Manual Phoenix Smart Charger EN NL FR DE ES SV IT
User Manual:
Open the PDF directly: View PDF .
Page Count: 103 [warning: Documents this large are best viewed by clicking the View PDF Link!]
- 1. Safety instructions
- 2. Installation
- 3. Quick user guide
- 4. Key properties and features
- 4.2. VE.Direct port
- 4.3. Programmable relay
- 4.4. ‘Green’ battery charger with very high efficiency
- 4.5. Sustainable, safe and silent
- 4.6. Temperature-compensated charging
- 4.7. Adaptive battery management
- 4.8. Storage mode: less corrosion of the positive plates
- 4.9. Reconditioning
- 4.10. Lithium-ion (LiFePO₄) batteries
- 4.11. Remote on-off
- 4.12. Alarm LED
- 4.13. Automatic voltage compensation
- 4.14. Three (3) output versions
- 5. Charging algorithms
- 6. Technical specifications
- 1. Veiligheidsvoorschriften
- 2. Installatie
- 3. Snelstartgids
- 4. De meest belangrijke eigenschappen en feiten
- 4.2 VE.Direct poort
- 4.3 Programmeerbaar relais
- 4.4 ‘Groene’ acculader met zeer hoge efficiëntie
- 4.5 Duurzaam, veilig en stil
- 4.6 Temperatuur-gecompenseerd laden
- 4.7 Adaptive battery management
- 4.8 Opslagmodus: minder corrosie van de positieve platen
- 4.9 Reconditioning
- 4.10 Lithium-ion (LiFePO₄) accu's
- 4.11 Op afstand aan-uit
- 4.12 Alarm LED
- 4.13 Automatische spannings compensatie
- 5 Laadalgoritmes
- 6 Technische specificaties
- 1. Consignes de sécurité
- 2. Installation
- 3. Guide de démarrage rapide
- 4. Propriétés et caractéristiques principales
- 4.2. Port VE.Direct
- 4.3. Relais programmable
- 4.4. Chargeur de batterie « vert » à très haute efficacité
- 4.5. Durable, sûr et silencieux
- 4.6. Charge à compensation thermique
- 4.7. Gestion adaptative de batterie
- 4.8. Mode veille : moins de corrosion des plaques positives
- 4.9. Remise en état
- 4.10. Batteries au lithium-ion (LiFePO₄)
- 4.11. On/off à distance
- 4.12. Voyant LED d'alarme
- 4.13. Compensation de tension automatique
- 5. Algorithmes de charge
- 5.1. Choix de la batterie
- 5.2. Batteries au lithium-ion (LiFePO₄)
- 5.3. Algorithme de charge entièrement programmable par l'utilisateur
- 5.4. Si une charge est connectée à la batterie
- 5.5. Démarrer un nouveau cycle de charge
- 5.6. Calculs de la durée du cycle de charge
- 5.7. Utilisation en tant qu'alimentation électrique
- 6. Spécifications techniques
- 1. Sicherheitshinweise
- 2. Installation
- 3. Kurzanleitung
- 4. Die wichtigsten Eigenschaften und Funktionen
- 4.2. VE.Direct Anschluss
- 4.3. Programmierbare Relais
- 4.4. „Grünes“ Batterieladegerät mit sehr hohem Leistungsgrad
- 4.5. Langlebig, sicher und leise
- 4.6. Ladevorgang mit Temperaturausgleich
- 4.7. Adaptives Batteriemanagement
- 4.8. Lagermodus: weniger Korrosion an den positiven Platten
- 4.9. Reconditioning (Wiederherstellung)
- 4.10. Lithium-Ionen (LiFePO₄) Batterien
- 4.11. Ferngesteuerte Ein-/Aus-Schaltung
- 4.12. Alarm-LED
- 4.13. Automatische Spannungskompensation
- 4.14 Versionen mit drei (3) Ausgängen
- 5. Ladealgorithmus
- 6 Technische Angaben
- 1. Instrucciones de seguridad
- 2. Instalación
- 3. Guía de inicio rápido
- 4. Propiedades y funciones básicas
- 4.2 Puerto VE.Direct
- 4.3 Relé programable
- 4.4 Cargador de batería ‘verde’ de alta eficiencia
- 4.5 Sostenible, seguro y silencioso
- 4.6 Carga compensada por temperatura
- 4.7 Gestión adaptativa de la batería
- 4.8 Modo de almacenamiento: menos corrosión de las placas positivas
- 4.9 Reacondicionamiento
- 4.10 Baterías de ion litio (LiFePO₄)
- 4.11 On/Off remoto
- 4.12 LED de alarma
- 4.13 Compensación automática de la tensión
- 4.14 Versiones con tres (3) salidas
- 5 Algoritmos de carga
- 6 Especificaciones técnicas
- 1. Säkerhetsinstruktioner
- 2. Installation
- 3. Snabbguide för användare
- 4. Huvudsakliga egenskaper och funktioner
- 4.2 VE.Direct port
- 4.3 Programmerbart relä
- 4.4 ”Grön” batteriladdare med mycket hög verkningsgrad
- 4.5 Hållbar, säker och tyst
- 4.6 Temperaturkompenserad laddning
- 4.7 Anpassningsbar batterihantering
- 4.8 Förvaringsläge: Mindre korrosion på de positiva plattorna
- 4.9 Rekonditionering
- 4.10 Litiumjon- (LiFePO₄) batterier
- 4.11 Fjärrstyrning på/av
- 4.12 Larm-LED
- 4.13 Automatiskt spänningskompensation
- 4.14 Tre (3) utgångsversioner
- 5 Laddningsalgoritme
- 6 Tekniska specifikationer
- 1. Istruzioni di sicurezza
- 2. Installazione
- 3. Guida utente rapida
- 4. Proprietà e caratteristiche principali
- 4.2 Porta VE.Direct
- 4.3 Relè programmabile
- 4.4 Caricabatterie “verde” ad altissima efficienza
- 4.5 Sostenibile, sicuro e silenzioso
- 4.6 Carica a compensazione di temperatura
- 4.7 Gestione adattiva della batteria
- 4.8 Modalità di accumulo: minor corrosione delle piastre positive
- 4.9 Ricondizionamento
- 4.10 Batterie agli ioni di litio (LiFePO₄)
- 4.11 Accensione-spegnimento remoto
- 4.12 LED di allarme
- 4.13 Compensazione automatica della tensione
- 5 Algoritmi di carica
- 6 Dati tecnici
Manual
EN
Handleiding
NL
Manuel
FR
Anleitung
DE
Manual
ES
Användarhandbok
SV
Manuale
IT
Phoenix Smart Charger
12/30 (1+1) 24/16 (1+1)
12/30 (3) 24/16 (3)
12/50 (1+1) 24/25 (1+1)
12/50 (3) 24/25 (3)
1. Safety instructions
• Always provide proper ventilation during charging.
• Avoid covering the charger.
• Never try to charge non-rechargeable - or frozen batteries.
• Never place the charger on top of the battery when charging.
• Prevent sparks close to the battery. A battery being charged could emit
explosive gasses.
• Battery acid is corrosive. Rinse immediately with water if acid comes into
contact with skin.
• This device is not suitable for use by children. Store the charger out of reach
of children.
• This device is not to be used by persons (including children) with reduced
physical, sensory or mental capabilities, or lack of experience and knowledge,
unless they have been given supervision or instruction.
• Connection to the mains supply must be in accordance with the national
regulations for electrical installations. In case of a damaged supply cord
please contact the manufacturer or your service agent.
• The charger may only be plugged into an earthed socket.
3
EN NL FR DE ES SV IT
2. Installation
• Install the charger vertically on a non-combustible surface with the
supply terminal facing down. To optimise cooling, maintain a minimum
distance of 10 cm below and above the product.
• Install close to the battery, but never immediately above the battery (to
prevent damage due to gas formation by the battery).
• Use flexible multi-core copper cables for the connections: see safety
instructions.
• Poor internal temperature compensation (e.g. ambient conditions of
battery and charger not within 5°C) may shorten the life span of the
battery.
3. Quick user guide
A. Connect the battery charger to the battery or batteries.
B. Connect the battery charger to the wall socket using the AC cable (can be
ordered separately).
All the LEDs light up briefly and once the charger has been activated the
relevant status LEDs light up, depending on the status of the charger.
By default the charger starts up in normal mode and bulk.
C. If required, press the MODE button to select a different charging algorithm
(the battery charger remembers the mode when it is disconnected from the
power supply and/or battery).
After selecting reconditioning, the RECONDITION LED will light up and start
to blink when reconditioning is active.
The battery charger switches to LOW (low power) when the MODE button is
held down for 3 seconds. The LOW LED will then light up and remain lit, and
the maximum output current will be limited to 50% of the rated output power.
LOW mode can be deactivated by holding the MODE button down for
another 3 seconds.
D. The battery will be about 80% charged and ready for use when the
ABSORPTION LED lights up.
E. The battery will be fully charged when the FLOAT (trickle charging) or
STORAGE LED lights up.
F. You can now interrupt the charging at any time by disconnecting the power
supply to the charger.
5
EN NL FR DE ES SV IT
4. Key properties and features
4.1. Bluetooth functionality
Set-up, monitoring and updating of the charger. Option for parallel
redundant charging.
New functions can be added once they become available using Apple and
Android smartphones, tablets and other devices.
When using Bluetooth functionality, a PIN can be set to prevent
unauthorised access to the device. This PIN can be reset to its default
value (000000) by holding the MODE button down for 10 seconds.
For more information, refer to the VictronConnect manual.
4.2. VE.Direct port
For a wired connection with a Color Control, Venus GX, PC or other
devices.
4.3. Programmable relay
Can be programmed (e.g. with a smartphone) for activation by an alarm or
other events. Note that the relay only works when there is AC available on
the AC input terminals, and therefor the relay cannot be used as, for example, a
generator start/stop signal.
4.4. ‘Green’ battery charger with very high efficiency
With an efficiency of up to 94%, these battery chargers generate up to four times
less heat than the industry standard. And once the battery is fully charged,
power consumption drops to less than 1 Watt, which is five to ten times better
than the industry standard.
4.5. Sustainable, safe and silent
- Low thermal load on the electronic components.
- Overheating protection: The output current drops if the temperature rises to
60°C.
- The charger is cooled by means of natural convection. This eliminates the
need for a noisy cooling fan.
4.6. Temperature-compensated charging
The optimum charging voltage of a lead acid battery is inversely proportional to
the temperature. The Phoenix Smart Charger measures the ambient
temperature at the start of the charging phase and compensates for the
temperature while charging. The temperature is measured again when the
battery charger is in low-current mode during absorption or storage. Special
settings for a cold or warm environment are therefore not required.
4.7. Adaptive battery management
Lead acid batteries must be charged in three phases, namely [1] bulk charging,
[2] absorption charging and [3] float charging.
Several hours of absorption charging are required to fully charge the battery and
to prevent early defects due to sulphation¹.
However, the relatively high voltage during absorption shortens the battery’s life
span as a result of corrosion at the positive plates.
Adaptive battery management limits corrosion by reducing the absorption period
if possible, i.e. when charging a battery that is already (almost) fully charged.
4.8. Storage mode: less corrosion of the positive plates
Even the lower float charge voltage that follows absorption charging will cause
corrosion. It is therefore essential to lower the charging voltage even more if the
battery remains connected to the charger for more than 48 hours.
4.9. Reconditioning
A lead acid battery that is insufficiently charged or is left in an uncharged
condition for several days or weeks will deteriorate due to sulphation1. If this is
noticed in time, the sulphation can sometimes be partially reversed by charging
the battery to a higher voltage using a low current.
Notes:
Reconditioning must only be used now and then on flat-plate VRLA (gel and
AGM) batteries, as the gases formed during reconditioning dry out the
electrolyte.
VRLA batteries with cylindrical cells build up more internal pressure before the
gases are formed and therefore lose less water during reconditioning. Some
1 For more information about batteries, see
our book ‘Energy Unlimited’ (this can be downloaded from www.victronenergy.com) or
http://batteryuniversity.com/learn/article/sulfation_and_how_to_prevent_it
7
EN NL FR DE ES SV IT
manufacturers of batteries with cylindrical cells therefore recommend
reconditioning in case of cyclical application.
Reconditioning can be applied to wet-cell batteries to ‘balance’ the cells
and to prevent acid stratification.
Some manufacturers of battery chargers recommend impulse charging to
reverse the sulphation. However, most battery experts agree there is no
conclusive evidence that impulse charging is better than charging with a
low current / high voltage. This is confirmed by our own tests.
4.10. Lithium-ion (LiFePO₄) batteries
Li-ion batteries are not subject to sulphation and do not have to be fully
charged on a regular basis.
However, Li-ion batteries are highly sensitive to high or low voltages.
This is why Li-ion batteries are often equipped with an integrated system
for cell balancing and to protect against low voltages (UVP: Under Voltage
Protection).
Important note:
NEVER attempt to charge a lithium-ion battery if the temperature of the
battery is below 0°C.2
4.11. Remote on-off
There are three ways to switch on the device:
1. Short the L and H pins (factory default)
2. Pull the H pin to a high level (e.g. the battery plus)
3. Pull the L pin to a low level (e.g. the battery minus)
4.12. Alarm LED
If an error occurs, the ALARM LED will light up red. The status LEDs indicate the
type of error with a blink code. See the following table for the possible error
codes.
Error
LOW
BULK
ABS
FLOAT
STORAGE
ALARM
Bulk time
protection ○ ◎ ○ ○ ○ ●
Internal
Error
○ ◎ ◎ ◎ ○ ●
2 For more information about lithium-ion batteries, see http://www.victronenergy.com/batteries/lithium-
battery-12,8v/
Charger
over-
voltage
○ ○ ◎ ○ ◎ ●
○ Off
◎ Blinking
● On
4.13. Automatic voltage compensation
The charger compensates for the voltage drop over the DC cables by gradually
increasing the output voltage if the charging current rises.
The fixed voltage offset is 100mV. The voltage offset is scaled with the charge
current and added to the output voltage. The voltage offset is based on 2x 1-
meter cable, contact resistance and fuse resistance.
Example calculation for the 12/50 (1+1):
The cable resistance R can be calculated with the following formula:
=×
Here R is the resistance in ohms (Ω), ρ is the resistivity of copper (1.786x10^-8
Ωm at 25°C), l is the wire length (in m) and A is the surface area of the wire (in
m²).
A widely used distance from charger to battery is 1 metre. In this case the wire
length is 2 metres (plus and minus). When using a 6AWG cable (16mm²) the
wire resistance is:
=1,786 ×10−8 × 2
16 ×10−6 = 2.24Ω
Installing a fuse close to the battery is highly recommended. The resistance of a
standard 80A fuse is:
= 0.720Ω
The overall resistance of the circuit can then be calculated with the following
formula:
= +
Therefore:
= 2.24Ω + 0.720Ω = 2.96Ω
The required voltage drop compensation over the cable can be calculated with
the following formula:
=×
9
EN NL FR DE ES SV IT
In which U is the voltage drop in volts (V) and I is the current through the
wire in amperes (A).
The voltage drop will then be:
=50 × 2.96Ω =148 for the full 50A charging current.
4.14. Three (3) output versions
The three output version chargers have an integrated FET battery isolator
and therefore feature three isolated outputs
Although all outputs can supply the full rated output current, the combined
output current of all outputs is limited to the full rated output current.
By using the three-output version charger it is possible to charge three
separate batteries with only a single charger while keeping the batteries
isolated from each other.
The outputs are not regulated individually. One charge algorithm is applied
to all outputs.
5. Charging algorithms
5.1. Battery selection
The charge algorithm of the charger must fit the battery type connected to the
charger. The following table shows the three predefined battery types available.
A custom battery type can be programmed by the user.
Charging voltages at room temperature:
MODE
ABS
V
FLOAT
V
STORAGE
V
RECONDITION
Max V@% of
Inom
NORMAL
14.4
13.8
13.2
16.2@8%, 1h
max
HIGH
14.7
13.8
13.2
16.5@8%, 1h
max
LI-ION
14.2
13.5
13.5
N/A
For 24V battery chargers: multiply all values by 2.
NORMAL (14.4V): recommended for wet-cell flat-plate lead-antimony batteries
(starter batteries), flat-plate gel and AGM batteries.
HIGH (14.7V): recommended for wet-cell lead-calcium batteries, Optima spiral cell
batteries and Odyssey batteries.
LI-ION (14.2V): recommended for Lithium Iron Phosphate (LiFePo4) batteries.
CUSTOM (Adj.): recommended for any other type of battery other the the above
mentioned if the adjustable voltages are set according to the battery manufacturer
recommendations.
MODE button
Once the battery charger has been connected to the AC power supply, press the
MODE button to select a different charging algorithm if required (the battery charger
remembers the mode after disconnecting the power supply and/or battery).
After selecting reconditioning, the RECONDITION LED will light up and start to blink
when reconditioning is active.
The battery charger switches to LOW (low power) when the MODE button is held
down for 3 seconds. The LOW LED will then remain lit. LOW mode will remain active
until the MODE button is held down for another 3 seconds.
When LOW is active, the output current is limited to max. 50% of the rated output
power.
Intelligent 7-stage charging algorithm for lead acid batteries:
(with optional reconditioning)
1. BULK
Charges the battery using the maximum current until the absorption voltage is
reached. At the end of the bulk phase, the battery will be about 80% charged
and ready for use.
2. ABS - Absorption
Charges the battery using a constant voltage and a decreasing current until it is
fully charged. See the above table for the absorption voltage at room
temperature.
Variable absorption time:
The absorption time is short (at least 30 minutes) if an almost fully charged
battery is connected and increases to 8 hours for a totally discharged battery.
3. RECONDITION
RECONDITION is an option for the NORMAL and HIGH charging programs and
11
EN NL FR DE ES SV IT
can be selected by pressing the MODE button again after selecting the
desired charging algorithm.
During RECONDITION, the battery is charged to a higher voltage using a
low current (8% of the rated current). RECONDITION takes place at the
end of the absorption phase and ends after one hour or sooner once the
higher voltage has been reached.
The RECONDITION LED will be lit while charging and will blink during
RECONDITION.
Example:
For a 12/30 battery charger: the reconditioning current is 30 x 0.08 = 2.4A.
4. FLOAT
Float charging. Keeps the battery at a constant voltage and fully charged.
5. STORAGE
Storage mode. Keeps the battery at a lower constant voltage to limit gas
formation and corrosion of the positive plates.
6. READY (battery fully charged)
The battery is fully charged when the FLOAT or STORAGE LED is lit.
7. REFRESH
Slow self-discharging is prevented by automatically ‘refreshing’ the battery
with a brief absorption charge.
5.2. Lithium-ion (LiFePO₄) batteries
When charging a lithium-ion battery, the charger uses a specific charging
algorithm for lithium-ion batteries to maximise their performance. Select LI-ION
using the MODE button.
5.3. Fully user-programmable charging algorithm
If the three pre-programmed charging algorithms are not suitable for your
purposes, you can also program your own charging algorithm using Bluetooth or
the VE.Direct interface.
If a self-programmed charging algorithm is selected, the NORMAL, HIGH and LI-
ION LEDs will not be lit. The status LEDs indicate the location of the charging
program in the charger.
If the MODE button is pressed during a self-programmed charging algorithm, the
charger will return to the pre-programmed NORMAL charging algorithm.
5.4. If a load is connected to the battery
A load can be applied to the battery during charging. Note: The battery will not
be charged if the load current exceeds the output current of the battery charger.
Reconditioning will not be possible if a load is connected to the battery.
5.5. Starting a new charging cycle
A new charging cycle starts if:
A. The charger is in the float or storage phase and the current rises to its
maximum value for more than 4 seconds due to a load.
B. The MODE button is pressed while charging.
C. The mains power is disconnected and reconnected.
13
EN NL FR DE ES SV IT
5.6. Calculation of the charging time
A lead battery is about 80% charged at the start of the absorption phase.
The time T until 80% charged can be calculated as follows:
T = Ah / I
In which:
I is the charging current (= current from the charger minus any current due
to a load).
Ah the number of ampere hours that should be charged.
A full absorption period up to 8 hours will be required to charge a battery
100%.
Example:
Charging time to 80% for a fully discharged 220Ah battery when charging it
with a 30A battery charger: T = 220 / 30 = 7.3 hours.
Charging time to 100%: 7.3 + 8 = 15.3 hours.
A Li-ion battery is more than 95% charged at the start of the absorption
phase and will be fully charged after about 30 minutes of absorption charging.
5.7. Use as a power supply
The charger can be used as a power supply (a load is present but no battery is
connected). The supply voltage can be set using Bluetooth or the VE.Direct
interface.
When used as a power supply, only the BULK, ABSORPTION, FLOAT and
STORAGE LEDs will light up and remain lit.
When the charger is set up as a power supply, it will not respond to the remote
on-off.
If the MODE button is pressed while using the charger as a power supply, it will
return to the pre-programmed NORMAL charging algorithm.
6. Technical specifications
Phoenix Smart Charger
12V,
2 outputs
12/30(1+1)
12/50(1+1)
12V,
3 outputs
12/30(3)
12/50(3)
24V,
2 outputs
24/16(1+1)
24/25(1+1)
24V,
3 outputs
24/16(3)
24/25(3)
Input voltage 230 VAC (range: 210 – 250 V)
DC input voltage range 290 – 355 VDC
Frequency 45-65 Hz
Power factor 0,7
Back current drain AC disconnected: < 0,1 mA AC connected and charger remote off: < 6 mA
No load power consumption 1 W
Efficiency
12/30: 94%
12/50: 92%
12/30: 94%
12/50: 92%
94% 94%
Charge voltage 'absorption'
Normal: 14,4V High: 14,7V
Li-ion: 14,2V
Normal: 28,8V High: 29,4V
Li-ion: 28,4V
Charge voltage 'float'
Normal: 13,8V High: 13,8V
Li-ion: 13,5V
Normal: 27,6V High: 27,6V
Li-ion: 27,0V
Storage mode
Normal: 13,2V High: 13,2V
Li-ion: 13,5V
Normal: 26,4V High: 26,4V
Li-ion: 27,0V
Fully programmable Yes, with Bluetooth and/or VE.Direct
Charge current house battery 30 / 50 A 30 / 50 A 16 / 25 A 16 / 25 A
Low current mode 15 / 25 A 15 / 25 A 8 / 12.5 A 8 / 12.5 A
Charge current starter battery 3 A (1+1 output models only)
Charge algorithm 7 stage adaptive (3 stage adaptive for Li-ion)
Battery capacity
150-300 Ah (30A version)
250-500 Ah (50A version)
80-160 Ah (16A version)
125-250 Ah (25A version)
Number of battery connections 2 3 2 3
Protection Battery reverse polarity (fuse, not user accessible) / Output short circuit / Over temperature
Can be used as power supply Yes, output voltage can be set with Bluetooth and/or VE.Direct
Operating temp. range
-20 to 60°C (0 - 140°F)
Rated output current up to 40°C, derate linearly to 20% at 60°C
Humidity (non-condensing)
max 95%
Relay (programmable)
DC rating: 5A up to 28VDC
ENCLOSURE
Material & Colour aluminium (blue RAL 5012)
Battery-connection Screw terminals 16 mm² (AWG6)
AC-connection IEC 320 C14 inlet with retainer clip (AC cord with country specific plug must be ordered separately)
Protection category IP43 (electronic components), IP22 (connection area)
Weight kg (lbs) 3,5 kg
Dimensions (hxwxd) 180 x 249 x 100 mm (7.1 x 9.8 x 4.0 inch)
STANDARDS
Safety
EN 60335-1, EN 60335-2-29
Emission
EN 55014-1, EN 61000-6-3, EN 61000-3-2
Immunity
EN 55014-2, EN 61000-6-1, EN 61000-6-2, EN 61000-3-3
Vibration
IEC68-2-6:10-150Hz/1.0G
15
EN NL FR DE ES SV IT
1. Veiligheidsvoorschriften
• Zorg altijd voor voldoende ventilatie tijdens het laden.
• Dek de lader niet af.
• Probeer nooit een niet oplaadbare of bevroren accu te laden.
• Plaats de lader nooit tijdens het laden bovenop de accu.
• Voorkom vonken in de buurt van de accu.Tijdens het laden van een
accu kunnen er explosieve gassen worden afgeven.
• Accuzuur is corrosief. Bij aanraking met de huid dient dit met
overvloedig water te worden afgespoeld.
• Dit apparaat is niet geschikt voor gebruik door kinderen. Bewaar de
oplader buiten het bereik van kinderen.
• Dit apparaat mag niet gebruikt worden door personen (inclusief
kinderen) met verminderde fysieke, sensorische, motorische of mentale
capaciteiten, of personen zonder ervaring of kennis, behalve als zij
onder toezicht staan of instructies hebben ontvangen.
• Aansluiting op het elektriciteitsnet moet in overeen-stemming zijn met de
nationale regelgeving voor elektrische installaties. Neem bij een
beschadigd elekticiteitsnoer contact op met de fabrikant of leverancier.
• De lader mag alleen in een geaard stopcontact worden gestoken.
2. Installatie
• Installeer verticaal op een onbrandbaar oppervlak met de
voedingsklemm omlaag. Neem voor een optimale koeling een
minimale afstand van 10 cm onder en boven het product in acht.
• Installeer dicht bij de accu maar nooit rechtstreeks boven de accu
(om schade wegens gasvorming van de accu te voorkomen)
• Gebruik flexibele meeraderige koperen kabel voor de aansluitngen:
zie veiligheidsaanwijzingen.
• Een slechte interne temperatuurcompensatie (bijv.
Omgevingsomstandigheden accu en lader niet binnen 5°C) kan
leiden tot een kortere levensduur van de accu.
17
EN NL FR DE ES SV IT
3. Snelstartgids
A. Sluit de acculader aan op de accu of accu's.
B. Sluit de acculader aan op op de wandcontactdoos d.m.v. de AC kabel
(apart bij te bestellen).
Alle LED’s gaan kort aan en zodra de lader opgestart is gaan de
betreffende status LED’s aan afhankelijk van de toestand waarin de
lader zich bevind.
Default start de lader op in normal mode en bulk.
C. Druk, indien nodig, op de knop MODE om een ander laadalgoritme te
kiezen (de acculader onthoudt de modus als deze van de voeding
en/of de accu wordt losgekoppeld).
Als herconditionering wordt geselecteerd, brandt de LED
RECONDITION en gaat deze knipperen als de herconditionering actief
is.
De acculader schakelt over op LOW (lage stroom) door 3 seconden
lang de knop MODE ingedrukt te houden. De LOW-LED zal dan
continue gaan branden en de maximale uitgangsstroom wordt beperkt
tot max. 50% van de nominale uitgangsstroom. LOW kan worden
beëindigd door nogmaals 3 seconden lang de knop MODE ingedrukt te
houden.
D. De accu is voor ongeveer 80% opgeladen en klaar voor gebruik als de
LED ABSORPTION gaat branden.
E. De accu is volledig geladen als de LED FLOAT (druppellading) of
STORAGE (opslag) brandt.
F. U kunt het opladen op elk gewenst moment stoppen door de voeding
naar de lader te onderbreken.
4. De meest belangrijke eigenschappen en
feiten
4.1 Bluetooth functionaliteit
Set-up, bewaken en actualiseren van de lader. Mogelijkheid tot parallel
redundant laden.
Nieuwe functies kunnen toegevoegd worden zodra ze beschikbaar zijn met
behulp van Apple en Android smartphones, tablets en andere apparaten.
Bij gebruik van de bluetooth functionaliteit kan een pincode ingesteld
worden om ongeoorloofde toegang tot het apparaat te voorkomen. Deze
pincode kan worden gereset naar zijn default (000000) door de MODE knop
10 seconden ingedrukt te houden.
Voor meer informatie verwijzen wij u naar de VictronConnect handleiding.
4.2 VE.Direct poort
Voor een bedrade verbinding met een Color Control, Venus GX, PC of
andere apparaten.
4.3 Programmeerbaar relais
Kan (bijv. met een smartphone) worden geprogrammeerd voor activering
door een alarm of andere gebeurtenissen. Houd er rekening mee dat een
relais alleen werkt wanneer er AC-stroom beschikbaar is op de AC-
ingangsklemmen. De relais kan dus niet gebruikt worden als, bijvoorbeeld,
een start-/stopsignaal voor een generator.
4.4 ‘Groene’ acculader met zeer hoge efficiëntie
Met een efficiëntie tot 94% ontwikkelen deze acculaders tot vier keer minder
hitte in vergelijking met de industrienorm. En zodra de accu volledig is
opgeladen, daalt het stroomverbruik naar minder dan 1 watt en dat is vijf tot
tien keer beter dan de industrienorm.
4.5 Duurzaam, veilig en stil
- Lage thermische belasting op de elektronische componenten.
- Bescherming tegen oververhitting: De uitgangsstroom neemt af als de
temperatuur tot 60ºC stijgt.
- Koeling van de lader gebeurt d.m.v. natuurlijke convectie. Hierdoor is
een lawaaiige koelventilator niet nodig.
19
EN NL FR DE ES SV IT
4.6 Temperatuur-gecompenseerd laden
De optimale laadspanning van een loodzuuraccu is omgekeerd evenredig
met de temperatuur. De Phoenix Smart Charger meet de
omgevingstemperatuur in het begin van de laadfase en compenseert de
temperatuur tijdens het opladen. De temperatuur wordt opnieuw gemeten
als de acculader zich in de lage stroomsterktemodus tijdens de absorption
of storage bevindt. Speciale instellingen voor een koude of warme
omgeving zijn daarom niet nodig
4.7 Adaptive battery management
Loodzwavelzuuraccu's dienen in drie fases te worden opgeladen, namelijk
[1] bulklading, [2] absorptielading en [3] druppellading.
Meerdere uren absorptielading is nodig om de accu volledig op te laden
en vroegtijdige storing door sulfatering¹ te voorkomen.
De relatief hoge spanning tijdens de absorptie verkort echter de
levensduur als gevolg van corrosie aan de positieve platen.
Adaptief accumanagement beperkt de corrosie door de absorptietijd
indien mogelijk te verlagen, d.w.z.: als een accu wordt opgeladen die
reeds (bijna) volledig is opgeladen.
4.8 Opslagmodus: minder corrosie van de positieve platen
Zelfs de lagere druppelladingsspanning die na de absorptielading volgt, zal
corrosie veroorzaken. Daarom is het van wezenlijk belang om de
laadspanning nog verder te verlagen als de accu meer dan 48 uur aan de
acculader blijft aangesloten..
4.9 Reconditioning
Een loodzuuraccu die onvoldoende is opgeladen of gedurende meerdere
dagen of weken in ontladen toestand is gelaten, zal door sulfatering
verslechteren. Als het op tijd wordt opgemerkt, kan de sulfatering soms
deels ongedaan worden gemaakt door de accu op te laden met een lage
stroom naar een hogere spanning.
Opmerkingen:
Reconditioning dient enkel af en toe te worden toegepast op vlakke-plaat-
VRLA- (gel- en AGM-) accu's, omdat de daarbij ontstane gassen het
elektrolyt uitdrogen.
VRLA-accu's met cilindrische cellen bouwen meer interne druk op voordat
de gassen ontstaan en verliezen daarom minder water bij de reconditioning.
Sommige fabrikanten van accu's met cilindrische cellen bevelen daarom de
reconditioning aan in geval van cyclische toepassing.
Reconditioning kan worden toegepast op natte accu's om de cellen ‘in
evenwicht’ te brengen en om zuurstratificatie te voorkomen.
Sommige fabrikanten van acculaders bevelen impulslading aan om de
sulfatering ongedaan te maken. De meeste accu-experts zijn het er echter
over eens dat er geen overtuigend bewijs is dat impulsladen beter werkt dan
oplading met lage stroom / hoge spanning. Dit wordt door onze eigen tests
ook bevestigd.
4.10 Lithium-ion (LiFePO₄) accu's
Li-ion accu’s sulfateren niet en hoeven niet regelmatig volledig geladen te
worden.
Maar Li-ion accu’s zijn erg gevoelig voor een te lage- of te hoge spanning.
Li-ion accu’s zijn om deze reden vaak voorzien van een geïntegreerd
systeem om de cellen te egaliseren (cell balancing) en te beschermen tegen
een te lage spanning (UVP: Under Voltage Protection).
Belangrijke opmerking:
Probeer NOOIT om een lithium-ion-accu op te laden als de temperatuur van
de accu onder 0°C ligt.3
4.11 Op afstand aan-uit
Er zijn drie manieren om het toestel in te schakelen:
1. Sluit de L- en H-pennen kort (fabrieksstandaard)
2. Trek de H-pen naar een hoog niveau (bv. de batterij plus)
3. Trek de L-pen naar een laag niveau (bv. de batterij minus)
3 For more information about lithium-ion batteries, see
http://www.victronenergy.com/batteries/lithium-battery-12,8v/
21
EN NL FR DE ES SV IT
4.12 Alarm LED
Wanneer er een fout optreedt, zal de ALARM LED rood oplichten. De
status LED’s geven met een knippercode het type error aan. Zie
onderstaande tabel voor de mogelijke error codes.
○ Off
◎ Blinking
● On
4.13 Automatische spannings compensatie
De lader compenseert voor spanningsval over de DC kabels door
geleidelijk de uitgangsspanning te verhogen wanneer de laadstroom stijgt.
De vaste offsetspanning is 100 mV. De offsetspanning wordt geschaald met
de laadstroom en wordt opgeteld bij de uitgangsspanning. De
offsetspanning is gebaseerd op 2x 1 meter kabel, contact- en
zekeringsweerstand.
Rekenvoorbeeld voor de 12/50 (1+1):
De kabelweerstand R is te berekenen met de volgende formule:
=×
Hier is R de weerstand in Ohm (Ω), ρ de soortelijke weerstand van koper
(1,786x10^-8 Ωm bij 25°C), l de draadlengte (in m) en A de oppervlakte van
de draad (in m²).
Een veel gebruikte afstand van lader to accu is 1 meter. De gebruikte
draadlengte is dan 2 meter (plus en minus). Bij gebruik van een 6AWG
kabel (16mm²) is de draadweerstand:
=1,786 ×10−8 × 2
16 ×10−6 = 2.24Ω
Een zekering plaatsen nabij de accu is ten zeerste aan te raden. De
weerstand van een standaard 80A zekering is:
Error
LOW
BULK
ABS
FLOAT
STORAGE
ALARM
Bulk time
protection ○ ◎ ○ ○ ○ ●
Internal
Error ○ ◎ ◎ ◎ ○ ●
Charger
over-
voltage
○ ○ ◎ ○ ◎ ●
= 0.720Ω
De totale weerstand in het circuit is dan te berekenen met de volgende
formule:
= +
Dus:
= 2.24Ω + 0.720Ω = 2.96Ω
De benodigde spanningsval compensatie over de kabel is te berekenen met
de volgende formule:
=×
Waarbij U het spanningsverlies is in Volt (V) en I de stroom door de draad is
in Ampere (A).
De spanningsval is dan:
=50 × 2.96Ω =148 bij de volledige 50A laadstroom.
4.14 Drie (3) uitgangsversies
De versie acculaders met drie uitgangen komt met een geïntegreerde FET-
accu-isolator en hebben daarom drie geïsoleerde uitgangen.
Alhoewel alle uitgangen de volledige nominale uitgangsstroom kunnen
leveren, is de gecombineerde uitgangsstroom van de drie uitgangen samen
beperkt tot deze volledige nominale uitgangsstroom.
Met het gebruik van deze drie-uitgangsversie is het mogelijk om drie
individuele accu’s met een enkele acculader op te laden, terwijl de accu’s
onderling zijn geïsoleerd.
De uitgangen worden niet apart gereguleerd. Er wordt een enkel algoritme
toegepast voor alle uitgangen.
23
EN NL FR DE ES SV IT
5 Laadalgoritmes
5.1 Selectie van accu
Het laadalgoritme van de acculader moet afgestemd zijn het type
accu aangesloten op de acculader. In het onderstaande tabel worden
drie beschikbare voorgedefinieerde accutypes weergegeven. De
gebruiker kan een aangepast accutype programmeren.
Laadspanningen bij kamertemperatuur:
MODE
ABS
V
FLOAT
V
STORAGE
V
RECONDITION
Max V@% of
Inom
NORMAL
14,4
13,8
13,2
16,2@8%, 1h
max
HIGH
14,7
13,8
13,2
16,5@8%, 1h
max
LI-ION
14,2
13,5
13,5
N/A
Voor 24V-acculaders: vermenigvuldig alle waarden met 2.
NORMAL (14.4V): aanbevolen voor natte vlakke-plaat-lood-
antimoonaccu's (startaccu's), vlakke-plaat-gel- en AGM-accu's.
HIGH (14.7V): aanbevolen voor natte loodcalciumaccu's, Optima
spiraalcelaccu's en Odyssey-accu's.
LI-ION (14.2): aanbevolen voor Lithium-ijzerfosfaat (LiFePo4)-accu’s
AANGEPAST (Aang.): aanbevolen voor alle andere accu’s die niet
hierboven zijn genoemd, zolang de spanning is ingesteld in
overeenkomst met de aanbevelingen van de fabrikant.
De knop MODE
Nadat de acculader op de AC-voeding is aangesloten, drukt u op de
knop MODE om een ander laadalgoritme, indien nodig, te kiezen (de
acculader onthoudt de modus na het loskoppelen van de voeding en/of
van de accu).
Als herconditionering wordt geselecteerd, brandt de LED
RECONDITION en gaat deze knipperen als de herconditionering actief
is.
De acculader schakelt over op LOW (lage stroom) door 3 seconden
lang de knop MODE ingedrukt te houden. De LED LOW brand dan
continue. De modus LOW blijft actief tot de knop MODE nogmaals 3
seconden lang wordt ingedrukt.
Als LOW actief is, wordt de uitgangsstroom beperkt tot max. 50% van
de nominale uitgangsstroom.
Intelligent 7-fasenlaadalgoritme voor loodzuuraccu’s:
(met optionele herconditionering)
1. BULK
Laadt de accu met maximale stroomsterkte totdat de
absorptiespanning wordt bereikt. Aan het eind van de bulk fase is de
accu ongeveer 80% geladen en klaar voor gebruik.
2. ABS - Absorptie
Laadt de accu met een constante spanning en met afnemende
stroomsterkte totdat deze volledig geladen is. Zie bovenstaande
tabel voor de absorptie spanning bij kamer temperatuur.
Variabele absorptie tijd:
De absorptie tijd is kort (minimaal 30 minuten) wanneer een al bijna
volledig geladen accu wordt aangesloten, en loopt op tot 8 uur bij
een diep ontladen accu.
3. RECONDITION
RECONDITION is een optie bij de laadprogramma’s NORMAL en
HIGH en kan worden geselecteerd door de MODE knop nogmaals in
te drukken na het selecteren van het gewenste laad algoritme.
Tijdens RECONDITION wordt de accu met weinig stroom (8% van
de nominale stroom) geladen tot een hogere spanning.
RECONDTION vindt plaats aan het einde van de absorptie fase en
eindigt na maximaal een uur of eerder wanneer de hogere spanning
bereikt is.
De RECONDITION LED staat aan tijdens laden en knippert tijdens
RECONDITION.
Voorbeeld:
25
EN NL FR DE ES SV IT
Voor een 12/30-acculader: de reconditioningsstroomsterkte is
30 x 0,08 = 2,4A.
4. FLOAT
Druppellading. Houdt de accu op een constante spanning en
volledig opgeladen.
5. STORAGE
Opslagstand. Houdt de accu op een lagere constante spanning om
gasvorming en corrosie van de positieve platen te beperken.
6. READY (accu volledig opgeladen)
The battery is fully charged when the FLOAT or STORAGE LED is
lit De accu is volledig opgeladen wanneer de LED FLOAT
(druppellading) of STORAGE (opslag) brandt
7. REFRESH
Langzame zelfontlading wordt voorkomen door de accu wekelijks
automatisch 'op te frissen' met een korte absorptielading.
5.2 Lithium-ion (LiFePO₄) accu’s
Bij het opladen van een Lithium-ion accu maakt de lader gebruik van
een specifiek laad algoritme voor Lithium-ion accu’s zodat deze
optimaal zal presteren. Selecteer LI-ION met de MODE knop.
5.3 Volledig door de gebruiker in te stellen laadalgoritme
Wanneer de drie voorgeprogrammeerde laadalgoritmes niet voldoen, is
het mogelijk om een zelf een laadagorithme te programmeren met
behulp van Bluetooth of de VE.Direct interface.
Wanneer een zelf geprogrammeerd laadalgorithme is geselecteerd zijn
de zowel de NORMAL als HIGH en LI-ION LED’s uit. De status LED’s
geven aan waar in het laadprogramma de lader zich bevindt.
Wanneer tijdens een zelf geprogrammeerd laadalgorithme de mode de
MODE knop wordt ingedrukt zal de lader terug gaan naar het
voorgeprogrammeerde laadalgorithme NORMAL.
5.4 Wanneer er een belasting op de accu is aangesloten
Tijdens het opladen kan een belasting op de accu worden toegepast.
Opmerking: De accu wordt niet opgeladen als de stroom voor het
opladen hoger is dan de uitgangsstroom van de acculader.
Herconditionering is niet mogelijk als een belasting op de accu is
aangesloten.
5.5 Een nieuwe laadcyclus starten
Een nieuwe laadcyclus begint wanneer:
A. De lader in de float of storage fase is en tgv een belasting de
stroom gedurende meer dan 4 seconden oploopt tot het
maximum.
B. De MODE knop wordt ingedrukt tijdens laden.
C. Na ontkoppelen en opnieuw aansluiten van de netspanning.
27
EN NL FR DE ES SV IT
5.6 Berekenen van de laadtijd
Een lood accu is voor ongeveer 80% geladen aan het begin van de
absorptie fase.
De tijd T tot 80% lading kan als volgt berekend worden:
T = Ah / I
Hierin is:
I de laadstroom (= stroom van de lader minus eventuele stroom van
een belasting).
Ah de hoeveelheid Ampère uur die geladen moet worden.
Een volledige absorptie periode tot 8 uur is nodig om een accu tot
100% te laden.
Voorbeeld:
Laadtijd tot 80% van een volledig ontladen 220Ah-accu als deze is
opgeladen met een 30A-acculader: T = 220 / 30 = 7,3 uur.
Laadtijd tot 100%: 7,3 + 8 = 15,3 uur.
Een Li-ion accu is aan het begin van de absorptie fase meer dan 95%
geladen en zal na ongeveer 30 minuten absorptie laden volledig
geladen zijn.
5.7 Gebruik als voeding
De lader kan gebruikt worden als voeding (wel belasting maar geen
accu aangesloten). De voedingsspanning is in te stellen met behulp van
Bluetooth of de VE.Direct interface.
Bij gebruik als voeding branden alleen de BULK, ABSORPTION,
FLOAT en STORAGE LED’s continue.
Wanneer de lader ingesteld is als voeding, reageert de lader niet op de
remote on-off.
Wanneer de MODE knop wordt ingedrukt tijdens het gebruik als
voeding, zal de lader terug gaan naar het voorgeprogrammeerde
laadalgorithme NORMAL.
6 Technische specificaties
Phoenix Smart Charger
12V
2 uitgangen
12/30(1+1)
12/50(1+1)
12V
3 uitgangen
12/30(3)
12/50(3)
24V
2 uitgangen
24/16(1+1)
24/25(1+1)
24V
3 uitgangen
24/16(3)
24/25(3)
Ingangsspanning
230VAC (bereik: 210–250V)
Ingangsspanningsbereik CC (1)
290–355 VDC
Frequentie
45-65Hz
Krachtfactor
0,7
Drainlekstroom
AC uitgeschakeld: < 0,1 mA AC ingeschakeld en oplader afstandsbediening uit: < 6 mA
Nullast stroomverbruik
1 W
Rendement
12/30 94%
12/50 92%
12/30 94%
12/50 92% 94% 94%
Laadspanning ‘absorptie’
Normaal: 14,4V Hoog: 14,7V Li-ion: 14,2V
Normaal: 28,8V Hoog: 29,4V Li-ion: 28,4V
Laadspanning ‘float’
Normaal: 13,8V Hoog: 13,8V Li-ion: 13,5V
Normaal: 27,6V Hoog: 27,6V Li-ion: 27,0V
Opslagmodus
Normaal: 13,2V Hoog: 13,2V Li-ion: 13,5V
Normaal: 26,4V Hoog: 26,4V Li-ion: 27,0V
Volledig programmeerbaar
Ja, met Bluetooth en/of VE.Direct
Laad de huidige huisbatterij op
30 / 50 A
30 / 50 A
16 / 25 A
16 / 25 A
Lage stroom-modus
15/25 A
15/25 A
8 / 12,5 A
8 / 12,5 A
Laad de huidige startbatterij op
3 A (1+1 alleen modellen met uitgang)
Oplaadalgoritme
7-fase adaptief (3-fase adaptief voor Li-ion)
Accucapaciteit
150-300 Ah (30A-versie)
250-500 Ah (50A-versie)
80-160 Ah (16A-versie)
125-250 Ah (25A-versie)
Aantal accu-aansluitingen
2
3
2
3
Beveiliging
Batterij omgekeerde polariteit (zekering, niet toegankelijk voor gebruikers) / Uitgangskortsluiting / te hoge
temperatuur
Kan worden gebruikt als voeding
Ja, de uitgangsspanning kan worden ingesteld met Bluetooth en / of VE.Direct
Bedrijfstemperatuurbereik
-20 tot 60°C (0-140°F)
Nominale uitgangsstroom tot 40 °C, lineair lineair naar 20% bij 60 °C
Vochtigheid (zonder condensatie)
max. 95%
Relais (programmeerbaar)
DC-rating: 5A tot 28VDC
BEHUIZING
Materiaal en kleur
aluminium (blauw RAL 5012)
Accu-aansluiting
Schroefklemmen 16mm² (AWG6)
AC-connectie IEC 320 C14-inlaat met klem (netsnoer met landspecifieke stekker moet apart worden besteld)
Bescherming categorie
IP43 (elektronische componenten), IP22 (verbindingsgebied)
Gewicht:
3,5 kg
Afmetingen (hxbxd)
180 x 249 x 100 mm (7,1 x 9,8 x 4,0 inch)
NORMEN
Veiligheid EN 60335-1, EN 60335-2-29
Emissie EN 55014-1, EN 61000-6-3, EN 61000-3-2
Immuniteit EN 55014-2, EN 61000-6-1, EN 61000-6-2, EN 61000-3-3
Vibratie IEC68-2-6:10-150Hz/1,0G
29
EN NL FR DE ES SV IT
1. Consignes de sécurité
• Toujours prévoir une ventilation correcte durant la charge.
• Éviter de recouvrir le chargeur.
• Ne jamais essayer de charger des batteries non rechargeables ou
gelées.
• Ne jamais installer le chargeur sur la batterie durant la charge.
• Éviter les étincelles à proximité de la batterie. Une batterie en
cours de charge peut émettre des gaz explosifs.
• L'acide de la batterie est corrosif. Rincer immédiatement à l'eau si
l'acide entre en contact avec la peau.
• Ce produit n'a pas été conçu pour être utilisé par des enfants.
Rangez le chargeur hors de portée des enfants.
• Cet appareil n'est pas prévu pour être utilisé par des personnes (dont
les enfants) ayant un handicap physique, sensoriel ou mental, ou un
manque d'expérience et de connaissances, à moins qu’elles soient
supervisées ou qu’elles aient reçu les instructions correspondantes.
• La connexion à l'alimentation secteur doit être conforme aux
réglementations nationales relatives aux installations électriques. En
cas de câble d'alimentation endommagé, veuillez contacter le
fabricant ou votre dépanneur.
• Le chargeur ne doit être branché que dans un socle avec mise à la
terre.
2. Installation
• Installez le chargeur verticalement sur une surface non
combustible avec la borne d'alimentation vers le bas. Pour
optimiser le refroidissement, laissez un espace minimal de 10 cm
en dessous et au-dessus du chargeur.
• Installez le chargeur près de la batterie, mais jamais directement
dessus (afin d'éviter des dommages dus au dégagement gazeux
de la batterie).
• Utilisez des câbles souples multibrins en cuivre pour effectuer les
raccordements : consultez les instructions de sécurité.
• Une faible compensation de température interne (par ex. des
conditions environnementales pour la batterie et le chargeur en
dehors de la marge des 5 ºC) peut réduire la durée de vie de la
batterie.
31
EN NL FR DE ES SV IT
3. Guide de démarrage rapide
A. Connectez le chargeur à la batterie ou aux batteries.
B. Connectez le chargeur de batterie à la prise murale en utilisant le
câble CA (il peut être commandé séparément).
Toutes les voyants LED s'allument brièvement, et une fois que le
chargeur a été activé, le voyant d'état correspondant s'allume en
fonction de l'état du chargeur.
Par défaut, le chargeur démarre en mode normal et Bulk.
C. Si cela est nécessaire, appuyez sur le bouton MODE pour
sélectionner un algorithme de charge différent (le chargeur se
souvient du mode sélectionné lorsqu'il est déconnecté du réseau
et/ou de la batterie).
Après avoir sélectionné la remise en état, le voyant LED de
remise en état s'allumera et commencera à clignoter si la remise
en état est en cours.
Le chargeur de batterie commute à LOW (puissance faible) si le
bouton MODE est maintenu appuyé pendant 3 secondes. Le
voyant LED LOW s'allumera et restera allumé, et le courant de
sortie maximal sera limité à 50 % de la puissance de sortie
nominale. Le mode LOW peut être désactivé en maintenant de
nouveau appuyé le bouton MODE pendant 3 secondes.
D. La batterie est chargée à près de 80 % et elle est prête à l'emploi si
la LED Absorption est allumée.
E. La batterie sera entièrement chargée lorsque le voyant FLOAT
(charge de compensation) ou STORAGE (stockage) s'allumera.
F. À présent, vous pouvez interrompre le processus de charge à tout
moment en déconnectant l'alimentation du chargeur.
4. Propriétés et caractéristiques principales
4.1. Fonctionnalité Bluetooth
Configuration, supervision et mise à jour du chargeur. Option de charge
redondante.
De nouvelles fonctions peuvent être ajoutées dès qu'elles sont
disponibles à l'aide de smartphones, tablettes ou de tout autre appareil
fonctionnant sous Apple et Android.
Pour utiliser la fonctionnalité Bluetooth, un code PIN peut être configuré
pour éviter les accès non autorisés à l'appareil. Ce PIN peut être
réinitialisé à sa valeur par défaut (000000) en maintenant appuyé le
bouton MODE pendant 10 secondes.
Pour plus d'informations, reportez-vous au manuel VictronConnect.
4.2. Port VE.Direct
Pour une connexion filaire à un tableau de commande Color Control,
Venus GX, à un PC ou à d'autres appareils.
4.3. Relais programmable
Il peut être programmé (par ex. avec un smartphone) pour déclencher
une alarme ou d'autres évènements. Remarque : le relai ne peut
fonctionner que si une source CA est disponible sur les bornes d'entrée
CA. C'est pourquoi, le relais ne peut pas être utilisé – par exemple – en
tant que signal de démarrage/arrêt d'un générateur.
4.4. Chargeur de batterie « vert » à très haute efficacité
Avec une efficacité de jusqu'à 94 %, ces chargeurs de batterie génèrent
jusqu'à quatre fois moins de chaleur par rapport aux normes
industrielles. Et une fois que la batterie est entièrement chargée, la
consommation d'énergie est réduite à moins de 1 Watt, soit près de
cinq à dix fois mieux que les normes industrielles.
4.5. Durable, sûr et silencieux
- Charge thermique réduite sur les composants électroniques.
- Protection contre la surchauffe : Le courant de sortie chute si la
température monte à 60 ºC.
- Le chargeur est refroidi par convection naturelle. Cela permet
d'éviter l'utilisation d'un ventilateur bruyant.
33
EN NL FR DE ES SV IT
4.6. Charge à compensation thermique
La tension de charge optimale d'une batterie au plomb varie de façon
inversement proportionnelle à la température. Le Chargeur
Phoenix Smart mesure la température ambiante lorsque débute le
processus de charge et il compense les variations de température
durant ce processus de charge. La température est également
mesurée si le chargeur est en mode de courant faible durant l'étape
Absorption ou Stockage. Aucun paramètre spécial n'est donc
nécessaire pour un environnement froid ou chaud.
4.7. Gestion adaptative de batterie
Les batteries au plomb doivent être chargées en trois phases : [1]
charge Bulk , [2] charge Absorption et [3] charge Float.
Plusieurs heures de charge d'absorption sont nécessaires pour
recharger entièrement la batterie et éviter une défaillance précoce
due à la sulfatation¹.
Cependant, une tension relativement élevée durant la phase
Absorption peut réduire la durée de vie de la batterie du fait de la
corrosion des plaques positives.
La gestion adaptative de la batterie limite la corrosion en réduisant le
temps d'absorption si cela est possible, c'est à dire en chargeant une
batterie qui est déjà entièrement chargée (ou presque).
4.8. Mode veille : moins de corrosion des plaques positives
Même la tension de charge Float qui est inférieure et qui suit la période
d'absorption, provoquera de la corrosion. Il est donc essentiel de
réduire encore plus la tension de charge si la batterie reste connectée
au chargeur pendant plus de 48 heures.
4.9. Remise en état
Une batterie au plomb n'étant pas suffisamment chargée, ou qui n'est
pas chargée pendant plusieurs jours ou plusieurs semaines, sera
endommagée à cause de la sulfatation4. Si elle est remarquée à temps,
4 Pour davantage d'information concernant les batteries, veuillez consulter
notre livre « Énergie sans limite » pouvant être téléchargée sur
www.victronenergy.com) ou
http://batteryuniversity.com/learn/article/sulfation_and_how_to_prevent_it
la sulfatation peut parfois partiellement être inversée en chargeant la
batterie à une tension supérieure en utilisant un courant faible.
Remarques :
La fonction de remise en état ne doit être utilisée, alors et à présent,
que sur des batteries à plaque plane (GEL ou AGM), puisque les gaz
formés durant ce processus de remise en état dessèchent l'électrolyte.
Les batteries VRLA ayant des cellules cylindriques provoquent
davantage de pression interne avant la formation des gaz et elles
perdent donc moins d'eau durant la phase de remise en état. Certains
fabricants de batteries ayant des cellules cylindriques recommandent
donc la remise en état en cas d'application cyclique.
Une remise en état peut s'appliquer aux batteries hydro-électriques
pour « égaliser » les cellules et pour éviter la stratification de l'acide.
Certains fabricants de chargeurs de batterie recommandent d'effectuer
un processus de charge par impulsion pour inverser la sulfutation.
Cependant, de nombreux experts de batteries conviennent du fait qu'il
n'y a aucune preuve concluante que la charge par impulsions
fonctionne mieux que la charge par tension élevée / courant faible. Ceci
est confirmé par nos propres tests.
4.10. Batteries au lithium-ion (LiFePO₄)
Les batteries au lithium-ion ne sont pas sujettes à la sulfutation et elles
n'ont pas besoin d'être régulièrement chargées entièrement.
Mais les batteries au lithium-ion sont très sensibles à la sous-tension ou
à la surtension.
C'est pourquoi, les batteries au lithium-ion sont souvent équipées d'un
système intégré pour l'équilibrage des cellules et pour les protéger
contre les tensions faibles (UVP : Under Voltage Protection —
protection contre la sous-tension). Remarque importante :
NE JAMAIS essayer de charger une batterie au lithium-ion si la
température est inférieure à 0 ºC.5
4.11. On/off à distance
Il y a trois façons d'allumer l'appareil :
1. Court-circuitez les broches L et H (configuration d'usine)
5 For more information about lithium-ion batteries, see
http://www.victronenergy.com/batteries/lithium-battery-12,8v/
35
EN NL FR DE ES SV IT
2. Élevez la broche H à un niveau supérieur (par ex. le pôle
positif de la batterie)
3. Élevez la broche L à un niveau inférieur (par ex. le pôle
négatif de la batterie)
4.12. Voyant LED d'alarme
En cas d'erreur, le voyant d'alarme s'allumera en rouge. Le voyant
d'état indique le type d'erreur avec un code clignotant. Consultez le
tableau suivant pour les codes d'erreur.
○ Off
◎ Clignotement
● On
4.13. Compensation de tension automatique
Le chargeur compense les chutes de tension survenant sur les câbles
CC en augmentant progressivement la tension de sortie si le courant de
charge augmente.
Le décalage de tension fixé est de 100 mV. Le décalage de tension est
ajusté au courant de charge et ajouté à la tension de sortie. Le
décalage de tension est basé sur un câble de 2x1 mètre, une
résistance de contact et une résistance de fusible.
Exemple de calculs pour le chargeur 12/50 (1+1) :
La résistance du câble R peut être calculée avec la formule suivante :
=×
Erreur
LOW
BULK
ABS
FLOAT
STORAGE
ALARM
Temps de
protection
Bulk
○ ◎ ○ ○ ○ ●
Erreur
interne
○ ◎ ◎ ◎ ○ ●
Surtension
du
chargeur
○ ○ ◎ ○ ◎ ●
Où R est la résistance en ohms (Ω), ρ est la résistivité du cuivre
(1,786x10^-8 Ωm à 25 ºC), l est la longueur du câble (en m) et A est
l'aire de surface du câble (en m²).
La distance largement utilisée pour aller du chargeur à la batterie est de
1 mètre. Dans ce cas, la longueur de câble est de 2 mètres (positif et
négatif). Si le câble utilisé est un câble 6AWG (16mm²), la résistance du
câble est :
=1,786 ×10−8 × 2
16 ×10−6 = 2.24Ω
Il est fortement recommandé d'installer un fusible à côté de la batterie.
La résistance d'un fusible standard de 80 A est :
= 0.720Ω
La résistance totale du circuit peut alors être calculée avec la formule
suivante :
= +
Donc :
= 2.24Ω + 0.720Ω = 2.96Ω
La compensation nécessaire pour les chutes de tension sur les câbles
peut être calculée avec la formule suivante :
=×
Où U est la chute de tension en volts (V) et I est le courant passant à
travers le câble en ampères (A).
La chute de tension sera donc :
=50 × 2.96Ω =148 pour tous les courants de charge de 50 A.
4.14. Versions avec trois (3) sorties
Les chargeurs ayant une version avec trois sorties intègrent un
isolateur de batterie FET, et ils disposent de trois sorties isolées.
Bien que toutes les sorties puissent fournir la totalité du courant de
sortie nominal, l'association du courant de sortie de l'ensemble des
sorties est limitée à la totalité du courant de sortie nominal.
En utilisant un chargeur avec trois sorties, il est possible de charger
trois batteries séparées avec un seul chargeur tout en maintenant les
batteries isolées les unes des autres.
Les sorties ne sont pas réglées individuellement. Un seul algorithme de
charge s'applique à toutes les sorties.
37
EN NL FR DE ES SV IT
5. Algorithmes de charge
5.1. Choix de la batterie
L'algorithme de charge du chargeur doit correspondre au type de
batterie connectée au chargeur. Le tableau suivant présente les trois
types de batterie prédéfinis qui sont disponibles. L'utilisateur peut
programmer un type de batterie personnalisé.
Tensions de charge à température ambiante :
MODE
ABS
V
FLOAT
V
STORAGE
V
RECONDITION
Max V@% of
Inom
NORMAL
14,4
13,8
13,2
16,2@8%, 1h
max
HIGH
14,7
13,8
13,2
16,5@8%, 1h
max
LI-ION
14,2
13,5
13,5
N/A
Pour des chargeurs de batterie de 24V : multiplier toutes les valeurs de
tension par 2.
NORMAL (14,4 V) : recommandé pour les batteries hydro-électriques à
plaques planes plomb-antimoine (batteries de démarrage), les batteries à
électrolyte gélifié à plaques planes et les batteries AGM.
HIGH (élevé) (14,7 V) : recommandé pour les batteries hydro-électriques au
plomb-calcium, les batteries à cellules en spirale Odyssey et Optima.
LI-ION (14,2 V) : recommandé pour les batteries au lithium fer phosphate
(LiFePo4).
PERSONNALISÉ (pers.) : recommandé pour tout autre type de batterie que
ceux mentionnés ci-dessus, si les tensions ajustables sont définies
conformément aux recommandations du fabricant de la batterie.
Bouton MODE
Une fois le chargeur de batterie connecté à l'alimentation CA, appuyez sur
le bouton MODE pour sélectionner un algorithme de charge différent si cela
est nécessaire. Le chargeur de batterie se souvient du mode lorsque
l'alimentation et/ou la batterie a été déconnectée).
Après avoir sélectionné la remise en état, le voyant LED de remise en état
s'allumera et commencera à clignoter si la remise en état est activée.
Le chargeur de batterie commute à LOW (puissance faible) si le bouton
MODE est maintenu appuyé pendant 3 secondes. Le voyant LOW restera
allumé. Le mode LOW restera actif tant que le bouton MODE sera maintenu
appuyé pendant encore 3 secondes.
Lorsque ce mode LOW est actif, le courant de sortie est limité à 50 % max.
de la puissance de sortie nominale.
Algorithme de charge intelligent à 7 étapes pour les batteries au
plomb :
(avec remise en état facultative)
1. BULK
Charge la batterie avec un courant maximal jusqu'à atteindre la tension
d'absorption. À la fin de la phase Bulk, la batterie sera chargée à environ
80 % et prête à l'emploi.
2. ABS - Absorption
Charge la batterie à une tension constante et avec un courant
décroissant jusqu'à ce qu'elle soit entièrement chargée. Voir le tableau
ci-dessus pour les tensions d'absorption à température ambiante.
Durée d'absorption variable :
Cette durée d'absorption est courte (au moins 30 minutes) si une
batterie presque entièrement chargée est connectée, et elle peut aller
jusqu'à 8 heures pour une batterie entièrement déchargée.
3. REMISE EN ÉTAT
LA REMISE EN ÉTAT est une option pour les programmes de charge
NORMAL et ÉLEVÉ, et elle peut être sélectionnée en appuyant à
nouveau sur le bouton MODE après avoir choisi l'algorithme de charge
souhaité.
Durant la REMISE EN ÉTAT, la batterie est chargée à une tension
supérieure en utilisant un courant faible (8 % du courant nominal). La
REMISE EN ÉTAT s'effectue à la fin de la phase d'absorption et elle
s'achève au bout d'une heure ou avant dès que la tension supérieure a
39
EN NL FR DE ES SV IT
été atteinte.
Le voyant de remise en état – RECONDITION – restera allumé
pendant la charge, et il clignotera pendant la période de remise en
état.
Exemple :
Pour un chargeur de 12/30 : le courant de remise en état est de
30 x 0,08 = 2,4 A.
4. FLOAT
Charge Float. Permet de maintenir la batterie à une tension constante
et entièrement chargée.
5. STOCKAGE
Mode de stockage. Maintient la batterie à une tension constante
inférieure pour limiter le dégagement gazeux et la corrosion des
plaques positives.
6. READY ((batterie entièrement chargée)
La batterie est entièrement chargée si le voyant FLOAT ou STORAGE
est éclairé.
7. REFRESH
(Rafraîchir) Une lente autodécharge est évitée par un rafraichissement
automatique de la batterie avec une courte charge d'absorption.
5.2. Batteries au lithium-ion (LiFePO₄)
En chargeant une batterie au lithium-ion, le chargeur utilise un
algorithme de charge spécifique pour les batteries au lithium-ion afin de
garantir une performance optimale. Sélectionnez LI-ION avec le bouton
de MODE.
5.3. Algorithme de charge entièrement programmable par l'utilisateur
Si les trois algorithmes de charge préprogrammés ne s'adaptent pas à
vos besoins, vous pouvez également programmer votre propre
algorithme de charge en utilisant le Bluetooth ou l'interface VE.Direct.
Si un algorithme de charge programmé par l'utilisateur est sélectionné,
les voyants NORMAL, HIGH et LI-ION ne seront pas allumés. Le
voyant d'état indique l'emplacement du programme de charge dans le
chargeur.
Si on appuie sur le bouton MODE durant un algorithme de charge
programmé par l'utilisateur, le chargeur repassera à l'algorithme de
charge préprogrammé NORMAL.
5.4. Si une charge est connectée à la batterie
Une charge consommatrice peut être appliquée à la batterie lorsque
celle-ci est en cours de charge. Remarque : La batterie ne sera pas
chargée si le courant de charge dépasse le courant de sortie du
chargeur de batterie.
Le mode de remise en état n'est pas possible si une charge est
connectée à la batterie.
5.5. Démarrer un nouveau cycle de charge
Un nouveau cycle de charge commencera si :
A. Le chargeur est en phase Float ou stockage, et que le courant
augmente jusqu'à sa valeur maximale pendant plus de
4 secondes en raison de la présence d'une charge
consommatrice.
B. On appuie sur le bouton MODE pendant le processus de charge.
C. L'alimentation du secteur est déconnectée et reconnectée.
41
EN NL FR DE ES SV IT
5.6. Calculs de la durée du cycle de charge
Une batterie au plomb est chargée à près de 80 % au début de la
période d'absorption.
Le temps T pour atteindre 80 % de charge peut être calculé comme
suit :
T = Ah / I
Où :
I est le courant de charge (= courant provenant du chargeur moins le
courant provenant d'une charge consommatrice).
Ah le nombre ampère heures qui devra être chargé.
Une période d'absorption complète de jusqu'à 8 heures sera
nécessaire pour recharger une batterie à 100 %.
Example:
Temps de charge à 80 % pour une batterie de 220 Ah entièrement
déchargée si elle est chargée avec un chargeur de batterie de 30 A :
T = 220 / 30 = 7,3 heures.
Temps de charge à 100 % : 7,3 + 8 = 15,3 heures.
Une batterie au lithium-ion est chargée à plus de 95 % au début de la
période d'absorption, et elle atteint 100 % de charge après environ
30 minutes de charge d'absorption.
5.7. Utilisation en tant qu'alimentation électrique
Le chargeur peut être utilisé comme source d'alimentation (une charge
consommatrice est présente mais aucune batterie n'est connectée). La
tension d'alimentation peut être configurée en utilisant le Bluetooth ou
l'interface VE.Direct.
Lorsqu'il est utilisé comme source d'alimentation, seuls les voyants
BULK, ABSORPTION, FLOAT et STORAGE s'allumeront et resteront
éclairés.
Si le chargeur est configuré comme source d'alimentation, il ne
répondra pas au l'allumage/arrêt à distance.
Si on appuie sur le bouton MODE alors que le chargeur est utilisé
comme source d'alimentation, ce dernier repassera à l'algorithme de
charge préprogrammé NORMAL.
6. Spécifications techniques
Chargeur Phoenix Smart
12 V, 2 sorties
12/30(1+1)
12/50(1+1)
12 V, 3 sorties
12/30(3)
12/50(3)
24 V, 2 sorties
24/16(1+1)
24/25(1+1)
24 V, 3 sorties
24/16(3)
24/25(3)
Tension d’entrée
230 VCA (plage : 210 – 250 V)
Plage de tension d'alimentation CC
290 - 355 VCC
Fréquence
45 - 65 Hz
Facteur de puissance
0,7
Courant de retour absorbé
CA déconnecté : < 0,1 mA CA connecté et arrêt à distance du chargeur : < 6 mA
Consommation d'énergie sans charge
1 W
Rendement
12/30 : 94 %
12/50 : 92 %
12/30 : 94 %
12/50 : 92 % 94 % 94 %
Tension de charge « d'absorption »
Normale : 14,4 V Élevée : 14,7 V Lithium-ion :
14,2 V
Normale : 28,8 V Élevée : 29,4 V Lithium-ion :
28,4 V
Tension de charge « Float »
Normale : 13,8 V Élevée : 13,8 V Lithium-ion :
13,5 V
Normale : 27,6 V Élevée : 27,6 V Lithium-ion :
27,0 V
Mode stockage
Normal : 13,2 V Élevée : 13,2 V Lithium-ion :
13,5 V
Normale : 26,4 V Élevée : 26,4 V Lithium-ion :
27,0 V
Entièrement programmable
Oui, avec Bluetooth et/ou VE.Direct
Courant de charge de batterie de
service 30/50 A 30/50 A 16/25 A 16/25 A
Mode de courant faible
15/25 A
15/25 A
8/12,5 A
8/12,5 A
Courant de charge de batterie de
démarrage 3 A (uniquement pour les modèles 1+1 sortie)
Algorithme de charge
Adaptatif à 7 étapes (adaptatif à 3 étapes pour Li-ion)
Capacité de la batterie
150-300 Ah (version 30 A)
250-500 Ah (version 50 A)
80-160 Ah (version 16 A)
125-250 Ah (version 25 A)
Nombre de connexions de la batterie
2
3
2
3
Protection
Polarité inversée de batterie (fusible, non accessible par l'utilisateur) / Court-circuit de sortie / Surchauffe
Utilisable comme alimentation
Oui, la tension de sortie peut être programmée par Bluetooth et/ou VE.Direct
Plage de température d'exploitation
-20 à 60°C (0 - 140°F)
Courant de sortie nominal jusqu'à 40 ºC, Diminution linéaire de 20 % à 60 ºC
Humidité (sans condensation)
maxi 95 %
Relais (programmable)
Rendement CC : 5 A jusqu'à 28 VCC
BOÎTIER
Matériau et couleur
aluminium (bleu RAL 5012)
Raccordement batterie
Bornes à vis 16 mm² (AWG6)
Connexion CA
IEC 320 C14 entrée avec bague de maintien (les câbles CA pour les pays ayant des prises spécifiques
doivent être commandés séparément)
Degré de protection
IP43 (composants électroniques), IP22 (zone de connexion)
Poids kg (lbs)
3,5 kg
Dimensions (H x L x P)
180 x 249 x 100 mm (7,1 x 9,8 x 4,0 pouces)
NORMES
Sécurité
EN 60335-1, EN 60335-2-29
Émission
EN 55014-1, EN 61000-6-3, EN 61000-3-2
Immunité
EN 55014-2, EN 61000-6-1, EN 61000-6-2, EN 61000-3-3
Vibration
IEC68-2-6:10-150Hz/1.0G
43
EN NL FR DE ES SV IT
1. Sicherheitshinweise
• Sorgen Sie während des Ladevorgangs stets für eine
ausreichende Belüftung.
• Das Ladegerät nicht bedecken.
• Nicht versuchen, Einwegbatterien oder gefrorene Batterien
aufzuladen.
• Während des Aufladens niemals das Ladegerät auf die Batterie
legen.
• Funken in Batterienähe verhindern. Eine aufladende Batterie kann
explosive Gase produzieren.
• Batteriesäure ist ätzend. Bei Hautkontakt unverzüglich mit Wasser
spülen.
• Das Gerät ist nicht für die Nutzung durch Kinder geeignet. Bewahren
Sie das Ladegerät außerhalb der Reichweite von Kindern auf.
• Dieses Gerät darf nicht von Personen (unter anderem von Kindern)
verwendet werden, die über eingeschränkte physische, sensorische
bzw. mentale Fähigkeiten verfügen und, die nicht die dafür
notwendigen Erfahrungen und Kenntnisse besitzen, sofern sie nicht
bezüglich der sachgemäßen Bedienung angeleitet wurden oder bei
der Bedienung überwacht werden.
• Der Netzanschluss muss gemäß den vor Ort geltenden
Bestimmungen für Elektroinstallationen erfolgen. Bei einem defekten
Stromkabel bitte den Hersteller oder Ihren Kundendienstmitarbeiter
kontaktieren.
• Das Ladegerät darf nur in eine geerdete Steckdose gesteckt werden.
2. Installation
• Installieren Sie das Ladegerät vertikal auf einer nicht-brennbaren
Oberfläche. Der Versorgungsanschluss zeigt dabei nach unten. Für
eine optimale Kühlung einen Abstand von mindestens 10 cm unter
und über dem Produkt freilassen.
• Installieren Sie es in der Nähe der Batterie, jedoch niemals direkt
über der Batterie (um Schäden durch Gasentwicklung durch die
Batterie zu vermeiden).
• Verwenden Sie flexible, mehrdrahtige Kupferkabel für die
Anschlüsse: Beachten Sie hierzu die Sicherheitshinweise.
• Eine schlechte interne Temperaturkompensation (z. B. die
Umgebungstemperatur der Batterie und die Temperatur des
Ladegerätes weichen mehr als 5° C voneinander ab) können zu
einer verkürzten Lebensdauer der Batterie führen.
45
EN NL FR DE ES SV IT
3. Kurzanleitung
G. Verbinden Sie das Batterie-Ladegerät mit der Batterie bzw. den
Batterien.
H. Schließen Sie das Batterieladegerät an die Wandsteckdose an.
Verwenden Sie hierzu das Wechselstromkabel (kann separat bestellt
werden).
Alle LEDs leuchten einen kurzen Moment lang auf. Nachdem das
Ladegerät aktiviert wurde, leuchten die relevanten Status-LEDS auf, je
nachdem, wie der Status des Ladegeräts ist.
Standardmäßig startet das Ladegerät im normalen Modus oder im
Konstantstrom-Modus (Bulk).
I. Sofern erforderlich, die Taste MODE betätigen, um einen anderen
Ladealgorithmus auszuwählen (das Ladegerät erinnert sich an den
Modus, wenn es vom Stromnetz und/oder der Batterie getrennt wird).
Nach der Auswahl der Wiederherstellungs-Option („Reconditioning“)
leuchtet die RECONDITION LED auf und beginnt zu blinken, währen
der Wiederherstellungsvorgang läuft.
Das Batterieladegerät schaltet auf LOW (niedrige Leistung), wenn die
Taste MODE 3 Sekunden lang gedrückt wird. Die LED LOW leuchtet
nun und der maximale Ausgangsstrom wird auf 50 % der
Nennausgangsleistung beschränkt. LOW kann wieder deaktiviert
werden, indem die Taste MODE erneut 3 Sekunden lang gedrückt wird.
J. Die Batterie wird auf ungefähr 80 % geladen und ist betriebsbereit,
sobald sich die LED ABSORPTION (Konstantspannung) einschaltet.
K. Die Batterie wird voll geladen sein, wenn die LED FLOAT
(Erhaltungsladung) oder STORAGE (Lagermodus) leuchten.
L. Sie können den Ladevorgang nun jederzeit unterbrechen. Dazu
unterbrechen Sie die Stromversorgung des Ladegeräts.
4. Die wichtigsten Eigenschaften und
Funktionen
4.1. Bluetooth-Funktion
Einstellung, Überwachung und Aktualisierung des Ladegeräts. Option
für paralleles redundantes Laden.
Es lassen sich neue Funktionen hinzufügen, sobald diese durch die
Verwendung von Apple und Android Smartphones, Tablets und weitere
Geräte verfügbar sind.
Bei der Verwendung der Bluetooth-Funktion kann ein PIN eingestellt
werden, um einen unbefugten Zugriff auf das Gerät zu verhindern.
Dieser PIN lässt sich auf seine Standardeinstellung (000000)
zurücksetzen, wenn die Taste MODE 10 Sekunden lang gedrückt wird.
Weitere Informationen finden Sie im VictronConnect-Handbuch.
4.2. VE.Direct Anschluss
Für eine verdrahtete Verbindung mit einem Color Control, Venus GX,
PC oder anderen Geräten.
4.3. Programmierbare Relais
Kann (z. B. mit einem Smartphone) für die Aktivierung durch einen
Alarm oder andere Ereignisse programmiert werden. Beachten Sie,
dass das Relais nur funktioniert, wenn an den AC-Eingangsklemmen
Wechselstrom verfügbar ist, und daher kann das Relais nicht als z. B.
ein Generator-Start/Stop-Signal verwendet werden.
4.4. „Grünes“ Batterieladegerät mit sehr hohem Leistungsgrad
Mit einem Wirkungsgrad von bis zu 94 % erzeugen diese Ladegeräte
bis zu viermal weniger Wärme als der Industriestandard. Nachdem die
Batterie außerdem vollständig aufgeladen wurde, sinkt der
Stromverbrauch auf weniger als 1 Watt, das ist etwa fünf bis zehn Mal
besser, als der Industriestandard.
47
EN NL FR DE ES SV IT
4.5. Langlebig, sicher und leise
- Geringe Wärmebelastung der elektronischen Bauteile
- Überhitzungsschutz: Der Ausgangsstrom wird verringert, wenn
die Temperatur 60°C erreicht.
- Das Ladegerät wird durch Naturkonvektion gekühlt. Dadurch ist
kein lärmender Lüfter notwendig.
4.6. Ladevorgang mit Temperaturausgleich
Die optimale Ladespannung einer Blei-Säure-Batterie variiert
umgekehrt proportional mit der Temperatur. Das Phoenix Smart
Ladegerät misst die Umgebungstemperatur zu Beginn des
Ladevorgangs und kompensiert die Temperatur während des Ladens.
Die Temperatur wird erneut gemessen, wenn das Batterieladegerät
sich während der Konstantspannungsphase oder im Lagermodus im
Niedrigstrommodus befindet. Daher werden keine
Sondereinstellungen für eine kalte bzw. warme Umgebungen
erforderlich.
4.7. Adaptives Batteriemanagement
Blei-Säure-Batterien müssen in drei Phasen geladen werden: [1]
Konstantstrom-Ladephase (Bulk), [2] Konstantspannungs-Ladephase
(Absorption) und [3] Erhaltungs-Ladephase (Float).
Um die Batterie voll aufzuladen werden mehrere Stunden in der
Konstantspannungs-Ladephase benötigt. So werden auch frühe
Beschädigungen aufgrund von Sulfatierung¹ verhindert.
Die relativ hohe Spannung während der Konstantspannungsphase
verkürzt jedoch die Lebensdauer der Batterie, weil es an den positiven
Platten zu Korrosion kommt.
Das adaptives Batteriemanagement limitiert die Korrosion, indem es,
wenn möglich, die Konstantspannungsphase beschränkt, z. B. beim
Laden einer Batterie, die schon (fast) voll aufgeladen ist.
4.8. Lagermodus: weniger Korrosion an den positiven Platten
Sogar die geringere Spannung der Erhaltungsladungsphase, die auf die
Konstantspannungsphase folgt, führt zu einer Korrosion. Daher ist es
von größter Bedeutung, die Ladespannung noch weiter zu verringern,
wenn die Batterie für über 48 Stunden am Ladegerät angeschlossen
bleibt.
4.9. Reconditioning (Wiederherstellung)
Eine Blei-Säure-Batterien, die nicht ausreichend geladen ist oder
mehrere Tage oder sogar Wochen in einem entladenen Zustand
belassen wird, wird durch Sulfatierung6 verschlechtert. Wird dies
rechtzeitig bemerkt, lässt sich die Sulfatierung manchmal teilweise
rückgängig machen, indem die Batterie mit einem schwachen Strom auf
eine höhere Spannung geladen wird.
Hinweise:
Die Wiederherstellungsfunktion darf bei Gitterplatten-VRLA (Gel- und
AGM-) Batterien nur ab und zu verwendet werden, da die Gase, die
während des Vorgangs entstehen, den Elektrolyt austrocknen.
VRLA-Batterien mit zylindrischen Zellen bauen mehr Innendruck auf,
bevor die Gase sich bilden und verlieren daher während des
Wiederherstellungsvorgangs weniger Wasser. Einige Hersteller von
Batterien mit zylindrischen Zellen empfehlen daher die
Wiederherstellungsfunktion im Falle einer zyklischen Anwendung.
Die Wiederherstellungsfunktion kann bei Nass-Zellen-Batterien
durchgeführt werden, um die Zellen „auszugleichen“ und um eine
Säureschichtung zu verhindern.
Einige Hersteller von Batterieladegeräten empfehlen eine Impulsladung,
um die Sulfatierung umzukehren. Die meisten Batterieexperten sind
sich jedoch einig, dass es keinen eindeutigen Beweis gibt, dass eine
Impulsladung besser ist, als ein Laden mit niedrigem Strom/hoher
Spannung. Unsere eigenen Tests bestätigen dies.
4.10. Lithium-Ionen (LiFePO₄) Batterien
Bei Lithium-Ionen-Batterien kommt es nicht zu einer Sulfatierung und
sie müssen auch nicht regelmäßig wieder voll aufgeladen werden.
Lithium-Ionen-Batterien sind jedoch sehr anfällig in Bezug auf hohe
oder niedrige Spannungen.
6 Weitere Informationen zu diesen Batterien erhalten Sie hier:
Unser Buch ‘Energy Unlimited’ (Unbegrenzt Energie) (herunterladbar unter
www.victronenergy.com) oder
http://batteryuniversity.com/learn/article/sulfation_and_how_to_prevent_it
49
EN NL FR DE ES SV IT
Darum sind Lithium-Ionen-Batterien häufig mit einem integrierten
System zum Zellenausgleich und einem Schutz vor niedrigen
Spannungen (UVP: Under Voltage Protection) ausgestattet.
Wichtiger Hinweis:
Versuchen Sie NIEMALS eine Lithium-Ionen-Batterie zu laden, wenn
die Temperatur der Batterie unter 0 C liegt.7
4.11. Ferngesteuerte Ein-/Aus-Schaltung
Sie können das Gerät auf drei Arten einschalten:
4. Schließen Sie die Pins L und H kurz (Werkseinstellung).
5. Ziehen Sie den Pin H auf einen HIGH Pegel (z. B. den
Pluspol der Batterie)
6. Ziehen Sie den Pin L auf einen LOW Pegel (z. B. den
Minuspol der Batterie)
4.12. Alarm-LED
Bei einem Fehler leuchtet die ALARM-LED rot auf. Die Status-LED
zeigt den Fehlertyp anhand eines Blinkcodes an. In der
nachfolgenden Tabelle sind die möglichen Fehlercodes aufgeführt.
Fehler
LOW
BULK
ABS
FLOAT
STORAGE
ALARM
Schutz
Konstantstromphase ○ ◎ ○ ○ ○ ●
Interner Fehler
○
◎
◎
◎
○
●
Überspannung
Ladegerät
○ ○ ◎ ○ ◎ ●
○ Aus
◎ Blinkt
● An
4.13. Automatische Spannungskompensation
Das Ladegerät kompensiert den Spannungsabfall an den
Gleichstromkabeln, indem es schrittweise die Ausgangsspannung
erhöht, wenn der Ladestrom ansteigt.
7 Weitere Informationen zu Lithium-Ionen-Batterien erhalten Sie hier:
http://www.victronenergy.com/batteries/lithium-battery-12,8v/
Der festgelegte Spannungs-Offset beträgt 100 mV. Der Spannungs-
Offset wird dem Ladestrom angepasst und zur Ausgansspannung
addiert. Der Wert des Spannungs-Offsets basiert auf 2 x 1-Meter-lange
Kabel, Kontaktwiderstand und Sicherungswiderstand.
Beispielberechnung für das 12/50 (1+1):
Der Kabelwiderstand R lässt sich mit der folgenden Formel berechnen:
=×
Hier ist R der Widerstand in Ohm (Ω), ρ ist der spezifische Widerstand
von Kupfer (1,786x10^-8 Ωm bei 25°C), l ist die Länge des Drahtes
(in m) und A ist die Oberfläche des Drahtes (in m²).
Häufig beträgt der Abstand zwischen dem Ladegerät und der Batterie
1 m. In diesem Fall beträgt die Drahtlänge 2 m (mehr oder weniger).
Wird ein 6AWG Kabel (16 mm²) verwendet, beträgt der
Leiterwiderstand:
=1,786 ×10−8 × 2
16 ×10−6 = 2.24Ω
Die Installation einer Sicherung in Nähe der Batterie wird nachdrücklich
empfohlen. Der Widerstand einer standardmäßigen 80 A Sicherung
beträgt:
= 0.720Ω
Der Gesamtwiderstand des Stromkreises lässt sich dann mit der
folgenden Formel berechnen:
= +
Deshalb gilt:
= 2.24Ω + 0.720Ω = 2.96Ω
Die erforderliche Spannungsabfallkompensation am Kabel lässt sich
dann mit folgender Formel berechnen:
=×
Hier ist U der Spannungsabfall in Volt (V) und I der Strom durch den
Draht in Ampere (A).
Der Spannungsabfall beträgt dann:
=50 × 2.96Ω =148 für die ganzen 50 A Ladestrom.
51
EN NL FR DE ES SV IT
4.14 Versionen mit drei (3) Ausgängen
Die Ladegeräte mit drei Ausgängen verfügen über einen integrierten
FET-Batterietrenner und damit über drei isolierte Ausgänge.
Obwohl alle Ausgänge den vollen Nennausgangsstrom liefern
können, wird der kombinierte Ausgangsstrom aller Ausgänge auf den
vollen Nennausgangsstrom begrenzt.
Mit dem Ladegerät in der Version mit drei Ausgängen ist es möglich,
drei separate Batterien mit nur einem einzigen Ladegerät aufzuladen,
wobei die Batterien voneinander isoliert bleiben.
Die Ausgänge werden nicht individuell geregelt. Ein Ladealgorithmus
wird auf alle Ausgänge angewendet.
5. Ladealgorithmus
5.1 Batterieauswahl
Der Lade-Algorithmus des Ladegerätes muss zu dem an das Ladegerät
angeschlossenen Batterietyp passen. Die folgende Tabelle zeigt die zur
Verfügung stehenden drei vordefinierten Batterietypen. Ein
benutzerspezifischer Batterietyp kann vom Benutzer programmiert werden.
Ladespannungen bei Zimmertemperatur:
MODE
ABS
V
FLOAT
V
STORAGE
V
RECONDITION
Max V bei %
von Inom
NORMAL
14,4
13,8
13,2
16,2 bei 8 %,
1 h max
HIGH
14,7
13,8
13,2
16,5 bei 8 %,
1 h max
LITHIUM-
IONEN
14,2
13,5
13,5
entfällt
Für 24-V-Ladegeräte: alle Werte verdoppeln
NORMAL (14,4 V): empfohlen für Nass-Zellen-Gitterplatten-Blei-Antimon-
Batterien (Starter-Batterien), Gitterplatten-Gel und AGM-Batterien.
HIGH (14,7 V): empfohlen für Nass-Zellen-Blei-Kalzium-Batterien, Optima-
Spiralzellen-Batterien und Odyssey-Batterien.
LI-ION (14,2 V): empfohlen für Lithium-Eisen-Phosphat-Batterien (LiFePo4).
BENUTZERSPEZIFISCH (Anpassung): Empfohlen für alle Batterietypen mit
Ausnahme der oben genannten, wenn die einstellbaren Spannungen gemäß
den Empfehlungen des Batterieherstellers eingestellt werden.
Die Taste MODE
Nachdem das Batterieladegerät an die Wechselstromversorgung
angeschlossen wurde, betätigen Sie die Taste MODE, um bei Bedarf einen
anderen Ladealgorithmus auszuwählen. (Das Batterieladegerät erinnert sich
53
EN NL FR DE ES SV IT
an den Modus, nachdem die Stromversorgung und/oder die Batterie
getrennt wurden.)
Nach der Auswahl der Wiederherstellungs-Option („Reconditioning“)
leuchtet die RECONDITION LED auf und beginnt zu blinken, währen der
Wiederherstellungsvorgang läuft.
Das Batterieladegerät schaltet auf LOW (niedrige Leistung), wenn die
Taste MODE 3 Sekunden lang gedrückt wird. DIE LED LOW leuchtet
dann weiter. Der Modus LOW bleibt solange aktiv, bis die Taste MODE
erneut für 3 Sekunden gedrückt wird.
Wenn der Modus LOW aktiv ist, wird der Ausgangsstrom auf maximal
50 % der Nennausgangsleistung begrenzt.
Intelligenter 7-stufiger Ladealgorithmus für Bleibatterien:
(mit optionaler Aufarbeitung)
1. BULK (Konstantstromphase)
Hierbei wird die Batterie mit dem maximalen Strom geladen, bis die
Konstantspannung erreicht ist. Am Ende der Konstantstromphase, ist
die Batterie zu ca. 80 % geladen und einsatzbereit.
2. ABS Absorption (Konstantspannungsphase)
Lädt die Batterie bei konstanter Spannung und abnehmender
Stromstärke auf, bis sie voll aufgeladen ist. Die Konstantspannung bei
Raumtemperatur entnehmen Sie bitte der vorstehenden Tabelle.
Variable Konstantspannungszeit:
Die Konstantspannungsdauer ist kurz (mindestens 30 Minuten), wenn
eine fast volle Batterie angeschlossen wird. Bei einer völlig entladenen
Batterie steigt sie auf 8 Stunden an.
3. RECONDITION (Wiederherstellung)
RECONDITION ist eine Option für die Ladeprogramme NORMAL und
HIGH. Diese Option kann durch das erneute Betätigen der Taste
MODE nach der Auswahl des gewünschten Ladealgorithmus
ausgewählt werden.
Währen des RECONDITION Vorgangs wird die Batterie auf eine
höhere Spannung geladen, wozu ein niedrigerer Strom (8 % des
Nennstroms) verwendet wird. Der RECONDITION Vorgang findet am
Ende der Konstantspannungs-Phase statt. Er endet höchstens eine
Stunde, nachdem die höhere Spannung erreicht wurde.
Die LED RECONDITION leuchtet während des Ladevorgangs und
blinkt während des RECONDITION Vorgangs.
Beispiel:
Für ein 12/30-Ladegerät: Die Rekonditionierungsstromstärke beträgt 30
x 0,08 = 2,4 A.
4. FLOAT
Erhaltungsladung. In diesem Modus wird die Batterie auf einem Status
mit konstantem Spannungslevel und in voll geladenem Zustand
belassen.
5. STORAGE
Lagermodus. In diesem Modus wird die Batterie auf einem Status mit
einer reduzierten Konstantspannung belassen, um Gasbildung und
Korrosion an den positiven Platten zu begrenzen.
6. READY (Batterie ist voll geladen)
Die Batterie ist voll aufgeladen, wenn die LED FLOAT bzw. STORAGE
leuchtet.
7. REFRESH (Auffrischung)
Eine langsame Selbstentladung wird durch eine automatische
„Wiederauffrischung“ der Batterie mit einer kurzen
Konstantspannungsladung verhindert.
5.2 Lithium-Ionen (LiFePO₄) Batterien
Beim Laden einer Lithium-Ionen-Batterie nutzt das Ladegerät einen
bestimmten Ladealgorithmus für Lithium-Ionen-Batterien, um ihre Leistung
zu maximieren. Wählen Sie mithilfe der Taste MODE LI-ION aus.
5.3 Vollständig benutzerprogrammierbarer Ladealgorithmus
Sind die drei vorprogrammierten Ladealgorithmen nicht für Ihre Zwecke
passend, können Sie auch Ihren eigenen Ladealgorithmus programmieren.
Das können Sie per Bluetooth oder mit dem VE.Direct Interface machen.
Wird ein selbst programmierter Ladealgorithmus ausgewählt, leuchten die
LEDs NORMAL, HIGH und LI-ION nicht. Die Status-LEDs zeigen den Ort
des Ladeprogramms im Ladegerät an.
Wird die Taste MODE während eines selbst programmierten
Ladealgorithmus betätigt, kehrt das Ladegerät zu dem vorprogrammierten
Ladealgorithmus NORMAL zurück.
55
EN NL FR DE ES SV IT
5.4 Wenn an der Batterie eine Last angeschlossen wird
Während des Ladevorgangs kann an die Batterie eine Last
angeschlossen werden. Hinweis: Die Batterie wird nicht geladen, wenn
der Ladestrom den Ausgangsstrom des Batterie-Ladegeräts überschreitet.
Ist eine Last an die Batterie angeschlossen, ist Rekonditionierung nicht
möglich.
5.5 Beginn eines neuen Lade-Zyklus
Ein neuer Lade-Zyklus beginnt in folgenden Situationen:
A. Das Ladegerät befindet sich in der Ladeerhaltungsphase oder im
Lagerungs-Modus und der Strom steigt aufgrund einer Last länger als
4 Sekunden auf seinen Maximalwert an.
B. Während des Ladevorgangs wird die Taste MODE betätigt.
C. Die Netzstromversorgung wird getrennt und wieder angeschlossen.
5.6 Berechnung der Ladezeit
Zu Beginn der Konstanntspannungs-Phase ist eine Blei-Batterie zu ca.
80 % geladen.
Die Zeit T bis auf 80 % geladen lässt sich wie folgt berechnen:
T = Ah / I
Hierbei ist:
I der Ladestrom (= Strom vom Ladegerät abzüglich jeglichen Stroms
aufgrund einer Last).
Ah ist die Anzahl der Amperestunden, die geladen werden sollten.
Eine vollständige Konstantspannungsphase (bis zu 8 Stunden lang) ist
notwendig, um die Batterie zu 100 % zu laden.
Beispiel:
Ladezeit bis auf 80 % für eine vollständig entladene 220 Ah Batterie, wenn
sie mit einem 30 A Batterieladegerät geladen wird. T = 220 / 30 = 7,3
Stunden.
Ladezeit bis auf 100 %: 7,3 / 8 / 15,3 Stunden
Eine Lithium-Ionen-Batterie ist zu Beginn der
Konstantspannungsladungsphase zu über 95 % geladen und ist nach
ungefähr 30 Minuten in der Konstantspannungsladung voll aufgeladen
5.7 Verwendung als Stromquelle
Das Ladegerät kann als Stromquelle verwendet werden (eine Last ist
vorhanden, aber es ist keine Batterie angeschlossen). Die
Versorgungsspannung kann dann mithilfe der Bluetooth-Funktion oder des
VE.Direct Interface eingestellt werden.
Bei der Verwendung zur Stromversorgung leuchten nur die LEDs BULK,
ABSORPTION, FLOAT und STORAGE
Dient das Ladegerät zur Stromversorgung reagiert es nicht auf die
ferngesteuerte Ein-/Aus-Schaltung.
Wir die Taste MODE betätigt, während das Ladegerät zur Stromversorgung
genutzt wird, kehrt das Ladegerät zu dem vorprogrammierten
Ladealgorithmus NORMAL zurück.
57
EN NL FR DE ES SV IT
6 Technische Angaben
Phoenix Smart Ladegerät
12 V,
2 Ausgänge
12/30(1+1)
12/50(1+1)
12 V,
3 Ausgänge
12/30(3)
12/50(3)
24 V,
2 Ausgänge
24/16(1+1)
24/25(1+1)
24 V,
3 Ausgänge
24/16(3)
24/25(3)
Eingangs-Spannung 230 VAC (Bereich: 210 – 250 V)
DC-Eingangsspannungsbereich 290 - 355 VDC
Frequenz 45/-65 Hz
Leistungsfaktor 0,7
Abzug Rücklaufstrom
AC getrennt: < 0,1 mA AC angeschlossen und Fernsteuerung Ladegerät aus: < 6 mA
Stromverbrauch ohne Last 1 W
Wirkungsgrad
12/30: 94 %
12/50: 92 %
12/30: 94 %
12/50: 92%
94 % 94 %
„Konstant“-Ladespannung
(absorption)
Normal: 14,4 V Hoch: 14,7 V
Lithium-Ionen: 14,2 V
Normal: 28,8 V Hoch: 29,4 V
Lithium-Ionen: 28,4 V
„Erhaltungs“-Ladespannung (float)
Normal: 13,8 V Hoch: 13,8 V
Lithium-Ionen: 13,5 V
Normal: 27,6 V Hoch: 27,6 V
Lithium-Ionen: 27,0 V
Lagermodus
Normal: 13,2 V Hoch: 13,2 V
Lithium-Ionen: 13,5 V
Normal: 26,4 V Hoch: 26,4 V
Lithium-Ionen: 27,0 V
Vollständig programmierbar Ja, mit Bluetooth und/oder VE.Direct
Ladestrom Hausbatterie 30 / 50 A 30 / 50 A 16 / 25 A 16 / 25 A
Niedrigstrom-Modus 15 / 25 A 15 / 25 A 8 / 12,5 A 8 / 12,5 A
Ladestrom Starterbatterie 3 A (nur 1+1 Ausgang Modelle)
Ladealgorithmus 7-stufig adaptiv (3-stufig adaptiv für Li-Ion-Batterien)
Batteriekapazität
150-300 Ah (30 A-Version)
250-500 Ah (50A-Version)
80-160 Ah (16A-Version)
125-250 Ah (25A-Version)
Anzahl der Batterieanschlüsse 2 3 2 3
Schutz
Verpolung an Batterie (Sicherung, nicht zugänglich durch den Nutzer) / Ausgangskurzschluss /
Übertemperatur
Lässt sich als Stromversorgung
verwenden.
Ja, Ausgangsspannung lässt sich mit Bluetooth und/oder VE.Direct einstellen.
Betriebstemperaturbereich
-20 bis 60℃ (0 - 140 F)
Nennausgangsstrom bis zu 40°C, verschlechtert sich linear auf 20 % bei 60°C
Feuchte (nicht kondensierend) max 95 %
Relais (programmierbar) Gleichstrom Nennwert: 5 A bis zu 28 VDC
GEHÄUSE
Material & Farbe Aluminium (blau RAL 5012)
Batterie-Anschluss Schraubklemmen 16 mm² (AWG6)
Wechselstrom-Anschluss
IEC 320 C14 Eingang mit Halterung (AC-Kabel mit länderspezifischem Stecker muss getrennt bestellt
werden.)
Schutzklasse IP43 (Elektronische Bauteile), IP22 (Anschlussbereich)
Gewicht kg (lbs) 3,5 kg
Abmessungen (HxBxT) 180 x 249 x 100 mm (7,1 x 9,8 x 4,0 Zoll)
NORMEN
Sicherheit
EN 60335-1, EN 60335-2-29
Emission
EN 55014-1, EN 61000-6-3, EN 61000-3-2
Störfestigkeit
EN 55014-2, EN 61000-6-1, EN 61000-6-2, EN 61000-3-3
Vibrationen
IEC68-2-6:10-150Hz/1.0G
1. Instrucciones de seguridad
• Ventilar siempre adecuadamente durante la carga.
• No cubrir el cargador.
• No intentar nunca cargar baterías no recargables o congeladas.
• No colocar nunca el cargador encima de la batería durante la carga.
• Evitar chispas cerca de la batería. Una batería en proceso de carga
podría emitir gases explosivos.
• El ácido de la batería es corrosivo. Enjuagar con agua
inmediatamente si el ácido entra en contacto con la piel.
• Este dispositivo no es adecuado para ser usado por niños. Guarde el
cargador fuera del alcance de los niños.
• Este aparato no está pensado para que lo usen personas (incluidos
los niños) con capacidades físicas, sensoriales o mentales limitadas,
o que no tengan experiencia ni conocimientos, a menos que estén
siendo supervisadas o hayan sido instruidas.
• La conexión a la red eléctrica debe realizarse de acuerdo con las
normativas nacionales sobre instalaciones eléctricas. Si el cable de
alimentación estuviese dañado, póngase en contacto con el
fabricante o con el servicio técnico.
• El cargador solo deberá conectarse a un enchufe puesto a tierra.
59
EN NL FR DE ES SV IT
2. Instalación
• Instale el cargador en posición vertical sobre una superficie no
combustible con el terminal de suministro mirando hacia abajo.
Para optimizar la refrigeración, respete una distancia mínima de
10 cm por debajo y por encima del producto.
• Montar cerca de la batería, pero nunca directamente encima de
la misma (para evitar daños debidos a los vapores generados
por la batería).
• Usar cables de cobre multiconductores flexibles para las
conexiones: véanse las instrucciones de seguridad.
• Si la compensación de la temperatura interna es deficiente (p.
ej.: si las condiciones ambientales de la batería y del cargador
no están dentro de un margen de 5°C), la vida de la batería
podría acortarse.
3. Guía de inicio rápido
A. Conecte el cargador a la batería o a las baterías.
B. Conecte el cargador al enchufe de la pared con el cable de CA (se
puede pedir por separado).
Todas las LED se encienden brevemente y, una vez que el
cargador se ha activado, se enciende la luz LED indicadora del
estado correspondiente, según el estado del cargador.
Por defecto, el cargador arranca en modo normal y carga inicial.
C. Si fuese necesario, pulse el botón MODE para seleccionar un
algoritmo de carga distinto (el cargador recordará el modo en caso
de desconexión de la red eléctrica y/o de la batería).
Cuando se seleccione la opción de reacondicionamiento, el LED
de RECONDITION se encenderá y parpadeará mientras el
reacondicionamiento esté activo.
El cargador cambia a LOW (bajo consumo) cuando se mantiene
pulsado el botón MODE durante 3 segundos. Entonces, el LED de
LOW se encenderá y permanecerá encendido, y la corriente de
salida máxima estará limitada al 50% de la potencia de salida
nominal. El modo LOW se puede desactivar volviendo a pulsar el
botón MODE durante tres segundos.
D. Cuando se encienda el LED de ABSORPTION (absorción), la
batería estará cargada alrededor de un 80% y lista para su uso.
E. La batería estará totalmente cargada cuando se encienda el LED
de FLOAT (carga lenta) o el LED de STORAGE (almacenamiento).
F. Ahora, se puede interrumpir el proceso de carga en cualquier
momento desconectando la alimentación del cargador.
61
EN NL FR DE ES SV IT
4. Propiedades y funciones básicas
4.1 Función Bluetooth
Configuración, monitorización y actualización del cargador. Opción de
carga redundante.
Se pueden añadir nuevas funciones según se pongan a disposición del
público mediante smartphones, tabletas y otros dispositivos, tanto Apple
como Android.
Al usar la función Bluetooth, se puede crear un código PIN para impedir el
acceso no autorizado al dispositivo. El código PIN se puede volver a fijar
en su valor de configuración (000000) presionando el botón MODE
durante 10 segundos.
Para más información, consulte el manual de VictronConnect.
4.2 Puerto VE.Direct
Para conexión con cable a un Color Control, Venus GX, PC u otros
dispositivos.
4.3 Relé programable
Se puede programar (entre otros, con un smartphone) para activar una
alarma u otros eventos. Tenga en cuenta que el relé solo funciona si hay
CA en las terminales de entrada de CA, de modo que no puede usarse
como, por ejemplo, señal inicio/parada de generador.
4.4 Cargador de batería ‘verde’ de alta eficiencia
Gracias a su eficiencia de hasta un 94%, estos cargadores generan hasta
cuatro veces menos calor que la norma del sector. Y, una vez que la batería
esté completamente cargada, el consumo se reduce a menos de 1 vatio,
entre cinco y diez veces mejor que la norma del sector.
4.5 Sostenible, seguro y silencioso
- Bajo estrés térmico para los componentes electrónicos.
- Protección contra el sobrecalentamiento: Si la temperatura sube por
encima de 60°C, la corriente de salida cae.
- El cargador se refrigera mediante convección natural. Esto elimina la
necesidad de disponer de un ruidoso ventilador de refrigeración.
4.6 Carga compensada por temperatura
La tensión de carga óptima de una batería de plomo-ácido es inversamente
proporcional a la temperatura. El Cargador Inteligente Phoenix mide la
temperatura ambiente al inicio de la fase de carga y compensa la
temperatura durante el proceso de carga. Mide la temperatura de nuevo
cuando está en modo de baja corriente durante las fases de absorción o
almacenamiento. Por lo tanto, no hace falta establecer configuraciones
especiales para ambientes fríos o cálidos.
4.7 Gestión adaptativa de la batería
Las baterías de plomo-ácido deben cargarse en tres fases: [1] carga inicial,
[2] carga de absorción y [3] carga de flotación.
Son necesarias varias horas de carga de absorción para cargar
completamente la batería y evitar fallos prematuros debido a la sulfatación¹.
Sin embrago, la tensión relativamente alta de la fase de absorción reduce la
vida de la batería como resultado de la corrosión de las placas positivas.
La gestión adaptativa de la batería limita la corrosión reduciendo el tiempo
de absorción siempre que sea posible, esto es, al cargar una batería que ya
está (casi) completamente cargada.
4.8 Modo de almacenamiento: menos corrosión de las placas
positivas
Incluso la menor tensión que se da durante la carga de flotación tras el
periodo de absorción provocará corrosión. Por lo tanto, es esencial reducir
aún más la tensión de carga cuando la batería permanece conectada al
cargador durante más de 48 horas.
4.9 Reacondicionamiento
Una batería de ácido-plomo que no esté suficientemente cargada o que se
deje sin carga durante varios días o semanas se deteriorará a consecuencia
de la sulfatación8. Si se detecta a tiempo, la sulfatación se puede revertir
parcialmente cargando la batería a una tensión más alta usando una
corriente baja.
8 Para más información sobre baterías, véase nuestro libro ‘Energy Unlimited’ (que puede
descargarse en www.victronenergy.com) o
http://batteryuniversity.com/learn/article/sulfation_and_how_to_prevent_it
63
EN NL FR DE ES SV IT
Notas:
El reacondicionamiento solo debe usarse de vez en cuando en baterías
VRLA de placa plana (gel y AGM), ya que los gases que se forman
durante el proceso secan el electrolito.
Las baterías VRLA con celdas cilíndricas acumulan más presión interna
antes de que se formen los gases, de modo que pierden menos agua
durante el reacondicionamiento. Algunos fabricantes de baterías con
celdas cilíndricas recomiendan, por lo tanto, el reacondicionamiento en
caso de aplicación cíclica.
El reacondicionamiento puede aplicarse a baterías inundadas para
"ecualizar" las celdas y evitar la estratificación del ácido.
Algunos fabricantes de cargadores recomiendan la carga por pulsos para
revertir la sulfatación. Sin embargo, la mayoría de los expertos en el
campo de las baterías coinciden en que no hay pruebas concluyentes de
que la carga por pulsos funcione mejor que la carga con una corriente
baja / tensión alta. Esto lo confirman nuestras propias pruebas.
4.10 Baterías de ion litio (LiFePO₄)
Las baterías de ion litio no sufren sulfatación y no tienen que cargarse por
completo de forma regular.
Sin embargo, las baterías de ion litio son muy sensibles a las tensiones
altas o bajas.
Por esta razón, las baterías de ion litio a menudo están equipadas con un
sistema integrado para ecualizar las celdas y protegerse frente a tensiones
bajas (UVP: siglas en ingles de protección frente a subtensión).
Nota importante:
NUNCA cargue una batería de ion litio cuando su temperatura sea inferior a
0°C.9
9 Para más información sobre baterías de ion litio, véase
http://www.victronenergy.com/batteries/lithium-battery-12,8v/
4.11 On/Off remoto
Hay tres formas de encender el dispositivo:
1. Puentear los pines L y H (configuración de fábrica por defecto)
2. Poner el pin H a un nivel elevado (p. ej.: el polo positivo de la batería)
3. Poner el pin L a un nivel bajo (p. ej.: el polo negativo de la batería)
4.12 LED de alarma
Si se produce un error, el LED de ALARMA se encenderá con una luz roja.
Los LED de estado indican el tipo de error con un código de parpadeo. En
la tabla siguiente se pueden consultar los posibles códigos de error.
Error
LOW
BULK
ABS
FLOAT
STORAGE
ALARM
Protección
de tiempo de
carga inicial
○ ◎ ○ ○ ○ ●
Error interno
○
◎
◎
◎
○
●
Sobretensión
del cargador ○ ○ ◎ ○ ◎ ●
○ Apagado
◎ Parpadeo
● Encendido
65
EN NL FR DE ES SV IT
4.13 Compensación automática de la tensión
El cargador compensa la caída de tensión de los cables de CC
aumentando gradualmente la tensión de salida si aumenta la corriente de
carga.
La compensación de tensión establecida es de 100 mV. La compensación
de tensión se amplia con la corriente de carga y se añade a la tensión de
salida. La compensación de tensión se basa en 2 cables de 1 metro,
resistencia de contacto y resistencia de fusible.
Ejemplo de cálculo para el 12/50 (1+1):
La resistencia del cable R se puede calcular con la siguiente fórmula:
=×
Donde R es la resistencia en ohmios (Ω), ρ es la resistividad del cobre
(1,786 x 10^-8 Ωm a 25°C), l es la longitud del cable (en m) y A es el área
de la superficie del cable (en m²).
Una distancia muy habitual del cargador a la batería es 1 metro. En este
caso, la longitud del cable es de 2 metros (positivo y negativo). Si se usa
un cable 6 AWG (16 mm²), la resistencia del cable es:
=1,786 ×10−8 × 2
16 ×10−6 = 2,24 Ω
Se recomienda instalar un fusible cerca de la batería. La resistencia de un
fusible estándar de 80 A es:
= 0,720 Ω
Ahora se puede calcular la resistencia total del circuito con la siguiente
fórmula:
= +
Por lo tanto:
= 2,24 Ω + 0,720 Ω = 2,96 Ω
La compensación necesaria de la caída de tensión en el cable se puede
calcular con la siguiente fórmula:
=×
En la que U es la caída de tensión en voltios (V) e I es la corriente que pasa
por el cable en amperios (A).
Entonces, la caída de tensión será:
=50 × 2,96 Ω =148 para toda la corriente de carga de 50 A.
4.14 Versiones con tres (3) salidas
Los cargadores de la versión con tres salidas tienen un puente de diodos
FET integrado y por lo tanto disponen de tres salidas aisladas.
Aunque todas las salidas pueden suministrar toda la corriente de salida
nominal, la corriente de salida combinada de todas las salidas juntas está
limitada a la corriente de salida nominal completa.
Con el cargador de la versión con tres salidas es posible cargar tres
baterías diferentes con un solo cargador manteniendo las baterías aisladas
entre sí.
Las salidas no se regulan por separado. Se aplica un algoritmo de carga a
todas las salidas.
67
EN NL FR DE ES SV IT
5 Algoritmos de carga
5.1 Selección de la batería
El algoritmo de carga del cargador debe coincidir con el tipo de
batería que tiene conectada. La tabla siguiente muestra los tres tipos
de batería predeterminados disponibles. Si lo desea, el usuario
puede programar un tipo de batería personalizado.
MODE
ABS
V
FLOAT
V
STORAGE
V
RECONDITION
Max V@% of
Inom
NORMAL
14,4
13,8
13,2
16,2@8%, 1h
max
HIGH
14,7
13,8
13,2
16,5@8%, 1h
max
LI-ION
14,2
13,5
13,5
N/A
Para cargadores de baterías de 24 V: multiplicar todos los valores por
2.
NORMAL (14,4 V): recomendado para baterías inundadas de placa
plana de plomo-antimonio (baterías de arranque) y baterías AGM y de
gel de placa plana.
HIGH (alto) (14,7 V): recomendado para baterías inundadas de plomo-
calcio, baterías Optima de celdas en espiral y baterías Odyssey.
LI-ION (14,2V): recomendado para baterías de fosfato de hierro y litio
(LiFePo4).
PERSONALIZADO (Ajustable.): recomendado para cualquier otro tipo
de batería distinto a los anteriormente mencionados, siempre que las
tensiones ajustables se configuren de acuerdo con las
recomendaciones del fabricante de la batería.
Botón MODE
Una vez que el cargador de la batería se ha conectado a la fuente de
alimentación de CA, pulse el botón MODE para seleccionar un
algoritmo de carga diferente si fuera necesario (el cargador de la
batería recuerda el modo después de desconectar la alimentación y/o
la batería).
Cuando se seleccione la opción de reacondicionamiento, el LED de
RECONDITION se encenderá y parpadeará mientras el
reacondicionamiento esté activo.
El cargador cambia a LOW (bajo consumo) cuando se mantiene
pulsado el botón MODE durante 3 segundos. El LED de LOW
permanecerá entonces encendido. El modo LOW permanecerá activo
hasta que se presione el botón MODE durante otros tres segundos.
Cuando el modo LOW está activo, la corriente de salida está limitada a
un máximo del 50 % de la potencia de salida nominal.
Algoritmo de carga inteligente de 7 etapas para baterías de plomo-
ácido (con reacondicionamiento opcional) :
1. BULK (inicial)
Carga la batería con la máxima corriente hasta alcanzar la tensión
de absorción. Al final de la fase inicial, la batería estará cargada
aproximadamente un 80% y lista para su uso.
2. ABS (Absorción)
Carga la batería a una tensión constante y una corriente
decreciente hasta que está completamente cargada. Véase en la
tabla anterior la tensión de absorción a temperatura ambiente.
Tiempo de absorción variable:
El periodo de absorción es corto (al menos unos 30 minutos) si se
conecta una batería que está casi totalmente cargada y aumenta
hasta 8 horas para una batería totalmente descargada.
3. RECONDITION (reacondicionamiento)
El REACONDICIONAMIENTO es una opción para los programas de
carga NORMAL y HIGH (alta) y puede seleccionarse pulsando el
botón MODE otra vez después de seleccionar el algoritmo de carga
deseado.
Durante el REACONDICIONAMIENTO, la batería se carga a una
tensión más alta con una corriente baja (8% de la corriente
nominal). El REACONDICIONAMIENTO tiene lugar al final de la
69
EN NL FR DE ES SV IT
fase de absorción y termina transcurrido un periodo de una hora o
menos después de que se haya alcanzado la tensión más alta.
El LED de RECONDITION permanecerá encendido durante la
carga y parpadeará durante el periodo de
REACONDICIONAMIENTO.
Ejemplo:
Para un cargador 12/30, la corriente de reacondicionamiento es
30 x 0,08 = 2,4 A.
4. FLOAT (flotación)
Carga de flotación. Mantiene la batería con una tensión constante
y completamente cargada.
5. STORAGE (almacenamiento)
Modo de almacenamiento. Mantiene la batería a una tensión
constante reducida para minimizar la generación de gases y la
corrosión de las placas positivas.
6. READY (lista, batería totalmente cargada)
La batería está totalmente cargada cuando se enciende el LED de
FLOTACIÓN o de ALMACENAMIENTO.
7. REFRESH (refresco)
Para evitar una lenta autodescarga, se le administra a la batería un
"refresco" automático mediante una breve carga de absorción.
5.2 Baterías de ion litio (LiFePO₄)
El cargador utiliza un algoritmo de carga específico para cargar baterías de
ion litio, garantizando así un rendimiento óptimo. Seleccione LI-ION con el
botón MODE.
5.3 Algoritmo de carga totalmente programable por el usuario
Si ninguno de los tres algoritmos de carga preprogramados se ajusta a sus
objetivos, también puede programar su propio algoritmo de carga mediante
Bluetooth o la interfaz VE.Direct.
Si se selecciona un algoritmo de carga autoprogramado, no se encenderán
los LED de NORMAL, HIGH (alta) y LI-ION (ion litio). Los LED de estado
indican la situación del programa de carga en el cargador.
Si se presiona el botón de MODE mientras está funcionando un algoritmo
de carga autoprogramado, el cargador volverá al algoritmo de carga
preprogramado NORMAL.
5.4 Cuando hay una carga conectada a la batería
Se puede añadir una carga a la batería mientras esta se está cargando.
Nota: La batería no se cargará si la corriente de carga excede la corriente
de salida del cargador.
El reacondicionamiento no es posible cuando hay una carga conectada a la
batería.
5.5 Inicio de un nuevo ciclo de carga
Se iniciará un nuevo ciclo de carga cuando:
A. El cargador esté en fase de flotación o almacenamiento y la corriente se
eleve hasta su valor máximo durante más de 4 segundos debido a una
carga.
B. Se pulse el botón MODE durante la carga.
C. La alimentación de la red se desconecte y se vuelva a conectar.
71
EN NL FR DE ES SV IT
5.6 Cálculo del tiempo de carga
Una batería de plomo-ácido estará cargada al 80% al inicio de la fase de
absorción.
Se puede calcular el tiempo T hasta alcanzar el 80% de carga como
sigue:
T = Ah / I
Donde:
I es la corriente de carga (= corriente procedente del cargador menos
cualquier corriente debida a una carga).
Ah es el número de amperios hora que debería cargarse.
Se necesitará un periodo de absorción total de hasta 8 horas para cargar
una batería al 100%.
Ejemplo:
Tiempo de carga al 80% de una batería de 220 Ah completamente
descargada cuando se carga con un cargador de 30 A: T = 220 / 30 = 7,3
horas
Tiempo de carga al 100%: 7,3 + 8 = 15,3 horas.
Una batería de ion litio está cargada a más del 95% al principio del periodo
de absorción, y alcanza el 100% de la carga tras aproximadamente 30
minutos de carga de absorción.
5.7 Uso como fuente de alimentación
El cargador puede usarse como fuente de alimentación (hay una carga,
pero no hay ninguna batería conectada). La tensión de alimentación puede
configurarse mediante Bluetooth o la interfaz de VE.Direct.
Cuando se usa como fuente de alimentación, solo las LED de BULK (inicio),
ABSORPTION (absorción), FLOAT (flotación) y STORAGE
(almacenamiento) se encenderán y permanecerán encendidas.
Cuando se configura el cargador como fuente de alimentación, no
responderá al encendido/apagado remoto.
Si se presiona el botón MODE mientras se usa el cargador como fuente de
alimentación, volverá al algoritmo preprogramado NORMAL.
6 Especificaciones técnicas
Cargador Inteligente
Phoenix
12 V,
2 salidas
12/30 (1+1)
12/50 (1+1)
12 V,
3 salidas
12/30 (3)
12/50 (3)
24 V,
2 salidas
24/16 (1+1)
24/25 (1+1)
24 V,
3 salidas
24/16 (3)
24/25 (3)
Tensión de entrada 230 V CA (rango: 210 – 250 V)
Rango de tensión de entrada CC 290 – 355 V CC
Frecuencia 45-65 Hz
Factor de potencia 0,7
Drenaje de corriente
CA desconectada: < 0,1 mA CA conectada y remoto del cargador apagado: < 6 mA
Consumo sin carga 1 W
Eficiencia
12/30: 94%
12/50: 92%
12/30: 94%
12/50: 92% 94% 94%
Tensión de carga de "absorción"
Normal: 14,4 V High (alta): 14,7 V Li-ion
(ion litio): 14,2 V
Normal: 28,8 V High (alta): 29,4 V Li-ion
(ion litio): 28,4 V
Tensión de carga de "flotación"
Normal: 13,8 V High (alta): 13,8 V Li-ion
(ion litio): 13,5 V
Normal: 27,6 V High (alta): 27,6 V Li-ion
(ion litio): 27,0 V
Modo de almacenamiento
Normal: 13,2 V High (alta): 13,2 V Li-ion
(ion litio): 13,5 V
Normal: 26,4 V High (alta): 26,4 V Li-ion
(ion litio): 27,0 V
Completamente programable
Sí, con Bluetooth y/o VE.Direct
Corriente de carga de la batería
auxiliar 30 / 50 A 30 / 50 A 16 / 25 A 16 / 25 A
Modo de corriente baja
15 / 25 A
15 / 25 A
8 / 12,5 A
8 / 12,5 A
Corriente de carga de la batería de
arranque 3 A (1+1 modelos de salida solamente)
Algoritmo de carga Adaptativo de 7 etapas (adaptativo de 3 etapas para Li-ion)
Capacidad de la batería
150-300 Ah (versión 30A)
250-500 Ah (versión 50A)
80-160 Ah (versión 16A)
125-250 Ah (versión 25A)
Cantidad de conexiones con la batería
2
3
2
3
Protección
Polaridad inversa de la batería (fusible, inaccesible para el usuario) / Cortocircuito de salida /
Sobrecalentamiento
Puede utilizarse como fuente de
alimentación Sí, la tensión de salida puede configurarse con Bluetooth y/o VE.Direct
Rango de temp. de funcionamiento
-20 a + 60°C (0 - 140°F)
Corriente de salida nominal hasta 40°C, se reduce linealmente hasta el 20% a 60°C
Humedad (sin condensación) máx. 95%
Relé (programable) Capacidad nominal CC: 5 A hasta 28 V CC
CARCASA
Material y color
aluminio (azul RAL 5012)
Conexión de la batería
Bornes de tornillo de 16 mm² (AWG 6)
Conexión CA
Entrada IEC 320 C14 con clip de retención (el cable de CA con enchufe específico de cada país
debe pedirse por separado)
Grado de protección
IP43 (componentes electrónicos), IP22 (área de conexión)
Peso en kg. (lb)
3,5 kg
Dimensiones (al x an x p)
180 x 249 x 100 mm (7,1 x 9,8 x 4,0 pulgadas)
NORMAS
Seguridad
EN 60335-1, EN 60335-2-29
Emisiones
EN 55014-1, EN 61000-6-3, EN 61000-3-2
Inmunidad
EN 55014-2, EN 61000-6-1, EN 61000-6-2, EN 61000-3-3
Vibración
IEC68-2-6:10-150 Hz/1.0 G
3
EN NL FR DE ES SV IT
1. Säkerhetsinstruktioner
• Se alltid till att det finns bra ventilation under laddningen.
• Undvik att täcka över laddaren.
• Försök aldrig att ladda icke-uppladdningsbara - eller frusna
batterier.
• Placera aldrig laddaren ovanpå ett batteri som håller på att
laddas.
• Undvik gnistbildning nära batteriet. Ett batteri som laddas kan
släppa ut explosiva gaser.
• Batterisyran är frätande. Spola omedelbart med vatten om
batterisyra har kommit i kontakt med huden.
• Denna anordning är inte lämpad för användning av barn.
Förvara laddaren utom räckhåll för barn.
• Denna anordning är inte avsedd för användning av personer
(inklusive barn) med nedsatt fysisk, sensorisk eller mental
förmåga eller med avsaknad av erfarenhet eller kunskap såvida
de inte övervakas eller får instruktion om hur man använder
utrustningen.
• Anslutning till nätström måste göras i enlighet med nationella
bestämmelser för elektriska installationer. Skulle matarkabeln
vara skadad ska du kontakta tillverkaren eller din
servicerepresentant.
• Laddaren får endast kopplas till ett jordat uttag.
2. Installation
• Installera laddaren vertikalt på en obrännbar yta med
försörjningspolen nedåt. För att optimera nedkylningen bör
det vara ett fritt utrymme på 10 cm under och över produkten.
• Installera nära batteriet, men aldrig direkt ovanför (för att
förhindra skador på grund av gasbildning från batteriet).
• Använd flexibla flerledarkablar av koppar till anslutningarna:
se säkerhetsföreskrifterna
• Dålig intern temperaturkompensation (t.ex.
omgivningstemperatur för batteri och laddare inte inom 5°C)
kan förkorta batteriets livslängd.
5
EN NL FR DE ES SV IT
3. Snabbguide för användare
A. Anslut batteriladdaren till batteriet/batterierna.
B. Anslut batteriladdaren till vägguttaget genom att använda AC-
kabeln (kan beställas separat).
Alla led-lampor tänds kortvarigt och när laddaren har
aktiverats kommer relevant led-lampa att tändas beroende på
laddarens tillstånd.
Som standard startar laddaren i normalt läge och bulkläge.
C. Tryck vid behov på inställningsknappen MODE för att välja en
annan laddningsalgoritm (batteriladdaren kommer ihåg
inställningen vid bortkoppling från nätanslutningen och/eller
batteriet).
Efter att du har valt rekonditionering (reparation) kommer led-
lampan för RECONDITION att tändas och blinka när
rekonditioneringen pågår.
Batteriladdaren ändrar om till LOW (låg effekt) när MODE-
knappen hålls inne i tre sekunder. led-lampan LOW kommer
att tändas och förbli tänd och den högsta utgångsströmmen
begränsas till 50 % av angiven utgångseffekt. LOW-läget kan
avaktiveras genom att hålla inne MODE-knappen i ytterligare
tre sekunder.
D. Batteriet är laddat till ungefär 80 % och är färdigt att användas
när led-lampan för ABSORPTION tänds.
E. Batterier är fulladdat när led-lamporna för FLOAT
(hålladdning) eller STORAGE (förvaring) tänds.
F. Du kan nu avbryta laddningen när som helst genom att
koppla bort strömförsörjningen från laddaren.
4. Huvudsakliga egenskaper och funktioner
4.1 Bluetooth-funktion
Inställning, övervakning och uppdatering av laddaren. Alternativ för
parallell redundant laddning.
Nya funktioner kan läggas till när de blir tillgängliga genom att använda
Apple och Android-smarttelefoner, surfplattor och andra anordningar.
Vid användning av Bluetooth-funktionen kan man ställa in en pinkod
för att undvika otillåten tillgång till anordningen. Pinkoden kan
återställas till fabriksinställningen (000000) genom att hålla in MODE-
knappen i 10 sekunder.
Se handboken för VictronConnect för mer information.
4.2 VE.Direct port
För en ansluten förbindelse till en Color Control-panel, Venus GX, PC
eller andra enheter.
4.3 Programmerbart relä
Kan programmeras (med t.ex. en smarttelefon) att utlösas vid larm
eller andra händelser. Tenere presente che il relè funziona solo se è
disponibile CA sui morsetti di ingresso CA, pertanto il relè non può
fungere, ad esempio, da segnale di avvio/arresto del generatore.
4.4 ”Grön” batteriladdare med mycket hög verkningsgrad
Med en verkningsgrad på upp till 94 %, genererar dessa laddare upp
till fyra gånger mindre värme jämfört med vad som är standard för
branschen. Och när batteriet väl är fulladdat minskar
effektförbrukningen till mindre än 1 watt, vilke är fem till tio gånger
bättre än branschstandard.
4.5 Hållbar, säker och tyst
- Låg termisk belastning på elektroniska komponenter.
- Överhettningsskydd: Utgångsströmmen sjunker om temperaturen
stiger till 60 °C.
- Laddaren kyls ned genom naturlig konvektion. Det tar bort behovet
av en högljudd kylfläkt.
7
EN NL FR DE ES SV IT
4.6 Temperaturkompenserad laddning
Den optimala laddningsspänningen i ett blysyrabatteri varierar omvänt i
proportion till temperaturen. Laddaren Phoenix Smart Charger mäter
omgivningstemperaturen i början av laddningsfasen och kompenserar
för temperaturen under tiden den laddar. Temperaturen mäts igen när
laddaren är inställd för låg ström under float eller förvaring. Särskilda
inställningar för kall eller varm omgivning behövs därför inte görasd.
4.7 Anpassningsbar batterihantering
Blysyrebatterier måste laddas i tre faser, nämligen [1] bulkladdning, [2]
absorptionsladdning och [3] floatladdning.
Flera timmar av absorptionsladdning behövs för att fullt ladda batteriet
och för att förebygga tidiga defekter beroende på sulfatering¹.
Däremot förkortar den relativt höga spänningen under
absorptionsfasen batteriets livslängd på grund av korrosion på de
positiva plattorna.
Anpassningsbar batterihantering begränsar korrosion genom att
minska absorptionstiden när detta är möjligt, dvs: vid laddning av ett
batteri som redan (nästan) är fulladdat.
4.8 Förvaringsläge: Mindre korrosion på de positiva plattorna
Till och med den lägre floatladdningsspänningen, som följer efter
absorptionsladdningen, förorsakar korrosion. Det är därför viktigt att
minska laddningsspänningen ännu mer när batteriet fortsatt är anslutet
till laddaren under mer än 48 timmar.
4.9 Rekonditionering
Ett blysyrabatteri som inte är tillräckligt laddat eller som lämnas i ett
urladdat tillstånd i flera dagar eller veckor kommer att försämras på
grund av sulfatering10. Om detta upptäcks i tid kan sulfateringen i vissa
fall hävas delvis genom att ladda batteriet till en högre spänning
genom att använda låg ström.
Anmärkningar:
10 För mer information om batterier se
vår bok ”Energy Unlimited” (som kan laddas ner från www.victronenergy.com) eller
http://batteryuniversity.com/learn/article/sulfation_and_how_to_prevent_it
Rekonditionering (reparation) får endast utföras då och då på platta
VRLA-batterier (gel och AGM), eftersom gaserna som uppstår vid
rekonditionering torkar ut elektrolyten.
VRLA-batterier med cylindriska celler bygger upp mer invändigt tryck
innan gasbildningen och förlorar därför mindre vatten under
rekonditionering. Vissa tillverkare av cylindriska cellbatterier
rekommenderar därför rekonditionering då det gäller cykliska
tillämpningar.
Rekonditionering kan användas på vätskefyllda batterier för att
"utjämna" cellerna och för att förhindra syraskiktning.
Vissa tillverkare av batteriladdare rekommenderar pulsladdning för att
häva sulfateringen. De flesta batteriexperter är emellertid överens om
att det inte finns några avgörande bevis för att pulsladdning fungerar
bättre än laddning med låg ström/ hög spänning. Detta har bekräftats
av våra egna tester.
4.10 Litiumjon- (LiFePO₄) batterier
Litiumjonbatterier utsätts inte för sulfatering och behöver inte fulladdas
regelbundet.
Men Litiumjonbatterier är dock mycket känsliga för under- eller
överspänning.
Därför är de ofta utrustade med ett integrerat system för cellutjämning
och för skydd mot underspänning (UVP efter engelskans: Under
Voltage Protection).
Viktig anmärkning:
Försök ALDRIG att ladda ett litiumjonbatteri när temperaturen är under
0 °C.11
11 För mer information om litiumjonbatterier se
http://www.victronenergy.com/batteries/lithium-battery-12,8v/
9
EN NL FR DE ES SV IT
4.11 Fjärrstyrning på/av
Det finns tre sätt att slå på anordningen:
1. Kortslut L- och H-stiften (fabriksstandard)
2. Dra H-stiftet till en hög nivå (t.ex batteriplus)
3. Dra L-stiftet till en låg nivå (t.ex. batteriminus)
4.12 Larm-LED
Om ett fel uppstår kommer led-lampan ALARM att lysa röd. Led-
lamporna för tillstånd kommer att visa vilket slags fel med en blinkande
kod. Se tabellen nedan för möjliga felkoder.
Error
LOW
BULK
ABS
FLOAT
STORAGE
ALARM
Bulktidsskydd
○
◎
○
○
○
●
Internt fel
○
◎
◎
◎
○
●
Överspänning
laddare
○ ○ ◎ ○ ◎ ●
○ Av
◎ Blinkar
● På
4.13 Automatiskt spänningskompensation
Laddaren kompenserar för spänningsbortfallet i DC-kablarna genom
att gradvis öka utgångsspänningen om laddningsströmmen stiger.
Det fasta spänningsförskjutningen är 100 mV. Spänningsförskjutningen
graderas med laddningsströmmen och läggs till utgångsspänningen.
Spänningsförskjutningen baseras på 2x 1-meter kabel,
kontaktmotstånd och säkringsmotstånd.
Exempeluträkning för 12/50 (1+1):
Kabelmotståndet R kan räknas ut med följande formel:
=×
Här är R motståndet i ohm Ω), P är kopparens resistivitet (1,786x10^-8
Ωm vid 25 °C), l är kabellängden (i m) och A kabelarean (i m²).
Ett vanligt använt avstånd mellan laddare och batteri är en meter. I det
här fallet blir kabellängden två meter (plus och minus) Om man
använder en 6AWG-kabel (16 mm²) är kabelmotståndet:
=1,786 ×10−8 × 2
16 ×10−6 = 2.24Ω
Det rekommenderas starkt att installera en säkring nära batteriet.
Motståndet på en standardsäkring på 80 A är:
= 0.720Ω
Det totala motståndet på kretsen kan därefter beräknas enligt följande
formel:
= +
Därför:
= 2.24Ω + 0.720Ω = 2.96Ω
Den kompensation som krävs för spänningsbortfall över kabeln kan
beräknas med följande formel:
=×
Där U är spänningsbortfallet i volt (V) och I är strömmen genom kabeln
i ampere (A).
Spänningsbortfallet blir då:
=50 × 2.96Ω =148 för hela laddningsströmmen på 50 A.
4.14 Tre (3) utgångsversioner
Laddarna med tre utgångar har en integrerad FET-batteriisolator och
har därför tre isolerade utgångar.
Även om alla utgångar kan leverera den fulla nominella
utgångsströmmen är den kombinerade utgångsströmmen för alla
utgångar begränsad till den fulla nominella utgångsströmmen.
Genom att använda laddaren med tre utgångar är det möjligt att ladda
tre separata batterier med en enda laddare samtidigt som batterierna
hålls isolerade från varandra.
Utgångarna regleras inte individuellt. En laddningsalgoritm tillämpas på
alla utgångar.
11
EN NL FR DE ES SV IT
5 Laddningsalgoritme
5.1 Val av batteri
Laddningsalgoritmen för laddaren måste passa på batteritypen som är
ansluten till laddaren. Följande tabell visar de tre fördefinierade
batterityperna som finns tillgängliga. En anpassad batterityp kan
programmeras av användaren.
Laddningsspänningar vid rumstemperatur:
MODE
ABS
V
FLOAT
V
STORAGE
V
RECONDITION
Max V@% of
Inom
NORMAL
14,4
13,8
13,2
16,2@8%, 1h
max
HIGH
14,7
13,8
13,2
16,5@8%, 1h
max
LI-ION
14,2
13,5
13,5
N/A
För 24 volts batteriladdare: multiplicera alla värden med 2.
NORMAL (14,4 V): rekommenderas för vätskefyllda plattcells
antimonbatterier (startbatterier), plattcellsbatterier )gel och AGM).
HIGH (14,7 V): Rekommenderas för vätskefyllda blykalciumbatterier,
Optima spiralcellsbatterier och Odyssey-batterier.
LI-ION (14,2 V): rekommenderas för litiumjärnfosfat (LiFePo4) -batterier.
ANPASSAD (anp.): Rekommenderas för alla typer av batterier än de andra
ovan nämnda om de justerbara spänningarna ställs in enligt
batteritillverkarens rekommendationer.
MODE-knappen
När batteriladdaren har kopplats till AC-strömförsörjningen, tryck på
MODE-knappen för att välja en annan laddningsalgoritm om så krävs
(batteriladdaren kommer ihåg läget efter att strömförsörjningen
och/eller batteriet har stängts av).
Efter att du har valt rekonditionering (reparation) kommer led-lampan
för RECONDITION att tändas och blinka när rekonditioneringen pågår.
Batteriladdaren ändrar om till LOW (låg effekt) när MODE-knappen
hålls inne i tre sekunder. Led-lampan LOW kommer sedan att förbli
tänd. LOW-läget kommer att fortsätta att vara aktivt till MODE-knappen
hålls inne i ytterligare tre sekunder.
När läget LOW är aktiverat begränsas utgångsströmmen till max 50 %
av kapaciteten för utgångseffekt.
Intelligent laddningsalgoritm i 7 steg för blybatterier:
(med valfri rekonditionering)
1. BULK
Laddar batteriet med maximal ström tills absorptionsspänningen
har uppnåtts. I slutet av bulkfasen kommer batteriet att var ca 80 %
laddat och klart att använda.
2. ABS - Absorption
Laddar batteriet med konstantspänning och med minskande ström
tills det är fulladdat. Se ovanstående tabell för absorptionsspänning
vid rumstemperatur.
Variabel absorptionstid:
Absorptionstiden är kort (minst 30 minuter) om ett nästan fulladdat
batteri ansluts och uppgår till 8 timmar för ett helt urladdat batteri.
3. REKONIDITIONERING
REKONDITIONERING är möjligt i laddningsprogrammen NORMAL
och HIGH och kan väljas genom att trycka ner MODE-knappen
igen efter att önskad laddningsalgoritm har valts.
Under REKONDITIONERING laddas batteriet till en högre
spänning med lägre ström (8 % av kapaciteten).
REKONDITIONERING sker i slutet av absorptionsfasen och slutar
efter en timme eller tidigare när det högre spänningsvärdet har
uppnåtts.
Led-lampan RECONDITION kommer att vara tänd under laddning
och kommer att blinka under REKONDITIONERING.
Exempel:
För en 12/30 laddare: rekonditioneringsströmmen är 30 x 0,08 =
2,4 A.
13
EN NL FR DE ES SV IT
4. FLOAT
Floatladdning. Håller batteriet vid konstant spänning och
fulladdat.
5. STORAGE
Förvaringsläge. Håller batteriet vid reducerad konstant
spänning för att begränsa gasbildning och korrosion i de
positiva plattorna.
6. READY (batteri fulladdat)
Batteriet är fulladdat när led-lampan för FLOAT eller
STORAGE är tänd.
7. REFRESH
Långsam självurladdning förhindras genom en automatisk
”uppdatering” av batteriet med en kortvarig
absorptionsladdning.
5.2 Litiumjon- (LiFePO₄) batterier
Vid laddning av ett litiumjonbatteri, använder laddaren en särskild
laddningsalgoritm för litiumjonbatterier för att säkerställa optimal
prestanda. Välj LI-ION med MODE-knappen.
5.3 Laddningsalgoritm, fullständigt programmerbar av
användaren
Om de tre förprogrammerade laddningsalgoritmerna inte passar dina
ändamål kan du även programmera dina egna laddningsalgoritmer
med Bluetooth eller gränssnittet VE.Direct.
Om en egenprogrammerad laddningsalgoritm väljs kommer led-
lamporna NORMAL, HIGH och LI-ION inte att tändas. Statuslamporna
indikerar laddningsprogrammets lokalisering i laddaren.
Om MODE-knappen trycks ned under en egenprogrammerad
laddningsalgoritm kommer laddaren att återgå till den
förprogrammerade algoritmen NORMAL.
5.4 När en belastning är ansluten till batteriet
Det går att ansluta en belastning till batteriet när det är under laddning.
OBS: Batteriet kommer inte att laddas om laddningsströmmen
överstiger utgångsströmmen på batteriladdaren.
Det är inte möjligt att utföra rekonditionering av batteriet när en
belastning är ansluten till batteriet.
5.5 Starta en ny cykel
En ny laddningscykel påbörjas när:
A. Laddaren är i float- eller förvaringsfas och strömmen ökar till sitt
maxvärde i över fyra sekunder på grund av en belastning.
B. MODE-knappen trycks ned under laddning.
C. Huvudströmmen bryts och slås på igen.
15
EN NL FR DE ES SV IT
5.6 Beräkning av laddningstid
Ett blysyrebatteri är laddat till ca 80 % i början av absorptionsfasen.
Tiden T upp till 80 % laddat kan beräknas enligt följande:
T = Ah / I
I vilken:
I är laddningsströmmen (= ström från laddaren minus all ström till en
belastning)
Ah är antal amperetimmar som ska laddas.
Det krävs en komplett aborptionsfas på upp till 8 timmar för att ladda
batteriet 100 %.
Exempel:
Laddningstiden till 80 % för ett fullt urladdat 220 Ah batteri när det
laddas med en 30 A laddare: T = 220 / 30 = 7,3 timmar.
Laddningstid till 100 %: T = 7,3 + 8 = 15,3 timmar
Ett litiumjonbatteri är laddat till mer än 95 % vid början av
absorptionsperioden och blir fulladdat efter ca 30 minuters
absorptionsladdning.
5.7 Använda som kraftkälla
Laddaren kan användas som en kraftkälla (det förekommer en
belastning men inget batteri är anslutet). Försörjningsspänningen kan
ställas in med Bluetooth eller gränssnittet VE.Direct.
När den används som kraftkälla kommer endast led-lamporna för
BULK, ABSORPTION, FLOAT och STORAGE att tändas och förbli
tända.
När laddaren ställs in som kraftkälla kommer den inte att svara på
fjärrstyrd av/påslagning.
Om MODE-knappen trycks ned när laddaren används som kraftkälla
kommer den att återgå till den förprogrammerade laddningsalgoritmen
NORMAL.
6 Tekniska specifikationer
Laddare
Phoenix
Smart Charger
12 V,
2 utgångar
12/30 (1+1)
12/50 (1+1)
12 V,
3 utgångar
12/30 (3)
12/50 (3)
24V,
2 utgångar
24/16 (1+1)
24/25 (1+1)
24V,
3 utgångar
24/16 (3)
24/25 (3)
Ingångsspänning
230 VAC (intervall: 210 – 250 V)
Spänningsintervall, DC-ingång
290 - 355 VDC
Frekvens
45 -65 Hz
Effektfaktor
0,7
Backström
AC ej ansluten: < 0,1 mA AC ansluten och fjärrladdning av: < 6 mA
Effektförbrukning - ingen
belastning 1 W
Verkningsgrad
12/30 94%
12/50 92%
12/30 94%
12/50 92% 94% 94%
Laddningsspänning ”absorption”
Normal: 14,4 V Hög: 14,7V Li-jon: 14,2V
Normal: 28,8V Hög: 29,4V Li-jon: 28,4V
Laddningsspänning ”float”
Normal: 13,8V Hög: 13,8V Li-jon: 13,5V
Normal: 27,6V Hög: 27,6V Li-jon: 27,0V
Lagringsläge
Normal: 13,2V Hög: 13,2V Li-jon: 13,5V
Normal: 26,4V Hög: 26,4V Li-jon: 27,0V
Fullständigt programmerbar
Ja, med Bluetooth och/eller VE.Direct
Laddningsström husbatteri
30 / 50 A
30 / 50 A
16 / 25 A
16 / 25 A
Lågströmsinställning
15 / 25 A
15 / 25 A
8 / 12,5 A
8 / 12,5 A
Laddningsström startbatteri
3 A (1+1 enbart utgångsmodeller)
Laddningsalgoritm
7-stegs adaptiv (3-stegs adaptiv för Li-ion)
Batterikapacitet
150-300 Ah (30 A version)
250-500 Ah (5 0A version)
80-160 Ah (16 A version)
125-250 Ah (25 A version)
Antal batterianslutningar
2 3 2 3
Skydd
Batteri omvänd polaritet (säkring, ej tillgänglig för användare) / Kortslutning utgång /
Övertemperatur
Kan användas som kraftkälla
Ja, utgångsspänningen kan ställas in med Bluetooth och/eller VE.Direct
Driftstemp. intervall
-20 till 60 °C 0 - 140 °F
Högsta kapacitet för utgångsström upp till 40 °C, minskar linjärt till 20 % vid 60 °C
Fuktighet (ej kondenserande)
max 95%
Relä (programmerbart)
DC-kapacitet: 5 A upp till 28 VDC
HÖLJE
Material & färg
aluminium (blå RAL 5012)
Batterianslutning
Skruvterminaler 16 mm² (AWG6)
AC-anslutning
IEC 320 C14 ingång med klämhållare (AC-sladd med landspecifik kontakt måste beställas separat)
Skyddsklass
IP43 (elektroniska komponenter), IP22 (anslutningsyta)
Vikt kg
3,5 kg
Dimensioner (h x b x d)
180 x 249 x 100 mm
STANDARDER
Säkerhet
EN 60335-1, EN 60335-2-29
Emission
EN 55014-1, EN 61000-6-3, EN 61000-3-2
Immunitet
EN 55014-2, EN 61000-6-1, EN 61000-6-2, EN 61000-3-3
Vibrationer
IEC68-2-6:10-150Hz/1.0G
17
EN NL FR DE ES SV IT
1. Istruzioni di sicurezza
• Assicurare sempre una corretta ventilazione durante la ricarica.
• Evitare di coprire il caricabatterie.
• Non tentare mai di caricare batterie non ricaricabili o congelate.
• Non posizionare mai il caricabatterie sopra la batteria durante la carica.
• Evitare le scintille nei paraggi della batteria. Una batteria sotto carica
può generare gas esplosivi.
• L'acido della batteria è corrosivo. Risciacquare immediatamente con
acqua se l'acido entra in contatto con la pelle.
• Questo dispositivo non è indicato per l’uso da parte di bambini. Tenere il
caricabatterie fuori dalla portata dei bambini.
• Questo dispositivo non è indicato per l’uso da parte di persone (compresi i
bambini) con ridotte capcità fisiche, sensoriali o mentali o con mancanza di
esperienza e conoscimenti, a meno che non si trovino sotto sorveglianza o
abbiano ricevuto le opportune istruzioni.
• La connessione alla rete elettrica di alimentazione deve essere conforme alle
normative previste per gli impianti elettrici. Se il cavo di alimentazione fosse
danneggiato, contattare il produttore o il responsabile dell'assistenza.
• Il caricabatterie può essere collegato solo a una presa con connessione a
terra.
2. Installazione
• Installare il caricabatterie in posizione verticale, su una superficie non
infiammabile e con i morsetti di alimentazione rivolti verso il basso. Per
ottimizzare il raffreddamento, tenere una distanza minima di 10 cm al di
sotto e al di sopra del prodotto.
• Installare vicino ma mai direttamente sopra la batteria (per evitare danni
derivanti dalla formazione di gas nella stessa).
• Per le connessioni, utilizzare cavi in rame flessibili multipolari: vedere le
istruzioni di sicurezza.
• Una compensazione della temperatura interna non corretta (ad es.,
condizioni ambientali del caricabatterie e della batteria non inferiori ai 5ºC),
potrebbe ridurre la durata di vita della batteria.
19
EN NL FR DE ES SV IT
3. Guida utente rapida
A. Collegare il caricabatterie alla batteria o alle batterie.
B. Collegare il caricabatterie alla presa di rete mediante il cavo CA (si
può richiedere separatamente).
Tutti i LED si illuminano brevemente e, dopo aver attivato il
caricabatterie, i principali LED di stato si illuminano in base allo stato
del caricabatterie stesso.
Per difetto, il caricabatterie si avvia nella modalità normale e prima
fase di carica.
C. Se necessario, premere il pulsante MODE per selezionare un altro
algoritmo di carica (il caricabatterie ricorda la modalità quando è
scollegato dalla rete di alimentazione e/o dalla batteria).
Dopo aver selezionato il ricondizionamento, il LED RECONDITION si
illumina ed inizia a lampeggiare quando il ricondizionamento è attivo.
Il caricabatterie passa a LOW (bassa potenza) quando si preme per 3
secondi il pulsante MODE. Il LED LOW si illumina e rimane acceso e
la corrente massima di uscita è limitata al 50% della potenza nominale
in uscita. La modalità LOW si può disattivare premendo nuovamente il
pulsante MODE per 3 secondi.
D. La batteria ha una carica di circa l’80% ed è pronta per l’uso quando si
illumina il LED ABSORPTION.
E. La batteria sarà completamente carica quando si illuminino i LED FLOAT
(carica di compensazione) o STORAGE.
F. Ora si può interrompere la carica in qualsiasi momento, scollegando
l’alimentazione del caricabatterie.
4. Proprietà e caratteristiche principali
4.1 Funzione Bluetooth
Configurazione, monitoraggio e aggiornamento del caricabatterie. Possibilità di
ricarica parallela ridondante.
Possibilità di aggregare nuove funzioni, quando siano disponibili, tramite
smartphone, tablet ed altri dispositivi Apple e Android.
Quando si usa la funzione Bluetooth, si può impostare un PIN per evitare accessi
non autorizzati al dispositivo. Tale PIN si può resettare ai valori per difetto (000000)
premendo il pulsante MODE per 10 secondi.
Per ulteriori informazioni, consultare il manuale di VictronConnect.
4.2 Porta VE.Direct
Per la connessione tramite cavo al Color Control, al Venus GX, al PC o ad altri
dispositivi.
4.3 Relè programmabile
Può essere programmato (ad es., mediante smartphone) per essere attivato da un
allarme o da altri eventi. Tenere presente che il relè funziona solo se è disponibile CA
sui morsetti di ingresso CA, pertanto il relè non può fungere, ad esempio, da segnale
di avvio/arresto del generatore.
4.4 Caricabatterie “verde” ad altissima efficienza
Grazie ad un’efficienza fino al 94%, questi caricabatterie generano fino a quattro
volte meno calore rispetto allo standard del settore. E quando la batteria è
completamente carica, il consumo di energia scende a meno di 1 Watt, cioè ad un
valore da cinque a dieci volte inferiore rispetto allo standard di settore.
4.5 Sostenibile, sicuro e silenzioso
- Basso carico termico dei componenti elettronici.
- Protezione contro surriscaldamento: La corrente in uscita scende se la
temperatura arriva ai 60°C.
- Il caricabatterie è raffreddato tramite convezione naturale, pertanto non è
necessario il rumoroso ventilatore di raffreddamento.
4.6 Carica a compensazione di temperatura
La tensione di carica ottimale di una batteria al piombo acido è inversamente
proporzionale alla temperatura. Il Caricabatterie Phoenix Smart misura la
temperatura ambiente all’inizio della fase di carica e compensa la temperatura
durante la ricarica. Misura nuovamente la temperatura quando il caricabatterie si
21
EN NL FR DE ES SV IT
trova in modalità di bassa corrente nelle fasi di assorbimento o accumulo.
Pertanto, non sono necessarie impostazioni speciali per un ambiente freddo o
caldo.
4.7 Gestione adattiva della batteria
Le batterie al piombo-acido devono essere ricaricate in tre fasi, ossia [1] prima
fase di carica, [2] carica di assorbimento e [3] carica di mantenimento.
Sono necessarie parecchie ore di carica di assorbimento per ricaricare
completamente la batteria ed evitare difetti prematuri per solfatazione¹.
Una tensione relativamente alta durante l’assorbimento, tuttavia, accorcia la
durata di vita della batteria in seguito alla corrosione delle piastre positive.
La Gestione Adattiva della Batteria limita la corrosione riducendo il periodo di
assorbimento, quando possibile, ossia, quando si ricarica una batteria che è già
(quasi) completamente carica.
4.8 Modalità di accumulo: minor corrosione delle piastre positive
Persino la più bassa tensione di carica di mantenimento che segue la carica di
assorbimento può causare corrosione. Quindi è essenziale ridurre ancor più la
tensione di carica se la batteria rimane collegata al caricabatterie per più di 48
ore.
4.9 Ricondizionamento
Una batteria al piombo-acido non sufficientemente carica o lasciata scarica per vari
giorni o per varie settimane si deteriorerà in seguito alla solfatazione12. Se si rileva a
tempo tale situazione, la solfatazione, a volte, può essere parzialmente invertita
ricaricando la batteria con bassa corrente a una tensione più alta.
Note:
Alle batterie VRLA a piastre piane (gel e AGM) si deve applicare solo
occasionalmente il ricondizionamento, giacché la gassificazione prodotta esaurisce
l’elettrolito.
Le batterie VRLA a celle cilindriche generano una maggior pressione interna prima
della gassificazione, pertanto perdono meno acqua durante il ricondizionamento.
Alcuni produttori di batterie a celle cilindriche raccomandano di utilizzare il
ricondizionamento in caso di applicazione ciclica.
Si può eseguire il ricondizionamento su batterie a cella umida per ‘bilanciare’ le celle
ed evitare la stratificazione dell'acido.
12 Per ulteriori informazioni riguardo le batterie, vedere
il nostro libro “Energy Unlimited” (Energia illimitata) (si può scaricare da www.victronenergy.com) o
http://batteryuniversity.com/learn/article/sulfation_and_how_to_prevent_it
Alcuni produttori di caricabatterie raccomandano la ricarica a impulsi per invertire la
solfatazione. Tuttavia, la maggior parte degli esperti di batterie convengono sul fatto
che non esiste una prova definitiva che la ricarica a impulsi sia più effettiva di una
ricarica a bassa corrente / alta tensione. Ciò è stato confermato anche dai nostri test.
4.10 Batterie agli ioni di litio (LiFePO₄)
Le batterie agli ioni di litio non subiscono la solfatazione e non devono essere
completamente caricate a periodi regolari.
Tali batterie, tuttavia, sono altamente sensibili alle alte o basse tensioni.
Per questa ragione, le batterie agli ioni di litio spesso sono dotate di un sistema
integrato per il bilanciamento delle celle e la protezione contro le basse tensioni
(UVP: Protezione Contro Sottotensione).
Nota importante:
Non tentare MAI di ricaricare una batteria agli ioni di litio se la sua temperatura è
inferiore a 0°C.13
4.11 Accensione-spegnimento remoto
Il dispositivo si può accendere in tre modi:
1. Cortocircuitare i pin L e H (valori di fabbrica)
2. Collegare il pin H a un alto livello (ad es., polo positivo batteria)
3. Collegare il pin L a un basso livello (ad es., polo negativo batteria)
13 Per ulteriori informazioni sulle batterie agli ioni di litio, vedere
http://www.victronenergy.com/batteries/lithium-battery-12,8v/
23
EN NL FR DE ES SV IT
4.12 LED di allarme
Se si verifica un errore, i LED ALARM si illuminano di rosso. I LED di stato
indicano il tipo di errore mediante un codice di lampeggiamento. Per sapere i
possibili codici di errore, vedere la seguente tabella.
○ Off
◎ Lampeggiante
● On
4.13 Compensazione automatica della tensione
Il caricabatterie compensa i cali di tensione lungo i cavi CC, aumentando
progressivamente la tensione di uscita se aumenta la corrente di carica.
La discrepanza di tensione fissa è di 100 mV. La discrepanza di tensione è sottratta
dalla corrente di carica e aggiunta alla tensione in uscita. La discrepanza di tensione
si basa su 2x 1 metro di cavo, sulla resistenza di contatto e sulla resistenza del
fusibile.
Esempio di calcolo per il 12/50 (1+1):
La resistenza del cavo R si può calcolare utilizzando la seguente formula:
=×
Dove R è la resistenza in ohm (Ω), ρ è la resistività del rame (1.786x10^-8 Ωm a
25°C), I è la lunghezza del filo (in m) e A è l’area della superficie del filo (in m²).
La distanza fra caricabatterie e batteria più utilizzata è di 1 metro. In questo caso, la
lunghezza del cavo è di 2 metri (positivo e negativo). Se si utilizza un cavo 6AWG
(16mm²) la resistenza dello filo è:
=1,786 ×10−8 × 2
16 ×10−6 = 2.24Ω
Errore
LOW
BULK
ABS
FLOAT
STORAGE
ALARM
Protezione
tempo prima
fase di carica
○ ◎ ○ ○ ○ ●
Errore interno
○
◎
◎
◎
○
●
Sovratensione
del
caricabatterie
○ ○ ◎ ○ ◎ ●
Si consiglia di installare un fusibile vicino alla batteria. La resistenza di un fusibile
standard da 80A è:
= 0.720Ω
La resistenza complessiva del circuito si può calcolare utilizzando la seguente
formula:
= +
Pertanto:
= 2.24Ω + 0.720Ω = 2.96Ω
La necessaria compensazione dei cali di tensione lungo il cavo si può calcolare
utilizzando la seguente formula:
=×
Dove U rappresenta il calo di tensione in Volt (V) e I la corrente lungo il filo in Ampere
(A).
Di conseguenza, il calo di tensione sarà:
=50 × 2.96Ω =148 per tutta la corrente di carica a 50A.
4.14 Versione a tre (3) uscite
Le versioni dei caricabatterie a tre uscite possiedono un isolatore di batteria FET
integrato, pertanto dispongono di tre uscite isolate.
Sebbene tutte le uscite possano alimentare la corrente nominale in uscita, la corrente
in uscita combinata di tutte le uscite è limitata alla corrente nominale in uscita.
Grazie al caricabatterie a tre uscite è possibile caricare tre diverse batterie con un
solo caricatore, tenendole sempre isolate l’una dall’altra.
Le uscite non si possono regolare singolarmente. Si applica un solo algoritmo di
carica a tutte le uscite.
25
EN NL FR DE ES SV IT
5 Algoritmi di carica
5.1 Selezione della batteria
L’algoritmo di carica del caricabatterie deve essere compatibile con il tipo
di batteria collegato allo stesso caricabatterie. La seguente tabella mostra i
tre tipi predefiniti di batterie disponibili. L’utente può programmare un tipo
personalizzato di batteria.
Tensioni di carica a temperatura ambiente:
MODE
ABS
V
FLOAT
V
STORAGE
V
RECONDITION
Max V@% di
Inom
NORMAL
14,4
13,8
13,2
16.2@8%, 1h
max
HIGH
14,7
13,8
13,2
16.5@8%, 1h
max
LI-ION
14,2
13,5
13,5
N/A
Per i caricabatterie a 24V: moltiplicare per 2 tutti i valori.
NORMAL (14,4V): raccomandato per batterie piombo stagno con piastra piana a
cella umida (batterie di avviamento), batterie con piastra piana gel e batterie AGM.
HIGH (14,7V): raccomandato per batterie piombo calcio a cella umida, batterie con
cella a spirale Optima e batterie Odissey.
LI-ION (14.2V): raccomandata per batterie al Litio Ferro Fosfato (LiFePo4).
CUSTOM (Agg.): raccomandata per qualsiasi altro tipo di batteria non compreso
nelle summenzionate, se le tensioni regolabili sono impostate in base alle
raccomandazioni del produttore delle batterie stesse.
Pulsante MODE
Dopo aver collegato il caricabatterie all’alimentazione in CA, premere il pulsante
MODE per selezionare un algoritmo di carica diverso, se necessario (il caricabatterie
ricorda la modalità quando si scollega l’alimentazione e/o la batteria).
Dopo aver selezionato il ricondizionamento, il LED RECONDITION si illumina ed
inizia a lampeggiare quando il ricondizionamento è attivo.
Il caricabatterie passa a LOW (bassa potenza) quando si preme per 3 secondi il
pulsante MODE. Il LED LOW rimane acceso. La modalità LOW rimane attiva
finché non si preme nuovamente il pulsante MODE per 3 secondi.
Quando la modalità LOW è attiva, la corrente di uscita è limitata a un max. del
50% della potenza nominale in uscita.
Algoritmo intelligente di carica a sette stadi per batterie al piombo acido:
(con ricondizionamento opzionale)
1. BULK - Prima fase di carica
Carica la batteria con la corrente massima finché non raggiunge la tensione di
assorbimento. Al termine dalla prima fase di carica, la batteria avrà raggiunto
una carica di circa l’80% e sarà pronta all’uso.
2. ABS- Assorbimento
Carica la batteria con tensione costante e corrente decrescente fino al
completamento della ricarica. Vedere la tabella precedente per la tensione di
assorbimento a temperatura ambiente.
Tempo di assorbimento variabile:
Il tempo di assorbimento è corto (almeno 30 minuti) se si collega una batteria quasi
completamente carica ed aumenta fino a 8 ore per una batteria totalmente scarica.
3. RECONDITION - Ricondizionamento
RECONDITION è un’opzione per i programmi NORMAL e HIGH e si può
selezionare premendo nuovamente il pulsante MODE dopo aver selezionato
l’algoritmo di carica desiderato.
In modalità RECONDITION, la batteria viene caricata con bassa corrente (8%
della corrente nominale) a una tensione più alta. La modalità RECONDITION si
attiva al termine della fase di assorbimento e finisce dopo circa un’ora o quando
si raggiunge la tensione più alta.
Il LED RECONDITION resterà acceso durante la ricarica e lampeggerà durante la
modalità RECONDITION.
Esempio:
Per un caricabatterie 12/30: la corrente di ricondizionamento è pari a 30 x 0,08 =
2,4A
4. FLOAT
Carica di mantenimento. Mantiene la batteria a una tensione costante e
completamente carica.
27
EN NL FR DE ES SV IT
5. STORAGE
Modalità di accumulo. Mantiene la batteria a tensione ridotta costante
per ridurre la formazione di gas e la corrosione delle piastre positive.
6. READY (batteria completamente carica)
La batteria è completamente carica quando si accende il LED FLOAT o
STORAGE.
7. REFRESH
Tramite una rigenerazione automatica con una breve carica di
assorbimento, si evita una autoscarica lenta della batteria.
5.2 Batterie agli ioni di litio (LiFePO₄)
Quando carica una batteria agli ioni di litio, il caricabatterie impiega un algoritmo
di carica specifico per questo tipo di batterie, in modo da assicurare prestazioni
ottimali. Selezionare LI-ION con il pulsante MODE.
5.3 Algoritmo di carica completamente programmabile dall’utente
Se i tre algoritmi di carica preprogrammati non soddisfano le vostre esigenze,
potete programmare il vostro particolare algoritmo di carica mediante l’interfaccia
Bluetooth o VE.Direct.
Se è selezionato un algoritmo di carica preprogrammato, i LED NORMAL, HIGH
e LI-ION non si accendono. I LED di stato indicano l’ubicazione dei programmi di
ricarica nel caricabatterie.
Se si preme il pulsante MODE durante l’esecuzione di un algoritmo di carica
preprogrammato, il caricabatterie tornerà all’algoritmo di carica preprogrammato
NORMAL.
5.4 Se la batteria ha un carico collegato
Si può collegare un carico alla batteria mentre si sta ricaricando. Nota: La
batteria non si caricherà se la corrente di carica supera la corrente in uscita del
caricabatterie.
Non è possibile eseguire il ricondizionamento se la batteria ha un carico
collegato.
5.5 Avvio di un nuovo ciclo di carica
Un nuovo ciclo di carica si attiverà quando:
A. Il caricabatterie si trova in fase di mantenimento o di stoccaggio e la
corrente aumenta fino al suo livello massimo per più di 4 secondi a causa
del carico.
B. Si preme il pulsante MODE durante la ricarica.
C. Si scollega e ricollega l’alimentazione.
29
EN NL FR DE ES SV IT
5.6 Calcolo del tempo di ricarica
Una batteria al piombo ha una carica di circa l’80% all’inizio della fase di
assorbimento.
Il tempo T necessario per una carica all’80% si calcola come segue:
T = Ah / I
Dove:
I è la corrente di carica (= corrente proveniente dal caricabatterie meno
qualsiasi corrente dovuta a un carico).
Ah è il numero di ampere ora che si devono caricare.
Per caricare una batteria al 100% è necessario un periodo di assorbimento
completo di 8 ore.
Esempio:
Tempo per arrivare a una carica dell’80% di una batteria a 220Ah
completamente scarica, se ricaricata con un caricabatterie a 30A: T = 220 /
30 = 7,3 ore.
Tempo di carica per il 100%: 7,3 + 8 = 15,3 ore.
Una batteria agli ioni di litio ha una carica di oltre il 95% all’inizio della fase di
assorbimento e raggiunge il 100% della carica dopo circa 30 minuti di carica di
assorbimento.
5.7 Utilizzabile come fonte di alimentazione
Il caricabatterie si può utilizzare come fonte di alimentazione (è presente un
carico ma non sono collegate batterie). La tensione di alimentazione si può
impostare tramite l’interfaccia Bluetooth o VE.Direct.
Quando si utilizza come alimentatore, si illuminano e rimangono accesi
solamente i LED BULK, ABSORPTION, FLOAT e STORAGE.
Quando il caricabatterie è impostato come alimentatore, non risponde
all’accensione - spegnimento remoto.
Se si preme il pulsante MODE quando si utilizza il caricabatterie come
alimentatore, il caricabatterie tornerà all’algoritmo di carica preprogrammato
NORMAL.
6 Dati tecnici
Caricabatterie Phoenix Smart
12V,
2 uscite
12/30(1+1)
12/50(1+1)
12V,
3 uscite
12/30(3)
12/50(3)
24V,
2 uscite
24/16(1+1)
24/25(1+1)
24V,
3 uscite
24/16(3)
24/25(3)
Tensione di ingresso 230 VCA (intervallo: 200 – 240 V)
Intervallo tensione di ingresso CC 290 – 355 VCC
Frequenza 45 - 65 Hz
Fattore di potenza 0,7
Perdite di corrente
AC scollegata: < 0,1 mA AC collegata e remoto del caricabatterie off: < 6 mA
Consumo energetico a vuoto 1 W
Efficienza 12/30: 94%
12/50: 92%
12/30: 94%
12/50: 92%
94% 94%
Tensione di carica ‘assorbimento’
Normale: 14,4V Alta: 14,7V
Li-ion: 14,2V
Normale: 28,8V Alta: 29,4V
Li-ion: 28,4V
Tensione di carica ‘mantenimento’
Normale: 13,8V Alta: 13,8V
Li-ion: 13,5V
Normale: 27,6V Alta: 27,6V
Li-ion: 27,0V
Modalità di accumulo
Normale: 13,2V Alta: 13,2V
Li-ion: 13,5V
Normale: 26,4V Alta: 26,4V
Li-ion: 27,0V
Completamente programmabile Sì, mediante Bluetooth e/o VE.Direct
Corr. di carica batteria di servizio 30 / 50 A 30 / 50 A 16 / 25 A 16 / 25 A
Modalità bassa corrente 15 / 25 A 15 / 25 A 8 / 12,5 A 8 / 12,5 A
Corr. di carica batteria di avviamento 3 A (solo modelli con uscita 1+1)
Algoritmo di carica adattivo a 7 fasi (adattivo a 3 fasi per ioni di litio)
Capacità batteria
150-300 Ah (versione 30A)
250-500 Ah (versione 50A)
80-160 Ah (versione 16A)
125-250 Ah (versione 25A)
Numero di connessioni batteria 2 3 2 3
Protezione Polarità inversa batteria (fusibile non accessibile all’utente) / Cortocircuito uscita / Sovratemperatura
Si può usare come alimentatore Sì, la tensione di uscita si può impostare mediante Bluetooth e/o VE.Direct
Intervallo temperatura di esercizio
da -20 a 60°C (0 - 140°F)
Corrente uscita nominale fino a 40°C, riduzione lineare fino al 20% a 60°C
Umidità (senza condensa) max 95%
Relè (programmabile) CC nominale: 5A fino a 28VCC
INVOLUCRO
Materiale e colore alluminio (blu RAL 5012)
Collegamento batteria Morsetti a vite 16 mm² (AWG6)
Collegamento CA
Ingresso IEC 320 C14 con pinza di fissaggio (il cavo CA con presa a terra specifica deve essere richiesto a
parte)
Categoria protezione IP43 (componenti elettronici), IP22 (zona di raccordo)
Peso kg (libbre) 3,5 kg
Dimensioni (AxLxP) 180 x 249 x 100 mm (7.1 x 9.8 x 4.0 pollici)
NORMATIVE
Sicurezza
EN 60335-1, EN 60335-2-29
Emissioni
EN 55014-1, EN 61000-6-3, EN 61000-3-2
Immunità
EN 55014-2, EN 61000-6-1, EN 61000-6-2, EN 61000-3-3
Vibrazioni
IEC68-2-6:10-150Hz/1.0G
31
EN NL FR DE ES SV IT
Dimensions