Quectel BC95 G BC68 Low Power Design Guide V1.1

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 19

DownloadQuectel BC95 BC95-G BC68 Low Power Design Guide V1.1
Open PDF In BrowserView PDF
BC95&BC95-G&BC68
Low Power Design Guide
NB-IoT Module Series
Rev. BC95&BC95-G&BC68_Low_Power_Design_Guide_V1.1
Date: 2018-06-04
Status: Released

www.quectel.com

BC95&BC95-G&BC68 Low Power Design Guide

Our aim is to provide customers with timely and comprehensive service. For any
assistance, please contact our company headquarters:
Quectel Wireless Solutions Co., Ltd.
7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China
Tel: +86 21 5108 6236
Email: info@quectel.com

Or our local office. For more information, please visit:
http://quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:
http://quectel.com/support/technical.htm
Or Email to: support@quectel.com

GENERAL NOTES
QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION
PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT
TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT
MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT
ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR
RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO
CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT
THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF
QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION
AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE
FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF
DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR
REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved.

BC95&BC95-G&BC68_Low_Power_Design_Guide

1 / 18

BC95&BC95-G&BC68 Low Power Design Guide

About the Document
History
Revision

Date

Author

Description

1.0

2018-05-12

Ewent LU

Initial

1.1

2018-06-04

Ewent LU

Updated recommended types of lithium-thionyl
chloride (Li-SOCl2) batteries in Table 1

BC95&BC95-G&BC68_Low_Power_Design_Guide

2 / 18

BC95&BC95-G&BC68 Low Power Design Guide

Contents
About the Document ................................................................................................................................... 2
Contents ....................................................................................................................................................... 3
Table Index ................................................................................................................................................... 4
Figure Index ................................................................................................................................................. 5
1

Introduction .......................................................................................................................................... 6

2

Low Power Solutions........................................................................................................................... 7
2.1. Power Supply Solution ................................................................................................................ 7
2.1.1. Types of Batteries ............................................................................................................ 7
2.2. Power Supply Reference Designs .............................................................................................. 9
2.2.1. Reference Design of a Single Power Battery Type ....................................................... 10
2.2.2. Reference Design of an Energy Battery Pack ............................................................... 11
2.2.3. Reference Design of a Single Lithium Manganese Oxide (LiMn2O4) Battery .............. 12
2.2.4. Reference Design of a Dry Cell ..................................................................................... 13
2.3. Boost Converter Solution .......................................................................................................... 14
2.3.1. Boost Converter Design ................................................................................................. 14
2.3.2. Layout Guidelines for Boost Converters ........................................................................ 14
2.4. Power Consumption of NB-IoT Modules .................................................................................. 15
2.5. Battery Capacity Assessment ................................................................................................... 16

3

Appendix A References..................................................................................................................... 18

BC95&BC95-G&BC68_Low_Power_Design_Guide

3 / 18

BC95&BC95-G&BC68 Low Power Design Guide

Table Index
TABLE 1: COMPARISON OF LITHIUM-THIONYL CHLORIDE (LI-SOCL2) BATTERIES .................................. 7
TABLE 2: DESCRIPTION OF LITHIUM MANGANESE OXIDE (LIMN2O4) BATTERY CR17450 ..................... 8
TABLE 3: DESCRIPTION OF DRY CELL LR6/AA .............................................................................................. 9
TABLE 4: TEST CONDITION IN DIFFERENT CLASSES OF SIGNAL STRENGTH ....................................... 16
TABLE 5: POWER CONSUMPTION OF NB-IOT MODULES ........................................................................... 16
TABLE 6: AVERAGE POWER CONSUMPTION IN DIFFERENT CLASSES OF SIGNAL STRENGTH (ONE
DAY) ........................................................................................................................................................... 17
TABLE 7: RELATED DOCUMENTS .................................................................................................................. 18
TABLE 8: TERMS AND ABBREVIATIONS ........................................................................................................ 18

BC95&BC95-G&BC68_Low_Power_Design_Guide

4 / 18

BC95&BC95-G&BC68 Low Power Design Guide

Figure Index
FIGURE 1: REFERENCE DESIGN OF A SINGLE BATTERY ER34615M ....................................................... 10
FIGURE 2: REFERENCE DESIGN OF AN ENERGY BATTERY PACK ER34615+SPC1520 .......................... 11
FIGURE 3: REFERENCE DESIGN OF A SINGLE LITHIUM MANGANESE OXIDE (LIMN2O4) BATTERY
CR17450 .................................................................................................................................................... 12
FIGURE 4: REFERENCE DESIGN OF A SINGLE DRY CELL LR6/AA ............................................................ 13
FIGURE 5: REFERENCE CIRCUIT OF TPS610995 ........................................................................................ 14
FIGURE 6: REFERENCE LAYOUT DESIGN OF A BOOST CONVERTER ..................................................... 15
FIGURE 7: CURRENT CONSUMPTION OF NB-IOT MODULES .................................................................... 15

BC95&BC95-G&BC68_Low_Power_Design_Guide

5 / 18

BC95&BC95-G&BC68 Low Power Design Guide

1

Introduction

In most NB-IoT applications, devices are battery powered, and low-power operation is therefore one of
the key requirements of NB-IoT devices. This document mainly introduces solutions and reference
designs for reducing power consumption of Quectel NB-IoT modules in low-power applications.
This document is applicable to Quectel BC95, BC95-G and BC68 modules.

BC95&BC95-G&BC68_Low_Power_Design_Guide

6 / 18

BC95&BC95-G&BC68 Low Power Design Guide

2

Low Power Solutions

The low power solutions provided in this document are only applied for wireless terminals which feature
following characteristics:
⚫
⚫
⚫

A lithium-thionyl chloride (Li-SOCl2) battery, lithium manganese oxide (LiMn2O4) battery or dry cell is
used as the main power supply of the system.
The battery is a non-rechargeable one and its life cycle can reach up to one year or much longer.
Low frequency of data transmission on wireless terminals.

2.1. Power Supply Solution
The power supply of the NB-IoT modules ranges from 3.1V~4.2V, and the power supply for MCU is 3.3V
or lower. Since the battery is used as the power source of a terminal, the battery capacity should be large
enough to ensure a long battery life.

2.1.1. Types of Batteries
The following three types of batteries can be used as the power supply for NB-IoT modules in a lower
power consumption application system, for they can not only provide the maximum energy ratio and
voltage, but also have a preferable discharge characteristic and rather low self-discharge.
⚫
⚫
⚫

Lithium-thionyl chloride (Li-SOCl2) batteries
Lithium manganese oxide (LiMn2O4) batteries
Dry cells

The following tables list some commonly used batteries and compare their key parameters for reference.
Customers can choose a proper battery according to actual needs.

Table 1: Comparison of Lithium-thionyl Chloride (Li-SOCl2) Batteries
Parameter

Power Type
(ER34615M)

Energy Battery Pack
(ER34615+SPC1520)

Nominal Capacity

13Ah @5mA, 2V

19Ah @2mA, 2V

BC95&BC95-G&BC68_Low_Power_Design_Guide

7 / 18

BC95&BC95-G&BC68 Low Power Design Guide

Nominal Voltage

3.6V

3.6V

Maximum Continuous
Discharge Current

2000mA

/

Maximum Pulse Current

4000mA @0.1s

2000mA @1s

Temperature Range

-60°C ~ +85°C

-40°C ~ +85°C

Voltage Delay

Supported

Not supported

Parameter

Power Type
(ER26500M)

Energy Battery Pack
(ER26500+SPC1520)

Nominal Capacity

6Ah @10mA, 2V

8.5Ah @4mA, 2V

Nominal Voltage

3.6V

3.6V

Maximum Continuous
Discharge Current

1000mA

/

Maximum Pulse Current

2000mA @0.1s

2000mA @1s

Temperature Range

-60°C ~ +85°C

-40°C ~ +85°C

Voltage Delay

Supported

Not supported

Parameter

Power Type
(Three ER18500 in Parallel)

Energy Battery Pack
(Three ER18500 in Parallel+SPC1520)

Nominal Capacity

12Ah @9mA, 2V

12Ah @9mA, 2V

Nominal Voltage

3.6V

3.6V

Maximum Continuous
Discharge Current

360mA

/

Maximum Pulse Current

540mA @0.1s

2000mA @1s

Temperature Range

-60°C ~ +85°C

-40°C ~ +85°C

Voltage Delay

Supported

Not supported

Table 2: Description of Lithium Manganese Oxide (LiMn2O4) Battery CR17450
Parameter

CR17450

Nominal Capacity

2.4Ah @10mA, 2V

Nominal Voltage

3.0V

BC95&BC95-G&BC68_Low_Power_Design_Guide

8 / 18

BC95&BC95-G&BC68 Low Power Design Guide

Maximum Continuous Discharge Current

1500mA

Maximum Pulse Current

3000mA @0.1s

Temperature Range

-40°C ~ +85°C

Voltage Delay

Not supported

Table 3: Description of Dry Cell LR6/AA
Parameter

LR6/AA

Nominal Capacity

2500mAh @43Ω, 0.8V

Nominal Voltage

1.5V

Maximum Continuous Discharge Current

1000mA

Maximum Pulse Current

1000mA @10s

Temperature Range

-20°C ~ +55°C

Voltage delay

Not supported

NOTE
For more information of these batteries, please visit http://en.evebattery.com.

2.2. Power Supply Reference Designs
The power circuit design plays an important role in reducing power consumption of the whole system. As
the power supply range of the module is 3.1V~4.2V, please make sure that the input voltage will never
drop below 3.1V even in a burst transmission. Reference circuit designs of some commonly used
batteries are illustrated in the following figures.

BC95&BC95-G&BC68_Low_Power_Design_Guide

9 / 18

BC95&BC95-G&BC68 Low Power Design Guide

2.2.1. Reference Design of a Single Power Battery Type
The following figure shows a reference design with a single power battery type ER34615M as the power
supply.

ER34615M

C2

C3

C4

100nF

100pF

22pF

VBAT
C1

NB-IoT
Module

D1

GND

R10 0R

RF_ANT

C5
NC

ADC

C6
NC

OUT

GND

3.3V

LDO

IN

47uF

USIM
Interface

VCC

USIM
Card

VDD_EXT

EINT0

1K

R3

1K

RXD

LED

R2

VBAT

2M

TXD
RI
NETLIGHT

MCU

R7

GND

RESET
GPIO1
GND

R5 4.7K

4.7K
R8

2.2K

RXD

R1

R4

R9

TXD

1K

47K

Output
Indicator

R6 47K

Figure 1: Reference Design of a Single Battery ER34615M

NOTE
The diode is used to avoid the current flowing into the module so as to reduce the power consumption of
the MCU. It is recommended to use the Schottky Diode with forward voltage less than 0.3V.

BC95&BC95-G&BC68_Low_Power_Design_Guide

10 / 18

BC95&BC95-G&BC68 Low Power Design Guide

2.2.2. Reference Design of an Energy Battery Pack
The following figure shows a reference design with an energy battery pack ER34615+SPC1520 as the
power supply.

ER34615

C4

22pF

GND

NC

OUT

USIM
Card

USIM
Interface

VCC
VDD_EXT

TXD
RXD
EINT0

R1

1K

R2

1K

R3

1K

MCU

RXD
TXD
RI
GND

RESET
GPIO1
GND

R5

4.7K
R6

VBAT

2M

R9 LED

R4

NETLIGHT

R7

2.2K

LDO

C6

C5
NC

GND

3.3V

ADC

0R

R10

RF_ANT

IN

47uF

C3

100pF

D1

SPC1520

C2

100nF

VBAT
C1

NB-IoT
Module

4.7K
R8

47K

Output
Indicator

47K

Figure 2: Reference Design of an Energy Battery Pack ER34615+SPC1520

NOTE
The diode is used to avoid the current flowing into the module so as to reduce the power consumption of
the MCU. It is recommended to use the Schottky Diode with forward voltage less than 0.3V.

BC95&BC95-G&BC68_Low_Power_Design_Guide

11 / 18

BC95&BC95-G&BC68 Low Power Design Guide

2.2.3. Reference Design of a Single Lithium Manganese Oxide (LiMn2O4) Battery
The following figure shows a reference design with a single lithium manganese oxide (LiMn2O4) battery
CR17450 as the power supply.

BOOST
VBAT

C1

C2

C3

C4

47uF

22pF

OUT

100pF

IN

3.6V

100nF

CR17450

NB-IoT
Module

D1
R10

RF_ANT

0R
C6

C5
NC

GND

NC

USIM
Card

USIM
Interface

ADC
VCC

VBAT

R4
TXD
RXD
EINT0

R1

2M

1K

R2

1K

R3

1K

R9 LED

VDD_EXT

MCU

RXD
TXD
RI

NETLIGHT

R7

2.2K

GND

4.7K
R8

47K

GND

RESET
GPIO1
GND

R5

4.7K
R6

Output
Indicator

47K

Figure 3: Reference Design of a Single Lithium Manganese Oxide (LiMn2O4) Battery CR17450

NOTE
The diode is used to avoid the current flowing into the module so as to reduce the power consumption of
the MCU. It is recommended to use the Schottky Diode with forward voltage less than 0.3V.

BC95&BC95-G&BC68_Low_Power_Design_Guide

12 / 18

BC95&BC95-G&BC68 Low Power Design Guide

2.2.4. Reference Design of a Dry Cell
The following figure shows a reference design with a single dry cell LR6/AA as the power supply.
LDO-1

C2

C3

C4

47uF

100pF

22pF

VBAT
C1

LDO-2

GND
R10

RF_ANT

3.3V

OUT IN

D1

NB-IoT
Module

C5

ADC
VCC

VDD_EXT

RXD
EINT0

1K

R2

1K

R3

1K

VBAT

2M

MCU

LED

R1

USIM
Card

USIM
Interface

RXD

R9

R4

C6
NC

NC

GND

TXD

0R

TXD
RI

NETLIGHT

R7

2.2K

OUT 3.6V

IN

100nF

LR6/AA * 4

4.7K
R8

47K

GND

RESET
GPIO1
GND

R5

4.7K
R6

Output
Indicator

47K

Figure 4: Reference Design of a Single Dry Cell LR6/AA

NOTE
The diode is used to avoid the current flowing into the module so as to reduce the power consumption of
the MCU. It is recommended to use the Schottky Diode with forward voltage less than 0.3V.

BC95&BC95-G&BC68_Low_Power_Design_Guide

13 / 18

BC95&BC95-G&BC68 Low Power Design Guide

2.3. Boost Converter Solution
2.3.1. Boost Converter Design
If a lithium manganese oxide (LiMn2O4) battery is used in customers applications, then a boost converter
is needed. The boost converter should be selected based on the following principles.
⚫
⚫

The input voltage range of the boost converter should be wider than the output voltage range of the
battery.
The maximum output current should be at least 1.25A, and can keep high efficiency at light loads.

TPS610995 from TI is recommended to be used as a boost converter. It is a synchronous boost converter
with 1-μA ultra-low quiescent current, which can achieve a high efficiency under light load conditions to
ensure a long battery life.
A reference circuit of TPS610995 for NB-IoT modules is as below.

TPS610995
U1
L1
B1
2.2uH

BATT_IN
D1

C1

C2

10uF

1uF

A1
C1

SW

OUT

VIN

FB

EN

GND

VBAT_3.6V

B2
C2
C3

C4

C5

10uF

10uF

1uF

A2

Figure 5: Reference Circuit of TPS610995

2.3.2. Layout Guidelines for Boost Converters
The layout of a switching power supply is very important, especially at high peak currents and high
switching frequencies. Therefore, please use wide and short traces for the main current paths and the
power ground paths. The input and output capacitors as well as the inductors should be placed to the IC
as close as possible. Meanwhile, the bottom layer should be designed as the reference ground and
ground vias should be added.
A reference layout design of a boost converter is shown below.

BC95&BC95-G&BC68_Low_Power_Design_Guide

14 / 18

BC95&BC95-G&BC68 Low Power Design Guide

Figure 6: Reference Layout Design of a Boost Converter

2.4. Power Consumption of NB-IoT Modules
In order to choose a battery with a proper capacity in lower power designs, it needs to evaluate the power
consumption of NB-IoT modules in normal working environment. The following figure shows the average
current consumption of NB-IoT modules during Tx/Rx modes and PSM in real NB-IoT network. The power
consumption will vary with different classes of signal strength and environments.
The working process of NB-IoT modules is as follows: Start the module → Search network → Connect to
the network successfully → Transmit data in Cat NB1 mode → Succeed to transmit data → Enter into Idle
(eDRX) mode → Enter into PSM.

Figure 7: Current Consumption of NB-IoT Modules

BC95&BC95-G&BC68_Low_Power_Design_Guide

15 / 18

BC95&BC95-G&BC68 Low Power Design Guide

Table 4: Test Condition in Different Classes of Signal Strength
UE Inactive Time

eDRX Cycle

20s

Power Supply

40.96s

3.6V

Table 5: Power Consumption of NB-IoT Modules
Signal Strength

Class 0
(> -128dBm)

Class 1
(-1378dBm ~
-128dBm)

Class 2
(< -137dBm)

RSRP

-93.9dBm

-128dBm

-137dBm

Total Time

Data Size

Power Consumption

144s

50 bits

343uAh

144s

200 bits

344uAh

144s

510 bits

346uAh

147s

50 bits

506uAh

151s

200 bits

619.2uAh

152s

510 bits

628uAh

158s

50 bits

1.01mAh

162s

200 bits

1.2526mAh

191s

510 bits

2.3mAh

2.5. Battery Capacity Assessment
The power consumption of a terminal can be calculated in two modes: sleep mode and working mode. No
matter in which mode the device works, the power consumption of the terminal can be divided into four
parts:
⚫
⚫
⚫
⚫

MCU control system
NB-IoT module system
Self-discharge of the battery
Other external controlled targets (e.g. valves)

The following shows an example of how to calculate the power consumption of the terminal, assuming
that the life cycle of the terminal is 6 years.

BC95&BC95-G&BC68_Low_Power_Design_Guide

16 / 18

BC95&BC95-G&BC68 Low Power Design Guide

Table 6: Average Power Consumption in Different Classes of Signal Strength (One Day)
Signal
Strength

Power on →
PSM

Power on → Send 200 Bits Data
→ PSM

TAU Process

PSM

Class 0

398uAh

310uAh

91.8uAh

3.3uA

Class 1

770uAh

619.2uAh

484.8uAh

3.3uA

Class 2

1900uAh

1252.6uAh

860.1uAh

3.3uA

If the terminal is powered on once per year, sends data once per day and initiates TAU process once per
day in Class 1, then the total power consumption in 10 years is calculated as follows:
First Day: 770uAh+619.2uAh+484.8uAh+3.3uA*24h=1953.2uAh;
364 Days: (619.2uAh+484.8uAh+3.3uA*24h)*364=1183.2uAH*364=430684.8uAh;
1 Year: 1953.2uAh+430684.8uAh=432638uAh=432.638mAh;
10 Years: 432.638mAh*10=4326.38mAh.

BC95&BC95-G&BC68_Low_Power_Design_Guide

17 / 18

BC95&BC95-G&BC68 Low Power Design Guide

3

Appendix A References

Table 7: Related Documents
SN

Document Name

Remark

[1]

Quectel_BC95_Hardware_Design

BC95 Hardware Design

[2]

Quectel_BC95-G_Hardware_Design

BC95-G Hardware Design

[3]

Quectel_BC68_Hardware_Design

BC68 Hardware Design

[4]

Quectel_BC95_AT_Commands_Manual

BC95 AT Commands Manual

[5]

Quectel_BC95-G&BC68_AT_Commands_Manual

BC95-G and BC68 AT Commands
Manual

Table 8: Terms and Abbreviations
Abbreviation

Description

IC

Integrated Circuit

MCU

Microprogrammed Control Unit

NB-IoT

Narrow Band Internet of Things

PSM

Power Saving Mode

TAU

Tracking Area Update

BC95&BC95-G&BC68_Low_Power_Design_Guide

18 / 18



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.7
Linearized                      : No
Encryption                      : Standard V4.4 (128-bit)
User Access                     : Print, Copy, Extract, Print high-res
Author                          : kelly
Create Date                     : 2018:06:04 16:17:17+08:00
Modify Date                     : 2018:06:04 16:28:21+08:00
Language                        : zh-CN
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-20:48:00
Producer                        : Microsoft® Word 2016
Format                          : application/pdf
Creator                         : kelly
Creator Tool                    : Microsoft® Word 2016
Metadata Date                   : 2018:06:04 16:28:21+08:00
Document ID                     : uuid:33C640ED-7D6F-4278-B102-BAE3D33D55F3
Instance ID                     : uuid:c9d7da71-dc92-4c66-af48-42b02ae243d0
Page Mode                       : UseOutlines
Page Count                      : 19
EXIF Metadata provided by EXIF.tools

Navigation menu