 32 and 33 of the shifted result for
16×16-bit operations and bits 64 and 65 for 32×32-bit operations – not only bits 32 or 64, respectively.

274

32-Bit Hardware Multiplier (MPY32)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPY32 Operation

www.ti.com

The MPYC bit is not affected by the fractional mode. It always reads the carry of the nonfractional result.
; Example using
; Fractional 16x16 multiplication
BIS
#MPYFRAC,&MPY32CTL0
MOV
&FRACT1,&MPYS
MOV
&FRACT2,&OP2
MOV
&RES1,&PROD
BIC
#MPYFRAC,&MPY32CTL0

;
;
;
;
;

Turn
Load
Load
Save
Back

on fractional mode
1st operand as Q15
2nd operand as Q15
result as Q15
to normal mode

Table 5-5. Result Availability in Fractional Mode (MPYFRAC = 1, MPYSAT = 0)
RES0

RES1

RES2

RES3

MPYC Bit

8/16 × 8/16

3

3

4

4

3

24/32 × 8/16

3

5

6

7

7

OP2 written

3

5

6

7

7

OP2L written

N/A

3

4

4

4

OP2H written

3

8

10

11

11

OP2L written

N/A

3

5

6

6

OP2H written

8/16 × 24/32
24/32 × 24/32

5.2.4.2

Result Ready in MCLK Cycles

Operation
(OP1 × OP2)

After
OP2 written

Saturation Mode

The multiplier prevents overflow and underflow of signed operations in saturation mode. The saturation
mode is enabled with MPYSAT = 1 in register MPY32CTL0. If an overflow occurs, the result is set to the
most-positive value available. If an underflow occurs, the result is set to the most-negative value available.
This is useful to reduce mathematical artifacts in control systems on overflow and underflow conditions.
The saturation mode should only be enabled when required and disabled after use.
The actual content of the result registers is not modified when MPYSAT = 1. When the result is accessed
using software, the value is automatically adjusted to provide the most-positive or most-negative result
when an overflow or underflow has occurred. The adjusted result is also used for successive multiply-andaccumulate operations. This allows user software to switch between reading the saturated and the
nonsaturated result.
With 16×16 operations, the saturation mode only applies to the least significant 32 bits; that is, the result
registers RES0 and RES1. Using the saturation mode in MAC or MACS operations that mix 16×16
operations with 32×32, 16×32, or 32×16 operations leads to unpredictable results.
With 32×32, 16×32, and 32×16 operations, the saturated result can only be calculated when RES3 is
ready.
Enabling the saturation mode does not affect the content of the SUMEXT register nor the content of the
MPYC bit.
; Example using
; Fractional 16x16 multiply accumulate with Saturation
; Turn on fractional and saturation mode:
BIS
#MPYSAT+MPYFRAC,&MPY32CTL0
MOV
&A1,&MPYS
; Load A1 for 1st term
MOV
&K1,&OP2
; Load K1 to get A1*K1
MOV
&A2,&MACS
; Load A2 for 2nd term
MOV
&K2,&OP2
; Load K2 to get A2*K2
MOV
&RES1,&PROD
; Save A1*K1+A2*K2 as result
BIC
#MPYSAT+MPYFRAC,&MPY32CTL0
; turn back to normal

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

275

MPY32 Operation

www.ti.com

Table 5-6. Result Availability in Saturation Mode (MPYSAT = 1)
Result Ready in MCLK Cycles

Operation
(OP1 × OP2)

RES0

RES1

RES2

RES3

MPYC Bit

8/16 × 8/16

3

3

N/A

N/A

3

24/32 × 8/16

7

7

7

7

7

OP2 written

7

7

7

7

7

OP2L written

4

4

4

4

4

OP2H written

11

11

11

11

11

OP2L written

6

6

6

6

6

OP2H written

8/16 × 24/32
24/32 × 24/32

After
OP2 written

Figure 5-4 shows the flow for 32-bit saturation used for 16×16 bit multiplications and the flow for 64-bit
saturation used in all other cases. Primarily, the saturated results depends on the carry bit MPYC and the
MSB of the result. Secondly, if the fractional mode is enabled, it depends also on the two MSBs of the
unshift result, that is, the result that is read with fractional mode disabled.
64-bit Saturation

32-bit Saturation

MPYC=0 and
unshifted RES1,
bit15=1

Overflow:
RES3 unchanged
RES2 unchanged
RES1 = 07FFFh
RES0 = 0FFFFh

Yes

No

MPYC=1 and
unshifted RES1,
bit15=0

MPYC=0 and
unshifted RES3,
bit15=1

Underflow:
RES3 unchanged
RES2 unchanged
RES1 = 08000h
RES0 = 00000h

Yes

MPYC=1 and
unshifted RES3,
bit15=0

Yes

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RES0 = 00000h

No
No

No

MPYFRAC=1

MPYFRAC=1

Yes

Yes
Yes

Overflow:
RES3 unchanged
RES2 unchanged
RES1 = 07FFFh
RES0 = 0FFFFh

No

Unshifted RES1,
bit 15=1 and
bit 14=0

Overflow:
RES3 = 07FFFh
RES2 = 0FFFFh
RES1 = 0FFFFh
RES0 = 0FFFFh

No

No

Unshifted RES1,
bit 15=0 and
bit 14=1

Yes

Unshifted RES3,
bit 15=0 and
bit 14=1

Yes

Overflow:
RES3 = 07FFFh
RES2 = 0FFFFh
RES1 = 0FFFFh
RES0 = 0FFFFh

No
Yes

No

32-bit Saturation
completed

Underflow:
RES3 unchanged
RES2 unchanged
RES1 = 08000h
RES0 = 00000h

Unshifted RES3,
bit 15=1 and
bit 14=0

Yes

Underflow:
RES3 = 08000h
RES2 = 00000h
RES1 = 00000h
RES0 = 00000h

No

64-bit Saturation
completed

Figure 5-4. Saturation Flow Chart

276

32-Bit Hardware Multiplier (MPY32)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPY32 Operation

www.ti.com

NOTE:

Saturation in fractional mode
In case of multiplying –1.0 × –1.0 in fractional mode, the result of +1.0 is out of range, thus,
the saturated result gives the most positive result.
When using multiply-and-accumulate operations, the accumulated values are saturated as if
MPYFRAC = 0; only during read accesses to the result registers the values are saturated
taking the fractional mode into account. This provides additional dynamic range during the
calculation and only the end result is then saturated if needed.

The following example illustrates a special case showing the saturation function in fractional mode. It also
uses the 8-bit functionality of the MPY32 module.
; Turn on fractional and saturation mode,
; clear all other bits in MPY32CTL0:
MOV
#MPYSAT+MPYFRAC,&MPY32CTL0
;Pre-load result registers to demonstrate overflow
MOV
#0,&RES3
;
MOV
#0,&RES2
;
MOV
#07FFFh,&RES1
;
MOV
#0FA60h,&RES0
;
MOV.B
#050h,&MACS_B
; 8-bit signed MAC operation
MOV.B
#012h,&OP2_B
; Start 16x16 bit operation
MOV
&RES0,R6
; R6 = 0FFFFh
MOV
&RES1,R7
; R7 = 07FFFh

The result is saturated because already the result not converted into a fractional number shows an
overflow. The multiplication of the two positive numbers 00050h and 00012h gives 005A0h. 005A0h added
to 07FFF FA60h results in 8000 059Fh, without MPYC being set. Because the MSB of the unmodified
result RES1 is 1 and MPYC = 0, the result is saturated according Figure 5-4.
NOTE:

Validity of saturated result
The saturated result is valid only if the registers RES0 to RES3, the size of OP1 and OP2,
and MPYC are not modified.
If the saturation mode is used with a preloaded result, user software must ensure that MPYC
in the MPY32CTL0 register is loaded with the sign bit of the written result; otherwise, the
saturation mode erroneously saturates the result.

5.2.5 Putting It All Together
Figure 5-5 shows the complete multiplication flow, depending on the various selectable modes for the
MPY32 module.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

277

MPY32 Operation

www.ti.com

New Multiplication
Started

Yes

No

No

16×16
?

Yes

Yes

No

MAC or MACS
?

MAC or MACS
?
Yes

Yes
Clear Result:
RES1 = 00000h
RES0 = 00000h

MPYSAT=1
?

non-fractional
32-bit Saturation

Perform 16×16
MPY or MPYS
Operation

No

Perform 16×16
MAC or MACS
Operation

MPYSAT=1
?
No

non-fractional
64-bit Saturation

Perform
MAC or MACS
Operation

Yes

Perform
MPY or MPYS
Operation

Yes
MPYFRAC=1
?

MPYFRAC=1
?
No

Shift 64-bit result.
Calculate SUMEXT based on
MPYC and bit 15 of
unshifted RES1.

Shift 64-bit result.
Calculate SUMEXT based on
MPYC and bit 15 of
unshifted RES3.

Yes

No

Yes

MPYSAT=1
?
No

Clear Result:
RES3 = 00000h
RES2 = 00000h
RES1 = 00000h
RES0 = 00000h

MPYSAT=1
?
32-bit Saturation

64-bit Saturation

No

Multiplication
completed

Figure 5-5. Multiplication Flow Chart

278

32-Bit Hardware Multiplier (MPY32)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPY32 Operation

www.ti.com

Given the separation in processing of 16-bit operations (32-bit results) and 32-bit operations (64-bit
results) by the module, it is important to understand the implications when using MAC/MACS operations
and mixing 16-bit operands or results with 32-bit operands or results. User software must address these
points during use when mixing these operations. The following code illustrates the issue.
; Mixing 32x24 multiplication with 16x16 MACS operation
MOV
#MPYSAT,&MPY32CTL0
; Saturation mode
MOV
#052C5h,&MPY32L
; Load low word of 1st operand
MOV
#06153h,&MPY32H
; Load high word of 1st operand
MOV
#001ABh,&OP2L
; Load low word of 2nd operand
MOV.B
#023h,&OP2H_B
; Load high word of 2nd operand
;... 5 NOPs required
MOV
&RES0,R6
; R6 = 00E97h
MOV
&RES1,R7
; R7 = 0A6EAh
MOV
&RES2,R8
; R8 = 04F06h
MOV
&RES3,R9
; R9 = 0000Dh
; Note that MPYC = 0!
MOV
#0CCC3h,&MACS
; Signed MAC operation
MOV
#0FFB6h,&OP2
; 16x16 bit operation
MOV
&RESLO,R6
; R6 = 0FFFFh
MOV
&RESHI,R7
; R7 = 07FFFh

The second operation gives a saturated result because the 32-bit value used for the 16×16-bit MACS
operation was already saturated when the operation was started; the carry bit MPYC was 0 from the
previous operation, but the MSB in result register RES1 is set. As one can see in the flow chart, the
content of the result registers are saturated for multiply-and-accumulate operations after starting a new
operation based on the previous results, but depending on the size of the result (32 bit or 64 bit) of the
newly initiated operation.
The saturation before the multiplication can cause issues if the MPYC bit is not properly set as the
following code shows.
;Pre-load result registers to demonstrate overflow
MOV
#0,&RES3
;
MOV
#0,&RES2
;
MOV
#0,&RES1
;
MOV
#0,&RES0
;
; Saturation mode and set MPYC:
MOV
#MPYSAT+MPYC,&MPY32CTL0
MOV.B
#082h,&MACS_B
; 8-bit signed MAC operation
MOV.B
#04Fh,&OP2_B
; Start 16x16 bit operation
MOV
&RES0,R6
; R6 = 00000h
MOV
&RES1,R7
; R7 = 08000h

Even though the result registers were loaded with all zeros, the final result is saturated. This is because
the MPYC bit was set, causing the result used for the multiply-and-accumulate to be saturated to
08000 0000h. Adding a negative number to it would again cause an underflow, thus, the final result is also
saturated to 08000 0000h.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

279

MPY32 Operation

www.ti.com

5.2.6 Indirect Addressing of Result Registers
When using indirect or indirect autoincrement addressing mode to access the result registers and the
multiplier requires three cycles until result availability according to Table 5-1, at least one instruction is
needed between loading the second operand and accessing the result registers:
; Access multiplier 16x16 results with indirect addressing
MOV
#RES0,R5
; RES0 address in R5 for indirect
MOV
&OPER1,&MPY
; Load 1st operand
MOV
&OPER2,&OP2
; Load 2nd operand
NOP
; Need one cycle
MOV
@R5+,&xxx
; Move RES0
MOV
@R5,&xxx
; Move RES1

In case of a 32×16 multiplication, there is also one instruction required between reading the first result
register RES0 and the second result register RES1:
; Access
MOV
MOV
MOV
MOV
NOP
MOV
NOP
MOV
MOV

multiplier 32x16 results with indirect addressing
#RES0,R5
; RES0 address in R5 for indirect
&OPER1L,&MPY32L
; Load low word of 1st operand
&OPER1H,&MPY32H
; Load high word of 1st operand
&OPER2,&OP2
; Load 2nd operand (16 bits)
; Need one cycle
@R5+,&xxx
; Move RES0
; Need one additional cycle
@R5,&xxx
; Move RES1
; No additional cycles required!
@R5,&xxx
; Move RES2

5.2.7 Using Interrupts
If an interrupt occurs after writing OP, but before writing OP2, and the multiplier is used in servicing that
interrupt, the original multiplier mode selection is lost and the results are unpredictable. To avoid this,
disable interrupts before using the MPY32, do not use the MPY32 in interrupt service routines, or use the
save and restore functionality of the MPY32.
; Disable interrupts before using the hardware multiplier
DINT
; Disable interrupts
NOP
; Required for DINT
MOV
#xxh,&MPY
; Load 1st operand
MOV
#xxh,&OP2
; Load 2nd operand
EINT
; Interrupts may be enabled before
; processing results if result
; registers are stored and restored in
; interrupt service routines

280

32-Bit Hardware Multiplier (MPY32)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPY32 Operation

www.ti.com

5.2.7.1

Save and Restore

If the multiplier is used in interrupt service routines, its state can be saved and restored using the
MPY32CTL0 register. The following code example shows how the complete multiplier status can be saved
and restored to allow interruptible multiplications together with the usage of the multiplier in interrupt
service routines. Because the state of the MPYSAT and MPYFRAC bits are unknown, they should be
cleared before the registers are saved as shown in the code example.
; Interrupt service routine using multiplier
MPY_USING_ISR
PUSH
&MPY32CTL0
; Save multiplier mode, etc.
BIC
#MPYSAT+MPYFRAC,&MPY32CTL0
; Clear MPYSAT+MPYFRAC
PUSH
&RES3
; Save result 3
PUSH
&RES2
; Save result 2
PUSH
&RES1
; Save result 1
PUSH
&RES0
; Save result 0
PUSH
&MPY32H
; Save operand 1, high word
PUSH
&MPY32L
; Save operand 1, low word
PUSH
&OP2H
; Save operand 2, high word
PUSH
&OP2L
; Save operand 2, low word
;
...
; Main part of ISR
; Using standard MPY routines
;
POP
&OP2L
; Restore operand 2, low word
POP
&OP2H
; Restore operand 2, high word
; Starts dummy multiplication but
; result is overwritten by
; following restore operations:
POP
&MPY32L
; Restore operand 1, low word
POP
&MPY32H
; Restore operand 1, high word
POP
&RES0
; Restore result 0
POP
&RES1
; Restore result 1
POP
&RES2
; Restore result 2
POP
&RES3
; Restore result 3
POP
&MPY32CTL0
; Restore multiplier mode, etc.
reti
; End of interrupt service routine

5.2.8 Using DMA
In devices with a DMA controller, the multiplier can trigger a transfer when the complete result is available.
The DMA controller needs to start reading the result with MPY32RES0 successively up to MPY32RES3.
Not all registers need to be read. The trigger timing is such that the DMA controller starts reading
MPY32RES0 when its ready, and that the MPY32RES3 can be read exactly in the clock cycle when it is
available to allow the fastest access through the DMA. The signal into the DMA controller is 'Multiplier
ready' (see the DMA Controller chapter for details).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

281

MPY32 Registers

5.3

www.ti.com

MPY32 Registers
MPY32 registers are listed in Table 5-7. The base address can be found in the device-specific data sheet.
The address offsets are listed in Table 5-7.
NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 5-7. MPY32 Registers
Offset

Acronym

Register Name

Type

Access

Reset

00h

MPY

16-bit operand one – multiply

Read/write

Word

Undefined

00h

MPY_L

Read/write

Byte

Undefined

01h

MPY_H

Read/write

Byte

Undefined

00h

MPY_B

8-bit operand one – multiply

Read/write

Byte

Undefined

02h

MPYS

16-bit operand one – signed multiply

Read/write

Word

Undefined

02h

MPYS_L

Read/write

Byte

Undefined

03h

MPYS_H

Read/write

Byte

Undefined

02h

MPYS_B

8-bit operand one – signed multiply

Read/write

Byte

Undefined

04h

MAC

16-bit operand one – multiply accumulate

Read/write

Word

Undefined

04h

MAC_L

Read/write

Byte

Undefined

05h

MAC_H

Read/write

Byte

Undefined

04h

MAC_B

8-bit operand one – multiply accumulate

Read/write

Byte

Undefined

06h

MACS

16-bit operand one – signed multiply accumulate

Read/write

Word

Undefined

06h

MACS_L

Read/write

Byte

Undefined

07h

MACS_H

Read/write

Byte

Undefined

06h

MACS_B

8-bit operand one – signed multiply accumulate

Read/write

Byte

Undefined

08h

OP2

16-bit operand two

Read/write

Word

Undefined

08h

OP2_L

Read/write

Byte

Undefined

09h

OP2_H

Read/write

Byte

Undefined

08h

OP2_B

8-bit operand two

Read/write

Byte

Undefined

0Ah

RESLO

16x16-bit result low word

Read/write

Word

Undefined

0Ah

RESLO_L

Read/write

Byte

Undefined

0Ch

RESHI

16x16-bit result high word

Read/write

Word

Undefined

0Eh

SUMEXT

16x16-bit sum extension register

Read

Word

Undefined

10h

MPY32L

32-bit operand 1 – multiply – low word

Read/write

Word

Undefined

10h

MPY32L_L

Read/write

Byte

Undefined

11h

MPY32L_H

Read/write

Byte

Undefined

12h

MPY32H

Read/write

Word

Undefined

12h

MPY32H_L

Read/write

Byte

Undefined

13h

MPY32H_H

Read/write

Byte

Undefined

12h

MPY32H_B

24-bit operand 1 – multiply – high byte

Read/write

Byte

Undefined

14h

MPYS32L

32-bit operand 1 – signed multiply – low word

Read/write

Word

Undefined

14h

MPYS32L_L

Read/write

Byte

Undefined

15h

MPYS32L_H

Read/write

Byte

Undefined

16h

MPYS32H

Read/write

Word

Undefined

16h

MPYS32H_L

Read/write

Byte

Undefined

17h

MPYS32H_H

Read/write

Byte

Undefined

16h

MPYS32H_B

24-bit operand 1 – signed multiply – high byte

Read/write

Byte

Undefined

18h

MAC32L

32-bit operand 1 – multiply accumulate – low word

Read/write

Word

Undefined

282 32-Bit Hardware Multiplier (MPY32)

32-bit operand 1 – multiply – high word

32-bit operand 1 – signed multiply – high word

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPY32 Registers

www.ti.com

Table 5-7. MPY32 Registers (continued)
Offset

Acronym

18h

MAC32L_L

19h

MAC32L_H

1Ah

MAC32H

1Ah

Register Name

Type

Access

Reset

Read/write

Byte

Undefined

Read/write

Byte

Undefined

Read/write

Word

Undefined

MAC32H_L

Read/write

Byte

Undefined

1Bh

MAC32H_H

Read/write

Byte

Undefined

1Ah

MAC32H_B

24-bit operand 1 – multiply accumulate – high byte

Read/write

Byte

Undefined

1Ch

MACS32L

32-bit operand 1 – signed multiply accumulate – low word

Read/write

Word

Undefined

1Ch

MACS32L_L

Read/write

Byte

Undefined

1Dh

MACS32L_H

Read/write

Byte

Undefined

1Eh

MACS32H

Read/write

Word

Undefined

1Eh

MACS32H_L

Read/write

Byte

Undefined

1Fh

MACS32H_H

Read/write

Byte

Undefined

1Eh

MACS32H_B

24-bit operand 1 – signed multiply accumulate – high byte

Read/write

Byte

Undefined

20h

OP2L

32-bit operand 2 – low word

Read/write

Word

Undefined

20h

OP2L_L

Read/write

Byte

Undefined

21h

OP2L_H

Read/write

Byte

Undefined

22h

OP2H

Read/write

Word

Undefined

22h

OP2H_L

Read/write

Byte

Undefined

23h

OP2H_H

Read/write

Byte

Undefined

22h

OP2H_B

24-bit operand 2 – high byte

Read/write

Byte

Undefined

24h

RES0

32x32-bit result 0 – least significant word

Read/write

Word

Undefined

24h

RES0_L

Read/write

Byte

Undefined

26h

RES1

32x32-bit result 1

Read/write

Word

Undefined

28h

RES2

32x32-bit result 2

Read/write

Word

Undefined

2Ah

RES3

32x32-bit result 3 – most significant word

Read/write

Word

Undefined

2Ch

MPY32CTL0

MPY32 control register 0

Read/write

Word

Undefined

2Ch

MPY32CTL0_L

Read/write

Byte

Undefined

2Dh

MPY32CTL0_H

Read/write

Byte

00h

32-bit operand 1 – multiply accumulate – high word

32-bit operand 1 – signed multiply accumulate – high word

32-bit operand 2 – high word

The registers listed in Table 5-8 are treated equally.
Table 5-8. Alternative Registers
Register

Alternative 1

Alternative 2

16-bit operand one – multiply

MPY

MPY32L

8-bit operand one – multiply

MPY_B or MPY_L

MPY32L_B or MPY32L_L

16-bit operand one – signed multiply

MPYS

MPYS32L

8-bit operand one – signed multiply

MPYS_B or MPYS_L

MPYS32L_B or MPYS32L_L

16-bit operand one – multiply accumulate

MAC

MAC32L

8-bit operand one – multiply accumulate

MAC_B or MAC_L

MAC32L_B or MAC32L_L

16-bit operand one – signed multiply accumulate

MACS

MACS32L

8-bit operand one – signed multiply accumulate

MACS_B or MACS_L

MACS32L_B or MACS32L_L

16x16-bit result low word

RESLO

RES0

16x16-bit result high word

RESHI

RES1

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

32-Bit Hardware Multiplier (MPY32)

283

MPY32 Registers

www.ti.com

5.3.1 MPY32CTL0 Register
32-Bit Hardware Multiplier Control 0 Register
Figure 5-6. MPY32CTL0 Register
15

14

13

12

11

10

Reserved

9

8

MPYDLY32

MPYDLYWRTEN
rw-0

r-0

r-0

r-0

r-0

r-0

r-0

rw-0

7

6

5

4

3

2

1

0

MPYOP2_32

MPYOP1_32

MPYSAT

MPYFRAC

Reserved

MPYC

rw

rw

rw-0

rw-0

rw-0

rw

MPYMx
rw

rw

Table 5-9. MPY32CTL0 Register Description
Bit

Field

Type

Reset

Description

15-10

Reserved

R

0h

Reserved. Always reads as 0.

9

MPYDLY32

RW

0h

Delayed write mode
0b = Writes are delayed until 64-bit result (RES0 to RES3) is available.
1b = Writes are delayed until 32-bit result (RES0 to RES1) is available.

8

MPYDLYWRTEN

RW

0h

Delayed write enable
All writes to any MPY32 register are delayed until the 64-bit (MPYDLY32 = 0) or
32-bit (MPYDLY32 = 1) result is ready.
0b = Writes are not delayed.
1b = Writes are delayed.

7

MPYOP2_32

RW

0h

Multiplier bit width of operand 2
0b = 16 bits
1b = 32 bits

6

MPYOP1_32

RW

0h

Multiplier bit width of operand 1
0b = 16 bits
1b = 32 bits

5-4

MPYMx

RW

0h

Multiplier mode
00b = MPY – Multiply
01b = MPYS – Signed multiply
10b = MAC – Multiply accumulate
11b = MACS – Signed multiply accumulate

3

MPYSAT

RW

0h

Saturation mode
0b = Saturation mode disabled
1b = Saturation mode enabled

2

MPYFRAC

RW

0h

Fractional mode
0b = Fractional mode disabled
1b = Fractional mode enabled

1

Reserved

RW

0h

Reserved. Always reads as 0.

0

MPYC

RW

0h

Carry of the multiplier. It can be considered as 33rd or 65th bit of the result if
fractional or saturation mode is not selected, because the MPYC bit does not
change when switching to saturation or fractional mode.
It is used to restore the SUMEXT content in MAC mode.
0b = No carry for result
1b = Result has a carry

284

32-Bit Hardware Multiplier (MPY32)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 6
SLAU367O – October 2012 – Revised December 2017

FRAM Controller Overview
6.1

FRAM Controller Overview
Table 6-1 summarizes the differences between the FRCTL and FRCTL_A modules. See the full feature
descriptions in the FRCTL chapter and FRCTL_A chapter for details. A device can includes only one
FRAM controller, either FRCTL or FRCTL_A. See the functional block diagram in the device-specific data
sheet to determine the supported FRAM controller (if FRCTL_A is not specifed in the block diagram, the
device supports FRCTL).
Table 6-1. FRAM Controller Overview
Feature

FRCTL

FRCTL_A

No

Yes

Yes

Yes

Control Bits: NWAITS[2:0]

Control Bits: NWAITS[3:0]

Timing violation interrupt:
ACCTEIFG bit and a reset (PUC);
always enabled

Timing violation interrupt:
ACCTEIFG bit; enabled by the ACCTEIE bit

MPU
(see Chapter 9)

Yes

Yes

Temporary
protection - whole
FRAM memory

No

Yes (WPROT bit)

FRAM on or off in
AM

FRPWR bit

FRPWR bit

FRAM power status
when the device
wakes up from a
LPM

FRLPMPWR bit

FRPWR bit

Automatic wait state
mode
Wait state
control

Write
protection

Power control

User wait state
mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller Overview

285

Chapter 7
SLAU367O – October 2012 – Revised December 2017

FRAM Controller (FRCTL)
This chapter describes the operation of the FRAM controller.
Topic

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

286

...........................................................................................................................
FRAM Introduction............................................................................................
FRAM Organization ...........................................................................................
FRCTL Module Operation ..................................................................................
Programming FRAM Devices .............................................................................
Wait State Control ............................................................................................
FRAM ECC .......................................................................................................
FRAM Write Back .............................................................................................
FRAM Power Control ........................................................................................
FRAM Cache ....................................................................................................
FRCTL Registers ..............................................................................................

FRAM Controller (FRCTL)

Page

287
287
287
288
288
289
289
289
290
291

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Introduction

www.ti.com

7.1

FRAM Introduction
FRAM is a nonvolatile memory that reads and writes like standard SRAM. The MSP430 FRAM features
include:
• Byte or word write access
• Automatic and programmable wait state control with independent wait state settings for access and
cycle times
• Error correction code with bit error correction, extended bit error detection and flag indicators
• Cache for fast read
• Power control for disabling FRAM if it is not used
For important software design information regarding FRAM, including but not limited to partitioning the
memory layout according to application-specific code, constant, and data space requirements, the use of
FRAM to optimize application energy consumption, and the use of the memory protection unit (MPU) to
maximize application robustness by protecting the program code against unintended write accesses, see
MSP430™ FRAM Technology – How To and Best Practices.
Figure 7-1 shows the block diagram of the FRAM Controller.
Control Registers

MAB
MPU
FRAM
Controller
Violation
MDB

FRAM
Memory
Array

Cache

Figure 7-1. FRAM Controller Block Diagram

7.2

FRAM Organization
The FRAM can be arranged into segments by the Memory Protection Unit (MPU). See Chapter 9, Memory
Protection Unit, for details. The address space is linear with the exception of the User Information Memory
and the Device Descriptor Information (TLV).

7.3

FRCTL Module Operation
The FRAM can be read in a similar fashion to SRAM and needs no special requirements. Similarly, any
writes to unprotected segments can be written in the same fashion as SRAM. All writes to user protected
segments are handled as described in Chapter 9, Memory Protection Unit.
An FRAM read always requires a write back to the same memory location with the same information read.
This write back is part of the FRAM module itself and requires no user interaction. These write backs are
different from the normal write access from application code.
The FRAM module has built-in error correction code (ECC) logic that can correct bit errors and detect
multiple bit errors. Two flags are available that indicate the presence of an error. The CBDIFG is set when
a correctable bit error has been detected. If CBDIE is also set, a System NMI event (SYSNMI) occurs.
The UBDIFG is set when a multiple bit error that is not correctable has been detected. If UBDIE is also
set, a System NMI event (SYSNMI) occurs. Upon correctable or uncorrectable bit errors, the program
vectors to the SYSSNIV if the NMI is enabled. If desired, a System Reset event (SYSRST) can be
generated by setting the UBDRSTEN bit. If an uncorrectable error is detected, a PUC is initiated and the
program vectors to the SYSRSTIV.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller (FRCTL)

287

Programming FRAM Devices

7.4

www.ti.com

Programming FRAM Devices
There are three options for programming an MSP430 FRAM device. All options support in-system
programming.
• Program with JTAG or the Spy-Bi-Wire interface
• Program with the BSL
• Program with a custom solution

7.4.1 Programming FRAM With JTAG or Spy-Bi-Wire
Devices can be programmed through the JTAG port or the Spy-Bi-Wire port. The JTAG interface requires
access to TDI, TDO, TMS, TCK, TEST, ground, and optionally VCC and RST/NMI. Spy-Bi-Wire interface
requires access to TEST, RST/NMI, ground and optionally VCC. For more details, see MSP430
Programming With the JTAG Interface.

7.4.2 Programming FRAM With the Bootloader (BSL)
Every device contains a BSL stored in ROM. The BSL enables users to read or program the FRAM or
RAM using a UART serial interface. Access to the FRAM through the BSL is protected by a 256-bit userdefined password. For more details, see the MSP430FR57xx, MSP430FR58xx, MSP430FR59xx,
MSP430FR68xx, and MSP430FR69xx Bootloader (BSL) User's Guide.

7.4.3 Programming FRAM With a Custom Solution
The ability of the CPU to write to its own FRAM allows for in-system and external custom programming
solutions. The user can choose to provide data to the device through any means available (for example,
UART or SPI). User-developed software can receive the data and program the FRAM. Because this type
of solution is developed by the user, it can be completely customized to fit the application needs for
programming or updating the FRAM.

7.5

Wait State Control
The system clock for the CPU or DMA can exceed the FRAM access and cycle time requirements. For
these scenarios, a wait state generator mechanism is implemented. The Recommended Operating
Conditions of the device-specific data sheet list the frequency ranges with the required wait state settings.
The number of wait states is controlled by the NWAITS[2:0] bits in the FRCTL0 register.
To increase the system clock frequency beyond the maximum frequency allowed by the current wait state
setting, the following steps are required:
1. Increase the number of wait states by configuring NWAITS[2:0] according to the target frequency.
2. Increase the frequency to the new target.
To decrease the system clock frequency to a range that supports fewer wait states, the following steps are
required:
1. Decrease frequency to the new target.
2. Decrease number of wait states by configuring NWAITS[2:0] according to the new frequency setting.
To ensure memory integrity, a mechanism is implemented to reset the device with a PUC if the system
clock frequency and the wait state settings violate the FRAM access timing.
NOTE: Wait State Settings
•
The device starts with zero wait states.
•
Correct wait state settings must be ensured, otherwise a PUC might be generated to
avoid erratic FRAM accesses.

288

FRAM Controller (FRCTL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Wait State Control

www.ti.com

7.5.1 Wait State and Cache Hit
The FRAM controller contains a cache with two cache sets. Each of these cache sets contains two lines
that are preloaded with four words (64 bits) during one access cycle. An intelligent logic selects one of the
cache lines to preload FRAM data and preserves recently accessed data in the other cache. If one of the
four words stored in one of the cache lines is requested (a cache hit), no FRAM access occurs; instead, a
cache request occurs. No wait state is needed for a cache request, and the data is accessed with full
system speed. However, if none of the words that are available in the cache are requested (a cache
miss), the wait state controls the CPU to ensure proper FRAM access.

7.6

FRAM ECC
The FRAM supports bit error correction and uncorrectable bit error detection. The UBDIFG FRAM
uncorrectable bit error flag is set if an uncorrectable bit error has been detected in the FRAM error
detection logic. The CBDIFG FRAM correctable bit error flag is set if a correctable bit error has been
detected and corrected. UBDRSTEN enables a power up clear (PUC) reset. If an uncorrectable bit error is
detected, UBDIE enables a NMI event if an uncorrectable bit error is detected. CBDIE enables an NMI
event if a marginal correctable bit error is detected and corrected.

7.7

FRAM Write Back
All reads from FRAM requires a write back of the previously read content. This write back is performed
under all circumstances without any interaction from a user.

7.8

FRAM Power Control
The FRAM controller can disable the power supply for the FRAM array. By setting FRPWR = 0, the FRAM
array supply is disabled. Register accesses in the FRAM controller are still possible. Memory accesses
pointing into the FRAM address space automatically reset the FRPWR = 1 and re-enable the power
supply of the FRAM. A second control bit, FRLPMPWR, delays the power-up of the FRAM after LPM exit.
With FRLPMPWR = 1, the FRAM is activated directly on exit from LPM. FRLPMPWR = 0 delays the
activation of the FRAM to the first access into the FRAM address space. For LPM0, the FRAM power
state during LPM0 is determined from the previous state in active mode. If FRAM power is disabled, a
memory access automatically inserts wait states to ensure sufficient timing for the FRAM power-up and
access. Access to FRAM that can be served from cache does not change the power state of the FRAM
power control.
A PUC reset forces the state machine to Active mode with FRAM enabled. The CPU must execute from
RAM to clear the FRPWR bit for turning off power to FRAM.
Figure 7-2 shows the activation flow of the FRAM controller.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller (FRCTL)

289

FRAM Cache

www.ti.com

PUC

FRPWR = 1
FRPWR = 0

Active Mode
with.FRAM

Active Mode
without FRAM

FRAM access

FRAM_POWER= on
FRPWR = 1

FRAM_POWER = off
FRPWR = 0
LPM exit
&&
FRAM_POWER = on

LPM exit
&&
FRAM_POWER = off

LPM entry

LPM entry

LPM0
FRAM_POWER = FRPWR
LPM entry

LPM entry

LPM exit
&&
FRLPMPWR = 1

LPM exit
&&
FRLPMPWR = 0

LPM1/2/3/4
FRAM_POWER = off

Figure 7-2. FRAM Power Control Diagram

7.9

FRAM Cache
The FRAM controller implements a read cache to provide a speed benefit when running the CPU at higher
speeds than the FRAM supports without wait states. The cache implemented is a 2-way associative cache
with 4 cache lines of 64 bit size. Memory read accesses on consecutive addresses can be executed
without wait states when they are within the same cache line.

290

FRAM Controller (FRCTL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRCTL Registers

www.ti.com

7.10 FRCTL Registers
The FRCTL registers and their address offsets are listed in Table 7-1 . The base address of the FRCTL
module can be found in the device-specific data sheet.
The password defined in the FRCTL0 register controls access to all FRCTL registers. When the correct
password is written, write access to the registers is enabled. The write access is disabled by writing a
wrong password in byte mode to the FRCTL upper byte. Word accesses to FRCTL with a wrong password
triggers a PUC. A write access to a register other than FRCTL while write access is not enabled causes a
PUC.
NOTE: All registers have word or byte register access. For a generic registerANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 7-1. FRCTL Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

FRCTL0

FRAM Controller Control 0

Read/write

Word

9600h

Section 7.10.1

Read/Write

Byte

00h

Read/Write

Byte

96h

Read/write

Word

0006h

00h
01h
04h

FRCTL0_L
FRCTL0_H
GCCTL0

General Control 0

04h

GCCTL0_L

Read/Write

Byte

06h

05h

GCCTL0_H

Read/Write

Byte

00h

Read/write

Word

0000h

06h

GCCTL1

General Control 1

06h

GCCTL1_L

Read/Write

Byte

00h

07h

GCCTL1_H

Read/Write

Byte

00h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Section 7.10.2

Section 7.10.3

FRAM Controller (FRCTL)

291

FRCTL Registers

www.ti.com

7.10.1 FRCTL0 Register
FRAM Controller Control Register 0
Figure 7-3. FRCTL0 Register
15

14

13

12

11

10

9

8

rw

rw

1

0

r-0

r-0

FRCTLPW
rw

rw

rw

rw

rw

rw

7
Reserved
r-0

6

5
NWAITS
rw-[0]

4

3

2

rw-[0]

Reserved
rw-[0]

r-0

r-0

Table 7-2. FRCTL0 Register Description
Bit

Field

Type

Reset

Description

15-8

FRCTLPW

RW

96h

FRCTLPW password. Always reads as 96h.
To enable write access to the FRCTL registers, write A5h. A word write of any
other value causes a PUC.
After a correct password is written and register access is enabled, write a wrong
password in byte mode to disable the access. In this case, no PUC is generated.

7

Reserved

R

0h

Reserved. Always reads as 0.

6-4

NWAITS

RW

0h

Wait state control. Specifies number of wait states (0 to 7) required for an FRAM
access (cache miss). 0 implies no wait states.

3

Reserved

R

0h

Reserved. Must be written as 0.

2-0

Reserved

R

0h

Reserved. Always reads as 0.

292

FRAM Controller (FRCTL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRCTL Registers

www.ti.com

7.10.2 GCCTL0 Register
General Control Register 0
Figure 7-4. GCCTL0 Register
15

14

13

12

11

10

9

8

Reserved
r-0

r-0

r-0

r-0

r-0

r-0

r-0

r-0

7
UBDRSTEN
rw-[0]

6
UBDIE
rw-[0]

5
CBDIE
rw-[0]

4
Reserved
r-0

3
Reserved
rw-0

2
FRPWR
rw-1

1
FRLPMPWR
rw-1

0
Reserved
r-0

Table 7-3. GCCTL0 Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved. Always reads as 0.

7

UBDRSTEN

RW

0h

Enable power up clear (PUC) reset if FRAM uncorrectable bit error detected.
The bits UBDRSTEN and UBDIE are mutual exclusive and are not allowed to be
set simultaneously. Only one error handling can be selected at one time.
0b = PUC not initiated on uncorrectable bit detection flag.
1b = PUC initiated on uncorrectable bit detection flag. Generates vector in
SYSRSTIV.

6

UBDIE

RW

0h

Enable NMI event if uncorrectable bit error detected.
The bits UBDRSTEN and UBDIE are mutual exclusive and are not allowed to be
set simultaneously. Only one error handling can be selected at one time.
0b = Uncorrectable bit detection interrupt disabled.
1b = Uncorrectable bit detection interrupt enabled. Generates vector in
SYSSNIV.

5

CBDIE

RW

0h

Enable NMI event if correctable bit error detected.
0b = Correctable bit detection interrupt disabled.
1b = Correctable bit detection interrupt enabled. Generates vector in SYSSNIV.

4

Reserved

R

0h

Reserved. Always reads as 0.

3

Reserved

RW

0h

Reserved. Must be written as 0.

2

FRPWR

RW

1h

FRAM power control.
Writing to the register enables or disables the FRAM power supply. The read of
the register returns the actual state of the FRAM power supply, also reflecting a
possible delay after enabling the power supply. FRPWR = 1 indicates that the
FRAM power is up and ready.
0b = FRAM power supply disabled
1b = FRAM power supply enabled

1

FRLPMPWR

RW

1h

Enables FRAM auto power up after LPM
0b = FRAM startup is delayed to the first FRAM access after LPM exit
1b = FRAM is powered up instantly with LPM exit.

0

Reserved

R

0h

Reserved. Always reads as 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller (FRCTL)

293

FRCTL Registers

www.ti.com

7.10.3 GCCTL1 Register
General Control Register 1
Figure 7-5. GCCTL1 Register
15

14

13

12

11

10

9

8

Reserved
r-0

r-0

7

6

r-0

r-0

r-0

r-0

r-0

r-0

5

4

r-0

r-0

3
ACCTEIFG
rw-0

2
UBDIFG
rw-[0]

1
CBDIFG
rw-[0]

0
Reserved
r-0

Reserved
r-0

r-0

Table 7-4. GCCTL1 Register Description
Bit

Field

Type

Reset

Description

15-3

Reserved

R

0h

Reserved. Always reads as 0.

3

ACCTEIFG

RW

0h

Access time error flag. This flag is set and a reset PUC is generated if a wrong
setting for NWAITS is set and the FRAM access time is violated. This bit is
cleared by software or by reading the system reset vector word SYSRSTIV if it is
the highest pending flag. This bit is write 0 only, write 1 has no effect.
Note: The ACCTEIFG bit may be set in debug mode when the system frequency
is configured to be greater than 8 MHz, regardless of the wait states (NWAITS).
In the case, it is not an FRAM access violation. The ACCTEIFG bit does not
trigger a PUC or change the SYSRSTIV register value. The ACCTEIFG bit is
cleared only by writing 0. It is recommended to use SYSRESTIV register to
check FRAM access violation error to avoid confusion.

2

UBDIFG

RW

0h

FRAM uncorrectable bit error flag. This interrupt flag is set if an uncorrectable bit
error has been detected in the FRAM memory error detection logic. This bit is
cleared by software or by reading the system NMI vector word SYSSNIV if it is
the highest pending interrupt flag. This bit is write 0 only and write 1 has no
effect.
0b = No interrupt pending
1b = Interrupt pending. Can be cleared by user or by reading SYSSNIV.

1

CBDIFG

RW

0h

FRAM correctable bit error flag. This interrupt flag is set if a correctable bit error
has been detected and corrected in the FRAM memory error detection logic. This
bit is cleared by software or by reading the system NMI vector word SYSSNIV if
it is the highest pending interrupt flag. This bit is write 0 only and write 1 has no
effect.
0b = No interrupt pending
1b = Interrupt pending. Can be cleared by user or by reading SYSSNIV

0

Reserved

R

0h

Reserved. Always reads as 0.

294

FRAM Controller (FRCTL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 8
SLAU367O – October 2012 – Revised December 2017

FRAM Controller A (FRCTL_A)
This chapter describes the operation of the FRAM controller A (FRCTL_A) . The FRCTL_A and FRCTL
are almost identical in terms of the features that they support. For a summary of the differences between
the two modules, see the FRAM Controller Overview chapter.
Topic

...........................................................................................................................

8.1
8.2
8.3
8.4
8.5
8.6

FRAM Controller A (FRCTL_A) Introduction .........................................................
FRAM Controller A (FRCTL_A) Operation ............................................................
FRAM ECC .......................................................................................................
FRAM Power Control ........................................................................................
FRAM Cache ....................................................................................................
FRCTL_A Registers ..........................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller A (FRCTL_A)

Page

296
296
299
299
300
301

295

FRAM Controller A (FRCTL_A) Introduction

8.1

www.ti.com

FRAM Controller A (FRCTL_A) Introduction
The FRAM Controller A includes the following features :
• Byte (8 bit) or word (16 bit) write access
• Automatic and programmable wait state control with independent wait state settings for access and
cycle times
• Timing violation detection to ensure proper interrupt handling with incorrect wait state setting
• Error correction code with bit error correction, extended bit error detection, and flag indicators
• Cache for energy-efficient read
• Power control for disabling FRAM when it is not in use, including automatic wake up
For important software design information regarding FRAM, including but not limited to partitioning the
memory layout according to application-specific code, constant, and data space requirements, the use of
FRAM to optimize application energy consumption, and the use of the memory protection unit (MPU) to
maximize application robustness by protecting the program code against unintended write accesses, see
MSP430™ FRAM Technology – How To and Best Practices.
Figure 8-1 shows the block diagram of the FRCTL_A.
FRAM Controller

Registers

Data/Control
MAB

Memory Access
Control Logic

FRAM
Memory

MDB

Figure 8-1. FRCTL_A Block Diagram

8.2

FRAM Controller A (FRCTL_A) Operation
FRAM is a nonvolatile memory that eliminates the slow writing barrier of flash memory. The read and write
operations of FRAM is just like the way that the standard SRAM works. The FRAM features SRAM-like
operation with nonvolatility.

8.2.1 FRCTL_A Error Detection
The FRAM module has a built-in error correction code (ECC) block that can correct bit errors and detect
multiple bit errors. Two flags, the CBDIFG and UBDIFG bits, are used to report the status of errors.
The correctable bit detection interrupt flag (CBDIFG) is set when a correctable bit error is detected. In this
case, the error generates a system NMI (SYSNMI) if the correctable bit detection interrupt enable bit
(CBDIE) is set.
The uncorrectable bit detection interrupt flag (UBDIFG) is set when a multiple bit error, which is not
correctable, is detected. In this case, cache is flushed and either a system NMI (SYSNMI), if the
uncorrectable bit detection interrupt enable bit (UBDIE) is set, or a power-up-clear (PUC) reset, if the
uncorrectable bit detection reset enable bit (UBDRSTEN) is set, can be generated.
The UBDRSTEN bit and the UBDIE bit are mutually exclusive. The UBDRSTEN bit has a higher
priority—if both bits are set, the UBDIE bit is ignored and the UBDRSTEN bit remains active.
296

FRAM Controller A (FRCTL_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller A (FRCTL_A) Operation

www.ti.com

8.2.2 Programming FRAM Memory Devices
There are three options for programming an MSP430 FRAM device. All options support in-system
programming.
• Program with JTAG or the Spy-Bi-Wire interface
• Program with the BSL
• Program with a custom solution
8.2.2.1

Programming FRAM Memory With JTAG or Spy-Bi-Wire

Devices can be programmed through the JTAG port or the Spy-Bi-Wire port. The JTAG interface requires
access to TDI, TDO, TMS, TCK, TEST, ground, and optionally VCC and RST/NMI. Spy-Bi-Wire interface
requires access to TEST, RST/NMI, ground and optionally VCC. For more details, see the MSP430
Programming With the JTAG Interface.
8.2.2.2

Programming FRAM Memory With the Bootstrap Loader (BSL)

Every device contains a BSL stored in ROM. The BSL enables users to read or program the FRAM or
RAM using a UART serial interface. Access to the FRAM through the BSL is protected by a 256-bit userdefined password. For more details, see the MSP430 Programming With the Bootloader (BSL).
8.2.2.3

Programming FRAM Memory With a Custom Solution

The ability of the CPU to write to its own FRAM allows for in-system and external custom programming
solutions. The user can choose to provide data to the device through any means available (for example,
UART or SPI). User-developed software can receive the data and program the FRAM. Because this type
of solution is developed by the user, it can be completely customized to fit the application needs for
programming or updating the FRAM.

8.2.3 Access Control
8.2.3.1

Write Protection

The WPROT bit can be used to protect the contents of FRAM from being unintentionally modified. When
the WPROT is set, reading is allowed, but no writing to FRAM memory is allowed. If a write access is
attempted with WPROT = 1, the WPIFG (write protection flag) bit is set. In this case, the error generates a
system NMI (SYSNMI) if the WPIE (write protection interrupt enable) bit is set. Note that writing-to-FRAM
is also blocked when the ACCTEIFG bit is set due to a timing violation. The WPIFG bit is set when a write
access is attempted with ACCTEIFG = 1.
The WPROT bit protects the entire FRAM from unintended writes regardless of MPU configurations, so
this bit should be used as temporary protection. To protect a portion of the FRAM permanently, use the
MPU module (see Chapter 9, Memory Protection Unit). Write protection is disabled after BOR (WPROT =
0).
8.2.3.2

Two Wait State Modes

FRAM memory has limited access speed (see the device data sheet for details), but that does not limit the
speed of CPU and DMA in the device. When the running speed of the CPU and DMA exceeds the FRAM
access speed, a wait state control mechanism is implemented. The FRAM controller A (FRCTL_A)
supports two wait state modes, user wait state mode and automatic wait state mode.
8.2.3.3

User Wait State Mode

User wait state mode and automatic wait state mode are mutually exclusive. User wait state mode is
automatically enabled after device reset (BOR), but the wait state mode can be switched to automatic wait
state mode by setting the AUTO bit. The FRAM access speed can be maximized in user wait state mode
by writing an optimized wait state number to NWAITS[3:0]. However, incorrect wait state numbers may
cause a timing violation error. Thus, the application must write a proper wait state to NWAITS[3:0] before
accessing FRAM. See Table 8-1 for optimized wait states with different system frequencies.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller A (FRCTL_A)

297

FRAM Controller A (FRCTL_A) Operation

8.2.3.4

www.ti.com

Timing Violation Detection

In user wait state mode (AUTO = 0), if NWAITS[3:0] bit has been configured with an incorrect wait state, a
timing violation can occur when accessing FRAM. Upon detecting a timing violation, the FRAM controller
responses to the timing violation event with three actions:
• Sets the access timer error flag (ACCTEIFG)
• Ignores the NWAITS[3:0] bits and internally applies the maximum wait state (15) (the NWAITS[3:0] bits
are not changed)
• Flushes the cache
• Disables write access to FRAM regardless of the WPROT bit (the WPROT bit is not changed)
The FRAM controller A (FRCTL_A) keeps the maximum wait state and blocks write access if the
ACCTEIFG bit is set in order to avoid further timing violations. It is recommended to configure the
NWAITS[3:0] bits based on the table shown in Table 8-1 and complete any necessary actions prior to
clearing the ACCTEIFG bit. When the ACCTEIFG bit is cleared, the FRAM controller A (FRCTL_A) takes
the value written to NWAITS[3:0] bits as wait state and enables write access to the FRAM if the WPROT
bit is cleared. The timing violation (ACCTEIFG) generates a system NMI (SYSNMI) if the access time
error interrupt enable (ACCTEIE) bit is set.
8.2.3.5

Automatic Wait State Mode

Automatic wait state mode is enabled when the AUTO bit is set. In this mode, the FRAM controller A
(FRCTL_A) takes a control of choosing a wait state. So, it is not required for user to configure
NWAITS[3:0] bits. The value written to NWAITS[3:0] has no influence in this mode. In order to determine
the wait state automatically, the FRAM controller A (FRCTL_A) adds a delay so that no maximum FRAM
access speed is reached and no timing violation is guaranteed. See Table 8-1 for wait state numbers in
automatic mode with different system frequencies.
Table 8-1. FRAM memory Access Speed
System Bus
Frequency

8.2.3.6

FRAM Access Speed
(Without Cache Hit)

Required Wait States
User Mode

Automatic Mode

User Mode

Automatic Mode

4 MHz

0

3

4 MHz

1 MHz

8 MHz

0

3

8 MHz

2 MHz

10 MHz

1

3

5 MHz

2.5 MHz

12 MHz

1

3

6 MHz

3 MHz

14 MHz

1

3

7 MHz

3.5 MHz

16 MHz

1

3

8 MHz

4 MHz

24 MHz

2

3

8 MHz

6 MHz

32 MHz

3

4

8 MHz

6.4 MHz

Wait State and Cache Hit

The FRAM controller A (FRCTL_A) has a cache that contains four 64-bit lines. The cache keeps up to 32
bytes (4 × 64 bit) from the latest accesses to FRAM. When a read is requested, the FRAM controller A
(FRCTL_A) first determines if the requested data is in the cache. If a match is found (a cache hit), then
the data is read from the cache and no physical FRAM memory access occurs. In this case, no wait state
is required and the data is accessed at the full system bus speed. If no match is found (no cache hit), then
the data is read from FRAM memory and the new data replaces one of the four 64-bit lines in the cache.
8.2.3.7

Wait State in Debug Mode

When the device is in debug mode, no wait state is applied. The NWAITS[3:0] has no influence in debug
mod. In debug mode (for example, during JTAG access to FRAM), the device system clock is controlled
externally and can be stopped at any time, thus FRAM access needs to be completed without wait state
cycles. The running speed of the CPU and DMA never exceeds the maximum FRAM access speed limit in
debug mode.
298

FRAM Controller A (FRCTL_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM ECC

www.ti.com

8.3

FRAM ECC
The FRAM controller can correct bit errors and detect uncorrectable multiple-bit errors. When a
correctable error occurs, the error is automatically corrected and CBDIFG bit (correctable bit error
detection flag) is set. In this case, a system NMI can be generated if CBDIE bit is set. When an
uncorrectable error occurs, UCBDIFG (uncorrectable bit error detection flag) bit is set. In this case, the
uncorrectable bit error can generate either a system NMI if UBDIE bit is set or a system reset (PUC) if
UBDRSTEN bit is set.
The UBDRSTEN bit and the UBDIE bit are mutually exclusive. The UBDRSTEN bit has a higher priority,
so the UBDIE bit is ignored when both bits are set.

8.4

FRAM Power Control
To achieve maximum power efficiency of FRAM operations, the FRAM controller A (FRCTL_A) supports a
power control mode. There are three inputs that influence the power state of FRAM: the FRPWR bit,
FRAM access (read or write), and the device power mode.
Table 8-2 summarizes how FRAM power modes are controlled by the source. Figure 8-2 shows the flow
of FRAM power mode transitions.
While the device is in active mode(AM), FRAM power is controlled by the FRPWR bit and FRAM access.
When the FRPWR is set, FRAM goes to ACTIVE mode regardless of FRAM access. When the FRPWR is
cleared by the CPU and there is no access to FRAM, the FRAM goes into INACTIVE mode so that the
FRAM does not consume power.
INACTIVE mode can be used if FRAM access is not required for a significant amount of time. For
example, short tasks can be executed from RAM, so while CPU runs from RAM, FRAM can be powered
off. When the FRAM is in the INACTIVE mode, wake-up is automatic. An access to FRAM (read or write)
wakes up the FRAM before performing the access. In this case, the FRPWR bit is set automatically by the
FRAM controller A (FRCTL_A).
Care must be taken when using the FRPWR bit. When the FRAM is powered off, there is a wake-up time
delay before the FRAM can be accessed again. The delay should be considered to avoid affecting system
performance. See the device data sheet for the delay time.
When the device enters LPM0, LPM1, LPM2, LPM3, or LPM4, the FRAM also enters INACTIVE mode
regardless of FRPWR bit status, however FRPWR bit determines the power status when the device
wakes up from a LPM. When the device wakes up from a low-power mode to active mode (AM), FRAM
Controller A (FRCTL_A) immediately wakes up FRAM memory if the FRPWR is set. If the FRPWR bit is
cleared, FRAM memory remains in INACTIVE mode until an access to FRAM occurs (read or write). The
latter case can be used to reduce the device power consumption if the device wakes up only for a short
amount of time, and the task during device active mode can be executed from RAM with no need to
access FRAM memory. See Table 8-2 and Figure 8-2 for details.
Table 8-2. FRAM Power Mode Transition
Power Control Source
Device Power Mode

FRPWR Bit

FRAM Access

FRAM Power State
(Start)

FRAM Power State
(End)

AM

1 (after PUC)

Don't care

ACTIVE

ACTIVE

AM

1→0

No

ACTIVE

INACTIVE

AM

0

No → Yes

INACTIVE

ACTIVE (FRPWR bit is
set automatically)

AM

0 →1

No

INACTIVE

ACTIVE

AM → LPM0, LPM1,
LPM2, LPM3, or LPM4

Don't care

No

Don't care

INACTIVE

LPM0

Don't care

No → Yes

Don't care

ACTIVE (FRPWR bit is
set automatically)

LPM0, LPM1, LPM2,
LPM3, or LPM4 → AM

1

No

INACTIVE

ACTIVE

LPM0, LPM1, LPM2,
LPM3, or LPM4 → AM

0

No

INACTIVE

INACTIVE

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller A (FRCTL_A)

299

FRAM Cache

www.ti.com

Figure 8-2 shows the flow of the FRAM power transitions.
Reset (PUC)

(FRAM access || FRPWR =1)

ACTIVE

INACTIVE

DEVICE PWR = AM
FRAM PWR = ON

DEVICE PWR = AM
FRAM PWR = OFF

FR

FR

PW
R

&&

&&

it

it

=1

Ex

Ex

)

M

PM

(L
P

(L

PW
R=
0)

(FRPWR =0)

(LPM Entry)

(LPM Entry)

INACTIVE
DEVICE PWR = LPM
FRAM PWR = OFF

Figure 8-2. FRAM Power Control Diagram

8.5

FRAM Cache
The FRAM controller A (FRCTL_A) has a cache that contains four 64-bit lines. One of the 64-bit lines is
preloaded during one access cycle and the cache can keep up to 32 bytes (4 × 64 bit) from the latest
accesses to FRAM memory. When an FRAM read is requested, the FRAM controller A (FRCTL_A) first
checks cache. If the requested data is found in cache (a cache hit), then the data is read from the cache
and no physical FRAM access occurs. In this case, no wait state is required and the data is accessed at
the full system bus speed.

300

FRAM Controller A (FRCTL_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRCTL_A Registers

www.ti.com

8.6

FRCTL_A Registers
Table 8-3 lists the memory-mapped registers for the FRCTL_A. All register offset addresses not listed in
Table 8-3 should be considered as reserved locations and the register contents should not be modified.
The password defined in the FRCTL0 register controls access to all FRAM Controller A registers. When
the correct password is written, write access to the registers is enabled. The write access is disabled by
writing a wrong password in byte mode to FRCTL0 upper byte. Word accesses to FRCTL0 with a wrong
password triggers a PUC. A write access to a register other than FRCTL0 while write access is not
enabled causes a PUC.
Note 1: The correct password (A5h) is written to the FRCTLPW bits by the bootcode during the device
boot-up process; therefore, the FRCTL0 (low byte), GCCTL0, and GCCTL1 registers are unlocked after
the device is powered up or reset (BOR) or after LPMx.5 wakeup.
Note 2: All registers have word or byte register access. For a generic register ANYREG, the suffix "_L"
(ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H" (ANYREG_H)
refers to the upper byte of the register (bits 8 through 15).
Table 8-3. FRCTL_A Registers

Offset

Acronym

Register Name

Type

Reset

Section

0h

FRCTL0

FRAM Controller A Control Register 0

Read-Write

9600h

Section 8.6.1

4h

GCCTL0

General Control Register 0

Read-Write

4h

Section 8.6.2

6h

GCCTL1

General Control Register 1

Read-Write

0h

Section 8.6.3

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller A (FRCTL_A)

301

FRCTL_A Registers

www.ti.com

8.6.1 FRCTL0 Register (Offset = 0h) [reset = 9600h]
FRCTL0 is shown in Figure 8-3 and described in Table 8-4.
Return to Summary Table.
FRAM Controller A Control Register 0
Figure 8-3. FRCTL0 Register
15

14

13

12

11

10

3
AUTO
R/W-0h

2

9

8

1

0
WPROT
R/W-0h

FRCTLPW
R/W-96h
7

6

5

4

NWAITS
R/W-0h

Reserved
R-0h

Table 8-4. FRCTL0 Register Field Descriptions
Bit
15-8

Field

Type

Reset

Description

FRCTLPW

R/W

96h

FRCTLPW password. Always read as 96h.
Note: The correct password (A5h) is written to the FRCTLPW bits by
the bootcode during the device boot-up process; therefore, the
FRCTL0 (low byte), GCCTL0, and GCCTL1 registers are unlocked
after the device is powered up or reset (BOR) or after LPMx.5
wakeup.
96h (R) = FRPW : Read value while locked
A5h (W) = FWPW : Must be written as A5h or a PUC is generated
on word write. After a correct password is written and register
access is enabled, a wrong password write in byte mode disables
the access and no PUC is generated.

7-4

NWAITS

R/W

0h

Wait state generator access time control when AUTO =0.
Each wait state adds a N integer multiple increase of the IFCLK
period where N = 0 through 15. N = 0 implies no wait states. When a
timing violation is detected, the Access Time Error Flag (ACCTEIFG)
is set and the maximum wait state, 15, is automatically applied to the
NWAITS[3:0] to avoid further timing violation. While the ACCTEIFG
bit is set, the NWAIS[3:0] cannot be overwritten and writing to the
FRAM memory is prohibited regardless of the WPROT bit. Only
reading is allowed. The ACCTEIFG bit must be cleared prior to
applying a new value to NWAITS[3:0] or writing access to the FRAM
memory. The timing violation (ACCTEIFG) can generate a system
NMI (SYSNMI) if the Access Time Error Interrupt Enable (ACCTEIE)
bit is set. When a timing violation occurs for reading, the data from
FRAM memory could be incorrect, thus proper error handling is
recommended before proceeding.
Reset type: BOR
0h (R/W) = FRAM wait states: 0
1h (R/W) = FRAM wait states: 1
2h (R/W) = FRAM wait states: 2
3h (R/W) = FRAM wait states: 3
4h (R/W) = FRAM wait states: 4
5h (R/W) = FRAM wait states: 5
6h (R/W) = FRAM wait states: 6
7h (R/W) = FRAM wait states: 7
8h (R/W) = FRAM wait states: 8
9h (R/W) = FRAM wait states: 9
Ah (R/W) = FRAM wait states: 10
Bh (R/W) = FRAM wait states: 11
Ch (R/W) = FRAM wait states: 12
Dh (R/W) = FRAM wait states: 13
Eh (R/W) = FRAM wait states: 14
Fh (R/W) = FRAM wait states: 15

302

FRAM Controller A (FRCTL_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRCTL_A Registers

www.ti.com

Table 8-4. FRCTL0 Register Field Descriptions (continued)
Bit

Field

Type

Reset

Description

3

AUTO

R/W

0h

Enable automatic Wait State Mode.
Reset type: BOR
0h (R/W) = AUTO_0 : User Wait State Mode. The NWAITS[3:0] is
used for the FRAM wait state.
1h (R/W) = AUTO_1 : Auto mode. The NWAITS[3:0] is ignored. Wait
states are generated automatically by the internal FRAM controller
state machine.

2-1

Reserved

R

0h

Reserved. Always read 0.
Reset type: PUC

0

WPROT

R/W

0h

Write Protection Enable.
This bit is set after BOR. This bit must be cleared before accessing
FRAM for write. This bit does not block read operation. Note that the
WPROT bit protects the entire FRAM memory from unintended write,
so it should be used as temporary protection. If it is desired to
protect a portion of the FRAM memory permanently, it should be
done via MPU segments. See the MPU module for details.
Reset type: BOR
0h (R/W) = WPROT_0 : Disable Write Protection. Write to FRAM
memory is allowed.
1h (R/W) = WPROT_1 : Enable Write Protection. Write to FRAM
memory is not allowed. If a write access is attempted, the WPIFG
(Write Protection Flag) bit will be set.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller A (FRCTL_A)

303

FRCTL_A Registers

www.ti.com

8.6.2 GCCTL0 Register (Offset = 4h) [reset = 4h]
GCCTL0 is shown in Figure 8-4 and described in Table 8-5.
Return to Summary Table.
General Control Register 0
Figure 8-4. GCCTL0 Register
15

14

13

12

11

10

9

3
ACCTEIE
R/W-0h

2
FRPWR
R/W-1h

1

8

Reserved
R-0h
7
UBDRSTEN
R/W-0h

6
UBDIE
R/W-0h

5
CBDIE
R/W-0h

4
WPIE
R/W-0h

0
Reserved
R-0h

Table 8-5. GCCTL0 Register Field Descriptions
Bit
15-8
7

Field

Type

Reset

Description

Reserved

R

0h

Reserved. Always read 0.
Reset type: PUC

UBDRSTEN

R/W

0h

Enable Power Up Clear (PUC) reset for the uncorrectable bit error
detection flag (UBDIFG).
The UBDRSTEN and UBDIE must be mutual exclusive. The FRAM
controller does not allow the status of both bits are being set. Writing
1 to one of the bits will automatically clear the other bit.
Reset type: BOR
0h (R/W) = UBDRSTEN_0 : PUC not initiated on uncorrectable bit
error detection flag.
1h (R/W) = UBDRSTEN_1 : PUC initiated on uncorrectable bit error
detection flag. Generates vector in SYSRSTIV. Clear the UBDIE bit.

6

UBDIE

R/W

0h

Enable NMI event for the uncorrectable bit error detection flag
(UBDIFG).
The UBDRSTEN and UBDIE must be mutual exclusive. The FRAM
controller does not allow the status of both bits are being set. Writing
1 to one of the bits will automatically clear the other bit.
Reset type: BOR
0h (R/W) = UBDIE_0 : Disable NMI for the uncorrectable bit error
detection flag (UBDIFG).
1h (R/W) = UBDIE_1 : Enable NMI for the uncorrectable bit error
detection flag (UBDIFG). Generates vector in SYSSNIV. Clear the
UBDRSTEN bit.

304

5

CBDIE

R/W

0h

Enable NMI event for the correctable bit error detection flag
(CBDIFG).
Reset type: BOR
0h (R/W) = CBDIE_0 : Disable NMI for the correctable bit error
detection flag (CBDIFG).
1h (R/W) = CBDIE_1 : Disable NMI for the correctable bit error
detection flag (CBDIFG). Generates vector in SYSSNIV.

4

WPIE

R/W

0h

Enable NMI event for the Write Protection Detection flag (WPIFG).
Reset type: BOR
0h (R/W) = WPIE_0 : Disable NMI for the Write Protection Detection
flag (WPIFG).
1h (R/W) = WPIE_1 : Enable NMI for the Write Protection Detection
flag (WPIFG). Generates vector in SYSSNIV.

FRAM Controller A (FRCTL_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRCTL_A Registers

www.ti.com

Table 8-5. GCCTL0 Register Field Descriptions (continued)
Bit

Field

Type

Reset

Description

3

ACCTEIE

R/W

0h

Enable NMI event for the Access time error flag (ACCTEIFG).
Reset type: BOR
0h (R/W) = ACCTEIE_0 : Disable NMI for the Access time error flag
(ACCTEIFG).
1h (R/W) = ACCTEIE_1 : Enable NMI for the Access time error flag
(ACCTEIFG). Generates vector in SYSSNIV.

2

FRPWR

R/W

1h

FRAM Memory Power Control Request
While the device is in AM (Active mode), the FRAM memory power
is controlled by the FRPWR bit and FRAM access. When the
FRPWR is set, the FRAM memory is in ACTIVE mode. When the
FRPWR is cleared by CPU, the FRAM memory goes into INACTIVE
mode so that the FRAM memory does not consumes power. The
INACTIVE mode can be used if no FRAM access is required for a
significant amount of time. Once the FRAM memory is in the
INACTIVE mode, wake-up is automatic. An access to FRAM (read or
write) will wake up the FRAM memory before performing the access.
In this case, the FRPWR bit is set automatically by the FRAM
controller. When the device enters LPM0/1/2/3/4 modes, the FRAM
memory also enters INACTIVE mode regardless of the FRPWR bit
status. When the device wakes up from LPM0/1/2/3/4, the FRAM
memory will be immediately powered up (ACTIVE mode) if the
FRPWR is set, but if the FRPWR bit is cleared, the FRAM memory
will remain in INACTIVE mode until the FRAM memory is actually
accessed (read or write). The latter case can be used to save the
device power consumption in case the device wakes up only for a
short amount of time, and the task during the wake-up can be
executed from RAM, so no need of FRAM access.
Reset type: PUC
0h (R/W) = FRPWR_0 : Enable INACTIVE mode.
1h (R/W) = FRPWR_1 : Enable ACTIVE mode.

1-0

Reserved

R

0h

Reserved. Always read 0.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller A (FRCTL_A)

305

FRCTL_A Registers

www.ti.com

8.6.3 GCCTL1 Register (Offset = 6h) [reset = 0h]
GCCTL1 is shown in Figure 8-5 and described in Table 8-6.
Return to Summary Table.
General Control Register 1
Figure 8-5. GCCTL1 Register
15

14

13

12

11

10

9

8

3
ACCTEIFG
R/W-0h

2
UBDIFG
R/W-0h

1
CBDIFG
R/W-0h

0
Reserved
R-0h

Reserved
R-0h
7

6
Reserved
R-0h

5

4
WPIFG
R/W-0h

Table 8-6. GCCTL1 Register Field Descriptions
Bit

Field

Type

Reset

Description

Reserved

R

0h

Reserved. Always read 0.
Reset type: PUC

4

WPIFG

R/W

0h

Write Protection Detection flag. This flag is set when a write access
is attempted while the WPROT bit is set. This bit can generate a
system NMI if the WPIE bit is set (see the GCCTL0 register). This bit
can be cleared by writing 0 directly or by reading the system reset
vector word SYSRSTIV if it is the highest pending interrupt flag. This
bit is write 0 only, write 1 has no effect.
Reset type: BOR
0h (R/W) = WPIFG_0 : No interrupt pending.
1h (R/W) = Interrupt pending. Can be cleared by writing 0 or by
reading SYSSNIV when it is the highest pending interrupt.

3

ACCTEIFG

R/W

0h

Access time error flag. This flag is set when a timing violation is
detected, which indicates that NWAITS[3:0] is improperly configured.
When a timing violation is detected, the maximum wait state will be
automatically applied to the NWAITS[3:0] to avoid further timing
violation. While the ACCTEIFG bit is set, the NWAIS[3:0] cannot be
overwritten and the FRAM memory write access is prohibited
regardless of the WPROT bit. The ACCTEIFG bit must be cleared
prior to applying a new value to NWAITS[3:0] or writing access to the
FRAM memory. The timing violation (ACCTEIFG) can generate a
system NMI (SYSNMI) if the Access Time Error Interrupt Enable
(ACCTEIE) bit is set This bit can be cleared by writing 0 directly or
by reading the system reset vector word SYSRSTIV if it is the
highest pending interrupt flag. This bit is write 0 only, write 1 has no
effect.
Reset type: BOR
0h (R/W) = ACCTEIFG_0 : No interrupt pending.
1h (R/W) = ACCTEIFG_1 : Interrupt pending. Can be cleared by
writing 0 or by reading SYSSNIV when it is the highest pending
interrupt.

2

UBDIFG

R/W

0h

FRAM uncorrectable bit error detection flag. This flag is set when an
uncorrectable bit error is detected in the FRAM memory error
detection logic. This bit can generate either a system NMI or a
system reset (PUC). If the UBDIE bit is set, then this bit generates a
system NMI, if the UBDRSTEN bit is set, then this bit generates a
system reset (PUC) - see the GCCTL0 register. This bit can be
cleared by writing 0 directly or by reading the system NMI vector
word SYSSNIV when it is the highest pending interrupt flag. This bit
is write 0 only and write 1 has no effect.
Reset type: BOR
0h (R/W) = UBDIFG_0 : No interrupt pending.
1h (R/W) = UBDIFG_1 : Interrupt pending. Can be cleared by writing
0 or by reading SYSSNIV when it is the highest pending interrupt.

15-5

306

FRAM Controller A (FRCTL_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRCTL_A Registers

www.ti.com

Table 8-6. GCCTL1 Register Field Descriptions (continued)
Bit

Field

Type

Reset

Description

1

CBDIFG

R/W

0h

FRAM correctable bit error detection flag. This flag is set when a
correctable bit error is detected and corrected in the FRAM memory
error detection logic. This bit can generate a system NMI if the
CBDIE bit is set (see the GCCTL0 register). This bit can be cleared
by software or by reading the system NMI vector word SYSSNIV if it
is the highest pending interrupt flag. This bit is write 0 only and write
1 has no effect.
Reset type: BOR
0h (R/W) = CBDIFG_0 : No interrupt is pending
1h (R/W) = CBDIFG_1 : Interrupt pending. Can be cleared by writing
0 or by reading SYSSNIV if it is the highest pending interrupt.

0

Reserved

R

0h

Reserved. Always read 0.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

FRAM Controller A (FRCTL_A)

307

Chapter 9
SLAU367O – October 2012 – Revised December 2017

Memory Protection Unit (MPU)
This chapter describes the operation of the Memory Protection Unit (MPU). The MPU is family specific.

308

Topic

...........................................................................................................................

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Memory Protection Unit (MPU) Introduction .........................................................
MPU Segments .................................................................................................
MPU Access Management Settings.....................................................................
MPU Violations .................................................................................................
MPU Lock ........................................................................................................
How to Enable MPU and IPE Segments ...............................................................
MPU Registers .................................................................................................

Memory Protection Unit (MPU)

Page

309
310
314
315
315
315
318

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU) Introduction

www.ti.com

9.1

Memory Protection Unit (MPU) Introduction
The MPU protects against accidental writes to designated read-only memory segments or execution of
code from a constant memory segment. Clearing the MPUENA bit disables the MPU, and the complete
memory is accessible for read, write, and execute operations. After a BOR, the complete memory is
accessible without restrictions to read, write, and execute operations.
The Memory Protection Unit features include:
• Configuration of main memory into three variable-sized segments
• Access rights for each segment can be set independently
• Fixed-size constant user information memory segment with selectable access rights
• Protection of MPU registers by password
NOTE: After BOR, no segmentation is initiated, and the main memory and information memory are
accessible by read, write, and execute operations.

For important software design information regarding FRAM, including but not limited to partitioning the
memory layout according to application-specific code, constant, and data space requirements, the use of
FRAM to optimize application energy consumption, and the use of the memory protection unit (MPU) to
maximize application robustness by protecting the program code against unintended write accesses, see
MSP430™ FRAM Technology – How To and Best Practices.
Figure 9-1 shows an overview of the Memory Protection Unit.
Control Registers

MAB
MPU

Violation

Main
Memory
Array/
Controller

MDB

Figure 9-1. Memory Protection Unit Overview

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU)

309

MPU Segments

9.2

www.ti.com

MPU Segments

9.2.1 Main Memory Segments
The MPU can logically divide the main memory into three segments. The size of each segment is defined
by setting the borders between adjacent segments. To configure three segments, a lower border (B1) and
a higher border (B2) are positioned by control register bits MPUSEGB1[15:0] and MPUSEGB2[15:0],
respectively, in the MPUSEGBx registers. The position of both borders is limited to the 16 most significant
bits of the memory address space (20-bit). Therefore, the segment borders registers are equivalent to the
memory address bus, shifted right by 4 bits (see Figure 9-2).
Table 9-1 shows the minimum segment size. Depending on the total memory size, some of the border
register bits must be written as zero. Table 9-1 summarizes the user-selectable bits and fixed bits for
different memory sizes (see the device-specific data sheet for total memory size). Figure 9-3 and Figure 94 show fixed bits of the segment register when memory size is 128KB and 256KB respectively.
The beginning of segment 1 is the lowest available address for the main memory as defined in the devicespecific data sheet. The lower border (B1) defines the end of segment 1 and the beginning of segment 2.
The higher border (B2) defines the end of segment 2 and beginning of segment 3. The end of segment 3
is the highest main memory address as defined in the device-specific data sheet. For example, devices
with up to 64KB of FRAM, the highest memory address is 013FFFh. Segment 2 includes the address
defined by the lower border (B1) but excludes the higher border (B2).
The address bus (MAB) is analyzed by the MPU using the 16 most significant bits along with the current
border settings.
• If the significant address bits are lower than MPUSEGB1[15:0], segment 1 is selected.
• If the significant address bits are equal to or greater than MPUSEGB1[15:0] and less than
MPUSEGB2[15:0], segment 2 is selected.
• If the significant address bits are equal to or greater than MPUSEGB2[15:0], segment 3 is selected.
[15]

[14]

[13]

[12]

[11]

[10]

[9]

A19

A18

A17

A16

A15

A14

A13

MPUSEGBx
[8]
[7]
A12

A11

[6]

[5]

[4]

[3]

[2]

[1]

[0]

A10

A9

A8

A7

A6

A5

A4

Figure 9-2. Segment Border Register
Table 9-1. Address Comparator Bit Selection
FRAM Size

Index of Used MSB
Address Bus (n)

User-Selectable Border
Register Bits

Fixed Border Register
Bits (zero)

Segment Size
(bytes)

32KB < size ≤ 128KB

17-bit

[13:6]

[15:14] and [5:0]

1k

128KB < size ≤ 256KB

18-bit

[14:6]

[15] and [5:0]

1k

[15]

[14]

[13]

[12]

[11]

[10]

[9]

0

0

A17

A16

A15

A14

A13

MPUSEGBx
[8]
[7]
A12

A11

[6]

[5]

[4]

[3]

[2]

[1]

[0]

A10

0

0

0

0

0

0

Figure 9-3. Example of Segment Border Register Fixed Bits When FRAM Size = 128KB

[15]

[14]

[13]

[12]

[11]

[10]

[9]

0

A18

A17

A16

A15

A14

A13

MPUSEGBx
[8]
[7]
A12

A11

[6]

[5]

[4]

[3]

[2]

[1]

[0]

A10

0

0

0

0

0

0

Figure 9-4. Example of Segment Border Register Fixed Bits When FRAM Size = 256KB

310

Memory Protection Unit (MPU)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPU Segments

www.ti.com

NOTE: The same result is calculated during MAB analysis of segment membership independent of
whether the higher value is in MPUSEGB1[15:0] or MPUSEGB2[15:0]. If
MPUSEGB1[15:0] = MPUSEGB2[15:0], Segment 2 is not available and the main memory
only contains 2 segments.

Figure 9-5 shows an example segmentation of the main memory.
Main Memory

Highest Address

Segment 3

Border (B2)
IP – Border High (IBH)
Segment 2
IP segment

interrupt vectors

0x0FFFF
Border (B1)

IP – Border Low (IBL)
Segment 1

Lowest Address
0x19FF
User Information Memory
0x1800
0x0000

Figure 9-5. Segmentation of Main Memory

9.2.2 IP Encapsulation Segment
The MPU can protect an address range in the main memory from unconditional external access. The size
of this segment is defined by setting the upper and lower borders of this segment. To configure the
segments, a lower (IBL) border and a higher (IBH) border are positioned by control register bits
MPUIPSEGB1[15:0] and MPUIPSEGB2[15:0], respectively, in the MPUIPSEGBx register. The position of
both borders follows the same mechanism as described in for the main segments.
The beginning of the IP encapsulation segment (IPE-segment) (IBL) is defined by the lower value of either
the MPUIPSEGB1[15:0] or MPUIPSEGB2[15:0] register. The end of the IPE-segment (IBH) is defined by
the higher value of either the MPUIPSEGB1[15:0] or MPUIPSEGB2[15:0] register. All memory locations
addressed by the 16 most significant bits of the address bus (MAB) equal to or greater than the lower
border (IBL) and less than IBH are protected.
Only program code executed from the IPE-segment can access data stored in this segment. The access
rights are evaluated with each code access. Each code access outside of the IP-protected area
deactivates the data access into the IPE-segment. JTAG or DMA cannot access the IPE-segment. The
interrupt vector table is always open for read and write accesses (for details see Section 9.4.1).
To execute code from the IPE-segment, branch into that segment or call functions stored in that segment.
Interrupt service routines can be executed from the IPE-segment, too.
Table 9-2 summarizes the possible combinations of code execution and memory access types and the
resulting access rights.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU)

311

MPU Segments

www.ti.com

An unauthorized access to the IPE-segment returns a value equivalent to the instruction "JMP $" and
triggers an interrupt. In addition, the generation of a PUC can be configured.
Table 9-2. IP Encapsulation Access Rights
IBL ≤ Memory Address
< IBH

IBL ≤ Program Counter
< IBH

JTAG or DMA Access

CPU Access

0FF80h ≤ Memory
Address < 0FFFFh

–

Read/Write

Read/Write

False

False

Yes

Yes

False

True

Yes

Yes

True

False

No

No

True

True

No

Yes

IBH

<
IBL

No CPU access
Program
counter

>=

<

No JTAG or
DMA access
Memory
address

>=

Figure 9-6. IP Encapsulation Access Rights Equivalent Schematic

NOTE: IP Encapsulation area access rights do not override MPU segment rights. The IP
Encapsulation rights are evaluated and if the access is granted, access rights as describe in
Section 9.3 are applied.

NOTE:

Code fetch from the first 8 bytes in IPE-segment does not enable data access.
The first 8 bytes within the IPE-segment do not enable data access within the IPE-segment if
code is executed from that area. The start of an IPE-segment is reserved for a data structure
describing the IPE-segment boundaries.

shows the segmentation of the main memory.

9.2.3 Segment Border Setting
Section 9.2.1 describes the procedure of setting borders for segmentation of the main memory. This
section describes how the values in MPUSEGBx[15:0] and MPUIPSEGBx[15:0] bits need to be set to
achieve the desired borders for different memory sizes. The bits of the MUSBx[15:0] bits represent the 16
most significant bits of the border address that can be selected.
The setting of the MPUSEGBx[15:0] bits forms a border between two segments of main memory space.
For the following examples, the segment with the higher address range formed by this border is called the
higher segment. The segment with the lower address range is called the lower segment.
312

Memory Protection Unit (MPU)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPU Segments

www.ti.com

The lowest address in the higher segment can be calculated with the following formula:
Given:
Segment Border Address (BA) or register value MPUSEGBx
Hence follows:
MPUSEGBx = (BA) >> 4
BA = (MPUSEGBx << 4)
Examples:
Segment border address = 0x0F000 → MPUSEGBx = (0x0F000 >> 4) = 0x0F00
Segment border address = 0x13000 → MPUSEGBx = (0x13000 >> 4) = 0x1300
MPUSEGBx = 0x1100 → segment border address = (0x1100 << 4) = 0x11000
Table 9-3. MPU Border Selection Example 64KB
(004000h to 013FFFh)
Border Address

MPUSEGBx[15:0]

(outside)

0000h

⋮

⋮

(outside)

03C0h

04000h

0400h

04400h

0440h

04800h

0480h

04C00h

04C0h

05000h

0500h

⋮

⋮

0F000h

0F00h

0F400h

0F40h

0F800h

0F80h

0FC00h

0FC0h

10000h

1000h

10400h

1040h

⋮

⋮

13000h

1300h

13400h

1340h

13800h

1380h

13C00h

13C0h

14000h (top of memory )

1400h

(outside)

1440h

⋮

⋮

(outside)

3F80h

(outside)

3FC0h

NOTE: Depending on the memory size settings for MPUSEGBx[4:0], the calculation may result in a
lower address space than is available. For those settings, a lower segment does not exist,
and the higher segment starts with the first available memory address (see memory
organization in device-specific data sheet).

9.2.4 IP Encapsulation Border Settings
The setting of the boundaries for the IP Encapsulation segment follows the same principle as the Main
Segment settings.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU)

313

MPU Segments

9.2.5

www.ti.com

Information Memory
The information memory is a partition of memory that is 512 bytes in size. The information memory can be
used to store application-specific information (such as IDs or version numbers), or it can be used for
executable code. It is located at address 01800h to 019FFh.

9.3

MPU Access Management Settings
Each segment described in and Section 9.2.5 can have read, write, and execute access rights set
independently.
The MPUSAM register allows setting the access rights for the four segments (information memory
segment, three main memory segments) . MPUSEGxRE enables read access for segment x,
MPUSEGxWE enables write access for segment x, and MPUSEGxXE enables code execution from
segment x. JTAG and DMA accesses are treated as read or write data accesses and are evaluated
according to the corresponding access bits.
Table 9-4 shows the different settings of MPUSEGxXE, MPUSEGxWE, and MPUSEGxRE. Not all settings
lead to a different memory protection. For example, as shown, if the execution bit MPUSEGxXE is set to
1, read access is automatically allowed independent of the setting of MPUSEGxRE. Also, setting the
MPUSEGxWE bit to 1 enables the read option.
NOTE: Combinations that are not shown in Table 9-4 should be avoided because they may be used
in future versions of the MPU.

Table 9-4. Segment Access Rights
MPUSEGxXE

MPUSEGxWE

MPUSEGxRE

Execute Rights

Write Rights

Read Rights

0

0

0

No

No

No

0

0

1

No

No

Yes

0

1

1

No

Yes

Yes

1

0

1

Yes

No

Yes

1

1

1

Yes

Yes

Yes

NOTE: Discontinuity instructions at segment boundaries
Do not fill code segments to the last word with program code, because program discontinuity
instructions like jump or branch instructions, RET, CALL, ... at a segment boundary can
trigger an access right violation.
The CPU prefetches instructions beyond the one currently being executed. The MPU
interprets the prefetch as read and instruction fetch accesses. For example if there is a JMP
instruction (or any another discontinuity instruction) at the segment boundary, the CPU
prefetches from the neighboring segment. This causes an access right violation if instruction
fetches are not allowed within the neighboring segment.

314

Memory Protection Unit (MPU)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPU Violations

www.ti.com

9.4

MPU Violations

9.4.1 Interrupt Vector Table and Reset Vector
The interrupt vector table and the reset vector are located at addresses 0FF80h to 0FFFFh. It is possible
to define a segment that includes this address space with restricted access rights. If an interrupt or a reset
occurs, and this segment is read protected, the MPU automatically allows access to the Interrupt Vector
memory space 0FF80h to 0FFFFh. Write rights are granted depending on MPU segment access
management register MPUSAM. Only the interrupt vector table is read accessible. Access to the interrupt
routine itself is not automatically enabled.
If the interrupt vector table is inside of the IP Encapsulation, the execute right is always prohibited. Code
fetches at the addresses 0FF80h to 0FFFFh are always denied if IPE-segments include that memory
range.
Table 9-5 shows the access right to the interrupt vector table for all possible cases.
Table 9-5. Access Rights to IVT (1)
Condition

Read

IVT belongs to ...

Execute

Write

CPU

DMA

JTAG

CPU

CPU

DMA

an MPU segment (main memory segment)

O

O

O

O

C

C

C

the IPE-segment

O

O

O

X

O

O

O

an MPU segment and the IPE-segment

O

O

O

X

C

C

C

(1)

JTAG

O = Allowed, X = Not allowed, C = Depends on MPU segment access management register MPUSAM

NOTE: Only the interrupt table and the reset vector are opened on an interrupt or reset occurrence.
If the application protects the segment that contains the interrupt routine itself from execution
rights, a violation occurs.

9.4.2 Violation Handling
The handling of access rights violations can be selected for each segment with the MPUSEGxVS bit in the
MPUSAM register. By default (MPUSEGxVS = 0), any access right violation causes a nonmaskable
interrupt (NMI). Setting MPUSEGxVS = 1, causes a PUC to occur. In either case, the illegal instruction on
a protected memory segment is not executed. Upon an access rights violation, the data bus content
(MDB) is driven with 03FFFh until next valid data is available.

9.5

MPU Lock
The MPU registers can be protected from write access by setting the MPULOCK bit. Write access is not
possible on all MPU registers except MPUCTL1, MPUIPC0, and MPUIPSEGBx until a BOR occurs.
MPULOCK cannot be cleared manually.
MPUIPLOCK allows to separately lock the MPUIPC0 and MPUIPSEGBx registers. Write access is not
possible on these registers until a BOR occurs. MPUIPLOCK cannot be cleared manually.

9.6

How to Enable MPU and IPE Segments
Both MPU and IPE-segments can be enabled at any time through the control registers. However, in typical
applications, it may be require to initiate MPU segments or the IPE-segment before beginning the
application program, thus the following features are offered as more secure and convenient methods.
1. Code Composer Studio for MSP430 offers an easy-to-use graphical interface to configure MPU
segments and the IPE-segment. See the Code Composer Studio for MSP430 User's Guide. When
using the methods outlined in the document, no further user setup is required.
2. For the IPE-segment, when using the method described in the Code Composer Studio for MSP430
User's Guide, the compiler and linker handle the structure generation and initialization automatically Section 9.6.1 describes what happens behind the scenes in this case, and further user setup is not
required.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU)

315

How to Enable MPU and IPE Segments

www.ti.com

9.6.1 IP Encapsulation (IPE) Instantiation Using IPE Signatures
The boot code can preload user-defined setting before the start of application code. This ensures that the
encapsulation is active before any user-controlled accesses to the memory can be performed.
9.6.1.1

IP Encapsulation Signatures

Two IPE signatures, IPE Signature 1 (memory location 0FF88h) and IPE Signature 2 (memory location
0FF8Ah), reside in FRAM and can be used to control the initialization of the IP Encapsulation. Write
0xAAAA to IPE Signature 1 to trigger the evaluation of the IPE Signature 2 as the IPE structure pointer.
The following code for CCS is an example:
#define IPE_SIG_VALID
0xFF88
// IPE signature valid flag
#define IPE_STR_PTR_SRC 0xFF8A
// Source for pointer (nibble address) to MPU IPE structure
#pragma RETAIN(ipe_signalValid)
#pragma location=IPE_SIG_VALID
const unsigned int ipe_signalValid = 0xAAAA;
// Locate your IPE structure and it should be placed
// on the top of the IPE memory. In this example, IPE structure
// is at 0xD000
#pragma RETAIN(IPE_stringPointerSourceSource)
#pragma location=IPE_STR_PTR_SRC
const unsigned int IPE_stringPointerSourceSource = (__INSERT_IPE_STRUCT_ADDRESS_(0xD000)__) >> 4;

Table 9-6. IPE Signatures
Signature

Address

Symbolic Name

IPE Signature 1

0FF88h

IPE_SIG_VALID

IPE Signature 2

0FF8Ah

IPE_STR_PTR_SRC

Description
IPE signature valid flag
Source for pointer (nibble address) to MPU IPE structure

9.6.1.1.1 Trapdoor Mechanism for IP Structure Pointer Transfer
The bootcode performs a sequence to ensure the integrity of the IPE structure pointer. On bootcode
execution, a valid IPE Signature 1 triggers the transfer of the IPE Signature 2 (IPE structure pointer
source) to a secured nonvolatile system data area (saved IPE structure pointer). This transfer only
happens once if no previous secured IPE structure pointer exist. Subsequent of a successful transfer of
the IPE structure pointer, the IPE Signatures can be overwritten by any value without compromising the
existing IP Encapsulation.
NOTE: Memory locations for IPE Signatures are shared with the JTAG password. This gives the
limitation that the first word of the JTAG password cannot be set to 0AAAAh for a
nonprotected device, because this would unintentionally trigger the trapdoor mechanism.

9.6.1.2

IP Encapsulation Init Structure

By evaluating the saved IPE structure pointer, the bootcode can program the IP Encapsulation related
register by transferring the values defined in the IP Encapsulation init structure to the corresponding fields
in the MPU control registers. The definition of the structure can be seen in Table 9-7 . The check code is
calculated as an odd bit interleaved parity of the previous three words. As an example, see the following
code for CCS:
// IPE data structures definition, reusable for ALL projects
#define IPE_MPUIPLOCK 0x0080
#define IPE_MPUIPENA
0x0040
#define IPE_MPUIPPUC
0x0020
#define IPE_SEGREG(a) (a >> 4)
#define IPE_BIP(a,b,c) (a ^ b ^ c ^ 0xFFFF)
#define IPE_FILLSTRUCT(a,b,c)
316

Memory Protection Unit (MPU)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

How to Enable MPU and IPE Segments

www.ti.com

{a,IPE_SEGREG(b),IPE_SEGREG(c),IPE_BIP(a,IPE_SEGREG(b),IPE_SEGREG©))}
typedef struct IPE_Init_Structure {
unsigned int MPUIPC0 ;
unsigned int MPUIPB2 ;
unsigned int MPUIPB1 ;
unsigned int MPUCHECK ;
} IPE_Init_Structure;
// this struct should be placed inside IPB1/IPB2 boundaries
// This is the project dependant part
#define IPE_START 0x0D000
#define IPE_END
0x0F000

// This defines the Start of the IP protected area
// This defines the End of the IP protected area

// define borders of protected code
// ipestruct is defined in a adopted linker control file
// ipestruct is the section for protected data;
#pragma RETAIN(ipe_configStructure)
#pragma DATA_SECTION(ipe_configStructure,".ipestruct");

const IPE_Init_Structure ipe_configStructure = IPE_FILLSTRUCT(IPE_MPUIPLOCK + IPE_MPUIPENA,
IPE_END,IPE_START);

Table 9-7. IPE_Init_Structure
Field Name

Address
Offset

Length

MPUIPC0

0h

word

Control setting for IP Encapsulation. Value is written to MPUIPC0

MPUIPB2

2h

word

Upper border of IP Encapsulation segment. Value is written to MPUIPSEGB2.

MPUIPB1

4h

word

Lower border of IP Encapsulation segment. Value is written to MPUIPSEGB1.

MPUCHECK

6h

word

Odd bit interleaved parity

Description

NOTE: Although the user is free to select the location for the IPE Init Structure, protection against
unwanted modification is given only if the structure is placed inside of the protected area
checked by the structure itself. This allows a reconfiguration from within the protected area
but prevents malicious modification from outside.

9.6.2 IP Encapsulation Removal
After successful instantiation of an IP protected memory area, a mass erase erases only the memory area
outside of the IP Encapsulation. To perform an erase of all memory locations in main memory and to
remove the IPE structure pointer, a special erase sequence must be performed. For more details, see the
MSP430 Programming With the JTAG Interface. For details on how to initiate this erasure from the IDE,
see the Code Composer Studio for MSP430 User's Guide.
NOTE: An invalid IP Encapsulation init structure or a saved IPE structure pointer with an invalid
target (not pointing to a valid IP Encapsulation init structure) causes an erase of all
nonvolatile memory segments including the IP Encapsulation segments and the init structure
during bootcode execution. This setup error leads to a completely unprogrammed device
after the next bootcode execution. This mechanism ensures that no exposure of IP code can
happen by a misconfiguration or a memory corruption.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU)

317

MPU Registers

9.7

www.ti.com

MPU Registers
The MPU registers are listed in Table 9-8. The base address of the MPU module can be found in the
device-specific data sheet. The address offset of each MPU register is given in Table 9-8. The password
defined in the MPUCTL0 register controls access to all MPU registers. Once the correct password is
written, the write access is enabled. The write access is disabled by writing a wrong password in byte
mode to the MPUCTL0 upper byte. Word accesses to MPUCTL0 with a wrong password triggers a PUC.
A write access to a register other than MPUCTL0 while write access is not enabled causes a PUC. This
behavior is independent from MPULOCK bit settings. Password write is always enabled to allow
consecutive access to MPUCTL1 and independent configuration of MPU and IP-Encapsulation registers.
NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 9-8. MPU Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

MPUCTL0

Memory Protection Unit Control 0

Read/write

Word

9600h

Section 9.7.1

00h

MPUCTL0_L

Read/Write

Byte

00h

01h

MPUCTL0_H

Read/Write

Byte

96h

02h

Read/write

Word

0000h

02h

MPUCTL1_L

Read/Write

Byte

00h

03h

MPUCTL1_H

Read/Write

Byte

00h

Read/write

Word

0000h

Read/Write

Byte

00h

Read/Write

Byte

00h

Read/Write

Word

0000h

Read/Write

Byte

00h

Read/Write

Byte

00h

Read/write

Word

7777h

04h

MPUSEGB2

04h

MPUSEGB2_L

05h

MPUSEGB2_H

06h

MPUSEGB1

06h

MPUSEGB1_L

07h

MPUSEGB1_H

08h

MPUSAM

Memory Protection Unit Control 1

Memory Protection Unit Segmentation
Border 2 Register

Memory Protection Unit Segmentation
Border 1 Register

Memory Protection Unit Segmentation
Access Management Register

08h

MPUSAM_L

Read/Write

Byte

77h

09h

MPUSAM_H

Read/Write

Byte

77h

Read/Write

Word

0000h

0Ah

MPUIPC0

Memory Protection Unit IP Control 0
Register

0Ah

MPUIPC0_L

Read/Write

Byte

00h

0Bh

MPUIPC0_H

Read/Write

Byte

00h

Word

0000h

0Ch

MPUIPSEGB2

Memory Protection Unit IP Encapsulation
Read/Write
Segment Border 2 Register

0Ch

MPUIPSEGB2_L

Read/Write

Byte

00h

0Dh

MPUIPSEGB2_H

Read/Write

Byte

00h

Word

0000h

0Eh

318

MPUCTL1

MPUIPSEGB1

Memory Protection Unit IP Encapsulation
Read/Write
Segment Border 1 Register

0Eh

MPUIPSEGB1_L

Read/Write

Byte

00h

0Fh

MPUIPSEGB1_H

Read/Write

Byte

00h

Memory Protection Unit (MPU)

Section 9.7.2

Section 9.7.5

Section 9.7.6

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPU Registers

www.ti.com

9.7.1 MPUCTL0 Register
Memory Protection Unit Control 0 Register
Figure 9-7. MPUCTL0 Register
15

14

13

12

11

10

9

8

rw-1

rw-1

rw-0

2

1
MPULOCK
rw-[0]

0
MPUENA
rw-[0]

MPUPW
rw-1

rw-0

rw-0

rw-1

rw-0

7

6
Reserved
r-0

5

4
MPUSEGIE
rw-[0]

3

r-0

r-0

Reserved
r-0

r-0

Table 9-9. MPUCTL0 Register Description
Bit

Field

Type

Reset

Description

15-8

MPUPW

RW

96h

MPU Password. Always reads as 096h. Must be written as 0A5h; writing any
other value with a word write generates a PUC. After a correct password is
written and MPU register access is enabled, a wrong password write in byte
mode disables the access and no PUC is generated. This behavior is
independent from MPULOCK bit settings.

7-5

Reserved

R

0h

Reserved. Always read 0.

4

MPUSEGIE

RW

0h

Enable NMI Event if a Segment violation is detected in any Segment.
0b = Segment violation interrupt disabled
1b = Segment violation interrupt enabled

3-2

Reserved

R

0h

Reserved. Always read 0.

1

MPULOCK

RW

0h

MPU Lock. If this bit is set, access to all MPU Registers except MPUCTL1,
MPUIPC0, and MPUIPSEGx are locked and they are read only until a BOR
occurs. BOR sets MPULOCK to 0.
0b = Open
1b = Locked

0

MPUENA

RW

0h

MPU Enable. This bit enables the MPU operation. The enable bit can be set any
time with word write and a correct password, if MPULOCK is not set
0b = Disabled
1b = Enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU)

319

MPU Registers

www.ti.com

9.7.2 MPUCTL1 Register
Memory Protection Unit Control 1 Register
Figure 9-8. MPUCTL1 Register
15

14

13

12

11

10

9

8

Reserved
r-0

r-0

r-0

r-0

r-0

r-0

r-0

r-0

7

6
Reserved
r-0

5

4
MPUSEGIPIFG
rw-[0]

3
MPUSEGIIFG
rw-[0]

2
MPUSEG3IFG
rw-[0]

1
MPUSEG2IFG
rw-[0]

0
MPUSEG1IFG
rw-[0]

r-0

r-0

Table 9-10. MPUCTL1 Register Description
Bit

Field

Type

Reset

Description

15-5

Reserved

R

0h

Reserved. Always read 0.

4

MPUSEGIPIFG

RW

0h

IP Encapsulation Access Violation Interrupt Flag. This bit is set if an access
violation in the IP Encapsulation memory segment is detected. This bit is cleared
by software or by reading the reset vector word SYSRSTIV if it is the highest
pending interrupt flag. This bit is write 0 only and write 1 has no effect.
0b = No interrupt pending
1b = Interrupt pending

3

MPUSEGIIFG

RW

0h

User Information Memory Violation Interrupt Flag. This bit is set if an access
violation in User Information Memory is detected. This bit is cleared by software
or by reading the reset vector word SYSRSTIV if it is the highest pending
interrupt flag. This bit is write 0 only and write 1 has no effect.
0b = No interrupt pending
1b = Interrupt pending

2

MPUSEG3IFG

RW

0h

Main Memory Segment 3 Violation Interrupt Flag. This bit is set if an access
violation in Main Memory Segment 3 is detected. This bit is cleared by software
or by reading the reset vector word SYSRSTIV if it is the highest pending
interrupt flag. This bit is write 0 only and write 1 has no effect.
0b = No interrupt pending
1b = Interrupt pending

1

MPUSEG2IFG

RW

0h

Main Memory Segment 2 Violation Interrupt Flag. This bit is set if an access
violation in Main Memory Segment 2 is detected. This bit is cleared by software
or by reading the reset vector word SYSRSTIV if it is the highest pending
interrupt flag. This bit is write 0 only and write 1 has no effect.
0b = No interrupt pending
1b = Interrupt pending

0

MPUSEG1IFG

RW

0h

Main Memory Segment 1 Violation Interrupt Flag. This bit is set if an access
violation in Main Memory Segment 1 is detected. This bit is cleared by software
or by reading the reset vector word SYSRSTIV if it is the highest pending
interrupt flag. This bit is write 0 only and write 1 has no effect.
0b = No interrupt pending
1b = Interrupt pending

320

Memory Protection Unit (MPU)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPU Registers

www.ti.com

9.7.3 MPUSEGB2 Register
Memory Protection Unit Segmentation Border 2 Register
Figure 9-9. MPUSEGB2 Register
15

14

13

12

r-0

rw-[0] or r-0

rw-[0]

7

6

5

11
MPUSEGB2
rw-[0]
rw-[0]
4

10

9

8

rw-[0]

rw-[0]

rw-[0]

3

2

1

0

r-0

r-0

r-0

r-0

MPUSEGB2
rw-[0]

rw-[0]

r-0

r-0

Table 9-11. MPUSEGB2 Register Description
Bit

Field

Type

Reset

Description

15-0

MPUSEGB2

RW

0h

MPU Segment Border 2 address line equivalents.
FRAM size ≤ 128KB:
MPUSEGB2[15:14] = MPU Segment Border 2 address line 19-18 equivalents.
Must be written as zero.
MPUSEGB2[13:6] = MPU Segment Border 2 address lines 17-10. After BOR, the
bits are set to 0 (if MPU is enabled and MPUSEGB1 is also 0, only Segment 3 is
active).
MPUSEGB2[5:0] = MPU Segment Border 2 address line 9-4 equivalents. Must
be written as zero.
128KB < FRAM size ≤ 256KB:
MPUSEGB2[15] = MPU Segment Border 2 address line 19 equivalents. Must be
written as zero.
MPUSEGB2[14:6] = MPU Segment Border 2 address lines 18-10. After BOR, the
bits are set to 0 (if MPU is enabled and MPUSEGB1 is also 0, only Segment 3 is
active).
MPUSEGB2[5:0] = MPU Segment Border 2 address line 9-4 equivalents. Must
be written as zero.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU)

321

MPU Registers

www.ti.com

9.7.4 MPUSEGB1 Register
Memory Protection Unit Segmentation Border 1 Register
Figure 9-10. MPUSEGB1 Register
15

14

13

12

r-0

rw-[0] or r-0

rw-[0]

7

6

5

11
MPUSEGB1
rw-[0]
rw-[0]
4

10

9

8

rw-[0]

rw-[0]

rw-[0]

3

2

1

0

r-0

r-0

r-0

r-0

MPUSEGB1
rw-[0]

rw-[0]

r-0

r-0

Table 9-12. MPUSEGB1 Register Description
Bit

Field

Type

Reset

Description

15-0

MPUSEGB1

RW

0h

MPU Segment Border 1 address line equivalents.
FRAM size ≤ 128KB:
MPUSEGB1[15:14] = MPU Segment Border 1 address line 19-18 equivalents.
Must be written as zero.
MPUSEGB1[13:6] = MPU Segment Border 1 address lines 17-10. After BOR, the
bits are set to 0 (if MPU is enabled and MPUSEGB2 is also 0, only Segment 3 is
active).
MPUSEGB1[5:0] = MPU Segment Border 1 address line 9-4 equivalents. Must
be written as zero.
128KB < FRAM size ≤ 256KB:
MPUSEGB1[15] = MPU Segment Border 1 address line 19 equivalents. Must be
written as zero.
MPUSEGB1[14:6] = MPU Segment Border 1 address lines 18-10. After BOR, the
bits are set to 0 (if MPU is enabled and MPUSEGB2 is also 0, only Segment 3 is
active).
MPUSEGB1[5:0] = MPU Segment Border 1 address line 9-4 equivalents. Must
be written as zero.

322

Memory Protection Unit (MPU)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPU Registers

www.ti.com

9.7.5 MPUSAM Register
Memory Protection Unit Segmentation Access Management Register
Figure 9-11. MPUSAM Register
15
MPUSEGIVS
rw-[0]

14
MPUSEGIXE
rw-[1]

13
MPUSEGIWE
rw-[1]

12
MPUSEGIRE
rw-[1]

11
MPUSEG3VS
rw-[0]

10
MPUSEG3XE
rw-[1]

9
MPUSEG3WE
rw-[1]

8
MPUSEG3RE
rw-[1]

7
MPUSEG2VS
rw-[0]

6
MPUSEG2XE
rw-[1]

5
MPUSEG2WE
rw-[1]

4
MPUSEG2RE
rw-[1]

3
MPUSEG1VS
rw-[0]

2
MPUSEG1XE
rw-[1]

1
MPUSEG1WE
rw-[1]

0
MPUSEG1RE
rw-[1]

Table 9-13. MPUSAM Register Description
Bit

Field

Type

Reset

Description

15

MPUSEGIVS

RW

0h

MPU User Information Memory Segment Violation Select. This bit selects if
additional to the interrupt flag a PUC must be executed on illegal access to User
Information Memory
0b = Violation in User Information Memory asserts the MPUSEGIIFG bit and
executes a SNMI if enabled by MPUSEGIE =1
1b = Violation in User Information Memory asserts the MPUSEGIIFG bit and
executes a PUC

14

MPUSEGIXE

RW

1h

MPU User Information Memory Segment Execute Enable. If set, this bit enables
execution on User Information Memory
0b = Execute code on User Information Memory causes a violation
1b = Execute code on User Information Memory is allowed

13

MPUSEGIWE

RW

1h

MPU User Information Memory Segment Write Enable. If set, this bit enables
write access on User Information Memory
0b = Write on User Information Memory causes a violation
1b = Write on User Information Memory is allowed

12

MPUSEGIRE

RW

1h

MPU User Information Memory Segment Read Enable. If set, this bit enables
read access on User Information Memory
0b = Read on User Information Memory causes a violation if
MPUSEGIWE=MPUSEGIXE=0
1b = Read on User Information Memory is allowed

11

MPUSEG3VS

RW

0h

MPU Main Memory Segment 3 Violation Select. This bit selects if additional to
the interrupt flag a PUC must be executed on illegal access to Main Memory
segment 3
0b = Violation in Main Memory Segment 3 asserts the MPUSEG3IFG bit and
executes a SNMI if enabled by MPUSEGIE =1
1b = Violation in Main Memory Segment 3 asserts the MPUSEG3IFG bit and
executes a PUC

10

MPUSEG3XE

RW

1h

MPU Main Memory Segment 3 Execute Enable. If set this bit enables execution
on Main Memory segment 3
0b = Execute code on Main Memory Segment 3 causes a violation
1b = Execute code on Main Memory Segment 3 is allowed

9

MPUSEG3WE

RW

1h

MPU Main Memory Segment 3 Write Enable. If set this bit enables write access
on Main Memory segment 3
0b = Write on Main Memory Segment 3 causes a violation
1b = Write on Main Memory Segment 3 is allowed

8

MPUSEG3RE

RW

1h

MPU Main Memory Segment 3 Read Enable. If set this bit enables read access
on Main Memory segment 3
0b = Read on Main Memory Segment 3 causes a violation if MPUSEG3WE =
MPUSEG3XE = 0
1b = Read on Main Memory Segment 3 is allowed

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU)

323

MPU Registers

www.ti.com

Table 9-13. MPUSAM Register Description (continued)
Bit

Field

Type

Reset

Description

7

MPUSEG2VS

RW

0h

MPU Main Memory Segment 2 Violation Select. This bit selects if additional to
the interrupt flag a PUC must be executed on illegal access to Main Memory
segment 2
0b = Violation in Main Memory Segment 2 asserts the MPUSEG2IFG bit and
executes a SNMI if enabled by MPUSEGIE =1
1b = Violation in Main Memory Segment 2 asserts the MPUSEG2IFG bit and
executes a PUC

6

MPUSEG2XE

RW

1h

MPU Main Memory Segment 2 Execute Enable. If set this bit enables execution
on Main Memory segment 2
0b = Execute code on Main Memory Segment 2 causes a violation
1b = Execute code on Main Memory Segment 2 is allowed

5

MPUSEG2WE

RW

1h

MPU Main Memory Segment 2 Write Enable. If set this bit enables write access
on Main Memory segment 2
0b = Write on Main Memory Segment 2 causes a violation
1b = Write on Main Memory Segment 2 is allowed

4

MPUSEG2RE

RW

1h

MPU Main Memory Segment 2 Read Enable. If set this bit enables read access
on Main Memory segment 2
0b = Read on Main Memory Segment 2 causes a violation if MPUSEG2WE =
MPUSEG2XE = 0
1b = Read on Main Memory Segment 2 is allowed

3

MPUSEG1VS

RW

0h

MPU Main Memory Segment 1 Violation Select. This bit selects if additional to
the interrupt flag a PUC must be executed illegal access to Main Memory
segment 1
0b = Violation in Main Memory Segment 1 asserts the MPUSEG1IFG bit and
executes a SNMI if enabled by MPUSEGIE = 1
1b = Violation in Main Memory Segment 1 asserts the MPUSEG1IFG bit and
executes a PUC

2

MPUSEG1XE

RW

1h

MPU Main Memory Segment 1 Execute Enable. If set this bit enables execution
on Main Memory segment 1
0b = Execute code on Main Memory Segment 1 causes a violation
1b = Execute code on Main Memory Segment 1 is allowed

1

MPUSEG1WE

RW

1h

MPU Main Memory Segment 1 Write Enable. If set this bit enables write access
on Main Memory segment 1
0b = Write on Main Memory Segment 1 causes a violation
1b = Write on Main Memory Segment 1 is allowed

0

MPUSEG1RE

RW

1h

MPU Main Memory Segment 1 Read Enable. If set this bit enables read access
on Main Memory segment 1
0b = Read on Main Memory Segment 1 causes a violation if MPUSEG1WE =
MPUSEG1XE = 0
1b = Read on Main Memory Segment 1 is allowed

324

Memory Protection Unit (MPU)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPU Registers

www.ti.com

9.7.6 MPUIPC0 Register
Memory Protection Unit IP Control 0 Register
Figure 9-12. MPUIPC0 Register
15

14

13

12

11

10

9

8

Reserved
r-0

r-0

r-0

r-0

r-0

r-0

r-0

r-0

7
MPUIPLOCK
rw[0]

6
MPUIPENA
rw-[0]

5
MPUIPVS
rw-[0]

4

3

1

0

r-0

r-0

2
Reserved
r-0

r-0

r-0

Table 9-14. MPUIPC0 Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved. Always read 0.

7

MPUIPLOCK

RW

0h

MPU IP Encapsulation Lock. If this bit is set, access to MPUIPC0 and
MPUIPSEGBx registers is locked, and they are read-only until a BOR occurs.
BOR sets the bit to 0.
0b = Open
1b = Locked

6

MPUIPENA

RW

0h

MPU IP Encapsulation Enable. This bit enables the MPU IP Encapsulation
operation. The enable bit can be set any time with word write and a correct
password, if MPUIPLOCK is not set
0b = Disabled
1b = Enabled

5

MPUIPVS

RW

0h

MPU IP Encapsulation segment Violation Select. This bit selects whether or not
a PUC occurs on illegal access to the IPE-segment.
0b = Violation in Main Memory Segment 1 asserts the MPUSEGIPIFG bit and
executes a SNMI if enabled by MPUSEGIE = 1
1b = Violation in Main Memory Segment 1 asserts the MPUSEGIPIFG bit and
executes a PUC

4-0

Reserved

R

0h

Reserved. Always read 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU)

325

MPU Registers

www.ti.com

9.7.7 MPUIPSEGB2 Register
Memory Protection Unit IP Encapsulation Segmentation Border 2 Register
Figure 9-13. MPUIPSEGB2 Register
15

14

13

12

r-0

rw-[0] or r-0

rw-[0]

7

6

5

11
MPUIPSEGB2
rw-[0]
rw-[0]
4

10

9

8

rw-[0]

rw-[0]

rw-[0]

3

2

1

0

r-0

r-0

r-0

r-0

MPUIPSEGB2
rw-[0]

rw-[0]

r-0

r-0

Table 9-15. MPUIPSEGB2 Register Description
Bit

Field

Type

Reset

Description

15-0

MPUIPSEGB2

RW

0h

MPU IP Segment Border 2 address line equivalents.
FRAM size ≤ 128KB:
MPUIPSEGB2[15:14] = MPU IP Segment Border 2 address line 19-18
equivalents. Must be written as zero.
MPUIPSEGB2[13:6] = MPU IP Segment Border 2 address lines 17-10. After
BOR, the bits are set to 0 (if MPU is enabled and MPUSEGB1 is also 0, only
Segment 3 is active).
MPUIPSEGB2[5:0] = MPU IP Segment Border 2 address line 9-4 equivalents.
Must be written as zero.
128KB < FRAM size ≤ 256KB:
MPUIPSEGB2[15] = MPU IP Segment Border 2 address line 19 equivalents.
Must be written as zero.
MPUIPSEGB2[14:6] = MPU IP Segment Border 2 address lines 18-10. After
BOR, the bits are set to 0 (if MPU is enabled and MPUSEGB1 is also 0, only
Segment 3 is active).
MPUIPSEGB2[5:0] = MPU IP Segment Border 2 address line 9-4 equivalents.
Must be written as zero.

326

Memory Protection Unit (MPU)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MPU Registers

www.ti.com

9.7.8 MPUIPSEGB1 Register
Memory Protection Unit IP Encapsulation Segmentation Border 1 Register
Figure 9-14. MPUIPSEGB1 Register
15

14

13

12

r-0

rw-[0] or r-0

rw-[0]

7

6

5

11
MPUIPSEGB1
rw-[0]
rw-[0]
4

10

9

8

rw-[0]

rw-[0]

rw-[0]

3

2

1

0

r-0

r-0

r-0

r-0

MPUIPSEGB1
rw-[0]

rw-[0]

r-0

r-0

Table 9-16. MPUIPSEGB1 Register Description
Bit

Field

Type

Reset

Description

15-0

MPUIPSEGB1

RW

0h

MPU Segment Border 1 address line equivalents.
FRAM size ≤ 128KB:
MPUIPSEGB1[15:14] = MPU Segment Border 1 address line 19-18 equivalents.
Must be written as zero.
MPUIPSEGB1[13:6] = MPU Segment Border 1 address lines 17-10. After BOR,
the bits are is set to 0 (if MPU is enabled and MPUSEGB2 is also 0, only
Segment 3 is active).
MPUIPSEGB1[5:0] = MPU Segment Border 1 address line 9-4 equivalents. Must
be written as zero.
128KB < FRAM size ≤ 256KB:
MPUIPSEGB1[15] = MPU Segment Border 1 address line 19 equivalents. Must
be written as zero.
MPUIPSEGB1[14:6] = MPU Segment Border 1 address lines 18-10. After BOR,
the bits are is set to 0 (if MPU is enabled and MPUSEGB2 is also 0, only
Segment 3 is active).
MPUIPSEGB1[5:0] = MPU Segment Border 1 address line 9-4 equivalents. Must
be written as zero.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Memory Protection Unit (MPU)

327

Chapter 10
SLAU367O – October 2012 – Revised December 2017

RAM Controller (RAMCTL)
The RAM controller (RAMCTL) allows control of the power-down behavior of the RAM.
Topic

10.1
10.2
10.3

328

...........................................................................................................................

Page

RAM Controller (RAMCTL) Introduction............................................................... 329
RAMCTL Operation ........................................................................................... 329
RAMCTL Registers ........................................................................................... 331

RAM Controller (RAMCTL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RAM Controller (RAMCTL) Introduction

www.ti.com

10.1 RAM Controller (RAMCTL) Introduction
The RAM Controller allows reduction of the leakage current during LPM3 and LPM4. The RAM is
partitioned in one to four sectors, depending on the device. See the device-specific data sheet for sector
allocation and size.

10.2 RAMCTL Operation
Each sector y is controlled by a sector off control bit (RCRSyOFF0) in the RAM Controller Control Register
0 (RCCTL0). By default, the RAM content is retained in LPM3 and LPM4 (RCRSyOFF0 = 0).
By setting the RAM sector's control bit RCRSyOFF0 to 1, the respective RAM sector is powered down
completely during LPM3 and LPM4 and all RAM content within the sector y is lost after a wake-up from
LPM3 or LPM4. After wake-up the RAM can be accessed normally.
Figure 10-1 shows the possible transitions when entering LPM3 or LPM4 and when waking up from LPM3
or LPM4.

NOTE: After a wake-up from LPM3 and LPM4 with RCRSyOFF0 = 1, the content of powered down
sectors is lost and completely undefined. Any potentially required re-initialization must be
implemented in software.

The RCCTL0 register is protected with a key. The RCCTL0 register content can be modified only if the
correct key is written during a word write. Byte write accesses or write accesses with a wrong key are
ignored.
Active
Mode

RAM
active

RCRSyOFF0 = 0

RC

LPM3 or
LPM4

Active
Mode

RAM in
retention

RAM
active

RS

yO
FF
0

=1

RAM
off

Figure 10-1. RAM Power Mode Transitions Into and Out of LPM3 or LPM4

10.2.1 Considerations for Complete Power Down
Using the power-down feature requires special care in devices with only one RAM sector or if all sectors
are powered down. Usually the program stack is located in RAM; therefore, using the power-down (with
RCRSyOFF0 = 1) destroys the stack content when entering LPM3 or LPM4. This is acceptable if the stack
is empty when entering LPM3 or LPM4; otherwise, the stack must be located in a different memory (for
example, FRAM).

10.2.2 DACCESSIE and DACCESSIFG Bits in RCCTL1 Register
This section applies only to the devices that include both the USS and the LEA modules. The LEA RAM
can be accessed by CPU, DMA, or DTC. Among the three bus master sources, the DTC has the highest
priority. The DTC is the data transfer controller in the SDHS, which is a submodule of the USS module.
The DTC transfers data from the SDHS directly to the LEA RAM. It is highly recommended not to access
LEA RAM while the DTC is active. If CPU or DMA accesses the LEA RAM while the DTC is accessing the
same memory:
• A write access from CPU or DMA is ignored
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RAM Controller (RAMCTL)

329

RAMCTL Operation

•
•
•

www.ti.com

A read access from CPU or DMA returns with 0x3FFF
A instruction fetch access from CPU results in executing a jump $ instruction (0x3FFF)
A read or write access from CPU or DMA causes the DACCESSIFG bit to be set

This conflict does not affect the access by the DTC. The DACCESS interrupt can be enabled or disabled
by the DACCESSIE bit. If DACCESSIE = 1 and DACCESSIFG = 1, then a user NMI is generated
(DACCESSIFG). See the device-specific data sheet for the user NMI information.

330

RAM Controller (RAMCTL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RAMCTL Registers

www.ti.com

10.3 RAMCTL Registers
Table 10-1 lists the memory-mapped registers for the RAMCTL. All register offset addresses not listed in
Table 10-1 should be considered as reserved locations and the register contents should not be modified.
Table 10-1. RAMCTL Registers
Offset

Acronym

Register Name

Type

Reset

Section

0h

CTL0

RAM Controller Control 0

read-write

6900h

Section 10.3.1

2h

CTL1

RAM Controller Control 1

read-write

0h

Section 10.3.2

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RAM Controller (RAMCTL)

331

RAMCTL Registers

www.ti.com

10.3.1 CTL0 Register (Offset = 0h) [reset = 6900h]
CTL0 is shown in Figure 10-2 and described in Table 10-2.
Return to Summary Table.
RAM Controller Control 0
Figure 10-2. CTL0 Register
15

14

13

12

11

10

9

2

1

8

KEY
R/W-69h
7

6

5

4

RS3OFF
R/W-0h

RS2OFF
R/W-0h

3
RS1OFFx
R/W-0h

0
RS0OFF
R/W-0h

Table 10-2. CTL0 Register Field Descriptions
Bit

Field

Type

Reset

Description

15-8

KEY

R/W

69h

RAM controller key. Always reads as 69h. Must be written as 5Ah;
any other
write is is ignored.
5Ah (W) = 0x5A

7-6

RS3OFF

R/W

0h

RAM controller RAM sector 3 off.
0h (R/W) = Contents of this RAM sector are retained in LPM3 and
LPM4.
1h (R/W) = Turns off this RAM sector in LPM3 and LPM4, reactivates it on wake-up.
All data of this RAM sector is lost after wakeup from LPM3 and
LPM4. See the
device-specific data sheet to find the number of available sectors,
the address
range, and the size of each RAM sector.
2h (R/W) = Turns off this RAM sector entering LPM3 and LPM4, the
RAM sector
remains off after wake-up. All data of this RAM sector is lost. See the
devicespecific
data sheet to find the number of available sectors, the address
range,
and the size of each RAM sector.

5-4

RS2OFF

R/W

0h

RAM controller RAM sector 2 off.
0h (R/W) = Contents of this RAM sector are retained in LPM3 and
LPM4.
1h (R/W) = Turns off this RAM sector in LPM3 and LPM4, reactivates it on wake-up.
All data of this RAM sector is lost after wakeup from LPM3 and
LPM4. See the
device-specific data sheet to find the number of available sectors,
the address
range, and the size of each RAM sector.
2h (R/W) = Turns off this RAM sector entering LPM3 and LPM4, the
RAM sector
remains off after wake-up. All data of this RAM sector is lost. See the
devicespecific
data sheet to find the number of available sectors, the address
range,
and the size of each RAM sector.

332

RAM Controller (RAMCTL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RAMCTL Registers

www.ti.com

Table 10-2. CTL0 Register Field Descriptions (continued)
Bit

Field

Type

Reset

Description

3-2

RS1OFFx

R/W

0h

RAM controller RAM sector 1 off.
0h (R/W) = Contents of this RAM sector are retained in LPM3 and
LPM4.
1h (R/W) = Turns off this RAM sector in LPM3 and LPM4, reactivates it on wake-up.
All data of this RAM sector is lost after wakeup from LPM3 and
LPM4. See the
device-specific data sheet to find the number of available sectors,
the address
range, and the size of each RAM sector.
2h (R/W) = Turns off this RAM sector entering LPM3 and LPM4, the
RAM sector
remains off after wake-up. All data of this RAM sector is lost. See the
devicespecific
data sheet to find the number of available sectors, the address
range,
and the size of each RAM sector.

1-0

RS0OFF

R/W

0h

RAM controller RAM sector 0 off
0h (R/W) = Contents of this RAM sector are retained in LPM3 and
LPM4.
1h (R/W) = Turns off this RAM sector in LPM3 and LPM4, reactivates it on wake-up.
All data of this RAM sector is lost after wakeup from LPM3 and
LPM4. See the
device-specific data sheet to find the number of available sectors,
the address
range, and the size of each RAM sector.
2h (R/W) = Turns off this RAM sector entering LPM3 and LPM4, the
RAM sector
remains off after wake-up. All data of this RAM sector is lost. See the
devicespecific
data sheet to find the number of available sectors, the address
range,
and the size of each RAM sector.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RAM Controller (RAMCTL)

333

RAMCTL Registers

www.ti.com

10.3.2 CTL1 Register (Offset = 2h) [reset = 0h]
CTL1 is shown in Figure 10-3 and described in Table 10-3.
Return to Summary Table.
RAM Controller Control 1
Figure 10-3. CTL1 Register
15

14

13

12
Reserved
R-0h

11

10

9

8
DACCESSIE
R/W-0h

7

6

5

4
Reserved
R-0h

3

2

1

0
DACCESSIFG
R/W-0h

Table 10-3. CTL1 Register Field Descriptions
Bit
15-9
8

Field

Type

Reset

Description

Reserved

R

0h

Reserved

DACCESSIE

R/W

0h

DACCESS Interrupt enable bit.
DACCESS Interrupt can be enabled or disabled by DACCESSIE bit.
If DACCESSIE =1 and DACCESSIFG =1, then an User NMI is
generated. See the device speicfic datasheet for details.
0h (R/W) = Disable NMI for DACCESS Interrupt
1h (R/W) = Enable NMI for DACCESS Interrupt

7-1
0

334

Reserved

R

0h

Reserved

DACCESSIFG

R/W

0h

DACCESS Interrupt Flag. LEA RAM can be accessed by CPU,
DMA, or DTC. DTC has the highest priority. If CPU or DMA
accesses LEA RAM while DTC is accessing the LEA RAM, the
access by CPU or DMA is ignored and DACCESSIFG bit is set. It
does not affect the access by DTC. DACCESS Interrupt can be
enabled or disabled by DACCESSIE bit. If DACCESSIE =1 and
DACCESSIFG =1, then an User NMI is generated (DACCESSIFG).
See the device speicfic datasheet for details.
0h (R/W) = DACCESS Interrupt is not pending
1h (R/W) = DACCESS Interrupt is pending.

RAM Controller (RAMCTL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 11
SLAU367O – October 2012 – Revised December 2017

DMA Controller
The direct memory access (DMA) controller module transfers data from one address to another, without
CPU intervention. This chapter describes the operation of the DMA controller.
Topic

11.1
11.2
11.3

...........................................................................................................................

Page

Direct Memory Access (DMA) Introduction .......................................................... 336
DMA Operation ................................................................................................. 338
DMA Registers ................................................................................................. 350

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

335

Direct Memory Access (DMA) Introduction

www.ti.com

11.1 Direct Memory Access (DMA) Introduction
The DMA controller transfers data from one address to another, without CPU intervention, across the
entire address range. For example, the DMA controller can move data from the ADC conversion memory
to RAM.
Devices that contain a DMA controller can have up to eight DMA channels available. Therefore,
depending on the number of DMA channels available, some features described in this chapter are not
applicable to all devices. See the device-specific data sheet for the number of channels that are
supported.
Using the DMA controller can increase the throughput of peripheral modules. It can also reduce system
power consumption by allowing the CPU to remain in a low-power mode, without having to awaken to
move data to or from a peripheral.
DMA controller features include:
• Up to eight independent transfer channels
• Configurable DMA channel priorities
• Requires only two MCLK clock cycles per transfer
• Byte, word, or mixed byte and word transfer capability
• Block sizes up to 65535 bytes or words
• Configurable transfer trigger selections
• Selectable-edge or level-triggered transfer
• Four addressing modes
• Single, block, or burst-block transfer modes
The DMA controller block diagram is shown in Figure 11-1.

336

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Direct Memory Access (DMA) Introduction

www.ti.com

JTAG Active
DMA0TSEL

ROUNDROBIN
DMADT

5
DMA0TRIG0
DMA0TRIG1

NMI Interrupt Request
ENNMI

Halt

00000
00001

2

DMADSTINCR
DMADSTBYTE

3

DMA Channel 0
DMA0SA
DMA0DA
DMA0SZ

11111

2

DMA1TSEL
5
DMA1TRIG0
DMA1TRIG1

00000
00001

DMA Priority and Control

DMA0TRIG31

DMADT
2

Address
Space

DMA1DA
DMA1SZ

2

5
DMAnTRIG0
DMAnTRIG1

3

DMA1SA

11111

DMAnTSEL

DMADSTINCR
DMADSTBYTE
DMA Channel1

2
DMA1TRIG31

DMASRSBYTE
DMASRCINCR
DMAEN

DMASRSBYTE
DMASRCINCR
DMAEN
DMADSTINCR
DMADSTBYTE

DMADT
3

DMA Channel n
DMAnSA

00000
00001

DMAnDA
DMAnSZ
2

DMAnTRIG31

DMASRSBYTE
DMASRCINCR

DMAEN

DMARMWDIS

11111

Halt CPU

Figure 11-1. DMA Controller Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

337

DMA Operation

www.ti.com

11.2 DMA Operation
The DMA controller is configured with user software. The setup and operation of the DMA is discussed in
the following sections.

11.2.1 DMA Addressing Modes
The DMA controller has four addressing modes. The addressing mode for each DMA channel is
independently configurable. For example, channel 0 may transfer between two fixed addresses, while
channel 1 transfers between two blocks of addresses. The addressing modes are shown in Figure 11-2.
The addressing modes are:
• Fixed address to fixed address
• Fixed address to block of addresses
• Block of addresses to fixed address
• Block of addresses to block of addresses
The addressing modes are configured with the DMASRCINCR and DMADSTINCR control bits. The
DMASRCINCR bits select if the source address is incremented, decremented, or unchanged after each
transfer. The DMADSTINCR bits select if the destination address is incremented, decremented, or
unchanged after each transfer.
Transfers may be byte to byte, word to word, byte to word, or word to byte. When transferring word to
byte, only the lower byte of the source word transfers. When transferring byte to word, the upper byte of
the destination word is cleared when the transfer occurs.

DMA
Controller

Address Space

Fixed Address To Fixed Address

DMA
Controller

Address Space

Block Of Addresses To Fixed Address

DMA
Controller

Address Space

Fixed Address To Block Of Addresses

DMA
Controller

Address Space

Block Of Addresses To Block Of Addresses

Figure 11-2. DMA Addressing Modes

338

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Operation

www.ti.com

11.2.2 DMA Transfer Modes
The DMA controller has six transfer modes selected by the DMADT bits as listed in Table 11-1. Each
channel is individually configurable for its transfer mode. For example, channel 0 may be configured in
single transfer mode, while channel 1 is configured for burst-block transfer mode, and channel 2 operates
in repeated block mode. The transfer mode is configured independently from the addressing mode. Any
addressing mode can be used with any transfer mode.
Two types of data can be transferred selectable by the DMAxCTL DSTBYTE and SRCBYTE fields. The
source and destination locations can be either byte or word data. It is also possible to transfer byte to
byte, word to word, or any combination.
Table 11-1. DMA Transfer Modes
DMADT

Transfer Mode

Description

000

Single transfer

Each transfer requires a trigger. DMAEN is automatically cleared when DMAxSZ
transfers have been made.

001

Block transfer

A complete block is transferred with one trigger. DMAEN is automatically cleared at
the end of the block transfer.

Burst-block transfer

CPU activity is interleaved with a block transfer. DMAEN is automatically cleared at
the end of the burst-block transfer.

100

Repeated single transfer

Each transfer requires a trigger. DMAEN remains enabled.

101

Repeated block transfer

A complete block is transferred with one trigger. DMAEN remains enabled.

Repeated burst-block transfer

CPU activity is interleaved with a block transfer. DMAEN remains enabled.

010, 011

110, 111

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

339

DMA Operation

www.ti.com

11.2.2.1 Single Transfer
In single transfer mode, each byte or word transfer requires a separate trigger. The single transfer state
diagram is shown in Figure 11-3.
The DMAxSZ register defines the number of transfers to be made. The DMADSTINCR and
DMASRCINCR bits select if the destination address and the source address are incremented or
decremented after each transfer. If DMAxSZ = 0, no transfers occur.
The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer. The DMAxSZ
register is decremented after each transfer. When the DMAxSZ register decrements to zero, it is reloaded
from its temporary register and the corresponding DMAIFG flag is set. When DMADT = 0, the DMAEN bit
is cleared automatically when DMAxSZ decrements to zero and must be set again for another transfer to
occur.
In repeated single transfer mode, the DMA controller remains enabled with DMAEN = 1, and a transfer
occurs every time a trigger occurs.
DMAEN = 0
Reset
DMAEN = 0
DMAREQ = 0
T_Size → DMAxSZ

DMAEN = 0

DMAEN = 1
DMAxSZ → T_Size
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

[ DMADT = {0}
AND DMAxSZ = 0]
OR DMAEN = 0
DMAABORT = 1

Idle

DMAREQ = 0

DMAABORT=0

DMAxSZ > 0
AND DMAEN = 1

Wait forTrigger

2 x MCLK

[+Trigger AND DMALEVEL = 0 ]
OR
[Trigger = 1 AND DMALEVEL = 1]

Hold CPU,
Transfer one word/byte

T_Size → DMAxSZ
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

[ENNMI = 1
AND NMI event]
OR
[DMALEVEL = 1
AND Trigger = 0]

DMADT = {4}
AND DMAxSZ = 0
AND DMAEN = 1
Decrement DMAxSZ
Modify T_SourceAdd
Modify T_DestAdd

Figure 11-3. DMA Single Transfer State Diagram

340

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Operation

www.ti.com

11.2.2.2 Block Transfer
In block transfer mode, a transfer of a complete block of data occurs after one trigger. When DMADT = 1,
the DMAEN bit is cleared after the completion of the block transfer and must be set again before another
block transfer can be triggered. After a block transfer has started, another trigger signal that occurs during
the block transfer is ignored. The block transfer state diagram is shown in Figure 11-4.
The DMAxSZ register defines the size of the block, and the DMADSTINCR and DMASRCINCR bits select
if the destination address and the source address are incremented or decremented after each transfer of
the block. If DMAxSZ = 0, no transfers occur.
The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The
DMAxSZ register is decremented after each transfer of the block and shows the number of transfers
remaining in the block. When the DMAxSZ register decrements to zero, it is reloaded from its temporary
register and the corresponding DMAIFG flag is set.
During a block transfer, the CPU is halted until the complete block has been transferred. The block
transfer takes (2 × MCLK × DMAxSZ) clock cycles to complete. CPU execution resumes with its previous
state after the block transfer is complete.
In repeated block transfer mode, the DMAEN bit remains set after completion of the block transfer. The
next trigger after the completion of a repeated block transfer starts another block transfer.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

341

DMA Operation

www.ti.com
DMAEN = 0
Reset

DMAEN = 0
DMAREQ = 0
T_Size → DMAxSZ

DMAEN = 0

DMAEN = 1
DMAxSZ → T_Size
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

[DMADT = {1}
AND DMAxSZ = 0]
OR
DMAEN = 0

DMAABORT = 1
Idle
DMAREQ = 0
T_Size → DMAxSZ
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd

DMAABORT = 0

Wait forTrigger

2 × MCLK

[+TriggerAND DMALEVEL= 0 ]
OR
[Trigger=1AND DMALEVEL=1]

DMADT = {5}
AND DMAxSZ = 0
AND DMAEN = 1

Hold CPU,
Transfer one word/byte
[ENNMI = 1
AND NMI event]
OR
[DMALEVEL = 1
AND Trigger = 0]

DMAxSZ > 0

Decrement DMAxSZ
Modify T_SourceAdd
Modify T_DestAdd

Figure 11-4. DMA Block Transfer State Diagram

342

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Operation

www.ti.com

11.2.2.3 Burst-Block Transfer
In burst-block mode, transfers are block transfers with CPU activity interleaved. The CPU executes
two MCLK cycles after every four byte or word transfers of the block, resulting in 20% CPU execution
capacity. After the burst-block, CPU execution resumes at 100% capacity and the DMAEN bit is cleared.
DMAEN must be set again before another burst-block transfer can be triggered. After a burst-block
transfer has been triggered, further trigger signals occurring during the burst-block transfer are ignored.
The burst-block transfer state diagram is shown in Figure 11-5.
The DMAxSZ register defines the size of the block, and the DMADSTINCR and DMASRCINCR bits select
if the destination address and the source address are incremented or decremented after each transfer of
the block. If DMAxSZ = 0, no transfers occur.
The DMAxSA, DMAxDA, and DMAxSZ registers are copied into temporary registers. The temporary
values of DMAxSA and DMAxDA are incremented or decremented after each transfer in the block. The
DMAxSZ register is decremented after each transfer of the block and shows the number of transfers
remaining in the block. When the DMAxSZ register decrements to zero, it is reloaded from its temporary
register and the corresponding DMAIFG flag is set.
In repeated burst-block mode, the DMAEN bit remains set after completion of the burst-block transfer and
no further trigger signals are required to initiate another burst-block transfer. Another burst-block transfer
begins immediately after completion of a burst-block transfer. In this case, the transfers must be stopped
by clearing the DMAEN bit, or by an (non)maskable interrupt (NMI) when ENNMI is set. In repeated burstblock mode the CPU executes at 20% capacity continuously until the repeated burst-block transfer is
stopped.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

343

DMA Operation

www.ti.com
DMAEN = 0
Reset
DMAEN = 0
DMAREQ = 0
T_Size → DMAxSZ

DMAEN = 0

DMAEN = 1

DMAxSZ → T_Size
[DMADT = {2, 3}
DMAxSA → T_SourceAdd
AND DMAxSZ = 0]
DMAxDA → T_DestAdd
OR
DMAEN = 0
DMAABORT = 1

Idle

DMAABORT=0

Wait for Trigger

2 × MCLK

[+Trigger AND DMALEVEL = 0 ]
OR
[Trigger=1 AND DMALEVEL=1]

Hold CPU,
Transfer one word/byte
[ENNMI = 1
AND NMI event]
OR
[DMALEVEL = 1
AND
Trigger = 0]

T_Size → DMAxSZ
DMAxSA → T_SourceAdd
DMAxDA → T_DestAdd
Decrement DMAxSZ
Modify T_SourceAdd
Modify T_DestAdd

DMAxSZ > 0 AND
a multiple of 4 words/bytes
were transferred

DMAxSZ > 0

DMAxSZ > 0
[DMADT = {6, 7}
AND DMAxSZ = 0]

2 × MCLK
Burst State
(release CPU for 2 × MCLK)

Figure 11-5. DMA Burst-Block Transfer State Diagram

344

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Operation

www.ti.com

11.2.3 Initiating DMA Transfers
Each DMA channel is independently configured for its trigger source with the DMAxTSEL. The
DMAxTSEL bits should be modified only when the DMACTLx DMAEN bit is 0. Otherwise, unpredictable
DMA triggers may occur. Table 11-2 describes the trigger operation for each type of module. See the
device-specific data sheet for the list of triggers available, along with their respective DMAxTSEL values.
When selecting the trigger, the trigger must not have already occurred, or the transfer does not take place.
11.2.3.1 Edge-Sensitive Triggers
When DMALEVEL = 0, edge-sensitive triggers are used, and the rising edge of the trigger signal initiates
the transfer. In single-transfer mode, each transfer requires its own trigger. When using block or burstblock modes, only one trigger is required to initiate the block or burst-block transfer.
11.2.3.2 Level-Sensitive Triggers
When DMALEVEL = 1, level-sensitive triggers are used. For proper operation, level-sensitive triggers can
only be used when external trigger DMAE0 is selected as the trigger. DMA transfers are triggered as long
as the trigger signal is high and the DMAEN bit remains set.
The trigger signal must remain high for a block or burst-block transfer to complete. If the trigger signal
goes low during a block or burst-block transfer, the DMA controller is held in its current state until the
trigger goes back high or until the DMA registers are modified by software. If the DMA registers are not
modified by software, when the trigger signal goes high again, the transfer resumes from where it was
when the trigger signal went low.
When DMALEVEL = 1, transfer modes selected when DMADT = {0, 1, 2, 3} are recommended, because
the DMAEN bit is automatically reset after the configured transfer.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

345

DMA Operation

www.ti.com

11.2.4 Halting Executing Instructions for DMA Transfers
The DMARMWDIS bit controls when the CPU is halted for DMA transfers. When DMARMWDIS = 0, the
CPU is halted immediately and the transfer begins when a trigger is received. In this case, it is possible
that CPU read-modify-write operations can be interrupted by a DMA transfer. When DMARMWDIS = 1,
the CPU finishes the currently executing read-modify-write operation before the DMA controller halts the
CPU and the transfer begins (see Table 11-2).
Table 11-2. DMA Trigger Operation
Module
DMA

Operation
A transfer is triggered when the DMAREQ bit is set. The DMAREQ bit is automatically reset when the transfer
starts.
A transfer is triggered when the DMAxIFG flag is set. DMA0IFG triggers channel 1, DMA1IFG triggers channel 2,
and DMA2IFG triggers channel 0. None of the DMAxIFG flags are automatically reset when the transfer starts.
A transfer is triggered by the external trigger DMAE0.

Timer_A

A transfer is triggered when the TAxCCR0 CCIFG flag is set. The TAxCCR0 CCIFG flag is automatically reset
when the transfer starts. If the TAxCCR0 CCIE bit is set, the TAxCCR0 CCIFG flag does not trigger a transfer.
A transfer is triggered when the TAxCCR2 CCIFG flag is set. The TAxCCR2 CCIFG flag is automatically reset
when the transfer starts. If the TAxCCR2 CCIE bit is set, the TAxCCR2 CCIFG flag does not trigger a transfer.

Timer_B

A transfer is triggered when the TBxCCR0 CCIFG flag is set. The TBxCCR0 CCIFG flag is automatically reset
when the transfer starts. If the TBxCCR0 CCIE bit is set, the TBxCCR0 CCIFG flag does not trigger a transfer.
A transfer is triggered when the TBxCCR2 CCIFG flag is set. The TBxCCR2 CCIFG flag is automatically reset
when the transfer starts. If the TBxCCR2 CCIE bit is set, the TBxCCR2 CCIFG flag does not trigger a transfer.

eUSCI_Ax

A transfer is triggered when eUSCI_Ax receives new data. UCAxRXIFG is automatically reset when the transfer
starts. If UCAxRXIE is set, the UCAxRXIFG does not trigger a transfer.
A transfer is triggered when eUSCI_Ax is ready to transmit new data. UCAxTXIFG is automatically reset when
the transfer starts. If UCAxTXIE is set, the UCAxTXIFG does not trigger a transfer.

eUSCI_Bx

A transfer is triggered when eUSCI_Bx receives new data. UCBxRXIFG is automatically reset when the transfer
starts. If UCBxRXIE is set, the UCBxRXIFG does not trigger a transfer.
A transfer is triggered when eUSCI_Bx is ready to transmit new data. UCBxTXIFG is automatically reset when
the transfer starts. If UCBxTXIE is set, the UCBxTXIFG does not trigger a transfer.

ADC12_B

A transfer is triggered by an ADC12IFG flag. When single-channel conversions are performed, the
corresponding ADC12IFG is the trigger. When sequences are used, the ADC12IFG for the last conversion in the
sequence is the trigger. A transfer is triggered when the conversion is completed and the ADC12IFG is set.
Setting the ADC12IFG with software does not trigger a transfer. All ADC12IFG flags are automatically reset
when the associated ADC12MEMx register is accessed by the DMA controller.

MPY
Reserved

A transfer is triggered when the hardware multiplier is ready for a new operand.
No transfer is triggered.

11.2.5 Stopping DMA Transfers
There are two ways to stop DMA transfers in progress:
• A single, block, or burst-block transfer may be stopped with an NMI, if the ENNMI bit is set in register
DMACTL1.
• A burst-block transfer may be stopped by clearing the DMAEN bit.

11.2.6 DMA Channel Priorities
The default DMA channel priorities are DMA0 through DMA7. If two or three triggers happen
simultaneously or are pending, the channel with the highest priority completes its transfer (single, block, or
burst-block transfer) first, then the second priority channel, then the third priority channel. Transfers in
progress are not halted if a higher-priority channel is triggered. The higher-priority channel waits until the
transfer in progress completes before starting.
The DMA channel priorities are configurable with the ROUNDROBIN bit. When the ROUNDROBIN bit is
set, the channel that completes a transfer becomes the lowest priority. The order of the priority of the
channels always stays the same, DMA0-DMA1-DMA2, for example, for three channels. When the
ROUNDROBIN bit is cleared, the channel priority returns to the default priority.

346

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Operation

www.ti.com
DMA Priority

Transfer Occurs

New DMA Priority

DMA0-DMA1-DMA2

DMA1

DMA2-DMA0-DMA1

DMA2-DMA0-DMA1

DMA2

DMA0-DMA1-DMA2

DMA0-DMA1-DMA2

DMA0

DMA1-DMA2-DMA0

11.2.7 DMA Transfer Cycle Time
The DMA controller requires one or two MCLK clock cycles to synchronize before each single transfer or
complete block or burst-block transfer. Each byte or word transfer requires two MCLK cycles after
synchronization, and one cycle of wait time after the transfer. Because the DMA controller uses MCLK, the
DMA cycle time is dependent on the MSP430 operating mode and clock system setup.
If the MCLK source is active but the CPU is off, the DMA controller uses the MCLK source for each
transfer, without reenabling the CPU. If the MCLK source is off, the DMA controller temporarily restarts
MCLK, sourced with DCOCLK, for the single transfer or complete block or burst-block transfer. The CPU
remains off and, after the transfer completes, MCLK is turned off. The maximum DMA cycle time for all
operating modes is shown in Table 11-3.
Table 11-3. Maximum Single-Transfer DMA Cycle Time
CPU Operating Mode Clock Source

Maximum DMA Cycle Time

Active mode MCLK = DCOCLK

4 MCLK cycles

Active mode MCLK = LFXT1CLK

4 MCLK cycles

Low-power mode LPM0 or LPM1 MCLK = DCOCLK

5 MCLK cycles

Low-power mode LPM3 or LPM4 MCLK = DCOCLK

5 MCLK cycles + 5 µs (1)

Low-power mode LPM0 or LPM1 MCLK = LFXT1CLK

5 MCLK cycles

Low-power mode LPM3 MCLK = LFXT1CLK

5 MCLK cycles

Low-power mode LPM4 MCLK = LFXT1CLK

5 MCLK cycles + 5 µs (1)

(1)

The additional 5 µs are needed to start the DCOCLK. It is the t(LPMx) parameter in the data sheet.

11.2.8 Using DMA With System Interrupts
DMA transfers are not interruptible by system interrupts. System interrupts remain pending until the
completion of the transfer. NMIs can interrupt the DMA controller if the ENNMI bit is set.
System interrupt service routines are interrupted by DMA transfers. If an interrupt service routine or other
routine must execute with no interruptions, the DMA controller should be disabled before executing the
routine.

11.2.9 DMA Controller Interrupts
Each DMA channel has its own DMAIFG flag. Each DMAIFG flag is set in any mode when the
corresponding DMAxSZ register counts to zero. If the corresponding DMAIE and GIE bits are set, an
interrupt request is generated.
All DMAIFG flags are prioritized, with DMA0IFG being the highest, and combined to source a single
interrupt vector. The highest-priority enabled interrupt generates a number in the DMAIV register. This
number can be evaluated or added to the program counter (PC) to automatically enter the appropriate
software routine. Disabled DMA interrupts do not affect the DMAIV value.
Any access, read or write, of the DMAIV register automatically resets the highest pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, assume that DMA0 has the highest priority. If the DMA0IFG and DMA2IFG flags are set
when the interrupt service routine accesses the DMAIV register, DMA0IFG is reset automatically. After the
RETI instruction of the interrupt service routine is executed, the DMA2IFG generates another interrupt.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

347

DMA Operation

www.ti.com

11.2.9.1 DMAIV Software Example
The following software example shows the recommended use of DMAIV and the handling overhead for an
eight channel DMA controller. The DMAIV value is added to the PC to automatically jump to the
appropriate routine.
The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.
;Interrupt handler for DMAxIFG
DMA_HND

...
ADD
RETI
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

Interrupt latency
Add offset to Jump table
Vector 0: No interrupt
Vector 2: DMA channel 0
Vector 4: DMA channel 1
Vector 6: DMA channel 2
Vector 8: DMA channel 3
Vector 10: DMA channel 4
Vector 12: DMA channel 5
Vector 14: DMA channel 6
Vector 16: DMA channel 7

6
3
5
2
2
2
2
2
2
2
2

...
RETI

; Vector 16: DMA channel 7
; Task starts here
; Back to main program

5

...
RETI

; Vector 14: DMA channel 6
; Task starts here
; Back to main program

5

...
RETI

; Vector 12: DMA channel 5
; Task starts here
; Back to main program

5

...
RETI

; Vector 10: DMA channel 4
; Task starts here
; Back to main program

5

...
RETI

; Vector 8: DMA channel 3
; Task starts here
; Back to main program

5

...
RETI

; Vector 6: DMA channel 2
; Task starts here
; Back to main program

5

...
RETI

; Vector 4: DMA channel 1
; Task starts here
; Back to main program

5

...
RETI

; Vector 2: DMA channel 0
; Task starts here
; Back to main program

5

DMA7_HND

DMA6_HND

DMA5_HND

DMA4_HND

DMA3_HND

DMA2_HND

DMA1_HND

DMA0_HND

&DMAIV,PC
DMA0_HND
DMA1_HND
DMA2_HND
DMA3_HND
DMA4_HND
DMA5_HND
DMA6_HND
DMA7_HND

;
;
;
;
;
;
;
;
;
;
;

Cycles

11.2.10 Using the eUSCI_B I2C Module With the DMA Controller
The eUSCI_B I2C module provides two trigger sources for the DMA controller. The eUSCI_B I2C module
can trigger a transfer when new I2C data is received and the when the transmit data is needed.

348

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Operation

www.ti.com

11.2.11 Using ADC12 With the DMA Controller
MSP430 devices with an integrated DMA controller can automatically move data from any ADC12MEMx
register to another location. DMA transfers are done without CPU intervention and independently of any
low-power modes. The DMA controller increases throughput of the ADC12 module, and enhances lowpower applications allowing the CPU to remain off while data transfers occur.
DMA transfers can be triggered from any ADC12IFG flag. When CONSEQx = {0,2}, the ADC12IFG flag for
the ADC12MEMx used for the conversion can trigger a DMA transfer. When CONSEQx = {1,3}, the
ADC12IFG flag for the last ADC12MEMx in the sequence can trigger a DMA transfer. Any ADC12IFG flag
is automatically cleared when the DMA controller accesses the corresponding ADC12MEMx.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

349

DMA Registers

www.ti.com

11.3 DMA Registers
The DMA module registers are listed in Table 11-4. The base addresses can be found in the devicespecific data sheet. Each channel starts at its respective base address. The address offsets are listed in
Table 11-4.
Table 11-4. DMA Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

DMACTL0

DMA Control 0

Read/write

Word

0000h

Section 11.3.1

02h

DMACTL1

DMA Control 1

Read/write

Word

0000h

Section 11.3.2

04h

DMACTL2

DMA Control 2

Read/write

Word

0000h

Section 11.3.3

06h

DMACTL3

DMA Control 3

Read/write

Word

0000h

Section 11.3.4

08h

DMACTL4

DMA Control 4

Read/write

Word

0000h

Section 11.3.5

0Eh

DMAIV

DMA Interrupt Vector

Read only

Word

0000h

Section 11.3.10

00h

DMA0CTL

DMA Channel 0 Control

Read/write

Word

0000h

Section 11.3.6

02h

DMA0SA

DMA Channel 0 Source Address

Read/write

Word,
double word

undefined

Section 11.3.7

06h

DMA0DA

DMA Channel 0 Destination Address

Read/write

Word,
double word

undefined

Section 11.3.8

0Ah

DMA0SZ

DMA Channel 0 Transfer Size

Read/write

Word

undefined

Section 11.3.9

00h

DMA1CTL

DMA Channel 1 Control

Read/write

Word

0000h

Section 11.3.6

02h

DMA1SA

DMA Channel 1 Source Address

Read/write

Word,
double word

undefined

Section 11.3.7

06h

DMA1DA

DMA Channel 1 Destination Address

Read/write

Word,
double word

undefined

Section 11.3.8

0Ah

DMA1SZ

DMA Channel 1 Transfer Size

Read/write

Word

undefined

Section 11.3.9

00h

DMA2CTL

DMA Channel 2 Control

Read/write

Word

0000h

Section 11.3.6

02h

DMA2SA

DMA Channel 2 Source Address

Read/write

Word,
double word

undefined

Section 11.3.7

06h

DMA2DA

DMA Channel 2 Destination Address

Read/write

Word,
double word

undefined

Section 11.3.8

0Ah

DMA2SZ

DMA Channel 2 Transfer Size

Read/write

Word

undefined

Section 11.3.9

00h

DMA3CTL

DMA Channel 3 Control

Read/write

Word

0000h

Section 11.3.6

02h

DMA3SA

DMA Channel 3 Source Address

Read/write

Word,
double word

undefined

Section 11.3.7

06h

DMA3DA

DMA Channel 3 Destination Address

Read/write

Word,
double word

undefined

Section 11.3.8

0Ah

DMA3SZ

DMA Channel 3 Transfer Size

Read/write

Word

undefined

Section 11.3.9

00h

DMA4CTL

DMA Channel 4 Control

Read/write

Word

0000h

Section 11.3.6

02h

DMA4SA

DMA Channel 4 Source Address

Read/write

Word,
double word

undefined

Section 11.3.7

06h

DMA4DA

DMA Channel 4 Destination Address

Read/write

Word,
double word

undefined

Section 11.3.8

0Ah

DMA4SZ

DMA Channel 4 Transfer Size

Read/write

Word

undefined

Section 11.3.9

00h

DMA5CTL

DMA Channel 5 Control

Read/write

Word

0000h

Section 11.3.6

02h

DMA5SA

DMA Channel 5 Source Address

Read/write

Word,
double word

undefined

Section 11.3.7

06h

DMA5DA

DMA Channel 5 Destination Address

Read/write

Word,
double word

undefined

Section 11.3.8

0Ah

DMA5SZ

DMA Channel 5 Transfer Size

Read/write

Word

undefined

Section 11.3.9

00h

DMA6CTL

DMA Channel 6 Control

Read/write

Word

0000h

Section 11.3.6

02h

DMA6SA

DMA Channel 6 Source Address

Read/write

Word,
double word

undefined

Section 11.3.7

06h

DMA6DA

DMA Channel 6 Destination Address

Read/write

Word,
double word

undefined

Section 11.3.8

350 DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Registers

www.ti.com

Table 11-4. DMA Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

0Ah

DMA6SZ

DMA Channel 6 Transfer Size

Read/write

Word

undefined

Section 11.3.9

00h

DMA7CTL

DMA Channel 7 Control

Read/write

Word

0000h

Section 11.3.6

02h

DMA7SA

DMA Channel 7 Source Address

Read/write

Word,
double word

undefined

Section 11.3.7

06h

DMA7DA

DMA Channel 7 Destination Address

Read/write

Word,
double word

undefined

Section 11.3.8

0Ah

DMA7SZ

DMA Channel 7 Transfer Size

Read/write

Word

undefined

Section 11.3.9

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

351

DMA Registers

www.ti.com

11.3.1 DMACTL0 Register
DMA Control 0 Register
Figure 11-6. DMACTL0 Register
15
r0
7
r0

14
Reserved
r0

13

12

11

r0

rw-(0)

rw-(0)

6
Reserved
r0

5

4

3

r0

rw-(0)

rw-(0)

10
DMA1TSEL
rw-(0)
2
DMA0TSEL
rw-(0)

9

8

rw-(0)

rw-(0)

1

0

rw-(0)

rw-(0)

Table 11-5. DMACTL0 Register Description
Bit

Field

Type

Reset

Description

15-13

Reserved

R

0h

Reserved. Always reads as 0.

12-8

DMA1TSEL

RW

0h

DMA trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment.
00000b = DMA1TRIG0
00001b = DMA1TRIG1
00010b = DMA1TRIG2
⋮
11110b = DMA1TRIG30
11111b = DMA1TRIG31

7-5

Reserved

R

0h

Reserved. Always reads as 0.

4-0

DMA0TSEL

RW

0h

DMA trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment.
00000b = DMA0TRIG0
00001b = DMA0TRIG1
00010b = DMA0TRIG2
⋮
11110b = DMA0TRIG30
11111b = DMA0TRIG31

352

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Registers

www.ti.com

11.3.2 DMACTL1 Register
DMA Control 1 Register
Figure 11-7. DMACTL1 Register
15
r0
7
r0

14
Reserved
r0

13

12

11

r0

rw-(0)

rw-(0)

6
Reserved
r0

5

4

3

r0

rw-(0)

rw-(0)

10
DMA3TSEL
rw-(0)
2
DMA2TSEL
rw-(0)

9

8

rw-(0)

rw-(0)

1

0

rw-(0)

rw-(0)

Table 11-6. DMACTL1 Register Description
Bit

Field

Type

Reset

Description

15-13

Reserved

R

0h

Reserved. Always reads as 0.

12-8

DMA3TSEL

RW

0h

DMA trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment.
00000b = DMA3TRIG0
00001b = DMA3TRIG1
00010b = DMA3TRIG2
⋮
11110b = DMA3TRIG30
11111b = DMA3TRIG31

7-5

Reserved

R

0h

Reserved. Always reads as 0.

4-0

DMA2TSEL

RW

0h

DMA trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment.
00000b = DMA2TRIG0
00001b = DMA2TRIG1
00010b = DMA2TRIG2
⋮
11110b = DMA2TRIG30
11111b = DMA2TRIG31

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

353

DMA Registers

www.ti.com

11.3.3 DMACTL2 Register
DMA Control 2 Register
Figure 11-8. DMACTL2 Register
15
r0
7
r0

14
Reserved
r0

13

12

11

r0

rw-(0)

rw-(0)

6
Reserved
r0

5

4

3

r0

rw-(0)

rw-(0)

10
DMA5TSEL
rw-(0)
2
DMA4TSEL
rw-(0)

9

8

rw-(0)

rw-(0)

1

0

rw-(0)

rw-(0)

Table 11-7. DMACTL2 Register Description
Bit

Field

Type

Reset

Description

15-13

Reserved

R

0h

Reserved. Always reads as 0.

12-8

DMA5TSEL

RW

0h

DMA trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment.
00000b = DMA5TRIG0
00001b = DMA5TRIG1
00010b = DMA5TRIG2
⋮
11110b = DMA5TRIG30
11111b = DMA5TRIG31

7-5

Reserved

R

0h

Reserved. Always reads as 0.

4-0

DMA4TSEL

RW

0h

DMA trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment.
00000b = DMA4TRIG0
00001b = DMA4TRIG1
00010b = DMA4TRIG2
⋮
11110b = DMA4TRIG30
11111b = DMA4TRIG31

354

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Registers

www.ti.com

11.3.4 DMACTL3 Register
DMA Control 3 Register
Figure 11-9. DMACTL3 Register
15
r0
7
r0

14
Reserved
r0

13

12

11

r0

rw-(0)

rw-(0)

6
Reserved
r0

5

4

3

r0

rw-(0)

rw-(0)

10
DMA7TSEL
rw-(0)
2
DMA6TSEL
rw-(0)

9

8

rw-(0)

rw-(0)

1

0

rw-(0)

rw-(0)

Table 11-8. DMACTL3 Register Description
Bit

Field

Type

Reset

Description

15-13

Reserved

R

0h

Reserved. Always reads as 0.

12-8

DMA7TSEL

RW

0h

DMA trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment.
00000b = DMA7TRIG0
00001b = DMA7TRIG1
00010b = DMA7TRIG2
⋮
11110b = DMA7TRIG30
11111b = DMA7TRIG31

7-5

Reserved

R

0h

Reserved. Always reads as 0.

4-0

DMA6TSEL

RW

0h

DMA trigger select. These bits select the DMA transfer trigger. See the devicespecific data sheet for number of channels and trigger assignment.
00000b = DMA6TRIG0
00001b = DMA6TRIG1
00010b = DMA6TRIG2
⋮
11110b = DMA6TRIG30
11111b = DMA6TRIG31

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

355

DMA Registers

www.ti.com

11.3.5 DMACTL4 Register
DMA Control 4 Register
Figure 11-10. DMACTL4 Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7

6

4

3

r0

r0

5
Reserved
r0

r0

r0

2
DMARMWDIS
rw-(0)

1
ROUNDROBIN
rw-(0)

0
ENNMI
rw-(0)

Table 11-9. DMACTL4 Register Description
Bit

Field

Type

Reset

Description

15-3

Reserved

R

0h

Reserved. Always reads as 0.

2

DMARMWDIS

RW

0h

Read-modify-write disable. When set, this bit inhibits any DMA transfers from
occurring during CPU read-modify-write operations.
0b = DMA transfers can occur during read-modify-write CPU operations.
1b = DMA transfers inhibited during read-modify-write CPU operations

1

ROUNDROBIN

RW

0h

Round robin. This bit enables the round-robin DMA channel priorities.
0b = DMA channel priority is DMA0-DMA1-DMA2 - ...... -DMA7.
1b = DMA channel priority changes with each transfer.

0

ENNMI

RW

0h

Enable NMI. This bit enables the interruption of a DMA transfer by an NMI. When
an NMI interrupts a DMA transfer, the current transfer is completed normally,
further transfers are stopped and DMAABORT is set.
0b = NMI does not interrupt DMA transfer
1b = NMI interrupts a DMA transfer

356

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Registers

www.ti.com

11.3.6 DMAxCTL Register
DMA Channel x Control Register
Figure 11-11. DMAxCTL Register
15
Reserved
r0

14
rw-(0)

7
6
DMADSTBYTE DMASRCBYTE
rw-(0)
rw-(0)

13
DMADT
rw-(0)

12
rw-(0)

5
DMALEVEL
rw-(0)

4
DMAEN
rw-(0)

11

10
DMADSTINCR
rw-(0)
rw-(0)
3
DMAIFG
rw-(0)

2
DMAIE
rw-(0)

9

8
DMASRCINCR
rw-(0)
rw-(0)
1
DMAABORT
rw-(0)

0
DMAREQ
rw-(0)

Table 11-10. DMAxCTL Register Description
Bit

Field

Type

Reset

Description

15

Reserved

R

0h

Reserved. Always reads as 0.

14-12

DMADT

RW

0h

DMA transfer mode
000b = Single transfer
001b = Block transfer
010b = Burst-block transfer
011b = Burst-block transfer
100b = Repeated single transfer
101b = Repeated block transfer
110b = Repeated burst-block transfer
111b = Repeated burst-block transfer

11-10

DMADSTINCR

RW

0h

DMA destination increment. This bit selects automatic incrementing or
decrementing of the destination address after each byte or word transfer. When
DMADSTBYTE = 1, the destination address increments or decrements by one.
When DMADSTBYTE = 0, the destination address increments or decrements by
two. The DMAxDA is copied into a temporary register and the temporary register
is incremented or decremented. DMAxDA is not incremented or decremented.
00b = Destination address is unchanged
01b = Destination address is unchanged
10b = Destination address is decremented
11b = Destination address is incremented

9-8

DMASRCINCR

RW

0h

DMA source increment. This bit selects automatic incrementing or decrementing
of the source address for each byte or word transfer. When DMASRCBYTE = 1,
the source address increments or decrements by one. When DMASRCBYTE =
0, the source address increments/decrements by two. The DMAxSA is copied
into a temporary register and the temporary register is incremented or
decremented. DMAxSA is not incremented or decremented.
00b = Source address is unchanged
01b = Source address is unchanged
10b = Source address is decremented
11b = Source address is incremented

7

DMADSTBYTE

RW

0h

DMA destination byte. This bit selects the destination as a byte or word.
0b = Word
1b = Byte

6

DMASRCBYTE

RW

0h

DMA source byte. This bit selects the source as a byte or word.
0b = Word
1b = Byte

5

DMALEVEL

RW

0h

DMA level. This bit selects between edge-sensitive and level-sensitive triggers.
0b = Edge sensitive (rising edge)
1b = Level sensitive (high level)

4

DMAEN

RW

0h

DMA enable
0b = Disabled
1b = Enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

357

DMA Registers

www.ti.com

Table 11-10. DMAxCTL Register Description (continued)
Bit

Field

Type

Reset

Description

3

DMAIFG

RW

0h

DMA interrupt flag
0b = No interrupt pending
1b = Interrupt pending

2

DMAIE

RW

0h

DMA interrupt enable
0b = Disabled
1b = Enabled

1

DMAABORT

RW

0h

DMA abort. This bit indicates if a DMA transfer was interrupt by an NMI.
0b = DMA transfer not interrupted
1b = DMA transfer interrupted by NMI

0

DMAREQ

RW

0h

DMA request. Software-controlled DMA start. DMAREQ is reset automatically.
0b = No DMA start
1b = Start DMA

358

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Registers

www.ti.com

11.3.7 DMAxSA Register
DMA Source Address Register
Figure 11-12. DMAxSA Register
31

30

29

28

27

26

25

24

r0

r0

17

16

Reserved
r0

r0

23

22

r0

r0

r0

r0

21

20

19

18

Reserved

DMAxSA

r0

r0

r0

r0

15

14

13

12

rw

rw

rw

rw

11

10

9

8

rw

rw

rw

rw

3

2

1

0

rw

rw

rw

rw

DMAxSA
rw

rw

rw

rw

7

6

5

4
DMAxSA

rw

rw

rw

rw

Table 11-11. DMAxSA Register Description
Bit

Field

Type

Reset

Description

31-20

Reserved

R

0h

Reserved. Always reads as 0.

19-0

DMAxSA

RW

undefined

DMA source address. The source address register points to the DMA source
address for single transfers or the first source address for block transfers. The
source address register remains unchanged during block and burst-block
transfers. There are two words for the DMAxSA register. Bits 31-20 are
reserved and always read as zero. Reading or writing bits 19-16 requires the
use of extended instructions. When writing to DMAxSA with word instructions,
bits 19-16 are cleared.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

359

DMA Registers

www.ti.com

11.3.8 DMAxDA Register
DMA Destination Address Register
Figure 11-13. DMAxDA Register
31

30

29

28

27

26

25

24

r0

r0

17

16

Reserved
r0

r0

23

22

r0

r0

r0

r0

21

20

19

18

Reserved

DMAxDA

r0

r0

r0

r0

15

14

13

12

rw

rw

rw

rw

11

10

9

8

rw

rw

rw

rw

3

2

1

0

rw

rw

rw

rw

DMAxDA
rw

rw

rw

rw

7

6

5

4
DMAxDA

rw

rw

rw

rw

Table 11-12. DMAxDA Register Description
Bit

Field

Type

Reset

Description

31-20

Reserved

R

0h

Reserved. Always reads as 0.

19-0

DMAxDA

RW

undefined

DMA destination address. The destination address register points to the DMA
destination address for single transfers or the first destination address for block
transfers. The destination address register remains unchanged during block and
burst-block transfers. There are two words for the DMAxDA register. Bits 31–20
are reserved and always read as zero. Reading or writing bits 19–16 requires
the use of extended instructions. When writing to DMAxDA with word
instructions, bits 19–16 are cleared.

360

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Registers

www.ti.com

11.3.9 DMAxSZ Register
DMA Size Address Register
Figure 11-14. DMAxSZ Register
15

14

13

12

11

10

9

8

rw

rw

rw

rw

3

2

1

0

rw

rw

rw

rw

DMAxSZ
rw

rw

rw

rw

7

6

5

4
DMAxSZ

rw

rw

rw

rw

Table 11-13. DMAxSZ Register Description
Bit

Field

Type

Reset

Description

15-0

DMAxSZ

RW

undefined

DMA size. The DMA size register defines the number of byte or word data per
block transfer. DMAxSZ register decrements with each word or byte transfer.
When DMAxSZ decrements to 0, it is immediately and automatically reloaded
with its previously initialized value.
0000h = Transfer is disabled.
0001h = One byte or word is transferred.
0002h = Two bytes or words are transferred.
⋮
FFFFh = 65535 bytes or words are transferred.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

DMA Controller

361

DMA Registers

www.ti.com

11.3.10 DMAIV Register
DMA Interrupt Vector Register
Figure 11-15. DMAIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-(0)

r-(0)

r-(0)

r0

DMAIV
r0

r0

r0

r0

7

6

5

4
DMAIV

r0

r0

r-(0)

r-(0)

Table 11-14. DMAIV Register Description
Bit

Field

Type

Reset

Description

15-0

DMAIV

R

0h

DMA interrupt vector value
00h = No interrupt pending
02h = Interrupt Source: DMA channel 0; Interrupt Flag: DMA0IFG; Interrupt
Priority: Highest
04h = Interrupt Source: DMA channel 1; Interrupt Flag: DMA1IFG
06h = Interrupt Source: DMA channel 2; Interrupt Flag: DMA2IFG
08h = Interrupt Source: DMA channel 3; Interrupt Flag: DMA3IFG
0Ah = Interrupt Source: DMA channel 4; Interrupt Flag: DMA4IFG
0Ch = Interrupt Source: DMA channel 5; Interrupt Flag: DMA5IFG
0Eh = Interrupt Source: DMA channel 6; Interrupt Flag: DMA6IFG
10h = Interrupt Source: DMA channel 7; Interrupt Flag: DMA7IFG; Interrupt
Priority: Lowest

362

DMA Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 12
SLAU367O – October 2012 – Revised December 2017

Digital I/O
This chapter describes the operation of the digital I/O ports in all devices.
Topic

12.1
12.2
12.3
12.4

...........................................................................................................................
Digital I/O Introduction ......................................................................................
Digital I/O Operation .........................................................................................
I/O Configuration ..............................................................................................
Digital I/O Registers ..........................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O

Page

364
365
368
371

363

Digital I/O Introduction

www.ti.com

12.1 Digital I/O Introduction
The digital I/O features include:
• Independently programmable individual I/Os
• Any combination of input or output
• Individually configurable P1 and P2 interrupts. Some devices may include additional port interrupts.
• Independent input and output data registers
• Individually configurable pullup or pulldown resistors
Devices within the family may have up to twelve digital I/O ports implemented (P1 to P11 and PJ). Most
ports contain eight I/O lines; however, some ports may contain less (see the device-specific data sheet for
ports available). Each I/O line is individually configurable for input or output direction, and each can be
individually read or written. Each I/O line is individually configurable for pullup or pulldown resistors.
Ports P1 and P2 always have interrupt capability. Each interrupt for the P1 and P2 I/O lines can be
individually enabled and configured to provide an interrupt on a rising or falling edge of an input signal. All
P1 I/O lines source a single interrupt vector (P1IV), and all P2 I/O lines source a different single interrupt
vector (P2IV). Additional ports with interrupt capability may be available (see the device-specific data
sheet for details) and contain their own respective interrupt vectors.
Individual ports can be accessed as byte-wide ports or can be combined into word-wide ports and
accessed by word formats. Port pairs P1 and P2, P3 and P4, P5 and P6, P7 and P8, and so on, are
associated with the names PA, PB, PC, PD, and so on, respectively. All port registers are handled in this
manner with this naming convention except for the interrupt vector registers, P1IV and P2IV; that is, PAIV
does not exist.
When writing to port PA with word operations, all 16 bits are written to the port. When writing to the lower
byte of port PA using byte operations, the upper byte remains unchanged. Similarly, writing to the upper
byte of port PA using byte instructions leaves the lower byte unchanged. When writing to a port that
contains less than the maximum number of bits possible, the unused bits are don't care. Ports PB, PC,
PD, PE, and PF behave similarly.
Reading port PA using word operations causes all 16 bits to be transferred to the destination. Reading the
lower or upper byte of port PA (P1 or P2) and storing to memory using byte operations causes only the
lower or upper byte to be transferred to the destination, respectively. Reading of port PA and storing to a
general-purpose register using byte operations writes the byte that is transferred to the least significant
byte of the register. The upper significant byte of the destination register is cleared automatically. Ports
PB, PC, PD, PE, and PF behave similarly. When reading from ports that contain fewer than the maximum
bits possible, unused bits are read as zeros (similarly for port PJ).

364

Digital I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Operation

www.ti.com

12.2 Digital I/O Operation
The digital I/O are configured with user software. The setup and operation of the digital I/O are discussed
in the following sections.

12.2.1 Input Registers (PxIN)
Each bit in each PxIN register reflects the value of the input signal at the corresponding I/O pin when the
pin is configured as I/O function. These registers are read only.
• Bit = 0: Input is low
• Bit = 1: Input is high
NOTE:

Writing to read-only registers PxIN
Writing to these read-only registers results in increased current consumption while the write
attempt is active.

12.2.2 Output Registers (PxOUT)
Each bit in each PxOUT register is the value to be output on the corresponding I/O pin when the pin is
configured as I/O function, output direction.
• Bit = 0: Output is low
• Bit = 1: Output is high
If the pin is configured as I/O function, input direction and the pullup or pulldown resistor are enabled; the
corresponding bit in the PxOUT register selects pullup or pulldown.
• Bit = 0: Pin is pulled down
• Bit = 1: Pin is pulled up

12.2.3 Direction Registers (PxDIR)
Each bit in each PxDIR register selects the direction of the corresponding I/O pin, regardless of the
selected function for the pin. PxDIR bits for I/O pins that are selected for other functions must be set as
required by the other function.
• Bit = 0: Port pin is switched to input direction
• Bit = 1: Port pin is switched to output direction

12.2.4 Pullup or Pulldown Resistor Enable Registers (PxREN)
Each bit in each PxREN register enables or disables the pullup or pulldown resistor of the corresponding
I/O pin. The corresponding bit in the PxOUT register selects if the pin contains a pullup or pulldown.
• Bit = 0: Pullup or pulldown resistor disabled
• Bit = 1: Pullup or pulldown resistor enabled
Table 12-1 summarizes the use of PxDIR, PxREN, and PxOUT for proper I/O configuration.
Table 12-1. I/O Configuration
PxDIR

PxREN

PxOUT

0

0

x

I/O Configuration
Input

0

1

0

Input with pulldown resistor

0

1

1

Input with pullup resistor

1

x

x

Output

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O

365

Digital I/O Operation

www.ti.com

12.2.5 Function Select Registers (PxSEL0, PxSEL1)
Port pins are often multiplexed with other peripheral module functions. See the device-specific data sheet
to determine pin functions. Each port pin uses two bits to select the pin function – I/O port or one of the
three possible peripheral module function. Table 12-2 shows how to select the various module functions.
See the device-specific data sheet to determine pin functions. Each PxSEL bit is used to select the pin
function – I/O port or peripheral module function.
Table 12-2. I/O Function Selection
PxSEL1

PxSEL0

0

0

General purpose I/O is selected

I/O Function

0

1

Primary module function is selected

1

0

Secondary module function is selected

1

1

Tertiary module function is selected

Setting the PxSEL1 or PxSEL0 bits to a module function does not automatically set the pin direction.
Other peripheral module functions may require the PxDIR bits to be configured according to the direction
needed for the module function. See the pin schematics in the device-specific data sheet.
When a port pin is selected as an input to peripheral modules, the input signal to those peripheral
modules is a latched representation of the signal at the device pin. While PxSEL1 and PxSEL0 is other
than 00, the internal input signal follows the signal at the pin for all connected modules. However, if
PxSEL1 and PxSEL0 = 00, the input to the peripherals maintain the value of the input signal at the device
pin before the PxSEL1 and PxSEL0 bits were reset.
Because the PxSEL1 and PxSEL0 bits do not reside in contiguous addresses, changing both bits at the
same time is not possible. For example, an application might need to change P1.0 from general purpose
I/O to the tertiary module function residing on P1.0. Initially, P1SEL1 = 00h and P1SEL0 = 00h. To change
the function, it would be necessary to write both P1SEL1 = 01h and P1SEL0 = 01h. This is not possible
without first passing through an intermediate configuration, and this configuration may not be desirable
from an application standpoint. The PxSELC complement register can be used to handle such situations.
The PxSELC register always reads 0. Each set bit of the PxSELC register complements the
corresponding respective bit of the PxSEL1 and PxSEL0 registers. In the example, with P1SEL1 = 00h
and P1SEL0 = 00h initially, writing P1SELC = 01h causes P1SEL1 = 01h and P1SEL0 = 01h to be written
simultaneously.
NOTE:

Interrupts are disabled when PxSEL1 = 1 or PxSEL0 = 1
When any PxSEL bit is set, the corresponding pin interrupt function is disabled. Therefore,
signals on these pins do not generate interrupts, regardless of the state of the corresponding
PxIE bit.

12.2.6 Port Interrupts
At least each pin in ports P1 and P2 have interrupt capability, configured with the PxIFG, PxIE, and PxIES
registers. Some devices may contain additional port interrupts besides P1 and P2. See the device-specific
data sheet to determine which port interrupts are available.
All Px interrupt flags are prioritized, with PxIFG.0 being the highest, and combined to source a single
interrupt vector. The highest priority enabled interrupt generates a number in the PxIV register. This
number can be evaluated or added to the program counter to automatically enter the appropriate software
routine. Disabled Px interrupts do not affect the PxIV value. The PxIV registers are word or byte access.
Each PxIFG bit is the interrupt flag for its corresponding I/O pin, and the flag is set when the selected
input signal edge occurs at the pin. All PxIFG interrupt flags request an interrupt when their corresponding
PxIE bit and the GIE bit are set. Software can also set each PxIFG flag, providing a way to generate a
software-initiated interrupt.
• Bit = 0: No interrupt is pending
• Bit = 1: An interrupt is pending
366

Digital I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Operation

www.ti.com

Only transitions, not static levels, cause interrupts. If any PxIFG flag becomes set during a Px interrupt
service routine or is set after the RETI instruction of a Px interrupt service routine is executed, the set
PxIFG flag generates another interrupt. This ensures that each transition is acknowledged.
NOTE:

PxIFG flags when changing PxOUT, PxDIR, or PxREN
Writing to PxOUT, PxDIR, or PxREN can result in setting the corresponding PxIFG flags.

Any access (read or write) of the lower byte of the PxIV register, either word or byte access, automatically
resets the highest pending interrupt flag. If another interrupt flag is set, another interrupt is immediately
generated after servicing the initial interrupt.
For example, assume that P1IFG.0 has the highest priority. If the P1IFG.0 and P1IFG.2 flags are set when
the interrupt service routine accesses the P1IV register, P1IFG.0 is reset automatically. After the RETI
instruction of the interrupt service routine is executed, the P1IFG.2 generates another interrupt.
12.2.6.1 P1IV Software Example
The following software example shows the recommended use of P1IV and the handling overhead. The
P1IV value is added to the PC to automatically jump to the appropriate routine. The code to handle any
other PxIV register is similar.
The numbers at the right margin show the number of CPU cycles that are required for each instruction.
The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt
cycles but not the task handling itself.
;Interrupt handler for P1
P1_HND
...
ADD
&P1IV,PC
RETI
JMP
P1_0_HND
JMP
P1_1_HND
JMP
P1_2_HND
JMP
P1_3_HND
JMP
P1_4_HND
JMP
P1_5_HND
JMP
P1_6_HND
JMP
P1_7_HND
P1_7_HND

;
;
;
;
;
;
;
;
;
;
;

Interrupt latency
Add offset to Jump table
Vector 0: No interrupt
Vector 2: Port 1 bit 0
Vector 4: Port 1 bit 1
Vector 6: Port 1 bit 2
Vector 8: Port 1 bit 3
Vector 10: Port 1 bit 4
Vector 12: Port 1 bit 5
Vector 14: Port 1 bit 6
Vector 16: Port 1 bit 7

Cycles
6
3
5
2
2
2
2
2
2
2
2

...
RETI

; Vector 16: Port 1 bit 7
; Task starts here
; Back to main program

5

...
RETI

; Vector 14: Port 1 bit 6
; Task starts here
; Back to main program

5

...
RETI

; Vector 12: Port 1 bit 5
; Task starts here
; Back to main program

5

...
RETI

; Vector 10: Port 1 bit 4
; Task starts here
; Back to main program

5

...
RETI

; Vector 8: Port 1 bit 3
; Task starts here
; Back to main program

5

...
RETI

; Vector 6: Port 1 bit 2
; Task starts here
; Back to main program

5

...

; Vector 4: Port 1 bit 1
; Task starts here

P1_6_HND

P1_5_HND

P1_4_HND

P1_3_HND

P1_2_HND

P1_1_HND

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O

367

I/O Configuration

www.ti.com
RETI

;
;
;
;

P1_0_HND
...
RETI

Back to main program
Vector 2: Port 1 bit 0
Task starts here
Back to main program

5

5

12.2.6.2 Interrupt Edge Select Registers (PxIES)
Each PxIES bit selects the interrupt edge for the corresponding I/O pin.
• Bit = 0: Respective PxIFG flag is set on a low-to-high transition
• Bit = 1: Respective PxIFG flag is set on a high-to-low transition
NOTE:

Writing to PxIES
Writing to P1IES or P2IES for each corresponding I/O can result in setting the corresponding
interrupt flags.

PxIES
0→1
0→1
1→0
1→0

PxIN
0
1
0
1

PxIFG
Will be set
Unchanged
Unchanged
Will be set

12.2.6.3 Interrupt Enable Registers (PxIE)
Each PxIE bit enables the associated PxIFG interrupt flag.
• Bit = 0: The interrupt is disabled
• Bit = 1: The interrupt is enabled

12.3 I/O Configuration
12.3.1 Configuration After Reset
After a BOR reset, all port pins are high-impedance with Schmitt triggers and their module functions
disabled to prevent any cross currents. The application must initialize all port pins including unused ones
(Section 12.3.2) as input high impedance, input with pulldown, input with pullup, output high, or output low
according to the application needs by configuring PxDIR, PxREN, PxOUT, and PxIES accordingly. This
initialization takes effect as soon as the LOCKLPM5 bit in the PM5CTL register (described in the PMM
chapter) is cleared; until then, the I/Os remain in their high-impedance state with Schmitt trigger inputs
disabled. Note that this is usually the same I/O initialization that is required after a wake-up from LPMx.5.
After clearing LOCKLPM5 all interrupt flags should be cleared (note, this is different to the wake-up from
LPMx.5 flow). Then port interrupts can be enabled by setting the corresponding PxIE bits.
After a POR or PUC reset all port pins are configured as inputs with their module function being disabled.
Also here to prevent floating inputs all port pins including unused ones (Section 12.3.2) should be
configured according to the application needs as early as possible during the initialization procedure.
Note, the same I/O initialization procedure can be used for all reset cases and wake-up from LPMx.5 except for PxIFG:
1.
2.
3.
4.

368

Initialize Ports: PxDIR, PxREN, PxOUT, and PxIES
Clear LOCKLPM5
If not wake-up from LPMx.5: clear all PxIFGs to avoid erroneous port interrupts
Enable port interrupts in PxIE

Digital I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

I/O Configuration

www.ti.com

12.3.2 Configuration of Unused Port Pins
To prevent a floating input and to reduce power consumption, unused I/O pins should be configured as I/O
function, output direction, and left unconnected on the PC board. The value of the PxOUT bit is don't care,
because the pin is unconnected. Alternatively, the integrated pullup or pulldown resistor can be enabled
by setting the PxREN bit of the unused pin to prevent a floating input. See the System Resets, Interrupts,
and Operating Modes, System Control Module (SYS) chapter for termination of unused pins.
NOTE:

Configuring port PJ and shared JTAG pins:
The application should make sure that port PJ is configured properly to prevent a floating
input. Because port PJ is shared with the JTAG function, floating inputs may not be noticed
when in an emulation environment. Port J is initialized to high-impedance inputs by default.

12.3.3 Configuration for LPMx.5 Low-Power Modes
NOTE: See , Entering and Exiting Low-Power Modes LPMx.5, in the System Resets, Interrupts, and
Operating Modes, System Control Module (SYS) chapter for details about LPMx.5 low-power
modes.
See the device-specific data sheet to determine which LPMx.5 low-power modes are
available and which modules can operate in LPM3.5, if any.
With regard to the digital I/O, the following description is applicable to both LPM3.5 and
LPM4.5.

Upon entering LPMx.5 (LPM3.5 or LPM4.5) the LDO of the PMM module is disabled, which removes the
supply voltage from the core of the device. This causes all I/O register configurations to be lost, thus the
configuration of I/O pins must be handled differently to ensure that all pins in the application behave in a
controlled manner upon entering and exiting LPMx.5. Properly setting the I/O pins is critical to achieve the
lowest possible power consumption in LPMx.5, and to prevent an uncontrolled input or output I/O state in
the application. The application has complete control of the I/O pin conditions that are necessary to
prevent unwanted spurious activity upon entry and exit from LPMx.5.
Before entering LPMx.5 the following operations are required for the I/Os:
a. Set all I/Os to general-purpose I/Os (PxSEL0 = 000h and PxSEL1 = 000h) and configure as needed.
Each I/O can be set to input high impedance, input with pulldown, input with pullup, output high, or
output low. It is critical that no inputs are left floating in the application; otherwise, excess current may
be drawn in LPMx.5.
Configuring the I/O in this manner ensures that each pin is in a safe condition before entering LPMx.5.
b. Optionally, configure input interrupt pins for wake-up from LPMx.5. To wake the device from LPMx.5, a
general-purpose I/O port must contain an input port with interrupt and wakeup capability. Not all inputs
with interrupt capability offer wakeup from LPMx.5. See the device-specific data sheet for availability.
To wake up the device, a port pin must be configured properly before entering LPMx.5. Each port
should be configured as general-purpose input. Pulldowns or pullups can be applied if required. Setting
the PxIES bit of the corresponding register determines the edge transition that wakes the device. Last,
the PxIE for the port must be enabled, as well as the general interrupt enable.
NOTE: It is not possible to wake up from a port interrupt if its respective port interrupt flag is already
asserted. It is recommended that the flag be cleared before entering LPMx.5. It is also
recommended that GIE = 1 be set before entry into LPMx.5. Any pending flags in this case
could then be serviced before LPMx.5 entry.

This completes the operations required for the I/Os before entering LPMx.5.
During LPMx.5 the I/O pin states are held and locked based on the settings before LPMx.5 entry. Note
that only the pin conditions are retained. All other port configuration register settings such as PxDIR,
PxREN, PxOUT, PxIES, and PxIE contents are lost.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O

369

I/O Configuration

www.ti.com

Upon exit from LPMx.5, all peripheral registers are set to their default conditions but the I/O pins remain
locked while LOCKLPM5 remains set. Keeping the I/O pins locked ensures that all pin conditions remain
stable when entering the active mode, regardless of the default I/O register settings.
When back in active mode, the I/O configuration and I/O interrupt configuration such as PxDIR, PxREN,
PxOUT, and PxIES should be restored to the values before entering LPMx.5. The LOCKLPM5 bit can
then be cleared, which releases the I/O pin conditions and I/O interrupt configuration. Any changes to the
port configuration registers while LOCKLPM5 is set have no effect on the I/O pins.
After enabling the I/O interrupts by configuring PxIE, the I/O interrupt that caused the wakeup can be
serviced as indicated by the PxIFG flags. These flags can be used directly, or the corresponding PxIV
register may be used. Note that the PxIFG flag cannot be cleared until the LOCKLPM5 bit has been
cleared.
NOTE: It is possible that multiple events occurred on various ports. In these cases, multiple PxIFG
flags are set, and it cannot be determined which port caused the I/O wakeup.

370

Digital I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Registers

www.ti.com

12.4 Digital I/O Registers
The digital I/O registers are listed in Table 12-3. The base addresses can be found in the device-specific
data sheet. Each port grouping begins at its base address. The address offsets are given in Table 12-3.
NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 12-3. Digital I/O Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

0Eh

P1IV

Port 1 Interrupt Vector

Read only

Word

0000h

Section 12.4.1

0Eh

P1IV_L

Read only

Byte

00h

0Fh

P1IV_H

Read only

Byte

00h

Read only

Word

0000h

1Eh

P2IV

Port 2 Interrupt Vector

1Eh

P2IV_L

Read only

Byte

00h

1Fh

P2IV_H

Read only

Byte

00h

Read only

Word

0000h

Read only

Byte

00h

Read only

Byte

00h

Read only

Word

0000h

2Eh

P3IV

2Eh

P3IV_L

2Fh

P3IV_H

3Eh

P4IV

Port 3 Interrupt Vector

Port 4 Interrupt Vector

3Eh

P4IV_L

Read only

Byte

00h

3Fh

P4IV_H

Read only

Byte

00h

Section 12.4.2

Section 12.4.3

Section 12.4.4

00h

P1IN
or PAIN_L

Port 1 Input

Read only

Byte

undefined

Section 12.4.5

02h

P1OUT
or PAOUT_L

Port 1 Output

Read/write

Byte

undefined

Section 12.4.6

04h

P1DIR
or PADIR_L

Port 1 Direction

Read/write

Byte

00h

Section 12.4.7

06h

P1REN
or PAREN_L

Port 1 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Ah

P1SEL0
or PASEL0_L

Port 1 Select 0

Read/write

Byte

00h

Section 12.4.9

0Ch

P1SEL1
or PASEL1_L

Port 1 Select 1

Read/write

Byte

00h

Section 12.4.10

16h

P1SELC
or PASELC_L

Port 1 Complement Selection

Read/write

Byte

00h

Section 12.4.11

18h

P1IES
or PAIES_L

Port 1 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Ah

P1IE
or PAIE_L

Port 1 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Ch

P1IFG
or PAIFG_L

Port 1 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O 371

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

01h

P2IN
or PAIN_H

Port 2 Input

Read only

Byte

undefined

Section 12.4.5

03h

P2OUT
or PAOUT_H

Port 2 Output

Read/write

Byte

undefined

Section 12.4.6

05h

P2DIR
or PADIR_H

Port 2 Direction

Read/write

Byte

00h

Section 12.4.7

07h

P2REN
or PAREN_H

Port 2 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Bh

P2SEL0
or PASEL0_H

Port 2 Select 0

Read/write

Byte

00h

Section 12.4.9

0Dh

P2SEL1
or PASEL1_H

Port 2 Select 1

Read/write

Byte

00h

Section 12.4.10

17h

P2SELC
or PASELC_L

Port 2 Complement Selection

Read/write

Byte

00h

Section 12.4.11

19h

P2IES
or PAIES_H

Port 2 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Bh

P2IE
or PAIE_H

Port 2 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Dh

P2IFG
or PAIFG_H

Port 2 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

00h

P3IN
or PBIN_L

Port 3 Input

Read only

Byte

undefined

Section 12.4.5

02h

P3OUT
or PBOUT_L

Port 3 Output

Read/write

Byte

undefined

Section 12.4.6

04h

P3DIR
or PBDIR_L

Port 3 Direction

Read/write

Byte

00h

Section 12.4.7

06h

P3REN
or PBREN_L

Port 3 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Ah

P3SEL0
or PBSEL0_L

Port 3 Select 0

Read/write

Byte

00h

Section 12.4.9

0Ch

P3SEL1
or PBSEL1_L

Port 3 Select 1

Read/write

Byte

00h

Section 12.4.10

16h

P3SELC
or PBSELC_L

Port 3 Complement Selection

Read/write

Byte

00h

Section 12.4.11

18h

P3IES
or PBIES_L

Port 3 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Ah

P3IE
or PBIE_L

Port 3 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Ch

P3IFG
or PBIFG_L

Port 3 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

372 Digital I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

01h

P4IN
or PBIN_H

Port 4 Input

Read only

Byte

undefined

Section 12.4.5

03h

P4OUT
or PBOUT_H

Port 4 Output

Read/write

Byte

undefined

Section 12.4.6

05h

P4DIR
or PBDIR_H

Port 4 Direction

Read/write

Byte

00h

Section 12.4.7

07h

P4REN
or PBREN_H

Port 4 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Bh

P4SEL0
or PBSEL0_H

Port 4 Select 0

Read/write

Byte

00h

Section 12.4.9

0Dh

P4SEL1
or PBSEL1_H

Port 4 Select 1

Read/write

Byte

00h

Section 12.4.10

17h

P4SELC
or PBSELC_L

Port 4 Complement Selection

Read/write

Byte

00h

Section 12.4.11

19h

P4IES
or PBIES_H

Port 4 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Bh

P4IE
or PBIE_H

Port 4 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Dh

P4IFG
or PBIFG_H

Port 4 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

00h

P5IN
or PCIN_L

Port 5 Input

Read only

Byte

undefined

Section 12.4.5

02h

P5OUT
or PCOUT_L

Port 5 Output

Read/write

Byte

undefined

Section 12.4.6

04h

P5DIR
or PCDIR_L

Port 5 Direction

Read/write

Byte

00h

Section 12.4.7

06h

P5REN
or PCREN_L

Port 5 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Ah

P5SEL0
or PCSEL0_L

Port 5 Select 0

Read/write

Byte

00h

Section 12.4.9

0Ch

P5SEL1
or PCSEL1_L

Port 5 Select 1

Read/write

Byte

00h

Section 12.4.10

16h

P5SELC
or PCSELC_L

Port 5 Complement Selection

Read/write

Byte

00h

Section 12.4.11

18h

P5IES
or PCIES_L

Port 5 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Ah

P5IE
or PCIE_L

Port 5 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Ch

P5IFG
or PCIFG_L

Port 5 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O 373

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

01h

P6IN
or PCIN_H

Port 6 Input

Read only

Byte

undefined

Section 12.4.5

03h

P6OUT
or PCOUT_H

Port 6 Output

Read/write

Byte

undefined

Section 12.4.6

05h

P6DIR
or PCDIR_H

Port 6 Direction

Read/write

Byte

00h

Section 12.4.7

07h

P6REN
or PCREN_H

Port 6 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Bh

P6SEL0
or PCSEL0_H

Port 6 Select 0

Read/write

Byte

00h

Section 12.4.9

0Dh

P6SEL1
or PCSEL1_H

Port 6 Select 1

Read/write

Byte

00h

Section 12.4.10

17h

P6SELC
or PCSELC_L

Port 6 Complement Selection

Read/write

Byte

00h

Section 12.4.11

19h

P6IES
or PCIES_H

Port 6 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Bh

P6IE
or PCIE_H

Port 6 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Dh

P6IFG
or PCIFG_H

Port 6 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

00h

P7IN
or PDIN_L

Port 7 Input

Read only

Byte

undefined

Section 12.4.5

02h

P7OUT
or PDOUT_L

Port 7 Output

Read/write

Byte

undefined

Section 12.4.6

04h

P7DIR
or PDDIR_L

Port 7 Direction

Read/write

Byte

00h

Section 12.4.7

06h

P7REN
or PDREN_L

Port 7 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Ah

P7SEL0
or PDSEL0_L

Port 7 Select 0

Read/write

Byte

00h

Section 12.4.9

0Ch

P7SEL1
or PDSEL1_L

Port 7 Select 1

Read/write

Byte

00h

Section 12.4.10

16h

P7SELC
or PDSELC_L

Port 7 Complement Selection

Read/write

Byte

00h

Section 12.4.11

18h

P7IES
or PDIES_L

Port 7 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Ah

P7IE
or PDIE_L

Port 7 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Ch

P7IFG
or PDIFG_L

Port 7 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

374 Digital I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

01h

P8IN
or PDIN_H

Port 8 Input

Read only

Byte

undefined

Section 12.4.5

03h

P8OUT
or PDOUT_H

Port 8 Output

Read/write

Byte

undefined

Section 12.4.6

05h

P8DIR
or PDDIR_H

Port 8 Direction

Read/write

Byte

00h

Section 12.4.7

07h

P8REN
or PDREN_H

Port 8 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Bh

P8SEL0
or PDSEL0_H

Port 8 Select 0

Read/write

Byte

00h

Section 12.4.9

0Dh

P8SEL1
or PDSEL1_H

Port 8 Select 1

Read/write

Byte

00h

Section 12.4.10

17h

P8SELC
or PDSELC_L

Port 8 Complement Selection

Read/write

Byte

00h

Section 12.4.11

19h

P8IES
or PDIES_H

Port 8 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Bh

P8IE
or PDIE_H

Port 8 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Dh

P8IFG
or PDIFG_H

Port 8 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

00h

P9IN
or PEIN_L

Port 9 Input

Read only

Byte

undefined

Section 12.4.5

02h

P9OUT
or PEOUT_L

Port 9 Output

Read/write

Byte

undefined

Section 12.4.6

04h

P9DIR
or PEDIR_L

Port 9 Direction

Read/write

Byte

00h

Section 12.4.7

06h

P9REN
or PEREN_L

Port 9 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Ah

P9SEL0
or PESEL0_L

Port 9 Select 0

Read/write

Byte

00h

Section 12.4.9

0Ch

P9SEL1
or PESEL1_L

Port 9 Select 1

Read/write

Byte

00h

Section 12.4.10

16h

P9SELC
or PESELC_L

Port 9 Complement Selection

Read/write

Byte

00h

Section 12.4.11

18h

P9IES
or PEIES_L

Port 9 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Ah

P9IE
or PEIE_L

Port 9 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Ch

P9IFG
or PEIFG_L

Port 9 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O 375

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

01h

P10IN
or PEIN_H

Port 10 Input

Read only

Byte

undefined

Section 12.4.5

03h

P10OUT
or PEOUT_H

Port 10 Output

Read/write

Byte

undefined

Section 12.4.6

05h

P10DIR
or PEDIR_H

Port 10 Direction

Read/write

Byte

00h

Section 12.4.7

07h

P10REN
or PEREN_H

Port 10 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Bh

P10SEL0
or PESEL0_H

Port 10 Select 0

Read/write

Byte

00h

Section 12.4.9

0Dh

P10SEL1
or PESEL1_H

Port 10 Select 1

Read/write

Byte

00h

Section 12.4.10

17h

P10SELC
or PESELC_L

Port 10 Complement Selection

Read/write

Byte

00h

Section 12.4.11

19h

P10IES
or PEIES_H

Port 10 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Bh

P10IE
or PEIE_H

Port 10 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Dh

P10IFG
or PEIFG_H

Port 10 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

00h

P11IN
or PFIN_L

Port 11 Input

Read only

Byte

undefined

Section 12.4.5

02h

P11OUT
or PFOUT_L

Port 11 Output

Read/write

Byte

undefined

Section 12.4.6

04h

P11DIR
or PFDIR_L

Port 11 Direction

Read/write

Byte

00h

Section 12.4.7

06h

P11REN
or PFREN_L

Port 11 Resistor Enable

Read/write

Byte

00h

Section 12.4.8

0Ah

P11SEL0
or PFSEL0_L

Port 11 Select 0

Read/write

Byte

00h

Section 12.4.9

0Ch

P11SEL1
or PFSEL1_L

Port 11 Select 1

Read/write

Byte

00h

Section 12.4.10

16h

P11SELC
or PFSELC_L

Port 11 Complement Selection

Read/write

Byte

00h

Section 12.4.11

18h

P11IES
or PFIES_L

Port 11 Interrupt Edge Select

Read/write

Byte

undefined

Section 12.4.12

1Ah

P11IE
or PFIE_L

Port 11 Interrupt Enable

Read/write

Byte

00h

Section 12.4.13

1Ch

P11IFG
or PFIFG_L

Port 11 Interrupt Flag

Read/write

Byte

00h

Section 12.4.14

376 Digital I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

00h

PAIN

Port A Input

Read only

Word

undefined

00h

PAIN_L

Read only

Byte

undefined

01h

PAIN_H

Read only

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

02h

PAOUT

02h

PAOUT_L

03h

PAOUT_H

04h

PADIR

04h

PADIR_L

05h

PADIR_H

06h

PAREN

06h

PAREN_L

07h

PAREN_H

0Ah

PASEL0

Port A Output

Port A Direction

Port A Resistor Enable

Port A Select 0

0Ah

PASEL0_L

Read/write

Byte

00h

0Bh

PASEL0_H

Read/write

Byte

00h

0Ch

Read/write

Word

0000h

0Ch

PASEL1_L

Read/write

Byte

00h

0Dh

PASEL1_H

Read/write

Byte

00h

16h

PASEL1

Read/write

Word

0000h

16h

PASELC_L

Read/write

Byte

00h

17h

PASELC_H

Read/write

Byte

00h

18h

PASELC

Port A Select 1

Read/write

Word

undefined

18h

PAIES_L

Read/write

Byte

undefined

19h

PAIES_H

Read/write

Byte

undefined

Read/write

Word

0000h

1Ah

PAIES

Port A Complement Select

PAIE

Port A Interrupt Edge Select

Port A Interrupt Enable

1Ah

PAIE_L

Read/write

Byte

00h

1Bh

PAIE_H

Read/write

Byte

00h

Read/write

Word

0000h

1Ch

PAIFG

Port A Interrupt Flag

1Ch

PAIFG_L

Read/write

Byte

00h

1Dh

PAIFG_H

Read/write

Byte

00h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Section

Digital I/O 377

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

00h

PBIN

Port B Input

Read only

Word

undefined

00h

PBIN_L

Read only

Byte

undefined

01h

PBIN_H

Read only

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

02h

PBOUT

02h

PBOUT_L

03h

PBOUT_H

04h

PBDIR

04h

PBDIR_L

05h

PBDIR_H

06h

PBREN

06h

PBREN_L

07h

PBREN_H

0Ah

PBSEL0

Port B Output

Port B Direction

Port B Resistor Enable

Port B Select 0

0Ah

PBSEL0_L

Read/write

Byte

00h

0Bh

PBSEL0_H

Read/write

Byte

00h

0Ch

Read/write

Word

0000h

0Ch

PBSEL1_L

Read/write

Byte

00h

0Dh

PBSEL1_H

Read/write

Byte

00h

16h

PBSEL1

Read/write

Word

0000h

16h

PBSELC_L

Read/write

Byte

00h

17h

PBSELC_H

Read/write

Byte

00h

18h

PBSELC

Port B Select 1

Read/write

Word

undefined

18h

PBIES_L

Read/write

Byte

undefined

19h

PBIES_H

Read/write

Byte

undefined

Read/write

Word

0000h

1Ah

PBIES

Port B Complement Select

PBIE

Port B Interrupt Edge Select

Port B Interrupt Enable

1Ah

PBIE_L

Read/write

Byte

00h

1Bh

PBIE_H

Read/write

Byte

00h

Read/write

Word

0000h

1Ch

PBIFG

Port B Interrupt Flag

1Ch

PBIFG_L

Read/write

Byte

00h

1Dh

PBIFG_H

Read/write

Byte

00h

378 Digital I/O

Section

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

00h

PCIN

Port C Input

Read only

Word

undefined

00h

PCIN_L

Read only

Byte

undefined

01h

PCIN_H

Read only

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

02h

PCOUT

02h

PCOUT_L

03h

PCOUT_H

04h

PCDIR

04h

PCDIR_L

05h

PCDIR_H

06h

PCREN

06h

PCREN_L

07h

PCREN_H

0Ah

PCSEL0

Port C Output

Port C Direction

Port C Resistor Enable

Port C Select 0

0Ah

PCSEL0_L

Read/write

Byte

00h

0Bh

PCSEL0_H

Read/write

Byte

00h

0Ch

Read/write

Word

0000h

0Ch

PCSEL1_L

Read/write

Byte

00h

0Dh

PCSEL1_H

Read/write

Byte

00h

16h

PCSEL1

Read/write

Word

0000h

16h

PCSELC_L

Read/write

Byte

00h

17h

PCSELC_H

Read/write

Byte

00h

18h

PCSELC

Port C Select 1

Read/write

Word

undefined

18h

PCIES_L

Read/write

Byte

undefined

19h

PCIES_H

Read/write

Byte

undefined

Read/write

Word

0000h

1Ah

PCIES

Port C Complement Select

PCIE

Port C Interrupt Edge Select

Port C Interrupt Enable

1Ah

PCIE_L

Read/write

Byte

00h

1Bh

PCIE_H

Read/write

Byte

00h

Read/write

Word

0000h

1Ch

PCIFG

Port C Interrupt Flag

1Ch

PCIFG_L

Read/write

Byte

00h

1Dh

PCIFG_H

Read/write

Byte

00h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Section

Digital I/O 379

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

00h

PDIN

Port D Input

Read only

Word

undefined

00h

PDIN_L

Read only

Byte

undefined

01h

PDIN_H

Read only

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

02h

PDOUT

02h

PDOUT_L

03h

PDOUT_H

04h

PDDIR

04h

PDDIR_L

05h

PDDIR_H

06h

PDREN

06h

PDREN_L

07h

PDREN_H

0Ah

PDSEL0

Port D Output

Port D Direction

Port D Resistor Enable

Port D Select 0

0Ah

PDSEL0_L

Read/write

Byte

00h

0Bh

PDSEL0_H

Read/write

Byte

00h

0Ch

Read/write

Word

0000h

0Ch

PDSEL1_L

Read/write

Byte

00h

0Dh

PDSEL1_H

Read/write

Byte

00h

16h

PDSEL1

Read/write

Word

0000h

16h

PDSELC_L

Read/write

Byte

00h

17h

PDSELC_H

Read/write

Byte

00h

18h

PDSELC

Port D Select 1

Read/write

Word

undefined

18h

PDIES_L

Read/write

Byte

undefined

19h

PDIES_H

Read/write

Byte

undefined

Read/write

Word

0000h

1Ah

PDIES

Port D Complement Select

PDIE

Port D Interrupt Edge Select

Port D Interrupt Enable

1Ah

PDIE_L

Read/write

Byte

00h

1Bh

PDIE_H

Read/write

Byte

00h

Read/write

Word

0000h

1Ch

PDIFG

Port D Interrupt Flag

1Ch

PDIFG_L

Read/write

Byte

00h

1Dh

PDIFG_H

Read/write

Byte

00h

380 Digital I/O

Section

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

00h

PEIN

Port E Input

Read only

Word

undefined

00h

PEIN_L

Read only

Byte

undefined

01h

PEIN_H

Read only

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

02h

PEOUT

02h

PEOUT_L

03h

PEOUT_H

04h

PEDIR

04h

PEDIR_L

05h

PEDIR_H

06h

PEREN

06h

PEREN_L

07h

PEREN_H

0Ah

PESEL0

Port E Output

Port E Direction

Port E Resistor Enable

Port E Select 0

0Ah

PESEL0_L

Read/write

Byte

00h

0Bh

PESEL0_H

Read/write

Byte

00h

0Ch

Read/write

Word

0000h

0Ch

PESEL1_L

Read/write

Byte

00h

0Dh

PESEL1_H

Read/write

Byte

00h

16h

PESEL1

Read/write

Word

0000h

16h

PESELC_L

Read/write

Byte

00h

17h

PESELC_H

Read/write

Byte

00h

18h

PESELC

Port E Select 1

Read/write

Word

undefined

18h

PEIES_L

Read/write

Byte

undefined

19h

PEIES_H

Read/write

Byte

undefined

Read/write

Word

0000h

1Ah

PEIES

Port E Complement Select

PEIE

Port E Interrupt Edge Select

Port E Interrupt Enable

1Ah

PEIE_L

Read/write

Byte

00h

1Bh

PEIE_H

Read/write

Byte

00h

Read/write

Word

0000h

1Ch

PEIFG

Port E Interrupt Flag

1Ch

PEIFG_L

Read/write

Byte

00h

1Dh

PEIFG_H

Read/write

Byte

00h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Section

Digital I/O 381

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

00h

PFIN

Port F Input

Read only

Word

undefined

00h

PFIN_L

Read only

Byte

undefined

01h

PFIN_H

Read only

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

02h

PFOUT

02h

PFOUT_L

03h

PFOUT_H

04h

PFDIR

04h

PFDIR_L

05h

PFDIR_H

06h

PFREN

06h

PFREN_L

07h

PFREN_H

0Ah

PFSEL0

Port F Output

Port F Direction

Port F Resistor Enable

Port F Select 0

0Ah

PFSEL0_L

Read/write

Byte

00h

0Bh

PFSEL0_H

Read/write

Byte

00h

0Ch

Read/write

Word

0000h

0Ch

PFSEL1_L

Read/write

Byte

00h

0Dh

PFSEL1_H

Read/write

Byte

00h

16h

PFSEL1

Read/write

Word

0000h

16h

PFSELC_L

Read/write

Byte

00h

17h

PFSELC_H

Read/write

Byte

00h

18h

PFSELC

Port F Select 1

Read/write

Word

undefined

18h

PFIES_L

Read/write

Byte

undefined

19h

PFIES_H

Read/write

Byte

undefined

Read/write

Word

0000h

1Ah

PFIES

Port F Complement Select

PFIE

Port F Interrupt Edge Select

Port F Interrupt Enable

1Ah

PFIE_L

Read/write

Byte

00h

1Bh

PFIE_H

Read/write

Byte

00h

Read/write

Word

0000h

1Ch

PFIFG

Port F Interrupt Flag

1Ch

PFIFG_L

Read/write

Byte

00h

1Dh

PFIFG_H

Read/write

Byte

00h

382 Digital I/O

Section

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Registers

www.ti.com

Table 12-3. Digital I/O Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

00h

PJIN

Port J Input

Read only

Word

undefined

00h

PJIN_L

Read only

Byte

undefined

01h

PJIN_H

Read only

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

02h

PJOUT

02h

PJOUT_L

03h

PJOUT_H

04h

PJDIR

04h

PJDIR_L

05h

PJDIR_H

06h

PJREN

06h

PJREN_L

07h

PJREN_H

0Ah

PJSEL0

Port J Output

Port J Direction

Port J Resistor Enable

Port J Select 0

0Ah

PJSEL0_L

Read/write

Byte

00h

0Bh

PJSEL0_H

Read/write

Byte

00h

0Ch

Read/write

Word

0000h

0Ch

PJSEL1_L

Read/write

Byte

00h

0Dh

PJSEL1_H

Read/write

Byte

00h

16h

PJSEL1

PJSELC

Port J Select 1

Read/write

Word

0000h

16h

PJSELC_L

Port J Complement Select

Read/write

Byte

00h

17h

PJSELC_H

Read/write

Byte

00h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Section

Digital I/O

383

Digital I/O Registers

www.ti.com

12.4.1 P1IV Register
Port 1 Interrupt Vector Register
Figure 12-1. P1IV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-0

r-0

r-0

r0

P1IV
r0

r0

r0

r0

7

6

5

4
P1IV

r0

r0

r0

r-0

Table 12-4. P1IV Register Description
Bit

Field

Type

Reset

Description

15-0

P1IV

R

0h

Port 1 interrupt vector value
00h = No interrupt pending
02h = Interrupt Source: Port 1.0 interrupt; Interrupt Flag: P1IFG.0; Interrupt
Priority: Highest
04h = Interrupt Source: Port 1.1 interrupt; Interrupt Flag: P1IFG.1
06h = Interrupt Source: Port 1.2 interrupt; Interrupt Flag: P1IFG.2
08h = Interrupt Source: Port 1.3 interrupt; Interrupt Flag: P1IFG.3
0Ah = Interrupt Source: Port 1.4 interrupt; Interrupt Flag: P1IFG.4
0Ch = Interrupt Source: Port 1.5 interrupt; Interrupt Flag: P1IFG.5
0Eh = Interrupt Source: Port 1.6 interrupt; Interrupt Flag: P1IFG.6
10h = Interrupt Source: Port 1.7 interrupt; Interrupt Flag: P1IFG.7; Interrupt
Priority: Lowest

12.4.2 P2IV Register
Port 2 Interrupt Vector Register
Figure 12-2. P2IV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-0

r-0

r-0

r0

P2IV
r0

r0

r0

r0

7

6

5

4
P2IV

r0

r0

r0

r-0

Table 12-5. P2IV Register Description
Bit

Field

Type

Reset

Description

15-0

P2IV

R

0h

Port 2 interrupt vector value
00h = No interrupt pending
02h = Interrupt Source: Port 2.0 interrupt; Interrupt Flag: P2IFG.0; Interrupt
Priority: Highest
04h = Interrupt Source: Port 2.1 interrupt; Interrupt Flag: P2IFG.1
06h = Interrupt Source: Port 2.2 interrupt; Interrupt Flag: P2IFG.2
08h = Interrupt Source: Port 2.3 interrupt; Interrupt Flag: P2IFG.3
0Ah = Interrupt Source: Port 2.4 interrupt; Interrupt Flag: P2IFG.4
0Ch = Interrupt Source: Port 2.5 interrupt; Interrupt Flag: P2IFG.5
0Eh = Interrupt Source: Port 2.6 interrupt; Interrupt Flag: P2IFG.6
10h = Interrupt Source: Port 2.7 interrupt; Interrupt Flag: P2IFG.7; Interrupt
Priority: Lowest

384

Digital I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Registers

www.ti.com

12.4.3 P3IV Register
Port 3 Interrupt Vector Register
Figure 12-3. P3IV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-0

r-0

r-0

r0

P3IV
r0

r0

r0

r0

7

6

5

4
P3IV

r0

r0

r0

r-0

Table 12-6. P3IV Register Description
Bit

Field

Type

Reset

Description

15-0

P3IV

R

0h

Port 3 interrupt vector value
00h = No interrupt pending
02h = Interrupt Source: Port 3.0 interrupt; Interrupt Flag: P3IFG.0; Interrupt
Priority: Highest
04h = Interrupt Source: Port 3.1 interrupt; Interrupt Flag: P3IFG.1
06h = Interrupt Source: Port 3.2 interrupt; Interrupt Flag: P3IFG.2
08h = Interrupt Source: Port 3.3 interrupt; Interrupt Flag: P3IFG.3
0Ah = Interrupt Source: Port 3.4 interrupt; Interrupt Flag: P3IFG.4
0Ch = Interrupt Source: Port 3.5 interrupt; Interrupt Flag: P3IFG.5
0Eh = Interrupt Source: Port 3.6 interrupt; Interrupt Flag: P3IFG.6
10h = Interrupt Source: Port 3.7 interrupt; Interrupt Flag: P3IFG.7; Interrupt
Priority: Lowest

12.4.4 P4IV Register
Port 4 Interrupt Vector Register
Figure 12-4. P4IV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-0

r-0

r-0

r0

P4IV
r0

r0

r0

r0

7

6

5

4
P4IV

r0

r0

r0

r-0

Table 12-7. P4IV Register Description
Bit

Field

Type

Reset

Description

15-0

P4IV

R

0h

Port 4 interrupt vector value
00h = No interrupt pending
02h = Interrupt Source: Port 4.0 interrupt; Interrupt Flag: P4IFG.0; Interrupt
Priority: Highest
04h = Interrupt Source: Port 4.1 interrupt; Interrupt Flag: P4IFG.1
06h = Interrupt Source: Port 4.2 interrupt; Interrupt Flag: P4IFG.2
08h = Interrupt Source: Port 4.3 interrupt; Interrupt Flag: P4IFG.3
0Ah = Interrupt Source: Port 4.4 interrupt; Interrupt Flag: P4IFG.4
0Ch = Interrupt Source: Port 4.5 interrupt; Interrupt Flag: P4IFG.5
0Eh = Interrupt Source: Port 4.6 interrupt; Interrupt Flag: P4IFG.6
10h = Interrupt Source: Port 4.7 interrupt; Interrupt Flag: P4IFG.7; Interrupt
Priority: Lowest

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O

385

Digital I/O Registers

www.ti.com

12.4.5 PxIN Register
Port x Input Register
Figure 12-5. PxIN Register
7

6

5

4

3

2

1

0

r

r

r

r

PxIN
r

r

r

r

Table 12-8. PxIN Register Description
Bit

Field

Type

Reset

Description

7-0

PxIN

R

Undefined

Port x input
0b = Input is low
1b = Input is high

12.4.6 PxOUT Register
Port x Output Register
Figure 12-6. PxOUT Register
7

6

5

4

3

2

1

0

rw

rw

rw

rw

PxOUT
rw

rw

rw

rw

Table 12-9. PxOUT Register Description
Bit

Field

Type

Reset

Description

7-0

PxOUT

RW

Undefined

Port x output
When I/O configured to output mode:
0b = Output is low.
1b = Output is high.
When I/O configured to input mode and pullups/pulldowns enabled:
0b = Pulldown selected
1b = Pullup selected

12.4.7 PxDIR Register
Port x Direction Register
Figure 12-7. PxDIR Register
7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

PxDIR
rw-0

rw-0

rw-0

rw-0

Table 12-10. P1DIR Register Description
Bit

Field

Type

Reset

Description

7-0

PxDIR

RW

0h

Port x direction
0b = Port configured as input
1b = Port configured as output

386

Digital I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Registers

www.ti.com

12.4.8 PxREN Register
Port x Pullup or Pulldown Resistor Enable Register
Figure 12-8. PxREN Register
7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

PxREN
rw-0

rw-0

rw-0

rw-0

Table 12-11. PxREN Register Description
Bit

Field

Type

Reset

Description

7-0

PxREN

RW

0h

Port x pullup or pulldown resistor enable. When the port is configured as an
input, setting this bit enables or disables the pullup or pulldown.
0b = Pullup or pulldown disabled
1b = Pullup or pulldown enabled

12.4.9 PxSEL0 Register
Port x Function Selection Register 0
Figure 12-9. PxSEL0 Register
7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

PxSEL0
rw-0

rw-0

rw-0

rw-0

Table 12-12. PxSEL0 Register Description
Bit

Field

Type

Reset

Description

7-0

PxSEL0

RW

0h

Port function selection. Each bit corresponds to one channel on Port x.
The values of each bit position in PxSEL1 and PxSEL0 are combined to specify
the function. For example, if P1SEL1.5 = 1 and P1SEL0.5 = 0, then the
secondary module function is selected for P1.5.
See PxSEL1 for the definition of each value.

12.4.10 PxSEL1 Register
Port x Function Selection Register 1
Figure 12-10. PxSEL1 Register
7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

PxSEL1
rw-0

rw-0

rw-0

rw-0

Table 12-13. PxSEL1 Register Description
Bit

Field

Type

Reset

Description

7-0

PxSEL1

RW

0h

Port function selection. Each bit corresponds to one channel on Port x.
The values of each bit position in PxSEL1 and PxSEL0 are combined to specify
the function. For example, if P1SEL1.5 = 1 and P1SEL0.5 = 0, then the
secondary module function is selected for P1.5.
00b = General-purpose I/O is selected
01b = Primary module function is selected
10b = Secondary module function is selected
11b = Tertiary module function is selected

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O

387

Digital I/O Registers

www.ti.com

12.4.11 PxSELC Register
Port x Complement Selection
Figure 12-11. PxSELC Register
7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

PxSELC
rw-0

rw-0

rw-0

rw-0

Table 12-14. PxSELC Register Description
Bit

Field

Type

Reset

Description

7-0

PxSELC

RW

0h

Port selection complement.
Each bit that is set in PxSELC complements the corresponding respective bit of
both the PxSEL1 and PxSEL0 registers; that is, for each bit set in PxSELC, the
corresponding bits in both PxSEL1 and PxSEL0 are both changed at the same
time. Always reads as 0.

12.4.12 PxIES Register
Port x Interrupt Edge Select Register
Figure 12-12. PxIES Register
7

6

5

4

3

2

1

0

rw

rw

rw

rw

PxIES
rw

rw

rw

rw

Table 12-15. PxIES Register Description
Bit

Field

Type

Reset

Description

7-0

PxIES

RW

Undefined

Port x interrupt edge select
0b = PxIFG flag is set with a low-to-high transition
1b = PxIFG flag is set with a high-to-low transition

12.4.13 PxIE Register
Port x Interrupt Enable Register
Figure 12-13. PxIE Register
7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

PxIE
rw-0

rw-0

rw-0

rw-0

Table 12-16. PxIE Register Description
Bit

Field

Type

Reset

Description

7-0

PxIE

RW

0h

Port x interrupt enable
0b = Corresponding port interrupt disabled
1b = Corresponding port interrupt enabled

388

Digital I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O Registers

www.ti.com

12.4.14 PxIFG Register
Port x Interrupt Flag Register
Figure 12-14. PxIFG Register
7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

PxIFG
rw-0

rw-0

rw-0

rw-0

Table 12-17. PxIFG Register Description
Bit

Field

Type

Reset

Description

7-0

PxIFG

RW

Undefined

Port x interrupt flag
0b = No interrupt is pending.
1b = Interrupt is pending.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Digital I/O

389

Chapter 13
SLAU367O – October 2012 – Revised December 2017

Capacitive Touch I/O
This chapter describes the functionality of the Capacitive Touch I/Os and related control.
Topic

13.1
13.2
13.3

390

...........................................................................................................................

Page

Capacitive Touch I/O Introduction ...................................................................... 391
Capacitive Touch I/O Operation .......................................................................... 392
CapTouch Registers ......................................................................................... 393

Capacitive Touch I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Capacitive Touch I/O Introduction

www.ti.com

13.1 Capacitive Touch I/O Introduction
The Capacitive Touch I/O module allows implementation of a simple capacitive touch sense application.
The module uses the integrated pullup and pulldown resistors and an external capacitor to form an
oscillator by feeding back the inverted input voltage sensed by the input Schmitt triggers to the pullup and
pulldown control. Figure 13-1 shows the capacitive touch I/O principle
Analog Enable
PxREN.y
Capacitive Touch Enable
DVSS

0

DVCC

1

1

Direction Control

PxOUT.y

0
1

Output Signal
Px.y
Cap.
Input Signal

Q

D
EN

Capacitive Touch Signal

Figure 13-1. Capacitive Touch I/O Principle

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Capacitive Touch I/O

391

Capacitive Touch I/O Operation

www.ti.com

Figure 13-2 shows the block diagram of the Capacitive Touch I/O module.
CAPTIOEN

EN

CAPTIOPOSELx
4
7

CAPTIOPISELx

OneHot
Dec.

To Capacitive Touch
enable of pins

3

CAPTIO

To Timers
(device specific)

Capacitive Touch
signals from pins

Figure 13-2. Capacitive Touch I/O Block Diagram

13.2 Capacitive Touch I/O Operation
Enable the Capacitive Touch I/O functionality with CAPTIOEN = 1 and select a port pin using
CAPTIOPOSELx and CAPTIOPISELx. The selected port pin is switched into the Capacitive Touch state,
and the resulting oscillating signal is provided to be measured by a timer. The connected timers are
device-specific (see the device-specific data sheet).
It is possible to scan to successive port pins by incrementing the low byte of the Capacitive Touch I/O
control register CAPTIOCTL_L by 2.

392

Capacitive Touch I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CapTouch Registers

www.ti.com

13.3 CapTouch Registers
The Capacitive Touch I/O registers and their address offsets are listed in Table 13-1. In a given device,
multiple Capacitive Touch I/O registers might be available. The base address of each Capacitive Touch
I/O module can be found in the device-specific data sheet.
NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 13-1. CapTouch Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

0Eh

CAPTIOxCTL

Capacitive Touch I/O x control register

Read/write

Word

0000h

Section 13.3.1

0Eh

CAPTIOxCTL_L

Read/write

Byte

00h

0Fh

CAPTIOxCTL_H

Read/write

Byte

00h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Capacitive Touch I/O

393

CapTouch Registers

www.ti.com

13.3.1 CAPTIOxCTL Register (offset = 0Eh) [reset = 0000h]
Capacitive Touch I/O x Control Register
Figure 13-3. CAPTIOxCTL Register
15

14

13

12

11

10

r0

r0

r0

4

3

rw-0

rw-0

2
CAPTIOPISELx
rw-0

Reserved
r0

r0

7

r0

6
5
CAPTIOPOSELx
rw-0
rw-0

rw-0

9
CAPTIO
r-0

8
CAPTIOEN
rw-0

1

0
Reserved
r0

rw-0

Table 13-2. CAPTIOxCTL Register Description
Bit

Field

Type

Reset

Description

15-10

Reserved

R

0h

Reserved. Always reads 0.

9

CAPTIO

R

0h

Capacitive Touch I/O state. Reports the current state of the selected Capacitive
Touch I/O. Reads 0, if Capacitive Touch I/O disabled.
0b = Current state 0 or Capacitive Touch I/O is disabled
1b = Current state 1

8

CAPTIOEN

RW

0h

Capacitive Touch I/O enable
0b = All Capacitive Touch I/Os are disabled. Signal toward timers is 0.
1b = Selected Capacitive Touch I/O is enabled

7-4

CAPTIOPOSELx

RW

0h

Capacitive Touch I/O port select. Selects port Px. Selecting a port pin that is not
available on the device in use gives unpredictable results.
0000b = Px = PJ
0001b = Px = P1
0010b = Px = P2
0011b = Px = P3
0100b = Px = P4
0101b = Px = P5
0110b = Px = P6
0111b = Px = P7
1000b = Px = P8
1001b = Px = P9
1010b = Px = P10
1011b = Px = P11
1100b = Px = P12
1101b = Px = P13
1110b = Px = P14
1111b = Px = P15

3-1

CAPTIOPISELx

RW

0h

Capacitive Touch I/O pin select. Selects the pin within selected port Px (see
CAPTIOPOSELx). Selecting a port pin that is not available on the device in use
gives unpredictable results.
000b = Px.0
001b = Px.1
010b = Px.2
011b = Px.3
100b = Px.4
101b = Px.5
110b = Px.6
111b = Px.7

0

Reserved

R

0h

Reserved. Always reads 0.

394

Capacitive Touch I/O

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 14
SLAU367O – October 2012 – Revised December 2017

AES256 Accelerator
The AES256 accelerator module performs Advanced Encryption Standard (AES) encryption or decryption
in hardware. It supports key lengths of 128 bits, 192 bits, and 256 bits. This chapter describes the AES256
accelerator.
Topic

14.1
14.2
14.3

...........................................................................................................................

Page

AES Accelerator Introduction ............................................................................. 396
AES Accelerator Operation ................................................................................ 397
AES Accelerator Registers ................................................................................ 414

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

395

AES Accelerator Introduction

www.ti.com

14.1 AES Accelerator Introduction
The AES accelerator module performs encryption and decryption of 128-bit data with 128-, 192-, or 256bit keys according to the advanced encryption standard (AES) (FIPS PUB 197) in hardware.
The AES accelerator features are:
• AES encryption
– 128 bit in 168 cycles
– 192 bit in 204 cycles
– 256 bit in 234 cycles
• AES decryption
– 128 bit in 168 cycles
– 192 bit in 206 cycles
– 256 bit in 234 cycles
• On-the-fly key expansion for encryption and decryption
• Offline key generation for decryption
• Shadow register storing the initial key for all key lengths
• DMA support for ECB, CBC, OFB, and CFB cipher modes
• Byte and word access to key, input data, and output data
• AES ready interrupt flag
The AES accelerator block diagram is shown in Figure 14-1.
AESADIN

AESAXDIN

128-bit
AES
AES State Encryption and Decyption
Memory
Core

AESAKEY

256-bit
AES Key
Memory

AESADOUT

Figure 14-1. AES Accelerator Block Diagram

396

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Operation

www.ti.com

14.2 AES Accelerator Operation
The AES accelerator is configured with user software. The bit AESKLx determines if AES128, AES192, or
AES256 is going to be performed. There are four different operation modes available, selectable by the
AESOPx bits (see Table 14-1).
Table 14-1. AES Operation Modes Overview
AESOPx

AESKLx

00

01

10

11

Operation

Clock Cycles

00

AES128 encryption

168

01

AES192 encryption

204

10

AES256 encryption

234

00

AES128 decryption (with initial roundkey) is performed

215

01

AES192 decryption (with initial roundkey) is performed

255

10

AES256 decryption (with initial roundkey) is performed

292

00

AES128 encryption key schedule is performed

53

01

AES192 encryption key schedule is performed

57

10

AES256 encryption key schedule is performed

68

00

AES128 (with last roundkey) decryption is performed

168

01

AES192 (with last roundkey) decryption is performed

206

10

AES256 (with last roundkey) decryption is performed

234

The execution time of the different modes of operation is shown in Table 14-1. While the AES module is
operating, the AESBUSY bit is 1. As soon as the operation has finished, the AESRDYIFG bit is set.
Internally, the AES algorithm’s operations are performed on a two-dimensional array of bytes called the
State. The State consists of four rows of bytes, each containing four bytes, independently if AES128,
AES192, or AES256 is performed. The input is assigned to the State array as shown in Figure 14-2, with
in[0] being the first data byte written into one of the AES accelerators input registers (AESADIN,
AESAXDIN, and AESXIN). The encrypt or decrypt operations are then conducted on the State array, after
which its final values can be read from the output with out[0] being the first data byte read from the AES
accelerator data output register (AESADOUT).
Input bytes

State array

Output bytes

in[0]

in[4]

in[8]

in[12]

s[0,0]

s[0,1]

s[0,2]

s[0,3]

out[0]

out[4]

out[8] out[12]

in[1]

in[5]

in[9]

in[13]

s[1,0]

s[1,1]

s[1,2]

s[1,3]

out[1]

out[5]

out[9] out[13]

in[2]

in[6]

in[10]

in[14]

s[2,0]

s[2,1]

s[2,2]

s[2,3]

out[2]

out[6] out[10] out[14]

in[3]

in[7]

in[11]

in[15]

s[3,0]

s[3,1]

s[3,2]

s[3,3]

out[3]

out[7] out[11] out[15]

Figure 14-2. AES State Array Input and Output
If an encryption is to be performed, the initial state is called plaintext. If a decryption is to be performed,
the initial state is called ciphertext.
The module allows word and byte access to all data registers—AESAKEY, AESADIN, AESAXDIN,
AESAXIN, and AESADOUT. Word and byte access cannot be mixed while reading from or writing into one
of the registers. However, it is possible to write one of the registers using byte access and another using
word access.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

397

AES Accelerator Operation
NOTE:

www.ti.com

General Access Restrictions
While the AES accelerator is busy (AESBUSY = 1):
•
AESADOUT always reads as zero.
•
The AESDOUTCNTx counter, the AESDOUTRD flag, and the AESDINWR flag are
reset.
•
Any attempt to change AESOPx, AESKLx, AESDINWR, or AESKEYWR is ignored.
•
Writing to AESAKEY, AESADIN, AESAXDIN, or AESAXIN aborts the current operation,
the complete module is reset (except for the AESRDYIE, AESOPx, and AESKLx), and
the AES error flag AESERRFG is set.
AESADIN, AESAXDIN, AESAXIN, and AESAKEY are write-only registers and always read
as zero.
Writing data into AESADIN, AESAXDIN, or AESAXIN influences the content of the
corresponding output data; for example, writing in[0] alters out[0], writing in[1] alters out[1],
and so on. However, interleaved operation is possible; for example, first reading out[0] and
then writing in[0], and continuing with reading out[1] and then writing in[1], and so on. This
interleaved operation must be either byte or word access on in[x] and out[x].
Access Restriction With Cipher Modes Enabled (AESCMEN = 1)
When cipher modes are enabled (AESCMEN = 1) and a cipher block operation is being
processed (AESBLKCNTx > 0), writes to the following bits are ignored, independent of
AESBUSY: AESCMEN, AESCMx, AESKLx, AESOPx, and AESBLKCNTx. Writing to
AESAKEY aborts the cipher block mode operation if AESBUSY = 1, and the complete
module is reset (except for AESRDYIE, AESOPx, and AESKLx).

14.2.1 Load the Key (128-Bit, 192-Bit, or 256-Bit Key Length)
The key can be loaded by writing to the AESAKEY register or by setting AESKEYWR. Depending on the
selected key length (AESKLx), a different number of bits must be loaded:
• If AESKLx = 00, the 128-bit key must be loaded using either 16 byte-writes or 8 word-writes to
AESAKEY.
• If AESKLx = 01, the 192-bit key must be loaded using either 24 byte-writes or 12 word-writes to
AESAKEY.
• If AESKLx = 10, the 256-bit key must be loaded using either 32 byte-writes or 16 word-writes to
AESAKEY.
The key memory is reset after changing the AESKLx.
If a key was loaded previously without changing AESOPx, the AESKEYWR flag is cleared with the first
write access to AESAKEY.
If the conversion is triggered without writing a new key, the last key is used. The key must always be
written before writing the data.

14.2.2 Load the Data (128-Bit State)
The state can be loaded by writing to AESADIN, AESAXDIN, or AESAXIN with 16 byte writes or 8 word
writes. Do not mix byte and word mode when writing the state. Writing to a mixture of AESADIN,
AESAXDIN, and AESAXIN using the same byte or word data format is allowed. When the 16th byte or 8th
word of the state is written, AESDINWR is set.
When writing to AESADIN, the corresponding byte or word of the state is overwritten. If AESADIN is used
to write the last byte or word of the state, encryption or decryption starts automatically.
When writing to AESAXDIN, the corresponding byte or word is XORed with the current byte or word of the
state. If AESAXDIN is used to write the last byte or word of the state, encryption or decryption starts
automatically.

398

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Operation

www.ti.com

Writing to AESAXIN has the same behavior as writing to AESAXDIN: the corresponding byte or word is
XORed with the current byte or word of the state; however, writing the last byte or word of the state using
AESAXIN does not start encryption or decryption.

14.2.3 Read the Data (128-Bit State)
The state can be read if AESBUSY = 0 using 16 byte reads or 8 word reads from AESADOUT. When all
16 bytes are read, the AESDOUTRD flag indicates completion.

14.2.4 Trigger an Encryption or Decryption
The AES module's encrypt or decrypt operations are triggered if the state was completely written in the
AESADIN or AESAXDIN registers. Alternatively, the bit AESDINWR can be set to trigger an operation if
AESCMEN = 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

399

AES Accelerator Operation

www.ti.com

14.2.5 Encryption
Figure 14-3 shows the encryption process with the cipher being a series of transformations that convert
the plaintext written into the AESADIN register to a ciphertext that can be read from the AESADOUT
register using the cipher key provided in the AESAKEY register.

Cipher Key
(AESAKEY)

Plaintext
(AESADIN)

Initial Key

Initial Round

Round Key 1

Round 1

Round Key 2

Round 2

Round Key 9

Round 9

Round Key 10

Final Round

Cipher

Encryption Process

Ciphertext
(AESADOUT)

Figure 14-3. AES Encryption Process for 128-Bit Key
To perform encryption:
1. Set AESOPx = 00 to select encryption. Changing the AESOPx bits clears the AESKEYWR flag, and a
new key must be loaded in the next step.
2. Load the key as described in Section 14.2.1.
3. Load the state (data) as described in Section 14.2.2. After the data is loaded, the AES module starts
the encryption.
4. After the encryption is ready, the result can be read from AESADOUT as described in Section 14.2.3.
5. To encrypt additional data with the same key loaded in step 2, write the new data into AESADIN after
the results of the operation on the previous data were read from AESADOUT. When an additional 16
data bytes are written, the module automatically starts the encryption using the key loaded in step 2.
When implementing, for example, the output feedback (OFB) cipher block chaining mode, setting the
AESDINWR flag triggers the next encryption, and the module starts the encryption using the output
data from the previous encryption as the input data.

400

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Operation

www.ti.com

14.2.6 Decryption
Figure 14-4 shows the decryption process with the inverse cipher being a series of transformations that
convert the ciphertext written into the AESADIN register to a plaintext that can be read from the
AESADOUT register using the cipher key provided in the AESAKEY register.
Decrypt Key Generation

Decryption Process – Inverse Cipher

Initial Key

Initial Key

Inverse
Initial Round

Round Key 1

Round Key 1

Inverse Round 1

Round Key 2

Round Key 2

Inverse Round 2

Round Key 9

Round Key 9

Inverse Round 9

Round Key 10

Round Key 10

Inverse
Final Round

Inverse Cipher

Plaintext
(AESADOUT)

Cipher Key
(AESAKEY)

Ciphertext
(AESADIN)

Figure 14-4. AES Decryption Process Using AESOPx = 01 for 128-Bit Key
The steps to perform decryption are:
1. Set AESOPx = 01 to select decryption using the same key used for encryption. Set AESOPx = 11 if
the first-round key required for decryption (the last roundkey) is already generated and will be loaded in
step 2. Changing the AESOPx bits clears the AESKEYWR flag, and a new key must be loaded in
step 2.
2. Load the key according to Section 14.2.1.
3. Load the state (data) according to Section 14.2.2. After the data is loaded, the AES module starts the
decryption.
4. After the decryption is ready, the result can be read from AESADOUT according to Section 14.2.3.
5. If additional data should be decrypted with the same key loaded in step 2, new data can be written into
AESADIN after the results of the operation on the previous data were read from AESADOUT. When
additional 16 data bytes are written, the module automatically starts the decryption using the key
loaded in step 2.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

401

AES Accelerator Operation

www.ti.com

14.2.7 Decryption Key Generation
Figure 14-5 shows the decryption process with a pregenerated decryption key. In this case, the decryption
key is calculated first with AESOPx = 10, then the precalculated key can be used together with the
decryption operation AESOPx = 11.
Decrypt Key Generation
(AESOPx = 10)

Decryption Process – Inverse Cipher
(AESOPx = 11)

Initial Key

Initial Key

Inverse
Initial Round

Round Key 1

Round Key 1

Inverse Round 1

Round Key 2

Round Key 2

Inverse Round 2

Round Key 9

Round Key 9

Inverse Round 9

Round Key 10

Round Key 10

Inverse
Final Round

Pregenerated Key
(AESADOUT)

Pregenerated Key
(AESAKEY)

Ciphertext
(AESADIN)

Inverse Cipher

Plaintext
(AESADOUT)

Cipher Key
(AESAKEY)

Figure 14-5. AES Decryption Process Using AESOPx = 10 and 11 for 128-bit Key
To generate the decryption key independent from the actual decryption:
1. Set AESOPx = 10 to select decryption key generation. Changing the AESOPx bits clears the
AESKEYWR flag, and a new key must be loaded in step 2.
2. Load the key as described in Section 14.2.1. The generation of the first round key required for
decryption is started immediately.
3. While the AES module is performing the key generation, the AESBUSY bit is 1. 53 CPU clock cycles
are required to complete the key generation for a 128-bit key (for other key lengths, see Table 14-1).
After its completion, the AESRDYIFG is set, and the result can be read from AESADOUT. When all 16
bytes are read, the AESDOUTRD flag indicates completion.
The AESRDYIFG flag is cleared when reading AESADOUT or writing to AESAKEY or AESADIN.
4. If data should be decrypted with the generated key, AESOPx must be set to 11. Then the generated
key must be loaded or, if it was just generated with AESOPx = 10, set the AESKEYWR flag by
software to indicate that the key is already valid.
5. See Section 14.2.6 for instructions on the decryption steps, starting from step 3 (load data).

402

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Operation

www.ti.com

14.2.8 AES Key Buffer
The AES128, AES192, or AES256 algorithm operates not only on the state but also on the key. To avoid
the need of reloading the key for each encryption or decryption, a key buffer is included in the AES
accelerator.

14.2.9 Using the AES Accelerator With Low-Power Modes
The AES accelerator module provides automatic clock activation for MCLK for use with low-power modes.
When the AES accelerator is busy, it automatically activates MCLK, regardless of the control-bit settings
for the clock source. The clock remains active until the AES accelerator completes its operation.
The interrupt flag AESRDYIFG is reset after a PUC or with AESSWRST = 1. AESRDYIE is reset after a
PUC but is not reset by AESSWRST = 1.

14.2.10 AES Accelerator Interrupts
The AESRDYIFG interrupt flag is set when the AES module completes the selected operation on the
provided data. An interrupt request is generated if AESRDYIE and GIE are also set. AESRDYIFG is
automatically reset if the AES interrupt is serviced, if AESADOUT is read, or if AESADIN or AESAKEY are
written. AESRDYIFG is reset after a PUC or with AESSWRST = 1. AESRDYIE is reset after a PUC but is
not reset by AESSWRST = 1.

14.2.11 DMA Operation and Implementing Block Cipher Modes
DMA operation, meaning the implementation of the cipher modes Electronic code book (ECB), Cipher
block chaining (CBC), Output feedback (OFB), and Cipher feedback (CFB) using the DMA, supports easy
and fast encryption and decryption of more than 128 bits.
When DMA cipher mode support is enabled by setting the AESCMEN bit, the AES256 module triggers
'AES trigger 0', 'AES trigger 1', and 'AES trigger 2' (also called 'AES trigger 0-2') in a certain order to
execute different block cipher modes together with the DMA module.
For example, when using ECB encryption with AESCMEN = 1, 'AES trigger 0' is triggered eight times for
DMA word access to read out AESADOUT, and then 'AES trigger 1' is triggered eight times to fill the next
data into AESADIN. Because the AES modules generates a trigger for each word or byte the single
transfer mode of the DMA must be used.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

403

AES Accelerator Operation

www.ti.com

Table 14-2 shows the behavior of the 'AES trigger 0-2' for the different cipher modes selected by
AESCMx.
Table 14-2. 'AES trigger 0-2' Operation When AESCMEN = 1
AESCMx

AESOPx

'AES trigger 0'

'AES trigger 1'

'AES trigger 2'

00
encryption

Set after encryption ready,
set again until 128 bit are
read from AESADOUT

Set to load the first block and set
after 'AES trigger 0' was served the
last time, set again until 128 bit are
written to AESADIN

not set

01 or 11
decryption

Set after decryption ready,
set again until 128 bit are
read from AESADOUT

Set to load the first block and set
after 'AES trigger 0' was served the
last time, set again until 128 bit are
written to AESADIN

not set

00
encryption

Set after encryption ready,
set again until 128 bit are
read from AESADOUT

Set after 'AES trigger 0' was
served the last time, set again until
128 bit are written to AESAXDIN

not set

01 or 11
decryption

Set after decryption ready,
set again until 128 bit are
written to from AESAXIN

Set after 'AES trigger 0' was
served the last time, set again until
128 bit are read from AESADOUT

Set after 'AES trigger 1' was
served the last time, set again until
128 bit are written to AESADIN

00
encryption

Set after encryption ready,
set again until 128 bit are
written to AESAXIN

Set after 'AES trigger 0' was
served the last time, set again until
128 bit are read from AESADOUT

Set after 'AES trigger 1' was
served the last time, set again until
128 bit are written to AESAXDIN

01 or 11
decryption

Set after decryption ready,
set again until 128 bit are
written to AESAXIN

Set after 'AES trigger 0' was
served the last time, set again until
128 bit are read from AESADOUT

Set after 'AES trigger 1' was
served the last time, set again until
128 bit are written to AESAXDIN

00
encryption

Set after encryption ready,
set again until 128 bit are
written to AESAXIN

Set after 'AES trigger 0' was
served the last time, set again until
128 bit are read from AESADOUT

not set

01 or 11
decryption

Set after decryption ready,
set again until 128 bit are
written to AESAXIN

Set after 'AES trigger 0' was
served the last time, set again until
128 bit are read from AESADOUT

Set after 'AES trigger 1' was
served the last time, set again until
128 bit are written to AESADIN

00
ECB

01
CBC

10
OFB

11
CFB

The retriggering of the 'AES trigger 0-2' until 128-bit of data are written or read from the corresponding
register supports both byte and word access for writing and reading the state through the DMA.
For AESCMEN = 0, no DMA triggers are generated.
The following sections explain the configuration of the AES module for automatic cipher mode execution
using DMA.
It is assumed that the key is written by software (or by a separate DMA transfer) before writing the first
block to the AES state. The key shadow register always restores the original key, so that there is no need
to reload it. The AESAKEY register should not be written after AESBLKCNTx is written to a non-zero
value.
The number of blocks to be encrypted or decrypted must be programmed into the AESBLKCNTx bits
before writing the first data. Writing a non-zero value into AESBLKCNTx starts the cipher mode sequence
and, thus, AESBLKCNTx must be written after the DMA channels are configured.
Throughout these sections, the different DMA channels are called DMA_A, DMA_B, and so on. In the
figures, these letters appear in dotted circles showing which operation is going to be executed by which
DMA channel. The DMA counter must be loaded with a multiple of 8 for word mode or a multiple of 16 for
byte mode and the single transfer mode of the DMA must be selected. The DMA priorities of DMA_A,
DMA_B, and DMA_C do not play any role but static DMA priorities must be enabled. The DMA triggers
must be configured as level-sensitive triggers.

404

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Operation

www.ti.com

14.2.11.1 Electronic Codebook (ECB) Mode
The electronic codebook block cipher mode is the most simple cipher mode. The data is divided into 128bit blocks and encrypted and decrypted separately.
The disadvantage of the ECB is that the same 128-bit plaintext is always encrypted to the same
ciphertext, whereas the other modes encrypt each block differently, partly dependent on the already
executed encryptions.
14.2.11.1.1 ECB Encryption
B

Key

Plaintext

Plaintext

AES128/192/256
encrypt

Ciphertext

A

Key

AES128/192/256
encrypt

Plaintext

Key

AES128/192/256
encrypt

Ciphertext

Ciphertext

Figure 14-6. ECB Encryption
To implement the ECB encryption without CPU interaction, two DMA channels are needed. Static DMA
priorities must be enabled. The DMA triggers must be configured as level-sensitive triggers.
Table 14-3. AES and DMA Configuration for ECB Encryption
AES
CMEN

AES
CMx

AES
OPx

DMA_A
Triggered by 'AES trigger 0'

DMA_B
Triggered by 'AES trigger 1'

1

00

00

Read ciphertext from AESADOUT

Write plaintext to AESADIN, which also
triggers the next encryption

The following pseudo code snippet shows the implementation of the ECB encryption in software:
ECB_Encryption(key, plaintext, ciphertext, num_blocks)
// Pseudo Code
{
Configure AES for block cipher:
AESCMEN= 1; AESCMx= ECB; AESOPx= 00;
Write key into AESAKEY;
Setup DMA:
DMA0: Triggered by AES trigger 0,
Source: AESADOUT, Destination: ciphertext,
Size: num_blocks*8 words, Single Transfer mode
DMA1: Triggered by AES trigger 1,
Source: plaintext, Destination: AESADIN,
Size: num_blocks*8 words, Single Transfer mode
Start encryption:
AESBLKCNT= num_blocks;
End of encryption: DMA0IFG=1
}

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

405

AES Accelerator Operation

www.ti.com

14.2.11.1.2 ECB Decryption
B

Key

Ciphertext

AES128/192/256
decrypt

Plaintext

Ciphertext

Key

AES128/192/256
decrypt

Ciphertext

AES128/192/256
decrypt

Key

Plaintext

Plaintext

A

Figure 14-7. ECB Decryption
To implement the ECB decryption without CPU interaction, two DMA channels are needed. Static DMA
priorities must be enabled. The DMA triggers must be configured as level-sensitive triggers.
Table 14-4. AES DMA Configuration for ECB Decryption
AES
CMEN

AES
CMx

AES
OPx

DMA_A
Triggered by 'AES trigger 0'

DMA_B
Triggered by 'AES trigger 1'

1

00

01 or 11

Read plaintext from AESADOUT

Write ciphertext to AESADIN, which also
triggers the next decryption

The following pseudo code snippet shows the implementation of the ECB decryption in software:
ECB_Decryption(key, plaintext, ciphertext, num_blocks)
// Pseudo Code
{
Generate Decrypt Key
Configure AES:
AESCMEN= 0; AESOPx= 10;
Write key into AESAKEY;
Wait until key generation completed.
Configure AES for block cipher:
AESCMEN= 1; AESCMx= ECB; AESOPx= 11;
AESKEYWR= 1; // Use previously generated key
Setup DMA:
DMA0: Triggered by AES trigger 0,
Source: AESADOUT, Destination: plaintext,
Size: num_blocks*8 words, Single Transfer mode
DMA1: Triggered by AES trigger 1,
Source: ciphertext, Destination: AESADIN,
Size: num_blocks*8 words, Single Transfer mode
Start decryption:
AESBLKCNT= num_blocks;
End of decryption: DMA0IFG=1
}

406

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Operation

www.ti.com

14.2.11.2 Cipher Block Chaining (CBC) Mode
The cipher block chaining cipher mode always performs an XOR on the ciphertext of the previous block
with the current block. Therefore, the encryption of each block depends not only on the key but also on the
previous encryption.
14.2.11.2.1 CBC Encryption
For encryption, the initialization vector must be loaded by software (or by a separate DMA transfer) into
AESXIN before the DMA can be enabled to write the first 16 bytes of the plaintext into AESAXDIN
B
Initialization Vector

Key

Plaintext

AES128/192/256
encrypt

Plaintext

Key

AES128/192/256
encrypt

Ciphertext
A

Plaintext

AES128/192/256
encrypt

Key

Ciphertext

Ciphertext

Figure 14-8. CBC Encryption
To implement the CBC encryption without CPU interaction, two DMA channels are needed. Static DMA
priorities must be enabled. The DMA triggers must be configured as level-sensitive triggers.
Table 14-5. AES and DMA Configuration for CBC Encryption
AES
CMEN

AES
CMx

AES
OPx

DMA_A
Triggered by 'AES trigger 0'

DMA_B
Triggered by 'AES trigger 1'

1

01

00

Read ciphertext from
AESADOUT

Write plaintext to AESAXDIN, which also triggers the next
encryption

The following pseudo code snippet shows the implementation of the CBC encryption in software:
CBC_Encryption(key, IV, plaintext, ciphertext, num_blocks)
// Pseudo Code
{
Reset AES Module (clears internal state memory):
AESSWRST= 1;
Configure AES for block cipher:
AESCMEN= 1; AESCMx= CBC; AESOPx= 00;
Write key into AESAKEY;
Write IV into AESAXIN; // Does not trigger encryption.
// Assumes that state is reset (=> XORing with Zeros).
Setup DMA:
DMA0: Triggered by AES trigger 0,
Source: AESADOUT, Destination: ciphertext,
Size: num_blocks*8 words, Single Transfer mode
DMA1: Triggered by AES trigger 1,
Source: plaintext, Destination: AESAXDIN,
Size: num_blocks*8 words, Single Transfer mode
Start encryption:
AESBLKCNT= num_blocks;
End of encryption: DMA0IFG=1
}

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

407

AES Accelerator Operation

www.ti.com

14.2.11.2.2 CBC Decryption
For CBC decryption, the first block of data needs some special handling because the output must be
XORed with the Initialization Vector. For that purpose, the DMA triggered by 'AES trigger 0' must be
configured to read the data from the Initialization Vector first and then must be reconfigured to read from
the ciphertext.
C

A
Initialization Vector

Key

Ciphertext

Ciphertext

AES128/192/256
decrypt

Key

Plaintext

Ciphertext

AES128/192/256
decrypt

Plaintext

Key

AES128/192/256
decrypt

Plaintext

B

Figure 14-9. CBC Decryption
To implement the CBC decryption without CPU interaction, three DMA channels are needed. Static DMA
priorities must be enabled. The DMA triggers must be configured as level-sensitive triggers.
Table 14-6. AES and DMA Configuration for CBC Decryption
AES
CMEN

AES
CMx

AES
OPx

DMA_A
Triggered by 'AES trigger 0'

DMA_B
Triggered by 'AES trigger 1'

DMA_C
Triggered by 'AES trigger 2'

1

01

01 or
11

Write the previous ciphertext
block to AESAXIN

Read plaintext from AESADOUT

Write next plaintext to AESADIN,
which also triggers the next
decryption

The following pseudo code snippet shows the implementation of the CBC decryption in software:
CBC_Decryption(key, IV, plaintext, ciphertext, num_blocks)
// Pseudo Code
{
Generate Decrypt Key:
Configure AES:
AESCMEN= 0; AESOPx= 10;
Write key into AESAKEY;
Wait until key generation completed;
Configure AES for block cipher:
AESCMEN= 1; AESCMx= CBC; AESOPx= 11;
AESKEYWR= 1; // Use previously generated key
Setup DMA:
DMA0: Triggered by AES trigger 0,
Source: IV,
Destination: AESAXIN,
Size: 8 words, Single Transfer mode
DMA1: Triggered by AES trigger 1,
Source: AESADOUT,
Destination: plaintext,
Size: num_blocks*8 words, Single Transfer mode
DMA2: Triggered by AES trigger 2,
Source: ciphertext, Destination: AESADIN,
Size: num_blocks*8 words, Single Transfer mode
Start decryption:
AESBLKCNT= num_blocks;
Wait until first block is decrypted: DMA0IFG=1;
Setup DMA0 for further blocks:
DMA0: // Write previous cipher text into AES module
Triggered by AES trigger 0,
408

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Operation

www.ti.com
Source: ciphertext, Destination: AESAXIN,
Size: (num_blocks-1)*8 words, Single Transfer mode
End of decryption: DMA1IFG=1
}

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

409

AES Accelerator Operation

www.ti.com

14.2.11.3 Output Feedback (OFB) Mode
The output feedback cipher mode continuously encrypts the initialization vector. The ciphertext is
generated by XORing the corresponding plaintext with the encrypted initialization vector.
The initialization vector must be loaded by software (or by a separate DMA transfer).
14.2.11.3.1 OFB Encryption
Initialization Vector

Key
C

A

AES128/192/256
encrypt

Plaintext

Key

AES128/192/256
encrypt

Plaintext

B

Ciphertext

Key

AES128/192/256
encrypt

Plaintext

Ciphertext

Ciphertext

Figure 14-10. OFB Encryption
To implement the OFB encryption without CPU interaction, three DMA channels are needed. Static DMA
priorities must be enabled. The DMA triggers must be configured as level-sensitive triggers.
Table 14-7. AES and DMA Configuration for OFB Encryption
AES
CMEN

AES
CMx

AES
OPx

DMA_A
Triggered by 'AES trigger 0'

DMA_B
Triggered by 'AES trigger 1'

DMA_C
Triggered by 'AES trigger 2'

1

10

00

Write the plaintext of the current
block to AESAXIN

Read ciphertext from
AESADOUT

Write the plaintext of the current
block to AESAXDIN, which also
triggers the next encryption

The following pseudo code snippet shows the implementation of the OFB encryption in software:
OFB_Encryption(Key, IV, plaintext, ciphertext, num_blocks)
// Pseudo Code
{
Reset AES Module (clears internal state memory):
AESSWRST= 1;
Configure AES:
AESCMEN= 1; AESCMx= OFB; AESOPx= 00;
Write Key into AESAKEY;
Write IV into AESAXIN; // Does not trigger encryption.
// Assumes that state is reset (=> XORing with Zeros).
Setup DMA:
DMA0: Triggered by AES trigger 0,
Source: plaintext, Destination: AESAXIN,
Size: num_blocks*8 words, Single Transfer mode
DMA1: Triggered by AES trigger 1,
Source: AESADOUT, Destination: ciphertext,
Size: num_blocks*8 words, Single Transfer mode
DMA2: Triggered by AES trigger 2,
Source: plaintext, Destination: AESAXDIN,
Size: num_blocks*8 words, Single Transfer mode
Start encryption:
AESBLKCNT= num_blocks;
Trigger encryption by setting AESDINWR= 1;
End of encryption: DMA1IFG=1
}

410

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Operation

www.ti.com

14.2.11.3.2 OFB Decryption
Initialization Vector

Key
C A

AES128/192/256
encrypt

Key

AES128/192/256
encrypt

Ciphertext

Ciphertext

Plaintext

Key

AES128/192/256
encrypt

Ciphertext

Plaintext

Plaintext

B

Figure 14-11. OFB Decryption
To implement the OFB decryption without CPU interaction, three DMA channels are needed. Static DMA
priorities must be enabled. The DMA triggers must be configured as level-sensitive triggers.
Table 14-8. AES and DMA Configuration for OFB Decryption
AES
CMEN

AES
CMx

AES
OPx

1

10

01 or
11 (1)

(1)

DMA_A
Triggered by 'AES trigger 0'

DMA_B
Triggered by 'AES trigger 1'

Write the ciphertext of the current
Read plaintext from AESADOUT
block to AESAXIN

DMA_C
Triggered by 'AES trigger 2'
Write the ciphertext of the current
block to AESAXDIN, which also
triggers the next encryption

Note, in this cipher mode, the decryption also uses AES encryption on block level, thus the key used for decryption is identical
with the key used for encryption; therefore, no decryption key generation is required.

The following pseudo code snippet shows the implementation of the OFB decryption in software:
OFB_Decryption(Key, IV, plaintext, ciphertext, num_blocks)
// Pseudo Code
{
Reset AES Module (clears internal state memory):
AESSWRST= 1;
Configure AES:
AESCMEN= 1; AESCMx= OFB; AESOPx= 01;
Write Key into AESAKEY;
Write IV into AESAXIN; // Does not trigger encryption.
// Assumes that state is reset (=> XORing with Zeros).
Setup DMA:
DMA0: Triggered by AES trigger 0,
Source: ciphertext, Destination: AESAXIN,
Size: num_blocks*8 words, Single Transfer mode
DMA1: Triggered by AES trigger 1,
Source: AESADOUT,
Destination: plaintext,
Size: num_blocks*8 words, Single Transfer mode
DMA2: Triggered by AES trigger 2,
Source: ciphertext, Destination: AESAXDIN,
Size: num_blocks*8 words, Single Transfer mode
Start decryption:
AESBLKCNT= num_blocks;
Trigger decryption by setting AESDINWR= 1;
End of decryption: DMA1IFG=1
}

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

411

AES Accelerator Operation

www.ti.com

14.2.11.4 Cipher Feedback (CFB) Mode
In the cipher feedback cipher mode, the plaintext of the new block is XORed to the last encryption result.
The result of the encryption is the input for the new encryption.
The initialization vector must be loaded by software (or by a separate DMA transfer).
14.2.11.4.1 CFB Encryption
Initialization Vector

Key
A

AES128/192/256
encrypt

Plaintext

Key

AES128/192/256
encrypt

Plaintext

Ciphertext

Key

AES128/192/256
encrypt

Plaintext

Ciphertext

Ciphertext

B

Figure 14-12. CFB Encryption
To implement the CFB encryption without CPU interaction, two DMA channels are needed. Static DMA
priorities must be enabled. The DMA triggers must be configured as level-sensitive triggers.
Table 14-9. AES and DMA Configuration for CFB Encryption
AES
CMEN

AES
CMx

AES
OPx

DMA_A
Triggered by 'AES trigger 0'

DMA_B
Triggered by 'AES trigger 1'

1

11

00

Write the plaintext of the current block to
AESAXIN

Read the ciphertext from AESADOUT,
which also triggers the next encryption

The following pseudo code snippet shows the implementation of the CFB encryption in software:
CFB_Encryption(Key, IV, plaintext, ciphertext, num_blocks)
// Pseudo Code
{
Reset AES Module (clears internal state memory):
AESSWRST= 1;
Configure AES:
AESCMEN= 1; AESCMx= CFB; AESOPx= 00;
Write Key into AESAKEY;
Write IV into AESAXIN; // Does not trigger encryption.
// Assumes that state is reset (=> XORing with Zeros).
Setup DMA:
DMA0: Triggered by AES trigger 0,
Source: plaintext, Destination: AESAXIN,
Size: num_blocks*8 words, Single Transfer mode
DMA1: Triggered by AES trigger 1,
Source: AESADOUT, Destination: ciphertext,
Size: num_blocks*8 words, Single Transfer mode
Start encryption:
AESBLKCNT= num_blocks;
Trigger encryption by setting AESDINWR= 1;
End of encryption: DMA1IFG=1
}

412

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Operation

www.ti.com

14.2.11.4.2 CFB Decryption
Initialization Vector

Key

AES128/192/256
encrypt

Key

Ciphertext
A
C

Plaintext

AES128/192/256
encrypt

Key

AES128/192/256
encrypt

Ciphertext
Plaintext

Ciphertext
Plaintext

B

Figure 14-13. CFB Decryption
To implement the CFB decryption without CPU interaction, three DMA channels are needed. Static DMA
priorities must be enabled. The DMA triggers must be configured as level-sensitive triggers.
Table 14-10. AES and DMA Configuration for CFB Decryption

(1)

AES
CMEN

AES
CMx

AES
OPx

DMA_A
Triggered by 'AES trigger 0'

DMA_B
Triggered by 'AES trigger 1'

DMA_C
Triggered by 'AES trigger 2'

1

11

01 or
11 (1)

Write the ciphertext of the
current block to AESAXIN

Read the plaintext from
AESADOUT

Write the ciphertext of the
current block to AESADIN,
which also triggers the next
encryption

Note, in this cipher mode, the decryption also uses AES encryption on block level thus the key used for decryption is identical
with the key used for encryption; therefore, no decryption key generation is required.

The following pseudo code snippets shows the implementation of the CFB encryption and decryption in
software:
CFB_Decryption(Key, IV, plaintext, ciphertext, num_blocks)
// Pseudo Code
{
Reset AES Module (clears internal state memory):
AESSWRST= 1;
Configure AES:
AESCMEN= 1; AESCMx= CFB; AESOPx= 01;
Write Key into AESAKEY;
Write IV into AESAXIN; // Does not trigger encryption.
// Assumes that state is reset (=> XORing with Zeros).
Setup DMA:
DMA0: Triggered by AES trigger 0,
Source: ciphertext, Destination: AESAXIN,
Size: num_blocks*8 words, Single Transfer mode
DMA1: Triggered by AES trigger 1,
Source: AESADOUT,
Destination: plaintext,
Size: num_blocks*8 words, Single Transfer mode
DMA2: Triggered by AES trigger 2,
Source: ciphertext, Destination: AESADIN,
Size: num_blocks*8 words, Single Transfer mode
Start decryption:
AESBLKCNT= num_blocks;
Trigger decryption by setting AESDINWR= 1;
End of decryption: DMA1IFG=1
}

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

413

AES Accelerator Registers

www.ti.com

14.3 AES Accelerator Registers
Table 14-11 shows the memory-mapped registers for the AES256 module with their address offsets. See
the device-specific data sheet for the base memory address of these registers. All other register offset
addresses not listed in Table 14-11 should be considered as reserved locations, and the register contents
should not be modified.
Table 14-11. AES256 Registers

414

Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

AESACTL0

AES accelerator control register 0

Read/write

Word

00h

Section 14.3.1

02h

AESACTL1

AES accelerator control register 1

Read/write

Word

00h

Section 14.3.2

04h

AESASTAT

AES accelerator status register

Read only

Word

00h

Section 14.3.3

06h

AESAKEY

AES accelerator key register

Read/write

Word

00h

Section 14.3.4

08h

AESADIN

AES accelerator data in register

Write only

Word

00h

Section 14.3.5

0Ah

AESADOUT

AES accelerator data out register

Read/write

Word

00h

Section 14.3.6

0Ch

AESAXDIN

AES accelerator XORed data in register Write only

Word

00h

Section 14.3.7

0Eh

AESAXIN

AES accelerator XORed data in register Write only
(no trigger)

Word

00h

Section 14.3.8

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Registers

www.ti.com

14.3.1 AESACTL0 Register
AES Accelerator Control Register 0
Figure 14-14. AESACTL0 Register
15
AESCMEN
rw-0

14

7
AESSWRST
rw-0

6

13
Reserved

r0

r0
5
AESCMx

r0

r0

12
AESRDYIE
rw-0

11
AESERRFG
rw-0

10

9

r0

r0

4
Reserved
r0

3

2

1

Reserved

AESKLx
rw-0

8
AESRDYIFG
rw-0
0
AESOPx

rw-0

rw-0

rw-0

Writes are ignored when AESCMEN = 1 and AESBLKCNTx > 0.

Table 14-12. AESACTL0 Register Description
Bit

Field

Type

Reset

Description

15

AESCMEN

RW

0h

AESCMEN enables the support of the cipher modes ECB, CBC, OFB and CFB
together with the DMA. Writes are ignored when AESCMEN = 1 and
AESBLKCNTx > 0.
0 = No DMA triggers are generated
1 = DMA cipher mode support operation is enabled and the corresponding DMA
triggers are generated.

14-13

Reserved

R

0h

Reserved

12

AESRDYIE

RW

0h

AES ready interrupt enable. AESRDYIE is not reset by AESSWRST = 1.
0b = Interrupt disabled
1b = Interrupt enabled

11

AESERRFG

RW

0h

AES error flag. AESAKEY or AESADIN were written while an AES operation was
in progress. The bit must be cleared by software.
0b = No error
1b = Error occurred

10-9

Reserved

R

0h

Reserved

8

AESRDYIFG

RW

0h

AES ready interrupt flag. Set when the selected AES operation was completed
and the result can be read from AESADOUT. Automatically cleared when
AESADOUT is read or AESAKEY or AESADIN is written.
0b = No interrupt pending
1b = Interrupt pending

7

AESSWRST

RW

0h

AES software reset. Immediately resets the complete AES accelerator module
even when busy except for the AESRDYIE, the AESKLx and the AESOPx bits. It
also clears the (internal) state memory.
The AESSWRST bit is automatically reset and is always read as zero.
0b = No reset
1b = Reset AES accelerator module

6-5

AESCMx

RW

0h

AES cipher mode select. These bits are ignored for AESCMEN = 0. Writes are
ignored when AESCMEN = 1 and AESBLKCNTx > 0.
00b = ECB
01b = CBC
10b = OFB
11b = CFB

4

Reserved

R

0h

Reserved

3-2

AESKLx

RW

0h

AES key length. These bits define which of the 3 AES standards is performed.
The AESKLx bits are not reset by AESSWRST = 1. Writes are ignored when
AESCMEN = 1 and AESBLKCNTx > 0.
00b = AES128. The key size is 128 bit.
01b = AES192. The key size is 192 bit.
10b = AES256. The key size is 256 bit.
11b = Reserved

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

415

AES Accelerator Registers

www.ti.com

Table 14-12. AESACTL0 Register Description (continued)
Bit

Field

Type

Reset

Description

1-0

AESOPx

RW

0h

AES operation. The AESOPx bits are not reset by AESSWRST = 1. Writes are
ignored when AESCMEN = 1 and AESBLKCNTx > 0.
00b = Encryption
01b = Decryption. The provided key is the same key used for encryption.
10b = Generate first round key required for decryption.
11b = Decryption. The provided key is the first round key required for decryption.

416

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Registers

www.ti.com

14.3.2 AESACTL1 Register
AES Accelerator Control Register 1
Figure 14-15. AESACTL1 Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

2

1

0

rw-0

rw-0

rw-0

Reserved
r0

r0

r0

r0

7

6

5

4

rw-0

rw-0

rw-0

3
AESBLKCNTx
rw-0
rw-0

Writes are ignored when AESCMEN = 1 and AESBLKCNTx > 0.

Table 14-13. AESACTL1 Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved. Always reads 0.

7-0

AESBLKCNTx

RW

0h

Cipher Block Counter. Number of blocks to be encrypted or decrypted with block
cipher modes enabled (AESCMEN = 1). Ignored if AESCMEN = 0.
The block counter decrements with each performed encryption or decryption.
Writes are ignored when AESCMEN = 1 and AESBLKCNTx > 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

417

AES Accelerator Registers

www.ti.com

14.3.3 AESASTAT Register
AES Accelerator Status Register
Figure 14-16. AESASTAT Register
15

14
13
AESDOUTCNTx
r-0
r-0

r-0
7

6

12

r-0

10

9

8

AESDINCNTx
r-0

r-0

r-0

r-0

r-0

5

4

r-0

r-0

3
AESDOUTRD
r-0

2
AESDINWR
rw-0

1
AEKEYWR
rw-0

0
AESBUSY
r-0

AESKEYCNTx
r-0

11

Table 14-14. AESASTAT Register Description
Bit

Field

Type

Reset

Description

15-12

AESDOUTCNTx

R

0h

Bytes read from AESADOUT. Reset when AESDOUTRD is reset.
If AESDOUTCNTx = 0 and AESDOUTRD = 0, no bytes were read.
If AESDOUTCNTx = 0 and AESDOUTRD = 1, all bytes were read.

11-8

AESDINCNTx

R

0h

Bytes written to AESADIN, AESAXDIN or AESAXIN. Reset when AESDINWR is
reset.
If AESDINCNTx = 0 and AESDINWR = 0, no bytes were written.
If AESDINCNTx = 0 and AESDINWR = 1, all bytes were written.

7-4

AESKEYCNTx

R

0h

Bytes written to AESAKEY for AESKLx = 00, words written to AESAKEY if
AESKLx = 01, 10, 11. Reset when AESKEYWR is reset.
If AESKEYCNTx = 0 and AESKEYWR = 0, no bytes were written.
If AESKEYCNTx = 0 and AESKEYWR = 1, all bytes were written.

3

AESDOUTRD

R

0h

All 16 bytes read from AESADOUT. AESDOUTRD is reset by PUC,
AESSWRST, an error condition, changing AESOPx, changing AESKLx, when
the AES accelerator is busy, and when the output data is read again.
0 = Not all bytes read
1 = All bytes read

2

AESDINWR

RW

0h

All 16 bytes written to AESADIN, AESAXDIN or AESAXIN. Changing its state by
software also resets the AESDINCNTx bits.
AESDINWR is reset by PUC, AESSWRST, an error condition, changing
AESOPx, changing AESKLx, the start to (over)write the data, and when the AES
accelerator is busy. Because it is reset when AESOPx or AESKLx is changed it
can be set by software again to indicate that the current data is still valid.
0 = Not all bytes written
1 = All bytes written

1

AESKEYWR

RW

0h

All 16 bytes written to AESAKEY. This bit can be modified by software but it
must not be reset by software (1→0) if AESCMEN=1. Changing its state by
software also resets the AESKEYCNTx bits.
AESKEYWR is reset by PUC, AESSWRST, an error condition, changing
AESOPx, changing AESKLx, and the start to (over)write a new key. Because it is
reset when AESOPx is changed it can be set by software again to indicate that
the loaded key is still valid
0 = Not all bytes written
1 = All bytes written

0

AESBUSY

R

0h

AES accelerator module busy; encryption, decryption, or key generation in
progress.
0 = Not busy
1 = Busy

418

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Registers

www.ti.com

14.3.4 AESAKEY Register
AES Accelerator Key Register
Figure 14-17. AESAKEY Register
15

14

13

12

11

10

9

8

w-0

w-0

w-0

w-0

3

2

1

0

w-0

w-0

w-0

w-0

AESKEY1x
w-0

w-0

w-0

w-0

7

6

5

4
AESKEY0x

w-0

w-0

w-0

w-0

Table 14-15. AESAKEY Register Description
Bit

Field

Type

Reset

Description

15-8

AESKEY1x

W

0h

AES key byte n+1 when AESAKEY is written as word. Do not use these bits for
byte access. Do not mix word and byte access. Always reads as zero. The key is
reset by PUC or by AESSWRST = 1.

7-0

AESKEY0x

W

0h

AES key byte n when AESAKEY is written as word. AES next key byte when
AESAKEY_L is written as byte. Do not mix word and byte access. Always reads
as zero. The key is reset by PUC or by AESSWRST = 1.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

419

AES Accelerator Registers

www.ti.com

14.3.5 AESADIN Register
AES Accelerator Data In Register
Figure 14-18. AESADIN Register
15

14

13

12

11

10

9

8

w-0

w-0

w-0

w-0

3

2

1

0

w-0

w-0

w-0

w-0

AESDIN1x
w-0

w-0

w-0

w-0

7

6

5

4
AESDIN0x

w-0

w-0

w-0

w-0

Table 14-16. AESADIN Register Description
Bit

Field

Type

Reset

Description

15-8

AESDIN1x

W

0h

AES data in byte n+1 when AESADIN is written as word. Do not use these bits
for byte access. Do not mix word and byte access. Always reads as zero.

7-0

AESDIN0x

W

0h

AES data in byte n when AESADIN is written as word. AES next data in byte
when AESADIN_L is written as byte. Do not mix word and byte access. Always
reads as zero.

420

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Registers

www.ti.com

14.3.6 AESADOUT Register
AES Accelerator Data Out Register
Figure 14-19. AESADOUT Register
15

14

13

12

11

10

9

8

r-0

r-0

r-0

r-0

3

2

1

0

r-0

r-0

r-0

r-0

AESDOUT1x
r-0

r-0

r-0

r-0

7

6

5

4
AESDOUT0x

r-0

r-0

r-0

r-0

Table 14-17. AESADOUT Register Description
Bit

Field

Type

Reset

Description

15-8

AESDOUT1x

R

0h

AES data out byte n+1 when AESADOUT is read as word. Do not use these bits
for byte access. Do not mix word and byte access.

7-0

AESDOUT0x

R

0h

AES data out byte n when AESADOUT is read as word. AES next data out byte
when AESADOUT_L is read as byte. Do not mix word and byte access.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

421

AES Accelerator Registers

www.ti.com

14.3.7 AESAXDIN Register
AES Accelerator XORed Data In Register
Figure 14-20. AESAXDIN Register
15

14

13

12

11

10

9

8

w-0

w-0

w-0

w-0

3

2

1

0

w-0

w-0

w-0

w-0

AESXDIN1x
w-0

w-0

w-0

w-0

7

6

5

4
AESXDIN0x

w-0

w-0

w-0

w-0

Table 14-18. AESAXDIN Register Description
Bit

Field

Type

Reset

Description

15-8

AESXDIN1x

W

0h

AES data in byte n+1 when AESAXDIN is written as word. Do not use these bits
for byte access. Do not mix word and byte access. Always reads as zero.

7-0

AESXDIN0x

W

0h

AES data in byte n when AESAXDIN is written as word. AES next data in byte
when AESAXDIN_L is written as byte. Do not mix word and byte access. Always
reads as zero.

422

AES256 Accelerator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES Accelerator Registers

www.ti.com

14.3.8 AESAXIN Register
AES Accelerator XORed Data In Register (No Trigger)
Figure 14-21. AESAXIN Register
15

14

13

12

11

10

9

8

w-0

w-0

w-0

w-0

3

2

1

0

w-0

w-0

w-0

w-0

AESXIN1x
w-0

w-0

w-0

w-0

7

6

5

4
AESXIN0x

w-0

w-0

w-0

w-0

Table 14-19. AESAXIN Register Description
Bit

Field

Type

Reset

Description

15-8

AESXIN1x

W

0h

AES data in byte n+1 when AESAXIN is written as word. Do not use these bits
for byte access. Do not mix word and byte access. Always reads as zero.

7-0

AESXIN0x

W

0h

AES data in byte n when AESAXIN is written as word. AES next data in byte
when AESAXIN_L is written as byte. Do not mix word and byte access. Always
reads as zero.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

AES256 Accelerator

423

Chapter 15
SLAU367O – October 2012 – Revised December 2017

CRC Module
The cyclic redundancy check (CRC) module provides a signature for a given data sequence. This chapter
describes the operation and use of the CRC module.
Topic

15.1
15.2
15.3
15.4

424

...........................................................................................................................
Cyclic Redundancy Check (CRC) Module Introduction ..........................................
CRC Standard and Bit Order ..............................................................................
CRC Checksum Generation ...............................................................................
CRC Registers..................................................................................................

CRC Module

Page

425
425
426
429

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Cyclic Redundancy Check (CRC) Module Introduction

www.ti.com

15.1 Cyclic Redundancy Check (CRC) Module Introduction
The CRC module produces a signature for a given sequence of data values. The signature is generated
through a feedback path from data bits 0, 4, 11, and 15 (see Figure 15-1). The CRC signature is based on
the polynomial given in the CRC-CCITT-BR polynomial (see Equation 10) .
f(x) = x16 + x12 + x5 +1

(10)
Data In

Q D

Q D

Q D

Q D

Q D

Q D

Q D

Q D

Q D

Q D

Bit
15

Bit
12

Bit
11

Bit
10

Bit
6

Bit
5

Bit
4

Bit
3

Bit
1

Bit
0

Shift Clock

Figure 15-1. LFSR Implementation of CRC-CCITT Standard, Bit 0 is the MSB of the Result
Identical input data sequences result in identical signatures when the CRC is initialized with a fixed seed
value, whereas different sequences of input data, in general, result in different signatures.

15.2 CRC Standard and Bit Order
The definitions of the various CRC standards were done in the era of main frame computers, and by
convention bit 0 was treated as the MSB. Today, as in most microcontrollers such as the MSP430, bit 0
normally denotes the LSB. In Figure 15-1, the bit convention shown is as given in the original standards
(bit 0 is the MSB). The fact that bit 0 is treated for some as LSB, and for others as MSB, continues to
cause confusion. The CRC16 module therefore provides a bit reversed register pair for CRC16 operations
to support both conventions.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC Module

425

CRC Checksum Generation

www.ti.com

15.3 CRC Checksum Generation
The CRC generator is first initialized by writing a 16-bit word (seed) to the CRC Initialization and Result
(CRCINIRES) register. Any data that should be included into the CRC calculation must be written to the
CRC Data Input (CRCDI or CRCDIRB) register in the same order that the original CRC signature was
calculated. The actual signature can be read from the CRCINIRES register to compare the computed
checksum with the expected checksum.
Signature generation describes a method of how the result of a signature operation can be calculated. The
calculated signature, which is computed by an external tool, is called checksum in the following text. The
checksum is stored in the product's memory and is used to check the correctness of the CRC operation
result.

15.3.1 CRC Implementation
To allow parallel processing of the CRC, the linear feedback shift register (LFSR) functionality is
implemented with an XOR tree. This implementation shows the identical behavior as the LFSR approach
after 8 bits of data are shifted in when the LSB is 'shifted' in first. The generation of a signature calculation
has to be started by writing a seed to the CRCINIRES register to initialize the register. Software or
hardware (for example, the DMA) can transfer data to the CRCDI or CRCDIRB register (for example, from
memory). The value in CRCDI or CRCDIRB is then included into the signature, and the result is available
in the signature result registers at the next read access (CRCINIRES and CRCRESR). The signature can
be generated using word or byte data.
If a word data is processed, the lower byte at the even address is used at the first clock (MCLK) cycle.
During the second clock cycle, the higher byte is processed. Thus, it takes two clock cycles to process
word data, while it takes only one clock (MCLK) cycle to process byte data.
Data bytes written to CRCDIRB in word mode or the data byte in byte mode are bit-wise reversed before
the CRC engine adds them to the signature. The bits among each byte are reversed. Data bytes written to
CRCDI in word mode or the data byte in byte mode are not bit reversed before use by the CRC engine.
If the checksum itself (with reversed bit order) is included into the CRC operation (as data written to
CRCDI or CRCDIRB), the result in the CRCINIRES and CRCRESR registers must be zero.

426

CRC Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC Checksum Generation

www.ti.com
Data In
8-bit or 16-bit
CRC Data In Register CRCDI
8

8
Byte MUX

8

Write to CRCINIRES

16

16

CRC Initialization and Result Register
CRCINIRES

Figure 15-2. Implementation of CRC-CCITT Using the CRCDI and CRCINIRES Registers

15.3.2 Assembler Examples
Example 15-1 demonstrates the operation of the on-chip CRC.
Example 15-1. General Assembler Example
...
PUSH
PUSH
MOV
MOV
MOV
L1 MOV
CMP
JLO
MOV
TST
JNZ
...
POP
POP

R4
R5
#StartAddress,R4
#EndAddress,R5
&INIT, &CRCINIRES
@R4+,&CRCDI
R5,R4
L1
&Check_Sum,&CRCDI
&CRCINIRES
CRC_ERROR

R5
R4

; Save registers
; StartAddress < EndAddress
;
;
;
;
;
;
;
;
;
;

INIT to CRCINIRES
Item to Data In register
End address reached?
No
Yes, Include checksum
Result = 0?
No, CRCRES <> 0: error
Yes, CRCRES=0:
information ok.
Restore registers

The details of the implemented CRC algorithm are shown by the data sequences in Example 15-2 using
word or byte accesses and the CRC data-in as well as the CRC data-in reverse byte registers.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC Module

427

CRC Checksum Generation

www.ti.com

Example 15-2. Reference Data Sequence
...
mov
mov.b
mov.b
mov.b
mov.b
mov.b
mov.b
mov.b
mov.b
mov.b

#0FFFFh,&CRCINIRES
#00031h,&CRCDI_L
#00032h,&CRCDI_L
#00033h,&CRCDI_L
#00034h,&CRCDI_L
#00035h,&CRCDI_L
#00036h,&CRCDI_L
#00037h,&CRCDI_L
#00038h,&CRCDI_L
#00039h,&CRCDI_L

;
;
;
;
;
;
;
;
;
;

initialize CRC
"1"
"2"
"3"
"4"
"5"
"6"
"7"
"8"
"9"

cmp

#089F6h,&CRCINIRES

jeq
br

&Success
&Error

;
;
;
;

compare result
CRCRESR contains 06F91h
no error
to error handler

mov
mov.w
mov.w
mov.w
mov.w
mov.b

#0FFFFh,&CRCINIRES
#03231h,&CRCDI
#03433h,&CRCDI
#03635h,&CRCDI
#03837h,&CRCDI
#039h, &CRCDI_L

;
;
;
;
;
;

initialize CRC
"1" & "2"
"3" & "4"
"5" & "6"
"7" & "8"
"9"

cmp

#089F6h,&CRCINIRES

jeq
br

&Success
&Error

; compare result
; CRCRESR contains 06F91h
; no error
; to error handler

...
mov
mov.b
mov.b
mov.b
mov.b
mov.b
mov.b
mov.b
mov.b
mov.b

#0FFFFh,&CRCINIRES
#00031h,&CRCDIRB_L
#00032h,&CRCDIRB_L
#00033h,&CRCDIRB_L
#00034h,&CRCDIRB_L
#00035h,&CRCDIRB_L
#00036h,&CRCDIRB_L
#00037h,&CRCDIRB_L
#00038h,&CRCDIRB_L
#00039h,&CRCDIRB_L

;
;
;
;
;
;
;
;
;
;

initialize CRC
"1"
"2"
"3"
"4"
"5"
"6"
"7"
"8"
"9"

cmp

#029B1h,&CRCINIRES

jeq
br

&Success
&Error

;
;
;
;

compare result
CRCRESR contains 08D94h
no error
to error handler

...
mov
mov.w
mov.w
mov.w
mov.w
mov.b

#0FFFFh,&CRCINIRES
#03231h,&CRCDIRB
#03433h,&CRCDIRB
#03635h,&CRCDIRB
#03837h,&CRCDIRB
#039h, &CRCDIRB_L

;
;
;
;
;
;

initialize CRC
"1" & "2"
"3" & "4"
"5" & "6"
"7" & "8"
"9"

cmp

#029B1h,&CRCINIRES

jeq
br

&Success
&Error

;
;
;
;

compare result
CRCRESR contains 08D94h
no error
to error handler

428

CRC Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC Registers

www.ti.com

15.4 CRC Registers
The CRC module registers are listed in Table 15-1. The base address can be found in the device-specific
data sheet. The address offset is given in Table 15-1.
NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 15-1. CRC Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

CRCDI

CRC Data In

Read/write

Word

0000h

Section 15.4.1

00h

CRCDI_L

Read/write

Byte

00h

01h

CRCDI_H

Read/write

Byte

00h

Read/write

Word

0000h

02h

CRCDIRB

CRC Data In Reverse Byte

02h

CRCDIRB_L

Read/write

Byte

00h

03h

CRCDIRB_H

Read/write

Byte

00h

Read/write

Word

FFFFh

Read/write

Byte

FFh

Read/write

Byte

FFh

Read only

Word

FFFFh

04h

CRCINIRES

04h

CRCINIRES_L

05h

CRCINIRES_H

06h

CRCRESR

CRC Initialization and Result

CRC Result Reverse

06h

CRCRESR_L

Read/write

Byte

FFh

07h

CRCRESR_H

Read/write

Byte

FFh

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Section 15.4.2

Section 15.4.3

Section 15.4.4

CRC Module

429

CRC Registers

www.ti.com

15.4.1 CRCDI Register
CRC Data In Register
Figure 15-3. CRCDI Register
15

14

13

12

11

10

9

8

rw-0

rw-0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

CRCDI
rw-0

rw-0

rw-0

rw-0

7

6

5

4
CRCDI

rw-0

rw-0

rw-0

rw-0

Table 15-2. CRCDI Register Description
Bit

Field

Type

Reset

Description

15-0

CRCDI

RW

0h

CRC data in. Data written to the CRCDI register is included to the present
signature in the CRCINIRES register according to the CRC-CCITT standard.

15.4.2 CRCDIRB Register
CRC Data In Reverse Register
Figure 15-4. CRCDIRB Register
15

14

13

12

11

10

9

8

rw-0

rw-0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

CRCDIRB
rw-0

rw-0

rw-0

rw-0

7

6

5

4
CRCDIRB

rw-0

rw-0

rw-0

rw-0

Table 15-3. CRCDIRB Register Description
Bit

Field

Type

Reset

Description

15-0

CRCDIRB

RW

0h

CRC data in reverse byte. Data written to the CRCDIRB register is included to
the present signature in the CRCINIRES and CRCRESR registers according to
the CRC-CCITT standard. Reading the register returns the register CRCDI
content.

430

CRC Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC Registers

www.ti.com

15.4.3 CRCINIRES Register
CRC Initialization and Result Register
Figure 15-5. CRCINIRES Register
15

14

13

12

11

10

9

8

rw-1

rw-1

rw-1

rw-1

3

2

1

0

rw-1

rw-1

rw-1

rw-1

CRCINIRES
rw-1

rw-1

rw-1

rw-1

7

6

5

4
CRCINIRES

rw-1

rw-1

rw-1

rw-1

Table 15-4. CRCINIRES Register Description
Bit

Field

Type

Reset

Description

15-0

CRCINIRES

RW

FFFFh

CRC initialization and result. This register holds the current CRC result
(according to the CRC-CCITT standard). Writing to this register initializes the
CRC calculation with the value written to it. The value just written can be read
from CRCINIRES register.

15.4.4 CRCRESR Register
CRC Reverse Result Register
Figure 15-6. CRCRESR Register
15

14

13

12

11

10

9

8

r-1

r-1

r-1

r-1

3

2

1

0

r-1

r-1

r-1

r-1

CRCRESR
r-1

r-1

r-1

r-1

7

6

5

4
CRCRESR

r-1

r-1

r-1

r-1

Table 15-5. CRCRESR Register Description
Bit

Field

Type

Reset

Description

15-0

CRCRESR

R

FFFFh

CRC reverse result. This register holds the current CRC result (according to the
CRC-CCITT standard). The order of bits is reverse (for example,
CRCINIRES[15] = CRCRESR[0]) to the order of bits in the CRCINIRES register
(see example code).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC Module

431

Chapter 16
SLAU367O – October 2012 – Revised December 2017

CRC32 Module
The 16-bit or 32-bit cyclic redundancy check (CRC32) module provides a signature for a given data
sequence. This chapter describes the operation and use of the CRC32 module.
Topic

16.1
16.2
16.3

432

...........................................................................................................................

Page

Cyclic Redundancy Check (CRC32) Module Introduction ...................................... 433
CRC Checksum Generation ............................................................................... 433
CRC32 Register Descriptions ............................................................................. 436

CRC32 Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Cyclic Redundancy Check (CRC32) Module Introduction

www.ti.com

16.1 Cyclic Redundancy Check (CRC32) Module Introduction
The CRC module produces signatures for a given sequences of data values. These signatures are
defined bit serial in various standard specifications. For CRC16-CCITT, a feedback path from data bits 4,
11, and 15 is generated (see Figure 16-1). This CRC signature is based on the polynomial given in the
CRC-CCITT with f(x)=x15+x12+x5+1 .
Data In

D

Q

0

2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

Shift Clock

Figure 16-1. LFSR Implementation of CRC-CCITT as Defined in Standard (Bit 0 is MSB)
For CRC32-IS3309 a feedback path from data bits 0, 1, 3, 4, 6, 7, 9, 10, 11, 15, 21, 22, 26 and 31 is
generated (see Figure 16-2). This CRC signature is based on the polynomial given in the CRC32ISO3309 with f(x)=x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1.

Q

D
16

17

18

19

20

21

22

24

23

25

26

27

28

29

30

31

Data In

D
0

Q
2

1

3

4

5

6

7

8

9

10

11

12

13

14

15

Shift Clock

Figure 16-2. LFSR Implementation of CRC32-ISO3309 as Defined in Standard (Bit 0 is MSB)
Identical input data sequences result in identical signatures when the CRC is initialized with a fixed seed
value. Different sequences of input data, in general, result in different signatures for a given CRC function.
The CRC32 module supports 16-bit and 32-bit CRC generation. They are independent from each other
and supported by two dedicated register sets.

16.2 CRC Checksum Generation
The CRC generators are initialized by writing the "seed" to the CRC Initialization and Result
(CRC16INIRES or CRC32INIRES) registers. Any data that should be included in the CRC calculation
must be written to the CRC Data Input (CRC16DI or CRC32DI) registers in the same order that the
original CRC signatures were calculated. The actual signature can be read from the CRC16INIRES or
CRC32INIRES registers to compare the computed checksum with the expected checksum. Signature
generation describes a method of how the result of a signature operation can be calculated. The
calculated signature, which is computed by an external tool, is called checksum in the following text. The
checksum is stored in the product's memory and is used to check the correctness of the CRC operation
result.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC32 Module

433

CRC Checksum Generation

www.ti.com

16.2.1 CRC Standard and Bit Order
The various CRC standards were defined in the era of main frame computers. At that time, Bit 0 was
treated as the MSB. Now, Bit 0 is typically the LSB (as the value of Bit N = 2N). In Figure 16-1 and
Figure 16-2, the bit references are used as given in the original standards. The MSP430 microcontrollers
treat Bit 0 as the LSB, as is typical in modern CPUs and MCUs.
This sometimes causes confusion, because Bit 0 has been treated as the LSB in some cases and as the
MSB in other cases. Therefore, the CRC32 module provides a bit-reversed register pair for CRC16 and
CRC32 operations to support both conventions.

16.2.2 CRC Implementation
To allow faster processing of the CRC, the linear feedback shift register (LFSR) functionality is
implemented with a set of XOR trees. This implementation shows the identical behavior as the LFSR
approach. After a set of 8, 16, or 32 bits is provided to the CRC32 module by writing to the CRC16DI or
CRC32DI registers, a calculation for the whole set of input bits is performed. For this calculation, the CPU
or the DMA can write to the memory-mapped data input registers. After the last value is written to
CRC16DI or CRC32DIRB, the signature can be read from the CRC16INIRES or CRC32INIRES registers.
The CRC16 and CRC32 generators accept byte- and word-wide access to the input registers CRC16DI
and CRC32DI.
For bit-reversed conventions, write the data bytes to the CRC16DIRB or CRC32DIRB register.
Initialization is done by writing to the CRC, and CRC engine adds them to the signature. The bits among
each byte are reversed. Data bytes written to CRCDI in word mode or the data byte in byte mode are not
bit reversed before use by the CRC engine. If the checksum itself (with reversed bit order) is included in
the CRC operation (as data written to CRCDI or CRCDIRB), the result in the CRCINIRES and CRCRESR
register must be zero.

16.2.3 Assembler Examples
16.2.3.1 General Assembler Example
This example demonstrates the operation of the on-chip CRC.

L1

434

PUSH
PUSH
MOV
MOV
MOV
MOV
CMP
JLO
MOV
TST
JNZ
...

R4
R5
#StartAddress,R4
#EndAddress,R5
&INIT,&CRCINIRES
@R4+,&CRCDI
R5,R4
L1
&Check_Sum,&CRCDI
&CRCINIRES
CRC_ERROR

POP
POP

R5
R4

CRC32 Module

; Save registers
; StartAddress < EndAddress
;
;
;
;
;
;
;
;
;
;

INIT to CRCINIRES
Item to Data In register
End address reached?
No
Yes, Include checksum
Result = 0?
No, CRCRES <> 0: error
Yes, CRCRES=0:
information ok.
Restore registers

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC Checksum Generation

www.ti.com

16.2.3.2 Reference Data Sequence
The details of the implemented CRC algorithm is shown by the following data sequences using word or
byte accesses and the CRC data-in as well as the CRC data-in reverse byte registers:
mov #0FFFFh,&CRCINIRES ; initialize CRC
mov.b #00031h,&CRCDI_L ; "1"
mov.b #00032h,&CRCDI_L ; "2"
mov.b #00033h,&CRCDI_L ; "3"
mov.b #00034h,&CRCDI_L ; "4"
mov.b #00035h,&CRCDI_L ; "5"
mov.b #00036h,&CRCDI_L ; "6"
mov.b #00037h,&CRCDI_L ; "7"
mov.b #00038h,&CRCDI_L ; "8"
mov.b #00039h,&CRCDI_L ; "9"
cmp #089F6h,&CRCINIRES ; compare result
; CRCRESR contains 06F91h
jeq Success ; no error
br &Error ; to error handler
...
mov #0FFFFh,&CRCINIRES ; initialize CRC
mov.w #03231h,&CRCDI ; "1" & "2"
mov.w #03433h,&CRCDI ; "3" & "4"
mov.w #03635h,&CRCDI ; "5" & "6"
mov.w #03837h,&CRCDI ; "7" & "8"
mov.b #039h, &CRCDI_L ; "9"
cmp #089F6h,&CRCINIRES ; compare result
; CRCRESR contains 06F91h
jeq Success ; no error
br &Error ; to error handler
...
mov #0FFFFh,&CRCINIRES ; initialize CRC
mov.b #00031h,&CRCDIRB_L ; "1"
mov.b #00032h,&CRCDIRB_L ; "2"
mov.b #00033h,&CRCDIRB_L ; "3"
mov.b #00034h,&CRCDIRB_L ; "4"
mov.b #00035h,&CRCDIRB_L ; "5"
mov.b #00036h,&CRCDIRB_L ; "6"
mov.b #00037h,&CRCDIRB_L ; "7"
mov.b #00038h,&CRCDIRB_L ; "8"
mov.b #00039h,&CRCDIRB_L ; "9"
cmp #029B1h,&CRCINIRES ; compare result
; CRCRESR contains 08D94h
jeq Success ; no error
br &Error ; to error handler
...
mov #0FFFFh,&CRCINIRES ; initialize CRC
mov.w #03231h,&CRCDIRB ; "1" & "2"
mov.w #03433h,&CRCDIRB ; "3" & "4"
mov.w #03635h,&CRCDIRB ; "5" & "6"
mov.w #03837h,&CRCDIRB ; "7" & "8"
mov.b #039h, &CRCDIRB_L ; "9"
cmp #029B1h,&CRCINIRES ; compare result
; CRCRESR contains 08D94h
jeq Success ; no error
br &Error ; to error handler
...

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC32 Module

435

CRC32 Register Descriptions

www.ti.com

16.3 CRC32 Register Descriptions
16.3.1 CRC32 Registers
The CRC32 module registers with their address offsets are shown in Table 16-1. The base address for the
CRC32 module registers can be found in the device-specific data sheet.
Table 16-1. CRC32 Registers

436

Offset

Acronym

Register Name

Type

Access

Reset

Section

0002h

CRC32DIW1

CRC32 Data Input

read/write

word

0000h

Section 16.3.1.2

0000h

CRC32DIW0

word

0000h

Section 16.3.1.1

0000h

CRC32DIB0

byte

00h

0004h

CRC32DIRBW1

word

0000h

Section 16.3.1.4

0006h

CRC32DIRBW0

word

0000h

Section 16.3.1.3

0007h

CRC32DIRBB0

byte

00h

000Ah

CRC32INIRESW1 CRC32 Initialization and Result

word

FFFFh

Section 16.3.1.6

0008h

CRC32INIRESW0

word

FFFFh

Section 16.3.1.5

000Bh

CRC32RESB3

byte

FFh

000Ah

CRC32RESB2

byte

FFh

0009h

CRC32RESB1

byte

FFh

0008h

CRC32RESB0

byte

FFh

000Ch

CRC32RESRW1

word

FFFFh

Section 16.3.1.8

000Eh

CRC32RESRW0

word

FFFFh

Section 16.3.1.7

000Ch

CRC32RESRB3

byte

FFh

000Dh

CRC32RESRB2

byte

FFh

000Eh

CRC32RESRB1

byte

FFh

000Fh

CRC32RESRB0

byte

FFh

0010h

CRC16DIW0

word

0000h

0010h

CRC16DIB0

byte

00h

0016h

CRC16DIRBW0

word

0000h

0017h

CRC16DIRBB0

byte

00h

0018h

CRC16INIRESW0 CRC16 Init and Result

word

FFFFh

0019h

CRC16INIRESB1

byte

FFh

0018h

CRC16INIRESB0

byte

FFh

001Eh

CRC16RESRW0

word

FFFFh

001Fh

CRC16RESRB0

byte

FFh

001Eh

CRC16RESRB1

byte

FFh

CRC32 Module

CRC32 Data In Reverse

CRC32 Result Reverse

CRC16 Data Input
CRC16 Data In Reverse

CRC16 Result Reverse

read/write

read/write

read/write

read/write
read/write
read/write

read/write

Section 16.3.1.9
Section 16.3.1.10
Section 16.3.1.11

Section 16.3.1.12

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC32 Register Descriptions

www.ti.com

16.3.1.1 CRC32DIW0 Register
Data Input Register Word_0 for 32-Bit CRCs
Data written to this register is taken into CRC32 signature calculations. This register can be accessed 8-bit
wide and 16-bit wide.
Figure 16-3. CRC32DIW0 Register
15

14

13

12

11

10

9

8

rw-0

rw-0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

CRC32DIW0
rw-0

rw-0

rw-0

rw-0

7

6

5

4
CRC32DIW0

rw-0

rw-0

rw-0

rw-0

Table 16-2. CRC32DIW0 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC32DIW0

RW

0h

CRC32 data in word 0. Data written to the CRC32DILW0 register is included to
the present signature in the CRC32INIRES register according to the CRC32ISO3309 standard.

16.3.1.2 CRC32DIW1 Register
Data Input Register Word_1 for 32-Bit CRCs
Data written to this register is taken into CRC32 signature calculations. This register can be accessed 8-bit
wide and 16-bit wide.
Figure 16-4. CRC32DIW1 Register
15

14

13

12

11

10

9

8

CRC32DIW1
rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

CRC32DIW1
rw-0

rw-0

rw-0

rw-0

Table 16-3. CRC32DIW1 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC32DIW1

RW

0h

CRC32 data in word 1. Data written to the CRC32DILW1 register is included to
the present signature in the CRC32INIRES register according to the CRC32ISO3309 standard.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC32 Module

437

CRC32 Register Descriptions

www.ti.com

16.3.1.3 CRC32DIRBW0 Register
Data In Register Word_0 with Reversed Bit Order for 32-Bit CRCs
Data written to this register is taken into CRC32 signature calculations. This register can be accessed 8-bit
wide and 16-bit wide.
Figure 16-5. CRC32DIRBW0 Register
15

14

13

rw-0

rw-0

rw-0

7

6

5

rw-0

rw-0

rw-0

12
11
CRC32DIRBW0
rw-0
rw-0
3
CRC32DIRBW0
rw-0
rw-0

10

9

8

rw-0

rw-0

rw-0

2

1

0

rw-0

rw-0

rw-0

4

Table 16-4. CRC32DIRBW0 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC32DIRBW0

RW

0h

CRC32 data in word 0 as bit reversed pattern. Data written to the
CRC32DIRBW0 register is included to the present signature in the
CRC32INIRES register according to the CRC32-ISO3309 standard.

16.3.1.4 CRC32DIRBW1 Register
Data In Register Word_1 with Reversed Bit Order for 32-Bit CRCs
Data written to this register is taken into CRC32 signature calculations. This register can be accessed 8-bit
wide and 16-bit wide.
Figure 16-6. CRC32DIRBW1 Register
15

14

13

rw-0

rw-0

rw-0

7

6

5

rw-0

rw-0

12
11
CRC32DIRBW1
rw-0
rw-0
4

9

8

rw-0

rw-0

rw-0

2

1

0

rw-0

rw-0

rw-0

3

CRC32DIRBW1
rw-0
rw-0

rw-0

10

Table 16-5. CRC32DIRBW1 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC32DIRBW1

RW

0h

CRC32 data in word1 as bit reversed pattern. Data written to the
CRC32DIRBW1 register is included to the present signature in the
CRC32INIRES register according to the CRC32-ISO3309 standard.

438

CRC32 Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC32 Register Descriptions

www.ti.com

16.3.1.5 CRC32INIRESW0 Register
Data Initialization and Result Register Word_0 for 32-Bit CRCs
Data written to this register represents the seed for the CRC calculation. This register always reflects the
latest signature of the values collected so far. This register can be accessed 8-bit wide and 16-bit wide.
Figure 16-7. CRC32INIRESW0 Register
15

14

13

rw-0

rw-0

rw-0

7

6

5

rw-0

rw-0

rw-0

12
11
CRC32INIRESW0
rw-0
rw-0
4
3
CRC32INIRESW0
rw-0
rw-0

10

9

8

rw-0

rw-0

rw-0

2

1

0

rw-0

rw-0

rw-0

Table 16-6. CRC32INIRESW0 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC32INIRESW0

RW

0h

CRC32 data initialization and result word0. Data written to the CRC32INIRESW0
register is used as the seed for the CRC calculation according to the CRC32ISO3309 standard. Reading this register returns the current result of the CRC
calculation.

16.3.1.6 CRC32INIRESW1 Register
Data Initialization and Result Register Word_1 for 32-Bit CRCs
Data written to this register represents the seed for the CRC calculation. This register always reflects the
latest signature of the values collected so far. This register can be accessed 8-bit wide and 16-bit wide.
Figure 16-8. CRC32INIRESW1 Register
15

14

13

rw-0

rw-0

rw-0

7

6

5

rw-0

rw-0

rw-0

12
11
CRC32INIRESW1
rw-0
rw-0
4
3
CRC32INIRESW1
rw-0
rw-0

10

9

8

rw-0

rw-0

rw-0

2

1

0

rw-0

rw-0

rw-0

Table 16-7. CRC32INIRESW1 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC32INIRESW1

RW

0h

CRC32 data initialization and result word1. Data written to the CRC32INIRESW1
register is used as the seed for the CRC calculation according to the CRC32ISO3309 standard. Reading this register returns the current result of the CRC
calculation.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC32 Module

439

CRC32 Register Descriptions

www.ti.com

16.3.1.7 CRC32RESRW0 Register
Data Result Register Word_0 as Bit Reversed for 32-Bit CRCs
Data written to this register represents the seed for the CRC calculation. This register always reflects the
latest signature of the values collected so far. This register can be accessed 8-bit wide and 16-bit wide.
Figure 16-9. CRC32RESRW0 Register
15

14

13

rw-1

rw-1

rw-1

7

6

5

rw-1

rw-1

rw-1

12
11
CRC32RESRW0
rw-1
rw-1
4
3
CRC32RESRW0
rw-1
rw-1

10

9

8

rw-1

rw-1

rw-1

2

1

0

rw-1

rw-1

rw-1

Table 16-8. CRC32RESRW0 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC32RESRW0

RW

FFh

CRC32 bit reverse initialization and result word0. This register holds the current
CRC32 result (according to the CRC32-ISO3309 standard). The order of bits is
reverse to the order of bits in the CRC32INIRESW1 register.

16.3.1.8 CRC32RESRW1 Register
Data Result Register Word1 as Bit Reversed for 32-Bit CRCs
Data written to this register represents the seed for the CRC calculation. This register always reflects the
latest signature of the values collected so far. This register can be accessed 8-bit wide and 16-bit wide.
Figure 16-10. CRC32RESRW1 Register
15

14

13

rw-1

rw-1

rw-1

7

6

5

rw-1

rw-1

rw-1

12
11
CRC32RESRW1
rw-1
rw-1
4
3
CRC32RESRW1
rw-1
rw-1

10

9

8

rw-1

rw-1

rw-1

2

1

0

rw-1

rw-1

rw-1

Table 16-9. CRC32RESRW1 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC32RESRW1

RW

FFh

CRC32 bit reverse initialization and result word1. This register holds the current
CRC32 result (according to the CRC32-ISO3309 standard). The order of bits is
reverse to the order of bits in the CRC32INIRESW0 register.

440

CRC32 Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC32 Register Descriptions

www.ti.com

16.3.1.9 CRC16DIW0 Register
Data In Register for 16-Bit CRCs
Data written to this register is taken into CRC16 signature calculations. This register can be accessed 8-bit
wide and 16-bit wide.
Figure 16-11. CRC16DIW0 Register
15

14

13

12

11

10

9

8

rw-0

rw-0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

CRC16DIW0
rw-0

rw-0

rw-0

rw-0

7

6

5

4
CRC16DIW0

rw-0

rw-0

rw-0

rw-0

Table 16-10. CRC16DIL0 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC16DIW0

RW

0h

CRC16 data in. Data written to the CRC16DIW0 register is included to the
present signature in the CRC16INIRES register according to the CRC16-CCITT
standard.

16.3.1.10 CRC16DIRBW0 Register
Data In Register with Reversed Bit Order for 16-Bit CRCs
Data written to this register is taken into CRC16 signature calculations. This register can be accessed 8-bit
wide and 16-bit wide.
Figure 16-12. CRC16DIRBW0 Register
15

14

13

rw-0

rw-0

rw-0

7

6

5

rw-0

rw-0

12
11
CRC16DIRBW0
rw-0
rw-0
4

9

8

rw-0

rw-0

rw-0

2

1

0

rw-0

rw-0

rw-0

3

CRC16DIRBW0
rw-0
rw-0

rw-0

10

Table 16-11. CRC16DIRBW0 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC16DIRBW0

RW

0h

CRC16 data in reverse byte. Data written to the CRC16DIRBW0 register is
included to the present signature in the CRC16INIRES and CRC16RESR
registers according to the CRC-CCITT standard. Reading the register returns the
register CRC16DI content.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

CRC32 Module

441

CRC32 Register Descriptions

www.ti.com

16.3.1.11 CRC16INIRESW0 Register
Data Initialization and Result Register for 16-Bit CRCs
Data written to this register represents the seed for the CRC calculation. This register always reflects the
latest signature of the values collected so far. This register can be accessed 8-bit wide and 16-bit wide.
Figure 16-13. CRC16INIRESW0 Register
15

14

13

rw-1

rw-1

rw-1

7

6

5

rw-1

rw-1

rw-1

12
11
CRC16INIRESW0
rw-1
rw-1
4
3
CRC16INIRESW0
rw-1
rw-1

10

9

8

rw-1

rw-1

rw-1

2

1

0

rw-1

rw-1

rw-1

Table 16-12. CRC16INIRESW0 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC16INIRESW0

RW

FFh

CRC16 initialization and result. This register holds the current CRC16 result
(according to the CRC16-CCITT standard). Writing to this register initializes the
CRC16 calculation with the value written to it.

16.3.1.12 CRC16RESRW0 Register
Data Result Register with Reversed Bits for 16-Bit CRCs
Data written to this register represents the seed for the CRC calculation. This register always reflects the
latest signature of the values collected so far. This register can be accessed 8-bit wide and 16-bit wide.
Figure 16-14. CRC16RESRW0 Register
15

14

13

r0

r0

r0

7

6

5

r0

r0

r0

12
11
CRC16RESRW0
r0
r0

10

9

8

r0

r0

r0

4
3
CRC16RESRW0
r0
r0

2

1

0

r0

r0

r0

Table 16-13. CRC16RESRW0 Register Description
Bit

Field

Type

Reset

Description

15-0

CRC16RESRW0

RW

FFh

CRC16 reverse result. This register holds the current CRC16 result (according to
the CRC16-CCITT standard). The order of bits is reverse to the order of bits in
the CRC16INIRESW0 register.

442

CRC32 Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 17
SLAU367O – October 2012 – Revised December 2017

Low-Energy Accelerator (LEA) for Signal Processing
The LEA (low-energy accelerator) module is an execution unit for vector-based signal processing
operations. This chapter introduces the LEA.
Topic

17.1
17.2
17.3

...........................................................................................................................

Page

LEA Introduction .............................................................................................. 444
LEA Operation.................................................................................................. 444
LEA Registers .................................................................................................. 446

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Low-Energy Accelerator (LEA) for Signal Processing

Copyright © 2012–2017, Texas Instruments Incorporated

443

LEA Introduction

www.ti.com

17.1 LEA Introduction
The LEA is a 32-bit hardware engine designed for operations that involve vector-based signal processing,
such as FIR, IIR, and FFT without CPU intervention. The LEA supports multiple commands, which are
issued by CPU. The LEA offers incomparable performance and energy consumption when performing
vector-based digital signal processing computations; for performance benchmarks comparing LEA to using
the CPU or other processors, see Benchmarking the Signal Processing Capabilities of the Low-Energy
Accelerator on MSP430™ MCUs.
MSP430 Peripheral Bus

LEA Module
Peripheral Interface

LEA Core
Multilevel Harvard Engine

Memory Interface

LEA Internal Memory
- Commands
- Coefficients
- Constants

32 bit

LEA Data Memory
(Shared with system)

16 bit

MSP430 Memory Bus

16 bit to 32 bit Bridge

Figure 17-1. LEA System Block Diagram

17.2 LEA Operation
The LEA begins executing the selected operation when the CPU writes a LEA command to the LEA
command register when the LEA is in idle mode. Before writing the command, the CPU must configure the
LEA argument registers with the pointers to the parameter blocks for the designated operation. The LEA
performs the operation without CPU intervention and triggers an interrupt when the operation is complete.
The LEA accesses the LEA data memory, which is used for input data, output data, and the parameter
blocks. The LEA data memory is also accessible by the CPU and the DMA, so that the output data of the
LEA operation can be moved to other memory location by the CPU or the DMA (see Figure 17-1). The
CPU and the LEA can run simultaneously and independently unless they access the same system
memory (RAM). See the device-specific data sheet for details about LEA availability and LEA data
memory size.

444

Low-Energy Accelerator (LEA) for Signal Processing

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

LEA Operation

www.ti.com

The LEA supports a various of commands that are used to perform vector-based mathematical operations.
Table 17-1 lists the command groups that are available.
Table 17-1. LEA Command Groups
Group

Purpose or Use

Group 1

Basic pointwise vector and matrix operations

Group 2

Basic vector MAC operations (windowing, scaling, general)

Group 3

MAC, pointwise FIR, correlation, convolution

Group 4

Basic minimum/maximum vector search operations on 16-bit data

Group 5

Generic minimum/maximum search operations on 32-bit data

Group 6

Generic minimum/maximum search operations on dual 16-bit data and complex

Group 7

Block based FIR, correlation, convolution

Group 8

Taylor functions and operations on pointwise vectors and matrices

Group 9

FFT and iFFT bank filtering (DIT type)

Group 10

Bit-reversed carry propagated presort for DIT-FFTs

Group 11

FFT post operation for real points

Group 12

Vector and matrix deinterleave and sort functions

Group A

Programming structure and rearrange functions

Group B

Special functions for math, matrix, and DSP

17.2.1 Use the LEA in Programs
How the LEA operates is briefly described in Section 17.2. It is not necessary to understand how the LEA
works or the details of the LEA registers. The Digital Signal Processing (DSP) Library for MSP
Microcontrollers offers easy-to-use APIs that use the functions of the LEA and provide a high-level
environment to use the LEA in various applications. The DSP Library is a set of highly optimized API
functions to perform many common signal processing operations on fixed-point numbers for MSP430
microcontrollers. The APIs automatically enable and use the LEA module if the LEA is available in the
target device, and apply the optimal configurations to the LEA registers with the correct sequence. If the
LEA is not available, the CPU is selected to perform the operations.
The full LEA commands are supported by the DSP Library APIs, which are listed in the DSP Library API
Guide, Low-Energy Accelerator (LEA) Frequently Asked Questions (FAQ), and Benchmarking the Signal
Processing Capabilities of the Low-Energy Accelerator on MSP430™ MCUs.
The following sequence of operations is an example of performing a vector-based algorithm using the
LEA, DMA, ADC, and SPI.
1. The CPU sets up the DMA controller, ADC, and SPI.
2. A DMA channel collects samples from the ADC converter at a defined sampling rate and transfers data
to the LEA memory.
3. After a block of data has been collected, the CPU enables one or a series of operations of the LEA
using the APIs in the Digital Signal Processing (DSP) Library for MSP Microcontrollers to perform the
required algorithm (for example, FIR, IIR, correlation, or FFT).
4. When the algorithm is complete, another DMA channel transfers the result of that algorithm to the SPI.
5. The SPI transfers the data to an external device.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Low-Energy Accelerator (LEA) for Signal Processing

Copyright © 2012–2017, Texas Instruments Incorporated

445

LEA Operation

www.ti.com

17.2.2 Where to Get the DSP Library
The Digital Signal Processing (DSP) Library for MSP Microcontrollers can be downloaded separately, but
TI recommends installing MSPWare, which includes the DSP Library with user's guides, code examples,
training, and other design resources for all MSP devices. Table 17-2 lists the versions of the DSP Library
and MSPWare that support the LEA.
Table 17-2. DSP Library and MSPWare Versions for the LEA
Link

Version

Digital Signal Processing (DSP) Library for MSP Microcontrollers

1.20.00.xx or later

MSP430Ware

3.60 or later

17.2.3 Where to Start
1. Visit the LEA landing page where all of the technical documents, training videos, software examples,
hardware designs, and tools for the LEA are listed.
2. See Low-Energy Accelerator (LEA) Frequently Asked Questions (FAQ) for the questions about the
LEA.
3. See the DSP Library API Guide and DSP Library Example Projects for detailed information about the
DSP Library APIs and examples.

17.3 LEA Registers
As mentioned in Section 17.2.1, the DSP Library APIs are designed to apply the optimal configurations to
the LEA registers for the selected operations. Direct access to LEA registers is not supported, and TI
recommends using the Digital Signal Processing (DSP) Library for MSP Microcontrollers for the operations
that the LEA module supports.

446

Low-Energy Accelerator (LEA) for Signal Processing

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 18
SLAU367O – October 2012 – Revised December 2017

Ultrasonic Sensing Solution (USS, USS_A)
This chapter describes the operation of the USS and the USS_A module.
Topic

18.1
18.2
18.3

...........................................................................................................................

Page

Introduction ..................................................................................................... 448
Operation of the USS Module ............................................................................. 449
Debug Features ................................................................................................ 454

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Ultrasonic Sensing Solution (USS, USS_A)

Copyright © 2012–2017, Texas Instruments Incorporated

447

Introduction

www.ti.com

18.1 Introduction
The USS module is designed for analog-to-digital (ADC) converter based ultrasonic sensing technology in
various measurement applications. Figure 18-1 shows the block diagram of the USS module. The USS is
a sophisticated system that consists of the following four submodules. USS_A is an extended variant of
the original USS module and features SAPH_A instead of the SAPH module. Because USS_A is a
superset of USS, USS_A is specifically named only when describing feature that differ between USS and
USS_A.
• UUPS: Generates reference voltages, currents, and operation voltage for the USS module, and
controls the power-up and power-down sequences of the USS module. See UUPS for details.
• HSPLL: Generates a low-jitter clock (68 MHz to 80 MHz) from the USSXT oscillator for the USS
module. See HSPLL for details.
• SAPH (part of USS): Consists of a pulse generator, a low-impedance output driver, an input
multiplexer, and an acquisition sequencer. See SAPH for details.
• SAPH_A (part of USS_A): Consists of an extended pulse generator, a low-impedance output driver, an
input multiplexer, an acquisition sequencer and external bias terminals. See SAPH_A for details.
• SDHS: High-speed sigma-delta analog-to-digital converter with a dedicated data transfer controller.
See SDHS for details
The submodules have different roles, and together they enable high-precision data acquisition for
ultrasonic technology in various applications. The USS module has a dedicated power management
module, UUPS, which generates operating voltage, reference voltages, and reference currents for other
submodules. The USS module also has a dedicated clock module, HSPLL, which generates a very-lowjitter clock (68 MHz to 80 MHz) from the USSXT oscillator. The SAPH or SAPH_A module controls the
signal flow including excitation pulse generation through a low-impedance driver (3-4 Ω, typical), internal
bias voltages for Tx and Rx sides, and the input multiplexer. The SDHS is a high-speed analog-to-digital
converter to sample the input signals and transfer the output data to the target memory location. The Low
Energy Accelerator (LEA), if available, processes the data transferred by the SDHS.
The USS module supports three operation modes for data acquisition sequence: auto mode, register
mode and ultra low power bias mode.
In auto mode, the entire measurement sequence is automatically controlled by the ASQ block. Control by
ASQ enables ultra-low power consumption during the measurement and frees the CPU from data
acquisition, so that ultrasonic application software can be executed in parallel with data acquisition with
minimum intervention.
In register mode, the measurement sequence is fully controlled by user software. The register mode can
be used during development and for special tasks like diagnostics.
In ultra low power bias mode the ASQ sequencer performs an extended power sequence dedicated for
the ultra low power utility meter market.

448

Ultrasonic Sensing Solution (USS, USS_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Operation of the USS Module

www.ti.com

USS or USS_A module

USSXT
USSXTIN USSXTOUT

USSXT_BOUT

SAPH or SAPH_A
OSC

CH0_OUT
PPG or
CH1_OUT

ASQ

PPG_A

PLL
PHY
PVSS

HSPLL
UUPS

PVCC

SDHS

CH1_IN
PGA

SD 12 or 14
MOD Filter

DTC

RAM
(shared with LEA)

XPB0

CH0_IN

Bias Generator
on SAPH_A only

XPB1

Optional
external
signal
handling

PLL_CLK

Vout

PVSS

Px.y

GPIO
(software controlled)

Figure 18-1. USS and USS_A Block Diagram

NOTE: Naming convention for register names and bit fields:
ModuleName.RegisterName or ModuleName.RegisterName.BitField

18.2 Operation of the USS Module
This section describes how the USS submodules are connected and controlled together. For details of
each submodule, see the following chapters:
• UUPS
• HSPLL
• SAPH or SAPH_A
• SDHS
Figure 18-2 shows control signals that connect the submodules.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Ultrasonic Sensing Solution (USS, USS_A)

Copyright © 2012–2017, Texas Instruments Incorporated

449

Operation of the USS Module

www.ti.com

PSQ_START
PSQ_STOP
ASQ (Acquisition
Sequencer)

PSQ_SREFREQ

UUPSCTL.
USSSWRST

ASQ_
PPGTRG

ASQ_
PPGSTOP

UUPSCTL.
USSPWRDN

UUPSCTL.
ASQEN

PPG or PPG_A
(Programmable
Pulse Generator)

UUPSCTL.
USSSTOP

SREF

UUPSCTL.USSPWRUPSEL
2
00

ASQ_PDREQ
PSQ (Power
Sequencer)

ASQ_STDBYREQ

USS_PWRREQ

ASQ_ACQDONE
ASQ_LPBE

UUPSCTL.USSPWRUP

01

Internal Signal

10

Internal Signal

11

Internal Signal

PSQ_PLLUP
HSPLL

BIAS, REF

ASQ_ACQARM

ASQ_ACQTRG

SDHSCTL0.
TRGSRC

PSQ_
LDOUP

UUPS_SWRST

SDHS_LOCK

USS LDO
SDHSCTL4.
SDHSON

0
1

SDHS_PWR_UP/DOWN
SDHSCTL3.
TRIGEN
CONVERSION_START/STOP

SDHSCTL5.
SSTART

SDHS
(Sigma Delta ADC
high speed)

0
1
AUTO_START
SDHSCTL0.
AUTOSSDIS
SDHS_ACQDONE

ASQ_SDHSSTOP

Figure 18-2. USS and USS_A Submodule Connections

NOTE: In Figure 18-2, the control signals between submodules are shown in green. The naming
convention for these signal is SourceSubmoduleName_CommandToDestination.
Example 1: PSQ_START: The signal is from PSQ to tell the receiver submodule to START
(start measurement)
Example 2: ASQ_ACQTRG: The signal is from ASQ to tell the receiver submodule to
ACQTRG (acquisition trigger).

450

Ultrasonic Sensing Solution (USS, USS_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Operation of the USS Module

www.ti.com

18.2.1 Auto Mode and Register Mode
The USS or USS_A module can perform the full data acquisition sequence with minimum involvement of
CPU, which enables ultra-low power consumption during the measurement and frees the CPU from data
acquisition, so that the ultrasonic application software can be executed in parallel to data acquisition with
minimum intervention. The USS or USS_A module also support register mode, in which each
measurement sequence is controlled by user software. Register mode can be used during development
and for special tasks like diagnostics.
To enable the auto mode, apply the configurations in Table 18-1 before turning on the USS or USS_A
module.
Table 18-1. Auto Mode and Register Mode
Auto Mode Configuration

Action

Register Mode

UUPSCTL.SWRST = 0

Take USS submodules out of reset (once after reset)

UUPSCTL.SWRST = 0

SAPHMCNF.LPBE = 0

Enable auto mode or register mode (on mode
changes)

SAPHMCNF.LPBE = 0

UUPSCTL.LBHDEL = 0, 1, 2, or 3

Set optimal start-up hold-off delay or leave at default

UUPSCTL.LBHDEL = 0, 1, 2, or 3

SAPHMCNF.BIMP = 0, 1, 2, or 3

Set optimal bias impedance or leave at default

SAPHMCNF.BIMP = 0, 1, 2, or 3

UUPSCTL.ASQEN = 1

PSQ to trigger ASQ when power is up
(PSQ_START) (on mode changes)

UUPSCTL.ASQEN = 0

SAPHASCTL0.TRIGSEL = 1

ASQ is triggered by PSQ (on mode changes)

SAPHASCTL0.TRIGSEL = 0

SAPHOSEL.PCH0SEL = 1
SAPHOSEL.PCH1SEL = 1

Drive output drivers to GND (on mode changes)

SAPHOSEL.PCH0SEL = 0
SAPHOSEL.PCH1SEL = 0

SAPHBCTL.ASQBSW = 1

Tx bias, Rx bias control (on mode changes)

SAPHBCTL.ASQBSW = 0

SAPHPGCTL.PGSEL = 1

Select output channel in PPG (on mode changes)

SAPHPGCTL.PGSEL = 0

SAPHPGCTL.TRSEL = 1

Trigger PPG (on mode changes)

SAPHPGCTL.TRSEL = 0

SAPHICTL0.MUXCTL = 1

Input channel selection (on mode changes)

SAPHICTL0.MUXCTL = 0

SDHSCTL0.TRGSRC = 1

SDHS power up and conversion trigger source (on
mode changes)

SDHSCTL0.TRGSRC = 0

SDHSCTL0.AUTOSSDIS = 1

SDHS conversion trigger (on mode changes)

SDHSCTL0.AUTOSSDIS = 0 or 1

SDHSCTL2.SMPCTLOFF = 0
(optional)

Total sample size is preprogrammed (on mode
changes)

SDHSCTL2.SMPCTLOFF = 0 or 1

SDHSCTL2.DTCOFF = 0

Data transfer by DTC (on mode changes)

SDHSCTL2.DTCOFF = 0 or 1

18.2.1.1 Six Time Mark Events in Auto Mode
In auto mode, the six time mark registers generate important timing events during measurement.
Table 21-3 describes the time mark events.
Table 18-2. Time Mark Events
Time Mark

Action by ASQ

PSQ_START= 0 → 1

Apply Tx Bias

ASQ time counter = Value in SAPHATM_A register

Trigger PPG to generate excitation pulses and stop pulses

ASQ time counter = Value in SAPHATM_B register

Turn on the SDHS

ASQ time counter = Value in SAPHATM_C register

Apply Rx Bias

ASQ time counter = Value in SAPHATM_D register

Start sampling the input signal (trigger the SDHS)

ASQ time counter = Value in SAPHATM_E register

Restart the time counter for the next measurement

ASQ time counter = Value in SAPHATM_F register

Time-out

18.2.1.2 How to Start in Auto Mode
In auto mode, the entire measurement sequence is executed by the PSQ and the ASQ. The start-up
sequence is simple but the following order must be used:
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Ultrasonic Sensing Solution (USS, USS_A)

Copyright © 2012–2017, Texas Instruments Incorporated

451

Operation of the USS Module

www.ti.com

1. Applied desired configurations to USS registers (all submodules). Make sure to apply the auto mode
(see Table 18-1).
2. Set the following bits to 1: SAPHPGCTL.PPGEN, SAPHASCTL0.ASQTEN, SAPHMCNF.LPBE and
SDHSCTL3.TRIGEN
3. Assert the USS_PWRREQ signal (see Table 18-3).
Table 18-3. USS_PWRREQ Signal Source
UUPSCTL.USSPWRUPSEL

Selected Trigger Source

0

UUPSCTL.USSPWRUP = 1

Comment

1

Internal signal

See device-specific data sheet.

2

Internal signal

See device-specific data sheet.

3

Internal signal

See device-specific data sheet.

Default, write only

18.2.2 Control Signals
Start-up signal, USS_PWRREQ
USS_PWRREQ = 0 → 1 is the signal that powers up the USS module and starts a new measurement. If
the USS module is already powered up, then the PSQ initiates a new measurement immediately.
UUPSCTL.USSPWRUPSEL determines the source of the USS_PWRREQ signal. When the PSQ detects
USS_PWRREQ signal, no additional event is accepted by the PSQ until the measurement is complete.
UUPSCTL.USS_BUSY indicates whether or not the USS module is in a power transition or performing a
measurement. While UUPSCTL.USS_BUSY = 1, the PSQ ignores the USS_PWRREQ signal (0 → 1).
Reset and Low Power Bias Mode control signals
On device Power Up the all USS submodules are kept in reset state. Set UUPSCTL.SWRST = 0 to
release reset and put the module into operation mode.
The operation mode has to be selected before the USS is powered up. For Auto mode and Register Mode
set SAPGMCNF.LPBE=0.
To select Low Power Bias Mode set SAPHMCNF.LPBE=1. SAPHMCNF.LPBE shall only be changed
while the PSQ is in OFF state.
• USS_SWRST: SW reset signal fo all USS submodules.
• ASQ_LPBE: Enables Low Power Bias operation mode here the ASQ takes has full control over the
input multiplexer and channel selection.
Power-up control signals
When USS_PWRREQ = 0 → 1 is detected, the PSQ starts the power-up sequence if the USS module has
not been powered up (UUPSCTL.UPSTATE = 0). The PSQ requests the required reference voltage and
currents, then enables the USS LDO and enables HSPLL. When the PLL is locked, generate the
PSQ_START signal to ASQ.
• PSQ_SREFREQ: Request signal to the share reference module.
• PSQ_LDOUP: Enables the USS LDO after the reference voltage and currents from BIAS_REF module
are settled.
• PSQ_PLLUP: Enables HSPLL when UUPSCTL.LDORDY = 1.
• PSQ_START: PSQ to ASQ to start a new measurement sequence. The PSQ asserts the signal when
IREF_MOD, USS LDO, and HSPLL are fully settled and UUPSCTL.ASQEN bit = 1.
• PSQ_STOP: PSQ to ASQ to stop the existing measurement immediately. The PSQ asserts the signal
when UUPSCTL.USSPWRDN = 1 or UUPSCTL.USSSTOP = 1.
Measurement control signals
When USS_START = 0 → 1 is detected, the ASQ starts a new measurement sequence based on the
timing information in the time mark registers (SAPHATM_A to SAPHATM_F).
• ASQ_PPGTRG: ASQ to PPG to generate excitation pules.
452

Ultrasonic Sensing Solution (USS, USS_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Operation of the USS Module

www.ti.com

•
•
•

ASQ_ACQARM: ASQ to SDHS to power up the SDHS module.
ASQ_ACQTRG: ASQ to SDHS to start data conversion and transfer output data to target memory.
SHDS_ACQDONE: SDHS to ASQ to acknowledge that the preconfigured sample size has been
captured.

Power-down control states and signals
When the desired measurement sequences finish execution, the power-down process starts. There are
three power states that can be chosen:
• READY: The USS module is fully powered up (no changes in power state).
• STANDBY: The USS module is powered off, but required reference voltage is kept on for faster
wakeup.
• OFF: The USS module is fully powered off.
The ASQ asserts ASQ_ACQDONE to acknowledge the PSQ that the measurement is compete.
Depending on the selected power state, ASQ_PDREQ or ASQ_STBYREQ can be asserted along with the
ASQ_ACQDONE signal.
• ASQ_PDREQ: Goes to OFF state.
• ASQ_STDBYREQ: Goes to STANDBY state.
• ASQ_ASQDONE: Indicates that the measurement is complete. If neither ASQ_PDREQ nor
ASQ_STDBYREQ is asserted, then stay in READY state.
Emergency measurement stop control signals
While the USS module is active, the current measurement sequence can be stopped at any time:
• PSQ_STOP: PSQ to ASQ to stop the current measurement immediately (when UUPSCTL.USSSTOP
= 1 or UUPSCTL.USSPWRDN = 1).
• ASQ_PPGSTOP: ASQ to PPG to stop pulse generation if the PPG is active.
• ASQ_SDHSSTOP: ASQ to SDHS to stop the data conversion and turn off the SDHS if the SDHS is
active.
Table 18-4. Control Signals Among USS Submodules
Source

Signal

Receiver

UUPSCTL.SWR
ST

USS_SWRST

ASQ, PPG,
SAPH,
SDHS

SAPHMCNF.LP
BE

ASQ_LPBE

PSQ

UUPSCTL.USS
PWRUP
Internal signal

USS_PWRREQ

UUPSCTL.SWRST = 1

Indication to enter low-power bias
mode

SAPHMCNF.LPBE = 1

PSQ
3.

Internal signal
PSQ_SREFREQ

SREF

PSQ_LDOUP

USS LDO

PSQ_PLLUP

HSPLL

PSQ_START
ASQ

PSQ_STOP

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Condition to Generate the Signal

Software reset to all USS
submodules

1.
2.

Internal signal

PSQ

Function

Power up the USS module
Assert PSQ_START if
UUPSCTL.ASQEN = 1
If UUPSCTL.USS_BUSY = 1 or
UUPSCTL.UPSTATE = 2, the
signal is ignored

UUPSCTL.USSPWRUP = 0 → 1
See device-specific data sheet
See device-specific data sheet
See device-specific data sheet

Shared reference request

USS_PWRREQ: 0 → 1 (valid)

Enable USS LDO

SREF is ready

Enable HSPLL

UUPSCTL.LDORDY = 1

Start a new measurement

UUPSCTL.UPSTATE = 3

Stop the current measurement
immediately

UUPSCTL.USSPWRDN = 1,
UUPSCTL.USSSTOP = 1 or Enter
debug mode

Ultrasonic Sensing Solution (USS, USS_A) 453

Copyright © 2012–2017, Texas Instruments Incorporated

Debug Features

www.ti.com

Table 18-4. Control Signals Among USS Submodules (continued)
Source

Signal

Receiver

ASQ_PPGTRG
ASQ_PPGSTOP

PPG

ASQ_ACQARM
ASQ_ACQTRG

SDHS

ASQ_SDHSSTOP
ASQ

ASQ_PDREQ

ASQ_STDBYREQ

PSQ

ASQ_ACQDONE
SDHS

SDHS_ACQDONE

ASQ

Function

Condition to Generate the Signal

Start pulse generation

SAPHATM_A register

Stop pulse generation immediately

PSQ_STOP = 1 and PPG is active

Power up SDHS

SAPHATM_B register

Conversion start

SAPHATM_D register

Conversion stop and power off

PSQ_STOP = 1

USS power down, PSQ can receive
a new USS_PWRREQ signal

If SAPHASCTL1.ESOFF = 1 and
SAPHASCTL1.STDBY = 0 when
SDHS_ACQDONE = 1

USS standby, USS power down,
PSQ can receive a new
USS_PWRREQ signal

If SAPHASCTL1.ESOFF = 1 and
SAPHASCTL1.STDBY = 1 when
SDHS_ACQDONE = 1

PSQ can receive a new
USS_PWRREQ signal

SDHS_ACQDONE = 1

Signal to ASQ that SDHS data
conversion is complete

When the preconfigured sample size
has been captured

18.3 Debug Features
When the device enters debug mode, the USS module automatically stops the existing measurement, and
all interrupts are suppressed. The debugger can read or write any USS registers, but
SDHSCTL4.SDHSON and SDHSCTL5.SSTART are not functional. The PSQ ignores the USS_PWRREQ
signal.

454

Ultrasonic Sensing Solution (USS, USS_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 19
SLAU367O – October 2012 – Revised December 2017

Universal USS Power Supply (UUPS)
This chapter describes the operation of the UUPS module.
Topic

19.1
19.2
19.3
19.4
19.5
19.6
19.7

...........................................................................................................................
Introduction .....................................................................................................
USS Power-up Sequence ...................................................................................
USS Power States.............................................................................................
Interface to the ASQ (Acquisition Sequencer) ......................................................
Interrupts.........................................................................................................
Debug Mode.....................................................................................................
UUPS Registers ................................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Universal USS Power Supply (UUPS)

Copyright © 2012–2017, Texas Instruments Incorporated

Page

456
457
458
460
463
463
464

455

Introduction

www.ti.com

19.1 Introduction
The Universal USS Power Supply (UUPS) is one of the submodules in the Ultrasonic Sensing Solution
(USS) module. The USS module is designed for ADC-based ultrasonic sensing technology in various
measurement applications. Figure 19-2 shows the block diagram of the USS module.
USS or USS_A module

USSXT
USSXTIN USSXTOUT

USSXT_BOUT

SAPH or SAPH_A
OSC

CH0_OUT
PPG or
CH1_OUT

ASQ

PPG_A

PLL
PHY
PVSS

HSPLL
UUPS

PVCC

SDHS

CH1_IN
PGA

SD 12 or 14
MOD Filter

DTC

RAM
(shared with LEA)

XPB0

CH0_IN

Bias Generator
on SAPH_A only

XPB1

Optional
external
signal
handling

PLL_CLK

Vout

PVSS

Px.y

GPIO
(software controlled)

Figure 19-1. USS/USS_A Block Diagram
The UUPS module consists of three blocks: the power sequencer (PSQ), the reference generator
(BIAS_REF), and the USS LDO (see Figure 19-2).
• PSQ block: Controls the power-up and power-down sequences of the USS module.
• BIAS_REF block: Generates required reference voltages and currents for the SDHS, HSPLL, and USS
LDO.
• USS_LDO block: Generates regulated 1.6 V, which is used by the USS submodules.

456

Universal USS Power Supply (UUPS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

USS Power-up Sequence

www.ti.com
UUPSCTL.
SWRST

UUPS
IREF_MOD

SDHS
VBG

USS_SWRST

PSQ_SREFREQ

BIAS_REF

VREF
IBIAS

PSQ (Power
Sequencer)

UUPSCTL.
USSPWRUP
External Signal

00

External Signal

10

External Signal

11

LDO_OUT

LDO_RDY

USS LDO

ENABLE

UUPSCTL.
USSPWRUPSEL
2

HSPLL

IREF_PLL

PLL_CLK

PLL_LOCK

SREF

PSQ_LDOUP
PSQ_PLLUP

01
USS_PWRREQ

Figure 19-2. UUPS Block Diagram
The signal names in Figure 19-2 are for information only to show how each block is connected inside the
UUPS module. These signals are not under user control.
NOTE: Naming convention for register names and bit fields:
•
UUPS registers: RegisterName or RegisterName.BitField
•
Other module registers: ModuleNameRegisterName or
ModuleNameRegisterName.BitField

19.2 USS Power-up Sequence
The Power Sequencer (PSQ) block controls the USS module power-up and power-down sequences. The
PSQ powers up the USS module when the USS_PWRREQ signal is asserted (see Figure 19-2). The
USS_PWRREQ signal can be generated from four different sources. When
UUPSCTL.USSPWRUPSEL = 0, writing 1 to UUPSCTL.USSPWRUP generates the USS_PWRREQ
signal and starts the USS power-up sequences. The other sources may or may not be available; see the
device-specific data sheet for the internal signal sources (search for UUPSCTL.USSPWRUPSEL). The
power states of the USS module can be monitored by reading UUPSCTL.UPSTATE.
The order of the USS power-up sequence is:
1. The USS_PWRREQ is asserted when the USS module is powered off (UUPSCTL.UPSTATE = 0,
indicating that the USS module is in OFF state).
2. The PSQ sends a request to the shared reference (SREF) to generate VBG and starts an internal
timer (UUPSCTL.UPSTATE = 2, indicating that the USS power state is in transition).
3. The PSQ enables the BIAS_REF block when the VBG is ready (UUPSCTL.UPSTATE = 2).
4. The PSQ turns on the USS_LDO when the required reference voltages and currents are ready
(UUPSCTL.UPSTATE = 2).
5. The PSQ waits for the LDORDY, signal which can be monitored by reading UUPSCTL.LDORDY
(UUPSCTL.UPSTATE = 2).
6. The PSQ enables the HSPLL module when LDORDY = 1 (UUPSCTL.UPSTATE = 2).
7. The PSQ waits for the PLL_LOCK signal from the HSPLL module. The PLL_LOCK can be monitored
by reading HSPLLCTL.PLL_LOCK (UUPSCTL.UPSTATE = 2).
8. The PSQ sets UUPSCTL.UPSTATE = 3 to indicate that the USS is fully powered and ready to start a
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Universal USS Power Supply (UUPS)

Copyright © 2012–2017, Texas Instruments Incorporated

457

USS Power States

www.ti.com

new measurement.
9. If the PSQ internal timer reaches its time-out limit before the PLL_LOCK signal is asserted,
UUPSRIS.PTMOUT is set to 1. The time-out is not programmable and can vary depending on the PLL
output clock frequency. The maximum delay is 160 µs plus the configured "holdoff time" (~300us max).
CAUTION
The
application
must
turn
on
the
USSXT
oscillator
(HSPLLUSSXTLCTL.OSCEN = 1) and wait for a sufficient time to let the
oscillator start (this depends on the crystal or resonator characteristics) before
powering up the USS module. The USSXT oscillator is not controlled by the
PSQ. The PSQ assumes that the oscillator output is already available and
stable in frequency and amplitude).

19.3 USS Power States
The following power states are supported by the UUPS module.
• OFF: The USS module is powered off (UUPSCTL.UPSTATE = 0).
• TRANSITION: The USS module is in transition state (UUPSCTL.UPSTATE = 2).
• READY: The USS module is fully powered up and ready (UUPSCTL.UPSTATE = 3).
• STANDBY: The USS module is powered off, but the SREF remains on for fast wakeup
(UUPSCTL.UPSTATE = 1).
• TIMEOUT: The power-up sequence is taking more than expected time. The USS module goes back to
OFF state and the PTMOUT (power time-out) interrupt is generated if enabled (UUPSCTL.UPSTATE
bits = 0).
Table 19-1. USS Power State
Power State

State Register
(UUPSCTL.UPSTATE)

OFF

0

The USS module is fully powered off.

TRANSITION

2

In transition. A new trigger to the PSQ is ignored.

READY

3

The USS module is fully powered up.

STANDBY

1

The USS module is powered off, but SREF is enable for fast wakeup.

0

The USS power-up sequence has not been properly ended. The USS module goes
back to OFF state and UUPSRIS.PTMOUT is set to 1.
Note: A time-out should not happen during normal operating conditions. Make sure that
the USSXT oscillator is enabled and working properly.

TIMEOUT

458

Description

Universal USS Power Supply (UUPS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

USS Power States

www.ti.com

Figure 19-3 shows the USS module power states and their relationships to each other.
PUC
and SWRST
OFF
UUPSCTL.
UPSTATE = 0
USS_PWRREQ = 1

UUPSCTL.
USSPWRDN = 1
USSPWRDN = 1
or
ASQ_PDREQ = 1 (from ASQ)

UUPSCTL.
LDORDY = 1

Time-out Delay

STANDBY
TIMEOUT
UUPSRIS.
PTMOUT = 1

LBHDEL=..
0,100,200,300 µs
holdoff

UUPSCTL.
UPSTATE = 1

(UUPSCTL.UPSTATE != 3)
and (Time_out ==1)
HSPLLCTL.
PLL_LOCK = 1

*SREF is enabled in Standby state
ASQ_STDBYREQ =
1 (from ASQ)
USS_PWRREQ = 1
LBHDEL=...
0,100,200,300 µs
holdoff

READY
UUPSCTL.
UPSTATE = 3

ASQ_ACQDONE = 1 (from ASQ)

Figure 19-3. USS Power State Control Flow
Table 19-2 lists the signals that cause UUPS power state transitions.
Table 19-2. USS Power States and State Changes
Current Power State

Next State

UUPSCTL.UPSTATE

OFF

READY

0→2→3

USS_PWREQ = 0 → 1

Trigger Signal

READY

STANDBY

3→2→1

ASQ_STDBYREQ = 0 → 1 (generated by ASQ)

READY

OFF

3→2→0

ASQ_PDREQ = 0 → 1 (generated by ASQ)

READY

OFF

3→2→0

UUPSCTL.USSPWRDN = 0 → 1

STANDBY

OFF

1→2→0

UUPSCTL.USSPWRDN = 0 → 1

STANDBY

READY

1→2→3

USS_PWRREQ = 0 → 1

The USS power state and the device power mode have a relationship as listed in Table 19-3. When the
USS module is in READY state, keep the device in LPM0 or AM mode, because the USS module uses
resources from the core domain of the device. If the device is in other low-power modes, the
measurement performance degrades significantly.
The transition from STANDBY to READY can be extended by a user selectable holdoff delay. This method
is used in ultra low bias mode to suppress the PLL operation while the system is still settling. Depending
on the transducers and other external circuits some considerable power savings can be achieved.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Universal USS Power Supply (UUPS)

Copyright © 2012–2017, Texas Instruments Incorporated

459

Interface to the ASQ (Acquisition Sequencer)

www.ti.com

Table 19-3. Device Power Modes and USS Power
States
USS Power State Change

Device Power Mode

READY

LPM0 or higher

STANDBY

LPM3 or higher
(PMMREGOFF = 0)

19.4 Interface to the ASQ (Acquisition Sequencer)
UUPSCTL.
USSSWRST

UUPSCTL.
USSPWRDN

USPSCTL.
USSSTOP

UUPSCTL.
ASQEN

Figure 19-4 shows the interface signals between the PSQ and the ASQ (see Chapter 21 for details).

UUPSCTL.
USSPWRUPSEL
2

PSQ_START
ASQ
(Acquisition
Sequencer)

UUPSCTL.
USSPWRUP

00

PSQ_STOP
ASQ_PDREQ
ASQ_STDBYREQ

PSQ
(Power Sequencer)

USS_PWRREQ

01
10

ASQ_ACQDONE
11

ASQ_LPBE

External Signal
External Signal
External Signal

Figure 19-4. USS Power Control

NOTE: The control signals in Table 19-4 are internal only, and cannot be read or written by user
software.

Table 19-4. Internal Control Signals
Control Signal

Description

Condition to be Triggered

PSQ to power up the USS module and generate
PSQ_START to the ASQ if UUPSCTL.ASQEN = 1

Trigger one of the sources selected by
UUPSCTL.USSPWRUPSEL

PSQ_START

ASQ to start a new measurement process if
SAPHASCTL0.TRIGSEL = 1

UUPSCTL.UPSTATE = 0 → 2 → 3 and
UUPSCTL.ASQEN = 1

PSQ_STOP

ASQ to stop the current measurement process

UUPSCTL.USSSTOP = 0 → 1

ASQ_ACQDONE

Acknowledge PSQ that ASQ has completed the
measurements

The measurements have been completed

ASQ_STDBYREQ

PSQ to enter STANDBY state

The measurements have been completed and
SAPHASCTL1.ESOFF = 1 and
SAPHASCTL1.STDBY = 1

PSQ to power off the USS module

The measurements have been completed and
SAPHASCTL1.ESOFF = 1 and
SAPHASCTL1.STDBY = 0

USS_PWRREQ

ASQ_PDREQ

19.4.1 Start New Measurements
If UUPSCTL.ASQEN = 1, the PSQ block automatically sends the PSQ_START signal to the ASQ when
the USS module is fully powered up. The ASQ starts new measurement sequences upon receiving the
PSQ_START signal if SAPHASCTL0.TRIGSEL = 1. In this case, the full measurement sequence can be
performed without any CPU intervention, and the USS_PWRREQ is the only trigger signal the USS
module needs externally. The PSQ and ASQ must be configured independently (see Figure 19-4). The
ASQ can be triggered by user software by writing SAPHASQTRIG.ASQTRIG = 1 when
SAPHASCTL0.TRIGSEL = 0.
460

Universal USS Power Supply (UUPS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Interface to the ASQ (Acquisition Sequencer)

www.ti.com

Figure 19-4 shows the interface signals between the PSQ and the ASQ (see Chapter 21 for details). If
UUPSCTL.ASQEN = 1, the PSQ block sends the PSQ_START signal to the ASQ when the USS module
reaches READY state from OFF state. Then, the ASQ starts new measurement sequences upon receiving
the PSQ_START signal if SAPHASCTL0.TRIGSEL = 1. In this case, the full measurement sequences can
be performed without any CPU intervention. The USS_PWRREQ is the only trigger signal the USS needs
to take externally. The PSQ and ASQ must be configured independently (see Figure 19-4). The ASQ can
be triggered manually by user software by writing SAPHASQTRIG.ASQTRIG = 1 when
SAPHASCTL0.TRIGSEL = 0.
Table 19-5. ASQ Trigger

19.4.2

ASQ Auto
Trigger Mode

PSQ Configuration

ASQ Configuration

How to Trigger ASQ

Yes

UUPSCTL.ASQEN = 1

SAPHASCTL0.TRIGSEL = 1

The PSQ sends a trigger signal (PSQ_START) to the
ASQ when the USS gets to READY state

No

UUPSCTL.ASQEN = 0

SAPHASCTL0.TRIGSEL = 1

This configuration is not supported

No

UUPSCTL.ASQEN = 1

SAPHASCTL0.TRIGSEL = 0

The PSQ_START signal generated by the PSQ is
ignored. The ASQ is triggered by writing 1 to
SAPHASQTRIG.ASQTRIG.

No

UUPSCTL.ASQEN = 0

SAPHASCTL0.TRIGSEL = 0

The ASQ is triggered by writing 1 to
SAPHASQTRIG.ASQTRIG.

Stop Measurement Before Completion

While the USS module is performing a measurement, the PSQ can stop the current measurement process
using any of these methods:
• Write 1 to UUPSCTL.USSSTOP: The PSQ asserts the PSQ_STOP signal to the ASQ, then the ASQ
starts the process to gracefully stop the current measurement. When the measurement is fully stopped,
the ASQ asserts the ASQ_ACQDONE signal to the PSQ. No changes are made to the USS power
state. The UUPSCTL.USSSTOP bit is cleared when the stop request has been completed. If this bit is
set to 1 when the ASQ is idle, it is cleared immediately.
• Enable Debug mode: When debug entry is detected, the PSQ asserts, the PSQ asserts the
PSQ_STOP signal to the ASQ, then the ASQ starts the process to stop the current measurement
gracefully. When the measurement is fully stopped, the ASQ asserts the ASQ_ACQDONE signal to the
PSQ. No changes to the USS power state.
• Write 1 to UUPSCTL.USSPWRDN: The PSQ asserts the PSQ_STOP signal to the ASQ, then the
ASQ starts the process to gracefully stop the current measurement. When the measurement is fully
stopped, the ASQ asserts the ASQ_ACQDONE signal, then the PSQ powers off the USS module. The
UUPSCTL.USSPWRDN bit is cleared when the power down request has been completed. If this bit is
set to 1 when the USS module is powered off (OFF state), it is cleared immediately.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Universal USS Power Supply (UUPS)

Copyright © 2012–2017, Texas Instruments Incorporated

461

Interface to the ASQ (Acquisition Sequencer)

www.ti.com

19.4.3 USS Power State After Completion of Measurements
The USS power state after completion of the measurement can be programmed to one of the following
states:
• READY: No changes to the USS power state. The USS module is ready for the next measurement.
• STANDBY: The USS module is powered off but, the SREF block is enabled for fast wakeup.
• OFF: The USS module is fully powered off.
Figure 19-4 lists the configuration to select one of the power states after measurement completion.
Table 19-6. Power States After Measurement
Completion
Configuration Before Starting a
New Measurement

Final USS Power State After
Measurement Completion

SAPHASCTL1.ESOFF = 0

READY

SAPHASCTL1.ESOFF = 1 and
SAPHASCTL1.STDBY = 1

STANDBY

SAPHASCTL1.ESOFF = 1 and
SAPHASCTL1.STDBY = 0

OFF

19.4.4 UUPSCTL.USSPWRUP Bit and UUPSCTL.USS_BUSY Bit
Figure 19-2 shows that the USS_PWRREQ signal can be generated from a maximum of four different
sources (see the device-specific data sheet for implementation). When UUPSCTL.USSPWRUPSEL = 0,
UUPSCTL.USSPWRUP is selected. In the case, writing 1 to UUPSCTL.USSPWRUP asserts the
USS_PWRREQ signal to the PSQ, then the PSQ starts the power-up sequences, and then the PSQ can
trigger the PSQ to perform new measurements (if UUPSCTL.ASQEN = 1 and
SAPHASCTL0.TRIGSEL = 1). Writing 1 to UUPSCTL.USSPWRUP is invalid and ignored if the power is in
TRANSITION state (UUPSCTL.UPSTATE = 2) or the ASQ is performing a measurement sequence
(UUPSCTL.USS_BUSY = 1), because the current power sequence or the measurement sequence should
be completed before taking a new request.
The UUPSCTL.USS_BUSY bit can be used to monitor the USS module status. When a valid
USS_PWRREQ signal is detected, the PSQ sets the UUPSCTL.USS_BUSY bit to 1 to indicate that the
PSQ is in busy state and is not ready to take a new USS_PWRREQ signal. Do not to generate a new
USS_PWRREQ while UUPSCTL.USS_BUSY = 1. The UUPSCTL.USS_BUSY is set to 1 when any one of
the following conditions is satisfied:
• UUPSCTL.UPSTATE = 2 (power state = TRANSITION)
• The ASQ is performing a measurement sequence (the internal signal, ASQ_ACQDONE = 0) .
• The SDHS is sampling data (SDHSCTL5.SDHS_LCK = 1) even when the measurement is not under
ASQ control (register mode).

462

Universal USS Power Supply (UUPS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Interrupts

www.ti.com

19.5

Interrupts
The UUPS module supports the following interrupts:
• STPBYDB interrupt: The USS module has been interrupted by debug mode. This interrupt is reported
when debug halt mode is entered when UUPSCTL.USS_BUSY = 1 or UUPSCTL.UPSTATE = 3. The
interrupt indicates that any existing activities have been (or will be) stopped due to entering debug
mode:
If UUPSCTL.USS_BUSY = 1 and UUPSRIS.STPBYDB = 1, then the USS module is stopping the
current activities.
If UUPSCTL.USS_BUSY = 0 and UUPSRIS.STPBYDB = 1, then the USS module is idle.
• PTMOUT interrupt: This interrupt is reported when the power-up sequence takes more time than
expected. The USS module is powered off and the UUPSRIS.PTMOUT is set to 1.
• PREQIG interrupt: This interrupt is reported when a new USS_PWRREQ is detected before
completing the previous measurement. Two conditions of the USS_PWRREQ signal cannot be
detected:
1. After detecting a valid USS_PWRREQ signal, another USS_PWRREQ is applied within 3
MODOSC clock cycles.
2. After UUPSRIS.PREQIG is cleared, a USS_PWRREQ signal is applied within 6 MODOSC clock
cycles + 2 system clock cycles.

19.6 Debug Mode
The USS module stops activities when the device enters debug mode. The following actions are
performed when entering debug mode.
• Assert the PSQ_STOP signal to the ASQ to stop the current measurement sequence.
• Set UUPSRIS.STPBYDB to 1 to indicate that the current measurement has been interrupted.
• Clear UUPSCTL.USS_BUSY bit to zero upon receiving the ASQ_ACQDONE from the ASQ.
• Ignore the USS_PWRREQ signal (writing 1 to UUPSCTL.USSPWRUP in debug mode has no effect).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Universal USS Power Supply (UUPS)

Copyright © 2012–2017, Texas Instruments Incorporated

463

UUPS Registers

www.ti.com

19.7 UUPS Registers
Table 19-7 lists the memory-mapped registers for the UUPS. All register offset addresses not listed in
Table 19-7 should be considered as reserved locations and the register contents should not be modified.
Table 19-7. UUPS Registers
Offset

Acronym

Register Name

Type

Reset

0h

UUPSIIDX

Interrupt Index Register

read-only

0

Section 19.7.1

2h

UUPSMIS

Masked Interrupt Status Register

read-only

0h

Section 19.7.2

4h

UUPSRIS

Raw Interrupt Status Register

read-only

0h

Section 19.7.3

6h

UUPSIMSC

Interrupt Mask Register

read-write

0h

Section 19.7.4

8h

UUPSICR

Interrupt Clear Register.

write-only

0h

Section 19.7.5

464

Section

Ah

UUPSISR

Interrupt Flag Set Register.

write-only

0h

Section 19.7.6

Ch

UUPSDESCLO

UUPS Descriptor Register L.

read-only

110h

Section 19.7.7

Eh

UUPSDESCHI

UUPS Descriptor Register H.

read-only

BA10h

Section 19.7.8

10h

UUPSCTL

UUPS Control

read-write

800h

Section 19.7.9

Universal USS Power Supply (UUPS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

UUPS Registers

www.ti.com

19.7.1 UUPSIIDX Register (Offset = 0h) [reset = 0h]
UUPSIIDX is shown in Figure 19-5 and described in Table 19-8.
Return to Summary Table.
Interrupt Index Register.
Note: This register is word accessible. A byte access is also allowed but not recommended. Either high
byte or low byte access alone can clear the pending interrupt flag.
Figure 19-5. UUPSIIDX Register
15

14

13

12

11

10

9

8

3

2

1

0
RESERVED
R-

IIDX
R7

6

5

4
IIDX
R-

Table 19-8. UUPSIIDX Register Field Descriptions
Bit

Field

Type

15-1

IIDX

R

Reset

Description
UUPS Interrupt Vector Value. Read only. It generates a value that
can be used as address offset for fast interrupt service routine
handling. On each read, only one interrupt is indicated. On a read,
the current interrupt (highest priority) is automatically cleared by the
hardware and the corresponding interrupt flag in RIS and MIS are
cleared as well. After a read from the CPU (not from the debug
interface), the register must be updated with the next highest priority
interrupt, if none are pending, then it should display 0h.
If the interrupt displayed by the IIDX register (highest priority pending
interrupt) is cleared in the ICR through a software write of 1 in the
corresponding bit field, the IIDX register shall be updated and the
next priority interrupt (if any) be displayed.
Reset type: PUC
0h (R) = No Interrupt pending
1h (R) = Interrupt Source: PTMOUT; Interrupt Priority: Highest
2h (R) = Interrupt Source: PREQIG
3h (R) = Interrupt Source: STPBYDB
4h (R) = Reserved; Interrupt Priority: Lowest

0

RESERVED

R

0h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Reserved

Universal USS Power Supply (UUPS)

Copyright © 2012–2017, Texas Instruments Incorporated

465

UUPS Registers

www.ti.com

19.7.2 UUPSMIS Register (Offset = 2h) [reset = 0h]
UUPSMIS is shown in Figure 19-6 and described in Table 19-9.
Return to Summary Table.
Masked Interrupt Status Register.
Implementation note: UUPSMIS = (RIS and IMSC) when read.
Figure 19-6. UUPSMIS Register
15

14

13

12

11

10

9

8

3

2
STPBYDB
R-0h

1
PREQIG
R-0h

0
PTMOUT
R-0h

RESERVED
R-0h
7

6

5
RESERVED
R-0h

4

Table 19-9. UUPSMIS Register Field Descriptions
Bit
15-3
2

Field

Type

Reset

Description

RESERVED

R

0h

Reserved

STPBYDB

R

0h

USS has been interrupted by debug mode Masked Interrupt Status
bit.
Reset type: PUC
0h (R) = No interrupt pending
1h (R) = Interrupt pending

1

PREQIG

R

0h

UUPS Power Request Ignored Masked Interrupt Status bit.
Reset type: PUC
0h (R) = No interrupt pending
1h (R) = Interrupt pending

0

PTMOUT

R

0h

UUPS Power Up Time Out Masked Interrupt Status bit.
Reset type: PUC
0h (R) = No interrupt pending
1h (R) = Interrupt pending

466

Universal USS Power Supply (UUPS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

UUPS Registers

www.ti.com

19.7.3 UUPSRIS Register (Offset = 4h) [reset = 0h]
UUPSRIS is shown in Figure 19-7 and described in Table 19-10.
Return to Summary Table.
Raw Interrupt Status Register. Read Only Register.
The UUPSRIS register allows the user to implement a poll scheme instead of an interrupt (as the interrupt
does not need to be enabled)
Note that the UUPSRIS flag can be cleared by writing to the ICR register bit.
Figure 19-7. UUPSRIS Register
15

14

13

12

11

10

9

8

3

2
STPBYDB
R-0h

1
PREQIG
R-0h

0
PTMOUT
R-0h

RESERVED
R-0h
7

6

5
RESERVED
R-0h

4

Table 19-10. UUPSRIS Register Field Descriptions
Bit
15-3
2

Field

Type

Reset

Description

RESERVED

R

0h

Reserved

STPBYDB

R

0h

USS has been interrupted by debug mode. Read Only. This interrupt
flag is set when debug halt mode is entered when USS_BUSY = 1 or
UPSTATE = 3. The interrupt indicates that any existing activity of
USS will be or has been stopped due to entering debug halt.
If USS_BUSY = 1 and STPBYDB = 1, then USS is in the middle of
stopping the exisitng activities.
If USS_BUSY = 0 and STPBYDB = 1, then USS is in idle state.
Reset type: PUC
0h (R) = USS has not been interrupted by debug halt mode.
1h (R) = USS has been interrupted by debug halt mode.

1

PREQIG

R

0h

Power Request Ignored Raw Interrupt Status bit. Read Only. This
interrupt flag is set when USS_PWRREQ is detected before
completing the previouls measurement.
Note: There two conditions that a USS_PWRREQ signal cannot be
detected. See blow.
1) After detecting a valid USS_PWRREQ signal, another
USS_PWRREQ is applied within 3 MODOSC clock period.
2) After RIS.PREQIG bit is cleared (either by ICR or reading IIDX
register), a USS_PWRREQ signal is applied within 6 MODOSC
clock + 2 System clock period.
Reset type: PUC
0h (R) = No USS_PWRREQ signal has been ignored
1h (R) = USS_PWRREQ signal has been ignored

0

PTMOUT

R

0h

UUPS Power Up Time Out Raw Interrupt Status bit. Read Only
Reset type: PUC
0h (R) = Time out during power up has not occurred
1h (R) = Time out during power up has occurred

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Universal USS Power Supply (UUPS)

Copyright © 2012–2017, Texas Instruments Incorporated

467

UUPS Registers

www.ti.com

19.7.4 UUPSIMSC Register (Offset = 6h) [reset = 0h]
UUPSIMSC is shown in Figure 19-8 and described in Table 19-11.
Return to Summary Table.
Interrupt Mask Register.
This is a read and write register. On a read, it returns the current state of the mask on the relevant
interrupt. On a write of 1 to a particular bit, it sets the corresponding mask of that interrupt. A write of 0
clears the mask.
Figure 19-8. UUPSIMSC Register
15

14

13

12

11

10

9

8

3

2
STPBYDB
R/W-0h

1
PREQIG
R/W-0h

0
PTMOUT
R/W-0h

RESERVED
R-0h
7

6

5
RESERVED
R-0h

4

Table 19-11. UUPSIMSC Register Field Descriptions
Bit
15-3
2

Field

Type

Reset

Description

RESERVED

R

0h

Reserved

STPBYDB

R/W

0h

USS has been interrupted by debug mode Interrupt Mask bit.
Reset type: PUC
0h (R) = STPBYDB Interrupt is disabled
1h (R) = STPBYDB Interrupt is enabled

1

PREQIG

R/W

0h

Power Request Ignored Interrupt Mask bit.
Reset type: PUC
0h (R/W) = Power Request Ignore Interrupt is disabled.
1h (R/W) = Power Request Ignore Interrupt is enabled.

0

PTMOUT

R/W

0h

UUPS Power Up Time Out Interrupt Mask bit.
Reset type: PUC
0h (R/W) = UUPS Power Up Time Out Interrupt is disabled.
1h (R/W) = UUPS Power Up Time Out Interrupt is enabled.

468

Universal USS Power Supply (UUPS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

UUPS Registers

www.ti.com

19.7.5 UUPSICR Register (Offset = 8h) [reset = 0h]
UUPSICR is shown in Figure 19-9 and described in Table 19-12.
Return to Summary Table.
Interrupt Clear Register. Write 1 to clear the corresponding RIS bit. Read as zero.
Figure 19-9. UUPSICR Register
15

14

13

12

11

10

9

8

3

2
STPBYDB
W-0h

1
PREQIG
W-0h

0
PTMOUT
W-0h

RESERVED
R-0h
7

6

5
RESERVED
R-0h

4

Table 19-12. UUPSICR Register Field Descriptions
Bit

Field

Type

Reset

Description

RESERVED

R

0h

Reserved

2

STPBYDB

W

0h

USS has been interrupted by debug mode Interrupt Clear bit.

1

PREQIG

W

0h

Power Request Ignored Interrupt Clear bit. Write 1 to Clear
RIS.PREQIG bit

0

PTMOUT

W

0h

UUPS Power Up Time Out Interrupt Clear bit. Write 1 to clear
RIS.PTMOUT bit.

15-3

Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Universal USS Power Supply (UUPS)

Copyright © 2012–2017, Texas Instruments Incorporated

469

UUPS Registers

www.ti.com

19.7.6 UUPSISR Register (Offset = Ah) [reset = 0h]
UUPSISR is shown in Figure 19-10 and described in Table 19-13.
Return to Summary Table.
Interrupt Flag Set Register. Read as zero.
Figure 19-10. UUPSISR Register
15

14

13

12

11

10

9

8

3

2
STPBYDB
W-0h

1
PREQIG
W-0h

0
PTMOUT
W-0h

RESERVED
R-0h
7

6

5
RESERVED
R-0h

4

Table 19-13. UUPSISR Register Field Descriptions
Bit

Field

Type

Reset

Description

RESERVED

R

0h

Reserved

2

STPBYDB

W

0h

USS has been interrupted by debug mode Interrupt Set bit.

1

PREQIG

W

0h

Power Request Ignored Interrupt Set bit. Write 1 to set RIS.PREQIG
bit

0

PTMOUT

W

0h

UUPS Power Up Time Out Interrupt Set bit. Write 1 to set
RIS.PTMOUT bit

15-3

Reset type: PUC

Reset type: PUC

470

Universal USS Power Supply (UUPS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

UUPS Registers

www.ti.com

19.7.7 UUPSDESCLO Register (Offset = Ch) [reset = 110h]
UUPSDESCLO is shown in Figure 19-11 and described in Table 19-14.
Return to Summary Table.
UUPS Descriptor Register L.
Figure 19-11. UUPSDESCLO Register
15

14

13

12

11

10

FEATUREVER
R-0h
7

6

9

8

1

0

INSTNUM
R-1h
5

4

3

2

MAJREV
R-1h

MINREV
R-0h

Table 19-14. UUPSDESCLO Register Field Descriptions
Field

Type

Reset

Description

15-12

Bit

FEATUREVER

R

0h

Feature Set for the module
Reset type: PUC

11-8

INSTNUM

R

1h

Instance Number within the device. This will be a parameter to the
RTL for modules that can have multiple instances

7-4

MAJREV

R

1h

Major Revision

3-0

MINREV

R

0h

Reset type: PUC
Minor Revision
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Universal USS Power Supply (UUPS)

Copyright © 2012–2017, Texas Instruments Incorporated

471

UUPS Registers

www.ti.com

19.7.8 UUPSDESCHI Register (Offset = Eh) [reset = BA10h]
UUPSDESCHI is shown in Figure 19-12 and described in Table 19-15.
Return to Summary Table.
UUPS Descriptor Register H.
Figure 19-12. UUPSDESCHI Register
15

14

13

12

11

10

9

8
7
MODULEID
R-BA10h

6

5

4

3

2

1

0

Table 19-15. UUPSDESCHI Register Field Descriptions
Bit
15-0

472

Field

Type

Reset

Description

MODULEID

R

BA10h

Module Identifier.
Reset type: PUC

Universal USS Power Supply (UUPS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

UUPS Registers

www.ti.com

19.7.9 UUPSCTL Register (Offset = 10h) [reset = 800h]
UUPSCTL is shown in Figure 19-13 and described in Table 19-16.
Return to Summary Table.
UUPS Control Register
Figure 19-13. UUPSCTL Register
15
USSSTOP
R/W-0h

14
USSPWRDN
R/W-0h

13

7
USSSWRST
R/W-0h

6

5
RESERVED
R-0h

12

11
ASQEN
R/W-1h

4

3
USS_BUSY
R-0h

LBHDEL
R/W-0h

10
9
USSPWRUPSEL
R/W-0h
2

1
UPSTATE
R-0h

8
USSPWRUP
W-0h
0
LDORDY
R-0h

Table 19-16. UUPSCTL Register Field Descriptions
Bit

Field

Type

Reset

Description

15

USSSTOP

R/W

0h

Force to stop the current measurement. This bit is self cleared. No
change to the power state. This bit is cleared when the stop request
has been completed. Note that if this bit is set to '1' when the ASQ is
idle, it is cleared immediately.
Reset type: PUC
0h (R/W) = No action
1h (R/W) = Stop the current measurement.

14

USSPWRDN

R/W

0h

Force to power down the USS module. This bit is self cleared.
Writing '0' has no effect. This bit is cleared when the powerdown
request has been completed. Note that if this bit is set to '1' when
the USS module is in OFF state, it is cleared immediately.
Reset type: PUC
0h (R/W) = No action
1h (R/W) = Stop the current measurement and power off the USS
module.

13-12

LBHDEL

R/W

0h

Low power bias hold off delay. These bits define the duration of the
hold off delay for the low power bias mode ( SAPHMCNF.LPBE=1).
The hold off delay is inserted from "OFF state" to "READY state" and
from "STANDBY state" to "READY state". Set these bits to zero to
avoid extra delay in Register Mode and Auto Mode.
Reset type: PUC
0h (R/W) = no additional delay
1h (R/W) = additional hold off delay of ~100us (512 REFCLKs)
2h (R/W) = additional hold off delay of ~200us (1024 REFCLKs)
3h (R/W) = additional hold off delay of ~300us (1536 REFCLKs)

11

ASQEN

R/W

1h

Enable the PSQ_START signal to the ASQ.
Note: This bit must be correcty configured before asserting the
USS_PWRREQ signal.
Reset type: PUC
0h (R/W) = Do not generate the PSQ_START signal event to ASQ.
1h (R/W) = Generate the PSQ_START signal event to the ASQ.

10-9

USSPWRUPSEL

R/W

0h

USS Power Up trigger source select.
Reset type: PUC
0h (R/W) = CTL.USSPWRUP bit
1h (R/W) = Ext. trigger (see the device specific datasheet)
2h (R/W) = Ext. trigger (see the device-specific data sheet)
3h (R/W) = Ext. trigger (see the device-specific data sheet)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Universal USS Power Supply (UUPS)

Copyright © 2012–2017, Texas Instruments Incorporated

473

UUPS Registers

www.ti.com

Table 19-16. UUPSCTL Register Field Descriptions (continued)
Bit
8

Field

Type

Reset

Description

USSPWRUP

W

0h

Power up the USS module. This bit is self cleared. Writing '0' has no
effect.
Note: This bit is read as zero.
Reset type: PUC
0h (R/W) = No action
1h (R/W) = Power up the USS module and generate the
PSQ_START to the ASQ if CTL.ASQEN = 1.
Note: This bit becomes invalid in debug mode.

7

USSSWRST

R/W

0h

Software reset
Reset type: PUC
0h (R/W) = Disabled. USS (and sub modules) reset released for
operation
1h (R/W) = Enabled. USS (and sub modules) logic held in reset state

6-4

RESERVED

R

0h

Reserved

3

USS_BUSY

R

0h

USS Busy bit. Read Only. This bit is set to '1' if one of the following
conditions is met.
1) CTL.UPSTATE = 2
2) ASQ is in the middl of performing a measurement process
3) SDHS.CTL5.SDHS_LOCK = 1.
Reset type: PUC
0h (R) = The USS module is not busy.
1h (R) = The USS module is busy.

474

2-1

UPSTATE

R

0h

USS Power state bits. Read Only Note: Due to the synchronization
issue with 2 bits, there is a very short time window that an invalid
value can be read while power transition. In case an accurarte state
information is needed, a simple verification would be required - Read
the resister twice in a row and check if the two values are the same.
Reset type: PUC
0h (R) = USS is in OFF state
1h (R) = USS is in STANDBY state
2h (R) = USS power state is in transition.
3h (R) = USS is in READY state

0

LDORDY

R

0h

USS LDO is ready.
Reset type: PUC
0h (R) = USS LDO is powered down or in transition state
1h (R) = USS LDO is powered on

Universal USS Power Supply (UUPS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 20
SLAU367O – October 2012 – Revised December 2017

High-Speed PLL (HSPLL)
This chapter describes the operation of the HSPLL module.
Topic

20.1
20.2
20.3
20.4
20.5
20.6

...........................................................................................................................
Introduction .....................................................................................................
OSC Control Register (HSPLLUSSXTCTL) ...........................................................
PLL Control (CTL) Register ................................................................................
Start-up Sequence of the USSXT Oscillator .........................................................
Interrupts.........................................................................................................
HSPLL Registers ..............................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

High-Speed PLL (HSPLL)

Page

476
477
478
478
479
480

475

Introduction

www.ti.com

20.1 Introduction
The High-Speed PLL (HSPLL) is one of the submodules in the Ultrasonic Sensing Solution (USS) module.
The USS module is designed for analog-to-digital converter (ADC) based ultrasonic sensing technology in
various measurement applications. Figure 20-1 shows the block diagram of the USS module.
USS or USS_A module

USSXT
USSXTIN USSXTOUT

USSXT_BOUT

SAPH or SAPH_A
OSC

CH0_OUT
PPG or
CH1_OUT

ASQ

PPG_A

PLL
PHY
PVSS

HSPLL
UUPS

PVCC

PLL_CLK

Vout

PVSS

SDHS

CH1_IN

SD 12 or 14
MOD Filter

PGA

RAM
(shared with LEA)

DTC

XPB0

CH0_IN
Optional
external
signal
handling

Bias Generator

XPB1

on SAPH_A only

GPIO

Px.y

(software controlled)

Figure 20-1. USS or USS_A Block Diagram
The HSPLL module is the dedicated clock generation module for the USS module. To measure the flow
speed using ultrasonic technology, the USS module requires a very low-jitter clock to achieve very high
accuracy between upstream and downstream measurements. The HSPLL consists of two blocks, OSC
and PLL. The output clock of the PLL is in the range of 68 MHz to 80 MHz. Figure 20-2 shows the HSPLL
block diagram.
• OSC (oscillator) block: Generates a clock of 4 MHz or 8 MHz from USSXT (crystal or ceramic
resonator).
• PLL (phase-locked loop): Generates a clock in the range of 68 MHz to 80 MHz from the output of the
OSC.
HSPLLUSSXTLCTL.
XTOUTOFF
...SSXTLCTL.
HSPLLUSSXTLCTL.
OSCTYPE
OSCEN

HSPLLCTL.
PLLM[5..0]

HSPLLCTL.
PLLINFREQ
PLL_CLK
(68 to 80 MHz)

USSXTIN
OSC

PLL

½

USSXTOUT

USSXT_BOUT

HSPLLUSSXTLCTL.
OSCSTATE

HSPLLCTL.
PLL_LOCK

Figure 20-2. HSPLL Block Diagram

476

High-Speed PLL (HSPLL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

OSC Control Register (HSPLLUSSXTCTL)

www.ti.com

The control bits of the OSC are grouped in the HSPLLUSSXTCTL register, and the control bits of the PLL
are grouped in the HSPLLCTL register.
NOTE: Naming conventions in this document for register names and bit fields:
•
HSPLL registers: RegisterName or RegisterName.BitField
•
Other module registers: ModuleNameRegisterName or
ModuleNameRegisterName.BitField

20.2 OSC Control Register (HSPLLUSSXTCTL)
As shown in Figure 20-2, the PLL takes the input clock from OSC block. The OSC block supports both
crystal resonators and ceramic resonators with a frequency range of 4 MHz to 8 MHz. The OSC does not
support a bypass mode, so do not attempt to feed an external clock to the USSXTIN pin. Ensure that the
oscillator is enabled and fully stable before enabling the USS module.

20.2.1 OSCEN Bit
The HSPLLUSSXTCTL.OSCEN bit enables or disables the oscillator. The output of the oscillator is gated
by default. When the oscillator is enabled, it drives the external resonator and waits for a predefined
counter value before enabling the output of the oscillator to feed a stable clock to the PLL. One of the two
predefined counter values can be selected by HSPLLUSSXTLCTL.OSCTYPE.

20.2.2 OSCTYPE Bit
The oscillator supports both crystal resonators and ceramic resonators. The resonators have different
start-up times, so the correct setting must be applied before enabling the OSC (by writing 1 to
HSPLLUSSXTCTL.OSCEN). Ceramic resonators have faster wake-up time than crystal resonators. For a
crystal resonator, TI recommends setting HSPLLUSSXTCTL.OSCTYPE to 0 (gating counter = 4096). For
a ceramic resonator, TI recommends setting HSPLLUSSXTCTL.OSCTYPE to 1 (gating counter = 512).

20.2.3 OSCSTATE Bit
The HSPLLUSSXTLCTL.OSCSTATE bit is set after the predefined cycle count has been reached after the
oscillator is enabled. This bit can be used to check whether the oscillator has started. The power-up
sequence of the USS module is fully controlled by the PSQ (see Chapter 19). However, the oscillator must
be enabled and stable before powering up the USS module. The application must turn on the USSXT
oscillator (HSPLLUSSXTLCTL.OSCEN = 1) and wait until the oscillator output is available
(HSPLLUSSXTLCTL.OSCSTATE = 1) before powering up the USS module. The OSCSTATE bit indicates
sufficient signal strength, not signal quality of the oscillator output.
CAUTION
The
application
must
turn
on
the
USSXT
oscillator
(HSPLLUSSXTLCTL.OSCEN = 1) and wait for a sufficient time to let the
oscillator start (this depends on the crystal and resonator characteristics) before
powering up the USS module (see Section 20.4.1). The USSXT oscillator is not
controlled by the PSQ. The PSQ assumes that the oscillator output is already
available (see Chapter 20).

20.2.4 XTOUTOFF Bit
An application may be required to monitor the clock from the oscillator or to use the clock as the source of
another subsystem. To meet these requirements, the buffered output clock from the oscillator can be
enabled on the USSXT_BOUT pin by setting HSPLLUSSXTLCTL.XTOUTOFF = 0. The clock on the
USSXT_BOUT pin can be monitored or used as a clock source. Never use the USSXTOUT pin for
monitoring or for a clock source.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

High-Speed PLL (HSPLL)

477

PLL Control (CTL) Register

www.ti.com

20.3 PLL Control (CTL) Register
The PLL block takes its input from the oscillator (4 MHz to 8 MHz) and generates the output clock in the
range of 68 MHz to 80 MHz. The PLL block does not have a separate power control. It is fully controlled
by the Power Sequencer (PSQ). When the USS module is in OFF state (UUPSCTL.UPSTATE = 0) or
STANDBY state (UUPSCTL.UPSTATE = 1), the PLL block is turned off and does not consume power.
See Chapter 19 for details. The output of the PLL block is divided by half to keep a 50-50 duty cycle at the
final output. The maximum frequency at the final output must be limited to 80 MHz.

20.3.1 PLLM[5:0] Bits
The PLL output frequency is determined as :
• PLL output clock frequency = input clock frequency × (PLLM +1)
• The final output clock frequency = PLL output clock frequency / 2
The input clock to the PLL block must be 4 MHz to 8 MHz. Choose a HSPLLCTL.PLLM[5:0] value so that
the final output clock is in the range of 68 MHz to 80 MHz. Set HSPLLCTL.PLLM[5:0] to the desired value
before powering up the USS module and do not change the value while the USS module is on.

20.3.2 PLLINFREQ Bit
The PLL can be optimized for the best performance based on its input frequency. The
HSPLLCTL.PLLINFREQ bit divides the input frequency range into two categories (≤6 MHz and >6 MHz)
and optimizes the PLL block for the specified input range and output frequency.

20.3.3 PLL_LOCK Bit
The HSPLLCTL.PLL_LOCK bit indicates whether or not the PLL output clock is stable.
HSPLLCTL.PLL_LOCK is set to 1 when the PLL output frequency reaches the desired frequency and
becomes stable. The lock signal is also used by the PSQ during its power-up sequence. When the PLL
output is changed from locked to unlocked, the PLL unlock interrupt bit (HSPLLRIS.PLLUNLOCK) is set.
When the PLL unlock interrupt occurs, TI recommends turning off the USS module, and then checking the
USSXT oscillator to make sure it is operating correctly before enabling the USS module again.

20.3.4 USSXT Control Register
Figure 20-2 show that the PLL has one input clock source, the USSXT oscillator. The oscillator supports
both crystal resonators and ceramic resonators with the range of 4 MHz to 8 MHz. The oscillator must be
enabled and fully stable before the PLL is enabled.

20.4 Start-up Sequence of the USSXT Oscillator
The PLL block is automatically enabled and disabled by the Power Sequencer (PSQ) during the power-up
and power-down sequences of the USS module. The USSXT oscillator must be enabled and stabled
before the application enables the USS module. The application must start the USS XT oscillator and wait
until it is stable before powering up the USS module, as described in the following sequence:
1. Configure HSPLLUSSXTLCTL.OSCTYPE bit correctly based on the resonator type (0 for a crystal
resonator, 1 for a ceramic resonator).
2. Write 1 to the HSPLLUSSXTLCTL.USSXTEN bit.
3. Wait for the start-up time. The device can enter a low-power mode while waiting for a TIMER interrupt.
4. Read the HSPLLUSSXTLCTL.OSCSTATE bit to check if the USSXT started.
5. Now the USSXT is running. The USS module can be powered up.
NOTE:

478

All of the USS submodules must be configured properly before powering up the USS
module.

High-Speed PLL (HSPLL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Start-up Sequence of the USSXT Oscillator

www.ti.com

20.4.1 USSXT Start-up Behavior
The USSXT oscillator is designed to generate an even running output clock in frequency and amplitude
while still allowing fast start-up. Therefore, the crystal or resonator is given more degrees of freedom
during start-up. Some crystals and resonators use the distributed capacitance and inductance of the PCB
traces and package as tank circuits and tend to oscillate on its harmonic frequencies during power up.
Increasing the value of the serial resistance between USSXTOUT and crystal or resonator prevents such
oscillation conditions at those higher frequencies. The maximum time for crystals and resonators is give in
the data sheet. USSXT_BOUT can be used to monitor USSXT start-up and operation. Use USSXT_BOUT
as system clock (for example, through HFXTIN) only after USSXT is completely started and has settled.

20.5 Interrupts
The HSPLL module supports one interrupt:
• PLLUNLOCK interrupt: When the PLL output status changes from locked to unlocked,
HSPLLRIS.PLLUNLOCK is set to 1.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

High-Speed PLL (HSPLL)

479

HSPLL Registers

www.ti.com

20.6 HSPLL Registers
Table 20-1 lists the memory-mapped registers for the HSPLL. All register offset addresses not listed in
Table 20-1 should be considered as reserved locations and the register contents should not be modified.
Table 20-1. HSPLL Registers
Offset

480

Acronym

Register Name

Type

Reset

0h

HSPLLIIDX

Interrupt Index Register

read-only

0

Section 20.6.1

Section

2h

HSPLLMIS

Masked Interrupt Status Register.

read-only

0h

Section 20.6.2

4h

HSPLLRIS

Raw Interrupt Status Register

read-only

0h

Section 20.6.3

6h

HSPLLIMSC

Interrupt Mask Register

read-write

0h

Section 20.6.4

8h

HSPLLICR

Interrupt Flag Clear Register.

write-only

0h

Section 20.6.5

Ah

HSPLLISR

Interrupt Flag Set Register.

write-only

0h

Section 20.6.6

Ch

HSPLLDESCLO

HSPLL Descriptor Register L.

read-only

110h

Section 20.6.7

Eh

HSPLLDESCHI

HSPLL Descriptor Register H.

read-only

BD10h

Section 20.6.8

10h

HSPLLCTL

HSPLL Control Register

read-write

4000h

Section 20.6.9

12h

HSPLLUSSXTLCTL

USSXT Control Register

read-write

100h

Section
20.6.10

High-Speed PLL (HSPLL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

HSPLL Registers

www.ti.com

20.6.1 HSPLLIIDX Register (Offset = 0h) [reset = 0h]
HSPLLIIDX is shown in Figure 20-3 and described in Table 20-2.
Return to Summary Table.
Interrupt Index Register.
Note: This register is word accessible. A byte access is also allowed but not recommended. Either high
byte or low byte access alone can clear the pending interrupt flag.
Figure 20-3. HSPLLIIDX Register
15

14

13

12

11

10

9

8

3

2

1

0
RESERVED
R-

IIDX
R7

6

5

4
IIDX
R-

Table 20-2. HSPLLIIDX Register Field Descriptions
Bit

Field

Type

15-1

IIDX

R

Reset

Description
HSPLL Interrupt Vector Value. Read only. It generates a value that
can be used as address offset for fast interrupt service routine
handling. On each read, only one interrupt is indicated. On a read,
the current interrupt (highest priority) is automatically cleared by the
hardware and the corresponding interrupt flag in RIS and MISC are
cleared as well. After a read from the CPU (not from the debug
interface), the register must be updated with the next highest priority
interrupt, if none are pending, then it should display 0h.
If the interrupt displayed by the IIDX register (highest priority pending
interrupt) is cleared in the MISC through a software write of 1 in the
corresponding bit field, the IIDX register shall be updated and the
next priority interrupt (if any) be displayed.
Reset type: PUC
0h (R) = No Interrupt pending
1h (R) = Interrupt Source: PLLUNLOCK; Interrupt Priority: Highest
2h (R) = Reserved; Interrupt Priority: Lowest

0

RESERVED

R

0h

Reserved

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

High-Speed PLL (HSPLL)

481

HSPLL Registers

www.ti.com

20.6.2 HSPLLMIS Register (Offset = 2h) [reset = 0h]
HSPLLMIS is shown in Figure 20-4 and described in Table 20-3.
Return to Summary Table.
Masked Interrupt Status Register.
Figure 20-4. HSPLLMIS Register
15

14

13

12

11

10

9

8

3

2

1

0
PLLUNLOCK
R-0h

RESERVED
R-0h
7

6

5

4
RESERVED
R-0h

Table 20-3. HSPLLMIS Register Field Descriptions
Bit

482

Field

Type

Reset

Description

15-1

RESERVED

R

0h

Reserved

0

PLLUNLOCK

R

0h

HSPLL Unlock Masked Interrupt Status bit.
Reset type: PUC
0h (R) = No interrupt pending
1h (R) = Interrupt pending

High-Speed PLL (HSPLL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

HSPLL Registers

www.ti.com

20.6.3 HSPLLRIS Register (Offset = 4h) [reset = 0h]
HSPLLRIS is shown in Figure 20-5 and described in Table 20-4.
Return to Summary Table.
Raw Interrupt Status Register. Read Only Register.
The HSPLLRIS register allows the user to implement a poll scheme instead of an interrupt (as the
interrupt does not need to be enabled) Note that the HSPLLRIS flag can be cleared by writing to the MISC
register bit even if the corresponding IM bit is not enabled.
Figure 20-5. HSPLLRIS Register
15

14

13

12

11

10

9

8

3

2

1

0
PLLUNLOCK
R-0h

RESERVED
R-0h
7

6

5

4
RESERVED
R-0h

Table 20-4. HSPLLRIS Register Field Descriptions
Field

Type

Reset

Description

15-1

Bit

RESERVED

R

0h

Reserved

0

PLLUNLOCK

R

0h

PLL Unlock Raw Interrupt Status bit. Read Only. This bit is set when
PLL output changes from lock to unlock status.
Reset type: PUC
0h (R) = PLL status has not been changed
1h (R) = PLL status has been changed from Lock to Unlock

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

High-Speed PLL (HSPLL)

483

HSPLL Registers

www.ti.com

20.6.4 HSPLLIMSC Register (Offset = 6h) [reset = 0h]
HSPLLIMSC is shown in Figure 20-6 and described in Table 20-5.
Return to Summary Table.
Interrupt Mask Register. Note: writing '1' enables the corresponding interrupt.
Figure 20-6. HSPLLIMSC Register
15

14

13

12

11

10

9

8

3

2

1

0
PLLUNLOCK
R/W-0h

RESERVED
R-0h
7

6

5

4
RESERVED
R-0h

Table 20-5. HSPLLIMSC Register Field Descriptions
Field

Type

Reset

Description

15-1

Bit

RESERVED

R

0h

Reserved

0

PLLUNLOCK

R/W

0h

PLL Unlock Interrupt Mask bit.
Reset type: PUC
0h (R/W) = PLL Unlock Interrupt is disabled
1h (R/W) = PLL Unlock Interrupt is enabled

484

High-Speed PLL (HSPLL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

HSPLL Registers

www.ti.com

20.6.5 HSPLLICR Register (Offset = 8h) [reset = 0h]
HSPLLICR is shown in Figure 20-7 and described in Table 20-6.
Return to Summary Table.
Interrupt Flag Clear Register. Read as zero.
Figure 20-7. HSPLLICR Register
15

14

13

12

11

10

9

8

3

2

1

0
PLLUNLOCK
W-0h

RESERVED
R-0h
7

6

5

4
RESERVED
R-0h

Table 20-6. HSPLLICR Register Field Descriptions
Field

Type

Reset

Description

15-1

Bit

RESERVED

R

0h

Reserved

0

PLLUNLOCK

W

0h

PLL Unlock Interrupt Clear bit. Write 1 to clear RIS.PLLUNLOCK bit
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

High-Speed PLL (HSPLL)

485

HSPLL Registers

www.ti.com

20.6.6 HSPLLISR Register (Offset = Ah) [reset = 0h]
HSPLLISR is shown in Figure 20-8 and described in Table 20-7.
Return to Summary Table.
Interrupt Flag Set Register. Read as zero.
Figure 20-8. HSPLLISR Register
15

14

13

12

11

10

9

8

3

2

1

0
PLLUNLOCK
W-0h

RESERVED
R-0h
7

6

5

4
RESERVED
R-0h

Table 20-7. HSPLLISR Register Field Descriptions
Bit

486

Field

Type

Reset

Description

15-1

RESERVED

R

0h

Reserved

0

PLLUNLOCK

W

0h

PLL Unlock Interrupt Set bit. Write 1 to set RIS.PLLUNLOCK bit
Reset type: PUC

High-Speed PLL (HSPLL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

HSPLL Registers

www.ti.com

20.6.7 HSPLLDESCLO Register (Offset = Ch) [reset = 110h]
HSPLLDESCLO is shown in Figure 20-9 and described in Table 20-8.
Return to Summary Table.
HSPLL Descriptor Register L.
Figure 20-9. HSPLLDESCLO Register
15

14

13

12

11

10

FEATUREVER
R-0h
7

6

9

8

1

0

INSTNUM
R-1h
5

4

3

2

MAJREV
R-1h

MINREV
R-0h

Table 20-8. HSPLLDESCLO Register Field Descriptions
Field

Type

Reset

Description

15-12

Bit

FEATUREVER

R

0h

Feature Set for the module
Reset type: PUC

11-8

INSTNUM

R

1h

Instance Number within the device. This will be a parameter to the
RTL for modules that can have multiple instances

7-4

MAJREV

R

1h

Major Revision

3-0

MINREV

R

0h

Reset type: PUC
Minor Revision
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

High-Speed PLL (HSPLL)

487

HSPLL Registers

www.ti.com

20.6.8 HSPLLDESCHI Register (Offset = Eh) [reset = BD10h]
HSPLLDESCHI is shown in Figure 20-10 and described in Table 20-9.
Return to Summary Table.
HSPLL Descriptor Register H.
Figure 20-10. HSPLLDESCHI Register
15

14

13

12

11

10

9

8
7
MODULEID
R-BD10h

6

5

4

3

2

1

0

Table 20-9. HSPLLDESCHI Register Field Descriptions
Bit
15-0

488

Field

Type

Reset

Description

MODULEID

R

BD10h

Module Identifier.
Reset type: PUC

High-Speed PLL (HSPLL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

HSPLL Registers

www.ti.com

20.6.9 HSPLLCTL Register (Offset = 10h) [reset = 4000h]
HSPLLCTL is shown in Figure 20-11 and described in Table 20-10.
Return to Summary Table.
HSPLL Control Register
Figure 20-11. HSPLLCTL Register
15

14

13

12

11

10

9
RESERVED
R-0h

8
PLLINFREQ
R/W-0h

4
RESERVED
R-0h

3

2

1

0
PLL_LOCK
R-0h

PLLM
R/W-10h
7

6

5

Table 20-10. HSPLLCTL Register Field Descriptions
Bit

Field

Type

Reset

Description

15-10

PLLM

R/W

10h

PLL Multiplier. default value = 16. Valid data range: 16 ~ 39.
The input clock to the PLL block must be 4MHz ~ 8MHz. Care needs
to be taken to choose PLLM[5:0] value that the final output clock
must be in range of 68MHz ~ 80MHz. Note that PLLM[5:0] needs to
be configured with the desired value before powering up the USS
module and must not be changed while the USS module is on.
10h (R/W) = 16
11h (R/W) = 17
12h (R/W) = 18
13h (R/W) = 19
14h (R/W) = 20
15h (R/W) = 21
16h (R/W) = 22
17h (R/W) = 23
18h (R/W) = 24
19h (R/W) = 25
1Ah (R/W) = 26
1Bh (R/W) = 27
1Ch (R/W) = 28
1Dh (R/W) = 29
1Eh (R/W) = 30
1Fh (R/W) = 31
20h (R/W) = 32
21h (R/W) = 33
22h (R/W) = 34
23h (R/W) = 35
24h (R/W) = 36
25h (R/W) = 37
26h (R/W) = 38
27h (R/W) = 39

9

RESERVED

R

0h

Reserved

8

PLLINFREQ

R/W

0h

PLL Input Frequency Selection.
0h (R/W) = Input frequency is equal to 6MHz or lower than 6MHz
1h (R/W) = Input frequency is higher than 6MHz

7-1

RESERVED

R

0h

Reserved

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

High-Speed PLL (HSPLL)

489

HSPLL Registers

www.ti.com

Table 20-10. HSPLLCTL Register Field Descriptions (continued)
Bit
0

Field

Type

Reset

Description

PLL_LOCK

R

0h

PLL Lock Status.
Note: When PLL output is changed from locked status to unlock
status, PLL Unlock Interrupt bit (RIS.PLLUNLOCK) is set. It is
recommned to enable the interrupt while performing a measurement.
Reset type: PUC
0h (R) = PLL is not running or not locked
1h (R) = PLL is locked

490

High-Speed PLL (HSPLL)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

HSPLL Registers

www.ti.com

20.6.10 HSPLLUSSXTLCTL Register (Offset = 12h) [reset = 100h]
HSPLLUSSXTLCTL is shown in Figure 20-12 and described in Table 20-11.
Return to Summary Table.
USSXT Control Register.
HSPLL has a dedicated XTAL which generates the input frequency of the HSPLL.
Figure 20-12. HSPLLUSSXTLCTL Register
15

14

13

12

11

10

9
OSCTYPE
R/W-0h

8
XTOUTOFF
R/W-1h

4

3

2

1
OSCSTATE
R-0h

0
USSXTEN
R/W-0h

RESERVED
R-0h
7

6

5
RESERVED
R-0h

Table 20-11. HSPLLUSSXTLCTL Register Field Descriptions
Bit
15-10
9

Field

Type

Reset

Description

RESERVED

R

0h

Reserved

OSCTYPE

R/W

0h

Oscillator Type.
The oscillator output clock is gated until it is fully stablized after
power up in order to provide a stable clock frequency to HSPLL.
0h (R) = XTAL : Gating Counter Length: 4096. It is recommended to
use this configuration for crystal resonators.
Note: the counter counts the oscillator clock, so total time can be
calculated as Time = 4096 x 1/Oscillator Clock Frequency.
1h (R) = CERAMIC : Gating Counter Length: 512. It is recommended
to use this configuration for ceramic resonators.
Note: the counter counts the oscillator clock, so total time can be
calculated as Time = 512x 1/Oscillator Clock Frequency.

8

XTOUTOFF

R/W

1h

USSXT Buffered Output OFF
0h (R/W) = Enable USSXT buffered output
1h (R/W) = Disable USSXT buffered output. Default.

7-2

RESERVED

R

0h

Reserved

1

OSCSTATE

R

0h

Oscillator start indication. This bit indicates that the oscillator started
and has sufficient signal strength (not signal quality)
0h (R) = Oscillator is either not enabled or in the middle of start-up
transition.
1h (R) = Oscillator has started but is not stable yet. Wait for sufficient
time for stabilization.

0

USSXTEN

R/W

0h

USSXT Enable.
Reset type: PUC
0h (R) = Disable USSXT Oscillator
1h (R) = Enable USSXT Oscillator

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

High-Speed PLL (HSPLL)

491

Chapter 21
SLAU367O – October 2012 – Revised December 2017

Sequencer for Acquisition, Programmable Pulse
Generator, and Physical Interface (SAPH, SAPH_A)
This chapter describes the operation of the SAPH module.
Topic

21.1
21.2
21.3
21.4
21.5
21.6
21.7
21.8

492

...........................................................................................................................
Introduction .....................................................................................................
Programmable Pulse Generator (PPG or PPG_A) Block ........................................
Physical Interface (PHY) Block ...........................................................................
Acquisition Sequencer (ASQ) .............................................................................
Ultra-Low-Power Bias Mode ...............................................................................
Interrupts Triggers ...........................................................................................
DMA Triggers ..................................................................................................
SAPH and SAPH_A Registers ............................................................................

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Page

493
494
501
507
511
512
512
513

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Introduction

www.ti.com

21.1 Introduction
The sequencer for acquisition, programmable pulse generator, and physical interface (SAPH or SAPH_A)
is one of the submodules in the Ultrasonic Sensing Solution (USS or USS_A) module. The USS module is
designed for analog-to-digital converter (ADC) based ultrasonic sensing technology in various
measurement applications. See Chapter 18 for details.
The SAPH module features the PPG generator, and the SAPH_A module features the PPG_A generator.
The SAPH_A is a superset of SAPH; therefore, SAPH_A is specifically named only when necessary to
distinguish from the SAPH module.
The SAPH or SAPH_A consist of three blocks (see Figure 21-1):
• Acquisition Sequencer (ASQ)
• Programmable Pulse Generator (PPG or PPG_A)
• Physical Interface (PHY)
SAPH_A provides additional bias voltages for optional external signal conditioning like low-noise amplifiers
(LNAs) and booster amplifiers.
• PPG or PPG_A block: Generates pulses at different frequencies.
• PHY block: Controls output channels and input channels of the USS module.
• ASQ block: The entire measurement sequence can be controlled by user software (called register
mode) or by ASQ without any CPU intervention (called auto mode). The auto mode helps reduce the
measurement power consumption, because the CPU can stay in LPM0 during measurement.
• External bias generator on SAPH_A

NOTE: Naming convention for register names and bit fields:
•
SAPH registers: RegisterName or RegisterName.BitField
•
Other module registers: ModuleNameRegisterName or
ModuleNameRegisterName.BitField
•
Code written for USS and SAPH modules is also accepted by USS_A and SAPH_A
modules. The register names are resolved automatically.

NOTE: Before writing to any SAPH register with an offset address greater than 0x0F, unlock the
registers by writing 0x45B to the KEY register. The unlock must be performed only once.
Writing any other value to the KEY register locks the registers. Read accesses are always
allowed.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

493

Programmable Pulse Generator (PPG or PPG_A) Block

www.ti.com

USS or USS_A module

USSXT
USSXTIN USSXTOUT

USSXT_BOUT

SAPH or SAPH_A
OSC

CH0_OUT
PPG or
CH1_OUT

ASQ

PPG_A

PLL
PHY
PVSS

HSPLL
UUPS

PVCC

PLL_CLK

Vout

PVSS

SDHS

CH1_IN

SD 12 or 14
MOD Filter

PGA

RAM
(shared with LEA)

DTC

XPB0

CH0_IN
Optional
external
signal
handling

Bias Generator

XPB1

on SAPH_A only

GPIO

Px.y

(software controlled)

Figure 21-1. USS or USS_A Block Diagram

21.2 Programmable Pulse Generator (PPG or PPG_A) Block
Figure 21-2 shows the conceptual block diagram of the programmable pulse generator (PPG). In italics
the extended elements of PPG_A.

SAPHPGCTL.
TRSEL

SAPHPGCTL.
TONE
SAPHPGCTL.
STOP

SAPHPGC,SAPH_AXPGCTL,
SAPHPGLPER,SAPHPGHPER,
SAPH_AXPGLPER,SAPH_AXPGHPER
Registers
CH0OUT

SAPHPPGTRIG.
PPGTRIG

00

from ASQ

01

External Signal

10

External Signal

11

Trigger

Excitation Pulse

0

Stop Pulse
Extra Excitation (PPG_A)
CH1OUT

Polarity
Controller

1

SAPHPGCTL.PPGEN
PLL CLK

SAPHPGCTL.
PGSEL

Counters
0

1

from ASQ

SAPHPGCTL.
PPGCHSEL

Figure 21-2. PPG or PPG_A Block Diagram

494

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Programmable Pulse Generator (PPG or PPG_A) Block

www.ti.com

21.2.1 Pulse Generation
The PPG offers flexible pulse generation profiles for single tone generation at different frequencies. The
PPG_A is an extended variant of the PPG and extends the profiles with dual tone, trill tone, and multi tone
(chirp).

21.2.2 Single Tone Generation
The output pulses consists of four different phases: Pause, Excitation, Stop, and Pause again. A state
machine in PPG and PPG_A controls the flow. On PPG_A set SAPH_AXPGCTL.XMOD = 0 for single
tone generation. When the PPG or PPG_A is triggered, it leaves the Pause phase and generates
excitation pulses followed by stop pulses, then goes to Pause phase again (see Figure 21-3, Figure 21-4
and Figure 21-5). The stop pulses have a 180° phase shift compared to the excitation pulses. The PPG
generates up to 127 excitation pulses and up to 15 stop pulses, which are controlled by the
SAPHPGC.EPULS and SAPHPGC.SPULS bits, respectively. The pulse polarity is programmable in the
SAPHPGC.PPOL bit. The signal polarity for Pause can be programmed to be logical high, logical low, or
high impedance through the SAPHPGC.PLEV and SAPHPGC.PHIZ bits.
The PPG can be triggered by writing 1 to the SAPHPPGTRIG.PPGTRIG bit when
SAPHPGCTL.TRSEL = 0 (register mode) or by the acquisition sequencer (ASQ) when
SAPHPGCTL.TRSEL = 1 (auto mode). To avoid unintended pulse outputs, keep
SAPHPGCTL.PPGEN = 0 while updating the PPG registers. After the PPG registers are updated, write 1
to the SAPHPGCTL.PPGEN bit before triggering the PPG. The SAPHPGCTL.PPGEN bit must be set
before triggering the PPG. The output channel is determined by the SAPHPGCTL.PPGCHSEL bit when
SAPHPGCTL.PGSEL = 0 (register mode) or by the acquisition sequencer (ASQ) when
SAPHPGCTL.PGSEL = 1 (auto mode). Another layer of output control is inside the PHY, so both blocks
must be configured properly (see Section 21.3). The PPG or PPG_A automatically stops when it
completes generating the pulses. To stop generating pulses before completion, regardless of operation
mode, write 1 to SAPHPGCTL.STOP. The PPG immediately stops generating pulses. The
SAPHPGCTL.STOP bit is automatically cleared to zero.
Reset

Reset

Pause

Pause

Trigger and
XMOD = 0, 1

Trigger
End of
S-Pulses

End of
S-Pulses
E-Pulse

X-Pulse
End of
X-Pulses

E-Pulse
End of
E-Pulses and
XMOD = 0, 1, 2

End of
E-Pulses

Trigger and
XMOD = 2, 3

S-Pulse

S-Pulse

PPG

PPG_A

End of
E-Pulses and
XMOD = 3

Figure 21-3. PPG or PPG_A Internal State Diagrams for Single Tone

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

495

Programmable Pulse Generator (PPG or PPG_A) Block

www.ti.com

Trigger

High, Low, or Hi-Z
[Pause]

Excitation
Pulses (0 to 127)
[E-Pulse]

Stop
Pulses (0 to 15)
[S-Pulse]

High, Low, or Hi-Z
[Pause]

Figure 21-4. PPG Single Tone Generation With SAPHPGC.PPOL = 0
(Starts With High Polarity)
Trigger

High, Low, or Hi-Z
[Pause]

Excitation
Pulses (0 to 127)
[E-Pulse]

Stop
Pulses (0 to 15)
[S-Pulse]

High, Low, or Hi-Z
[Pause]

Figure 21-5. PPG Single Tone Generation With SAPHPGC.PPOL = 1
(Starts With Low Polarity)

21.2.3 Dual Tone Generation
The output pulses consists of fife different phases: Pause, Extra_Excitation, Regular_Excitation, Stop, and
Pause again. A state machine in PPG_A controls the flow. Set SAPH_AXPGCTL.XMOD = 2 for dual tone
generation. When the PPG_A is triggered, it leaves the Pause phase, generates excitation pulses with a
frequency defined by SAPH_AXPGHPER/SAPH_AXPGLPER, then excitation pulses with a frequency
defined by SAPH_APGHPER/SAPH_APGLPER followed by stop pulses, then goes to Pause phase again
(see Figure 21-6 and Figure 21-7). The stop pulses have a 180° phase shift compared to the regular
excitation pulses. The stop pulses have same frequency as the regular excitation pulses. The PPG
generates up to 127 extra excitation pulses, up to 127 regular excitation pulses and up to 15 stop pulses,
which are controlled by the SAPH_AXPGCTL.XPULS, SAPH_APGC.EPULS and SAPH_APGC.SPULS
bits, respectively. The pulse polarity is programmable in the SAPH_APGC.PPOL bit. The signal polarity of
Pause can be programmed to be logical high, logical low, or high impedance through the
SAPH_APGC.PLEV and SAPH_APGC.PHIZ bits.
The PPG_A can be triggered by writing 1 to the SAPH_APPGTRIG.PPGTRIG bit when
SAPH_APGCTL.TRSEL = 0 (register mode) or by the acquisition sequencer (ASQ) when
SAPH_APGCTL.TRSEL = 1 (auto mode). To avoid unintended pulse outputs, keep
SAPH_APGCTL.PPGEN = 0 while updating the PPG_A registers. After the PPG_A registers are updated,
write 1 to the SAPH_APGCTL.PPGEN bit before triggering the PPG_A. The SAPH_APGCTL.PPGEN bit
must be set before triggering the PPG_A. The output channel is determined by the
SAPH_APGCTL.PPGCHSEL bit when SAPH_APGCTL.PGSEL = 0 (register mode) or by the acquisition
sequencer (ASQ) when SAPH_APGCTL.PGSEL = 1 (auto mode). Another layer of output control is inside
the PHY, so both blocks must be configured properly (see Section 21.3). The PPG_A automatically stops
when it completes generating the pulses. To stop generating pulses before completion, regardless of
operation mode, write 1 to SAPH_APGCTL.STOP. The PPG_A immediately stops generating pulses. The
SAPH_APGCTL.STOP bit is automatically cleared to zero.

496

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Programmable Pulse Generator (PPG or PPG_A) Block

www.ti.com
Reset

Pause

Trigger and
XMOD = 0, 1

Trigger and
XMOD = 2, 3

X-Pulse

End of
S-Pulses

End of
X-Pulses
E-Pulse
End of
E-Pulses and
XMOD = 3

End of
E-Pulses and
XMOD = 0, 1, 2
S-Pulse

Figure 21-6. PPG_A State Diagram for Dual Tone
Trigger

High, Low, or Hi-Z
[Pause]

Extra Excitation
Pulses (0–127)
[X-Pulse]

Regular Excitation
Pulses (0–127)
[E-Pulse]

Stop
Pulses (0–15)
[S-Pulse]

High, Low, or Hi-Z
[Pause]

Figure 21-7. PPG_A Dual Tone Generation With SAPHPGC.PPOL = 1
(Starts With Low Polarity)

21.2.4 Trill Tone Generation
The output pulses consists of multiple phases: Pause, a software defined set of Extra_Excitation and
Regular_Excitation phases, Stop, and Pause again. A state machine in PPG_A controls the flow. Set
SAPH_AXPGCTL.XMOD = 3 for trill tone generation. When the PPG_A is triggered, it leaves Pause
phase and generates extra excitation pulses with a frequency defined by
SAPH_AXPGHPER/SAPH_AXPGLPER, then regular excitation pulses with a frequency defined by
SAPH_APGHPER/SAPH_APGLPER. While XMOD = 3 the extra excitation pulses followed by the regular
excitation pulses is repeated. Software is required to change SAPH_AXPGCTL.XMOD = 2 to terminate
the trill. The last regular excitation pulses are followed by stop pulses. Then PPG_A goes to Pause phase
again (see Figure 21-8 and Figure 21-9). The stop pulses have a 180° phase shift compared to the last
regular excitation pulses. The stop pulses have same frequency as the last regular excitation pulses. The
PPG generates up to 127 extra excitation pulses, up to 127 regular excitation pulses and up to 15 stop
pulses, which are controlled by the SAPH_AXPGCTL.XPULS, SAPH_APGC.EPULS and
SAPH_APGC.SPULS bits, respectively. The pulse polarity is programmable in the SAPH_APGC.PPOL
bit. The signal polarity of Pause can be programmed to be logical high, logical low, or high impedance
through the SAPH_APGC.PLEV and SAPH_APGC.PHIZ bits.
The PPG_A can be triggered by writing 1 to the SAPH_APPGTRIG.PPGTRIG bit when
SAPH_APGCTL.TRSEL = 0 (register mode) or by the acquisition sequencer (ASQ) when
SAPH_APGCTL.TRSEL = 1 (auto mode). To avoid unintended pulse outputs, keep
SAPH_APGCTL.PPGEN = 0 when preparing the PPG_A registers. After the PPG_A registers are
prepared, write 1 to the SAPH_APGCTL.PPGEN bit before triggering the PPG_A. The
SAPH_APGCTL.PPGEN bit must be set before triggering the PPG_A. The output channel is determined
by the SAPH_APGCTL.PPGCHSEL bit when SAPH_APGCTL.PGSEL = 0 (register mode) or by the
acquisition sequencer (ASQ) when SAPH_APGCTL.PGSEL = 1 (auto mode). Another layer of output
control is inside the PHY, so both blocks must be configured properly (see Section 21.3). After software
sets XMOD = 2 by directly writing or using the DMA, the PPG_A automatically stops when it completes
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

497

Programmable Pulse Generator (PPG or PPG_A) Block

www.ti.com

generating the pulses. Setting XMOD = 2 must be done when entering the last X-Pulse state. The current
PPG_A state is indicated in SAPH_AXPGCTL.XSTAT Leave at least 6 CPU clocks time margin for
synchronizing. To stop generating pulses before completion, regardless of operation mode, write 1 to
SAPH_APGCTL.STOP. The PPG_A immediately stops generating pulses. The SAPH_APGCTL.STOP bit
is automatically cleared to zero.
Reset

Pause

Trigger and
XMOD = 0,1

Trigger and
XMOD = 2, 3

X-Pulse

End of
S-Pulses

End of
X-Pulses
E-Pulse
End of
E-Pulses and
XMOD= 0,1,2

End of
E-Pulses and
XMOD = 3

S-Pulse
These transitions
cause DMA triggers

Figure 21-8. PPG_A State Diagram for Trill Tone
Trigger

.....

High, Low, or Hi-Z
[Pause]

Extra Excitation
Pulses (0 to 127)
[X-Pulse]

Regular Excitation
Pulses (0 to 127)

Extra Excitation
Pulses (0 to 127)

[E-Pulse]

[X-Pulse]

Regular Excitation
Pulses (0 to 127)
[E-Pulse]

Figure 21-9. PPG_A Trill Tone Generation With SAPHPGC.PPOL = 1
(Starts With Low Polarity)

21.2.5 Multi Tone Generation
The output pulses consists of multiple phases: Pause, a software defined set of Extra_Excitation and
Regular_Excitation phases, Stop, and Pause again. A state machine in PPG_A controls the flow. Set
SAPH_AXPGCTL.XMOD = 3 like for trill tone generation. When the PPG_A is triggered, it leaves the
Pause phase, generates extra excitation pulses with a frequency defined by
SAPH_AXPGHPER/SAPH_AXPGLPER, then regular excitation pulses with a frequency defined by
SAPH_APGHPER/SAPH_APGLPER. While XMOD = 3 the extra excitation pulses followed by the regular
excitation pulses is repeated. Software is required to change the following:
SAPH_AXPGHPER, SAPH_AXPGLPER, SAPH_AXPGCTL.XPULS,
SAPHPGHPER, SAPHPGLPER, SAPHPGCTL.EPULS, SAPHPGCTL.SPULS,
in a well timed manner. This can be done by direct register access or by DMA accesses.
Finally setting SAPH_AXPGCTL.XMOD = 2 to terminates the multi tone. The last regular excitation pulses
are followed by stop pulses. Then PPG_A goes to Pause phase again (see Figure 21-10 and Figure 21-9).
The stop pulses have a 180° phase shift compared to the last regular excitation pulses. The stop pulses
have same frequency as the last regular excitation pulses. The PPG generates up to 127 extra excitation
pulses, up to 127 regular excitation pulses and up to 15 stop pulses, which are controlled by the
SAPH_AXPGCTL.XPULS, SAPH_APGC.EPULS and SAPH_APGC.SPULS bits, respectively. The pulse
polarity is programmable in the SAPH_APGC.PPOL bit. The signal polarity of Pause can be programmed
to be logical high, logical low, or high impedance through the SAPH_APGC.PLEV and SAPH_APGC.PHIZ
bits.
498

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Programmable Pulse Generator (PPG or PPG_A) Block

www.ti.com

The PPG_A can be triggered by writing 1 to the SAPH_APPGTRIG.PPGTRIG bit when
SAPH_APGCTL.TRSEL = 0 (register mode) or by the acquisition sequencer (ASQ) when
SAPH_APGCTL.TRSEL = 1 (auto mode). To avoid unintended pulse outputs, keep
SAPH_APGCTL.PPGEN = 0 while preparing the PPG_A registers. After the PPG_A registers are
prepared, write 1 to the SAPH_APGCTL.PPGEN bit before triggering the PPG_A. The
SAPH_APGCTL.PPGEN bit must be set before triggering the PPG_A. The output channel is determined
by the SAPH_APGCTL.PPGCHSEL bit when SAPH_APGCTL.PGSEL = 0 (register mode) or by the
acquisition sequencer (ASQ) when SAPH_APGCTL.PGSEL = 1 (auto mode). Another layer of output
control is inside the PHY, so both blocks must be configured properly (see Section 21.3). After software
sets XMOD = 2 by directly writing or using the DMA, the PPG_A automatically stops when it completes
generating the pulses. Setting XMOD = 2 must be done when entering the last X-Pulse state. The current
PPG_A state is indicated in SAPH_AXPGCTL.XSTAT Leave at least 6 CPU clocks time margin for
synchronizing. To stop generating pulses before completion, regardless of operation mode, write 1 to
SAPH_APGCTL.STOP. The PPG_A immediately stops generating pulses. The SAPH_APGCTL.STOP bit
is automatically cleared to zero.
MT_SW_Pulse
Basic setup of
PPG_A registers
with XMOD=3
ListIndex=0
Trigger PPG_A
N

wait for XSTAT==2
(E-Pulses)
update XPULSE,
XLPER, XHPER
from x-pulse list

N

wait for XSTAT==3
(X-Pulses)
update EPULSE,
LPER, HPER from
e-pulse list
Incr. ListIndex

N

End of list ?

Set XMOD=2
End

Set Frq4,...
Set XMOD=2...

Set Frq3, ...

Trigger

Set XMOD=3
Set Frq1, ...
Set Frq2, ...

Figure 21-10. PPG_A Software Flow Chart for Multi Tone

High, Low, or Hi-Z

Frq1
2 Pulses

Frq2
3 Pulses

Frq3
4 Pulses

Frq4
5 Pulses

Frq4
High, Low, or Hi-Z
2 Pulses

[Pause]

[X-Pulse]

[E-Pulse]

[X-Pulse]

[E-Pulse]

[S-Pulse]

[Pause]

Figure 21-11. PPG_A Multi Tone Generation With SAPHPGC.PPOL = 1
(Starts With Low Polarity)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

499

Programmable Pulse Generator (PPG or PPG_A) Block

www.ti.com

21.2.6 Excitation Pulse Frequency on PPG or PPG_A
The excitation pulse frequency is determined by the PPG clock frequency and the SAPHPGLPER.LPER
and SAPHPGHPER.HPER bits. The high duration of a regular excitation pulse and low duration of a
regular excitation pulse are determined by SAPHPGHPER.HPER (8 bits) and SAPHPGLPER.LPER
(8 bits), respectively. Thus:
• Excitation pulse frequency = HSPLL frequency / ( SAPHPGHPER.HPER + SAPHPGLPER.LPER)

21.2.7 Extra Excitation Pulse Frequency on PPG_A
The pulse frequency for the X-Pulses is determined by the PPG_A clock frequency and the
SAPH_AXPGLPER.XLPER and SAPH_AXPGHPER.XHPER bits. The high duration of an extra excitation
pulse and low duration of an extra excitation pulse are determined by SAPH_AXPGHPER.XHPER (8 bits)
and SAPH_AXPGLPER.XLPER (8 bits), respectively. Thus:
• X-Pulse frequency = HSPLL frequency / ( SAPH_AXPGHPER.XHPER + SAPH_AXPGLPER.XLPER)

21.2.8 Test Tone Generation
To start the PPG test tone generation, write SAPHPGCTL.TONE = 1. While SAPHPGCTL.TONE = 1, the
PPG consistently generates excitation pulses (no stop pulse). In this case, SAPHPGC.EPULSE and
SAPHPCG.SPULSE are ignored. To terminate the PPG test tone generation, write
SAPHPGCTL.TONE = 0.

500

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Physical Interface (PHY) Block

www.ti.com

21.3 Physical Interface (PHY) Block
The PHY controls the input and output pins of the USS module. The USS module has dedicated pins
(CH0_OUT, CH0_IN, CH1_OUT, CH1_IN, two PVSS, and PVCC), which are controlled by the USS
module, not by the digital I/O module.

21.3.1 Output Channels (CH0_OUT and CH1_OUT)
Figure 21-12 shows the functional block diagram for the output channels, CH0_OUT and CH1_OUT.
SAPHOSEL.PCH0SEL
SAPHOCTL0.
CH0OE

00
01

From ASQ
(No software control)

Enable

10
11
SAPHOCTL1.
CH0FP

SAPHOCTL0.
CH0OUT

00
01

CH0OUT
From PPG

DRV0

CH0_OUT (Pin)

10
11
SWG0

SAPHOCTL0.
CH0TERM

00
01

From ASQ
(No softwarecontrol)

10
11
SAPHOSEL.PCH1SEL

SAPHOCTL0.
CH1OE

00
01

From ASQ
(No softwarecontrol)

Enable

10
11
SAPHOCTL1.
CH1FP

SAPHOCTL0.
CH1OUT

00
01

CH0OUT
From PPG

DRV1

CH1_OUT (Pin)

10
11
SWG1

SAPHOCTL0.
CH0TERM

00

From ASQ
(No softwarecontrol)

01
10
11

Figure 21-12. PHY Output Pins
The output pins (CH0_OUT and CH1_OUT) can be used as general I/O pins when
SAPHOSEL.PCH0SEL = 0 or 3. In this case, the polarity of the two pins is controlled by
SAPHOCTL0.CH0OUT and SAPHOCTL0.CH1OUT, and the pins are enabled or disabled (Hi-Z) by
SAPHOCTL0.CH0OE and SAPHOCTL0.CH1OE. The pins can be connected to GND through the SWG0
and SWG1 switches by SAPHOCTL0.CH0TERM and SAPHOCTL0.CH1TERM, respectively.
When SAPHOSEL.PCH0SEL = 1, the output pins work as single output drivers. The pulses generated by
PPG are output on the selected pin. This is the typical use case for the flow measurement application.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

501

Physical Interface (PHY) Block

www.ti.com

When SAPHOSEL.PCH0SEL = 2, the two output pins working as differential output drivers. The pulses
generated by PPG are output on both pins differentially.
When SAPHOSEL.PCH0SEL = 1 or 2, the two pins are controlled by the PPG block and ASQ block. The
pins are automatically enabled when PPG generates pulses. The SWG0 and SWG1 switches are
controlled by ASQ as part of measurement sequence (see Section 21.4).
The drive strength of DRV0 and DRV1 are maximized when SAPHOCTL1.CH0FP = 1 and
SAPHOCTL1.CH1FP = 1, respectively. The drive strength of the pins are determined by SAPHCH0PUT,
SAPHCH0PDT, SAPHCH1PUT, and SAPHCH1PDT when SAPHOCTL1.CH0FP = 0 and
SAPHOCTL1.CH1FP = 0, respectively (see Section 21.3.2).
When SAPHOSEL.PCH0SEL = 1 or 2, the two pins are controlled by the PPG block and ASQ block. The
pins are automatically enabled when PPG generates pulses. The SWG0 and SWG1 switches are
controlled by ASQ as part of measurement sequence (see Section 21.4).

21.3.2 Trim Registers for the Output Drivers and Termination Resistors
The output channels (CH0_OUT and CH1_OUT) have low-impedance output drivers (DRV0 and DRV1)
and termination switches (SWG0 and SWG1). To support the impedance-matching requirement in
application environments using ultrasonic technology, programmability is offered to the output drive
strength of the drivers (DRV0 and DRV1) and the termination switches (SWG0 and SWG1). The drivers
are based on inverter architecture, which consists of PMOS and NMOS. Thus, three trim registers are
offered for each channel (see Table 21-1 for details).
During manufacturing, optimal impedance of the drivers and termination switches are determined and their
trim values are stored to the device boot data memory (not user accessible). The output impedance of
DRV0 and DRV1 are trimmed to match each other (with the lowest possible value), and the termination
switches (SWG0 and SWG1) are trimmed to match the impedance of each driver. During the boot
process, the trim values are written to the trim registers by bootcode. The default trim values may be
different from device to device. Programmability is offered if different impedance values are preferred in a
specific application environment.
Table 21-1. Trim Registers
Register

Trim Range (Typical) (1)

Description

SAPHCH0PUT.CH0PUT

PMOS trim bits (4 bits) for the channel 0 output driver

15 = lowest (≈ 2.5 Ω)
0 = highest
Each step ≈ 3%

SAPHCH0PDT.CH0PDT

NMOS trim bits (4 bits) for the channel 0 output driver

15 = lowest (≈ 2.5 Ω)
0 = highest
Each step ≈ 3%

SAPHCH0TT

Termination switch trim bits (4 bits) for channel 0

15 = lowest (≈ 2.5 Ω)
0 = highest
Each step ≈ 3%

SAPHCH1PUT.CH1PUT

PMOS trim bits (4 bits) for the channel 1 output driver

15 = lowest (≈ 2.5 Ω)
0 = highest
Each step ≈ 3%

SAPHCH1PDT.CH1PDT

NMOS trim bits (4 bits) for the channel 1 output driver

15 = lowest (≈ 2.5 Ω)
0 = highest
Each step ≈ 3%

SAPHCH1TT

Termination switch trim bits (4 bits) for channel 1

15 = lowest (≈ 2.5 Ω)
0 = highest
Each step ≈ 3%

(1)

See the device-specific data sheet for details.

The trim registers are written with the default values during every boot up; thus, if different trim values are
preferred, the values must be written to the trim registers by software after every boot.
NOTE: To avoid unintended writes to the trim registers, the SAPHTACTL.UNLOCK bit can block
write access to the trim registers. The trim registers are locked when
SAPHTACTL.UNLOCK = 0.
502

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Physical Interface (PHY) Block

www.ti.com

21.3.3 Input Channels (CH0_IN and CH1_IN)
Figure 21-13 shows the functional block diagram for the input channels, CH0_IN and CH1_IN.
SAPHBCTL.
SAPHMCNF.
EXCBIAS
BIMP

SAPHBCTL.
SAPHMCNF.
PGABIAS
BIMP

Rx
Bias

Tx
Bias

RxBias

SAPHMCNF.CPEO

ASQ_acquisition
ASQ_adc_arming
SDHS_adc_arming
SDHS_acquisition
SAPHBCTL.CPDA
SAPHMCNF.LPBE

SAPHMCNF.LPBE
SAPHBCTL.
ASQBSW

TxBias

TxBias

SAPHBCTL.
ASQBSW

RxBias

SAPHBCTL.
CH0EBSW

0
1 0

SAPHBCTL.
PGABSW

0
1 0

from ASQ

0 1
1

from ASQ

0 1
1

from ASQ

Charge en
Pump

from ASQ

CH0_IN

Input

0

PGA
Dummy

1

to
SDHS

CH1_IN

TxBias

from ASQ

SDHSCTL6.
PGA_GAIN[5:0]

SAPHICTL.
DUMEN
from ASQ

0 1
1

0 1
1

from ASQ

from ASQ

0
1 0

SAPHICTL.
MUXCTL

SAPHMCNF.LPBE

SAPHBCTL.
CH1EBSW

0
1 0

SAPHBCTL.
ASQBSW

SAPHICTL.
MUXSEL

SAPHMCNF.LPBE

Figure 21-13. SAPH or SAPH_A Analog Input Signal Chain
The PGA uses only one input channel at a time, and the input channel is selected by
SAPHICTL0.MUXSEL when SAPHICTL0.MUXCTL = 0 and SAPHMCNF.LPBE = 0 (register mode) or by
the acquisition sequencer (ASQ) when SAPHICTL0.MUXCTL = 1 and SAPHMCNF.LPBE = 0 (auto
mode). Register mode uses the SAPHOCTL0, SAPHOCTL1, SAPHOSEL, and SAPHBCTL regiters to
control the signal chain. Auto mode uses the SAPHASCTL0, SAPHASCTL1, SAPHAPOL, SAPHAPLEV
and SAPHAHIZ registers to control the signal chain.
In Ultra Low Power Bias mode (SAPHMCNF=1) both register sets are and the multiplexer selection is
controlled by the ASQ.
The PGA has two input channels, but one of the channels is a dummy input, which has the same input
impedance of the real input. The dummy input is designed to meet the impedance match requirement
between transmit mode and receive mode of one channel. The dummy impedance is enabled when
SAPHICTL0.DUMEN = 1 (default).
The input multiplexer is powered by a charge pump, which generates 3.2 V from the USS LDO voltage
(1.6 V). The charge pump is turned on while the SAPHMCNF.CPEO=1 and during the preparation/arming
for SDHS acquisition. If desired, the charge pump is turned off while capturing the Rx signal through the
SDHS to reduce noise (SAPHBCTL.CPDA = 0); however, if signal capture is more than 300 µs, the
charge pump should remain on (SAPHBCTL.CPDA = 1). Configure SAPHBCTL.CPDA before starting a
measurement sequence. The clock of the charge pump is generated from a divided SDHS modulator
frequency to maintain coherence during acquisition.
The impedance of the bias voltages TxBias and RxBias can be programmed with SAPHMCNF.BIMP .This
allows to find the best fit for the reactant behavior of transducers on bias voltage changes (shorter
ringing).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

503

Physical Interface (PHY) Block

www.ti.com

Table 21-2. Supply to the Rx Multiplexer
Register

Recommended Data
Capture Time (Typical)

Description

SAPHBCTL.CPDA = 0 (default)

The charge pump is automatically off when data capture begins.

<300 µs

SAPHBCTL.CPDA = 1

The charge pump remains on during data capture.

≥300 µs

21.3.3.1 Tx Bias and Rx Bias
During a measurement sequence, bias voltages must be applied appropriately to the transmit signal and
receive signal. In auto mode, the entire measurement sequence including applying appropriate bias
voltages is fully controlled by the ASQ. In register mode, the application must apply the correct bias
voltages during a measurement sequence. Figure 21-13 shows the two bias voltage sources, Tx bias and
Rx bias. The Tx bias must be applied to the output channel before generating excitation pulses. The Rx
bias must be applied to the input channel before capturing the input signal. A typical measurement
sequence is as follows [assuming that excitation (Tx) at CH0 and reception (Rx) at CH1]:
1. Before generating excitation pulses and stop pulses, apply the Tx bias to CH0_IN while CH0_OUT is
connected to GND through the SWG0 switch (see Figure 21-14 and Figure 21-12).
PHY

SAPHBCTL.
SAPHMCNF.
EXCBIAS
BIMP

CH0_OUT

PPG or
PPG_A

CH1_OUT

ASQ

Tx
Bias

SAPHBCTL.
SAPHMCNF.
PGABIAS
BIMP

TxBias

Rx
Bias

RxBias

PVCC
PVSS
SAPHMCNF.CPEO

TR0

TR1

SAPHMCNF.LPBE
SAPHBCTL.
ASQBSW

ASQ_acquisition
ASQ_adc_arming
SDHS_adc_arming
SDHS_acquisition
SAPHBCTL.CPDA
SAPHMCNF.LPBE

TxBias

SAPHBCTL.
ASQBSW

RxBias

SAPHBCTL.
CH1EBSW

0
1 0

SAPHBCTL.
PGABSW

0
1 0

from ASQ

0 1
1

from ASQ

0 1
1

from ASQ

Charge en
Pump

from ASQ

CH1_IN
1

Input

0

Dummy

PGA
CH0_IN

to
SDHS

from ASQ

TxBias

SAPHICTL.
DUMEN

0 1
1

SDHSCTL6.
PGA_GAIN[5:0]

PVcc/4 + Bias centric

from ASQ

from ASQ

PVcc/2 centric signal

0 1
1

0
1 0

from ASQ

PVcc/4 centric signal

SAPHMCNF.LPBE

SAPHBCTL.
CH0EBSW

0
1 0

RxBias centric signal

SAPHBCTL.
ASQBSW

SAPHICTL.
MUXCTL

TxBias centric signal

SAPHICTL.
MUXSEL

SAPHMCNF.LPBE
Ground centric signal

NOTE: Apply Tx bias to CH0_IN while CH0_OUT is connected to GND through SWG0.

Figure 21-14. Before Excitation
2. Generate excitation pulses and stop pulses through CH0_OUT, and CH0_IN is connected to PGA
dummy load to meet the impedance-matching requirement. The pulses are driven to the transducer 0
(TR0) (see Figure 21-15).

504

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Physical Interface (PHY) Block

www.ti.com

PHY

SAPHBCTL.
EXCBIAS SAPHMCNF.
BIMP

CH0_OUT

PPG or

CH1_OUT

PPG_A

ASQ

Tx
Bias

SAPHBCTL.
PGABIAS SAPHMCNF.
BIMP

TxBias

Rx
Bias

RxBias

PVCC
ASQ_acquisition
ASQ_adc_arming

PVSS
SAPHMCNF.CPEO

TR0

TR1

SAPHMCNF.LPBE
SAPHBCTL.
ASQBSW

SDHS_adc_arming
SDHS_acquisition
SAPHBCTL.CPDA
SAPHMCNF.LPBE

TxBias

SAPHBCTL.
ASQBSW

RxBias

SAPHBCTL.
CH1EBSW

0
1 0

SAPHBCTL.
PGABSW

0
1 0

from ASQ

0 1
1

from ASQ

0 1
1

from ASQ

Charge en
Pump

from ASQ

CH1_IN
1

Input

0

Dummy

PGA
CH0_IN

to
SDHS

from ASQ

TxBias

SAPHICTL.
DUMEN

0 1
1

SDHSCTL6.
PGA_GAIN[5:0]

PVcc/4 + Bias centric

from ASQ

from ASQ

PVcc/2 centric signal

0 1
1

0
1 0

from ASQ

PVcc/4 centric signal

SAPHMCNF.LPBE

SAPHBCTL.
CH0EBSW

0
1 0

RxBias centric signal

SAPHBCTL.
ASQBSW

SAPHICTL.
MUXCTL

TxBias centric signal

SAPHICTL.
MUXSEL

SAPHMCNF.LPBE
Ground centric signal

NOTE: Excitation pulses are driven on CH0_OUT, and CH0_IN is connected to the PGA dummy input.

Figure 21-15. Excitation
3. Wait for almost the complete estimated time of flight (TOF) between the transducer 0 (TR0) and the
transducer 1 (TR1). The delay must be less than TOF to capture the beginning of the arriving pulse
train.
4. Before the signal arrives at the transducer 1 (TR1), power on the SDHS ADC so that the SDHS is fully
settled before sampling data.
5. Before the signal arrives at the transducer 1 (TR1), apply the Rx bias to CH1_IN while CH1_OUT is
connected to GND through the SWG1 switch (see Figure 21-16 and Figure 21-12).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

505

Physical Interface (PHY) Block

www.ti.com

PHY

SAPHBCTL.
SAPHMCNF.
EXCBIAS
BIMP

CH0_OUT

PPG or
CH1_OUT

ASQ

PPG_A

Tx
Bias

SAPHBCTL.
SAPHMCNF.
PGABIAS
BIMP

Rx
Bias

TxBias

RxBias

PVCC
ASQ_acquisition
ASQ_adc_arming

PVSS
SAPHMCNF.CPEO

TR0

TR1

SAPHMCNF.LPBE
SAPHBCTL.
ASQBSW

CH1_IN

SDHS_adc_arming
SDHS_acquisition
SAPHBCTL.CPDA
SAPHMCNF.LPBE

TxBias

SAPHBCTL.
ASQBSW

RxBias

SAPHBCTL.
CH1EBSW

0
1 0

SAPHBCTL.
PGABSW

0
1 0

from ASQ

0 1
1

from ASQ

0 1
1

from ASQ

Charge en
Pump

from ASQ
Input

1

PGA
Dummy

0

CH0_IN

to
SDHS

from ASQ

TxBias

SAPHICTL.
DUMEN

0 1
1

SDHSCTL6.
PGA_GAIN[5:0]

PVcc/4 + Bias centric

from ASQ

from ASQ

PVcc/2 centric signal

0 1
1

0
1 0

from ASQ

PVcc/4 centric signal

SAPHMCNF.LPBE

SAPHBCTL.
CH0EBSW

0
1 0

RxBias centric signal

SAPHBCTL.
ASQBSW

SAPHICTL.
MUXCTL

TxBias centric signal

SAPHICTL.
MUXSEL

SAPHMCNF.LPBE
Ground centric signal

NOTE: Apply Rx bias to CH1_IN while CH1_OUT is connect to GND through SWG1.

Figure 21-16. Before Reception
6. Trigger the SDHS to sample the arrived signal at the transducer 1 (TR1): CH1_IN is connected to PGA
input for data capturing. CH1_OUT is connected to GND through the SWG1 switch (see Figure 21-17).

506

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Acquisition Sequencer (ASQ)

www.ti.com

PHY

SAPHBCTL.
SAPHMCNF.
EXCBIAS
BIMP

CH0_OUT

SAPHBCTL.
SAPHMCNF.
PGABIAS
BIMP

PPG or
CH1_OUT

PPG_A

ASQ

Rx

Tx
TxBias

Bias

RxBias

Bias

PVCC
ASQ_acquisition
ASQ_adc_arming

PVSS
SAPHMCNF.CPEO

TR0

TR1

SAPHMCNF.LPBE
SAPHBCTL.
ASQBSW

SDHS_adc_arming
SDHS_acquisition
SAPHBCTL.CPDA
SAPHMCNF.LPBE

TxBias

SAPHBCTL.
ASQBSW

RxBias

SAPHBCTL.
CH1EBSW

0
1 0

SAPHBCTL.
PGABSW

0
1 0

from ASQ

0 1
1

from ASQ

0 1
1

from ASQ

Charge en
Pump

from ASQ

CH1_IN

1

Input

0

Dummy

PGA
CH0_IN

to
SDHS

from ASQ

TxBias

SAPHICTL.
DUMEN

0 1
1

SDHSCTL6.
PGA_GAIN[5:0]

PVcc/4 + Bias centric

from ASQ

from ASQ

PVcc/2 centric signal

0 1
1

0
1 0

from ASQ

PVcc/4 centric signal

SAPHMCNF.LPBE

SAPHBCTL.
CH0EBSW

0
1 0

RxBias centric signal

SAPHBCTL.
ASQBSW

SAPHICTL.
MUXCTL

TxBias centric signal

SAPHICTL.
MUXSEL

SAPHMCNF.LPBE
Ground centric signal

NOTE: CH1_IN is connected to the PGA input, and CH1_OUT is connected to GND through the SWG1 switch.

Figure 21-17. Reception
The Tx bias voltage and the Rx bias voltage are programmable independently by SAPHBCTL.EXCBIAS
and SAPHBCTL.PGABIAS, respectively.

21.4 Acquisition Sequencer (ASQ)
The entire measurement sequence can be controlled by user software (called register mode), by ASQ
without any CPU intervention (called auto mode) or by ASQ without any CPU intervention (called ultra low
power bias mode). The auto mode helps reduce the measurement power consumption, because the CPU
can stay in LPM0 during the measurement sequences. The ASQ is a state machine that can be used to
control the entire measurement sequence. Figure 21-17 shows the ASQ block diagram. In auto mode a
mixed operation of register control and ASQ control is possible for various signal chain elements. In ultra
low power bias mode all control is obtained by the ASQ.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

507

Acquisition Sequencer (ASQ)

11
SAPHASCTL0.
ASQTEN

PLL Clock

1/16

SAPHAPLEV.PCPLEV

SAPHAPHIZ.PCPHIZ

SAPHAPOL.PCPOL

SAPHASCTL1.EARLYRB

SAPHASCTL1.CHTOG

SAPHASCTL1.ESOFF

Time Counter (20 bit)
19 18 17 16 15

SAPHTBCTL.PSSV

PPG
PHY
UUPS
SDHS

SAPHTBCTL.
TCLR

10

External Signal

Acquisition Sequencer (ASQ)

SAPHTBCTL.
TSTART

External Signal

Controls

Trigger

SAPHTBCTL.
TSTOP

01

SAPHATIMLO

00

PSQ (from UUPS)

SAPHATIMHO

SAPHASQTRIG.
ASQTRIG

SAPHASCTL1.STDBY

SAPHASCTL0.
TRIGSEL

SAPHASCTL1.CHOWN

SAPHASCTL0.STOP
SAPHASCTL0.ASQCHSEL
SAPHASCTL0.PNGCNT

www.ti.com

4 3 2 1 0

SAPHATM_A (16 bit)
(Timemark A)

TMA Event

SAPHATM_B (16 bit)
(Timemark B)

TMB Event

SAPHATM_C (16 bit)
(Timemark C)

TMC Event

SAPHATM_D (16 bit)
(Timemark D)

TMD Event

SAPHATM_E (16 bit)
(Timemark E)

TME Event

SAPHATM_F (16 bit)
(Timemark F)

TMF Event (time-out)

Figure 21-18. ASQ Block Diagram

21.4.1 Time Counter
Figure 21-17 shows that the ASQ has a 20-bit time counter running at 1/16 of the PLL clock. The counter
value can be read from the read-only registers, SAPHATIMLO (low 16 bits) and SAPHATIMHI (high 4
bits). The time counter is controlled by the ASQ during measurement in auto mode; however, the time
counter can be forced to stop (SAPHTBCTL.TSTOP = 1), reset (SAPHTBCTL.TCLR = 1), and start
(SAPHTBCTL.TSTART = 1) by user software if necessary. Controlling the time counter by user software is
not recommended while ASQ is actively controlling the measurement sequences, because these changes
interfere with the measurement timings.

508

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Acquisition Sequencer (ASQ)

www.ti.com

21.4.2 Six Time Mark Events
The six time mark registers are to generate important timing events during measurement in auto mode.
See Table 21-3 for details about the time mark events.
Table 21-3. Time Mark Events
Register

Time Counter
Bits

Event Name

SAPHASQTRIG.ASQTRIG or
signal from PSQ

N/A

ASQ Trigger

SAPHATM_A

[15: 0]

TMA

Trigger PPG to generate excitation pulses and stop pulses

SAPHATM_B

[15: 0]

TMB

Turn on the SDHS

SAPHATM_C

[15: 0]

TMC

Apply Rx bias

SAPHATM_D

[15: 0]

TMD

Start sampling the input signal (trigger the SDHS)

SAPHATM_E

[19: 4]

TME

Restart the time counter for the next measurement

SAPHATM_F

[17: 2]

TMF

Time-out

Action Done by ASQ
Apply Rx bias

The order of the time mark events is determined by the counter values written to the SAPHATM_x
registers.
• Time mark event period = PLL clock × 1/16 × value in the time mark registers (for TMA, TMB, TMC,
and TMD)
• TME event period = PLL clock × 1/16 × value in the time mark register × 16
• TMF event period = PLL clock × 1/16 × value in the time mark register × 4

21.4.3 Triggering the ASQ
There are two ways to start the ASQ. One is user software trigger by writing 1 to
SAPHASQTRIG.ASQTRIG, and the other is auto trigger by the PSQ from the UUPS module after the USS
power up is complete. When SAPHASCTL0.TRIGSEL = 0, SAPHASQTRIG.ASQTRIG is selected as the
trigger source of the ASQ. When SAPHASCTL0.TRIGSEL = 1, the signal from the PSQ is selected as the
trigger source of the ASQ. In this case, configure all USS registers before turning on the USS module, so
that the entire measurement process can be fully automated by the PSQ and ASQ.
To avoid undesired ASQ triggers, keep SAPHASCTL0.ASQTEN = 0 while configuring ASQ registers. After
updating the ASQ registers, write SAPHASCTL0.ASQTEN = 1 before triggering the ASQ. The
SAPHASCTL0.ASQTEN bit must be set before triggering the ASQ.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

509

Acquisition Sequencer (ASQ)

www.ti.com

21.4.4 Auto Mode and Register Mode
The entire measurement sequence can be controlled by user software (called register mode) or by the ASQ without any CPU intervention (called
auto mode). See Table 21-4 for differences. Configuration of each submodule is the same and is not listed in Table 21-4.
Table 21-4. Auto Mode and Register Mode
Action

Auto Mode

Control Register in Auto Mode

Register Mode

Control Register in Register
Mode

Take USS submodules out of reset
(once after reset)

UUPSCTL.SWRST = 0

UUPSCTL.SWRST

UUPSCTL.SWRST = 0

UUPSCTL.SWRST

Enable auto mode or register mode
(on mode changes)

SAPHMCNF.LPBE = 0

SAPHMCNF.LPBE

SAPHMCNF.LPBE = 0

SAPHMCNF.LPBE

Set TxBias and RxBias impdance

SAPHMCNF.BIMP = 0, 1, 2, 3

SAPHMCNF.BIMP

SAPHMCNF.BIMP = 0, 1, 2, 3

SAPHMCNF.BIMP

Drive output drivers to GND

SAPHOSEL.PCH0SEL = 1

N/A (automatic)

SAPHOSEL.PCH0SEL = 0

SAPHOCTL0.CH0TERM,
SAPHOCTL0.CH1TERM

Tx bias

SAPHBCTL.ASQBSW = 1

N/A (automatic)

SAPHBCTL.ASQBSW = 0

SAPHBCTL.CH0EBSW,
SAPHBCTL.CH1EBSW

Select output channel in PPG

SAPHPGCTL.PGSEL = 1

SAPHASCTL0.ASQCHSEL,
SAPHASCTL1.CHTOG

SAPHPGCTL.PGSEL = 0

SAPHPGCTL.PPGCHSEL

Trigger PPG

SAPHPGCTL.TRSEL = 1

SAPHATM_A

SAPHPGCTL.TRSEL = 0

SAPHPPGTRIG.PPGTRIG

Input channel selection

SAPHICTL0.MUXCTL = 1

SAPHASCTL0.ASQCHSEL,
SAPHASCTL1.CHTOG,
SAPHASCTL1.CHOWN

SAPHICTL0.MUXCTL = 0

SAPHICTL0.MUXSEL

Turn on the SDHS

SDHSCTL0.TRGSRC = 1

SAPHATM_B

SDHSCTL0.TRGSRC = 0

SDHSCTL4.SDHSON

Rx bias

SAPHBCTL.ASQBSW = 1

SAPHATM_C or
SAPHASCTL1.EARLYRB

SAPHBCTL.ASQBSW = 0

SAPHBCTL.PGABSW,
SAPHICTL0.MUXSEL

SDHS conversion start

SDHSCTL0.TRGSRC = 1

SAPHATM_D

SDHSCTL0.TRGSRC = 0

SDHSCTL5.SSTART

The number of measurement

Triggering ASQ

SAPHASCTL0.PNGCNT (up to 4)

No ASQ trigger

N/A

The order of the time mark events is determined by the counter values written to the SAPHATM_x registers.

510 Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)
Copyright © 2012–2017, Texas Instruments Incorporated

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Ultra-Low-Power Bias Mode

www.ti.com

21.5 Ultra-Low-Power Bias Mode
The ultra-low bias power mode suppresses the PLL operation during the hold-off delay phase on USS
startup. Because the PLL and its clock tree operate at a high frequency, considerable energy savings can
be achieved. Common utility flow meters that enter LPM3 or LPM3.5 between the measurements with
turned off USSXT benefit in particular from that mode.
Figure 21-19 shows a typical use case with register mode or auto mode. The timing axis and the
amplitudes in the diagram are not to scale. Following a very short summary of that theoretical use
cases... .
After an RTC event at (a), the system wakes up from LPMx, runs boot code, configures the USS trimming,
and enters application code. This turns on USSXT, prepares time-out on TimerA that is running from
LFXTCLK, then the CPU enters LPMx.
At (b), the TimerA service routine starts the UUPS, and the CPU enters LPMx again.
At (c), the transducers and external circuits may show ringing due to power up and bias voltage enable.
The signals settle then.
At (d) the HSPLL generates a clock with almost no remaining phase variations. Near TA, the transducers
have settled and the regular sequence is started by generating pulses. At TB, well before the arrival of the
signal, the SDHS and its clock is enabled. At TD, the data acquisition starts.
At (e), the sequence is completed. The interrupt service routine performs calculations and sets the system
to LPMx again.
a

b

LFXTCLK(RTC)
MCLK(CPU)
USSXT_CLK
d

TAxCLK(Timer Clock)
UUPSCTL.UPSTATE

.

OFF

.

READY

OFF

UUPS_LDO_OUT
TxBiasSwitch_En
RxBiasSwitch_En
HSPLL_PLL_CLK
T0,TC

ASQ sequence-state

TA

TB

TD

CHx_IN(at pin)

e

CHy_OUTx(after Rext)
c

SDHS_PCM_CLK

arm

conversion

off

Time

Figure 21-19. Auto Mode and Register Mode Example
Figure 21-20 shows a the use case with ultra-low-power bias mode. The timing axis and the amplitudes in
the diagram are not to scale. The following is a short summary of that theoretical use case:
After an RTC event at (a), the system wakes up from LPMx, runs boot code, configures the USS trimming,
and enters application code. This turns on USSXT, prepares time-out on TimerA that is running from
LFXTCLK, and then the CPU enters LPMx.
At (b), the TimerA service routine starts the UUPS with hold-off delay, and the CPU enters LPMx again.
The UUPS state machine starts up with suppressed HSPLL.
At (c), the transducers and external circuits may show ringing due to power up and bias voltages. The
signals settle then.
At (d), the HSPLL generates a clock with almost no remaining phase variations. Near TA, the transducers
have settled and the regular sequence is started by generating pulses. At TB, well before the arrival of the
signal, the SDHS and its clock are enabled. At TD, the data acquisition starts.
At (e), the sequence is completed. The interrupt service routine perform calculations and sets the system
to LPMx again.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

511

Interrupts Triggers

www.ti.com

The ASQ.mux control signal switches between both control register sets during power up. Both register
sets require same values of the corresponding control bits for a smooth bias generation and handover.
a

b

LFXTCLK(RTC)
MCLK(CPU)
USSXT_CLK
d

TAxCLK(Timer Clock)
UUPSCTL.UPSTATE

OFF

.

.

holdoff

.

READY

OFF

UUPS_LDO_OUT
TxBiasSwitch_En
RxBiasSwitch_En
HSPLL_PLL_CLK
T0,TC

ASQ sequence-state

TA

TB

TD

CHx_IN(at pin)
CHy_OUTx(after Rext)
ASQ_biasmux_ctl

e

c

SDHS_PCM_CLK
arm

conversion

off

Time

Figure 21-20. Ultra-Low-Power Bias Mode Example

21.6 Interrupts Triggers
The SAPH or SAPH_A module supports four interrupts:
•
•

PNGDN interrupt: The interrupt occurs when the PPG completes pulse generation.
SEQDN interrupt: The interrupt occurs when ASQ completes all of the measurements programmed in
SAPHASCTL0.PNGCNT. For example, when SAPHASCTL0.PNGCNT = 3, four measurements are
performed. The interrupt indicates that all four measurements have been completed.
NOTE: After ASQ is triggered, if the current measurement is interrupted by entering debug halt
mode (UUPSRIS.STPBYDB = 1), the SEQDN interrupt is also reported.

•
•

TMFTO interrupt: This interrupt is valid when ASQ is active (auto mode). The interrupt indicates that
the time counter in ASQ has reached to TIMEMARK_F (time-out).
DATAERR interrupt: This interrupt indicates that either WINHI interrupt or WINLO interrupt has
occurred in SDHS. See Chapter 22 for details.

21.7 DMA Triggers
The SAPH_A module supports a DMA trigger. The trigger is fired when the PPG_A state machine
transitions from S_Pulse to X-Pulse and when the PPG_A state machine transitions from X-Pulse to SPulse.

512

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8 SAPH and SAPH_A Registers
Table 21-5 lists the memory-mapped registers for SAPH/SAPH_A. All register offset addresses not listed
in Table 21-5 should be considered as reserved locations and the register contents should not be
modified.
Table 21-5. SAPH Registers
Offset

Acronym

Register Name

Type

Reset

0h

SAPHIIDX
SAPH_AIIDX

Interrupt Index

read-only

0h

Section 21.8.1

2h

SAPHMIS
SAPH_AMIS

Masked Interrupt Satus

read-only

0h

Section 21.8.2

4h

SAPHRIS
SAPH_ARIS

Raw Interrupt Status

read-only

0h

Section 21.8.3

6h

SAPHIMSC
SAPH_AIMSC

Interrupt Mask

read-write

0h

Section 21.8.4

8h

SAPHICR
SAPH_AICR

Interrupt Clear

write-only

0h

Section 21.8.5

Ah

SAPHISR
SAPH_AISR

Interrupt Set

write-only

0h

Section 21.8.6

Ch

SAPHDESCLO
SAPH_ADESCLO

Module-Descriptor Low Word

read-only

10h

Section 21.8.7

Eh

SAPHDESCHI
SAPH_ADESCHI

Module-Descriptor High Word

read-only

5553h

Section 21.8.8

10h

SAPHKEY
SAPH_AKEY

Key

write-only

0h

Section 21.8.9

12h

SAPHOCTL0
SAPH_AOCTL0

Physical Interface Output Control #0

read-write

0h

Section
21.8.10

14h

SAPHOCTL1
SAPH_AOCTL1

Physical Interface Output Control #1

read-write

0h

Section
21.8.11

16h

SAPHOSEL
SAPH_AOSEL

Physical Interface Output Function Select

read-write

5h

Section
21.8.12

20h

SAPHCH0PUT
SAPH_ACH0PUT

Channel 0 Pull UpTrim Register

read-write

0h

Section
21.8.13

22h

SAPHCH0PDT
SAPH_ACH0PDT

Channel 0 Pull DownTrim Register

read-write

0h

Section
21.8.14

24h

SAPHCH0TT
SAPH_ACH0TT

Channel 0 Termination Trim

read-write

0h

Section
21.8.15

26h

SAPHCH1PUT
SAPH_ACH1PUT

Channel 1 Pull UpTrim

read-write

0h

Section
21.8.16

28h

SAPHCH1PDT
SAPH_ACH1PDT

Channel 1 Pull DownTrim

read-write

0h

Section
21.8.17

2Ah

SAPHCH1TT
SAPH_ACH1TT

Channel 1 Termination Trim

read-write

0h

Section
21.8.18

2Ch

SAPHMCNF
SAPH_AMCNF

Mode Configuration Register

read-write

2h

Section
21.8.19

2Eh

SAPHTACTL
SAPH_ATACTL

Trim Access Control

read-write

0h

Section
21.8.20

30h

SAPHICTL0
SAPH_AICTL0

Physical Interface Input Control #0

read-write

90h

Section
21.8.21

34h

SAPH_ABCTL
SAPHBCTL

Bias Control

read-write

A1h

Section
21.8.22

40h

SAPHPGC
SAPH_APGC

PPG Count

read-write

0h

Section
21.8.23

42h

SAPHPGLPER
SAPH_APGLPER

Pulse Generator Low Period

read-write

0h

Section
21.8.24

44h

SAPHPGHPER
SAPH_APGHPER

Pulse Generator High Period

read-write

0h

Section
21.8.25

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Section

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

513

SAPH and SAPH_A Registers

www.ti.com

Table 21-5. SAPH Registers (continued)
Offset

Acronym

Register Name

Type

Reset

Section

46h

SAPHPGCTL
SAPH_APGCT

PPG Control

read-write

11h

Section
21.8.26

48h

SAPHPPGTRIG
SAPH_APPGTRIG

PPG Software Trigger

write-only

0h

Section
21.8.27

4Ah

SAPH_AXPGCTL

Extended Pulse Control Register

read-write

0h

Section
21.8.28

4Ch

SAPH_AXPGLPER

Extra Pulse Low Period Register

read-write

0h

Section
21.8.29

4Eh

SAPH_AXPGHPER

Extra Pulse High Period Register

read-write

0h

Section
21.8.30

60h

SAPHASCTL0
SAPH_AASCTL0

A-SEQ control register 0

read-write

0h

Section
21.8.31

62h

SAPHASCTL1
SAPH_AASCTL1

A-SEQ control register 1

read-write

0h

Section
21.8.32

64h

SAPHASQTRIG
APH_AASQTRIG

ASQ Software Trigger

write-only

0h

Section
21.8.33

66h

SAPHAPOL
SAPH_AAPOL

ASQ ping output polarity

read-write

0h

Section
21.8.34

68h

SAPHAPLEV
SAPH_AAPLEV

ASQ ping pause level

read-write

0h

Section
21.8.35

6Ah

SAPHAPHIZ
SAPH_AAPHIZ

ASQ ping pause impedance

read-write

0h

Section
21.8.36

6Eh

SAPHATM_A
SAPH_AATM_A

A-SEQ start to 1st ping

read-write

0h

Section
21.8.37

70h

SAPHATM_B
SAPH_AATM_B

ASQ start to ADC arm

read-write

0h

Section
21.8.38

72h

SAPHATM_C
SAPH_AATM_C

Count for the TIMEMARK C Event

read-write

0h

Section
21.8.39

74h

SAPHATM_D
SAPH_AATM_D

ASQ start to ADC trig

read-write

0h

Section
21.8.40

76h

SAPHATM_E
SAPH_AATM_E

ASQ start to restart

read-write

0h

Section
21.8.41

78h

SAPHATM_F
SAPH_AATM_F

ASQ start to timeout

read-write

0h

Section
21.8.42

7Ah

SAPHTBCTL
SAPH_ATBCTL

Time Base Control

read-write

0h

Section
21.8.43

7Ch

SAPHATIMLO
APH_AATIMLO

Acquisition Timer Low Part

read-only

0h

Section
21.8.44

7Eh

SAPHATIMHI
SAPH_AATIMHI

Acquisition Timer High Part

read-only

0h

Section
21.8.45

514

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.1 SAPHIIDX/SAPH_AIIDX Register (Offset = 0h) [reset = 0h]
SAPHIIDX/SAPH_AIIDX is shown in Figure 21-21 and described in Table 21-6.
Return to Summary Table.
Interrupt Index Register
Figure 21-21. SAPHIIDX/SAPH_AIIDX Register
15

14

13

12

11

10

9

8

3

2
IIDX
RH-0h

1

0
RESERVED
R-0h

RESERVED
R-0h
7

6

5

4

RESERVED
R-0h

Table 21-6. SAPHIIDX/SAPH_AIIDX Register Field Descriptions
Field

Type

Reset

15-4

Bit

RESERVED

R

0h

3-1

IIDX

RH

0h

Description

This register provides the highest priority enabled interrupt index.
Reset type: PUC
0h (R/W) = NONE : no interrupts pending
1h (R/W) = DATAERR : This interrupt indicates that either WINHI
interrupt or WINLO interrupt has
occurred in SDHS.
2h (R/W) = TMFTO : This interrupt is valid when ASQ is activcve
(auto mode). The interrupt indicates that
the time counter in ASQ has reached to TIMEMARK_F (timeout).
3h (R/W) = SEQDN : This interrupt is valid when ASQ is activcve
(auto mode). The interrupt occurs when
ASQ completes all of the measurements programmed in
SAPHASCTL0.PNGCNT. For example, when
SAPHASCTL0.PNGCNT = 3, total four measurements are
performed. The interrupt indicates that all of the
four measurements have been completed.
4h (R/W) = PNGDN : This interrupt is valid when ASQ is active (auto
mode). The interrupt occurs when
ASQ completes one measurement sequence. For example, when
SAPHASCTL0.PNGCNT = 3, total four
measurements are performed. The interrupt indicates that one
measurement has been completed.

0

RESERVED

R

0h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

515

SAPH and SAPH_A Registers

www.ti.com

21.8.2 SAPHMIS/SAPH_AMIS Register (Offset = 2h) [reset = 0h]
SAPHMIS/SAPH_AMIS is shown in Figure 21-22 and described in Table 21-7.
Return to Summary Table.
Masked Interrupt Satus Register
Figure 21-22. SAPHMIS/SAPH_AMIS Register
15

14

13

12

11

10

9

8

3
PNGDN
RH-0h

2
SEQDN
RH-0h

1
TMFTO
RH-0h

0
DATAERR
RH-0h

RESERVED
R-0h
7

6

5

4

RESERVED
R-0h

Table 21-7. SAPHMIS/SAPH_AMIS Register Field Descriptions
Bit
15-4
3

Field

Type

Reset

RESERVED

R

0h

PNGDN

RH

0h

Description

This interrupt is valid when ASQ is active (auto mode). The interrupt
occurs when
ASQ completes one measurement sequence. For example, when
SAPHASCTL0.PNGCNT = 3, total four
measurements are performed. The interrupt indicates that one
measurement has been completed.
Reset type: PUC

2

SEQDN

RH

0h

This interrupt is valid when ASQ is activcve (auto mode). The
interrupt occurs when
ASQ completes all of the measurements programmed in
SAPHASCTL0.PNGCNT. For example, when
SAPHASCTL0.PNGCNT = 3, total four measurements are
performed. The interrupt indicates that all of the
four measurements have been completed.
Reset type: PUC

1

TMFTO

RH

0h

This bit indicates a TIMEMARK F (timeout) event has happened.
Reset type: PUC

0

DATAERR

RH

0h

This interrupt indicates that either WINHI interrupt or WINLO
interrupt has
occurred in SDHS.
Reset type: PUC

516

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.3 SAPHRIS/SAPH_ARIS Register (Offset = 4h) [reset = 0h]
SAPHRIS/SAPH_ARIS is shown in Figure 21-23 and described in Table 21-8.
Return to Summary Table.
Raw Interrupt Status Register
Figure 21-23. SAPHRIS/SAPH_ARIS Register
15
RESERVED
R-0h

14
DAV
RH-0h

13

7

6

5

12

11

10

9

8

2
SEQDN
RH-0h

1
TMFTO
RH-0h

0
DATAERR
R-0h

RESERVED
R-0h
4

RESERVED
R-0h

3
PNGDN
RH-0h

Table 21-8. SAPHRIS/SAPH_ARIS Register Field Descriptions
Bit

Field

Type

Reset

15

RESERVED

R

0h

14

DAV

RH

0h

RESERVED

R

0h

PNGDN

RH

0h

13-4
3

Description

This bit indicates a DMA access violation
Reset type: PUC

This interrupt is valid when ASQ is active (auto mode). The interrupt
occurs when
ASQ completes one measurement sequence. For example, when
SAPHASCTL0.PNGCNT = 3, total four
measurements are performed. The interrupt indicates that one
measurement has been completed.
Reset type: PUC

2

SEQDN

RH

0h

This interrupt is valid when ASQ is activcve (auto mode). The
interrupt occurs when
ASQ completes all of the measurements programmed in
SAPHASCTL0.PNGCNT. For example, when
SAPHASCTL0.PNGCNT = 3, total four measurements are
performed. The interrupt indicates that all of the
four measurements have been completed.
Reset type: PUC

1

TMFTO

RH

0h

This bit indicates a TIMEMARK F (timeout) event has happened.
Reset type: PUC

0

DATAERR

R

0h

This interrupt indicates that either WINHI interrupt or WINLO
interrupt has
occurred in SDHS.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

517

SAPH and SAPH_A Registers

www.ti.com

21.8.4 SAPHIMSC/SAPH_AIMSC Register (Offset = 6h) [reset = 0h]
SAPHIMSC/SAPH_AIMSC is shown in Figure 21-24 and described in Table 21-9.
Return to Summary Table.
Interrupt Mask Register
Figure 21-24. SAPHIMSC/SAPH_AIMSC Register
15

14

13

12

11

10

9

8

3
PNGDN
R/W-0h

2
SEQDN
R/W-0h

1
TMFTO
R/W-0h

0
DATAERR
R/W-0h

RESERVED
R/W-0h
7

6
RESERVED
R/W-0h

5

4
DAV
RH-0h

Table 21-9. SAPHIMSC/SAPH_AIMSC Register Field Descriptions
Bit

Field

Type

Reset

RESERVED

R/W

0h

4

DAV

RH

0h

This bit indicates a DMA access violation
Reset type: PUC

3

PNGDN

R/W

0h

This bit enables the PNGDN interrupt
Reset type: PUC

2

SEQDN

R/W

0h

This bit enables the SEQDN interrupt
Reset type: PUC

1

TMFTO

R/W

0h

This bit enables the TIMEMARK F (timeout) interrupt.
Reset type: PUC

0

DATAERR

R/W

0h

This bit enables the DATAERR interrupt.
Reset type: PUC

15-5

518

Description

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.5 SAPHICR/SAPH_AICR Register (Offset = 8h) [reset = 0h]
SAPHICR/SAPH_AICR is shown in Figure 21-25 and described in Table 21-10.
Return to Summary Table.
Interrupt Clear Register
Figure 21-25. SAPHICR/SAPH_AICR Register
15
RESERVED
W-0h

14
DAV
HW1C-0h

13

7

6

5

12

11

10

9

8

2
SEQDN
HW1C-0h

1
TMFTO
HW1C-0h

0
DATAERR
HW1C-0h

RESERVED
W-0h
4

RESERVED
W-0h

3
PNGDN
HW1C-0h

Table 21-10. SAPHICR/SAPH_AICR Register Field Descriptions
Bit

Field

Type

Reset

15

RESERVED

W

0h

14

DAV

HW1C

0h

13-4

Description

Writing one this bit to clear any previous DMA access violations

RESERVED

W

0h

3

PNGDN

HW1C

0h

Writing one this bit to clear the pending PNGDN interrupt.
Reset type: PUC

2

SEQDN

HW1C

0h

Writing one this bit to clear the pending SEQDN interrupt.
Reset type: PUC

1

TMFTO

HW1C

0h

Writing one this bit to clear the pending TIMEMARK F (timeout)
interrupt
Reset type: PUC

0

DATAERR

HW1C

0h

Writing one this bit to clear the pending DATAERR interrupt.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

519

SAPH and SAPH_A Registers

www.ti.com

21.8.6 SAPHISR/SAPH_AISR Register (Offset = Ah) [reset = 0h]
SAPHISR/SAPH_AISR is shown in Figure 21-26 and described in Table 21-11.
Return to Summary Table.
Interrupt Set Register
Figure 21-26. SAPHISR/SAPH_AISR Register
15
RESERVED
W-0h

14
DAV
HW1S-0h

13

7

6

5

12

11

10

9

8

2
SEQDN
HW1S-0h

1
TMFTO
HW1S-0h

0
DATAERR
HW1S-0h

RESERVED
W-0h
4

RESERVED
W-0h

3
PNGDN
HW1S-0h

Table 21-11. SAPHISR/SAPH_AISR Register Field Descriptions
Bit

Field

Type

Reset

15

RESERVED

W

0h

14

DAV

HW1S

0h

13-4

520

Description

Writing one this bit to set RIS.DAV by software.
Reset type: PUC

RESERVED

W

0h

3

PNGDN

HW1S

0h

Writing one this bit to generate a PNGDN interrupt by software.
Reset type: PUC

2

SEQDN

HW1S

0h

Writing one this bit to generate a SEQDN interrupt by software.
Reset type: PUC

1

TMFTO

HW1S

0h

Writing one this bit to generate a TIMEMARK F (timeout) interrupt by
software.
Reset type: PUC

0

DATAERR

HW1S

0h

Writing one this bit generates a DATAERR interrupt by software.
Reset type: PUC

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.7 SAPHDESCLO/SAPH_ADESCLO Register (Offset = Ch) [reset = 10h]
SAPHDESCLO/SAPH_ADESCLO is shown in Figure 21-27 and described in Table 21-12.
Return to Summary Table.
Module-Descriptor Low Word
Figure 21-27. SAPHDESCLO/SAPH_ADESCLO Register
15

14

13

12

11

10

FEATUREVER
R-0h
7

6

9

8

1

0

INSTNUM
R-0h
5

4

3

MAJREV
R-1h

2
MINREV
R-0h

Table 21-12. SAPHDESCLO/SAPH_ADESCLO Register Field Descriptions
Field

Type

Reset

Description

15-12

Bit

FEATUREVER

R

0h

Feature Version

11-8

INSTNUM

R

0h

Instance Number

7-4

MAJREV

R

1h

Major Revision

3-0

MINREV

R

0h

Minor Revision

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

521

SAPH and SAPH_A Registers

www.ti.com

21.8.8 SAPHDESCHI/SAPH_ADESCHI Register (Offset = Eh) [reset = 5553h]
SAPHDESCHI/SAPH_ADESCHI is shown in Figure 21-28 and described in Table 21-13.
Return to Summary Table.
Module Descriptor High Word
Figure 21-28. SAPHDESCHI/SAPH_ADESCHI Register
15

14

13

12

11

10

9

8
7
ModuleID
R-5553h

6

5

4

3

2

1

0

Table 21-13. SAPHDESCHI/SAPH_ADESCHI Register Field Descriptions
Bit
15-0

522

Field

Type

Reset

Description

ModuleID

R

5553h

SAPH's Identifier

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.9 SAPHKEY/SAPH_AKEY Register (Offset = 10h) [reset = 0h]
SAPHKEY/SAPH_AKEY is shown in Figure 21-29 and described in Table 21-14.
Return to Summary Table.
SAPH Key register
Figure 21-29. SAPHKEY/SAPH_AKEY Register
15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

KEY
W-0h

Table 21-14. SAPHKEY/SAPH_AKEY Register Field Descriptions
Bit

Field

Type

Reset

Description

15-0

KEY

W

0h

This field must be written with 0x454B using a word write to unlock
the SAPH registers for write accesses. Writing a value other than
0x454B locks the SAPH registers again. The KEY register only
locks/unlocks the SAPH registers with offset address of 0xF or
higher. SAPHIIDX, SAPHMIS, SAPHRIS, SAPHIMSC, SAPHICR,
SAPHISR, SAPHDESCLO, and SAPHDESCHI registers are not
affected and the registers are not locked.
Note: This register is write only. Reading always returns with zero.
454Bh (W) = 0x454B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

523

SAPH and SAPH_A Registers

www.ti.com

21.8.10 SAPHOCTL0/SAPH_AOCTL0 Register (Offset = 12h) [reset = 0h]
SAPHOCTL0/SAPH_AOCTL0 is shown in Figure 21-30 and described in Table 21-15.
Return to Summary Table.
Physical Interface Output Control #0
Figure 21-30. SAPHOCTL0/SAPH_AOCTL0 Register
15

14

13

12

11

10

9
CH1OUT
R/W-0h

8
CH0OUT
R/W-0h

4

3

2

1
CH1OE
R/W-0h

0
CH0OE
R/W-0h

RESERVED
R/W-0h
7

6

5
RESERVED
R/W-0h

Table 21-15. SAPHOCTL0/SAPH_AOCTL0 Register Field Descriptions
Bit
15-10
9

Field

Type

Reset

RESERVED

R/W

0h

CH1OUT

R/W

0h

Description

CH1_OUT Value. When SAPHOSEL.PCH1SEL =0 and
SAPHOCTL0.CH1OE=1, this bit represents the logical value on the
CH1 terminal.
0 = low
1 = high
Reset type: PUC
0h (R/W) = Ch1 is set to low signal
1h (R/W) = Ch1 is set to high signal

8

CH0OUT

R/W

0h

CH0_OUT Value. When SAPHOSEL.PCH0SEL =0 and
SAPHOCTL0.CH0OE=1, this bit represents the logical value on the
CH0 terminal.
0 = low
1 = high
Reset type: PUC
0h (R/W) = Ch0 is set to low signal
1h (R/W) = Ch0 is set to high signal

7-2

524

RESERVED

R/W

0h

1

CH1OE

R/W

0h

CH1_OUT Enable. When SAPHOSEL.PCH1SEL =0, this bit enables
the output CH1 when set to 1. When SAPHOSEL.PCH1SEL != 0,
this bit is invalid.
Reset type: PUC
0h (R/W) = Ch1 Output is HiZ
1h (R/W) = CH1 Output is driving

0

CH0OE

R/W

0h

CH0_OUT Enable. When SAPHOSEL.PCH0SEL =0, this bit enables
the output CH0 when set to 1. When SAPHOSEL.PCH0SEL != 0,
this bit is invalid.
Reset type: PUC
0h (R/W) = Ch0 Output is HiZ
1h (R/W) = CH0 Output is driving

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.11 SAPHOCTL1/SAPH_AOCTL1 Register (Offset = 14h) [reset = 0h]
SAPHOCTL1/SAPH_AOCTL1 is shown in Figure 21-31 and described in Table 21-16.
Return to Summary Table.
Physical Interface Output Control #1
Figure 21-31. SAPHOCTL1/SAPH_AOCTL1 Register
15

14

13

12

11

10

9
CH1FP
R/W-0h

8
CH0FP
R/W-0h

4

3

2

1
CH1TERM
R/W-0h

0
CH0TERM
R/W-0h

RESERVED
R/W-0h
7

6

5
RESERVED
R/W-0h

Table 21-16. SAPHOCTL1/SAPH_AOCTL1 Register Field Descriptions
Bit
15-10
9

Field

Type

Reset

RESERVED

R/W

0h

CH1FP

R/W

0h

Description

DRV1 (output driver on the CH1_OUT) full strength enable.
0 = The DRV1 output impedance is deterimed by SAPHCH1PUT
and SAPHCH1PDT registers.
1 = The DRV1 has lowest output impedance.
Reset type: PUC
0h (R/W) = Ch1 Output is set to normal strength
1h (R/W) = Ch1 Output is set to maximum strength

8

CH0FP

R/W

0h

DRV0 (output driver on the CH0_OUT) full strength enable.
0 = The DRV0 output impedance is deterimed by SAPHCH0PUT
and SAPHCH0PDT registers.
1 = The DRV0 has lowest output impedance.
Reset type: PUC
0h (R/W) = Ch0 Output is set to normal strength
1h (R/W) = Ch0 Output is set to maximum strength

7-2
1

RESERVED

R/W

0h

CH1TERM

R/W

0h

CH1 termination switch (SWG1) enable. When
SAPHOSEL.PCH1SEL =0, this bit controls the SWG1 switch.
0 = SWG1 is off.
1 = SWG1 is on. The CH1_OUT is disabled and connected to PVSS
via SWG1 switch. No need to change SAPHOCTL0.CH1OE status.
Reset type: PUC
0h (R/W) = CH1 Output is defined by SAPHOCTL0.CH1OUT and
SAPHOCTL0.CH1OE
1h (R/W) = CH1 Output is set low with termination strength

0

CH0TERM

R/W

0h

CH0 termination switch (SWG0) enable. When
SAPHOSEL.PCH0SEL =0, this bit controls the SWG0 switch.
0 = SWG0 is off.
1 = SWG0 is on. The CH0_OUT is disabled and connected to PVSS
via SWG0 switch. No need to change SAPHOCTL0.CH0OE status.
Reset type: PUC
0h (R/W) = CH0 Output is defined by SAPHOCTL0.CH0OUT and
SAPHOCTL0.CH0OE
1h (R/W) = CH0 Output is set low with termination strength

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

525

SAPH and SAPH_A Registers

www.ti.com

21.8.12 SAPHOSEL/SAPH_AOSEL Register (Offset = 16h) [reset = 5h]
SAPHOCTL1/SAPH_AOSEL is shown in Figure 21-32 and described in Table 21-17.
Return to Summary Table.
Physical Interface Output Function Select
Figure 21-32. SAPHOSEL/SAPH_AOSEL Register
15

14

13

12

11

10

9

2

1

8

RESERVED
R/W-0h
7

6

5

4

3

RESERVED
R/W-0h

PCH1SEL
R/W-1h

0
PCH0SEL
R/W-1h

Table 21-17. SAPHOSEL/SAPH_AOSEL Register Field Descriptions
Bit

526

Field

Type

Reset

15-4

RESERVED

R/W

0h

Description

3-2

PCH1SEL

R/W

1h

Output functional select for CH0_OUT.
Reset type: PUC
0h (R/W) = GPIO : CH1_OUT is used as a GPO pin. It is controlled
by SAPHOCTL0.CH1OUT and SAPHOCTL0.CH1OE.
1h (R/W) = PPGSE : CH1_OUT is driven by the PPG.
2h (R/W) = CH1_OUT is driven by the PPG as differential output
along with CH0_OUT. (CH0_OUT and CH1_OUT are always
opposite polarity)
3h (R/W) = CH1_OUT is used as a GPO pin. It is controlled by
SAPHOCTL0.CH1OUT and SAPHOCTL0.CH1OE.

1-0

PCH0SEL

R/W

1h

Output functional select for CH0_OUT.
Reset type: PUC
0h (R/W) = GPIO : CH0_OUT is used as a GPO pin. It is controlled
by SAPHOCTL0.CH0OUT and SAPHOCTL0.CH0OE.
1h (R/W) = PPGSE : CH0_OUT is driven by the PPG.
2h (R/W) = CH0_OUT is driven by the PPG as differential output
along with CH1_OUT. (CH0_OUT and CH1_OUT are always
opposite polarity)
3h (R/W) = CH0_OUT is used as a GPO pin. It is controlled by
SAPHOCTL0.CH0OUT and SAPHOCTL0.CH0OE.

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.13 SAPHCH0PUT/SAPH_ACH0PUT Register (Offset = 20h) [reset = 0h]
SAPHCH0PUT/SAPH_ACH0PUT is shown in Figure 21-33 and described in Table 21-18.
Return to Summary Table.
DRV0 (CH0_OUT driver) Trim Register for pull-up.
Figure 21-33. SAPHCH0PUT/SAPH_ACH0PUT Register
15

14

13

12

11

10

3

2

9

8

1

0

RESERVED
R/W-0h
7

6

5

4

RESERVED
R/W-0h

CH0PUT
R/W-0h

Table 21-18. SAPHCH0PUT/SAPH_ACH0PUT Register Field Descriptions
Field

Type

Reset

15-4

Bit

RESERVED

R/W

0h

3-0

CH0PUT

R/W

0h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Description

DRV0 pull up trim register. Write access is allowed only when
SAPHTACTL.UNLOCK=1. For secure the trim value, it is
recommended to keep SAPHTACTL.UNLOCK=0 during normal
operation.
Reset type: BOR

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

527

SAPH and SAPH_A Registers

www.ti.com

21.8.14 SAPHCH0PDT/SAPH_ACH0PDT Register (Offset = 22h) [reset = 0h]
SAPHCH0PDT/SAPH_ACH0PDT is shown in Figure 21-34 and described in Table 21-19.
Return to Summary Table.
DRV0 (CH0_OUT driver) Trim Register for pull-down.
Figure 21-34. SAPHCH0PDT/SAPH_ACH0PDT Register
15

14

13

12

11

10

3

2

9

8

1

0

RESERVED
R/W-0h
7

6

5

4

RESERVED
R/W-0h

CH0PDT
R/W-0h

Table 21-19. SAPHCH0PDT/SAPH_ACH0PDT Register Field Descriptions
Bit

528

Field

Type

Reset

15-4

RESERVED

R/W

0h

3-0

CH0PDT

R/W

0h

Description

DRV0 pull down trim register. Write access is allowed only when
SAPHTACTL.UNLOCK=1. For secure the trim value, it is
recommended to keep SAPHTACTL.UNLOCK=0 during normal
operation.
Reset type: BOR

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.15 SAPHCH0TT/SAPH_ACH0TT Register (Offset = 24h) [reset = 0h]
SAPHCH0TT/SAPH_ACH0TT is shown in Figure 21-35 and described in Table 21-20.
Return to Summary Table.
SWG0 (CH0_OUT termination switch) Trim Register.
Figure 21-35. SAPHCH0TT/SAPH_ACH0TT Register
15

14

13

12

11

10

3

2

9

8

1

0

RESERVED
R/W-0h
7

6

5

4

RESERVED
R/W-0h

CH0TT
R/W-0h

Table 21-20. SAPHCH0TT/SAPH_ACH0TT Register Field Descriptions
Field

Type

Reset

15-4

Bit

RESERVED

R/W

0h

3-0

CH0TT

R/W

0h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Description

SWG0 trim register. Write access is allowed only when
SAPHTACTL.UNLOCK=1. For secure the trim value, it is
recommended to keep SAPHTACTL.UNLOCK=0 during normal
operation.
Reset type: BOR

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

529

SAPH and SAPH_A Registers

www.ti.com

21.8.16 SAPHCH1PUT /SAPH_ACH1PUT Register (Offset = 26h) [reset = 0h]
SAPHCH1PUT/SAPH_ACH1PUT is shown in Figure 21-36 and described in Table 21-21.
Return to Summary Table.
DRV1 (CH1_OUT driver) Trim Register for pull-up.
Figure 21-36. SAPHCH1PUT/SAPH_ACH1PUT Register
15

14

13

12

11

10

3

2

9

8

1

0

RESERVED
R/W-0h
7

6

5

4

RESERVED
R/W-0h

CH1PUT
R/W-0h

Table 21-21. SAPHCH1PUT/SAPH_ACH1PUT Register Field Descriptions
Bit

530

Field

Type

Reset

15-4

RESERVED

R/W

0h

3-0

CH1PUT

R/W

0h

Description

DRV1 pull up trim register. Write access is allowed only when
SAPHTACTL.UNLOCK=1. For secure the trim value, it is
recommended to keep SAPHTACTL.UNLOCK=0 during normal
operation.
Reset type: BOR

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.17 SAPHCH1PDT/SAPH_ACH1PDT Register (Offset = 28h) [reset = 0h]
SAPHCH1PDT/SAPH_ACH1PDT is shown in Figure 21-37 and described in Table 21-22.
Return to Summary Table.
DRV1 (CH1_OUT driver) Trim Register for pull-down.
Figure 21-37. SAPHCH1PDT/SAPH_ACH1PDT Register
15

14

13

12

11

10

3

2

9

8

1

0

RESERVED
R/W-0h
7

6

5

4

RESERVED
R/W-0h

CH1PDT
R/W-0h

Table 21-22. SAPHCH1PDT/SAPH_ACH1PDT Register Field Descriptions
Field

Type

Reset

15-4

Bit

RESERVED

R/W

0h

3-0

CH1PDT

R/W

0h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Description

DRV1 pull down trim register. Write access is allowed only when
SAPHTACTL.UNLOCK=1. For secure the trim value, it is
recommended to keep SAPHTACTL.UNLOCK=0 during normal
operation.
Reset type: BOR

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

531

SAPH and SAPH_A Registers

www.ti.com

21.8.18 SAPHCH1TT/SAPH_ACH1TT Register (Offset = 2Ah) [reset = 0h]
SAPHCH1TT/SAPH_ACH1TT is shown in Figure 21-38 and described in Table 21-23.
Return to Summary Table.
SWG1 (CH1_OUT termination switch) Trim Register.
Figure 21-38. SAPHCH1TT/SAPH_ACH1TT Register
15

14

13

12

11

10

3

2

9

8

1

0

RESERVED
R/W-0h
7

6

5

4

RESERVED
R/W-0h

CH1TT
R/W-0h

Table 21-23. SAPHCH1TT/SAPH_ACH1TT Register Field Descriptions
Bit

532

Field

Type

Reset

15-4

RESERVED

R/W

0h

3-0

CH1TT

R/W

0h

Description

SWG1 trim register. Write access is allowed only when
SAPHTACTL.UNLOCK=1. For secure the trim value, it is
recommended to keep SAPHTACTLUNLOCK=0 during normal
operation.
Reset type: BOR

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.19 SAPHMCNF/SAPH_AMCNF Register (Offset = 2Ch) [reset = 2h]
SAPHMCNF/SAPH_AMCNF is shown in Figure 21-39 and described in Table 21-24.
Return to Summary Table.
Mode Configuration Register. This bit needs to be unlocked via SAPH_AKEY for changes
Figure 21-39. SAPHMCNF/SAPH_AMCNF Register
15

14

13

12

RESERVED
R/W-0h
7

6

5

4

11
LPBE
R/W-0h

10

3

RESERVED
R/W-0h

9

8
CPEO
R/W-0h

RSV1
R/W-0h
2
RSV0
R/W-0h

1

0
BIMP
R/W-2h

Table 21-24. SAPHMCNF/SAPH_AMCNF Register Field Descriptions
Bit
15-12
11

Field

Type

Reset

RESERVED

R/W

0h

LPBE

R/W

0h

Description

LPBE, low power bias mode enable. This bit enables the low power
bias operation mode. The selection of the operation mode shall only
be changed while the PSQ is in OFF state (changes during other
states of the PSQ causes corrupt measurement results and irregular
triggers of sub modules ba ASQ)
Reset type: BOR
0h (R/W) = For manual bias mode and regular ASQ bias mode. In
this configuration the user controls by the ASQBSW has full control
over the TxBias and RxBias switches.
1h (R/W) = Low power bias mode. In this mode the ASQ uses the
CHxEBSW and PGABSW as auxiliary values to achieve faster
channel setting on reactive input loads. The ASQ has full controls
over the bias switch multiplexer.

10-9

RSV1

R/W

0h

Reserved for future use
Reset type: BOR

8

CPEO

R/W

0h

Charge pump explicitly on. This bit enables the charge pump of the
input multiplexer.
Reset type: BOR
0h (R/W) = Charge pump is turned on by SDHS and ASQ related
requests only.
1h (R/W) = Charge pump is turned on regardless of SDHS and ASQ
related charge pump requests.

7-4

RESERVED

R/W

0h

3-2

RSV0

R/W

0h

Reserved for future use
Reset type: BOR

1-0

BIMP

R/W

2h

Bias generator Impedance configuration. These bits define the
impedance of the buffers for RxBias and TxBias. While for resistive
loads the lowest impedance shows the fastest settling; is this not the
case for reactive loads.
Reset type: BOR
0h (R/W) = Buffer impedance 500 ohms for RxBias and 450 ohms
for TxBias
1h (R/W) = Buffer impedance 900 ohms for RxBias and 850 ohms
for TxBias
2h (R/W) = Buffer impedance 1500 ohms for RxBias and 1450 ohms
for TxBias
3h (R/W) = Buffer impedance 2950 Ohms for RxBias and 2900
Ohms for TxBias

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

533

SAPH and SAPH_A Registers

www.ti.com

21.8.20 SAPHTACTL/SAPH_ATACTL Register (Offset = 2Eh) [reset = 0h]
SAPHTACTL/SAPH_ATACTL is shown in Figure 21-40 and described in Table 21-25.
Return to Summary Table.
Trim Access Control Register
Figure 21-40. SAPHTACTL/SAPH_ATACTL Register
15

14

13

12

11

10

3

2

9

8

1

0
UNLOCK
R/W-0h

RESERVED
R/W-0h
7

6

5
RESERVED
R/W-0h

4

RESERVED
R-0h

Table 21-25. SAPHTACTL/SAPH_ATACTL Register Field Descriptions
Field

Type

Reset

15-3

Bit

RESERVED

R/W

0h

2-1

RESERVED

R

0h

Reserved

UNLOCK

R/W

0h

When UNLOCK = 1, the trim registers are allowed to be updated
(SAPHCH0PUT, SAPHCH0PDT, SAPHCH0TT, SAPHCH1PUT,
SAPHCH1PDT, and SAPHCH1TT).
Reset type: PUC

0

534

Description

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.21 SAPHICTL0 /SAPH_AICTL0 Register (Offset = 30h) [reset = 90h]
SAPHICTL0/SAPH_AICTL0 is shown in Figure 21-41 and described in Table 21-26.
Return to Summary Table.
Physical Interface Input Control #0
Figure 21-41. SAPHICTL0/SAPH_AICTL0 Register
15

14
RESERVED
R/W-0h

7
DUMEN
R/W-1h

13
XPBSW1
R/W-0h

12
XPBSW0
R/W-0h

11

5

4
MUXCTL
R/W-1h

3

6
RESERVED
R/W-0h

10
RESERVED
R/W-0h

9
XPB1FEN
R/W-0h

8
XPB0FEN
R/W-0h

1

0

2
MUXSEL
R/W-0h

Table 21-26. SAPHICTL0/SAPH_AICTL0 Register Field Descriptions
Bit

Field

Type

Reset

RESERVED

R/W

0h

13

XPBSW1

R/W

0h

External PGA Bias Switch 1 control
Reset type: PUC
0h (R/W) = External bias switch is open (no bias driven)
1h (R/W) = External bias switch is closed (bias is driven)

12

XPBSW0

R/W

0h

External PGA Bias Switch 0 control
Reset type: PUC
0h (R/W) = External bias switch is open (no bias driven)
1h (R/W) = External bias switch is closed (bias is driven)

15-14

11-10

Description

RESERVED

R/W

0h

9

XPB1FEN

R/W

0h

XPB1 Pin Function Enable
Reset type: PUC
0h (R/W) = XPB1 pin function disabled
1h (R/W) = XPB1 pin function enabled

8

XPB0FEN

R/W

0h

XPB0 Pin Function Enable
Reset type: PUC
0h (R/W) = XPB0 pin function disabled
1h (R/W) = XPB0 pin function enabled

7

DUMEN

R/W

1h

PGA dummy load enable on the deselected multiplexer inputs.
Reset type: PUC
0h (R/W) = PGA dummy input load is Hi-Z.
1h (R/W) = PGA dummy input load matches the PGA input
impedance.

RESERVED

R/W

0h

MUXCTL

R/W

1h

6-5
4

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Input Multiplexer Control source
Reset type: PUC
0h (R/W) = The input multiplexer is controlled by
SAPHICTL0.MUXSEL (register mode)
1h (R/W) = The input multiplexer is controlled by ASQ (auto mode)

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

535

SAPH and SAPH_A Registers

www.ti.com

Table 21-26. SAPHICTL0/SAPH_AICTL0 Register Field Descriptions (continued)

536

Bit

Field

Type

Reset

Description

3-0

MUXSEL

R/W

0h

Input Multiplexer Channel Select
Reset type: PUC
0h (R/W) = CH0IN : Channel 0 is selected for input
1h (R/W) = CH1IN : Channel 1 is selected for input
2h (R/W) = reserved for future channels
3h (R/W) = reserved for future channels
4h (R/W) = reserved for future channels
5h (R/W) = reserved for future channels
6h (R/W) = reserved for future channels
7h (R/W) = reserved for future channels
8h (R/W) = no channel is selected
9h (R/W) = no channel is selected
Ah (R/W) = no channel is selected
Bh (R/W) = no channel is selected
Ch (R/W) = no channel is selected
Dh (R/W) = no channel is selected
Eh (R/W) = no channel is selected
Fh (R/W) = no channel is selected

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.22 SAPHBCTL/SAPH_ABCTL Register (Offset = 34h) [reset = A1h]
SAPHBCTL/SAPH_ABCTL is shown in Figure 21-42 and described in Table 21-27.
Return to Summary Table.
Bias Control Register
Figure 21-42. SAPHBCTL/SAPH_ABCTL Register
15

14

13

12

11

10

9
CH1EBSW
R/W-0h

8
CH0EBSW
R/W-0h

4

3
CPDA
R/W-0h

2
LILC
R/W-0h

1
PGABSW
R/W-0h

0
ASQBSC
R/W-1h

RESERVED
R/W-0h
7

6

5

PGABIAS
R/W-2h

EXCBIAS
R/W-2h

Table 21-27. SAPHBCTL/SAPH_ABCTL Register Field Descriptions
Field

Type

Reset

15-10

Bit

RESERVED

R/W

0h

9

CH1EBSW

R/W

0h

Channel 1 Tx bias Switch Control. Note that the Tx bias voltage is
determined by SAPHBCTL.EXCBIAS.
Reset type: PUC
0h (R/W) = Tx bias switch to CH1 is open.
1h (R/W) = Tx bias switch to CH1 is closed (enabled).

8

CH0EBSW

R/W

0h

Channel 0 Tx bias Switch Control. Note that the Tx bias voltage is
determined by SAPHBCTL.EXCBIAS.
Reset type: PUC
0h (R/W) = Tx bias switch to CH0 is open.
1h (R/W) = Tx bias switch to CH0 is closed (enabled).

7-6

PGABIAS

R/W

2h

PGA bias (Rx bias) Voltage Select
Reset type: PUC
0h (R/W) = 0.75V nominal
1h (R/W) = 0.8V nominal
2h (R/W) = 0.9V nominal
3h (R/W) = 0.95V nominal

5-4

EXCBIAS

R/W

2h

Excitation bias (Rx bias) Voltage Select
Reset type: PUC
0h (R/W) = 0.2V nominal
1h (R/W) = 0.3V nominal
2h (R/W) = 0.4V nominal
3h (R/W) = 0.6V nominal

3

CPDA

R/W

0h

Enable the power supply (Charge Pump) for the the input multiplexer
during data acquisition.
Reset type: PUC
0h (R/W) = Turn off the charge pump during data acquisition.
1h (R/W) = Keep turning on the charge pump during data
acquisition.

2

LILC

R/W

0h

LILC test feature. Leave at 0 for proper operation
Reset type: PUC
0h (R/W) = LICL is disabled.
1h (R/W) = LICL is enabled.

1

PGABSW

R/W

0h

Rx bias (PGA bias) switch control. Note that the channel to apply the
Rx bias is determined by SAPHICTL0.MUXSEL.
Reset type: PUC
0h (R/W) = Rx bias switch is open.
1h (R/W) = Rx bias switch is closed (enabled).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Description

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

537

SAPH and SAPH_A Registers

www.ti.com

Table 21-27. SAPHBCTL/SAPH_ABCTL Register Field Descriptions (continued)
Bit
0

538

Field

Type

Reset

Description

ASQBSC

R/W

1h

Tx bias and Rx bias switches control source select
Reset type: PUC
0h (R/W) = Bias switches are controlled by SAPHBCTL.CH0EBSW,
SAPHBCTL.CH1EBSW, SAPHBCTL.PGABSW bits (register mode).
1h (R/W) = Bias switches are controlled by ASQ (auto mode)

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.23 SAPHPGC/SAPH_APGC Register (Offset = 40h) [reset = 0h]
SAPHPGC/SAPH_APGC is shown in Figure 21-43 and described in Table 21-28.
Return to Summary Table.
PPG Count Register
Figure 21-43. SAPHPGC/SAPH_APGC Register
15
PHIZ
R/W-0h

14
PLEV
R/W-0h

13
PPOL
R/W-0h

12
RESERVED
R/W-0h

11

7
RESERVED
R/W-0h

6

5

4

3
EPULS
R/W-0h

10

9

8

1

0

SPULS
R/W-0h
2

Table 21-28. SAPHPGC/SAPH_APGC Register Field Descriptions
Bit

Field

Type

Reset

Description

15

PHIZ

R/W

0h

Hi-Z enable to PPG output during inactive.
Reset type: PUC
0h (R/W) = PPG output during inactive is determined by
SAPHPGC.PLEV bit.
1h (R/W) = PPG output is in Hi-Z during inactive regardless of
SAPHPGC.PLEV bit.

14

PLEV

R/W

0h

PPG ouptut level during inactive. This bit affects the status of PPG
output before and after excitations. Note that this bit is only valid
when SAPHPGC.PHIZ =0.
Reset type: PUC
0h (R/W) = PPG output is low during inactive
1h (R/W) = PPG output is high during inactive

13

PPOL

R/W

0h

Pulse Polarity. This bit defines the polarity of the first excitation
pulse.
Reset type: PUC
0h (R/W) = The excitation begins with logical high phase. The stop
begines with logical low phase.
1h (R/W) = The excitation begins with logical low phase. The stop
begines with logical high phase.

12

RESERVED

R/W

0h

SPULS

R/W

0h

RESERVED

R/W

0h

EPULS

R/W

0h

11-8

7
6-0

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Stop Pulse Count; This bit field defines the number of stop pulses.
Minimum value is zero. Stop pulses have the inverted polarity of
excitation pulses.
Reset type: PUC

Excitation Pulse Count. This bit field defines the number of excitation
pulses. Minimum value is zero.
Reset type: PUC

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

539

SAPH and SAPH_A Registers

www.ti.com

21.8.24 SAPHPGLPER/SAPH_APGLPER Register (Offset = 42h) [reset = 0h]
SAPHPGLPER/SAPH_APGLPER is shown in Figure 21-44 and described in Table 21-29.
Return to Summary Table.
PPG output pulse low period.
Figure 21-44. SAPHPGLPER/SAPH_APGLPER Register
15

14

13

12

11

10

9

8

3

2

1

0

RESERVED
R/W-0h
7

6

5

4
LPER
R/W-0h

Table 21-29. SAPHPGLPER/SAPH_APGLPER Register Field Descriptions
Bit

540

Field

Type

Reset

15-8

RESERVED

R/W

0h

7-0

LPER

R/W

0h

Description

Low phase period of PPG excitation pulses. This value defines the
length of the low phase of the pulses. The minimum count is two
regardless of the value set in this register.
Reset type: PUC

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.25 SAPHPGHPER/SAPH_APGHPER Register (Offset = 44h) [reset = 0h]
SAPHPGHPER/SAPH_APGHPER is shown in Figure 21-45 and described in Table 21-30.
Return to Summary Table.
PPG output pulse high period.
Figure 21-45. SAPHPGHPER/SAPH_APGHPER Register
15

14

13

12

11

10

9

8

3

2

1

0

RESERVED
R/W-0h
7

6

5

4
HPER
R/W-0h

Table 21-30. SAPHPGHPER/SAPH_APGHPER Register Field Descriptions
Field

Type

Reset

15-8

Bit

RESERVED

R/W

0h

7-0

HPER

R/W

0h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Description

High phase period of PPG excitation pulses. This value defines the
length of the high phase of the pulses. The minimum count is two
regardless of the value set in this register.
Reset type: PUC

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

541

SAPH and SAPH_A Registers

www.ti.com

21.8.26 SAPHPGCTL/SAPH_APGCTL Register (Offset = 46h) [reset = 11h]
SAPHPGCTL/SAPH_APGCTL is shown in Figure 21-46 and described in Table 21-31.
Return to Summary Table.
PPG Control Register
Figure 21-46. SAPHPGCTL/SAPH_APGCTL Register
15
STOP
R/W-0h

14
TONE
RH/W-0h

13
PSCEN
R/W-0h

7

6

5

RESERVED
R/W-0h

12
RESERVED
R/W-0h

11

4

3

10

9
PPGEN
R/W-0h

8
RESERVED
R/W-0h

2

1
PPGCHSEL
R/W-0h

0
PGSEL
R/W-1h

RESERVED
R-0h

TRSEL
R/W-1h

RESERVED
R/W-0h

Table 21-31. SAPHPGCTL/SAPH_APGCTL Register Field Descriptions
Bit

Field

Type

Reset

Description

15

STOP

R/W

0h

Writing one to this bit stopps the PPG to generate pulses. This bit is
cleared automatically.
Reset type: PUC

14

TONE

RH/W

0h

Tone generation enable. The frequency of the test tone is
determined by LPER and HPER. The test tone persists while
SAPHPGCTL.TONE = 1 & SAPHPGCTL.STOP=0. Either writing 0 to
SAPHPGCTL.TONE or writing 1 to SAPHPGCTL.STOP stops tone
generation.
Reset type: PUC
0h (R/W) = ENABLE : Test tone generation is enabled.

13

PSCEN

R/W

0h

Test feature: Keep this bit zero for proper operation.
Reset type: PUC
0h (R/W) = disabled
1h (R/W) = enabled; PPG is clocked with 1/4 of PLL_CLK without
phase control

12

RESERVED

R/W

0h

11-10

RESERVED

R

0h

Reserved

PPGEN

R/W

0h

PPGEN PPG trigger enable. This bit can be used to indicates that
the configuration of the pulse generator is complete. The PPG can
only be started when this bit is set to 1 regardless of its trigger
source. It is recommended to keep this bit zero while updating PPG
registers.
Reset type: PUC
0h (R/W) = PPG trigger is disabled.
1h (R/W) = PPG trigger is enabled.

8-6

RESERVED

R/W

0h

5-4

TRSEL

R/W

1h

3-2

RESERVED

R/W

0h

1

PPGCHSEL

R/W

0h

9

542

PPG Trigger source select.
Reset type: PUC
0h (R/W) = Writing 1 to PPGTRIG.PPGTRIG to trigger the PPG
(start pulse generation).
1h (R/W) = PPG trigger is controlled by the ASQ.
2h (R/W) = Ext. Signal (See device specific datasheet)
3h (R/W) = Ext. Signal (See device specific datasheet)

PPG output channel select when SAPHPGCTL.PGSEL = 0.
Reset type: PUC
0h (R/W) = CH0 is selected
1h (R/W) = CH1 is selected

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

Table 21-31. SAPHPGCTL/SAPH_APGCTL Register Field Descriptions (continued)
Bit
0

Field

Type

Reset

Description

PGSEL

R/W

1h

PPG output channel select source.
Reset type: PUC
0h (R/W) = PPG output channel is selected by
SAPHPGCTL.PPGCHSEL bit (register mode).
1h (R/W) = PPG output channel is selected by ASQ (auto mode).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

543

SAPH and SAPH_A Registers

www.ti.com

21.8.27 SAPHPPGTRIG/SAPH_APPGTRIG Register (Offset = 48h) [reset = 0h]
SAPHPPGTRIG/SAPH_APPGTRIG is shown in Figure 21-47 and described in Table 21-32.
Return to Summary Table.
PPG Software Trigger Register
Figure 21-47. SAPHPPGTRIG/SAPH_APPGTRIG Register
15

14

13

12

11

10

9

8

3

2

1

0
PPGTRIG
W-0h

RESERVED
W-0h
7

6

5

4
RESERVED
W-0h

Table 21-32. SAPHPPGTRIG/SAPH_APPGTRIG Register Field Descriptions
Bit
15-1
0

Field

Type

Reset

RESERVED

W

0h

PPGTRIG

W

0h

Description

Writing '1' to this bit triggers the PPG to generate pulses when
SAPHPGCTL.TRSEL =0.
Note: This bit is write only. Reading always returns with zero.

544

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.28 SAPH_AXPGCTL Register (Offset = 4Ah) [reset = 0h]
SAPH_AXPGCTL is shown in Figure 21-48 and described in Table 21-33.
Return to Summary Table.
Extended Pulse Control Register
Figure 21-48. SAPH_AXPGCTL Register
15
RESERVED
R/W-0h

14
ETY
R/W-0h

13

7
RESERVED
R/W-0h

6

5

12
XMOD
R/W-0h

11

10

9

RESERVED
R/W-0h
4

3
XPULS
R/W-0h

8
XSTAT
RH-0h

2

1

0

Table 21-33. SAPH_AXPGCTL Register Field Descriptions
Bit

Field

Type

Reset

15

RESERVED

R/W

0h

14

ETY

R/W

0h

Event type. Selects the type of the event generated in
SAPH_AXPGCTL.XMOD=3
Reset type: PUC
0h (R/W) = Timer count event
1h (R/W) = DMA trigger event

13-12

XMOD

R/W

0h

Extended Mode Select
Reset type: PUC
0h (R/W) = Single tone generation (Pause-E-S-Pause)
1h (R/W) = reserved
2h (R/W) = Dual Tone Generation (Pause-X-E-S-Pause)
3h (R/W) = Dual Tone Loop (…X-E-X-E… triggers events)

11-10

RESERVED

R/W

0h

XSTAT

RH

0h

RESERVED

R/W

0h

XPULS

R/W

0h

9-8

7
6-0

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Description

Phase Status of PPG_A
Reset type: PUC
0h (R) = PPG_A in Pause Phase
1h (R) = PPG_A in Stop Phase
2h (R) = PPG_A in Regular Excitation phase
3h (R) = PPG_A in Extra Excitation Phase

XPULS Extra Pulse Count; This bit field defines the count of extra
excitation pulses excited. If set to zero no extra excitation pulses are
generated. Directly after the start the regular excitation phase is
entered. Any other number will generate up the number of excitation
pulses set by this field .
Reset type: PUC

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

545

SAPH and SAPH_A Registers

www.ti.com

21.8.29 SAPH_AXPGLPER Register (Offset = 4Ch) [reset = 0h]
SAPH_AXPGLPER is shown in Figure 21-49 and described in Table 21-34.
Return to Summary Table.
Extra Pulse Low Period Register
Figure 21-49. SAPH_AXPGLPER Register
15

14

13

12

11

10

9

8

3

2

1

0

RESERVED
R/W-0h
7

6

5

4
XLPER
R/W-0h

Table 21-34. SAPH_AXPGLPER Register Field Descriptions
Bit

546

Field

Type

Reset

15-8

RESERVED

R/W

0h

7-0

XLPER

R/W

0h

Description

XLPER low phase period of the extra pulses. This value defines the
length of the low phase of the extra pulses in units of high speed
clocks. The minimum count is two regardless of the value set in this
register.
Reset type: PUC

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.30 SAPH_AXPGHPER Register (Offset = 4Eh) [reset = 0h]
SAPH_AXPGHPER is shown in Figure 21-50 and described in Table 21-35.
Return to Summary Table.
Extra Pulse High Period Register
Figure 21-50. SAPH_AXPGHPER Register
15

14

13

12

11

10

9

8

3

2

1

0

RESERVED
R/W-0h
7

6

5

4
XHPER
R/W-0h

Table 21-35. SAPH_AXPGHPER Register Field Descriptions
Field

Type

Reset

15-8

Bit

RESERVED

R/W

0h

7-0

XHPER

R/W

0h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Description

XHPER high phase period of the extra pulses. This value defines the
length of the high phase of the pulses in units of high speed clocks.
The minimum count is two regardless of the value set in this register.
Reset type: PUC

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

547

SAPH and SAPH_A Registers

www.ti.com

21.8.31 SAPHASCTL0/SAPH_AASCTL0 Register (Offset = 60h) [reset = 0h]
SAPHASCTL0/SAPH_AASCTL0 is shown in Figure 21-51 and described in Table 21-36.
Return to Summary Table.
A-SEQ control register 0
Figure 21-51. SAPHASCTL0/SAPH_AASCTL0 Register
15

14
RESERVED
R-0h

7
ASQSTOP
R/W-0h

13
ERABRT
R/W-0h

12
RESERVED
R-0h

11

5

4
ASQCHSEL
R/W-0h

3

6
RESERVED
R-0h

10

9
ASQTEN
R/W-0h

8
RESERVED
R/W-0h

2

1

0

TRIGSEL
R/W-0h
RESERVED
R/W-0h

PNGCNT
R/W-0h

Table 21-36. SAPHASCTL0/SAPH_AASCTL0 Register Field Descriptions
Bit

Field

Type

Reset

Description

RESERVED

R

0h

Reserved

13

ERABRT

R/W

0h

Stop ASQ when the DATAERR interrupt occurrs when the
mesurements controlled by ASQ (auto mode). Note that it is not
possible to resume the measurement from where it was stopped.
When ASQ is triggered again, the measurement seqeunce starts
from the beginning.
Reset type: PUC
0h (R/W) = Continue the measurements until completion regardless
of the DATAERR interrupt.
1h (R/W) = Stop the ASQ upon the DATAERR interrupt.

12

15-14

RESERVED

R

0h

Reserved

11-10

TRIGSEL

R/W

0h

ASQ trigger select.
Reset type: PUC
0h (R/W) = SWTRIG : Writing '1' to ASQTRIG.ASQTRIG
1h (R/W) = PSQ : The PSQ is selected to start the ASQ.
2h (R/W) = Timer : Ext. Signal (See device specific datasheet)
3h (R/W) = Ext. Signal (See device specific datasheet)

9

ASQTEN

R/W

0h

ASQ Trigger Enable. This bit can be used to indicate that the
configuration of the ASQ is complete. The ASQ can only be
triggered when this bit is set to '1' regardless of its trigger source. It
is recommended to keep this bit zero while updating ASQ registerds.
Reset type: PUC
0h (R/W) = ASQ trigger is disabled.
1h (R/W) = ASQ trigger is enabled.

8

RESERVED

R/W

0h

7

ASQSTOP

R/W

0h

Stop the ASQ. Writing '1' to this bit stops the measurement
sequence controlled by the ASQ. This bit is self cleared.
Reset type: PUC

RESERVED

R

0h

Reserved

6-5

548

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

Table 21-36. SAPHASCTL0/SAPH_AASCTL0 Register Field Descriptions (continued)
Bit
4

Field

Type

Reset

Description

ASQCHSEL

R/W

0h

This bit selects the channel to start with when ASQ contols the
measuremnet sequences.
Reset type: PUC
0h (R/W) = CH0 is selected to start with.
If SAPHASCTL0.PNGCNT = 3 and SAPHASCTL1.CHTOG =1, then
the channel selection would be CH0 -> CH1 -> CH0 -> CH1.
If SAPHASCTL0.PNGCNT = 3 and SAPHASCTL1.CHTOG =0, then
the channel selection would be CH0 -> CH0 -> CH0 -> CH0.
1h (R/W) = CH1 is selected to start with.
If SAPHASCTL0.PNGCNT = 3 and SAPHASCTL1.CHTOG =0, then
the channel selection would be CH1 -> CH1 -> CH1 -> CH1.
If SAPHASCTL0.PNGCNT = 3 and SAPHASCTL1.CHTOG =1, then
the channel selection would be CH1 -> CH0 -> CH1 -> CH0.

3-2

RESERVED

R/W

0h

1-0

PNGCNT

R/W

0h

The total number of measurements to be performed.
0 = 1 measurement will be performed (Min)
1 = 2 measurements will be performed
2 = 3 measurements will be performed
3 = 4 measurements will be performed (Max)
Note: This bit field is static, does not reflect the currently reamining
measurement numbers.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

549

SAPH and SAPH_A Registers

www.ti.com

21.8.32 SAPHASCTL1/SAPH_AASCTL1 Register (Offset = 62h) [reset = 0h]
SAPHASCTL1/SAPH_AASCTL1 is shown in Figure 21-52 and described in Table 21-37.
Return to Summary Table.
A-SEQ control register 1
Figure 21-52. SAPHASCTL1/SAPH_AASCTL1 Register
15

14

13

12

11
CHOWN
R/W-0h

10
STDBY
R/W-0h

9
RESERVED
R/W-0h

8
ESOFF
R/W-0h

5

4
CHACT
R-0h

3
RESERVED
R/W-0h

2
RESERVED
R-0h

1
RESERVED
R-0h

0
CHTOG
R/W-0h

RESERVED
R-0h
7
EARLYRB
R/W-0h

6
RESERVED
R-0h

Table 21-37. SAPHASCTL1/SAPH_AASCTL1 Register Field Descriptions
Bit

Field

Type

Reset

Description

RESERVED

R

0h

Reserved

11

CHOWN

R/W

0h

In general, if CH0 is selected for Tx, CH1 is selected for Rx.
However, when this bit is set to '1', the Tx channel and Rx channel
are identical. This bit can be used for debugging purpose.
Reset type: PUC
0h (R/W) = Tx channel and Rx channel are not the same (This is the
typical configuration).
1h (R/W) = Tx channel and Rx channel are identical.

10

STDBY

R/W

0h

ASQ can send a request sigal to the PSQ (Power Sequencer) of the
USS module when the OFF request is received (See
SAPHASCTL1.ESOFF and the UUPS module).
Reset type: PUC
0h (R/W) = PWROFF : The ASQ sends a power down request to the
PSQ (Power Sequencer) when the OFF request is received.
1h (R/W) = STDBY : The ASQ sends a standby request to the PSQ
(Power Sequencer) when the OFF request is received.

9

RESERVED

R/W

0h

8

ESOFF

R/W

0h

Enable the OFF request when ASQ completes all of the
measurement sequences.
Reset type: PUC
0h (R/W) = OFF request is disabled. The ASQ does not send a
request about USS power mode to the PSQ.
1h (R/W) = OFF request is generated after sequence

7

EARLYRB

R/W

0h

Early Receive Bias Control. The Rx bias is applied at the
TIMEMARK C, but when this bit is set to '1', the Rx bias is applied at
the TIMEMARK A.
Reset type: PUC
0h (R/W) = Rx bias is applied to the Rx channel by the TIMEMARK
C
1h (R/W) = Rx bias is applied to the Rx channel by the TIMEMARK
A

15-12

6-5

550

RESERVED

R

0h

Reserved

4

CHACT

R

0h

Read Only bit. This bit indicates the currently selected Tx channel.
Reset type: PUC

3

RESERVED

R/W

0h

2

RESERVED

R

0h

Reserved

1

RESERVED

R

0h

Reserved

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

Table 21-37. SAPHASCTL1/SAPH_AASCTL1 Register Field Descriptions (continued)
Bit
0

Field

Type

Reset

Description

CHTOG

R/W

0h

Channel toggle enable at each PNGDN interrupt.
Reset type: PUC
0h (R/W) = Channel toggle is disabled.
1h (R/W) = Channel toggle is enabled at each PNGDN interrupt.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

551

SAPH and SAPH_A Registers

www.ti.com

21.8.33 SAPHASQTRIG/SAPH_AASQTRIG Register (Offset = 64h) [reset = 0h]
SAPHASQTRIG/SAPH_AASQTRIG is shown in Figure 21-53 and described in Table 21-38.
Return to Summary Table.
ASQ Software Trigger Register
Figure 21-53. SAPHASQTRIG/SAPH_AASQTRIG Register
7

6

5

4
RESERVED
W-0h

3

2

1

0
ASQTRIG
W-0h

Table 21-38. SAPHASQTRIG/SAPH_AASQTRIG Register Field Descriptions
Bit

Field

Type

Reset

7-1

RESERVED

W

0h

ASQTRIG

W

0h

0

Description

Writing '1' to this bit trigger the ASQ when SAPHASCTL0.TRIGSEL
= 0.
Note: This bit is write only. Reading always returns with zero.

552

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.34 SAPHAPOL/SAPH_AAPOL Register (Offset = 66h) [reset = 0h]
SAPHAPOL/SAPH_AAPOL is shown in Figure 21-54 and described in Table 21-39.
Return to Summary Table.
The PPG output pulse polarity when ASQ is controlling the measurement.
Figure 21-54. SAPHAPOL/SAPH_AAPOL Register
15

14

13

12

11

10

3

2

9

8

1

0

RESERVED
R/W-0h
7

6

5

4

RESERVED
R/W-0h

PCPOL
R/W-0h

Table 21-39. SAPHAPOL/SAPH_AAPOL Register Field Descriptions
Field

Type

Reset

15-4

Bit

RESERVED

R/W

0h

3-0

PCPOL

R/W

0h

Description

Bit 0 defines the PPG pulse polarity for the first measurement.
Bit 1 defines the PPG pulse polarity for the second measurement.
Bit 2 defines the PPG pulse polarity for the third measurement.
Bit 3 defines the PPG pulse polarity for the fourth measurement.
0 = PPG output pulses starts with logical high polarity.
1 = PPG output pulses starts with logical low polarity.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

553

SAPH and SAPH_A Registers

www.ti.com

21.8.35 SAPHAPLEV /SAPH_AAPLEV Register (Offset = 68h) [reset = 0h]
SAPHAPLEV/SAPH_AAPLEV is shown in Figure 21-55 and described in Table 21-40.
Return to Summary Table.
The PPG output level at pause when ASQ is controlling the measurement.
Figure 21-55. SAPHAPLEV/SAPH_AAPLEV Register
15

14

13

12

11

10

3

2

9

8

1

0

RESERVED
R/W-0h
7

6

5

4

RESERVED
R/W-0h

PCPLEV
R/W-0h

Table 21-40. SAPHAPLEV/SAPH_AAPLEV Register Field Descriptions
Field

Type

Reset

15-4

Bit

RESERVED

R/W

0h

3-0

PCPLEV

R/W

0h

Description

Bit 0 defines the PPG output level at pause for the first measurement
when PCPHIZ bit 0 = 0.
Bit 1 defines the PPG output level at pause for the second
measurement when PCPHIZ bit 1 = 0.
Bit 2 defines the PPG output level at pause for the third
measurement when PCPHIZ bit 2 = 0.
Bit 3 defines the PPG output level at pause for the fourth
measurement when PCPHIZ bit 3 = 0.
0 = Logical Low.
1 = Logical High.
Reset type: PUC

554

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.36 SAPHAPHIZ /SAPH_AAPHIZ Register (Offset = 6Ah) [reset = 0h]
SAPHAPHIZ/SAPH_AAPHIZ is shown in Figure 21-56 and described in Table 21-41.
Return to Summary Table.
The PPG output status at pause when ASQ is controlling the measurement.
Figure 21-56. SAPHAPHIZ/SAPH_AAPHIZ Register
15

14

13

12

11

10

3

2

9

8

1

0

RESERVED
R/W-0h
7

6

5

4

RESERVED
R/W-0h

PCPHIZ
R/W-0h

Table 21-41. SAPHAPHIZ/SAPH_AAPHIZ Register Field Descriptions
Field

Type

Reset

15-4

Bit

RESERVED

R/W

0h

3-0

PCPHIZ

R/W

0h

Description

Bit 0 defines the PPG output status at pause for the first
measurement.
Bit 1 defines the PPG output status at pause for the second
measurement.
Bit 2 defines the PPG output status at pause for the third
measurement.
Bit 3 defines the PPG output status at pause for the fourth
measurement.
0 = PPG ouput level is determined by SAPHAPLEV.PCPLEV bits
1 = Hi-z. regardless of SAPHAPLEV.PCPLEV bits
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

555

SAPH and SAPH_A Registers

www.ti.com

21.8.37 SAPHATM_A/SAPH_AATM_A Register (Offset = 6Eh) [reset = 0h]
SAPHATM_A/SAPH_AATM_A is shown in Figure 21-57 and described in Table 21-42.
Return to Summary Table.
Count for the TIMEMARK A Event
Figure 21-57. SAPHATM_A/SAPH_AATM_A Register
15

14

13

12

11

10

9

8
7
TIMEMARK_A
R/W-0h

6

5

4

3

2

1

0

Table 21-42. SAPHATM_A/SAPH_AATM_A Register Field Descriptions
Bit
15-0

Field

Type

Reset

Description

TIMEMARK_A

R/W

0h

This value is used to generate the TIMEMARK A event by
comparing with the ASQ timer counter value. TIMEMARK_A value
[15:0] are compared to ASQ Timer Counter [15:0]
TIMEMARK A event is to trigger the PPG. Before this event, the Tx
bias is applied to the transmit channel, so make sure to provide
enough time to settle the Tx bias. The minimum value is two.
Reset type: PUC

556

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.38 SAPHATM_B/SAPH_AATM_B Register (Offset = 70h) [reset = 0h]
SAPHATM_B/SAPH_AATM_B is shown in Figure 21-58 and described in Table 21-43.
Return to Summary Table.
Count for the TIMEMARK B Event
Figure 21-58. SAPHATM_B/SAPH_AATM_B Register
15

14

13

12

11

10

9

8
7
TIMEMARK_B
R/W-0h

6

5

4

3

2

1

0

Table 21-43. SAPHATM_B/SAPH_AATM_B Register Field Descriptions
Bit
15-0

Field

Type

Reset

Description

TIMEMARK_B

R/W

0h

This value is used to generate the TIMEMARK B event by
comparing with the ASQ timer counter value. TIMEMARK_B value
[15:0] are compared to ASQ Timer Counter [15:0]
TIMEMARK B event is to turn on the SDHS (ADC converter). The
SDHS starts sampling input signal at the TIMEMARK D event. The
time between B and D is for the SDHS settling time. The minimum
value is two.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

557

SAPH and SAPH_A Registers

www.ti.com

21.8.39 SAPHATM_C/SAPH_AATM_C Register (Offset = 72h) [reset = 0h]
SAPHATM_C/SAPH_AATM_C is shown in Figure 21-59 and described in Table 21-44.
Return to Summary Table.
Count for the TIMEMARK C Event
Figure 21-59. SAPHATM_C/SAPH_AATM_C Register
15

14

13

12

11

10

9

8
7
TIMEMARK_C
R/W-0h

6

5

4

3

2

1

0

Table 21-44. SAPHATM_C/SAPH_AATM_C Register Field Descriptions
Bit
15-0

Field

Type

Reset

Description

TIMEMARK_C

R/W

0h

This value is used to generate the TIMEMARK C event by
comparing with the ASQ timer counter value. TIMEMARK_C value
[15:0] are compared to ASQ Timer Counter [15:0]
TIMEMARK C event is to apply Rx bias to the PGA input channel.
The Rx bias should be appled before the signal arrives at the input
channel. The time between C and D is for the Rx bias settling time.
The minimum value is two.
Reset type: PUC

558

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.40 SAPHATM_D/SAPH_AATM_D Register (Offset = 74h) [reset = 0h]
SAPHATM_D/SAPH_AATM_D is shown in Figure 21-60 and described in Table 21-45.
Return to Summary Table.
Count for the TIMEMARK D Event
Figure 21-60. SAPHATM_D/SAPH_AATM_D Register
15

14

13

12

11

10

9

8
7
TIMEMARK_D
R/W-0h

6

5

4

3

2

1

0

Table 21-45. SAPHATM_D/SAPH_AATM_D Register Field Descriptions
Bit
15-0

Field

Type

Reset

Description

TIMEMARK_D

R/W

0h

This value is used to generate the TIMEMARK D event by
comparing with the ASQ timer counter value. TIMEMARK_D value
[15:0] are compared to ASQ Timer Counter [15:0]
TIMEMARK D event is to trigger the SDHS to start sampling on the
input signal. The time between D and E is for the total data sampling
time + transfer time via DTC. The minimum value is two.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

559

SAPH and SAPH_A Registers

www.ti.com

21.8.41 SAPHATM_E/SAPH_AATM_E Register (Offset = 76h) [reset = 0h]
SAPHATM_E/SAPH_AATM_E is shown in Figure 21-61 and described in Table 21-46.
Return to Summary Table.
Count for the TIMEMARK E Event
Figure 21-61. SAPHATM_E/SAPH_AATM_E Register
15

14

13

12

11

10

9

8
7
TIMEMARK_E
R/W-0h

6

5

4

3

2

1

0

Table 21-46. SAPHATM_E/SAPH_AATM_E Register Field Descriptions
Bit
15-0

Field

Type

Reset

Description

TIMEMARK_E

R/W

0h

This value is used to generate the TIMEMARK E event by
comparing with the ASQ timer counter value. TIMEMARK_E value
[15:0] are compared to ASQ Timer Counter [19:4]
TIMEMARK E event is to resume the measurement sequence. The
ASQ time counter is reset. The minimum value is two.
Reset type: PUC

560

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.42 SAPHATM_F/SAPH_AATM_F Register (Offset = 78h) [reset = 0h]
SAPHATM_F/SAPH_AATM_F is shown in Figure 21-62 and described in Table 21-47.
Return to Summary Table.
Count for the TIMEMARK F Event
Figure 21-62. SAPHATM_F/SAPH_AATM_F Register
15

14

13

12

11

10

9

8
7
TIMEMARK_F
R/W-0h

6

5

4

3

2

1

0

Table 21-47. SAPHATM_F/SAPH_AATM_F Register Field Descriptions
Bit
15-0

Field

Type

Reset

Description

TIMEMARK_F

R/W

0h

This value is used to generate the TIMEMARK F event by comparing
with the ASQ timer counter value. TIMEMARK_F value [15:0] are
compared to ASQ Timer Counter [17:2]
TIMEMARK F event is to check out if the measurement is completed
within this time limit. The ASQ time counter is reset. The TMFTO
interrupt is generaed if an measurement has not been completed
until the event occurrs. The event will abort all of the preprogrammed measurment sequences. The minimum value is two.
Note: TIMEMAR E should be programmed to be longer than
TIMEMARK F.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

561

SAPH and SAPH_A Registers

www.ti.com

21.8.43 SAPHTBCTL/SAPH_ATBCTL Register (Offset = 7Ah) [reset = 0h]
SAPHTBCTL/SAPH_ATBCTL is shown in Figure 21-63 and described in Table 21-48.
Return to Summary Table.
Time Base Control Register
Figure 21-63. SAPHTBCTL/SAPH_ATBCTL Register
15

14

13

12

PSTAT
R-0h
7

11

10

9
RESERVED
R-0h

8
RESERVED
R-0h

3
RESERVED
R/W-0h

2
TSTOP
W-0h

1
TSTART
W-0h

0
TCLR
W-0h

RESERVED
R/W-0h
6

5

4

PSSV
R/W-0h

Table 21-48. SAPHTBCTL/SAPH_ATBCTL Register Field Descriptions
Field

Type

Reset

Description

15-14

Bit

PSTAT

R

0h

These bits reflect the current power state of the USS module. These
bits are also reflected in "energy trace" of the debug tools. As simple
unidirectional measurement sequence would show the sequence:
"0,1,2,1,3,1,0"
Reset type: PUC
0h (R/W) = ASQ inactive or waiting for trigger (ASQ timer not
running)
1h (R/W) = ASQ timer running (ASQ timer tuning)
2h (R/W) = PPG during ping process
3h (R/W) = ADC during acquisition process

13-10

RESERVED

R/W

0h

9

RESERVED

R

0h

Reserved

8

RESERVED

R

0h

Reserved

PSSV

R/W

0h

ASQ pre-scaler shift. The value written to the PSSV bits shifts the
start point of the ASQ's pre-scaler. Note that the value only affects
the first cycle of the pre-scaler.

7-4

0 = No shift
1 = The pre-scaler starts 1 clock later
2 = The pre-scaler starts 2 clocks later
...
15 = The pre-scaler starts 15 clocks later
Reset type: PUC
3

RESERVED

R/W

0h

2

TSTOP

W

0h

The ASQ time counter stop. Writing '1' to this bit stops the counter.
This bit is self cleared. TSTOP, TSTART, and TCLR bits are offerred
for only debugging purpose. It is not recommend to use this bit while
ASQ is active.
Note: This bit is write only. Reading always returns with zero.

1

TSTART

W

0h

0

TCLR

W

0h

The ASQ time counter start. Writing '1' to this bit starts the counter.
This bit is self cleared. TSTOP, TSTART, and TCLR bits are offerred
for only debugging purpose. It is not recommend to use this bit while
ASQ is active.
Note: This bit is write only. Reading always returns with zero.
The ASQ time counter clear. Writing '1' to this bit clears the the
counter value. The counter must be stopped prior to be cleared. This
bit is self cleared. TSTOP, TSTART, and TCLR bits are offerred for
only debugging purpose. It is not recommend to use this bit while
ASQ is active.
Note: This bit is write only. Reading always returns with zero.

562

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

SAPH and SAPH_A Registers

www.ti.com

21.8.44 SAPHATIMLO/SAPH_AATIMLO Register (Offset = 7Ch) [reset = 0h]
SAPHATIMLO/SAPH_AATIMLO is shown in Figure 21-64 and described in Table 21-49.
Return to Summary Table.
ASQ Time Counter Low Part [15:0]
Figure 21-64. SAPHATIMLO/SAPH_AATIMLO Register
15

14

13

12

11

10

9

8
7
ATIMLO
R-0h

6

5

4

3

2

1

0

Table 21-49. SAPHATIMLO/SAPH_AATIMLO Register Field Descriptions
Bit
15-0

Field

Type

Reset

Description

ATIMLO

R

0h

ASQ Timer Counter low part. The reading this register returns the
counter value [15:0].
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

Copyright © 2012–2017, Texas Instruments Incorporated

563

SAPH and SAPH_A Registers

www.ti.com

21.8.45 SAPHATIMHI/SAPH_AATIMHI Register (Offset = 7Eh) [reset = 0h]
SAPHATIMHI/SAPH_AATIMHI is shown in Figure 21-65 and described in Table 21-50.
Return to Summary Table.
ASQ Time Counter High Part[19:16]
Figure 21-65. SAPHATIMHI/SAPH_AATIMHI Register
15

14

13

12

11

10

3

2

9

8

1

0

RESERVED
R-0h
7

6

5

4

RESERVED
R-0h

ATIMHI
R-0h

Table 21-50. SAPHATIMHI /SAPH_AATIMHI Register Field Descriptions
Bit

564

Field

Type

Reset

15-4

RESERVED

R

0h

3-0

ATIMHI

R

0h

Description

ASQ Timer Counter high part. The reading this register returns the
counter value [19:16].
Reset type: PUC

Sequencer for Acquisition, Programmable Pulse Generator, and Physical
Interface (SAPH, SAPH_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 22
SLAU367O – October 2012 – Revised December 2017

Sigma-Delta High Speed (SDHS)
This chapter describes the operation of the SDHS module.
Topic

22.1
22.2
22.3
22.4
22.5

...........................................................................................................................
Introduction .....................................................................................................
SDHS Functional Operation ...............................................................................
Interrupts.........................................................................................................
Debug Mode.....................................................................................................
SDHS Registers ................................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

Page

566
566
591
591
592

565

Introduction

www.ti.com

22.1 Introduction
The Sigma-Delta High Speed (SDHS) is a high-performance high-speed 12-bit analog-to-digital converter
(ADC). The SDHS is one of the submodules in the Ultrasonic Sensing Solution (USS) module. The USS
module is designed for ADC-based ultrasonic sensing technology in various measurement applications.
Figure 22-1 shows the block diagram of the USS module.
USS Module

USSXT
USSXTIN USSXTOUT

USSXT_BOUT
MSP430FRxxxx

SAPH

CH0_OUT
CH1_OUT

PHY

OSC
ASQ

PPG

PVSS
PVCC

PLL_CLK

PLL

VOUT

UUPS

HSPLL

PVSS

SDHS
CH0_IN

PGA

RAM
(Shared with LEA)
MOD

Filter

DTC

CH1_IN

Copyright © 2017, Texas Instruments Incorporated

Figure 22-1. USS Block Diagram
The SDHS module consists of three blocks: the programmable gain amplifier (PGA), the sigma-delta high
speed (SDHS), and the data transfer controller (DTC) (see Figure 22-1).
• PGA block: Applies a gain to the input signal before the SDHS.
• SDHS block: ADC converts that converts the input signal to digital data at the programmed sampling
rate.
• DTC block: Transfers the output data from the SDHS to the LEA RAM for data processing.
NOTE: Naming convention for register names and bit fields:
•
SDHS registers: RegisterName or RegisterName.BitField
•
Other module registers: ModuleNameRegisterName or
ModuleNameRegisterName.BitField

22.2 SDHS Functional Operation
The SDHS is a high-performance high-speed ADC that supports output data rates up to 8 Msps.
Figure 22-2 shows the SDHS block diagram. The converter consists of a third-order sigma-delta modulator
and digital decimation filters. The decimation filters are CIC filters with selectable oversampling ratios of
10, 20, 40, 80, or 160.
Features of the SDHS include:
• Third-order sigma-delta architecture
• High-speed data conversion rate up to 8 Msps
• Low-pass filter with selectable oversampling ratios of 10, 20, 40, 80, or 160

566

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com
PLL_OUT

fsystem
SDHS

CH0_IN
CH1_IN

Input MUX

Charge
Pump

+ PGA
-

3rd Order
ΣΔ Modulator

Data Buffer

SDHSDT

DTC

System
Memory

Window
Comparator

Figure 22-2. SDHS Block Diagram

22.2.1 Input Multiplexer
The input multiplexer is mentioned for completeness here, but is part of the physical interface (PHY). See
the PHY module (the SAPH module) for details on how to select the input channels, how bias is provided,
and what other features are available on a given device.

22.2.2 Third-Order Modulator
The sigma-delta ADC consists of two parts: modulator and digital filter. A third-order modulator is used in
SDHS. The modulator performs oversampling up to 80 MHz against the analog input signal and feeds the
digital filter a pulse code modulated (PCM) data stream. The digital filter averages the bitstreams from the
modulator over a given number of bits and generates output data at a reduced sampling rate, specified by
the oversampling rate (OSR), for further data processing.
Averaging can be used to increase the signal-to-noise performance of a conversion (see Figure 22-3 a
and b). With a conventional ADC, each factor-of-4 oversampling can improve the SNR by approximately
6 dB or 1 bit. To achieve a 16-bit resolution out of a simple 1-bit ADC would require an impractical
oversampling rate of 415 = 1 073 741 824. To overcome this limitation, the sigma-delta modulator
implements a technique called noise shaping. Using a feedback loop and integrators, the quantization
noise is pushed to higher frequencies and, thus, much lower oversampling rates are sufficient to achieve
high resolutions (see Figure 22-3 c).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

567

SDHS Functional Operation

www.ti.com

a)
Signal

Quantization Noise

fSignal

fs/2

fs

b)
Signal

Digital Filter

Quantization Noise
Noise filtered out by digital filter
fSignal

fs/2

OSR × fs
2

OSR × fs

c)
Signal

Digital Filter
“Shaped” Quantization Noise
Noise filtered out by digital filter

fSignal

fs/2

OSR × fs
2

OSR × fs

Figure 22-3. Sigma-Delta Principle

22.2.3 Digital Output
The SDHS digital filter processes the data stream from the modulator. The filter consists of two stages.
The first stage is a 7th-order CIC filter (CIC7), which is always enabled and its decimation ratio is 10. The
second-stage filter is a 1st-order CIC filter (CIC1) which is automatically enabled when the OSR ratio is
greater than 10. The second-stage filter can have decimation ratio of 2, 4, 8, or 16. With an OSR ratio
greater than 10, both of the CIC filters are enabled and cascaded. See Figure 22-7 for details.
22.2.3.1 CIC7 Filter
Figure 22-4 shows the structure of a CIC7 filter, which is selected when SDHSCTL1.OSR = 10.

568

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com
Integrator

Bitstream from
Modulator

+

Integrator

z

+

-1

fM

z

fM

fM

z

z

fS

z

-

-1

z

z

fS

fS

z

fM

-1

z

Integrator
+

-1

Differentiator
+

-1

fS

-1

Differentiator
+
-

z

Integrator
+

fM

Differentiator
+
-

-1

+

-1

z

Differentiator
+

Integrator

+

-1

Differentiator
+

Integrator

Integrator

+

-1

z

fM

fM

Differentiator
+
-

Differentiator
+
-

-1

z

fS

-1

-1

z

fS

-1

fS

Figure 22-4. CIC7 Filter Structure
The transfer function is described in the z-domain by Equation 11.

æ 1
1 – z –OSR
H(z) = ç
×
ç OSR
1 – z –1
è

ö
÷
÷
ø

7

(11)

The transfer function is described in the frequency domain by Equation 12.
7

æ
æ
æ
æ
f öö
f öö
sin ç OSR × p ×
ç sinc ç OSRp ÷ ÷
ç
÷÷
fM ø ÷
fM ø ÷
ç
ç 1
è
è
H(f) = ç
=
×
ç OSR
÷
æ
ö ÷
æ
f ö
ç sinc ç p f ÷ ÷
ç
÷
sin ç p ×
÷
ç
÷
ç
÷
fM ø
è fM ø ø
è
è
è
ø

7

where
•

OSR = The ratio of the modulator frequency fM to the sample frequency fS

(12)

Figure 22-5 shows the filter frequency response beyond fS (normalized), and Figure 22-6 shows the filter
frequency response within fS. The first filter notch is always at fS = fM / OSR. The digital filter for the SDHS
converter completes the decimation of the digital bit stream and outputs the new conversion result to the
SDHSDT register at the sample frequency, fS.
0

-50

Gain (dB)

-100

-150

-200

-250

-300

-350
0

0.25 0.5 0.75

1

1.25 1.5 1.75

2

2.25 2.5 2.75

3

3.25 3.5 3.75

4

4.25 4.5

F/Fs

Figure 22-5. SDHS Filter Frequency Response, SDHSCTL1.OSR = 10

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

569

SDHS Functional Operation

www.ti.com
0
-20
-40
-60
-80

Gain (dB)

-100
-120
-140
-160
-180
-200
-220
-240
-260
0

0.25

0.5

0.75

1

F/Fs

Figure 22-6. SDHS Filter Frequency Response Within fs, SDHSCTL1.OSR = 10
22.2.3.2 CIC1 Filter
The second-stage filter is a 1st-order CIC filter, which is automatically enabled when the OSR ratio is
greater than 10. The second-stage filter can have decimation ratio of 2, 4, 8, or 16. By cascading the CIC7
and CIC1 filters, the OSR ratio can be 10, 20, 40, 80, or 160.
22.2.3.3 Digital Filter Output
Figure 22-7 shows the block diagram of the SDHS digital filter. The CIC7 is a 7th-order CIC filter with
decimation of 10. The CIC1 is a 1st-order CIC filter with programmable decimation of 2, 4, 8, or 16. By
cascading the two filters, OSR of 10, 20, 40, 80, or 160 is offered. The OSR ratio is configured by the
SDHSCTL1.OSR bits. Each output of the CIC7 and CIC1 is truncated to 14 bits. The final output data is
16 bit, but the effective number of bits and data format are programmable through the
SDHSCTL0.DALGN, SDHSCTL0.OBR, SDHSCTL0.SHIFT, and SDHSCTL0.DFMSEL bits.
SDHSCTL0.
.DALGN .OBR .SHIFT .DFMSEL

SDHSCTL1.OSR

CIC1

CIC7

Truncate

Order = 7th
Decimation = 10

14

Truncate

14

14

Formatter

16

Order = 1st
Decimation = 2, 4, 8, 16

Figure 22-7. Digital Filter Block Diagram
The final frequency response of the SDHS digital filter is determined by SDHSCTL1.OSR bit. Figure 22-8
shows the frequency response of cascading CIC7 and CIC1 beyond fs (normalized) when SDHSCTL1.OSR
= 20.

570

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

Gain (dB)

www.ti.com
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
-190
-200
-210
-220
-230
-240
-250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

F/Fs

Figure 22-8. SDHS Filter Frequency Response, SDHSCTL1.OSR = 20
Figure 22-9 shows the frequency response of cascading CIC7 and CIC1 within fs (normalized) when
SDHSCTL1.OSR = 20.
0
-5
-10
-15

Gain (dB)

-20
-25
-30
-35
-40
-45
-50
-55
-60

0

0.25

0.5
F/Fs

0.75

1

Figure 22-9. SDHS Filter Frequency Response Within fs, SDHSCTL1.OSR = 20
Figure 22-10 shows the frequency response of cascading CIC7 and CIC1 within fs (normalized) when
SDHSCTL1.OSR = 40.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

571

SDHS Functional Operation

www.ti.com
0
-5
-10
-15

Gain (dB)

-20
-25
-30
-35
-40
-45
-50
-55
-60
0

0.25

0.5

0.75

1

F/Fs

Figure 22-10. SDHS Filter Frequency Response within fs, SDHSCTL1.OSR = 40
Figure 22-11 shows the frequency response of cascading CIC7 and CIC1 within fs (normalized) when
SDHSCTL1.OSR = 80.
0
-5
-10
-15

Gain (dB)

-20
-25
-30
-35
-40
-45
-50
-55
-60
0

0.25

0.5
F/Fs

0.75

1

Figure 22-11. SDHS Filter Frequency Response within fs, SDHSCTL1.OSR = 80
Figure 22-12 shows the frequency response of cascading CIC7 and CIC1 within fs (normalized) when
SDHSCTL1.OSR = 160.

572

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com
0
-5
-10
-15

Gain (dB)

-20
-25
-30
-35
-40
-45
-50
-55
-60
0

0.25

0.5
F/Fs

0.75

1

Figure 22-12. SDHS Filter Frequency Response within fs, SDHSCTL1.OSR = 160
22.2.3.4 Filter Output Data Formats
SDHS filter output can be configured as offset binary format (SDHSCTL0.DFMSEL = 1) or 2s complement
format (SDHSCTL0.DFMSEL = 0 ). The output values range is between 0 to FS when offset binary format
is selected, between –fs/2 and +fs/2 when 2s complement format is selected. See Table 22-1 for the data
range based on the configuration of SDHSCTL0.DFMSEL, SDHSCTL0.DALGN, and SDHSCTL0.OBR
bits.
Table 22-1. Data Format
Format
(SDHSCTL0.DF
MSEL Bit)
2s Complement
(0)

Offset Binary (1)

Alignment
(SDHSCTL0.DAL
GN Bit)

Analog
Input

Data Output
(SDHSCTL0.OBR = 0):
12 Bit

Data Output
(SDHSCTL0.OBR = 1):
13 Bit

Data Output
(SDHSCTL0.OBR = 2):
14 Bit

+fs/2

0x7FF

0xFFF

0x1FFF

0

0

0

0

–fs/2

0x800

0x1000

0x2000

+fs/2

0xFFF

0x1FFF

0x3FFF

0

0x800

0x1000

0x2000

–fs/2

0

0

0

Right Aligned (0)

Right Aligned (0)

The effective number of bits in the output data format is determined by SDHSCTL0.OBR and
SDHSCTL0.SHIFT bits. Figure 22-13 shows bits selection from the filter output to the SDHSDT register
with left alignment mode (SDHSCTL0.DALGN = 0). Figure 22-14 shows bits selection from the filter output
to the SDHSDT register with right alignment mode (SDHSCTL0.DALGN = 1). Increasing the
SDHSCTL0.SHIFT value is equivalent of multiplying the output data by 2 at every shift. Take care when
using SDHSCTL0.SHIFT bits and ensure that signal overflow never happens after shifting.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

573

SDHS Functional Operation

www.ti.com
OBR = 0, SHIFT = 0, DALGN = 0

Filter Output

13 12 11 10 9

SDHSDT Register

15 14 13 12 11 10 9

8

7

8

7

6

5

4

3

2

6

5

4

3

2

1

0

1

0

OBR = 0, SHIFT = 1, DALGN = 0
Filter Output

13 12 11 10 9

SDHSDT Register

15 14 13 12 11 10 9

8

8

7

6

5

4

3

2

1

7

6

5

4

3

2

1

0

0

OBR = 0, SHIFT = 2, DALGN = 0
Filter Output

SDHSDT Register

13 12 11 10 9

8

7

6

5

4

3

2

1

0

15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

OBR = 1, SHIFT = 0, DALGN = 0
Filter Output

13 12 11 10 9

SDHSDT Register

15 14 13 12 11 10 9

8

8

7

6

5

4

3

2

1

7

6

5

4

3

2

1

0

0

OBR = 1, SHIFT = 1, DALGN = 0
Filter Output

SDHSDT Register

13 12 11 10 9

8

7

6

5

4

3

2

1

0

15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

OBR = 2, SHIFT = 0, DALGN = 0
Filter Output

SDHSDT Register

13 12 11 10 9

8

7

6

5

4

3

2

1

0

15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

Figure 22-13. Bits Selection From Filter to the Data Register (SDHSCTL0.DALGN = 0)

574

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com
OBR = 0, SHIFT = 0, DALGN = 1
Filter Output

13 12 11 10 9

7

6

5

4

3

2

1

0

SDHSDT Register

15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

8

OBR = 0, SHIFT = 1, DALGN = 1
Filter Output

6

5

4

3

2

1

0

15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

2

1

0

13 12 11 10 9

SDHSDT Register

8

7

OBR = 0, SHIFT = 2, DALGN = 1
Filter Output

5

4

3

2

1

0

15 14 13 12 11 10 9

8

7

6

5

4

3

13 12 11 10 9

SDHSDT Register

8

7

6

OBR = 1, SHIFT = 0, DALGN = 1
Filter Output

13 12 11 10 9

7

6

5

4

3

2

1

0

SDHSDT Register

15 14 13 12 11 10 9

8

7

6

5

4

3

2

1

0

2

1

0

1

0

8

OBR = 1, SHIFT = 1, DALGN = 1
Filter Output

6

5

4

3

2

1

0

15 14 13 12 11 10 9

8

7

6

5

4

3

4

3

2

1

6

5

4

3

13 12 11 10 9

SDHSDT Register

8

7

OBR = 2, SHIFT = 0, DALGN = 1
Filter Output

13 12 11 10 9

SDHSDT Register

15 14 13 12 11 10 9

8

7

6

8

5

7

0

2

Figure 22-14. Bits Selection From Filter to the Data Register (SDHSCTL0.DALGN = 1)

22.2.4 Data Transfer Controller (DTC) and Internal Data Buffer
The SDHS supports output data rates up to 8 Msps, which is faster than the system DMA can support, so
the SDHS has a dedicated Data Transfer Controller (DTC) and an internal data buffer to support up to 8MHz data transfer speed to the target memory.
Figure 22-14 shows the block diagram of the output data path. A conversion result from digital filter goes
first to the internal data buffer. The buffer has 64-word depth. As soon as a new data is available in the
buffer, the data is latched with the system clock (called synchronization to the system clock) and is written
to SDHSDT register. Then the DTC reads the data from SDHSDT register and transfers to the destination
memory location.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

575

SDHS Functional Operation

www.ti.com

The DTC may require more than one sample period to transfer the data to system memory. Thus, the
buffer depth is selected to achieve the 8-MHz data transfer speed when the system clock is equal to or
higher than the SDHS output data rate. Take care when selecting SDHSCTL1.OSR bits or the system
clock frequency. The system clock frequency must be equal to or greater than the SDHS output data rate,
or a data overflow may occur.
• System clock frequency ≥ SDHS output data rate
• SDHS output data rate = PLL output frequency / SDHSCTL1.OSR
The DTC is enabled by default but can be disabled when SDHSCTL2.DTCOFF = 1. When the DTC is
disabled, the data in the SDHSDT register must be ready by CPU. If the SDHSDT register has not been
read by CPU over 64 sample periods, the internal buffer becomes full and does not take any more new
data. In the case, newly generated data is lost and causes the overflow interrupt (SDHSRIS.OVF).
NOTE: If data conversion is performed with SDHSCTL2.DTCOFF = 1, the data buffer may not be
empty when the conversion stops. The CPU can continue to read the data until the buffer is
empty. While the CPU is reading the data from the buffer after conversion is stopped, data
format configurations (SDHSCTL0.DFMSEL, SDHSCTL0.DALGN, and SDHSCTL0.OBR
bits) must not be changed.

The destination system memory is the LEA RAM, which is part of system memory. The DTC automatically
recognize the base address of the LEA RAM in the target device. Only offset address needs to be
configured to SDHSDTCDA register.
• Destination address = LEA RAM base address + offset address
• Offset address = SDHSDTCDA register value x 2 (for example, if SDHSDTCDA = 2, then the
destination address = LEA base address + 4)
The SDHSDTCCA register value automatically increases by 1 at every data transfer, so the current target
address can be monitored by reading SDHSDTCDA register. The maximum offset address is 64KB. The
SDHSDTCDA register value resets when the offset address reaches the 64KB limit and starts from zero
again.
NOTE: The DTC block supports up to 64KB of memory size; however, the available memory (LEA
RAM) could be smaller than 64KB (see the device-specific data sheet). If the SDHSDTCDA
register goes beyond the available memory space, data transferred to the outside of the
available memory is lost. In this case, the DTC block does not overwrite data in other
memory areas, because it accesses only the LEA RAM.
Take care not to go beyond the available memory address range. The DTC cannot detect if
the offset address goes beyond the available LEA RAM. TI recommends using
SDHSCTL2.SMPSZ[9:0], which controls the total number of samples.

NOTE: While the DTC is transferring data to the destination memory, the memory is blocked from
being accessed by CPU or DMA. If the CPU or DMA attempts to access the same memory,
0x3FFF is returned and an NMI is generated (DACCESSIFG).

576

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com

RAM
SDHSCTL2.DTCOFF
CPU Read

Digital Filter

SDHSDT

Parallel
Synchronizer
with Buffer

SDHSDTCDA

Data

Address

CPU

Data
Data Transfer
Controller
(DTC)

RAM
Controller
Address

DMA

System Bus

Figure 22-15. Data Output Path

22.2.5 PGA Gain Control
The programmable gain amplifier (PGA) allows adjusting the input signal amplitude to satisfy the input
range of the SDHS modulator. The input gain can be adjusted by SDHSCTL6.PGA_GAIN[5:0]. See
Table 22-2 for the PGA gain table.
Table 22-2. PGA Gain Table
SDHSCTL6.PGA_GAI
N[5:0] Bits

PGA Gain
(Typical)
(dB)

Tolerance

Shift (Entire
Table)

00xxxxb

–6.5

±1 dB

±1 dB

010000b

–6.5

±1 dB

±1 dB

010001b

–6.5

±1 dB

±1 dB

010010b

–5.5

±1 dB

±1 dB

010011b

–4.6

±1 dB

±1 dB

010100b

–4.1

±1 dB

±1 dB

010101b

–3.3

±1 dB

±1 dB

010110b

–2.3

±1 dB

±1 dB

010111b

–1.4

±1 dB

±1 dB

011000b

–0.8

±1 dB

±1 dB

011001b

0.1

±1 dB

±1 dB

011010b

1.0

±1 dB

±1 dB

011011b

1.9

±1 dB

±1 dB

011100b

2.6

±1 dB

±1 dB

011101b

3.5

±1 dB

±1 dB

011110b

4.4

±1 dB

±1 dB

011111b

5.2

±1 dB

±1 dB

100000b

6.0

±1 dB

±1 dB

100001b

6.8

±1 dB

±1 dB

100010b

7.7

±1 dB

±1 dB

100011b

8.7

±1 dB

±1 dB

100100b

9.0

±1 dB

±1 dB

100101b

9.8

±1 dB

±1 dB

100110b

10.7

±1 dB

±1 dB

100111b

11.7

±1 dB

±1 dB

101000b

12.2

±1 dB

±1 dB

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

577

SDHS Functional Operation

www.ti.com

Table 22-2. PGA Gain Table (continued)

578

SDHSCTL6.PGA_GAI
N[5:0] Bits

PGA Gain
(Typical)
(dB)

Tolerance

Shift (Entire
Table)

101001b

13.0

±1 dB

±1 dB

101010b

13.9

±1 dB

±1 dB

101011b

14.9

±1 dB

±1 dB

101100b

15.5

±1 dB

±1 dB

101101b

16.3

±1 dB

±1 dB

101110b

17.2

±1 dB

±1 dB

101111b

18.2

±1 dB

±1 dB

110000b

18.8

±1 dB

±1 dB

110001b

19.6

±1 dB

±1 dB

110010b

20.5

±1 dB

±1 dB

110011b

21.5

±1 dB

±1 dB

110100b

22.0

±1 dB

±1 dB

110101b

22.8

±1 dB

±1 dB

110110b

23.6

±1 dB

±1 dB

110111b

24.6

±1 dB

±1 dB

111000b

25.0

±1 dB

±1 dB

111001b

25.8

±1 dB

±1 dB

111010b

26.7

±1 dB

±1 dB

111011b

27.7

±1 dB

±1 dB

111100b

28.1

±1 dB

±1 dB

111101b

28.9

±1 dB

±1 dB

111110b

29.8

±1 dB

±1 dB

111111b

30.8

±1 dB

±1 dB

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com

22.2.6 SDHS Power and Conversion Control
The SDHS has two trigger sources for power and conversion. Figure 22-16 shows the connections of the
power and conversion trigger signals to the SDHS. Table 22-3 lists the use cases of the trigger signals.
SDHSCTL0.
TRGSRC

0

SDHSCTL4.SDHSON

1

ASQ_ACQARM (from ASQ)

SDHS_PWR_UP/DOWN
SDHSCTL3.
TRIGEN
CONVERSION_START/STOP

SDHSCTL5.SSTART

0

ASQ_ACQTRG (from ASQ)

1
SDHSCTL0.
AUTOSSDIS

SDHS

AUTO_START

Figure 22-16. SDHS Power and Conversion Trigger Source
Table 22-3. Control Signals for Power and Conversion
SDHSCTL3.TRI
GEN

SDHSCTL0.TRG SDHSCTL0.AUT
SRC
OSSDIS

Trigger Signal
Power Up

Conversion
Start

Conversion
Stop

Start
automatically
after power up

See
Section 22.2.12

Power Down

1

0

0

SDHSCTL4.SDH SDHSCTL4.SDH
SON = 0 → 1
SON = 1 → 0

1

0

1

SDHSCTL4.SDH SDHSCTL4.SDH SDHSCTL5.SST
SON = 0 → 1
SON = 1 → 0
ART = 0 → 1

1

1

0

Not supported

Not supported

Not supported

Not supported

ASQ_ACQARM
= 1 → 0 (from
ASQ)

ASQ_ACQTRIG
= 0 → 1 (from
ASQ)

See
Section 22.2.12

Not supported

Not supported

Not supported

1

1

1

ASQ_ACQARM
= 0 → 1 (from
ASQ)

0

x

x

Not supported

See
Section 22.2.12

22.2.6.1 SDHS in Auto Mode and Register Mode
The SDHS is one of the submodules in the USS module. The USS module is designed for ADC-based
ultrasonic sensing technology in various measurement applications. The USS module has its own power
module (see USS ) to provide the required voltages to the USS submodules including the SDHS. The
USS module support two control modes, register mode and auto mode. In the register mode, the SDHS is
controlled by its own registers. In the auto mode, the SDHS is controlled by the ASQ. See SAPH and USS
for details.
Table 22-4. USS Auto Mode and Register Mode
USS Control Mode

Configuration for SDHS

Control by: SDHS Power up

Control by: SDHS
Conversion Start

Register

SDHSCTL0.TRGSRC = 0

SDHSCTL4.SDHSON

SDHSCTL5.SSTART

Auto

SDHSCTL0.TRGSRC = 1

ASQ (ASQ_ACQARM signal)

ASQ (ASQ_ACQTRIG signal)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

579

SDHS Functional Operation

www.ti.com

22.2.6.1.1 SDHS Configuration in Register Mode
In register mode (SDHSCTL0.TRGSRC = 0), the SDHS can be used as an stand-alone ADC converter.
See the following sequence for the correct SDHS configuration:
1. Turn on the USS module and wait for UUPSCTL.UPSTATE = 3.
2. Configure all registers except the SDHSCTL3, SDHSCTL4, and SDHSCTL5 registers (no specific
order is required, SDHSCTL0.TRGSRC = 0).
3. Enable trigger sources: Set SDHSCTL3.TRIGEN = 1.
4. Power up the SDHS: Set SDHSCTL4.SDHSON = 1 (If SDHSCTL0.AUTOSSDIS = 1, then the
remaining steps are not required).
5. Wait for the SDHS settling time (see SDHS).
6. Start conversion: Set SDHSCTL5.SSTART = 1.
Figure 22-17 shows this configuration sequence.
USS READY STATE
(UUPSCTL.UPSTATE = 3)

Starting condition:
1) USS is fully powered up including HSPLL
2) UUPSCTL.ASQEN = 0

Configure SDHSCTL0, SHDSCTL1, SDHSCTL2, SDHSCTL6,
SDHSCTL7, SDHSWINHITH, SDHSWINLOTH, and SDHSDTCSA registers
(order does not matter)

SDHS Triger Source:
SDHSCTL0.TRGSRC= 0

Write 1 to SDHSCTL3.TRIGEN

Write 1 to SDHSCTL4.SDHSONt

Wait for the SDHS Settling Time
(If SDHSCTL0. AUTOSSDIS = 0, this step is skipped)

Write 1 to SDHSCTL5.SSTART bit
(If SDHSCTL0.AUTOSSDIS = 0, this step is skipped)

Data conversion is running

Figure 22-17. SDHS Operation in Register Mode (SDHSCTL0.TRGSRC = 0)

22.2.6.1.2 SDHS Configuration in Auto Mode
In auto mode (SDHSCTL0.TRGSRC = 1), the SDHS is fully controlled by the ASQ. See the following
sequence for the correct SDHS configuration:
1. Configure all registers except SDHSCTL3, SDHSCTL4, and SDHSCTL5 (no specific order is required,
SDHSCTL0.TRGSRC = 1).
2. Enable trigger sources: Set SDHSCTL3.TRIGEN = 1.
3. Turn on the USS module.
Figure 22-18 shows an example of USS measurement in auto mode (see USS for details).
580

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com

PUC

Next Measurement
Device Initialization
(Optional)

Configure HSPLL

Configure SAPH

LPM Mode and Wake up
(Optional)

Configure SDHS

SDHS Configuration: SDHSCTL0, SDHSCTL1, SDHSCTL2, SDHSCTL6,
SDHSCTL7, SDHSWINHITH,SDHS WINLOTH, and SDHSDTCDA registers.
SDHS Triger Source must be: SDHSCTL0.TRGSRC = 1
Write 1 to SDHSCTL3.TRIGEN bit

Configure UUPS

- UUPSCTL.ASQEN = 0 (ASQ enabled)
- UUPSCTL.USSPWRUPSEL = 0 (USSPWRUP bit is the trigger source)

Write 1 to UUPSCTL.USSPWRUP bit
(This can be replaced by a signal internal trigger source if USSPWRUPSEL != 0 )

1) USS LDO is powered up
2) HSPLL is powered up and locked => UUPSCTL.UPSTATE =3
3) PSQ asserts PSQ_START
4) ASQ generates control signals to PPG and SDHS
- PPG completes generating pulses
- SDHS completes data conversion (ASQ controls SDHS via ASQ_ACQARM and ASQ_ACQTRIG)
5) SDHS asserts SDHS_ACQDONE
6) ASQ asserts ASQ_ACQDONE and asserts SEQDN interrupt
7) PSQ is ready to take a new USSPWRREQ signal

Figure 22-18. SDHS Operation as Part of USS Measurement (SDHSCTL0.TRGSRC = 1)

22.2.7 TRIGEN Bit and SDHS_LOCK Bit
SDHSCTL3.TRIGEN has two functional roles:
• The first role is to enable the SDHS to receive the power trigger and conversion trigger signals (see
Figure 22-16). SDHSCTL3.TRIGEN must be set to 1 before applying the trigger signals to the SDHS.
• The second role is to lock the SDHSCTL0, SDHSCTL1, SDHSCTL2, SDHSCTL7, SDHSWINHITH,
SDHSWINLOTH, and SDHSDTCDA registers.
When SDHSCTL3.TRIGEN = 1, those registers cannot be modified. Thus, SDHSCTL3.TRIGEN must be
set to 1 after updating the SDHS registers (except SDHSCTL3, SDHSCTL4, and SDHSCTL5) and before
powering up the SDHS. See Section 22.2.6.1.1 for an example of the SDHS register configuration
sequence. SDHSCTL3.TRIGEN can be used as the power-up trigger signal (see Figure 22-19 and
Figure 22-19). However, this is not recommended when SDHSCTL0.AUTOSSDIS = 1, because the SDHS
may not be fully settled before data conversion starts.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

581

SDHS Functional Operation

www.ti.com

After the SDHS is triggered for power up, SDHSCTL5.SDHS_LOCK is automatically set to 1. When
SDHSCTL5.SDHS_LOCK = 1, the SDHSCTL3 register is locked. Both SDHSCTL3.TRIGEN and
SDHS_LOCK protect the SDHS registers from inadvertent modifications while the SDHS is active. The
PGA gain registers (SDHSCTL6) are not locked even after SDHS is powered up; however, take care
when updating the PGA gain while SDHS is performing data conversion. Expect a transition period before
the new gain is applied (see the device-specific data sheet for the PGA gain settling time).
Table 22-5. SDHSCTL3.TRIGEN Bit and SDHSCTL5.SDHS_LOCK Bit
Control Bit

Type

How to Set the Control Bit

Registers Locked

SDHSCTL3.TRIGEN

Read/Write

Write 1 to SDHSCTL3.TRIGEN bit

SDHSCTL0, SDHSCTL1, SDHSCTL2,
SDHSCTL7, SDHSWINHITH,
SDHSWINLOTH, and SDHSDTCDA

SDHSCTL5.SDHS_LOCK

Read Only

When SDHS_PWR_UP is asserted

SDHSCTL3

Table 22-6. Timing of the SDHS_LOCK bit

582

Type

SDHSCTL0.TRGSRC = 0

SDHSCTL0.TRGSRC = 1

SDHS power trigger

SDHSCTL4.SDHSON = 1 (by
software)

ASQ_ACQARM = 1 (from ASQ)

Time to set SDHS_LOCK bit
after the trigger

No delay

Delay = 4 × system clock period + 4 × (PLL clock period × 10)

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com

To update the SDHS registers, the SDHS must be powered off first, then write 0 to SDHSCTL3.TRIGEN.
When the SDHS is powered off, SDHSCTL5.SDHS_LOCK is automatically cleared to 0.
SDHS power up is synchronized to the trigger source
ACQDONE Interrupt

SSTRG Interrupt
SDHSCTL0.AUTOSSDIS = 0 and SDHSCTL2.SMPCTLOFF = 1

Conversion
Stop

Conversion Start

SDHS is
Power Off

SDHS Settling Time

Conversion

Conversion

First Sample

SDHS Power Off

Conversion

Sample

Sample

Last
Sample

SDHSCTL3.TRIGEN bit

SDHSCTL4.SDHSON bit
or ASQ_ACQARM

SDHSCTL5.SDHS_LOCK bit
(Read Only)

SDHS power up is synchronized to SDHSCTL3.TRIGEN bit
ACQDONE Interrupt

SSTRG Interrupt
SDHSCTL0.AUTOSSDIS = 0 and SDHSCTL2.SMPCTLOFF =1

Conversion
Stop

Conversion Start

SDHS is
Power Off

SDHS Settling Time

Conversion

Conversion

First Sample

SDHS Power Off

Conversion

Sample

Sample

Last
Sample

SDHSCTL3.TRIGEN bit

SDHSCTL4.SDHSON or
ASQ_ACQARM

SDHSCTL5.SDHS_LOCK bit
(Read Only)

Figure 22-19. Example Using SDHSCTL3.TRIGEN Bit (SDHSCTL0.AUTOSSDIS = 0)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

583

SDHS Functional Operation

www.ti.com

SDHS power up is synchronized to the trigger source
SSTRG Interrupt

ACQDONE Interrupt

SDHSCTL0.AUTOSSDIS = 1 and SDHSCTL2.SMPCTLOFF = 1
Conversion
Stop

Conversion Start

SDHS is
Power Off

SDHS Settling Time

Wait for SC

Conversion

Conversion

First Sample

SDHS remains
Power On

Conversion

Sample

Sample

Last
Sample

SDHSCTL3.TRIGEN bit

SDHSCTL4.SDHSON or
ASQ_ACQARM

SDHSCTL5.SSTART or
ASQ_ACQTRG

SDHSCTL5.SDHS_LOCK bit
(Read Only)

SDHS power up is synchronized to SDHSCTL3.TRIGEN bit (not recommended)
SSTRG Interrupt

ACQDONE Interrupt

SDHSCTL0.AUTOSSDIS = 1 and SDHSCTL2.SMPCTLOFF = 1
Conversion
Stop

Conversion Start
Required Settling Time
SDHS is
Power Off

SDHS Settling Time

Conversion

Conversion

First Sample

SDHS remains
Power On

Conversion

Sample

Sample

Last
Sample

SDHSCTL3.TRIGEN bit

SDHSCTL4.SDHSON or
ASQ_ACQARM

SDHSCTL5.SSTART or
ASQ_ACQTRG

SDHSCTL5.SDHS_LOCK bit
(Read Only)

Figure 22-20. Example Using SDSCTL3.TRIGEN bit (SDHSCTL0.AUTOSSDIS = 1)

NOTE:

584

In the following sections, it is assumed that SDHSCTL3.TRIGEN is set to 1 before powering
up the SDHS.

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com

22.2.8 AUTOSSDIS (Auto Conversion Start Disable) Bit
The SDHS supports two different ways to start data conversion after power up (see Table 22-7).
Table 22-7. Conversion Control Mode
Control

Power up SDHS

Conversion Start

When
When
When
When
SDHSCTL0.AU
SDHSCTL0.TR SDHSCTL0.TR SDHSCTL0.TR SDHSCTL0.TR
TOSSDIS
GSRC = 0
GSRC = 1
GSRC = 0
GSRC = 1

Mode

Auto
conversion
start: disabled

Auto
conversion
start: enabled

Operation

1

Power up and
conversion start are
controlled separately.
SDHSCTL4.SD ASQ_ACQARM SDHSCTL5.SS ASQ_ACQTRG
The SDHS settling time
HSON = 1
= 1 (from ASQ)
TART = 1
= 1 (from ASQ)
must be satisfied before
asserting the conversion
start signal.

0

SDHSCTL4.SD ASQ_ACQARM
HSON = 1
= 1 (from ASQ)

Not Required

Data conversion
automatically begins
after power up. The
SDHS settling time is
automatically applied.

Not Required

When SDHSCTL0.AUTOSSDIS = 0, automatic conversion start is enabled. Conversion automatically
starts after the SDHS is powered on. During power up, the SDHS settling time is monitored and when the
SDHS is settled, conversion automatically begins. See Figure 22-21 for the sequence of conversion start
and stop in this mode.
When SDHSCTL0.AUTOSSDIS = 1, auto conversion start is disabled (default after reset). In this mode,
power control and conversion control are separate (see Figure 22-22). This mode can be used when data
conversion start time needs to be precisely controlled. It is important that the SDHS settling time must has
satisfied before data conversion start signal is applied. If the data conversion start trigger signal is applied
during the settling time, the SDHS data conversion is automatically delayed until the settling time has
passed. SDHS settling time is The greater of the PGA settling time and SDHS modulator settling time.
See the device-specific data sheet for the settling times.
ACQDONE Interrupt

SSTRG Interrupt
SDHSCTL0.AUTOSSDIS = 0, SDHSCTL2.SMPCTLOFF = 1
Conversion
Stop

Conversion Start

SDHS is Power Off

SDHS Settling Time

Conversion

Conversion

First Sample

Conversion

Sample

Sample

SDHS Power Off

Last
Sample

SDHSCTL4.SDHSON or
ASQ_ACQARM
SDHSCTL5.SDHS_LOCK bit
(Read Only)

Figure 22-21. Conversion Start and Stop When SDHSCTL0.AUTOSSDIS = 0

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

585

SDHS Functional Operation

www.ti.com
SSTRG Interrupt

ACQDONE Interrupt

SDHSCTL0.AUTOSSDIS = 1 and SDHSCTL2.SMPCTLOFF = 1
Conversion
Stop

Conversion Start

SDHS is
Power Off

SDHS Settling Time

Wait for SC

Conversion

Conversion

SDHS remains
Power On

Conversion

Sample

First Sample

Sample

Last
Sample

SDHSCTL4.SDHSON or
ASQ_ACQARM

SDHSCTL5.SSTART or
ASQ_ACQTRG

SDHSCTL5.SDHS_LOCK bit
(Read Only)

Figure 22-22. Conversion Start and Stop When SDHSCTL0.AUTOSSDIS = 1

22.2.9 INTDLY (Interrupt Delay) bits
After conversion start, the position of the first output data to the internal data buffer and the first
SDHSRIS.DTRDY interrupt can be adjusted by the SDHSCTL0.INTDLY delay. Any skipped data is
permanently lost. The delay is applied each time conversion starts. The SDHSRIS.OVF (overflow)
interrupt is not enabled for the selected number of delay samples. Figure 22-23 shows the first interrupt
position when SDHSCTL0.INTDLY = 2. The window comparator feature is not applied to the skipped
samples (see Section 22.2.11 for the window comparator).
SSTRG Interrupt

DTRDY Interrupt

Conversion Start

First Output

SDHSCTL0.AUTOSSDIS = 1, SDHSCTL0.INTDLY = 2

SDHS is
Power Off

SDHS Settling Time

Wait for SC

Conversion

Conversion

First Sample

Conversion

Second Sample

Third Sample

SDHSCTL4.SDHSON or
ASQ_ACQARM

SDHSCTL5.SSTART or
ASQ_ACQTRIG

Figure 22-23. First Interrupt Position With SDHSCTL0.INTDLY = 2
By the nature of sigma-delta ADC converters, if a steep and abrupt input level change (like a step
function) is applied, a few samples are needed before the full input level is reached at the output. The
INTDLY can be used if the unsettled output data should be skipped. This skipping is not required for most
applications. See Table 22-8 for the output data settling time.

586

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com

Table 22-8. Conversion Control Mode
Input Change

SDHSCTL1.OSR
Bit

Fully Settled Output Sample From the
Time a Step Function is Applied

SDHSCTL0.INTDL
Y Value

10

5th sample

≤4

20

3th sample

≤2

40

2th sample

≤1

80

1st sample

0

Synchronous to fs

Asynchronous to fs

160

1st sample

0

10

6th sample

≤5

20

4th sample

≤3

40

3rd sample

≤2

80

2nd sample

≤1

160

2nd sample

≤1

22.2.10 Total Sample Size
The total number of samples that the SDHS generates can be predefined by SDHSCTL2.SMPSZ when
SDHSCTL2.SMPCTLOFF = 0. The value written to SDHSCTL2.SMPSZ includes the samples skipped by
SDHSCTL0.INTDLY:
• Total number of samples SDHS generates = SMPSZ + 1 (when SDHSCTL2.SMPCTLOFF = 0)
• The number of samples that can be read or transferred = SMPSZ – INTDLY + 1 (when
SDHSCTL2.SMPCTLOFF = 0)
When SDHSCTL2.SMPCTLOFF = 0, the SDHS automatically stops data conversion after completing the
number of samples configured in SDHSCTL2.SMPSZ. The SDHSCTL2.SMPSZ bit is ignored when
SDHSCTL2.SMPCTLOFF = 1. In this case, the SDHS continues conversion until it is stopped by the
trigger source. Take care when writing a value to SDHSCTL2.SMPSZ. If SDHSCTL2.SMPSZ –
SDHSCTL0.INTDLY + 1 ≤ 0, no output data is generated. For example:
If SDHSCTL2.SMPSZ = 10 and SDHSCTL0.INTDLY = 2, then the number of available samples would be
10 – 2 + 1 = 9.
ACQDONE Interrupt

SDHSCTL0.AUTOSSDIS = 0, SDHSCTL2.SMPCTLOFF = 0, SDHSCTL0.INTDLY = 0, SDHSCTL2.SMPSZ = n
Conversion
Stop

Conversion Start

SDHS is
Power Off

SDHS remains on

Conversion Start

SDHS is Off
SDHS Settling Time

SDHS Settling Time

Sample

2nd Sample

(n + 1) th
Sample

Sample

2nd Sample

SDHSCTL4.SDHSON or
ASQ_ACQARM
> 2/Fs

SDHSCTL5.SDHS_LOCK bit
(Read Only)

Figure 22-24. SDHSCTL0.AUTOSSDIS = 0, SDHSCTL2.SMPCTLOFF = 0, SDHSCTL0.INTDLY = 0, Total
Sample Size is Controlled by SDHSCTL2.SMPSZ

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

587

SDHS Functional Operation

www.ti.com

SDHSCTL0.AUTOSSDIS = 1, SDHSCTL2.SMPCTLOFF = 0, SDHSCTL0.INTDLY = 0, SDHSCTL2.SMPSZ = n:
ACQDONE Interrupt

SDHS is Power Off

Conversion

SDHS Settling Time

Conversion
Start

Conversion
Stop

Conversion Start

Conversion

First Sample

Conversion

SDHS remains on

Conversion

First Sample

Second Sample (n + 1) th
Sample

Second Sample

SDHSCTL4.SDHSON or
ASQ_ACQARM

SDHSCTL5.SSTART or
ASQ_ACQTRIG
> 2/Fs
SDHSCTL5.SDHS_LOCK bit
(Read Only)

Figure 22-25. SDHSCTL0.AUTOSSDIS = 1, SDHSCTL2.SMPCTLOFF = 0, SDHSCTL0.INTDLY = 0, Total
Sample Size is Controlled by SDHSCTL2.SMPSZ
ACQDONE Interrupt

SDHSCTL0.AUTOSSDIS = 0, SDHSCTL2.SMPCTLOFF =0, SDHSCTL0.INTDLY = m, SDHSCTL2.SMPSZ = n, where n >> m
First Output
Sample

Conversion Start

SDHS is
Power Off

Conversion
Stop

SDHS remains on

Conversion Start

SDHS is Off

SDHS Settling Time

SDHS Settling Time

Sample

(m+1)th Sample

(n + 1) th
Sample

Sample

SDHSCTL4.SDHSON or
ASQ_ACQARM

SDHSCTL5.SDHS_LOCK bit
(Read Only)

> 2/Fs

Figure 22-26. SDHSCTL0.AUTOSSDIS = 1, SDHSCTL2.SMPCTLOFF = 0, SDHSCTL0.INTDLY = m, Total
Sample Size is Controlled by SDHSCTL2.SMPSZ
When data conversion has stopped or SDHS has been powered down, 2 sample periods must pass
before starting a new data conversion or turning SDHS on (see Figure 22-24 and Figure 22-25).
• SDHS output sampling period = SDHSCTL1.OSR / PLL output clock frequency (= SDHS modulator
sampling frequency).
• SDHS output sampling frequency = PLL output clock frequency (= SDHS modulator sampling
frequency) / SDHSCTL1.OSR.

22.2.11 Window Comparator
The window comparator can monitor data range without CPU interventions. The window comparator is
enabled by the SDHSCTL2.WINDMPEN bit. The comparator compares the latest conversion result
against the value in the SDHSWINHITH register and the SDHSWINLOTH register, then asserts
SDHSRIS.WINHI (window high interrupt flag) if the conversion result is higher than the value in
SDHSWINHITH register, or asserts SDHSRIS.WINLO (window low interrupt flag) if the conversion result is
lower than the value in SDHSWINLOTH register. The window comparison is always performed with the
latest output data before it goes to the internal buffer (see Section 22.2.4 for details about the internal
buffer). The window comparison is functional even when the internal buffer is full; however, the internal
buffer stops taking new data, so the sample that caused either the SDHSRIS.WINHI or SDHSRIS.WINLO
interrupt cannot be read by the SDHSDT register. The application must ensure that the values in the
SDHSWINHITH and SDHSWINLOTH registers are in the correct data format. The interrupt flags (WINHI
and WINLO) must be reset by user software.

588

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Functional Operation

www.ti.com

22.2.12 Conditions to Stop Data Conversion
Table 22-9 lists the conditions that stop SDHS data conversion. The SDHSRIS.ACQDONE bit is set to 1
to indicate that data conversion has been stopped (either incomplete or complete). When the previous
data conversion has been forced to stopped before completion, the SDHSRIS.ISTOP bit is set to 1 to
indicate that data conversion has been interrupted (incomplete).
Table 22-9. SDHS Conversion Stop Conditions
SDHSCTL0.
TRGSRC

Stop Condition

SDHSCTL0. SDHSCTL2.
AUTOSSDIS SMPCTLOFF

Result
SDHS power

Don't care

Number of samples =
SDHSCTL2.SMPSZ + 1

Don't care
The ASQ stops the SDHS operation
(ACQ_SDHSSTOP: 0 → 1) caused by:
• UUPSCTL.USSSTOP = 0 → 1
• UUPSCTL.USSPWRDN = 0 →1
• SAPHASCTL0.STOP = 0 → 1
• Enter debug mode while the SDHS is
performing data conversion

Don't care

Don't care

0

1

Don't care

Don't care

0

0

SDHSCTL4.SDHSON: 1 → 0

Stop

SDHSRIS.ISTOP

No change

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

Assert

Not supported
SDHS power

Don't care

Don't care

1

1

Don't care

Don't care

0

Don't care

Don't care

ASQ_ACQARM: 1 → 0 (from ASQ)

1

Don't care

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

No change

Data conversion

Stop

SDHSRIS.ISTOP

Assert

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

Assert

SDHS power

Power off

Data conversion

Stop

SDHSRIS.ISTOP

Assert

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

Assert

SDHS power

Power off

Data conversion

Stop

SDHSRIS.ISTOP

No change

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

Assert

Not supported
Not supported
SDHS power

0

No change

Data conversion

Power off

Data conversion

Stop

SDHSRIS.ISTOP

Assert

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

Assert

SDHS power

Power off

Data conversion

Stop

SDHSRIS.ISTOP

No change

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

Assert

Sigma-Delta High Speed (SDHS) 589

SDHS Functional Operation

www.ti.com

Table 22-9. SDHS Conversion Stop Conditions (continued)
Stop Condition

SDHSCTL0.
TRGSRC

SDHSCTL0. SDHSCTL2.
AUTOSSDIS SMPCTLOFF
0

Don't care

Result
Not supported
SDHS power

0

SDHSCTL5.SSTART: 1 → 0

0

1

1

Stop

SDHSRIS.ISTOP

Assert

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

Assert

SDHS power

No change

Data conversion

Stop

SDHSRIS.ISTOP

No change

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

Assert

1

Don't care

Don't care

Not supported

0

Don't care

Don't care

Not supported

0

Don't care

Not supported
SDHS power

0
ASQ_ACQTRG: 1 → 0 (from ASQ)

No change

Data conversion

1

1

1

No change

Data conversion

Stop

SDHSRIS.ISTOP

Assert

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

Assert

SDHS power

No change

Data conversion

Stop

SDHSRIS.ISTOP

No change

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

Assert

The stop conditions listed in Table 22-9 can occur when data conversion has already completed or has
not started. Table 22-10 summarizes how the SDHS responds to the signals when no data conversion is
ongoing.
Table 22-10. SDHS Response to Conversion Stop Signals When Data Conversion is Not Running
Action
SDHSCTL4.SDHSON: 1 → 0
(SDHSCTL0.TRGSRC = 0) or
ASQ_ACQARM: 1 → 0
(SDHSCTL0.TRGSRC = 1)

The ASQ stops the SDHS operation
(ACQ_SDHSSTOP: 0 → 1)

590

Sigma-Delta High Speed (SDHS)

Conditions

Result

SDHS is not performing data conversion

SDHS is not performing data conversion

SDHS Power

Power off

SDHSRIS.ISTOP bit

No change

SDHS_ACQDONE
(to ASQ)

No change

RIS.ACQDONE

No change

SDHS power

No change

SDHSRIS.ISTOP bit

No change

SDHS_ACQDONE
(to ASQ)

Assert

SDHSRIS.ACQDONE

No change

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Interrupts

www.ti.com

22.3 Interrupts
The SDHS support the following interrupt sources:
• SDHSRIS.OVF (data overflow interrupt): When the internal buffer overflows, the SDHSRIS.OVF bit
is asserted.
• SDHSRIS.ACQDONE (acquisition done interrupt): The SDHSRIS.ACQDONE is asserted when data
conversion has been finished (either complete or incomplete).
If SDHSCTL2.DTOFF = 0, then SDHSRIS.ACQDONE is asserted when the data buffer is empty (that
is, the DTC completes the data transfer).
If SDHSCTL2.DTCOFF = 1, then SDHSRIS.ACQDONE is asserted as the data conversion stops
regardless of the data buffer status. In this case, user can continuously read SDHSDT register until the
data buffer is empty. While reading the SDHSDT register, the data format configuration must not be
changed (SDHSCTL0.DFMSEL, SDHSCTL0.DALGN, and SDHSCTL0.OBR).
• SDHSRIS.SSTRG (start sampling trigger interrupt): This bit indicates that the SDHS has started
data conversion.
• SDHSRIS.DTRDY (data ready interrupt): This bit is asserted when a new data is available in the data
buffer and remains asserted as long as the data buffer is not empty. The data read by CPU or DTC is
removed from the data buffer. The SDHSRIS.DTRDY bit is deasserted when the data buffer becomes
empty.
• SDHSRIS.WINHI (window high interrupt): This bit is asserted when a new output data is higher than
the value in the SDHSWINHITH register.
• SDHSRIS.WINHL (window low interrupt): This bit is asserted when a new output data is lower than
the value in the SDHSWINLOTH register.
In addition, the SDHSRIS.ISTOP (incomplete stop status) bit is asserted when the data conversion has
been interrupted without completion. This bit is not an interrupt flag. It can be used as a status bit, not an
interrupt flag.

22.3.1 IIDX, Interrupt Vector Generator
All SDHS interrupt sources are prioritized and combined to source a single interrupt vector. The
SDHSIIDX register is used to determine which enabled SDHS interrupt sources have requested an
interrupt. The SDHSIIDX register generates a value that can be used as address offset for fast interrupt
service routine handling. On each read, only one interrupt is indicated. On a read, the current interrupt
(highest priority) is automatically cleared by the hardware and the corresponding interrupt flag in
SDHSRIS and SDHSMISC are also cleared. After a read from the CPU (not from the debug interface), the
register must be updated with the next highest priority interrupt, if none are pending, then it reads as 0h. If
the interrupt reported by the SDHSIIDX register (highest priority pending interrupt) is cleared in the
SDHSICR by a software write of 1 in the corresponding bit field, the SDHSIIDX register is updated and the
next priority interrupt (if any) is available.

22.4 Debug Mode
When the device is in debug mode, the SDHS cannot be enabled. Writes to the SDHSCTL4.SDHSON and
SDHSCTL5.SSTART bits are prohibited. If the SDHS is already performing data conversion, the data
conversion is stopped automatically and the SDHSRIS.ISTOP bit is asserted (see Table 22-9).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

591

SDHS Registers

www.ti.com

22.5 SDHS Registers
Table 22-11 lists the memory-mapped registers for the SDHS. All register offset addresses not listed in
Table 22-11 should be considered as reserved locations and the register contents should not be modified.
Note 1: When SDHSCTL3.TRIGEN = 1,SDHSCTL0, SDHSCTL1, SDHSCTL2, SDHSCTL7,
SDHSWINHITH, SDHSWINLOTH, and SDHSDTCDA registers are locked. In other words, an attempt to
update those registers will be ignored.
Note 2: When SDHSCTL5.SDHS_LOCK = 1, SDHSCTL3 register is locked.
Note 3: SDHSCTL3.TRIGEN bit is a read-write bit, which is controlled by user program, wheras
SDHSCTL5.SDHS_LOCK bit a read-only bit, which is a status bit that indicates whether or not the SDHS
is powered-up.
Note 4: SDHSCTL3.TRIGEN bit must be set to 1 before applying a power-up signal to SDHS (SDHSON
bit or an external SDHS PWR UP signal)
Note 5:
When SDHSCTL0.TRGSRC = 0:
Once SDHSCTL4.SDHSON bit is written as 1, SDHSCTL5.SDHS_LOCK bit is set immediately.
In order to update SDHS registers, clear SDHSCTL4.SDHSON bit first, and then SDHSCTL3.TRIGEN bit
needs to be cleared.
When SDHSCTL0.TRGSRC = 1:
It takes up to 4 system clock cycles to set SDHSCTL5.SDHS_LOCK bit after detecting an external SDHS
PWR UP signal.
In order to update SDHS registers, the SDHS_PWR_UP signal should be de-asserted first, then
SDHSCTL3.TRIGEN bit needs to be cleared to be zero.
Table 22-11. SDHS Registers
Offset

Acronym

Register Name

Type

Reset

0h

SDHSIIDX

Interrupt Index Register

read-only

0h

Section 22.5.1

2h

SDHSMIS

Masked Interrupt Status and Clear Register read-only

0h

Section 22.5.2

4h

SDHSRIS

Raw Interrupt Status Register

read-only

0h

Section 22.5.3

6h

SDHSIMSC

Interrupt Mask Register

read-write

0h

Section 22.5.4

8h

SDHSICR

Interrupt Clear Register.

write-only

0h

Section 22.5.5

Ah

SDHSISR

Interrupt Set Register.

write-only

0h

Section 22.5.6

Ch

SDHSDESCLO

SDHS Descriptor Register L.

read-only

110h

Section 22.5.7

Eh

SDHSDESCHI

SDHS Descriptor Register H.

read-only

BB10h

Section 22.5.8

10h

SDHSCTL0

SDHS Control Register 0

read-write

8001h

Section 22.5.9

12h

SDHSCTL1

SDHS Control Register 1

read-write

0h

Section
22.5.10

14h

SDHSCTL2

SDHS Control Register 2

read-write

0h

Section
22.5.11

16h

SDHSCTL3

SDHS Control Register 3

read-write

0h

Section
22.5.12

18h

SDHSCTL4

SDHS Control Register 4

read-write

0h

Section
22.5.13

1Ah

SDHSCTL5

SDHS Control Register 5

read-write

0h

Section
22.5.14

1Ch

SDHSCTL6

SDHS Control Register 6

read-write

19h

Section
22.5.15

1Eh

SDHSCTL7

SDHS Control Register 7

read-write

Fh

Section
22.5.16

22h

SDHSDT

SDHS Data Converstion Register

read-only

0h

Section
22.5.17

24h

SDHSWINHITH

SDHS Window Comparator High Threshold read-write
Register.

0h

Section
22.5.18

26h

SDHSWINLOTH

SDHS Window Comparator Low Threshold
Register.

read-write

0h

Section
22.5.19

28h

SDHSDTCDA

DTC destination address register

read-write

0h

Section
22.5.20

592

Sigma-Delta High Speed (SDHS)

Section

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

22.5.1 SDHSIIDX Register (Offset = 0h) [reset = 0h]
SDHSIIDX is shown in Figure 22-27 and described in Table 22-12.
Return to Summary Table.
Interrupt Index Register.
Note: This register is word accessible. A byte access is also allowed but not recommended. Either high
byte or low byte access alone can clear the pending interrupt flag.
Figure 22-27. SDHSIIDX Register
15

14

13

12

11

10

9

8

3

2

1

0
Reserved
R-0h

IIDX
R-0h
7

6

5

4
IIDX
R-0h

Table 22-12. SDHSIIDX Register Field Descriptions
Bit

Field

Type

Reset

Description

15-1

IIDX

R

0h

SDHS Interrupt Vector Value. Read only. It generates a value that
can be used as address offset for fast interrupt service routine
handling. On each read, only one interrupt is indicated. On a read,
the current interrupt (highest priority) is automatically de-asserted by
the hardware and the corresponding bit in RIS and MISC are deasserted as well. After a read from the CPU (not from the debug
interface), the register is updated with the next highest priority
interrupt, if none are pending, then it is read as zero.
If the interrupt displayed by the SDHSIIDX register (highest priority
pending interrupt) is cleared by writing '1' to a corresponding bit in
the ICR register, the SDHSIIDX register shall be updated and the
next priority interrupt (if any) is read.
Reset type: PUC
0h (R) = No Interrupt pending.
1h (R) = Interrupt Source: SDHSRIS.OVF; Interrupt Priority: Highest
2h (R) = Interrupt Source: SDHSRIS.ACQDONE
3h (R) = Interrupt Source: SDHSRIS.SSTRG
4h (R) = Interrupt Source: SDHSRIS.DTRDY
5h (R) = Interrupt Source: SDHSRIS.WINHI
6h (R) = Interrupt Source: SDHSRIS.WINLO
7h (R) = Reserved; Interrupt
8h (R) = Reserved; Interrupt Priority: Lowest

0

Reserved

R

0h

Reserved. Always reads as 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

593

SDHS Registers

www.ti.com

22.5.2 SDHSMIS Register (Offset = 2h) [reset = 0h]
SDHSMIS is shown in Figure 22-28 and described in Table 22-13.
Return to Summary Table.
Masked Interrupt Status Register.
Figure 22-28. SDHSMIS Register
15

14

13

12

11

10

9

8

3
DTRDY
R-0h

2
SSTRG
R-0h

1
ACQDONE
R-0h

0
OVF
R-0h

Reserved
R-0h
7

6
Reserved
R-0h

5
WINLO
R-0h

4
WINHI
R-0h

Table 22-13. SDHSMIS Register Field Descriptions
Bit
15-6
5

Field

Type

Reset

Description

Reserved

R

0h

Reserved. Always reads as 0.

WINLO

R

0h

SDHS Window Low Masked Interrupt Status bit.
Reset type: PUC
0h (R) = No interrupt pending
1h (R) = Interrupt pending

4

WINHI

R

0h

SDHS Window High Masked Interrupt Status bit.
Reset type: PUC
0h (R) = No interrupt pending
1h (R) = Interrupt pending

3

DTRDY

R

0h

SDHS Data Ready Masked Interrupt Status bit.
Reset type: PUC
0h (R) = No interrupt pending
1h (R) = Interrupt pending

2

SSTRG

R

0h

SDHS Conversion Start Trigger Masked Interrupt Status bit.
Reset type: PUC
0h (R) = No interrupt pending
1h (R) = Interrupt pending

1

ACQDONE

R

0h

Acquisition Done Masked Interrupt Status bit.
Reset type: PUC
0h (R) = No interrupt pending
1h (R) = Interrupt pending

0

OVF

R

0h

SDHS Data Overflow Masked Interrupt Status bit.
Reset type: PUC
0h (R) = No interrupt pending
1h (R) = Interrupt pending

594

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

22.5.3 SDHSRIS Register (Offset = 4h) [reset = 0h]
SDHSRIS is shown in Figure 22-29 and described in Table 22-14.
Return to Summary Table.
Raw Interrupt Status Register. Read Only Register.
Figure 22-29. SDHSRIS Register
15
ISTOP
R-0h
7
Reserved
R-0h

14

13

12

11
Reserved
R-0h

10

9

8

6

5
WINLO
R-0h

4
WINHI
R-0h

3
DTRDY
R-0h

2
SSTRG
R-0h

1
ACQDONE
R-0h

0
OVF
R-0h

Table 22-14. SDHSRIS Register Field Descriptions
Bit

Field

Type

Reset

Description

15

ISTOP

R

0h

Incomplete Stop Raw Interrupt Status bit. Read Only. This bit is
asserted when data conversion has been interrupted and stopped
before completing the number of samples defined in
SDHSCTL2.SAMPSZ.
This bit is offered only for polling the event by reading this bit.
Interrupt is not available for this event. This bit must be de-asserted
by writing '1' to SDHSICR.ISTOP bit.
Reset type: PUC
0h (R) = No ISTOP event
1h (R) = Conversion has been interrupted and stopped before
completing the number of samples defined in SDHSCTL2.SAMPSZ.

14-6
5

Reserved

R

0h

Reserved. Always reads as 0.

WINLO

R

0h

SDHS Window Low Raw Interrupt Status bit. Read Only. This bit is
asserted when output data value is lower than the value in the
SDHSWINLOTH register.
Note:
1) The window comparator is only enalbed when
SDHSCTL2.WINCMPEN = 1.
2) Note: It takes 4 system clock cycles + 4 sampling periods to
update SDHSRIS.WINLO bit after the condition is detected.
Reset type: PUC
0h (R) = No new data is lower than the value in the SDHSWINLOTH
register
1h (R) = New data is low than the value in the SDHSWINLOTH
register

4

WINHI

R

0h

SDHS Window High Raw Interrupt Status bit. Read Only. This bit is
asserted when the output data value is higher than the value in the
SDHSWINHITH register.
Note:
1) The window comparator is only enalbed when
SDHSCTL2.WINCMPEN = 1.
2) It takes 4 system clock cycles + 4 sampling periods to update
SDHSRIS.WINHI after the condition is detected.
Reset type: PUC
0h (R) = No WINHI event
1h (R) = The output data value is higher than the value in the
SDHSWINHITH register

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

595

SDHS Registers

www.ti.com

Table 22-14. SDHSRIS Register Field Descriptions (continued)
Bit
3

Field

Type

Reset

Description

DTRDY

R

0h

SDHS Data Ready Raw Interrupt Status bit. Read Only. This bit is
asserted when a new conversion data is available in the data buffer
and remains set as long as the buffer is not empty regardless of the
SDHS data conversion status.
Note: the data buffer is automatically cleared when the data buffer
becomes empty.
Following two methods can be used to empty the data buffer after
completing data conversion if necessary:
1) When the DTC is enabled, no additional action is required. The
DTC reads the data buffer until the data buffer becomes empty.
2) When the DTC is disabled, then either read the SDHSDT register
until this bit is cleared or enable the DTC so that the DTC empties
the buffer. Either way, this bit will be cleared when the buffer
becomes empty.
Reset type: PUC
0h (R) = No DTRDY event
1h (R) = The data buffer has become empty.

2

SSTRG

R

0h

SDHS Conversion Start Trigger Raw Interrupt Status bit. Read Only.
Reset type: PUC
0h (R) = No SSTRG event
1h (R) = Converson Start signal has been asserted

1

ACQDONE

R

0h

Acquisition Done Raw Interrupt Status bit. Read Only. This bit is not
de-asserted by hardware. This bit is asserted when data conversion
is ended (either complete or incomplete).
If SDHSCTL2.DTOFF = 0, then this bit is asserted when data buffer
becomes empty (i.e. when DTC completes the data transfer).
If SDHSCTL2.DTCOFF = 1, then this bit is asserted immediately
when data conversion stops regardless of the data buffer status. In
this case, CPU can continuously read the SDHSDT register until the
data buffer becomes emtpy.
Reset type: PUC
0h (R) = No ACQDONE event
1h (R) = Data conversion has been finished (either complete or
incomplete).

0

OVF

R

0h

SDHS Data Overflow Raw Interrupt Status bit. Read Only. This bit is
not automatically de-asserted by hardware.
Reset type: PUC
0h (R) = No OVF event
1h (R) = When DTC is enabled (SDHSCTL2.DTCOFF = 0), DTC has
dropped at least one sample. This indicates that the system clock
needs to be increased.
When DTC is disabled (SDHSCTL2.DTCOFF = 1), At least one new
sample has been overwritten to SDHSDT register before the
previous value is read.

596

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

22.5.4 SDHSIMSC Register (Offset = 6h) [reset = 0h]
SDHSIMSC is shown in Figure 22-30 and described in Table 22-15.
Return to Summary Table.
Interrupt Mask Register.
Figure 22-30. SDHSIMSC Register
15
ISTOP
R-0h
7

14

13

12

11
Reserved
R-0h

10

9

8

6

5
WINLO
R/W-0h

4
WINHI
R/W-0h

3
DTRDY
R/W-0h

2
SSTRG
R/W-0h

1
ACQDONE
R/W-0h

0
OVF
R/W-0h

Reserved
R-0h

Table 22-15. SDHSIMSC Register Field Descriptions
Bit

Field

Type

Reset

Description

15

ISTOP

R

0h

Incomplete Stop Interrupt Mask bit. Read Only. Note that this
interrupt is always disabled. No interrupt will be generated.

Reserved

R

0h

Reserved. Always reads as 0.

WINLO

R/W

0h

SDHS Window Low Interrupt Mask bit.

14-6
5

Reset type: PUC
0h (R/W) = Interrupt is disabled
1h (R/W) = Interrupt is enabled
4

WINHI

R/W

0h

SDHS Window High Interrupt Mask bit.
Reset type: PUC
0h (R/W) = Interrupt is disabled
1h (R/W) = Interrupt is enabled

3

DTRDY

R/W

0h

SDHS Data Ready Interrupt Mask bit.
Reset type: PUC
0h (R/W) = Interrupt is disabled
1h (R/W) = Interrupt is enabled

2

SSTRG

R/W

0h

SDHS Start Conversion Trigger Interrupt Mask bit.
Reset type: PUC
0h (R/W) = Interrupt is disabled
1h (R/W) = Interrupt is enabled

1

ACQDONE

R/W

0h

Acquisition Done Interrupt Mask bit.
Reset type: PUC
0h (R/W) = Interrupt is disabled
1h (R/W) = Interrupt is enabled

0

OVF

R/W

0h

SDHS Data Overflow Interrupt Mask bit.
Reset type: PUC
0h (R/W) = Interrupt is disabled
1h (R/W) = Interrupt is enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

597

SDHS Registers

www.ti.com

22.5.5 SDHSICR Register (Offset = 8h) [reset = 0h]
SDHSICR is shown in Figure 22-31 and described in Table 22-16.
Return to Summary Table.
Interrupt Clear Register. Writing '1' to clear the corresponding bit in SDHSRIS register. Read as zero.
Note: This register can be used to clear an interrupt source without reading the SDHSIIDX register.
Figure 22-31. SDHSICR Register
15
ISTOP
W-0h
7

14

13

12

11
Reserved
R-0h

10

9

8

6

5
WINLO
W-0h

4
WINHI
W-0h

3
DTRDY
W1S-0h

2
SSTRG
W-0h

1
ACQDONE
W-0h

0
OVF
W-0h

Reserved
R-0h

Table 22-16. SDHSICR Register Field Descriptions
Bit

Field

Type

Reset

Description

15

ISTOP

W

0h

Incomplete Stop Interrupt Clear bit.

Reserved

R

0h

Reserved. Always reads as 0.

5

WINLO

W

0h

SDHS Window Low Interrupt Clear bit.

4

WINHI

W

0h

SDHS Window High Interrupt Clear bit.

3

DTRDY

W1S

0h

14-6

Reset type: PUC
SDHS Data Ready Interrupt Clear bit.
Note: SDHSRIS.DTRDY is automatically cleared by hardware when
the data buffer is empty. This bit can be used to de-assert
SDHSRIS.DTRDY only when SDHSRIS.DTRDY is asserted by
writing '1' to SDHSISR.DTRDY and the data buffer is empty.
Reset type: PUC

598

2

SSTRG

W

0h

SDHS Converstion Start Trigger Interrupt Clear bit.

1

ACQDONE

W

0h

Acquisition Done Interrupt Clear bit.

0

OVF

W

0h

SDHS Data Overflow Interrupt Clear bit.

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

22.5.6 SDHSISR Register (Offset = Ah) [reset = 0h]
SDHSISR is shown in Figure 22-32 and described in Table 22-17.
Return to Summary Table.
Interrupt Set Register. Writing '1' to assert the corresponding bit in SDHSRIS register. Read as zero.
Note: This register can be used for debugging purpose to generate an interrupt manually.
Figure 22-32. SDHSISR Register
15
ISTOP
W-0h
7

14

13

12

11
Reserved
R-0h

10

9

8

6

5
WINLO
W-0h

4
WINHI
W-0h

3
DTRDY
W1S-0h

2
SSTRG
W-0h

1
ACQDONE
W-0h

0
OVF
W-0h

Reserved
R-0h

Table 22-17. SDHSISR Register Field Descriptions
Bit

Field

Type

Reset

Description

15

ISTOP

W

0h

Incomplete Stop Interrupt Set bit.

Reserved

R

0h

Reserved. Always reads as 0.

5

WINLO

W

0h

SDHS Window Low Interrupt Set bit.

4

WINHI

W

0h

SDHS Window High Interrupt Set bit.

3

DTRDY

W1S

0h

14-6

Reset type: PUC
SDHS Data Ready Interrupt Set bit. Write 1 to set SDHSRIS.DTRDY
bit.
Note: This bit can be used to test the interrupt when the data buffer
is empty. In the case, SDHSRIS.DTRDY bit does not indicate actual
status of the data buffer. Once SDHSRIS.DTRDY is asserted by
SDHSISR.DTRDY, then it can be de-asserted by SDHSICR.DTRDY
bit as long as the data buffer is empty.
Reset type: PUC
2

SSTRG

W

0h

SDHS Start Conversion Trigger Interrupt Set bit.

1

ACQDONE

W

0h

Acquisition Done Interrupt Set bit.

0

OVF

W

0h

SDHS Data Overflow Interrupt Set bit.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

599

SDHS Registers

www.ti.com

22.5.7 SDHSDESCLO Register (Offset = Ch) [reset = 110h]
SDHSDESCLO is shown in Figure 22-33 and described in Table 22-18.
Return to Summary Table.
SDHS Descriptor Register L.
Figure 22-33. SDHSDESCLO Register
15

14

13

12

11

10

FEATUREVER
R-0h
7

6

9

8

1

0

INSTNUM
R-1h
5

4

3

2

MAJREV
R-1h

MINREV
R-0h

Table 22-18. SDHSDESCLO Register Field Descriptions
Field

Type

Reset

Description

15-12

Bit

FEATUREVER

R

0h

Feature Set for the module
Reset type: PUC

11-8

INSTNUM

R

1h

Instance Number within the device. This will be a parameter to the
RTL for modules that can have multiple instances

7-4

MAJREV

R

1h

Major Revision

3-0

MINREV

R

0h

Reset type: PUC
Minor Revision
Reset type: PUC

600

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

22.5.8 SDHSDESCHI Register (Offset = Eh) [reset = BB10h]
SDHSDESCHI is shown in Figure 22-34 and described in Table 22-19.
Return to Summary Table.
SDHS Descriptor Register H.
Figure 22-34. SDHSDESCHI Register
15

14

13

12

11

10

9

8
7
MODULEID
R-BB10h

6

5

4

3

2

1

0

Table 22-19. SDHSDESCHI Register Field Descriptions
Bit
15-0

Field

Type

Reset

Description

MODULEID

R

BB10h

Module Identifier.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

601

SDHS Registers

www.ti.com

22.5.9 SDHSCTL0 Register (Offset = 10h) [reset = 8001h]
SDHSCTL0 is shown in Figure 22-35 and described in Table 22-20.
Return to Summary Table.
SDHS Control Register 0.
When SDHSCTL3.TRGEN bit = 1 or SDHSCTL5.SDHS_LOCK bit = 1, this register is locked. In that case,
an attempt to update this registers will be ignored.
Figure 22-35. SDHSCTL0 Register
15
TRGSRC
R/W-1h

14
Reserved
R-0h

13

12

7
DALGN
R/W-0h

6

5
Reserved
R-0h

11

SHIFT
R/W-0h

10

9

OBR
R/W-0h
4

3

8
DFMSEL
R/W-0h

2
INTDLY
R/W-0h

1

0
AUTOSSDIS
R/W-1h

Table 22-20. SDHSCTL0 Register Field Descriptions
Bit

Field

Type

Reset

Description

15

TRGSRC

R/W

1h

SDHS trigger source select.
Reset type: PUC
0h (R/W) = Register control mode:
- SDHSCTL4.SDHSON is the source of the SHDS_PWR_UP/DOWN
signal
- SDHSCTL5.SSTART is the source of the
CONVERSION_START/STOP signal
1h (R/W) = ASQ control mode: The SDHS is controlled by the ASQ.
- ASQ_ACQARM signal from the ASQ is the source of the
SHDS_PWR_UP/DOWN signal
- ASQ_ACQTRIG signal from the ASQ is the source of the
CONVERSION_START/STOP signal

14

Reserved

R

0h

Reserved. Always reads as 0.

13-12

SHIFT

R/W

0h

MSB Shift.
Reset type: PUC
0h (R/W) = No Shift, MSB.
1h (R/W) = MSB - 1 (Shift left by 1 from filter out). If
SDHSCTL0.OBR = 2, then this configuration is invalid. No shift is
performed.
2h (R/W) = MSB -2 (Shift left by 2 from filter out). If SDHSCTL0.OBR
= 1, then this configuration is invalid. No shift is performed.
3h (R/W) = Reserved (No shift)

11-10

OBR

R/W

0h

Output Bit Resolution.
Reset type: PUC
0h (R/W) = 12-bit
1h (R/W) = 13-bit
2h (R/W) = 14-bit
3h (R/W) = Reserved (default: 12-bit)

DFMSEL

R/W

0h

Data format.

9-8

Reset type: PUC
0h (R/W) = 2's complement
1h (R/W) = Offset binary
2h (R/W) = Reserved (defaults to 0, 2s complement)
3h (R/W) = Reserved (defaults to 0, 2s complement)

602

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

Table 22-20. SDHSCTL0 Register Field Descriptions (continued)
Bit
7

Field

Type

Reset

Description

DALGN

R/W

0h

Data alignment.
Reset type: PUC
0h (R/W) = Right-aligned.
1h (R/W) = Left-aligned.

6-4

Reserved

R

0h

Reserved. Always reads as 0.

3-1

INTDLY

R/W

0h

DTRDY Interrupt delay select. This regiser can be used to discard
up to 7 samples after conversion start. Note that the skipped
samples will be lost.
Reset type: PUC
0h (R/W) = No dealy
1h (R/W) = 1 sample delay, 2nd sample is the first interrupt
2h (R/W) = 2 samples delay, 3rd sample is the first interrupt
3h (R/W) = 3 samples delay, 4rd sample is the first interrupt
4h (R/W) = 4 samples delay, 5th sample is the first interrupt
5h (R/W) = 5 samples delay, 6th sample is the first interrupt
6h (R/W) = 6 samples delay, 7th sample is the first interrupt
7h (R/W) = 7 samples delay, 8th sample is the first interrupt

0

AUTOSSDIS

R/W

1h

SDHS Auto Sample Start Disable.
Reset type: PUC
0h (R/W) = Auto Sample start enabled. SDHS is powered up when
the SHDS_PWR_UP applied, then data conversion is automatically
started once the SDHS is fully powered up.
1h (R/W) = Auto Sample start disabled. (This configuration must be
used when the ASQ controls the measurement sequences)
- SHDS_PWR_UP signal to turns on the SDHS
- CONVERSION_START signal to start data convesion

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

603

SDHS Registers

www.ti.com

22.5.10 SDHSCTL1 Register (Offset = 12h) [reset = 0h]
SDHSCTL1 is shown in Figure 22-36 and described in Table 22-21.
Return to Summary Table.
SDHS Control Register 1
When SDHSCTL3.TRGEN = 1 or SDHSCTL5.SDHS_LOCK = 1, this register is locked. In that case, an
attempt to update this registers will be ignored.
Figure 22-36. SDHSCTL1 Register
15

14

13

12

11

10

3

2

9

8

1

0

Reserved
R-0h
7

6

5

4

Reserved
R-0h

OSR
R/W-0h

Table 22-21. SDHSCTL1 Register Field Descriptions
Bit

Field

Type

Reset

Description

15-4

Reserved

R

0h

Reserved. Always reads as 0.

3-0

OSR

R/W

0h

Over Sampling Rate. Output Data Rate = Input Clock Frequency /
OSR.
Note: values not shown below are reserved.
Reset type: PUC
0h (R/W) = 10
1h (R/W) = 20
2h (R/W) = 40
3h (R/W) = 80
4h (R/W) = 160

604

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

22.5.11 SDHSCTL2 Register (Offset = 14h) [reset = 0h]
SDHSCTL2 is shown in Figure 22-37 and described in Table 22-22.
Return to Summary Table.
SDHS Control Register 2
When SDHSCTL3.TRGEN = 1 or SDHSCTL5.SDHS_LOCK = 1, this register is locked. In that case, an
attempt to update this registers will be ignored.
Figure 22-37. SDHSCTL2 Register
15
DTCOFF
R/W-0h

14
WINCMPEN
R/W-0h

13

7

6

5

12
Reserved
R-0h

11

4

10
SMPCTLOFF
R/W-0h

9

2

1

3

8
SMPSZ
R/W-0h
0

SMPSZ
R/W-0h

Table 22-22. SDHSCTL2 Register Field Descriptions
Bit

Field

Type

Reset

Description

15

DTCOFF

R/W

0h

Data Transfer Controller (DTC) Off.
Reset type: PUC
0h (R/W) = DTC enabled. The DTC automatically transfers the data
from the SDHSDT register to the address specified in the
SDHSDTCDA register.
1h (R/W) = DTC disabled. The data in the SDHSDT register must be
read by CPU, otherwise the overflow interrupt flag (SDHSRIS.OVF)
will eventually be asserted.

14

WINCMPEN

R/W

0h

Window Comparator Enable.
Note:
- For the samples skipped by SDHSCTL0.INTDLY, window
comparison is not applied.
- Window comparison is performed with the latest conversion result
before it is pushed to the internal buffer.
- Window comparison is still functional when the internal buffer is full.
Reset type: PUC
0h (R/W) = Window Comparator is disabled
1h (R/W) = Window Comparator is enabled

13-11

Reserved

R

0h

Reserved. Always reads as 0.

10

SMPCTLOFF

R/W

0h

Disable sampling size counting.
Reset type: PUC
0h (R/W) = Total sampling size is determined by SDHSCTL2.SMPSZ
bits. The SDHS automatically stops data conversion.
1h (R/W) = SDHSCTL2.SMPSZ bits are ignored. Conversion does
not stop until the trigger source selected by TRGSRC bits is
deasserted.

9-0

SMPSZ

R/W

0h

Total Sample Size. Total Sample Size = SMPSZ + 1.
Note that SDHSCTL2.SMPSZ includes the samples skipped by
SDHSCTL0.INTDLY:
- The total number of samples SDHS generates = SMPSZ + 1.
- The number of samples SDHS generates via SDHSDT register =
SMPSZ - INTDLY + 1.
Care must be taken when writing a value to SDHSCTL2.SMPSZ. If
SDHSCTL2.SMPSZ - SDHSCTL0.INTDLY + 1 <= 0, then no data
output to SDHSDT register.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

605

SDHS Registers

www.ti.com

22.5.12 SDHSCTL3 Register (Offset = 16h) [reset = 0h]
SDHSCTL3 is shown in Figure 22-38 and described in Table 22-23.
Return to Summary Table.
SDHS Control Register 3
Figure 22-38. SDHSCTL3 Register
15

14

13

12

11

10

9

8

3

2

1

0
TRIGEN
R/W-0h

RESERVED
R-0h
7

6

5

4
RESERVED
R-0h

Table 22-23. SDHSCTL3 Register Field Descriptions
Bit
15-1
0

Field

Type

Reset

Description

RESERVED

R

0h

Reserved. Always reads as 0.

TRIGEN

R/W

0h

SDHS Trigger Enable bit. This bit enables SDHS Trigger Source and
lock SDHS registers.
Note:
This bit is used to inform SDHS that register configuration has been
completed. This bit must be written as 1 before applying
SDHS_PWR_UP signal.
Once this bit is asserted, SDHSCTL0, SDHSCTL1, SDHSCTL2,
SDHSCTL7, SDHSWINHITH, SDHSWINLOTH, and SDHSDTCDA
registers are locked (not allowed to be modified). This bit is locked
once a SDHS_PWR_UP signal is applied. See
SDHSCTL5.SDHS_LOCK for the sequence of SDHS register
configuration.
Reset type: PUC
0h (R/W) = SDHS Trigger is disabled. Once this bit is de-asserted,
SDHSCTL0, SDHSCTL1, SDHSCTL2, SDHSCTL7, SDHSWINHITH,
SDHSWINLOTH, and SDHSDTCDA registers are unlocked (allowed
to be modified).
1h (R/W) = SDHS Trigger is enabled. Once this bit is asserted,
SDHSCTL0, SDHSCTL1, SDHSCTL2, SDHSCTL7,SDHSWINHITH,
SDHSWINLOTH, and SDHSDTCDA registers are locked (not
allowed to be modified).

606

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

22.5.13 SDHSCTL4 Register (Offset = 18h) [reset = 0h]
SDHSCTL4 is shown in Figure 22-39 and described in Table 22-24.
Return to Summary Table.
SDHS Control Register 4
Figure 22-39. SDHSCTL4 Register
15

14

13

12

11

10

9

8

3

2

1

0
SDHSON
R/W-0h

RESERVED
R-0h
7

6

5

4
RESERVED
R-0h

Table 22-24. SDHSCTL4 Register Field Descriptions
Bit
15-1
0

Field

Type

Reset

Description

RESERVED

R

0h

Reserved. Always reads as 0.

SDHSON

R/W

0h

Turn on the SDHS module. When SDHSCTL0.TRGSRC =0, SDHS
Power-up/down bit.
Note:
- When SDHSCTL0.AUTOSSDIS = 0 and SDHSCTL0.TRGSRC =0,
the SDHSON bit only powers up the SDHS, does not start sampling.
- When SDHSCTL0.AUTOSSDIS = 1 and SDHSCTL0.TRGSRC =0,
the SDHSON powers up the SDHS and starts sampling when the
SDHS is fully powered up.
- When SDHSCTL0.TRGSRC = 1, this bit is invalid.
Reset type: PUC
0h (R/W) = Power down the SDHS module
1h (R/W) = Power on the SDHS module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

607

SDHS Registers

www.ti.com

22.5.14 SDHSCTL5 Register (Offset = 1Ah) [reset = 0h]
SDHSCTL5 is shown in Figure 22-40 and described in Table 22-25.
Return to Summary Table.
SDHS Control Register 5
Figure 22-40. SDHSCTL5 Register
15

14

13

12
Reserved
R-0h

11

10

9

8
SDHS_LOCK
R-0h

7

6

5

4
Reserved
R-0h

3

2

1

0
SSTART
R/W-0h

Table 22-25. SDHSCTL5 Register Field Descriptions
Bit
15-9
8

Field

Type

Reset

Description

Reserved

R

0h

Reserved. Always reads as 0.

SDHS_LOCK

R

0h

SDHS register lock status bit. This bit is asserted when the SDHS
has received the SDHS_PWR_UP signal. When this bit is asserted,
SDHSCTL3 register is locked.
Note:
1)When SDHSCTL0.TRGSRC = 0:
Once SDHSCTL4.SDHSON is written as 1,
SDHSCTL5.SDHS_LOCK is asserted immediately.
In order to update SDHS registers, clear SDHSCTL4.SDHSON first,
and then SDHSCTL3.TRIGEN needs to be cleared.
2) When SDHSCTL0.TRGSRC = 1:
It takes up to 4 system clock cycles to assert
SDHSCTL5.SDHS_LOCK after detecting the SDHS_PWR_UP signal
(ASQ_ACQARM from the ASQ).
In order to update SDHS registers, the SDHS_PWR_UP signal
should be de-asserted first by the ASQ, then SDHSCTL3.TRIGEN
needs to be cleared.
3) SDHS register configuration sequence:
a) After reset (or device power up), configure SDHSCTL0,
SDHSCTL1, SDHSCTL2, SDHSCTL7, SDHSWINHITH,
SDHSWINLOTH, and SDHSDTCDA registers
b) write '1' to SDHSCTL3.TRIGEN bit => SDHSCTL0, SDHSCTL1,
SDHSCTL2, SDHSCTL7, SDHSWINHITH, SDHSWINLOTH, and
SDHSDTCDA registers are locked
c) Apply a SDHS_PWR_UP signal => SDHSCTL3 register is locked
d) Apply a CONVERSION_START signal if necessary
Reset type: PUC
0h (R) = SDHSCTL3 register is unlocked.
1h (R) = SDHSCTL3 register is locked as well as SDHSCTL0,
SDHSCTL1, SDHSCTL2, SDHSCTL7, SDHSWINHITH,
SDHSWINLOTH, and SDHSDTCDA registers. Only read is allowed.

7-1

608

Reserved

Sigma-Delta High Speed (SDHS)

R

0h

Reserved. Always reads as 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

Table 22-25. SDHSCTL5 Register Field Descriptions (continued)
Bit
0

Field

Type

Reset

Description

SSTART

R/W

0h

Start data conversion.
Note:
- When SDHSCTL0.AUTOSSDIS = 0 and SDHSCTL0.TRGSRC =0,
the SDHSON powers up the SDHS, the SSTART triggers data
conversion. It is very important to wait for the SDHS settling time (34
usec) before asserting SSTART from the time of SDHSON = 0 -> 1.
- When SDHSCTL0.AUTOSSDIS = 1 and SDHSCTL0.TRGSRC =0,
this bit is invalid.
- When SDHSCTL0.TRGSRC = 1, this bit is invalid.

Reset type: PUC
0h (R/W) = Stop conversion
1h (R/W) = Start conversion

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

609

SDHS Registers

www.ti.com

22.5.15 SDHSCTL6 Register (Offset = 1Ch) [reset = 19h]
SDHSCTL6 is shown in Figure 22-41 and described in Table 22-26.
Return to Summary Table.
SDHS Control Register 6
Figure 22-41. SDHSCTL6 Register
15

14

13

12

11

10

9

8

2

1

0

Reserved
R-0h
7

6

5

4

Reserved
R-0h

3
PGA_GAIN
R/W-19h

Table 22-26. SDHSCTL6 Register Field Descriptions
Field

Type

Reset

Description

15-6

Bit

Reserved

R

0h

Reserved. Always reads as 0.

5-0

PGA_GAIN

R/W

19h

PGA Gain Control bits. These bits control the Gain range of the
analog amplifier. See PGA Gain Table for details.
Reset type: PUC

610

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

22.5.16 SDHSCTL7 Register (Offset = 1Eh) [reset = Fh]
SDHSCTL7 is shown in Figure 22-42 and described in Table 22-27.
Return to Summary Table.
SDHS Control Register 7
Figure 22-42. SDHSCTL7 Register
15

14

13

12

11

10

9

8

3

2
MODOPTI
R/W-Fh

1

0

RESERVED
R-0h
7

6
RESERVED
R-0h

5

4

Table 22-27. SDHSCTL7 Register Field Descriptions
Field

Type

Reset

Description

15-5

Bit

RESERVED

R

0h

Reserved. Always reads as 0.

4-0

MODOPTI

R/W

Fh

SDHS Modulator Optimization bits.
In order to get the maximum performance of SDHS, it is
recommened to configure this bits based on the PLL output
frequency.
See below for details:
PLL output frequency (=Fmod) : MODOPTI bits
77MHz <= Fmod <= 80MHz: 0xC
74MHz <= Fmod < 77MHz: 0xD
71MHz <= Fmod < 74MHz: 0xE
68MHz <= Fmod < 71MHz: 0xF (Reset)
Where Fmod = PLL output frequency
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

611

SDHS Registers

www.ti.com

22.5.17 SDHSDT Register (Offset = 22h) [reset = 0h]
SDHSDT is shown in Figure 22-43 and described in Table 22-28.
Return to Summary Table.
SDHS Data Converstion Register
Figure 22-43. SDHSDT Register
15

14

13

12

11

10

9

8
7
SDHSDT
R-0h

6

5

4

3

2

1

0

Table 22-28. SDHSDT Register Field Descriptions
Bit
15-0

612

Field

Type

Reset

Description

SDHSDT

R

0h

Conversion Data.
Reset type: PUC

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

22.5.18 SDHSWINHITH Register (Offset = 24h) [reset = 0h]
SDHSWINHITH is shown in Figure 22-44 and described in Table 22-29.
Return to Summary Table.
SDHS Window Comparator High Threshold Register.
When SDHSCTL3.TRGEN = 1 or SDHSCTL5.SDHS_LOCK = 1, this register is locked. In that case, an
attempt to update this registers will be ignored.
Figure 22-44. SDHSWINHITH Register
15

14

13

12

11

10

9

8
7
WINHITH
R/W-0h

6

5

4

3

2

1

0

Table 22-29. SDHSWINHITH Register Field Descriptions
Bit
15-0

Field

Type

Reset

Description

WINHITH

R/W

0h

SDHS Window Comparator High Threshold Register.
The user always needs to ensure that the values in this register is in
the correct data format. When the conversion data is higher than the
value specified in this register, WINHI interrupt flag is asserted. It
only works during SDHS conversion is on-going.
Note: Once the condition is detected, it takes 4 system clock cycles
+ 4 sampling periods to update SDHSRIS.WINHI due to
synchonization requirement.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

613

SDHS Registers

www.ti.com

22.5.19 SDHSWINLOTH Register (Offset = 26h) [reset = 0h]
SDHSWINLOTH is shown in Figure 22-45 and described in Table 22-30.
Return to Summary Table.
SDHS Window Comparator Low Threshold Register.
When SDHSCTL3.TRGEN bit = 1 or SDHSCTL5.SDHS_LOCK bit = 1, this register is locked. In that case,
an attempt to update this registers will be ignored.
Figure 22-45. SDHSWINLOTH Register
15

14

13

12

11

10

9

8
7
WINLOTH
R/W-0h

6

5

4

3

2

1

0

Table 22-30. SDHSWINLOTH Register Field Descriptions
Bit
15-0

Field

Type

Reset

Description

WINLOTH

R/W

0h

SDHS Window Comparator Low Threshold Register.
The user always needs to ensure that the values in this register is in
the correct data format. When the conversion data is lower than the
value specified in this register, WINLO interrrupt flag is asserted. It
only works during SDHS conversion is on-going.
Note: Note: Once the condition is detected, it takes 4 system clock
cycles + 4 sampling periods to update RIS.WINLO due to
synchonization requirement.
Reset type: PUC

614

Sigma-Delta High Speed (SDHS)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

SDHS Registers

www.ti.com

22.5.20 SDHSDTCDA Register (Offset = 28h) [reset = 0h]
SDHSDTCDA is shown in Figure 22-46 and described in Table 22-31.
Return to Summary Table.
DTC destination offset address. As DTC transfers data, this register value increases by 1 at every data
trasfer.
Note: When SDHSCTL3.TRGEN bit = 1 or SDHSCTL5.SDHS_LOCK bit = 1, this register is locked. In that
case, an attempt to update this registers will be ignored.
Figure 22-46. SDHSDTCDA Register
15
Reserved
R-0h

14

13

12

7

6

5

4

11
DTCDA
R/W-0h

10

9

8

3

2

1

0

DTCDA
R/W-0h

Table 22-31. SDHSDTCDA Register Field Descriptions
Bit

Field

Type

Reset

Description

15

Reserved

R

0h

Reserved. Always reads as 0.

DTCDA

R/W

0h

DTC destination offset address. Destination location = base address
+ DTCDA x 2.

14-0

The address offset for DTC destination memory. The size of the
destination memory is up to 64KB. The address register value
increases by 1 at every data trasfer.
Note: Care must be taken not to go beyond the available memory
address range (specified by the device datasheet). The DTC is able
to accesses to the LEA RAM only.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Sigma-Delta High Speed (SDHS)

615

Chapter 23
SLAU367O – October 2012 – Revised December 2017

Metering Test Interface (MTIF)
This chapter describes the MSP430 Metering Test Interface (MTIF) module.
Topic

23.1
23.2
23.3
23.4

616

...........................................................................................................................
MTIF
MTIF
MTIF
MTIF

Introduction .............................................................................................
Operation.................................................................................................
Block Diagram ..........................................................................................
Registers .................................................................................................

Metering Test Interface (MTIF)

Page

617
618
621
622

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MTIF Introduction

www.ti.com

23.1 MTIF Introduction
The Metering Test Interface (MTIF) is module is used to implement a simple pulse interface indicating the
current consumption measured by the meter. MTIF provides three independent password-controlled
access ports. One for the pulse generator, one for the pulse counter, and one for configuration and
maintenance. Because all three passwords are different, a clear software separation can be achieved.
Figure 23-1 shows an assumed software stack of a meter that is divided into smaller blocks, thus allowing
certification. The measurement software block measures the consumption and delivers its values to the
MTIF pulse generator. The accounting software picks up the pulses from the pulse counter and generates
the consumption values and records them. During a field inspection or calibration, the MTIF pulses are
brought out to the MTIF output pins without changing the operation mode of measurement software and
accounting software. A scheduler or operating system can invoke measurement software and accounting
software at independent rates. The pulses on the MTIF output pin are generated in the power modes AM,
LPM0, LPM1, LPM2, LPM3 and LPM3.5.
Scheduler or operating system (trustworthy, certified, real time)
- Provides sufficient software separation to satisfy WELMEC and others
- Low-power mode cycling (LPM0, LPM1, LPM2, LPM3, LPM3.5)
- Manages time-controlled execution and exception handling
Invoked on activation

Setup (after reset)

For example, invoked
once per second
Invoked on request

Plain measurement
software block
- Accesses sensors
- Calculates consumption
- Unlocks MRIF with “PGPW”
- Sends “legal relevant data”
as pulse count to MTIF

Calibration request
Inspection request using TPPW

PGPW
protected
access

TPPW
protected
access

PCPW
protected
access

Pulse
Generator

Pulse
Interface

Pulse
Counter

For example, invoked
once per second

Plain accounting software
- Receives “legal relevant
data” as pulse counts using
“PCPW”
- Maintains redundancy
statistics and other data
(for example, daily, weekly,
monthly, yearly consumption)

(Field) Inspection device
Calibration device
or manufacturer test bench

Figure 23-1. MTIF Use Case
Figure 23-2 shows the MTIF in its operation. At t = 0 seconds, a consumption of 5 units is measured, this
consumption increases stepwise, first to 7 units then to 17 units per second. The single measurement
values are converted into pulses by the pulse generator, then transferred to and counted by the pulse
counter. While the MTIF output is enabled, the pulse train is sent to the MTIF output.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Metering Test Interface (MTIF)

617

MTIF Operation
Consumption
(normalized to units)

www.ti.com

17

7
5
0

1

2

3

4

5

6

Time
[sec]

ACT

power mode

LPM3.5

consumption [units] 5

5

7

7

17

17

17

pulses inside
MTIF ouput enable
MTIF output
pulse grid frequency

Figure 23-2. MTIF Pulse Diagram

23.2 MTIF Operation

bitField “TPPW”
on writes
MTIFTPCTL.ACTIVATE
MTIFTPCTL.TPISEL
MTIFTPCTL.TPIE
MTIFTPCTL.TPOE

The MTIF module can be configured in active mode like any other MSP430 module. The inner core of
MTIF operates as the RTC from a power domain that is still active in LPM3.5.

bitField “PGPW”
on writes
MTIFPGCNF.PGFS
MTIFPGKVAL.KVAL
MTIFPGCTL.PGUR
MTIFPGCTL.PKUR
MTIFPGSR.PGUA
MTIFPGSR.PKUA

PGPW
protected
access

Pulse
Generator

TPPW
protected
access

Pulse
Interface

PCPW
protected
access

Pulse
Counter

bitField “PCPW”
on writes
MTIFPCCNF.PCCLR
MTIFPCCNF.PCEN
MTIFPCPCR.PCR
MTIFPCCTL.PCRR
MTIFPCSR.PCRA
MTIFPCSR.PCOFL

two pin interface with MTIF_OUT_IN, MTIF_PIN_EN or
three pin interface with MTIF_OUT, MTIF_IN, MTIF_PIN_EN

Figure 23-3. MTIF Internal Interfaces

23.2.1 MTIF and RTC_C
MTIF and RTC share the same clock source, power, and resets. MTIF can therefore be kept synchronous
with the RTC. With an RTC operated from 32.768 kHz, the MTIF can generate pulse rates from 8 to 1024
pulses per second.

618

Metering Test Interface (MTIF)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MTIF Operation

www.ti.com

23.2.2 Initialization of the MTIF
Before configuring the MTIF, the RTC module must be configured for operation. Chose the maximum
pulse frequency for operation and select PGFS accordingly (see Table 23-1). In the following initialization
example, a grid frequency of 256 Hz is chosen. The grid frequency is the frequency at which the inner
state machines of the pulse generator and the pulse counter run. The width of pulses and the gaps are
derived from this frequency. A frequency of 256 Hz allows a pulse rate of 128 pulses per seconds. The
frame duration is 1 second. Within this second, up to 127 pulses can be generated. No pulse is generated
in the update time slot.
Table 23-2 summarizes the process of initializing MTIF. The MTIF requires a running RTC, therefore the
RTC is initialized first. Next, the MTIF pulse generator, pins, and counter are configured. Optionally, the
pulse counter can be cleared (regulations in some countries require that the counter can be cleared only
once in a meter’s lifetime).
Table 23-1. PGFS Values
PGFS

Pulses Rate

Frame Duration

Update Time Slot

Grid Frequency

0

8

16 s

62 ms before frame end

16 Hz

1

16

8s

31 ms before frame end

32 Hz

2

32

4s

15 ms before frame end

64 Hz

3

64

2s

8 ms before frame end

128 Hz

4

128

1s

4 ms before frame end

256 Hz

5

256

500 ms

2 ms before frame end

512 Hz

6

512

250 ms

1 ms before frame end

1024 Hz

7

1024

125 ms

500 µs before frame end

2048 Hz

Table 23-2. MTIF Initialization
Order

Required

Comment

1

Configure and enable the RTC

See RTC module chapter for details

2

Write to MTIFPGCNF (PGPW = 0x5A, PGFS = 5,
PGCLR = 1, PGEN = 1)

Set grid frequency to 256 Hz, clear and enable the MTIF
pulse generator

3

Write to MTIFPGCTL (PGPW = 0x5A, PGUR = 1)

Request update of grid frequency setting

4

Check for MTIFPGST.PGUA = 1

Check for acknowledge of PGFS setting

5

Write to MTIFPCCNF (PCPW = 0xA5, PCCLR = 1,
PCEN = 1)

Clear and enable MTIF pulse counter

6

Write to MTIFTPCTL (TPPW = 0xC3, ACTIVATE = 1,
TPOE = 1)

Enable MTIF output enable pin to control MTIF output

23.2.3 Setting the Pulse Rate
To set the pulse rate to n pulses per frame, write the required pulse count n into MTIFPGKVAL.KVAL = n
with proper password and request an update by setting MTIFPGCTL.PKUR = 1 with password. The
update occurs at the last time slot of the current frame. MTIFPGCTL.PKUA may be polled after for 1 to
verify an update of MTIFPGKVAL.
Table 23-3 shows a simple example to set the pulse rate.
Table 23-3. Setting the Pulse Rate
Order

LPM3 operation

LPM3.5 operation
Check if MTIFPGSR.PGUA = 0

Comment

1

Check if MTIFPGSR.PGUA = 0

2

Write to MTIFPGKVAL(PGPW = 0x5A, Write to MTIFPGKVAL(PGPW = 0x5A,
Set to n pulses
KVAL = n)
KVAL = n)

3

Write to MTIFPGCTL (PCPW = 0x5A,
PGUR = 1)

Write to MTIFPGCTL (PCPW = 0x5A,
PGUR = 1)

Request update of pulse generator

4

Enter LPM3

Enter LPM3.5

Optional, when required

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Check if last request is complete

Metering Test Interface (MTIF) 619

MTIF Operation

www.ti.com

23.2.4 Reading Pulse Counter
To read the pulse counter perform a read request to update the pulse counter read register by writing
MTIFPCCTL.PCRR = 1 with password, then wait for the acknowledge on MTIFPCST.PCRA for
confirmation.
Table 23-4. Reading the Pulse Rate
Order

LPM3 operation

Comment

1

Check if MTIFPCSR.PCRA = 0

Check if last request is complete

2

Write to MTIFPCCTL (PGPW = 0xA5, PCRR = 1)

Request update of pulse counter read register

3

Wait for MTIFPCSR .PCRA = 1

Wait until update request is acknowledged

4

Read MTIFPCR register

Treat the count value as signed 16 bit value

5

Subtract the old (previous) value from new value; this is
done after reading the PCSR.OFL bit

Calculate the difference with wrap around correction when
negative

MTIFPCSE.PCOFL indicates an wrap around of the pulse counter. MTIFPCSR.PCOFL can be considered
as the 17th bit of the counter. XOR the previous read with the current read value to determine the overflow
condition.

23.2.5 Synchronizing Pulse Generator Timing to Application
At the very first start up, perform an update request: set MTIFPGCTL.PGUR, poll MTIFPGSR.PGUA for
changing, then read the RTC prescaler registers after the MTIFPGSR.PGUA change. The RTC prescaler
value indicates the moment of the update slot for the selected frame rate. Alternatively, set the RTC
prescaler registers after a MTIFPGSR.PGUA change for synchronization.
In most cases, the pulse generator frame rate and the measurement rate of the meter are kept the same.
If the MTIFPGKVAL register is updated much faster than the pulse generator frame frequency, the value
read during the update time slot is used for the next frame.

23.2.6 Various Resets During MTIF Operation
The MTIF module provides immunity against most system reset types. A power-up clear (PUC) resets the
watchdog timer (WDT), and password violation resets do not cause any changes in setting, count, and
behavior of the MTIF setting.
A power-on reset (POR) stops the RTC and low-frequency crystal and sets MTIFPGCNF.PGEN = 0 and
MTIFPCCNF.PCEN = 0. After a POR, reactivate the module and settings and record the POR event as an
error with a timestamp for later reference, if required by the application.
A POR (for example, after waking up from LPMx.5) resets the MTIF pin configuration, but the content of
the pulse generator setting and the pulse counter are not affected. Reinitialize the MTIF pin configuration
by software.
A BOR (resulting from a power supply drop) resets the MTIF module, including the pulse generating
setting and pulse counter value.
A reset caused by the RST pin resets the MTIF module. To avoid this type of reset, select the NMI
functionality on the RST/NMI pin. Restore SFRRPCR.SYSNMI on any other reset.

23.2.7 PUC Reset During Register Access
PUC resets can occur during register access of the pulse generator registers, pulse counter registers, or
pin configuration registers. A PUC reset requires immediate action during the following reset start-up
sequence, because the configuration and counter value may be corrupted. Alternatively, use software
signatures in FRAM and Hoare_Monitors to keep track of what was happening and resolve the situation.
The application can keep FRAM structures (in separate storage clusters) that contain "old_value",
"new_value", "transaction_number", and "transaction_state". Record and update each phase of the
transaction. This allows recovery after any reset on the next start-up.

620

Metering Test Interface (MTIF)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MTIF Operation

www.ti.com

23.2.8 Enabling the Pulse Generator and the Pulse Counter
The configuration bits MTIFPGCNT.PGEN and MTIFPCCNF.PCEN are expected to be static during a
regular metering operation. At start-up of the meter application, a reset caused by the RST pin after
recovery from an power loss, the MTIF behaves as follows:
The prescaler of the pulse generator is cleared when the pulse generator is disabled. After the application
enables MTIFPGCTL.PGEN, the pulse generation starts after 2 to 3 cycles (with the LF clock at 32 kHz).
Even though the pulse counter may be cleared independent of MTIFPGCTL.PCEN, make sure that the
counter is cleared either before or after 2 to 3 LFCLK cycles to avoid conflicts.
The pulse counter increments on high active pulses. Shorter pulses (artifacts) may be generated when
enabling and disabling the MTIF output pin. A complete MTIFPCCTL.PCEN disable and enable cycle can
cause up to two increments of the pulse counter when using the external pulse input pin.

23.3 MTIF Block Diagram

Pulse Generator

Test pulse
input function
port
request

Device
Port Logic

Test pulse
output function

Test pulse
enable function

Figure 23-4 shows the interior of the MTIF module with an 3-pin MTIF I/O configuration. The dashed lines
represent the power domain crossings to areas that are powered in LPM0 to LPM3.5.

Pulse Counter

PCOFL
PC

3.5

TPIE

PCCLR
Control and
synchronization

PCEN

3.5

load

syn

3.5

load

TPISEL

load

TPOE

GFS

ACTIVATE

iGFS

Internal
Test
Pulse

...

PCRA

PCRR
Control, synchronization,
and clock division

3.5

PKUR
PKUA
PGUR
PGUA
PGEN

en
clr

load

16-bit read register

Port Control Sync
3.5

load

PGFS

1
0

3.5

syn

CPU access, read only

PCR

1 0

syn

...

CPU access, read or write
(not surviving LPM 3.5)

K

17-bit counter

iK

KVAL

8-bit counter

PG and PC in RTC power domain
PG and PC internal registers on RTC brownout

fG (grid frequency)

LFXT
(32 kHz)

PGCLR

Figure 23-4. MTIF Block Diagram

23.3.1 Test Interface Input
The input does not feature any filter logic. To filter low-frequency contact bouncing, use an external RC
filter. For higher ESD, EMI, and RFI tolerance, use appropriate shielding and filtering. The enable function
of the test interface input is located in a separate register to fulfill the functional isolation requirement of
various regulations.
The MTIF module supports one input and one output, which can be on separate pins or on a shared pin,
depending on the specific device.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Metering Test Interface (MTIF)

621

MTIF Registers

www.ti.com

23.4 MTIF Registers
Table 23-5 lists the memory-mapped registers for the MTIF. All register offset addresses not listed in
Table 23-5 should be considered as reserved locations and the register contents should not be modified.
Table 23-5. MTIF Registers
Offset

622

Acronym

Register Name

Type

Reset

Section

0h

MTIFPGCNF

Pulse Generator Configuration Register

read-write

6970h

Section 23.4.1

2h

MTIFPGKVAL

Pulse Generator Value Register

read-write

6900h

Section 23.4.2

4h

MTIFPGCTL

Pulse Generator Control Register

read-write

6900h

Section 23.4.3

6h

MTIFPGSR

Pulse Generator Status Register

read-write

0h

Section 23.4.4

8h

MTIFPCCNF

Pulse Counter Configuration Register

read-write

9600h

Section 23.4.5

Ah

MTIFPCR

Pulse Counter Value Register

read-write

Ch

MTIFPCCTL

Pulse Counter Control Register

read-write

0h

Section 23.4.7

Eh

MTIFPCSR

Pulse Counter Status Register

read-write

0h

Section 23.4.8

10h

MTIFTPCTL

Measurement Test Port Control Register

read-write

F00h

Section 23.4.9

Metering Test Interface (MTIF)

Section 23.4.6

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MTIF Registers

www.ti.com

23.4.1 MTIFPGCNF Register (Offset = 0h) [reset = 6970h]
MTIFPGCNF is shown in Figure 23-5 and described in Table 23-6.
Return to Summary Table.
Pulse Generator Configuration Register
Figure 23-5. MTIFPGCNF Register
15

14

13

12

11

10

9

8

3
RESERVED
R/W-0h

2
PGCLR
RH/W1S-0h

1
RESERVED
R/W-0h

0
PGEN
R/W-0h

PGPW
RH/W-69h
7
RESERVED
R/W-0h

6

5
PGFS
R/W-7h

4

Table 23-6. MTIFPGCNF Register Field Descriptions
Bit

Field

Type

Reset

Description

PGPW

RH/W

69h

PG password. Always reads as 0x69. Must be written as 0x5A for
register changes to be effective. This password differs from the pin
configuration and pulse counter passwords.
Reset type: PUC
5Ah (W) = PGPW : Must be written as 0x5A for register changes to
be effective.
69h (R) = PGPW_R : Read value while locked

RESERVED

R/W

0h

PGFS

R/W

7h

3

RESERVED

R/W

0h

2

PGCLR

RH/W1S

0h

1

RESERVED

R/W

0h

0

PGEN

R/W

0h

15-8

7
6-4

PG pulse grid frequency select. This value determines at which time
grid pulses are generated. The pulse generator frame frequency is
an 1/256th of this (MTIFPGCNF.PGEN has to be one to perform a
change).
Reset type: PUC
0h (R/W) = Pulse grid frequency is set to 8 Hz (nominal)
1h (R/W) = Pulse grid frequency is set to 16 Hz (nominal)
2h (R/W) = Pulse grid frequency is set to 32 Hz (nominal)
3h (R/W) = Pulse grid frequency is set to 64 Hz (nominal)
4h (R/W) = Pulse grid frequency is set to 128 Hz (nominal)
5h (R/W) = Pulse grid frequency is set to 256 Hz (nominal)
6h (R/W) = Pulse grid frequency is set to 512 Hz (nominal)
7h (R/W) = Pulse grid frequency is set to 1024 Hz (nominal) default

PG pulse counter clear. This bit allows to clear the pulse generator
(MTIFPGCNF.PGEN has to be set to one to perform a clear). Note!:
A clear request is being latched and released after the clear is
executed. While MTIFPGCNF.PCEN =0 a time shift is generated.
The clear occurs then after the clock is reenabled. This bit is for
triggering only; it's state cannot be read back
Reset type: PUC

PG sub module enable. This bit enables the PG sub module when
set to one
Reset type: POR

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Metering Test Interface (MTIF)

623

MTIF Registers

www.ti.com

23.4.2 MTIFPGKVAL Register (Offset = 2h) [reset = 6900h]
MTIFPGKVAL is shown in Figure 23-6 and described in Table 23-7.
Return to Summary Table.
Pulse Generator Value Register
Figure 23-6. MTIFPGKVAL Register
15

14

13

12

11

10

9

8

3
KVAL
R/W-0h

2

1

0

PGPW
R/W-69h
7
RESERVED
R/W-0h

6

5

4

Table 23-7. MTIFPGKVAL Register Field Descriptions
Bit
15-8

7
6-0

624

Field

Type

Reset

Description

PGPW

R/W

69h

PG password. Always reads as 0x69. Must be written as 0x5A for
register changes to be effective. This password differs from the pin
configuration and pulse counter passwords.
Reset type: PUC
5Ah (W) = PGPW : Must be written as 0x5A for register changes to
be effective.
69h (R) = PGPW_R : Read value while locked

RESERVED

R/W

0h

KVAL

R/W

0h

Metering Test Interface (MTIF)

Pulse Count Number. This register value determines how many
pulses are generated withing 256 periods of the pulse grid
frequency(with password protection as in MTIFPGCNF).
MTIFPGCNF.PGEN has to be one to perform a change.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MTIF Registers

www.ti.com

23.4.3 MTIFPGCTL Register (Offset = 4h) [reset = 6900h]
MTIFPGCTL is shown in Figure 23-7 and described in Table 23-8.
Return to Summary Table.
Pulse Generator Control Register
Figure 23-7. MTIFPGCTL Register
15

14

13

12

11

10

9

8

3

2

1
PGUR
RH/W1S-0h

0
PKUR
RH/W1S-0h

PGPW
R/W-69h
7

6

5

4
RESERVED
R/W-0h

Table 23-8. MTIFPGCTL Register Field Descriptions
Field

Type

Reset

Description

15-8

Bit

PGPW

R/W

69h

PG password. Always reads as 0x69. Must be written as 0x5A for
register changes to be effective. This password differs from the pin
configuration and pulse counter passwords.
Reset type: PUC
5Ah (W) = PGPW : Must be written as 0x5A for register changes to
be effective.
69h (R) = PGPW_R : Read value while locked

7-2

RESERVED

R/W

0h

1

PGUR

RH/W1S

0h

Pulse Grid Frequency Update Request (with password protection as
in MTIFPGCNF). The update of PGFS occurs during the frequency
grid slot 0xff (e.g. in the last 4ms of an second with an pulse grid
frequency of 256Hz)
Reset type: PUC

0

PKUR

RH/W1S

0h

Pulse K-Count Update Request (with password protection as in
MTIFPGCNF). The update of KVAL occurs during the frequency grid
slot 0xff (e.g. in the last 4ms of a second with a pulse grid frequency
of 256Hz)
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Metering Test Interface (MTIF)

625

MTIF Registers

www.ti.com

23.4.4 MTIFPGSR Register (Offset = 6h) [reset = 0h]
MTIFPGSR is shown in Figure 23-8 and described in Table 23-9.
Return to Summary Table.
Pulse Generator Status Register
Figure 23-8. MTIFPGSR Register
15

14

13

12

11

10

9

8

3

2

1
PGUA
RH/W-0h

0
PKUA
RH/W-0h

RESERVED
R/W-0h
7

6

5

4
RESERVED
R/W-0h

Table 23-9. MTIFPGSR Register Field Descriptions
Bit

Field

Type

Reset

RESERVED

R/W

0h

1

PGUA

RH/W

0h

Pulse Grid Frequency Update Acknowledge. This acknowledges a
MTIFPGSR.PGUR 2-3 LFCLK cycles after the PGFS has been
updated.
Reset type: PUC

0

PKUA

RH/W

0h

Pulse K-Count Update Acknowledge. This acknowledges a
MTIFPGSR.PKUR 2-3 LFCLK cycles after the K-values have been
updated.
Reset type: PUC

15-2

626

Metering Test Interface (MTIF)

Description

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MTIF Registers

www.ti.com

23.4.5 MTIFPCCNF Register (Offset = 8h) [reset = 9600h]
MTIFPCCNF is shown in Figure 23-9 and described in Table 23-10.
Return to Summary Table.
Pulse Counter Configuration Register
Figure 23-9. MTIFPCCNF Register
15

14

13

12

11

10

9

8

3

2
PCCLR
RH/W1S-0h

1
RESERVED
R/W-0h

0
PCEN
R/W1S-0h

PCPW
RH/W-96h
7

6

5
RESERVED
R/W-0h

4

Table 23-10. MTIFPCCNF Register Field Descriptions
Field

Type

Reset

Description

15-8

Bit

PCPW

RH/W

96h

Pulse counter password. Always reads as 0x96. Must be written as
0xA5 for register changes to be effective. This password differs from
the pin configuration and pulse generator passwords
Reset type: PUC
96h (R) = PCPW_R : Read value while locked
A5h (W) = PCPW : 0xA5

7-3

RESERVED

R/W

0h

2

PCCLR

RH/W1S

0h

1

RESERVED

R/W

0h

0

PCEN

R/W1S

0h

Pulse counter clear. This bit allows to clear the pulse counter when
set to one (MTIFPCCNF.PCEN has to be one to perform a clear).
Note!: A clear request is being latched and released after the clear is
executed. While MTIFPCCNF.PCEN=0 a time shift is generated. The
clear occurs then after the clock is reenabled. This bit is for
triggering only; it's state cannot be read back
Reset type: PUC

PC sub module enable. This bit enables the PC sub module when
set to one
Reset type: POR

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Metering Test Interface (MTIF)

627

MTIF Registers

www.ti.com

23.4.6 MTIFPCR Register (Offset = Ah) [reset = 0h]
MTIFPCR is shown in Figure 23-10 and described in Table 23-11.
Return to Summary Table.
Pulse Counter Value Register
Figure 23-10. MTIFPCR Register
15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

PCR
RH-

Table 23-11. MTIFPCR Register Field Descriptions

628

Bit

Field

Type

Reset

Description

15-0

PCR

RH

0

Pulse Counter value register. This register returns the count value
from the pulse counter.

Metering Test Interface (MTIF)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MTIF Registers

www.ti.com

23.4.7 MTIFPCCTL Register (Offset = Ch) [reset = 0h]
MTIFPCCTL is shown in Figure 23-11 and described in Table 23-12.
Return to Summary Table.
Pulse Counter Control Register
Figure 23-11. MTIFPCCTL Register
15

14

13

12

11

10

9

8

3

2

1

0
PCRR
RH/W1S-0h

RESERVED
R/W-0h
7

6

5

4
RESERVED
R/W-0h

Table 23-12. MTIFPCCTL Register Field Descriptions
Bit
15-1
0

Field

Type

Reset

RESERVED

R/W

0h

PCRR

RH/W1S

0h

Description

Pulse Counter Read Request. Set this to request an update of
MTIFPCR read register from the actual counter.
Reset type: PUC

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Metering Test Interface (MTIF)

629

MTIF Registers

www.ti.com

23.4.8 MTIFPCSR Register (Offset = Eh) [reset = 0h]
MTIFPCSR is shown in Figure 23-12 and described in Table 23-13.
Return to Summary Table.
Pulse Counter Status Register
Figure 23-12. MTIFPCSR Register
15

14

13

12

11

10

9

8

3

2

1
PCOFL
RH/W-0h

0
PCRA
RH/W-0h

RESERVED
R/W-0h
7

6

5

4
RESERVED
R/W-0h

Table 23-13. MTIFPCSR Register Field Descriptions
Bit

Field

Type

Reset

RESERVED

R/W

0h

1

PCOFL

RH/W

0h

Pulse counter overflow. This bit indicates an overflow of the pulse
counter when its value changes since the last read request
procedure. It is basically the 17th bit of the counter
Reset type: PUC

0

PCRA

RH/W

0h

Pulse counter read acknowledge. This acknowledges the update of
the PCR register as response to the MTIFPCCTL.PCRR read
request. Note!: A read request is being latched. A temporary disable
(MTIFPCCNF.PCEN=0) allows a time shift. The read will then be
performed and acknowledged after the clock is reenabled.
Reset type: PUC

15-2

630

Metering Test Interface (MTIF)

Description

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

MTIF Registers

www.ti.com

23.4.9 MTIFTPCTL Register (Offset = 10h) [reset = F00h]
MTIFTPCTL is shown in Figure 23-13 and described in Table 23-14.
Return to Summary Table.
Measurement Test Port Control Register
Figure 23-13. MTIFTPCTL Register
15

14

13

12

11

10

9

8

3
ACTIVATE
R/W-0h

2
TPISEL
R/W-0h

1
TPIE
R/W-0h

0
TPOE
R/W-0h

TPPW
RH/W-Fh
7

6

5

4

RESERVED
R/W-0h

Table 23-14. MTIFTPCTL Register Field Descriptions
Bit

Field

Type

Reset

Description

15-8

TPPW

RH/W

Fh

Test port password. Always reads as 0x0F. Must be written as 0xC3
for register changes to be effective.This password differs from the
pulse generator and pulse counter passwords
Reset type: PUC
0Fh (R) = TPPW_R : Read value while locked
C3h (W) = TPPW : 0xC3

7-4

RESERVED

R/W

0h

3

ACTIVATE

R/W

0h

Test port terminal enable activation. This value determines if the
testport output is enabled solely by software or by software and
hardware.
Reset type: POR
0h (R/W) = The test port output is enabled solely by TPOE (enabled
if MTIFTPCTL.TPOE=1)
1h (R/W) = The testport output requires both MTIFTPCTL.TPOE=1
and the MTPE_IN_ENABLE pin to be high to be enabled

2

TPISEL

R/W

0h

Test port input select for pulse counter. This value determines the
source for the pulse counter.
Reset type: POR
0h (R/W) = The pulse generator is used as input
1h (R/W) = The test port input terminal is selected as input

1

TPIE

R/W

0h

Test port input enable. This bit allows to enable the test input port
Reset type: POR

0

TPOE

R/W

0h

Test port output enable. This bit allows to enable the test pulse
output when set to one
Reset type: POR

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Metering Test Interface (MTIF)

631

Chapter 24
SLAU367O – October 2012 – Revised December 2017

Watchdog Timer (WDT_A)
The watchdog timer is a 32-bit timer that can be used as a watchdog or as an interval timer. This chapter
describes the watchdog timer. The enhanced watchdog timer, WDT_A, is implemented in all devices.
Topic

24.1
24.2
24.3

632

...........................................................................................................................

Page

WDT_A Introduction.......................................................................................... 633
WDT_A Operation ............................................................................................. 635
WDT_A Registers ............................................................................................. 637

Watchdog Timer (WDT_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

WDT_A Introduction

www.ti.com

24.1 WDT_A Introduction
The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart
after a software problem occurs. If the selected time interval expires, a system reset is generated. If the
watchdog function is not needed in an application, the module can be configured as an interval timer and
can generate interrupts at selected time intervals.
Features of the watchdog timer module include:
• Eight software-selectable time intervals
• Watchdog mode
• Interval mode
• Password-protected access to Watchdog Timer Control (WDTCTL) register
• Selectable clock source
• Can be stopped to conserve power
• Clock fail-safe feature
The watchdog timer block diagram is shown in Figure 24-1.
NOTE:

Watchdog timer powers up active.
After a PUC, the WDT_A module is automatically configured in the watchdog mode with an
initial approximately 32-ms reset interval using the SMCLK. The user must set up or halt the
WDT_A before the initial reset interval expires.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Watchdog Timer (WDT_A)

633

WDT_A Introduction

www.ti.com

32-bit WDT extension
00
01
Int.
Flag

10

WDTQn

11

Q23
Q19

00
01
10
11
PUC

0

16-bit
Counter

1

CLK

1

MDB

MSB

Q27

0

Pulse
Generator

WDTCTL

Q31

0

Q15

1

Q13

1

Password
Compare

Q9
Q6
Clear

16-bit
Counter

(Asyn)

CLK

0
1
0

EQU
Write Enable
Low Byte

EQU
SMCLK

00

ACLK

01

VLOCLK

10

X_CLK

11

R/W

WDTHOLD
WDTSSEL1
WDTSSEL0
WDTTMSEL
WDTCNTCL
WDTIS2
WDTIS1
WDTIS0

LSB

X_CLK request
Clock
Request
Logic

SMCLK request
ACLK request
VLOCLK request

Figure 24-1. Watchdog Timer Block Diagram

634

Watchdog Timer (WDT_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

WDT_A Operation

www.ti.com

24.2 WDT_A Operation
The watchdog timer module can be configured as either a watchdog or interval timer with the WDTCTL
register. WDTCTL is a 16-bit password-protected read/write register. Any read or write access must use
word instructions, and write accesses must include the write password 05Ah in the upper byte. A write to
WDTCTL with any value other than 05Ah in the upper byte is a password violation and causes a PUC
system reset, regardless of timer mode. Any read of WDTCTL reads 069h in the upper byte. Byte reads
on WDTCTL high or low part result in the value of the low byte. Writing byte wide to upper or lower parts
of WDTCTL results in a PUC.

24.2.1 Watchdog Timer Counter (WDTCNT)
The WDTCNT is a 32-bit up counter that is not directly accessible by software. The WDTCNT is controlled
and its time intervals are selected through the Watchdog Timer Control (WDTCTL) register. The WDTCNT
can be sourced from SMCLK, ACLK, VLOCLK, and X_CLK on some devices. The clock source is
selected with the WDTSSEL bits. The timer interval is selected with the WDTIS bits.

24.2.2 Watchdog Mode
After a PUC condition, the WDT module is configured in the watchdog mode with an initial 32-ms
(approximate) reset interval using the SMCLK. The user must set up, halt, or clear the watchdog timer
before this initial reset interval expires, or another PUC is generated. When the watchdog timer is
configured to operate in watchdog mode, either writing to WDTCTL with an incorrect password or
expiration of the selected time interval triggers a PUC. A PUC resets the watchdog timer to its default
condition.

24.2.3 Interval Timer Mode
Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can be used to provide
periodic interrupts. In interval timer mode, the WDTIFG flag is set at the expiration of the selected time
interval. A PUC is not generated in interval timer mode at expiration of the selected timer interval, and the
WDTIFG enable bit WDTIE remains unchanged
When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an interrupt. The WDTIFG
interrupt flag is automatically reset when its interrupt request is serviced, or may be reset by software. The
interrupt vector address in interval timer mode is different from that in watchdog mode.
NOTE:

Modifying the watchdog timer
The watchdog timer interval should be changed together with WDTCNTCL = 1 in a single
instruction to avoid an unexpected immediate PUC or interrupt. The watchdog timer should
be halted before changing the clock source to avoid a possible incorrect interval.

24.2.4 Watchdog Timer Interrupts
The watchdog timer uses two bits in the SFRs for interrupt control:
• WDT interrupt flag, WDTIFG, located in SFRIFG1.0
• WDT interrupt enable, WDTIE, located in SFRIE1.0
When using the watchdog timer in the watchdog mode, the WDTIFG flag sources a reset vector interrupt.
The WDTIFG can be used by the reset interrupt service routine to determine if the watchdog caused the
device to reset. If the flag is set, the watchdog timer initiated the reset condition, either by timing out or by
a password violation. If WDTIFG is cleared, the reset was caused by a different source.
When using the watchdog timer in interval timer mode, the WDTIFG flag is set after the selected time
interval and requests a watchdog timer interval timer interrupt if the WDTIE and the GIE bits are set. The
interval timer interrupt vector is different from the reset vector used in watchdog mode. In interval timer
mode, the WDTIFG flag is reset automatically when the interrupt is serviced, or can be reset with
software.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Watchdog Timer (WDT_A)

635

WDT_A Operation

www.ti.com

24.2.5 Fail-Safe Features
The WDT_A provides a fail-safe clocking feature, ensuring the clock to the WDT_A cannot be disabled
while in watchdog mode. This means the low-power modes may be affected by the choice for the WDT_A
clock.
In watchdog mode the WDT_A prevents LPMx.5 because in LPMx.5 the WDT_A cannot operate.
If SMCLK or ACLK fails as the WDT_A clock source, LFMODCLK clock is automatically selected as the
WDT_A clock source.
When the WDT_A module is used in interval timer mode, there are no fail-safe features.

24.2.6 Operation in Low-Power Modes
The devices have several low-power modes. Different clock signals are available in different low-power
modes. The requirements of the application and the type of clocking that is used determine how the
WDT_A should be configured. For example, the WDT_A should not be configured in watchdog mode with
a clock source that is originally sourced from DCO, XT1 in high-frequency mode, or XT2 sourcing SMCLK
or ACLK if the user wants to use low-power mode 3. In this case, SMCLK or ACLK would remain enabled,
increasing the current consumption of LPM3. When the watchdog timer is not required, the WDTHOLD bit
can be used to hold the WDTCNT, reducing power consumption.
Any write operation to WDTCTL must be a word operation with 05Ah (WDTPW) in the upper byte (see
Example 24-1).
Example 24-1. Writes to WDTCTL
; Periodically clear an active watchdog
MOV #WDTPW+WDTIS2+WDTIS1+WDTCNTCL,&WDTCTL
;
; Change watchdog timer interval
MOV #WDTPW+WDTCNTCL+SSEL,&WDTCTL
;
; Stop the watchdog
MOV #WDTPW+WDTHOLD,&WDTCTL
;
; Change WDT to interval timer mode, clock/8192 interval
MOV #WDTPW+WDTCNTCL+WDTTMSEL+WDTIS2+WDTIS0,&WDTCTL

636

Watchdog Timer (WDT_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

WDT_A Registers

www.ti.com

24.3 WDT_A Registers
The watchdog timer module registers are listed in Table 24-1. The base address for the watchdog timer
module registers and special function registers (SFRs) can be found in the device-specific data sheets.
The address offset is given in Table 24-1.
NOTE: All registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 24-1. WDT_A Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

0Ch

WDTCTL

Watchdog Timer Control

Read/write

Word

6904h

Section 24.3.1

0Ch

WDTCTL_L

Read/write

Byte

04h

0Dh

WDTCTL_H

Read/write

Byte

69h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Watchdog Timer (WDT_A)

637

WDT_A Registers

www.ti.com

24.3.1 WDTCTL Register
Watchdog Timer Control Register
Figure 24-2. WDTCTL Register
15

14

13

12

11

10

9

8

WDTPW
rw

rw

7
WDTHOLD
rw-0

6

rw

rw

rw

rw

rw

rw

5

4
WDTTMSEL
rw-0

3
WDTCNTCL
r0(w)

2

1
WDTIS
rw-0

0

WDTSSEL
rw-0

rw-0

rw-1

rw-0

Table 24-2. WDTCTL Register Description
Bit

Field

Type

Reset

Description

15-8

WDTPW

RW

69h

Watchdog timer password. Always read as 069h. Must be written as 05Ah, or a
PUC is generated.

7

WDTHOLD

RW

0h

Watchdog timer hold. This bit stops the watchdog timer. Setting WDTHOLD = 1
when the WDT is not in use conserves power.
0b = Watchdog timer is not stopped
1b = Watchdog timer is stopped

6-5

WDTSSEL

RW

0h

Watchdog timer clock source select
00b = SMCLK
01b = ACLK
10b = VLOCLK
11b = X_CLK, same as VLOCLK if not defined differently in data sheet

4

WDTTMSEL

RW

0h

Watchdog timer mode select
0b = Watchdog mode
1b = Interval timer mode

3

WDTCNTCL

RW

0h

Watchdog timer counter clear. Setting WDTCNTCL = 1 clears the count value to
0000h. WDTCNTCL is automatically reset.
0b = No action
1b = WDTCNT = 0000h

2-0

WDTIS

RW

4h

Watchdog timer interval select. These bits select the watchdog timer interval to
set the WDTIFG flag or generate a PUC.
000b = Watchdog clock source / 231 (18:12:16 at 32.768 kHz)
001b = Watchdog clock source / 227 (01:08:16 at 32.768 kHz)
010b = Watchdog clock source / 223 (00:04:16 at 32.768 kHz)
011b = Watchdog clock source / 219 (00:00:16 at 32.768 kHz)
100b = Watchdog clock source / 215 (1 s at 32.768 kHz)
101b = Watchdog clock source / 213 (250 ms at 32.768 kHz)
110b = Watchdog clock source / 29 (15.625 ms at 32.768 kHz)
111b = Watchdog clock source / 26 (1.95 ms at 32.768 kHz)

638

Watchdog Timer (WDT_A)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 25
SLAU367O – October 2012 – Revised December 2017

Timer_A
Timer_A is a 16-bit timer and counter with multiple capture/compare registers. There can be multiple
Timer_A modules on a given device (see the device-specific data sheet). This chapter describes the
operation and use of the Timer_A module.
Topic

25.1
25.2
25.3

...........................................................................................................................

Page

Timer_A Introduction ........................................................................................ 640
Timer_A Operation............................................................................................ 642
Timer_A Registers ............................................................................................ 654

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

639

Timer_A Introduction

www.ti.com

25.1 Timer_A Introduction
Timer_A is a 16-bit timer/counter with up to seven capture/compare registers. Timer_A can support
multiple capture/compares, PWM outputs, and interval timing. Timer_A also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.
Timer_A features include:
• Asynchronous 16-bit timer/counter with four operating modes
• Selectable and configurable clock source
• Up to seven configurable capture/compare registers
• Configurable outputs with pulse width modulation (PWM) capability
• Asynchronous input and output latching
• Interrupt vector register for fast decoding of all Timer_A interrupts
The block diagram of Timer_A is shown in Figure 25-1.
NOTE:

Use of the word count
Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter, an
associated action does not take place.

NOTE:

Nomenclature
There may be multiple instantiations of Timer_A on a given device. The prefix TAx is used,
where x is a greater than equal to zero indicating the Timer_A instantiation. For devices with
one instantiation, x = 0. The suffix n, where n = 0 to 6, represents the specific
capture/compare registers associated with the Timer_A instantiation.

640

Timer_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A Introduction

www.ti.com

Timer Block
TASSEL

ID

2
TAxCLK

00

ACLK

01

SMCLK

10

INCLK

11

IDEX
2

Timer Clock

3
Divider
/1.../8

Divider
/1/2/4/8

MC

15

0

2

16-bit Timer
TAxR
Clear

Count
Mode

RC

EQU0

Set TAxCTL
TAIFG

TACLR

CCR0
CCR1
CCR2
CCR3
CCR4
CCR5
CCR6
CCIS

CM

2

2

CCI6A

00

CCI6B

01

GND

10

VCC

11

logic

COV
SCS

Capture
Mode
Timer Clock

15

0

0
Sync

TAxCCR6

1

Comparator 6

CCI

EQU6
SCCI

Y

A
EN

CAP
0
1

Set TAxCCR6
CCIFG

OUT
EQU0

Output
Unit4

D Set Q
Timer Clock

3

OUT6 Signal

Reset

POR

OUTMOD
Copyright © 2016, Texas Instruments Incorporated

Figure 25-1. Timer_A Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

641

Timer_A Operation

www.ti.com

25.2 Timer_A Operation
The Timer_A module is configured with user software. The setup and operation of Timer_A are discussed
in the following sections.

25.2.1 16-Bit Timer Counter
The 16-bit timer/counter register, TAxR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TAxR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.
TAR may be cleared by setting the TACLR bit. Setting TACLR also clears the clock divider counter logic
(the divider setting remains unchanged) and count direction for up/down mode.
NOTE:

Modifying Timer_A registers
TI recommends stopping the timer before modifying its operation (with exception of the
interrupt enable, interrupt flag, and TACLR) to avoid errant operating conditions.
When the timer clock is asynchronous to the CPU clock, any read from TAxR should occur
while the timer is not operating or the results may be unpredictable. Alternatively, the timer
may be read multiple times while operating, and a majority vote taken in software to
determine the correct reading. Any write to TAxR takes effect immediately.

25.2.1.1 Clock Source Select and Divider
The timer clock can be sourced from ACLK, SMCLK, or externally from TAxCLK or INCLK. The clock
source is selected with the TASSEL bits. The selected clock source may be passed directly to the timer or
divided by 2, 4, or 8, using the ID bits. The selected clock source can be further divided by 2, 3, 4, 5, 6, 7,
or 8 using the TAIDEX bits. The timer clock divider logic is reset when TACLR is set.
NOTE:

Timer_A dividers
After programming ID or TAIDEX bits, set the TACLR bit. This clears the contents of TAxR
and resets the clock divider logic to a defined state. The clock dividers are implemented as
down counters. Therefore, when the TACLR bit is cleared, the timer clock immediately
begins clocking at the first rising edge of the Timer_A clock source selected with the
TASSEL bits and continues clocking at the divider settings set by the ID and TAIDEX bits.

25.2.2 Starting the Timer
The timer may be started or restarted in the following ways:
• The timer counts when MC > { 0 } and the clock source is active.
• When the timer mode is either up or up/down, the timer may be stopped by writing 0 to TAxCCR0. The
timer may then be restarted by writing a nonzero value to TAxCCR0. In this scenario, the timer starts
incrementing in the up direction from zero.

642

Timer_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A Operation

www.ti.com

25.2.3 Timer Mode Control
The timer has four modes of operation: stop, up, continuous, and up/down (see Table 25-1). The
operating mode is selected with the MC bits.
Table 25-1. Timer Modes
MC

Mode

00

Stop

01

Up

10

Continuous

11

Up/down

Description
The timer is halted.
The timer repeatedly counts from zero to the value of TAxCCR0
The timer repeatedly counts from zero to 0FFFFh.
The timer repeatedly counts from zero up to the value of TAxCCR0 and back down to zero.

25.2.3.1 Up Mode
The up mode is used if the timer period must be different from 0FFFFh counts. The timer repeatedly
counts up to the value of compare register TAxCCR0, which defines the period (see Figure 25-2). The
number of timer counts in the period is TAxCCR0 + 1. When the timer value equals TAxCCR0, the timer
restarts counting from zero. If up mode is selected when the timer value is greater than TAxCCR0, the
timer immediately restarts counting from zero.

TAxCCR0

Figure 25-2. Up Mode
The TAxCCR0 CCIFG interrupt flag is set when the timer counts to the TAxCCR0 value. The TAIFG
interrupt flag is set when the timer counts from TAxCCR0 to zero. Figure 25-3 shows the flag set cycle.
Timer Clock
Timer

CCR0-1

CCR0

0h

1h

CCR0-1

CCR0

0h

Set TAxCTL TAIFG
Set TAxCCR0 CCIFG

Figure 25-3. Up Mode Flag Setting

25.2.3.1.1 Changing Period Register TAxCCR0
When changing TAxCCR0 while the timer is running, if the new period is greater than or equal to the old
period or greater than the current count value, the timer counts up to the new period. If the new period is
less than the current count value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

643

Timer_A Operation

www.ti.com

25.2.3.2 Continuous Mode
In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts from zero as shown in
Figure 25-4. The capture/compare register TAxCCR0 works the same way as the other capture/compare
registers.
0FFFFh

0h

Figure 25-4. Continuous Mode
The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero. Figure 25-5 shows the flag set
cycle.
Timer Clock
Timer

FFFEh

0h

FFFFh

1h

FFFEh

FFFFh

0h

Set TAxCTL TAIFG

Figure 25-5. Continuous Mode Flag Setting

25.2.3.3 Use of Continuous Mode
The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TAxCCRn
register in the interrupt service routine. Figure 25-6 shows two separate time intervals, t0 and t1, being
added to the capture/compare registers. In this usage, the time interval is controlled by hardware, not
software, without impact from interrupt latency. Up to n (where n = 0 to 6), independent time intervals or
output frequencies can be generated using capture/compare registers.
TAxCCR1b
TAxCCR0b

TAxCCR1c
TAxCCR0c

TAxCCR0d

0FFFFh
TAxCCR1a

TAxCCR1d

TAxCCR0a

t0

t0

t1

t0

t1

t1

Figure 25-6. Continuous Mode Time Intervals

644

Timer_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A Operation

www.ti.com

Time intervals can be produced with other modes as well, where TAxCCR0 is used as the period register.
Their handling is more complex since the sum of the old TAxCCRn data and the new period can be higher
than the TAxCCR0 value. When the previous TAxCCRn value plus tx is greater than the TAxCCR0 data,
the TAxCCR0 value must be subtracted to obtain the correct time interval.
25.2.3.4 Up/Down Mode
The up/down mode is used if the timer period must be different from 0FFFFh counts, and if symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare register TAxCCR0
and back down to zero (see Figure 25-7). The period is twice the value in TAxCCR0.
0FFFFh
TAxCCR0

0h

Figure 25-7. Up/Down Mode
The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TACLR bit must be set to clear the
direction. Setting TACLR also clears the TAR value and the clock divider counter logic (the divider setting
remains unchanged).
In up/down mode, the TAxCCR0 CCIFG interrupt flag and the TAIFG interrupt flag are set only once
during a period, separated by one-half the timer period. The TAxCCR0 CCIFG interrupt flag is set when
the timer counts from TAxCCR0-1 to TAxCCR0, and TAIFG is set when the timer completes counting
down from 0001h to 0000h. Figure 25-8 shows the flag set cycle.
Timer Clock
Timer

CCR0-1

CCR0

CCR0-1

CCR0-2

1h

0h

Up/Down
Set TAxCTL TAIFG
Set TAxCCR0 CCIFG

Figure 25-8. Up/Down Mode Flag Setting

25.2.3.4.1 Changing Period Register TAxCCR0
When changing TAxCCR0 while the timer is running and counting in the down direction, the timer
continues its descent until it reaches zero. The new period takes effect after the counter counts down to
zero.
When the timer is counting in the up direction, and the new period is greater than or equal to the old
period or greater than the current count value, the timer counts up to the new period before counting
down.
When the timer is counting in the up direction and the new period is less than the current count value, the
timer begins counting down. However, one additional count may occur before the counter begins counting
down.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

645

Timer_A Operation

www.ti.com

25.2.3.5 Use of Up/Down Mode
The up/down mode supports applications that require dead times between output signals (see
Section 25.2.5). For example, to avoid overload conditions, two outputs driving an H-bridge must never be
in a high state simultaneously. In the example shown in Figure 25-9, the tdead is:
tdead = ttimer × (TAxCCR1 – TAxCCR2)
Where:
tdead = Time during which both outputs need to be inactive
ttimer = Cycle time of the timer clock
TAxCCRn = Content of capture/compare register n
The TAxCCRn registers are not buffered. They update immediately when written to. Therefore, any
required dead time is not maintained automatically.
0FFFFh
TAxCCR0
TAxCCR1
TAxCCR2
0h
Dead Time
Output Mode 6: Toggle/Set

Output Mode 2: Toggle/Reset
EQU1
EQU1
EQU1
EQU1
TAIFG
EQU0
EQU0
EQU2 EQU2
EQU2
EQU2

TAIFG

Interrupt Events

Figure 25-9. Output Unit in Up/Down Mode

25.2.4 Capture/Compare Blocks
Up to seven identical capture/compare blocks, TAxCCRn (where n = 0 to 7), are present in Timer_A. Any
of the blocks may be used to capture the timer data or to generate time intervals.
25.2.4.1 Capture Mode
The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to
external pins or internal signals and are selected with the CCIS bits. The CM bits select the capture edge
of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input signal. If a
capture occurs:
• The timer value is copied into the TAxCCRn register.
• The interrupt flag CCIFG is set.
The input signal level can be read at any time from the CCI bit. Devices may have different signals
connected to CCIxA and CCIxB. See the device-specific data sheet for the connections of these signals.
The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit synchronizes the capture with the next timer clock. Setting the SCS bit to synchronize the capture
signal with the timer clock is recommended (see Figure 25-10).

646

Timer_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A Operation

www.ti.com

Timer Clock
Timer

n–2

n–1

n

n+1

n+2

n+3

n+4

CCI
Capture
Set TAxCCRn CCIFG

Figure 25-10. Capture Signal (SCS = 1)

NOTE:

Changing Capture Inputs
Changing capture inputs while in capture mode may cause unintended capture events. To
avoid this scenario, capture inputs should only be changed when capture mode is disabled
(CM = {0} or CAP = 0).

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs as shown in Figure 2511. COV must be reset with software.
Idle
Capture
No
Capture
Taken

Capture Read
Read
Taken
Capture

Capture
Taken
Capture

Capture Read and No Capture

Capture
Clear Bit COV
in Register TAxCCTLn
Second
Capture
Taken
COV = 1

Idle

Figure 25-11. Capture Cycle

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

647

Timer_A Operation

www.ti.com

25.2.4.1.1 Capture Initiated by Software
Captures can be initiated by software. The CMx bits can be set for capture on both edges. Software then
sets CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a
capture each time CCIS0 changes state:
MOV

#CAP+SCS+CCIS1+CM_3,&TA0CCTL1

XOR

#CCIS0,&TA0CCTL1

NOTE:

; Setup TA0CCTL1, synch. capture mode
; Event trigger on both edges of capture input.
; TA0CCR1 = TA0R

Capture Initiated by Software
In general, changing capture inputs while in capture mode may cause unintended capture
events. For this scenario, switching the capture input between VCC and GND, disabling the
capture mode is not required.

25.2.4.2 Compare Mode
The compare mode is selected when CAP = 0. The compare mode is used to generate PWM output
signals or interrupts at specific time intervals. When TAxR counts to the value in a TAxCCRn, where n
represents the specific capture/compare register.
• Interrupt flag CCIFG is set.
• Internal signal EQUn = 1.
• EQUn affects the output according to the output mode.
• The input signal CCI is latched into SCCI.

25.2.5 Output Unit
Each capture/compare block contains an output unit. The output unit is used to generate output signals,
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQU0 and EQUn signals.
25.2.5.1 Output Modes
The output modes are defined by the OUTMOD bits and are described in Table 25-2. The OUTn signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0 because EQUn = EQU0.
Table 25-2. Output Modes

648

OUTMODx

Mode

000

Output

The output signal OUTn is defined by the OUT bit. The OUTn signal updates immediately
when OUT is updated.

001

Set

The output is set when the timer counts to the TAxCCRn value. It remains set until a reset
of the timer, or until another output mode is selected and affects the output.

010

Toggle/Reset

The output is toggled when the timer counts to the TAxCCRn value. It is reset when the
timer counts to the TAxCCR0 value.

011

Set/Reset

The output is set when the timer counts to the TAxCCRn value. It is reset when the timer
counts to the TAxCCR0 value.

100

Toggle

The output is toggled when the timer counts to the TAxCCRn value. The output period is
double the timer period.

101

Reset

The output is reset when the timer counts to the TAxCCRn value. It remains reset until
another output mode is selected and affects the output.

110

Toggle/Set

The output is toggled when the timer counts to the TAxCCRn value. It is set when the timer
counts to the TAxCCR0 value.

111

Reset/Set

The output is reset when the timer counts to the TAxCCRn value. It is set when the timer
counts to the TAxCCR0 value.

Timer_A

Description

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A Operation

www.ti.com

25.2.5.1.1 Output Example—Timer in Up Mode
The OUTn signal is changed when the timer counts up to the TAxCCRn value and rolls from TAxCCR0 to
zero, depending on the output mode. An example is shown in Figure 25-12 using TAxCCR0 and
TAxCCR1.
0FFFFh
TAxCCR0
TAxCCR1

0h
Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set
EQU0
TAIFG

EQU1

EQU0
TAIFG

EQU1

EQU0
TAIFG

Interrupt Events

Figure 25-12. Output Example – Timer in Up Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

649

Timer_A Operation

www.ti.com

25.2.5.1.2 Output Example – Timer in Continuous Mode
The OUTn signal is changed when the timer reaches the TAxCCRn and TAxCCR0 values, depending on
the output mode. An example is shown in Figure 25-13 using TAxCCR0 and TAxCCR1.
0FFFFh
TAxCCR0
TAxCCR1
0h
Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set
TAIFG

EQU1

EQU0 TAIFG

EQU1

EQU0

Interrupt Events

Figure 25-13. Output Example – Timer in Continuous Mode

650

Timer_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A Operation

www.ti.com

25.2.5.1.3 Output Example – Timer in Up/Down Mode
The OUTn signal changes when the timer equals TAxCCRn in either count direction and when the timer
equals TAxCCR0, depending on the output mode. An example is shown in Figure 25-14 using TAxCCR0
and TAxCCR2.
0FFFFh
TAxCCR0
TAxCCR2

0h
Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set

TAIFG

EQU2
EQU2
EQU2
EQU2
EQU0
EQU0
TAIFG

Interrupt Events

Figure 25-14. Output Example – Timer in Up/Down Mode

NOTE:

Switching between output modes
When switching between output modes, one of the OUTMOD bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur, because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:
BIS
BIC

#OUTMOD_7,&TA0CCTL1
#OUTMOD,&TA0CCTL1

; Set output mode=7
; Clear unwanted bits

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

651

Timer_A Operation

www.ti.com

25.2.6 Timer_A Interrupts
Two interrupt vectors are associated with the 16-bit Timer_A module:
• TAxCCR0 interrupt vector for TAxCCR0 CCIFG
• TAxIV interrupt vector for all other CCIFG flags and TAIFG
In capture mode, any CCIFG flag is set when a timer value is captured in the associated TAxCCRn
register. In compare mode, any CCIFG flag is set if TAxR counts to the associated TAxCCRn value.
Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their
corresponding CCIE bit and the GIE bit are set.
25.2.6.1 TAxCCR0 Interrupt
The TAxCCR0 CCIFG flag has the highest Timer_A interrupt priority and has a dedicated interrupt vector
as shown in Figure 25-15. The TAxCCR0 CCIFG flag is automatically reset when the TAxCCR0 interrupt
request is serviced.
Capture

EQU0
CAP

D
Timer Clock

Set

CCIE
Q

IRQ, Interrupt Service Requested

Reset
IRACC, Interrupt Request Accepted
POR

Figure 25-15. Capture/Compare TAxCCR0 Interrupt Flag

25.2.6.2 TAxIV, Interrupt Vector Generator
The TAxCCRy CCIFG flags and TAIFG flags are prioritized and combined to source a single interrupt
vector. The interrupt vector register TAxIV is used to determine which flag requested an interrupt.
The highest-priority enabled interrupt generates a number in the TAxIV register (see register description).
This number can be evaluated or added to the program counter to automatically enter the appropriate
software routine. Disabled Timer_A interrupts do not affect the TAxIV value.
Any access, read or write, of the TAxIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TAxCCR1 and TAxCCR2 CCIFG flags are set when the interrupt service routine
accesses the TAxIV register, TAxCCR1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TAxCCR2 CCIFG flag generates another interrupt.

652

Timer_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A Operation

www.ti.com

25.2.6.2.1 TAxIV Software Example
The following software example shows the recommended use of TAxIV and the handling overhead. The
TAxIV value is added to the PC to automatically jump to the appropriate routine. The example assumes a
single instantiation of the largest timer configuration available.
The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:
• Capture/compare block TA0CCR0: 11 cycles
• Capture/compare blocks TA0CCR1, TA0CCR2, TA0CCR3, TA0CCR4, TA0CCR5, TA0CCR6:
16 cycles
• Timer overflow TA0IFG: 14 cycles
; Interrupt handler for TA0CCR0 CCIFG.
CCIFG_0_HND
;
...
; Start of handler Interrupt latency
RETI

Cycles
6
5

; Interrupt handler for TA0IFG, TA0CCR1 through TA0CCR6 CCIFG.
TA0_HND

...
ADD
RETI
JMP
JMP
JMP
JMP
JMP
JMP

&TA0IV,PC
CCIFG_1_HND
CCIFG_2_HND
CCIFG_3_HND
CCIFG_4_HND
CCIFG_5_HND
CCIFG_6_HND

;
;
;
;
;
;
;
;
;

Interrupt latency
Add offset to Jump table
Vector 0: No interrupt
Vector 2: TA0CCR1
Vector 4: TA0CCR2
Vector 6: TA0CCR3
Vector 8: TA0CCR4
Vector 10: TA0CCR5
Vector 12: TA0CCR6

6
3
5
2
2
2
2
2
2

TA0IFG_HND
...
RETI

; Vector 14: TA0IFG Flag
; Task starts here

CCIFG_6_HND
...
RETI

; Vector 12: TA0CCR6
; Task starts here
; Back to main program

5

CCIFG_5_HND
...
RETI

; Vector 10: TA0CCR5
; Task starts here
; Back to main program

5

CCIFG_4_HND
...
RETI

; Vector 8: TA0CCR4
; Task starts here
; Back to main program

5

CCIFG_3_HND
...
RETI

; Vector 6: TA0CCR3
; Task starts here
; Back to main program

5

CCIFG_2_HND
...
RETI

; Vector 4: TA0CCR2
; Task starts here
; Back to main program

5

CCIFG_1_HND
...
RETI

; Vector 2: TA0CCR1
; Task starts here
; Back to main program

5

5

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

653

Timer_A Registers

www.ti.com

25.3 Timer_A Registers
Timer_A registers are listed in Table 25-3 for the largest configuration available. The base address can be
found in the device-specific data sheet.
Table 25-3. Timer_A Registers

654

Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

TAxCTL

Timer_Ax Control

Read/write

Word

0000h

Section 25.3.1

02h

TAxCCTL0

Timer_Ax Capture/Compare Control 0

Read/write

Word

0000h

Section 25.3.3

04h

TAxCCTL1

Timer_Ax Capture/Compare Control 1

Read/write

Word

0000h

Section 25.3.3

06h

TAxCCTL2

Timer_Ax Capture/Compare Control 2

Read/write

Word

0000h

Section 25.3.3

08h

TAxCCTL3

Timer_Ax Capture/Compare Control 3

Read/write

Word

0000h

Section 25.3.3

0Ah

TAxCCTL4

Timer_Ax Capture/Compare Control 4

Read/write

Word

0000h

Section 25.3.3

0Ch

TAxCCTL5

Timer_Ax Capture/Compare Control 5

Read/write

Word

0000h

Section 25.3.3

0Eh

TAxCCTL6

Timer_Ax Capture/Compare Control 6

Read/write

Word

0000h

Section 25.3.3

10h

TAxR

Timer_Ax Counter

Read/write

Word

0000h

Section 25.3.2

12h

TAxCCR0

Timer_Ax Capture/Compare 0

Read/write

Word

0000h

Section 25.3.4

14h

TAxCCR1

Timer_Ax Capture/Compare 1

Read/write

Word

0000h

Section 25.3.4

16h

TAxCCR2

Timer_Ax Capture/Compare 2

Read/write

Word

0000h

Section 25.3.4

18h

TAxCCR3

Timer_Ax Capture/Compare 3

Read/write

Word

0000h

Section 25.3.4

1Ah

TAxCCR4

Timer_Ax Capture/Compare 4

Read/write

Word

0000h

Section 25.3.4

1Ch

TAxCCR5

Timer_Ax Capture/Compare 5

Read/write

Word

0000h

Section 25.3.4

1Eh

TAxCCR6

Timer_Ax Capture/Compare 6

Read/write

Word

0000h

Section 25.3.4

2Eh

TAxIV

Timer_Ax Interrupt Vector

Read only

Word

0000h

Section 25.3.5

20h

TAxEX0

Timer_Ax Expansion 0

Read/write

Word

0000h

Section 25.3.6

Timer_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A Registers

www.ti.com

25.3.1 TAxCTL Register
Timer_Ax Control Register
Figure 25-16. TAxCTL Register
15

14

13

12

11

10

9

Reserved
rw-(0)
7

rw-(0)

rw-(0)

6

5

ID
rw-(0)

rw-(0)

rw-(0)

rw-(0)

rw-(0)

rw-(0)

4

3
Reserved
rw-(0)

2
TACLR
w-(0)

1
TAIE
rw-(0)

0
TAIFG
rw-(0)

MC
rw-(0)

rw-(0)

8
TASSEL

rw-(0)

Table 25-4. TAxCTL Register Description
Bit

Field

Type

Reset

Description

15-10

Reserved

RW

0h

Reserved

9-8

TASSEL

RW

0h

Timer_A clock source select
00b = TAxCLK
01b = ACLK
10b = SMCLK
11b = INCLK

7-6

ID

RW

0h

Input divider. These bits along with the TAIDEX bits select the divider for the
input clock.
00b = /1
01b = /2
10b = /4
11b = /8

5-4

MC

RW

0h

Mode control. Setting MC = 00h when Timer_A is not in use conserves power.
00b = Stop mode: Timer is halted
01b = Up mode: Timer counts up to TAxCCR0
10b = Continuous mode: Timer counts up to 0FFFFh
11b = Up/down mode: Timer counts up to TAxCCR0 then down to 0000h

3

Reserved

RW

0h

Reserved

2

TACLR

RW

0h

Timer_A clear. Setting this bit clears TAR, the clock divider logic (the divider
setting remains unchanged), and the count direction. The TACLR bit is
automatically reset and is always read as zero.

1

TAIE

RW

0h

Timer_A interrupt enable. This bit enables the TAIFG interrupt request.
0b = Interrupt disabled
1b = Interrupt enabled

0

TAIFG

RW

0h

Timer_A interrupt flag
0b = No interrupt pending
1b = Interrupt pending

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

655

Timer_A Registers

www.ti.com

25.3.2 TAxR Register
Timer_Ax Counter Register
Figure 25-17. TAxR Register
15

14

13

12

11

10

9

8

rw-(0)

rw-(0)

rw-(0)

rw-(0)

3

2

1

0

rw-(0)

rw-(0)

rw-(0)

rw-(0)

TAxR
rw-(0)

rw-(0)

rw-(0)

rw-(0)

7

6

5

4
TAxR

rw-(0)

rw-(0)

rw-(0)

rw-(0)

Table 25-5. TAxR Register Description
Bit

Field

Type

Reset

Description

15-0

TAxR

RW

0h

Timer_A register. The TAxR register is the count of Timer_A.

656

Timer_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A Registers

www.ti.com

25.3.3 TAxCCTLn Register
Timer_Ax Capture/Compare Control n Register
Figure 25-18. TAxCCTLn Register
15

14

13

12

rw-(0)

rw-(0)

rw-(0)

rw-(0)

11
SCS
rw-(0)

7

6
OUTMOD
rw-(0)

5

4
CCIE
rw-(0)

3
CCI
r

CM

rw-(0)

CCIS

rw-(0)

10
SCCI
r-(0)

9
Reserved
r-(0)

8
CAP
rw-(0)

2
OUT
rw-(0)

1
COV
rw-(0)

0
CCIFG
rw-(0)

Table 25-6. TAxCCTLn Register Description
Bit

Field

Type

Reset

Description

15-14

CM

RW

0h

Capture mode
00b = No capture
01b = Capture on rising edge
10b = Capture on falling edge
11b = Capture on both rising and falling edges

13-12

CCIS

RW

0h

Capture/compare input select. These bits select the TAxCCR0 input signal. See
the device-specific data sheet for specific signal connections.
00b = CCIxA
01b = CCIxB
10b = GND
11b = VCC

11

SCS

RW

0h

Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0b = Asynchronous capture
1b = Synchronous capture

10

SCCI

RW

0h

Synchronized capture/compare input. The selected CCI input signal is latched
with the EQUx signal and can be read from this bit.

9

Reserved

R

0h

Reserved. Reads as 0.

8

CAP

RW

0h

Capture mode
0b = Compare mode
1b = Capture mode

7-5

OUTMOD

RW

0h

Output mode. Modes 2, 3, 6, and 7 are not useful for TAxCCR0 because EQUx
= EQU0.
000b = OUT bit value
001b = Set
010b = Toggle/reset
011b = Set/reset
100b = Toggle
101b = Reset
110b = Toggle/set
111b = Reset/set

4

CCIE

RW

0h

Capture/compare interrupt enable. This bit enables the interrupt request of the
corresponding CCIFG flag.
0b = Interrupt disabled
1b = Interrupt enabled

3

CCI

R

0h

Capture/compare input. The selected input signal can be read by this bit.

2

OUT

RW

0h

Output. For output mode 0, this bit directly controls the state of the output.
0b = Output low
1b = Output high

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

657

Timer_A Registers

www.ti.com

Table 25-6. TAxCCTLn Register Description (continued)
Bit

Field

Type

Reset

Description

1

COV

RW

0h

Capture overflow. This bit indicates a capture overflow occurred. COV must be
reset with software.
0b = No capture overflow occurred
1b = Capture overflow occurred

0

CCIFG

RW

0h

Capture/compare interrupt flag
0b = No interrupt pending
1b = Interrupt pending

658

Timer_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A Registers

www.ti.com

25.3.4 TAxCCRn Register
Timer_A Capture/Compare n Register
Figure 25-19. TAxCCRn Register
15

14

13

12

11

10

9

8

rw-(0)

rw-(0)

rw-(0)

rw-(0)

3

2

1

0

rw-(0)

rw-(0)

rw-(0)

rw-(0)

TAxCCRn
rw-(0)

rw-(0)

rw-(0)

rw-(0)

7

6

5

4
TAxCCRn

rw-(0)

rw-(0)

rw-(0)

rw-(0)

Table 25-7. TAxCCRn Register Description
Bit

Field

Type

Reset

Description

15-0

TAxCCR0

RW

0h

Compare mode: TAxCCRn holds the data for the comparison to the timer value
in the Timer_A Register, TAR.
Capture mode: The Timer_A Register, TAR, is copied into the TAxCCRn register
when a capture is performed.

25.3.5 TAxIV Register
Timer_Ax Interrupt Vector Register
Figure 25-20. TAxIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-(0)

r-(0)

r-(0)

r0

TAIV
r0

r0

r0

r0

7

6

5

4
TAIV

r0

r0

r0

r0

Table 25-8. TAxIV Register Description
Bit

Field

Type

Reset

Description

15-0

TAIV

R

0h

Timer_A interrupt vector value
00h = No interrupt pending
02h = Interrupt Source: Capture/compare 1; Interrupt Flag: TAxCCR1 CCIFG;
Interrupt Priority: Highest
04h = Interrupt Source: Capture/compare 2; Interrupt Flag: TAxCCR2 CCIFG
06h = Interrupt Source: Capture/compare 3; Interrupt Flag: TAxCCR3 CCIFG
08h = Interrupt Source: Capture/compare 4; Interrupt Flag: TAxCCR4 CCIFG
0Ah = Interrupt Source: Capture/compare 5; Interrupt Flag: TAxCCR5 CCIFG
0Ch = Interrupt Source: Capture/compare 6; Interrupt Flag: TAxCCR6 CCIFG
0Eh = Interrupt Source: Timer overflow; Interrupt Flag: TAxCTL TAIFG; Interrupt
Priority: Lowest

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_A

659

Timer_A Registers

www.ti.com

25.3.6 TAxEX0 Register
Timer_Ax Expansion 0 Register
Figure 25-21. TAxEX0 Register
15

14

13

12

11

10

9

8

Reserved

(1)

r0

r0

r0

r0

r0

r0

r0

r0

7

6

4

3

2

r0

r0

r0

rw-(0)

1
TAIDEX (1)
rw-(0)

0

r0

5
Reserved
r0

rw-(0)

After programming TAIDEX bits and configuration of the timer, set TACLR bit to ensure proper reset of the timer divider logic.

Table 25-9. TAxEX0 Register Description
Bit

Field

Type

Reset

Description

15-3

Reserved

R

0h

Reserved. Reads as 0.

2-0

TAIDEX

RW

0h

Input divider expansion. These bits along with the ID bits select the divider for
the input clock.
000b = Divide by 1
001b = Divide by 2
010b = Divide by 3
011b = Divide by 4
100b = Divide by 5
101b = Divide by 6
110b = Divide by 7
111b = Divide by 8

660

Timer_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 26
SLAU367O – October 2012 – Revised December 2017

Timer_B
Timer_B is a 16-bit timer/counter with multiple capture/compare registers. There can be multiple Timer_B
modules on a given device (see the device-specific data sheet). This chapter describes the operation and
use of the Timer_B module.
Topic

26.1
26.2
26.3

...........................................................................................................................

Page

Timer_B Introduction ........................................................................................ 662
Timer_B Operation............................................................................................ 664
Timer_B Registers ............................................................................................ 677

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

661

Timer_B Introduction

www.ti.com

26.1 Timer_B Introduction
Timer_B is a 16-bit timer/counter with up to seven capture/compare registers. Timer_B can support
multiple capture/compares, PWM outputs, and interval timing. Timer_B also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.
Timer_B features include:
• Asynchronous 16-bit timer/counter with four operating modes and four selectable lengths
• Selectable and configurable clock source
• Up to seven configurable capture/compare registers
• Configurable outputs with PWM capability
• Double-buffered compare latches with synchronized loading
• Interrupt vector register for fast decoding of all Timer_B interrupts
The block diagram of Timer_B is shown in Figure 26-1.
NOTE:

Use of the word count
Count is used throughout this chapter. It means the counter must be in the process of
counting for the action to take place. If a particular value is directly written to the counter, an
associated action does not take place.

NOTE:

Nomenclature
There may be multiple instantiations of Timer_B on a given device. The prefix TBx is used,
where x is a greater than equal to zero indicating the Timer_B instantiation. For devices with
one instantiation, x = 0. The suffix n, where n = 0 to 6, represents the specific
capture/compare registers associated with the Timer_B instantiation.

26.1.1 Similarities and Differences From Timer_A
Timer_B is identical to Timer_A with the following exceptions:
• The length of Timer_B is programmable to be 8, 10, 12, or 16 bits.
• Timer_B TBxCCRn registers are double-buffered and can be grouped.
• All Timer_B outputs can be put into a high-impedance state.
• The SCCI bit function is not implemented in Timer_B.

662

Timer_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Introduction

www.ti.com

Timer Block
TBSSEL
2
TBxCLK

00

ACLK

01

SMCLK

10

INCLK

11

ID

IDEX
2

Timer Clock
15

3
Divider
/1.../8

Divider
/1/2/4/8

MC
0

2

16-bit Timer
RC
TBxR
8 10 12 16

Clear

Count
Mode

EQU0

CNTL
2

TBCLR
00

TBCLGRP

01

2

10

Group
Load Logic

Set TBxCTL
TBIFG

11

CCR0
CCR1
CCR2
CCR3
CCR4
CCR5
CCIS
2
CCI6A

00

CCI6B

01

GND

10

VCC

11

CCR6

CM

logic

2

COV
SCS

Capture
Mode

15
Sync

Timer Clock

VCC

2

EQU0
UP/DOWN

Load
Group
Load Logic

Compare Latch TBxCL6

00
01

TBxR=0

TBxCCR6

1

CLLD
CCI

0

0

10
11

Comparator 6

CCR5

EQU6

CCR4

CAP

CCR1
0
1

Set TBxCCR6
CCIFG

OUT
EQU0

Output
Unit6

D Set Q
Timer Clock

3

OUT6 Signal

Reset

POR

OUTMOD

Figure 26-1. Timer_B Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

663

Timer_B Operation

www.ti.com

26.2 Timer_B Operation
The Timer_B module is configured with user software. The setup and operation of Timer_B is discussed in
the following sections.

26.2.1 16-Bit Timer Counter
The 16-bit timer/counter register, TBxR, increments or decrements (depending on mode of operation) with
each rising edge of the clock signal. TBxR can be read or written with software. Additionally, the timer can
generate an interrupt when it overflows.
TBxR may be cleared by setting the TBCLR bit. Setting TBCLR also clears the clock divider counter logic
(the divider setting remains unchanged) and count direction for up/down mode.
NOTE:

Modifying Timer_B registers
TI recommends stopping the timer before modifying its operation (with exception of the
interrupt enable, interrupt flag, and TBCLR) to avoid errant operating conditions.
When the timer clock is asynchronous to the CPU clock, any read from TBxR should occur
while the timer is not operating or the results may be unpredictable. Alternatively, the timer
may be read multiple times while operating, and a majority vote taken in software to
determine the correct reading. Any write to TBxR takes effect immediately.

26.2.1.1 TBxR Length
Timer_B is configurable to operate as an 8-, 10-, 12-, or 16-bit timer with the CNTL bits. The maximum
count value, TBxR(max), for the selectable lengths is 0FFh, 03FFh, 0FFFh, and 0FFFFh, respectively. Data
written to the TBxR register in 8-, 10-, and 12-bit mode is right justified with leading zeros.
26.2.1.2 Clock Source Select and Divider
The timer clock can be sourced from ACLK, SMCLK, or externally from TBxCLK or INCLK. The clock
source is selected with the TBSSEL bits. The selected clock source may be passed directly to the timer or
divided by 2,4, or 8, using the ID bits. The selected clock source can be further divided by 2, 3, 4, 5, 6, 7,
or 8 using the TBIDEX bits. The timer clock divider logic is reset when TBCLR is set.
NOTE:

Timer_B dividers
After programming ID or TBIDEX bits, set the TBCLR bit. This clears the contents of TBxR
and resets the clock divider logic to a defined state. The clock dividers are implemented as
down counters. Therefore, when the TBCLR bit is cleared, the timer clock immediately
begins clocking at the first rising edge of the Timer_B clock source selected with the
TBSSEL bits and continues clocking at the divider settings set by the ID and TBIDEX bits.

26.2.2 Starting the Timer
The timer may be started or restarted in the following ways:
• The timer counts when MC > { 0 } and the clock source is active.
• When the timer mode is either up or up/down, the timer may be stopped by loading 0 to TBxCL0. The
timer may then be restarted by loading a nonzero value to TBxCL0. In this scenario, the timer starts
incrementing in the up direction from zero.

664

Timer_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Operation

www.ti.com

26.2.3 Timer Mode Control
The timer has four modes of operation: stop, up, continuous, and up/down (see Table 26-1). The
operating mode is selected with the MC bits.
Table 26-1. Timer Modes
MC

Mode

00

Stop

01

Up

10

Continuous

11

Up/down

Description
The timer is halted.
The timer repeatedly counts from zero to the value of compare register TBxCL0.
The timer repeatedly counts from zero to the value selected by the CNTL bits.
The timer repeatedly counts from zero up to the value of TBxCL0 and then back down to zero.

26.2.3.1 Up Mode
The up mode is used if the timer period must be different from TBxR(max) counts. The timer repeatedly
counts up to the value of compare latch TBxCL0, which defines the period (see Figure 26-2). The number
of timer counts in the period is TBxCL0 + 1. When the timer value equals TBxCL0, the timer restarts
counting from zero. If up mode is selected when the timer value is greater than TBxCL0, the timer
immediately restarts counting from zero.
TBxR(max)
TBxCL0

0h

Figure 26-2. Up Mode
The TBxCCR0 CCIFG interrupt flag is set when the timer counts to the TBxCL0 value. The TBIFG
interrupt flag is set when the timer counts from TBxCL0 to zero. Figure 26-3 shows the flag set cycle.
Timer Clock
Timer

TBCL0-1

TBCL0

0h

1h

TBCL0-1

TBCL0

0h

Set TBxCTL TBIFG
Set TBxCCR0 CCIFG

Figure 26-3. Up Mode Flag Setting

26.2.3.1.1 Changing Period Register TBxCL0
When changing TBxCL0 while the timer is running and when the TBxCL0 load mode is immediate, if the
new period is greater than or equal to the old period or greater than the current count value, the timer
counts up to the new period. If the new period is less than the current count value, the timer rolls to zero.
However, one additional count may occur before the counter rolls to zero.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

665

Timer_B Operation

www.ti.com

26.2.3.2 Continuous Mode
In continuous mode, the timer repeatedly counts up to TBxR(max) and restarts from zero (see Figure 26-4).
The compare latch TBxCL0 works the same way as the other capture/compare registers.
TBxR(max)

0h

Figure 26-4. Continuous Mode
The TBIFG interrupt flag is set when the timer counts from TBxR(max) to zero. Figure 26-5 shows the flag
set cycle.
Timer Clock
Timer

TBR(max) – 1

TBR(max)

0h

TBR(max) – 1

1h

TBR(max)

0h

Set TBxCTL TBIFG

Figure 26-5. Continuous Mode Flag Setting

26.2.3.3 Use of Continuous Mode
The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TBxCLn
latch in the interrupt service routine. Figure 26-6 shows two separate time intervals, t0 and t1, being added
to the capture/compare registers. The time interval is controlled by hardware, not software, without impact
from interrupt latency. Up to n (where n = 0 to 7), independent time intervals or output frequencies can be
generated using capture/compare registers.
TBxCL1b
TBxCL0b

TBxCL1c
TBxCL0c

TBxCL0d

TBxR(max)
TBxCL1a

TBxCL1d

TBxCL0a

0h
EQU0 Interrupt

EQU1 Interrupt

t0

t0

t1

t0

t1

t1

Figure 26-6. Continuous Mode Time Intervals

666

Timer_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Operation

www.ti.com

Time intervals can be produced with other modes as well, where TBxCL0 is used as the period register.
Their handling is more complex, because the sum of the old TBxCLn data and the new period can be
higher than the TBxCL0 value. When the sum of the previous TBxCLn value plus tx is greater than the
TBxCL0 data, the old TBxCL0 value must be subtracted to obtain the correct time interval.
26.2.3.4 Up/Down Mode
The up/down mode is used if the timer period must be different from TBxR(max) counts and if symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare latch TBxCL0, and
back down to zero (see Figure 26-7). The period is twice the value in TBxCL0.
NOTE:

TBxCL0 > TBxR(max)
If TBxCL0 > TBxR(max), the counter operates as if it were configured for continuous mode. It
does not count down from TBxR(max) to zero.

TBxCL0

0h

Figure 26-7. Up/Down Mode
The count direction is latched. This allows the timer to be stopped and then restarted in the same direction
it was counting before it was stopped. If this is not desired, the TBCLR bit must be used to clear the
direction. Setting TBCLR also clears the TBxR value and the clock divider counter logic (the divider setting
remains unchanged).
In up/down mode, the TBxCCR0 CCIFG interrupt flag and the TBIFG interrupt flag are set only once
during the period, separated by one-half the timer period. The TBxCCR0 CCIFG interrupt flag is set when
the timer counts from TBxCL0-1 to TBxCL0, and TBIFG is set when the timer completes counting down
from 0001h to 0000h. Figure 26-8 shows the flag set cycle.
Timer Clock
Timer

TBCL0-1

TBCL0

TBCL0-1

TBCL0-2

1h

0h

1h

Up/Down
Set TBxCTL TBIFG
Set TBxCCR0 CCIFG

Figure 26-8. Up/Down Mode Flag Setting

26.2.3.4.1 Changing the Value of Period Register TBxCL0
When changing TBxCL0 while the timer is running and counting in the down direction, and when the
TBxCL0 load mode is immediate, the timer continues its descent until it reaches zero. The new period
takes effect after the counter counts down to zero.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

667

Timer_B Operation

www.ti.com

If the timer is counting in the up direction when the new period is latched into TBxCL0, and the new period
is greater than or equal to the old period or greater than the current count value, the timer counts up to the
new period before counting down. When the timer is counting in the up direction, and the new period is
less than the current count value when TBxCL0 is loaded, the timer begins counting down. However, one
additional count may occur before the counter begins counting down.
26.2.3.5 Use of Up/Down Mode
The up/down mode supports applications that require dead times between output signals (see
Section 26.2.5). For example, to avoid overload conditions, two outputs driving an H-bridge must never be
in a high state simultaneously. In the example shown in Figure 26-9, the tdead is:
tdead = ttimer × (TBxCL1 – TBxCL3)
Where:
tdead = Time during which both outputs need to be inactive
ttimer = Cycle time of the timer clock
TBxCLn = Content of compare latch n
The ability to simultaneously load grouped compare latches ensures the dead times.
TBR(max)
TBxCL0
TBxCL1
TBxCL3
0h
Dead Time
Output Mode 6: Toggle/Set

Output Mode 2: Toggle/Reset
EQU1
EQU1
EQU1
EQU1
TBIFG
EQU0
EQU0
EQU3 EQU3
EQU3
EQU3

TBIFG

Interrupt Events

Figure 26-9. Output Unit in Up/Down Mode

26.2.4 Capture/Compare Blocks
Up to seven identical capture/compare blocks, TBxCCRn (where n = 0 to 6), are present in Timer_B. Any
of the blocks may be used to capture the timer data or to generate time intervals.
26.2.4.1 Capture Mode
The capture mode is selected when CAP = 1. Capture mode is used to record time events. It can be used
for speed computations or time measurements. The capture inputs CCIxA and CCIxB are connected to
external pins or internal signals and are selected with the CCIS bits. The CM bits select the capture edge
of the input signal as rising, falling, or both. A capture occurs on the selected edge of the input signal. If a
capture is performed:
• The timer value is copied into the TBxCCRn register.
• The interrupt flag CCIFG is set.
The input signal level can be read at any time from the CCI bit. Devices may have different signals
connected to CCIxA and CCIxB. See the device-specific data sheet for the connections of these signals.

668

Timer_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Operation

www.ti.com

The capture signal can be asynchronous to the timer clock and cause a race condition. Setting the SCS
bit synchronizes the capture with the next timer clock. TI recommends setting the SCS bit to synchronize
the capture signal with the timer clock (see Figure 26-10).
Timer Clock
Timer

n–2

n–1

n

n+1

n+2

n+3

n+4

CCI
Capture

Figure 26-10. Capture Signal (SCS = 1)

NOTE:

Changing Capture Inputs
Changing capture inputs while in capture mode may cause unintended capture events. To
avoid this scenario, capture inputs should only be changed when capture mode is disabled
(CM = {0} or CAP = 0).

Overflow logic is provided in each capture/compare register to indicate if a second capture was performed
before the value from the first capture was read. Bit COV is set when this occurs (see Figure 26-11). COV
must be reset with software.
Idle
Capture

No
Capture
Taken

Capture Read

Read
Taken
Capture

Capture
Taken
Capture

Capture Read and No Capture

Capture

Clear Bit COV
in Register TBxCCTLn
Second
Capture
Taken
COV = 1

Idle

Figure 26-11. Capture Cycle

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

669

Timer_B Operation

www.ti.com

26.2.4.1.1 Capture Initiated by Software
Captures can be initiated by software. The CM bits can be set for capture on both edges. Software then
sets bit CCIS1 = 1 and toggles bit CCIS0 to switch the capture signal between VCC and GND, initiating a
capture each time CCIS0 changes state:
MOV
XOR
NOTE:

#CAP+SCS+CCIS1+CM_3,&TB0CCTL1
#CCIS0,&TB0CCTL1

; Setup TB0CCTL1
; TB0CCR1 = TB0R

Capture Initiated by Software
In general, changing capture inputs while in capture mode may cause unintended capture
events. For this scenario, switching the capture input between VCC and GND, disabling the
capture mode is not required.

26.2.4.2 Compare Mode
The compare mode is selected when CAP = 0. Compare mode is used to generate PWM output signals or
interrupts at specific time intervals. When TBxR counts to the value in a TBxCLn, where n represents the
specific capture/compare latch:
• Interrupt flag CCIFG is set.
• Internal signal EQUn = 1.
• EQUn affects the output according to the output mode.
26.2.4.2.1 Compare Latch TBxCLn
The TBxCCRn compare latch, TBxCLn, holds the data for the comparison to the timer value in compare
mode. TBxCLn is buffered by TBxCCRn. The buffered compare latch gives the user control over when a
compare period updates. The user cannot directly access TBxCLn. Compare data is written to each
TBxCCRn and automatically transferred to TxBCLn. The timing of the transfer from TBxCCRn to TBxCLn
is user selectable, with the CLLD bits as described in Table 26-2.
Table 26-2. TBxCLn Load Events
CLLD

670

Description

00

New data is transferred from TBxCCRn to TBxCLn immediately when TBxCCRn is written to.

01

New data is transferred from TBxCCRn to TBxCLn when TBxR counts to 0.

10

New data is transferred from TBxCCRn to TBxCLn when TBxR counts to 0 for up and continuous modes. New data
is transferred to from TBxCCRn to TBxCLn when TBxR counts to the old TBxCL0 value or to 0 for up/down mode.

11

New data is transferred from TBxCCRn to TBxCLn when TBxR counts to the old TBxCLn value.

Timer_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Operation

www.ti.com

26.2.4.2.2 Grouping Compare Latches
Multiple compare latches may be grouped together for simultaneous updates with the TBCLGRPx bits.
When using groups, the CLLD bits of the lowest numbered TBxCCRn in the group determine the load
event for each compare latch of the group, except when TBCLGRP = 3 (see Table 26-3). The CLLD bits
of the controlling TBxCCRn must not be set to zero. When the CLLD bits of the controlling TBxCCRn are
set to zero, all compare latches update immediately when their corresponding TBxCCRn is written; no
compare latches are grouped.
Two conditions must exist for the compare latches to be loaded when grouped. First, all TBxCCRn
registers of the group must be updated, even when new TBxCCRn data = old TBxCCRn data. Second,
the load event must occur.
Table 26-3. Compare Latch Operating Modes
TBCLGRPx

Grouping

Update Control

00

None

Individual

01

TBxCL1+TBxCL2
TBxCL3+TBxCL4
TBxCL5+TBxCL6

TBxCCR1
TBxCCR3
TBxCCR5

10

TBxCL1+TBxCL2+TBxCL3
TBxCL4+TBxCL5+TBxCL6

TBxCCR1
TBxCCR4

11

TBxCL0+TBxCL1+TBxCL2+TBxCL3+TBxCL4+TBxCL5+TBxCL6

TBxCCR1

26.2.5 Output Unit
Each capture/compare block contains an output unit. The output unit is used to generate output signals,
such as PWM signals. Each output unit has eight operating modes that generate signals based on the
EQU0 and EQUn signals. The TBOUTH pin function can be used to put all Timer_B outputs into a highimpedance state. When the TBOUTH pin function is selected for the pin (corresponding PSEL bit is set,
and port configured as input) and when the pin is pulled high, all Timer_B outputs are in a high-impedance
state.
26.2.5.1 Output Modes
The output modes are defined by the OUTMOD bits and are described in Table 26-4. The OUTn signal is
changed with the rising edge of the timer clock for all modes except mode 0. Output modes 2, 3, 6, and 7
are not useful for output unit 0 because EQUn = EQU0.
Table 26-4. Output Modes
OUTMOD

Mode

Description

000

Output

The output signal OUTn is defined by the OUT bit. The OUTn signal updates immediately
when OUT is updated.

001

Set

The output is set when the timer counts to the TBxCLn value. It remains set until a reset of
the timer, or until another output mode is selected and affects the output.

010

Toggle/Reset

The output is toggled when the timer counts to the TBxCLn value. It is reset when the timer
counts to the TBxCL0 value.

011

Set/Reset

The output is set when the timer counts to the TBxCLn value. It is reset when the timer
counts to the TBxCL0 value.

100

Toggle

The output is toggled when the timer counts to the TBxCLn value. The output period is
double the timer period.

101

Reset

The output is reset when the timer counts to the TBxCLn value. It remains reset until
another output mode is selected and affects the output.

110

Toggle/Set

The output is toggled when the timer counts to the TBxCLn value. It is set when the timer
counts to the TBxCL0 value.

111

Reset/Set

The output is reset when the timer counts to the TBxCLn value. It is set when the timer
counts to the TBxCL0 value.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

671

Timer_B Operation

www.ti.com

26.2.5.1.1 Output Example – Timer in Up Mode
The OUTn signal is changed when the timer counts up to the TBxCLn value, and rolls from TBxCL0 to
zero, depending on the output mode. An example is shown in Figure 26-12 using TBxCL0 and TBxCL1.
TBxR(max)
TBxCL0
TBxCL1

0h
Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set
EQU0
TBIFG

EQU1

EQU0
TBIFG

EQU1

EQU0
TBIFG

Interrupt Events

Figure 26-12. Output Example – Timer in Up Mode

672

Timer_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Operation

www.ti.com

26.2.5.1.2 Output Example – Timer in Continuous Mode
The OUTn signal is changed when the timer reaches the TBxCLn and TBxCL0 values, depending on the
output mode. An example is shown in Figure 26-13 using TBxCL0 and TBxCL1.
TBxR(max)
TBxCL0
TBxCL1
0h
Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set
TBIFG

EQU1

EQU0 TBIFG

EQU1

EQU0

Interrupt Events

Figure 26-13. Output Example – Timer in Continuous Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

673

Timer_B Operation

www.ti.com

26.2.5.1.3 Output Example – Timer in Up/Down Mode
The OUTn signal changes when the timer equals TBxCLn in either count direction and when the timer
equals TBxCL0, depending on the output mode. An example is shown in Figure 26-14 using TBxCL0 and
TBxCL3.
TBxR(max)
TBxCL0
TBxCL3

0h
Output Mode 1: Set

Output Mode 2: Toggle/Reset

Output Mode 3: Set/Reset

Output Mode 4: Toggle

Output Mode 5: Reset

Output Mode 6: Toggle/Set

Output Mode 7: Reset/Set
TBIFG

EQU3
EQU3
EQU3
EQU3
TBIFG
EQU0
EQU0

Interrupt Events

Figure 26-14. Output Example – Timer in Up/Down Mode

NOTE:

Switching between output modes
When switching between output modes, one of the OUTMOD bits should remain set during
the transition, unless switching to mode 0. Otherwise, output glitching can occur because a
NOR gate decodes output mode 0. A safe method for switching between output modes is to
use output mode 7 as a transition state:
BIS
BIC

674

Timer_B

#OUTMOD_7,&TBCCTLx ; Set output mode=7
#OUTMOD,&TBCCTLx
; Clear unwanted bits

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Operation

www.ti.com

26.2.6 Timer_B Interrupts
Two interrupt vectors are associated with the 16-bit Timer_B module:
• TBxCCR0 interrupt vector for TBxCCR0 CCIFG
• TBIV interrupt vector for all other CCIFG flags and TBIFG
In capture mode, any CCIFG flag is set when a timer value is captured in the associated TBxCCRn
register. In compare mode, any CCIFG flag is set when TBxR counts to the associated TBxCLn value.
Software may also set or clear any CCIFG flag. All CCIFG flags request an interrupt when their
corresponding CCIE bit and the GIE bit are set.
26.2.6.1 TBxCCR0 Interrupt Vector
The TBxCCR0 CCIFG flag has the highest Timer_B interrupt priority and has a dedicated interrupt vector
(see Figure 26-15). The TBxCCR0 CCIFG flag is automatically reset when the TBxCCR0 interrupt request
is serviced.
Capture

EQU0
CAP

D
Timer Clock

Set

CCIE
Q

IRQ, Interrupt Service Requested

Reset
IRACC, Interrupt Request Accepted
POR

Figure 26-15. Capture/Compare TBxCCR0 Interrupt Flag

26.2.6.2 TBxIV, Interrupt Vector Generator
The TBIFG flag and TBxCCRn CCIFG flags (excluding TBxCCR0 CCIFG) are prioritized and combined to
source a single interrupt vector. The interrupt vector register TBxIV is used to determine which flag
requested an interrupt.
The highest-priority enabled interrupt (excluding TBxCCR0 CCIFG) generates a number in the TBxIV
register (see register description). This number can be evaluated or added to the program counter to
automatically enter the appropriate software routine. Disabled Timer_B interrupts do not affect the TBxIV
value.
Any access, read or write, of the TBxIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
For example, if the TBxCCR1 and TBxCCR2 CCIFG flags are set when the interrupt service routine
accesses the TBxIV register, TBxCCR1 CCIFG is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the TBxCCR2 CCIFG flag generates another interrupt.
26.2.6.3 TBxIV, Interrupt Handler Examples
The following software example shows the recommended use of TBxIV and the handling overhead. The
TBxIV value is added to the PC to automatically jump to the appropriate routine. The example assumes a
single instantiation of the largest timer configuration available.
The numbers at the right margin show the necessary CPU clock cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself. The latencies are:
• Capture/compare block CCR0: 11 cycles
• Capture/compare blocks CCR1 to CCR6: 16 cycles
• Timer overflow TBIFG: 14 cycles

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

675

Timer_B Operation

www.ti.com

The following software example shows the recommended use of TBxIV for Timer_B3.
; Interrupt handler for TB0CCR0 CCIFG.
CCIFG_0_HND
;
...
; Start of handler Interrupt latency
RETI

Cycles
6
5

; Interrupt handler for TB0IFG, TB0CCR1 through TB0CCR6 CCIFG.
TB0_HND

676

...
ADD
RETI
JMP
JMP
JMP
JMP
JMP
JMP

&TB0IV,PC
CCIFG_1_HND
CCIFG_2_HND
CCIFG_3_HND
CCIFG_4_HND
CCIFG_5_HND
CCIFG_6_HND

;
;
;
;
;
;
;
;
;

Interrupt latency
Add offset to Jump table
Vector 0: No interrupt
Vector 2: TB0CCR1
Vector 4: TB0CCR2
Vector 6: TB0CCR3
Vector 8: TB0CCR4
Vector 10: TB0CCR5
Vector 12: TB0CCR6

6
3
5
2
2
2
2
2
2

TB0IFG_HND
...
RETI

; Vector 14: TB0IFG Flag
; Task starts here

CCIFG_6_HND
...
RETI

; Vector 12: TB0CCR6
; Task starts here
; Back to main program

5

CCIFG_5_HND
...
RETI

; Vector 10: TB0CCR5
; Task starts here
; Back to main program

5

CCIFG_4_HND
...
RETI

; Vector 8: TB0CCR4
; Task starts here
; Back to main program

5

CCIFG_3_HND
...
RETI

; Vector 6: TB0CCR3
; Task starts here
; Back to main program

5

CCIFG_2_HND
...
RETI

; Vector 4: TB0CCR2
; Task starts here
; Back to main program

5

CCIFG_1_HND
...
RETI

; Vector 2: TB0CCR1
; Task starts here
; Back to main program

5

Timer_B

5

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Registers

www.ti.com

26.3 Timer_B Registers
The Timer_B registers are listed in Table 26-5. The base address can be found in the device-specific data
sheet. The address offset is listed in Table 26-5.
Table 26-5. Timer_B Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

TBxCTL

Timer_B Control

Read/write

Word

0000h

Section 26.3.1

02h

TBxCCTL0

Timer_B Capture/Compare Control 0

Read/write

Word

0000h

Section 26.3.3

04h

TBxCCTL1

Timer_B Capture/Compare Control 1

Read/write

Word

0000h

Section 26.3.3

06h

TBxCCTL2

Timer_B Capture/Compare Control 2

Read/write

Word

0000h

Section 26.3.3

08h

TBxCCTL3

Timer_B Capture/Compare Control 3

Read/write

Word

0000h

Section 26.3.3

0Ah

TBxCCTL4

Timer_B Capture/Compare Control 4

Read/write

Word

0000h

Section 26.3.3

0Ch

TBxCCTL5

Timer_B Capture/Compare Control 5

Read/write

Word

0000h

Section 26.3.3

0Eh

TBxCCTL6

Timer_B Capture/Compare Control 6

Read/write

Word

0000h

Section 26.3.3

10h

TBxR

Timer_B Counter

Read/write

Word

0000h

Section 26.3.2

12h

TBxCCR0

Timer_B Capture/Compare 0

Read/write

Word

0000h

Section 26.3.4

14h

TBxCCR1

Timer_B Capture/Compare 1

Read/write

Word

0000h

Section 26.3.4

16h

TBxCCR2

Timer_B Capture/Compare 2

Read/write

Word

0000h

Section 26.3.4

18h

TBxCCR3

Timer_B Capture/Compare 3

Read/write

Word

0000h

Section 26.3.4

1Ah

TBxCCR4

Timer_B Capture/Compare 4

Read/write

Word

0000h

Section 26.3.4

1Ch

TBxCCR5

Timer_B Capture/Compare 5

Read/write

Word

0000h

Section 26.3.4

1Eh

TBxCCR6

Timer_B Capture/Compare 6

Read/write

Word

0000h

Section 26.3.4

2Eh

TBxIV

Timer_B Interrupt Vector

Read only

Word

0000h

Section 26.3.5

20h

TBxEX0

Timer_B Expansion 0

Read/write

Word

0000h

Section 26.3.6

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

677

Timer_B Registers

www.ti.com

26.3.1 TBxCTL Register
Timer_B x Control Register
Figure 26-16. TBxCTL Register
15
Reserved
rw-(0)

14

13

12
rw-(0)

rw-(0)

10
Reserved
rw-(0)

4

3
Reserved
rw-(0)

2
TBCLR
w-(0)

TBCLGRPx

7

rw-(0)

rw-(0)

6

5

ID
rw-(0)

11
CNTL

MC
rw-(0)

rw-(0)

rw-(0)

9

8
TBSSEL

rw-(0)

rw-(0)

1
TBIE
rw-(0)

0
TBIFG
rw-(0)

Table 26-6. TBxCTL Register Description
Bit

Field

Type

Reset

Description

15

Reserved

R

0h

Reserved. Always reads as 0.

14-13

TBCLGRP

RW

0h

TBxCLn group
00b = Each TBxCLn latch loads independently.
01b = TBxCL1+TBxCL2 (TBxCCR1 CLLD bits control the update);
TBxCL3+TBxCL4 (TBxCCR3 CLLD bits control the update); TBxCL5+TBxCL6
(TBxCCR5 CLLD bits control the update); TBxCL0 independent
10b = TBxCL1+TBxCL2+TBxCL3 (TBxCCR1 CLLD bits control the update);
TBxCL4+TBxCL5+TBxCL6 (TBxCCR4 CLLD bits control the update); TBxCL0
independent
11b = TBxCL0+TBxCL1+TBxCL2+TBxCL3+TBxCL4+TBxCL5+TBxCL6
(TBxCCR1 CLLD bits control the update)

12-11

CNTL

RW

0h

Counter length
00b = 16-bit, TBxR(max) = 0FFFFh
01b = 12-bit, TBxR(max) = 0FFFh
10b = 10-bit, TBxR(max) = 03FFh
11b = 8-bit, TBxR(max) = 0FFh

10

Reserved

R

0h

Reserved. Always reads as 0.

9-8

TBSSEL

RW

0h

Timer_B clock source select
00b = TBxCLK
01b = ACLK
10b = SMCLK
11b = INCLK

7-6

ID

RW

0h

Input divider. These bits, along with the TBIDEX bits, select the divider for the
input clock.
00b = /1
01b = /2
10b = /4
11b = /8

5-4

MC

RW

0h

Mode control. Setting MC = 00h when Timer_B is not in use conserves power.
00b = Stop mode: Timer is halted
01b = Up mode: Timer counts up to TBxCL0
10b = Continuous mode: Timer counts up to the value set by CNTL
11b = Up/down mode: Timer counts up to TBxCL0 and down to 0000h

3

Reserved

R

0h

Reserved. Always reads as 0.

2

TBCLR

RW

0h

Timer_B clear. Setting this bit clears TBR, the clock divider logic (the divider
setting remains unchanged), and the count direction. The TBCLR bit is
automatically reset and is always read as zero.

1

TBIE

RW

0h

Timer_B interrupt enable. This bit enables the TBIFG interrupt request.
0b = Interrupt disabled
1b = Interrupt enabled

678

Timer_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Registers

www.ti.com

Table 26-6. TBxCTL Register Description (continued)
Bit

Field

Type

Reset

Description

0

TBIFG

RW

0h

Timer_B interrupt flag
0b = No interrupt pending
1b = Interrupt pending

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

679

Timer_B Registers

www.ti.com

26.3.2 TBxR Register
Timer_B x Counter Register
Figure 26-17. TBxR Register
15

14

13

12

11

10

9

8

rw-(0)

rw-(0)

rw-(0)

rw-(0)

3

2

1

0

rw-(0)

rw-(0)

rw-(0)

rw-(0)

TBxR
rw-(0)

rw-(0)

rw-(0)

rw-(0)

7

6

5

4
TBxR

rw-(0)

rw-(0)

rw-(0)

rw-(0)

Table 26-7. TBxR Register Description
Bit

Field

Type

Reset

Description

15-0

TBxR

RW

0h

Timer_B register. The TBxR register is the count of Timer_B.

680

Timer_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Registers

www.ti.com

26.3.3 TBxCCTLn Register
Timer_B x Capture/Compare Control Register n
Figure 26-18. TBxCCTLn Register
15

14

13

12

rw-(0)

rw-(0)

rw-(0)

rw-(0)

11
SCS
rw-(0)

7

6
OUTMOD
rw-(0)

5

4
CCIE
rw-(0)

3
CCI
r

CM

rw-(0)

CCIS

rw-(0)

10

9

rw-(0)

rw-(0)

8
CAP
rw-(0)

2
OUT
rw-(0)

1
COV
rw-(0)

0
CCIFG
rw-(0)

CLLD

Table 26-8. TBxCCTLn Register Description
Bit

Field

Type

Reset

Description

15-14

CM

RW

0h

Capture mode
00b = No capture
01b = Capture on rising edge
10b = Capture on falling edge
11b = Capture on both rising and falling edges

13-12

CCIS

RW

0h

Capture/compare input select. These bits select the TBxCCRn input signal. See
the device-specific data sheet for specific signal connections.
00b = CCIxA
01b = CCIxB
10b = GND
11b = VCC

11

SCS

RW

0h

Synchronize capture source. This bit is used to synchronize the capture input
signal with the timer clock.
0b = Asynchronous capture
1b = Synchronous capture

10-9

CLLD

RW

0h

Compare latch load. These bits select the compare latch load event.
00b = TBxCLn loads on write to TBxCCRn
01b = TBxCLn loads when TBxR counts to 0
10b = TBxCLn loads when TBxR counts to 0 (up or continuous mode). TBxCLn
loads when TBxR counts to TBxCL0 or to 0 (up/down mode).
11b = TBxCLn loads when TBxR counts to TBxCLn

8

CAP

RW

0h

Capture mode
0b = Compare mode
1b = Capture mode

7-5

OUTMOD

RW

0h

Output mode. Modes 2, 3, 6, and 7 are not useful for TBxCL0 because EQUn =
EQU0.
000b = OUT bit value
001b = Set
010b = Toggle/reset
011b = Set/reset
100b = Toggle
101b = Reset
110b = Toggle/set
111b = Reset/set

4

CCIE

RW

0h

Capture/compare interrupt enable. This bit enables the interrupt request of the
corresponding CCIFG flag.
0b = Interrupt disabled
1b = Interrupt enabled

3

CCI

R

Undef

Capture/compare input. The selected input signal can be read by this bit.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

681

Timer_B Registers

www.ti.com

Table 26-8. TBxCCTLn Register Description (continued)
Bit

Field

Type

Reset

Description

2

OUT

RW

0h

Output. For output mode 0, this bit directly controls the state of the output.
0b = Output low
1b = Output high

1

COV

RW

0h

Capture overflow. This bit indicates a capture overflow occurred. COV must be
reset with software.
0b = No capture overflow occurred
1b = Capture overflow occurred

0

CCIFG

RW

0h

Capture/compare interrupt flag
0b = No interrupt pending
1b = Interrupt pending

682

Timer_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Registers

www.ti.com

26.3.4 TBxCCRn Register
Timer_B x Capture/Compare Register n
Figure 26-19. TBxCCRn Register
15

14

13

12

11

10

9

8

rw-(0)

rw-(0)

rw-(0)

rw-(0)

3

2

1

0

rw-(0)

rw-(0)

rw-(0)

rw-(0)

TBxCCRn
rw-(0)

rw-(0)

rw-(0)

rw-(0)

7

6

5

4
TBxCCRn

rw-(0)

rw-(0)

rw-(0)

rw-(0)

Table 26-9. TBxCCRn Register Description
Bit

Field

Type

Reset

Description

15-0

TBxCCRn

RW

0h

Timer_B capture/compare register.
Compare mode: TBxCCRn holds the data for the comparison to the timer value
in the Timer_B Register, TBR.
Capture mode: The Timer_B Register, TBR, is copied into the TBxCCRn register
when a capture is performed.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

683

Timer_B Registers

www.ti.com

26.3.5 TBxIV Register
Timer_B x Interrupt Vector Register
Figure 26-20. TBxIV Register
15

14

13

12

11

10

9

8

r-(0)

r-(0)

r-(0)

r-(0)

3

2

1

0

r-(0)

r-(0)

r-(0)

r-(0)

TBIV
r-(0)

r-(0)

r-(0)

r-(0)

7

6

5

4
TBIV

r-(0)

r-(0)

r-(0)

r-(0)

Table 26-10. TBxIV Register Description
Bit

Field

Type

Reset

Description

15-0

TBIV

R

0h

Timer_B interrupt vector value
00h = No interrupt pending
02h = Interrupt Source: Capture/compare 1; Interrupt Flag: TBxCCR1 CCIFG;
Interrupt Priority: Highest
04h = Interrupt Source: Capture/compare 2; Interrupt Flag: TBxCCR2 CCIFG
06h = Interrupt Source: Capture/compare 3; Interrupt Flag: TBxCCR3 CCIFG
08h = Interrupt Source: Capture/compare 4; Interrupt Flag: TBxCCR4 CCIFG
0Ah = Interrupt Source: Capture/compare 5; Interrupt Flag: TBxCCR5 CCIFG
0Ch = Interrupt Source: Capture/compare 6; Interrupt Flag: TBxCCR6 CCIFG
0Eh = Interrupt Source: Timer overflow; Interrupt Flag: TBxCTL TBIFG; Interrupt
Priority: Lowest

684

Timer_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B Registers

www.ti.com

26.3.6 TBxEX0 Register
Timer_B x Expansion Register 0
Figure 26-21. TBxEX0 Register
15

14

13

12

11

10

9

8

Reserved

(1)

r0

r0

r0

r0

r0

r0

r0

r0

7

6

4

3

2

r0

r0

r0

rw-(0)

1
TBIDEX (1)
rw-(0)

0

r0

5
Reserved
r0

rw-(0)

After programming TBIDEX bits and configuration of the timer, set TBCLR bit to ensure proper reset of the timer divider logic.

Table 26-11. TBxEX0 Register Description
Bit

Field

Type

Reset

Description

15-3

Reserved

R

0h

Reserved. Always reads as 0.

2-0

TBIDEX

RW

0h

Input divider expansion. These bits along with the ID bits select the divider for
the input clock.
000b = Divide by 1
001b = Divide by 2
010b = Divide by 3
011b = Divide by 4
100b = Divide by 5
101b = Divide by 6
110b = Divide by 7
111b = Divide by 8

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Timer_B

685

Chapter 27
SLAU367O – October 2012 – Revised December 2017

Real-Time Clock (RTC) Overview
27.1 RTC Overview
Table 27-1. RTC Overview
Feature

RTC_C
Protection + Improved Calibration
and Compensation

Calendar Mode

Yes

Yes

Counter Mode

No

Optional (device-dependent) (1)

Programmable Alarms

Yes

Yes

Password Protected Calendar Registers

No

Yes

32-kHz crystal oscillator

32-kHz crystal oscillator

LPM3.5 Support

Yes

Yes

Offset Calibration Register

Yes

Yes

Temperature Compensation Register

No

Yes

-2.17 ppm × 59 ≈ -128 ppm
+4.34 ppm × 59 ≈ +256 ppm

-240 ppm, +240 ppm (2)

Input Clocks

Frequency Adjustment Range
Frequency Adjustment Steps

-2.17 ppm, +4.34 ppm

-1 ppm, +1 ppm

Temperature Compensation

With software, manipulating offset
calibration value

With software using separate
temperature compensation register

Calibration and Compensation Period
BCD to Binary Conversion
Event/Tamper Detect with Time Stamp
(1)
(2)

686

RTC_B
LPM3.5, Calendar Mode Only

60 min

1 min

Integrated for Calendar Mode
plus separate conversion registers

Integrated for Calendar Mode
plus separate conversion registers

No

Optional (device-dependent) (1)

See the device-specific data sheet.
Total adjustment range of offset calibration plus temperature compensation. See the RTC_C chapter for details.

Real-Time Clock (RTC) Overview

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 28
SLAU367O – October 2012 – Revised December 2017

Real-Time Clock B (RTC_B)
The real-time clock RTC_B module provides clock counters with calendar mode, a flexible programmable
alarm, and calibration. Note that the RTC_B supports only calendar mode and not counter mode. The
RTC_B also support operation in LPM3.5. See the device-specific data sheet for the supported features.
This chapter describes the RTC_B module.
Topic

28.1
28.2
28.3

...........................................................................................................................

Page

Real-Time Clock RTC_B Introduction .................................................................. 688
RTC_B Operation.............................................................................................. 690
RTC_B Registers .............................................................................................. 695

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

687

Real-Time Clock RTC_B Introduction

www.ti.com

28.1 Real-Time Clock RTC_B Introduction
The RTC_B module provides configurable clock counters.
RTC_B features include:
• Real-time clock and calendar mode providing seconds, minutes, hours, day of week, day of month,
month, and year (including leap year correction)
Note that only the calendar mode is supported by RTC_B; the counter mode that is available in some
other RTC modules is not supported.
• Interrupt capability
• Selectable BCD or binary format
• Programmable alarms
• Calibration logic for time offset correction
• Operation in LPM3.5
The RTC_B block diagram for devices supporting LPM3.5 is shown in Figure 28-1.
NOTE:

Real-time clock initialization
Most RTC_B module registers have no initial condition. These registers must be configured
by user software before use.

688

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock RTC_B Introduction

www.ti.com

RTCHOLD
RT0IP
EN

RT0PS
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

from 32kHz Crystal Osc.

3
111
110
101
100
011
010
001
000

Set_RT0PSIFG

RTCCALS RTCCAL
5
Calibration
Logic EN
RT1IP

EN

3

RT1PS
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

111
110
101
100
011
010
001
000

Set_RT1PSIFG

Keepout
Logic

Set_RTCRDYIFG

RTCBCD
EN
RTCDOW

RTCHOUR

RTCMIN

RTCSEC
minute changed
hour changed
midnight
noon

Calendar
RTCYEARH

RTCYEARL

RTCMON

Alarm
RTCADOW

RTCADAY

RTCAHOUR

RTCTEV
2
00 Set_RTCTEVIFG
01
10
11

EN
RTCDAY

EN

Set_RTCAIFG

RTCAMIN

Figure 28-1. RTC_B Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

689

RTC_B Operation

www.ti.com

28.2 RTC_B Operation
The RTC_B module provides seconds, minutes, hours, day of week, day of month, month, and year in
selectable BCD or hexadecimal format. The calendar includes a leap-year algorithm that considers all
years evenly divisible by four as leap years. This algorithm is accurate from the year 1901 through 2099.

28.2.1 Real-Time Clock and Prescale Dividers
The prescale dividers, RT0PS and RT1PS, are automatically configured to provide a 1-s clock interval for
the RTC_B. The low-frequency oscillator must be operated at 32768 Hz (nominal) for proper RTC_B
operation. RT0PS is sourced from the low-frequency oscillator XT1. The output of RT0PS / 256 (Q7) is
used to source RT1PS. RT1PS is further divider and the /128 output sources the real-time clock counter
registers providing the required 1-second time interval.
When RTCBCD = 1, BCD format is selected for the calendar registers. It is possible to switch between
BCD and hexadecimal format while the RTC is counting.
Setting RTCHOLD halts the real-time counters and prescale counters, RT0PS, and RT1PS.

28.2.2 Real-Time Clock Alarm Function
The RTC_B module provides for a flexible alarm system. There is a single user-programmable alarm that
can be programmed based on the settings contained in the alarm registers for minutes, hours, day of
week, and day of month.
Each alarm register contains an alarm enable (AE) bit that can be used to enable the respective alarm
register. By setting AE bits of the various alarm registers, a variety of alarm events can be generated.
• Example 1: A user wishes to set an alarm every hour at 15 minutes past the hour (that is, at 00:15:00,
01:15:00, 02:15:00, etc). This is possible by setting RTCAMIN to 15. By setting the AE bit of the
RTCAMIN and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled,
the RTCAIFG is set when the count transitions from 00:14:59 to 00:15:00, 01:14:59 to 01:15:00,
02:14:59 to 02:15:00, and so on.
• Example 2: A user wishes to set an alarm every day at 04:00:00. This is possible by setting
RTCAHOUR to 4. By setting the AE bit of the RTCHOUR and clearing all other AE bits of the alarm
registers, the alarm is enabled. When enabled, the RTCAIFG is set when the count transitions from
03:59:59 to 04:00:00.
• Example 3: A user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6 and RTCAMIN
would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the alarm is enabled. Once
enabled, the RTCAIFG is set when the time count transitions from 06:29:59 to 06:30:00. In this case,
the alarm event occurs every day at 06:30:00.
• Example 4: A user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be set to 2,
RTCAHOUR would be set to 6, and RTCAMIN would be set to 30. By setting the AE bits of
RTCADOW, RTCAHOUR, and RTCAMIN, the alarm is enabled. Once enabled, the RTCAIFG is set
when the time count transitions from 06:29:59 to 06:30:00 and the RTCDOW transitions from 1 to 2.
• Example 5: A user wishes to set an alarm the fifth day of each month at 06:30:00. RTCADAY would be
set to 5, RTCAHOUR would be set to 6, and RTCAMIN would be set to 30. By setting the AE bits of
RTCADAY, RTCAHOUR, and RTCAMIN, the alarm is enabled. Once enabled, the RTCAIFG is set
when the time count transitions from 06:29:59 to 06:30:00 and the RTCDAY equals 5.
NOTE:

Setting the alarm
Before setting an initial alarm, all alarm registers including the AE bits should be cleared.
To prevent potential erroneous alarm conditions from occurring, the alarms should be
disabled by clearing the RTCAIE, RTCAIFG, and AE bits before writing initial or new time
values to the RTC time registers.

690

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Operation

www.ti.com

NOTE:

Invalid alarm settings
Invalid alarm settings are not checked by hardware. It is the user's responsibility that valid
alarm settings are entered.

NOTE:

Invalid time and date values
Writing of invalid date or time information or data values outside the legal ranges specified in
the RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCYEAR, RTCAMIN,
RTCAHOUR, RTCADAY, and RTCADOW registers can result in unpredictable behavior.

28.2.3 Reading or Writing Real-Time Clock Registers
Because the system clock may in fact be asynchronous to the RTC_B clock source, special care must be
used when accessing the real-time clock registers.
The real-time clock registers are updated once per second. To prevent reading any real-time clock register
at the time of an update, which could result in an invalid time being read, a keep-out window is provided.
The keep-out window is centered approximately 128/32768 seconds around the update transition. The
read-only RTCRDY bit is reset during the keep-out window period and set outside the keep-out the
window period. Any read of the clock registers while RTCRDY is reset is considered to be potentially
invalid, and the time read should be ignored.
An easy way to safely read the real-time clock registers is to utilize the RTCRDYIFG interrupt flag. Setting
RTCRDYIE enables the RTCRDYIFG interrupt. Once enabled, an interrupt is generated based on the
rising edge of the RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has
nearly a complete second to safely read any or all of the real-time clock registers. This synchronization
process prevents reading the time value during transition. The RTCRDYIFG flag is reset automatically
when the interrupt is serviced, or it can be reset with software.
NOTE:

Reading or writing real-time clock registers
When the counter clock is asynchronous to the CPU clock, any read from any RTCSEC,
RTCMIN, RTCHOUR, RTCDOW, RTCDAY, RTCMON, or RTCYEAR register while the
RTCRDY is reset may result in invalid data being read. To safely read the counting registers,
either polling of the RTCRDY bit or the synchronization procedure previously described can
be used. Alternatively, the counter register can be read multiple times while operating, and a
majority vote taken in software to determine the correct reading. Reading the RT0PS and
RT1PS can only be handled by reading the registers multiple times and a majority vote taken
in software to determine the correct reading.
Any write to any counting register takes effect immediately. However, the clock is stopped
during the write. In addition, RT0PS and RT1PS registers are reset. This could result in
losing up to 1 second during a write. Writing of data outside the legal ranges or invalid time
stamp combinations results in unpredictable behavior.

28.2.4 Real-Time Clock Interrupts
Six sources for interrupts are available, namely RT0PSIFG, RT1PSIFG, RTCRDYIFG, RTCTEVIFG,
RTCAIFG, and RTCOFIFG. These flags are prioritized and combined to source a single interrupt vector.
The interrupt vector register (RTCIV) is used to determine which flag requested an interrupt.
The highest-priority enabled interrupt generates a number in the RTCIV register (see register description).
This number can be evaluated or added to the program counter (PC) to automatically enter the
appropriate software routine. Disabled RTC interrupts do not affect the RTCIV value.
Any access, read or write, of the RTCIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
In addition, all flags can be cleared by software.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

691

RTC_B Operation

www.ti.com

The user-programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting RTCAIE
enables the interrupt. In addition to the user-programmable alarm, the RTC_B module provides for an
interval alarm that sources real-time clock interrupt, RTCTEVIFG. The interval alarm can be selected to
cause an alarm event when RTCMIN changed or RTCHOUR changed, every day at midnight (00:00:00)
or every day at noon (12:00:00). The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit
enables the interrupt.
The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG, and is useful in synchronizing the
read of time registers with the system clock. Setting the RTCRDYIE bit enables the interrupt.
RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. RT0PS is sourced
with low-frequency oscillator clock at 32768 Hz, so intervals of 16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz,
1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible. Setting the RT0PSIE bit enables the interrupt.
RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. RT1PS is sourced
with the output of RT0PS, which is 128 Hz (32768/256 Hz). Therefore, intervals of 64 Hz, 32 Hz, 16 Hz,
8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables the interrupt.
NOTE: Changing RT0IP or RT1IP
Changing the settings of the interrupt interval bits RT0IP or RT1IP while the corresponding
prescaler is running or is stopped in a non-zero state can result in setting the corresponding
interrupt flags.

The RTCOFIFG bit flags a failure of the 32-kHz crystal oscillator. Its main purpose is to wake up the CPU
from LPM3.5 if an oscillator failure occurs.
28.2.4.1 RTCIV Software Example
The following software example shows the recommended use of RTCIV and the handling overhead. The
RTCIV value is added to the PC to automatically jump to the appropriate routine.
The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.
; Interrupt handler for RTC interrupt flags.
RTC_HND
ADD &RTCIV,PC
RETI
JMP RTCRDYIFG_HND
JMP RTCTEVIFG_HND
JMP RTCAIFG_HND
JMP RT0PSIFG_HND
JMP RT1PSIFG_HND
JMP RTCOFIFG_HND
RETI

692

;
;
;
;
;
;
;
;
;
;

Interrupt latency
Add offset to Jump table
Vector 0: No interrupt
Vector 2: RTCRDYIFG
Vector 4: RTCTEVIFG
Vector 6: RTCAIFG
Vector 8: RT0PSIFG
Vector A: RT1PSIFG
Vector C: RTCOFIFG
Vector E: Reserved

6
3
5
2
2
5
5
5
5
5

RTCRDYIFG_HND
...
RETI

; Vector 2: RTCRDYIFG Flag
; Task starts here
; Back to main program

5

RTCTEVIFG_HND
...
RETI

; Vector 4: RTCTEVIFG Flag
; Task starts here
; Back to main program

5

RTCAIFG_HND
...
RETI

; Vector 6: RTCAIFG Flag
; Task starts here
; Back to main program

5

RT0PSIFG_HND

; Vector 8: RT0PSIFG Flag

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Operation

www.ti.com

...
RETI

; Task starts here
; Back to main program

5

RT1PSIFG_HND
...
RETI

; Vector A: RT1PSIFG Flag
; Task starts here
; Back to main program

5

RTCOFIFG_HND
...
RETI

; Vector C: RTCOFIFG Flag
; Task starts here
; Back to main program

5

28.2.5 Real-Time Clock Calibration
The RTC_B module has calibration logic that allows for adjusting the crystal frequency in approximately
+4-ppm or –2-ppm steps, allowing for higher time keeping accuracy from standard crystals. The RTCCALx
bits are used to adjust the frequency. When RTCCALS is set, each RTCCALx LSB causes a ≈ +4-ppm
adjustment. When RTCCALS is cleared, each RTCCALx LSB causes a ≈ –2-ppm adjustment.
Calibration is accomplished by periodically adjusting the RT1PS counter based on the RTCCALS and
RTCCALx settings. The RT0PS divides the nominal 37268-Hz low-frequency (LF) crystal clock input by
256. A 60-minute period has 32768 cycles/sec × 60 sec/min × 60 min = 117964800 cycles. Therefore, a
–2-ppm reduction in frequency (down calibration) approximately equates to adding an additional 256
cycles every 117964800 cycles (256/117964800 = 2.17 ppm). This is accomplished by holding the RT1PS
counter for one additional clock of the RT0PS output within a 60-minute period. Similarly, a +4-ppm
increase in frequency (up calibration) approximately equates to removing 512 cycles every 117964800
cycle (512/117964800 = 4.34 ppm). This is accomplished by incrementing the RT1PS counter for two
additional clocks of the RT0PS output within a 60-minute period. Each RTCCALx calibration bit causes
either 256 LF crystal clock cycles to be added every 60 minutes or 512 LF crystal clock cycles to be
subtracted every 60 minutes, giving a frequency adjustment of approximately -2 ppm or +4 ppm,
respectively.
To calibrate the frequency, the RTCCLK output signal is available at a pin. RTCCALF bits can be used to
select the frequency rate of the output signal, either no signal, 512 Hz, 256 Hz, or 1 Hz.
The basic flow to calibrate the frequency is as follows:
1. Configure the RTCCLK pin.
2. Measure the RTCCLK output signal with an appropriate resolution frequency counter ; that is, within
the resolution required.
3. Compute the absolute error in ppm: Absolute error (ppm) = |106 (fMEASURED – fRTCCLK)/fRTCCLK|, where
fRTCCLK is the expected frequency of 512 Hz, 256 Hz, or 1 Hz.
4. Adjust the frequency by performing the following:
a. If the frequency is too low, set RTCCALS = 1 and apply the appropriate RTCCALx bits, where
RTCCALx = (Absolute Error) / 4.34 rounded to the nearest integer
b. If the frequency is too high, clear RTCCALS = 0 and apply the appropriate RTCCALx bits, where
RTCCALx = (Absolute Error) / 2.17 rounded to the nearest integer
For example, assume that RTCCLK is configured to output at a frequency of 512 Hz. The measured
RTCCLK is 511.9658 Hz. This frequency error is approximately 66.8 ppm too low. To increase the
frequency by 66.8 ppm, RTCCALS would be set, and RTCCALx would be set to 15 (66.8 / 4.34). Similarly,
assume that the measured RTCCLK is 512.0125 Hz. The frequency error is approximately 24.4 ppm too
high. To decrease the frequency by 24.4 ppm, RTCCALS would be cleared, and RTCCAL would be set to
11 (24.4 / 2.17).
The calibration corrects only initial offsets and does not adjust for temperature and aging effects. These
effects can be handled by periodically measuring temperature and using the crystal's characteristic curve
to adjust the ppm based on temperature, as required.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

693

RTC_B Operation

www.ti.com

NOTE: Minimum Possible Calibration
The minimal calibration possible is -4 ppm or +8 ppm. For example, setting RTCCALS = 0
and RTCCAL = 0h would result in a -4 ppm decrease in frequency. Similarly, setting
RTCCALS = 1 and RTCCAL = 0h would result in a +8 ppm increase in frequency.

NOTE:

Calibration output frequency
The 512-Hz and 256-Hz output frequencies observed at the RTCCLK pin are not affected by
changes in the calibration settings, because these output frequencies are generated before
the calibration logic. The 1-Hz output frequency is affected by changes in the calibration
settings. Because the frequency change is small and infrequent over a very long time
interval, it can be difficult to observe.

28.2.6 Real-Time Clock Operation in LPM3.5 Low-Power Mode
The regulator of the Power Management Module (PMM) is disabled upon entering LPM3.5, which causes
most of the RTC_B configuration registers to be lost; only the counters are retained. Table 28-1 lists the
retained registers in LPM3.5. Also the configuration of the interrupts is stored so that the configured
interrupts can cause a wakeup upon exit from LPM3.5. Interrupt flags that are set before entering LPM3.5
are cleared upon entering LPM3.5 (Note: this can only happen if the corresponding interrupt is not
enabled). The interrupt flags RTCTEVIFG, RTCAIFG, RT1PSIFG, and RTCOFIFG can be used as RTC_B
wake-up interrupt sources. After restoring the configuration registers (and clearing LOCKLPM5) the
interrupts can be serviced as usual. The detailed flow is as follows:
1. Set all I/Os to general purpose I/Os and configure as needed. Optionally configure input interrupt pins
for wake-up. Configure RTC_B interrupts for wake-up (set RTCTEVIE, RTCAIE, RT1PSIE, or
RTCOFIE. If the alarm interrupt is also used as wake-up event, the alarm registers must be configured
as needed).
2. Enter LPMx.5 with LPMx.5 entry sequence.
MOV #PMMKEY + PMMREGOFF, &PMMCTL0 ; Open PMM registers for write and set PMMREGOFF
;
BIS #LPM4,SR
; Enter LPMx.5 when PMMREGOFF is set

3. LOCKLPM5 is automatically set by hardware upon entering LPMx.5, the core voltage regulator is
disabled, and all clocks are disabled except for the 32-kHz crystal oscillator clock if the RTC is enabled
with RTCHOLD = 0.
4. An LPMx.5 wake-up event, such as an edge on a wake-up input pin, or an RTC_B interrupt event will
start the BOR entry sequence together with the core voltage regulator. All peripheral registers are set
to their default conditions. The I/O pin state remains locked as well as the interrupt configuration for the
RTC_B.
5. The device can be configured. The I/O configuration and the RTC_B interrupt configuration that was
not retained during LPM3.5 should be restored to the values before entering LPM3.5. Then the
LOCKLPM5 bit can be cleared, this releases the I/O pin conditions as well as the RTC_B interrupt
configuration.
6. After enabling I/O and RTC_B interrupts, the interrupt that caused the wake-up can be serviced.
7. To re-enter LPMx.5, the LOCKLPM5 bit must be cleared before re-entry, otherwise LPMx.5 is not
entered.
If the RTC is enabled (RTCHOLD = 0), the 32-kHz oscillator remains active during LPM3.5. The fault
detection also remains functional. If a fault occurs during LPM3.5 and the RTCOFIE was set before
entering LPM3.5, a wake-up event is issued.

694

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Registers

www.ti.com

28.3 RTC_B Registers
The RTC_B module registers are listed in Table 28-1. This table also lists the retention during LPMx.5.
Registers that are not retained during LPMx.5 must be restored after exit from LPMx.5. The base address
for the RTC_B module registers can be found in the device-specific data sheet. The address offsets are
given in Table 28-1.
NOTE: Most registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 28-1. RTC_B Registers

Offset

Acronym

Register Name

Type

Access

Reset

LPMx.5 and
Backup
Operation

00h

RTCCTL01

Real-Time Clock Control 0, 1

Read/write

Word

7000h

not retained

00h

RTCCTL0

Real-Time Clock Control 0

Read/write

Byte

00h

not retained

Real-Time Clock Control 1

Read/write

Byte

70h

not retained

or RTCCTL01_L
01h

RTCCTL1
or RTCCTL01_H

02h

RTCCTL23

Real-Time Clock Control 2, 3

Read/write

Word

0000h

retained

02h

RTCCTL2

Real-Time Clock Control 2

Read/write

Byte

00h

retained

Real-Time Clock Control 3

Read/write

Byte

00h

retained

Real-Time Prescale Timer 0 Control

Read/write

Word

0000h

not retained

Read/write

Byte

00h

not retained

Read/write

Byte

00h

not retained

Read/write

Word

0000h

not retained

Read/write

Byte

00h

not retained

Read/write

Byte

00h

not retained

or RTCCTL23_L
03h

RTCCTL3
or RTCCTL23_H

08h

RTCPS0CTL

08h

RTCPS0CTLL
or RTCPS0CTL_L

09h

RTCPS0CTLH
or RTCPS0CTL_H

0Ah

RTCPS1CTL

0Ah

RTCPS1CTLL

Real-Time Prescale Timer 1 Control

or RTCPS1CTL_L
0Bh

RTCPS0CTLH
or RTCPS0CTL_H

0Ch

RTCPS

Real-Time Prescale Timer 0, 1 Counter

Read/write

Word

none

retained

0Ch

RT0PS

Real-Time Prescale Timer 0 Counter

Read/write

Byte

none

retained

Real-Time Prescale Timer 1 Counter

Read/write

Byte

none

retained
not retained

or RTCPS_L
0Dh

RT1PS
or RTCPS_H

0Eh

RTCIV

Real Time Clock Interrupt Vector

Read

Word

0000h

10h

RTCTIM0

Real-Time Clock Seconds, Minutes

Read/write

Word

undefined retained

10h

RTCSEC

Real-Time Clock Seconds

Read/write

Byte

undefined retained

Real-Time Clock Minutes

Read/write

Byte

undefined retained

or RTCTIM0_L
11h

RTCMIN
or RTCTIM0_H

12h

RTCTIM1

Real-Time Clock Hour, Day of Week

Read/write

Word

undefined retained

12h

RTCHOUR

Real-Time Clock Hour

Read/write

Byte

undefined retained

Real-Time Clock Day of Week

Read/write

Byte

undefined retained

or RTCTIM1_L
13h

RTCDOW
or RTCTIM1_H

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B) 695

RTC_B Registers

www.ti.com

Table 28-1. RTC_B Registers (continued)
LPMx.5 and
Backup
Operation

Offset

Acronym

Register Name

Type

Access

Reset

14h

RTCDATE

Real-Time Clock Date

Read/write

Word

undefined retained

14h

RTCDAY

Real-Time Clock Day of Month

Read/write

Byte

undefined retained

Real-Time Clock Month

Read/write

Byte

undefined retained

or RTCDATE_L
15h

RTCMON
or RTCDATE_H

16h

RTCYEAR

Real-Time Clock Year (1)

Read/write

Word

undefined retained

18h

RTCAMINHR

Real-Time Clock Minutes, Hour Alarm

Read/write

Word

undefined retained

18h

RTCAMIN

Real-Time Clock Minutes Alarm

Read/write

Byte

undefined retained

Real-Time Clock Hours Alarm

Read/write

Byte

undefined retained

or RTCAMINHR_L
19h

RTCAHOUR
or RTCAMINHR_H

1Ah

RTCADOWDAY

Real-Time Clock Day of Week, Day of
Month Alarm

Read/write

Word

undefined retained

1Ah

RTCADOW

Real-Time Clock Day of Week Alarm

Read/write

Byte

undefined retained

Real-Time Clock Day of Month Alarm

Read/write

Byte

undefined retained

or
RTCADOWDAY_L
1Bh

RTCADAY
or
RTCADOWDAY_H

1Ch

BIN2BCD

Binary-to-BCD Conversion Register

Read/write

Word

00h

not retained

1Eh

BCD2BIN

BCD-to-Binary Conversion Register

Read/write

Word

00h

not retained

(1)

696

Do not access the RTCYEAR register in byte mode.

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Registers

www.ti.com

28.3.1 RTCCTL0 Register
Real-Time Clock Control 0 Register
Figure 28-2. RTCCTL0 Register
7
RTCOFIE (1)
rw-0
(1)

6
RTCTEVIE (1)
rw-0

5
RTCAIE (1)
rw-0

4
RTCRDYIE
rw-0

3
RTCOFIFG
rw-(0)

2
RTCTEVIFG
rw-(0)

1
RTCAIFG
rw-(0)

0
RTCRDYIFG
rw-(0)

The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits itself; therefore,
reconfiguration after wake-up from LPMx.5 before clearing LOCKLPM5 is required.

Table 28-2. RTCCTL0 Register Description
Bit

Field

Type

Reset

Description

7

RTCOFIE

RW

0h

32-kHz crystal oscillator fault interrupt enable. This interrupt can be used as
LPMx.5 wake-up event.
0b = Interrupt not enabled
1b = Interrupt enabled (LPMx.5 wake-up enabled)

6

RTCTEVIE

RW

0h

Real-time clock time event interrupt enable. In modules supporting LPMx.5 this
interrupt can be used as LPMx.5 wake-up event.
0b = Interrupt not enabled
1b = Interrupt enabled (LPMx.5 wake-up enabled)

5

RTCAIE

RW

0h

Real-time clock alarm interrupt enable. In modules supporting LPMx.5 this
interrupt can be used as LPMx.5 wake-up event.
0b = Interrupt not enabled
1b = Interrupt enabled (LPMx.5 wake-up enabled)

4

RTCRDYIE

RW

0h

Real-time clock ready interrupt enable.
0b = Interrupt not enabled
1b = Interrupt enabled

3

RTCOFIFG

RW

0h

32-kHz crystal oscillator fault interrupt flag. This interrupt can be used as LPMx.5
wake-up event. It also indicates a clock failure during backup operation.
0b = No interrupt pending
1b = Interrupt pending. A 32-kHz crystal oscillator fault occurred after last reset.

2

RTCTEVIFG

RW

0h

Real-time clock time event interrupt flag. In modules supporting LPMx.5 this
interrupt can be used as LPMx.5 wake-up event.
0b = No time event occurred
1b = Time event occurred

1

RTCAIFG

RW

0h

Real-time clock alarm interrupt flag. In modules supporting LPMx.5 this interrupt
can be used as LPMx.5 wake-up event.
0b = No time event occurred
1b = Time event occurred

0

RTCRDYIFG

RW

0h

Real-time clock ready interrupt flag
0b = RTC cannot be read safely
1b = RTC can be read safely

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

697

RTC_B Registers

www.ti.com

28.3.2 RTCCTL1 Register
Real-Time Clock Control Register 1
Figure 28-3. RTCCTL1 Register
7
RTCBCD
rw-(0)
(1)

6
RTCHOLD (1)
rw-(1)

5
Reserved
r1

4
RTCRDY
r-(1)

3

2
Reserved

r0

r0

1

0
RTCTEVx (1)
rw-(0)
rw-(0)

The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits itself; therefore,
reconfiguration after wake-up from LPMx.5 before clearing LOCKLPM5 is required.

Table 28-3. RTCCTL1 Register Description
Bit

Field

Type

Reset

Description

7

RTCBCD

RW

0h

Real-time clock BCD select. Selects BCD counting for real-time clock.
0b = Binary-hexadecimal code selected
1b = BCD Binary coded decimal (BCD) code selected

6

RTCHOLD

RW

1h

Real-time clock hold
0b = Real-time clock is operational.
1b = The calendar is stopped as well as the prescale counters, RT0PS, and
RT1PS.

5

Reserved

R

1h

Reserved. Always read as 1.

4

RTCRDY

RW

1h

Real-time clock ready
0b = RTC time values in transition
1b = RTC time values safe for reading. This bit indicates when the real-time
clock time values are safe for reading.

3-2

Reserved

R

0h

Reserved. Always read as 0.

1-0

RTCTEVx

RW

0h

Real-time clock time interrupt event
00b = Minute changed
01b = Hour changed
10b = Every day at midnight (00:00)
11b = Every day at noon (12:00)

698

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Registers

www.ti.com

28.3.3 RTCCTL2 Register
Real-Time Clock Control 2 Register
Figure 28-4. RTCCTL2 Register
7
RTCCALS
rw-(0)

6
Reserved
r0

5

4

3

2

1

0

rw-(0)

rw-(0)

rw-(0)

RTCCALx
rw-(0)

rw-(0)

rw-(0)

Table 28-4. RTCCTL2 Register Description
Bit

Field

Type

Reset

Description

7

RTCCALS

RW

0h

Real-time clock calibration sign
0b = Frequency adjusted down
1b = Frequency adjusted up

6

Reserved

R

0h

Reserved. Always read as 0.

5-0

RTCCALx

RW

0h

Real-time clock calibration. Each LSB represents approximately +4-ppm
(RTCCALS = 1) or a –2-ppm (RTCCALS = 0) adjustment in frequency.

28.3.4 RTCCTL3 Register
Real-Time Clock Control 3 Register
Figure 28-5. RTCCTL3 Register
7

6

5

4

3

2

1

Reserved
r0

r0

r0

0
RTCCALFx

r0

r0

r0

rw-(0)

rw-(0)

Table 28-5. RTCCTL3 Register Description
Bit

Field

Type

Reset

Description

7-2

Reserved

R

0h

Reserved. Always read as 0.

1-0

RTCCALFx

RW

0h

Real-time clock calibration frequency. Selects frequency output to RTCCLK pin
for calibration measurement. The corresponding port must be configured for the
peripheral module function.
00b = No frequency output to RTCCLK pin
01b = 512 Hz
10b = 256 Hz
11b = 1 Hz

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

699

RTC_B Registers

www.ti.com

28.3.5 RTCSEC Register – Hexadecimal Format
Real-Time Clock Seconds Register – Hexadecimal Format
Figure 28-6. RTCSEC Register
7
0
r-0

6
0
r-0

5

4

3

2

1

0

rw

rw

rw

2
1
Seconds – low digit
rw
rw

0

Seconds
rw

rw

rw

Table 28-6. RTCSEC Register Description
Bit

Field

Type

Reset

Description

7-6

0

R

0h

Always reads as 0.

5-0

Seconds

RW

undefined

Seconds. Valid values are 0 to 59.

28.3.6 RTCSEC Register – BCD Format
Real-Time Clock Seconds Register – BCD Format
Figure 28-7. RTCSEC Register
7
0
r-0

6
rw

5
Seconds – high digit
rw

4

3

rw

rw

rw

Table 28-7. RTCSEC Register Description
Bit

Field

Type

Reset

Description

7

0

R

0h

Always reads as 0.

6-4

Seconds – high digit

RW

undefined

Seconds – high digit. Valid values are 0 to 5.

3-0

Seconds – low digit

RW

undefined

Seconds – low digit. Valid values are 0 to 9.

700

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Registers

www.ti.com

28.3.7 RTCMIN Register – Hexadecimal Format
Real-Time Clock Minutes Register – Hexadecimal Format
Figure 28-8. RTCMIN Register
7
0
r-0

6
0
r-0

5

4

3

2

1

0

rw

rw

rw

2
1
Minutes – low digit
rw
rw

0

Minutes
rw

rw

rw

Table 28-8. RTCMIN Register Description
Bit

Field

Type

Reset

Description

7-6

0

R

0h

Always reads as 0.

5-0

Minutes

RW

undefined

Minutes. Valid values are 0 to 59.

28.3.8 RTCMIN Register – BCD Format
Real-Time Clock Minutes Register – BCD Format
Figure 28-9. RTCMIN Register
7
0
r-0

6
rw

5
Minutes – high digit
rw

4

3

rw

rw

rw

Table 28-9. RTCMIN Register Description
Bit

Field

Type

Reset

Description

7

0

R

0h

Always reads as 0.

6-4

Minutes – high digit

RW

undefined

Minutes – high digit. Valid values are 0 to 5.

3-0

Minutes – low digit

RW

undefined

Minutes – low digit. Valid values are 0 to 9.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

701

RTC_B Registers

www.ti.com

28.3.9 RTCHOUR Register – Hexadecimal Format
Real-Time Clock Hours Register – Hexadecimal Format
Figure 28-10. RTCHOUR Register
7
0
r-0

6
0
r-0

5
0
r-0

4

3

rw

rw

2
Hours
rw

1

0

rw

rw

2
1
Hours – low digit
rw
rw

0

Table 28-10. RTCHOUR Register Description
Bit

Field

Type

Reset

Description

7-5

0

R

0h

Always reads as 0.

4-0

Hours

RW

undefined

Hours. Valid values are 0 to 23.

28.3.10 RTCHOUR Register – BCD Format
Real-Time Clock Hours Register – BCD Format
Figure 28-11. RTCHOUR Register
7
0
r-0

6
0
r-0

5
4
Hours – high digit
rw
rw

3
rw

rw

Table 28-11. RTCHOUR Register Description
Bit

Field

Type

Reset

Description

7-6

0

R

0h

Always reads as 0.

5-4

Hours – high digit

RW

undefined

Hours – high digit. Valid values are 0 to 2.

3-0

Hours – low digit

RW

undefined

Hours – low digit. Valid values are 0 to 9.

702

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Registers

www.ti.com

28.3.11 RTCDOW Register
Real-Time Clock Day of Week Register
Figure 28-12. RTCDOW Register
7
0
r-0

6
0
r-0

5
0
r-0

4
0
r-0

3
0
r-0

2
rw

1
Day of week
rw

0
rw

1

0

rw

rw

Table 28-12. RTCDOW Register Description
Bit

Field

Type

Reset

Description

7-3

0

R

0h

Always reads as 0.

2-0

Day of week

RW

undefined

Day of week. Valid values are 0 to 6.

28.3.12 RTCDAY Register – Hexadecimal Format
Real-Time Clock Day of Month Register – Hexadecimal Format
Figure 28-13. RTCDAY Register
7
0
r-0

6
0
r-0

5
0
r-0

4

3

rw

rw

2
Day of month
rw

Table 28-13. RTCDAY Register Description
Bit

Field

Type

Reset

Description

7-5

0

R

0h

Always reads as 0.

4-0

Day of month

RW

undefined

Day of month. Valid values are 1 to 31.

28.3.13 RTCDAY Register – BCD Format
Real-Time Clock Day of Month Register – BCD Format
Figure 28-14. RTCDAY Register
7
0
r-0

6
0
r-0

5
4
Day of month – high digit
rw
rw

3
rw

2
1
Day of month – low digit
rw
rw

0
rw

Table 28-14. RTCDAY Register Description
Bit

Field

Type

Reset

Description

7-6

0

R

0h

Always reads as 0.

5-4

Day of month – high
digit

RW

undefined

Day of month – high digit. Valid values are 0 to 3.

3-0

Day of month – low
digit

RW

undefined

Day of month – low digit. Valid values are 0 to 9.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

703

RTC_B Registers

www.ti.com

28.3.14 RTCMON Register – Hexadecimal Format
Real-Time Clock Month Register – Hexadecimal Format
Figure 28-15. RTCMON Register
7
0
r-0

6
0
r-0

5
0
r-0

4
0
r-0

3

2

1

0

rw

rw

3

2
1
Month – low digit

0

rw

rw

rw

Month
rw

rw

Table 28-15. RTCMON Register Description
Bit

Field

Type

Reset

Description

7-4

0

R

0h

Always reads as 0.

3-0

Month

RW

undefined

Month. Valid values are 1 to 12.

28.3.15 RTCMON Register – BCD Format
Real-Time Clock Month Register
Figure 28-16. RTCMON Register
7
0

6
0

5
0

r-0

r-0

r-0

4
Month – high
digit
rw

rw

Table 28-16. RTCMON Register Description
Bit

Field

Type

Reset

Description

7-5

0

R

0h

Always reads as 0.

4

Month – high digit

RW

undefined

Month – high digit. Valid values are 0 or 1.

3-0

Month – low digit

RW

undefined

Month – low digit. Valid values are 0 to 9.

704

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Registers

www.ti.com

28.3.16 RTCYEAR Register – Hexadecimal Format
Real-Time Clock Year Register – Hexadecimal Format
Figure 28-17. RTCYEAR Register
15
0
r-0

14
0
r-0

13
0
r-0

12
0
r-0

11
rw

10
9
Year – high byte
rw
rw

7
rw

6
rw

5
rw

4
rw

8
rw

3
rw

2
rw

1
rw

0
rw

10
9
Century – low digit
rw
rw

8

Table 28-17. RTCYEAR Register Description
Bit

Field

Type

Reset

Description

15-12

0

R

0h

Always reads as 0.

11-8

Year – high byte

RW

undefined

Year – high byte. Valid values of Year are 0 to 4095.

7-0

Year – low byte

RW

undefined

Year – low byte. Valid values of Year are 0 to 4095.

28.3.17 RTCYEAR Register – BCD Format
Real-Time Clock Year Register – BCD Format
Figure 28-18. RTCYEAR Register
15
0
r-0

14

7

6

rw

13
Century – high digit
rw

12

11

rw

rw

5

4

3

rw

rw

rw

Decade
rw

rw

2
1
Year – lowest digit
rw
rw

rw
0
rw

Table 28-18. RTCYEAR Register Description
Bit

Field

Type

Reset

Description

15

0

R

0h

Always reads as 0.

14-12

Century – high digit

RW

undefined

Century – high digit . Valid values are 0 to 4.

11-8

Century – low digit

RW

undefined

Century – low digit. Valid values are 0 to 9.

7-4

Decade

RW

undefined

Decade. Valid values are 0 to 9.

3-0

Year – lowest digit

RW

undefined

Year – lowest digit. Valid values are 0 to 9.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

705

RTC_B Registers

www.ti.com

28.3.18 RTCAMIN Register – Hexadecimal Format
Real-Time Clock Minutes Alarm Register – Hexadecimal Format
Figure 28-19. RTCAMIN Register
7
AE
rw

6
0
r-0

5

4

3

2

1

0

rw

rw

rw

2
1
Minutes – low digit
rw
rw

0

Minutes
rw

rw

rw

Table 28-19. RTCAMIN Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6

0

R

0h

Always reads as 0.

5-0

Minutes

RW

undefined

Minutes. Valid values are 0 to 59.

28.3.19 RTCAMIN Register – BCD Format
Real-Time Clock Minutes Alarm Register – BCD Format
Figure 28-20. RTCAMIN Register
7
AE
rw

6
rw

5
Minutes – high digit
rw

4

3

rw

rw

rw

Table 28-20. RTCAMIN Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6-4

Minutes – high digit

RW

undefined

Minutes – high digit. Valid values are 0 to 5.

3-0

Minutes – low digit

RW

undefined

Minutes – low digit. Valid values are 0 to 9.

706

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Registers

www.ti.com

28.3.20 RTCAHOUR Register – Hexadecimal Format
Real-Time Clock Hours Alarm Register – Hexadecimal Format
Figure 28-21. RTCAHOUR Register
7
AE
rw

6
0
r-0

5
0
r-0

4

3

rw

rw

2
Hours
rw

1

0

rw

rw

2
1
Hours – low digit
rw
rw

0

Table 28-21. RTCAHOUR Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6-5

0

R

0h

Always reads as 0.

4-0

Hours

RW

undefined

Hours. Valid values are 0 to 23.

28.3.21 RTCAHOUR Register – BCD Format
Real-Time Clock Hours Alarm Register – BCD Format
Figure 28-22. RTCAHOUR Register
7
AE
rw

6
0
r-0

5
4
Hours – high digit
rw
rw

3
rw

rw

Table 28-22. RTCAHOUR Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6

0

R

0h

Always reads as 0.

5-4

Hours – high digit

RW

undefined

Hours – high digit. Valid values are 0 to 2.

3-0

Hours – low digit

RW

undefined

Hours – low digit. Valid values are 0 to 9.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

707

RTC_B Registers

www.ti.com

28.3.22 RTCADOW Register
Real-Time Clock Day of Week Alarm Register
Figure 28-23. RTCADOW Register
7
AE
rw

6
0
r-0

5
0
r-0

4
0
r-0

3
0
r-0

2
rw

1
Day of week
rw

0
rw

Table 28-23. RTCADOW Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6-3

0

R

0h

Always reads as 0.

2-0

Day of week

RW

undefined

Day of week. Valid values are 0 to 6.

708

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Registers

www.ti.com

28.3.23 RTCADAY Register – Hexadecimal Format
Real-Time Clock Day of Month Alarm Register – Hexadecimal Format
Figure 28-24. RTCADAY Register
7
AE
rw

6
0
r-0

5
0
r-0

4

3

rw

rw

2
Day of month
rw

1

0

rw

rw

Table 28-24. RTCADAY Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6-5

0

R

0h

Always reads as 0.

4-0

Day of month

RW

undefined

Day of month. Valid values are 1 to 31.

28.3.24 RTCADAY Register – BCD Format
Real-Time Clock Day of Month Alarm Register – BCD Format
Figure 28-25. RTCADAY Register
7
AE
rw

6
0
r-0

5
4
Day of month – high digit
rw
rw

3
rw

2
1
Day of month – low digit
rw
rw

0
rw

Table 28-25. RTCADAY Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6

0

R

0h

Always reads as 0.

5-4

Day of month – high
digit

RW

undefined

Day of month – high digit. Valid values are 0 to 3.

3-0

Day of month – low
digit

RW

undefined

Day of month – low digit. Valid values are 0 to 9.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

709

RTC_B Registers

www.ti.com

28.3.25 RTCPS0CTL Register
Real-Time Clock Prescale Timer 0 Control Register
Figure 28-26. RTCPS0CTL Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7

6
Reserved
r0

5

4

2

r0

rw-(0)

3
RT0IPx (1)
rw-(0)

1
RT0PSIE
rw-0

0
RT0PSIFG
rw-(0)

r0
(1)

rw-(0)

The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits itself; therefore,
reconfiguration after wake-up from LPMx.5 before clearing LOCKLPM5 is required.

Table 28-26. RTCPS0CTL Register Description
Bit

Field

Type

Reset

Description

15-5

Reserved

R

0h

Reserved. Always reads as 0.

4-2

RT0IPx

RW

0h

Prescale timer 0 interrupt interval
000b = Divide by 2
001b = Divide by 4
010b = Divide by 8
011b = Divide by 16
100b = Divide by 32
101b = Divide by 64
110b = Divide by 128
111b = Divide by 256

1

RT0PSIE

RW

0h

Prescale timer 0 interrupt enable
0b = Interrupt not enabled
1b = Interrupt enabled

0

RT0PSIFG

RW

0h

Prescale timer 0 interrupt flag
0b = No time event occurred
1b = Time event occurred

710

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Registers

www.ti.com

28.3.26 RTCPS1CTL Register
Real-Time Clock Prescale Timer 1 Control Register
Figure 28-27. RTCPS1CTL Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7

6
Reserved
r0

5

4

2

r0

rw-(0)

3
RT1IPx (1)
rw-(0)

1
RT1PSIE (1)
rw-0

0
RT1PSIFG
rw-(0)

r0
(1)

rw-(0)

The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore,
reconfiguration after wake-up from LPMx.5 before clearing LOCKLPM5 is required.

Table 28-27. RTCPS1CTL Register Description
Bit

Field

Type

Reset

Description

15-5

Reserved

R

0h

Reserved. Always reads as 0.

4-2

RT1IPx

RW

0h

Prescale timer 1 interrupt interval
000b = Divide by 2
001b = Divide by 4
010b = Divide by 8
011b = Divide by 16
100b = Divide by 32
101b = Divide by 64
110b = Divide by 128
111b = Divide by 256

1

RT1PSIE

RW

0h

Prescale timer 1 interrupt enable
0b = Interrupt not enabled
1b = Interrupt enabled (LPMx.5 wake-up enabled)

0

RT1PSIFG

RW

0h

Prescale timer 1 interrupt flag. In modules supporting LPMx.5 this interrupt can
be used as LPMx.5 wake-up event.
0b = No time event occurred
1b = Time event occurred

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

711

RTC_B Registers

www.ti.com

28.3.27 RTCPS0 Register
Real-Time Clock Prescale Timer 0 Counter Register
Figure 28-28. RTCPS0 Register
7

6

5

4

3

2

1

0

rw

rw

rw

rw

RT0PS
rw

rw

rw

rw

Table 28-28. RTCPS0 Register Description
Bit

Field

Type

Reset

Description

7-0

RT0PS

RW

undefined

Prescale timer 0 counter value

28.3.28 RTCPS1 Register
Real-Time Clock Prescale Timer 1 Counter Register
Figure 28-29. RTCPS1 Register
7

6

5

4

3

2

1

0

rw

rw

rw

rw

RT1PS
rw

rw

rw

rw

Table 28-29. RTCPS1 Register Description
Bit

Field

Type

Reset

Description

7-0

RT1PS

RW

undefined

Prescale timer 1 counter value

712

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_B Registers

www.ti.com

28.3.29 RTCIV Register
Real-Time Clock Interrupt Vector Register
Figure 28-30. RTCIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-(0)

r-(0)

r-(0)

r0

RTCIVx
r0

r0

r0

r0

7

6

5

4
RTCIVx

r0

r0

r0

r0

Table 28-30. RTCIV Register Description
Bit

Field

Type

Reset

Description

15-0

RTCIVx

R

0h

Real-time clock interrupt vector value
00h = No interrupt pending
02h = Interrupt Source: RTC ready; Interrupt Flag: RTCRDYIFG; Interrupt
Priority: Highest
04h = Interrupt Source: RTC interval timer; Interrupt Flag: RTCTEVIFG
06h = Interrupt Source: RTC user alarm; Interrupt Flag: RTCAIFG
08h = Interrupt Source: RTC prescaler 0; Interrupt Flag: RT0PSIFG
0Ah = Interrupt Source: RTC prescaler 1; Interrupt Flag: RT1PSIFG
0Ch = Interrupt Source: RTC oscillator failure; Interrupt Flag: RTCOFIFG
0Eh = Reserved; Interrupt Priority: Lowest

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock B (RTC_B)

713

RTC_B Registers

www.ti.com

28.3.30 BIN2BCD Register
Binary-to-BCD Conversion Register
Figure 28-31. BIN2BCD Register
15

14

13

12

11

10

9

8

rw-0

rw-0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

BIN2BCDx
rw-0

rw-0

rw-0

rw-0

7

6

5

4
BIN2BCDx

rw-0

rw-0

rw-0

rw-0

Table 28-31. BIN2BCD Register Description
Bit

Field

Type

Reset

Description

15-0

BIN2BCDx

RW

0h

Read: 16-bit BCD conversion of previously written 12-bit binary number
Write: 12-bit binary number to be converted

28.3.31 BCD2BIN Register
BCD-to-Binary Conversion Register
Figure 28-32. BCD2BIN Register
15

14

13

12

11

10

9

8

BCD2BINx
rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

BCD2BINx
rw-0

rw-0

rw-0

rw-0

Table 28-32. BCD2BIN Register Description
Bit

Field

Type

Reset

Description

15-0

BCD2BINx

RW

0h

Read: 12-bit binary conversion of previously written 16-bit BCD number
Write: 16-bit BCD number to be converted

714

Real-Time Clock B (RTC_B)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 29
SLAU367O – October 2012 – Revised December 2017

Real-Time Clock C (RTC_C)
The Real-Time Clock C (RTC_C) module provides clock counters with calendar mode, a flexible
programmable alarm, offset calibration, and a provision for temperature compensation. The RTC_C also
supports operation in LPM3.5. This chapter describes the RTC_C module.
Topic

29.1
29.2
29.3
29.4

...........................................................................................................................
Real-Time Clock (RTC_C) Introduction ................................................................
RTC_C Operation..............................................................................................
RTC_C Operation - Device-Dependent Features ...................................................
RTC_C Registers ..............................................................................................

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

Page

716
718
726
731

715

Real-Time Clock (RTC_C) Introduction

www.ti.com

29.1 Real-Time Clock (RTC_C) Introduction
The RTC_C module provides configurable clock counters.
RTC_C features include:
• Real-time clock and calendar mode that provides seconds, minutes, hours, day of week, day of month,
month, and year (including leap year correction)
• Protection for real-time clock registers
• Interrupt capability
• Selectable BCD or binary format
• Programmable alarms
• Real-time clock calibration for crystal offset error
• Real-time clock compensation for crystal temperature drift
• Operation in LPM3.5
The RTC_C module can provide the following device-dependent features. Refer to the device-specific
data sheet to determine if these features are available in a particular device.
• General-purpose counter mode (see Section 29.3.1)
• Event and tamper detection with time stamp (see Section 29.3.2)
• Operation from a separate voltage supply
NOTE:

Real-time clock initialization
Most RTC_C module registers have no initial condition. These registers must be configured
by user software before use.

Figure 29-1 shows the RTC_C block diagram.

716

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock (RTC_C) Introduction

www.ti.com

RTCHOLD
RT0IP

From 32-kHz
Crystal Oscillator

EN

RT0PS
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

3
111
110
101
100
011
010
001
000

RTCOCALS RTCOCAL
8
RTCHOLD
EN

Calibration
Logic
8

Set_RT0PSIFG

RTCTCMPS RTCTCMP

RT1IP

EN

3

RT1PS
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

111
110
101
100
011
010
001
000

Set_RT1PSIFG

Keepout
Logic

Set_RTCRDYIFG

RTCBCD
EN
RTCDOW

RTCHOUR

RTCMIN

RTCSEC
minute changed
hour changed
midnight
noon

Calendar
RTCYEARH

RTCYEARL

RTCMON

Alarm
RTCADOW

RTCADAY

RTCAHOUR

RTCTEV
2
00
Set_RTCTEVIFG
01
10
11

EN
RTCDAY

EN

Set_RTCAIFG

RTCAMIN
Copyright © 2016, Texas Instruments Incorporated

Figure 29-1. RTC_C Block Diagram (RTCMODE = 1)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

717

RTC_C Operation

www.ti.com

29.2 RTC_C Operation
29.2.1 Calendar Mode
Calendar mode is selected when RTCMODE is set. In calendar mode, the RTC_C module provides
seconds, minutes, hours, day of week, day of month, month, and year in selectable BCD or hexadecimal
format. The calendar includes a leap-year algorithm that considers all years evenly divisible by four as
leap years. This algorithm is accurate from the year 1901 through 2099. Switching from counter mode (if
available) to calendar mode does not reset the calendar registers (RTCSEC, RTCMIN, RTCHOUR,
RTCDAY, RTCDOW, and RTCYEAR) and the prescale counters (RT0PS, RT1PS). These registers must
be configured by user software before use.

29.2.2

Real-Time Clock and Prescale Dividers

The prescale dividers, RT0PS and RT1PS, are automatically configured to provide a 1-second clock
interval for the RTC_C. The low-frequency oscillator must be operated at 32768 Hz (nominal) for proper
RTC_C operation. RT0PS is sourced from the low-frequency oscillator XT1. The output of RT0PS divided
by 256 (Q7) sources RT1PS. RT1PS is further divided by 128 to source the real-time clock counter
registers that provide the required 1-second time interval.
When RTCBCD = 1, BCD format is selected for the calendar registers. It is possible to switch between
BCD and hexadecimal format while the RTC is counting.
Setting RTCHOLD halts the real-time counters and prescale counters, RT0PS and RT1PS.
NOTE:

For reliable update to all Calendar Mode registers
Set RTCHOLD = 1 before writing into any of the calendar or prescalar registers (RTCPS0,
RTCPS1, RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCMON, and RTCYEAR).

29.2.3

Real-Time Clock Alarm Function

The RTC_C module provides for a flexible alarm system. There is a single user-programmable alarm that
can be programmed based on the settings contained in the alarm registers for minutes, hours, day of
week, and day of month.
Each alarm register contains an alarm enable (AE) bit that can be used to enable the respective alarm
register. By setting AE bits of the various alarm registers, a variety of alarm events can be generated.
• Example 1: A user wishes to set an alarm every hour at 15 minutes past the hour (that is, 00:15:00,
01:15:00, 02:15:00, and so on). This is possible by setting RTCAMIN to 15. By setting the AE bit of the
RTCAMIN and clearing all other AE bits of the alarm registers, the alarm is enabled. When enabled,
the RTCAIFG is set when the count transitions from 00:14:59 to 00:15:00, 01:14:59 to 01:15:00,
02:14:59 to 02:15:00, and so on.
• Example 2: A user wishes to set an alarm every day at 04:00:00. This is possible by setting
RTCAHOUR to 4. By setting the AE bit of the RTCHOUR and clearing all other AE bits of the alarm
registers, the alarm is enabled. When enabled, the RTCAIFG is set when the count transitions from
03:59:59 to 04:00:00.
• Example 3: A user wishes to set an alarm for 06:30:00. RTCAHOUR would be set to 6, and RTCAMIN
would be set to 30. By setting the AE bits of RTCAHOUR and RTCAMIN, the alarm is enabled. When
enabled, the RTCAIFG is set when the time count transitions from 06:29:59 to 06:30:00. In this case,
the alarm event occurs every day at 06:30:00.
• Example 4: A user wishes to set an alarm every Tuesday at 06:30:00. RTCADOW would be set to 2,
RTCAHOUR would be set to 6, and RTCAMIN would be set to 30. By setting the AE bits of
RTCADOW, RTCAHOUR, and RTCAMIN, the alarm is enabled. When enabled, the RTCAIFG is set
when the time count transitions from 06:29:59 to 06:30:00 and the RTCDOW transitions from 1 to 2.
• Example 5: A user wishes to set an alarm the fifth day of each month at 06:30:00. RTCADAY would be
set to 5, RTCAHOUR would be set to 6, and RTCAMIN would be set to 30. By setting the AE bits of
RTCADAY, RTCAHOUR, and RTCAMIN, the alarm is enabled. When enabled, the RTCAIFG is set
when the time count transitions from 06:29:59 to 06:30:00 and the RTCDAY equals 5.
718

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Operation

www.ti.com

NOTE:

Invalid alarm settings
Invalid alarm settings are not checked by hardware. It is the user's responsibility that valid
alarm settings are entered.

NOTE:

Invalid time and date values
Writing of invalid date or time information or data values outside the legal ranges specified in
the RTCSEC, RTCMIN, RTCHOUR, RTCDAY, RTCDOW, RTCYEARH, RTCYEARL,
RTCAMIN, RTCAHOUR, RTCADAY, and RTCADOW registers can result in unpredictable
behavior.

NOTE:

Setting the alarm
Before setting an initial alarm, all alarm registers including the AE bits should be cleared.
To prevent potential erroneous alarm conditions from occurring, the alarms should be
disabled by clearing the RTCAIE, RTCAIFG, and AE bits before writing initial or new time
values to the RTC time registers.

29.2.4 Real-Time Clock Protection
RTC_C registers are key protected to ensure clock integrity and module configuration against software
crash or from runaway code. Key protection does not apply for reads from the RTC_C registers. That is,
any RTC_C register can be read at any time without having to unlock the module. Some predefined
registers of RTC_C are key protected for write access. The control registers, clock registers, calendar
register, prescale timer registers, and offset error calibration registers are protected. RTC_C alarm
function registers, prescale timer control registers, interrupt vector register, and temperature compensation
registers are not protected. RTC_C registers that are not protected can be written at any time without
unlocking the module. Table 29-2 shows which registers are affected by the protection scheme.
The RTCCTL0_H register implements key protection and controls the lock or unlock state of the module.
When this register is written with correct key, 0A5h, the module is unlocked and unlimited write access
possible to RTC_C registers. After the module is unlocked, it remains unlocked until the user writes any
incorrect key or until the module is reset. A read from RTCCTL0_H register returns value 96h. Write
access to any protected registers of RTC_C is ignored when the module is locked.
RTC_C Key Protection Software Example
; Unlock/lock sequence for RTC_C
MOV.B
#RTCKEY, &RTCCTL0_H
MOV.B
#8bit_value, &RTCSEC
MOV.B
#8bit_value, &RTCMIN
MOV.W
#16bit_value, &RTCTIM1
MOV.W
#RTCKEY+8bit_value, &RTCCTL0
...
MOV.B

#00h, &RTCCTL0_H

;
;
;
;
;

Write
Write
Write
Write
Write

correct key to unlock RTC_C
8 bit value into RTCSEC
8 bit value into RTCMIN
16bit value into RTCTIM1
into RTCCTL0 with correct key in word mode

; Write incorrect key to lock RTC_C

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

719

RTC_C Operation

29.2.5

www.ti.com

Reading or Writing Real-Time Clock Registers

Because the system clock may be asynchronous to the RTC_C clock source, special care must be used
when accessing the real-time clock registers.
The real-time clock registers are updated once per second. To prevent reading any real-time clock register
at the time of an update that could result in an invalid time being read, a keep-out window is provided. The
keep-out window is centered approximately 128/32768 seconds around the update transition. The readonly RTCRDY bit is reset during the keep-out window period and set outside the keep-out the window
period. Any read of the clock registers while RTCRDY is reset is considered to be potentially invalid, and
the time read should be ignored.
An easy way to safely read the real-time clock registers is to use the RTCRDYIFG interrupt flag. Setting
RTCRDYIE enables the RTCRDYIFG interrupt. When enabled, an interrupt is generated based on the
rising edge of the RTCRDY bit, causing the RTCRDYIFG to be set. At this point, the application has
nearly a complete second to safely read any or all of the real-time clock registers. This synchronization
process prevents reading the time value during transition. The RTCRDYIFG flag is reset automatically
when the interrupt is serviced or can be reset with software.
NOTE:

Reading or writing real-time clock registers
When the counter clock is asynchronous to the CPU clock, any read from any RTCSEC,
RTCMIN, RTCHOUR, RTCDOW, RTCDAY, RTCMON, RTCYEARL, or RTCYEARH register
while the RTCRDY is reset may result in invalid data being read. To safely read the counting
registers, either polling of the RTCRDY bit or the synchronization procedure previously
described can be used. Alternatively, the counter register can be read multiple times while
operating, and a majority vote taken in software to determine the correct reading. Reading
the RT0PS and RT1PS can only be handled by reading the registers multiple times and a
majority vote taken in software to determine the correct reading.
Any write to any counting register takes effect immediately. However, the clock is stopped
during the write. In addition, RT0PS and RT1PS registers are reset. This could result in
losing up to 1 second during a write. Writing of data outside the legal ranges or invalid time
stamp combinations results in unpredictable behavior.

29.2.6 Real-Time Clock Interrupts
At least six sources for interrupts are available, namely RT0PSIFG, RT1PSIFG, RTCRDYIFG,
RTCTEVIFG, RTCAIFG, and RTCOFIFG. These flags are prioritized and combined to source a single
interrupt vector. The interrupt vector register (RTCIV) is used to determine which flag requested an
interrupt.
The highest-priority enabled interrupt generates a number in the RTCIV register (see register description).
This number can be evaluated or added to the program counter (PC) to automatically enter the
appropriate software routine. Disabled RTC interrupts do not affect the RTCIV value.
Writes into RTCIV register clear all pending interrupt conditions. Reads from RTCIV register clear the
highest priority pending interrupt condition. If another interrupt flag is set, another interrupt is immediately
generated after servicing the initial interrupt. In addition, all flags can be cleared by software.
The user-programmable alarm event sources the real-time clock interrupt, RTCAIFG. Setting RTCAIE
enables the interrupt. In addition to the user-programmable alarm, the RTC_C module provides for an
interval alarm that sources real-time clock interrupt, RTCTEVIFG. The interval alarm can be selected to
cause an alarm event when RTCMIN changed or RTCHOUR changed, every day at midnight (00:00:00)
or every day at noon (12:00:00). The event is selectable with the RTCTEV bits. Setting the RTCTEVIE bit
enables the interrupt.
The RTCRDY bit sources the real-time clock interrupt, RTCRDYIFG, and is useful in synchronizing the
read of time registers with the system clock. Setting the RTCRDYIE bit enables the interrupt.
RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. RT0PS is sourced
with low-frequency oscillator clock at 32768 Hz, so intervals of 16384 Hz, 8192 Hz, 4096 Hz, 2048 Hz,
1024 Hz, 512 Hz, 256 Hz, or 128 Hz are possible. Setting the RT0PSIE bit enables the interrupt.
720

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Operation

www.ti.com

RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. RT1PS is sourced
with the output of RT0PS, which is 128 Hz (32768/256 Hz). Therefore, intervals of 64 Hz, 32 Hz, 16 Hz,
8 Hz, 4 Hz, 2 Hz, 1 Hz, or 0.5 Hz are possible. Setting the RT1PSIE bit enables the interrupt.
NOTE: Changing RT0IP or RT1IP
Changing the settings of the interrupt interval bits RT0IP or RT1IP while the corresponding
prescaler is running or is stopped in a non-zero state can result in setting the corresponding
interrupt flags.

The RTCOFIFG bit flags the failure of the 32-kHz crystal oscillator. Its main purpose is to wake up the
CPU from LPM3.5 if an oscillator failure occurs. On devices with separate supply for RTC, this flag also
stores a failure event that occurs when the core supply is not available.
29.2.6.1 RTCIV Software Example
The following software example shows the recommended use of RTCIV and the handling overhead. The
RTCIV value is added to the PC to automatically jump to the appropriate routine.
The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.
; Interrupt handler for RTC interrupt flags.
RTC_HND
ADD
RETI
JMP
JMP
JMP
JMP
JMP
JMP
RETI

&RTCIV,PC
RTCOFIFG_HND
RTCRDYIFG_HND
RTCTEVIFG_HND
RTCAIFG
RT0PSIFG
RT1PSIFG

;
;
;
;
;
;
;
;
;
;

Interrupt latency
Add offset to Jump table
Vector 0: No interrupt
Vector 2: RTCOFIFG
Vector 4: RTCRDYIFG
Vector 6: RTCTEVIFG
Vector 8: RTCAIFG
Vector A: RT0PSIFG
Vector C: RT1PSIFG
Vector E: Reserved

6
3
5
2
2
2
5
5
5
5

RTCOFIFG_HND
...
RETI

; Vector 2: RTCOFIFG Flag
; Task starts here
; Back to main program

5

RTCRDYIFG_HND
...
RETI

; Vector 4: RTCRDYIFG Flag
; Task starts here
; Back to main program

5

RTCTEVIFG_HND
...
RETI

; Vector 6: RTCTEVIFG
; Task starts here
; Back to main program

5

RTCAIFG_HND
...
RETI

; Vector 8: RTCAIFG
; Task starts here
; Back to main program

5

RT0PSIFG_HND
...
RETI

; Vector A: RT0PSIFG
; Task starts here
; Back to main program

5

RT1PSIFG_HND
...
RETI

; Vector C: RT1PSIFG
; Task starts here
; Back to main program

5

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

721

RTC_C Operation

www.ti.com

29.2.7 Real-Time Clock Calibration for Crystal Offset Error
The RTC_C module can be calibrated for crystal manufacturing tolerance or offset error to enable better
accuracy of time keeping accuracy. The crystal frequency error of up to ±240 ppm can be calibrated
smoothly over a period of 60 seconds. RTCOCAL_L register is used to adjust the frequency. The
calibration value is written into RTCOCAL_L register, and each LSB in this register represent
approximately ±1-ppm correction based on RTCOCALS bit in RTCOCAL_H register. When RTCOCALS
bit is set (up calibration), each LSB in RTCOCAL_L represent +1-ppm adjustment. When RTCOCALS is
cleared (down calibration), each LSB in RTCOCAL_L represent –1-ppm adjustment to frequency. Both
RTCOCAL_L and RTCOCAL_H registers are protected and require RTC_C to be unlocked before writing
into these registers.
29.2.7.1 Calibration Frequency
To calibrate the frequency, the RTCCLK output signal is available at a pin. RTCCALFx bits in RTCCTL3
register can be used to select the frequency rate of the output signal. When RTCCALFx = 00, no signal is
output on RTCCLK pin. The other settings of RTCCALFx select one the three frequencies: 512 Hz,
256 Hz, or 1 Hz. RTCCLK can be measured, and the result of this measurement can be applied to the
RTCOCALS and RTCOCALx bits to effectively reduce the initial offset of the clock.
29.2.7.1.1 Calibration Mechanism
RTCOCAL_L is an 8-bit register. Software can write a value of up to 256 ppm into this register, but the
maximum frequency error that can be corrected is only 240 ppm. Software must make sure to write legal
values into this register. A read from RTCOCAL always returns the value that was written by software.
Real-time clock offset error calibration is inactive when RTC_C is not enabled (RTCHOLD = 0) or when
RTCOCALx bits are zero. RTCOCAL should only be written when RTCHOLD = 1. Writing RTCOCAL
resets temperature compensation to zero.
In RTC_C, the offset error calibration takes place over a period of 60 seconds. To achieve approximately
±1-ppm correction, the 16-kHz clock (Q0 output of RT0PS) is adjusted to add or subtract one clock pulse.
For +1-ppm correction, one clock pulse is added to the 16-kHz clock, and for –1-ppm correction, one clock
pulse is subtracted from the 16-kHz clock. This correction happens once every quarter second until the
programmed ppm error is compensated.
fACLK,meas < 32768 Hz → RTCOCALS = 1, RTCOCALx = Round (60 × 16384 × (1 – fACLK,meas/32768))
fACLK,meas ≥ 32768 Hz → RTCOCALS = 0, RTCOCALx = Round (60 × 16384 × (1 – fACLK,meas/32768))
As an example for up calibration, when the measured frequency is 511.9658 Hz against the reference
frequency of 512 Hz, the frequency error is approximately 67 ppm low. To increase the frequency by
67 ppm, RTCOCALS should be set, and RTCOCALx should be set to Round (60 × 16384 × (1 – 511.9658
× 64 / 32768)) = 66.
As an example for down calibration, when the measured frequency is 512.0241 Hz against the reference
frequency of 512 Hz, the frequency error is approximately 47 ppm high. To decrease the frequency by
47 ppm, RTCOCALS should be cleared, and RTCOCALx should be set to Round (60 × 16384 × (1 –
512.0241 × 64 / 32768)) = 46.
All three possible output frequencies (512 Hz, 256 Hz, and 1 Hz) at RTCCLK pin are affected by
calibration settings. RT0PS interrupt triggered by RT0PS – Q0 (RT0IPx = 000) is based on the
uncalibrated clock, while RT0PS interrupt triggered by RT0PS – Q1 to Q7 (RT0IPx ≠ 000) is based on the
calibrated clock. RT1PS interrupt (RT1PSIFG) and RTC counter interrupt (RTCTEVIFG) are also based
on the calibrated clock.

722

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Operation

www.ti.com

29.2.8 Real-Time Clock Compensation for Crystal Temperature Drift
The frequency output of the crystal varies considerably due to drift in temperature. It would be necessary
to compensate the real-time clock for this temperature drift for higher time keeping accuracy from standard
crystals. A hybrid software and hardware approach can be followed to achieve temperature compensation
for RTC_C.
The software can make use of an (on-chip) temperature sensor to measure the temperature at desired
intervals (for example, once every few seconds or minutes). The temperature sensor parameters are
calibrated at production and stored in the nonvolatile memory. Using the temperature sensor parameters
and the measured temperature, software can do parabolic calculations to find out the corresponding
frequency error in ppm.
This frequency error can be written into RTCTCMP_L register for temperature compensation.
RTCTCMP_L is an 8-bit register that allows correction for a frequency error up to ±240 ppm. Each LSB in
this register represent ±1 ppm based on the RTCTCMPS bit in the RTCTCMP_H register. When
RTCTCMPS bit is set, each LSB in RTCTCMP represents +1-ppm adjustment (up calibration). When
RTCTCMPS is cleared, each LSB in RTCTCMP represents –1-ppm adjustment (down calibration).
RTCTCMP register is not protected and can be written any time without unlocking RTC_C.
29.2.8.1 Temperature Compensation Scheme
RTCTCMP_L is an 8-bit register. Software can write up to value of 256 ppm into this register, but the
maximum frequency error that can be corrected including the crystal offset error is 240 ppm. Real-time
clock temperature compensation is inactive when RTC_C is not enabled (RTCHOLD = 0) or when
RTCTCMPx bits are zero.
When the temperature compensation value is written into RTCTCMP_L, it is added to the offset error
calibration value, and the resulting value is taken into account from next calibration cycle onwards. The
ongoing calibration cycle is not affected by writes into the RTCTCMP register. The maximum frequency
error that can be corrected to account for both offset error and temperature variation is ±240 ppm. This
means the sign addition of offset error value and temperature compensation value should not exceed
maximum of ±240 ppm; otherwise, the excess value above ±240 ppm is ignored by hardware. Reading
from the RTCTCMP register at any time returns the cumulative value which is the signed addition of
RTCOCALx and RTCTCMPx values. (Note that writing RTCOCAL resets the temperature compensation
value to zero.)
For example, when RTCOCAL value is +150 ppm, and the value written into RTCTCMP is +200 ppm, the
effective value taken in for next calibration cycle is +240 ppm. Software is expected to do temperature
measurement at certain regularity, calculate the frequency error, and write into RTCTCMP register to not
exceed the maximum limit of ±240 ppm.
Changing the sign bit by writing to RTCTCMP_H becomes effective only after also writing RTCTCMP_L.
Thus TI recommends writing the sign bit together with compensation value as a 16-bit value into
RTCTCMP.
29.2.8.2 Writing to RTCTCMP Register
Because the system clock can be asynchronous to the RTC_C clock source, the RTCTCRDY bit in the
RTCTCMP_H register should be considered for reliable writing into RTCTCMP register. RTCTCRDY is a
read-only bit that is set when the hardware is ready to take in the new temperature compensation value. A
write to RTCTCMP should be avoided when RTCTCRDY bit is reset. Writes into RTCTCMP register when
RTCTCRDY is reset are ignored.
RTCTCOK is a status bit that indicates if the write to RTCTCMP register is successful or not. RTCTCOK
is set if the write to RTCTCMP is successful and reset if the write is unsuccessful. The status remains the
same until the next write to the RTCTCMP register. If the write to RTCTCMP is unsuccessful, then the
user needs to attempt writing into RTCTCMP again when RTCTCRDY is set.
Figure 29-2 shows the scheme for real-time clock offset error calibration and temperature compensation.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

723

RTC_C Operation

www.ti.com

SW

Temperature
Sensor
Parameters

Temperature
Sensor
Readings

SW

SW

Temperature
Estimation

SW

Crystal Offset
Error
Calculation

SW

Parabolic
Calculations

HW

Write to
RTCOCAL

HW

Write to
RTCTCMP

HW

Calibration
Logic

Uncalibrated
32-kHz Clock

HW RT0PS - Q0
Uncalibrated
16-kHz Clock

Calibrated
16-kHz Clock

Calibrated
128-Hz Clock

HW

RT0PS - Q1 to Q7

HW

RT1PS - Q0 to Q6

HW

RTC Counters

Calibrated
1-Hz Clock

Figure 29-2. RTC_C Offset Error Calibration and Temperature Compensation Scheme

29.2.8.3 Temperature Measurement and Updates to RTC_C
The user may wish to perform temperature measurement once every few seconds or once every minute
or once in several minutes. Writing to RTCTCMP register for temperature compensation is effective
always once in one minute. This means that if the user performs temperature measurement every minute
and updates RTCTCMP register with the frequency error, compensation would immediately work fine. But
if software performs temperature measurement more frequently than once per minute (for example once
every 5 seconds) then it needs to average the error over one minute and update RTCTCMP register once
per minute. If the software performs temperature measurement less frequently than once per minute (for
example, once every 5 minutes) then it needs to calculate the frequency error for the measured
temperature and write into RTCTCMP register. The value written into RTCTCMP in this case would be
effective until it is updated again by software.

724

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Operation

www.ti.com

29.2.9 Real-Time Clock Operation in LPM3.5 Low-Power Mode
The regulator of the Power Management Module (PMM) is disabled when the device enters LPM3.5,
which causes most of the RTC_C configuration registers to be lost; only the counters and calibration
registers are retained. Table 29-2 shows which registers are retained in LPM3.5. Also the configuration of
the interrupt enables is stored so that the configured interrupts can cause a wakeup upon exit from
LPM3.5. Interrupt flags that are set before entering LPM3.5 are cleared upon entering LPM3.5 (Note: this
can only happen if the corresponding interrupt is not enabled). The interrupt flags RTCTEVIFG, RTCAIFG,
RT1PSIFG, and RTCOFIFG can be used as RTC_C wakeup interrupt sources. Any interrupt event that
occurs during LPM3.5 is stored in the corresponding flags, but only enabled interrupts can wake up the
device. After restoring the configuration registers (and clearing LOCKLPM5), the interrupts can be
serviced as usual.
The detailed flow is as follows:
1. Set all I/Os to general-purpose I/Os and configure as needed. Optionally, configure input interrupt pins
for wakeup. Configure RTC_C interrupts for wake-up (set RTCTEVIE, RTCAIE, RT1PSIE, or
RTCOFIE. If the alarm interrupt is also used as wake-up event, the alarm registers must be configured
as needed).
2. Enter LPM3.5 with LPM3.5 entry sequence:
bic #RTCHOLD, &RTCCTL13
bis #PMMKEY + REGOFF, &PMMCTL0
bis #LPM4, SR

3. LOCKLPM5 is automatically set by hardware upon entering LPM3.5, the core voltage regulator is
disabled, and all clocks are disabled except for the 32-kHz crystal oscillator clock as the RTC_C is
enabled with RTCHOLD = 0.
4. An LPM3.5 wake-up event like an edge on a wake-up input pin or an RTC_C interrupt event starts the
BOR entry sequence and the core voltage regulator. All peripheral registers are set to their default
conditions. The I/O pin state and the interrupt configuration for the RTC_C remain locked.
5. The device can be configured. The I/O configuration and the RTC_C interrupt configuration that was
not retained during LPM3.5 should be restored to the values that they had before entering LPM3.5.
Then the LOCKLPM5 bit can be cleared, which releases the I/O pin conditions and the RTC_C
interrupt configuration. Registers that are retained during LPM3.5 should not be altered before
LOCKLPM5 is cleared.
6. After enabling I/O and RTC_C interrupts, the interrupt that caused the wake-up can be serviced.
If the RTC_C is enabled (RTCHOLD = 0), the 32-kHz oscillator remains active during LPM3.5. The fault
detection also remains functional. If a fault occurs during LPM3.5 and the RTCOFIE was set before
entering LPM3.5, a wake-up event is issued.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

725

RTC_C Operation - Device-Dependent Features

www.ti.com

29.3 RTC_C Operation - Device-Dependent Features
29.3.1 Counter Mode
NOTE: This feature is available only on selected devices. See the device-specific data sheet to
determine if this feature is available.

The RTC_C module can be configured as a real-time clock with calendar function (calendar mode) or as a
32-bit general-purpose counter (counter mode) with the RTCMODE bit.
Counter mode is selected when RTCMODE is reset. In this mode, a 32-bit counter is provided that is
directly accessible by software. Figure 29-3 shows the functional block diagram of a RTC_C module in
counter mode (RTCMODE = 0).
RT0PSHOLD
RT0IP
EN

From 32-kHz
Crystal Oscillator

RT0PS
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

3

RT1PSHOLD

RT1SSEL
2

3

RT1PS
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

Set_RT1PSIFG

111

110

101

100

011

001

3

010

111
110
101
100
011
010
001
000

000

RT1PSDIV

RT1IP

EN

00
01
10
11

Set_RT0PSIFG

111

110

100

101

011

010

3

000

RT0PSDIV

001

111
110
101
100
011
010
001
000

RTCSSEL
2
00
01
10
11

RTCHOLD
EN
31 ... 24

23 ... 16

RTCNT4

RTCNT3

15 ...

8

RTCNT2

7

...

0

RTCNT1
8-bit overflow
16-bit overflow
24-bit overflow
32-bit overflow

RTCTEV
2
00
Set_RTCTEVIFG
01
10
11

Figure 29-3. RTC_C Functional Block Diagram in Counter Mode (RTCMODE = 0)

726

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Operation - Device-Dependent Features

www.ti.com

29.3.1.1 Switching between Calendar and Counter Mode
To
1.
2.
3.

switch from calendar mode to counter mode do the following steps:
Stop the RTC with RTCHOLD=1.
Clear the RTCMODE bit to enable the counter mode.
Initialize the count registers (RTCNT1, RTCNT2, RTCNT3, RTCNT4) and the prescale counters
(RT0PS, RT1PS) as needed. (The switch from calendar mode to counter mode does not reset the
count value (RTCNT1, RTCNT2, RTCNT3, RTCNT4) or the prescale counters (RT0PS, RT1PS).
These registers must be configured by user software before use.)
4. Clear the RTCHOLD bit to start the counters.
To
1.
2.
3.

switch back from counter mode to calender mode do the following steps:
Stop the counters with RTCHOLD=1.
Set RTCMODE=1 to enable the calendar mode.
Initialize the clock and calendar registers and the prescale counters (RT0PS, RT1PS) as needed. (The
switch from counter mode to calendar mode does not reset the clock and calendar registers nor the
prescale counters (RT0PS, RT1PS). These registers must be configured by user software before use.)
4. Clear the RTCHOLD bit to start the RTC.
29.3.1.2 Counter Mode Operation
The clock that increments the counter can be sourced from the 32-kHz crystal oscillator or from prescaled
versions of the 32-kHz crystal oscillator clock. Prescaled versions are sourced from the prescale dividers
(RT0PS and RT1PS). RT0PS and RT1PS can output /2, /4, /8, 16, /32, /64, /128, and /256 versions of the
32-kHz clock. The output of RT0PS can be cascaded with RT1PS. The cascaded output can also be used
as a clock source input to the 32-bit counter.
Four individual 8-bit counters are cascaded to provide the 32-bit counter. This provides 8-bit, 16-bit, 24-bit,
or 32-bit overflow intervals of the counter clock. The RTCTEV bits select the respective trigger event. An
RTCTEV event can trigger an interrupt by setting the RTCTEVIE bit. Each counter, RTCNT1 through
RTCNT4, is individually accessible and may be written.
RT0PS and RT1PS can be configured as two 8-bit counters or cascaded into a single 16-bit counter.
RT0PS and RT1PS can be halted on an individual basis by setting their respective RT0PSHOLD and
RT1PSHOLD bits. When RT0PS is cascaded with RT1PS, setting RT0PSHOLD causes both RT0PS and
RT1PS to be halted. The 32-bit counter can be halted several ways, depending on the configuration. If the
32-bit counter is sourced directly by the 32-kHz crystal clock, it can be halted by setting RTCHOLD. If it is
sourced from the output of RT1PS, it can be halted by setting RT1PSHOLD or RTCHOLD. Finally, if it is
sourced from the cascaded outputs of RT0PS and RT1PS, it can be halted by setting RT0PSHOLD,
RT1PSHOLD, or RTCHOLD.
NOTE:

Accessing the RTCNT1, RTCNT2, RTCNT3, RTCNT4, RT0PS, RT1PS registers
When the counter clock is asynchronous to the CPU clock, any read from any RTCNT1,
RTCNT2, RTCNT3, RTCNT4, RT0PS, or RT1PS register should occur while the counter is
not operating. Otherwise, the results may be unpredictable. Alternatively, the counter may be
read multiple times while operating, and a majority vote taken in software to determine the
correct reading. Any write to these registers takes effect immediately.

NOTE:

For reliable update to all Counter Mode registers
Depending on the cascading of counters, when a write occurs, hold all subsequent counters.
For example, if RTPS0 is being updated, set RTCPS1HOLD = 1, and if RTPS1 is being
updated, set RTCHOLD = 1.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

727

RTC_C Operation - Device-Dependent Features

29.3.1.3

www.ti.com

Real-Time Clock Interrupts in Counter Mode

In counter mode, four interrupt sources are available: RT0PSIFG, RT1PSIFG, RTCTEVIFG, and
RTCOFIFG. RTCAIFG and RTCRDYIFG are cleared. RTCRDYIE and RTCAIE are don't care.
RT0PSIFG can be used to generate interrupt intervals selectable by the RT0IP bits. In counter mode,
divide ratios of /2, /4, /8, /16, /32, /64, /128, and /256 of the clock source are possible. Setting the
RT0PSIE bit enables the interrupt.
RT1PSIFG can be used to generate interrupt intervals selectable by the RT1IP bits. In counter mode,
RT1PS is sourced with low-frequency oscillator clock, or the output of RT0PS, so divide ratios of /2, /4, /8,
/16, /32, /64, /128, and /256 of the respective clock source are possible. Setting the RT1PSIE bit enables
the interrupt.
In Counter Mode, the RTC_C module provides for an interval timer that sources real-time clock interrupt,
RTCTEVIFG. The interval timer can be selected to cause an interrupt event when an 8-bit, 16-bit, 24-bit,
or 32-bit overflow occurs within the 32-bit counter. The event is selectable with the RTCTEV bits. Setting
the RTCTEVIE bit enables the interrupt.
The RTCOFIFG bit flags a failure of the 32-kHz crystal oscillator. It's main purpose is to wake-up the CPU
from LPM3.5 in case an oscillator failure occurred.

728

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Operation - Device-Dependent Features

www.ti.com

29.3.2 Real-Time Clock Event/Tamper Detection With Time Stamp
NOTE: This feature is available only on selected devices. See the device-specific data sheet to
determine if this feature is available.

The RTC_C module provides an external event or tamper detection and time stamp for up to two external
events. The pins RTCCAP0 and RTCCAP1 (1) can be used as an event or tamper detection input of an
external switch (mechanical or electronic). After device power-up, this feature can be enabled by setting
the TCEN bit in the RTCTCCTL0 register. Event and tamper detection with time stamp is supported in all
MSP430 operating modes, as long as there is a valid RTC power supply.
• When there is an event on RTCCAPx pin and the time capture feature is enabled (TCEN = 1), the
corresponding CAPEV bit in RTCCAPxCTL register is set and the corresponding time stamp
information (seconds, minutes, hours, day of month, month and year) is stored in the respective
backup registers (RTCSECBAKx, RTCMINBAKx, RTCHOURBAKx, RTCDAYBAKx, RTCMONBAKx
and RTCYEARBAKx).
• In case of multiple events, ONLY the time stamp of the event that occurred first is stored in the
respective backup registers. After CAPEV is set by the first event on RTCCAPx, all subsequent events
on RTCCAPx are ignored until the CAPEV bit is cleared by the user.
• The CAPES bit in the RTCCAPxCTL register sets the event edge for the corresponding RTCCAPx pin.
– Bit = 0: CAPEV flag is set with a low-to-high transition.
– Bit = 1: CAPEV flag is set with a high-to-low transition.
NOTE:

Writing to CAPESx
Writing to CAPES can result in setting the corresponding interrupt flags.

CAPESx
0→1
0→1
1→0
1→0
(1)

RTCCAPx
0
1
0
1

RTCCAPIFG
May be set
Unchanged
Unchanged
May be set

These pins are present only on devices that support this feature of RTC_C. Refer to the device-specific data sheet to determine the
availability of this feature.

•

•
•

•

•
•

The interrupt flag RTCCAPIFG is set when any of the individual CAPEV bits are set. If the RTCIV is
read, RTCCAPIFG is cleared but not the status flags (CAPEV bits). They are then read by the CPU
and must be cleared by software only.
By setting the RTCCAPIE bit, an event on RTCCAPx generates an interrupt. This interrupt can be
used as LPM3.5 or LPM4.5 wake-up event in modules that support LPM3.5 or LPM4.5.
When the time capture feature is enabled (TCEN = 1), all of the backup registers (RTCSECBAKx,
RTCMINBAKx, RTCHOURBAKx, RTCDAYBAKx, RTCMONBAKx, and RTCYEARBAKx) are read-only
to user and can be written only by the RTC hardware. When RTCBCD = 1 and TCEN = 1, BCD format
is selected for the backup registers. If the backup registers were written to by the hardware before
TCEN was set, then the previous values are retained until there is a time capture event that overrides
the values with the time stamp.
When the time capture feature is disabled (TCEN = 0), all of the backup registers (RTCSECBAKx,
RTCMINBAKx, RTCHOURBAKx, RTCDAYBAKx, RTCMONBAKx, and RTCYEARBAKx) can be written
only by the CPU. When TCEN = 0, the RTCBCD bit setting is ignored for the backup registers. The
data in the backup registers when TCEN = 1 is retained until the user writes new values after TCEN is
cleared.
When TCEN is cleared, all CAPEV bits and RTCCAPIFG are cleared.
Table 29-1 shows how to use the DIR, REN, and OUT bits in RTCCAPxCTL for proper configuration of
RTCCAPx pins.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

729

RTC_C Operation - Device-Dependent Features

www.ti.com

Table 29-1. RTCCAPx Pin Configuration
DIR

REN

OUT

0

0

x

RTCCAPx Configuration
Input

0

1

0

Input with pulldown resistor

0

1

1

Input with pullup resistor

1

x

x

Output

29.3.2.1 Real-Time Clock Event/Tamper Detection Interrupts
With the event or tamper detection feature, one additional interrupt sources is available, RTCCAPIFG.
This flag is prioritized and combined with the other interrupt flags to source a single interrupt vector. The
interrupt vector register (RTCIV) is used to determine which flag requested an interrupt.
The RTCCAPIFG bit flags the occurrence of a tamper event. The exact source of the interrupt among
multiple tamper events can be found out by reading the CAPEV bit in the respective RTCCAPxCTL
registers (one per tamper source). When RTCIV is read, the RTCCAPIFG is cleared but not the status
flags (CAPEV bits).

730

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4 RTC_C Registers
The RTC_C module registers are shown in Table 29-2. This table also shows which registers are key
protected and which are retained during LPM3.5. The registers that are retained during LPM3.5 and given
with a reset value are not reset on POR. Registers that are not retained during LPM3.5 must be restored
after exit from LPM3.5.
The high-side SVS must not be disabled by software if the real-time clock feature is needed. When the
high-side SVS is disabled, the RTC_C registers with LPM3.5 retention are not accessible by the CPU.
The base address for the RTC_C module registers can be found in the device-specific data sheet. The
address offsets are shown in Table 29-2.
The additional registers that are available if Event/Tamper Detection is implemented are shown in
Table 29-3 together with the corresponding address offsets.
If the counter mode is supported, the register aliases shown in Table 29-4 can be used to access the
counter registers.
NOTE: Most registers have word or byte register access. For a generic register ANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 29-2. RTC_C Registers
Offset

Acronym

Register Name

Type

Access

Reset

Key
Protected

LPM3.5
Retention

00h

RTCCTL0

Real-Time Clock Control 0

Read/write

Word

9600h

yes

not retained

00h

RTCCTL0_L

Real-Time Clock Control 0 Low

Read/write

Byte

00h

yes

not retained

01h

RTCCTL0_H

Real-Time Clock Control 0 High Read/write

Byte

96h

n/a

not retained

02h

RTCCTL13

Real-Time Clock Control 1, 3

Read/write

Word

0070h

yes

high byte
retained

02h

RTCCTL1

Real-Time Clock Control 1

Read/write

Byte

70h

yes

not retained

Real-Time Clock Control 3

Read/write

Byte

00h

yes

retained

Real-Time Clock Offset
Calibration

Read/write

Word

0000h

yes

retained

Read/write

Byte

00h

yes

retained

Read/write

Byte

00h

yes

retained

Read/write

Word

4000h

no

partially
retained

or RTCCTL13_L
03h

RTCCTL3
or RTCCTL13_H

04h

RTCOCAL

04h

RTCOCAL_L

05h

RTCOCAL_H
Real-Time Clock Temperature
Compensation

06h

RTCTCMP

06h

RTCTCMP_L

Read/write

Byte

00h

no

partially
retained

07h

RTCTCMP_H

Read/write

Byte

40h

no

partially
retained

08h

RTCPS0CTL

Read/write

Word

0100h

no

not retained

08h

RTCPS0CTL_L

Read/write

Byte

00h

no

not retained

09h

RTCPS0CTL_H

Read/write

Byte

01h

no

not retained

0Ah

RTCPS1CTL

Read/write

Word

0100h

no

not retained

0Ah

RTCPS1CTL_L

Read/write

Byte

00h

no

not retained

0Bh

RTCPS1CTL_H

Read/write

Byte

01h

no

not retained

0Ch

RTCPS

Real-Time Prescale Timer 0, 1
Counter

Read/write

Word

none

yes

retained

0Ch

RT0PS

Real-Time Prescale Timer 0
Counter

Read/write

Byte

none

yes

retained

Real-Time Prescale Timer 0
Control

Real-Time Prescale Timer 1
Control

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C) 731

RTC_C Registers

www.ti.com

Table 29-2. RTC_C Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Key
Protected

LPM3.5
Retention

Real-Time Prescale Timer 1
Counter

Read/write

Byte

none

yes

retained

or RTCPS_L
0Dh

RT1PS
or RTCPS_H

0Eh

RTCIV

Real Time Clock Interrupt
Vector

Read

Word

0000h

no

not retained

10h

RTCTIM0

Real-Time Clock Seconds,
Minutes

Read/write

Word

undefined

yes

retained

10h

RTCSEC

Real-Time Clock Seconds

Read/write

Byte

undefined

yes

retained

Real-Time Clock Minutes

Read/write

Byte

undefined

yes

retained

or RTCTIM0_L
11h

RTCMIN
or RTCTIM0_H

12h

RTCTIM1

Real-Time Clock Hour, Day of
Week

Read/write

Word

undefined

yes

retained

12h

RTCHOUR

Real-Time Clock Hour

Read/write

Byte

undefined

yes

retained

Real-Time Clock Day of Week

Read/write

Byte

undefined

yes

retained

or RTCTIM1_L
13h

RTCDOW
or RTCTIM1_H

14h

RTCDATE

Real-Time Clock Date

Read/write

Word

undefined

yes

retained

14h

RTCDAY

Real-Time Clock Day of Month

Read/write

Byte

undefined

yes

retained

Real-Time Clock Month

Read/write

Byte

undefined

yes

retained

or RTCDATE_L
15h

RTCMON
or RTCDATE_H

16h

RTCYEAR

Real-Time Clock Year (1)

Read/write

Word

undefined

yes

retained

18h

RTCAMINHR

Real-Time Clock Minutes, Hour
Alarm

Read/write

Word

undefined

no

retained

18h

RTCAMIN

Real-Time Clock Minutes Alarm Read/write

Byte

undefined

no

retained

Real-Time Clock Hours Alarm

Read/write

Byte

undefined

no

retained

or RTCAMINHR_L
19h

RTCAHOUR
or RTCAMINHR_H

1Ah

RTCADOWDAY

Real-Time Clock Day of Week,
Day of Month Alarm

Read/write

Word

undefined

no

retained

1Ah

RTCADOW

Real-Time Clock Day of Week
Alarm

Read/write

Byte

undefined

no

retained

Real-Time Clock Day of Month
Alarm

Read/write

Byte

undefined

no

retained

or
RTCADOWDAY_L
1Bh

RTCADAY
or
RTCADOWDAY_H

1Ch

BIN2BCD

Binary-to-BCD conversion
register

Read/write

Word

0000h

no

not retained

1Eh

BCD2BIN

BCD-to-binary conversion
register

Read/write

Word

0000h

no

not retained

(1)

Do not access the year register RTCYEAR in byte mode.

732 Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

Table 29-3. RTC_C Event and Tamper Detection Registers
Offset

Acronym

Register Name

Type

Access

Reset

Key
Protected

LPM3.5
Retention

20h

RTCTCCTL0

Real-Time Clock Time Capture
Control Register 0

Read/write

Byte

02h

yes

retained

21h

RTCTCCTL1

Real-Time Clock Time Capture
Control Register 1

Read/write

Byte

00h

yes

not retained

22h

RTCCAP0CTL

Tamper Detect Pin 0 Control
Register

Read/write

Byte

00h

yes

not retained

23h

RTCCAP1CTL

Tamper Detect Pin 1 Control
Register

Read/write

Byte

00h

yes

not retained

30h

RTCSECBAK0

Real-Time Clock Seconds Backup
Read/write
Register 0

Byte

00h

yes

retained

31h

RTCMINBAK0

Real-Time Clock Minutes Backup
Register 0

Read/write

Byte

00h

yes

retained

32h

RTCHOURBAK0

Real-Time Clock Hours Backup
Register 0

Read/write

Byte

00h

yes

retained

33h

RTCDAYBAK0

Real-Time Clock Days Backup
Register 0

Read/write

Byte

00h

yes

retained

34h

RTCMONBAK0

Real-Time Clock Months Backup
Register 0

Read/write

Byte

00h

yes

retained

36h

RTCYEARBAK0

Real-Time Clock year Backup
Register 0

Read/write

Word

00h

yes

retained

38h

RTCSECBAK1

Real-Time Clock Seconds Backup
Read/write
Register 1

Byte

00h

yes

retained

39h

RTCMINBAK1

Real-Time Clock Minutes Backup
Register 1

Read/write

Byte

00h

yes

retained

3Ah

RTCHOURBAK1

Real-Time Clock Hours Backup
Register 1

Read/write

Byte

00h

yes

retained

3Bh

RTCDAYBAK1

Real-Time Clock Days Backup
Register 1

Read/write

Byte

00h

yes

retained

3Ch

RTCMONBAK1

Real-Time Clock Months Backup
Register 1

Read/write

Byte

00h

yes

retained

3Eh

RTCYEARBAK1

Real-Time Clock Year Backup
Register 1

Read/write

Word

00h

yes

retained

Table 29-4. RTC_C Real-Time Clock Counter Mode Aliases
Offset

Acronym

Register Name

Type

Access

Reset

Key
Protected

LPM3.5
Retention

10h

RTCCNT12

Real-Time Counter 1, 2

Read/write

Word

undefined

yes

retained

10h

RTCCNT1

Real-Time Counter 1

Read/write

Byte

undefined

yes

retained

11h

RTCCNT2

Real-Time Counter 2

Read/write

Byte

undefined

yes

retained

12h

RTCCNT34

Real-Time Counter 3, 4

Read/write

Word

undefined

yes

retained

12h

RTCCNT3

Real-Time Counter 3

Read/write

Byte

undefined

yes

retained

13h

RTCCNT4

Real-Time Counter 4

Read/write

Byte

undefined

yes

retained

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

733

RTC_C Registers

www.ti.com

29.4.1 RTCCTL0_L Register
Real-Time Clock Control 0 Low Register
Figure 29-4. RTCCTL0_L Register
7
RTCOFIE (1)
rw-0
(1)

6
RTCTEVIE (1)
rw-0

5
RTCAIE (1)
rw-0

4
RTCRDYIE
rw-0

3
RTCOFIFG
rw-(0)

2
RTCTEVIFG
rw-(0)

1
RTCAIFG
rw-(0)

0
RTCRDYIFG
rw-(0)

The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore,
reconfiguration is required after wakeup from LPMx.5 before clearing LOCKLPM5.

Table 29-5. RTCCTL0_L Register Description
Bit

Field

Type

Reset

Description

7

RTCOFIE

RW

0h

32-kHz crystal oscillator fault interrupt enable. This interrupt can be used as
LPM3.5 wake-up event.
0b = Interrupt not enabled
1b = Interrupt enabled (LPM3.5 wake-up enabled)

6

RTCTEVIE

RW

0h

Real-time clock time event interrupt enable. In modules supporting LPM3.5 this
interrupt can be used as LPM3.5 wake-up event.
0b = Interrupt not enabled
1b = Interrupt enabled (LPM3.5 wake-up enabled)

5

RTCAIE

RW

0h

Real-time clock alarm interrupt enable. In modules supporting LPM3.5 this
interrupt can be used as LPM3.5 wake-up event.
0b = Interrupt not enabled
1b = Interrupt enabled (LPM3.5 wake-up enabled)

4

RTCRDYIE

RW

0h

Real-time clock ready interrupt enable
0b = Interrupt not enabled
1b = Interrupt enabled

3

RTCOFIFG

RW

0h

32-kHz crystal oscillator fault interrupt flag. This interrupt can be used as LPM3.5
wake-up event. It also indicates a clock failure during backup operation.
0b = No interrupt pending
1b = Interrupt pending. A 32-kHz crystal oscillator fault occurred after last reset.

2

RTCTEVIFG

RW

0h

Real-time clock time event interrupt flag. In modules supporting LPM3.5 this
interrupt can be used as LPM3.5 wake-up event.
0b = No time event occurred
1b = Time event occurred

1

RTCAIFG

RW

0h

Real-time clock alarm interrupt flag. In modules supporting LPM3.5 this interrupt
can be used as LPM3.5 wake-up event.
0b = No time event occurred
1b = Time event occurred

0

RTCRDYIFG

RW

0h

Real-time clock ready interrupt flag
0b = RTC cannot be read safely
1b = RTC can be read safely

734

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.2 RTCCTL0_H Register
Real-Time Clock Control 0 High Register
Figure 29-5. RTCCTL0_H Register
7

6

5

4

3

2

1

0

rw-0

rw-1

rw-1

rw-0

RTCKEY
rw-1

rw-0

rw-0

rw-1

Table 29-6. RTCCTL0_H Register Description
Bit

Field

Type

Reset

Description

7-0

RTCKEY

RW

96h

Real-time clock key. This register should be written with A5h to unlock RTC_C. A
write with a value other than A5h locks the module. A read from this register
always returns 96h.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

735

RTC_C Registers

www.ti.com

29.4.3 RTCCTL1 Register
Real-Time Clock Control Register 1
Figure 29-6. RTCCTL1 Register
7
RTCBCD
rw-(0)
(1)

6
RTCHOLD (1)
rw-(1)

5
RTCMODE (1)
rw-(1)

4
RTCRDY
r-(1)

3

2
RTCSSELx (1)
rw-(0)
rw-(0)

1

0
RTCTEVx (1)
rw-(0)
rw-(0)

The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore,
reconfiguration is required after wakeup from LPMx.5 before clearing LOCKLPM5.

Table 29-7. RTCCTL1 Register Description
Bit

Field

Type

Reset

Description

7

RTCBCD

RW

0h

Real-time clock BCD select. Selects BCD counting for real-time clock. Applies to
calendar mode (RTCMODE = 1) only; setting is ignored in counter mode.
0b = Binary (hexadecimal) code selected
1b = Binary coded decimal (BCD) code selected

6

RTCHOLD

RW

1h

Real-time clock hold
0b = Real-time clock (32-bit counter or calendar mode) is operational.
1b = In counter mode (RTCMODE = 0), only the 32-bit counter is stopped. In
calendar mode (RTCMODE = 1), the calendar is stopped as well as the prescale
counters, RT0PS and RT1PS. RT0PSHOLD and RT1PSHOLD are don't care.

5

RTCMODE

RW

1h

Real-time clock mode. In RTC_C modules without counter mode support this bit
is read-only and always reads 1.
0b = 32-bit counter mode
1b = Calendar mode. Switching between counter and calendar mode does not
reset the real-time clock counter registers. These registers must be configured by
user software before use.

4

RTCRDY

R

1h

Real-time clock ready
0b = RTC time values in transition (calendar mode only)
1b = RTC time values safe for reading (calendar mode only). This bit indicates
when the real-time clock time values are safe for reading (calendar mode only).
In counter mode, RTCRDY remains cleared.

3-2

RTCSSELx

RW

0h

Real-time clock source select. In counter mode, selects clock input source to the
32-bit counter. In calendar mode, these bits are don't care. The clock input is
automatically set to the output of RT1PS.
00b = 32-kHz crystal oscillator clock
01b = 32-kHz crystal oscillator clock
10b = Output from RT1PS
11b = Output from RT1PS

1-0

RTCTEVx

RW

0h

Real-time clock time event
Calendar Mode (RTCMODE = 1)
00b = Minute changed
01b = Hour changed
10b = Every day at midnight (00:00)
11b = Every day at noon (12:00)
Counter Mode (RTCMODE = 0)
00b = 8-bit overflow
01b = 16-bit overflow
10b = 24-bit overflow
11b = 32-bit overflow

736

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.4 RTCCTL3 Register
Real-Time Clock Control 3 Register
Figure 29-7. RTCCTL3 Register
7

6

5

4

3

2

r0

r0

r0

Reserved
r0
(1)

r0

r0

1

0
RTCCALFx (1)
rw-(0)
rw-(0)

These bits are not reset on POR.

Table 29-8. RTCCTL3 Register Description
Bit

Field

Type

Reset

Description

7-2

Reserved

R

0h

Reserved. Always reads as 0.

1-0

RTCCALFx

RW

0h

Real-time clock calibration frequency. Selects frequency output to RTCCLK pin
for calibration measurement. The corresponding port must be configured for the
peripheral module function. The RTCCLK is not available in counter mode and
remains low, and the RTCCALF bits are don't care.
00b = No frequency output to RTCCLK pin
01b = 512 Hz
10b = 256 Hz
11b = 1 Hz

29.4.5 RTCOCAL Register
Real-Time Clock Offset Calibration Register
Figure 29-8. RTCOCAL Register
15
RTCOCALS (1)
rw-(0)

14

13

12

r0

r0

r0

7

6

5

4

rw-(0)

rw-(0)

rw-(0)

(1)

11
Reserved
r0

3
RTCOCALx (1)
rw-(0)
rw-(0)

10

9

8

r0

r0

r0

2

1

0

rw-(0)

rw-(0)

rw-(0)

These bits are not reset on POR.

Table 29-9. RTCOCAL Register Description
Bit

Field

Type

Reset

Description

15

RTCOCALS

RW

0h

Real-time clock offset error calibration sign. This bit decides the sign of offset
error calibration.
0b = Down calibration. Frequency adjusted down.
1b = Up calibration. Frequency adjusted up.

14-8

Reserved

R

0h

Reserved. Always reads as 0.

7-0

RTCOCALx

RW

0h

Real-time clock offset error calibration. Each LSB represents approximately
+1 ppm (RTCOCALS = 1) or –1 ppm (RTCOCALS = 0) adjustment in frequency.
Maximum effective calibration value is ±240 ppm. Excess values written above
±240 ppm are ignored by hardware.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

737

RTC_C Registers

www.ti.com

29.4.6 RTCTCMP Register
Real-Time Clock Temperature Compensation Register
Figure 29-9. RTCTCMP Register
15
RTCTCMPS (1)
rw-(0)

14
RTCTCRDY (1)
r-(1)

13
RTCTCOK
r-(0)

12

11

r0

r0

7

6

5

4

rw-(0)

rw-(0)

rw-(0)

(1)

3
RTCTCMPx(1)
rw-(0)
rw-(0)

10
Reserved
r0

9

8

r0

r0

2

1

0

rw-(0)

rw-(0)

rw-(0)

These bits are not reset on POR.

Table 29-10. RTCTCMP Register Description
Bit

Field

Type

Reset

Description

15

RTCTCMPS

RW

0h

Real-time clock temperature compensation sign. This bit decides the sign of
temperature compensation. (1)
0b = Down calibration. Frequency adjusted down.
1b = Up calibration. Frequency adjusted up.

14

RTCTCRDY

R

1h

Real-time clock temperature compensation ready. This is a read only bit that
indicates when the RTCTCMPx can be written. Write to RTCTCMPx should be
avoided when RTCTCRDY is reset.

13

RTCTCOK

R

0h

Real-time clock temperature compensation write OK. This is a read-only bit that
indicates if the write to RTCTCMP is successful or not.
0b = Write to RTCTCMPx is unsuccessful
1b = Write to RTCTCMPx is successful

12-8

Reserved

R

0h

Reserved. Always reads as 0.

7-0

RTCTCMPx

RW

0h

Real-time clock temperature compensation. Value written into this register is
used for temperature compensation of RTC_C. Each LSB represents
approximately +1 ppm (RTCTCMPS = 1) or –1 ppm (RTCTCMPS = 0)
adjustment in frequency. Maximum effective calibration value is ±240 ppm.
Excess values written above ±240 ppm are ignored by hardware.

(1)

738

Changing the sign-bit by writing to RTCTCMP_H becomes effective only after also writing RTCTCMP_L.

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.7 RTCNT1 Register
Real-Time Clock Counter 1 Register – Counter Mode
Figure 29-10. RTCNT1 Register
7

6

5

4

3

2

1

0

rw

rw

rw

rw

RTCNT1
rw

rw

rw

rw

Table 29-11. RTCNT1 Register Description
Bit

Field

Type

Reset

Description

7-0

RTCNT1

RW

undefined

The RTCNT1 register is the count of RTCNT1

29.4.8 RTCNT2 Register
Real-Time Clock Counter 2 Register – Counter Mode
Figure 29-11. RTCNT2 Register
7

6

5

4

3

2

1

0

rw

rw

rw

rw

RTCNT2
rw

rw

rw

rw

Table 29-12. RTCNT2 Register Description
Bit

Field

Type

Reset

Description

7-0

RTCNT2

RW

undefined

The RTCNT2 register is the count of RTCNT2

29.4.9 RTCNT3 Register
Real-Time Clock Counter 3 Register – Counter Mode
Figure 29-12. RTCNT3 Register
7

6

5

4

3

2

1

0

rw

rw

rw

rw

RTCNT3
rw

rw

rw

rw

Table 29-13. RTCNT3 Register Description
Bit

Field

Type

Reset

Description

7-0

RTCNT3

RW

undefined

The RTCNT3 register is the count of RTCNT3

29.4.10 RTCNT4 Register
Real-Time Clock Counter 4 Register – Counter Mode
Figure 29-13. RTCNT4 Register
7

6

5

4

3

2

1

0

rw

rw

rw

rw

RTCNT4
rw

rw

rw

rw

Table 29-14. RTCNT4 Register Description
Bit

Field

Type

Reset

Description

7-0

RTCNT4

RW

undefined

The RTCNT4 register is the count of RTCNT4.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

739

RTC_C Registers

www.ti.com

29.4.11 RTCSEC Register – Calendar Mode With Hexadecimal Format
Real-Time Clock Seconds Register – Calendar Mode With Hexadecimal Format
Figure 29-14. RTCSEC Register
7

6

5

4

3

0
r-0

2

1

0

rw

rw

rw

2
1
Seconds – low digit
rw
rw

0

Seconds
r-0

rw

rw

rw

Table 29-15. RTCSEC Register Description
Bit

Field

Type

Reset

Description

7-6

0

R

0h

Always 0

5-0

Seconds

RW

undefined

Seconds (0 to 59)

29.4.12 RTCSEC Register – Calendar Mode With BCD Format
Real-Time Clock Seconds Register – Calendar Mode With BCD Format
Figure 29-15. RTCSEC Register
7
0
r-0

6
rw

5
Seconds – high digit
rw

4

3

rw

rw

rw

Table 29-16. RTCSEC Register Description
Bit

Field

Type

Reset

Description

7

0

R

0h

Always 0

6-4

Seconds – high digit

RW

undefined

Seconds – high digit (0 to 5)

3-0

Seconds – low digit

RW

undefined

Seconds – low digit (0 to 9)

740

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.13 RTCMIN Register – Calendar Mode With Hexadecimal Format
Real-Time Clock Minutes Register – Calendar Mode With Hexadecimal Format
Figure 29-16. RTCMIN Register
7

6

5

4

3

0
r-0

2

1

0

rw

rw

rw

2
1
Minutes – low digit
rw
rw

0

Minutes
r-0

rw

rw

rw

Table 29-17. RTCMIN Register Description
Bit

Field

Type

Reset

Description

7-6

0

R

0h

Always 0

5-0

Minutes

RW

undefined

Minutes (0 to 59)

29.4.14 RTCMIN Register – Calendar Mode With BCD Format
Real-Time Clock Minutes Register – Calendar Mode With BCD Format
Figure 29-17. RTCMIN Register
7
0
r-0

6
rw

5
Minutes – high digit
rw

4

3

rw

rw

rw

Table 29-18. RTCMIN Register Description
Bit

Field

Type

Reset

Description

7

0

R

0h

Always 0

6-4

Minutes – high digit

RW

undefined

Minutes – high digit (0 to 5)

3-0

Minutes – low digit

RW

undefined

Minutes – low digit (0 to 9)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

741

RTC_C Registers

www.ti.com

29.4.15 RTCHOUR Register – Calendar Mode With Hexadecimal Format
Real-Time Clock Hours Register – Calendar Mode With Hexadecimal Format
Figure 29-18. RTCHOUR Register
7

6
0
r-0

r-0

5

4

3

r-0

rw

rw

2
Hours
rw

1

0

rw

rw

2
1
Hours – low digit
rw
rw

0

Table 29-19. RTCHOUR Register Description
Bit

Field

Type

Reset

Description

7-5

0

R

0h

Always 0

4-0

Hours

RW

undefined

Hours (0 to 23)

29.4.16 RTCHOUR Register – Calendar Mode With BCD Format
Real-Time Clock Hours Register – Calendar Mode With BCD Format
Figure 29-19. RTCHOUR Register
7

6

5
4
Hours – high digit
rw
rw

0
r-0

r-0

3
rw

rw

Table 29-20. RTCHOUR Register Description
Bit

Field

Type

Reset

Description

7-6

0

R

0h

Always 0

5-4

Hours – high digit

RW

undefined

Hours – high digit (0 to 2)

3-0

Hours – low digit

RW

undefined

Hours – low digit (0 to 9)

742

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.17 RTCDOW Register – Calendar Mode
Real-Time Clock Day of Week Register – Calendar Mode
Figure 29-20. RTCDOW Register
7

6

r-0

r-0

5
0
r-0

4

3

2

r-0

r-0

rw

1
Day of week
rw

0
rw

Table 29-21. RTCDOW Register Description
Bit

Field

Type

Reset

Description

7-3

0

R

0h

Always 0

2-0

Day of week

RW

undefined

Day of week (0 to 6)

29.4.18 RTCDAY Register – Calendar Mode With Hexadecimal Format
Real-Time Clock Day of Month Register – Calendar Mode With Hexadecimal Format
Figure 29-21. RTCDAY Register
7

6
0
r-0

r-0

5

4

3

r-0

rw

rw

2
Day of month
rw

1

0

rw

rw

Table 29-22. RTCDAY Register Description
Bit

Field

Type

Reset

Description

7-5

0

R

0h

Always 0

4-0

Day of month

RW

undefined

Day of month (1 to 28, 29, 30, 31)

29.4.19 RTCDAY Register – Calendar Mode With BCD Format
Real-Time Clock Day of Month Register – Calendar Mode With BCD Format
Figure 29-22. RTCDAY Register
7

6

5
4
Day of month – high digit
rw
rw

0
r-0

r-0

3
rw

2
1
Day of month – low digit
rw
rw

0
rw

Table 29-23. RTCDAY Register Description
Bit

Field

Type

Reset

7-6

0

R

0h

Description

5-4

Day of month – high
digit

RW

undefined

Day of month – high digit (0 to 3)

3-0

Day of month – low
digit

RW

undefined

Day of month – low digit (0 to 9)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

743

RTC_C Registers

www.ti.com

29.4.20 RTCMON Register – Calendar Mode With Hexadecimal Format
Real-Time Clock Month Register – Calendar Mode With Hexadecimal Format
Figure 29-23. RTCMON Register
7

6

5

4

3

2

1

0

rw

rw

3

2
1
Month – low digit

0

rw

rw

rw

0
r-0

r-0

Month
r-0

r-0

rw

rw

Table 29-24. RTCMON Register Description
Bit

Field

Type

Reset

Description

7-4

0

R

0h

Always 0

3-0

Month

RW

undefined

Month (1 to 12)

29.4.21 RTCMON Register – Calendar Mode With BCD Format
Real-Time Clock Month Register – Calendar Mode With BCD Format
Figure 29-24. RTCMON Register
7

6
0

5

r-0

r-0

r-0

4
Month – high
digit
rw

rw

Table 29-25. RTCMON Register Description
Bit

Field

Type

Reset

Description

7-5

0

R

0h

Always 0

4

Month – high digit

RW

undefined

Month – high digit (0 or 1)

3-0

Month – low digit

RW

undefined

Month – low digit (0 to 9)

744

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.22 RTCYEAR Register – Calendar Mode With Hexadecimal Format
Real-Time Clock Year Low-Byte Register – Calendar Mode With Hexadecimal Format
Figure 29-25. RTCYEAR Register
15

14

13

12

11

r-0

r-0

r-0

r-0

rw

10
9
Year – high byte
rw
rw

7
rw

6
rw

5
rw

4
rw

3
rw

2
rw

0

8
rw

1
rw

0
rw

10
9
Century – low digit
rw
rw

8

Table 29-26. RTCYEAR Register Description
Bit

Field

Type

Reset

Description

15-12

0

R

0h

Always 0

11-8

Year – high byte

RW

undefined

Year – high byte. Valid values for Year are 0 to 4095.

7-0

Year – low byte

RW

undefined

Year – low byte. Valid values for Year are 0 to 4095.

29.4.23 RTCYEAR Register – Calendar Mode With BCD Format
Real-Time Clock Year Low-Byte Register – Calendar Mode With BCD Format
Figure 29-26. RTCYEAR Register
15
0
r-0

14

7

6

rw

13
Century – high digit
rw

12

11

rw

rw

5

4

3

rw

rw

rw

Decade
rw

rw

2
1
Year – lowest digit
rw
rw

rw
0
rw

Table 29-27. RTCYEAR Register Description
Bit

Field

Type

Reset

Description

15

0

R

0h

Always 0

14-10

Century – high digit

RW

undefined

Century – high digit (0 to 4)

11-8

Century – low digit

RW

undefined

Century – low digit (0 to 9)

7-4

Decade

RW

undefined

Decade (0 to 9)

3-0

Year – lowest digit

RW

undefined

Year – lowest digit (0 to 9)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

745

RTC_C Registers

www.ti.com

29.4.24 RTCAMIN Register – Calendar Mode With Hexadecimal Format
Real-Time Clock Minutes Alarm Register – Calendar Mode With Hexadecimal Format
Figure 29-27. RTCAMIN Register
7
AE
rw

6
0
r-0

5

4

3

2

1

0

rw

rw

rw

2
1
Minutes – low digit
rw
rw

0

Minutes
rw

rw

rw

Table 29-28. RTCAMIN Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6

0

R

0h

Always 0.

5-0

Minutes

RW

undefined

Minutes (0 to 59)

29.4.25 RTCAMIN Register – Calendar Mode With BCD Format
Real-Time Clock Minutes Alarm Register – Calendar Mode With BCD Format
Figure 29-28. RTCAMIN Register
7
AE
rw

6
rw

5
Minutes – high digit
rw

4

3

rw

rw

rw

Table 29-29. RTCAMIN Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6-4

Minutes – high digit

RW

undefined

Minutes – high digit (0 to 5)

3-0

Minutes – low digit

RW

undefined

Minutes – low digit (0 to 9)

746

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.26 RTCAHOUR Register
Real-Time Clock Hours Alarm Register – Calendar Mode With Hexadecimal Format
Figure 29-29. RTCAHOUR Register
7
AE
rw

6

5

4

3

r-0

rw

rw

0
r-0

2
Hours
rw

1

0

rw

rw

2
1
Hours – low digit
rw
rw

0

Table 29-30. RTCAHOUR Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6-5

0

R

0h

Always 0

4-0

Hours

RW

undefined

Hours (0 to 23)

29.4.27 RTCAHOUR Register – Calendar Mode With BCD Format
Real-Time Clock Hours Alarm Register – Calendar Mode With BCD Format
Figure 29-30. RTCAHOUR Register
7
AE
rw

6
0
r-0

5
4
Hours – high digit
rw
rw

3
rw

rw

Table 29-31. RTCAHOUR Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6

0

R

0h

Always 0

5-4

Hours – high digit

RW

undefined

Hours – high digit (0 to 2)

3-0

Hours – low digit

RW

undefined

Hours – low digit (0 to 9)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

747

RTC_C Registers

www.ti.com

29.4.28 RTCADOW Register – Calendar Mode
Real-Time Clock Day of Week Alarm Register – Calendar Mode
Figure 29-31. RTCADOW Register
7
AE
rw

6

5

4

3

2

r-0

r-0

rw

0
r-0

r-0

1
Day of week
rw

0
rw

Table 29-32. RTCADOW Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6-3

0

R

0h

Always 0

2-0

Day of week

RW

undefined

Day of week (0 to 6)

748

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.29 RTCADAY Register – Calendar Mode With Hexadecimal Format
Real-Time Clock Day of Month Alarm Register – Calendar Mode With Hexadecimal Format
Figure 29-32. RTCADAY Register
7
AE
rw

6

5

4

3

r-0

rw

rw

0
r-0

2
Day of month
rw

1

0

rw

rw

Table 29-33. RTCADAY Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6-5

0

R

0h

Always 0

4-0

Day of month

RW

undefined

Day of month (1 to 28, 29, 30, 31)

29.4.30 RTCADAY Register – Calendar Mode With BCD Format
Real-Time Clock Day of Month Alarm Register – Calendar Mode With BCD Format
Figure 29-33. RTCADAY Register
7
AE
rw

6
0
r-0

5
4
Day of month – high digit
rw
rw

3
rw

2
1
Day of month – low digit
rw
rw

0
rw

Table 29-34. RTCADAY Register Description
Bit

Field

Type

Reset

Description

7

AE

RW

undefined

Alarm enable
0b = This alarm register is disabled
1b = This alarm register is enabled

6

0

R

0h

Always 0

5-4

Day of month – high
digit

RW

undefined

Day of month – high digit (0 to 3)

3-0

Day of month – low
digit

RW

undefined

Day of month – low digit (0 to 9)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

749

RTC_C Registers

www.ti.com

29.4.31 RTCPS0CTL Register
Real-Time Clock Prescale Timer 0 Control Register
Figure 29-34. RTCPS0CTL Register
15

14

13

r0

r0

rw-(0)

12
RT0PSDIV (1)
rw-(0)

7

6
Reserved
r0

5

4

r0

rw-(0)

Reserved

r0
(1)

11

10

9

rw-(0)

r0

r0

8
RT0PSHOLD (1)
rw-(1)

3
RT0IP (1)
rw-(0)

2

1
RT0PSIE
rw-0

0
RT0PSIFG
rw-(0)

Reserved

rw-(0)

The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore,
reconfiguration is required after wake-up from LPMx.5 before clearing LOCKLPM5.

Table 29-35. RTCPS0CTL Register Description
Bit

Field

Type

Reset

Description

15-14

Reserved

R

0h

Reserved. Always reads as 0.

13-11

RT0PSDIV

RW

0h

Prescale timer 0 clock divide. These bits control the divide ratio of the RT0PS
counter. In real-time clock calendar mode, these bits are don't care for RT0PS
and RT1PS. RT0PS clock output is automatically set to /256. RT1PS clock
output is automatically set to /128.
000b = Divide by 2
001b = Divide by 4
010b = Divide by 8
011b = Divide by 16
100b = Divide by 32
101b = Divide by 64
110b = Divide by 128
111b = Divide by 256

10-9

Reserved

R

0h

Reserved. Always reads as 0.

8

RT0PSHOLD

RW

1h

Prescale timer 0 hold. In real-time clock calendar mode, this bit is don't care.
RT0PS is stopped by the RTCHOLD bit.
0b = RT0PS is operational
1b = RT0PS is held

7-5

Reserved

R

0h

Reserved. Always reads as 0.

4-2

RT0IP

RW

0h

Prescale timer 0 interrupt interval
000b = Divide by 2
001b = Divide by 4
010b = Divide by 8
011b = Divide by 16
100b = Divide by 32
101b = Divide by 64
110b = Divide by 128
111b = Divide by 256

1

RT0PSIE

RW

0h

Prescale timer 0 interrupt enable
0b = Interrupt not enabled
1b = Interrupt enabled

0

RT0PSIFG

RW

0h

Prescale timer 0 interrupt flag
0b = No time event occurred
1b = Time event occurred

750

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.32 RTCPS1CTL Register
Real-Time Clock Prescale Timer 1 Control Register
Figure 29-35. RTCPS1CTL Register
15

14

13

RT1SSELx (1)
rw-(0)
rw-(0)
7

5

4

r0

rw-(0)

6
Reserved
r0

r0
(1)

rw-(0)

12
RT1PSDIVx (1)
rw-(0)

11

10

9

rw-(0)

r0

r0

8
RT1PSHOLD (1)
rw-(1)

3
RT1IPx (1)
rw-(0)

2

1
RT1PSIE
rw-0

0
RT1PSIFG
rw-(0)

Reserved

rw-(0)

The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the register bits themselves; therefore,
reconfiguration is required after wake-up from LPMx.5 before clearing LOCKLPM5.

Table 29-36. RTCPS1CTL Register Description
Bit

Field

Type

Reset

Description

15-14

RT1SSELx

RW

0h

Prescale timer 1 clock source select. Selects clock input source to the RT1PS
counter. In real-time clock calendar mode, these bits are do not care. RT1PS
clock input is automatically set to the output of RT0PS.
00b = 32-kHz crystal oscillator clock
01b = 32-kHz crystal oscillator clock
10b = Output from RT0PS
11b = Output from RT0PS

13-11

RT1PSDIVx

RW

0h

Prescale timer 1 clock divide. These bits control the divide ratio of the RT0PS
counter. In real-time clock calendar mode, these bits are don't care for RT0PS
and RT1PS. RT0PS clock output is automatically set to /256. RT1PS clock
output is automatically set to /128.
000b = Divide by 2
001b = Divide by 4
010b = Divide by 8
011b = Divide by 16
100b = Divide by 32
101b = Divide by 64
110b = Divide by 128
111b = Divide by 256

10-9

Reserved

R

0h

Reserved. Always reads as 0.

8

RT1PSHOLD

RW

1h

Prescale timer 1 hold. In real-time clock calendar mode, this bit is don't care.
RT1PS is stopped by the RTCHOLD bit.
0b = RT1PS is operational
1b = RT1PS is held

7-5

Reserved

R

0h

Reserved. Always reads as 0.

4-2

RT1IPx

RW

0h

Prescale timer 1 interrupt interval
000b = Divide by 2
001b = Divide by 4
010b = Divide by 8
011b = Divide by 16
100b = Divide by 32
101b = Divide by 64
110b = Divide by 128
111b = Divide by 256

1

RT1PSIE

RW

0h

Prescale timer 1 interrupt enable
0b = Interrupt not enabled
1b = Interrupt enabled (LPMx.5 wake-up enabled)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

751

RTC_C Registers

www.ti.com

Table 29-36. RTCPS1CTL Register Description (continued)
Bit

Field

Type

Reset

Description

0

RT1PSIFG

RW

0h

Prescale timer 1 interrupt flag. This interrupt can be used as LPMx.5 wake-up
event.
0b = No time event occurred
1b = Time event occurred

752

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.33 RTCPS0 Register
Real-Time Clock Prescale Timer 0 Counter Register
Figure 29-36. RTCPS0 Register
7

6

5

4

3

2

1

0

rw

rw

rw

rw

RT0PS
rw

rw

rw

rw

Table 29-37. RTCPS0 Register Description
Bit

Field

Type

Reset

Description

7-0

RT0PS

RW

undefined

Prescale timer 0 counter value

29.4.34 RTCPS1 Register
Real-Time Clock Prescale Timer 1 Counter Register
Figure 29-37. RTCPS1 Register
7

6

5

4

3

2

1

0

rw

rw

rw

rw

RT1PS
rw

rw

rw

rw

Table 29-38. RTCPS1 Register Description
Bit

Field

Type

Reset

Description

7-0

RT1PS

RW

undefined

Prescale timer 1 counter value

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

753

RTC_C Registers

www.ti.com

29.4.35 RTCIV Register
Real-Time Clock Interrupt Vector Register
Figure 29-38. RTCIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-(0)

r-(0)

r-(0)

r0

RTCIVx
r0

r0

r0

r0

7

6

5

4
RTCIVx

r0

r0

r0

r-(0)

Table 29-39. RTCIV Register Description
Bit

Field

Type

Reset

Description

15-0

RTCIVx

R

0h

Real-time clock interrupt vector value
Without Event/Tamper Detection implemented:
00h = No interrupt pending
02h = Interrupt Source: RTC oscillator failure; Interrupt Flag: RTCOFIFG;
Interrupt Priority: Highest
04h = Interrupt Source: RTC ready; Interrupt Flag: RTCRDYIFG
06h = Interrupt Source: RTC interval timer; Interrupt Flag: RTCTEVIFG
08h = Interrupt Source: RTC user alarm; Interrupt Flag: RTCAIFG
0Ah = Interrupt Source: RTC prescaler 0; Interrupt Flag: RT0PSIFG
0Ch = Interrupt Source: RTC prescaler 1; Interrupt Flag: RT1PSIFG
0Eh = Reserved
10h = Reserved ; Interrupt Priority: Lowest
With Event/Tamper Detection implemented:
00h = No interrupt pending
02h = Interrupt Source: RTC oscillator failure; Interrupt Flag: RTCOFIFG;
Interrupt Priority: Highest
04h = Interrupt Source: RTC Tamper Event; Interrupt Flag: RTCCAPIFG
06h = Interrupt Source: RTC ready; Interrupt Flag: RTCRDYIFG
08h = Interrupt Source: RTC interval timer; Interrupt Flag: RTCTEVIFG
0Ah = Interrupt Source: RTC user alarm; Interrupt Flag: RTCAIFG
0Ch = Interrupt Source: RTC prescaler 0; Interrupt Flag: RT0PSIFG
0Eh = Interrupt Source: RTC prescaler 1; Interrupt Flag: RT1PSIFG
10h = Reserved ; Interrupt Priority: Lowest

754

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.36 BIN2BCD Register
Binary-to-BCD Conversion Register
Figure 29-39. BIN2BCD Register
15

14

13

12

11

10

9

8

rw-0

rw-0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

BIN2BCDx
rw-0

rw-0

rw-0

rw-0

7

6

5

4
BIN2BCDx

rw-0

rw-0

rw-0

rw-0

Table 29-40. BIN2BCD Register Description
Bit

Field

Type

Reset

Description

15-0

BIN2BCDx

RW

0h

Read: 16-bit BCD conversion of previously written 12-bit binary number.
Write: 12-bit binary number to be converted.

29.4.37 BCD2BIN Register
BCD-to-Binary Conversion Register
Figure 29-40. BCD2BIN Register
15

14

13

12

11

10

9

8

BCD2BINx
rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

BCD2BINx
rw-0

rw-0

rw-0

rw-0

Table 29-41. BCD2BIN Register Description
Bit

Field

Type

Reset

Description

15-0

BCD2BINx

RW

0h

Read: 12-bit binary conversion of previously written 16-bit BCD number.
Write: 16-bit BCD number to be converted.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

755

RTC_C Registers

www.ti.com

29.4.38 RTCSECBAKx Register – Hexadecimal Format
Real-Time Clock Seconds Backup Register – Hexadecimal Format
Figure 29-41. RTCSECBAKx Register
7
0
rw-(0)
(1)

6
0
rw-(0)

5

4

3

2

1

0

rw-(0)

rw-(0)

rw-(0)

Seconds (1)
rw-(0)

rw-(0)

rw-(0)

These bits are not reset on POR.

Table 29-42. RTCSECBAKx Register Description
Bit

Field

Type

Reset

Description

7-6

0

RW

0h

Always 0.

5-0

Seconds

RW

0h

Seconds. Valid values are 0 to 59.

29.4.39 RTCSECBAKx Register – BCD Format
Real-Time Clock Seconds Backup Register – BCD Format
Figure 29-42. RTCSECBAKx Register
7
0
rw-(0)
(1)

6
rw-(0)

5
Seconds – high digit (1)
rw-(0)

4

3

rw-(0)

rw-(0)

2
1
Seconds – low digit (1)
rw-(0)
rw-(0)

0
rw-(0)

These bits are not reset on POR.

Table 29-43. RTCSECBAKx Register Description
Bit

Field

Type

Reset

Description

7

0

RW

0h

Always 0.

6-4

Seconds – high digit

RW

0h

Seconds – high digit. Valid values are 0 to 5.

3-0

Seconds – low digit

RW

0h

Seconds – low digit. Valid values are 0 to 9.

756

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.40 RTCMINBAKx Register – Hexadecimal Format
Real-Time Clock Minutes Backup Register – Hexadecimal Format
Figure 29-43. RTCMINBAKx Register
7
0
rw-(0)
(1)

6
0
rw-(0)

5

4

3

2

1

0

rw-(0)

rw-(0)

rw-(0)

Minutes (1)
rw-(0)

rw-(0)

rw-(0)

These bits are not reset on POR.

Table 29-44. RTCMINBAKx Register Description
Bit

Field

Type

Reset

Description

7-6

0

RW

0h

Always 0.

5-0

Minutes

RW

0h

Minutes. Valid values are 0 to 59.

29.4.41 RTCMINBAKx Register – BCD Format
Real-Time Clock Minutes Backup Register – BCD Format
Figure 29-44. RTCMINBAKx Register
7
0
rw-(0)
(1)

6
rw-(0)

5
Minutes – high digit (1)
rw-(0)

4

3

rw-(0)

rw-(0)

2
1
Minutes – low digit (1)
rw-(0)
rw-(0)

0
rw-(0)

These bits are not reset on POR.

Table 29-45. RTCMINBAKx Register Description
Bit

Field

Type

Reset

Description

7

0

RW

0h

Always 0.

6-4

Minutes – high digit

RW

0h

Minutes – high digit. Valid values are 0 to 5.

3-0

Minutes – low digit

RW

0h

Minutes – low digit. Valid values are 0 to 9.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

757

RTC_C Registers

www.ti.com

29.4.42 RTCHOURBAKx Register – Hexadecimal Format
Real-Time Clock Hours Backup Register – Hexadecimal Format
Figure 29-45. RTCHOURBAKx Register
7
0
rw-(0)
(1)

6
0
rw-(0)

5
0
rw-(0)

4

3

rw-(0)

rw-(0)

2
Hours (1)
rw-(0)

1

0

rw-(0)

rw-(0)

These bits are not reset on POR.

Table 29-46. RTCHOURBAKx Register Description
Bit

Field

Type

Reset

Description

7-5

0

RW

0h

Always 0.

4-0

Hours

RW

0h

Hours. Valid values are 0 to 23.

29.4.43 RTCHOURBAKx Register – BCD Format
Real-Time Clock Hours Backup Register – BCD Format
Figure 29-46. RTCHOURBAKx Register
7
0
rw-(0)
(1)

6
0
rw-(0)

5
4
Hours – high digit (1)
rw-(0)
rw-(0)

3
rw-(0)

2
1
Hours – low digit (1)
rw-(0)
rw-(0)

0
rw-(0)

These bits are not reset on POR.

Table 29-47. RTCHOURBAKx Register Description
Bit

Field

Type

Reset

Description

7-6

0

RW

0h

Always 0.

5-4

Hours – high digit

RW

0h

Hours – high digit. Valid values are 0 to 2.

3-0

Hours – low digit

RW

0h

Hours – low digit. Valid values are 0 to 9.

758

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.44 RTCDAYBAKx Register – Hexadecimal Format
Real-Time Clock Day of Month Backup Register – Hexadecimal Format
Figure 29-47. RTCDAYBAKx Register
7
0
rw-(0)
(1)

6
0
rw-(0)

5
0
rw-(0)

4

3

rw-(0)

rw-(0)

2
Day of month (1)
rw-(0)

1

0

rw-(0)

rw-(0)

These bits are not reset on POR.

Table 29-48. RTCDAYBAKx Register Description
Bit

Field

Type

Reset

Description

7-5

0

RW

0h

Always 0.

4-0

Day of month

RW

0h

Day of month. Valid values are 1 to 31.

29.4.45 RTCDAYBAKx Register – BCD Format
Real-Time Clock Day of Month Backup Register – BCD Format
Figure 29-48. RTCDAYBAKx Register
7
0
rw-(0)
(1)

6
0
rw-(0)

5
4
Day of month – high digit (1)
rw-(0)
rw-(0)

3
rw-(0)

2
1
Day of month – low digit (1)
rw-(0)
rw-(0)

0
rw-(0)

These bits are not reset on POR.

Table 29-49. RTCDAYBAKx Register Description
Bit

Field

Type

Reset

Description

7-6

0

RW

0h

Always 0.

5-4

Day of month – high
digit

RW

0h

Day of month – high digit. Valid values are 0 to 3.

3-0

Day of month – low
digit

RW

0h

Day of month – low digit. Valid values are 0 to 9.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

759

RTC_C Registers

www.ti.com

29.4.46 RTCMONBAKx Register – Hexadecimal Format
Real-Time Clock Month Backup Register – Hexadecimal Format
Figure 29-49. RTCMONBAKx Register
7
0
rw-(0)
(1)

6
0
rw-(0)

5
0
rw-(0)

4
0
rw-(0)

3

2

1

0

rw-(0)

rw-(0)

Month (1)
rw-(0)

rw-(0)

These bits are not reset on POR.

Table 29-50. RTCMONBAKx Register Description
Bit

Field

Type

Reset

Description

7-4

0

RW

0h

Always 0.

3-0

Month

RW

0h

Month. Valid values are 1 to 12.

29.4.47 RTCMONBAKx Register – BCD Format
Real-Time Clock Month Backup Register – BCD Format
Figure 29-50. RTCMONBAKx Register
7
0
rw-(0)
(1)

6
0
rw-(0)

5
4
Month – high digit (1)
rw-(0)
rw-(0)

3
rw-(0)

2
1
Month – low digit (1)
rw-(0)
rw-(0)

0
rw-(0)

These bits are not reset on POR.

Table 29-51. RTCMONBAKx Register Description
Bit

Field

Type

Reset

Description

7-6

0

RW

0h

Always 0.

5-4

Month – high digit

RW

0h

Month – high digit. Valid values are 0 to 3.

3-0

Month – low digit

RW

0h

Month – low digit. Valid values are 0 to 9.

760

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.48 RTCYEARBAKx Register – Hexadecimal Format
Real-Time Clock Year Low-Byte Backup Register – Hexadecimal Format
Figure 29-51. RTCYEARBAKx Register

(1)

15
0
rw-(0)

14
0
rw-(0)

13
0
rw-(0)

12
0
rw-(0)

7
rw-(0)

6
rw-(0)

5
rw-(0)

4
rw-(0)

11
rw-(0)

10
9
Year – high byte (1)
rw-(0)
rw-(0)

rw-(0)

3
rw-(0)

2
rw-(0)

0
rw-(0)

1
rw-(0)

8

These bits are not reset on POR.

Table 29-52. RTCYEARBAKx Register Description
Bit

Field

Type

Reset

Description

15-12

0

RW

0h

Always 0.

11-8

Year – high byte

RW

0h

Year – high byte. Valid values of Year are 0 to 4095.

7-0

Year – low byte

RW

0h

Year – low byte. Valid values of Year are 0 to 4095.

29.4.49 RTCYEARBAKx Register – BCD Format
Real-Time Clock Year Low-Byte Backup Register – BCD Format
Figure 29-52. RTCYEARBAKx Register
15
0
rw-(0)

14
rw-(0)

7

6

13
Century – high digit (1)
rw-(0)

12

11

rw-(0)

rw-(0)

5

4

3

rw-(0)

rw-(0)

rw-(0)

Decade (1)
rw-(0)
(1)

rw-(0)

10
9
Century – low digit (1)
rw-(0)
rw-(0)
2
1
Year – lowest digit (1)
rw-(0)
rw-(0)

8
rw-(0)
0
rw-(0)

These bits are not reset on POR.

Table 29-53. RTCYEARBAKx Register Description
Bit

Field

Type

Reset

Description

15

0

RW

0h

Always 0.

14-12

Century – high digit

RW

0h

Century – high digit. Valid values are 0 to 4.

11-8

Century – low digit

RW

0h

Century – low digit. Valid values are 0 to 9.

7-4

Decade

RW

0h

Decade. Valid values are 0 to 9.

3-0

Year – lowest digit

RW

0h

Year – lowest digit. Valid values are 0 to 9.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

761

RTC_C Registers

www.ti.com

29.4.50 RTCTCCTL0 Register
Real-Time Clock Time Capture Control Register 0
Figure 29-53. RTCTCCTL0 Register
7

6

5

4

3

2

r-0

r-0

r-0

Reserved
r-0
(1)

r-0

r-0

1
AUX3RST (1)
rw-(1)

0
TCEN (1)
rw-(0)

These bits are not reset on POR.

Table 29-54. RTCTCCTL0 Register Description
Bit

Field

Type

Reset

Description

7-2

Reserved

R

0h

Reserved. Always reads as 0.

1

AUX3RST

RW

1h

Indication of power cycle on AUXVCC3
0b = No power cycle on AUXVCC3 since the last clear by the User
1b = Indication of AUXVCC3 power cycle. Needs to be cleared by User to
observe the next power cycle on AUXVCC3

0

TCEN

RW

0h

Enable for RTC tamper detection with time stamp
0b = Tamper detection with time stamp disabled
1b = Tamper detection with time stamp enabled

29.4.51 RTCTCCTL1 Register
Real-Time Clock Time Capture Control Register 1
Figure 29-54. RTCTCCTL1 Register
7

6

5

4

3

2

r-0

r-0

r-0

Reserved
r-0

r-0

r-0

1
RTCCAPIE
rw-(0)

0
RTCCAPIFG
rw-(0)

Table 29-55. RTCTCCTL1 Register Description
Bit

Field

Type

Reset

Description

7-2

Reserved

R

0h

Reserved. Always reads as 0.

1

RTCCAPIE

RW

0h

Tamper event interrupt enable. In modules that support LPM3.5 or LPM4.5, this
interrupt can be used as LPM3.5 or LPM4.5 wake-up event.
0b = Interrupt not enabled
1b = Interrupt enabled (LPM3.5 and LPM4.5 wake-up enabled)

0

RTCCAPIFG

RW

0h

Common interrupt flag for all tamper events. In modules that support LPM3.5 or
LPM4.5, this interrupt can be used as LPM3.5 or LPM4.5 wake-up event.
0b = Tamper event did not occur
1b = At least one tamper event occurred. Status of individual tamper events can
be found from the CAPEV bit in RTCCAPxCTL.

762

Real-Time Clock C (RTC_C)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

RTC_C Registers

www.ti.com

29.4.52 RTCCAPxCTL Register
Tamper Detect Pin Control Register
Figure 29-55. RTCCAPxCTL Register
7
Reserved
r-0
(1)

6
OUT (1)
rw-(0)

5
DIR (1)
rw-(0)

4
IN (1)
r

3
REN (1)
rw-(0)

2
CAPES (1)
rw-(0)

1
Reserved
r-0

0
CAPEV (1)
r/w0

The configuration of these bits is retained during LPMx.5 until LOCKLPM5 is cleared, but not the bits themselves; therefore,
reconfiguration is required after wakeup from LPMx.5 before clearing LOCKLPM5.

Table 29-56. RTCCAPxCTL Register Description
Bit

Field

Type

Reset

Description

7

Reserved

R

0h

Reserved. Always reads as 0.

6

OUT

RW

0h

RTCCAPx output
0b = Output low
1b = Output high

5

DIR

RW

0h

RTCCAPx pin direction
0b = RTCCAPx pin configured as input
1b = RTCCAPx pin configured as output

4

IN

R

0h

RTCCAPx input. The external input on RTCCAPx pin can be read by this bit.
0b = Input is low
1b = Input is high

3

REN

RW

0h

RTCCAPx pin pullup or pulldown resistor enable. When respective pin is
configured as input, setting this bit enables the pullup or pulldown (see Table 291).
0b = Pullup or pulldown disabled
1b = Pullup or pulldown enabled

2

CAPES

RW

0h

Event edge selection
0b = Event on a low-to-high transition
1b = Event on a high-to-low transition

1

Reserved

R

0h

Reserved. Always reads as 0.

0

CAPEV

RW

0h

Tamper event status flag. All subsequent events on RTCCAPx after CAPEV is
set are ignored until CAPEV is cleared by the user. Can only be written as 0.
0b = Tamper event did not occur
1b = Tamper event occurred

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Real-Time Clock C (RTC_C)

763

Chapter 30
SLAU367O – October 2012 – Revised December 2017

Enhanced Universal Serial Communication Interface
(eUSCI) – UART Mode
The enhanced universal serial communication interface A (eUSCI_A) supports multiple serial
communication modes with one hardware module. This chapter discusses the operation of the
asynchronous UART mode.
Topic

30.1
30.2
30.3
30.4

764

...........................................................................................................................
Enhanced Universal Serial Communication Interface A (eUSCI_A) Overview ...........
eUSCI_A Introduction – UART Mode ...................................................................
eUSCI_A Operation – UART Mode ......................................................................
eUSCI_A UART Registers ..................................................................................

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Page

765
765
767
783

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Enhanced Universal Serial Communication Interface A (eUSCI_A) Overview

www.ti.com

30.1 Enhanced Universal Serial Communication Interface A (eUSCI_A) Overview
The eUSCI_A module supports two serial communication modes:
• UART mode
• SPI mode

30.2 eUSCI_A Introduction – UART Mode
In asynchronous mode, the eUSCI_Ax modules connect the device to an external system through two
external pins, UCAxRXD and UCAxTXD. UART mode is selected when the UCSYNC bit is cleared.
UART mode features include:
• 7-bit or 8-bit data with odd, even, or no parity
• Independent transmit and receive shift registers
• Separate transmit and receive buffer registers
• LSB-first or MSB-first data transmit and receive
• Built-in idle-line and address-bit communication protocols for multiprocessor systems
• Receiver start edge detection for automatic wake from LPMx modes (wake from LPMx.5 is not
supported)
• Programmable baud rate with modulation for fractional baud-rate support
• Status flags for error detection and suppression
• Status flags for address detection
• Independent interrupt capability for receive, transmit, start bit received, and transmit complete
Figure 30-1 shows the eUSCI_Ax when configured for UART mode.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

765

eUSCI_A Introduction – UART Mode

www.ti.com

UCMODEx

UCSPB

UCDORM

UCRXEIE

Set Flags

UCRXERR
UCPE
UCFE
UCOE

Set RXIFG

Set UCRXIFG

Error Flags

UCRXBRKIE

2
Receive State Machine
Set UCBRK
Set UCADDR/UCIDLE

Receive Buffer UCAxRXBUF

Receive Shift Register
UCPEN

UCPAR

UCIRRXPL
UCIRRXFLx
UCIRRXFE
UCIREN
6
UCLISTEN
1
IrDA Decoder
0
UCAxRXD
1
0
0
1

UCMSB UC7BIT

UCABEN
UCSSELx

Receive Baud-Rate Generator
UC0BRx

UC0CLK

00

ACLK

01

SMCLK

10

SMCLK

11

16
BRCLK

Prescaler/Divider

Receive Clock

Modulator

Transmit Clock

4

8

UCBRFx UCBRSx UCOS16

UCPEN

UCPAR

UCIREN

UCMSB UC7BIT

Transmit Shift Register

0
1
IrDA Encoder

Transmit Buffer UCAxTXBUF

UCAxTXD

6
UCIRTXPLx

Transmit State Machine

Set UCTXIFG
UCTXBRK
UCTXADDR

2
UCMODEx

UCSPB

Figure 30-1. eUSCI_Ax Block Diagram – UART Mode (UCSYNC = 0)

766

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A Operation – UART Mode

www.ti.com

30.3 eUSCI_A Operation – UART Mode
In UART mode, the eUSCI_A transmits and receives characters at a bit rate asynchronous to another
device. Timing for each character is based on the selected baud rate of the eUSCI_A. The transmit and
receive functions use the same baud-rate frequency.

30.3.1 eUSCI_A Initialization and Reset
The eUSCI_A is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is
automatically set, keeping the eUSCI_A in a reset condition. When set, the UCSWRST bit sets the
UCTXIFG bit and resets the UCRXIE, UCTXIE, UCRXIFG, UCRXERR, UCBRK, UCPE, UCOE, UCFE,
UCSTOE, and UCBTOE bits. Clearing UCSWRST releases the eUSCI_A for operation.
Configuring and reconfiguring the eUSCI_A module should be done when UCSWRST is set to avoid
unpredictable behavior.
NOTE:

Initializing or reconfiguring the eUSCI_A module
The recommended eUSCI_A initialization/reconfiguration process is:
1. Set UCSWRST (BIS.B
#UCSWRST,&UCAxCTL1).
2. Initialize all eUSCI_A registers with UCSWRST = 1 (including UCAxCTL1).
3. Configure ports.
4. Clear UCSWRST through software (BIC.B
#UCSWRST,&UCAxCTL1).
5. Enable interrupts (optional) through UCRXIE or UCTXIE.

30.3.2 Character Format
The UART character format (see Figure 30-2) consists of a start bit, seven or eight data bits, an
even/odd/no parity bit, an address bit (address-bit mode), and one or two stop bits. The UCMSB bit
controls the direction of the transfer and selects LSB or MSB first. LSB first is typically required for UART
communication.
ST

D0

D6

D7 AD

PA

Mark

SP SP

Space
[2nd Stop Bit, UCSPB = 1]
[Parity Bit, UCPEN = 1]
[Address Bit, UCMODEx = 10]

[Optional Bit, Condition]

[8th Data Bit, UC7BIT = 0]

Figure 30-2. Character Format

30.3.3 Asynchronous Communication Format
When two devices communicate asynchronously, no multiprocessor format is required for the protocol.
When three or more devices communicate, the eUSCI_A supports the idle-line and address-bit
multiprocessor communication formats.
30.3.3.1 Idle-Line Multiprocessor Format
When UCMODEx = 01, the idle-line multiprocessor format is selected. Blocks of data are separated by an
idle time on the transmit or receive lines (see Figure 30-3). An idle receive line is detected when ten or
more continuous ones (marks) are received after the one or two stop bits of a character. The baud-rate
generator is switched off after reception of an idle line until the next start edge is detected. When an idle
line is detected, the UCIDLE bit is set.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

767

eUSCI_A Operation – UART Mode

www.ti.com

The first character received after an idle period is an address character. The UCIDLE bit is used as an
address tag for each block of characters. In idle-line multiprocessor format, this bit is set when a received
character is an address.
Blocks of
characters

UCAxTXD
UCAxRXD
Idle periods of 10 bits or more
UCAxTXD or UCAxRXD
Expanded

UCAxTXD
UCAxRXD
First character in block is
address, and it follows an
Idle period of 10 bits or more

Character within block

Character within block

Idle period fewer than 10 bits

Figure 30-3. Idle-Line Format
The UCDORM bit is used to control data reception in the idle-line multiprocessor format. When UCDORM
= 1, all non-address characters are assembled but not transferred into the UCAxRXBUF, and interrupts
are not generated. When an address character is received, the character is transferred into UCAxRXBUF,
UCRXIFG is set, and any applicable error flag is set when UCRXEIE = 1. When UCRXEIE = 0 and an
address character is received but has a framing error or parity error, the character is not transferred into
UCAxRXBUF and UCRXIFG is not set.
If an address is received, user software can validate the address and must reset UCDORM to continue
receiving data. If UCDORM remains set, only address characters are received. When UCDORM is cleared
during the reception of a character, the receive interrupt flag is set after the reception completed. The
UCDORM bit is not modified automatically by the eUSCI_A hardware.
For address transmission in idle-line multiprocessor format, a precise idle period can be generated by the
eUSCI_A to generate address character identifiers on UCAxTXD. The double-buffered UCTXADDR flag
indicates if the next character loaded into UCAxTXBUF is preceded by an idle line of 11 bits. UCTXADDR
is automatically cleared when the start bit is generated.
30.3.3.1.1 Transmitting an Idle Frame
The following procedure sends out an idle frame to indicate an address character followed by associated
data:
1. Set UCTXADDR, then write the address character to UCAxTXBUF. UCAxTXBUF must be ready for
new data (UCTXIFG = 1).
This generates an idle period of exactly 11 bits followed by the address character. UCTXADDR is reset
automatically when the address character is transferred from UCAxTXBUF into the shift register.
2. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data
(UCTXIFG = 1).
The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift
register is ready for new data.
The idle-line time must not be exceeded between address and data transmission or between data
transmissions. Otherwise, the transmitted data is misinterpreted as an address.
768

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A Operation – UART Mode

www.ti.com

30.3.3.2 Address-Bit Multiprocessor Format
When UCMODEx = 10, the address-bit multiprocessor format is selected. Each processed character
contains an extra bit used as an address indicator (see Figure 30-4). The first character in a block of
characters carries a set address bit that indicates that the character is an address. The eUSCI_A
UCADDR bit is set when a received character has its address bit set and is transferred to UCAxRXBUF.
The UCDORM bit is used to control data reception in the address-bit multiprocessor format. When
UCDORM is set, data characters with address bit = 0 are assembled by the receiver but are not
transferred to UCAxRXBUF and no interrupts are generated. When a character containing a set address
bit is received, the character is transferred into UCAxRXBUF, UCRXIFG is set, and any applicable error
flag is set when UCRXEIE = 1. When UCRXEIE = 0 and a character containing a set address bit is
received but has a framing error or parity error, the character is not transferred into UCAxRXBUF and
UCRXIFG is not set.
If an address is received, user software can validate the address and must reset UCDORM to continue
receiving data. If UCDORM remains set, only address characters with address bit = 1 are received. The
UCDORM bit is not modified by the eUSCI_A hardware automatically.
When UCDORM = 0, all received characters set the receive interrupt flag UCRXIFG. If UCDORM is
cleared during the reception of a character, the receive interrupt flag is set after the reception is
completed.
For address transmission in address-bit multiprocessor mode, the address bit of a character is controlled
by the UCTXADDR bit. The value of the UCTXADDR bit is loaded into the address bit of the character
transferred from UCAxTXBUF to the transmit shift register. UCTXADDR is automatically cleared when the
start bit is generated.
Blocks of
characters

UCAxTXD
UCAxRXD
Idle periods of no significance
UCAxTXD, UCAxRXD
Expanded

UCAxTXD
UCAxRXD

ST

Address

1 SP ST

First character within block
is an address, AD bit is 1

Data

AD bit is 0 for
data within block

0

SP

ST

Data

0 SP

Idle time is of no significance

Figure 30-4. Address-Bit Multiprocessor Format

30.3.3.2.1 Break Reception and Generation
When UCMODEx = 00, 01, or 10, the receiver detects a break when all data, parity, and stop bits are low,
regardless of the parity, address mode, or other character settings. When a break is detected, the UCBRK
bit is set. If the break interrupt enable bit (UCBRKIE) is set, the receive interrupt flag UCRXIFG is also set.
In this case, the value in UCAxRXBUF is 0h, because all data bits were zero.
To transmit a break, set the UCTXBRK bit, then write 0h to UCAxTXBUF. UCAxTXBUF must be ready for
new data (UCTXIFG = 1). This generates a break with all bits low. UCTXBRK is automatically cleared
when the start bit is generated.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

769

eUSCI_A Operation – UART Mode

www.ti.com

30.3.4 Automatic Baud-Rate Detection
When UCMODEx = 11, UART mode with automatic baud-rate detection is selected. For automatic baudrate detection, a data frame is preceded by a synchronization sequence that consists of a break and a
synch field. A break is detected when 11 or more continuous zeros (spaces) are received. If the length of
the break exceeds 21 bit times, the break timeout error flag UCBTOE is set. The eUSCI_A cannot transmit
data while receiving the break/sync field. The synch field follows the break as shown in Figure 30-5.
Delimiter

Break

Synch

Figure 30-5. Auto Baud-Rate Detection – Break/Synch Sequence
For LIN conformance, the character format should be set to eight data bits, LSB first, no parity, and one
stop bit. No address bit is available.
The synch field consists of the data 055h inside a byte field (see Figure 30-6). The synchronization is
based on the time measurement between the first falling edge and the last falling edge of the pattern. The
transmit baud-rate generator is used for the measurement if automatic baud-rate detection is enabled by
setting UCABDEN. Otherwise, the pattern is received but not measured. The result of the measurement is
transferred into the baud-rate control registers (UCAxBRW and UCAxMCTLW). If the length of the synch
field exceeds the measurable time, the synch timeout error flag UCSTOE is set. The result can be read
after the receive interrupt flag UCRXIFG is set.
Synch
8 Bit Times

Start
0
Bit

1

2

3

4

5

6

7

Stop
Bit

Figure 30-6. Auto Baud-Rate Detection – Synch Field
The UCDORM bit is used to control data reception in this mode. When UCDORM is set, all characters are
received but not transferred into the UCAxRXBUF, and interrupts are not generated. When a break/synch
field is detected, the UCBRK flag is set. The character following the break/synch field is transferred into
UCAxRXBUF and the UCRXIFG interrupt flag is set. Any applicable error flag is also set. If the UCBRKIE
bit is set, reception of the break/synch sets the UCRXIFG. The UCBRK bit is reset by user software or by
reading the receive buffer UCAxRXBUF.
When a break/synch field is received, user software must reset UCDORM to continue receiving data. If
UCDORM remains set, only the character after the next reception of a break/synch field is received. The
UCDORM bit is not modified by the eUSCI_A hardware automatically.
When UCDORM = 0, all received characters set the receive interrupt flag UCRXIFG. If UCDORM is
cleared during the reception of a character, the receive interrupt flag is set after the reception is complete.
The counter used to detect the baud rate is limited to 0FFFFh (216) counts. This means the minimum baud
rate detectable is 244 baud in oversampling mode and 15 baud in low-frequency mode. The highest
detectable baud rate is 1 Mbaud.
The automatic baud-rate detection mode can be used in a full-duplex communication system with some
restrictions. The eUSCI_A cannot transmit data while receiving the break/sync field and, if a 0h byte with
framing error is received, any data transmitted during this time is corrupted. The latter case can be
discovered by checking the received data and the UCFE bit.

770

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A Operation – UART Mode

www.ti.com

30.3.4.1 Transmitting a Break/Synch Field
The following procedure transmits a break/synch field:
1. Set UCTXBRK with UMODEx = 11.
2. Write 055h to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG = 1).
This generates a break field of 13 bits followed by a break delimiter and the synch character. The
length of the break delimiter is controlled with the UCDELIMx bits. UCTXBRK is reset automatically
when the synch character is transferred from UCAxTXBUF into the shift register.
3. Write desired data characters to UCAxTXBUF. UCAxTXBUF must be ready for new data (UCTXIFG =
1).
The data written to UCAxTXBUF is transferred to the shift register and transmitted as soon as the shift
register is ready for new data.

30.3.5 IrDA Encoding and Decoding
When UCIREN is set, the IrDA encoder and decoder are enabled and provide hardware bit shaping for
IrDA communication.
30.3.5.1 IrDA Encoding
The encoder sends a pulse for every zero bit in the transmit bitstream coming from the UART (see
Figure 30-7). The pulse duration is defined by UCIRTXPLx bits specifying the number of one-half clock
periods of the clock selected by UCIRTXCLK.
Start
Bit

Data Bits

Stop
Bit

UART

IrDA

Figure 30-7. UART vs IrDA Data Format
To set the pulse time of 3/16 bit period required by the IrDA standard, the BITCLK16 clock is selected with
UCIRTXCLK = 1, and the pulse length is set to six one-half clock cycles with UCIRTXPLx = 6 – 1 = 5.
When UCIRTXCLK = 0, the pulse length tPULSE is based on BRCLK and is calculated as:
UCIRTXPLx = tPULSE × 2 × fBRCLK – 1
When UCIRTXCLK = 0, the prescaler UCBRx must be set to a value greater or equal to 5.
30.3.5.2 IrDA Decoding
The decoder detects high pulses when UCIRRXPL = 0. Otherwise, it detects low pulses. In addition to the
analog deglitch filter, an additional programmable digital filter stage can be enabled by setting UCIRRXFE.
When UCIRRXFE is set, only pulses longer than the programmed filter length are passed. Shorter pulses
are discarded. The equation to program the filter length UCIRRXFLx is:
UCIRRXFLx = (tPULSE − tWAKE) × 2 × fBRCLK – 4
Where:
tPULSE = Minimum receive pulse width
tWAKE = Wake time from any low-power mode. Zero when the device is in active mode.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

771

eUSCI_A Operation – UART Mode

www.ti.com

30.3.6 Automatic Error Detection
Glitch suppression prevents the eUSCI_A from being accidentally started. Any pulse on UCAxRXD shorter
than the deglitch time tt (selected by UCGLITx) is ignored (see the device-specific data sheet for
parameters).
When a low period on UCAxRXD exceeds tt, a majority vote is taken for the start bit. If the majority vote
fails to detect a valid start bit, the eUSCI_A halts character reception and waits for the next low period on
UCAxRXD. The majority vote is also used for each bit in a character to prevent bit errors.
The eUSCI_A module automatically detects framing errors, parity errors, overrun errors, and break
conditions when receiving characters. The bits UCFE, UCPE, UCOE, and UCBRK are set when their
respective condition is detected. When the error flags UCFE, UCPE, or UCOE are set, UCRXERR is also
set. The error conditions are described in Table 30-1.
Table 30-1. Receive Error Conditions
Error Condition

Error Flag

Description

Framing error

UCFE

A framing error occurs when a low stop bit is detected. When two stop bits are used, both
stop bits are checked for framing error. When a framing error is detected, the UCFE bit is set.

Parity error

UCPE

A parity error is a mismatch between the number of 1s in a character and the value of the
parity bit. When an address bit is included in the character, it is included in the parity
calculation. When a parity error is detected, the UCPE bit is set.

Receive overrun

UCOE

An overrun error occurs when a character is loaded into UCAxRXBUF before the prior
character has been read. When an overrun occurs, the UCOE bit is set.

Break condition

UCBRK

When not using automatic baud-rate detection, a break is detected when all data, parity, and
stop bits are low. When a break condition is detected, the UCBRK bit is set. A break condition
can also set the interrupt flag UCRXIFG if the break interrupt enable UCBRKIE bit is set.

When UCRXEIE = 0 and a framing error or parity error is detected, no character is received into
UCAxRXBUF. When UCRXEIE = 1, characters are received into UCAxRXBUF and any applicable error
bit is set.
When any of the UCFE, UCPE, UCOE, UCBRK, or UCRXERR bit is set, the bit remains set until user
software resets it or UCAxRXBUF is read. UCOE must be reset by reading UCAxRXBUF. Otherwise, it
does not function properly. To detect overflows reliably, TI recommends the following flow. After a
character is received and UCAxRXIFG is set, first read UCAxSTATW to check the error flags including the
overflow flag UCOE. Read UCAxRXBUF next. This clears all error flags except UCOE, if UCAxRXBUF
was overwritten between the read access to UCAxSTATW and to UCAxRXBUF. Therefore, the UCOE flag
should be checked after reading UCAxRXBUF to detect this condition. Note that, in this case, the
UCRXERR flag is not set.

772

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A Operation – UART Mode

www.ti.com

30.3.7 eUSCI_A Receive Enable
The eUSCI_A module is enabled by clearing the UCSWRST bit and the receiver is ready and in an idle
state. The receive baud rate generator is in a ready state but is not clocked nor producing any clocks.
The falling edge of the start bit enables the baud rate generator and the UART state machine checks for a
valid start bit. If no valid start bit is detected the UART state machine returns to its idle state and the baud
rate generator is turned off again. If a valid start bit is detected, a character is received.
When the idle-line multiprocessor mode is selected with UCMODEx = 01, the UART state machine checks
for an idle line after receiving a character. If a start bit is detected, another character is received.
Otherwise, the UCIDLE flag is set after 10 ones are received, the UART state machine returns to its idle
state, and the baud rate generator is turned off.
30.3.7.1 Receive Data Glitch Suppression
Glitch suppression prevents the eUSCI_A from being accidentally started. Any glitch on UCAxRXD shorter
than the deglitch time tt is ignored by the eUSCI_A, and further action is initiated as shown in Figure 30-8
(see the device-specific data sheet for parameters). The deglitch time tt can be set to four different values
using the UCGLITx bits.
UCAxRXD

URXS
tt

Figure 30-8. Glitch Suppression, eUSCI_A Receive Not Started
When a glitch is longer than tt, or a valid start bit occurs on UCAxRXD, the eUSCI_A receive operation is
started and a majority vote is taken (see Figure 30-9). If the majority vote fails to detect a start bit, the
eUSCI_A halts character reception.
Majority Vote Taken

UCAxRXD
URXS
tt

Figure 30-9. Glitch Suppression, eUSCI_A Activated

30.3.8 eUSCI_A Transmit Enable
The eUSCI_A module is enabled by clearing the UCSWRST bit and the transmitter is ready and in an idle
state. The transmit baud-rate generator is ready but is not clocked nor producing any clocks.
A transmission is initiated by writing data to UCAxTXBUF. When this occurs, the baud-rate generator is
enabled, and the data in UCAxTXBUF is moved to the transmit shift register on the next BITCLK after the
transmit shift register is empty. UCTXIFG is set when new data can be written into UCAxTXBUF.
Transmission continues as long as new data is available in UCAxTXBUF at the end of the previous byte
transmission. If new data is not in UCAxTXBUF when the previous byte has transmitted, the transmitter
returns to its idle state and the baud-rate generator is turned off.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

773

eUSCI_A Operation – UART Mode

www.ti.com

30.3.9 UART Baud-Rate Generation
The eUSCI_A baud-rate generator is capable of producing standard baud rates from nonstandard source
frequencies. It provides two modes of operation selected by the UCOS16 bit.
A quick setup for finding the correct baud rate settings for the eUSCI_A can be found in Section 30.3.10.
30.3.9.1 Low-Frequency Baud-Rate Generation
The low-frequency mode is selected when UCOS16 = 0. This mode allows generation of baud rates from
low-frequency clock sources (for example, 9600 baud from a 32768-Hz crystal). By using a lower input
frequency, the power consumption of the module is reduced. Using this mode with higher frequencies and
higher prescaler settings causes the majority votes to be taken in an increasingly smaller window and,
thus, decrease the benefit of the majority vote.
In low-frequency mode, the baud-rate generator uses one prescaler and one modulator to generate bit
clock timing. This combination supports fractional divisors for baud-rate generation. In this mode, the
maximum eUSCI_A baud rate is one-third the UART source clock frequency BRCLK.
Timing for each bit is shown in Figure 30-10. For each bit received, a majority vote is taken to determine
the bit value. These samples occur at the N/2 – 1/2, N/2, and N/2 + 1/2 BRCLK periods, where N is the
number of BRCLKs per BITCLK.
Majority Vote:

(m= 0)
(m= 1)

Bit Start
BRCLK
Counter

N/2

N/2-1 N/2-2

1

N/2

1

0

N/2-1 N/2-2
N/2

N/2-1

1

N/2

N/2-1

1

0

N/2

BITCLK
NEVEN: INT(N/2)

INT(N/2) + m(= 0)

NODD: INT(N/2) + R(= 1)

INT(N/2) + m(= 1)
Bit Period
m: corresponding modulation bit
R: Remainder from N/2 division

Figure 30-10. BITCLK Baud-Rate Timing With UCOS16 = 0
Modulation is based on the UCBRSx setting as shown in Table 30-2. A 1 in the table indicates that m = 1
and the corresponding BITCLK period is one BRCLK period longer than a BITCLK period with m = 0. The
modulation wraps around after 8 bits but restarts with each new start bit.
Table 30-2. Modulation Pattern Examples
UCBRSx

Bit 0
(Start Bit)

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

0x00

0

0

0

0

0

0

0

0

0x01

0

0

0

0

0

0

0

1

⋮
0x35

0

0

1

1

0

1

0

1

0x36

0

0

1

1

0

1

1

0

0x37

0

0

1

1

0

1

1

1

1

1

1

1

⋮
0xff

1

1

1

1

The correct setting of UCBRSx can be found as described in Section 30.3.10.
774

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A Operation – UART Mode

www.ti.com

30.3.9.2 Oversampling Baud-Rate Generation
The oversampling mode is selected when UCOS16 = 1. This mode supports sampling a UART bitstream
with higher input clock frequencies. This results in majority votes that are always 1/16 of a bit clock period
apart. This mode also easily supports IrDA pulses with a 3/16 bit time when the IrDA encoder and decoder
are enabled.
This mode uses one prescaler and one modulator to generate the BITCLK16 clock that is 16 times faster
than the BITCLK. An additional divider by 16 and modulator stage generates BITCLK from BITCLK16.
This combination supports fractional divisions of both BITCLK16 and BITCLK for baud-rate generation. In
this mode, the maximum eUSCI_A baud rate is 1/16 the UART source clock frequency BRCLK.
Modulation for BITCLK16 is based on the UCBRFx setting (see Table 30-3). A 1 in the table indicates that
the corresponding BITCLK16 period is one BRCLK period longer than the periods m = 0. The modulation
restarts with each new bit timing.
Modulation for BITCLK is based on the UCBRSx setting as previously described.
Table 30-3. BITCLK16 Modulation Pattern
UCBRFx

Number of BITCLK16 Clocks After Last Falling BITCLK Edge
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

00h

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01h

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

02h

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

03h

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

04h

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

1

05h

0

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

06h

0

1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

07h

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

08h

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

09h

0

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0Ah

0

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

0Bh

0

1

1

1

1

1

1

0

0

0

0

1

1

1

1

1

0Ch

0

1

1

1

1

1

1

0

0

0

1

1

1

1

1

1

0Dh

0

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

0Eh

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

0Fh

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

775

eUSCI_A Operation – UART Mode

www.ti.com

30.3.10 Setting a Baud Rate
For a given BRCLK clock source, the baud rate used determines the required division factor N:
N = fBRCLK/baud rate
The division factor N is often a noninteger value, thus, at least one divider and one modulator stage is
used to meet the factor as closely as possible.
If N is equal or greater than 16, TI recommends using the oversampling baud-rate generation mode by
setting UCOS16.
NOTE:

Baud-rate settings quick set up
To calculate the correct the correct settings for the baud-rate generation, perform these
steps:
1. Calculate N = fBRCLK/baud rate
[if N > 16 continue with step 3, otherwise with step 2]
2. OS16 = 0, UCBRx = INT(N) [continue with step 4]
3. OS16 = 1, UCBRx = INT(N/16), UCBRFx = INT([(N/16) – INT(N/16)] × 16)
4. UCBRSx can be found by looking up the fractional part of N ( = N - INT(N) ) in table
Table 30-4
5. If OS16 = 0 was chosen, TI recommends performing a detailed error calculation.

Table 30-4 can be used as a lookup table for finding the correct UCBRSx modulation pattern for the
corresponding fractional part of N. The values there are optimized for transmitting.
Table 30-4. UCBRSx Settings for Fractional Portion of N = fBRCLK/Baud Rate

(1)

Fractional Portion of N

UCBRSx (1)

Fractional Portion of N

UCBRSx (1)

0.0000

0x00

0.5002

0xAA

0.0529

0x01

0.5715

0x6B

0.0715

0x02

0.6003

0xAD

0.0835

0x04

0.6254

0xB5

0.1001

0x08

0.6432

0xB6

0.1252

0x10

0.6667

0xD6

0.1430

0x20

0.7001

0xB7

0.1670

0x11

0.7147

0xBB

0.2147

0x21

0.7503

0xDD

0.2224

0x22

0.7861

0xED

0.2503

0x44

0.8004

0xEE

0.3000

0x25

0.8333

0xBF

0.3335

0x49

0.8464

0xDF

0.3575

0x4A

0.8572

0xEF

0.3753

0x52

0.8751

0xF7

0.4003

0x92

0.9004

0xFB

0.4286

0x53

0.9170

0xFD

0.4378

0x55

0.9288

0xFE

The UCBRSx setting in one row is valid from the fractional portion given in that row until the one in the next row

30.3.10.1 Low-Frequency Baud-Rate Mode Setting
In low-frequency mode, the integer portion of the divisor is realized by the prescaler:
UCBRx = INT(N)
The fractional portion is realized by the modulator with its UCBRSx setting. The recommended way of
determining the correct UCBRSx is performing a detailed error calculation as explained in the following
sections. However it is also possible to look up the correct settings in table with typical crystals (see
Table 30-5).
776

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A Operation – UART Mode

www.ti.com

30.3.10.2 Oversampling Baud-Rate Mode Setting
In the oversampling mode, the prescaler is set to:
UCBRx = INT(N/16)
and the first stage modulator is set to:
UCBRFx = INT([(N/16) – INT(N/16)] × 16)
The second modulation stage setting (UCBRSx) can be found by performing a detailed error calculation or
by using Table 30-4 and the fractional part of N = fBRCLK/baud rate.

30.3.11 Transmit Bit Timing - Error calculation
The timing for each character is the sum of the individual bit timings. Using the modulation features of the
baud-rate generator reduces the cumulative bit error. The individual bit error can be calculated using the
following steps.
30.3.11.1 Low-Frequency Baud-Rate Mode Bit Timing
In low-frequency mode, calculation of the length of bit i Tbit,TX[i] is based on the UCBRx and UCBRSx
settings:
Tbit,TX[i] = (1/fBRCLK)(UCBRx + mUCBRSx[i])
Where:
mUCBRSx[i] = Modulation of bit i of UCBRSx
30.3.11.2 Oversampling Baud-Rate Mode Bit Timing
In oversampling baud-rate mode, calculation of the length of bit i Tbit,TX[i] is based on the baud-rate
generator UCBRx, UCBRFx and UCBRSx settings:
tbit,TX[i] =

1

(

15

fBRCLK (16 × UCBRx) +

j=0

mUCBRFx[j] + mUCBRSx[i]

(

Where:
15

mUCBRFx[j]

≤ j=0
= Sum of ones from the corresponding row in Table 30-3
mUCBRSx[i] = Modulation of bit i of UCBRSx
This results in an end-of-bit time tbit,TX[i] equal to the sum of all previous and the current bit times:
i

tbit,TX[i] =

St

[j]

bit,TX

j=0

To calculate bit error, this time is compared to the ideal bit time tbit,ideal,TX[i]:
tbit,ideal,TX[i] = (1/baud rate)(i + 1)
This results in an error normalized to one ideal bit time (1/baud rate):
ErrorTX[i] = (tbit,TX[i] – tbit,ideal,TX[i]) × baud rate × 100%

30.3.12 Receive Bit Timing – Error Calculation
Receive timing error consists of two error sources. The first is the bit-to-bit timing error similar to the
transmit bit timing error. The second is the error between a start edge occurring and the start edge being
accepted by the eUSCI_A module. Figure 30-11 shows the asynchronous timing errors between data on
the UCAxRXD pin and the internal baud-rate clock. This results in an additional synchronization error. The
synchronization error tSYNC is between –0.5 BRCLKs and +0.5 RCLKs, independent of the selected baudrate generation mode.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

777

eUSCI_A Operation – UART Mode

www.ti.com

i

1

0

tideal

2

t1

t0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8

9 10 11 12 13 14 1 2 3 4 5 6 7

BRCLK
UCAxRXD

ST

D0

D1

RXD synch.

ST

D0

D1

t0
Synchronization Error ± 0.5x BRCLK

tactual

t1

t2

Sample
RXD synch.
Majority Vote Taken

Majority Vote Taken

Majority Vote Taken

Figure 30-11. Receive Error
The ideal sampling time tbit,ideal,RX[i] is in the middle of a bit period:
tbit,ideal,RX[i] = (1/baud rate)(i + 0.5)
The real sampling time, tbit,RX[i], is equal to the sum of all previous bits according to the formulas shown in
the transmit timing section, plus one-half BITCLK for the current bit i, plus the synchronization error tSYNC.
This results in the following tbit,RX[i] for the low-frequency baud-rate mode:
i–1

tbit,RX[i] = tSYNC +
j=0

Tbit,RX[j] + 1
fBRCLK INT(½UCBRx) + mUCBRSx[i]

(

(

Where:
Tbit,RX[i] = (1/fBRCLK)(UCBRx + mUCBRSx[i])
mUCBRSx[i] = Modulation of bit i of UCBRSx
For the oversampling baud-rate mode, the sampling time tbit,RX[i] of bit i is calculated by:
i–1

tbit,RX[i] = tSYNC +

Tbit,RX[j] +
j=0

1
fBRCLK (8 * UCBRx) +

(

7

(

mUCBRFx[j] + mUCBRSx[i]
j=0

Where:
tbit,RX[i] =

1

(

fBRCLK (16 × UCBRx) +

15
j=0

mUCBRFx[j] + mUCBRSx[i]

(

7 +mUCBRSx [i]

å

mUCBRFx [j]

j=0

= Sum of ones from columns 0 to (7 + mUCBRSx[i]) from the corresponding row in
Table 30-3.
mUCBRSx[i] = Modulation of bit i of UCBRSx
This results in an error normalized to one ideal bit time (1/baud rate) according to the following formula:
ErrorRX[i] = (tbit,RX[i] – tbit,ideal,RX[i]) × baud rate × 100%

30.3.13 Typical Baud Rates and Errors
Standard baud-rate data for UCBRx, UCBRSx, and UCBRFx are listed in Table 30-5 for a 32768-Hz
crystal sourcing ACLK and typical SMCLK frequencies. Make sure that the selected BRCLK frequency
does not exceed the device specific maximum eUSCI_A input frequency (see the device-specific data
sheet).

778

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A Operation – UART Mode

www.ti.com

The receive error is the accumulated time versus the ideal scanning time in the middle of each bit. The
worst-case error is given for the reception of an 8-bit character with parity and one stop bit including
synchronization error.
The transmit error is the accumulated timing error versus the ideal time of the bit period. The worst-case
error is given for the transmission of an 8-bit character with parity and stop bit.
Table 30-5. Recommended Settings for Typical Crystals and Baud Rates (1)

(1)

(2)

UCBRx

UCBRFx UCBRSx (2)

BRCLK

Baud Rate

UCOS16

32768

1200

1

1

11

32768

2400

0

13

-

32768

4800

0

6

-

TX Error (2) (%)

RX Error (2) (%)

neg

pos

neg

pos

0x25

-2.29

2.25

-2.56

5.35

0xB6

-3.12

3.91

-5.52

8.84

0xEE

-7.62

8.98

-21

10.25

32768

9600

0

3

-

0x92

-17.19

16.02

-23.24

37.3

1000000

9600

1

6

8

0x20

-0.48

0.64

-1.04

1.04

1000000

19200

1

3

4

0x2

-0.8

0.96

-1.84

1.84

1000000

38400

1

1

10

0x0

0

1.76

0

3.44

1000000

57600

0

17

-

0x4A

-2.72

2.56

-3.76

7.28

1000000

115200

0

8

-

0xD6

-7.36

5.6

-17.04

6.96

1048576

9600

1

6

13

0x22

-0.46

0.42

-0.48

1.23

1048576

19200

1

3

6

0xAD

-0.88

0.83

-2.36

1.18

1048576

38400

1

1

11

0x25

-2.29

2.25

-2.56

5.35

1048576

57600

0

18

-

0x11

-2

3.37

-5.31

5.55

1048576

115200

0

9

-

0x08

-5.37

4.49

-5.93

14.92

4000000

9600

1

26

0

0xB6

-0.08

0.16

-0.28

0.2

4000000

19200

1

13

0

0x84

-0.32

0.32

-0.64

0.48

4000000

38400

1

6

8

0x20

-0.48

0.64

-1.04

1.04

4000000

57600

1

4

5

0x55

-0.8

0.64

-1.12

1.76

4000000

115200

1

2

2

0xBB

-1.44

1.28

-3.92

1.68

4000000

230400

0

17

-

0x4A

-2.72

2.56

-3.76

7.28

4194304

9600

1

27

4

0xFB

-0.11

0.1

-0.33

0

4194304

19200

1

13

10

0x55

-0.21

0.21

-0.55

0.33

4194304

38400

1

6

13

0x22

-0.46

0.42

-0.48

1.23

4194304

57600

1

4

8

0xEE

-0.75

0.74

-2

0.87

4194304

115200

1

2

4

0x92

-1.62

1.37

-3.56

2.06

4194304

230400

0

18

-

0x11

-2

3.37

-5.31

5.55

8000000

9600

1

52

1

0x49

-0.08

0.04

-0.1

0.14

8000000

19200

1

26

0

0xB6

-0.08

0.16

-0.28

0.2

8000000

38400

1

13

0

0x84

-0.32

0.32

-0.64

0.48

8000000

57600

1

8

10

0xF7

-0.32

0.32

-1

0.36

8000000

115200

1

4

5

0x55

-0.8

0.64

-1.12

1.76

8000000

230400

1

2

2

0xBB

-1.44

1.28

-3.92

1.68

8000000

460800

0

17

-

0x4A

-2.72

2.56

-3.76

7.28

8388608

9600

1

54

9

0xEE

-0.06

0.06

-0.11

0.13

8388608

19200

1

27

4

0xFB

-0.11

0.1

-0.33

0

8388608

38400

1

13

10

0x55

-0.21

0.21

-0.55

0.33

8388608

57600

1

9

1

0xB5

-0.31

0.31

-0.53

0.78

8388608

115200

1

4

8

0xEE

-0.75

0.74

-2

0.87

The listed UCBRSx settings are determined by a search algorithm for the lowest error. Other settings for UCBRSx might result in
similar or same errors.
Assumes a stable clock source for BRCLK with negligible jitter (for example, from a crystal oscillator). Any frequency variation or
jitter of the clock source will make the errors worse.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode 779

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A Operation – UART Mode

www.ti.com

Table 30-5. Recommended Settings for Typical Crystals and Baud Rates (1) (continued)
UCBRx

UCBRFx UCBRSx (2)

BRCLK

Baud Rate

UCOS16

8388608

230400

1

2

4

8388608

460800

0

18

-

12000000

9600

1

78

12000000

19200

1

12000000

38400

12000000

57600

12000000

TX Error (2) (%)

RX Error (2) (%)

neg

pos

neg

pos

0x92

-1.62

1.37

-3.56

2.06

0x11

-2

3.37

-5.31

5.55

2

0x0

0

0

0

0.04

39

1

0x0

0

0

0

0.16

1

19

8

0x65

-0.16

0.16

-0.4

0.24

1

13

0

0x25

-0.16

0.32

-0.48

0.48

115200

1

6

8

0x20

-0.48

0.64

-1.04

1.04

12000000

230400

1

3

4

0x2

-0.8

0.96

-1.84

1.84

12000000

460800

1

1

10

0x0

0

1.76

0

3.44

16000000

9600

1

104

2

0xD6

-0.04

0.02

-0.09

0.03

16000000

19200

1

52

1

0x49

-0.08

0.04

-0.1

0.14

16000000

38400

1

26

0

0xB6

-0.08

0.16

-0.28

0.2

16000000

57600

1

17

5

0xDD

-0.16

0.2

-0.3

0.38

16000000

115200

1

8

10

0xF7

-0.32

0.32

-1

0.36

16000000

230400

1

4

5

0x55

-0.8

0.64

-1.12

1.76

16000000

460800

1

2

2

0xBB

-1.44

1.28

-3.92

1.68

16777216

9600

1

109

3

0xB5

-0.03

0.02

-0.05

0.06

16777216

19200

1

54

9

0xEE

-0.06

0.06

-0.11

0.13

16777216

38400

1

27

4

0xFB

-0.11

0.1

-0.33

0

16777216

57600

1

18

3

0x44

-0.16

0.15

-0.2

0.45

16777216

115200

1

9

1

0xB5

-0.31

0.31

-0.53

0.78

16777216

230400

1

4

8

0xEE

-0.75

0.74

-2

0.87

16777216

460800

1

2

4

0x92

-1.62

1.37

-3.56

2.06

20000000

9600

1

130

3

0x25

-0.02

0.03

0

0.07

20000000

19200

1

65

1

0xD6

-0.06

0.03

-0.1

0.1

20000000

38400

1

32

8

0xEE

-0.1

0.13

-0.27

0.14

20000000

57600

1

21

11

0x22

-0.16

0.13

-0.16

0.38

20000000

115200

1

10

13

0xAD

-0.29

0.26

-0.46

0.66

20000000

230400

1

5

6

0xEE

-0.67

0.51

-1.71

0.62

20000000

460800

1

2

11

0x92

-1.38

0.99

-1.84

2.8

30.3.14 Using the eUSCI_A Module in UART Mode With Low-Power Modes
The eUSCI_A module provides automatic clock activation for use with low-power modes. When the
eUSCI_A clock source is inactive because the device is in a low-power mode, the eUSCI_A module
automatically activates it when needed, regardless of the control-bit settings for the clock source. The
clock remains active until the eUSCI_A module returns to its idle condition. After the eUSCI_A module
returns to the idle condition, control of the clock source reverts to the settings of its control bits.
NOTE: Clock Activation Time
If the clock source is not already active when the eUSCI_A module requests it then the clock
must be activated. This takes time. This clock activation time depending on the selected
clock source and the selected low power mode. If the DCO is used as clock source the
activation time is approximately the wake-up time as specified in the device-specific data
sheet.

780

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A Operation – UART Mode

www.ti.com

30.3.15 eUSCI_A Interrupts in UART Mode
The eUSCI_A has only one interrupt vector that is shared for transmission and for reception.
30.3.15.1 UART Transmit Interrupt Operation
The UCTXIFG interrupt flag is set by the transmitter to indicate that UCAxTXBUF is ready to accept
another character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is
automatically reset if a character is written to UCAxTXBUF.
UCTXIFG is set after a PUC or when UCSWRST = 1. UCTXIE is reset after a PUC or when
UCSWRST = 1.
30.3.15.2 UART Receive Interrupt Operation
The UCRXIFG interrupt flag is set each time a character is received and loaded into UCAxRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a
system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCAxRXBUF is
read.
Additional interrupt control features include:
• When UCAxRXEIE = 0, erroneous characters do not set UCRXIFG.
• When UCDORM = 1, nonaddress characters do not set UCRXIFG in multiprocessor modes. In plain
UART mode, no characters are set UCRXIFG.
• When UCBRKIE = 1, a break condition sets the UCBRK bit and the UCRXIFG flag.
30.3.15.3 UART State Change Interrupt Operation
Table 30-6 describes the UART state change interrupt flags.
Table 30-6. UART State Change Interrupt Flags
Interrupt Flag

Interrupt Condition

UCSTTIFG

START byte received interrupt. This flag is set when the UART module receives a START byte. This flag can
be cleared by writing 0 to it.

UCTXCPTIFG

Transmit complete interrupt. This flag is set after the complete UART byte in the internal shift register
including STOP bit is shifted out. This flag can be cleared by writing 0 to it.

30.3.15.4 UCAxIV, Interrupt Vector Generator
The eUSCI_A interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCAxIV is used to determine which flag requested an interrupt. The highest-priority
enabled interrupt generates a number in the UCAxIV register that can be evaluated or added to the
program counter to automatically enter the appropriate software routine. Disabled interrupts do not affect
the UCAxIV value.
Read access of the UCAxIV register automatically resets the highest-pending Interrupt condition and flag.
Write access of the UCAxIV register clears all pending Interrupt conditions and flags. If another interrupt
flag is set, another interrupt is generated immediately after servicing the initial interrupt.
Example 30-1 shows the recommended use of UCAxIV. The UCAxIV value is added to the PC to
automatically jump to the appropriate routine. The following example is given for eUSCI_A0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

781

eUSCI_A Operation – UART Mode

www.ti.com

Example 30-1. UCAxIV Software Example
#pragma vector = USCI_A0_VECTOR __interrupt void USCI_A0_ISR(void) {
switch(__even_in_range(UCA0IV,18)) {
case 0x00:
// Vector 0: No interrupts
break;
case 0x02: ... // Vector 2: UCRXIFG
break;
case 0x04: ... // Vector 4: UCTXIFG
break;
case 0x06: ... // Vector 6: UCSTTIFG
break;
case 0x08: ... // Vector 8: UCTXCPTIFG
break;
default: break;
}
}

30.3.16 DMA Operation
In devices with a DMA controller, the eUSCI module can trigger DMA transfers when the transmit buffer
UCAxTXBUF is empty or when data was received in the UCAxRXBUF buffer. The DMA trigger signals
correspond to the UCTXIFG transmit interrupt flag and the UCRXIFG receive interrupt flag, respectively.
The interrupt functionality must be disabled for the selected DMA triggers with UCTXIE = 0 and UCRXIE =
0.
A DMA read access to UCAxRXBUF has the same effects as a CPU (software) read: all error flags
(UCRXERR, UCFE, UCPE, UCOE, and UCBRK) are cleared after the read. Thus these errors might go
unnoticed.

782

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A UART Registers

www.ti.com

30.4 eUSCI_A UART Registers
The eUSCI_A registers applicable in UART mode and their address offsets are listed in Table 30-7. The
base address can be found in the device-specific data sheet.
Table 30-7. eUSCI_A UART Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

UCAxCTLW0

eUSCI_Ax Control Word 0

Read/write

Word

0001h

Section 30.4.1

eUSCI_Ax Control 0

Read/write

Byte

00h

01h
00h

UCAxCTL0 (1)

eUSCI_Ax Control 1

Read/write

Byte

01h

02h

UCAxCTLW1

UCAxCTL1

eUSCI_Ax Control Word 1

Read/write

Word

0003h

Section 30.4.2

06h

UCAxBRW

eUSCI_Ax Baud Rate Control Word

Read/write

Word

0000h

Section 30.4.3

(1)

06h

UCAxBR0

eUSCI_Ax Baud Rate Control 0

Read/write

Byte

00h

07h

UCAxBR1

eUSCI_Ax Baud Rate Control 1

Read/write

Byte

00h

08h

UCAxMCTLW

eUSCI_Ax Modulation Control Word

Read/write

Word

00h

Section 30.4.4

0Ah

UCAxSTATW

eUSCI_Ax Status

Read/write

Word

00h

Section 30.4.5

0Ch

UCAxRXBUF

eUSCI_Ax Receive Buffer

Read/write

Word

00h

Section 30.4.6

0Eh

UCAxTXBUF

eUSCI_Ax Transmit Buffer

Read/write

Word

00h

Section 30.4.7

10h

UCAxABCTL

eUSCI_Ax Auto Baud Rate Control

Read/write

Word

00h

Section 30.4.8

12h

UCAxIRCTL

eUSCI_Ax IrDA Control

Section 30.4.9

Read/write

Word

0000h

12h

UCAxIRTCTL

eUSCI_Ax IrDA Transmit Control

Read/write

Byte

00h

13h

UCAxIRRCTL

eUSCI_Ax IrDA Receive Control

Read/write

Byte

00h

1Ah

UCAxIE

eUSCI_Ax Interrupt Enable

Read/write

Word

00h

Section 30.4.10

1Ch

UCAxIFG

eUSCI_Ax Interrupt Flag

Read/write

Word

02h

Section 30.4.11

1Eh

UCAxIV

eUSCI_Ax Interrupt Vector

Read

Word

0000h

Section 30.4.12

(1)

It is recommended to access these registers using 16-bit access. If 8-bit access is used, the corresponding bit names must be
followed by "_H".

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

783

eUSCI_A UART Registers

www.ti.com

30.4.1 UCAxCTLW0 Register
eUSCI_Ax Control Word Register 0
Figure 30-12. UCAxCTLW0 Register
15
UCPEN
rw-0

14
UCPAR
rw-0

13
UCMSB
rw-0

12
UC7BIT
rw-0

11
UCSPB
rw-0

rw-0

rw-0

8
UCSYNC
rw-0

7

6

5
UCRXEIE
rw-0

4
UCBRKIE
rw-0

3
UCDORM
rw-0

2
UCTXADDR
rw-0

1
UCTXBRK
rw-0

0
UCSWRST
rw-1

UCSSELx
rw-0

rw-0

10

9
UCMODEx

Can be modified only when UCSWRST = 1.

Table 30-8. UCAxCTLW0 Register Description
Bit

Field

Type

Reset

Description

15

UCPEN

RW

0h

Parity enable
0b = Parity disabled
1b = Parity enabled. Parity bit is generated (UCAxTXD) and expected
(UCAxRXD). In address-bit multiprocessor mode, the address bit is included in
the parity calculation.

14

UCPAR

RW

0h

Parity select. UCPAR is not used when parity is disabled.
0b = Odd parity
1b = Even parity

13

UCMSB

RW

0h

MSB first select. Controls the direction of the receive and transmit shift register.
0b = LSB first
1b = MSB first

12

UC7BIT

RW

0h

Character length. Selects 7-bit or 8-bit character length.
0b = 8-bit data
1b = 7-bit data

11

UCSPB

RW

0h

Stop bit select. Number of stop bits.
0b = One stop bit
1b = Two stop bits

10-9

UCMODEx

RW

0h

eUSCI_A mode. The UCMODEx bits select the asynchronous mode when
UCSYNC = 0.
00b = UART mode
01b = Idle-line multiprocessor mode
10b = Address-bit multiprocessor mode
11b = UART mode with automatic baud-rate detection

8

UCSYNC

RW

0h

Synchronous mode enable
0b = Asynchronous mode
1b = Synchronous mode

7-6

UCSSELx

RW

0h

eUSCI_A clock source select. These bits select the BRCLK source clock.
00b = UCLK
01b = ACLK
10b = SMCLK
11b = SMCLK

5

UCRXEIE

RW

0h

Receive erroneous-character interrupt enable
0b = Erroneous characters rejected and UCRXIFG is not set.
1b = Erroneous characters received set UCRXIFG.

4

UCBRKIE

RW

0h

Receive break character interrupt enable
0b = Received break characters do not set UCRXIFG.
1b = Received break characters set UCRXIFG.

784

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A UART Registers

www.ti.com

Table 30-8. UCAxCTLW0 Register Description (continued)
Bit

Field

Type

Reset

Description

3

UCDORM

RW

0h

Dormant. Puts eUSCI_A into sleep mode.
0b = Not dormant. All received characters set UCRXIFG.
1b = Dormant. Only characters that are preceded by an idle-line or with address
bit set UCRXIFG. In UART mode with automatic baud-rate detection, only the
combination of a break and synch field sets UCRXIFG.

2

UCTXADDR

RW

0h

Transmit address. Next frame to be transmitted is marked as address, depending
on the selected multiprocessor mode.
0b = Next frame transmitted is data.
1b = Next frame transmitted is an address.

1

UCTXBRK

RW

0h

Transmit break. Transmits a break with the next write to the transmit buffer. In
UART mode with automatic baud-rate detection, 055h must be written into
UCAxTXBUF to generate the required break/synch fields. Otherwise, 0h must be
written into the transmit buffer.
0b = Next frame transmitted is not a break.
1b = Next frame transmitted is a break or a break/synch.

0

UCSWRST

RW

1h

Software reset enable
0b = Disabled. eUSCI_A reset released for operation.
1b = Enabled. eUSCI_A logic held in reset state.

30.4.2 UCAxCTLW1 Register
eUSCI_Ax Control Word Register 1
Figure 30-13. UCAxCTLW1 Register
15

14

13

12

11

10

9

8
r-0

Reserved
r-0

r-0

r-0

r-0

r-0

r-0

r-0

7

6

5

4

3

2

1

Reserved
r-0

r-0

r-0

0
UCGLITx

r-0

r-0

r-0

rw-1

rw-1

Table 30-9. UCAxCTLW1 Register Description
Bit

Field

Type

Reset

Description

15-2

Reserved

R

0h

Reserved

1-0

UCGLITx

RW

3h

Deglitch time
00b = Approximately 2 ns
01b = Approximately 50 ns
10b = Approximately 100 ns
11b = Approximately 200 ns

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

785

eUSCI_A UART Registers

www.ti.com

30.4.3 UCAxBRW Register
eUSCI_Ax Baud Rate Control Word Register
Figure 30-14. UCAxBRW Register
15

14

13

12

11

10

9

8

rw

rw

rw

rw

3

2

1

0

rw

rw

rw

rw

UCBRx
rw

rw

rw

rw

7

6

5

4
UCBRx

rw

rw

rw

rw

Can be modified only when UCSWRST = 1.

Table 30-10. UCAxBRW Register Description
Bit

Field

Type

Reset

Description

15-0

UCBRx

RW

0h

Clock prescaler setting of the Baud rate generator

30.4.4 UCAxMCTLW Register
eUSCI_Ax Modulation Control Word Register
Figure 30-15. UCAxMCTLW Register
15

14

13

12

11

10

9

8

UCBRSx
rw-0

rw-0

7

6

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

5

4

3

1

rw-0

rw-0

r0

2
Reserved
r0

0
UCOS16
rw-0

UCBRFx
rw-0

rw-0

r0

Can be modified only when UCSWRST = 1.

Table 30-11. UCAxMCTLW Register Description
Bit

Field

Type

Reset

Description

15-8

UCBRSx

RW

0h

Second modulation stage select. These bits hold a free modulation pattern for
BITCLK.

7-4

UCBRFx

RW

0h

First modulation stage select. These bits determine the modulation pattern for
BITCLK16 when UCOS16 = 1. Ignored with UCOS16 = 0. The "Oversampling
Baud-Rate Generation" section shows the modulation pattern.

3-1

Reserved

R

0h

Reserved

0

UCOS16

RW

0h

Oversampling mode enabled
0b = Disabled
1b = Enabled

786

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A UART Registers

www.ti.com

30.4.5 UCAxSTATW Register
eUSCI_Ax Status Register
Figure 30-16. UCAxSTATW Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7
UCLISTEN

6
UCFE

5
UCOE

4
UCPE

3
UCBRK

2
UCRXERR

0
UCBUSY

rw-0

rw-0

rw-0

rw-0

rw-0

rw-0

1
UCADDR
UCIDLE
rw-0

r-0

Can be modified only when UCSWRST = 1.

Table 30-12. UCAxSTATW Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7

UCLISTEN

RW

0h

Listen enable. The UCLISTEN bit selects loopback mode.
0b = Disabled
1b = Enabled. UCAxTXD is internally fed back to the receiver.

6

UCFE

RW

0h

Framing error flag. UCFE is cleared when UCAxRXBUF is read.
0b = No error
1b = Character received with low stop bit

5

UCOE

RW

0h

Overrun error flag. This bit is set when a character is transferred into
UCAxRXBUF before the previous character was read. UCOE is cleared
automatically when UCxRXBUF is read, and must not be cleared by software.
Otherwise, it does not function correctly.
0b = No error
1b = Overrun error occurred.

4

UCPE

RW

0h

Parity error flag. When UCPEN = 0, UCPE is read as 0. UCPE is cleared when
UCAxRXBUF is read.
0b = No error
1b = Character received with parity error

3

UCBRK

RW

0h

Break detect flag. UCBRK is cleared when UCAxRXBUF is read.
0b = No break condition
1b = Break condition occurred.

2

UCRXERR

RW

0h

Receive error flag. This bit indicates a character was received with one or more
errors. When UCRXERR = 1, on or more error flags, UCFE, UCPE, or UCOE is
also set. UCRXERR is cleared when UCAxRXBUF is read.
0b = No receive errors detected
1b = Receive error detected

1

UCADDR UCIDLE

RW

0h

UCADDR: Address received in address-bit multiprocessor mode. UCADDR is
cleared when UCAxRXBUF is read.
UCIDLE: Idle line detected in idle-line multiprocessor mode. UCIDLE is cleared
when UCAxRXBUF is read.
0b = UCADDR: Received character is data. UCIDLE: No idle line detected
1b = UCADDR: Received character is an address. UCIDLE: Idle line detected

0

UCBUSY

R

0h

eUSCI_A busy. This bit indicates if a transmit or receive operation is in progress.
0b = eUSCI_A inactive
1b = eUSCI_A transmitting or receiving

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

787

eUSCI_A UART Registers

www.ti.com

30.4.6 UCAxRXBUF Register
eUSCI_Ax Receive Buffer Register
Figure 30-17. UCAxRXBUF Register
15

14

13

12

11

10

9

8

r-0

r-0

r-0

r-0

3

2

1

0

r

r

r

r

Reserved
r-0

r-0

r-0

r-0

7

6

5

4
UCRXBUFx

r

r

r

r

Table 30-13. UCAxRXBUF Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7-0

UCRXBUFx

R

0h

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UCAxRXBUF resets the
receive-error bits, the UCADDR or UCIDLE bit, and UCRXIFG. In 7-bit data
mode, UCAxRXBUF is LSB justified and the MSB is always reset.

30.4.7 UCAxTXBUF Register
eUSCI_Ax Transmit Buffer Register
Figure 30-18. UCAxTXBUF Register
15

14

13

12

11

10

9

8

r-0

r-0

r-0

r-0

3

2

1

0

rw

rw

rw

rw

Reserved
r-0

r-0

r-0

r-0

7

6

5

4
UCTXBUFx

rw

rw

rw

rw

Table 30-14. UCAxTXBUF Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7-0

UCTXBUFx

RW

0h

The transmit data buffer is user accessible and holds the data waiting to be
moved into the transmit shift register and transmitted on UCAxTXD. Writing to
the transmit data buffer clears UCTXIFG. The MSB of UCAxTXBUF is not used
for 7-bit data and is reset.

788

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A UART Registers

www.ti.com

30.4.8 UCAxABCTL Register
eUSCI_Ax Auto Baud Rate Control Register
Figure 30-19. UCAxABCTL Register
15

14

13

12

11

10

9

8

r-0

r-0

r-0

r-0

r-0

4

3
UCSTOE
rw-0

2
UCBTOE
rw-0

1
Reserved
r-0

0
UCABDEN
rw-0

Reserved
r-0
7

r-0

r-0

6

5

Reserved
r-0

UCDELIMx
r-0

rw-0

rw-0

Can be modified only when UCSWRST = 1.

Table 30-15. UCAxABCTL Register Description
Bit

Field

Type

Reset

Description

15-6

Reserved

R

0h

Reserved

5-4

UCDELIMx

RW

0h

Break/synch delimiter length
00b = 1 bit time
01b = 2 bit times
10b = 3 bit times
11b = 4 bit times

3

UCSTOE

RW

0h

Synch field time out error
0b = No error
1b = Length of synch field exceeded measurable time.

2

UCBTOE

RW

0h

Break time out error
0b = No error
1b = Length of break field exceeded 22 bit times.

1

Reserved

R

0h

Reserved

0

UCABDEN

RW

0h

Automatic baud-rate detect enable
0b = Baud-rate detection disabled. Length of break and synch field is not
measured.
1b = Baud-rate detection enabled. Length of break and synch field is measured
and baud-rate settings are changed accordingly.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

789

eUSCI_A UART Registers

www.ti.com

30.4.9 UCAxIRCTL Register
eUSCI_Ax IrDA Control Word Register
Figure 30-20. UCAxIRCTL Register
15

14

13

12

11

10

rw-0

rw-0

rw-0

4

3

2

rw-0

rw-0

rw-0

UCIRRXFLx
rw-0

rw-0

rw-0

7

6

5
UCIRTXPLx

rw-0

rw-0

rw-0

9
UCIRRXPL
rw-0

8
UCIRRXFE
rw-0

1
UCIRTXCLK
rw-0

0
UCIREN
rw-0

Can be modified only when UCSWRST = 1.

Table 30-16. UCAxIRCTL Register Description
Bit

Field

Type

Reset

Description

15-10

UCIRRXFLx

RW

0h

Receive filter length. The minimum pulse length for receive is given by:
tMIN = (UCIRRXFLx + 4) / [2 × fIRTXCLK]

9

UCIRRXPL

RW

0h

IrDA receive input UCAxRXD polarity
0b = IrDA transceiver delivers a high pulse when a light pulse is seen.
1b = IrDA transceiver delivers a low pulse when a light pulse is seen.

8

UCIRRXFE

RW

0h

IrDA receive filter enabled
0b = Receive filter disabled
1b = Receive filter enabled

7-2

UCIRTXPLx

RW

0h

Transmit pulse length.
Pulse length tPULSE = (UCIRTXPLx + 1) / [2 × fIRTXCLK]

1

UCIRTXCLK

RW

0h

IrDA transmit pulse clock select
0b = BRCLK
1b = BITCLK16 when UCOS16 = 1. Otherwise, BRCLK.

0

UCIREN

RW

0h

IrDA encoder/decoder enable
0b = IrDA encoder/decoder disabled
1b = IrDA encoder/decoder enabled

790

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A UART Registers

www.ti.com

30.4.10 UCAxIE Register
eUSCI_Ax Interrupt Enable Register
Figure 30-21. UCAxIE Register
15

14

13

12

11

10

9

8

Reserved
r-0

r-0

7

6

r-0

r-0

r-0

r-0

r-0

r-0

5

4

r-0

r-0

3
UCTXCPTIE
rw-0

2
UCSTTIE
rw-0

1
UCTXIE
rw-0

0
UCRXIE
rw-0

Reserved
r-0

r-0

Table 30-17. UCAxIE Register Description
Bit

Field

Type

Reset

Description

15-4

Reserved

R

0h

Reserved

3

UCTXCPTIE

RW

0h

Transmit complete interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

2

UCSTTIE

RW

0h

Start bit interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

1

UCTXIE

RW

0h

Transmit interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

0

UCRXIE

RW

0h

Receive interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

791

eUSCI_A UART Registers

www.ti.com

30.4.11 UCAxIFG Register
eUSCI_Ax Interrupt Flag Register
Figure 30-22. UCAxIFG Register
15

14

13

12

11

10

9

8

Reserved
r-0

r-0

7

6

r-0

r-0

r-0

r-0

r-0

r-0

5

4

r-0

r-0

3
UCTXCPTIFG
rw-0

2
UCSTTIFG
rw-0

1
UCTXIFG
rw-1

0
UCRXIFG
rw-0

Reserved
r-0

r-0

Table 30-18. UCAxIFG Register Description
Bit

Field

Type

Reset

Description

15-4

Reserved

R

0h

Reserved

3

UCTXCPTIFG

RW

0h

Transmit complete interrupt flag. UCTXCPTIFG is set when the entire byte in the
internal shift register got shifted out and UCAxTXBUF is empty.
0b = No interrupt pending
1b = Interrupt pending

2

UCSTTIFG

RW

0h

Start bit interrupt flag. UCSTTIFG is set after a Start bit was received
0b = No interrupt pending
1b = Interrupt pending

1

UCTXIFG

RW

1h

Transmit interrupt flag. UCTXIFG is set when UCAxTXBUF empty.
0b = No interrupt pending
1b = Interrupt pending

0

UCRXIFG

RW

0h

Receive interrupt flag. UCRXIFG is set when UCAxRXBUF has received a
complete character.
0b = No interrupt pending
1b = Interrupt pending

792

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A UART Registers

www.ti.com

30.4.12 UCAxIV Register
eUSCI_Ax Interrupt Vector Register
Figure 30-23. UCAxIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-(0)

r-(0)

r-(0)

r0

UCIVx
r0

r0

r0

r0

7

6

5

4
UCIVx

r0

r0

r0

r0

Table 30-19. UCAxIV Register Description
Bit

Field

Type

Reset

Description

15-0

UCIVx

R

0h

eUSCI_A interrupt vector value
00h = No interrupt pending
02h = Interrupt Source: Receive buffer full; Interrupt Flag: UCRXIFG; Interrupt
Priority: Highest
04h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG
06h = Interrupt Source: Start bit received; Interrupt Flag: UCSTTIFG
08h = Interrupt Source: Transmit complete; Interrupt Flag: UCTXCPTIFG;
Interrupt Priority: Lowest

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – UART Mode

Copyright © 2012–2017, Texas Instruments Incorporated

793

Chapter 31
SLAU367O – October 2012 – Revised December 2017

Enhanced Universal Serial Communication Interface
(eUSCI) – SPI Mode
The enhanced universal serial communication interfaces, eUSCI_A and eUSCI_B, support multiple serial
communication modes with one hardware module. This chapter discusses the operation of the
synchronous peripheral interface (SPI) mode.
Topic

31.1
31.2
31.3
31.4
31.5

794

...........................................................................................................................
Enhanced Universal Serial Communication Interfaces (eUSCI_A, eUSCI_B)
Overview .........................................................................................................
eUSCI Introduction – SPI Mode ..........................................................................
eUSCI Operation – SPI Mode ..............................................................................
eUSCI_A SPI Registers ......................................................................................
eUSCI_B SPI Registers ......................................................................................

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Page

795
795
797
803
812

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

www.ti.com

Enhanced Universal Serial Communication Interfaces (eUSCI_A, eUSCI_B) Overview

31.1 Enhanced Universal Serial Communication Interfaces (eUSCI_A, eUSCI_B) Overview
Both the eUSCI_A and the eUSCI_B support serial communication in SPI mode.

31.2 eUSCI Introduction – SPI Mode
In synchronous mode, the eUSCI connects the device to an external system through three or four pins:
UCxSIMO, UCxSOMI, UCxCLK, and UCxSTE. SPI mode is selected when the UCSYNC bit is set, and
SPI mode (3-pin or 4-pin) is selected with the UCMODEx bits.
SPI mode features include:
• 7-bit or 8-bit data length
• LSB-first or MSB-first data transmit and receive
• 3-pin and 4-pin SPI operation
• Master or slave modes
• Independent transmit and receive shift registers
• Separate transmit and receive buffer registers
• Continuous transmit and receive operation
• Selectable clock polarity and phase control
• Programmable clock frequency in master mode
• Independent interrupt capability for receive and transmit
• Slave operation in LPM4
Figure 31-1 shows the eUSCI when configured for SPI mode.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

795

eUSCI Introduction – SPI Mode

www.ti.com

Receive State Machine

Set UCOE
Set UCxRXIFG
UCLISTEN

UCMST

Receive Buffer UCxRXBUF
UCxSOMI
0

Receive Shift Register

1

1
0

UCMSB UC7BIT

UCSSELx
Bit Clock Generator
UCCKPH UCCKPL

UCxBRx
N/A

00

ACLK

01

SMCLK

10

SMCLK

11

16
BRCLK

Prescaler/Divider

Clock Direction,
Phase and Polarity

UCxCLK

UCMSB UC7BIT
UCxSIMO
Transmit Shift Register
UCMODEx UCSTEM
2

UCxSTE

Transmit Buffer UCxTXBUF
Transmit Enable
Control

Set UCFE

Transmit State Machine
Set UCxTXIFG

Figure 31-1. eUSCI Block Diagram – SPI Mode

796

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI Operation – SPI Mode

www.ti.com

31.3 eUSCI Operation – SPI Mode
In SPI mode, serial data is transmitted and received by multiple devices using a shared clock provided by
the master. An additional pin controlled by the master, UCxSTE, is provided to enable a device to receive
and transmit data.
Three or four signals are used for SPI data exchange:
• UCxSIMO – slave in, master out
Master mode: UCxSIMO is the data output line.
Slave mode: UCxSIMO is the data input line.
• UCxSOMI – slave out, master in
Master mode: UCxSOMI is the data input line.
Slave mode: UCxSOMI is the data output line.
• UCxCLK – eUSCI SPI clock
Master mode: UCxCLK is an output.
Slave mode: UCxCLK is an input.
• UCxSTE – slave transmit enable.
Used in 4-pin mode to allow multiple masters on a single bus. Not used in 3-pin mode. Table 31-1
describes the UCxSTE operation.
Table 31-1. UCxSTE Operation
UCMODEx

UCxSTE
Active State

01

High

10

Low

UCxSTE

Slave

Master

0

Inactive

Active

1

Active

Inactive

0

Active

Inactive

1

Inactive

Active

31.3.1 eUSCI Initialization and Reset
The eUSCI is reset by a PUC or by the UCSWRST bit. After a PUC, the UCSWRST bit is automatically
set, keeping the eUSCI in a reset condition. When set, the UCSWRST bit resets the UCRXIE, UCTXIE,
UCRXIFG, UCOE, and UCFE bits, and sets the UCTXIFG flag. Clearing UCSWRST releases the eUSCI
for operation.
Configuring and reconfiguring the eUSCI module should be done when UCSWRST is set to avoid
unpredictable behavior.
NOTE: Initializing or reconfiguring the eUSCI module
The recommended eUSCI initialization or reconfiguration process is:
1. Set UCSWRST.
BIS.B #UCSWRST,&UCxCTL1

2.
3.
4.

5.

Initialize all eUSCI registers with UCSWRST = 1 (including UCxCTL1).
Configure ports.
Ensure that any input signals into the SPI module such as UCxSOMI (in master mode)
or UCxSIMO and UCxCLK (in slave mode) have settled to their final voltage levels
before clearing UCSWRST and avoid any unwanted transitions during operation.
Clear UCSWRST.

6.

Enable interrupts (optional) with UCRXIE or UCTXIE.

BIC.B #UCSWRST,&UCxCTL1

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

797

eUSCI Operation – SPI Mode

www.ti.com

31.3.2 Character Format
The eUSCI module in SPI mode supports 7-bit and 8-bit character lengths selected by the UC7BIT bit. In
7-bit data mode, UCxRXBUF is LSB justified and the MSB is always reset. The UCMSB bit controls the
direction of the transfer and selects LSB or MSB first.
NOTE:

Default character format
The default SPI character transmission is LSB first. For communication with other SPI
interfaces, MSB-first mode may be required.

NOTE:

Character format for figures
Figures throughout this chapter use MSB-first format.

31.3.3 Master Mode
MASTER

Receive Buffer
UCxRXBUF

UCxSIMO

SLAVE

SIMO

Transmit Buffer
UCxTXBUF

SPI Receive Buffer
Px.x
UCxSTE

Receive Shift Register

Transmit Shift Register

UCx
SOMI

UCxCLK

STE
SS
Port.x
SOMI

Data Shift Register (DSR)

SCLK

MSP430 USCI

COMMON SPI

Figure 31-2. eUSCI Master and External Slave (UCSTEM = 0)
Figure 31-2 shows the eUSCI as a master in both 3-pin and 4-pin configurations. The eUSCI initiates data
transfer when data is moved to the transmit data buffer UCxTXBUF. The UCxTXBUF data is moved to the
transmit (TX) shift register when the TX shift register is empty, initiating data transfer on UCxSIMO starting
with either the MSB or LSB, depending on the UCMSB setting. Data on UCxSOMI is shifted into the
receive shift register on the opposite clock edge. When the character is received, the receive data is
moved from the receive (RX) shift register to the received data buffer UCxRXBUF and the receive
interrupt flag UCRXIFG is set, indicating the RX/TX operation is complete.
A set transmit interrupt flag, UCTXIFG, indicates that data has moved from UCxTXBUF to the TX shift
register and UCxTXBUF is ready for new data. It does not indicate RX/TX completion.
To receive data into the eUSCI in master mode, data must be written to UCxTXBUF, because receive and
transmit operations operate concurrently.
There two different options for configuring the eUSCI as a 4-pin master, which are described in the next
sections:
• The fourth pin is used as input to prevent conflicts with other masters (UCSTEM = 0).
• The fourth pin is used as output to generate a slave enable signal (UCSTEM = 1).
The bit UCSTEM is used to select the corresponding mode.

798

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI Operation – SPI Mode

www.ti.com

31.3.3.1 4-Pin SPI Master Mode (UCSTEM = 0)
In 4-pin master mode with UCSTEM = 0, UCxSTE is a digital input that can be used to prevent conflicts
with another master and controls the master as described in Table 31-1. When UCxSTE is in the masterinactive state and UCSTEM = 0:
• UCxSIMO and UCxCLK are set to inputs and no longer drive the bus.
• The error bit UCFE is set, indicating a communication integrity violation to be handled by the user.
• The internal state machines are reset and the shift operation is aborted.
If data is written into UCxTXBUF while the master is held inactive by UCxSTE, it is transmit as soon as
UCxSTE transitions to the master-active state. If an active transfer is aborted by UCxSTE transitioning to
the master-inactive state, the data must be rewritten into UCxTXBUF to be transferred when UCxSTE
transitions back to the master-active state. The UCxSTE input signal is not used in 3-pin master mode.
31.3.3.2 4-Pin SPI Master Mode (UCSTEM = 1)
If UCSTEM = 1 in 4-pin master mode, UCxSTE is a digital output. In this mode the slave enable signal for
a single slave is automatically generated on UCxSTE. The corresponding behavior can be seen in
Figure 31-4.
If multiple slaves are desired, this feature is not applicable and the software needs to use general purpose
I/O pins instead to generate STE signals for each slave individually.

31.3.4 Slave Mode
MASTER

SIMO

SLAVE

UCxSIMO

SPI Receive Buffer

Transmit Buffer UCxTXBUF

Data Shift Register DSR

Px.x

UCxSTE

STE

SS
Port.x

SOMI

SCLK
COMMON SPI

UCx
SOMI

Transmit Shift Register

Receive Buffer
UCxRXBUF

Receive Shift Register

UCxCLK
MSP430 USCI

Figure 31-3. eUSCI Slave and External Master
Figure 31-3 shows the eUSCI as a slave in both 3-pin and 4-pin configurations. UCxCLK is used as the
input for the SPI clock and must be supplied by the external master. The data-transfer rate is determined
by this clock and not by the internal bit clock generator. Data written to UCxTXBUF and moved to the TX
shift register before the start of UCxCLK is transmitted on UCxSOMI. Data on UCxSIMO is shifted into the
receive shift register on the opposite edge of UCxCLK and moved to UCxRXBUF when the set number of
bits are received. When data is moved from the RX shift register to UCxRXBUF, the UCRXIFG interrupt
flag is set, indicating that data has been received. The overrun error bit UCOE is set when the previously
received data is not read from UCxRXBUF before new data is moved to UCxRXBUF.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

799

eUSCI Operation – SPI Mode

www.ti.com

31.3.4.1 4-Pin SPI Slave Mode
In 4-pin slave mode, UCxSTE is a digital input used by the slave to enable the transmit and receive
operations and is driven by the SPI master. When UCxSTE is in the slave-active state, the slave operates
normally. When UCxSTE is in the slave-inactive state:
• Any receive operation in progress on UCxSIMO is halted.
• UCxSOMI is set to the input direction.
• The shift operation is halted until the UCxSTE line transitions into the slave transmit active state.
The UCxSTE input signal is not used in 3-pin slave mode.

31.3.5 SPI Enable
When the eUSCI module is enabled by clearing the UCSWRST bit, it is ready to receive and transmit. In
master mode, the bit clock generator is ready, but is not clocked nor producing any clocks. In slave mode,
the bit clock generator is disabled and the clock is provided by the master.
A transmit or receive operation is indicated by UCBUSY = 1.
A PUC or set UCSWRST bit disables the eUSCI immediately and any active transfer is terminated.
31.3.5.1 Transmit Enable
In master mode, writing to UCxTXBUF activates the bit clock generator, and the data begins to transmit.
In slave mode, transmission begins when a master provides a clock and, in 4-pin mode, when the
UCxSTE is in the slave-active state.
31.3.5.2 Receive Enable
The SPI receives data when a transmission is active. Receive and transmit operations operate
concurrently.

31.3.6 Serial Clock Control
UCxCLK is provided by the master on the SPI bus. When UCMST = 1, the bit clock is provided by the
eUSCI bit clock generator on the UCxCLK pin. The clock used to generate the bit clock is selected with
the UCSSELx bits. When UCMST = 0, the eUSCI clock is provided on the UCxCLK pin by the master, the
bit clock generator is not used, but the UCSSELx bits must be set to 0. The SPI receiver and transmitter
operate in parallel and use the same clock source for data transfer.
The 16-bit value of UCBRx in the bit rate control registers UCxxBRW is the division factor of the eUSCI
clock source, BRCLK. With UCBRx = 0 the maximum bit clock that can be generated in master mode is
BRCLK. Modulation is not used in SPI mode, and UCAxMCTL should be cleared when using SPI mode
for eUSCI_A.
The UCAxCLK or UCBxCLK frequency is given by:
fBitClock = fBRCLK / UCBRx
If UCBRx = 0, fBitClock = fBRCLK
Even UCBRx settings result in even divisions and, thus, generate a bit clock with a 50/50 duty cycle.
Odd UCBRx settings result in odd divisions. In this case, the high phase of the bit clock is one BRCLK
cycle longer than the low phase.
When UCBRx = 0, no division is applied to BRCLK, and the bit clock equals BRCLK.
31.3.6.1 Serial Clock Polarity and Phase
The polarity and phase of UCxCLK are independently configured through the UCCKPL and UCCKPH
control bits of the eUSCI. Timing for each case is shown in Figure 31-4.

800

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI Operation – SPI Mode

www.ti.com
UC
UC
CKPH CKPL

Cycle#

0

0

UCxCLK

0

1

UCxCLK

1

0

UCxCLK

1

1

UCxCLK

1

2

3

4

5

6

7

8

UCxSTE
0

X

UCxSIMO/
UCxSOMI

MSB

LSB

1

X

UCxSIMO
UCxSOMI

MSB

LSB

Move to UCxTXBUF
TX Data Shifted Out
RX Sample Points

Figure 31-4. eUSCI SPI Timing With UCMSB = 1

31.3.7 Using the SPI Mode With Low-Power Modes
The eUSCI module provides automatic clock activation for use with low-power modes. When the eUSCI
clock source is inactive because the device is in a low-power mode, the eUSCI module automatically
activates it when needed, regardless of the control-bit settings for the clock source. The clock remains
active until the eUSCI module returns to its idle condition. After the eUSCI module returns to the idle
condition, control of the clock source reverts to the settings of its control bits.
In SPI slave mode, no internal clock source is required because the clock is provided by the external
master. It is possible to operate the eUSCI in SPI slave mode while the device is in LPM4 and all clock
sources are disabled. The receive or transmit interrupt can wake up the CPU from any low-power mode.

31.3.8 eUSCI Interrupts in SPI Mode
The eUSCI has only one interrupt vector that is shared for transmission and for reception. eUSCI_Ax and
eUSCI_Bx do not share the same interrupt vector.
31.3.8.1 SPI Transmit Interrupt Operation
The UCTXIFG interrupt flag is set by the transmitter to indicate that UCxTXBUF is ready to accept another
character. An interrupt request is generated if UCTXIE and GIE are also set. UCTXIFG is automatically
reset if a character is written to UCxTXBUF. UCTXIFG is set after a PUC or when UCSWRST = 1.
UCTXIE is reset after a PUC or when UCSWRST = 1.
NOTE:

Writing to UCxTXBUF in SPI mode
Data written to UCxTXBUF when UCTXIFG = 0 may result in erroneous data transmission.

31.3.8.2 SPI Receive Interrupt Operation
The UCRXIFG interrupt flag is set each time a character is received and loaded into UCxRXBUF. An
interrupt request is generated if UCRXIE and GIE are also set. UCRXIFG and UCRXIE are reset by a
system reset PUC signal or when UCSWRST = 1. UCRXIFG is automatically reset when UCxRXBUF is
read.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

801

eUSCI Operation – SPI Mode

www.ti.com

31.3.8.3 UCxIV, Interrupt Vector Generator
The eUSCI interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCxIV is used to determine which flag requested an interrupt. The highest-priority enabled
interrupt generates a number in the UCxIV register that can be evaluated or added to the program counter
(PC) to automatically enter the appropriate software routine. Disabled interrupts do not affect the UCxIV
value.
Any access, read or write, of the UCxIV register automatically resets the highest-pending interrupt flag. If
another interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
31.3.8.3.1 UCxIV Software Example
The following software example shows the recommended use of UCxIV. The UCxIV value is added to the
PC to automatically jump to the appropriate routine. The following example is given for eUSCI_B0.
USCI_SPI_ISR
ADD
RETI
JMP
TXIFG_ISR
...
RETI
RXIFG_ISR
...
RETI

802

&UCB0IV, PC
RXIFG_ISR

;
;
;
;
;
;
;
;
;

Add offset to jump table
Vector 0: No interrupt
Vector 2: RXIFG
Vector 4: TXIFG
Task starts here
Return
Vector 2
Task starts here
Return

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A SPI Registers

www.ti.com

31.4 eUSCI_A SPI Registers
The eUSCI_A registers applicable in SPI mode and their address offsets are listed in Table 31-2. The
base addresses can be found in the device-specific data sheet.
Table 31-2. eUSCI_A SPI Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

UCAxCTLW0

eUSCI_Ax Control Word 0

Read/write

Word

0001h

Section 31.4.1

eUSCI_Ax Control 1

Read/write

Byte

01h

eUSCI_Ax Control 0

00h
01h
06h
06h
07h

UCAxCTL1
UCAxCTL0
UCAxBRW
UCAxBR0
UCAxBR1

Read/write

Byte

00h

eUSCI_Ax Bit Rate Control Word

Read/write

Word

0000h

eUSCI_Ax Bit Rate Control 0

Read/write

Byte

00h

eUSCI_Ax Bit Rate Control 1

Section 31.4.2

Read/write

Byte

00h

0Ah

UCAxSTATW

eUSCI_Ax Status

Read/write

Word

00h

Section 31.4.3

0Ch

UCAxRXBUF

eUSCI_Ax Receive Buffer

Read/write

Word

00h

Section 31.4.4

0Eh

UCAxTXBUF

eUSCI_Ax Transmit Buffer

Read/write

Word

00h

Section 31.4.5

1Ah

UCAxIE

eUSCI_Ax Interrupt Enable

Read/write

Word

00h

Section 31.4.6

1Ch

UCAxIFG

eUSCI_Ax Interrupt Flag

Read/write

Word

02h

Section 31.4.7

1Eh

UCAxIV

eUSCI_Ax Interrupt Vector

Read

Word

0000h

Section 31.4.8

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

803

eUSCI_A SPI Registers

www.ti.com

31.4.1 UCAxCTLW0 Register
eUSCI_Ax Control Register 0
Figure 31-5. UCAxCTLW0 Register
15
UCCKPH
rw-0

14
UCCKPL
rw-0

13
UCMSB
rw-0

12
UC7BIT
rw-0

7

6

5

4

UCSSELx
rw-0

11
UCMST
rw-0

10

9

rw-0

rw-0

8
UCSYNC
rw-0

3

2

rw-0

rw-0

1
UCSTEM
rw-0

0
UCSWRST
rw-1

UCMODEx

Reserved
rw-0

rw-0

rw-0

Can be modified only when UCSWRST = 1.

Table 31-3. UCAxCTLW0 Register Description
Bit

Field

Type

Reset

Description

15

UCCKPH

RW

0h

Clock phase select
0b = Data is changed on the first UCLK edge and captured on the following
edge.
1b = Data is captured on the first UCLK edge and changed on the following
edge.

14

UCCKPL

RW

0h

Clock polarity select
0b = The inactive state is low.
1b = The inactive state is high.

13

UCMSB

RW

0h

MSB first select. Controls the direction of the receive and transmit shift register.
0b = LSB first
1b = MSB first

12

UC7BIT

RW

0h

Character length. Selects 7-bit or 8-bit character length.
0b = 8-bit data
1b = 7-bit data

11

UCMST

RW

0h

Master mode select
0b = Slave mode
1b = Master mode

10-9

UCMODEx

RW

0h

eUSCI mode. The UCMODEx bits select the synchronous mode when UCSYNC
= 1.
00b = 3-pin SPI
01b = 4-pin SPI with UCxSTE active high: Slave enabled when UCxSTE = 1
10b = 4-pin SPI with UCxSTE active low: Slave enabled when UCxSTE = 0
11b = Reserved

8

UCSYNC

RW

0h

Synchronous mode enable
0b = Asynchronous mode
1b = Synchronous mode

7-6

UCSSELx

RW

0h

eUSCI clock source select. These bits select the BRCLK source clock.
00b = UCxCLK in slave mode. Do not use in master mode.
01b = ACLK in master mode. Do not use in slave mode.
10b = SMCLK in master mode. Do not use in slave mode.
11b = SMCLK in master mode. Do not use in slave mode.

5-2

Reserved

R

0h

Reserved

1

UCSTEM

RW

0h

STE mode select in master mode. This byte is ignored in slave or 3-wire mode.
0b = STE pin is used to prevent conflicts with other masters
1b = STE pin is used to generate the enable signal for a 4-wire slave

0

UCSWRST

RW

1h

Software reset enable
0b = Disabled. eUSCI reset released for operation.
1b = Enabled. eUSCI logic held in reset state.

804

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A SPI Registers

www.ti.com

31.4.2 UCAxBRW Register
eUSCI_Ax Bit Rate Control Register 1
Figure 31-6. UCAxBRW Register
15

14

13

12

11

10

9

8

rw

rw

rw

rw

3

2

1

0

rw

rw

rw

rw

UCBRx
rw

rw

rw

rw

7

6

5

4
UCBRx

rw

rw

rw

rw

Can be modified only when UCSWRST = 1.

Table 31-4. UCAxBRW Register Description
Bit

Field

Type

Reset

Description

15-0

UCBRx

RW

0h

Bit clock prescaler setting.
fBitClock = fBRCLK / UCBRx
If UCBRx = 0, fBitClock = fBRCLK

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

805

eUSCI_A SPI Registers

www.ti.com

31.4.3 UCAxSTATW Register
eUSCI_Ax Status Register
Figure 31-7. UCAxSTATW Register
15

14

13

12

11

10

9

8

r0

r0

r0

2

1

rw-0

rw-0

0
UCBUSY
r-0

Reserved
r0

r0

r0

r0

r0

7
UCLISTEN
rw-0

6
UCFE
rw-0

5
UCOE
rw-0

4

3
Reserved

rw-0

rw-0

Can be modified only when UCSWRST = 1.

Table 31-5. UCAxSTATW Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7

UCLISTEN

RW

0h

Listen enable. The UCLISTEN bit selects loopback mode.
0b = Disabled
1b = Enabled. The transmitter output is internally fed back to the receiver.

6

UCFE

RW

0h

Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE
is not used in 3-wire master or any slave mode.
0b = No error
1b = Bus conflict occurred

5

UCOE

RW

0h

Overrun error flag. This bit is set when a character is transferred into UCxRXBUF
before the previous character was read. UCOE is cleared automatically when
UCxRXBUF is read, and must not be cleared by software. Otherwise, it does not
function correctly.
0b = No error
1b = Overrun error occurred

4-1

Reserved

RW

0h

Reserved

0

UCBUSY

R

0h

eUSCI busy. This bit indicates if a transmit or receive operation is in progress.
0b = eUSCI inactive
1b = eUSCI transmitting or receiving

806

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A SPI Registers

www.ti.com

31.4.4 UCAxRXBUF Register
eUSCI_Ax Receive Buffer Register
Figure 31-8. UCAxRXBUF Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

rw

rw

rw

rw

Reserved
r0

r0

r0

r0

7

6

5

4
UCRXBUFx

rw

rw

rw

rw

Table 31-6. UCAxRXBUF Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7-0

UCRXBUFx

R

0h

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UCxRXBUF resets the receiveerror bits and UCRXIFG. In 7-bit data mode, UCxRXBUF is LSB justified and the
MSB is always reset.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

807

eUSCI_A SPI Registers

www.ti.com

31.4.5 UCAxTXBUF Register
eUSCI_Ax Transmit Buffer Register
Figure 31-9. UCAxTXBUF Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

rw

rw

rw

rw

Reserved
r0

r0

r0

r0

7

6

5

4
UCTXBUFx

rw

rw

rw

rw

Table 31-7. UCAxTXBUF Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7-0

UCTXBUFx

RW

0h

The transmit data buffer is user accessible and holds the data waiting to be
moved into the transmit shift register and transmitted. Writing to the transmit data
buffer clears UCTXIFG. The MSB of UCxTXBUF is not used for 7-bit data and is
reset.

808

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A SPI Registers

www.ti.com

31.4.6 UCAxIE Register
eUSCI_Ax Interrupt Enable Register
Figure 31-10. UCAxIE Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

r0

4

3

2

r-0

r-0

r-0

1
UCTXIE
rw-0

0
UCRXIE
rw-0

Reserved
r0

r0

r0

7

6

5
Reserved

r-0

r-0

r-0

Table 31-8. UCAxIE Register Description
Bit

Field

Type

Reset

Description

15-2

Reserved

R

0h

Reserved

1

UCTXIE

RW

0h

Transmit interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

0

UCRXIE

RW

0h

Receive interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

809

eUSCI_A SPI Registers

www.ti.com

31.4.7 UCAxIFG Register
eUSCI_Ax Interrupt Flag Register
Figure 31-11. UCAxIFG Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

r0

4

3

2

r-0

r-0

r-0

1
UCTXIFG
rw-1

0
UCRXIFG
rw-0

Reserved
r0

r0

r0

7

6

5
Reserved

r-0

r-0

r-0

Table 31-9. UCAxIFG Register Description
Bit

Field

Type

Reset

Description

15-2

Reserved

R

0h

Reserved

1

UCTXIFG

RW

1h

Transmit interrupt flag. UCTXIFG is set when UCxxTXBUF empty.
0b = No interrupt pending
1b = Interrupt pending

0

UCRXIFG

RW

0h

Receive interrupt flag. UCRXIFG is set when UCxxRXBUF has received a
complete character.
0b = No interrupt pending
1b = Interrupt pending

810

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_A SPI Registers

www.ti.com

31.4.8 UCAxIV Register
eUSCI_Ax Interrupt Vector Register
Figure 31-12. UCAxIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-0

r-0

r-0

r0

UCIVx
r0

r0

r0

r0

7

6

5

4
UCIVx

r0

r0

r0

r-0

Table 31-10. UCAxIV Register Description
Bit

Field

Type

Reset

Description

15-0

UCIVx

R

0h

eUSCI interrupt vector value
000h = No interrupt pending
002h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG; Interrupt
Priority: Highest
004h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG;
Interrupt Priority: Lowest

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

811

eUSCI_B SPI Registers

www.ti.com

31.5 eUSCI_B SPI Registers
The eUSCI_B registers applicable in SPI mode and their address offsets are listed in Table 31-11. The
base addresses can be found in the device-specific data sheet.
Table 31-11. eUSCI_B SPI Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

UCBxCTLW0

eUSCI_Bx Control Word 0

Read/write

Word

01C1h

Section 31.5.1

eUSCI_Bx Control 1

Read/write

Byte

C1h

eUSCI_Bx Control 0

00h
01h
06h
06h
07h

812

UCBxCTL1
UCBxCTL0
UCBxBRW
UCBxBR0
UCBxBR1

Read/write

Byte

01h

eUSCI_Bx Bit Rate Control Word

Read/write

Word

0000h

eUSCI_Bx Bit Rate Control 0

Read/write

Byte

00h

eUSCI_Bx Bit Rate Control 1

Section 31.5.2

Read/write

Byte

00h

08h

UCBxSTATW

eUSCI_Bx Status

Read/write

Word

00h

Section 31.5.3

0Ch

UCBxRXBUF

eUSCI_Bx Receive Buffer

Read/write

Word

00h

Section 31.5.4

0Eh

UCBxTXBUF

eUSCI_Bx Transmit Buffer

Read/write

Word

00h

Section 31.5.5

2Ah

UCBxIE

eUSCI_Bx Interrupt Enable

Read/write

Word

00h

Section 31.5.6

2Ch

UCBxIFG

eUSCI_Bx Interrupt Flag

Read/write

Word

02h

Section 31.5.7

2Eh

UCBxIV

eUSCI_Bx Interrupt Vector

Read

Word

0000h

Section 31.5.8

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B SPI Registers

www.ti.com

31.5.1 UCBxCTLW0 Register
eUSCI_Bx Control Register 0
Figure 31-13. UCBxCTLW0 Register
15
UCCKPH
rw-0

14
UCCKPL
rw-0

13
UCMSB
rw-0

12
UC7BIT
rw-0

7

6

5

4

UCSSELx
rw-1

11
UCMST
rw-0

10

9

rw-0

rw-0

8
UCSYNC
rw-1

3

2

rw-0

rw-0

1
UCSTEM
rw-0

0
UCSWRST
rw-1

UCMODEx

Reserved
rw-1

r0

rw-0

Can be modified only when UCSWRST = 1.

Table 31-12. UCBxCTLW0 Register Description
Bit

Field

Type

Reset

Description

15

UCCKPH

RW

0h

Clock phase select
0b = Data is changed on the first UCLK edge and captured on the following
edge.
1b = Data is captured on the first UCLK edge and changed on the following
edge.

14

UCCKPL

RW

0h

Clock polarity select
0b = The inactive state is low.
1b = The inactive state is high.

13

UCMSB

RW

0h

MSB first select. Controls the direction of the receive and transmit shift register.
0b = LSB first
1b = MSB first

12

UC7BIT

RW

0h

Character length. Selects 7-bit or 8-bit character length.
0b = 8-bit data
1b = 7-bit data

11

UCMST

RW

0h

Master mode select
0b = Slave mode
1b = Master mode

10-9

UCMODEx

RW

0h

eUSCI mode. The UCMODEx bits select the synchronous mode when UCSYNC
= 1.
00b = 3-pin SPI
01b = 4-pin SPI with UCxSTE active high: Slave enabled when UCxSTE = 1
10b = 4-pin SPI with UCxSTE active low: Slave enabled when UCxSTE = 0
11b = I2C mode

8

UCSYNC

RW

1h

Synchronous mode enable
0b = Asynchronous mode
1b = Synchronous mode

7-6

UCSSELx

RW

3h

eUSCI clock source select. These bits select the BRCLK source clock.
00b = UCxCLK in slave mode. Don't use in master mode.
01b = ACLK in master mode. Don't use in slave mode.
10b = SMCLK in master mode. Don't use in slave mode.
11b = SMCLK in master mode. Don't use in slave mode.

5-2

Reserved

R

0h

Reserved

1

UCSTEM

RW

0h

STE mode select in master mode. This byte is ignored in slave or 3-wire mode.
0b = STE pin is used to prevent conflicts with other masters
1b = STE pin is used to generate the enable signal for a 4-wire slave

0

UCSWRST

RW

1h

Software reset enable
0b = Disabled. eUSCI reset released for operation.
1b = Enabled. eUSCI logic held in reset state.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

813

eUSCI_B SPI Registers

www.ti.com

31.5.2 UCBxBRW Register
eUSCI_Bx Bit Rate Control Register 1
Figure 31-14. UCBxBRW Register
15

14

13

12

11

10

9

8

rw

rw

rw

rw

3

2

1

0

rw

rw

rw

rw

UCBRx
rw

rw

rw

rw

7

6

5

4
UCBRx

rw

rw

rw

rw

Can be modified only when UCSWRST = 1.

Table 31-13. UCBxBRW Register Description
Bit

Field

Type

Reset

Description

15-0

UCBRx

RW

0h

Bit clock prescaler setting.
fBitClock = fBRCLK / UCBRx
If UCBRx = 0, fBitClock = fBRCLK

31.5.3 UCBxSTATW Register
eUSCI_Bx Status Register
Figure 31-15. UCBxSTATW Register
15

14

13

12

11

10

9

8

r0

r0

r0

2

1

r0

r0

0
UCBUSY
r-0

Reserved
r0

r0

r0

r0

r0

7
UCLISTEN
rw-0

6
UCFE
rw-0

5
UCOE
rw-0

4

3
Reserved

r0

r0

Can be modified only when UCSWRST = 1.

Table 31-14. UCBxSTATW Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7

UCLISTEN

RW

0h

Listen enable. The UCLISTEN bit selects loopback mode.
0b = Disabled
1b = Enabled. The transmitter output is internally fed back to the receiver.

6

UCFE

RW

0h

Framing error flag. This bit indicates a bus conflict in 4-wire master mode. UCFE
is not used in 3-wire master or any slave mode.
0b = No error
1b = Bus conflict occurred

5

UCOE

RW

0h

Overrun error flag. This bit is set when a character is transferred into UCxRXBUF
before the previous character was read. UCOE is cleared automatically when
UCxRXBUF is read, and must not be cleared by software. Otherwise, it does not
function correctly.
0b = No error
1b = Overrun error occurred

4-1

Reserved

R

0h

Reserved

0

UCBUSY

R

0h

eUSCI busy. This bit indicates if a transmit or receive operation is in progress.
0b = eUSCI inactive
1b = eUSCI transmitting or receiving

814

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B SPI Registers

www.ti.com

31.5.4 UCBxRXBUF Register
eUSCI_Bx Receive Buffer Register
Figure 31-16. UCBxRXBUF Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

rw

rw

rw

rw

Reserved
r0

r0

r0

r0

7

6

5

4
UCRXBUFx

rw

rw

rw

rw

Table 31-15. UCBxRXBUF Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7-0

UCRXBUFx

R

0h

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UCxRXBUF resets the receiveerror bits and UCRXIFG. In 7-bit data mode, UCxRXBUF is LSB justified and the
MSB is always reset.

31.5.5 UCBxTXBUF Register
eUSCI_Bx Transmit Buffer Register
Figure 31-17. UCBxTXBUF Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

rw

rw

rw

rw

Reserved
r0

r0

r0

r0

7

6

5

4
UCTXBUFx

rw

rw

rw

rw

Table 31-16. UCBxTXBUF Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7-0

UCTXBUFx

RW

0h

The transmit data buffer is user accessible and holds the data waiting to be
moved into the transmit shift register and transmitted. Writing to the transmit data
buffer clears UCTXIFG. The MSB of UCxTXBUF is not used for 7-bit data and is
reset.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

815

eUSCI_B SPI Registers

www.ti.com

31.5.6 UCBxIE Register
eUSCI_Bx Interrupt Enable Register
Figure 31-18. UCBxIE Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

r0

4

3

2

r-0

r-0

r-0

1
UCTXIE
rw-0

0
UCRXIE
rw-0

Reserved
r0

r0

r0

7

6

5
Reserved

r-0

r-0

r-0

Table 31-17. UCBxIE Register Description
Bit

Field

Type

Reset

Description

15-2

Reserved

R

0h

Reserved

1

UCTXIE

RW

0h

Transmit interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

0

UCRXIE

RW

0h

Receive interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

31.5.7 UCBxIFG Register
eUSCI_Bx Interrupt Flag Register
Figure 31-19. UCBxIFG Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7

6

5

4

3

2

r-0

r-0

r-0

1
UCTXIFG
rw-1

0
UCRXIFG
rw-0

Reserved
r-0

r-0

r-0

Table 31-18. UCBxIFG Register Description
Bit

Field

Type

Reset

Description

15-2

Reserved

R

0h

Reserved

1

UCTXIFG

RW

1h

Transmit interrupt flag. UCTXIFG is set when UCxxTXBUF empty.
0b = No interrupt pending
1b = Interrupt pending

0

UCRXIFG

RW

0h

Receive interrupt flag. UCRXIFG is set when UCxxRXBUF has received a
complete character.
0b = No interrupt pending
1b = Interrupt pending

816

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B SPI Registers

www.ti.com

31.5.8 UCBxIV Register
eUSCI_Bx Interrupt Vector Register
Figure 31-20. UCBxIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-0

r-0

r-0

r0

UCIVx
r0

r0

r0

r0

7

6

5

4
UCIVx

r0

r0

r0

r-0

Table 31-19. UCBxIV Register Description
Bit

Field

Type

Reset

Description

15-0

UCIVx

R

0h

eUSCI interrupt vector value
0000h = No interrupt pending
0002h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG; Interrupt
Priority: Highest
0004h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG;
Interrupt Priority: Lowest

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – SPI Mode

Copyright © 2012–2017, Texas Instruments Incorporated

817

Chapter 32
SLAU367O – October 2012 – Revised December 2017

Enhanced Universal Serial Communication Interface
(eUSCI) – I2C Mode
The enhanced universal serial communication interface B (eUSCI_B) supports multiple serial
communication modes with one hardware module. This chapter discusses the operation of the I2C mode.
Topic

32.1
32.2
32.3
32.4

818

...........................................................................................................................
Enhanced Universal Serial Communication Interface B (eUSCI_B) Overview ...........
eUSCI_B Introduction – I2C Mode .......................................................................
eUSCI_B Operation – I2C Mode ...........................................................................
eUSCI_B I2C Registers ......................................................................................

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Page

819
819
820
841

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

Enhanced Universal Serial Communication Interface B (eUSCI_B) Overview

www.ti.com

32.1 Enhanced Universal Serial Communication Interface B (eUSCI_B) Overview
The eUSCI_B module supports two serial communication modes:
• I2C mode
• SPI mode
If more than one eUSCI_B module is implemented on one device, those modules are named with
incrementing numbers. For example, if one device has two eUSCI_B modules, they are named eUSCI0_B
and eUSCI1_B.

32.2 eUSCI_B Introduction – I2C Mode
In I2C mode, the eUSCI_B module provides an interface between the device and I2C-compatible devices
connected by the two-wire I2C serial bus. External components attached to the I2C bus serially transmit or
receive serial data to or from the eUSCI_B module through the 2-wire I2C interface.
The eUSCI_B I2C mode features include:
• 7-bit and 10-bit device addressing modes
• General call
• START, RESTART, STOP
• Multi-master transmitter or receiver mode
• Slave receiver or transmitter mode
• Standard mode up to 100 kbps and fast mode up to 400 kbps support
• Programmable UCxCLK frequency in master mode
• Designed for low power
• 8-bit byte counter with interrupt capability and automatic STOP assertion
• Up to four hardware slave addresses, each having its own interrupt and DMA trigger
• Mask register for slave address and address received interrupt
• Clock low time-out interrupt to avoid bus stalls
• Slave operation in LPM4
• Slave receiver START detection for auto wake-up from LPMx modes (not LPM3.5 and LPM4.5)
Figure 32-1 shows the eUSCI_B when configured in I2C mode.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

819

eUSCI_B Operation – I2C Mode

www.ti.com

UCA10 UCGCEN
Address Mask
UCBxADDMASK

Own Address
UCBxI2COA0

Own Address
UCBxI2COA1

Own Address
UCBxI2COA2

Own Address
UCBxI2COA3
UCxSDA

Receive Shift Register

Receive Buffer UCBxRXBUF

I2C State Machine

Byte Counter UCBxBCNT

Transmit Buffer UCBxTXBUF
(2)

Transmit Shift Register

Slave Address UCBxI2CSA
UCSLA10

MODCLK

Clock Low
timeout generator
UCxSCL

UCSSELx
Bit Clock Generator
UCxBRx
UCLKI

(1)

00

ACLK

01

SMCLK

10

SMCLK

11

(1)
(2)

(2)

16
UCMST
BRCLK

Prescaler/Divider

Externally provided clock on the eUSCI_B SPI clock input pin
Not the actual implementation (transistor not located in eUSCI_B module)

Figure 32-1. eUSCI_B Block Diagram – I2C Mode

32.3 eUSCI_B Operation – I2C Mode
The I2C mode supports any slave or master I2C-compatible device. Figure 32-2 shows an example of an
I2C bus. Each I2C device is recognized by a unique address and can operate as either a transmitter or a
receiver. A device connected to the I2C bus can be considered as the master or the slave when
performing data transfers. A master initiates a data transfer and generates the clock signal SCL. Any
device addressed by a master is considered a slave.
I2C data is communicated using the serial data (SDA) pin and the serial clock (SCL) pin. Both SDA and
SCL are bidirectional and must be connected to a positive supply voltage using a pullup resistor.

820

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B Operation – I2C Mode

www.ti.com

VCC
Device A

MSP430

Serial Data (SDA)
Serial Clock (SCL)

Device B

Device C

Figure 32-2. I2C Bus Connection Diagram

NOTE:

SDA and SCL levels
The SDA and SCL pins must not be pulled up above the device VCC level.

32.3.1 eUSCI_B Initialization and Reset
The eUSCI_B is reset by a PUC or by setting the UCSWRST bit. After a PUC, the UCSWRST bit is
automatically set, keeping the eUSCI_B in a reset condition. To select I2C operation, the UCMODEx bits
must be set to 11b. After module initialization, it is ready for transmit or receive operation. Clear
UCSWRST to release the eUSCI_B for operation.
To avoid unpredictable behavior, configure or reconfigure the eUSCI_B module only when UCSWRST is
set. Setting UCSWRST in I2C mode has the following effects:
• I2C communication stops.
• SDA and SCL are high impedance.
• UCBxSTAT, bits 15-8 and 6-4 are cleared.
• Registers UCBxIE and UCBxIFG are cleared.
• All other bits and registers remain unchanged.
NOTE:

Initializing or reconfiguring the eUSCI_B module
The recommended eUSCI_B initialization/reconfiguration process is:
1. Set UCSWRST (BIS.B
#UCSWRST,&UCxCTL1).
2. Initialize all eUSCI_B registers with UCSWRST = 1 (including UCxCTL1).
3. Configure ports.
4. Clear UCSWRST through software (BIC.B
#UCSWRST,&UCxCTL1).
5. Enable interrupts (optional).

32.3.2 I2C Serial Data
One clock pulse is generated by the master device for each data bit transferred. The I2C mode operates
with byte data. Data is transferred MSB first as shown in Figure 32-3.
The first byte after a START condition consists of a 7-bit slave address and the R/W bit. When R/W = 0,
the master transmits data to a slave. When R/W = 1, the master receives data from a slave. The ACK bit
is sent from the receiver after each byte on the ninth SCL clock.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

821

eUSCI_B Operation – I2C Mode

www.ti.com

SDA
MSB

Acknowledgement
Signal From Receiver

Acknowledgement
Signal From Receiver

SCL
START
Condition (S)

1

2

7

8
R/W

9
ACK

1

2

8

9
ACK

STOP
Condition (P)

Figure 32-3. I2C Module Data Transfer
START and STOP conditions are generated by the master and are shown in Figure 32-3. A START
condition is a high-to-low transition on the SDA line while SCL is high. A STOP condition is a low-to-high
transition on the SDA line while SCL is high. The bus busy bit, UCBBUSY, is set after a START and
cleared after a STOP.
Data on SDA must be stable during the high period of SCL (see Figure 32-4). The high and low state of
SDA can change only when SCL is low, otherwise START or STOP conditions are generated.
Data Line
Stable Data
SDA

SCL

Change of Data Allowed

Figure 32-4. Bit Transfer on I2C Bus

32.3.3 I2C Addressing Modes
The I2C mode supports 7-bit and 10-bit addressing modes.
32.3.3.1 7-Bit Addressing
In the 7-bit addressing format (see Figure 32-5), the first byte is the 7-bit slave address and the R/W bit.
The ACK bit is sent from the receiver after each byte.
1
S

7
Slave Address

1

1

R/W

ACK

8
Data

1
ACK

8
Data

1

1

ACK

P

Figure 32-5. I2C Module 7-Bit Addressing Format

32.3.3.2 10-Bit Addressing
In the 10-bit addressing format (see Figure 32-6), the first byte is made up of 11110b plus the two MSBs
of the 10-bit slave address and the R/W bit. The ACK bit is sent from the receiver after each byte. The
next byte is the remaining eight bits of the 10-bit slave address, followed by the ACK bit and the 8-bit data.
See I2C Slave 10-bit Addressing Mode and I2C Master 10-bit Addressing Mode for details how to use the
10-bit addressing mode with the eUSCI_B module.

822

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B Operation – I2C Mode

www.ti.com
1

7

1

1

8

1

S

Slave Address 1st byte

R/W

ACK

Slave Address 2nd byte

ACK

1

1

1

1

0

X

8
Data

1

1

ACK

P

X

Figure 32-6. I2C Module 10-Bit Addressing Format

32.3.3.3 Repeated Start Conditions
The direction of data flow on SDA can be changed by the master, without first stopping a transfer, by
issuing a repeated START condition. This is called a RESTART. After a RESTART is issued, the slave
address is again sent out with the new data direction specified by the R/W bit. The RESTART condition is
shown in Figure 32-7.
1

7

1

S

Slave Address

1

R/W ACK

1

8

1

1

Data

ACK

S

Any
Number

1

7
Slave Address

1

R/W ACK

1

8

1

1

Data

ACK

P

Any Number

Figure 32-7. I2C Module Addressing Format With Repeated START Condition

32.3.4 I2C Quick Setup
This section gives a quick introduction into the operation of the eUSCI_B in I2C mode. The basic steps to
start communication are described and shown as a software example. More detailed information about the
possible configurations and details can be found in Section 32.3.5.
The latest code examples can be found on the MSP430 web under "Code Examples".
To set up the eUSCI_B as a master transmitter that transmits to a slave with the address 0x12h, only a
few steps are needed (see Example 32-1).
Example 32-1. Master TX With 7-Bit Address
UCBxCTL1 |= UCSWRST;
// put eUSCI_B in reset state
UCBxCTLW0 |= UCMODE_3 + UCMST; // I2C master mode
UCBxBRW = 0x0008;
// baud rate = SMCLK / 8
UCBxCTLW1 = UCASTP_2;
// automatic STOP assertion
UCBxTBCNT = 0x07;
// TX 7 bytes of data
UCBxI2CSA = 0x0012;
// address slave is 12hex
P2SEL |= 0x03;
// configure I2C pins (device specific)
UCBxCTL1 &= ^UCSWRST;
// eUSCI_B in operational state
UCBxIE |= UCTXIE;
// enable TX-interrupt
GIE;
// general interrupt enable
...
// inside the eUSCI_B TX interrupt service routine
UCBxTXBUF = 0x77;
// fill TX buffer

As shown in the code example, all configurations must be done while UCSWRST is set. To select the I2C
operation of the eUSCI_B, UCMODE must be set accordingly. The baud rate of the transmission is set by
writing the correct divider in the UCBxBRW register. The default clock selected is SMCLK. How many
bytes are transmitted in one frame is controlled by the byte counter threshold register UCBxTBCNT
together with the UCASTPx bits.
The slave address to send to is specified in the UCBxI2CSA register. Finally, the ports must be
configured. This step is device dependent; see the data sheet for the pins that must be used.
Each byte that is to be transmitted must be written to the UCBxTXBUF inside the interrupt service routine.
The recommended structure of the interrupt service routine can be found in Example 32-3.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

823

eUSCI_B Operation – I2C Mode

www.ti.com

Example 32-2 shows the steps needed to set up the eUSCI_B as a slave with the address 0x12h that is
able to receive and transmit data to the master.
Example 32-2. Slave RX With 7-Bit Address
UCBxCTL1 |= UCSWRST;
// eUSCI_B in reset state
UCBxCTLW0 |= UCMODE_3;
// I2C slave mode
UCBxI2COA0 = 0x0412;
// own address is 12hex
P2SEL |= 0x03;
// configure I2C pins (device specific)
UCBxCTL1 &= ^UCSWRST;
// eUSCI_B in operational state
UCBxIE |= UCTXIE + UCRXIE; // enable TX&RX-interrupt
GIE;
// general interrupt enable
...
// inside the eUSCI_B TX interrupt service routine
UCBxTXBUF = 0x77;
// send 077h
...
// inside the eUSCI_B RX interrupt service routine
data = UCBxRXBUF;
// data is the internal variable

As shown in Example 32-2, all configurations must be done while UCSWRST is set. For the slave, I2C
operation is selected by setting UCMODE. The slave address is specified in the UCBxI2COA0 register. To
enable the interrupts for receive and transmit requests, the according bits in UCBxIE and, at the end, GIE
need to be set. Finally the ports must be configured. This step is device dependent; see the data sheet for
the pins that are used.
The RX interrupt service routine is called for every byte received by a master device. The TX interrupt
service routine is executed each time the master requests a byte. The recommended structure of the
interrupt service routine can be found in Example 32-3.

32.3.5 I2C Module Operating Modes
In I2C mode, the eUSCI_B module can operate in master transmitter, master receiver, slave transmitter, or
slave receiver mode. The modes are discussed in the following sections. Time lines are used to illustrate
the modes.
Figure 32-8 shows how to interpret the time-line figures. Data transmitted by the master is represented by
grey rectangles; data transmitted by the slave is represented by white rectangles. Data transmitted by the
eUSCI_B module, either as master or slave, is shown by rectangles that are taller than the others.
Actions taken by the eUSCI_B module are shown in grey rectangles with an arrow indicating where in the
data stream the action occurs. Actions that must be handled with software are indicated with white
rectangles with an arrow pointing to where in the data stream the action must take place.

824

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B Operation – I2C Mode

www.ti.com

Other Master

Other Slave

USCI Master

USCI Slave

...

Bits set or reset by software

...

Bits set or reset by hardware

Figure 32-8. I2C Time-Line Legend

32.3.5.1 Slave Mode
The eUSCI_B module is configured as an I2C slave by selecting the I2C mode with UCMODEx = 11 and
UCSYNC = 1 and clearing the UCMST bit.
Initially, the eUSCI_B module must be configured in receiver mode by clearing the UCTR bit to receive the
I2C address. Afterwards, transmit and receive operations are controlled automatically, depending on the
R/W bit received together with the slave address.
The eUSCI_B slave address is programmed with the UCBxI2COA0 register. Support for multiple slave
addresses is explained in Section 32.3.9. When UCA10 = 0, 7-bit addressing is selected. When UCA10 =
1, 10-bit addressing is selected. The UCGCEN bit selects if the slave responds to a general call.
When a START condition is detected on the bus, the eUSCI_B module receives the transmitted address
and compares it against its own address stored in UCBxI2COA0. The UCSTTIFG flag is set when address
received matches the eUSCI_B slave address.
32.3.5.1.1 I2C Slave Transmitter Mode
Slave transmitter mode is entered when the slave address transmitted by the master is identical to its own
address with a set R/W bit. The slave transmitter shifts the serial data out on SDA with the clock pulses
that are generated by the master device. The slave device does not generate the clock, but it does hold
SCL low while intervention of the CPU is required after a byte has been transmitted.
If the master requests data from the slave, the eUSCI_B module is automatically configured as a
transmitter and UCTR and UCTXIFG0 become set. The SCL line is held low until the first data to be sent
is written into the transmit buffer UCBxTXBUF. Then the address is acknowledged and the data is
transmitted. As soon as the data is transferred into the shift register, the UCTXIFG0 is set again. After the
data is acknowledged by the master, the next data byte written into UCBxTXBUF is transmitted or, if the
buffer is empty, the bus is stalled during the acknowledge cycle by holding SCL low until new data is
written into UCBxTXBUF. If the master sends a NACK followed by a STOP condition, the UCSTPIFG flag
is set. If the NACK is followed by a repeated START condition, the eUSCI_B I2C state machine returns to
its address-reception state.
Figure 32-9 shows the slave transmitter operation.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

825

eUSCI_B Operation – I2C Mode

www.ti.com

Reception of own
S
SLA/R
address and
transmission of data
bytes
UCTR = 1 (Transmitter)
UCSTTIFG = 1
UCTXIFG = 1
UCBxTXBUF discarded

A

DATA

A

DATA

A

DATA

A

P

Write data to UCBxTXBUF

UCTXIFG = 1

UCSTPIFG = 1

Bus stalled (SCL held low)
until data available
Write data to UCBxTXBUF
Repeated start continue as
slave transmitter

DATA

A

S

SLA/R

UCTR = 1 (Transmitter)
UCSTTIFG = 1
UCTXIFG = 1
UCBxTXBUF discarded

Repeated start continue as
slave receiver

DATA

Arbitration lost as
master and
addressed as slave

A

S

SLA/W

UCTR = 0 (Receiver)
UCSTTIFG = 1

A

UCALIFG = 1
UCMST = 0
UCTR = 1 (Transmitter)
UCSTTIFG = 1
UCTXIFG = 1

Figure 32-9. I2C Slave Transmitter Mode
32.3.5.1.2 I2C Slave Receiver Mode
Slave receiver mode is entered when the slave address transmitted by the master is identical to its own
address and a cleared R/W bit is received. In slave receiver mode, serial data bits received on SDA are
shifted in with the clock pulses that are generated by the master device. The slave device does not
generate the clock, but it can hold SCL low if intervention of the CPU is required after a byte has been
received.
If the slave receives data from the master, the eUSCI_B module is automatically configured as a receiver
and UCTR is cleared. After the first data byte is received, the receive interrupt flag UCRXIFG0 is set. The
eUSCI_B module automatically acknowledges the received data and can receive the next data byte.
If the previous data was not read from the receive buffer UCBxRXBUF at the end of a reception, the bus
is stalled by holding SCL low. As soon as UCBxRXBUF is read, the new data is transferred into
UCBxRXBUF, an acknowledge is sent to the master, and the next data can be received.
Setting the UCTXNACK bit causes a NACK to be transmitted to the master during the next
acknowledgment cycle. A NACK is sent even if UCBxRXBUF is not ready to receive the latest data. If the
UCTXNACK bit is set while SCL is held low, the bus is released, a NACK is transmitted immediately, and
UCBxRXBUF is loaded with the last received data. Because the previous data was not read, that data is
lost. To avoid loss of data, the UCBxRXBUF must be read before UCTXNACK is set.
When the master generates a STOP condition, the UCSTPIFG flag is set.

826

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B Operation – I2C Mode

www.ti.com

If the master generates a repeated START condition, the eUSCI_B I2C state machine returns to its
address-reception state.
Figure 32-10 shows the I2C slave receiver operation.
Reception of own
address and data
bytes. All are
acknowledged.

S

SLA/W

A

DATA

A

DATA

A

DATA

A

P or S

UCRXIFG = 1
UCTR = 0 (Receiver)
UCSTTIFG = 1
UCSTPIFG = 0

Bus stalled
(SCL held low)
if UCBxRXBUF not read

Refer to:
”Slave Transmitter”
Timing Diagram

Read data from UCBxRXBUF

Last byte is not
acknowledged.

DATA

UCTXNACK = 1

A

P or S

UCTXNACK = 0

Bus not stalled even if
UCBxRXBUF not read
Reception of the
general call
address.

Gen Call

A

UCTR = 0 (Receiver)
UCSTTIFG = 1
UCSTPIFG = 0
UCGC = 1

Arbitration lost as
master and
addressed as slave

A

UCALIFG = 1
UCMST = 0
UCTR = 0 (Receiver)
UCSTTIFG = 1
(UCGC = 1 if general call)
UCTXIFG = 0
UCSTPIFG = 0

Figure 32-10. I2C Slave Receiver Mode
32.3.5.1.3 I2C Slave 10-Bit Addressing Mode
The 10-bit addressing mode is selected when UCA10 = 1 and is as shown in Figure 32-11. In 10-bit
addressing mode, the slave is in receive mode after the full address is received. The eUSCI_B module
indicates this by setting the UCSTTIFG flag while the UCTR bit is cleared. To switch the slave into
transmitter mode, the master sends a repeated START condition together with the first byte of the address
but with the R/W bit set. This sets the UCSTTIFG flag if it was previously cleared by software, and the
eUSCI_B modules switches to transmitter mode with UCTR = 1.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

827

eUSCI_B Operation – I2C Mode

www.ti.com

Slave Receiver

Reception of own
address and data
bytes. All are
acknowledged.

S

11110 xx/W

A

SLA (2.)

DATA

A

DATA

A

A

P or S

UCRXIFG = 1
UCTR = 0 (Receiver)
UCSTTIFG = 1
UCSTPIFG = 0

Reception of the
general call
address.

Gen Call

A

DATA

UCTR = 0 (Receiver)
UCSTTIFG = 1
UCSTPIFG = 0
UCGC = 1

DATA

A

A

P or S

UCRXIFG = 1

Slave Transmitter

Reception of own
address and
transmission of data
bytes

S

11110 xx/W

A

SLA (2.)

A

S

11110 xx/R

A

DATA

A

P or S

UCTR = 0 (Receiver)
UCSTTIFG = 1
UCSTPIFG = 0

UCTR = 1 (Transmitter)
UCSTTIFG = 1
UCTXIFG = 1
UCSTPIFG = 0

Figure 32-11. I2C Slave 10-Bit Addressing Mode

32.3.5.2 Master Mode
The eUSCI_B module is configured as an I2C master by selecting the I2C mode with UCMODEx = 11 and
UCSYNC = 1 and setting the UCMST bit. When the master is part of a multi-master system, UCMM must
be set and its own address must be programmed into the UCBxI2COA0 register. Support for multiple
slave addresses is explained in Section 32.3.9. When UCA10 = 0, 7-bit addressing is selected. When
UCA10 = 1, 10-bit addressing is selected. The UCGCEN bit selects if the eUSCI_B module responds to a
general call.
NOTE:

Addresses and multi-master systems
In master mode with own-address detection enabled (UCOAEN = 1)—especially in multimaster systems—it is not allowed to specify the same address in the own address and slave
address register (UCBxI2CSA = UCBxI2COAx). This would mean that the eUSCI_B
addresses itself.
The user software must ensure that this situation does not occur. There is no hardware
detection for this case, and the consequence is unpredictable behavior of the eUSCI_B.

828

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B Operation – I2C Mode

www.ti.com

32.3.5.2.1 I2C Master Transmitter Mode
After initialization, master transmitter mode is initiated by writing the desired slave address to the
UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, setting UCTR for
transmitter mode, and setting UCTXSTT to generate a START condition.
The eUSCI_B module waits until the bus is available, then generates the START condition, and transmits
the slave address. The UCTXIFG0 bit is set when the START condition is generated and the first data to
be transmitted can be written into UCBxTXBUF. The UCTXSTT flag is cleared as soon as the complete
address is sent.
The data written into UCBxTXBUF is transmitted if arbitration is not lost during transmission of the slave
address. UCTXIFG0 is set again as soon as the data is transferred from the buffer into the shift register. If
there is no data loaded to UCBxTXBUF before the acknowledge cycle, the bus is held during the
acknowledge cycle with SCL low until data is written into UCBxTXBUF. Data is transmitted or the bus is
held, as long as:
• No automatic STOP is generated
• The UCTXSTP bit is not set
• The UCTXSTT bit is not set
Setting UCTXSTP generates a STOP condition after the next acknowledge from the slave. If UCTXSTP is
set during the transmission of the slave address or while the eUSCI_B module waits for data to be written
into UCBxTXBUF, a STOP condition is generated, even if no data was transmitted to the slave. In this
case, the UCSTPIFG is set. When transmitting a single byte of data, the UCTXSTP bit must be set while
the byte is being transmitted or any time after transmission begins, without writing new data into
UCBxTXBUF. Otherwise, only the address is transmitted. When the data is transferred from the buffer to
the shift register, UCTXIFG0 is set, indicating data transmission has begun, and the UCTXSTP bit may be
set. When UCASTPx = 10 is set, the byte counter is used for STOP generation and the user does not
need to set the UCTXSTP. This is recommended when transmitting only one byte.
Setting UCTXSTT generates a repeated START condition. In this case, UCTR may be set or cleared to
configure transmitter or receiver, and a different slave address may be written into UCBxI2CSA, if desired.
If the slave does not acknowledge the transmitted data, the not-acknowledge interrupt flag UCNACKIFG is
set. The master must react with either a STOP condition or a repeated START condition. If data was
already written into UCBxTXBUF, it is discarded. If this data should be transmitted after a repeated
START, it must be written into UCBxTXBUF again. Any set UCTXSTT or UCTXSTP is also discarded.
Figure 32-12 shows the I2C master transmitter operation.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

829

eUSCI_B Operation – I2C Mode
Successful
transmission to a
slave receiver

S

www.ti.com

A

SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

DATA

A

DATA

A

DATA

A

P

UCTXSTT=0

UCTXSTP=0

UCTXIFG=1

UCTXSTP=1

UCTXIFG=1
UCBxTXBUF discarded
Bus stalled (SCL held low)
until data available

Next transfer started
with a repeated start
condition

DATA

Write data to UCBxTXBUF

A

S

SLA/W

1) UCTR=1 (Transmitter)
2) UCTXSTT=1

UCTXSTT=0
UCNACKIFG=1

DATA

A

S

SLA/R

UCBxTXBUF discarded
1) UCTR=0 (Receiver)
2) UCTXSTT=1

UCTXSTP=1

Not acknowledge
received after slave
address

A

P

UCTXSTP=0
1) UCTR=1 (Transmitter)
2) UCTXSTT=1

Not acknowledge
received after a data
byte

A

S

SLA/W

S

SLA/R

UCTXIFG=1
UCBxTXBUF discarded

1) UCTR=0 (Receiver)
2) UCTXSTT=1

UCNACKIFG=1
UCBxTXBUF discarded

Arbitration lost in
slave address or
data byte

Other master continues

Other master continues

UCALIFG=1
UCMST=0

UCALIFG=1
UCMST=0

Arbitration lost and
addressed as slave

A

Other master continues

UCALIFG=1
UCMST=0
UCTR=0 (Receiver)
UCSTTIFG=1
(UCGC=1 if general call)
USCI continues as Slave Receiver

Figure 32-12. I2C Master Transmitter Mode

830

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B Operation – I2C Mode

www.ti.com

32.3.5.2.2 I2C Master Receiver Mode
After initialization, master receiver mode is initiated by writing the desired slave address to the
UCBxI2CSA register, selecting the size of the slave address with the UCSLA10 bit, clearing UCTR for
receiver mode, and setting UCTXSTT to generate a START condition.
The eUSCI_B module checks if the bus is available, generates the START condition, and transmits the
slave address. The UCTXSTT flag is cleared as soon as the complete address is sent.
After the acknowledge of the address from the slave, the first data byte from the slave is received and
acknowledged and the UCRXIFG flag is set. Data is received from the slave, as long as:
• No automatic STOP is generated
• The UCTXSTP bit is not set
• The UCTXSTT bit is not set
If a STOP condition was generated by the eUSCI_B module, the UCSTPIFG is set. If UCBxRXBUF is not
read, the master holds the bus during reception of the last data bit and until the UCBxRXBUF is read.
If the slave does not acknowledge the transmitted address, the not-acknowledge interrupt flag
UCNACKIFG is set. The master must react with either a STOP condition or a repeated START condition.
A STOP condition is either generated by the automatic STOP generation or by setting the UCTXSTP bit.
The next byte received from the slave is followed by a NACK and a STOP condition. This NACK occurs
immediately if the eUSCI_B module is currently waiting for UCBxRXBUF to be read.
If a RESTART is sent, UCTR may be set or cleared to configure transmitter or receiver, and a different
slave address may be written into UCBxI2CSA if desired.
Figure 32-13 shows the I2C master receiver operation.
NOTE:

Consecutive master transactions without repeated START
When performing multiple consecutive I2C master transactions without the repeated START
feature, the current transaction must be completed before the next one is initiated. This can
be done by ensuring that the transmit STOP condition flag UCTXSTP is cleared before the
next I2C transaction is initiated with setting UCTXSTT = 1. Otherwise, the current transaction
might be affected.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

831

eUSCI_B Operation – I2C Mode
Successful
reception from a
slave transmitter

S

www.ti.com

SLA/R

A

DATA

1) UCTR = 0 (Receiver)
2) UCTXSTT = 1

DATA

A

UCTXSTT = 0

DATA

A

A

P

UCTXSTP = 1

UCRXIFG = 1

Next transfer started
with a repeated start
condition

DATA

A

UCTXSTP = 0

S

SLA/W

1) UCTR = 1 (Transmitter)
2) UCTXSTT = 1

DATA

UCTXSTP = 1

Not acknowledge
received after slave
address

A

P

A

S

SLA/R

1) UCTR = 0 (Receiver)
2) UCTXSTT = 1

UCTXSTP = 0

UCTXSTT = 0
UCNACKIFG = 1
S

SLA/W

1) UCTR = 1 (Transmitter)
2) UCTXSTT = 1
UCTXIFG = 1

S

Arbitration lost in
slave address or
data byte

SLA/R

1) UCTR = 0 (Receiver)
2) UCTXSTT = 1

Other master continues

Other master continues

UCALIFG = 1
UCMST = 0

UCALIFG = 1
UCMST = 0

Arbitration lost and
addressed as slave

A

Other master continues

UCALIFG = 1
UCMST = 0
UCTR = 1 (Transmitter)
UCSTTIFG = 1
UCTXIFG = 1
USCI continues as Slave Transmitter

Figure 32-13. I2C Master Receiver Mode

832

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B Operation – I2C Mode

www.ti.com

32.3.5.2.3 I2C Master 10-Bit Addressing Mode
The 10-bit addressing mode is selected when UCSLA10 = 1 and is shown in Figure 32-14.
Master Transmitter

Successful
transmission to a
slave receiver

S

11110xx/W

A

SLA(2.)

A

1) UCTR = 1 (Transmitter)
2) UCTXSTT = 1

A

DATA

A

DATA

P

UCTXSTT = 0

UCTXSTP = 0

UCTXIFG = 1

UCTXSTP = 1

UCTXIFG = 1

Master Receiver

Successful
reception from a
slave transmitter

S

11110xx/W

A

SLA(2.)

A

1) UCTR = 0 (Receiver)
2) UCTXSTT = 1

S

11110xx/R

DATA

A

UCTXSTT = 0

A

DATA

UCRXIFG = 1

A

P

UCTXSTP = 0

UCTXSTP = 1

Figure 32-14. I2C Master 10-Bit Addressing Mode

32.3.5.3 Arbitration
If two or more master transmitters simultaneously start a transmission on the bus, an arbitration procedure
is invoked. Figure 32-15 shows the arbitration procedure between two devices. The arbitration procedure
uses the data presented on SDA by the competing transmitters. The first master transmitter that generates
a logic high is overruled by the opposing master generating a logic low. The arbitration procedure gives
priority to the device that transmits the serial data stream with the lowest binary value. The master
transmitter that lost arbitration switches to the slave receiver mode and sets the arbitration lost flag
UCALIFG. If two or more devices send identical first bytes, arbitration continues on the subsequent bytes.
Bus Line
SCL
Device 1 Lost Arbitration
and Switches Off

n

Data From
Device 1
1
Data From
Device 2

0

0

0

0

1
Bus Line
SDA
1

0
1

1
0

1

1

Figure 32-15. Arbitration Procedure Between Two Master Transmitters
There is an undefined condition if the arbitration procedure is still in progress when one master sends a
repeated START or a STOP condition while the other master is still sending data. In other words, the
following combinations result in an undefined condition:
• Master 1 sends a repeated START condition and master 2 sends a data bit.
• Master 1 sends a STOP condition and master 2 sends a data bit.
• Master 1 sends a repeated START condition and master 2 sends a STOP condition.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

833

eUSCI_B Operation – I2C Mode

www.ti.com

32.3.6 Glitch Filtering
According to the I2C standard, both the SDA and the SCL line need to be glitch filtered. The eUSCI_B
module provides the UCGLITx bits to configure the length of this glitch filter:
Table 32-1. Glitch Filter Length Selection Bits
UCGLITx

Corresponding Glitch Filter Length on SDA and SCL

According to I2C
Standard

00

Pulses of max 50-ns length are filtered

yes

01

Pulses of max 25-ns length are filtered.

no

10

Pulses of max 12.5-ns length are filtered.

no

11

Pulses of max 6.25-ns length are filtered.

no

32.3.7 I2C Clock Generation and Synchronization
The I2C clock SCL is provided by the master on the I2C bus. When the eUSCI_B is in master mode,
BITCLK is provided by the eUSCI_B bit clock generator and the clock source is selected with the
UCSSELx bits. In slave mode, the bit clock generator is not used and the UCSSELx bits are don't care.
The 16-bit value of UCBRx in register UCBxBRW is the division factor of the eUSCI_B clock source,
BRCLK. The maximum bit clock that can be used in single master mode is fBRCLK/4. In multi-master mode,
the maximum bit clock is fBRCLK/8. The BITCLK frequency is given by:
fBitClock = fBRCLK/UCBRx
The minimum high and low periods of the generated SCL are:
tLOW,MIN = tHIGH,MIN = (UCBRx/2)/fBRCLK when UCBRx is even
tLOW,MIN = tHIGH,MIN = ((UCBRx – 1)/2)/fBRCLK when UCBRx is odd
The eUSCI_B clock source frequency and the prescaler setting UCBRx must to be chosen such that the
minimum low and high period times of the I2C specification are met.
During the arbitration procedure the clocks from the different masters must be synchronized. A device that
first generates a low period on SCL overrules the other devices, forcing them to start their own low
periods. SCL is then held low by the device with the longest low period. The other devices must wait for
SCL to be released before starting their high periods. Figure 32-16 shows the clock synchronization. This
allows a slow slave to slow down a fast master.
Wait
State

Start HIGH
Period

SCL From
Device 1

SCL From
Device 2

Bus Line
SCL

Figure 32-16. Synchronization of Two I2C Clock Generators During Arbitration

32.3.7.1 Clock Stretching
The eUSCI_B module supports clock stretching and also makes use of this feature as described in the
Operation Mode sections.
The UCSCLLOW bit can be used to observe if another device pulls SCL low while the eUSCI_B module
already released SCL due to the following conditions:
• eUSCI_B is acting as master and a connected slave drives SCL low.
834

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B Operation – I2C Mode

www.ti.com

•

eUSCI_B is acting as master and another master drives SCL low during arbitration.

The UCSCLLOW bit is also active if the eUSCI_B holds SCL low because it is waiting as transmitter for
data being written into UCBxTXBUF or as receiver for the data being read from UCBxRXBUF. The
UCSCLLOW bit might be set for a short time with each rising SCL edge because the logic observes the
external SCL and compares it to the internally generated SCL.
32.3.7.2 Avoiding Clock Stretching
Even though clock stretching is part of the I2C specification, there are applications in which clock
stretching should be avoided.
The clock is stretched by the eUSCI_B under the following conditions:
• The internal shift register is expecting data, but the TXIFG is still pending
• The internal shift register is full, but the RXIFG is still pending
• The arbitration lost interrupt is pending
• UCSWACK is selected and UCBxI2COA0 did cause a match
To avoid clock stretching, all of these situations for clock stretch either need to be avoided or the
corresponding interrupt flags need to be processed before the actual clock stretch can occur.
Using the DMA (on devices that contain a DMA) is the most secure way to avoid clock stretching. If no
DMA is available, the software must ensure that the corresponding interrupts are serviced in time before
the clock is stretched.
In slave transmitter mode, the TXIFG is set only after the reception of the direction bit; therefore, there is
only a short amount of time for the software to write the TXBUF before a clock stretch occurs. This
situation can be remedied by using the early Transmit Interrupt (see Section 32.3.11.2).
32.3.7.3 Clock Low Time-out

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

835

eUSCI_B Operation – I2C Mode

www.ti.com

The UCCLTOIFG interrupt allows the software to react if the clock is low longer than a defined time. It is possible to detect the situation, when a
clock is stretched by a master or slave for a too long time. The user can then, for example, reset the eUSCI_B module by using the UCSWRST bit.
The clock low time-out feature is enabled using the UCCLTO bits. It is possible to select one of three predefined times for the clock low time-out. If
the clock has been low longer than the time defined with the UCCLTO bits and the eUSCI_B was actively receiving or transmitting, the
UCCLTOIFG is set and an interrupt request is generated if UCCLTOIE and GIE are set as well. The UCCLTOIFG is set only once, even if the
clock is stretched a multiple of the time defined in UCCLTO.

32.3.8 Byte Counter
The eUSCI_B module supports hardware counting of the bytes received or transmitted. The counter is automatically active and counts up for each
byte seen on the bus in both master and slave mode.
The byte counter is incremented at the second bit position of each byte independently of the following ACK or NACK. A START or RESTART
condition resets the counter value to zero. Address bytes do not increment the counter. The byte counter is also incremented at the second bit
position, if an arbitration lost occurs during the first bit of data.
32.3.8.1 Byte Counter Interrupt
If UCASTPx = 01 or 10 the UCBCNTIFG is set when the byte counter threshold value UCBxTBCNT is reached in both master- and slave-mode.
Writing zero to UCBxTBCNT does not generate an interrupt.
Because the UCBCNTIFG has a lower interrupt priority than the UCBTXIFG and UCBRXIFG, TI recommends using it only for protocol control
together with the DMA handling the received and transmitted bytes. Otherwise, the application must have enough processor bandwidth to ensure
that the UCBCNT interrupt routine is executed in time to generate for example a RESTART.
32.3.8.2 Automatic STOP Generation
When the eUSCI_B module is configured as a master, the byte counter can be used for automatic STOP generation by setting the UCASTPx = 10.
Before starting the transmission using UCTXSTT, the byte counter threshold UCBxTBCNT must be set to the number of bytes that are to be
transmitted or received. After the number of bytes that are configured in UCBxTBCNT have been transmitted, the eUSCI_B automatically
generates a STOP condition.
UCBxTBCNT cannot be used if the user wants to transmit the slave address only without any data. In this case, TI recommends setting UCTXSTT
and UCTXSTP at the same time.

32.3.9 Multiple Slave Addresses
The eUSCI_B module supports two different ways of implementing multiple slave addresses at the same time:
• Hardware support for up to 4 different slave addresses, each with its own interrupt flag and DMA trigger
• Software support for up to 210 different slave addresses all sharing one interrupt

836 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode
Copyright © 2012–2017, Texas Instruments Incorporated

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

eUSCI_B Operation – I2C Mode

www.ti.com

32.3.9.1 Multiple Slave Address Registers
The registers UCBxI2COA0, UCBxI2COA1, UCBxI2COA2, and UCBxI2COA3 contain four slave addresses. Up to four address registers are
compared against a received 7- or 10-bit address. Each slave address must be activated by setting the UCAOEN bit in the corresponding
UCBxI2COAx register. Register UCBxI2COA3 has the highest priority if the address received on the bus matches more than one of the slave
address registers. The priority decreases with the index number of the address register, so that UCBxI2COA0 in combination with the address
mask has the lowest priority.
When one of the slave registers matches the 7- or 10-bit address seen on the bus, the address is acknowledged. In the following the
corresponding receive- or transmit-interrupt flag (UCTXIFGx or UCRXIFGx) to the received address is updated. The state change interrupt flags
are independent of the address comparison result. They are updated according to the bus condition.
32.3.9.2 Address Mask Register
The address mask register can be used when the eUSCI_B is configured in slave or in multiple-master mode. To activate this feature, at least one
bit of the address mask in register UCBxADDMASK must be cleared.
If the received address matches the own address in UCBxI2COA0 on all bit positions that are not masked by UCBxADDMASK, the eUSCI_B
module considers the received address as its own address. If UCSWACK = 0, the module sends an acknowledge automatically. If UCSWACK = 1,
the user software must evaluate the received address in register UCBxADDRX after the UCSTTIFG is set. To acknowledge the received address,
the software must set UCTXACK to 1.
The eUSCI_B module also automatically acknowledges a slave address that is seen on the bus if the address matches any of the enabled slave
addresses defined in UCBxI2COA1 to UCBxI2COA3.
NOTE:

UCSWACK and slave-transmitter
If the user selects manual acknowledge of slave addresses, TXIFG is set if the slave is addressed as a transmitter. If the software
decides not to acknowledge the address, TXIFG0 must be reset.

32.3.10 Using the eUSCI_B Module in I2C Mode With Low-Power Modes
The eUSCI_B module provides automatic clock activation for use with low-power modes. When the eUSCI_B clock source is inactive because the
device is in a low-power mode, the eUSCI_B module automatically activates it when needed, regardless of the control-bit settings for the clock
source. The clock remains active until the eUSCI_B module returns to its idle condition. After the eUSCI_B module returns to the idle condition,
control of the clock source reverts to the settings of its control bits.
In I2C slave mode, no internal clock source is required because the clock is provided by the external master. It is possible to operate the eUSCI_B
in I2C slave mode while the device is in LPM4 and all internal clock sources are disabled. The receive or transmit interrupts can wake up the CPU
from any low-power mode.

32.3.11 eUSCI_B Interrupts in I2C Mode
The eUSCI_B has only one interrupt vector that is shared for transmission, reception, and the state change.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode 837
Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B Operation – I2C Mode

www.ti.com

Each interrupt flag has its own interrupt enable bit. When an interrupt is enabled and the GIE bit is set, the interrupt flag generates an interrupt
request. DMA transfers are controlled by the UCTXIFGx and UCRXIFGx flags on devices with a DMA controller. It is possible to react on each
slave address with an individual DMA channel.
All interrupt flags are not cleared automatically, but they need to be cleared together by user interactions (for example, reading the UCRXBUF
clears UCRXIFGx). If the user wants to use an interrupt flag he needs to ensure that the flag has the correct state before the corresponding
interrupt is enabled.
32.3.11.1 I2C Transmit Interrupt Operation
The UCTXIFG0 interrupt flag is set whenever the transmitter is able to accept a new byte. When operating as a slave with multiple slave
addresses, the UCTXIFGx flags are set corresponding to which address was received before. If, for example, the slave address specified in
register UCBxI2COA3 did match the address seen on the bus, the UCTXIFG3 indicates that the UCBxTXBUF is ready to accept a new byte.
When operating in master mode with automatic STOP generation (UCASTPx = 10), the UCTXIFG0 is set as many times as defined in
UCBxTBCNT.
An interrupt request is generated if UCTXIEx and GIE are also set. UCTXIFGx is automatically reset if a write to UCBxTXBUF occurs or if the
UCALIFG is cleared. UCTXIFGx is set when:
• Master mode: UCTXSTT was set by the user
• Slave mode: own address was received (UCETXINT = 0) or START was received (UCETXINT = 1)
UCTXIEx is reset after a PUC or when UCSWRST = 1.
32.3.11.2 Early I2C Transmit Interrupt
Setting the UCETXINT causes UCTXIFG0 to be sent out automatically when a START condition is sent and the eUSCI_B is configured as slave.
In this case, it is not allowed to enable the other slave addresses UCBxI2COA1-UCBxI2COA3. This allows the software more time to handle the
UCTXIFG0 compared to the normal situation, when UCTXIFG0 is sent out after the slave address match was detected. Situations where the
UCTXIFG0 was set and afterward no slave address match occurred need to be handled in software. TI recommends using the byte counter to
handle this.
32.3.11.3 I2C Receive Interrupt Operation
The UCRXIFG0 interrupt flag is set when a character is received and loaded into UCBxRXBUF. When operating as a slave with multiple slave
addresses, the UCRXIFGx flag is set corresponding to which address was received before.
An interrupt request is generated if UCRXIEx and GIE are also set. UCRXIFGx and UCRXIEx are reset after a PUC signal or when UCSWRST =
1. UCRXIFGx is automatically reset when UCxRXBUF is read.
32.3.11.4 I2C State Change Interrupt Operation
Table 32-2 describes the I2C state change interrupt flags.

838 Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode
Copyright © 2012–2017, Texas Instruments Incorporated

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

eUSCI_B Operation – I2C Mode

www.ti.com

Table 32-2. I2C State Change Interrupt Flags

(1)

Interrupt Flag

Interrupt Condition

UCALIFG

Arbitration lost interrupt. Arbitration can be lost when two or more transmitters start a transmission
simultaneously, or when the eUSCI_B operates as master but is addressed as a slave by another master in
the system. The UCALIFG flag is set when arbitration is lost. When UCALIFG is set, the UCMST bit is cleared
and the I2C controller becomes a slave.

UCNACKIFG

Not acknowledge interrupt. This flag is set when an acknowledge is expected but is not received.
UCNACKIFG is used in master mode only.

UCCLTOIFG

Clock low time-out. This interrupt flag is set, if the clock is held low longer than defined by the UCCLTO bits.

UCBIT9IFG

This interrupt flag is generated each time the eUSCI_B is transferring the ninth clock cycle of a byte of data.
This gives the user the ability to follow the I2C communication in software if wanted. UCBIT9IFG is not set for
address information.

UCBCNTIFG

Byte counter interrupt. This flag is set when the byte counter value reaches the value defined in UCBxTBCNT
and UCASTPx = 01 or 10. This bit allows to organize following communications, especially if a RESTART will
be issued.

UCSTTIFG

START condition detected interrupt. This flag is set when the I2C module detects a START condition together
with its own address (1). UCSTTIFG is used in slave mode only.

UCSTPIFG

STOP condition detected interrupt. This flag is set when the I2C module detects a STOP condition on the bus.
UCSTPIFG is used in slave and master mode.

The address evaluation includes the address mask register if it is used.

32.3.11.5 UCBxIV, Interrupt Vector Generator
The eUSCI_B interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register UCBxIV is used to determine which flag requested an interrupt. The highest-priority
enabled interrupt generates a number in the UCBxIV register that can be evaluated or added to the PC to
automatically enter the appropriate software routine. Disabled interrupts do not affect the UCBxIV value.
Read access of the UCBxIV register automatically resets the highest-pending interrupt flag. If another
interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt.
Write access of the UCBxIV register clears all pending Interrupt conditions and flags.
Example 32-3 shows the recommended use of UCBxIV. The UCBxIV value is added to the PC to
automatically jump to the appropriate routine. The example is given for eUSCI0_B.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

839

eUSCI_B Operation – I2C Mode

www.ti.com

Example 32-3. UCBxIV Software Example
#pragma vector = USCI_B0_VECTOR __interrupt void USCI_B0_ISR(void) {
switch(__even_in_range(UCB0IV,0x1e))
{
case 0x00:
// Vector 0: No interrupts
break;
case 0x02: ... // Vector 2: ALIFG
break;
case 0x04: ... // Vector 4: NACKIFG
break;
case 0x06: ... // Vector 6: STTIFG
break;
case 0x08: ... // Vector 8: STPIFG
break;
case 0x0a: ... // Vector 10: RXIFG3
break;
case 0x0c: ... // Vector 12: TXIFG3
break;
case 0x0e: ... // Vector 14: RXIFG2
break;
case 0x10: ... // Vector 16: TXIFG2
break;
case 0x12: ... // Vector 18: RXIFG1
break;
case 0x14: ... // Vector 20: TXIFG1
break;
case 0x16: ... // Vector 22: RXIFG0
break;
case 0x18: ... // Vector 24: TXIFG0
break;
case 0x1a: ... // Vector 26: BCNTIFG
break;
case 0x1c: ... // Vector 28: clock low time-out
break;
case 0x1e: ... // Vector 30: 9th bit
break;
default:
break;
}
}

840

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B I2C Registers

www.ti.com

32.4 eUSCI_B I2C Registers
The eUSCI_B registers applicable in I2C mode and their address offsets are listed in Table 32-3. The base
address can be found in the device-specific data sheet.
Table 32-3. eUSCI_B Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

UCBxCTLW0

eUSCI_Bx Control Word 0

Read/write

Word

01C1h

Section 32.4.1

eUSCI_Bx Control 1

Read/write

Byte

C1h

eUSCI_Bx Control 0

00h

UCBxCTL1

01h

UCBxCTL0

Read/write

Byte

01h

02h

UCBxCTLW1

eUSCI_Bx Control Word 1

Read/write

Word

0000h

Section 32.4.2

06h

UCBxBRW

eUSCI_Bx Bit Rate Control Word

Read/write

Word

0000h

Section 32.4.3

06h

UCBxBR0

eUSCI_Bx Bit Rate Control 0

Read/write

Byte

00h

07h

UCBxBR1

eUSCI_Bx Bit Rate Control 1

Read/write

Byte

00h

Read

Word

0000h

08h

UCBxSTATW

eUSCI_Bx Status Word

Section 32.4.4

08h

UCBxSTAT

eUSCI_Bx Status

Read

Byte

00h

09h

UCBxBCNT

eUSCI_Bx Byte Counter Register

Read

Byte

00h

Read/Write

Word

00h

Section 32.4.5

0Ah

UCBxTBCNT

eUSCI_Bx Byte Counter Threshold
Register

0Ch

UCBxRXBUF

eUSCI_Bx Receive Buffer

Read/write

Word

00h

Section 32.4.6

0Eh

UCBxTXBUF

eUSCI_Bx Transmit Buffer

Read/write

Word

00h

Section 32.4.7

14h

UCBxI2COA0

eUSCI_Bx I2C Own Address 0

Read/write

Word

0000h

Section 32.4.8

16h

UCBxI2COA1

eUSCI_Bx I2C Own Address 1

Read/write

Word

0000h

Section 32.4.9

18h

UCBxI2COA2

eUSCI_Bx I2C Own Address 2

Read/write

Word

0000h

Section 32.4.10

1Ah

UCBxI2COA3

eUSCI_Bx I2C Own Address 3

Read/write

Word

0000h

Section 32.4.11

1Ch

UCBxADDRX

eUSCI_Bx Received Address Register

Read

Word

1Eh

UCBxADDMASK

eUSCI_Bx Address Mask Register

Read/write

Word

03FFh

Section 32.4.13

20h

UCBxI2CSA

eUSCI_Bx I2C Slave Address

Read/write

Word

0000h

Section 32.4.14

2Ah

UCBxIE

eUSCI_Bx Interrupt Enable

Read/write

Word

0000h

Section 32.4.15

2Ch

UCBxIFG

eUSCI_Bx Interrupt Flag

Read/write

Word

0002h

Section 32.4.16

2Eh

UCBxIV

eUSCI_Bx Interrupt Vector

Read

Word

0000h

Section 32.4.17

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Section 32.4.12

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

841

eUSCI_B I2C Registers

www.ti.com

32.4.1 UCBxCTLW0 Register
eUSCI_Bx Control Word Register 0
Figure 32-17. UCBxCTLW0 Register
15
UCA10
rw-0

14
UCSLA10
rw-0

13
UCMM
rw-0

12
Reserved
r0

11
UCMST
rw-0

rw-0

rw-0

8
UCSYNC
r1

6

5
UCTXACK
rw-0

4
UCTR
rw-0

3
UCTXNACK
rw-0

2
UCTXSTP
rw-0

1
UCTXSTT
rw-0

0
UCSWRST
rw-1

7
UCSSELx
rw-1

rw-1

10

9
UCMODEx

Can be modified only when UCSWRST = 1.

Table 32-4. UCBxCTLW0 Register Description
Bit

Field

Type

Reset

Description

15

UCA10

RW

0h

Own addressing mode select.
Modify only when UCSWRST = 1.
0b = Own address is a 7-bit address.
1b = Own address is a 10-bit address.

14

UCSLA10

RW

0h

Slave addressing mode select
0b = Address slave with 7-bit address
1b = Address slave with 10-bit address

13

UCMM

RW

0h

Multi-master environment select.
Modify only when UCSWRST = 1.
0b = Single master environment. There is no other master in the system. The
address compare unit is disabled.
1b = Multi-master environment

12

Reserved

R

0h

Reserved

11

UCMST

RW

0h

Master mode select. When a master loses arbitration in a multi-master
environment (UCMM = 1), the UCMST bit is automatically cleared and the
module acts as slave.
0b = Slave mode
1b = Master mode

10-9

UCMODEx

RW

0h

eUSCI_B mode. The UCMODEx bits select the synchronous mode when
UCSYNC = 1.
Modify only when UCSWRST = 1.
00b = 3-pin SPI
01b = 4-pin SPI (master or slave enabled if STE = 1)
10b = 4-pin SPI (master or slave enabled if STE = 0)
11b = I2C mode

8

UCSYNC

RW

1h

Synchronous mode enable. For eUSCI_B always read and write as 1.

7-6

UCSSELx

RW

3h

eUSCI_B clock source select. These bits select the BRCLK source clock. These
bits are ignored in slave mode.
Modify only when UCSWRST = 1.
00b = UCLKI
01b = ACLK
10b = SMCLK
11b = SMCLK

5

UCTXACK

RW

0h

Transmit ACK condition in slave mode with enabled address mask register. After
the UCSTTIFG has been set, the user needs to set or reset the UCTXACK flag
to continue with the I2C protocol. The clock is stretched until the UCBxCTL1
register has been written. This bit is cleared automatically after the ACK has
been send.
0b = Do not acknowledge the slave address
1b = Acknowledge the slave address

842

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B I2C Registers

www.ti.com

Table 32-4. UCBxCTLW0 Register Description (continued)
Bit

Field

Type

Reset

Description

4

UCTR

RW

0h

Transmitter/receiver
0b = Receiver
1b = Transmitter

3

UCTXNACK

RW

0h

Transmit a NACK. UCTXNACK is automatically cleared after a NACK is
transmitted. Only for slave receiver mode.
0b = Acknowledge normally
1b = Generate NACK

2

UCTXSTP

RW

0h

Transmit STOP condition in master mode. Ignored in slave mode. In master
receiver mode, the STOP condition is preceded by a NACK. UCTXSTP is
automatically cleared after STOP is generated. This bit is a don't care, if
automatic UCASTPx is different from 01 or 10.
0b = No STOP generated
1b = Generate STOP

1

UCTXSTT

RW

0h

Transmit START condition in master mode. Ignored in slave mode. In master
receiver mode, a repeated START condition is preceded by a NACK. UCTXSTT
is automatically cleared after START condition and address information is
transmitted. Ignored in slave mode.
0b = Do not generate START condition
1b = Generate START condition

0

UCSWRST

RW

1h

Software reset enable.
0b = Disabled. eUSCI_B released for operation.
1b = Enabled. eUSCI_B logic held in reset state.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

843

eUSCI_B I2C Registers

www.ti.com

32.4.2 UCBxCTLW1 Register
eUSCI_Bx Control Word Register 1
Figure 32-18. UCBxCTLW1 Register
15

14

13

r0

r0
6

7
UCCLTO
rw-0

rw-0

11

10

9

r0

12
Reserved
r0

r0

r0

r0

5
UCSTPNACK
rw-0

4
UCSWACK
rw-0

3

2

1

UCASTPx
rw-0

8
UCETXINT
rw-0
0
UCGLITx

rw-0

rw-0

rw-0

Can be modified only when UCSWRST = 1.

Table 32-5. UCBxCTLW1 Register Description
Bit

Field

Type

Reset

Description

15-9

Reserved

R

0h

Reserved

8

UCETXINT

RW

0h

Early UCTXIFG0. Only in slave mode. When this bit is set, the slave addresses
defined in UCxI2COA1 to UCxI2COA3 must be disabled.
Modify only when UCSWRST = 1.
0b = UCTXIFGx is set after an address match with UCxI2COAx and the direction
bit indicating slave transmit
1b = UCTXIFG0 is set for each START condition

7-6

UCCLTO

RW

0h

Clock low time-out select.
Modify only when UCSWRST = 1.
00b = Disable clock low time-out counter
01b = 135000 MODCLK cycles (approximately 28 ms)
10b = 150000 MODCLK cycles (approximately 31 ms)
11b = 165000 MODCLK cycles (approximately 34 ms)

5

UCSTPNACK

RW

0h

The UCSTPNACK bit allows to make the eUSCI_B master acknowledge the last
byte in master receiver mode as well. This does not conform to the I2C
specification and should only be used for slaves that automatically release the
SDA after a fixed packet length.
Modify only when UCSWRST = 1.
0b = Send a not acknowledge before the STOP condition as a master receiver
(conform to I2C standard)
1b = All bytes are acknowledged by the eUSCI_B when configured as master
receiver

4

UCSWACK

RW

0h

This bit selects whether sending an ACK of the address is triggered by the
eUSCI_B module or is controlled by software.
0b = The address acknowledge of the slave is controlled by the eUSCI_B
module
1b = The user needs to trigger the sending of the address ACK by issuing
UCTXACK

3-2

UCASTPx

RW

0h

Automatic STOP condition generation. In slave mode, only settings 00b and 01b
are available.
Modify only when UCSWRST = 1.
00b = No automatic STOP generation. The STOP condition is generated after
the user sets the UCTXSTP bit. The value in UCBxTBCNT is a don't care.
01b = UCBCNTIFG is set with the byte counter reaches the threshold defined in
UCBxTBCNT
10b = A STOP condition is generated automatically after the byte counter value
reached UCBxTBCNT. UCBCNTIFG is set with the byte counter reaching the
threshold.
11b = Reserved

844

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B I2C Registers

www.ti.com

Table 32-5. UCBxCTLW1 Register Description (continued)
Bit

Field

Type

Reset

Description

1-0

UCGLITx

RW

0h

Deglitch time
00b = 50 ns
01b = 25 ns
10b = 12.5 ns
11b = 6.25 ns

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

845

eUSCI_B I2C Registers

www.ti.com

32.4.3 UCBxBRW Register
eUSCI_Bx Bit Rate Control Word Register
Figure 32-19. UCBxBRW Register
15

14

13

12

11

10

9

8

rw

rw

rw

rw

3

2

1

0

rw

rw

rw

rw

UCBRx
rw

rw

rw

rw

7

6

5

4
UCBRx

rw

rw

rw

rw

Can be modified only when UCSWRST = 1.

Table 32-6. UCBxBRW Register Description
Bit

Field

Type

Reset

Description

15-0

UCBRx

RW

0h

Bit clock prescaler.
Modify only when UCSWRST = 1.

32.4.4 UCBxSTATW
eUSCI_Bx Status Word Register
Figure 32-20. UCBxSTATW Register
15

14

13

12

11

10

9

8

r-0

r-0

1

0

r0

r0

UCBCNTx
r-0

r-0

r-0

r-0

r-0

r-0

7
Reserved
r0

6
UCSCLLOW
r-0

5
UCGC
r-0

4
UCBBUSY
r-0

3

2
Reserved

r-0

r0

Table 32-7. UCBxSTATW Register Description
Bit

Field

Type

Reset

Description

15-8

UCBCNTx

R

0h

Hardware byte counter value. Reading this register returns the number of bytes
received or transmitted on the I2C-Bus since the last START or RESTART.
There is no synchronization of this register done. When reading UCBxBCNT
during the first bit position, a faulty read back can occur.

7

Reserved

R

0h

Reserved

6

UCSCLLOW

R

0h

SCL low
0b = SCL is not held low
1b = SCL is held low

5

UCGC

R

0h

General call address received. UCGC is automatically cleared when a START
condition is received.
0b = No general call address received
1b = General call address received

4

UCBBUSY

R

0h

Bus busy
0b = Bus inactive
1b = Bus busy

3-0

Reserved

R

0h

Reserved

846

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B I2C Registers

www.ti.com

32.4.5 UCBxTBCNT Register
eUSCI_Bx Byte Counter Threshold Register
Figure 32-21. UCBxTBCNT Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

Reserved
r0

r0

r0

r0

7

6

5

4
UCTBCNTx

rw-0

rw-0

rw-0

rw-0

Can be modified only when UCSWRST = 1.

Table 32-8. UCBxTBCNT Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7-0

UCTBCNTx

RW

0h

The byte counter threshold value is used to set the number of I2C data bytes
after which the automatic STOP or the UCSTPIFG should occur. This value is
evaluated only if UCASTPx is different from 00.
Modify only when UCSWRST = 1.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

847

eUSCI_B I2C Registers

www.ti.com

32.4.6 UCBxRXBUF Register
eUSCI_Bx Receive Buffer Register
Figure 32-22. UCBxRXBUF Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r

r

r

r

Reserved
r0

r0

r0

r0

7

6

5

4
UCRXBUFx

r

r

r

r

Table 32-9. UCBxRXBUF Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7-0

UCRXBUFx

R

0h

The receive-data buffer is user accessible and contains the last received
character from the receive shift register. Reading UCBxRXBUF resets the
UCRXIFGx flags.

32.4.7 UCBxTXBUF
eUSCI_Bx Transmit Buffer Register
Figure 32-23. UCBxTXBUF Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

rw

rw

rw

rw

Reserved
r0

r0

r0

r0

7

6

5

4
UCTXBUFx

rw

rw

rw

rw

Table 32-10. UCBxTXBUF Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7-0

UCTXBUFx

RW

0h

The transmit data buffer is user accessible and holds the data waiting to be
moved into the transmit shift register and transmitted. Writing to the transmit data
buffer clears the UCTXIFGx flags.

848

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B I2C Registers

www.ti.com

32.4.8 UCBxI2COA0 Register
eUSCI_Bx I2C Own Address 0 Register
Figure 32-24. UCBxI2COA0 Register
15
UCGCEN
rw-0

14

13

12

r0

r0

r0

7

6

5

4

11
r0

10
UCOAEN
rw-0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

Reserved

9

8
I2COA0

I2COA0
rw-0

rw-0

rw-0

rw-0

Can be modified only when UCSWRST = 1.

Table 32-11. UCBxI2COA0 Register Description
Bit

Field

Type

Reset

Description

15

UCGCEN

RW

0h

General call response enable. This bit is only available in UCBxI2COA0.
Modify only when UCSWRST = 1.
0b = Do not respond to a general call
1b = Respond to a general call

14-11

Reserved

R

0h

Reserved

10

UCOAEN

RW

0h

Own Address enable register. With this register it can be selected if the I2C
slave-address related to this register UCBxI2COA0 is evaluated or not.
Modify only when UCSWRST = 1.
0b = The slave address defined in I2COA0 is disabled
1b = The slave address defined in I2COA0 is enabled

9-0

I2COAx

RW

0h

I2C own address. The I2COA0 bits contain the local address of the eUSCIx_B
I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the
MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB.
Modify only when UCSWRST = 1.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

849

eUSCI_B I2C Registers

www.ti.com

32.4.9 UCBxI2COA1 Register
eUSCI_Bx I2C Own Address 1 Register
Figure 32-25. UCBxI2COA1 Register
15

14

rw-0

r0

13
Reserved
r0

7

6

5

12

4

11

r0

r0

10
UCOAEN
rw-0

9

8

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

I2COA1

I2COA1
rw-0

rw-0

rw-0

rw-0

Can be modified only when UCSWRST = 1.

Table 32-12. UCBxI2COA1 Register Description
Bit

Field

Type

Reset

Description

15-11

Reserved

R

0h

Reserved

10

UCOAEN

RW

0h

Own Address enable register. With this register it can be selected if the I2C
slave-address related to this register UCBxI2COA1 is evaluated or not.
Modify only when UCSWRST = 1.
0b = The slave address defined in I2COA1 is disabled
1b = The slave address defined in I2COA1 is enabled

9-0

I2COA1

RW

0h

I2C own address. The I2COAx bits contain the local address of the eUSCIx_B
I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the
MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB.
Modify only when UCSWRST = 1.

32.4.10 UCBxI2COA2 Register
eUSCI_Bx I2C Own Address 2 Register
Figure 32-26. UCBxI2COA2 Register
15

14

rw-0

r0

13
Reserved
r0

7

6

5

12
r0
4

11
r0

10
UCOAEN
rw-0

9

8

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

I2COA2

I2COA2
rw-0

rw-0

rw-0

rw-0

Can be modified only when UCSWRST = 1.

Table 32-13. UCBxI2COA2 Register Description
Bit

Field

Type

Reset

Description

15-11

Reserved

R

0h

Reserved

10

UCOAEN

RW

0h

Own Address enable register. With this register it can be selected if the I2C
slave-address related to this register UCBxI2COA2 is evaluated or not.
Modify only when UCSWRST = 1.
0b = The slave address defined in I2COA2 is disabled
1b = The slave address defined in I2COA2 is enabled

9-0

I2COA2

RW

0h

I2C own address. The I2COAx bits contain the local address of the eUSCIx_B
I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the
MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB.
Modify only when UCSWRST = 1.

850

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B I2C Registers

www.ti.com

32.4.11 UCBxI2COA3 Register
eUSCI_Bx I2C Own Address 3 Register
Figure 32-27. UCBxI2COA3 Register
15

14

rw-0

r0

13
Reserved
r0

7

6

5

12

4

11

r0

r0

10
UCOAEN
rw-0

9

8

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

I2COA3

I2COA3
rw-0

rw-0

rw-0

rw-0

Can be modified only when UCSWRST = 1.

Table 32-14. UCBxI2COA3 Register Description
Bit

Field

Type

Reset

Description

15-11

Reserved

R

0h

Reserved

10

UCOAEN

RW

0h

Own Address enable register. With this register it can be selected if the I2C
slave-address related to this register UCBxI2COA3 is evaluated or not.
Modify only when UCSWRST = 1.
0b = The slave address defined in I2COA3 is disabled
1b = The slave address defined in I2COA3 is enabled

9-0

I2COA3

RW

0h

I2C own address. The I2COA3 bits contain the local address of the eUSCIx_B
I2C controller. The address is right justified. In 7-bit addressing mode, bit 6 is the
MSB and bits 9-7 are ignored. In 10-bit addressing mode, bit 9 is the MSB.
Modify only when UCSWRST = 1.

32.4.12 UCBxADDRX Register
eUSCI_Bx I2C Received Address Register
Figure 32-28. UCBxADDRX Register
15

14

13

12

11

10

9

Reserved

8
ADDRXx

r-0

r0

r0

r0

r0

r0

r-0

r-0

7

6

5

4

3

2

1

0

r-0

r-0

r-0

r-0

ADDRXx
r-0

r-0

r-0

r-0

Table 32-15. UCBxADDRX Register Description
Bit

Field

Type

Reset

Description

15-10

Reserved

R

0h

Reserved

9-0

ADDRXx

R

0h

Received Address Register. This register contains the last received slave
address on the bus. Using this register and the address mask register it is
possible to react on more than one slave address using one eUSCI_B module.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

851

eUSCI_B I2C Registers

www.ti.com

32.4.13 UCBxADDMASK Register
eUSCI_Bx I2C Address Mask Register
Figure 32-29. UCBxADDMASK Register
15

14

13

12

11

10

9

Reserved

8
ADDMASKx

r-0

r0

r0

r0

7

6

5

4

r0

r0

rw-1

rw-1

3

2

1

0

rw-1

rw-1

rw-1

rw-1

ADDMASKx
rw-1

rw-1

rw-1

rw-1

Can be modified only when UCSWRST = 1.

Table 32-16. UCBxADDMASK Register Description
Bit

Field

Type

Reset

Description

15-10

Reserved

R

0h

Reserved

9-0

ADDMASKx

RW

3FFh

Address Mask Register. By clearing the corresponding bit of the own address,
this bit is a don't care when comparing the address on the bus to the own
address. Using this method, it is possible to react on more than one slave
address. When all bits of ADDMASKx are set, the address mask feature is
deactivated.
Modify only when UCSWRST = 1.

32.4.14 UCBxI2CSA Register
eUSCI_Bx I2C Slave Address Register
Figure 32-30. UCBxI2CSA Register
15

14

13

12

11

10

9

Reserved

8
I2CSAx

r-0

r0

r0

r0

7

6

5

4

r0

r0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

I2CSAx
rw-0

rw-0

rw-0

rw-0

Table 32-17. UCBxI2CSA Register Description
Bit

Field

Type

Reset

Description

15-10

Reserved

R

0h

Reserved

9-0

I2CSAx

RW

0h

I2C slave address. The I2CSAx bits contain the slave address of the external
device to be addressed by the eUSCIx_B module. It is only used in master
mode. The address is right justified. In 7-bit slave addressing mode, bit 6 is the
MSB and bits 9-7 are ignored. In 10-bit slave addressing mode, bit 9 is the MSB.

852

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B I2C Registers

www.ti.com

32.4.15 UCBxIE Register
eUSCI_Bx I2C Interrupt Enable Register
Figure 32-31. UCBxIE Register
15
Reserved
r0

14
UCBIT9IE
rw-0

13
UCTXIE3
rw-0

12
UCRXIE3
rw-0

11
UCTXIE2
rw-0

10
UCRXIE2
rw-0

9
UCTXIE1
rw-0

8
UCRXIE1
rw-0

7
UCCLTOIE
rw-0

6
UCBCNTIE
rw-0

5
UCNACKIE
rw-0

4
UCALIE
rw-0

3
UCSTPIE
rw-0

2
UCSTTIE
rw-0

1
UCTXIE0
rw-0

0
UCRXIE0
rw-0

Table 32-18. UCBxIE Register Description
Bit

Field

Type

Reset

Description

15

Reserved

R

0h

Reserved

14

UCBIT9IE

RW

0h

Bit position 9 interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

13

UCTXIE3

RW

0h

Transmit interrupt enable 3
0b = Interrupt disabled
1b = Interrupt enabled

12

UCRXIE3

RW

0h

Receive interrupt enable 3
0b = Interrupt disabled
1b = Interrupt enabled

11

UCTXIE2

RW

0h

Transmit interrupt enable 2
0b = Interrupt disabled
1b = Interrupt enabled

10

UCRXIE2

RW

0h

Receive interrupt enable 2
0b = Interrupt disabled
1b = Interrupt enabled

9

UCTXIE1

RW

0h

Transmit interrupt enable 1
0b = Interrupt disabled
1b = Interrupt enabled

8

UCRXIE1

RW

0h

Receive interrupt enable 1
0b = Interrupt disabled
1b = Interrupt enabled

7

UCCLTOIE

RW

0h

Clock low time-out interrupt enable.
0b = Interrupt disabled
1b = Interrupt enabled

6

UCBCNTIE

RW

0h

Byte counter interrupt enable.
0b = Interrupt disabled
1b = Interrupt enabled

5

UCNACKIE

RW

0h

Not-acknowledge interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

4

UCALIE

RW

0h

Arbitration lost interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

3

UCSTPIE

RW

0h

STOP condition interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

853

eUSCI_B I2C Registers

www.ti.com

Table 32-18. UCBxIE Register Description (continued)
Bit

Field

Type

Reset

Description

2

UCSTTIE

RW

0h

START condition interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

1

UCTXIE0

RW

0h

Transmit interrupt enable 0
0b = Interrupt disabled
1b = Interrupt enabled

0

UCRXIE0

RW

0h

Receive interrupt enable 0
0b = Interrupt disabled
1b = Interrupt enabled

854

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B I2C Registers

www.ti.com

32.4.16 UCBxIFG Register
eUSCI_Bx I2C Interrupt Flag Register
Figure 32-32. UCBxIFG Register
15
Reserved
r0

14
UCBIT9IFG
rw-0

13
UCTXIFG3
rw-0

12
UCRXIFG3
rw-0

11
UCTXIFG2
rw-0

10
UCRXIFG2
rw-0

9
UCTXIFG1
rw-0

8
UCRXIFG1
rw-0

7
UCCLTOIFG
rw-0

6
UCBCNTIFG
rw-0

5
UCNACKIFG
rw-0

4
UCALIFG
rw-0

3
UCSTPIFG
rw-0

2
UCSTTIFG
rw-0

1
UCTXIFG0
rw-1

0
UCRXIFG0
rw-0

Table 32-19. UCBxIFG Register Description
Bit

Field

Type

Reset

Description

15

Reserved

R

0h

Reserved

14

UCBIT9IFG

RW

0h

Bit position 9 interrupt flag
0b = No interrupt pending
1b = Interrupt pending

13

UCTXIFG3

RW

0h

eUSCI_B transmit interrupt flag 3. UCTXIFG3 is set when UCBxTXBUF is empty
in slave mode, if the slave address defined in UCBxI2COA3 was on the bus in
the same frame.
0b = No interrupt pending
1b = Interrupt pending

12

UCRXIFG3

RW

0h

Receive interrupt flag 3. UCRXIFG3 is set when UCBxRXBUF has received a
complete byte in slave mode and if the slave address defined in UCBxI2COA3
was on the bus in the same frame.
0b = No interrupt pending
1b = Interrupt pending

11

UCTXIFG2

RW

0h

eUSCI_B transmit interrupt flag 2. UCTXIFG2 is set when UCBxTXBUF is empty
in slave mode, if the slave address defined in UCBxI2COA2 was on the bus in
the same frame.
0b = No interrupt pending
1b = Interrupt pending

10

UCRXIFG2

RW

0h

Receive interrupt flag 2. UCRXIFG2 is set when UCBxRXBUF has received a
complete byte in slave mode and if the slave address defined in UCBxI2COA2
was on the bus in the same frame.
0b = No interrupt pending
1b = Interrupt pending

9

UCTXIFG1

RW

0h

eUSCI_B transmit interrupt flag 1. UCTXIFG1 is set when UCBxTXBUF is empty
in slave mode, if the slave address defined in UCBxI2COA1 was on the bus in
the same frame.
0b = No interrupt pending
1b = Interrupt pending

8

UCRXIFG1

RW

0h

Receive interrupt flag 1. UCRXIFG1 is set when UCBxRXBUF has received a
complete byte in slave mode and if the slave address defined in UCBxI2COA1
was on the bus in the same frame.
0b = No interrupt pending
1b = Interrupt pending

7

UCCLTOIFG

RW

0h

Clock low time-out interrupt flag
0b = No interrupt pending
1b = Interrupt pending

6

UCBCNTIFG

RW

0h

Byte counter interrupt flag. When using this interrupt the user needs to ensure
enough processing bandwidth (see the Byte Counter Interrupt section).
0b = No interrupt pending
1b = Interrupt pending

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

855

eUSCI_B I2C Registers

www.ti.com

Table 32-19. UCBxIFG Register Description (continued)
Bit

Field

Type

Reset

Description

5

UCNACKIFG

RW

0h

Not-acknowledge received interrupt flag. This flag only is updated when
operating in master mode.
0b = No interrupt pending
1b = Interrupt pending

4

UCALIFG

RW

0h

Arbitration lost interrupt flag
0b = No interrupt pending
1b = Interrupt pending

3

UCSTPIFG

RW

0h

STOP condition interrupt flag
0b = No interrupt pending
1b = Interrupt pending

2

UCSTTIFG

RW

0h

START condition interrupt flag
0b = No interrupt pending
1b = Interrupt pending

1

UCTXIFG0

RW

0h

eUSCI_B transmit interrupt flag 0. UCTXIFG0 is set when UCBxTXBUF is empty
in master mode or in slave mode, if the slave address defined in UCBxI2COA0
was on the bus in the same frame.
0b = No interrupt pending
1b = Interrupt pending

0

UCRXIFG0

RW

0h

eUSCI_B receive interrupt flag 0. UCRXIFG0 is set when UCBxRXBUF has
received a complete character in master mode or in slave mode, if the slave
address defined in UCBxI2COA0 was on the bus in the same frame.
0b = No interrupt pending
1b = Interrupt pending

856

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Copyright © 2012–2017, Texas Instruments Incorporated

eUSCI_B I2C Registers

www.ti.com

32.4.17 UCBxIV Register
eUSCI_Bx Interrupt Vector Register
Figure 32-33. UCBxIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-0

r-0

r-0

r0

UCIVx
r0

r0

r0

r0

7

6

5

4
UCIVx

r0

r0

r0

r0

Table 32-20. UCBxIV Register Description
Bit

Field

Type

Reset

Description

15-0

UCIVx

R

0h

eUSCI_B interrupt vector value. It generates an value that can be used as
address offset for fast interrupt service routine handling. Writing to this register
clears all pending interrupt flags.
00h = No interrupt pending
02h = Interrupt Source: Arbitration lost; Interrupt Flag: UCALIFG; Interrupt
Priority: Highest
04h = Interrupt Source: Not acknowledgment; Interrupt Flag: UCNACKIFG
06h = Interrupt Source: Start condition received; Interrupt Flag: UCSTTIFG
08h = Interrupt Source: Stop condition received; Interrupt Flag: UCSTPIFG
0Ah = Interrupt Source: Slave 3 Data received; Interrupt Flag: UCRXIFG3
0Ch = Interrupt Source: Slave 3 Transmit buffer empty; Interrupt Flag:
UCTXIFG3
0Eh = Interrupt Source: Slave 2 Data received; Interrupt Flag: UCRXIFG2
10h = Interrupt Source: Slave 2 Transmit buffer empty; Interrupt Flag: UCTXIFG2
12h = Interrupt Source: Slave 1 Data received; Interrupt Flag: UCRXIFG1
14h = Interrupt Source: Slave 1 Transmit buffer empty; Interrupt Flag: UCTXIFG1
16h = Interrupt Source: Data received; Interrupt Flag: UCRXIFG0
18h = Interrupt Source: Transmit buffer empty; Interrupt Flag: UCTXIFG0
1Ah = Interrupt Source: Byte counter zero; Interrupt Flag: UCBCNTIFG
1Ch = Interrupt Source: Clock low time-out; Interrupt Flag: UCCLTOIFG
1Eh = Interrupt Source: 9th bit position; Interrupt Flag: UCBIT9IFG; Priority:
Lowest

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback

Enhanced Universal Serial Communication Interface (eUSCI) – I2C Mode

Copyright © 2012–2017, Texas Instruments Incorporated

857

Chapter 33
SLAU367O – October 2012 – Revised December 2017

REF_A
The REF_A module is a general-purpose reference system that generates the voltage references required
for other subsystems such as digital-to-analog converters, analog-to-digital converters, or comparators.
This chapter describes the REF_A module.
Topic

33.1
33.2
33.3

858

REF_A

...........................................................................................................................

Page

REF_A Introduction .......................................................................................... 859
Principle of Operation ....................................................................................... 860
REF_A Registers .............................................................................................. 862

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

REF_A Introduction

www.ti.com

33.1 REF_A Introduction
The reference module (REF) is responsible for generation of all critical reference voltages that can be
used by various analog peripherals in a given device. The heart of the reference system is the bandgap
from which all other references are derived by unity or noninverting gain stages. The REFGEN subsystem
consists of the bandgap, the bandgap bias, and the noninverting buffer stage, which generates the three
primary voltage reference available in the system (1.2 V, 2.0 V, and 2.5 V). In addition, when enabled, a
buffered bandgap voltage is available.
Features of the REF_A include:
• Centralized factory-trimmed bandgap with excellent PSRR, temperature coefficient, and accuracy
• 1.2-V, 2.0-V, or 2.5-V user-selectable internal references
• Buffered bandgap voltage available to rest of system
• Power saving features
• Hardware reference request and reference ready signals for bandgap and variable reference voltages
for safe operation
Figure 33-1 shows an example block diagram of the REF_A module. The example shown here is for a
device with an ADC, a DAC, an LCD, and two Comparators.
REF_A

Bandgap
Buffer
+
ENABLE
−

Bandgap and buffer ready

COMP

Request Bandgap

LCD

Request Bandgap

Local
Buffer/Amp

Local
Buffer/Amp

REFTCOFF
Devices with ADC only

Variable Reference

ENABLE

MODE ENABLE

Reference ready

−

ADC
Local
Buffer

Request Reference
(always with static mode)

DAC

REFBGREQ

REFBIASREQ

ENABLE

+

BANDGAP

REFMODEREQ

BIAS

Request Reference
(always with static mode)

1.2, 2.0, 2.5 V
Switch
Mux

REFVSEL

REFGENREQ

OR

OR

From COMP_Ex

REFGENOT
SET

From Timer
or software

REFBGOT
SET

BGMODE

REFON

From ADCx

AND

From Timer
or software

OR

Figure 33-1. REF_A Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

REF_A

859

Principle of Operation

www.ti.com

33.2 Principle of Operation
The REF_A module provides all of the necessary voltage references for use by various peripheral
modules throughout the system.
The REFGEN subsystem contains a high-performance bandgap. This bandgap has very good accuracy
(factory trimmed), low temperature coefficient, and high PSRR even while operating at low power. The
bandgap voltage is used to generate three voltages (1.2 V, 2.0 V, and 2.5 V) through a noninverting
amplifier stage. One voltage can be selected at a time. One output of the REFGEN subsystem is the
variable reference line. The variable reference line provides either 1.2 V, 2.0 V, or 2.5 V to the rest of the
system. The second output of the REFGEN subsystem is the buffered bandgap reference line.
Additionally, the REFGEN supports the voltage references that are required for a DAC module, if
available. Lastly, the REFGEN subsystem also includes the temperature sensor circuitry, which is derived
from the bandgap. The temperature sensor is used by an ADC to measure a voltage proportional to
temperature.

33.2.1 Low-Power Operation
The REF_A module can support low-power applications such as LCD generation. Many of these
applications do not require a very accurate reference, compared to data conversion, yet power is of prime
concern. To support these kinds of applications, the bandgap can be used in a sampled mode. In sampled
mode, the bandgap circuitry is clocked by the VLO at an appropriate duty cycle. This reduces the average
power of the bandgap circuitry significantly, at the cost of accuracy. When not in sampled mode, the
bandgap is in static mode. Its power is at its highest, but so is its accuracy.
Modules can request static mode or sampled mode through their own individual request lines. In this way,
the particular module determines which mode is appropriate for its proper operation and performance. Any
one active module that requests static mode causes all other modules to use static mode, even if another
module requests sampled mode. For example, any module using the gray box in the block diagram
requests static mode and causes all other modules to use static mode. In other words, static mode always
has higher priority than sampled mode.

33.2.2 Reference System Requests
There are three basic reference system requests that are used by the reference system. Each module can
use these requests to obtain the proper response from the reference system. The three basic requests are
REFGENREQ, REFBGREQ, and REFMODEREQ. No interaction is required by the user code. The
modules automatically select the proper request.
A reference request signal, REFGENREQ, is available as an input into the REFGEN subsystem. This
signal represents a logical OR of individual requests coming from the various modules in the system that
require a voltage reference to be available on the variable reference line. When a module requires a
voltage reference, it asserts its corresponding REFGENREQ signal. When the REFGENREQ is asserted,
the REFGEN subsystem is enabled. After the specified settling time, the variable reference line voltage is
stable and ready for use. The REFVSEL settings determine which voltage is generated on the variable
reference line.
After the specified settling time of the REFGEN subsystem, the REF_A module sets the REFGENRDY
signal. This signal can be used by each module to wait, for example, before a conversion is started after a
REFGENREQ was set. The generation of the reference voltage can be triggered by a timer or by software
to make sure that the reference voltage is ready when a module requires it.
In addition to the REFGENREQ, a second reference request signal, REFBGREQ, is available. The
REFBGREQ signal represents a logical OR of requests coming from the various modules that require the
bandgap reference line. When the REFBGREQ is asserted, the bandgap and its bias circuitry and local
buffer are enabled, if not already enabled by a prior request.
After the specified settling time of the REFBGREQ subsystem, the REF_A module sets the REFBGRDY
signal. This signal can be used by each module to delay operation while the bandgap reference voltage is
settling. The generation of the buffered bandgap voltage can be triggered by a timer or by software to
make sure that the reference voltage is ready when a module requires it.

860

REF_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Principle of Operation

www.ti.com

The REFMODEREQ request signal configures the bandgap and its bias circuitry to operate in either
sampled or static mode of operation. The REFMODEREQ signal represents a logical AND of individual
requests coming from the various analog modules. A REFMODEREQ occurs only if a REFGENREQ or
REFBGQ is also asserted by a module, otherwise it is a don't care. When REFMODEREQ = 1, the
bandgap operates in sampled mode. When a module asserts its corresponding REFMODEREQ signal, it
is requesting that the bandgap operate in sampled mode. Because REMODEREQ is a logical AND of all
individual requests, any modules that request static mode cause the bandgap to operate in static mode.
The BGMODE bit can be read for use as an indicator of static or sampled mode of operation.
33.2.2.1 REFBGACT, REFGENACT, REFGENBUSY
Any module that is using the variable reference line causes REFGENACT to be set inside the REFCTL
register. This bit is read only and indicates to the user whether the REFGEN is active or off. Similarly, the
REFBGACT is active any time one or more modules are actively using the bandgap reference line and,
therefore, indicates to the user whether the REFBG is active or off.
The REFGENBUSY signal, when asserted, indicates that a module is using the reference and that no
changes should be made to the reference settings. For example, during an active ADC12_B conversion,
the reference voltage level should not be changed. REFGENBUSY is asserted when there is an active
ADC12_B conversion (ADC12BUSY = 1). REFGENBUSY when asserted, write protects the REFCTL
register. This prevents the reference from being disabled or its level changed during any active
conversion.
33.2.2.2 ADC12_B
For devices that contain an ADC12_B module, there are two buffers. The larger buffer can be used to
drive the reference voltage, which is present on the variable reference line. This buffer has larger power
consumption to drive larger DC loads that may be present outside the device. The large buffer is enabled
continuously when REFON = 1 and REFOUT =1. In addition, when REFON = 1 and REFOUT = 1, the
second smaller buffer is automatically disabled. In this case, the output of the large buffer is connected to
the capacitor array through an internal analog switch. This makes sure that the same reference is used
throughout the system. If REFON = 1 and REFOUT = 0, the internal buffer is used for ADC conversion,
and the large buffer remains disabled.
33.2.2.3 LCD Modules
On devices that contain an LCD module, this module requires a reference to generate the proper LCD
voltages. The bandgap reference line from the REFGEN subsystem is used for this purpose. Enabling the
LCD module in a mode that requires a reference voltage causes a REFBGREQ from the LCD module to
be asserted. The buffered bandgap is made available on the bandgap reference line for use inside the
LCD module.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

REF_A

861

REF_A Registers

www.ti.com

33.3 REF_A Registers
The REF_A registers are listed in Table 33-1. The base address can be found in the device specific
datasheet. The address offset is listed in Table 33-1.
NOTE: All registers have word or byte register access. For a generic registerANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 33-1. REF_A Registers

862

Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

REFCTL0

REFCTL0

Read/write

Word

0000h

Section 33.3.1

00h

REFCTL0_L

Read/write

Byte

00h

01h

REFCTL0_H

Read/write

Byte

00h

REF_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

REF_A Registers

www.ti.com

33.3.1 REFCTL0 Register (offset = 00h) [reset = 0000h]
REF_A Control Register 0
Figure 33-2. REFCTL0 Register
15

14
Reserved

r0

r0

7
REFBGOT
rw-0

6
REFGENOT
rw-0

13
REFBGRDY
r-(0)

12
REFGENRDY
r-(0)

11
BGMODE
r-(0)

10
REFGENBUSY
r-(0)

9
REFBGACT
r-(0)

8
REFGENACT
r-(0)

5

4

3
REFTCOFF
rw-(0)

2
Reserved
r0

1
REFOUT
rw-(0)

0
REFON
rw-(0)

REFVSEL
rw-(0)

rw-(0)

Can be modified only when REFGENBUSY = 0.

Table 33-2. REFCTL0 Register Description
Bit

Field

Type

Reset

Description

15-14

Reserved

R

0h

Reserved. Always reads as 0.

13

REFBGRDY

R

0h

Buffered bandgap voltage is ready to be used. Both the bandgap and the
bandgap buffer are active, and the reference voltage is settled for use by the
comparator and the LCD.
0b = Buffered bandgap voltage is not ready to be used
1b = Buffered bandgap voltage is ready to be used

12

REFGENRDY

R

0h

Variable reference voltage ready status. Variable reference voltage is ready to be
used. Both the bandgap and the reference voltage amplifier are active and the
variable reference voltage is settled; for example, for use by the ADC.
0b = Reference voltage output is not ready to be used
1b = Reference voltage output is ready to be used

11

BGMODE

R

0h

Bandgap mode. Read only.
0b = Static mode
1b = Sampled mode

10

REFGENBUSY

R

0h

Reference generator busy. Read only.
0b = Reference generator not busy
1b = Reference generator busy

9

REFBGACT

R

0h

Reference bandgap active. Read only.
0b = Reference bandgap buffer not active
1b = Reference bandgap buffer active

8

REFGENACT

R

0h

Reference generator active. Read only.
0b = Reference generator not active
1b = Reference generator active

7

REFBGOT

RW

0h

Bandgap and bandgap buffer one-time trigger. If written with a 1, the generation
of the buffered bandgap voltage is started. When the bandgap buffer voltage
request is set, this bit is cleared by hardware.
0b = No trigger
1b = Generation of the bandgap voltage is started by writing 1 or by a hardware
trigger

6

REFGENOT

RW

0h

Reference generator one-time trigger. If written with a 1, the generation of the
variable reference voltage is started. When the reference voltage request is set,
this bit is cleared by hardware.
0b = No trigger
1b = Generation of the reference voltage is started by writing 1 or by a hardware
trigger

5-4

REFVSEL

RW

0h

Reference voltage level select.
Can be modified only when REFGENBUSY = 0.
00b = 1.2 V available when reference requested
01b = 2.0 V available when reference requested
10b = 2.5 V available when reference requested
11b = 2.5 V available when reference requested

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

or REFON
or REFON
or REFON
or REFON

=1
=1
=1
=1

REF_A

863

REF_A Registers

www.ti.com

Table 33-2. REFCTL0 Register Description (continued)
Bit

Field

Type

Reset

Description

3

REFTCOFF

RW

0h

Temperature sensor disable. The temperature sensor is disabled if the ADC on
the device is not enabled independent of this control bit.
Can be modified only when REFGENBUSY = 0.
0b = Temperature sensor enabled
1b = Temperature sensor disabled to save power

2

Reserved

R

0h

Reserved. Always reads as 0.

1

REFOUT

RW

0h

Reference output buffer. On devices with an ADC10_A, this bit must be written
with 0.
Can be modified only when REFGENBUSY = 0.
0b = Reference output not available externally
1b = Reference output available externally

0

REFON

RW

0h

Reference enable.
Can be modified only when REFGENBUSY = 0.
0b = Disables reference if no other reference requests are pending
1b = Enables reference

864

REF_A

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Chapter 34
SLAU367O – October 2012 – Revised December 2017

ADC12_B
The ADC12_B module is a high-performance 12-bit analog-to-digital converter (ADC). This chapter
describes the operation of the ADC12_B module.
Topic

34.1
34.2
34.3

...........................................................................................................................

Page

ADC12_B Introduction....................................................................................... 866
ADC12_B Operation .......................................................................................... 868
ADC12_B Registers .......................................................................................... 884

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

865

ADC12_B Introduction

www.ti.com

34.1 ADC12_B Introduction
The ADC12_B module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit
SAR core, sample select control, and up to 32 independent conversion-and-control buffers. The
conversion-and-control buffer allows up to 32 independent analog-to-digital converter (ADC) samples to be
converted and stored without any CPU intervention.
ADC12_B features include:
• 200-ksps maximum conversion rate at maximum resolution of 12 bits
• Monotonic 12-bit converter with no missing codes
• Sample-and-hold with programmable sampling periods controlled by software or timers
• Conversion initiation by software or timers
• Software-selectable on-chip reference voltage generation (1.2 V, 2.0 V, or 2.5 V) with option to make
available externally
• Software-selectable internal or external reference
• Up to 32 individually configurable external input channels with single-ended or differential input
selection available
• Internal conversion channels for internal temperature sensor and 1/2 × AVCC and four more internal
channels available on select devices (see the device-specific data sheet for availability and function)
• Independent channel-selectable reference sources for both positive and negative references
• Selectable conversion clock source
• Single-channel, repeat-single-channel, sequence (autoscan), and repeat-sequence (repeated
autoscan) conversion modes
• Interrupt vector register for fast decoding of 38 ADC interrupts
• 32 conversion-result storage registers
• Window comparator for low-power monitoring of input signals of conversion-result registers
Figure 34-1 shows the block diagram of ADC12_B. The reference generation is located in the reference
module (REF) (see the device-specific data sheet).

866

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Introduction

www.ti.com
VREF+/VeREF+
REFOUT

REFOUT

REFOUT

BUF_EXT

0
1

000

1

VREF+

001
...
...
...

!REFOUT and ADC12VRSEL bit 0

VREF 1.2 V, 2.0 V, 2.5 V
111 from shared reference

0

VeREF-

BUF_INT

AVSS AVCC
ADC12INCHx
5
ADC12CH3MAP

Internal 3

0

external A26

1

A0
A1
A2
A3
A4

ADC12CH2MAP

Internal 2

⋮
0

external A27

0

Internal 1

ADC12DIVx

ADC12PDIV

VR+

VR-

Sample
and
Hold
S/H

Convert

A27

11011
ADC12SHP

1

⋮

1

A28

00
01

MODCLK from UCS
ACLK

10

MCLK

11

SMCLK

ADC12CLK
ADC12SHSx

ADC12BUSY
ADC12SHT0x
4
Sample Timer
/4 ../1024

1
SAMPCON

:1
:4
:32
:64

00
01
10
11

Divider
/1 .. /8

12-bit ADC Core

11010

0

Internal 0

ADC12SSELx

ADC 12ON

A26

ADC12CH0MAP
external A29

ADC12VRSEL bits 1-3
ADC12VRSEL

1

ADC12CH1MAP
external A28

Reference
Voltage
Select

00000
0000
00001
00010
00011

0

ADC12ISSH
ADC12ENC
SHI

000

0
Sync

1

4

ADC12SC

001
...
...
...

Trigger sources

111

ADC12SHT1x
ADC12MSC

11100

ADC12TCMAP
external A30

0

TempSense

A29

ADC12CSTARTADDx

1

ADC12BATMAP

A30

external A31

0
Batt.Monitor

11101

A31

11110

ADC12CONSEQx

11111

ADC12MEM0

ADC12MCTL0

ADC12HIx

32 x 12
Memory
Buffer
-

32 x 16
Memory
Control
-

12-bit Window
Comparator

ADC12MEM31

ADC12MCTL31

1

To Interrupt
Logic

ADC12LOx

Copyright © 2017, Texas Instruments Incorporated

A

The MODCLK is part of the UCS. See the UCS chapter for more information.

B

See the device-specific data sheet for timer sources available.

C

See the device-specific data sheet for Internal Channel 0-3 availability and function.

D

REFOUT bit is part of the Reference module registers.

Figure 34-1. ADC12_B Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

867

ADC12_B Operation

www.ti.com

34.2 ADC12_B Operation
The ADC12_B module is configured with user software. The following sections describe the setup and
operation of the ADC12_B.

34.2.1 12-Bit ADC Core
The ADC core converts an analog input to its 12-bit digital representation. The core uses two
programmable and selectable voltage levels (VR+ and VR-) to define the upper and lower limits of the
conversion. The digital output (NADC) is full scale (0FFFh) when the input signal is equal to or higher than
VR+, and is zero when the input signal is equal to or lower than VR-. The input channel and the reference
voltage levels (VR+ and VR-) are defined in the conversion-control memory.
Equation 13 shows the conversion formula for the ADC result NADC for single-ended mode.
NADC = 4096 ×

1
LSB) – VR2
VR+ – VR-

(Vin+ +

Where, 1 LSB =

VR+ -VR4096

(13)

Equation 14 shows the conversion formula for the ADC result NADC for differential mode.
1
æ
ö
Vin+ – Vin- + LSB ÷
ç
2
NADC = ç 2048 ×
÷ + 2048
VR+ – VRçç
÷÷
è
ø

Where, 1 LSB =

VR+ – VR2048

(14)

Equation 15 describes the input voltage at which the ADC output saturates for singled-ended mode.
Vin+ = VR+ – VR– – 1.5 LSB

(15)

Equation 16 describes the input voltage at which the ADC output saturates for differential mode.
Vin+ – Vin– = VR+ – VR– –1.5 LSB

where
•
•

VR– < Vin+ < VR+
VR– < Vin– < VR+

(16)

Four control registers configure the ADC12_B core: ADC12CTL0, ADC12CTL1, ADC12CTL2, and
ADC12CTL3. The ADC12ON bit enables or disables the core. The ADC12_B can be turned off when it is
not in use to save power. If the ADC12ON bit is set to 0 during a conversion, the conversion is abruptly
exited and the module is powered down. With few exceptions, an application can modify the ADC12_B
control bits only when ADC12ENC = 0. ADC12ENC must be set to 1 before any conversion can take
place.
The conversion results are always stored in binary unsigned format. For differential input, this means that
an offset of 2048 is added to the result to make the number positive. The data format bit ADC12DF in
ADC12CTL2 allows the user to read the conversion results as binary unsigned or signed binary (2s
complement).
34.2.1.1 Conversion Clock Selection
The ADC12CLK operates as the conversion clock and also generates the sampling period when the pulse
sampling mode is selected. The ADC12SSELx bit selects the ADC12_B source clock. SMCLK, MCLK,
ACLK, and the MODCLK are the possible ADC12CLK sources. The ADC12PDIV bits set the initial divider
on the input clock (1, 4, 32, or 64), and then ADC12DIV bits set an additional divider of 1 to 8.
The user must ensure that the clock that is used for ADC12CLK remains active until the end of a
conversion. If the clock is removed during a conversion, the operation does not complete and any result is
invalid.

868

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Operation

www.ti.com

34.2.2 ADC12_B Inputs and Multiplexer
Up to 32 external and up to 6 internal analog signals are selected as the channel for conversion by the
analog input multiplexer based on the ADC12INCHx bit and for A26- A31 the ADC12CTL3 register. The
number of channels that are available as well as internal channel 0-3 is device specific and is shown in
the device-specific data sheet. The input multiplexer is a break-before-make type to reduce input-to-input
noise injection that can result from channel switching (see Figure 34-2). The input multiplexer is also a Tswitch to minimize the coupling between channels. Channels that are not selected are isolated from the
ADC, and the intermediate node is connected to analog ground (AVSS), so that the stray capacitance is
grounded to eliminate crosstalk.
The ADC12_B supports single-ended input or differential inputs configurable for each conversion memory
with the ADC12DIF bit in the ADC12_B Conversion Memory Control x Register (ADC12MCTLx).
Differential input mode should be selected for differential input signals and can also be used for singleended signals by tying the negative input to AVSS. The advantage of using differential mode is increased
common mode noise rejection at the cost of a small increase in current consumption.
The ADC12_B uses the charge redistribution method. When the inputs are internally switched, the
switching action may cause transients on the input signal. These transients decay and settle before
causing errant conversion.
R » 100 W

ADC12MCTLx.0–3
Input

Ax

ESD Protection

Figure 34-2. Analog Multiplexer T-Switch

34.2.2.1 Analog Port Selection
The ADC12_B inputs are multiplexed with digital port pins. When analog signals are applied to digital
gates, parasitic current can flow from VCC to GND. This parasitic current occurs if the input voltage is near
the transition level of the gate. Disabling the digital part of the port pin eliminates the parasitic current flow
and, therefore, reduces overall current consumption. The PySELx bits can disable the port pin input and
output buffers. Refer to the device specific port x input/output schematic and table for the ADC12_B input
pin for PySELx details.

34.2.3 Voltage References
The ADC12_B module may use an on-chip shared reference module that supplies three selectable
voltage levels of 1.2 V, 2.0 V, and 2.5 V (see the reference module for proper configuration details) to
supply VR+ and VR-. These reference voltages may be used internally and externally on pin VREF+ if
REFOUT=1. Alternatively, external references may be supplied for VR+ and VR- through pins
VREF+/VeREF+ and VeREF-. The ADC12_B module reference selection is through the ADC12VRSEL
bits. For pin flexibility VR+ and VR- are not restricted to VeREF+ and VeREF- respectively. Care must be
taken that ADC12VRSEL does not conflict with REFOUT bit settings as only one buffer is available for
internal reference with REFOUT=1 or ADC12_B module reference when external reference with internal
buffer is selected . So if REFOUT=1, VeREF+ buffered should not be selected with ADC12VRSEL = 0x3,
0x5, or 0xF.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

869

ADC12_B Operation

www.ti.com

34.2.4 Auto Power Down
The ADC12_B is designed for low-power applications. When the ADC12_B is not actively converting, the
core is automatically disabled and automatically reenabled when needed. The MODOSC that sources
MODCLK is also automatically enabled when needed and disabled when not needed, if the ADC12VRSEL
selects the internal reference for the ADC.
If REFON=1, the internal reference is on continually; otherwise, it is only requested when an ADC
conversion is triggered. The REF buffer is powered down between conversions to save power unless
REFOUT=1, or pulse sample mode is used with ADC12MSC=1, or a conversion mode other than singlechannel single conversion is used. When the REF buffer is powered down in pulse sample mode, the ADC
sample time does not start until the REF buffer is ready (ADC12RDYIFFG=1), so the user does not need
to do anything. When the REF buffer is powered down in extended sample mode, the user must account
for the REF buffer settle/ready time by using the ADC12RDYIFFG=1 in calculating the time the trigger
should be asserted to make sure that the application meets the required sample time or ADC12_B
minimum sample time.

34.2.5 Sample Frequency Mode Selection
The ADC12PWRMD bit optimizes the ADC12_B power consumption at two ADC12CLK ranges. Select the
lowest ADC12CLK frequency that meets or exceeds the application requirements. If ADC12CLK is 1/4 or
less of data sheet specified maximum for ADC12PWRMD=0, ADC12PWRMD=1 may be set to save
power.

34.2.6 Sample and Conversion Timing
A rising edge of the sample input signal (SHI) initiates an analog-to-digital conversion. The sample input
signal can be inverted with the ADC12ISSH bit. The SHSx bits select the source for SHI and include the
following:
• ADC12SC bit
• Up to seven other sources that may include timer output (see to the device-specific data sheet for
available sources).
The ADC12_B supports 8-bit, 10-bit, and 12-bit resolution modes, and the ADC12RES bits select the
current mode. The analog-to-digital conversion requires 10, 12, and 14 ADC12CLK cycles, respectively.
The ADC12ISSH bit can invert the polarity of the SHI signal source. The SAMPCON signal controls the
sample period and start of conversion. When SAMPCON is high, sampling is active. The high-to-low
SAMPCON transition starts the analog-to-digital conversion after one clock cycle for pulse sample mode
and after one clock cycle plus a clock sync in extended sample mode. Control bit ADC12SHP defines the
sample-timing method, either extended sample mode or pulse mode. See the device-specific data sheet
for timers that are available for SHI sources.
34.2.6.1 Extended Sample Mode
ADC12SHP = 0 selects the extended sample mode. The SHI signal directly controls SAMPCON and
defines the length of the sample period tsample. If an ADC local reference buffer is used, the user should
assert the sample trigger, wait for the ADC12RDYIFG flag to be set (which indicates that the ADC12_B
local reference buffer is settled, and the flag does not occur if the sample trigger has not been asserted),
and then keep the sample trigger asserted for the desired sample period before de-asserting. Alternately,
if a local reference buffer is used, the user may assert the sample trigger for the desired sample time plus
the maximum time for the reference and buffers to settle (reference and buffer settling times are provided
in the device-specific data sheet). An ADC local reference buffer is used when ADC12VRSEL= 0001,
0011, 0101, 0111, 1001, 1011, 1101, or 1111. When SAMPCON is high, sampling is active. The high-tolow SAMPCON transition starts the conversion after synchronization with ADC12CLK plus one clock cycle
(see Figure 34-3 and Figure 34-4).

870

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Operation

www.ti.com
Start
Sampling

Stop
Sampling

Conversion
Complete

Start
Conversion

SHI

14 × ADC12CLK
(+1 CLK if ADC12WINC=1)

SAMPCON

tconvert

tsample
tsync+ one clock cycle

ADC12CLK

Figure 34-3. Extended Sample Mode Without Internal Reference in 12-Bit Mode
Stop
Sampling

Start
Sampling

Conversion
Complete

Start
Conversion

SHI

14 × ADC12CLK
(+1 CLK if ADC12WINC=1)

SAMPCON
tsync +
3 ADC12_B source
clock cycles

tconvert

tsample
tsync+ one clock cycle

ADC12CLK

If an ADC local reference buffer is used,
user should wait for it to be ready
given by ADC12RDYIFG = 1

Figure 34-4. Extended Sample Mode With Internal Reference in 12-Bit Mode

34.2.6.2 Pulse Sample Mode
ADC12SHP = 1 selects the pulse sample mode. The SHI signal triggers the sampling timer. The
ADC12SHT0x and ADC12SHT1x bits in ADC12CTL0 control the interval of the sampling timer that defines
the SAMPCON sample period tsample. The sampling timer keeps SAMPCON high while waiting for reference
and ADC local reference buffer to settle (if the internal reference is used), synchronization with AD12CLK,
and for the programmed interval tsample. The exception is for the first conversion or where ADC12MSC=0
where an extra 3 ADC12_B source clock cycles is required when SAMPCON goes high. (see Figure 34-5
and Figure 34-6).
The ADC12SHTx bits select the sampling time in 4x multiples of ADC12CLK. ADC12SHT1x selects the
sampling time for ADC12MEM8 to ADC12MEM23, and ADC12SHT0x selects the sampling time for
ADC12MEM0 to ADC12MEM7 and ADC12MEM24 to ADC12MEM31.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

871

ADC12_B Operation

www.ti.com
Stop
Sampling

Start
Sampling

Conversion
Complete

Start
Conversion

SHI

14 × ADC12CLK
(+1 CLK if ADC12WINC=1)

SAMPCON
tsync +
3 ADC12_B source
clock cycles

one clock cycle
tconvert

tsample

ADC12CLK

If an ADC local reference buffer is used,
ADC waits for it to be ready
given by ADC12RDYIFG = 1

Figure 34-5. Pulse Sample Mode First Conversion or Where ADC12MSC = 0 in 12-Bit Mode
Start
Sampling

Stop
Sampling

Conversion
Complete

Start
Conversion

SHI

14 × ADC12CLK
(+1 CLK if ADC12WINC=1)

SAMPCON
one clock cycle

tsample

tsync

tconvert

ADC12CLK

Figure 34-6. Pulse Sample Mode Subsequent Conversions in 12-Bit Mode

34.2.6.3 Sample Timing Considerations
When SAMPCON = 0, all Ax inputs are high impedance. When SAMPCON = 1, the selected Ax input can
be modeled as an RC low-pass filter during the sampling time tsample (see Figure 34-7). An internal MUX-on
input resistance RI (see the device-specific data sheet) in series with capacitor CI (see the device-specific
data sheet) is seen by the source. The capacitor CI voltage (VC) must be charged to within one-half LSB of
the source voltage (VS) for an accurate n-bit conversion, where n is the bits of resolution required.
MSP430

RS
VS
Cpext

VI

RI
VC
CI

VI = Input voltage at pin Ax
VS = External source voltage
RS = External source resistance
RI = Internal MUX-on input resistance
CI = Input capacitance
CPext = Parasitic capacitance, external
VC = Capacitance-charging voltage

Figure 34-7. Analog Input Equivalent Circuit
872

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Operation

www.ti.com

The resistance of the source RS and RI affect tSample. Use Equation 17 to calculate the minimum sampling
time tSample for a n-bit conversion, where n equals the bits of resolution.
t sample ³ (RS + RI ) ´ ln(2n+ 2 ) ´ (CI + Cpext ), RS < 10 kΩ

(17)

See the device-specific data sheet for RI and CI values.

34.2.7 Conversion Memory
32 ADC12MEMx conversion memory registers store the conversion results. Each ADC12MEMx is
configured with an associated ADC12MCTLx control register. The ADC12VRSEL bits define the voltage
reference, and the ADC12INCHx and ADC12DIF bits select the input channels. The ADC12EOS bit
defines the end of sequence when a sequential conversion mode is used. A sequence rolls over from
ADC12MEM31 to ADC12MEM0 when the ADC12EOS bit in ADC12MCTL31 is not set.
The CSTARTADDx bits define the first ADC12MCTLx used for any conversion. If the conversion mode is
single-channel or repeat-single-channel, the CSTARTADDx points to the single ADC12MCTLx to be used.
If the conversion mode selected is either sequence-of-channels or repeat-sequence-of-channels,
CSTARTADDx points to the first ADC12MCTLx location to be used in a sequence. A pointer, not visible to
software, is incremented automatically to the next ADC12MCTLx in sequence when each conversion
completes. The sequence continues until an ADC12EOS bit in ADC12MCTLx is processed; this is, the last
control byte processed.
When conversion results are written to a selected ADC12MEMx, the corresponding flag in the
ADC12IFGRx register is set.
There are two formats available to read the conversion result from ADC12MEMx. When ADC12DF = 0,
the conversion is right justified and unsigned. For ADC12DF = 0 with ADC12DIF = 0 and 8-bit, 10-bit, and
12-bit resolutions, the upper 8, 6, and 4 bits, respectively, of an ADC12MEMx read are always zeros. To
convert a ADC12DIF = 1 to binary unsigned, the maximum negative value is added to the conversion.
Therefore, 128 is added for 8-bit conversions, 512 is added for 10-bit conversions, and 2048 is added for
12-bit conversions.
When ADC12DF = 1, the conversion result is left justified and two's complement. For 8-bit, 10-bit, and 12bit resolutions, the lower 8, 6, and 4 bits, respectively, of a ADC12MEMx read are always zeros.
Table 34-1 summarizes the output data formats.
Table 34-1. ADC12_B Conversion Result Formats
Analog Input
Voltage Range

Vin to VR-:
VR- to +VR+

Vin+ to Vin-:
VR- to +VR+

ADC12DIF

ADC12DF

ADC12RES

Ideal Conversion Results
(With Offset Added When
ADC12DIF = 1)

ADC12MEMx Read Value

0

0

00

0 to 255

0000h to 00FFh

0

0

01

0 to 1023

0000h to 03FFh

0

0

10

0 to 4095

0000h to 0FFFh

0

1

00

-128 to 127

8000h to 7F00h

0

1

01

-512 to 511

8000h to 7FC0h

0

1

10

-2048 to 2047

8000h to 7FF0h
0000h to 00FFh

1

0

00

-128 to 127
(0 to 255)

1

0

01

-512 to 511
(0 to 1023)

0000h to 03FFh

1

0

10

-2048 to 2047
(0 to 4095)

0000h to 0FFFh

1

1

00

-128 to 127

8000h to 7F00h

1

1

01

-512 to 511

8000h to 7FC0h

1

1

10

-2048 to 2047

8000h to 7FF0h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

873

ADC12_B Operation

www.ti.com

34.2.8 ADC12_B Conversion Modes
Table 34-2 shows the four operating modes that are selected by the CONSEQx bits. All state diagrams
assume a 12-bit resolution setting.
Table 34-2. Conversion Mode Summary
ADC12CONSEQx

874

ADC12_B

Mode

Operation

00

Single-channel single-conversion

A single channel is converted once.

01

Sequence-of-channels (autoscan)

A sequence of channels is converted once.

10

Repeat-single-channel

A single channel is converted repeatedly.

11

Repeat-sequence-of-channels (repeated autoscan)

A sequence of channels is converted repeatedly.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Operation

www.ti.com

34.2.8.1 Single-Channel Single-Conversion Mode
A single channel is sampled and converted once. The ADC result is written to the ADC12MEMx that is
defined by the CSTARTADDx bits. Figure 34-8 shows the flow of the single-channel single-conversion
mode when RES = 0x2 for 12-bit mode. When ADC12SC triggers a conversion, the ADC12SC bit can
trigger successive conversions. When any other trigger source is used, ADC12ENC must be toggled
between each conversion. When there are multiple triggers then ADC12ENC bit must be toggled after the
additional trigger(s) for lowest power (otherwise clocks are still requested even after conversion is
complete).
CONSEQx = 00
ADC12 off

ADC12ON = 1
ADC12ENC ¹

x = CSTARTADDx
Wait for Enable
SHSx = 0
and
ADC12ENC = 1 or
and
ADC12SC =

ADC12ENC =
ADC12ENC =

Wait for Trigger

SAMPCON =
ADC12ENC = 0

SAMPCON = 1
Sample, Input
Channel Defined in

ADC12ENC = 0
(see Note A)

ADC12MCTLx

SAMPCON =
13 × ADC12CLK

Convert
ADC12ENC = 0
(see Note A)

1 × ADC12CLK
Conversion
Completed,
Result Stored Into
ADC12MEMx,
ADC12IFG.x is Set

x = pointer to ADC12MCTLx

A

Conversion result is unpredictable.

Figure 34-8. Single-Channel Single-Conversion Mode, ADC12ISSH = 0

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

875

ADC12_B Operation

www.ti.com

34.2.8.2 Sequence-of-Channels Mode (Autoscan Mode)
In sequence-of-channels mode, also called autoscan mode, a sequence of channels is sampled and
converted once. The ADC results are written to the conversion memories starting with the ADC12MEMx
that is defined by the CSTARTADDx bits. The sequence stops after the measurement of the channel with
a set ADC12EOS bit. Figure 34-9 shows the sequence-of-channels mode when RES = 0x02 for 12-bit
mode. When ADC12SC triggers a sequence, the ADC12SC bit can trigger successive sequences. When
any other trigger source is used, ADC12ENC must be toggled between each sequence. When there are
multiple triggers then ADC12ENC bit must be toggled after the additional trigger(s) for lowest power
(otherwise clocks are still requested even after conversion sequence is complete).
CONSEQx = 01

ADC12
off
ADC12ON = 1
ADC12ENC ¹

x = CSTARTADDx
Wait for Enable
ADC12ENC =
ADC12ENC =

SHSx = 0
and
ADC12ENC = 1 or
and
ADC12SC =

Wait for Trigger

SAMPCON =

ADC12EOS.x = 1
SAMPCON = 1

Sample, Input
Channel Defined in
if x < 31 then x = x + 1
else x = 0}

ADC12MCTLx
if x < 31 then x = x + 1
else x = 0}
13 × ADC12CLK

SAMPCON =

Convert

ADC12MSC = 1
and
ADC12SHP = 1
and
ADC12EOS.x = 0

1 × ADC12CLK

(ADC12MSC = 0
or
ADC12SHP = 0)
and
ADC12EOS.x = 0

Conversion
Completed,
Result Stored Into
ADC12MEMx,
ADC12IFG.x is Set

x = pointer to ADC12MCTLx

Figure 34-9. Sequence-of-Channels Mode, ADC12ISSH = 0

876

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Operation

www.ti.com

34.2.8.3 Repeat-Single-Channel Mode
In repeat-single-channel mode, a single channel is sampled and converted continuously. The ADC results
are written to the ADC12MEMx defined by the CSTARTADDx bits. It is necessary to read the result after
the completed conversion, because only one ADC12MEMx memory is used and is overwritten by the next
conversion. Figure 34-10 shows the repeat-single-channel mode when RES = 0x2 for 12-bit mode.
CONSEQx = 10

ADC12
off
ADC12ON = 1
ADC12ENC ¹

x = CSTARTADDx
Wait for Enable
ADC12
ENC =

ADC12
ENC =

SHSx = 0
and
ADC12ENC = 1 or
and
ADC12SC =

Wait for Trigger

SAMPCON =

ADC12ENC = 0

SAMPCON = 1
Sample, Input
Channel Defined in
ADC12MCTLx

13 × ADC12CLK

SAMPCON =

ADC12MSC = 1
and
ADC12SHP = 1
and
ADC12ENC = 1

Convert

1 × ADC12CLK

(ADC12MSC = 0
or
ADC12SHP = 0)
and
ADC12ENC = 1

Conversion
Completed,
Result Stored Into
ADC12MEMx,
ADC12IFG.x is Set

x = pointer to ADC12MCTLx

Figure 34-10. Repeat-Single-Channel Mode, ADC12ISSH = 0

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

877

ADC12_B Operation

www.ti.com

34.2.8.4 Repeat-Sequence-of-Channels Mode (Repeated Autoscan Mode)
In repeat-sequence-of-channels mode, a sequence of channels is sampled and converted repeatedly. This
mode is also called repeated autoscan mode. The ADC results are written to the conversion memories
starting with the ADC12MEMx that is defined by the CSTARTADDx bits. The sequence ends after the
measurement of the channel with a set ADC12EOS bit, and the next trigger signal restarts the sequence.
Figure 34-11 shows the repeat-sequence-of-channels mode.
CONSEQx = 11

ADC12
off
ADC12ON = 1
ADC12ENC ¹

x = CSTARTADDx
Wait for Enable
ADC12ENC =
ADC12ENC =

SHSx = 0
and
ADC12ENC = 1 or
and
ADC12SC =

Wait for Trigger
ADC12ENC = 0
and
ADC12EOS.x = 1

SAMPCON =
SAMPCON = 1
Sample, Input
Channel Defined in
ADC12MCTLx
SAMPCON =
If ADC12EOS.x = 1 then
x =CSTARTADDx
else {if x < 31 then x = x + 1 else
x = 0}}

If ADC12EOS.x = 1 then
x =CSTARTADDx
else {if x < 31 then x = x + 1 else
else x = 0}}

13 × ADC12CLK
Convert

ADC12MSC = 1 and ADC12SHP = 1
and (ADC12ENC = 1 or ADC12EOS.x = 0)

1 × ADC12CLK

(ADC12MSC = 0
or
ADC12SHP = 0)
and
(ADC12ENC = 1
or
ADC12EOS.x = 0)

Conversion Completed,
Result Stored Into
ADC12MEMx,
ADC12IFG.x is Set

x = pointer to ADC12MCTLx

Figure 34-11. Repeat-Sequence-of-Channels Mode, ADC12ISSH = 0

878

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Operation

www.ti.com

34.2.8.5 Using the Multiple Sample and Convert (ADC12MSC) Bit
To configure the converter to perform successive conversions automatically and as quickly as possible, a
multiple sample and convert function is available. When ADC12MSC = 1, CONSEQx > 0, and the sample
timer is used (pulse sample mode, ADC12SHP = 1), the first rising edge of SHI signal triggers the first
conversion. Successive conversions are triggered automatically as soon as the prior conversion is
completed (if the ADC local reference buffer is used, ADC12VRSEL= 0001, 0011, 0101, 0111, 1001,
1011, 1101, or 1111, there is one clock cycle before the successive conversion is triggered). Additional
SHI triggers are ignored until the sequence is completed in the single-sequence mode, or until the
ADC12ENC bit is toggled in repeat-single-channel or repeated-sequence modes. The function of the
ADC12ENC bit is unchanged when using the ADC12MSC bit.
34.2.8.6 Stopping Conversions
Stopping ADC12_B activity depends on the mode of operation. The recommended ways to stop an active
conversion or conversion sequence are:
• Reset ADC12ENC in single-channel single-conversion mode to stop a conversion immediately. The
results are unreliable. For correct results, poll the busy bit until it is reset before clearing ADC12ENC.
• Reset ADC12ENC during repeat-single-channel operation to stop the converter at the end of the
current conversion.
• Reset ADC12ENC during a sequence or repeat-sequence mode to stop the converter at the end of the
current conversion.
• Stop any conversion mode immediately by setting the CONSEQx = 0 and resetting the ADC12ENC
and ADC12ON bit. Conversion data are unreliable.
NOTE:

No ADC12EOS bit set for sequence
If no ADC12EOS bit is set and a sequence mode is selected, resetting the ADC12ENC bit
does not stop the sequence. To stop the sequence, first select a single-channel mode and
then reset ADC12ENC.

34.2.9 Operation in LPM3 and LPM4
The ADC remains active in LPM3 if the following are all true:
• ADC is on (ADC12ON = 1).
• Conversion is enabled (ADC12ENC = 1).
• External triggers are selected (ADC12SHSx ≠ 0) OR ACLK is ADC12B source clock (ADC12SSELx =
01b).
The ADC remains active in LPM4 if the following are all true:
• ADC is on (ADC12ON = 1).
• Conversion is enabled (ADC12ENC = 1).
• External triggers are selected (ADC12SHSx ≠ 0).

34.2.10 Window Comparator
The window comparator allows to monitor analog signals without any CPU interaction. It is enabled for the
desired ADC12MEMx conversion with the ADC12WINC bit in the ADC12MCTLx register. In the following
the window comparator interrupts are listed:
• The ADC12LO interrupt flag (ADC12LOIFG) is set if the current result of the ADC12_B conversion is
below the low threshold defined in register ADC12LO.
• The ADC12HI interrupt flag (ADC12HIIFG) is set if the current result of the ADC12_B conversion is
greater than the high threshold defined in the register ADC12HI.
• The ADC12IN interrupt flag (ADC12INIFG) is set if the current result of the ADC12_B conversion is
greater than the low threshold defined in register ADC12LO and less than the high threshold defined in
ADC12HI.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

879

ADC12_B Operation

www.ti.com

These interrupts are generated independently of the conversion mode selected by the user. The update of
the window comparator interrupt flags happen after the ADC12IFGx.
The lower and higher threshold in the ADC12LO and ADC12HI registers have to be given in the correct
data format. If the binary unsigned data format is selected by ADC12DF = 0, then the thresholds in the
registers ADC12LO and ADC12HI must be written as binary unsigned values. If the signed binary (2s
complement) data format is selected by ADC12DF = 1, then the thresholds in the registers ADC12LO and
ADC12HI must be written as signed binary (2s complement). Altering the ADC12DF register or the
ADC12RES register resets the threshold registers.
The interrupt flags are reset by the user software. The ADC12_B sets the interrupt flags each time a new
conversion result is available in the ADC12MEMx register if applicable. Interrupt flags are not cleared by
hardware. The user software resets the window comparator interrupt flags per the application needs.

34.2.11 Using the Integrated Temperature Sensor
To use the on-chip temperature sensor, the user must enable the temperature sensor input channel by
setting the ADC12TCMAP bit equal to 1 in the ADC12CTL3 register. The user must then select the analog
input channel ADC12INCHx = 0x1E for the temperature sensor. Any other configuration is done as if an
external channel were selected, including reference selection, conversion-memory selection, and so on.
The temperature sensor is in the REF module.
A typical temperature sensor transfer function is shown in Figure 34-12. The transfer function shown is
only an example. Calibration is required to determine the corresponding voltages for a specific device.
When using the temperature sensor, the sample period must be greater than 30 µs. The temperature
sensor offset error can be large and may need to be calibrated for most applications. Temperature
calibration values are available for use in the TLV descriptors (see the device-specific data sheet for
locations). Some MSP430 devices include calibration data that can be used to compute temperature more
accurately. For more information, refer to Section 1.14.3.3.
Selecting the temperature sensor automatically turns on the on-chip reference generator as a voltage
source for the temperature sensor. However, it does not enable the VREF+ output or affect the reference
selections for the conversion. The reference choices for converting the temperature sensor are the same
as with any other channel.
Typical Temperature Sensor Voltage (mV)

950
900
850
800
750
700
650
600
550
500
–40

–20

0

20

40

60

80

Ambient Temperature (°C)

Figure 34-12. Typical Temperature Sensor Transfer Function

880

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Operation

www.ti.com

34.2.12 ADC12_B Grounding and Noise Considerations
As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should
be followed to eliminate ground loops, unwanted parasitic effects, and noise.
Ground loops are formed when return current from the ADC flows through paths that are common with
other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset
voltages that can add to or subtract from the reference or input voltages of the ADC. The connections
shown in Figure 34-13 prevent this.
In addition to grounding, ripple and noise spikes on the power-supply lines due to digital switching or
switching power supplies can corrupt the conversion result. A noise-free design using separate analog and
digital ground planes with a single-point connection is recommend to achieve high accuracy.
DVCC
Digital
Power Supply
Decoupling

+

1 µF

100 nF

DVSS
AVCC

Analog
Power Supply
Decoupling

+

1 µF
Using an
External
Positive
Reference

Using an
External
Negative
Reference

100 nF

AVSS
VREF+/VEREF+

+
10 µF

470 nF
VEREF-

+
10 µF

470 nF

Figure 34-13. ADC12_B Grounding and Noise Considerations

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

881

ADC12_B Operation

www.ti.com

34.2.13 ADC12_B Calibration
The device TLV structure contains calibration values that can be used to improve the measurement
capability of the ADC12_B. Refer to Section 1.14 of the System Resets, Interrupts, and Operating Modes,
System Control Module (SYS) chapter for more details.

34.2.14 ADC12_B Interrupts
The ADC12_B has 38 interrupt sources:
• ADC12IFG0 to ADC12IFG31
• ADC12OVIFG: ADC12MEMx overflow
• ADC12TOVIFG: ADC12_B conversion time overflow
• ADC12LOIFG, ADC12INIFG, and ADC12HIIFG for ADC12MEMx
• ADC12RDYIFG: ADC12_B local reference buffer ready
The ADC12IFGx bits are set when their corresponding ADC12MEMx memory register is loaded with a
conversion result. An interrupt request is generated if the corresponding ADC12IEx bit and the GIE bit are
set. The conversion result written into ADC12MEMx result register also sets the ADC12LOIFG,
ADC12INIFG or ADC12HIIFG if applicable. The ADC12OVIFG condition occurs when a conversion result
is written to any ADC12MEMx before its previous conversion result was read. The ADC12TOVIFG
condition is generated when another sample-and-conversion is requested before the current conversion is
completed. The DMA is triggered after the conversion in single-channel conversion mode or after the
completion of a sequence of channel conversions in sequence-of-channels conversion mode. See
Section 11.2.11 for additional details. The ADC12RDYIFG is set after the sample trigger is asserted when
the ADC12_B local reference buffer is ready. Note the ADC12RDYIFG will be set even when the ADC12B
does not select the buffered reference. It can be used during extended sample mode instead of adding the
max ADC12_B local reference buffer settle time to the sample signal time.
34.2.14.1 ADC12IV, Interrupt Vector Generator
All ADC12_B interrupt sources are prioritized and combined to source a single interrupt vector. The
interrupt vector register ADC12IV is used to determine which ADC12_B interrupt source requested an
interrupt.
The highest-priority enabled ADC12_B interrupt generates a number in the ADC12IV register (see
Section 34.3.15). This number can be evaluated or added to the program counter (PC) to automatically
enter the appropriate software routine. ADC12_B interrupts that are disabled do not affect the ADC12IV
value.
Read access of the ADC12IV register automatically resets the highest pending interrupt condition and flag
except the ADC12IFGx flags. ADC12IFGx bits are reset automatically by accessing their associated
ADC12MEMx register or may be reset with software.
Write access of the ADC12IV register clears all pending interrupt conditions and flags.
If another interrupt is pending after servicing of an interrupt, another interrupt is generated. For example, if
the ADC12OV and ADC12IFG3 interrupts are pending when the interrupt service routine accesses the
ADC12IV register, the ADC12OV interrupt condition is reset automatically. After the RETI instruction of the
interrupt service routine is executed, the ADC12IFG3 generates another interrupt.

882

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Operation

www.ti.com

34.2.14.2 ADC12_B Interrupt Handling Software Example
The following software example shows the recommended use of the ADC12IV and handling overhead.
The ADC12IV value is added to the PC to automatically jump to the appropriate routine.
The software overhead for different interrupt sources includes interrupt latency and return-from-interrupt
cycles, but not the task handling itself, are:
• ADC12IFG0 through ADC12IFG30, ADC12TOV, ADC12OV, ADC12LO, ADC12HI, ADC12IN,
ADC12RDY: 16 cycles
• ADC12IFG31: 14 cycles
The interrupt handler for ADC12IFG31 shows a way to check immediately if a higher-prioritized interrupt
occurred during the processing of ADC12IFG31. This saves nine cycles if another ADC12_B interrupt is
pending.
; Interrupt handler for ADC12.
INT_ADC12
; Enter Interrupt Service Routine
ADD
&ADC12IV,PC ; Add offset to PC
RETI
; Vector 0: No interrupt
JMP
ADOV
; Vector 2: ADC overflow
JMP
ADTOV
; Vector 4: ADC timing overflow
JMP
ADHI
; Vector 6: ADC12HIIFG
JMP
ADLO
; Vector 8: ADC12LOIFG
JMP
ADIN
; Vector A: ADC12INIFG
JMP
ADM0
; Vector C: ADC12IFG0
...
; Vectors E-70
JMP
ADM30
; Vector 72: ADC12IFG30
...
JMP
ADRDY
; Vector 76: ADC12RDYIFG
;
; Handler for ADC12IFG31 starts here. No JMP required.
;
;
ADM31
MOV
&ADC12MEM31,xxx
; Move result, flag is reset
...
; Other instruction needed?
JMP
INT_ADC12
; Check other int pending
;
; ADC12IFG30-ADC12IFG1 handlers go here
;
ADM0
MOV
&ADC12MEM0,xxx
; Move result, flag is reset
...
; Other instruction needed?
RETI
; Return;
ADTOV
...
; Handle Conv. time overflow
RETI
; Return;
ADOV
...
; Handle ADC12MEMx overflow
RETI
; Return;
ADHI
...
; Handle window comparator high Interrupt
RETI
; Return;
ADLO
...
; Handle window comparator low Interrupt
RETI
; Return;
ADIN
...
; Handle window comparator in window Interrupt
RETI
; Return;
ADRDY
...
; Handle window comparator in window Interrupt
RETI
; Return;

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

883

ADC12_B Registers

www.ti.com

34.3 ADC12_B Registers
Table 34-3 lists the memory-mapped registers for the ADC12_B. See the device-specific data sheet for
the base memory address of these registers. All other register offset addresses not listed in Table 34-3
should be considered as reserved locations, and the register contents should not be modified.
NOTE: All registers have word or byte register access. For a generic registerANYREG, the suffix
"_L" (ANYREG_L) refers to the lower byte of the register (bits 0 through 7). The suffix "_H"
(ANYREG_H) refers to the upper byte of the register (bits 8 through 15).

Table 34-3. ADC12_B Registers
Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

ADC12CTL0

ADC12_B Control 0

Read/write

Word

0000h

Section 34.3.1

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0020h

Read/write

Byte

20h

Read/write

Byte

00h

Read/write

Byte

0000h

Byte

00h

00h

ADC12CTL0_L

01h

ADC12CTL0_H

02h

ADC12CTL1

02h

ADC12CTL1_L

03h

ADC12CTL1_H

04h

ADC12CTL2

04h

ADC12CTL2_L

05h

ADC12CTL2_H

06h

ADC12CTL3

ADC12_B Control 1

ADC12_B Control 2

ADC12_B Control 3

06h

ADC12CTL3_L

Read/write

07h

ADC12CTL3_H

Read/write

08h

ADC12LO

08h

ADC12LO_L

09h

ADC12LO_H

0Ah

ADC12HI

0Ah

ADC12HI_L

0Bh

ADC12HI_H

0Ch

ADC12IFGR0

0Ch

ADC12IFGR0_L

0Dh

ADC12IFGR0_H

0Eh

ADC12IFGR1

0Eh

ADC12IFGR1_L

0Fh

ADC12IFGR1_H

10h

ADC12IFGR2

ADC12_B Window Comparator Low
Threshold Register

ADC12_B Window Comparator High
Threshold Register

ADC12_B Interrupt Flag 0

ADC12_B Interrupt Flag 1

ADC12_B Interrupt Flag 2

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0FFFh

Read/write

Byte

FFh

Read/write

Byte

0Fh

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

ADC12IFGR2_L

Read/write

Byte

00h

11h

ADC12IFGR2_H

Read/write

Byte

00h

Read/write

Word

0000h

12h

ADC12IER0_L

Read/write

Byte

00h

13h

ADC12IER0_H

Read/write

Byte

00h

14h

ADC12IER0

Read/write

Word

0000h

14h

ADC12IER1_L

Read/write

Byte

00h

15h

ADC12IER1_H

Read/write

Byte

00h

16h

ADC12IER1

ADC12_B Interrupt Enable 0

Read/write

Word

0000h

16h

ADC12IER2_L

Read/write

Byte

00h

17h

ADC12IER2_H

Read/write

Byte

00h

884 ADC12_B

ADC12IER2

ADC12_B Interrupt Enable 1

ADC12_B Interrupt Enable 2

Section 34.3.3

Section 34.3.4

00h

10h
12h

Section 34.3.2

Section 34.3.8

Section 34.3.7

Section 34.3.12

Section 34.3.13

Section 34.3.14

Section 34.3.9

Section 34.3.10

Section 34.3.11

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

Table 34-3. ADC12_B Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

18h

ADC12IV

ADC12_B Interrupt Vector

Read/write

Word

0000h

Section 34.3.15

18h

ADC12IV_L

Read/write

Byte

00h

19h

ADC12IV_H

Read

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

20h

ADC12MCTL0

20h

ADC12MCTL0_L

21h

ADC12MCTL0_H

22h

ADC12MCTL1

22h

ADC12MCTL1_L

23h

ADC12MCTL1_H

24h

ADC12MCTL2

24h

ADC12MCTL2_L

25h

ADC12MCTL2_H

26h

ADC12MCTL3

ADC12_B Memory Control 0

ADC12_B Memory Control 1

ADC12_B Memory Control 2

ADC12_B Memory Control 3

26h

ADC12MCTL3_L

Read/write

Byte

00h

27h

ADC12MCTL3_H

Read/write

Byte

00h

28h

Read/write

Word

0000h

28h

ADC12MCTL4_L

Read/write

Byte

00h

29h

ADC12MCTL4_H

Read/write

Byte

00h

2Ah

ADC12MCTL4

Read/write

Word

0000h

2Ah

ADC12MCTL5_L

Read/write

Byte

00h

2Bh

ADC12MCTL5_H

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

2Ch

ADC12MCTL5

ADC12_B Memory Control 4

ADC12MCTL6

2Ch

ADC12MCTL6_L

2Dh

ADC12MCTL6_H

2Eh

ADC12MCTL7

ADC12_B Memory Control 5

ADC12_B Memory Control 6

ADC12_B Memory Control 7

2Eh

ADC12MCTL7_L

Read/write

Byte

00h

2Fh

ADC12MCTL7_H

Read/write

Byte

00h

Read/write

Word

0000h

30h

ADC12MCTL8

ADC12_B Memory Control 8

30h

ADC12MCTL8_L

Read/write

Byte

00h

31h

ADC12MCTL8_H

Read/write

Byte

00h

Read/write

Word

0000h

32h

ADC12MCTL9

ADC12_B Memory Control 9

32h

ADC12MCTL9_L

Read/write

Byte

00h

33h

ADC12MCTL9_H

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

34h

ADC12MCTL10

34h

ADC12MCTL10_L

35h

ADC12MCTL10_H

36h

ADC12MCTL11

36h

ADC12MCTL11_L

37h

ADC12MCTL11_H

38h

ADC12MCTL12

38h

ADC12MCTL12_L

39h

ADC12MCTL12_H

3Ah

ADC12MCTL13

ADC12_B Memory Control 10

ADC12_B Memory Control 11

ADC12_B Memory Control 12

ADC12_B Memory Control 13

3Ah

ADC12MCTL13_L

Read/write

Byte

00h

3Bh

ADC12MCTL13_H

Read/write

Byte

00h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

ADC12_B 885

ADC12_B Registers

www.ti.com

Table 34-3. ADC12_B Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

3Ch

ADC12MCTL14

ADC12_B Memory Control 14

Read/write

Word

0000h

Section 34.3.6

3Ch

ADC12MCTL14_L

Read/write

Byte

00h

3Dh

ADC12MCTL14_H

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

3Eh

ADC12MCTL15

3Eh

ADC12MCTL15_L

3Fh

ADC12MCTL15_H

40h

ADC12MCTL16

40h

ADC12MCTL16_L

41h

ADC12MCTL16_H

42h

ADC12MCTL17

42h

ADC12MCTL17_L

43h

ADC12MCTL17_H

44h

ADC12MCTL18

ADC12_B Memory Control 15

ADC12_B Memory Control 16

ADC12_B Memory Control 17

ADC12_B Memory Control 18

44h

ADC12MCTL18_L

Read/write

Byte

00h

45h

ADC12MCTL18_H

Read/write

Byte

00h

46h

Read/write

Word

0000h

46h

ADC12MCTL19_L

Read/write

Byte

00h

47h

ADC12MCTL19_H

Read/write

Byte

00h

48h

ADC12MCTL19

Read/write

Word

0000h

48h

ADC12MCTL20_L

Read/write

Byte

00h

49h

ADC12MCTL20_H

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

4Ah

ADC12MCTL20

ADC12_B Memory Control 19

ADC12MCTL21

4Ah

ADC12MCTL21_L

4Bh

ADC12MCTL21_H

4Ch

ADC12MCTL22

ADC12_B Memory Control 20

ADC12_B Memory Control 21

ADC12_B Memory Control 22

4Ch

ADC12MCTL22_L

Read/write

Byte

00h

4Dh

ADC12MCTL22_H

Read/write

Byte

00h

Read/write

Word

0000h

4Eh

ADC12MCTL23

ADC12_B Memory Control 23

4Eh

ADC12MCTL23_L

Read/write

Byte

00h

4Fh

ADC12MCTL23_H

Read/write

Byte

00h

Read/write

Word

0000h

50h

ADC12MCTL24

ADC12_B Memory Control 24

50h

ADC12MCTL24_L

Read/write

Byte

00h

51h

ADC12MCTL24_H

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

52h

ADC12MCTL25

52h

ADC12MCTL25_L

53h

ADC12MCTL25_H

54h

ADC12MCTL26

54h

ADC12MCTL26_L

55h

ADC12MCTL26_H

56h

ADC12MCTL27

56h

ADC12MCTL27_L

57h

ADC12MCTL27_H

58h

ADC12MCTL28

ADC12_B Memory Control 25

ADC12_B Memory Control 26

ADC12_B Memory Control 27

ADC12_B Memory Control 28

58h

ADC12MCTL28_L

Read/write

Byte

00h

59h

ADC12MCTL28_H

Read/write

Byte

00h

886 ADC12_B

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

Section 34.3.6

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

Table 34-3. ADC12_B Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

5Ah

ADC12MCTL29

ADC12_B Memory Control 29

Read/write

Word

0000h

Section 34.3.6

5Ah

ADC12MCTL29_L

Read/write

Byte

00h

5Bh

ADC12MCTL29_H

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

0000h

Read/write

Byte

00h

Read/write

Byte

00h

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

5Ch

ADC12MCTL30

5Ch

ADC12MCTL30_L

5Dh

ADC12MCTL30_H

5Eh

ADC12MCTL31

5Eh

ADC12MCTL31_L

5Fh

ADC12MCTL31_H

60h

ADC12MEM0

60h

ADC12MEM0_L

61h

ADC12MEM0_H

62h

ADC12MEM1

ADC12_B Memory Control 30

ADC12_B Memory Control 31

ADC12_B Memory 0

ADC12_B Memory 1

62h

ADC12MEM1_L

Read/write

Byte

undefined

63h

ADC12MEM1_H

Read/write

Byte

undefined

64h

Read/write

Word

undefined

64h

ADC12MEM2_L

Read/write

Byte

undefined

65h

ADC12MEM2_H

Read/write

Byte

undefined

66h

ADC12MEM2

Read/write

Word

undefined

66h

ADC12MEM3_L

Read/write

Byte

undefined

67h

ADC12MEM3_H

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

68h

ADC12MEM3

ADC12_B Memory 2

ADC12MEM4

68h

ADC12MEM4_L

69h

ADC12MEM4_H

6Ah

ADC12MEM5

ADC12_B Memory 3

ADC12_B Memory 4

ADC12_B Memory 5

6Ah

ADC12MEM5_L

Read/write

Byte

undefined

6Bh

ADC12MEM5_H

Read/write

Byte

undefined

Read/write

Word

undefined

6Ch

ADC12MEM6

ADC12_B Memory 6

6Ch

ADC12MEM6_L

Read/write

Byte

undefined

6Dh

ADC12MEM6_H

Read/write

Byte

undefined

Read/write

Word

undefined

6Eh

ADC12MEM7

ADC12_B Memory 7

6Eh

ADC12MEM7_L

Read/write

Byte

undefined

6Fh

ADC12MEM7_H

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

70h

ADC12MEM8

70h

ADC12MEM8_L

71h

ADC12MEM8_H

72h

ADC12MEM9

72h

ADC12MEM9_L

73h

ADC12MEM9_H

74h

ADC12MEM10

74h

ADC12MEM10_L

75h

ADC12MEM10_H

76h

ADC12MEM11

ADC12_B Memory 8

ADC12_B Memory 9

ADC12_B Memory 10

ADC12_B Memory 11

76h

ADC12MEM11_L

Read/write

Byte

undefined

77h

ADC12MEM11_H

Read/write

Byte

undefined

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Section 34.3.6

Section 34.3.6

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

ADC12_B 887

ADC12_B Registers

www.ti.com

Table 34-3. ADC12_B Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

78h

ADC12MEM12

ADC12_B Memory 12

Read/write

Word

undefined

Section 34.3.5

78h

ADC12MEM12_L

Read/write

Byte

undefined

79h

ADC12MEM12_H

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

7Ah

ADC12MEM13

7Ah

ADC12MEM13_L

7Bh

ADC12MEM13_H

7Ch

ADC12MEM14

7Ch

ADC12MEM14_L

7Dh

ADC12MEM14_H

7Eh

ADC12MEM15

7Eh

ADC12MEM15_L

7Fh

ADC12MEM15_H

80h

ADC12MEM16

ADC12_B Memory 13

ADC12_B Memory 14

ADC12_B Memory 15

ADC12_B Memory 16

80h

ADC12MEM16_L

Read/write

Byte

undefined

81h

ADC12MEM16_H

Read/write

Byte

undefined

82h

Read/write

Word

undefined

82h

ADC12MEM17_L

Read/write

Byte

undefined

83h

ADC12MEM17_H

Read/write

Byte

undefined

84h

ADC12MEM17

Read/write

Word

undefined

84h

ADC12MEM18_L

Read/write

Byte

undefined

85h

ADC12MEM18_H

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

86h

ADC12MEM18

ADC12_B Memory 17

ADC12MEM19

86h

ADC12MEM19_L

87h

ADC12MEM19_H

88h

ADC12MEM20

ADC12_B Memory 18

ADC12_B Memory 19

ADC12_B Memory 20

88h

ADC12MEM20_L

Read/write

Byte

undefined

89h

ADC12MEM20_H

Read/write

Byte

undefined

Read/write

Word

undefined

8Ah

ADC12MEM21

ADC12_B Memory 21

8Ah

ADC12MEM21_L

Read/write

Byte

undefined

8Bh

ADC12MEM21_H

Read/write

Byte

undefined

Read/write

Word

undefined

8Ch

ADC12MEM22

ADC12_B Memory 22

8Ch

ADC12MEM22_L

Read/write

Byte

undefined

8Dh

ADC12MEM22_H

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

8Eh

ADC12MEM23

8Eh

ADC12MEM23_L

8Fh

ADC12MEM23_H

90h

ADC12MEM24

90h

ADC12MEM24_L

91h

ADC12MEM24_H

92h

ADC12MEM25

92h

ADC12MEM25_L

93h

ADC12MEM25_H

94h

ADC12MEM26

ADC12_B Memory 23

ADC12_B Memory 24

ADC12_B Memory 25

ADC12_B Memory 26

94h

ADC12MEM26_L

Read/write

Byte

undefined

95h

ADC12MEM26_H

Read/write

Byte

undefined

888 ADC12_B

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

Table 34-3. ADC12_B Registers (continued)
Offset

Acronym

Register Name

Type

Access

Reset

Section

96h

ADC12MEM27

ADC12_B Memory 27

Read/write

Word

undefined

Section 34.3.5

96h

ADC12MEM27_L

Read/write

Byte

undefined

97h

ADC12MEM27_H

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

Read/write

Byte

undefined

Read/write

Byte

undefined

Read/write

Word

undefined

98h

ADC12MEM28

98h

ADC12MEM28_L

99h

ADC12MEM28_H

9Ah

ADC12MEM29

9Ah

ADC12MEM29_L

9Bh

ADC12MEM29_H

9Ch

ADC12MEM30

9Ch

ADC12MEM30_L

9Dh

ADC12MEM30_H

9Eh

ADC12MEM31

ADC12_B Memory 28

ADC12_B Memory 29

ADC12_B Memory 30

ADC12_B Memory 31

9Eh

ADC12MEM31_L

Read/write

Byte

undefined

9Fh

ADC12MEM31_H

Read/write

Byte

undefined

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Section 34.3.5

Section 34.3.5

Section 34.3.5

Section 34.3.5

ADC12_B

889

ADC12_B Registers

www.ti.com

34.3.1 ADC12CTL0 Register (offset = 00h) [reset = 0000h]
ADC12_B Control 0 Register
Figure 34-14. ADC12CTL0 Register
15

14

13

ADC12SHT1x
rw-(0)
rw-(0)

rw-(0)
7
ADC12MSC
rw-(0)

6

5
Reserved

r-0

r-0

12

11

rw-(0)

rw-(0)

4
ADC12ON
rw-(0)

3

10

9
ADC12SHT0x
rw-(0)
rw-(0)
2
Reserved

r-0

r-0

1
ADC12ENC
rw-(0)

8
rw-(0)
0
ADC12SC
rw-(0)

Can be modified only when ADC12ENC = 0.

Table 34-4. ADC12CTL0 Register Description
Bit

Field

Type

Reset

Description

15-12

ADC12SHT1x

RW

0

ADC12_B sample-and-hold time. These bits define the number of ADC12CLK
cycles in the sampling period for registers ADC12MEM8 to ADC12MEM23. Can
be modified only when ADC12ENC = 0.
0000b = 4 ADC12CLK cycles
0001b = 8 ADC12CLK cycles
0010b = 16 ADC12CLK cycles
0011b = 32 ADC12CLK cycles
0100b = 64 ADC12CLK cycles
0101b = 96 ADC12CLK cycles
0110b = 128 ADC12CLK cycles
0111b = 192 ADC12CLK cycles
1000b = 256 ADC12CLK cycles
1001b = 384 ADC12CLK cycles
1010b = 512 ADC12CLK cycles
1011b = Reserved
1100b = Reserved
1101b = Reserved
1110b = Reserved
1111b = Reserved

11-8

ADC12SHT0x

RW

0

ADC12_B sample-and-hold time. These bits define the number of ADC12CLK
cycles in the sampling period for registers ADC12MEM0 to ADC12MEM7 and
ADC12MEM24 to ADC12MEM31. Can be modified only when ADC12ENC = 0.
0000b = 4 ADC12CLK cycles
0001b = 8 ADC12CLK cycles
0010b = 16 ADC12CLK cycles
0011b = 32 ADC12CLK cycles
0100b = 64 ADC12CLK cycles
0101b = 96 ADC12CLK cycles
0110b = 128 ADC12CLK cycles
0111b = 192 ADC12CLK cycles
1000b = 256 ADC12CLK cycles
1001b = 384 ADC12CLK cycles
1010b = 512 ADC12CLK cycles
1011b = Reserved
1100b = Reserved
1101b = Reserved
1110b = Reserved
1111b = Reserved

890

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

Table 34-4. ADC12CTL0 Register Description (continued)
Bit

Field

Type

Reset

Description

7

ADC12MSC

RW

0

ADC12_B multiple sample and conversion. Valid only for sequence or repeated
modes. Can be modified only when ADC12ENC = 0.
0b = The sampling timer requires a rising edge of the SHI signal to trigger each
sample-and-convert.
1b = The incidence of the first rising edge of the SHI signal triggers the sampling
timer, but further sample-and-conversions are performed automatically as soon
as the prior conversion is completed.

6-5

Reserved

R

0

Reserved. Always reads as 0.

4

ADC12ON

RW

0

ADC12_B on. Can be modified only when ADC12ENC = 0.
0b = ADC12_B off
1b = ADC12_B on

3-2

Reserved

R

0

Reserved. Always reads as 0.

1

ADC12ENC

RW

0

ADC12_B enable conversion.
0b = ADC12_B disabled
1b = ADC12_B enabled

0

ADC12SC

RW

0

ADC12_B start conversion. Software-controlled sample-and-conversion start.
ADC12SC and ADC12ENC may be set together with one instruction. ADC12SC
is reset automatically.
0b = No sample-and-conversion-start
1b = Start sample-and-conversion

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

891

ADC12_B Registers

www.ti.com

34.3.2 ADC12CTL1 Register (offset = 02h) [reset = 0000h]
ADC12_B Control 1 Register
Figure 34-15. ADC12CTL1 Register
15
Reserved
r-0
7

14

13

6
ADC12DIVx
rw-(0)

rw-(0)

12

ADC12PDIV
rw-(0)
rw-(0)

rw-(0)

5

11
ADC12SHSx
rw-(0)

10
rw-(0)

4

3
ADC12SSELx
rw-(0)
rw-(0)

rw-(0)

9
ADC12SHP
rw-(0)

2
1
ADC12CONSEQx
rw-(0)
rw-(0)

8
ADC12ISSH
rw-(0)
0
ADC12BUSY
r-(0)

Can be modified only when ADC12ENC = 0.

Table 34-5. ADC12CTL1 Register Description
Bit

Field

Type

Reset

Description

15

Reserved

R

0h

Reserved. Always reads as 0.

14-13

ADC12PDIV

RW

0h

ADC12_B predivider. This bit predivides the selected ADC12_B clock source.
00b = Predivide by 1
01b = Predivide by 4
10b = Predivide by 32
11b = Predivide by 64

12-10

ADC12SHSx

RW

0h

ADC12_B sample-and-hold source select
000b = ADC12SC bit
001b = see the device-specific data sheet
010b = see the device-specific data sheet
011b = see the device-specific data sheet
100b = see the device-specific data sheet
101b = see the device-specific data sheet
110b = see the device-specific data sheet
111b = see the device-specific data sheet

for
for
for
for
for
for
for

source
source
source
source
source
source
source

9

ADC12SHP

RW

0h

ADC12_B sample-and-hold pulse-mode select. This bit selects the source of the
sampling signal (SAMPCON) to be either the output of the sampling timer or the
sample-input signal directly.
0b = SAMPCON signal is sourced from the sample-input signal.
1b = SAMPCON signal is sourced from the sampling timer.

8

ADC12ISSH

RW

0h

ADC12_B invert signal sample-and-hold.
0b = The sample-input signal is not inverted.
1b = The sample-input signal is inverted.

7-5

ADC12DIVx

RW

0h

ADC12_B clock divider
000b = /1
001b = /2
010b = /3
011b = /4
100b = /5
101b = /6
110b = /7
111b = /8

4-3

ADC12SSELx

RW

0h

ADC12_B clock source select
00b = ADC12OSC (MODOSC)
01b = ACLK
10b = MCLK
11b = SMCLK

892

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

Table 34-5. ADC12CTL1 Register Description (continued)
Bit

Field

Type

Reset

Description

2-1

ADC12CONSEQx

RW

0h

ADC12_B conversion sequence mode select. This bit should only be modified
when ADC12ENC = 0 except to stop a conversion immediately by setting
ADC12CONSEQx = 00 when ADC12ENC = 1.
00b = Single-channel, single-conversion
01b = Sequence-of-channels
10b = Repeat-single-channel
11b = Repeat-sequence-of-channels

0

ADC12BUSY

R

0h

ADC12_B busy. This bit indicates an active sample or conversion operation.
0b = No operation is active.
1b = A sequence, sample, or conversion is active.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

893

ADC12_B Registers

www.ti.com

34.3.3 ADC12CTL2 Register (offset = 04h) [reset = 0020h]
ADC12_B Control 2 Register
Figure 34-16. ADC12CTL2 Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3
ADC12DF
rw-(0)

2

1

0
ADC12PWRMD
rw-(0)

Reserved
r0
7

r0

r0

6

5

4
ADC12RES
rw-(1)
rw-(0)

Reserved
r0

r0

r0

Reserved
r0

r0

Table 34-6. ADC12CTL2 Register Description
Bit

Field

Type

Reset

Description

15-6

Reserved

R

0h

Reserved. Always reads as 0.

5-4

ADC12RES

RW

2h

ADC12_B resolution. This bit defines the conversion result resolution. This bit
should only be modified when ADC12ENC=0.
00b = 8 bit (10 clock cycle conversion time)
01b = 10 bit (12 clock cycle conversion time)
10b = 12 bit (14 clock cycle conversion time)
11b = Reserved

3

ADC12DF

RW

0h

ADC12_B data read-back format. Data is always stored in the binary unsigned
format.
0b = Binary unsigned. Theoretically for ADC12DIF = 0 and 12-bit mode the
analog input voltage – VREF results in 0000h, the analog input voltage + VREF
results in 0FFFh.
1b = Signed binary (2s complement), left aligned. Theoretically, for
ADC12DIF = 0 and 12-bit mode, the analog input voltage – VREF results in
8000h, the analog input voltage + VREF results in 7FF0h.

2-1

Reserved

R

0h

Reserved. Always reads as 0.

0

ADC12PWRMD

RW

0h

Enables ADC low-power mode for ADC12CLK with 1/4 the specified maximum
for ADC12PWRMD = 0. This bit should only be modified when ADC12ENC = 0.
0b = Regular power mode where sample rate is not restricted
1b = Low power mode enable, ADC12CLK can not be greater than 1/4 the
device-specific data sheet specified maximum for ADC12PWRMD = 0

894

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

34.3.4 ADC12CTL3 Register (offset = 06h) [reset = 0000h]
ADC12_B Control 3 Register
Figure 34-17. ADC12CTL3 Register
15

14

13

12

Reserved

11
10
9
8
ADC12ICH3MA ADC12ICH2MA ADC12ICH1MA ADC12ICH0MA
P
P
P
P
rw-(0)
rw-(0)
rw-(0)
rw-(0)

r0

r0

r0

r0

7
ADC12TCMAP

6
ADC12BATMA
P
rw-(0)

5
Reserved

4

3

2
ADC12CSTARTADDx

1

0

r0

rw-(0)

rw-(0)

rw-(0)

rw-(0)

rw-(0)

rw-(0)

Can be modified only when ADC12ENC = 0.

Table 34-7. ADC12CTL3 Register Description
Bit

Field

Type

Reset

Description

15-12

Reserved

R

0h

Reserved. Always reads as 0.

11

ADC12ICH3MAP

RW

0h

Controls internal channel 3 selection to ADC input channel A26. Can be modified
only when ADC12ENC = 0.
0b = external pin is selected for ADC input channel A26
1b = ADC input channel internal 3 is selected for ADC input channel A26, see
device-specific data sheet for availability

10

ADC12ICH2MAP

RW

0h

Controls internal channel 2 selection to ADC input channel A27. Can be modified
only when ADC12ENC = 0.
0b = external pin is selected for ADC input channel A27
1b = ADC input channel internal 2 is selected for ADC input channel A27, see
device-specific data sheet for availability

9

ADC12ICH1MAP

RW

0h

Controls internal channel 1 selection to ADC input channel A28. Can be modified
only when ADC12ENC = 0.
0b = external pin is selected for ADC input channel A28
1b = ADC input channel internal 1 is selected for ADC input channel A28, see
device-specific data sheet for availability

8

ADC12ICH0MAP

RW

0h

Controls internal channel 0 selection to ADC input channel A29. Can be modified
only when ADC12ENC = 0.
0b = external pin is selected for ADC input channel A29
1b = ADC input channel internal 0 is selected for ADC input channel A29, see
device-specific data sheet for availability

7

ADC12TCMAP

RW

0h

Controls temperature sensor ADC input channel selection. Can be modified only
when ADC12ENC = 0.
0b = external pin is selected for ADC input channel A30
1b = ADC internal temperature sensor channel is selected for ADC input channel
A30

6

ADC12BATMAP

RW

0h

Controls 1/2 AVCC ADC input channel selection. Can be modified only when
ADC12ENC = 0.
0b = external pin is selected for ADC input channel A31
1b = ADC internal 1/2 x AVCC channel is selected for ADC input channel A31

5

Reserved

R

0h

Reserved. Always reads as 0.

4-0

ADC12CSTARTADDx RW

0h

ADC12_B conversion start address. These bits select which ADC12_B
conversion memory register is used for a single conversion or for the first
conversion in a sequence. The value of CSTARTADDx is 0h to 1Fh,
corresponding to ADC12MEM0 to ADC12MEM31. Can be modified only when
ADC12ENC = 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

895

ADC12_B Registers

www.ti.com

34.3.5 ADC12MEMx Register (x = 0 to 31)
ADC12_B Conversion Memory x Register (x = 0 to 31)
Figure 34-18. ADC12MEMx Register
15

14

13

rw

rw

rw

7

6

5

rw

rw

rw

12
11
Conversion Results
rw
rw

10

9

8

rw

rw

rw

4
3
Conversion Results
rw
rw

2

1

0

rw

rw

rw

Table 34-8. ADC12MEMx Register Description
Bit

Field

Type

Reset

Description

15-0

Conversion Results

RW

undefined

If ADC12DF = 0: The 12-bit conversion results are right justified. Bit 11 is the
MSB. Bits 15-12 are 0 in 12-bit mode, bits 15-10 are 0 in 10-bit mode, and bits
15-8 are 0 in 8-bit mode. If the user writes to the conversion memory registers,
the results are corrupted.
If ADC12DF = 1: The 12-bit conversion results are left-justified 2s-complement
format. Bit 15 is the MSB. Bits 3-0 are 0 in 12-bit mode, bits 5-0 are 0 in 10-bit
mode, and bits 7-0 are 0 in 8-bit mode. The data is stored in the right-justified
format and is converted to the left-justified 2s-complement format during read
back. If the user writes to the conversion memory registers, the results are
corrupted.

896

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

34.3.6 ADC12MCTLx Register (x = 0 to 31)
ADC12_B Conversion Memory Control x Register (x = 0 to 31)
Figure 34-19. ADC12MCTLx Register
15
Reserved
r0

14
ADC12WINC
rw-(0)

13
ADC12DIF
rw-(0)

12
Reserved
r0

11
rw-(0)

7
ADC12EOS
rw-(0)

6

5

4

3

r0

rw-(0)

rw-(0)

Reserved
r0

10

9
ADC12VRSEL
rw-(0)
rw-(0)
2
ADC12INCHx
rw-(0)

8
rw-(0)

1

0

rw-(0)

rw-(0)

Can be modified only when ADC12ENC = 0.

Table 34-9. ADC12MCTLx Register Description
Bit

Field

Type

Reset

Description

15

Reserved

R

0h

Reserved. Always reads as 0.

14

ADC12WINC

RW

0h

Comparator window enable. Can be modified only when ADC12ENC = 0.
0b = Comparator window disabled
1b = Comparator window enabled

13

ADC12DIF

RW

0h

Differential mode. Can be modified only when ADC12ENC = 0.
0b = Single-ended mode enabled
1b = Differential mode enabled

12

Reserved

R

0h

Reserved. Always reads as 0.

11-8

ADC12VRSEL

RW

0h

Selects combinations of VR+ and VR- sources as well as the buffer selection.
Note: there is only one buffer so it can be used for either VR+ or VR-, but not
both. Can be modified only when ADC12ENC = 0.
0000b = VR+ = AVCC, VR- = AVSS
0001b = VR+ = VREF buffered, VR- = AVSS
0010b = VR+ = VeREF-, VR- = AVSS
0011b = VR+ = VeREF+ buffered, VR- = AVSS
0100b = VR+ = VeREF+, VR- = AVSS
0101b = VR+ = AVCC, VR- = VeREF+ buffered
0110b = VR+ = AVCC, VR- = VeREF+
0111b = VR+ = VREF buffered, VR- = VeREF+
1000b = Reserved
1001b = VR+ = AVCC, VR- = VREF buffered
1010b = Reserved
1011b = VR+ = VeREF+, VR- = VREF buffered
1100b = VR+ = AVCC, VR- = VeREF1101b = VR+ = VREF buffered, VR- = VeREF1110b = VR+ = VeREF+, VR- = VeREF1111b = VR+ = VeREF+ buffered, VR- = VeREF-

7

ADC12EOS

RW

0h

End of sequence. Indicates the last conversion in a sequence. Can be modified
only when ADC12ENC = 0.
0b = Not end of sequence
1b = End of sequence

6-5

Reserved

R

0h

Reserved. Always reads as 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

897

ADC12_B Registers

www.ti.com

Table 34-9. ADC12MCTLx Register Description (continued)
Bit

Field

Type

Reset

Description

4-0

ADC12INCHx

RW

0h

Input channel select. If even channels are set as differential, then odd channel
configuration is ignored. Can be modified only when ADC12ENC = 0.
00000b = If ADC12DIF = 0: A0; If ADC12DIF = 1: Ain+ = A0, Ain- = A1
00001b = If ADC12DIF = 0: A1; If ADC12DIF = 1: Ain+ = A0, Ain- = A1
00010b = If ADC12DIF = 0: A2; If ADC12DIF = 1: Ain+ = A2, Ain- = A3
00011b = If ADC12DIF = 0: A3; If ADC12DIF = 1: Ain+ = A2, Ain- = A3
00100b = If ADC12DIF = 0: A4; If ADC12DIF = 1: Ain+ = A4, Ain- = A5
00101b = If ADC12DIF = 0: A5; If ADC12DIF = 1: Ain+ = A4, Ain- = A5
00110b = If ADC12DIF = 0: A6; If ADC12DIF = 1: Ain+ = A6, Ain- = A7
00111b = If ADC12DIF = 0: A7; If ADC12DIF = 1: Ain+ = A6, Ain- = A7
01000b = If ADC12DIF = 0: A8; If ADC12DIF = 1: Ain+ = A8, Ain- = A9
01001b = If ADC12DIF = 0: A9; If ADC12DIF = 1: Ain+ = A8, Ain- = A9
01010b = If ADC12DIF = 0: A10; If ADC12DIF = 1: Ain+ = A10, Ain- = A11
01011b = If ADC12DIF = 0: A11; If ADC12DIF = 1: Ain+ = A10, Ain- = A11
01100b = If ADC12DIF = 0: A12; If ADC12DIF = 1: Ain+ = A12, Ain- = A13
01101b = If ADC12DIF = 0: A13; If ADC12DIF = 1: Ain+ = A12, Ain- = A13
01110b = If ADC12DIF = 0: A14; If ADC12DIF = 1: Ain+ = A14, Ain- = A15
01111b = If ADC12DIF = 0: A15; If ADC12DIF = 1: Ain+ = A14, Ain- = A15
10000b = If ADC12DIF = 0: A16; If ADC12DIF = 1: Ain+ = A16, Ain- = A17
10001b = If ADC12DIF = 0: A17; If ADC12DIF = 1: Ain+ = A16, Ain- = A17
10010b = If ADC12DIF = 0: A18; If ADC12DIF = 1: Ain+ = A18, Ain- = A19
10011b = If ADC12DIF = 0: A19; If ADC12DIF = 1: Ain+ = A18, Ain- = A19
10100b = If ADC12DIF = 0: A20; If ADC12DIF = 1: Ain+ = A20, Ain- = A21
10101b = If ADC12DIF = 0: A21; If ADC12DIF = 1: Ain+ = A20, Ain- = A21
10110b = If ADC12DIF = 0: A22; If ADC12DIF = 1: Ain+ = A22, Ain- = A23
10111b = If ADC12DIF = 0: A23; If ADC12DIF = 1: Ain+ = A22, Ain- = A23
11000b = If ADC12DIF = 0: A24; If ADC12DIF = 1: Ain+ = A24, Ain- = A25
11001b = If ADC12DIF = 0: A25; If ADC12DIF = 1: Ain+ = A24, Ain- = A25
11010b = If ADC12DIF = 0: A26; If ADC12DIF = 1: Ain+ = A26, Ain- =A27
11011b = If ADC12DIF = 0: A27; If ADC12DIF = 1: Ain+ = A26, Ain- = A27
11100b = If ADC12DIF = 0: A28; If ADC12DIF = 1: Ain+ = A28, Ain- = A29
11101b = If ADC12DIF = 0: A29; If ADC12DIF = 1: Ain+ = A28, Ain- = A29
11110b = If ADC12DIF = 0: A30; If ADC12DIF = 1: Ain+ = A30, Ain- = A31
11111b = If ADC12DIF = 0: A31; If ADC12DIF = 1: Ain+ = A30, Ain- = A31

898

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

34.3.7 ADC12HI Register (offset = 0Ah) [reset = 0FFFh]
ADC12_B Window Comparator High Threshold Register
Figure 34-20. ADC12HI Register
15

14

13

rw-(0)

rw-(0)

rw-(0)

7

6

5

rw-(1)

rw-(1)

rw-(1)

12
11
High Threshold
rw-(0)
rw-(1)
3
High Threshold
rw-(1)
rw-(1)

10

9

8

rw-(1)

rw-(1)

rw-(1)

2

1

0

rw-(1)

rw-(1)

rw-(1)

4

Table 34-10. ADC12HI Register Description
Bit

Field

Type

Reset

Description

15-0

High Threshold

RW

0FFFh

Window comparator high threshold should only be modified when ADC12ENC=0.
If ADC12DF = 0: The 12-bit threshold value is right justified when ADC12DF = 0.
Bits 15-12 are 0. Bit 11 is the MSB. Bits 11-10 are 0 in 10-bit mode, and bits 118 are 0 in 8-bit mode.
If ADC12DF = 1: The 12-bit threshold value is left justified when ADC12DF = 1,
2s-complement format. Bit 15 is the MSB. Bits 3-0 are 0 in 12-bit mode, bits 5-0
are 0 in 10-bit mode, and bits 7-0 are 0 in 8-bit mode.

34.3.8 ADC12LO Register (offset = 08h) [reset = 0000h]
ADC12_B Window Comparator Low Threshold Register
Figure 34-21. ADC12LO Register
15

14

13

12

rw-(0)

rw-(0)

rw-(0)

7

6

5

rw-(0)

rw-(0)

rw-(0)

11
Low Threshold
rw-(0)
rw-(0)
3
Low Threshold
rw-(0)
rw-(0)

10

9

8

rw-(0)

rw-(0)

rw-(0)

2

1

0

rw-(0)

rw-(0)

rw-(0)

4

Table 34-11. ADC12LO Register Description
Bit

Field

Type

Reset

Description

15-0

Low Threshold

RW

0h

Window comparator low threshold should only be modified when ADC12ENC=0.
If ADC12DF = 0: The 12-bit threshold value is right justified when ADC12DF = 0.
Bits 15-12 are 0. Bit 11 is the MSB. Bits 11-10 are 0 in 10-bit mode, and bits 118 are 0 in 8-bit mode.
If ADC12DF = 1: The 12-bit threshold value is left justified when ADC12DF = 1,
2s-complement format. Bit 15 is the MSB. Bits 3-0 are 0 in 12-bit mode, bits 5-0
are 0 in 10-bit mode, and bits 7-0 are 0 in 8-bit mode.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

899

ADC12_B Registers

www.ti.com

34.3.9 ADC12IER0 Register (offset = 12h) [reset = 0000h]
ADC12_B Interrupt Enable 0 Register
Figure 34-22. ADC12IER0 Register
15
ADC12IE15
rw-(0)

14
ADC12IE14
rw-(0)

13
ADC12IE13
rw-(0)

12
ADC12IE12
rw-(0)

11
ADC12IE11
rw-(0)

10
ADC12IE10
rw-(0)

9
ADC12IE9
rw-(0)

8
ADC12IE8
rw-(0)

7
ADC12IE7
rw-(0)

6
ADC12IE6
rw-(0)

5
ADC12IE5
rw-(0)

4
ADC12IE4
rw-(0)

3
ADC12IE3
rw-(0)

2
ADC12IE2
rw-(0)

1
ADC12IE1
rw-(0)

0
ADC12IE0
rw-(0)

Table 34-12. ADC12IER0 Register Description
Bit

Field

Type

Reset

Description

15

ADC12IE15

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG15 bit.
0b = Interrupt disabled
1b = Interrupt enabled

14

ADC12IE14

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG14 bit.
0b = Interrupt disabled
1b = Interrupt enabled

13

ADC12IE13

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG13 bit.
0b = Interrupt disabled
1b = Interrupt enabled

12

ADC12IE12

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG12 bit.
0b = Interrupt disabled
1b = Interrupt enabled

11

ADC12IE11

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG11 bit.
0b = Interrupt disabled
1b = Interrupt enabled

10

ADC12IE10

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG10 bit.
0b = Interrupt disabled
1b = Interrupt enabled

9

ADC12IE9

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG9 bit.
0b = Interrupt disabled
1b = Interrupt enabled

8

ADC12IE8

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG8 bit.
0b = Interrupt disabled
1b = Interrupt enabled

7

ADC12IE7

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG7 bit.
0b = Interrupt disabled
1b = Interrupt enabled

6

ADC12IE6

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG6 bit.
0b = Interrupt disabled
1b = Interrupt enabled

5

ADC12IE5

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG5 bit.
0b = Interrupt disabled
1b = Interrupt enabled

4

ADC12IE4

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG4 bit.
0b = Interrupt disabled
1b = Interrupt enabled

3

ADC12IE3

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG3 bit.
0b = Interrupt disabled
1b = Interrupt enabled

900

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

Table 34-12. ADC12IER0 Register Description (continued)
Bit

Field

Type

Reset

Description

2

ADC12IE2

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG2 bit.
0b = Interrupt disabled
1b = Interrupt enabled

1

ADC12IE1

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG1 bit.
0b = Interrupt disabled
1b = Interrupt enabled

0

ADC12IE0

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG0 bit.
0b = Interrupt disabled
1b = Interrupt enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

901

ADC12_B Registers

www.ti.com

34.3.10 ADC12IER1 Register (offset = 14h) [reset = 0000h]
ADC12_B Interrupt Enable 1 Register
Figure 34-23. ADC12IER1 Register
15
ADC12IE31
rw-(0)

14
ADC12IE30
rw-(0)

13
ADC12IE29
rw-(0)

12
ADC12IE28
rw-(0)

11
ADC12IE27
rw-(0)

10
ADC12IE26
rw-(0)

9
ADC12IE25
rw-(0)

8
ADC12IE24
rw-(0)

7
ADC12IE23
rw-(0)

6
ADC12IE22
rw-(0)

5
ADC12IE21
rw-(0)

4
ADC12IE20
rw-(0)

3
ADC12IE19
rw-(0)

2
ADC12IE18
rw-(0)

1
ADC12IE17
rw-(0)

0
ADC12IE16
rw-(0)

Table 34-13. ADC12IER1 Register Description
Bit

Field

Type

Reset

Description

15

ADC12IE31

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG31 bit.
0b = Interrupt disabled
1b = Interrupt enabled

14

ADC12IE30

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG30 bit.
0b = Interrupt disabled
1b = Interrupt enabled

13

ADC12IE29

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG29 bit.
0b = Interrupt disabled
1b = Interrupt enabled

12

ADC12IE28

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG28 bit.
0b = Interrupt disabled
1b = Interrupt enabled

11

ADC12IE27

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG27 bit.
0b = Interrupt disabled
1b = Interrupt enabled

10

ADC12IE26

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG26 bit.
0b = Interrupt disabled
1b = Interrupt enabled

9

ADC12IE25

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG25 bit.
0b = Interrupt disabled
1b = Interrupt enabled

8

ADC12IE24

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG24 bit.
0b = Interrupt disabled
1b = Interrupt enabled

7

ADC12IE23

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG23 bit.
0b = Interrupt disabled
1b = Interrupt enabled

6

ADC12IE22

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG22 bit.
0b = Interrupt disabled
1b = Interrupt enabled

5

ADC12IE21

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG21 bit.
0b = Interrupt disabled
1b = Interrupt enabled

4

ADC12IE20

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG20 bit.
0b = Interrupt disabled
1b = Interrupt enabled

3

ADC12IE19

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG19 bit.
0b = Interrupt disabled
1b = Interrupt enabled

902

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

Table 34-13. ADC12IER1 Register Description (continued)
Bit

Field

Type

Reset

Description

2

ADC12IE18

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG18 bit.
0b = Interrupt disabled
1b = Interrupt enabled

1

ADC12IE17

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG17 bit.
0b = Interrupt disabled
1b = Interrupt enabled

0

ADC12IE16

RW

0h

Interrupt enable. Enables or disables the interrupt request for ADC12IFG16 bit.
0b = Interrupt disabled
1b = Interrupt enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

903

ADC12_B Registers

www.ti.com

34.3.11 ADC12IER2 Register (offset = 16h) [reset = 0000h]
ADC12_B Interrupt Enable 2 Register
Figure 34-24. ADC12IER2 Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7
Reserved
r0

6
ADC12RDYIE
rw-(0)

5
ADC12TOVIE
rw-(0)

4
ADC12OVIE
rw-(0)

3
ADC12HIIE
rw-(0)

2
ADC12LOIE
rw-(0)

1
ADC12INIE
rw-(0)

0
Reserved
r0

Table 34-14. ADC12IER2 Register Description
Bit

Field

Type

Reset

Description

15-7

Reserved

R

0h

Reserved. Always reads as 0.

6

ADC12RDYIE

RW

0h

ADC12_B local reference buffer ready interrupt enable. The GIE bit must also be
set to enable the interrupt.
0b = Interrupt disabled
1b = Interrupt enabled

5

ADC12TOVIE

RW

0h

ADC12_B conversion-time-overflow interrupt enable. The GIE bit must also be
set to enable the interrupt.
0b = Interrupt disabled
1b = Interrupt enabled

4

ADC12OVIE

RW

0h

ADC12MEMx overflow-interrupt enable. The GIE bit must also be set to enable
the interrupt.
0b = Interrupt disabled
1b = Interrupt enabled

3

ADC12HIIE

RW

0h

Interrupt enable for the exceeding the upper limit interrupt of the window
comparator for ADC12MEMx result register. The GIE bit must also be set to
enable the interrupt.
0b = Interrupt disabled
1b = Interrupt enabled

2

ADC12LOIE

RW

0h

Interrupt enable for the falling short of the lower limit interrupt of the window
comparator for the ADC12MEMx result register. The GIE bit must also be set to
enable the interrupt.
0b = Interrupt disabled
1b = Interrupt enabled

1

ADC12INIE

RW

0h

Interrupt enable for the ADC12MEMx result register being greater than the
ADC12LO threshold and below the ADC12HI threshold. The GIE bit must also
be set to enable the interrupt.
0b = Interrupt disabled
1b = Interrupt enabled

0

Reserved

R

0h

Reserved. Always reads as 0.

904

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

34.3.12 ADC12IFGR0 Register (offset = 0Ch) [reset = 0000h]
ADC12_B Interrupt Flag 0 Register
Figure 34-25. ADC12IFGR0 Register
15
ADC12IFG15
rw-(0)

14
ADC12IFG14
rw-(0)

13
ADC12IFG13
rw-(0)

12
ADC12IFG12
rw-(0)

11
ADC12IFG11
rw-(0)

10
ADC12IFG10
rw-(0)

9
ADC12IFG9
rw-(0)

8
ADC12IFG8
rw-(0)

7
ADC12IFG7
rw-(0)

6
ADC12IFG6
rw-(0)

5
ADC12IFG5
rw-(0)

4
ADC12IFG4
rw-(0)

3
ADC12IFG3
rw-(0)

2
ADC12IFG2
rw-(0)

1
ADC12IFG1
rw-(0)

0
ADC12IFG0
rw-(0)

Table 34-15. ADC12IFGR0 Register Description
Bit

Field

Type

Reset

Description

15

ADC12IFG15

RW

0h

ADC12MEM15 interrupt flag. This bit is set when ADC12MEM15 is loaded with a
conversion result. The ADC12IFG15 bit is reset if ADC12MEM15 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

14

ADC12IFG14

RW

0h

ADC12MEM14 interrupt flag. This bit is set when ADC12MEM14 is loaded with a
conversion result. The ADC12IFG14 bit is reset if ADC12MEM14 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

13

ADC12IFG13

RW

0h

ADC12MEM13 interrupt flag. This bit is set when ADC12MEM13 is loaded with a
conversion result. The ADC12IFG13 bit is reset if ADC12MEM13 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

12

ADC12IFG12

RW

0h

ADC12MEM12 interrupt flag. This bit is set when ADC12MEM12 is loaded with a
conversion result. The ADC12IFG12 bit is reset if ADC12MEM12 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

11

ADC12IFG11

RW

0h

ADC12MEM11 interrupt flag. This bit is set when ADC12MEM11 is loaded with a
conversion result. The ADC12IFG11 bit is reset if ADC12MEM11 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

10

ADC12IFG10

RW

0h

ADC12MEM10 interrupt flag. This bit is set when ADC12MEM10 is loaded with a
conversion result. The ADC12IFG10 bit is reset if ADC12MEM10 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

9

ADC12IFG9

RW

0h

ADC12MEM9 interrupt flag. This bit is set when ADC12MEM9 is loaded with a
conversion result. The ADC12IFG9 bit is reset if ADC12MEM9 is accessed, or it
can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

8

ADC12IFG8

RW

0h

ADC12MEM8 interrupt flag. This bit is set when ADC12MEM8 is loaded with a
conversion result. The ADC12IFG8 bit is reset if ADC12MEM8 is accessed, or it
can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

905

ADC12_B Registers

www.ti.com

Table 34-15. ADC12IFGR0 Register Description (continued)
Bit

Field

Type

Reset

Description

7

ADC12IFG7

RW

0h

ADC12MEM7 interrupt flag. This bit is set when ADC12MEM7 is loaded with a
conversion result. The ADC12IFG7 bit is reset if ADC12MEM7 is accessed, or it
can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

6

ADC12IFG6

RW

0h

ADC12MEM6 interrupt flag. This bit is set when ADC12MEM6 is loaded with a
conversion result. The ADC12IFG6 bit is reset if ADC12MEM6 is accessed, or it
can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

5

ADC12IFG5

RW

0h

ADC12MEM5 interrupt flag. This bit is set when ADC12MEM5 is loaded with a
conversion result. The ADC12IFG5 bit is reset if ADC12MEM5 is accessed, or it
can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

4

ADC12IFG4

RW

0h

ADC12MEM4 interrupt flag. This bit is set when ADC12MEM4 is loaded with a
conversion result. The ADC12IFG4 bit is reset if ADC12MEM4 is accessed, or it
can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

3

ADC12IFG3

RW

0h

ADC12MEM3 interrupt flag. This bit is set when ADC12MEM3 is loaded with a
conversion result. The ADC12IFG3 bit is reset if ADC12MEM3 is accessed, or it
can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

2

ADC12IFG2

RW

0h

ADC12MEM2 interrupt flag. This bit is set when ADC12MEM2 is loaded with a
conversion result. The ADC12IFG2 bit is reset if ADC12MEM2 is accessed, or it
can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

1

ADC12IFG1

RW

0h

ADC12MEM1 interrupt flag. This bit is set when ADC12MEM1 is loaded with a
conversion result. The ADC12IFG1 bit is reset if ADC12MEM1 is accessed, or it
can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

0

ADC12IFG0

RW

0h

ADC12MEM0 interrupt flag. This bit is set when ADC12MEM0 is loaded with a
conversion result. The ADC12IFG0 bit is reset if ADC12MEM0 is accessed, or it
can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

906

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

34.3.13 ADC12IFGR1 Register (offset = 0Eh) [reset = 0000h]
ADC12_B Interrupt Flag 1 Register
Figure 34-26. ADC12IFGR1 Register
15
ADC12IFG31
rw-(0)

14
ADC12IFG30
rw-(0)

13
ADC12IFG29
rw-(0)

12
ADC12IFG28
rw-(0)

11
ADC12IFG27
rw-(0)

10
ADC12IFG26
rw-(0)

9
ADC12IFG25
rw-(0)

8
ADC12IFG24
rw-(0)

7
ADC12IFG23
rw-(0)

6
ADC12IFG22
rw-(0)

5
ADC12IFG21
rw-(0)

4
ADC12IFG20
rw-(0)

3
ADC12IFG19
rw-(0)

2
ADC12IFG18
rw-(0)

1
ADC12IFG17
rw-(0)

0
ADC12IFG16
rw-(0)

Table 34-16. ADC12IFGR1 Register Description
Bit

Field

Type

Reset

Description

15

ADC12IFG31

RW

0h

ADC12MEM31 interrupt flag. This bit is set when ADC12MEM31 is loaded with a
conversion result. The ADC12IFG31 bit is reset if ADC12MEM31 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

14

ADC12IFG30

RW

0h

ADC12MEM30 interrupt flag. This bit is set when ADC12MEM30 is loaded with a
conversion result. The ADC12IFG30 bit is reset if ADC12MEM30 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

13

ADC12IFG29

RW

0h

ADC12MEM29 interrupt flag. This bit is set when ADC12MEM29 is loaded with a
conversion result. The ADC12IFG29 bit is reset if ADC12MEM29 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

12

ADC12IFG28

RW

0h

ADC12MEM28 interrupt flag. This bit is set when ADC12MEM28 is loaded with a
conversion result. The ADC12IFG28 bit is reset if ADC12MEM28 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

11

ADC12IFG27

RW

0h

ADC12MEM27 interrupt flag. This bit is set when ADC12MEM27 is loaded with a
conversion result. The ADC12IFG27 bit is reset if ADC12MEM27 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

10

ADC12IFG26

RW

0h

ADC12MEM26 interrupt flag. This bit is set when ADC12MEM26 is loaded with a
conversion result. The ADC12IFG26 bit is reset if ADC12MEM26 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

9

ADC12IFG25

RW

0h

ADC12MEM25 interrupt flag. This bit is set when ADC12MEM25 is loaded with a
conversion result. The ADC12IFG25 bit is reset if ADC12MEM25 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

8

ADC12IFG24

RW

0h

ADC12MEM24 interrupt flag. This bit is set when ADC12MEM24 is loaded with a
conversion result. The ADC12IFG24 bit is reset if ADC12MEM24 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

907

ADC12_B Registers

www.ti.com

Table 34-16. ADC12IFGR1 Register Description (continued)
Bit

Field

Type

Reset

Description

7

ADC12IFG23

RW

0h

ADC12MEM23 interrupt flag. This bit is set when ADC12MEM23 is loaded with a
conversion result. The ADC12IFG23 bit is reset if ADC12MEM23 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

6

ADC12IFG22

RW

0h

ADC12MEM22 interrupt flag. This bit is set when ADC12MEM22 is loaded with a
conversion result. The ADC12IFG22 bit is reset if ADC12MEM22 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

5

ADC12IFG21

RW

0h

ADC12MEM21 interrupt flag. This bit is set when ADC12MEM21 is loaded with a
conversion result. The ADC12IFG21 bit is reset if ADC12MEM21 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

4

ADC12IFG20

RW

0h

ADC12MEM20 interrupt flag. This bit is set when ADC12MEM20 is loaded with a
conversion result. The ADC12IFG20 bit is reset if ADC12MEM20 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

3

ADC12IFG19

RW

0h

ADC12MEM19 interrupt flag. This bit is set when ADC12MEM19 is loaded with a
conversion result. The ADC12IFG19 bit is reset if ADC12MEM19 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

2

ADC12IFG18

RW

0h

ADC12MEM18 interrupt flag. This bit is set when ADC12MEM18 is loaded with a
conversion result. The ADC12IFG18 bit is reset if ADC12MEM18 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

1

ADC12IFG17

RW

0h

ADC12MEM17 interrupt flag. This bit is set when ADC12MEM17 is loaded with a
conversion result. The ADC12IFG17 bit is reset if ADC12MEM17 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

0

ADC12IFG16

RW

0h

ADC12MEM16 interrupt flag. This bit is set when ADC12MEM16 is loaded with a
conversion result. The ADC12IFG16 bit is reset if ADC12MEM16 is accessed, or
it can be reset with software.
0b = No interrupt pending
1b = Interrupt pending

908

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

34.3.14 ADC12IFGR2 Register (offset = 10h) [reset = 0000h]
ADC12_B Interrupt Flag 2 Register
Figure 34-27. ADC12IFGR2 Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

r0

4
ADC12OVIFG
rw-(0)

3
ADC12HIIFG
rw-(0)

2
ADC12LOIFG
rw-(0)

1
ADC12INIFG
rw-(0)

0
Reserved
r0

Reserved
r0

r0

7
Reserved
r0

r0

6
5
ADC12RDYIFG ADC12TOVIFG
rw-(0)
rw-(0)

Table 34-17. ADC12IFGR2 Register Description
Bit

Field

Type

Reset

Description

15-7

Reserved

R

0h

Reserved. Always reads as 0.

6

ADC12RDYIFG

RW

0h

ADC12_B local reference buffer ready interrupt flag. The flag does not occur if
the sample trigger has not been asserted.
0b = No interrupt pending
1b = Interrupt pending

5

ADC12TOVIFG

RW

0h

ADC12_B conversion-time-overflow interrupt flag.
0b = No interrupt pending
1b = Interrupt pending

4

ADC12OVIFG

RW

0h

ADC12MEMx overflow-interrupt flag.
0b = No interrupt pending
1b = Interrupt pending

3

ADC12HIIFG

RW

0h

Interrupt flag for exceeding the upper limit interrupt of the window comparator for
ADC12MEMx result register.
0b = No interrupt pending
1b = Interrupt pending

2

ADC12LOIFG

RW

0h

Interrupt flag for falling short of the lower limit interrupt of the window comparator
for the ADC12MEMx result register.
0b = No interrupt pending
1b = Interrupt pending

1

ADC12INIFG

RW

0h

Interrupt flag for the ADC12MEMx result register being greater than the
ADC12LO threshold and below the ADC12HI threshold interrupt.
0b = No interrupt pending
1b = Interrupt pending

0

Reserved

R

0h

Reserved. Always reads as 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

909

ADC12_B Registers

www.ti.com

34.3.15 ADC12IV Register (offset = 18h) [reset = 0000h]
ADC12_B Interrupt Vector
Figure 34-28. ADC12IV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

rw-(0)

rw-(0)

rw-(0)

r0

ADC12IVx
r0

r0

r0

r0

7

6

5

4
ADC12IVx

r0

rw-(0)

rw-(0)

rw-(0)

Table 34-18. ADC12IV Register Description
Bit

Field

Type

Reset

Description

15-0

ADC12IVx

RW

0h

ADC12_B interrupt vector value. Writing to this register clears all pending
interrupt flags.
000h = Interrupt Source: No interrupt pending, Interrupt Flag: None
002h = Interrupt Source: ADC12MEMx overflow, Interrupt Flag: ADC12OVIFG,
Interrupt Priority: Highest
004h = Interrupt Source: Conversion time overflow, Interrupt Flag:
ADC12TOVIFG
006h = Interrupt Source: ADC12 window high interrupt flag, Interrupt Flag:
ADC12HIIFG
008h = Interrupt Source: ADC12 window low interrupt flag, Interrupt Flag:
ADC12LOIFG
00Ah = Interrupt Source: ADC12 in-window interrupt flag, Interrupt Flag:
ADC12INIFG
00Ch = Interrupt Source: ADC12MEM0 interrupt flag, Interrupt Flag: ADC12IFG0
00Eh = Interrupt Source: ADC12MEM1 interrupt flag, Interrupt Flag: ADC12IFG1
010h = Interrupt Source: ADC12MEM2 interrupt flag, Interrupt Flag: ADC12IFG2
012h = Interrupt Source: ADC12MEM3 interrupt flag, Interrupt Flag: ADC12IFG3
014h = Interrupt Source: ADC12MEM4 interrupt flag, Interrupt Flag: ADC12IFG4
016h = Interrupt Source: ADC12MEM5 interrupt flag, Interrupt Flag: ADC12IFG5
018h = Interrupt Source: ADC12MEM6 interrupt flag, Interrupt Flag: ADC12IFG6
01Ah = Interrupt Source: ADC12MEM7 interrupt flag, Interrupt Flag: ADC12IFG7
01Ch = Interrupt Source: ADC12MEM8 interrupt flag, Interrupt Flag: ADC12IFG8
01Eh = Interrupt Source: ADC12MEM9 interrupt flag, Interrupt Flag: ADC12IFG9
020h = Interrupt Source: ADC12MEM10 interrupt flag, Interrupt Flag:
ADC12IFG10
022h = Interrupt Source: ADC12MEM11 interrupt flag, Interrupt Flag:
ADC12IFG11
024h = Interrupt Source: ADC12MEM12 interrupt flag, Interrupt Flag:
ADC12IFG12
026h = Interrupt Source: ADC12MEM13 interrupt flag, Interrupt Flag:
ADC12IFG13
028h = Interrupt Source: ADC12MEM14 interrupt flag, Interrupt Flag:
ADC12IFG14
02Ah = Interrupt Source: ADC12MEM15 interrupt flag, Interrupt Flag:
ADC12IFG15
02Ch = Interrupt Source: ADC12MEM16 interrupt flag, Interrupt Flag:
ADC12IFG16
02Eh = Interrupt Source: ADC12MEM17 interrupt flag, Interrupt Flag:
ADC12IFG17
030h = Interrupt Source: ADC12MEM18 interrupt flag, Interrupt Flag:
ADC12IFG18

910

ADC12_B

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B Registers

www.ti.com

Table 34-18. ADC12IV Register Description (continued)
Bit

Field

Type

Reset

Description
032h = Interrupt Source: ADC12MEM19 interrupt flag, Interrupt Flag:
ADC12IFG19
034h = Interrupt Source: ADC12MEM20 interrupt flag, Interrupt Flag:
ADC12IFG20
036h = Interrupt Source: ADC12MEM21 interrupt flag, Interrupt Flag:
ADC12IFG21
038h = Interrupt Source: ADC12MEM22 interrupt flag, Interrupt Flag:
ADC12IFG22
03Ah = Interrupt Source: ADC12MEM23 interrupt flag, Interrupt Flag:
ADC12IFG23
03Ch = Interrupt Source: ADC12MEM24 interrupt flag, Interrupt Flag:
ADC12IFG24
03Eh = Interrupt Source: ADC12MEM25 interrupt flag, Interrupt Flag:
ADC12IFG25
040h = Interrupt Source: ADC12MEM26 interrupt flag, Interrupt Flag:
ADC12IFG26
042h = Interrupt Source: ADC12MEM27 interrupt flag, Interrupt Flag:
ADC12IFG27
044h = Interrupt Source: ADC12MEM28 interrupt flag, Interrupt Flag:
ADC12IFG28
046h = Interrupt Source: ADC12MEM29 interrupt flag, Interrupt Flag:
ADC12IFG29
048h = Interrupt Source: ADC12MEM30 interrupt flag, Interrupt Flag:
ADC12IFG30
04Ah = Interrupt Source: ADC12MEM31 interrupt flag, Interrupt Flag:
ADC12IFG31
04Ch = Interrupt Source: ADC12RDYIFG interrupt flag, Interrupt Flag:
ADC12RDYIFG

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ADC12_B

911

Chapter 35
SLAU367O – October 2012 – Revised December 2017

Comparator E (COMP_E) Module
Comparator_E is an analog voltage comparator. This chapter describes the Comparator_E. Comparator_E
supports general comparator functionality for up to 16 channels.
Topic

35.1
35.2
35.3

912

...........................................................................................................................

Page

COMP_E Introduction........................................................................................ 913
COMP_E Operation ........................................................................................... 914
COMP_E Registers ........................................................................................... 920

Comparator E (COMP_E) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

COMP_E Introduction

www.ti.com

35.1 COMP_E Introduction
The COMP_E module supports precision slope analog-to-digital conversions, supply voltage supervision,
and monitoring of external analog signals.
Features of COMP_E include:
• Inverting and noninverting terminal input multiplexer
• Software-selectable RC filter for the comparator output
• Output provided to Timer_A capture input
• Software control of the port input buffer
• Interrupt capability
• Selectable reference voltage generator and voltage hysteresis generator
• Reference voltage input from shared reference
• Ultra-low-power comparator mode
• Interrupt driven measurement system for low-power operation support
Figure 35-1 shows the Comparator_E block diagram.
CEIPSEL
C0
C1
C2
C3

0000
0001
VCC
CEON

CEEX

C12
C13
C14
C15

1110
1111

CEF
+

0
1

CESHORT
-

0
1

Set CEIFG
CCI1B

CEIMSEL
C0
C1
C2
C3

C12
C13
C14
C15

0000
0001

COUT
CERSEL

CEOUTPOL

CEREF1 CEREF0 CERS
5
2
5
Reference Voltage
Generator

from shared
reference

1110
1111

Figure 35-1. Comparator_E Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Comparator E (COMP_E) Module

913

COMP_E Operation

www.ti.com

35.2 COMP_E Operation
The COMP_E module is configured by user software. The setup and operation of COMP_E is discussed
in the following sections.

35.2.1 Comparator
The comparator compares the analog voltages at the positive (+) and negative (–) input terminals. If the +
terminal is more positive than the – terminal, the comparator output CEOUT is high. The comparator can
be switched on or off using control bit CEON. The comparator should be switched off when not in use to
reduce current consumption. When the comparator is off, CEOUT is low when CEOUTPOL bit is set to 0,
and CEOUT is high when CEOUTPOL bit is set to 1.
To optimize current consumption for the application, the lowest power mode that meets the comparator
speed requirements (see the device-specific data sheet for the comparator propagation delay and
response time) should be selected with the CEPWRMD bits. The CEPWRMD bits default to 0x0, which is
the highest power and fastest speed. CEPWRMD = 0x2 is the lowest power and slowest speed option.

35.2.2 Analog Input Switches
The analog input switches connect or disconnect the two comparator input terminals to associated port
pins using the CEIPSELx and CEIMSELx bits. The comparator terminal inputs can be controlled
individually. The CEIPSELx and CEIMSELx bits allow:
• Application of an external signal to the V+ and V– terminals of the comparator
• Application of an external current source (for example, a resistor) to the V+ or V– terminal of the
comparator
• Mapping of both terminals of the internal multiplexer to the outside
Internally, the input switch is constructed as a T-switch to suppress distortion in the signal path.
NOTE:

Comparator Input Connection
When the comparator is on, the input terminals must be connected to a signal, power, or
ground. Otherwise, floating levels may cause unexpected interrupts and increased current
consumption.

The CEEX bit controls the input multiplexer, permuting the input signals of the comparator's V+ and V–
terminals. Additionally, when the comparator terminals are permuted, the output signal from the
comparator is also inverted. This allows the user to determine or compensate for the comparator input
offset voltage.

35.2.3 Port Logic
The Px.y pins that are associated with a comparator channel are enabled by the CEIPSELx or CEIMSELx
bits to disable the digital components while the terminals are used as comparator inputs. Only one of the
comparator input pins is selected as input to the comparator by the input multiplexer at a time.

35.2.4 Input Short Switch
The CESHORT bit shorts the Comparator_E inputs. This can be used to build a simple sample-and-hold
for the comparator as shown in Figure 35-2.

914

Comparator E (COMP_E) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

COMP_E Operation

www.ti.com

0000

Sampling capacitor, CS

1100
1101
1110
1111
CESHORT
0000
0001
0010
0011

Analog Inputs

1100
1101
1110
1111

Figure 35-2. Comparator_E Sample-And-Hold
The required sampling time is proportional to the size of the sampling capacitor RS, the resistance of the
input switches in series with the short switch (RI), and the resistance of the external source (RS). The
sampling capacitor CS should be greater than 100 pF. The time constant, Tau, to charge the sampling
capacitor CS can be calculated with the following equation:
Tau = (RI + RS) × CS
Depending on the required accuracy, 3 to 10 Tau should be used as a sampling time. With 3 Tau, the
sampling capacitor is charged to approximately 95% of the input signal's voltage level; with 5 Tau, it is
charged to more than 99%; and with 10 Tau, the sampled voltage is sufficient for 12-bit accuracy.

35.2.5 Output Filter
The output of the comparator can be used with or without internal filtering. When control bit CEF is set, the
output is filtered with an on-chip RC filter. The delay of the filter can be adjusted in four steps with the
CEFDLY bit.
All comparator outputs oscillate if the voltage difference across the input terminals is small (see Figure 353). Internal and external parasitic effects and cross coupling on and between signal lines, power supply
lines, and other parts of the system are responsible for this behavior. The comparator output oscillation
reduces the accuracy and resolution of the comparison result. Enable the output filter to reduce errors
associated with comparator oscillation.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Comparator E (COMP_E) Module

915

COMP_E Operation

www.ti.com

+ Terminal
Comparator Inputs

− Terminal

Comparator Output
Unfiltered at CEOUT
Comparator Output
Filtered at CEOUT

Figure 35-3. RC-Filter Response at the Output of the Comparator

35.2.6 Reference Voltage Generator
Figure 35-4 shows the Comparator_E reference generator block diagram.
VCC

CEREFLx
2

CEON

from the
REF module

00, 11
10 01
CERSx

2

CEREF1

CEREF0

CEMRVL
CEMRVS

1

0

5

CERS = 11

5

1
VREF

1

0

0

1
0

VREF1

VREF0

Figure 35-4. Reference Generator Block Diagram
The interrupt flags of the comparator and the comparator output are unchanged while the reference
voltage from the shared reference is settling. If CEREFLx is changed from a nonzero value to another
nonzero value, the interrupt flags may show unpredictable behavior. TI recommends setting CEREFLx =
00 before changing the CEREFLx settings.

916

Comparator E (COMP_E) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

COMP_E Operation

www.ti.com

The voltage reference generator is used to generate VREF, which can be applied to either comparator
input terminal. The CEREF1x (VREF1) and CEREF0x (VREF0) bits control the output of the voltage
generator. The CERSEL bit selects the comparator terminal to which VREF is applied. If external signals
are applied to both comparator input terminals, the internal reference generator should be turned off to
reduce current consumption. The voltage reference generator can generate a fraction of the device VCC or
of the voltage reference of the integrated precision voltage reference source. Vref1 is used while CEOUT
is 1, and Vref0 is used while CEOUT is 0. This allows the generation of a hysteresis without using external
components.

35.2.7 Port Disable Register (CEPD)
The comparator input and output functions are multiplexed with I/O port pins, which are digital CMOS
gates. When analog signals are applied to digital CMOS gates, parasitic current can flow from VCC to
GND. This parasitic current occurs if the input voltage is near the transition level of the gate. Disabling the
port pin buffer eliminates the parasitic current flow and therefore reduces overall current consumption.
The CEPDx bits, when set, disable the corresponding Px.y input buffer (see Figure 35-5). When current
consumption is critical, any Px.y pin connected to analog signals should be disabled with the associated
CEPDx bits.
Selecting an input pin to the comparator multiplexer with the CEIPSEL or CEIMSEL bits automatically
disables the input buffer for that pin, regardless of the state of the associated CEPDx bit.
VCC

VI

VO

ICC

ICC

VI

VCC

0

CEPD.x = 1

VCC

VSS

Figure 35-5. Transfer Characteristic and Power Dissipation in a CMOS Inverter and Buffer

35.2.8 Comparator_E Interrupts
One interrupt flag and one interrupt vector are associated with the Comparator_E.
The interrupt flag CEIFG is set on either the rising or falling edge of the comparator output, selected by
the CEIES bit. If both the CEIE and the GIE bits are set, then the CEIFG interrupt flag generates an
interrupt request.

35.2.9 Comparator_E Used to Measure Resistive Elements
The Comparator_E can be optimized to precisely measure resistive elements using single slope analogto-digital conversion. For example, temperature can be converted into digital data using a thermistor, by
comparing the thermistor's capacitor discharge time to that of a reference resistor as shown in Figure 356. A reference resistor Rref is compared to Rmeas.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Comparator E (COMP_E) Module

917

COMP_E Operation

www.ti.com
Rref
Px.x
Rmeas
Px.y
CE0

+

Capture
Input Of a Timer

VREF

Figure 35-6. Temperature Measurement System
The resources used to calculate the temperature sensed by Rmeas are:
• Two digital I/O pins charge and discharge the capacitor.
• I/O is set to output high (VCC) to charge capacitor, reset to discharge.
• I/O is switched to high-impedance input with CEPDx set when not in use.
• One output charges and discharges the capacitor through Rref.
• One output discharges capacitor through Rmeas.
• The + terminal is connected to the positive terminal of the capacitor.
• The – terminal is connected to a reference level, for example 0.25 × VCC.
• The output filter should be used to minimize switching noise.
• CEOUT is used to gate a timer capturing capacitor discharge time.
More than one resistive element can be measured. Additional elements are connected to CE0 with
available I/O pins and switched to high impedance when not being measured.
The thermistor measurement is based on a ratiometric conversion principle. The ratio of two capacitor
discharge times is calculated as shown in Figure 35-7.
VC
VCC or VREF0

Rmeas
Rref

VREF1

Phase I:
Charge

Phase II:
Discharge

Phase III:
Charge

tref

Phase IV
Discharge

t

tmeas

Figure 35-7. Timing for Temperature Measurement Systems
The VCC voltage and the capacitor value should remain constant during the conversion but are not critical,
because they cancel in the ratio:

918

Comparator E (COMP_E) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

COMP_E Operation

www.ti.com

Nmeas
=
Nref

–Rmeas × C × ln

Vref1
VCC

–Rref × C × ln

Vref1
VCC

Nmeas Rmeas
=
Nref
Rref
Rmeas = Rref ×

Nmeas
Nref

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Comparator E (COMP_E) Module

919

COMP_E Registers

www.ti.com

35.3 COMP_E Registers
The Comparator_E registers are listed in Table 35-1. The base address of the Comparator_E module can
be found in each device-specific data sheet.
Table 35-1. COMP_E Registers

920

Offset

Acronym

Register Name

Type

Access

Reset

Section

00h

CECTL0

Comparator_E control register 0

Read/write

Word

0000h

Section 35.3.1

02h

CECTL1

Comparator_E control register 1

Read/write

Word

0000h

Section 35.3.2

04h

CECTL2

Comparator_E control register 2

Read/write

Word

0000h

Section 35.3.3

06h

CECTL3

Comparator_E control register 3

Read/write

Word

0000h

Section 35.3.4

0Ch

CEINT

Comparator_E interrupt register

Read/write

Word

0000h

Section 35.3.5

0Eh

CEIV

Comparator_E interrupt vector word

Read

Word

0000h

Section 35.3.6

Comparator E (COMP_E) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

COMP_E Registers

www.ti.com

35.3.1 CECTL0 Register (offset = 00h) [reset = 0000h]
Comparator_E Control Register 0
Figure 35-8. CECTL0 Register
15
CEIMEN
rw-0
7
CEIPEN
rw-0

14

13
Reserved
r-0

r-0
6

5
Reserved
r-0

r-0

12

11

10

9

8

rw-0

rw-0

1

0

rw-0

rw-0

CEIMSEL
r-0

rw-0

rw-0

4

3

2
CEIPSEL

r-0

rw-0

rw-0

Table 35-2. CECTL0 Register Description
Bit

Field

Type

Reset

Description

15

CEIMEN

RW

0h

Channel input enable for the – terminal of the comparator.
0b = Selected analog input channel for V– terminal is disabled.
1b = Selected analog input channel for V– terminal is enabled. The internal
reference voltage is disabled for this channel.

14-12

Reserved

R

0h

Reserved. Reads as 0.

11-8

CEIMSEL

RW

0h

Channel input selected for the – terminal of the comparator if CEIMEN is set to
1.

7

CEIPEN

RW

0h

Channel input enable for the V+ terminal of the comparator.
0b = Selected analog input channel for V+ terminal is disabled.
1b = Selected analog input channel for V+ terminal is enabled. The internal
reference voltage is disabled for this channel.

6-4

Reserved

R

0h

Reserved. Reads as 0.

3-0

CEIPSEL

RW

0h

Channel input selected for the V+ terminal of the comparator if CEIPEN is set to
1.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Comparator E (COMP_E) Module

921

COMP_E Registers

www.ti.com

35.3.2 CECTL1 Register (offset = 02h) [reset = 0000h]
Comparator_E Control Register 1
Figure 35-9. CECTL1 Register
15

14
Reserved
r-0

r-0
7

13

6
CEFDLY

rw-0

rw-0

r-0

12
CEMRVS
rw-0

11
CEMRVL
rw-0

10
CEON
rw-0

9

8

rw-0

rw-0

5
CEEX
rw-0

4
CESHORT
rw-0

3
CEIES
rw-0

2
CEF
rw-0

1
CEOUTPOL
rw-0

0
CEOUT
r-0

CEPWRMD

Table 35-3. CECTL1 Register Description
Bit

Field

Type

Reset

Description

15-13

Reserved

R

0h

Reserved. Reads as 0.

12

CEMRVS

RW

0h

This bit defines if the comparator output selects between VREF0 or VREF1 if
CERS = 00, 01, or 10.
0b = Comparator output state selects between VREF0 or VREF1.
1b = CEMRVL selects between VREF0 or VREF1.

11

CEMRVL

RW

0h

This bit is valid of CEMRVS is set to 1.
0b = VREF0 is selected if CERS = 00, 01, or 10
1b = VREF1 is selected if CERS = 00, 01, or 10

10

CEON

RW

0h

On. This bit turns the comparator on. When the comparator is turned off the
Comparator_E consumes no power.
0b = Off
1b = On

9-8

CEPWRMD

RW

0h

Power mode
00b = High-speed mode
01b = Normal mode
10b = Ultra-low power mode
11b = Reserved

7-6

CEFDLY

RW

0h

Filter delay. The filter delay can be selected in four steps. See the device-specific
data sheet for details.
00b = Typical filter delay of approximately 450 ns
01b = Typical filter delay of approximately 900 ns
10b = Typical filter delay of approximately 1800 ns
11b = Typical filter delay of approximately 3600 ns

5

CEEX

RW

0h

Exchange. This bit permutes the comparator 0 inputs and inverts the comparator
0 output.
0b = Exchange off
1b = Exchange on

4

CESHORT

RW

0h

Input short. This bit shorts the + and – input terminals.
0b = Inputs not shorted
1b = Inputs shorted

3

CEIES

RW

0h

Interrupt edge select for CEIIFG and CEIFG. Changing CEIES might set CEIFG.
0b = Rising edge for CEIFG, falling edge for CEIIFG
1b = Falling edge for CEIFG, rising edge for CEIIFG

2

CEF

RW

0h

Output filter. Available if CEPWRMD = 00 or 01.
0b = Comparator_E output is not filtered
1b = Comparator_E output is filtered

1

CEOUTPOL

RW

0h

Output polarity. This bit defines the CEOUT polarity.
0b = Noninverted
1b = Inverted

0

CEOUT

R

0h

Output value. This bit reflects the value of the Comparator_E output. Writing this
bit has no effect on the comparator output.

922

Comparator E (COMP_E) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

COMP_E Registers

www.ti.com

35.3.3 CECTL2 Register (offset = 04h) [reset = 0000h]
Comparator_E Control Register 2
Figure 35-10. CECTL2 Register
15
CEREFACC
rw-0
7

14

13

12

11

rw-0

rw-0

rw-0

rw-0

6

5
CERSEL
rw-0

4

3

rw-0

rw-0

CEREFL

CERS
rw-0

rw-0

10
CEREF1
rw-0
2
CEREF0
rw-0

9

8

rw-0

rw-0

1

0

rw-0

rw-0

Table 35-4. CECTL2 Register Description
Bit

Field

Type

Reset

Description

15

CEREFACC

RW

0h

Reference accuracy. A reference voltage is requested only if CEREFL > 0.
0b = Static mode
1b = Clocked (low power, low accuracy) mode

14-13

CEREFL

RW

0h

Reference voltage level
00b = Reference amplifier is disabled. No reference voltage is requested.
01b = 1.2 V is selected as shared reference voltage input
10b = 2.0 V is selected as shared reference voltage input
11b = 2.5 V is selected as shared reference voltage input

12-8

CEREF1

RW

0h

Reference resistor tap 1. This register defines the tap of the resistor string while
CEOUT = 1.

7-6

CERS

RW

0h

Reference source. This bit define if the reference voltage is derived from VCC or
from the precise shared reference.
00b = No current is drawn by the reference circuitry.
01b = VCC applied to the resistor ladder
10b = Shared reference voltage applied to the resistor ladder.
11b = Shared reference voltage supplied to VCCREF. Resistor ladder is off.

5

CERSEL

RW

0h

Reference select. This bit selects to which terminal the VCCREF is applied.
When CEEX = 0:
0b = When CEEX = 0: VREF is applied to the V+ terminal; When CEEX = 1:
VREF is applied to the V– terminal
1b = When CEEX = 0: VREF is applied to the V– terminal; When CEEX = 1:
VREF is applied to the V+ terminal

4-0

CEREF0

RW

0h

Reference resistor tap 0. This register defines the tap of the resistor string while
CEOUT = 0.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Comparator E (COMP_E) Module

923

COMP_E Registers

www.ti.com

35.3.4 CECTL3 Register (offset = 06h) [reset = 0000h]
Comparator_E Control Register 3
Figure 35-11. CECTL3 Register
15
CEPD15
rw-(0)

14
CEPD14
rw-(0)

13
CEPD13
rw-(0)

12
CEPD12
rw-(0)

11
CEPD11
rw-(0)

10
CEPD10
rw-(0)

9
CEPD9
rw-(0)

8
CEPD8
rw-(0)

7
CEPD7
rw-(0)

6
CEPD6
rw-(0)

5
CEPD5
rw-(0)

4
CEPD4
rw-(0)

3
CEPD3
rw-(0)

2
CEPD2
rw-(0)

1
CEPD1
rw-(0)

0
CEPD0
rw-(0)

Table 35-5. CECTL3 Register Description
Bit

Field

Type

Reset

Description

15

CEPD15

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD15 disables the port of the
comparator channel 15.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

14

CEPD14

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD14 disables the port of the
comparator channel 14.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

13

CEPD13

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD13 disables the port of the
comparator channel 13.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

12

CEPD12

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD12 disables the port of the
comparator channel 12.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

11

CEPD11

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD11 disables the port of the
comparator channel 11.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

10

CEPD10

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD10 disables the port of the
comparator channel 10.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

9

CEPD9

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD9 disables the port of the
comparator channel 9.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

8

CEPD8

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD8 disables the port of the
comparator channel 8.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

7

CEPD7

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD7 disables the port of the
comparator channel 7.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

924

Comparator E (COMP_E) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

COMP_E Registers

www.ti.com

Table 35-5. CECTL3 Register Description (continued)
Bit

Field

Type

Reset

Description

6

CEPD6

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD6 disables the port of the
comparator channel 6.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

5

CEPD5

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD5 disables the port of the
comparator channel 5.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

4

CEPD4

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD4 disables the port of the
comparator channel 4.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

3

CEPD3

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD3 disables the port of the
comparator channel 3.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

2

CEPD2

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD2 disables the port of the
comparator channel 2.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

1

CEPD1

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD1 disables the port of the
comparator channel 1.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

0

CEPD0

RW

0h

Port disable. These bits individually disable the input buffer for the pins of the
port associated with Comparator_E. The bit CEPD0 disables the port of the
comparator channel 0.
0b = The input buffer is enabled.
1b = The input buffer is disabled.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Comparator E (COMP_E) Module

925

COMP_E Registers

www.ti.com

35.3.5 CEINT Register (offset = 0Ch) [reset = 0000h]
Comparator_E Interrupt Control Register
Figure 35-12. CEINT Register
15

14
Reserved
r-0

r-0
7

13
r-0

6
Reserved
r-0

r-0

12
CERDYIE
rw-0

5

4
CERDYIFG
rw-0

r-0

11

10
Reserved

r-0

r-0

3

2
Reserved

r-0

r-0

9
CEIIE
rw-0

8
CEIE
rw-0

1
CEIIFG
rw-0

0
CEIFG
rw-0

Table 35-6. CEINT Register Description
Bit

Field

Type

Reset

Description

15-13

Reserved

R

0h

Reserved. Reads as 0.

12

CERDYIE

RW

0h

Comparator_E ready interrupt enable.
0b = Interrupt is disabled
1b = Interrupt is enabled

11-10

Reserved

R

0h

Reserved. Reads as 0.

9

CEIIE

RW

0h

Comparator_E output interrupt enable inverted polarity
0b = Interrupt is disabled
1b = Interrupt is enabled

8

CEIE

RW

0h

Comparator_E output interrupt enable
0b = Interrupt is disabled
1b = Interrupt is enabled

7-5

Reserved

R

0h

Reserved. Reads as 0.

4

CERDYIFG

RW

0h

Comparator_E ready interrupt flag. This bit is set if the Comparator_E reference
sources are settled and the Comparator_E module is operational. This bit has to
be cleared by software.
0b = No interrupt pending.
1b = Output interrupt pending.

3-2

Reserved

R

0h

Reserved. Reads as 0.

1

CEIIFG

RW

0h

Comparator_E output inverted interrupt flag. The bit CEIES defines the transition
of the output setting this bit.
0b = No interrupt pending.
1b = Output interrupt pending.

0

CEIFG

RW

0h

Comparator_E output interrupt flag. The bit CEIES defines the transition of the
output setting this bit.
0b = No interrupt pending.
1b = Output interrupt pending.

926

Comparator E (COMP_E) Module

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

COMP_E Registers

www.ti.com

35.3.6 CEIV Register (offset = 0Eh) [reset = 0000h]
Comparator_E Interrupt Vector Word Register
Figure 35-13. CEIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r0

r-0

r-0

r0

CEIV
r0

r0

r0

r0

7

6

5

4
CEIV

r0

r0

r0

r0

Table 35-7. CEIV Register Description
Bit

Field

Type

Reset

Description

15-0

CEIV

R

0h

Comparator_E interrupt vector word register. The interrupt vector register reflects
only interrupt flags whose interrupt enable bit are set. Reading the CEIV register
clears the pending interrupt flag with the highest priority.
00h = No interrupt pending
02h = Interrupt Source: CEOUT interrupt; Interrupt Flag: CEIFG; Interrupt
Priority: Highest
04h = Interrupt Source: CEOUT interrupt inverted polarity; Interrupt Flag: CEIIFG
06h = Reserved
08h = Reserved
0Ah = Interrupt Source: Comparator ready interrupt; Interrupt Flag: CERDYIFG;
Interrupt Priority: Lowest

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Comparator E (COMP_E) Module

927

Chapter 36
SLAU367O – October 2012 – Revised December 2017

LCD_C Controller
The LCD_C controller drives static and 2-mux to 8-mux LCDs. This chapter describes the LCD_C
controller. The differences between LCD_B and LCD_C are listed in Table 36-1.
Topic

36.1
36.2
36.3

928

...........................................................................................................................

Page

LCD_C Introduction .......................................................................................... 929
LCD_C Operation.............................................................................................. 931
LCD_C Registers .............................................................................................. 947

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Introduction

www.ti.com

36.1 LCD_C Introduction
The LCD_C controller directly drives LCD displays by automatically creating the ac segment and common
voltage signals. The LCD_C controller can support static and 2-mux to 8-mux LCD glasses.
The LCD_C controller features are:
• Display memory
• Automatic signal generation
• Configurable frame frequency
• Blinking of individual segments with separate blinking memory for static, and 2- to 4-mux LCDs
• Blinking of complete display for 5- to 8-mux LCDs
• Regulated charge pump up to 3.44 V (typical)
• Contrast control by software
• Support for the following types of LCDs
– Static
– 2-mux, 1/2 bias or 1/3 bias
– 3-mux, 1/2 bias or 1/3 bias
– 4-mux, 1/2 bias or 1/3 bias
– 5-mux, 1/3 bias
– 6-mux, 1/3 bias
– 7-mux, 1/3 bias
– 8-mux, 1/3 bias
The differences between LCD_B and LCD_C are listed in Table 36-1.
Table 36-1. Differences Between LCD_B and LCD_C
LCD_B

LCD_C

Supported types of LCDs

Feature

Static, 2-, 3-, 4-mux

Static, 2-, 3-, 4-, 5-, 6-, 7, 8-mux

Maximum VLCDx settings

001111b

001111b

Maximum LCD voltage (VLCD,typ)
Supported biasing schemes for 5-mux to 8-mux

3.44 V

3.44 V

5- to 8-mux not supported

1/3 biasing

Figure 36-1 shows the LCD controller block diagram.
NOTE:

Maximum LCD Segment Control
The maximum number of segment lines and memory registers available differs with device.
See the device-specific data sheet for available segment pins and the maximum number of
segments supported.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

929

LCD_C Introduction

www.ti.com
LCDCLRM

LCDCLRBM

Blinking
Memory
Registers
LCDBMx
(only static,
2- to 4-mux)

LCDSx LCDSON LCDLP

LCD
Memory
Registers
LCDMx

Segment
Output
Control

SEG1
Mux

S1

SEG0
Mux

S0

COM7
COM6
LCDBLKMODx
LCDDISP

COM5

Blinking and
Display Control

Blinking
Frequency Divider

Common
Output
Control

COM4
COM3

BLKCLK

COM2
COM1
COM0

LCDBLKPREx LCDBLKDIVx
LCDSSEL

ACLK

0

VLOCLK

1

LCD Frequency
Divider

VA VB VC VD
LCDON

LCDPREx LCDDIVx

fLCD

V1
Analog
Voltage
Multiplexer

Timing
Generator

VLCD

V2
V3
V4
V5

LCDMXx
OSCOFF
(from SR)
LCD
LCDMXx REXT
VLCDREFx

R03EXT

VLCDx

V1

4

V2

VLCD

Regulated Charge
Pump/
Contrast Control

LCD Bias Generator

V3
V4
V5

LCDCPEN

LCDCAP/R33
R23
LCDREF/R13
R03

LCD LCD2B
EXTBIAS

Figure 36-1. LCD Controller Block Diagram

930

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Operation

www.ti.com

36.2 LCD_C Operation
The LCD controller is configured with user software. The setup and operation of the LCD controller is
discussed in the following sections.

36.2.1 LCD Memory
The LCD memory organization differs slightly depending on the mode.
Each memory bit corresponds to one LCD segment or is not used, depending on the mode. To turn on an
LCD segment, its corresponding memory bit is set.
The memory can also be accessed word-wise using the even addresses starting at LCDM1, LCDM3, ...
Setting the bit LCDCLRM clears all LCD memory registers at the next frame boundary. It is reset
automatically after the registers are cleared.
36.2.1.1 Static and 2-Mux to 4-Mux Mode
For static and 2-mux to 4-mux modes, one byte of the LCD memory contains the information for two
segment lines. Figure 36-2 shows an example LCD memory map for these modes with 160 segments.
Associated
Common Pins
Register

3

2

1

0

3

2

1

0
Associated
Segment Pins
n

LCDM20

7
--

--

--

--

--

--

--

0
--

38

39, 38

LCDM19

--

--

--

--

--

--

--

--

36

37, 36

LCDM18

--

--

--

--

--

--

--

--

34

35, 34

LCDM17

--

--

--

--

--

--

--

--

32

33, 32

LCDM16

--

--

--

--

--

--

--

--

30

31, 30

LCDM15

--

--

--

--

--

--

--

--

28

29, 28

LCDM14

--

--

--

--

--

--

--

--

26

27, 26

LCDM13

--

--

--

--

--

--

--

--

24

25, 24

LCDM12

--

--

--

--

--

--

--

--

22

23, 22

LCDM11

--

--

--

--

--

--

--

--

20

21, 20

LCDM10

--

--

--

--

--

--

--

--

18

19, 18

LCDM9

--

--

--

--

--

--

--

--

16

17, 16

LCDM8

--

--

--

--

--

--

--

--

14

15, 14

LCDM7

--

--

--

--

--

--

--

--

12

13, 12

LCDM6

--

--

--

--

--

--

--

--

10

1, 10

LCDM5

--

--

--

--

--

--

--

--

8

9, 8

LCDM4

--

--

--

--

--

--

--

--

6

7, 6

LCDM3

--

--

--

--

--

--

--

--

4

5, 4

LCDM2

--

--

--

--

--

--

--

--

2

3, 2

LCDM1

--

--

--

--

--

--

--

--

0

1, 0

Sn+1

Sn

Figure 36-2. LCD Memory for Static and 2-Mux to 4-Mux Mode - Example for 160 Segments

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

931

LCD_C Operation

www.ti.com

36.2.1.2 5-Mux to 8-Mux Mode
For 5-mux to 8-mux modes, one byte of the LCD memory contains the information for one segment line.
Figure 36-3 shows an example LCD memory map for these modes with 160 segments.
Associated
Common Pins

7

6

5

4

3

2

1

0
Associated
Segment Pins

Register
LCDM20

7
--

--

--

--

--

--

--

0
--

LCDM19

--

--

--

--

--

--

--

LCDM18

--

--

--

--

--

--

LCDM17

--

--

--

--

--

--

n
19

19

--

18

18

--

--

17

17

--

--

16

16

LCDM16

--

--

--

--

--

--

--

--

15

15

LCDM15

--

--

--

--

--

--

--

--

14

14

LCDM14

--

--

--

--

--

--

--

--

13

13

LCDM13

--

--

--

--

--

--

--

--

12

12

LCDM12

--

--

--

--

--

--

--

--

11

11

LCDM11

--

--

--

--

--

--

--

--

10

10

LCDM10

--

--

--

--

--

--

--

--

9

9

LCDM9

--

--

--

--

--

--

--

--

8

8

LCDM8

--

--

--

--

--

--

--

--

7

7

LCDM7

--

--

--

--

--

--

--

--

6

6

LCDM6

--

--

--

--

--

--

--

--

5

5

LCDM5

--

--

--

--

--

--

--

--

4

4

3

3

LCDM4

--

--

--

--

--

--

--

--

LCDM3

--

--

--

--

--

--

--

--

2

2

LCDM2

--

--

--

--

--

--

--

--

1

1

LCDM1

--

--

--

--

--

--

--

--

0

0

Sn

Figure 36-3. LCD Memory for 5-Mux to 8-Mux Mode - Example for 160 Segments

36.2.2 LCD Timing Generation
The LCD_C controller uses the fLCD signal from the integrated clock divider to generate the timing for
common and segment lines. With the LCDSSEL bit, ACLK with a frequency between 30 kHz and 40 kHz
or VLOCLK can be selected as clock source into the divider. The fLCD frequency is selected with the
LCDPREx and LCDDIVx bits. The resulting fLCD frequency is calculated by:
fACLK/VLOCLK
fLCD =
LCDPRE
(LCDDIVx + 1) × 2
The proper fLCD frequency depends on the LCD's requirement for framing frequency and the LCD multiplex
rate. It is calculated by:
fLCD = 2 × mux × fFrame
For example, to calculate fLCD for a 3-mux LCD with a frame frequency of 30 Hz to 100 Hz:
fFrame (from LCD data sheet) = 30 Hz to 100 Hz
fLCD = 2 × 3 × fFrame
fLCD(min) = 180 Hz
fLCD(max) = 600 Hz
With fACLK/VLOCLK = 32768 Hz, LCDPREx = 011, and LCDDIVx = 10101:
fLCD = 32768 Hz / ((21+1) × 23) = 32768 Hz / 176 = 186 Hz

932

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Operation

www.ti.com

With LCDPREx = 001 and LCDDIVx = 11011:
fLCD = 32768 Hz / ((27+1) × 21) = 32768 Hz / 56 = 585 Hz
The lowest frequency has the lowest current consumption. The highest frequency has the least flicker.

36.2.3 Blanking the LCD
The LCD controller allows blanking the complete LCD. The LCDSON bit is combined with a logical AND
with each segment's memory bit. When LCDSON = 1, each segment is on or off according to its bit value.
When LCDSON = 0, each LCD segment is off.

36.2.4 LCD Blinking
The LCD controller also supports blinking. In static and 2-mux to 4-mux mode, the blinking mode
LCDBLKMODx = 01 allows blinking of individual segments; with LCDBLKMODx = 10 all segments are
blinking; and with LCDBLKMODx = 00 blinking is disabled. In 5-mux mode and above, only blinking mode
LCDBLKMODx = 10 that allows blinking of all segments is available; if another mode is selected, blinking
is disabled.
36.2.4.1 Blinking Memory
In static and 2-mux to 4-mux mode, a separate blinking memory is implemented to select the blinking
segments. To enable individual segments for blinking, the corresponding bit in the blinking memory
LCDBMx registers must be set. The memory uses the same structure as the LCD memory (see Figure 362). Each memory bit corresponds to one LCD segment or is not used, depending on the multiplexing
mode LCDMXx. To enable blinking for a LCD segment, its corresponding memory bit is set.
The blinking memory can also be accessed word-wise using the even addresses starting at LCDBM1,
LCDBM3, ...
Setting the bit LCDCLRBM clears all blinking memory registers at the next frame boundary. It is
automatically reset after the registers are cleared.
36.2.4.2 Blinking Frequency
The blinking frequency fBLINK is selected with the LCDBLKPREx and LCDBLKDIVx bits. The same clock is
used as selected for the LCD frequency fLCD. The resulting fBLINK frequency is calculated by:
fACLK/VLO
fBlink =
9+LCDBLKPREx
(LCDBLKDIVx + 1) × 2
The divider generating the blinking frequency fBLINK is reset when LCDBLKMODx = 00. After a blinking
mode LCDBLKMODx = 01 or 10 is selected, the enabled segments or all segments go blank at the next
frame boundary and stay off for half of a BLKCLK period. Then they go active at the next frame boundary
and stay on for another half BLKCLK period before they go blank again at a frame boundary.
NOTE:

Blinking Frequency Restrictions
The blinking frequency must be smaller than the frame frequency fFrame.
The blinking frequency should only be changed when LCDBLKMODx = 00.

36.2.4.3 Dual Display Memory
In static and 2-mux to 4-mux mode, the blinking memory can also be used as a secondary display
memory when no blinking mode LCDBLKMODx = 01 or 10 is selected. The memory to be displayed can
be selected either manually using the LCDDISP bit or automatically with LCDBLKMODx = 11.
With LCDDISP = 0, the LCD memory is selected, and with LCDDISP = 1 the blinking memory is selected
as display memory. Switching between the memories is synchronized to the frame boundaries.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

933

LCD_C Operation

www.ti.com

With LCDBLKMODx = 11 the LCD controller switches automatically between the memories using the
divider to generate the blinking frequency. After LCDBLKMODx = 11 is selected, the memory to be
displayed for the first half a BLKCLK period is the LCD memory. In the second half, the blinking memory is
used as display memory. Switching between the memories is synchronized to the frame boundaries.

36.2.5 LCD Voltage And Bias Generation
The LCD_C module allows selectable sources for the peak output waveform voltage, V1, as well as the
fractional LCD biasing voltages V2 to V5. VLCD may be sourced from VCC, an internal charge pump, or
externally.
All internal voltage generation is disabled if the selected clock source (ACLK or VLOCLK) is turned off
(OSCOFF = 1) or the LCD_C module is disabled (LCDON = 0).
36.2.5.1 LCD Voltage Selection
VLCD is sourced from VCC when VLCDEXT = 0, VLCDx = 0, and VREFx = 0. VLCD is sourced from the
internal charge pump when VLCDEXT = 0, VLCDCPEN = 1, and VLCDx > 0. The charge pump is always
sourced from DVCC. The VLCDx bits provide a software selectable LCD voltage from 2.6 V to 3.44 V
(typical) independent of DVCC. See the device-specific data sheet for specifications.
When the internal charge pump is used, a 4.7-µF or larger capacitor must be connected between the
LCDCAP pin and ground. If no capacitor is connected and the charge pump is enabled, the
LCDNOCAPIFG interrupt flag is set, and the charge pump is disabled to prevent damage to the device.
To reduce system noise the charge pump can be temporarily disabled. It is disabled when LCDCPEN = 0
and re-enabled when LCDCPEN is changed back to 1. If the charge pump is temporarily disabled the
voltage stored on the external capacitor is used for the LCD voltages until the charge pump is re-enabled.
Some devices can also automatically disable the charge pump during certain periods of time (for example
during an ADC conversion). To enable this feature set the corresponding LCDCPDISx bits in the
LCDBCPCTL register. For details see the device-specific data sheet (if the feature is not listed in the data
sheet it is not supported by the respective device).
NOTE:

Capacitor Required For Internal Charge Pump
A 4.7-µF or larger capacitor must be connected from the LCDCAP pin to ground when the
internal charge pump is enabled. If no capacitor is connected, the LCDNOCAPIFG interrupt
flag is set and the charge pump is disabled.

The internal charge pump may use an external reference voltage when VLCDREFx = 01 (and LCDREXT
= 0 and LCDEXTBIAS = 0). In this case, the charge pump voltage is set to a multiply of the external
reference voltage according to the VLCDx bits setting.
When VLCDEXT = 1, VLCD is sourced externally from the LCDCAP, pin and the internal charge pump is
disabled.

934

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Operation

www.ti.com

36.2.5.2 LCD Bias Generation
The fractional LCD biasing voltages, V2 to V5 can be generated internally or externally, independent of
the source for VLCD.
The bias generation block diagram for LCD_C static and 2-mux to 8-mux modes is shown in Figure 36-4.

Charge
Pump

VLCDx > 0
VLCDREFx > 0

AVCC

DVCC

0

VLCD

Internal VLCD

1

LCDREXT
LCDON
VLCDEXT

0

LCDCAP/R33

V1 (VLCD)

1

LCDREXT

0

LCD
LCD2B EXTBIAS

R
V4 int
V2 (2/3 VLCD)

R23
1
R

R

V3 int
V3 (1/2 VLCD)

LCDREF/R13
1
V2 int
R

V4 (1/3 VLCD)

R
1

0
R03

V5
1

Rx

Rx

Rx

R03EXT

Static 1/2 Bias 1/3 Bias
Optional external resistors
Rx = Optional contrast control

Figure 36-4. Bias Generation
The internally generated bias voltages V2 to V4 are switched to external pins with LCDREXT = 1.
SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

935

LCD_C Operation

www.ti.com

To source the bias voltages V2 to V4 externally, LCDEXTBIAS is set. This also disables the internal bias
generation. Typically, an equally weighted resistor divider is used with resistors ranging from a few kΩ to
1 MΩ, depending on the size of the display. When using an external resistor divider, the VLCD voltage may
be sourced from the internal charge pump when VLCDEXT = 0 taking the maximum charge pump load
current into account. V5 can also be sourced externally when R03EXT = 1. In static mode and all mux
modes using 1/2 biasing or 1/3 biasing, when R03EXT = 1 V5 can control the contrast of the connected
display by changing the voltage at the low end of the external resistor divider Rx as shown in the left part
of Figure 36-4.
When using an external resistor divider, R33 may serve as a switched VLCD output when VLCDEXT = 0.
This allows the power to the resistor ladder to be turned off, which eliminates current consumption when
the LCD is not used. When VLCDEXT = 1, R33 serves as a VLCD input.
The bias generator supports 1/2 biasing when LCD2B = 1 and 1/3 biasing when LCD2B = 0. In static
mode, the internal divider is disabled.
Table 36-2. Bias Voltages and external Pins
Mode

Bias
Configuration

LCD2B

Static

Static

X

2-mux, 3-mux, 4-mux

1/2

1

2-mux, 3-mux, 4-mux

5-mux to 8-mux

936

LCD_C Controller

1/3

1/3

0

0

Voltage Level

Pin

Condition

V1 ("1")

R33

if LCDREXT = 1 or LCDEXTBIAS = 1

V5 ("0")

R03

if R03EXT = 1

V1 ("1")

R33

if LCDREXT = 1 or LCDEXTBIAS = 1

V3 ("1/2")

R13

if LCDREXT = 1 or LCDEXTBIAS = 1

V5 ("0")

R03

if R03EXT = 1

V1 ("1")

R33

if LCDREXT = 1 or LCDEXTBIAS = 1

V2 ("2/3")

R23

if LCDREXT = 1 or LCDEXTBIAS = 1

V4 ("1/3")

R13

if LCDREXT = 1 or LCDEXTBIAS = 1

V5 ("0")

R03

if R03EXT = 1

V1 ("1")

R33

if LCDREXT = 1 or LCDEXTBIAS = 1

V2 ("2/3")

R23

if LCDREXT = 1 or LCDEXTBIAS = 1

V4 ("1/3")

R13

if LCDREXT = 1 or LCDEXTBIAS = 1

V5 ("0")

R03

if R03EXT = 1

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Operation

www.ti.com

36.2.5.3 LCD Contrast Control
The peak voltage of the output waveforms together with the selected mode and biasing determine the
contrast and the contrast ratio of the LCD. The LCD contrast can be controlled in software by adjusting the
LCD voltage generated by the integrated charge pump using the VLCDx settings.
The contrast ratio depends on the used LCD display and the selected biasing scheme. Table 36-3 shows
the biasing configurations that apply to the different modes together with the RMS voltages for the
segments turned on (VRMS,ON) and turned off (VRMS,OFF) as functions of VLCD. It also shows the resulting
contrast ratios between the on and off states.
Table 36-3. LCD Voltage and Biasing Characteristics
LCDMx

LCD2B

COM
Lines

Static

Static

0000

X

1

V1, V5

0

1

1/0

2-mux

1/2

(1)

0001

1

2

V1, V3, V5

0.354

0.791

2.236

1/3

0001

0

2

V1, V2, V4, V5

0.333

0.745

2.236

1/2

0010

1

3

V1, V3, V5

0.408

0.707

1.732

0010

0

3

V1, V2, V4, V5

0.333

0.638

1.915

0011

1

4

V1, V3, V5

0.433

0.661

1.528

3-mux

1/3
4-mux

(1)

Contrast
Ratio VRMS,ON/
VRMS,OFF

Bias
Config

Mode

(1)

1/2

Voltage Levels

VRMS,OFF/ VLCD

VRMS,ON/ VLCD

1/3

(1)

0011

0

4

V1, V2, V4, V5

0.333

0.577

1.732

5-mux

1/3

(1)

0100

0

5

V1, V2, V4, V5

0.333

0.537

1.612

6-mux

1/3

(1)

0101

0

6

V1, V2, V4, V5

0.333

0.509

1.528

7-mux

1/3 (1)

0110

0

7

V1, V2, V4, V5

0.333

0.488

1.464

8-mux

(1)

0111

0

8

V1, V2, V4, V5

0.333

0.471

1.414

1/3

Recommended setting to achieve best contrast

A typical approach to determine the required VLCD is by equating VRMS,OFF with a LCD threshold voltage
provided by the LCD manufacturer, for example when the LCD exhibits approximately 10% contrast
(Vth,10%): VRMS,OFF = Vth,10%. Using the values for VRMS,OFF/VLCD provided in the table results in VLCD =
Vth,10%/(VRMS,OFF/VLCD). In the static mode, a suitable choice is VLCD greater than or equal to three times
Vth,10%.
In 3-mux and 4-mux mode, a 1/3 biasing is typically used, but a 1/2 biasing scheme is also possible. The
1/2 bias reduces the contrast ratio, but the advantage is a reduction of the required full-scale LCD voltage
VLCD.

36.2.6 LCD Outputs
Some LCD segment, common, and Rxx functions are multiplexed with digital I/O functions. These pins
can function either as digital I/O or as LCD functions.
The LCD segment functions, when multiplexed with digital I/O, are selected using the LCDSx bits in the
LCDCPCTLx registers. The LCDSx bits select the LCD function for each segment line. When LCDSx = 0,
a multiplexed pin is set to digital I/O function. When LCDSx = 1, a multiplexed pin is selected as LCD
function.
The pin functions for COMx and Rxx, when multiplexed with digital I/O, are selected as described in the
port schematic section of the device-specific data sheet. An some devices the COM1 to COM7 pins are
shared with segment lines, refer to the device-specific data sheet. If these pins are required as COM pins
due to the selected LCD multiplexing mode, the COM functionality takes precedence over the segment
function that can be selected for those pins with the LCDSx bits as for all other segment pins.
See the port schematic section of the device-specific data sheet for details on controlling the pin
functionality.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

937

LCD_C Operation
NOTE:

www.ti.com

LCDSx Bits Do Not Affect Dedicated LCD Segment Pins
The LCDSx bits only affect pins with multiplexed LCD segment functions and digital I/O
functions. Dedicated LCD segment pins are not affected by the LCDSx bits.

36.2.7 LCD Interrupts
The LCD_C module has four interrupt sources available, each with independent enables and flags.
The four interrupt flags, namely LCDFRMIFG, LCDBLKOFFIFG, LCDBLKONIFG, and LCDNOCAPIFG,
are prioritized and combined to source a single interrupt vector. The interrupt vector register LCDCIV is
used to determine which flag requested an interrupt.
The highest priority enabled interrupt generates a number in the LCDCIV register (see register
description). This number can be evaluated or added to the program counter to automatically enter the
appropriate software routine. Disabled LCD interrupts do not affect the LCDCIV value.
Any read access of the LCDCIV register automatically resets the highest pending interrupt flag. If another
interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. A write
access to the LCDCIV register automatically resets all pending interrupt flags. In addition, all flags can be
cleared by software.
The LCDNOCAPIFG indicates that no capacitor is present at the LCDCAP pin when the charge pump is
enabled. Setting the LCDNOCAPIE bit enables the interrupt.
The LCDBLKONIFG is set at the BLKCLK edge synchronized to the frame boundaries that turns on the
segments when blinking is enabled with LCDBLKMODx = 01 or 10. It is also set at the BLKCLK edge
synchronized to the frame boundaries that selects the blinking memory as display memory when
LCDBLKMODx = 11. It is automatically cleared when a LCD or blinking memory register is written. Setting
the LCDBLKONIE bit enables the interrupt.
The LCDBLKOFFIFG is set at the BLKCLK edge synchronized to the frame boundaries that blanks the
segments when blinking is enabled with LCDBLKMODx = 01 or 10. It is also set at the BLKCLK edge
synchronized to the frame boundaries that selects the LCD memory as display memory when
LCDBLKMODx = 11. It is automatically cleared when a LCD or blinking memory register is written. Setting
the LCDBLKOFFIE bit enables the interrupt.
The LCDFRMIFG is set at a frame boundary. It is automatically cleared when a LCD or blinking memory
register is written. Setting the LCDFRMIFGIE bit enables the interrupt.

938

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Operation

www.ti.com

36.2.7.1 LCDCIV Software Example
The following software example shows the recommended use of LCDCIV and the handling overhead. The
LCDCIV value is added to the PC to automatically jump to the appropriate routine.
The numbers at the right margin show the necessary CPU cycles for each instruction. The software
overhead for different interrupt sources includes interrupt latency and return-from-interrupt cycles, but not
the task handling itself.
; Interrupt handler for LCD_B interrupt flags.
LCDB_HND
; Interrupt latency
ADD &LCDBIV,PC
; Add offset to Jump table
RETI
; Vector 0: No interrupt
JMP LCDNOCAP_HND ; Vector 2: LCDNOCAPIFG
JMP LCDBLKON_HND ; Vector 4: LCDBLKONIFG
JMP LCDBLKOFF_HND ; Vector 6: LCDBLKOFFIFG
LCDFRM_HND
; Vector 8: LCDFRMIFG
...
; Task starts here
RETI
LCDNOCAP_HND ; Vector 2: LCDNOCAPIFG
... ; Task starts here
RETI
LCDBLKON_HND ; Vector 4: LCDBLKONIFG
... ; Task starts here
RETI ; Back to main program
LCDBLKOFF_HND ; Vector 6: LCDBLKOFFIFG
... ; Task starts here
RETI ; Back to main program

6
3
5
2
2
2

5

5

5

5

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

939

LCD_C Operation

www.ti.com

36.2.8 Static Mode
In static mode, each MSP430 segment pin drives one LCD segment, and one common line (COM0) is
used. Figure 36-5 shows some example static waveforms.
S0
on

V1

S1
off

COM0

COM0

V5
fframe
V1
S0
V5
V1
S1
V5
V1
COM0-S0
Segment is on.

0V
−V1
V1

COM0-S1
Segment is off.

0V
−V1

Figure 36-5. Example Static Waveforms

940

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Operation

www.ti.com

36.2.9 2-Mux Mode
In 2-mux mode, each MSP430 segment pin drives two LCD segments, and two common lines (COM0 and
COM1) are used. Figure 36-6 shows some example 2-mux 1/2-bias waveforms.
S0

V1

S1

on

COM0

COM0

V3
V5

off

fframe

COM1

V1
COM1

V3
V5

S0

V1
V3
V5
V1

S1

V3
V5
V1

COM0-S0
Segment is on.

0V
−V1
V1

COM1-S1
Segment is off.

0V
−V1

Figure 36-6. Example 2-Mux Waveforms

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

941

LCD_C Operation

www.ti.com

36.2.10 3-Mux Mode
In 3-mux mode, each MSP430 segment pin drives three LCD segments, and three common lines (COM0,
COM1, and COM2) are used. Figure 36-7 shows some example 3-mux 1/3-bias waveforms.
S0

S1

on

COM0

off

fframe

COM1
COM2

V1
V2
V4
V5

COM0

COM1

V1
V2
V4
V5

S0

V1
V2
V4
V5

S1

V1
V2
V4
V5
V1

COM0-S0
Segment is on.

0V
−V1
V1

COM1-S1
Segment is off.

0V
−V1

Figure 36-7. Example 3-Mux Waveforms

942

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Operation

www.ti.com

36.2.11 4-Mux Mode
In 4-mux mode, each MSP430 segment pin drives four LCD segments and four common lines (COM0,
COM1, COM2, and COM3) are used. Figure 36-8 shows some example 4-mux 1/3-bias waveforms.
S0

S1

on

COM0

V1
V2
V4
V5

COM0
off

fframe

COM1
COM2

COM1

V1
V2
V4
V5

S0

V1
V2
V4
V5

S1

V1
V2
V4
V5

COM3

V1
COM0-S0
Segment is on.

0V
−V1
V1

COM1-S1
Segment is off.

0V
−V1

Figure 36-8. Example 4-Mux Waveforms

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

943

LCD_C Operation

www.ti.com

36.2.12 6-Mux Mode
In 6-mux mode, each MSP430 segment pin drives six LCD segments, and six common lines (COM0,
COM1, COM2, COM3, COM4, and COM5) are used. Figure 36-9 shows some example 6-mux 1/3-bias
waveforms.
S0

S1

on

COM0

off

fframe

COM1
COM2

V1
V2
V4
V5

COM0

COM1

V1
V2
V4
V5

S0

V1
V2
V4
V5

S1

V1
V2
V4
V5

COM3
COM4
COM5

V1
COM0-S0
Segment is on.

0V
−V1
V1

COM1-S1
Segment is off.

0V
−V1

Figure 36-9. Example 6-Mux Waveforms

944

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Operation

www.ti.com

36.2.13 8-Mux Mode
In 8-mux mode, each MSP430 segment pin drives eight LCD segments, and eight common lines (COM0
through COM7) are used. Figure 36-10 shows some example 8-mux 1/3-bias waveforms.
S0

S1

*

on

COM0

*

*

*

*

*

*

*

COM0
off

fframe

COM1
COM2

V1
V2
V4
V5

COM1

V1
V2
V4
V5

S0

V1
V2
V4
V5

S1

V1
V2
V4
V5

COM3
COM4
COM5
COM6
COM7

V1
COM0-S0
Segment is on.

0V
−V1
V1

COM1-S1
Segment is off.

0V
−V1

Figure 36-10. Example 8-Mux, 1/3 Bias Waveforms (LCDLP = 0)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

945

LCD_C Operation

www.ti.com

Figure 36-11 shows some example 8-mux 1/3-bias waveforms with LCDLP = 1. With LCDLP = 1, the
voltage sequence compared to the non-low power waveform is reshuffled; that is, all of the timeslots
marked with "*" in Figure 36-10 are grouped together. The same principle applies to all mux modes.
S0

S1

* * * * * * * *

on

COM0

COM0
off

fframe

COM1
COM2

V1
V2
V4
V5

COM1

V1
V2
V4
V5

S0

V1
V2
V4
V5

S1

V1
V2
V4
V5

COM3
COM4
COM5
COM6
COM7

V1
COM0-S0
Segment is on.

0V
−V1
V1

COM1-S1
Segment is off.

0V
−V1

Figure 36-11. Example 8-Mux, 1/3 Bias Low-Power Waveforms (LCDLP = 1)

946

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Registers

www.ti.com

36.3 LCD_C Registers
The LCD_C registers are listed in Table 36-4 to Table 36-7. The LCD memory and blinking memory
registers can also be accessed as word.
The number of available memory registers on a given device depends on the number of available
segment pins; see the device-specific data sheet.
Table 36-4. LCD_C Control Registers
Offset

Acronym

Register Name

Type

Reset

Section

000h

LCDCCTL0

LCD_C control 0

Read/write

0000h

Section 36.3.1

002h

LCDCCTL1

LCD_C control 1

Read/write

0000h

Section 36.3.2

004h

LCDCBLKCTL

LCD_C blinking control

Read/write

0000h

Section 36.3.3

006h

LCDCMEMCTL

LCD_C memory control

Read/write

0000h

Section 36.3.4

008h

LCDCVCTL

LCD_C voltage control

Read/write

0000h

Section 36.3.5

00Ah

LCDCPCTL0

LCD_C port control 0

Read/write

0000h

Section 36.3.6

00Ch

LCDCPCTL1

LCD_C port control 1

Read/write

0000h

Section 36.3.7

00Eh

LCDCPCTL2

LCD_C port control 2 (≥256 segments)

Read/write

0000h

Section 36.3.8

010h

LCDCPCTL3

LCD_C port control 3 (384 segments)

Read/write

0000h

Section 36.3.9

012h

LCDCCPCTL

LCD_C charge pump control

Read/write

0000h

Section 36.3.10

Read/write

0000h

Section 36.3.11

014h

Reserved

016h

Reserved

018h

Reserved

01Ah

Reserved

01Ch

Reserved

01Eh

LCDCIV

LCD_C interrupt vector

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller 947

LCD_C Registers

www.ti.com

Table 36-5. LCD_C Memory Registers for Static and 2-Mux to 4-Mux Modes

(1) (2)

Offset

Acronym

Register Name

Type

Reset

020h

LCDM1

LCD memory 1 (S1/S0)

Read/write

Unchanged

021h

LCDM2

LCD memory 2 (S3/S2)

Read/write

Unchanged

022h

LCDM3

LCD memory 3 (S5/S4)

Read/write

Unchanged

023h

LCDM4

LCD memory 4 (S7/S6)

Read/write

Unchanged

024h

LCDM5

LCD memory 5 (S9/S8)

Read/write

Unchanged

025h

LCDM6

LCD memory 6 (S11/S10)

Read/write

Unchanged

026h

LCDM7

LCD memory 7 (S13/S12)

Read/write

Unchanged

027h

LCDM8

LCD memory 8 (S15/S14)

Read/write

Unchanged

028h

LCDM9

LCD memory 9 (S17/S16)

Read/write

Unchanged

029h

LCDM10

LCD memory 10 (S19/S18)

Read/write

Unchanged

02Ah

LCDM11

LCD memory 11 (S21/S20)

Read/write

Unchanged

02Bh

LCDM12

LCD memory 12 (S23/S22)

Read/write

Unchanged

02Ch

LCDM13

LCD memory 13 (S25/S24)

Read/write

Unchanged

02Dh

LCDM14

LCD memory 14 (S27/S26)

Read/write

Unchanged

02Eh

LCDM15

LCD memory 15 (S29/S28)

Read/write

Unchanged

02Fh

LCDM16

LCD memory 16 (S31/S30)

Read/write

Unchanged

030h

LCDM17

LCD memory 17 (S33/S32)

Read/write

Unchanged

031h

LCDM18

LCD memory 18 (S35/S34)

Read/write

Unchanged

032h

LCDM19

LCD memory 19 (S37/S36)

Read/write

Unchanged

033h

LCDM20

LCD memory 20 (S39/S38)

Read/write

Unchanged

034h

LCDM21

LCD memory 21 (S41/S40)

Read/write

Unchanged

035h

LCDM22

LCD memory 22 (S43/S42)

Read/write

Unchanged

036h

LCDM23

LCD memory 23 (S45/S44)

Read/write

Unchanged

037h

LCDM24

LCD memory 24 (S47/S46)

Read/write

Unchanged

038h

LCDM25

LCD memory 25 (S49/S48)

Read/write

Unchanged

039h

LCDM26

LCD memory 26 (S51/S50)

Read/write

Unchanged

03Ah

LCDM27

LCD memory 27 (S53/S52)

Read/write

Unchanged

03Bh

LCDM28

LCD memory 28 (S54)

Read/write

Unchanged

03Ch

Reserved

03Dh

Reserved

03Eh

Reserved

03Fh

Reserved

(1)
(2)

The LCD memory registers can also be accessed as word.
The number of available memory registers on a given device depends on the number of available segment pins; see the device-specific
data sheet.

948 LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Registers

www.ti.com

Table 36-6. LCD Blinking Memory Registers for Static and 2-Mux to 4-Mux Modes (1) (2)
Offset

Acronym

Register Name

Type

Reset

040h

LCDBM1

LCD blinking memory 1

Read/write

Unchanged

041h

LCDBM2

LCD blinking memory 2

Read/write

Unchanged

042h

LCDBM3

LCD blinking memory 3

Read/write

Unchanged

043h

LCDBM4

LCD blinking memory 4

Read/write

Unchanged

044h

LCDBM5

LCD blinking memory 5

Read/write

Unchanged

045h

LCDBM6

LCD blinking memory 6

Read/write

Unchanged

046h

LCDBM7

LCD blinking memory 7

Read/write

Unchanged

047h

LCDBM8

LCD blinking memory 8

Read/write

Unchanged

048h

LCDBM9

LCD blinking memory 9

Read/write

Unchanged

049h

LCDBM10

LCD blinking memory 10

Read/write

Unchanged

04Ah

LCDBM11

LCD blinking memory 11

Read/write

Unchanged

04Bh

LCDBM12

LCD blinking memory 12

Read/write

Unchanged

04Ch

LCDBM13

LCD blinking memory 13

Read/write

Unchanged

04Dh

LCDBM14

LCD blinking memory 14

Read/write

Unchanged

04Eh

LCDBM15

LCD blinking memory 15

Read/write

Unchanged

04Fh

LCDBM16

LCD blinking memory 16

Read/write

Unchanged

050h

LCDBM17

LCD blinking memory 17

Read/write

Unchanged

051h

LCDBM18

LCD blinking memory 18

Read/write

Unchanged

052h

LCDBM19

LCD blinking memory 19

Read/write

Unchanged

053h

LCDBM20

LCD blinking memory 20

Read/write

Unchanged

054h

LCDBM21

LCD blinking memory 21

Read/write

Unchanged

055h

LCDBM22

LCD blinking memory 22

Read/write

Unchanged

056h

LCDBM23

LCD blinking memory 23

Read/write

Unchanged

057h

LCDBM24

LCD blinking memory 24

Read/write

Unchanged

058h

LCDBM25

LCD blinking memory 25

Read/write

Unchanged

059h

LCDBM26

LCD blinking memory 26

Read/write

Unchanged

05Ah

LCDBM27

LCD blinking memory 27

Read/write

Unchanged

05Bh

LCDBM28

LCD blinking memory 28

Read/write

Unchanged

05Ch

Reserved

05Dh

Reserved

05Eh

Reserved

05Fh

Reserved

(1)
(2)

The LCD blinking memory registers can also be accessed as word.
The number of available memory registers on a given device depends on the number of available segment pins; see the device-specific
data sheet.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller 949

LCD_C Registers

www.ti.com

Table 36-7. LCD Memory Registers for 5-Mux to 8-Mux

(1) (2)

Offset

Acronym

Register Name

Type

Reset

020h

LCDM1

LCD memory 1 (S0)

Read/write

Unchanged

021h

LCDM2

LCD memory 2 (S1)

Read/write

Unchanged

022h

LCDM3

LCD memory 3 (S2)

Read/write

Unchanged

023h

LCDM4

LCD memory 4 (S3)

Read/write

Unchanged

024h

LCDM5

LCD memory 5 (S4)

Read/write

Unchanged

025h

LCDM6

LCD memory 6 (S5)

Read/write

Unchanged

026h

LCDM7

LCD memory 7 (S6)

Read/write

Unchanged

027h

LCDM8

LCD memory 8 (S7)

Read/write

Unchanged

028h

LCDM9

LCD memory 9 (S8)

Read/write

Unchanged

029h

LCDM10

LCD memory 10 (S9)

Read/write

Unchanged

02Ah

LCDM11

LCD memory 11 (S10)

Read/write

Unchanged

02Bh

LCDM12

LCD memory 12 (S11)

Read/write

Unchanged

02Ch

LCDM13

LCD memory 13 (S12)

Read/write

Unchanged

02Dh

LCDM14

LCD memory 14 (S13)

Read/write

Unchanged

02Eh

LCDM15

LCD memory 15 (S14)

Read/write

Unchanged

02Fh

LCDM16

LCD memory 16 (S15)

Read/write

Unchanged

030h

LCDM17

LCD memory 17 (S16)

Read/write

Unchanged

031h

LCDM18

LCD memory 18 (S17)

Read/write

Unchanged

032h

LCDM19

LCD memory 19 (S18)

Read/write

Unchanged

033h

LCDM20

LCD memory 20 (S19)

Read/write

Unchanged

034h

LCDM21

LCD memory 21 (S20)

Read/write

Unchanged

035h

LCDM22

LCD memory 22 (S21)

Read/write

Unchanged

036h

LCDM23

LCD memory 23 (S22)

Read/write

Unchanged

037h

LCDM24

LCD memory 24 (S23)

Read/write

Unchanged

038h

LCDM25

LCD memory 25 (S24)

Read/write

Unchanged

039h

LCDM26

LCD memory 26 (S25)

Read/write

Unchanged

03Ah

LCDM27

LCD memory 27 (S26)

Read/write

Unchanged

03Bh

LCDM28

LCD memory 28 (S27)

Read/write

Unchanged

03Ch

LCDM29

LCD memory 29 (S28)

Read/write

Unchanged

03Dh

LCDM30

LCD memory 30 (S29)

Read/write

Unchanged

03Eh

LCDM31

LCD memory 31 (S30)

Read/write

Unchanged

03Fh

LCDM32

LCD memory 32 (S31)

Read/write

Unchanged

040h

LCDM33

LCD memory 33 (S32)

Read/write

Unchanged

041h

LCDM34

LCD memory 34 (S33)

Read/write

Unchanged

042h

LCDM35

LCD memory 35 (S34)

Read/write

Unchanged

043h

LCDM36

LCD memory 36 (S35)

Read/write

Unchanged

044h

LCDM37

LCD memory 37 (S36)

Read/write

Unchanged

045h

LCDM38

LCD memory 38 (S37)

Read/write

Unchanged

046h

LCDM39

LCD memory 39 (S38)

Read/write

Unchanged

047h

LCDM40

LCD memory 40 (S39)

Read/write

Unchanged

048h

LCDM41

LCD memory 41 (S40)

Read/write

Unchanged

049h

LCDM42

LCD memory 42 (S41)

Read/write

Unchanged

04Ah

LCDM43

LCD memory 43 (S42)

Read/write

Unchanged

04Bh

LCDM44

LCD memory 44 (S43)

Read/write

Unchanged

04Ch

LCDM45

LCD memory 45 (S44)

Read/write

Unchanged

(1)
(2)

950

The LCD memory registers can also be accessed as word.
The number of available memory registers on a given device depends on the number of available segment pins; see the device-specific
data sheet.
LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Registers

www.ti.com

Table 36-7. LCD Memory Registers for 5-Mux to 8-Mux (1) (2) (continued)
Offset

Acronym

Register Name

Type

Reset

04Dh

LCDM46

LCD memory 46 (S45)

Read/write

Unchanged

04Eh

LCDM47

LCD memory 47 (S46)

Read/write

Unchanged

04Fh

LCDM48

LCD memory 48 (S47)

Read/write

Unchanged

050h

LCDM49

LCD memory 49 (S48)

Read/write

Unchanged

051h

LCDM50

LCD memory 50 (S49)

Read/write

Unchanged

052h

LCDM51

LCD memory 51 (S50)

Read/write

Unchanged

053h

LCDM52

LCD memory 52 (S51)

Read/write

Unchanged

054h

Reserved

055h

Reserved

056h

Reserved

057h

Reserved

058h

Reserved

059h

Reserved

05Ah

Reserved

05Bh

Reserved

05Ch

Reserved

05Dh

Reserved

05Eh

Reserved

05Fh

Reserved

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

951

LCD_C Registers

www.ti.com

36.3.1 LCDCCTL0 Register
LCD_C Control Register 0
NOTE: Settings for LCDDIVx, LCDPREx, LCDSSEL, LCDLP and LCDMXx should be changed only while
LCDON = 0.
Figure 36-12. LCDCCTL0 Register
15

14

rw-0

rw-0

7
LCDSSEL
rw-0

6
Reserved
r0

13
LCDDIVx
rw-0
5
rw-0

12

11

10

rw-0

rw-0

4
LCDMXx
rw-0

3
rw-0

rw-0

9
LCDPREx
rw-0

8
rw-0

2
LCDSON
rw-0

1
LCDLP
rw-0

0
LCDON
rw-0

Table 36-8. LCDCCTL0 Register Description
Bit

Field

Type

Reset

Description

15-11

LCDDIVx

RW

0h

LCD frequency divider. Together with LCDPREx the LCD frequency fLCD is
calculated as fLCD = fACLK/VLO / ((LCDDIVx + 1) × 2LCDPREx).
00000b = Divide by 1
00001b = Divide by 2
⋮
11110b = Divide by 31
11111b = Divide by 32

10-8

LCDPREx

RW

0h

LCD frequency pre-scaler. Together with LCDDIVx the LCD frequency fLCD is
calculated as fLCD = fACLK/VLO / ((LCDDIVx + 1) × 2LCDPREx).
000b = Divide by 1
001b = Divide by 2
010b = Divide by 4
011b = Divide by 8
100b = Divide by 16
101b = Divide by 32
110b = Reserved (defaults to divide by 32)
111b = Reserved (defaults to divide by 32)

7

LCDSSEL

RW

0h

Clock source select for LCD and blinking frequency
0b = ACLK (30 kHz to 40 kHz)
1b = VLOCLK

6

Reserved

R

0h

Reserved

5-3

LCDMXx

RW

0h

LCD mux rate. These bits select the LCD mode.
000b = Static
001b = 2-mux
010b = 3-mux
011b = 4-mux
100b = 5-mux
101b = 6-mux
110b = 7-mux
111b = 8-mux

2

LCDSON

RW

0h

LCD segments on. This bit supports flashing LCD applications by turning off all
segment lines, while leaving the LCD timing generator and R33 enabled.
0b = All LCD segments are off
1b = All LCD segments are enabled and on or off according to their
corresponding memory location

1

LCDLP

RW

0h

LCD low-power waveform
0b = Standard LCD waveforms on segment and common lines selected
1b = Low-power LCD waveforms on segment and common lines selected

952

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Registers

www.ti.com

Table 36-8. LCDCCTL0 Register Description (continued)
Bit

Field

Type

Reset

Description

0

LCDON

RW

0h

LCD on. This bit turns the LCD_C module on or off.
0b = LCD_C module off
1b = LCD_C module on

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

953

LCD_C Registers

www.ti.com

36.3.2 LCDCCTL1 Register
LCD_C Control Register 1
Figure 36-13. LCDCCTL1 Register
15

14

13

12

Reserved

11

10

9

8

LCDNOCAPIE

LCDBLKONIE

LCDBLKOFFIE

LCDFRMIE
rw-0

r0

r0

r0

r0

rw-0

rw-0

rw-0

7

6

5

4

3

2

1

0

LCDNOCAPIFG

LCDBLKONIFG

LCDBLKOFFIFG

LCDFRMIFG

rw-0

rw-0

rw-0

rw-0

Reserved
r0

r0

r0

r0

Table 36-9. LCDCCTL1 Register Description
Bit

Field

Type

Reset

Description

15-12

Reserved

R

0h

Reserved

11

LCDNOCAPIE

RW

0h

No capacitance connected interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

10

LCDBLKONIE

RW

0h

LCD blinking interrupt enable, segments switched on
0b = Interrupt disabled
1b = Interrupt enabled

9

LCDBLKOFFIE

RW

0h

LCD blinking interrupt enable, segments switched off
0b = Interrupt disabled
1b = Interrupt enabled

8

LCDFRMIE

RW

0h

LCD frame interrupt enable
0b = Interrupt disabled
1b = Interrupt enabled

7-4

Reserved

R

0h

Reserved

3

LCDNOCAPIFG

RW

0h

No capacitance connected interrupt flag. Set when charge pump is enabled but
no capacitance is connected to LCDCAP pin.
0b = No interrupt pending
1b = Interrupt pending

2

LCDBLKONIFG

RW

0h

LCD blinking interrupt flag, segments switched on. Automatically cleared when
data is written into a memory register.
0b = No interrupt pending
1b = Interrupt pending

1

LCDBLKOFFIFG

RW

0h

LCD blinking interrupt flag, segments switched off. Automatically cleared when
data is written into a memory register.
0b = No interrupt pending
1b = Interrupt pending

0

LCDFRMIFG

RW

0h

LCD frame interrupt flag. Automatically cleared when data is written into a
memory register.
0b = No interrupt pending
1b = Interrupt pending

954

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Registers

www.ti.com

36.3.3 LCDCBLKCTL Register
LCD_C Blink Control Register
NOTE: Settings for LCDBLKDIVx and LCDBLKPREx should only be changed while LCDBLKMODx = 00.
Figure 36-14. LCDCBLKCTL Register
15

14

13

12

11

10

9

8
r0

Reserved
r0

r0

r0

r0

r0

r0

r0

7

6
LCDBLKDIVx
rw-0

5

4

2

1

rw-0

rw-0

3
LCDBLKPREx
rw-0

rw-0

rw-0

0
LCDBLKMODx
rw-0
rw-0

Table 36-10. LCDCBLKCTL Register Description
Bit

Field

Type

Reset

Description

15-8

Reserved

R

0h

Reserved

7-5

LCDBLKDIVx

RW

0h

Clock divider for blinking frequency. Together with LCDBLKPREx, the blinking
frequency fBLINK is calculated as fBLINK = fACLK/VLO / ((LCDBLKDIVx + 1) ×
29+LCDBLKPREx).
NOTE: Should only be changed while LCDBLKMODx = 00.
000b = Divide by 1
001b = Divide by 2
010b = Divide by 3
011b = Divide by 4
100b = Divide by 5
101b = Divide by 6
110b = Divide by 7
111b = Divide by 8

4-2

LCDBLKPREx

RW

0h

Clock pre-scaler for blinking frequency. Together with LCDBLKDIVx, the blinking
frequency fBLINK is calculated as fBLINK = fACLK/VLO / ((LCDBLKDIVx + 1) ×
29+LCDBLKPREx).
NOTE: Should only be changed while LCDBLKMODx = 00.
000b = Divide by 512
001b = Divide by 1024
010b = Divide by 2048
011b = Divide by 4096
100b = Divide by 8162
101b = Divide by 16384
110b = Divide by 32768
111b = Divide by 65536

1-0

LCDBLKMODx

RW

0h

Blinking mode
00b = Blinking disabled
01b = Blinking of individual segments as enabled in blinking memory register
LCDBMx. In mux mode >5 blinking is disabled.
10b = Blinking of all segments
11b = Switching between display contents as stored in LCDMx and LCDBMx
memory registers. In mux mode >5 blinking is disabled.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

955

LCD_C Registers

www.ti.com

36.3.4 LCDCMEMCTL Register
LCD_C Memory Control Register
Figure 36-15. LCDCMEMCTL Register
15

14

13

12

11

10

9

8

Reserved
r0

r0

r0

r0

r0

r0

r0

r0

7

6

4

3

r0

r0

5
Reserved
r0

r0

r0

2
LCDCLRBM
rw-0

1
LCDCLRM
rw-0

0
LCDDISP
rw-0

Table 36-11. LCDCMEMCTL Register Description
Bit

Field

Type

Reset

Description

15-3

Reserved

R

0h

Reserved

2

LCDCLRBM

RW

0h

Clear LCD blinking memory
Clears all blinking memory registers LCDBMx. The bit is automatically reset
when the blinking memory is cleared.
Setting this bit has in 5-mux mode and above has no effect. It's immediately
reset again.
0b = Contents of blinking memory registers LCDBMx remain unchanged
1b = Clear content of all blinking memory registers LCDBMx

1

LCDCLRM

RW

0h

Clear LCD memory
Clears all LCD memory registers LCDMx. The bit is automatically reset when the
LCD memory is cleared.
0b = Contents of LCD memory registers LCDMx remain unchanged
1b = Clear content of all LCD memory registers LCDMx

0

LCDDISP

RW

0h

Select LCD memory registers for display
The bit is cleared in LCDBLKMODx = 01 and LCDBLKMODx = 10 or if a mux
mode ≥5 is selected and cannot be changed by software.
When LCDBLKMODx = 11, this bit reflects the currently displayed memory but
cannot be changed by software. When returning to LCDBLKMODx = 00 the bit is
cleared.
0b = Display content of LCD memory registers LCDMx
1b = Display content of LCD blinking memory registers LCDBMx

956

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Registers

www.ti.com

36.3.5 LCDCVCTL Register
LCD_C Voltage Control Register
NOTE: Settings for LCDREXT, R03EXT, LCDEXTBIAS, VLCDEXT, VLCDREFx, and LCD2B should be
changed only while LCDON = 0.
Figure 36-16. LCDCVCTL Register
15
r0

14
Reserved
rw-0

13

12

rw-0

rw-0

7
LCDREXT
rw-0

6
R03EXT
rw-0

5
LCDEXTBIAS
rw-0

4
VLCDEXT
rw-0

11

10

9

rw-0

rw-0

rw-0

3
LCDCPEN
rw-0

2

VLCDx

8
Reserved
r0

1
VLCDREFx

rw-0

rw-0

0
LCD2B
rw-0

Table 36-12. LCDCVCTL Register Description
Bit

Field

Type

Reset

Description

15-13

Reserved

R

0h

Reserved

12-9

VLCDx

RW

0h

Charge pump voltage select. LCDCPEN must be 1 for the charge pump to be
enabled. VCC is used for VLCD when VLCDx = 0000 and VLCDREFx = 00 and
VLCDEXT = 0.
0000b = Charge pump disabled
0001b =
If VLCDREFx = 00 or 10: VLCD = 2.60 V;
If VLCDREFx = 01 or 11: VLCD = 2.17 × VREF
0010b to 1110b =
If VLCDREFx = 00 or 10: VLCD = 2.60 V + (VLCDx – 1) × 0.06 V;
If VLCDREFx = 01 or 11: VLCD = 2.17 × VREF + (VLCDx – 1) × 0.05 × VREF
1111b =
If VLCDREFx = 00 or 10: VLCD = 2.60 V + (15 – 1) × 0.06 V = 3.44 V;
If VLCDREFx = 01 or 11: VLCD = 2.17 × VREF + (15 – 1) × 0.05 × VREF = 2.87 ×
VREF

8

Reserved

R

0h

Reserved

7

LCDREXT

RW

0h

V2 to V4 voltage on external Rx3 pins. This bit selects the external connections
for voltages V2 to V4 with internal bias generation (LCDEXTBIAS = 0). The bit is
don't care if external biasing is selected (LCDEXTBIAS = 1).
NOTE: Should be changed only while LCDON = 0.
0b = Internally generated V2 to V4 are not switched to pins (LCDEXTBIAS = 0)
1b = Internally generated V2 to V4 are switched to pins (LCDEXTBIAS = 0)

6

R03EXT

RW

0h

V5 voltage select. This bit selects the external connection for the lowest LCD
voltage. R03EXT is ignored if there is no R03 pin available.
NOTE: Should be changed only while LCDON = 0.
0b = V5 is VSS
1b = V5 is sourced from the R03 pin

5

LCDEXTBIAS

RW

0h

V2 to V4 voltage select. This bit selects the generation for voltages V2 to V4.
NOTE: Should be changed only while LCDON = 0.
0b = V2 to V4 are generated internally
1b = V2 to V4 are sourced externally and the internal bias generator is switched
off

4

VLCDEXT

RW

0h

VLCD source select
NOTE: Should be changed only while LCDON = 0.
0b = VLCD is generated internally
1b = VLCD is sourced externally

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

957

LCD_C Registers

www.ti.com

Table 36-12. LCDCVCTL Register Description (continued)
Bit

Field

Type

Reset

Description

3

LCDCPEN

RW

0h

Charge pump enable
0b = Charge pump disabled
1b = Charge pump enabled when VLCD is generated internally (VLCDEXT = 0)
and VLCDx > 0 or VLCDREFx > 0

2-1

VLCDREFx

RW

0h

Charge pump reference select. If LCDEXTBIAS = 1 or LCDREXT = 1, settings
01, 10, and 11 are not supported; the internal reference voltage is used instead.
NOTE: Should be changed only while LCDON = 0.
00b = Internal reference voltage
01b = External reference voltage
10b = Internal reference voltage switched to external pin LCDREF/R13
11b = Reserved (defaults to external reference voltage)

0

LCD2B

RW

0h

Bias select. LCD2B is ignored in static mode or mux modes ≥5.
NOTE: Should be changed only while LCDON = 0.
0b = 1/3 bias
1b = 1/2 bias

958

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Registers

www.ti.com

36.3.6 LCDCPCTL0 Register
LCD_C Port Control Register 0
NOTE: Settings for LCDSx should be changed only while LCDON = 0.
Figure 36-17. LCDCPCTL0 Register
15
LCDS15
rw-0

14
LCDS14
rw-0

13
LCDS13
rw-0

12
LCDS12
rw-0

11
LCDS11
rw-0

10
LCDS10
rw-0

9
LCDS9
rw-0

8
LCDS8
rw-0

7
LCDS7
rw-0

6
LCDS6
rw-0

5
LCDS5
rw-0

4
LCDS4
rw-0

3
LCDS3
rw-0

2
LCDS2
rw-0

1
LCDS1
rw-0

0
LCDS0
rw-0

Table 36-13. LCDCPCTL0 Register Description
Bit

Field

Type

Reset

Description

15-0

LCDSx

RW

0h

LCD segment line x enable. This bit affects only pins with multiplexed functions.
Dedicated LCD pins are always LCD function.
NOTE: Settings for LCDSx should be changed only while LCDON = 0.
0b = Multiplexed pins are port functions
1b = Pins are LCD functions

36.3.7 LCDCPCTL1 Register
LCD_C Port Control Register 1
NOTE: Settings for LCDSx should be changed only while LCDON = 0.
Figure 36-18. LCDCPCTL1 Register
15
LCDS31
rw-0

14
LCDS30
rw-0

13
LCDS29
rw-0

12
LCDS28
rw-0

11
LCDS27
rw-0

10
LCDS26
rw-0

9
LCDS25
rw-0

8
LCDS24
rw-0

7
LCDS23
rw-0

6
LCDS22
rw-0

5
LCDS21
rw-0

4
LCDS20
rw-0

3
LCDS19
rw-0

2
LCDS18
rw-0

1
LCDS17
rw-0

0
LCDS16
rw-0

Table 36-14. LCDCPCTL1 Register Description
Bit

Field

Type

Reset

Description

15-0

LCDSx

RW

0h

LCD segment line x enable.
On devices supporting a maximum of 192 segments LCDS31 is reserved, if
COM7 to COM1 are shared with segments. If COM7 to COM1 are not shared
with segments LCDS24 to LCDS31 are reserved.
This bit affects only pins with multiplexed functions. Dedicated LCD pins are
always LCD function.
NOTE: Settings for LCDSx should be changed only while LCDON = 0.
0b = Multiplexed pins are port functions
1b = Pins are LCD functions

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

959

LCD_C Registers

www.ti.com

36.3.8 LCDCPCTL2 Register
LCD_C Port Control Register 2 (≥ 256 Segments)
NOTE: Settings for LCDSx should be changed only while LCDON = 0.
Figure 36-19. LCDCPCTL2 Register
15
LCDS47
rw-0

14
LCDS46
rw-0

13
LCDS45
rw-0

12
LCDS44
rw-0

11
LCDS43
rw-0

10
LCDS42
rw-0

9
LCDS41
rw-0

8
LCDS40
rw-0

7
LCDS39
rw-0

6
LCDS38
rw-0

5
LCDS37
rw-0

4
LCDS36
rw-0

3
LCDS35
rw-0

2
LCDS34
rw-0

1
LCDS33
rw-0

0
LCDS32
rw-0

Table 36-15. LCDCPCTL2 Register Description
Bit

Field

Type

Reset

Description

15-0

LCDSx

RW

0h

LCD segment line x enable.
On devices supporting a maximum of 256 segments LCDS39 to LCDS47 are
reserved, if COM7 to COM1 are shared with segments. If COM7 to COM1 are
not shared with segments the complete register LCDCPCTL2 is not available.
On devices supporting a maximum of 320 segments, LCDS47 is reserved if
COM7 to COM1 are shared with segments. If COM7 to COM1 are not shared
with segments, LCDS40 to LCDS47 are reserved.
This bit affects only pins with multiplexed functions. Dedicated LCD pins are
always LCD function.
NOTE: Settings for LCDSx should be changed only while LCDON = 0.
0b = Multiplexed pins are port functions
1b = Pins are LCD functions

36.3.9 LCDCPCTL3 Register
LCD_C Port Control Register 2 (384 Segments, COMs Shared With Segments)
NOTE: Settings for LCDSx should be changed only while LCDON = 0.
Figure 36-20. LCDCPCTL3 Register
15

14

13

12

11

10

9

8

Reserved
r0
7

r0

r0

r0

r0

r0

r0

r0

6

5
LCDS53
rw-0

4
LCDS52
rw-0

3
LCDS51
rw-0

2
LCDS50
rw-0

1
LCDS49
rw-0

0
LCDS48
rw-0

Reserved
r0

r0

Table 36-16. LCDCPCTL3 Register Description
Bit

Field

Type

Reset

Description

15-6

Reserved

R

0h

Reserved

5-0

LCDSx

RW

0h

LCD segment line x enable.
This bit affects only pins with multiplexed functions. Dedicated LCD pins are
always LCD function.
NOTE: Settings for LCDSx should be changed only while LCDON = 0.
0b = Multiplexed pins are port functions
1b = Pins are LCD functions

960

LCD_C Controller

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Registers

www.ti.com

36.3.10 LCDCCPCTL Register
LCD_C Charge Pump Control Register
Figure 36-21. LCDCCPCTL Register
15
LCDCPCLK
SYNC
rw-0

14

13

12

11
Reserved

10

9

8

r0

r0

r0

r0

r0

r0

r0

7

6

5

4

3

2

1

0

rw-0

rw-0

rw-0

rw-0

LCDCPDISx
rw-0

rw-0

rw-0

rw-0

Table 36-17. LCDCCPCTL Register Description
Bit

Field

Type

Reset

Description

15

LCDCPCLKSYNC

RW

0h

LCD charge pump clock synchronization (device specific).
The charge pump clock is synchronized to a device specific clock (devicespecific) when the respective clock source is enabled and does not indicate a
fault with its fault signal - if available.
0b = Synchronization disabled
1b = Synchronization enabled

14-8

Reserved

R

0h

Reserved

7-0

LCDCPDISx

RW

0h

LCD charge pump disable (number of implemented bits and connected function
is device-specific)
0b = Connected function cannot disable charge pump
1b = Connected function can disable charge pump

36.3.11 LCDCIV Register
LCD_C Interrupt Vector Register
Figure 36-22. LCDCIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r0

r0

r0

r0

LCDCIVx
r0

r0

r0

r0

7

6

5

4
LCDCIVx

r0

r0

r0

r0

Table 36-18. LCDCIV Register Description
Bit

Field

Type

Reset

Description

15-0

LCDCIVx

R

0h

LCD_C interrupt vector value
00h = No interrupt pending
02h = Interrupt Source: No capacitor connected; Interrupt Flag: LCDNOCAPIFG;
Interrupt Priority: Highest
04h = Interrupt Source: Blink, segments off; Interrupt Flag: LCDBLKOFFIFG
06h = Interrupt Source: Blink, segments on; Interrupt Flag: LCDBLKONIFG
08h = Interrupt Source: Frame interrupt; Interrupt Flag: LCDFRMIFG; Interrupt
Priority: Lowest

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

LCD_C Controller

961

Chapter 37
SLAU367O – October 2012 – Revised December 2017

Extended Scan Interface (ESI)
The Extended Scan Interface (ESI) peripheral automatically scans sensors and measures linear or
rotational motion. This document describes the Extended Scan interface.
Topic

37.1
37.2
37.3

962

...........................................................................................................................

Page

ESI Introduction ............................................................................................... 963
ESI Operation ................................................................................................... 964
ESI Registers ................................................................................................... 990

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Introduction

www.ti.com

37.1 ESI Introduction
The ESI module is used to automatically measure linear or rotational motion with the lowest possible
power consumption. The ESI consists of following blocks: the analog front end (AFE1 and AFE2), the
preprocessing unit (PPU), the processing state machine (PSM) with its associated RAM, the timing state
machine (TSM), and the Timer_A Output Stage. The analog front end stimulates the sensors, senses the
signal levels, and converts them into their digital representation. The digital representations of a
measurement sequence are stored in the preprocessing unit. The stored digital signals are passed into
the processing state machine. The processing state machine is used to analyze and count rotation or
motion. The timing state machine controls the analog front end, the preprocessing unit, and the
processing state machine. The Timer_A Output Stage generates signals that are fed into Timer_A capture
inputs; this allows for time measurements (for example, LC-sensor envelope test).
The ESI features include:
• Support for different types of sensors
– LC sensors
– Resistive sensors such as Hall-effect or giant magnetoresistive (GMR) sensors
– Optical sensors
– And more
• Measurement of sensor signal envelope
• Measurement of sensor signal oscillation amplitude
• Direct analog input for analog-to-digital conversion
• Direct digital input for digital sensors such as optical decoders
• Support for quadrature decoding
Figure 37-1 shows the ESI module block diagram.
Analog Front-End 2 (AFE2)
Analog Front-End 1 (AFE1)
Comp1
Out

ESICI3
ESICI2
ESICI1

ESICH2
ESICH1
ESICH0
ESICOM

Sensor Support

ESICI0
ESICH3

Analog Input Multiplexer

ESICI

TimerA
Output
Stage

To Timer_A

ESI RAM
PPUS1

PPUS2

ESIC2
OUT

+
-

ESIC1
OUT

MAB/
MDB/
MCB

PPUS1

PreProcessing Unit

PPUS2
PPUS3

Processing
State
Machine
(PSM)

Interrupt
Request
Rotation
Data

ACLK
ESIDVSS
ESIDVCC

½

DAC 12-Bit
with RAM

Timing State Machine (TSM)
with oscillator

AVcc

from 32kHz
crystal osc.
SMCLK

Figure 37-1. ESI Block Diagram

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

963

ESI Operation

www.ti.com

37.2 ESI Operation
The ESI is configured with user software. The setup and operation of the ESI is described in the following
sections.

37.2.1 ESI Analog Front End
There are two analog front ends available in the ESI. The analog front end AFE1 provides sensor
excitation and sample-and-hold circuit for measurements. The analog front end is automatically controlled
by the timing state machine (TSM) according to the information in the timing state machine table.
Figure 37-2 shows the analog front end block diagram.
NOTE:

Timing State Machine Signals
Throughout this chapter, signals from the ESITSMx registers (x = 0 to 31) are noted in the
signal name with (tsm). For example, the signal ESIEX(tsm) comes from the actual active
ESITSMx register.

964

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com
ESICISEL ESICACI3

ESICI

11
10
01
00

ESICI3

11

ESICI2

10

ESICI1

01

ESICI0

00
ESISHTSM

ESITEST0
ESICA1X

Sample/Hold
ESISH
ESICH3

S/H

11

ESICH2

S/H

10

ESICH1

S/H

01

ESICH0

S/H

00

ESICA(tsm)
1

1

+

0

0

en

ESICA1INV

ESIDAC(tsm)
11
10

4 LSB

01

8 MSB

00

en

ESITEST1

ESIDAC1R1
ESIDAC1R2

Excitation

ESIDAC1R3
Excite

ESIDAC1R4

Excite

ESIDAC1R5

Excite

ESIDAC1R6

Excite

ESIC1OUT

+

ESIDAC1R0

ESITEN

ESIDAC1R7

Selected input channel is 00b.
Hysteresis programmable with the two registers.
Selected input channel is 01b
Hysteresis programmable with the two registers.
Selected input channel is 10b
Hysteresis programmable with the two registers.
Selected input channel is 11b or test cycle is in progress.
Hysteresis programmable with the two registers.

TESTDX

ESILCEN(tsm)

ESIC1OUT

DAC1

DAC 12 Bit

Sync.

ESIEX(tsm)
11

ESIVMIDEN
2

10
01

ESICOM

ESITESTD
ESITESTS1(tsm)

VMID

AVCC

Channel Select
Logic

2
2
2

ESITCH1x
ESITCH0x
ESICHx(tsm)

00

Figure 37-2. ESI Analog Front End AFE1 Block Diagram
The AFE2 is disabled after reset. AFE2 can be enabled by setting the ESICA2EN and ESIDAC2EN bits. If
the AFE2 is disabled (ESICA2EN = 0 and ESIDAC2EN = 0), the AFE2 comparator output is always low (0
level).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

965

ESI Operation

www.ti.com
ESICA2EN

ESICI3

11

ESICI2

10

ESICI1

01

ESICI0

00

ESICA(tsm)

ESITEST2
ESICA2X
ESICH3

11

ESICH2

10

ESICH1

01

ESICH0

00

1

en
+

0

-

ESIDAC(tsm)

ESICA2INV

ESIDAC2EN
AFE1
Excitation
Logic

ESIC2OUT

DAC2
DAC 12 Bit

en

ESIC2OUT

+

4 LSB

ESITEST3

8 MSB
ESIDAC2R0

Selected input channel is 00b.
Hysteresis programmable with the two registers.

ESIDAC2R1
ESIDAC2R2

Selected input channel is 01b.
Hysteresis programmable with the two registers.

ESIDAC2R3
ESIDAC2R4

Selected input channel is 10b.
Hysteresis programmable with the two registers.

ESIDAC2R5
ESIDAC2R6

Selected input channel is 11b.
Hysteresis programmable with the two registers.

ESIDAC2R7

2

ESICHx(tsm)

Figure 37-3. ESI Analog Front End AFE2 Block Diagram

37.2.1.1 Excitation
The excitation circuitry is used to excite the LC sensors or to power the resistor dividers. The excitation
circuitry is shown in Figure 37-4 for one LC sensor connected. When the ESITEN bit is set and the ESISH
bit is cleared, the excitation circuitry is enabled and the sample-and-hold circuitry is disabled.
When the ESIEX(tsm) signal from the timing state machine is high, the ESICHx input of the selected
channel is connected to ground (ESIDVSS pin) and the ESICOM input is connected to the mid-voltage
generator to excite the sensor. The ESILCEN(tsm) signal must be high for excitation. While one channel is
excited and measured, all other channels are automatically disabled. Only the selected channel is excited
and measured.
The excitation period should be long enough to overload the LC sensor slightly. After excitation the
ESICHx input is released from ground when ESIEX(tsm) = 0, and the LC sensor can oscillate freely. The
oscillations swing above the positive supply but are clipped by the protection diode to the positive supply
voltage plus one diode drop. This gives consistent maximum oscillation amplitude.
At the end of the measurement, the sensor should be damped by setting ESILCEN(tsm) = 0 to remove
any residual energy before the next measurement.

966

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

11

ESICH0

1

to AFE1

10

Comparator

1

01

0

00

ESISHTSM

ESISH
1

0

ESICOM
ESIEX(tsm)
1
Sample-and-Hold

From

ESIDVSS

AVSS

Channel
Select Logic
2

Damping
0

=00
ESILCEN(tsm)

11
1

10
01

ESITEN

00
1

0

Excitation
Excitation

1/2

ESIDVSS

ESIVMIDEN

AV CC

VMID Gen

Figure 37-4. Excitation and Sample-And-Hold Circuitry

37.2.1.2 Mid-Voltage Generator
The mid-voltage generator is on when ESIVMIDEN = 1 and allows the LC sensors to oscillate freely. The
mid-voltage generator requires a maximum of 6 ms to settle and requires ACLK to be active and operating
at 32768 Hz.
37.2.1.3 Sample-And-Hold
Note that the sample-and-hold circuit is only available in the analog front-end AFE1.
The sample-and-hold is used to sample the sensor voltage to be measured. Figure 37-4 shows the
sample-and-hold circuitry. When ESISH = 1 and ESITEN = 0, the sample-and-hold circuitry is enabled and
the excitation circuitry and mid-voltage generator are disabled. The sample-and-hold is used for resistive
dividers or for other analog signals that should be sampled.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

967

ESI Operation

www.ti.com

Up to four resistor dividers can be connected to ESICHx and ESICOM. AVCC and ESICOM are the
common positive and negative potentials for all connected resistor dividers. When ESIEX(tsm) = 1,
ESICOM is connected to ESIDVSS and allows current to flow through the dividers. This charges the
capacitors of each sample-and-hold circuit to the divider voltages. All resistor divider channels are
sampled simultaneously. When ESIEX(tsm) = 0, the sample-and-hold capacitor is disconnected from the
resistor divider, and ESICOM is disconnected from ESIDVSS. After sampling, each channel can be
measured sequentially using the channel select logic, the comparator, and the DAC.
The selected ESICHx input can be modeled as an RC low-pass filter during the sampling time, tsample, as
shown in Figure 37-5. An internal MUX-on input resistance Ri(ESICHx) (3 kΩ maximum) in series with
capacitor CSHC(ESICHx) (9 pF maximum) is seen by the resistor-divider. The capacitor voltage VC must be
charged to within one-half LSB of the resistor divider voltage for an accurate 12-bit conversion. See the
device-specific data sheet for parameters.
MSP430
RS
VS

VI

Ri(ESICHx)
VC
CSHC(ESICHx)

VI
VS
RS
Ri(ESICHx)
C SHC(ESICHx)
VC

= Input voltage at pin ESICHx
= External source voltage
= External source resistance
= Internal MUX-on input resistance
= Input capacitance
= Capacitance-charging voltage

Figure 37-5. Analog Input Equivalent Circuit
The resistance of the source RS and Ri(ESICHx) affect tsample. Equation 18 can be used to calculate the
minimum sampling time tsample for a 12-bit conversion:
tsample > (RS + RiESICHx) × ln(213) × CSHC(ESICHx)

(18)

Substituting the values for RiESICHx and CSHC(ESICHx) given above, the equation becomes:
tsample > (RS + 3k) × 9.011 × 9 pF

(19)

For example, if RS is 10 kΩ, tsamplemust be greater than 1054 ns.
37.2.1.4 Direct Analog And Digital Inputs
By setting the ESICA1X or ESICA2X bit, external analog or digital signals can be connected directly to the
particular comparator through the ESICIx inputs. This allows measurement capabilities for optical
encoders and other sensors.
Both analog front-ends have own control bits to select either the sensor input (ESICHx) or the direct input
(ESICIx). This allows to use different input settings (selection of ESICIx or ESICHx) for AFE1 and AFE2.
37.2.1.5 Comparator Input Selection And Output Bit Selection
The ESICA1X and ESISH bits within AFE1 select between the ESICIx channels and the ESICHx channels
for the comparator input as described in Table 37-1.
The AFE2's ESICA2X bit selects either ESICIx channels (ESICA2X = 1) or the ESICHx channels
(ESICA2X = 0) for the analog front-end AFE2.
Table 37-1. ESICAX and ESISH Input Selection
ESICA1X

ESISH

Operation

0

0

ESICHx and excitation circuitry is selected within AFE1

0

1

ESICHx and sample-and-hold circuitry is selected within AFE1

1

X

ESICIx inputs are selected within AFE1

Note that the test insertion feature is only available for AFE1. The TESTDX signal and ESITESTS1(tsm)
signal select between the ESIOUTx output bits and the ESITCHOUTx output bits for the comparator
output as described in Table 37-2. TESTDX is controlled by the ESITESTD bit.
968

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

Table 37-2. Selected Output Bits
TESTDX

ESICHx(tsm)

ESITEST1(tsm)

Selected Output Bit

0

00

X

ESIOUT0 and ESIOUT4

0

01

X

ESIOUT1 and ESIOUT5

0

10

X

ESIOUT2 and ESIOUT6

0

11

X

ESIOUT3 and ESIOUT7

1

X

0

ESITCHOUT0

1

X

1

ESITCHOUT1

When TESTDX = 0, the ESICHx(tsm) signals select which ESICIx or ESICHx channel is excited and
connected to the comparator. The ESICHx(tsm) signals also select the corresponding output bit for the
comparator result.
When TESTDX = 1, channel selection depends on the ESITESTS1(tsm) signal. When TESTDX = 1 and
ESITESTS1(tsm) = 0, input channel selection is controlled with the ESITCH0x bits and the output bit is
ESITCHOUT0. When TESTDX = 1 and ESITESTS1(tsm) = 1, input channel selection is controlled with
the ESITCH1x bits and the output bit is ESITCHOUT1.
When AFE1's ESICA1X = 1, the ESICSEL and ESICI3 bits select between the ESICIx channels and the
ESICI input, allowing storage of the comparator output for one input signal into the four output bits
ESIOUT0 to ESIOUT3. This can be used to observe the envelope function of sensors.
The output logic is enabled by the ESIRSON(tsm) signal. When a comparator output is high while
ESIRSON = 1, an internal latch is set. Otherwise the latch is reset. The latch output is written into the
selected output bit with the rising edge of the ESISTOP(tsm) signal as shown in Figure 37-6.
AFE1
Comparator Output

ESIRSON(tsm)

Internal Latch

ESISTOP(tsm)

ESIOUTx/
ESITCHOUTx

Time

Figure 37-6. Analog Front-End Output Timing

37.2.1.6 Comparator and DAC
The analog input signals are converted into digital signals by the comparator and the programmable 12-bit
DAC. The comparator compares the selected analog signal to a reference voltage generated by the DAC.
If the voltage is above the reference, the comparator output is high. Otherwise, it is low. The comparator
outputs of both analog front-ends can be individually inverted by setting ESICA1INV for AFE1 or
ESICA2INV for AFE2. The comparator output is stored in the selected output bit and processed by the
processing state machine to detect motion and direction.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

969

ESI Operation

www.ti.com

The comparator and the DAC in both analog front-ends AFE1 and AFE2 are turned on and off by
ESICA(tsm) signal and the ESIDAC(tsm) signal. In case, the AFE1's comparator or DAC are not needed
they can be disabled by clearing the ESICA(tsm) and ESIDAC(tsm) control bits within ESITSM0 register.
AFE2 is disabled when its comparator and DAC are disabled. This can be done by clearing the
ESICA2EN and ESIDAC2EN bits. In case these bits are set the AFE2's comparator and DAC will be
controlled by the ESICA(tsm) and ESIDAC(tsm) control bits.
For each input there are two DAC registers to set the reference level as listed in Table 37-3. Together with
the last stored output of the comparator, ESIOUTx, the two levels can be used as an analog hysteresis as
shown in Figure 37-7. The individual settings for the four inputs can be used to compensate for
mismatches between the sensors.
Table 37-3. Selected DAC Registers
Analog FrontEnd

Selected Output Bit, ESIOUTx
ESIOUT0
ESIOUT1

AFE1
ESIOUT2
ESIOUT3
ESIOUT4
ESIOUT5
AFE2
ESIOUT6
ESIOUT7

Last Value of
ESIOUTx

DAC Register Used

0

ESIDAC1R0

1

ESIDAC1R1

0

ESIDAC1R2

1

ESIDAC1R3

0

ESIDAC1R4

1

ESIDAC1R5

0

ESIDAC1R6

1

ESIDAC1R7

0

ESIDAC2R0

1

ESIDAC2R1

0

ESIDAC2R2

1

ESIDAC2R3

0

ESIDAC2R4

1

ESIDAC2R5

0

ESIDAC2R6

1

ESIDAC2R7

ESIDAC1R2
DAC Output Voltage
ESIDAC1R3
Input Voltage

ESIOUT1

Time

Figure 37-7. Analog Hysteresis With DAC Registers
When TESTDX = 1, the ESIDAC1R6 and ESIDAC1R7 registers are used as the comparator reference as
described in Table 37-4. Note that this feature is only available in AFE1.

970

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

Table 37-4. DAC Register Select When TESTDX=1
ESITESTS1(tsm)

DAC Register Used

0

ESIDAC1R6

1

ESIDAC1R7

37.2.1.7 Optional Comparator Offset Cancellation
The ESI's comparator has an offset that drifts over temperature and supply voltage. For some applications
the specified offset error and offset drift may be acceptable - see device-specific data sheet. If the offset
error is not acceptable, adding a comparator autozero cycle within the TSM sequence can minimize the
offset error. After the inserted autozero TSM cycle, the comparator operates effectively with a zeroed
offset.
Adding an ESITSMx state within the TSM sequence, which has the ESICAAZ bit selected
(ESITSM.ESICLKAZSEL=1) and set, performs the comparator autozeroing. As long as the ESICAAZ bit is
set the autozeroing is performed. This means, the length of the appropriate ESITSMx state defines the
length of autozeroing. The following code excerpt shows how to include an autozeroing cycle within a
TSM sequence. The example focus on ESICA and ESICAAZ control bits:
...
ESITSM5 = TSM_State5;

// TSM_State5 is a placeholder for any setting;

//
Comparator is
disabled (ESICA=0, ESICAAZ=0)
ESITSM6 = ESICA + ESICAAZ + Length + TSM_State6;
// comparator is switched on and at the same time the autozeroing is
// performed. Length is defined by ESCLK and ESIREPEATx bits // appropriate setting needed to meet autozeroing timing requirements;
// see device-specific data sheet (ESICA=1, ESICAAZ=1)
ESITSM7 = ESICA + TSM_State7;
// normal comparator operation: settle comparator
// (ESICA=1, ESICAAZ=0)
ESITSM8 = ESICA + TSM_State8;
// normal comparator operation: processing of comparator output signal
// (ESICA=1, ESICAAZ=0)
...

37.2.2 ESI Timing State Machine
The TSM is a sequential state machine that cycles through the ESITSMx registers and controls the analog
front end and sensor excitation automatically with no CPU intervention. The states are defined within a 32
x 16-bit memory, ESITSM0 to ESITSM31. The ESIEN bit enables the TSM. The ESI uses ACLK as its
source for the low frequency clock signal ESILFCLK. When ESIEN = 0, the ACLK input divider, the TSM
start flip-flop, and the TSM outputs are reset and the internal oscillator is stopped. The TSM block diagram
is shown in Figure 37-8.
A TSM sequence begins at ESITSM0 and ends when the TSM encounters a ESITSMx state with a set
ESITSTOP bit. When a state with a set ESISTOP bit is reached, the state counter is reset to zero and
state processing stops. State processing re-starts at ESITSM0 with a software trigger (setting the
ESISTART control bit), the next start condition when ESITSMRP = 0, or immediately when ESITSMRP = 1
After generation of the ESISTOP(tsm) pulse, the timing state machine will load and maintain the
conditions defined in ESITSM0. For the case an LC sensor is used the ESILCEN(tsm) bit should be reset
in ESITSM0 to ensure that all LC oscillators are shorted (damped) while no measurement sequence is in
progress.
In case a TSM sequence is started with a software trigger, the ESISTART control bit is automatically
cleared as soon as a TSM sequence is completed and the system is again in idle mode (ESITSM0
settings are used in idle mode).

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

971

ESI Operation

www.ti.com
ESIDIV3Ax
ESIDIV2x

ESIDIV3Bx
3

Divider
/1/2/4/8

ACLK

Divider
/2 .. /450

ESITSMTRG
ESIEN ESITSMRP
ESISTART
‘0’

01

Set_ESIIFG2

ESITSM0
ESICH0

ESITSM1

rst

00

3

ESICH1
ESILCEN

Start
State Pointer
and
Control

10
11

ESILFCLK
ESIHFSEL ESIDIV1x

1
0

SMCLK

0

ESIHFCLK

ESILCEN(tsm)

ESIEX

ESIEX(tsm)

ESICA

ESICA(tsm)

ESICLKON

ESICLKON(tsm)

ESIRSON

ESIRSON(tsm)

ESITESTS1
Ds

Divider
/1/2/4/8

1

TSM As
clock

ESITSMx

ESICHx(tsm)

ESITESTS1(tsm)

ESIDAC

ESIDAC(tsm)

ESISTOP

ESISTOP(tsm)

ESICLK
ESIREPEAT0

Stop
ESICLK

ESIREPEAT1
ESIREPEAT2

ESIREPEATx

Set_ESIIFG1

ESIREPEAT3
ESITSM30

ESIREPEAT4

ESITSM31

ESIOSCCLK

ESICLKFQx
6

TSM sequence
is in progress

ESIOSC

ESICLKGON

Out

SMCLK
request

Enable
ESICNT3
ESIHFSEL

Figure 37-8. Timing State Machine Block Diagram

972

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

37.2.2.1 TSM Operation
Starting of a TSM sequence depends on the selected trigger. Possible triggers are the control bit
ESISTART, the divided ACLK and an or combination of these two triggers (ESISTART or divided ACLK).
If the divided ACLK is chosen, the TSM automatically starts and re-starts periodically based on a divided
ACLK start signal selected with the ESIDIV2x bits, the ESIDIV3Ax and ESIDIV3Bx bits when ESITSMRP
= 0. For example, if ESIDIV2x, ESIDIV3Ax, and ESIDIV3Bx are configured to 270 ACLK cycles, then the
TSM automatically starts every 270 ACLK cycles. When ESITSMRP = 1 the TSM restarts immediately
with the ESITSM0 state at the end of the previous sequence i.e. with the next ACLK cycle after
encountering a state with ESISTOP = 1. The ESIIFG2 interrupt flag is set when the TSM starts.
The ESIDIV2x, ESIDIV3Ax, and ESIDIV3Bx bits may be updated anytime during operation. When
updated, the current TSM sequence will continue with the old settings until the last state of the sequence
completes. The new settings will take affect at the start of the next sequence.
Setting ESISTART bit is another trigger for starting a TSM sequence. The ESISTART bit is set as long as
the actual TSM sequence is in progress. As soon as the TSM sequence is completed and ESITSM0
register is again active for idle state configuration the ESISTART bit is automatically cleared. In case
ESISTART is the only source for a start trigger (ESITSMTRG = 01) an ACLK synchronization sequence is
performed, which may take up to 2.5 ACLK cycles. For all other cases no special synchronization is
needed and TSM starts with the appropriate positive ACLK edge.
NOTE: It is important to set the ESISTOP(tsm) bit at least once the control registers ESITSM2 to
ESITSM31. The ESISTOP(tsm) control bit ensures that a user-defined TSM sequence is
terminated and the TSM progressing is switching into idle mode awaiting the next start
trigger.

37.2.2.2 TSM Idle Condition Selectable With ESITSM0
ESITSM0 register is used for two different tasks. First, by definition ESITSM0 register is always the first
ESITSMx register within a TSM sequence. The second purpose of ESITSM0 is to define the settings of
the analog front ends during idle time; idle time means no TSM sequence is in progress.
When ESITSM0 defines the AFE1 and AFE2 settings in idle time only some of the ESITSMx control bits
are functional. These functional bits are ESICLKON, ESIRSON, ESIEX, ESILCEN, and ESICHx. Some
bits do not have any effect in idle mode, like ESIDAC, ESICA, ESIREPEATx bits and ESICLK bit; the
ESIREPEATx bits and ESICLK bit are only utilized when ESITSM0 is used within a TSM sequence.
ESIDAC and ESICA bits should be '0' in ESITSM0 state for reduced current consumption.
Note that changing ESITSM0 register gets effective not before the next TSM sequence is started. This has
to be considered especially after powering up the device and doing the first initialization of the ESI.
37.2.2.3 TSM Control of the AFE
The TSM controls the AFE with the ESICHx, ESILCEN, ESIEX, ESICA, ESICLKON, ESIRSON,
ESITESTS1, ESIDAC, ESISTOP, and ESICLK bits. When any of these bits are set, their corresponding
signal(s), ESICHx(tsm), ESILCEN(tsm), ESIEX(tsm), ESICA(tsm), ESICLKON(tsm), ESIRSON(tsm),
ESITESTS1(tsm), ESIDAC(tsm), ESISTOP(tsm), and ESICLK(tsm) are high for the duration of the state.
Otherwise, the corresponding signal(s) are low.
37.2.2.4 TSM State Duration
The duration of each state is individually configurable with the ESIREPEATx bits. The duration of each
state is ESIREPEATx + 1 times the selected clock source. For example, if a state were defined with
ESIREPEATx = 3 and ESICLK = 1, the duration of that state would be 4 x ACLK cycles. Because of clock
synchronization, the duration of each state is affected by the clock source for the previous state, as shown
in Table 37-5.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

973

ESI Operation

www.ti.com

Table 37-5. TSM State Duration
ESICLK
For Previous State

For Current State

0

0

T = (ESIREPEATx + 1) x 1/fESIHFCLK

State Duration, T

0

1

(ESIREPEATx) x 1/fACLK < T ≤ (ESIREPEATx + 1) x 1/fACLK

1

0

(ESIREPEATx + 1) x 1/fESIHFCLK ≤ T < (ESIREPEATx + 3) x 1/fESIHFCLK

1

1

T = (ESIREPEATx + 1) x 1/fACLK

37.2.2.5 TSM State Clock Source Select
The TSM clock source is individually configurable for each state. The TSM can be clocked from ACLK or a
high frequency clock selected with the ESICLK bit. When ESICLK = 1, ACLK is used for the state, and
when ESICLK = 0, the high frequency clock is used. The high frequency clock can be sourced from
SMCLK or the TSM internal oscillator, selected by the ESIHFSEL bit. The high-frequency clock can be
divided by 1, 2, 4, or 8 with ESIDIV1x bits.
A set ESICLKON bit is used to turn on the selected high frequency clock source for the duration of the
state, when it is not used for the state. If the DCO is selected as the high frequency clock source, it is
automatically turned on, regardless of the low-power mode settings of the MSP430.
The TSM internal oscillator should be adjusted to the nominal frequency of 4.8 MHz. To realize this it can
be tuned in nominal 3% steps from around 1 MHz to around 8MHz with the ESICLKFQx. The frequency
and the steps differ from unit to unit. See the device-specific data sheet for parameters.
The TSM internal oscillator frequency can be measured with ACLK. When ESIHFSEL = 1 and
ESICLKGON = 1 ESICNT3 is reset, and beginning with the next rising edge of ACLK, ESICNT3 counts
the clock cycles of the internal oscillator. ESICNT3 counts the internal oscillator cycles for one ACLK
period. Reading ESICNT3 while it is counting will result in reading 01h.
The ACLK is automatically turned on for the following cases, regardless of the low-power mode settings of
the MSP430:
•
•

ACLK is automatically turned on all the time when the divided ACLK signal (ESIDIV2x, ESIDIV3Ax,
and ESIDIV3Bx dividers) is selected as trigger for starting a TSM sequence.
While a TSM sequence is in progress the ACLK is automatically turned on.

37.2.2.6 TSM Stop Condition
A TSM sequence always starts with ESITSM0, uses some ESITSMx states to do a measurement, and
ends at the subsequent ESITSMx state with a set ESISTOP bit (stop state). The duration of this last state
(stop state) is always one ESIHFCLK cycle regardless of the ESICLK or ESIREPEATx settings. The
ESIIFG1 interrupt flag is set at when the TSM encounters a state with a set ESISTOP bit.
37.2.2.7 TSM Test Cycles
For calibration purposes, to detect sensor drift, or to measure signals other than the sensor signals, a test
cycle may be inserted between TSM cycles by setting the ESITESTD bit. The time between the TSM
cycles is not altered by the test cycle insertion as shown in Figure 37-9. At the end of the test cycle the
ESITESTD bit is automatically cleared. The TESTDX signal is active during the test cycle to control input
and output channel selection. TESTDX is generated after the ESITESTD bit is set and the next TSM
sequence completes.

974

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

TSM Active

TSM Start Signal
(Divided ACLK)

Normal Cycle

Normal
Cycle

Test
Cycle

Normal Cycle

Normal
Cycle

Test
Cycle

TESTDX

ESITESTD

ESITESTD set by Software

ESITESTD automatically cleared

Figure 37-9. Test Cycle Insertion

37.2.2.8 TSM Example
Figure 37-10 shows an example for a TSM sequence. The TSMx register values for the example are
shown in Table 37-6. ACLK and ESIHFCLK are not drawn to scale. The TSM sequence starts with
ESITSM0 and ends with a set ESISTOP bit in ESITSM9. Only the ESITSM5 to ESITSM9 states are
shown.
Table 37-6. TSM Example Register Values
TSMx Register

TSMx Register Contents

ESITSM5

0100Ah

ESITSM6

00402h

ESITSM7

01912h

ESITSM8

00952h

ESITSM9

00200h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

975

ESI Operation

www.ti.com

The example also shows the affects of the clock synchronization when switching between ESIHFCLK and
ACLK. In state ESITSM6, ESICLK is set, whereas in the previous state and the successive state, ESICLK
is cleared. The waveform shows the duration of ESITSM6 is less than one ACLK cycle and the duration of
state ESITSM7 is up to one ESIHFCLK period longer than configured by the ESIREPEATx bits.
ESI
TSM4

ESITSM5

ESITSM6

ESITSM7

ESITSM8

ESI
TSM9

ESILFCLK
ESIHFCLK

ESICHx(tsm)

10

10

10

00

ESIEX(tsm)
ESICA(tsm)
ESIRSON(tsm)
ESIDAC(tsm)
ESISTOP(tsm)

Figure 37-10. Timing State Machine Example

37.2.3 ESI Pre-Processing and State Storage
The Pre-Processing Unit (PPU) stores the measurement results of a TSM sequence. Beside this it also
allows to select up to three signals that are processed by the Processing State Machine (PSM).
Up to four regular measurements and two test insertion measurements could sequentially be done within
one TSM sequence. When ESIRSON(tsm) is high the comparator output signal is latched in the PPU's
State Storage block. The State Storage consist of several latches. The output of these latches can be read
from the ESIOUTx and ESITCHOUTx bits located in ESIPPU control register. Each input channel has its
own latch. The ESICHx(tsm), ESITCH0x, or ESITCH1x bits define which of the latches is used.
The block diagram of the Pre-Processing Unit is shown in Figure 37-11.

976

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

ESITCHOUT0
ESITCHOUT1

ESIC1OUT
Comp1Out
State
Storage 1
ESIRSON(tsm)

ES
ESIS1
S
ES IS2 EL
IS SE
3S L
EL

www.ti.com

ESIOUT0
ESIOUT1
ESIOUT2
ESIOUT3

000
1
0
001
010
1
0
011

PPUS1
PPUS2
PPUS3

100
1
101
0
110
1
111
0

ESIOUT4
ESIOUT5
State
ESIOUT6
Storage 2
ESIOUT7

Comp2Out
ESIC2OUT

channel
select

Pre-Processing Unit

Figure 37-11. Pre-Processing Unit

37.2.4 TimerA Output Stage
The comparator output of the analog front end AFE1, the ESIEX(tsm) signal, and two preprocessing unit
outputs PPUS1 and PPUS2 are connected to a Timer_A's capture inputs through the ESI's Timer_A
output stage, shown in Figure 37-12. There are two different modes that are selected by the ESICS bit.
The Timer_A Output Stage provides the ESIOx signals to one of the device's Timer_A module. See the
device-specific data sheet for connection of these signals.
Timer_A Output Stage

ESIEX(tsm)

ESIO0

PPUS1
ESITESTS1(tsm)
Comp1Out
ESIC1OUT

1
0

ESIO1

1
0

ESIO2

ESICS
PPUS2

Figure 37-12. Timer_A Output Stage of the Analog Front End
When ESICS = 0, the ESIEX(tsm) signal and the comparator output can be selected as inputs to different
Timer_A capture/compare registers. This can be used to measure the time between excitation of a sensor
and the last oscillation that passes through the comparator or to perform a slope A/D conversion.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

977

ESI Operation

www.ti.com

When ESICS = 1, the ESIEX(tsm) signal and the output bits PPUS1 and PPUS2 from the PPU can be
selected as inputs to Timer_A. This can be used to measure the duty cycle of PPUS1 or PPUS2.

37.2.5 ESI Processing State Machine

ST
T1
R
N
IE
ES

PPUS1

ES

ES

IC

IC

N

N

T1
EN

The PSM is a programmable state machine used to determine rotation and direction with its state table
stored within the ESI memory (ESI RAM). The processing state machine measures rotation and controls
interrupt generation based on the inputs from the timing state machine and the analog front-end. The PSM
block diagram is shown in Figure 37-13.

ESITHR1

PPUS2
ESITHR2
PPUS3

+1

16

16

16

ESICNT1

Q1

V7

ST
T0

R

EN
T0

ES

IE

IC

N

N

N
IC

Q3
Q4

∆65536

Q5

Q7 . . . Q0

ESIQ6EN

Q6

N
IC
ES

Q7
Ds

ESISTOP(tsm)

IC

N

As
0

01

ESICNT0
∆256

10
11

ESIIS2x

∆1

00

∆4

01

ESICNT2
∆256
0
Q7

0

-1

Set_ESIIFG7

N

Q5
Q6

00

∆4

ST

V6

∆1

R

Q4

+1

T2

V5

Q2

IE

V4

Q3

Set_ESIIFG3

ES

V3
Q0

ESIIS0x

Q0

EN

V2

ES

1

T2

V1

ES

0

Current
State
Output
Latch

State Table

V0

ES

ESIV2SEL

Comparator
Comparator

-1

ESI
Memory

rst

Next
State
Latch

∆65536

Set_ESIIFG4

10
11

ESITEST4SEL

1
00

ESIQ7TRG
Q6
Q7

01
TSM: TSM Clock

Set_ESIIFG5
Set_ESIIFG6

AFE1: ESIC1OUT

ESITEST4

10
11

Figure 37-13. ESI Processing State Machine Block Diagram

37.2.5.1 PSM Operation
The PSM is triggered at any rising edge of ESISTOP(tsm) signal during a normal cycle. Note that a test
cycle insertion does not trigger the PSM. Triggering the PSM means, the PSM starts a sequence moving
the current-state byte (Q0...Q7) from the PSM state table located in ESI RAM to the PSM next state latch
(V2...V6 or V3...V6). All accesses to the PSM state table are done automatically with no CPU intervention.
978

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

The current-state and next-state logic are reset while the ESI is disabled. The ESI allow selecting either
two signals or three signals for the processing. When the ESI is enabled following scenarios do exist for
first processing:
• Two input signals are chosen (ESIV2SEL = 1):
The byte stored at addresses 0 within PSM State Table (ESI RAM) will be loaded first when the ESI is
enabled.
• Three input signals are chosen (ESIV2SEL = 0):
The byte stored at addresses 0 within PSM State Table (ESI RAM) will be loaded first when the ESI is
enabled.
Signals PPUS1 and PPUS2 form a 2-bit offset (ESIV2SEL = 1) and signals PPUS1, PPUS2, and PPUS3
form a 3-bit offset (ESIV2SEL = 0) added to the base address of the PSM State Table to determine the
byte loaded to the PSM current-state output latch. For example, when two input signals are chosen
(ESIV2SEL = 1) and PPUS2 = 1, and PPUS1 = 0, the byte loaded by the PSM will be at the address
 + 2. The next byte and further subsequent bytes are determined by
the next state calculations and are calculated by the PSM based on the state table contents and the
values of signals PPUS1 and PPUS2.
The PSM needs two TSM clock cycles to complete the processing of the measurement results from a
single TSM sequence.
37.2.5.2 ESI RAM
The purpose of the ESI RAM is to store the user-defined PSM table. The ESI RAM can be accessed by
PSM or CPU. CPU write and read access to ESI RAM is only possible when ESI is disabled (ESIEN = 0).
Any CPU write access to ESI RAM is ignored while ESI is active (ESIEN = 1). A CPU read access to ESI
RAM is not possible while ESI is active; in this case the CPU would read a 0x00 (byte access) or 0x0000
(word access).
NOTE: The ESI RAM does not support stack usage. This means, stack pointer should not point to
ESI RAM addresses.
The ESI RAM start address (base address) can be found in the device-specific data sheet
(see Peripheral File Map section).

37.2.5.3 Next State Calculation
Either bit 0 (Q0) or signal PPUS3, and bits 3-5 (Q3, Q4, Q5), and, if enabled by ESIQ6EN, bit 6 (Q6) are
used together with the signals PPUS1, PPUS2, and optional PPUS3 to calculate the next state. When
ESIQ6EN = 1, Q6 is used in the next-state calculation. The next state is:
0

Q6

Q5

Q4

Q3

Q0 or PPUS3

PPUS2

PPUS1

↓

↓

↓

↓

↓

↓

↓

↓

V7

V6

V5

V4

V3

V2

V1

V0

If ESIQ7TRG = 0, the Q7 bit can be used to generate an interrupt (ESIIFG7).
Enabling Q7 as trigger (ESIQ7TRG = 1) causes the following functionality: When Q7 = 0, the PSM state is
updated by the falling edge of the ESISTOP(tsm) at the end of a TSM sequence. After updating the
current state the PSM moves the corresponding state table entry to the output latch. When Q7 = 1, the
next state is calculated immediately without waiting for the next falling edge of ESISTOP(tsm). The state is
then updated with the next ESIOSC cycle. The worst-case time between state transitions in this case is 6
ESIOSC cycles.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

979

ESI Operation

www.ti.com

37.2.5.4 PSM Counters
The PSM has three 16-bit counters ESICNT0, ESICNT1, and ESICNT2. ESICNT0 is updated with Q1,
ESICNT1 is updated with Q1 and Q2, and ESICNT2 is updated with Q2. The counters can be read from
the ESICNT0, ESICNT1, and ESICNT2 registers. The different counters can individually be reset by
setting the ESICNTxRST control bits. When ESIEN = 0, all counters are held in reset.
ESICNT0 increments based on Q1. When ESICNT0EN = 1, ESICNT0 increments on a transition to a state
where bit Q1 is set.
ESICNT1 can increment or decrement based on Q1 and Q2. When ESICNT1EN = 1, ESICNT1
decrements on a transition to a state where bit Q2 is set and it increments on a transition to a state where
bit Q1 is set. In case both bits Q1 and Q2 are set on a state transition, ESICNT1 does not increment or
decrement.
ESICNT2 decrements based on Q2. When ESICNT2EN = 1, ESICNT2 decrements on a transition to a
state where bit Q2 is set. On the first count after a reset ESICNT2 will roll over from zero to 65535
(0FFFFh).
When the next state is calculated to be the same state as the current state, the counters ESICNT0,
ESICNT1, and ESICNT2 are incremented or decremented according to Q1 and Q2 at the state transition.
For example, if the current state is 05h and Q2 is set, and if the next state is calculated to be 05h, the
transition from state 05h to 05h will decrement ESICNT2 if ESICNT2EN = 1.
NOTE: A read from any ESICNTx register should occur while PSM counters are not triggered. This
can be realized by reading the ESI counters in the ESIIFG1 interrupt service routine and
choosing appropriate timing of TSM sequences. Alternatively, the ESI counters may be read
multiple times, and a majority vote taken in software to determine the correct reading.

980

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

37.2.5.5 Simplest State Machine
Figure 37-14 shows the simplest state machine that can be realized with the PSM. The following code
shows the corresponding state table.
PPUS1=0
PPUS2=0

reset

State 00
00000000
PPUS1=0
PPUS2=0

PPUS1=1
PPUS2=0
PPUS1=0
PPUS2=0

PPUS1=0
PPUS2=1

PPUS1=0
PPUS2=0

PPUS1=0
PPUS2=1

PPUS1=1 State 01
PPUS2=0 00000000

State 10
00000000

PPUS1=1
PPUS2=0
PPUS1=1
PPUS2=0

PPUS1=0
PPUS2=1

PPUS1=1
PPUS2=1
PPUS1=1
PPUS2=1
PPUS1=0
PPUS2=1

PPUS1=1
PPUS2=1

State 11
00000010

PPUS1=1
PPUS2=1

Figure 37-14. Simplest PSM State Diagram (ESIV2SEL=1)
; Simplest State
SIMPLEST_PSM db
db
db
db

Machine Example
000h ; State 00
000h ; State 01
000h ; State 10
002h ; State 11

(State
(State
(State
(State

Table
Table
Table
Table

Index
Index
Index
Index

0)
1)
2)
3)

If the PSM is in state 01 of the simplest state machine and the PSM has loaded the corresponding byte at
index 01h of the state table:
Q7

Q6

Q5

Q4

Q3

Q2

Q1

Q0

0

0

0

0

0

0

0

0

For this example, PPUS1 and PPUS2 are set at the end of the next TSM sequence. To calculate the next
state the bits Q5 - Q3 and Q0 of the state 01 table entry, together with the PPUS1 and PPUS2 signals are
combined to form the next state:
V7

V6 (Q6)

V5 (Q5)

V4 (Q4)

V3 (Q3)

V2 (Q0)

V1 (PPUS2)

V0 (PPUS1)

0

0

0

0

0

0

1

1

The state table entry for state 11 is loaded at the next state transition:
V7

V6 (Q6)

V5 (Q5)

V4 (Q4)

V3 (Q3)

V2 (Q0)

V1 (PPUS2)

V0 (PPUS1)

0

0

0

0

0

0

1

0

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

981

ESI Operation

www.ti.com

Q1 is set in state 11, so ESICNT1 will be incremented.
More complex state machines can be built by combining simple state machines to meet the requirements
of specific applications.

37.2.6 ESI Debug Register
The Scan IF peripheral has several ESIDEBUGx registers for debugging and development.
• Reading ESIDEBUG1 shows the last address read by the PSM.
• Reading ESIDEBUG2 shows the index of the TSM and the PSM bits Q7 to Q0.
• Reading ESIDEBUG3 shows the TSM output.
• Reading ESIDEBUG4 shows which DAC1 register is selected and its contents.
• Reading ESIDEBUG5 shows which DAC2 register is selected and its contents.

37.2.7 ESI Interrupts
The Extended Scan IF has one interrupt vector for nine interrupt flags listed in Table 37-7. Each interrupt
flag has its own interrupt enable bit. When an interrupt is enabled, and the GIE bit is set, the interrupt flag
will generate an interrupt. The interrupt flags are not automatically cleared. They must be cleared with
software. The interrupt vector register ESIIV is used to determine which interrupt flags requested an
interrupt.
Table 37-7. ESI Interrupts
Interrupt Flag

Interrupt Condition

ESIIFG0

ESIIFG0 is set by one of the ESIOUT0 to ESIOUT3 outputs selected with the ESIIFGSET1x bits.

ESIIFG1

ESIIFG1 is set by the rising edge of the ESISTOP(tsm) signal.

ESIIFG2

ESIIFG2 is set at the start of a TSM sequence.

ESIIFG3

ESIIFG3 is set at different count intervals of the ESICNT1 counter, selected with the ESITHR1 and ESITHR2
registers.

ESIIFG4

ESIIFG4 is set at different count intervals of the ESICNT2 counter, selected with the ESIIS2x bits.

ESIIFG5

ESIIFG5 is set when the PSM transitions to a state with Q6 set.

ESIIFG6

ESIIFG6 is set when the PSM transitions to a state with Q7 set.

ESIIFG7

ESIIFG7 is set at different count intervals of the ESICNT0 counter, selected with the ESIIS0x bits.

ESIIFG8

ESIIFG8 is set by one of the ESIOUT4 to ESIOUT7 outputs selected with the ESIIFGSET2x bits.

37.2.7.1 PSM Counter ESICNT0 and ESICNT2 Interrupt Handling
The interrupt logic of the PSM counters ESICNT0 and ESICNT2 is generating an interrupt using either the
counter input directly or one out of three defined counter outputs. This means, there are four different
settings possible: generating an interrupt on 1, 4, 256, or 65536 count steps.
37.2.7.2 PSM Counter ESICNT1 Interrupt Handling
The PSM ESICNT1 counter interrupt logic generates an interrupt as soon as its counter value is equal to
the content of the control registers ESITHR1 or ESITHR2. These two threshold registers can be defined
by user; the registers contain a 16-bit value that is compared with the 16-bit ESICNT1 register. The
interrupt ESIIFG3 is set as soon as the content of ESICNT1 counter is equal to the content of ESITHR1 or
ESITHR2.

982

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

37.2.7.3 ESIIV, Interrupt Vector Generator
The ESIIFGx interrupt flags are prioritized and combined to source a single interrupt vector. The interrupt
vector register ESIIV is used to determine which flag requested an interrupt.
The highest-priority enabled interrupt generates a number in the ESIIV register (see register description).
This number can be evaluated or added to the program counter to automatically enter the appropriate
software routine. Disabled ESI interrupt do not affect the ESIIV value.
A read access of the ESIIV register automatically resets the highest-pending interrupt flag. If another
interrupt flag is set, another interrupt is immediately generated after servicing the initial interrupt. For
example, if the ESICNT1 (ESIIFG3) and ESICNT2 (ESIIFG4) interrupt flags are set when the interrupt
service routine accesses the ESIIV register, ESIIFG3 is reset automatically. After the RETI instruction of
the interrupt service routine is executed, the ESIIFG4 interrupt flag generates another interrupt.
A write access to the ESIIV register clears all pending ESI interrupt flags.

37.2.8 Overview of ESI Applications
The ESI supports different types of sensors. This chapter introduces only a few of the existing solutions of
how to use the ESI.
37.2.8.1 Using the ESI with LC Sensors
Systems with LC sensors use a disk that is partially covered with a damping material to measure rotation.
Rotation is measured with LC sensors by exciting the sensors and observing the resulting oscillation. The
oscillation is either damped or un-damped by the rotating disk. The oscillation is always decaying because
of energy losses but it decays faster when the damping material on the disk is within the field of the LC
sensor, as shown in Figure 37-15. The LC oscillations can be measured with the oscillation test or the
envelope test.

ESIDVCC
Undamped Oscillation
Undamped Envelopes

AVCC/2

Damped Envelopes
Damped Oscillation

Time

Figure 37-15. LC Sensor Oscillations

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

983

ESI Operation

www.ti.com

37.2.8.1.1 LC-Sensor Oscillation Test
The oscillation test tests if the amplitude of the oscillation after sensor excitation is above a reference
level. The DAC is used to set the reference level for the comparator, and the comparator detects if the LC
sensor oscillations are above or below the reference level. If the oscillations are above the reference level,
the comparator will output a pulse train corresponding to the oscillations and the selected AFE output bit
will 1. The measurement timing and reference level depend on the sensors and the system and should be
chosen such that the difference between the damped and the undamped amplitude is maximized.
Figure 37-16 shows the connections for the oscillation test.
ESICI
ESICI3
ESICI2
ESICI1
ESICI0
ESICH3
ESICH2
ESICH1
ESICH0

0..1k
ESICOM
470 nF
ESIDVSS
DVSS
Power
Supply
Terminals

AV SS
DVCC /ESIDVCC
AV CC

Figure 37-16. Sensor Connections For The Oscillation Test

984

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

37.2.8.1.2 LC-Sensor Envelope Test
The envelop test measures the decay time of the oscillations after sensor excitation. The oscillation
envelope is created by the diodes and RC filters. The DAC is used to set the reference level for the
comparator, and the comparator detects if the oscillation envelop is above or below the reference level.
The comparator and AFE outputs are connected to Timer_A and the capture/compare registers for
Timer_A are used to time the decay of the oscillation envelope. The PSM is not used for the envelope
test.
When the sensors are connected to the individual ESICIx inputs as shown in Figure 37-17, the comparator
reference level can be adjusted for each sensor individually. When all sensors are connected to the ESICI
input as shown in Figure 37-18, only one comparator reference level is set for all sensors.
ESICI
ESICI3
ESICI2
ESICI1
ESICI0
ESICH3
ESICH2
ESICH1
ESICH0

0..1k
ESICOM
470 nF
ESIDVSS
DVSS
Power
Supply
Terminals

AV SS
DVCC /ESIDVCC
AV CC

Figure 37-17. LC Sensor Connections For The Envelope Test

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

985

ESI Operation

www.ti.com

ESICI
ESICI3
ESICI2
ESICI1
ESICI0
ESICH3
ESICH2
ESICH1
ESICH0

0..1k
ESICOM
470 nF
ESIDVSS
DVSS
Power
Supply
Terminals

AV SS
DVCC /ESIDVCC
AV CC

Figure 37-18. LC Sensor Connections For the Envelope Test

986

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

37.2.8.2 Using the ESI With Resistive Sensors
Systems with GMRs use magnets on an impeller to measure rotation. The damping material and magnets
modify the electrical behavior of the sensor so that rotation and direction can be detected.
Rotation is measured with resistive sensors by connecting the resistor dividers to ground for a short time
allowing current flow through the dividers. The resistors are affected by the rotating disc creating different
divider voltages. The divider voltages are sampled with the sample-and-hold circuits. After the signals
have settled the dividers may be switched off to prevent current flow and reduce power consumption. The
DAC is used to set the reference level for the comparator, and the comparator detects if the sampled
voltage is above or below the reference level. If the sampled voltage is above the reference level the
comparator output is high. Figure 37-19 shows the connection for resistive sensors.
ESICI
ESICI3
ESICI2
ESICI1
ESICI0
ESICH3
ESICH2
ESICH1
ESICH0

ESICOM
ESIDVSS
DVSS
Power
Supply
Terminals

AV SS
DVCC /ESIDVCC
AV CC

Figure 37-19. Resistive Sensor Connections

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

987

ESI Operation

www.ti.com

37.2.8.3 Quadrature Decoding
The ESI can be used to decode quadrature-encoded signals. Signals that are 90° out of phase with each
other are said to be in quadrature. To Create the signals, two sensors are positioned depending on the
slotting, or coating of the encoder disk. Figure 37-20 shows two examples for the sensor positions and a
quadrature-encoded signal waveform.
Sensor A
(Signal PPUS1)

Sensor A
(Signal PPUS1)

Damping or “dark” area.

Sensor B
(Signal PPUS2)

90

45

Sensor B
(Signal PPUS2)

01

11

10

00

01

11

10

Sensor A
(Signal PPUS1)

Sensor B
(Signal PPUS2)
A

A

B

B

A
B

A

A

B

B

A
B

Figure 37-20. Sensor Position and Quadrature Signals (S1=PPUS1, S2=PPUS2)
Quadrature decoding requires knowing the previous quadrature pair S1 (PPUS1) and S2 (PPUS2), as well
as the current pair. Comparing these two pairs will tell the direction of the rotation. For example, if the
current pair is 00 it can change to 01 or 10, depending on direction. Any other change in the signal pair
would represent an error as shown in Figure 37-21.
00

00
1

+1
10

01

11

Correct State Transitions

10

01

11

Erroneous State Transitions

Figure 37-21. Quadrature Decoding State Diagram
To transfer the state encoding into counts it is necessary to decide what fraction of the rotation should be
counted and on what state transitions. In this example only full rotations will be counted on the transition
from state 00 to 01 or 10 using a 180° disk with the sensors 90° apart. All the possible state transitions
can be put into a table and this table can be translated into the corresponding state table entries for the
processing state machine as shown in Table 37-8.

988

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Operation

www.ti.com

Table 37-8. Quadrature Decoding PSM Table
State Table Entry
Previous
Quadrature
Pair

Current
Quadrature
Pair

00

00

00

01

00

10

00

11

01

Movement

Q6

Q2

Q1

Q3

Q0

Current Quadrature
Pair

Byte Code

Error

-1

+1

No Rotation

0

0

0

0

0

000h

Turns right, +1

0

0

1

0

1

003h

Turns left, -1

0

1

0

1

0

00Ch

Error

1

0

0

1

1

049h

00

Turns left

0

0

0

0

0

000h

01

01

No rotation

0

0

0

0

1

001h

01

10

Error

1

0

0

1

0

048h

01

11

Turns right

0

0

0

1

1

009h

10

00

Turns right

0

0

0

0

0

000h

10

01

Error

1

0

0

0

1

041h

10

10

No rotation

0

0

0

1

0

008h

10

11

Turns left

0

0

0

1

1

009h

11

00

Error

1

0

0

0

0

040h

11

01

Turns left

0

0

0

0

1

001h

11

10

Turns right

0

0

0

1

0

008h

11

11

No rotation

0

0

0

1

1

009h

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

989

ESI Registers

www.ti.com

37.3 ESI Registers
The Extended Scan Interface registers are listed in Table 37-9.
NOTE: The ESI RAM start address (base address) can be found in the Peripheral File Map section
of the device-specific data sheet.

Table 37-9. ESI Registers

990

Offset

Acronym

Register Name

Type

Access

Reset

0h

ESIDEBUG1

ESI debug register 1

Read

Word

Reset with PUC

02h

ESIDEBUG2

ESI debug register 2

Read

Word

Reset with PUC

04h

ESIDEBUG3

ESI debug register 3

Read

Word

Reset with PUC

06h

ESIDEBUG4

ESI debug register 4

Read

Word

Reset with PUC

08h

ESIDEBUG5

ESI debug register 5

Read

Word

Reset with PUC

0Ah

Reserved

0Ch

Reserved

0Eh

Reserved

10h

ESICNT0

ESI PSM counter 0

Read

Word

Reset with PUC

12h

ESICNT1

ESI PSM counter 1

Read

Word

Reset with PUC

14h

ESICNT2

ESI PSM counter 2

Read

Word

Reset with PUC

16h

ESICNT3

ESI oscillator counter register

Read

Word

Reset with PUC

18h

Reserved

1Ah

ESIIV

ESI interrupt vector

Read

Word

Reset with PUC

1Ch

ESIINT1

ESI interrupt register 1

Read/Write

Word

Reset with PUC

1Eh

ESIINT2

ESI interrupt register 2

Read/Write

Word

Reset with PUC

20h

ESIAFE

ESI AFE control register

Read/Write

Word

Reset with PUC

22h

ESIPPU

ESI PPU control register

Read/Write

Word

Reset with PUC

24h

ESITSM

ESI TSM control register

Read/Write

Word

Reset with PUC

26h

ESIPSM

ESI PSM control register

Read/Write

Word

Reset with PUC

28h

ESIOSC

ESI oscillator control register

Read/Write

Word

Reset with PUC

28h

ESIOSC_L

Read/Write

Byte

Reset with PUC

29h

ESIOSC_H

Read/Write

Byte

Reset with PUC

2Ah

ESICTL

ESI control register

Read/Write

Word

Reset with PUC

2Ch

ESITHR1

ESI PSM Counter Threshold 1 register

Read/Write

Word

Reset with PUC

2Eh

ESITHR2

ESI PSM Counter Threshold 2 register

Read/Write

Word

Reset with PUC

30h

Reserved

32h

Reserved

34h

Reserved

36h

Reserved

38h

Reserved

3Ah

Reserved

3Ch

Reserved

3Eh

Reserved

40h to 4Eh

ESIDAC1R0 to
ESIDAC1R7

ESI DAC1 register 0 to ESI DAC1 register
7

Read/Write

Word

Unchanged

50h to 5Eh

ESIDAC2R0 to
ESIDAC2R7

ESI DAC2 register 0 to ESI DAC2 register
7

Read/Write

Word

Unchanged

60h to 9Eh

ESITSM0 to
ESITSM31

ESI TSM 0 to ESI TSM 31

Read/Write

Word

Unchanged

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

37.3.1 ESIDEBUG1 Register
Extended Scan Interface Debug Register 1
Figure 37-22. ESIDEBUG1 Register
15

14

13

12

11

10

9

8

r

r

r

r

2

1

0

r

r

r

9

8

Unused
r

r

r

7
Unused
r

6

5

r

r

r

4
3
Last_PSM_Address
r
r

Table 37-10. ESIDEBUG1 Register Description
Bit

Field

Type

Reset

Description

15-7

Unused

R

0h

Unused. These bits are always read as zero.

6-0

Last_PSM_Address

R

0h

ESIDEBUG1 shows the last address read by the PSM.

37.3.2 ESIDEBUG2 Register
Extended Scan Interface Debug Register 2
Figure 37-23. ESIDEBUG2 Register
15

13

r

14
Unused
r

12

11

r

r

r

10
TSM_Index
r

r

r

7

6

5

4

3

2

1

0

r

r

r

r

r

r

r

r

9

8

PSM_Bits

Table 37-11. ESIDEBUG2 Register Description
Bit

Field

Type

Reset

Description

15-13

Unused

R

0h

Unused. These bits are always read as zero.

12-8

TSM_Index

R

0h

These bits show the TSM register pointer index.

7-0

PSM_Bits

R

0h

These bits show the PSM bits Q7 to Q0.

37.3.3 ESIDEBUG3 Register
Extended Scan Interface Debug Register 3
Figure 37-24. ESIDEBUG3 Register
15

14

13

r

r

r

7

6

5

r

r

r

12
11
Register_Content
r
r

10
r

r

r

4
3
Register_Content
r
r

2

1

0

r

r

r

Table 37-12. ESIDEBUG3 Register Description
Bit

Field

Type

Reset

Description

15-0

Register_Content

R

0h

Current ESITSMx register content. These bits show the TSM output.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

991

ESI Registers

www.ti.com

37.3.4 ESIDEBUG4 Register
Extended Scan Interface Debug Register 4
Figure 37-25. ESIDEBUG4 Register
15
Unused
r

14

12

r

13
DAC1_Register
r

7

6

5

4

11

10

9

8

DAC1_Data
r

r

r

r

r

3

2

1

0

r

r

r

r

DAC1_Data
r

r

r

r

Table 37-13. ESIDEBUG4 Register Description
Bit

Field

Type

Reset

Description

15

Unused

R

0h

Unused. This bit is always read as zero.

14-12

DAC1_Register

R

0h

These bits show which DAC1 register is currently selected to control the DAC1.

11-0

DAC1_Data

R

0h

These bits show value of the currently selected DAC1 register.

37.3.5 ESIDEBUG5 Register
Extended Scan Interface Debug Register 5
Figure 37-26. ESIDEBUG5 Register
15
Unused
r

14

12

r

13
DAC2_Register
r

7

6

5

4

11

10

9

8

DAC2_Data
r

r

r

r

r

3

2

1

0

r

r

r

r

DAC2_Data
r

r

r

r

Table 37-14. ESIDEBUG5 Register Description
Bit

Field

Type

Reset

Description

15

Unused

R

0h

Unused. This bit is always read as zero.

14-12

DAC2_Register

R

0h

These bits show which DAC2 register is currently selected to control the DAC2.

11-0

DAC2_Data

R

0h

These bits show value of the currently selected DAC2 register.

992

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

37.3.6 ESICNT0 Register
Extended Scan Interface Counter 0 Register
Figure 37-27. ESICNT0 Register
15

14

13

12

11

10

9

8

r-0

r-0

r-0

r-0

3

2

1

0

r-0

r-0

r-0

r-0

ESICNT0x
r-0

r-0

r-0

r-0

7

6

5

4
ESICNT0x

r-0

r-0

r-0

r-0

Table 37-15. ESICNT0 Register Description
Bit

Field

Type

Reset

Description

15-0

ESICNT0x

R

0h

ESICNT0. These bits are the ESICNT0 counter. ESICNT0 is reset when ESIEN
= 0 or when ESICNT0RST = 1.

37.3.7 ESICNT1 Register
Extended Scan Interface Counter 1 Register
Figure 37-28. ESICNT1 Register
15

14

13

12

11

10

9

8

r-0

r-0

r-0

r-0

3

2

1

0

r-0

r-0

r-0

r-0

ESICNT1x
r-0

r-0

r-0

r-0

7

6

5

4
ESICNT1x

r-0

r-0

r-0

r-0

Table 37-16. ESICNT1 Register Description
Bit

Field

Type

Reset

Description

15-0

ESICNT1x

R

0h

ESICNT1. These bits are the ESICNT1 counter. ESICNT1 is reset when ESIEN
= 0 or when ESICNT1RST = 1.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

993

ESI Registers

www.ti.com

37.3.8 ESICNT2 Register
Extended Scan Interface Counter 2 Register
Figure 37-29. ESICNT2 Register
15

14

13

12

11

10

9

8

r-0

r-0

r-0

r-0

3

2

1

0

r-0

r-0

r-0

r-0

ESICNT2x
r-0

r-0

r-0

r-0

7

6

5

4
ESICNT2x

r-0

r-0

r-0

r-0

Table 37-17. ESICNT2 Register Description
Bit

Field

Type

Reset

Description

15-0

ESICNT2x

R

0h

ESICNT2. These bits are the ESICNT2 counter. ESICNT2 is reset when ESIEN
= 0 or when ESICNT2RST = 1.

37.3.9 ESICNT3 Register
Extended Scan Interface Oscillator Counter Register
Figure 37-30. ESICNT3 Register
15

14

13

12

11

10

9

8

r-0

r-0

r-0

r-0

3

2

1

0

r-0

r-0

r-0

r-0

ESICNT3x
r-0

r-0

r-0

r-0

7

6

5

4
ESICNT3x

r-0

r-0

r-0

r-0

Table 37-18. ESICNT3 Register Description
Bit

Field

Type

Reset

Description

15-0

ESICNT3x

R

0h

Internal oscillator counter. ESICNT3 counts internal oscillator clock cycles during
one ACLK period after ESICLKGON and ESIHFSEL are both set. Setting the
control bits ESIHFSEL and ESICLKGON resets the ESICNT3 counter.

994

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

37.3.10 ESIIV Register
Extended Scan Interface Interrupt Vector Register
Figure 37-31. ESIIV Register
15

14

13

12

11

10

9

8

r0

r0

r0

r0

3

2

1

0

r-0

r-0

r-0

r0

ESIIV
r0

r0

r0

r0

7

6

5

4
ESIIV

r0

r0

r0

r-0

Table 37-19. ESIIV Register Description
Bit

Field

Type

Reset

Description

15-0

ESIIV

R

0h

Extended Scan Interface interrupt vector value. The ESIIV register helps to easily
find out the source of an Extended Scan Interface interrupt. By adding the ESIIV
register content to the program counter (PC) the code execution is continued on
one of the following instructions. This allows to realize a jump table that
optimizes the detection of interrupt source. Writing to this register clears all
pending Extended Scan Interface interrupt flags.
00h = No interrupt pending
02h = Interrupt Source: Rising edge of the ESISTOP(tsm) signal; Interrupt Flag:
ESIIFG1; Interrupt Priority: Highest
04h = Interrupt Source: ESIOUT0 to ESIOUT3 conditions selected by
ESIIFGSETx bits; Interrupt Flag: ESIIFG0
06h = Interrupt Source: ESIOUT4 to ESIOUT7 conditions selected by
ESIIFGSET2x bits; Interrupt Flag: ESIIFG8
08h = Interrupt Source: ESICNT1 counter conditions selected with the ESITHR1
and ESITHR2 registers; Interrupt Flag: ESIIFG3
0Ah = Interrupt Source: PSM transitions to a state with a set Q7 bit; Interrupt
Flag: ESIIFG6
0Ch = Interrupt Source: PSM transitions to a state with a set Q6 bit; Interrupt
Flag: ESIIFG5
0Eh = Interrupt Source: ESICNT2 counter conditions selected with the ESIIS2x
bits; Interrupt Flag: ESIIFG4
10h = Interrupt Source: ESICNT0 counter conditions selected with the ESIIS0x
bits; Interrupt Flag: ESIIFG7
12h = Interrupt Source: Start of a TSM sequence; Interrupt Flag: ESIIFG2;
Interrupt Priority: Lowest

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

995

ESI Registers

www.ti.com

37.3.11 ESIINT1 Register
Extended Scan Interface Interrupt Register 1
Figure 37-32. ESIINT1 Register
15

13

12

rw-0

14
ESIIFGSET2x
rw-0

rw-0

11
ESIIFGSET1x
rw-0

rw-0

7
ESIIE7
rw-0

6
ESIIE6
rw-0

5
ESIIE5
rw-0

4
ESIIE4
rw-0

3
ESIIE3
rw-0

10
rw-0

9
Reserved
r0

8
ESIIE8
rw-0

2
ESIIE2
rw-0

1
ESIIE1
rw-0

0
ESIIE0
rw-0

Table 37-20. ESIINT1 Register Description
Bit

Field

Type

Reset

Description

15-13

ESIIFGSET2x

RW

0h

ESIIFG8 interrupt flag source. These bits select when the ESIIFG8 flag is set.
000b = ESIIFG8 is set when ESIOUT4 is set.
001b = ESIIFG8 is set when ESIOUT4 is reset.
010b = ESIIFG8 is set when ESIOUT5 is set.
011b = ESIIFG8 is set when ESIOUT5 is reset.
100b = ESIIFG8 is set when ESIOUT6 is set.
101b = ESIIFG8 is set when ESIOUT6 is reset.
110b = ESIIFG8 is set when ESIOUT7 is set.
111b = ESIIFG8 is set when ESIOUT7 is reset.

12-10

ESIIFGSET1x

RW

0h

ESIIFG0 interrupt flag source. These bits select when the ESIIFG0 flag is set.
000b = ESIIFG0 is set when ESIOUT0 is set.
001b = ESIIFG0 is set when ESIOUT0 is reset.
010b = ESIIFG0 is set when ESIOUT1 is set.
011b = ESIIFG0 is set when ESIOUT1 is reset.
100b = ESIIFG0 is set when ESIOUT2 is set.
101b = ESIIFG0 is set when ESIOUT2 is reset.
110b = ESIIFG0 is set when ESIOUT3 is set.
111b = ESIIFG0 is set when ESIOUT3 is reset.

9

Reserved

R

0h

Reserved. This bit is always read as zero and, when written, does not affect the
bit setting.

8

ESIIE8

RW

0h

Interrupt enable. These bits enable or disable the interrupt request for the
ESIIFG8 bit. Details about the interrupt functionality can be found in the ESIIFG8
bit descriptions (see control register ESIINT2).
0b = Interrupt disabled
1b = Interrupt enabled

7

ESIIE7

RW

0h

Interrupt enable. These bits enable or disable the interrupt request for the
ESIIFG7 bit. Details about the interrupt functionality can be found in the ESIIFG7
bit descriptions (see control register ESIINT2).
0b = Interrupt disabled
1b = Interrupt enabled

6

ESIIE6

RW

0h

Interrupt enable. These bits enable or disable the interrupt request for the
ESIIFG6 bit. Details about the interrupt functionality can be found in the ESIIFG6
bit descriptions (see control register ESIINT2).
0b = Interrupt disabled
1b = Interrupt enabled

5

ESIIE5

RW

0h

Interrupt enable. These bits enable or disable the interrupt request for the
ESIIFG5 bit. Details about the interrupt functionality can be found in the ESIIFG5
bit descriptions (see control register ESIINT2).
0b = Interrupt disabled
1b = Interrupt enabled

996

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

Table 37-20. ESIINT1 Register Description (continued)
Bit

Field

Type

Reset

Description

4

ESIIE4

RW

0h

Interrupt enable. These bits enable or disable the interrupt request for the
ESIIFG4 bit. Details about the interrupt functionality can be found in the ESIIFG4
bit descriptions (see control register ESIINT2).
0b = Interrupt disabled
1b = Interrupt enabled

3

ESIIE3

RW

0h

Interrupt enable. These bits enable or disable the interrupt request for the
ESIIFG3 bit. Details about the interrupt functionality can be found in the ESIIFG3
bit descriptions (see control register ESIINT2).
0b = Interrupt disabled
1b = Interrupt enabled

2

ESIIE2

RW

0h

Interrupt enable. These bits enable or disable the interrupt request for the
ESIIFG2 bit. Details about the interrupt functionality can be found in the ESIIFG2
bit descriptions (see control register ESIINT2).
0b = Interrupt disabled
1b = Interrupt enabled

1

ESIIE1

RW

0h

Interrupt enable. These bits enable or disable the interrupt request for the
ESIIFG1 bit. Details about the interrupt functionality can be found in the ESIIFG1
bit descriptions (see control register ESIINT2).
0b = Interrupt disabled
1b = Interrupt enabled

0

ESIIE0

RW

0h

Interrupt enable. These bits enable or disable the interrupt request for the
ESIIFG0 bit. Details about the interrupt functionality can be found in the ESIIFG0
bit descriptions (see control register ESIINT2).
0b = Interrupt disabled
1b = Interrupt enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

997

ESI Registers

www.ti.com

37.3.12 ESIINT2 Register
Extended Scan Interface Interrupt Register 2
Figure 37-33. ESIINT2 Register
15
Reserved
r0

14
rw-0

7
ESIIFG7
rw-0

6
ESIIFG6
rw-0

13
rw-0

12
Reserved
r0

rw-0

5
ESIIFG5
rw-0

4
ESIIFG4
rw-0

3
ESIIFG3
rw-0

ESIIS2x

11

10
rw-0

9
Reserved
r0

8
ESIIFG8
rw-0

2
ESIIFG2
rw-0

1
ESIIFG1
rw-0

0
ESIIFG0
rw-0

ESIIS0x

Table 37-21. ESIINT2 Register Description
Bit

Field

Type

Reset

Description

15

Reserved

R

0h

Reserved. This bit is always read as zero and, when written, does not affect the
bit setting.

14-13

ESIIS2x

RW

0h

ESIIFG4 interrupt flag source
00b = ESIIFG4 is set with each count of ESICNT2.
01b = ESIIFG4 is set if (ESICNT2 modulo 4) = 0.
10b = ESIIFG4 is set if (ESICNT2 modulo 256) = 0.
11b = ESIIFG4 is set when ESICNT2 decrements from 01h to 00h.

12

Reserved

R

0h

Reserved. This bit is always read as zero and, when written, does not affect the
bit setting.

11-10

ESIIS0x

RW

0h

ESIIFG7 interrupt flag source
00b = ESIIFG7 is set with each count of ESICNT0.
01b = ESIIFG7 is set if (ESICNT0 modulo 4) = 0.
10b = ESIIFG7 is set if (ESICNT0 modulo 256) = 0.
11b = ESIIFG7 is set when ESICNT0 increments from FFFFh to 00h.

9

Reserved

R

0h

Reserved. This bit is always read as zero and, when written, does not affect the
bit setting.

8

ESIIFG8

RW

0h

ESIIFG8 is set by one of the AFE2’s ESIOUTx outputs selected with the
ESIIFGSET2x bits.
0b = No interrupt pending
1b = Interrupt pending

7

ESIIFG7

RW

0h

ESI interrupt flag 7. ESIIFG7 is set at different count intervals of the ESICNT0
counter, selected with the ESIIS0x bits. ESIIFG6 must be reset with software.
0b = No interrupt pending
1b = Interrupt pending

6

ESIIFG6

RW

0h

ESI interrupt flag 6. This bit is set when the PSM transitions to a state with a set
Q7 bit. ESIIFG6 must be reset with software.
0b = No interrupt pending
1b = Interrupt pending

5

ESIIFG5

RW

0h

ESI interrupt flag 5. This bit is set when the PSM transitions to a state with a set
Q6 bit. ESIIFG5 must be reset with software.
0b = No interrupt pending
1b = Interrupt pending

4

ESIIFG4

RW

0h

ESI interrupt flag 4. This bit is set by the ESICNT2 counter conditions selected
with the ESIIS2x bits. ESIIFG4 must be reset with software.
0b = No interrupt pending
1b = Interrupt pending

3

ESIIFG3

RW

0h

ESI interrupt flag 3. This bit is set by the ESICNT1 counter conditions selected
with the ESITHR1 and ESITHR2 registers. ESIIFG3 must be reset with software.
0b = No interrupt pending
1b = Interrupt pending

998

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

Table 37-21. ESIINT2 Register Description (continued)
Bit

Field

Type

Reset

Description

2

ESIIFG2

RW

0h

ESI interrupt flag 2. This bit is set at the start of a TSM sequence generated by
the divided ACLK. A TSM sequence started with ESISTART bit does not set
ESIIFG2. ESIIFG2 must be reset with software.
0b = No interrupt pending
1b = Interrupt pending

1

ESIIFG1

RW

0h

ESI interrupt flag 1. This bit is set by the rising edge of the ESISTOP(tsm) signal.
ESIIFG1 must be reset with software.
0b = No interrupt pending
1b = Interrupt pending

0

ESIIFG0

RW

0h

ESI interrupt flag 0. This bit is set by the AFE1's ESIOUTx conditions selected by
the ESIIFGSET1x bits. ESIIFG0 must be reset with software.
0b = No interrupt pending
1b = Interrupt pending

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

999

ESI Registers

www.ti.com

37.3.13 ESIAFE Register
Extended Scan Interface Analog Front-End Control Register
Figure 37-34. ESIAFE Register

(1)
(2)

15
Reserved
rw-0

14
Reserved
rw-0

13
Reserved
rw-0

12
Reserved
rw-0

11
ESIDAC2EN
rw-0

10
ESICA2EN
rw-0

9
ESICA2INV
rw-0

8
ESICA1INV
rw-0

7
ESICA2X
rw-0

6
ESICA1X
rw-0

5
ESICISEL
rw-0

4
ESICACI3
rw-0

3
ESISHTSM (1)
rw-0

2
ESIVMIDEN (2)
rw-0

1
ESISH
rw-0

0
ESITEN
rw-0

The control bit ESIVSS was renamed to ESISHTSM to avoid confusion with supply pin naming.
The control bit ESIVCC2 was renamed to ESIVMIDEN to avoid confusion with supply pin naming.

Table 37-22. ESIAFE Register Description
Bit

Field

Type

Reset

Description

15-12

Reserved

RW

0h

Reserved for test purposes. It is strongly recommended to always write these
bits as 0.

11

ESIDAC2EN

RW

0h

Enable ESIDAC(tsm) control for DAC in AFE2.
0b = AFE2's DAC is always disabled, independently from ESIDAC(tsm) setting.
1b = AFE2's DAC is controlled by ESIDAC(tsm) bit.

10

ESICA2EN

RW

0h

Enable ESICA(tsm) control for comparator in AFE2.
0b = AFE2's comparator is always disabled, independently from ESICA(tsm)
setting.
1b = AFE2's comparator is controlled by ESICA(tsm) bit.

9

ESICA2INV

RW

0h

Invert AFE2's comparator output
0b = Comparator output in AFE2 is not inverted
1b = Comparator output in AFE2 is inverted

8

ESICA1INV

RW

0h

Invert AFE1's comparator output
0b = Comparator output in AFE1 is not inverted
1b = Comparator output in AFE1 is inverted

7

ESICA2X

RW

0h

AFE2's comparator input select. This bit selects groups of signals for the
comparator input.
0b = AFE2's comparator input is one of the ESICHx channels, selected with the
channel select logic.
1b = AFE2's comparator input is one of the ESICIx channels, selected with the
channel select logic and the ESICISEL and ESICACI3 bits.

6

ESICA1X

RW

0h

AFE1's comparator input select. This bit selects groups of signals for the
comparator input.
0b = AFE1's comparator input is one of the ESICHx channels, selected with the
channel select logic.
1b = AFE1's comparator input is one of the ESICIx channels, selected with the
channel select logic and the ESICISEL and ESICACI3 bits.

5

ESICISEL

RW

0h

Comparator input select for AFE1 only. This bit is used with the ESICACI3 bit to
select the comparator input when ESICAX = 1.
0b = Comparator input is one of the ESICIx channels, selected with the channel
select logic and ESICACI3 bit.
1b = Comparator input is the ESICI channel

4

ESICACI3

RW

0h

Comparator input select for AFE1 only. This bit is selects the comparator input
when ESICISEL = 0 and ESICAX = 1.
0b = Comparator input is selected with the channel select logic.
1b = Comparator input is ESICI3.

1000

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

Table 37-22. ESIAFE Register Description (continued)
Bit

Field

Type

Reset

Description

3

ESISHTSM (1)

RW

0h

Sample-and-hold ESIDVSS select.
0b = The ground connection of the sample capacitor is connected to ESIDVSS,
regardless of the TSM control.
1b = The ground connection of the sample capacitor is controlled by the TSM

2

ESIVMIDEN (2)

RW

0h

Mid-voltage generator
0b = AVCC/2 generator is off
1b = AVCC/2 generator is on if ESISH = 0

1

ESISH

RW

0h

Sample-and-hold enable
0b = Sample-and-hold is disabled
1b = Sample-and-hold is enabled

0

ESITEN

RW

0h

Excitation enable
0b = Excitation circuitry is disabled
1b = Excitation circuitry is enabled

(1)
(2)

The control bit ESIVSS was renamed to ESISHTSM to avoid confusion with supply pin naming.
The control bit ESIVCC2 was renamed to ESIVMIDEN to avoid confusion with supply pin naming.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

1001

ESI Registers

www.ti.com

37.3.14 ESIPPU Register
Extended Scan Interface Pre-Processing Unit Control Register
Figure 37-35. ESIPPU Register
15

14

13

12

11

10

r0

r0

r0

r0

r0

r0

9
ESITCHOUT1
r-(0)

7
ESIOUT7
r-(0)

6
ESIOUT6
r-(0)

5
ESIOUT5
r-(0)

4
ESIOUT4
r-(0)

3
ESIOUT3
r-(0)

2
ESIOUT2
r-(0)

1
ESIOUT1
r-(0)

Reserved

8
ESITCHOUT0
r-(0)
0
ESIOUT0
r-(0)

Table 37-23. ESIPPU Register Description
Bit

Field

Type

Reset

Description

15-10

Reserved

R

0h

Reserved. These bits are always read as zero and, when written, do not affect
the bit setting.

9

ESITCHOUT1

R

0h

Latched AFE1 comparator output for test channel 1

8

ESITCHOUT0

R

0h

Latched AFE1 comparator output for test channel 0

7

ESIOUT7

R

0h

Latched AFE2 comparator output when ESICH3 input is selected

6

ESIOUT6

R

0h

Latched AFE2 comparator output when ESICH2 input is selected

5

ESIOUT5

R

0h

Latched AFE2 comparator output when ESICH1 input is selected

4

ESIOUT4

R

0h

Latched AFE2 comparator output when ESICH0 input is selected

3

ESIOUT3

R

0h

Latched AFE1 comparator output when ESICH3 input is selected

2

ESIOUT2

R

0h

Latched AFE1 comparator output when ESICH2 input is selected

1

ESIOUT1

R

0h

Latched AFE1 comparator output when ESICH1 input is selected

0

ESIOUT0

R

0h

Latched AFE1 comparator output when ESICH0 input is selected

1002

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

37.3.15 ESITSM Register
Extended Scan Interface Timing State Machine Control Register
Figure 37-36. ESITSM Register
15
Reserved
r0

14
ESICLKAZSEL
rw-0

7
ESIDIV3Bx
rw-0

6

13

12
ESITSMTRGx
rw-0
rw-0
5
ESIDIV3Ax
rw-0

rw-0

4

11
ESISTART
rw-0

10
ESITSMRP
rw-0

9
rw-0

3

2

1

ESIDIV2x
rw-0

rw-0

8
ESIDIV3Bx
rw-0
0
ESIDIV1x

rw-0

rw-0

rw-0

Table 37-24. ESITSM Register Description
Bit

Field

Type

Reset

Description

15

Reserved

R

0h

Reserved. This bit is always read as zero and, when written, does not affect the
bit setting.

14

ESICLKAZSEL

RW

0h

Control bit functionality selection. This bit allows to define the functionality of bit 5
in register ESITSMx.
0b = ESITSMx.5 bit is used as ESICLKON. See ESITSMx control register for
further description.
1b = ESITSMx.5 bit is used as ESICAAZ. See ESITSMx control register for
further description.

13-12

ESITSMTRGx

RW

0h

TSM start trigger selection. These bits allow to chose the source for the TSM
start trigger.
00b = Halt mode. This setting allows to stop the TSM.
01b = TSM start trigger ACLK divider is used. ESIDIV3Ax and ESIDIV3Bx bits
select the division rate for the TSM start trigger.
10b = Software trigger for TSM. When ESISTART bit is set by software a TSM
start trigger is generated. Note that for this setting an ACLK synchronization
sequence is performed that takes up to 2.5 ACLK cycles.
11b = Either the ACLK divider (ESIDIV3Ax and ESIDIV3Bx) or the ESISTART bit
is used for TSM start trigger.

11

ESISTART

RW

0h

TSM software start trigger. In case the ESISTART bit is selected for TSM trigger
generation this bit allows to generate a TSM start trigger by software.
0b = Idle state
1b = A TSM sequence is started. ESISTART is automatically cleared as soon as
the TSM sequence starts.

10

ESITSMRP

RW

0h

TSM repeat mode
0b = Each TSM sequence is triggered by the ACLK divider controlled with the
ESIDIV3Ax and ESIDIV3Bx bits or ESISTART control bit depending on
ESITSMTRGx setting.
1b = Each TSM sequence is immediately started at the end of the previous
sequence.

9-7

ESIDIV3Bx

RW

0h

TSM start trigger ACLK divider. These bits together with the ESIDIV3Ax bits
select the division rate for the TSM start trigger.
The division rate is shown in Table 37-25.
The division rate can be calculated as: ((ESIDIV3A + 1) × 2 - 1) × ((ESIDIV3B +
1) × 2 - 1) × 2

6-4

ESIDIV3Ax

RW

0h

TSM start trigger ACLK divider. These bits together with the ESIDIV3Bx bits
select the division rate for the TSM start trigger.
The division rate is shown in Table 37-25.
The division rate can be calculated as: ((ESIDIV3A + 1) × 2 - 1) × ((ESIDIV3B +
1) × 2 - 1) × 2

3-2

ESIDIV2x

RW

0h

ACLK divider. These bits select the ACLK division.
00b = /1
01b = /2
10b = /4
11b = /8

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

1003

ESI Registers

www.ti.com

Table 37-24. ESITSM Register Description (continued)
Bit

Field

Type

Reset

Description

1-0

ESIDIV1x

RW

0h

TSM SMCLK divider. These bits select the SMCLK division for the TSM.
00b = /1
01b = /2
10b = /4
11b = /8

Table 37-25. TSM Start Trigger ACLK Divider

1004

ACLK
Divider

ESIDIV3Bx

ESIDIV3Ax

ACLK
Divider

ESIDIV3Bx

ESIDIV3Ax

2

000

000

126

011

100

6

000

001

130

010

110

10

000

010

150

010

111

14

000

011

154

011

101

18

000

100

162

100

100

22

000

101

182

011

110

26

000

110

198

100

101

30

000

111

210

011

111

42

001

011

234

100

110

50

010

010

242

101

101

54

001

100

270

100

111

66

001

101

286

101

110

70

010

011

330

101

111

78

001

110

338

110

110

90

001

111

390

110

111

98

011

011

450

111

111

110

010

101

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

37.3.16 ESIPSM Register
Extended Scan Interface Processing State Machine Control Register
Figure 37-37. ESIPSM Register
15
ESICNT2RST
rw-0

14
ESICNT1RST
rw-0

13
ESICNT0RST
rw-0

12

10

r0

11
Reserved
r0

7
ESIV2SEL
rw-1

6
Reserved
r0

5
ESICNT2EN
rw-0

9

8
ESITEST4SEL
rw-0
rw-0

4
ESICNT1EN
rw-0

3
ESICNT0EN
rw-0

2
ESIQ7TRG
rw-0

r0

1
Reserved
r0

0
ESIQ6EN
rw-0

Table 37-26. ESIPSM Register Description
Bit

Field

Type

Reset

Description

15

ESICNT2RST

RW

0h

ESI Counter 2 reset. Setting this bit resets ESICNT2 register. After ESICNT2
register is cleared, the ESICNT2RST bit is automatically reset. This bit is always
read as zero.

14

ESICNT1RST

RW

0h

ESI Counter 1 reset. Setting this bit resets ESICNT1 register. After ESICNT1
register is cleared, the ESICNT1RST bit is automatically reset. This bit is always
read as zero.

13

ESICNT0RST

RW

0h

ESI Counter 0 reset. Setting this bit resets ESICNT0 register. After ESICNT0
register is cleared, the ESICNT0RST bit is automatically reset. This bit is always
read as zero.

12-10

Reserved

R

0h

Reserved. These bits are always read as zero and, when written, do not affect
the bit setting.

9-8

ESITEST4SEL

RW

0h

Output signal selection for ESITEST4 pin.
00b = Q2 signal from PSM table
01b = Q1 signal from PSM table
10b = TSM clock signal from Timing State Machine
11b = AFE1's comparator output signal ESIC1OUT

7

ESIV2SEL

RW

1h

Source Selection for V2 bit of Next State Latch
0b = PPUS3 signal is used for V2 bit
1b = Q0 is used for V2 bit

6

Reserved

R

0h

Reserved. This bit is always read as zero and, when written, does not affect the
bit setting.

5

ESICNT2EN

RW

0h

ESICNT2 enable (down counter)
0b = ESICNT2 is disabled
1b = ESICNT2 is enabled

4

ESICNT1EN

RW

0h

ESICNT1 enable (up/down counter)
0b = ESICNT1 is disabled
1b = ESICNT1 is enabled

3

ESICNT0EN

RW

0h

ESICNT0 enable (up counter)
0b = ESICNT0 is disabled
1b = ESICNT0 is enabled

2

ESIQ7TRG

RW

0h

Enabling to use Q7 as trigger for a PSM sequence.
0b = Only ESISTOP(tsm) is used as PSM trigger.
1b = ESISTOP(tsm) and Q7 are used as PSM triggers. As soon as a PSM state
is reached with Q7 bit set the next state is calculated immediately without waiting
for the next falling edge of ESISTOP(tsm).

1

Reserved

R

0h

Reserved. This bit is always read as zero and, when written, does not affect the
bit setting.

0

ESIQ6EN

RW

0h

Q6 enable. This bit enables Q6 for the next PSM state calculation.
0b = Q6 is not used to determine the next PSM state
1b = Q6 is used to determine the next PSM state

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

1005

ESI Registers

www.ti.com

37.3.17 ESIOSC Register
Extended Scan Interface Oscillator Control Register
Figure 37-38. ESIOSC Register
15

14

13

12

11

Reserved

10

9

8

ESICLKFQx

r0

r0

rw-1

7

6

5

rw-0

rw-0

rw-0

rw-0

rw-0

4

3

2

r0

r0

r0

1
ESICLKGON
rw-0

0
ESIHFSEL
rw-0

Reserved
r0

r0

r0

Table 37-27. ESIOSC Register Description
Bit

Field

Type

Reset

Description

15-14

Reserved

R

0h

Reserved. These bits are always read as zero and, when written, do not affect
the bit setting.

13-8

ESICLKFQx

RW

20h

Internal oscillator frequency adjust. These bits are used to adjust the internal
oscillator frequency. Each increase or decrease of the ESICLKFQx bits
increases or decreases the internal oscillator frequency by approximately 3%.
000000b = Minimum frequency
⋮
100000b = Nominal frequency
⋮
111111b = Maximum frequency

7-2

Reserved

R

0h

Reserved. These bits are always read as zero and, when written, do not affect
the bit setting.

1

ESICLKGON

RW

0h

Internal oscillator control. When ESICLKGON = 1 and ESIHFSEL = 1, the
internal oscillator calibration is started. ESICLKGON is not used when
ESIHFSEL = 0.
0b = No internal oscillator calibration is started.
1b = The internal oscillator calibration is started when ESIHFSEL = 1.

0

ESIHFSEL

RW

0h

Internal oscillator enable. This bit selects the high frequency clock source for the
TSM.
0b = TSM high frequency clock source is SMCLK.
1b = TSM high frequency clock source is the Extended Scan IF internal
oscillator.

1006

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

37.3.18 ESICTL Register
Extended Scan Interface General Control Register
Figure 37-39. ESICTL Register
15
rw-0

14
ESIS3SELx
rw-0

rw-0

rw-0

6

5

4

7
ESIS1SELx
rw-0

13

12

ESITCH1x
rw-0

11
ESIS2SELx
rw-0
3
ESITCH0x

rw-0

rw-0

rw-0

10

9

8
ESIS1SELx

rw-0

rw-0

rw-0

2
ESICS
rw-0

1
ESITESTD
rw-0

0
ESIEN
rw-0

Table 37-28. ESICTL Register Description
Bit

Field

Type

Reset

Description

15-13

ESIS3SELx

RW

0h

PPUS3 source select. These bits select the PPUS3 source for the PSM.
000b = ESIOUT0 is the PPUS3 source
001b = ESIOUT1 is the PPUS3 source
010b = ESIOUT2 is the PPUS3 source
011b = ESIOUT3 is the PPUS3 source
100b = ESIOUT4 is the PPUS3 source
101b = ESIOUT5 is the PPUS3 source
110b = ESIOUT6 is the PPUS3 source
111b = ESIOUT7 is the PPUS3 source

12-10

ESIS2SELx

RW

0h

PPUS2 source select. These bits select the PPUS2 source for the PSM.
000b = ESIOUT0 is the PPUS2 source
001b = ESIOUT1 is the PPUS2 source
010b = ESIOUT2 is the PPUS2 source
011b = ESIOUT3 is the PPUS2 source
100b = ESIOUT4 is the PPUS2 source
101b = ESIOUT5 is the PPUS2 source
110b = ESIOUT6 is the PPUS2 source
111b = ESIOUT7 is the PPUS2 source

9-7

ESIS1SELx

RW

0h

PPUS1 source select. These bits select the PPUS1 source for the PSM.
000b = ESIOUT0 is the PPUS1 source
001b = ESIOUT1 is the PPUS1 source
010b = ESIOUT2 is the PPUS1 source
011b = ESIOUT3 is the PPUS1 source
100b = ESIOUT4 is the PPUS1 source
101b = ESIOUT5 is the PPUS1 source
110b = ESIOUT6 is the PPUS1 source
111b = ESIOUT7 is the PPUS1 source

6-5

ESITCH1x

RW

0h

These bits select the comparator input for test channel 1.
00b = Comparator input is ESICH0 when ESICAX = 0; Comparator input
ESICI0 when ESICAX = 1.
01b = Comparator input is ESICH1 when ESICAX = 0; Comparator input
ESICI1 when ESICAX = 1.
10b = Comparator input is ESICH2 when ESICAX = 0; Comparator input
ESICI2 when ESICAX = 1.
11b = Comparator input is ESICH3 when ESICAX = 0; Comparator input
ESICI3 when ESICAX = 1.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

is
is
is
is

Extended Scan Interface (ESI)

1007

ESI Registers

www.ti.com

Table 37-28. ESICTL Register Description (continued)
Bit

Field

Type

Reset

Description

4-3

ESITCH0

RW

0h

These bits select the comparator input for test channel 0.
00b = Comparator input is ESICH0 when ESICAX = 0; Comparator input
ESICI0 when ESICAX = 1.
01b = Comparator input is ESICH1 when ESICAX = 0; Comparator input
ESICI1 when ESICAX = 1.
10b = Comparator input is ESICH2 when ESICAX = 0; Comparator input
ESICI2 when ESICAX = 1 .
11b = Comparator input is ESICH3 when ESICAX = 0; Comparator input
ESICI3 when ESICAX = 1 .

is
is
is
is

2

ESICS

RW

0h

Comparator output ir Timer_A input selection
0b = The ESIEX(tsm) signal and the comparator output are connected to the
TACCRx inputs.
1b = The ESIEX(tsm) signal and the ESIOUTx outputs are connected to the
TACCRx inputs selected with the ESIS1SELx and ESIS2SELx bits (PPUS1 and
PPUS2 signals).

1

ESITESTD

RW

0h

Test cycle insertion. Setting this bit inserts a test cycle between TSM cycles.
ESITESTD is automatically reset at the end of the test cycle. Note that a test
cycle insertion should only be done when divided ACLK is used as start trigger
for TSM sequences (ESITSMTRGx = 01 and ESITSMRP=0).
0b = No test cycle inserted
1b = Test cycle inserted between TSM cycles.

0

ESIEN

RW

0h

Extended Scan interface enable. Setting this bit enables the Extended Scan
Interface and its components.
0b = Extended Scan Interface disabled
1b = Extended Scan Interface enabled

1008

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

37.3.19 ESITHR1 Register
ESI PSM Counter Threshold 1 Register
Figure 37-40. ESITHR1 Register
15

14

13

12

11

10

9

8

rw-0

rw-0

rw-0

rw-0

3

2

1

0

rw-0

rw-0

rw-0

rw-0

Threshold1
rw-0

rw-0

rw-0

rw-0

7

6

5

4
Threshold1

rw-0

rw-0

rw-0

rw-0

Table 37-29. ESITHR1 Register Description
Bit

Field

Type

Reset

Description

15-0

Threshold1

RW

0h

Threshold for ESICNT1 counter. The interrupt flag ESIIFG3 is set when
ESICNT1 content and Threshold 1 is equal. (for example, used to detect a
certain increase of ESICNT1)

37.3.20 ESITHR2 Register
ESI PSM Counter Threshold 2 Register
Figure 37-41. ESITHR2 Register
15

14

13

12

11

10

9

8

rw-1

rw-1

rw-1

rw-1

3

2

1

0

rw-1

rw-1

rw-1

rw-1

Threshold2
rw-1

rw-1

rw-1

rw-1

7

6

5

4
Threshold2

rw-1

rw-1

rw-1

rw-1

Table 37-30. ESITHR2 Register Description
Bit

Field

Type

Reset

Description

15-0

Threshold2

RW

FFFFh

Threshold for ESICNT1 counter. The interrupt flag ESIIFG3 is set when
ESICNT1 content and Threshold 2 is equal. (for example, used to detect a
certain decrease of ESICNT1)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

1009

ESI Registers

www.ti.com

37.3.21 ESIDAC1Rx Register (x = 0 to 7)
Extended Scan Interface Digital-To-Analog Converter 1 Register x (x = 0 to 7)
Figure 37-42. ESIDAC1Rx Register
15

14

13

12

11

10

Reserved

9

8

DAC_Data

r0

r0

r0

r0

7

6

5

4

rw

rw

rw

rw

3

2

1

0

rw

rw

rw

rw

DAC_Data
rw

rw

rw

rw

Table 37-31. ESIDAC1Rx Register Description
Bit

Field

Type

Reset

Description

15-12

Reserved

R

0h

Reserved. These bits are always read as zero and, when written, do not affect
the bit setting.

11-0

DAC_Data

RW

0h

12-bit DAC data

37.3.22 ESIDAC2Rx Register (x = 0 to 7)
Extended Scan Interface Digital-To-Analog Converter 2 Register x (x = 0 to 7)
Figure 37-43. ESIDAC2Rx Register
15

14

13

12

11

10

Reserved

9

8

DAC_Data

r0

r0

r0

r0

7

6

5

4

rw

rw

rw

rw

3

2

1

0

rw

rw

rw

rw

DAC_Data
rw

rw

rw

rw

Table 37-32. ESIDAC2Rx Register Description
Bit

Field

Type

Reset

Description

15-12

Reserved

R

0h

Reserved. These bits are always read as zero and, when written, do not affect
the bit setting.

11-0

DAC_Data

RW

0h

12-bit DAC data

1010

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

37.3.23 ESITSMx Register (x = 0 to 31)
Extended Scan Interface Timing State Machine Register
NOTE:
A TSM sequence should at least consist of three ESITSMx registers. For example, using ESITSM0 for
idle state, ESITSM1 for measurement, and ESITSM2 as stop state; note that usually several ESITSMx
registers are needed to perform a measurement.
While a TSM sequence is in progress the access to the ESITSMx registers is blocked. Reading the
ESITSMx registers while a TSM sequence is in progress returns always a 0x0000.
Figure 37-44. ESITSMx Register
15

14

rw

rw

7

6

ESITESTS1

ESIRSON

rw

rw

13
ESIREPEATx
rw

12

11
rw

10
ESICLK
rw

9
ESISTOP
rw

8
ESIDAC
rw

rw

5
ESICLKON
ESICAAZ
rw

4

3

2

1

0

ESICA

ESIEX

ESILCEN

rw

rw

rw

ESICHx
rw

rw

Table 37-33. ESITSMx Register Description
Bit

Field

Type

Reset

Description

15-11

ESIREPEATx

RW

0h

These bits together with the ESICLK bit configure the duration of this state.
ESIREPEATx selects the number of clock cycles for this state. The number of
clock cycles = ESIREPEATx + 1. Note that all ESIREPEATx bits should be
cleared within the ESITSMx state that generates the end of sequence (ESISTOP
bit is set).

10

ESICLK

RW

0h

This bit selects the clock source for the TSM.
0b = The TSM clock source is the high frequency source selected by the
ESIHFSEL bit.
1b = The TSM clock source is ACLK

9

ESISTOP

RW

0h

This bit indicates the end of the TSM sequence. The duration of this state is
always one high-frequency clock period, regardless of the ESICLK and
ESIREPEATx settings.
0b = TSM sequence continues with next state
1b = End of TSM sequence

8

ESIDAC

RW

0h

TSM DAC on. This bit turns the AFE1 DAC and optionally also AFE2 DAC on.
0b = AFE1 DAC and AFE2 DAC are off during this state.
1b = AFE1 DAC is on during this state. AFE2 DAC is only on when ESIDAC2EN
in ESIAFE control register is set.

7

ESITESTS1

RW

0h

TSM test cycle control. This bit selects for this state which channel-control bits
and which DAC registers are used for a test cycle.
0b = The ESITCH0x bits select the channel and ESIDACR6 is used for the DAC
1b = The ESITCH1x bits select the channel and ESIDACR7 is used for the DAC

6

ESIRSON

RW

0h

Internal output latches enabled. This bit enables the internal latches of the AFE
output stage.
0b = Output latches disabled
1b = Output latches enabled

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

1011

ESI Registers

www.ti.com

Table 37-33. ESITSMx Register Description (continued)
Bit

Field

Type

Reset

Description

5

ESICLKON ESICAAZ

RW

0h

This control bit in the ESITSMx control register can either be used as ESICLKON
bit or ESICAAZ bit. Its functionality is selectable by the control bit CLKCAAZSEL
in register TSM.
ESITSM.ESICLKAZSEL=0 → ESICLKON:
High-frequency clock on. Setting this bit turns the high-frequency clock source on
for this state when ESICLK = 1, even though the high frequency clock is not
used for the TSM. When the . high-frequency clock is sourced from the DCO, the
DCO is forced on for this state, regardless of the MSP430 low-power mode.
0b = High-frequency clock is off for this state when ESICLK = 1
1b = High-frequency clock is on for this state when ESICLK = 1
ESITSM.ESICLKAZSEL=1 → ESICAAZ:
Comparator Offset cancellation by doing an autozero cycle.
0b = "AZ-compensation Compare phase", Comparator compares (this phase
must be preceded by the "AZ-compensation Auto Zero Phase" for each
compare).
1b = "AZ-compensation Auto Zero phase", Comparator Offset cancellation
sequence is active (autozero). The length for autozero is adjusted by the
selected clock (ESICLK) and the programmed repeat cycles (ESIREPEATx). See
device-specific data sheet for appropriate timing requirements.

4

ESICA

RW

0h

TSM comparator on. Setting this bit turns the AFE1 comparator and optionally
the AFE2 comparator on for this state.
0b = AFE1 comparator and AFE2 comparator are off during this state
1b = AFE1 comparator is on during this state. AFE2 comparator is only on when
ESICA2EN in ESIAFE control register is set.

3

ESIEX

RW

0h

Excitation and sample-and-hold. This bit, together with the ESISH and ESITEN
bits, enables the excitation transistor or samples the input voltage during this
state. ESILCEN must be set to 1 when ESIEX = 1.
0b = Excitation transistor disabled when ESISH = 0 and ESITEN = 1. Sampling
disabled when ESISH = 1 and ESITEN = 0.
1b = Excitation transistor enabled when ESISH = 0 and ESITEN = 1. Sampling
enabled when ESISH = 1 and ESITEN = 0.

2

ESILCEN

RW

0h

LC enable. Setting this bit turns the damping transistor off, enabling the LC
oscillations during this state when ESITEN = 1.
0b = All ESICHx channels are internally damped. No LC oscillations.
1b = The selected ESICHx channel is not internally damped; the LC oscillates.
All other unselected ESICHx channels are internally damped (no LC oscillations).

1-0

ESICHx

RW

0h

Input channel select. These bits select the input channel to be measured or
excited during this state.
00b = ESICH0
01b = ESICH1
10b = ESICH2
11b = ESICH3

1012

Extended Scan Interface (ESI)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

ESI Registers

www.ti.com

37.3.24 Extended Scan Interface Processing State Machine Table Entry (ESI Memory)
Extended Scan Interface Processing State Machine Table Entry (ESI Memory)
Figure 37-45. Extended Scan Interface Processing State Machine Table Entry Register
7
Q7

6
Q6

5
Q5

4
Q4

3
Q3

2
Q2

1
Q1

0
Q0

Table 37-34. Extended Scan Interface Processing State Machine Table Entry Description
Bit

Field

7

Q7

Type

Reset

Description
When Q7 = 1, ESIIFG6 will be set. When ESIQ6EN = 1 and ESIQ7EN = 1 and
Q7 = 1, the PSM proceeds to the next state immediately, regardless of the
ESISTOP(tsm) signal and Q7 is used in the next-state calculation.

6

Q6

When Q6 = 1, ESIIFG5 will be set. When ESIQ6EN = 1, Q6 will be used in the
next-state calculation.

5

Q5

Bit 5 of the next state

4

Q4

Bit 4 of the next state

3

Q3

Bit 3 of the next state

2

Q2

When Q2 = 1, ESICNT1 decrements if ESICNT1EN = 1 and ESICNT2
decrements if ESICNT2EN = 1.

1

Q1

When Q1 = 1, ESICNT1 increments if ESICNT1EN = 1 and ESICNT0 increments
if ESICNT0EN = 1.

0

Q0

When ESIV2SEL=0 the PPUS3 signal is used as bit 2 (V2) for the next state. For
the case ESIV2SEL=1 the Q0 bit is used.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Extended Scan Interface (ESI)

1013

Chapter 38
SLAU367O – October 2012 – Revised December 2017

Embedded Emulation Module (EEM)
This chapter describes the embedded emulation module (EEM) that is implemented in all devices.
Topic

38.1
38.2
38.3

1014

...........................................................................................................................

Page

Embedded Emulation Module (EEM) Introduction ............................................... 1015
EEM Building Blocks ....................................................................................... 1017
EEM Configurations ........................................................................................ 1018

Embedded Emulation Module (EEM)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Embedded Emulation Module (EEM) Introduction

www.ti.com

38.1 Embedded Emulation Module (EEM) Introduction
Every MSP430 microcontroller implements an EEM. It is accessed and controlled through either 4-wire
JTAG mode or Spy-Bi-Wire mode. Each implementation is device-dependent and is described in
Section 38.3, the EEM Configurations section, and the device-specific data sheet.
In
•
•
•
•
•
•
•
•
•
•
•
•

general, the following features are available:
Nonintrusive code execution with real-time breakpoint control
Single-step, step-into, and step-over functionality
Full support of all low-power modes
Support for all system frequencies, for all clock sources
Up to eight (device-dependent) hardware triggers or breakpoints on memory address bus (MAB) or
memory data bus (MDB)
Up to two (device-dependent) hardware triggers or breakpoints on CPU register write accesses
MAB, MDB, and CPU register access triggers can be combined to form up to ten (device-dependent)
complex triggers or breakpoints
Up to two (device-dependent) cycle counters
Trigger sequencing (device-dependent)
Storage of internal bus and control signals using an integrated trace buffer (device-dependent)
Clock control for timers, communication peripherals, and other modules on a global device level or on
a per-module basis during an emulation stop
EnergyTrace++™ Technology

Figure 38-1 shows a simplified block diagram of the largest currently-available EEM implementation.
For more details on how the features of the EEM can be used together with the IAR Embedded
Workbench™ debugger or with Code Composer Studio (CCS), see Advanced Debugging Using the
Enhanced Emulation Module (SLAA393) at www.msp430.com. Most other debuggers supporting the
MSP430 devices have the same or a similar feature set. For details, see the user's guide of the applicable
debugger.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Embedded Emulation Module (EEM)

1015

Embedded Emulation Module (EEM) Introduction

Trigger
Blocks

www.ti.com

"AND" Matrix− Combination Triggers
0

1

2

3

4

5

6

7

8

9

&

&

&

&

&

&

&

&

&

&

MB0
MB1
MB2
MB3
MB4
MB5
MB6
MB7
CPU0
CPU1

Trigger Sequencer

OR

CPU Stop

OR

Start or Stop State Storage

OR

Start or Stop Cycle Counter

Figure 38-1. Large Implementation of EEM

1016

Embedded Emulation Module (EEM)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

EEM Building Blocks

www.ti.com

38.2 EEM Building Blocks
38.2.1 Triggers
The event control in the EEM of the MSP430 system consists of triggers, which are internal signals
indicating that a certain event has happened. These triggers may be used as simple breakpoints, but it is
also possible to combine two or more triggers to allow detection of complex events and cause various
reactions other than stopping the CPU.
In
•
•
•
•

general, the triggers can be used to control the following functional blocks of the EEM:
Breakpoints (CPU stop)
State storage
Sequencer
Cycle counter

There are two different types of triggers – the memory trigger and the CPU register write trigger.
Each memory trigger block can be independently selected to compare either the MAB or the MDB with a
given value. Depending on the implemented EEM, the comparison can be =, ≠, ≥, or ≤. The comparison
can also be limited to certain bits with the use of a mask. The mask is either bit-wise or byte-wise,
depending upon the device. In addition to selecting the bus and the comparison, the condition under which
the trigger is active can be selected. The conditions include read access, write access, DMA access, and
instruction fetch.
Each CPU register write trigger block can be independently selected to compare what is written into a
selected register with a given value. The observed register can be selected for each trigger independently.
The comparison can be =, ≠, ≥, or ≤. The comparison can also be limited to certain bits with the use of a
bit mask.
Both types of triggers can be combined to form more complex triggers. For example, a complex trigger
can signal when a particular value is written into a user-specified address.

38.2.2 Trigger Sequencer
The trigger sequencer allows the definition of a certain sequence of trigger signals before an event is
accepted for a break or state storage event. Within the trigger sequencer, it is possible to use the following
features:
• Four states (State 0 to State 3)
• Two transitions per state to any other state
• Reset trigger that resets the sequencer to State 0.
The trigger sequencer always starts at State 0 and must execute to State 3 to generate an action. If
State 1 or State 2 are not required, they can be bypassed.

38.2.3 State Storage (Internal Trace Buffer)
The state storage function uses a built-in buffer to store MAB, MDB, and CPU control signal information
(that is, read, write, or instruction fetch) in a nonintrusive manner. The built-in buffer can hold up to eight
entries. The flexible configuration allows the user to record the information of interest very efficiently.

38.2.4 Cycle Counter
The cycle counter provides one or two 40-bit counters to measure the cycles used by the CPU to execute
certain tasks. On some devices, the cycle counter operation can be controlled using triggers. This allows,
for example, conditional profiling, such as profiling a specific section of code.

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Embedded Emulation Module (EEM)

1017

EEM Building Blocks

www.ti.com

38.2.5 EnergyTrace++™ Technology
The EEM implements circuitry to support EnergyTrace++ technology. The EnergyTrace++ technology
allows you to observe information about the internal states of the microcontroller. These states include the
CPU Program Counter (PC), the ON or OFF status of the peripherals and the system clocks (regardless of
the clock source), and the low-power mode currently in use. These states can always be read by a debug
tool, even when the microcontroller sleeps in LPMx.5 modes. See Code Composer Studio for MSP430
User’s Guide (SLAU157) for more information about integration into the IDE. See MSP430™ Advanced
Power Optimizations: ULP Advisor™ and EnergyTrace++ Technology (SLAA603) for examples of use.

38.2.6 Clock Control
The EEM provides device-dependent flexible clock control. This is useful in applications where a running
clock is needed for peripherals after the CPU is stopped (for example, to allow a UART module to
complete its transfer of a character or to allow a timer to continue generating a PWM signal).
The clock control is flexible and supports both modules that need a running clock and modules that must
be stopped when the CPU is stopped due to a breakpoint.

38.2.7 Debug Modes
The TEST/SBWTCK pin is used to enable the connection of external development tools with the EEM
through Spy-Bi-Wire or JTAG debug protocols. The connection is usually enabled when the
TEST/SBWTCK is high. When the connection is enabled, the device enters a debug mode. In the debug
mode, the entry and wakeup times to and from low-power modes may be different compared to normal
operation (application mode).
NOTE: Pay careful attention to the real-time behavior when using low-power modes with the device
connected to a development tool.

There are two different debug modes available: the default debug mode and a ultra-low power debug
mode. See Code Composer Studio for MSP430 User’s Guide (SLAU157) for more information how to
select the mode in the IDE.
Features and restrictions of the default debug mode are:
• It is possible to change breakpoint settings while the program is executed
• LPMx.5 is not supported
• Wakeup from low-power modes are faster than in application mode
• FRAM is forced on. It cannot be switched off using the FRAM Power Control bits
Features and restrictions of the ultra-low power debug mode are:
• It is not possible to change breakpoint settings while the program is exectued
• LPMx.5 is supported
• Entry and wakeup times to and from low power modes may be longer than in application mode (for
details see below)
• FRAM can be switched off using the FRAM Power Control bits.
In ultra-low power debug mode, the LPM entry and exit may be delayed. Low-power mode entry and
wakeup from low-power modes is only possible while the debug protocol is in a certain state. Thus, the
delay depends on the speed of the selected debug protocol. With Spy-Bi-Wire the delay is longer than
when using JTAG. Also, the reaction on a DMA trigger or on a SMCLK or MCLK request may be delayed.

38.3 EEM Configurations
Table 38-1 gives an overview of the EEM configurations. The implemented configuration is devicedependent, and details can be found in the device-specific data sheet and these documents:
Advanced Debugging Using the Enhanced Emulation Module (EEM) With CCS (SLAA393)
IAR Embedded Workbench Version 3+ for MSP430 User's Guide (SLAU138)
Code Composer Studio for MSP430 User’s Guide (SLAU157)
1018

Embedded Emulation Module (EEM)

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

EEM Configurations

www.ti.com

Table 38-1. EEM Configurations
Feature
Memory bus triggers
Memory bus trigger mask for
CPU register write triggers
Combination triggers

XS

S

M

L

2
(=, ≠ only)

3

5

8

1) Low byte
1) Low byte
1) Low byte
2) High byte
2) High byte
2) High byte
3) Four upper addr bits 3) Four upper addr bits 3) Four upper addr bits
0

1

1

All 16 or 20 bits
2

2

4

6

10

Sequencer

No

No

Yes

Yes

State storage

No

No

No

Yes

Cycle counter

1

1

1

2
(including
triggered start or stop)

In general, the following features can be found on any device:
• At least two MAB or MDB triggers supporting:
– Distinction between CPU, DMA, read, and write accesses
– =, ≠, ≥, or ≤ comparison (in XS, only =, ≠)
• At least two trigger combination registers
• Hardware breakpoints using the CPU stop reaction
• At least one 40-bit cycle counter
• Enhanced clock control with individual control of module clocks
• EnergyTrace++™ Technology

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

Embedded Emulation Module (EEM)

1019

Revision History

www.ti.com

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from June 2, 2017 to December 15, 2017 ........................................................................................................ Page
•
•
•
•

Added "The CPU must execute from RAM to clear the FRPWR bit for turning off power to FRAM" in the second
paragraph of Section 7.8, FRAM Power Control ................................................................................... 289
Added USS_A and related description to Chapter 18, Ultrasonic Sensing Solution (USS, USS_A)........................ 447
Updated Figure 20-1, USS or USS_A Block Diagram, to add USS_A-specific information .................................. 476
Added SAPH_A and related description in Chapter 21, Sequencer for Acquisition, Programmable Pulse Generator, and
Physical Interface (SAPH, SAPH_A) ................................................................................................ 492

1020

Revision History

SLAU367O – October 2012 – Revised December 2017
Submit Documentation Feedback
Copyright © 2012–2017, Texas Instruments Incorporated

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES
Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.4
Linearized                      : No
Page Mode                       : UseOutlines
Page Count                      : 1021
Creator                         : TopLeaf 8.0.023
Producer                        : iText 2.1.7 by 1T3XT
Title                           : MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide (Rev. O)
Keywords                        : SLAU367, SLAU367O
Subject                         : User's Guide
Modify Date                     : 2017:12:15 15:17:20-06:00
Author                          : Texas Instruments, Incorporated [SLAU367,O.]
Create Date                     : 2017:12:15 15:17:20-06:00
EXIF Metadata provided by EXIF.tools

Navigation menu