Quectel BC95 G BC68 Low Power Design Guide V1.1
User Manual:
Open the PDF directly: View PDF .
Page Count: 19
Download | ![]() |
Open PDF In Browser | View PDF |
BC95&BC95-G&BC68 Low Power Design Guide NB-IoT Module Series Rev. BC95&BC95-G&BC68_Low_Power_Design_Guide_V1.1 Date: 2018-06-04 Status: Released www.quectel.com BC95&BC95-G&BC68 Low Power Design Guide Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters: Quectel Wireless Solutions Co., Ltd. 7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@quectel.com Or our local office. For more information, please visit: http://quectel.com/support/sales.htm For technical support, or to report documentation errors, please visit: http://quectel.com/support/technical.htm Or Email to: support@quectel.com GENERAL NOTES QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE. COPYRIGHT THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN. Copyright © Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved. BC95&BC95-G&BC68_Low_Power_Design_Guide 1 / 18 BC95&BC95-G&BC68 Low Power Design Guide About the Document History Revision Date Author Description 1.0 2018-05-12 Ewent LU Initial 1.1 2018-06-04 Ewent LU Updated recommended types of lithium-thionyl chloride (Li-SOCl2) batteries in Table 1 BC95&BC95-G&BC68_Low_Power_Design_Guide 2 / 18 BC95&BC95-G&BC68 Low Power Design Guide Contents About the Document ................................................................................................................................... 2 Contents ....................................................................................................................................................... 3 Table Index ................................................................................................................................................... 4 Figure Index ................................................................................................................................................. 5 1 Introduction .......................................................................................................................................... 6 2 Low Power Solutions........................................................................................................................... 7 2.1. Power Supply Solution ................................................................................................................ 7 2.1.1. Types of Batteries ............................................................................................................ 7 2.2. Power Supply Reference Designs .............................................................................................. 9 2.2.1. Reference Design of a Single Power Battery Type ....................................................... 10 2.2.2. Reference Design of an Energy Battery Pack ............................................................... 11 2.2.3. Reference Design of a Single Lithium Manganese Oxide (LiMn2O4) Battery .............. 12 2.2.4. Reference Design of a Dry Cell ..................................................................................... 13 2.3. Boost Converter Solution .......................................................................................................... 14 2.3.1. Boost Converter Design ................................................................................................. 14 2.3.2. Layout Guidelines for Boost Converters ........................................................................ 14 2.4. Power Consumption of NB-IoT Modules .................................................................................. 15 2.5. Battery Capacity Assessment ................................................................................................... 16 3 Appendix A References..................................................................................................................... 18 BC95&BC95-G&BC68_Low_Power_Design_Guide 3 / 18 BC95&BC95-G&BC68 Low Power Design Guide Table Index TABLE 1: COMPARISON OF LITHIUM-THIONYL CHLORIDE (LI-SOCL2) BATTERIES .................................. 7 TABLE 2: DESCRIPTION OF LITHIUM MANGANESE OXIDE (LIMN2O4) BATTERY CR17450 ..................... 8 TABLE 3: DESCRIPTION OF DRY CELL LR6/AA .............................................................................................. 9 TABLE 4: TEST CONDITION IN DIFFERENT CLASSES OF SIGNAL STRENGTH ....................................... 16 TABLE 5: POWER CONSUMPTION OF NB-IOT MODULES ........................................................................... 16 TABLE 6: AVERAGE POWER CONSUMPTION IN DIFFERENT CLASSES OF SIGNAL STRENGTH (ONE DAY) ........................................................................................................................................................... 17 TABLE 7: RELATED DOCUMENTS .................................................................................................................. 18 TABLE 8: TERMS AND ABBREVIATIONS ........................................................................................................ 18 BC95&BC95-G&BC68_Low_Power_Design_Guide 4 / 18 BC95&BC95-G&BC68 Low Power Design Guide Figure Index FIGURE 1: REFERENCE DESIGN OF A SINGLE BATTERY ER34615M ....................................................... 10 FIGURE 2: REFERENCE DESIGN OF AN ENERGY BATTERY PACK ER34615+SPC1520 .......................... 11 FIGURE 3: REFERENCE DESIGN OF A SINGLE LITHIUM MANGANESE OXIDE (LIMN2O4) BATTERY CR17450 .................................................................................................................................................... 12 FIGURE 4: REFERENCE DESIGN OF A SINGLE DRY CELL LR6/AA ............................................................ 13 FIGURE 5: REFERENCE CIRCUIT OF TPS610995 ........................................................................................ 14 FIGURE 6: REFERENCE LAYOUT DESIGN OF A BOOST CONVERTER ..................................................... 15 FIGURE 7: CURRENT CONSUMPTION OF NB-IOT MODULES .................................................................... 15 BC95&BC95-G&BC68_Low_Power_Design_Guide 5 / 18 BC95&BC95-G&BC68 Low Power Design Guide 1 Introduction In most NB-IoT applications, devices are battery powered, and low-power operation is therefore one of the key requirements of NB-IoT devices. This document mainly introduces solutions and reference designs for reducing power consumption of Quectel NB-IoT modules in low-power applications. This document is applicable to Quectel BC95, BC95-G and BC68 modules. BC95&BC95-G&BC68_Low_Power_Design_Guide 6 / 18 BC95&BC95-G&BC68 Low Power Design Guide 2 Low Power Solutions The low power solutions provided in this document are only applied for wireless terminals which feature following characteristics: ⚫ ⚫ ⚫ A lithium-thionyl chloride (Li-SOCl2) battery, lithium manganese oxide (LiMn2O4) battery or dry cell is used as the main power supply of the system. The battery is a non-rechargeable one and its life cycle can reach up to one year or much longer. Low frequency of data transmission on wireless terminals. 2.1. Power Supply Solution The power supply of the NB-IoT modules ranges from 3.1V~4.2V, and the power supply for MCU is 3.3V or lower. Since the battery is used as the power source of a terminal, the battery capacity should be large enough to ensure a long battery life. 2.1.1. Types of Batteries The following three types of batteries can be used as the power supply for NB-IoT modules in a lower power consumption application system, for they can not only provide the maximum energy ratio and voltage, but also have a preferable discharge characteristic and rather low self-discharge. ⚫ ⚫ ⚫ Lithium-thionyl chloride (Li-SOCl2) batteries Lithium manganese oxide (LiMn2O4) batteries Dry cells The following tables list some commonly used batteries and compare their key parameters for reference. Customers can choose a proper battery according to actual needs. Table 1: Comparison of Lithium-thionyl Chloride (Li-SOCl2) Batteries Parameter Power Type (ER34615M) Energy Battery Pack (ER34615+SPC1520) Nominal Capacity 13Ah @5mA, 2V 19Ah @2mA, 2V BC95&BC95-G&BC68_Low_Power_Design_Guide 7 / 18 BC95&BC95-G&BC68 Low Power Design Guide Nominal Voltage 3.6V 3.6V Maximum Continuous Discharge Current 2000mA / Maximum Pulse Current 4000mA @0.1s 2000mA @1s Temperature Range -60°C ~ +85°C -40°C ~ +85°C Voltage Delay Supported Not supported Parameter Power Type (ER26500M) Energy Battery Pack (ER26500+SPC1520) Nominal Capacity 6Ah @10mA, 2V 8.5Ah @4mA, 2V Nominal Voltage 3.6V 3.6V Maximum Continuous Discharge Current 1000mA / Maximum Pulse Current 2000mA @0.1s 2000mA @1s Temperature Range -60°C ~ +85°C -40°C ~ +85°C Voltage Delay Supported Not supported Parameter Power Type (Three ER18500 in Parallel) Energy Battery Pack (Three ER18500 in Parallel+SPC1520) Nominal Capacity 12Ah @9mA, 2V 12Ah @9mA, 2V Nominal Voltage 3.6V 3.6V Maximum Continuous Discharge Current 360mA / Maximum Pulse Current 540mA @0.1s 2000mA @1s Temperature Range -60°C ~ +85°C -40°C ~ +85°C Voltage Delay Supported Not supported Table 2: Description of Lithium Manganese Oxide (LiMn2O4) Battery CR17450 Parameter CR17450 Nominal Capacity 2.4Ah @10mA, 2V Nominal Voltage 3.0V BC95&BC95-G&BC68_Low_Power_Design_Guide 8 / 18 BC95&BC95-G&BC68 Low Power Design Guide Maximum Continuous Discharge Current 1500mA Maximum Pulse Current 3000mA @0.1s Temperature Range -40°C ~ +85°C Voltage Delay Not supported Table 3: Description of Dry Cell LR6/AA Parameter LR6/AA Nominal Capacity 2500mAh @43Ω, 0.8V Nominal Voltage 1.5V Maximum Continuous Discharge Current 1000mA Maximum Pulse Current 1000mA @10s Temperature Range -20°C ~ +55°C Voltage delay Not supported NOTE For more information of these batteries, please visit http://en.evebattery.com. 2.2. Power Supply Reference Designs The power circuit design plays an important role in reducing power consumption of the whole system. As the power supply range of the module is 3.1V~4.2V, please make sure that the input voltage will never drop below 3.1V even in a burst transmission. Reference circuit designs of some commonly used batteries are illustrated in the following figures. BC95&BC95-G&BC68_Low_Power_Design_Guide 9 / 18 BC95&BC95-G&BC68 Low Power Design Guide 2.2.1. Reference Design of a Single Power Battery Type The following figure shows a reference design with a single power battery type ER34615M as the power supply. ER34615M C2 C3 C4 100nF 100pF 22pF VBAT C1 NB-IoT Module D1 GND R10 0R RF_ANT C5 NC ADC C6 NC OUT GND 3.3V LDO IN 47uF USIM Interface VCC USIM Card VDD_EXT EINT0 1K R3 1K RXD LED R2 VBAT 2M TXD RI NETLIGHT MCU R7 GND RESET GPIO1 GND R5 4.7K 4.7K R8 2.2K RXD R1 R4 R9 TXD 1K 47K Output Indicator R6 47K Figure 1: Reference Design of a Single Battery ER34615M NOTE The diode is used to avoid the current flowing into the module so as to reduce the power consumption of the MCU. It is recommended to use the Schottky Diode with forward voltage less than 0.3V. BC95&BC95-G&BC68_Low_Power_Design_Guide 10 / 18 BC95&BC95-G&BC68 Low Power Design Guide 2.2.2. Reference Design of an Energy Battery Pack The following figure shows a reference design with an energy battery pack ER34615+SPC1520 as the power supply. ER34615 C4 22pF GND NC OUT USIM Card USIM Interface VCC VDD_EXT TXD RXD EINT0 R1 1K R2 1K R3 1K MCU RXD TXD RI GND RESET GPIO1 GND R5 4.7K R6 VBAT 2M R9 LED R4 NETLIGHT R7 2.2K LDO C6 C5 NC GND 3.3V ADC 0R R10 RF_ANT IN 47uF C3 100pF D1 SPC1520 C2 100nF VBAT C1 NB-IoT Module 4.7K R8 47K Output Indicator 47K Figure 2: Reference Design of an Energy Battery Pack ER34615+SPC1520 NOTE The diode is used to avoid the current flowing into the module so as to reduce the power consumption of the MCU. It is recommended to use the Schottky Diode with forward voltage less than 0.3V. BC95&BC95-G&BC68_Low_Power_Design_Guide 11 / 18 BC95&BC95-G&BC68 Low Power Design Guide 2.2.3. Reference Design of a Single Lithium Manganese Oxide (LiMn2O4) Battery The following figure shows a reference design with a single lithium manganese oxide (LiMn2O4) battery CR17450 as the power supply. BOOST VBAT C1 C2 C3 C4 47uF 22pF OUT 100pF IN 3.6V 100nF CR17450 NB-IoT Module D1 R10 RF_ANT 0R C6 C5 NC GND NC USIM Card USIM Interface ADC VCC VBAT R4 TXD RXD EINT0 R1 2M 1K R2 1K R3 1K R9 LED VDD_EXT MCU RXD TXD RI NETLIGHT R7 2.2K GND 4.7K R8 47K GND RESET GPIO1 GND R5 4.7K R6 Output Indicator 47K Figure 3: Reference Design of a Single Lithium Manganese Oxide (LiMn2O4) Battery CR17450 NOTE The diode is used to avoid the current flowing into the module so as to reduce the power consumption of the MCU. It is recommended to use the Schottky Diode with forward voltage less than 0.3V. BC95&BC95-G&BC68_Low_Power_Design_Guide 12 / 18 BC95&BC95-G&BC68 Low Power Design Guide 2.2.4. Reference Design of a Dry Cell The following figure shows a reference design with a single dry cell LR6/AA as the power supply. LDO-1 C2 C3 C4 47uF 100pF 22pF VBAT C1 LDO-2 GND R10 RF_ANT 3.3V OUT IN D1 NB-IoT Module C5 ADC VCC VDD_EXT RXD EINT0 1K R2 1K R3 1K VBAT 2M MCU LED R1 USIM Card USIM Interface RXD R9 R4 C6 NC NC GND TXD 0R TXD RI NETLIGHT R7 2.2K OUT 3.6V IN 100nF LR6/AA * 4 4.7K R8 47K GND RESET GPIO1 GND R5 4.7K R6 Output Indicator 47K Figure 4: Reference Design of a Single Dry Cell LR6/AA NOTE The diode is used to avoid the current flowing into the module so as to reduce the power consumption of the MCU. It is recommended to use the Schottky Diode with forward voltage less than 0.3V. BC95&BC95-G&BC68_Low_Power_Design_Guide 13 / 18 BC95&BC95-G&BC68 Low Power Design Guide 2.3. Boost Converter Solution 2.3.1. Boost Converter Design If a lithium manganese oxide (LiMn2O4) battery is used in customers applications, then a boost converter is needed. The boost converter should be selected based on the following principles. ⚫ ⚫ The input voltage range of the boost converter should be wider than the output voltage range of the battery. The maximum output current should be at least 1.25A, and can keep high efficiency at light loads. TPS610995 from TI is recommended to be used as a boost converter. It is a synchronous boost converter with 1-μA ultra-low quiescent current, which can achieve a high efficiency under light load conditions to ensure a long battery life. A reference circuit of TPS610995 for NB-IoT modules is as below. TPS610995 U1 L1 B1 2.2uH BATT_IN D1 C1 C2 10uF 1uF A1 C1 SW OUT VIN FB EN GND VBAT_3.6V B2 C2 C3 C4 C5 10uF 10uF 1uF A2 Figure 5: Reference Circuit of TPS610995 2.3.2. Layout Guidelines for Boost Converters The layout of a switching power supply is very important, especially at high peak currents and high switching frequencies. Therefore, please use wide and short traces for the main current paths and the power ground paths. The input and output capacitors as well as the inductors should be placed to the IC as close as possible. Meanwhile, the bottom layer should be designed as the reference ground and ground vias should be added. A reference layout design of a boost converter is shown below. BC95&BC95-G&BC68_Low_Power_Design_Guide 14 / 18 BC95&BC95-G&BC68 Low Power Design Guide Figure 6: Reference Layout Design of a Boost Converter 2.4. Power Consumption of NB-IoT Modules In order to choose a battery with a proper capacity in lower power designs, it needs to evaluate the power consumption of NB-IoT modules in normal working environment. The following figure shows the average current consumption of NB-IoT modules during Tx/Rx modes and PSM in real NB-IoT network. The power consumption will vary with different classes of signal strength and environments. The working process of NB-IoT modules is as follows: Start the module → Search network → Connect to the network successfully → Transmit data in Cat NB1 mode → Succeed to transmit data → Enter into Idle (eDRX) mode → Enter into PSM. Figure 7: Current Consumption of NB-IoT Modules BC95&BC95-G&BC68_Low_Power_Design_Guide 15 / 18 BC95&BC95-G&BC68 Low Power Design Guide Table 4: Test Condition in Different Classes of Signal Strength UE Inactive Time eDRX Cycle 20s Power Supply 40.96s 3.6V Table 5: Power Consumption of NB-IoT Modules Signal Strength Class 0 (> -128dBm) Class 1 (-1378dBm ~ -128dBm) Class 2 (< -137dBm) RSRP -93.9dBm -128dBm -137dBm Total Time Data Size Power Consumption 144s 50 bits 343uAh 144s 200 bits 344uAh 144s 510 bits 346uAh 147s 50 bits 506uAh 151s 200 bits 619.2uAh 152s 510 bits 628uAh 158s 50 bits 1.01mAh 162s 200 bits 1.2526mAh 191s 510 bits 2.3mAh 2.5. Battery Capacity Assessment The power consumption of a terminal can be calculated in two modes: sleep mode and working mode. No matter in which mode the device works, the power consumption of the terminal can be divided into four parts: ⚫ ⚫ ⚫ ⚫ MCU control system NB-IoT module system Self-discharge of the battery Other external controlled targets (e.g. valves) The following shows an example of how to calculate the power consumption of the terminal, assuming that the life cycle of the terminal is 6 years. BC95&BC95-G&BC68_Low_Power_Design_Guide 16 / 18 BC95&BC95-G&BC68 Low Power Design Guide Table 6: Average Power Consumption in Different Classes of Signal Strength (One Day) Signal Strength Power on → PSM Power on → Send 200 Bits Data → PSM TAU Process PSM Class 0 398uAh 310uAh 91.8uAh 3.3uA Class 1 770uAh 619.2uAh 484.8uAh 3.3uA Class 2 1900uAh 1252.6uAh 860.1uAh 3.3uA If the terminal is powered on once per year, sends data once per day and initiates TAU process once per day in Class 1, then the total power consumption in 10 years is calculated as follows: First Day: 770uAh+619.2uAh+484.8uAh+3.3uA*24h=1953.2uAh; 364 Days: (619.2uAh+484.8uAh+3.3uA*24h)*364=1183.2uAH*364=430684.8uAh; 1 Year: 1953.2uAh+430684.8uAh=432638uAh=432.638mAh; 10 Years: 432.638mAh*10=4326.38mAh. BC95&BC95-G&BC68_Low_Power_Design_Guide 17 / 18 BC95&BC95-G&BC68 Low Power Design Guide 3 Appendix A References Table 7: Related Documents SN Document Name Remark [1] Quectel_BC95_Hardware_Design BC95 Hardware Design [2] Quectel_BC95-G_Hardware_Design BC95-G Hardware Design [3] Quectel_BC68_Hardware_Design BC68 Hardware Design [4] Quectel_BC95_AT_Commands_Manual BC95 AT Commands Manual [5] Quectel_BC95-G&BC68_AT_Commands_Manual BC95-G and BC68 AT Commands Manual Table 8: Terms and Abbreviations Abbreviation Description IC Integrated Circuit MCU Microprogrammed Control Unit NB-IoT Narrow Band Internet of Things PSM Power Saving Mode TAU Tracking Area Update BC95&BC95-G&BC68_Low_Power_Design_Guide 18 / 18
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.7 Linearized : No Encryption : Standard V4.4 (128-bit) User Access : Print, Copy, Extract, Print high-res Author : kelly Create Date : 2018:06:04 16:17:17+08:00 Modify Date : 2018:06:04 16:28:21+08:00 Language : zh-CN XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-20:48:00 Producer : Microsoft® Word 2016 Format : application/pdf Creator : kelly Creator Tool : Microsoft® Word 2016 Metadata Date : 2018:06:04 16:28:21+08:00 Document ID : uuid:33C640ED-7D6F-4278-B102-BAE3D33D55F3 Instance ID : uuid:c9d7da71-dc92-4c66-af48-42b02ae243d0 Page Mode : UseOutlines Page Count : 19EXIF Metadata provided by EXIF.tools