STM32F413/423 Advanced Arm® Based 32 Bit MCUs Reference Manual STM32F4xxxx
User Manual:
Open the PDF directly: View PDF .
Page Count: 1324
Download | ![]() |
Open PDF In Browser | View PDF |
RM0430 Reference manual STM32F413/423 advanced Arm®-based 32-bit MCUs Introduction This reference manual targets application developers. It provides complete information on how to use the memory and the peripherals of the STM32F413/423 microcontrollers. The STM32F413/423 is a line of microcontrollers with different memory sizes, packages and peripherals. For ordering information, mechanical and electrical device characteristics refer to the datasheet. For information on the Arm® Cortex®-M4 with FPU core, refer to the Cortex®-M4 Technical Reference Manual. Related documents Available from STMicroelectronics web site www.st.com: • STM32F413/423xG/xH datasheet • PM0214 “STM32F3 and STM32F4 Series Cortex®-M4 with FPU-M4 programming manual” for information on the Arm®Cortex®-M4 with FPU. May 2018 RM0430 Rev 8 1/1324 www.st.com 1 Contents RM0430 Contents 1 2 Documentation conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 1.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 1.2 List of abbreviations for registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 1.3 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 1.4 Availability of peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 System and memory overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.1 2.2 3 2.1.1 I-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.2 D-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.3 S-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.4 DMA memory bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.5 DMA peripheral bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.1.6 BusMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.1.7 AHB/APB bridges (APB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.2 Memory map and register boundary addresses . . . . . . . . . . . . . . . . . . 58 2.3 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.4 Flash memory overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.5 Bit banding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6 Boot configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Embedded Flash memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Read interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5 2/1324 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.4.1 Relation between CPU clock frequency and Flash memory read time . 68 3.4.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 69 Erase and program operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5.1 Unlocking the Flash control register . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5.2 Program/erase parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 RM0430 Rev 8 RM0430 Contents 3.6 4 5 3.5.3 Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.5.4 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6.1 Description of user option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6.2 Programming user option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.6.3 Read protection (RDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.6.4 Write protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.6.5 Proprietary code readout protection (PCROP) . . . . . . . . . . . . . . . . . . . 79 3.7 One-time programmable bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.8 Flash interface registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.8.1 Flash access control register (FLASH_ACR) . . . . . . . . . . . . . . . . . . . . 82 3.8.2 Flash key register (FLASH_KEYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.8.3 Flash option key register (FLASH_OPTKEYR) . . . . . . . . . . . . . . . . . . . 83 3.8.4 Flash status register (FLASH_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.8.5 Flash control register (FLASH_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.8.6 Flash option control register (FLASH_OPTCR) . . . . . . . . . . . . . . . . . . . 86 3.8.7 Flash interface register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 CRC calculation unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.1 CRC introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.2 CRC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3 CRC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4 CRC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.4.1 Data register (CRC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.4.2 Independent data register (CRC_IDR) . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.3 Control register (CRC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.4.4 CRC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Power controller (PWR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.1 5.2 Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.1.1 Independent A/D converter supply and reference voltage . . . . . . . . . . . 95 5.1.2 Battery backup domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.1.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.1 Power-on reset (POR)/power-down reset (PDR) . . . . . . . . . . . . . . . . . . 98 RM0430 Rev 8 3/1324 36 Contents RM0430 5.3 5.4 5.5 6 Brownout reset (BOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.3 Programmable voltage detector (PVD) . . . . . . . . . . . . . . . . . . . . . . . . . 99 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.3.1 Slowing down system clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.2 Peripheral clock gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.3 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.4 Batch acquisition mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.5 Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3.6 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.3.7 Programming the RTC alternate functions to wake up the device from the Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Power control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 5.4.1 PWR power control register (PWR_CR) . . . . . . . . . . . . . . . . . . . . . . . 112 5.4.2 PWR power control/status register (PWR_CSR) . . . . . . . . . . . . . . . . . 114 PWR register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 Reset and clock control (RCC) for STM32F413/423 . . . . . . . . . . . . . . 117 6.1 6.2 6.3 4/1324 5.2.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 6.1.1 System reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.1.2 Power reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.1.3 Backup domain reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 6.2.1 HSE clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.2 HSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.2.3 PLL configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.4 LSE clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.5 LSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.6 System clock (SYSCLK) selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.7 Clock security system (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.8 RTC/AWU clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2.9 Watchdog clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2.10 Clock-out capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.2.11 Internal/external clock measurement using TIM5/TIM11 . . . . . . . . . . . 126 RCC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3.1 RCC clock control register (RCC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3.2 RCC PLL configuration register (RCC_PLLCFGR) . . . . . . . . . . . . . . . 131 6.3.3 RCC clock configuration register (RCC_CFGR) . . . . . . . . . . . . . . . . . 133 RM0430 Rev 8 RM0430 7 Contents 6.3.4 RCC clock interrupt register (RCC_CIR) . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.5 RCC AHB1 peripheral reset register (RCC_AHB1RSTR) . . . . . . . . . . 138 6.3.6 RCC AHB2 peripheral reset register (RCC_AHB2RSTR) for STM32F413xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3.7 RCC AHB2 peripheral reset register (RCC_AHB2RSTR) for STM32F423xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.8 RCC AHB3 peripheral reset register (RCC_AHB3RSTR) . . . . . . . . . . 142 6.3.9 RCC APB1 peripheral reset register for (RCC_APB1RSTR) . . . . . . . 142 6.3.10 RCC APB2 peripheral reset register (RCC_APB2RSTR) . . . . . . . . . . 146 6.3.11 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR) . . . . . 149 6.3.12 RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) for STM32F413xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3.13 RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) for STM32F423xx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.3.14 RCC AHB3 peripheral clock enable register (RCC_AHB3ENR) . . . . . 153 6.3.15 RCC APB1 peripheral clock enable register (RCC_APB1ENR) . . . . . 153 6.3.16 RCC APB2 peripheral clock enable register (RCC_APB2ENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.3.17 RCC AHB1 peripheral clock enable in low power mode register (RCC_AHB1LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 6.3.18 RCC AHB2 peripheral clock enable in low power mode register (RCC_AHB2LPENR) for STM32F413xx . . . . . . . . . . . . . . . . . . . . . . . 162 6.3.19 RCC AHB2 peripheral clock enable in low power mode register (RCC_AHB2LPENR) for STM32F423xx . . . . . . . . . . . . . . . . . . . . . . . 163 6.3.20 RCC AHB3 peripheral clock enable in low power mode register (RCC_AHB3LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.3.21 RCC APB1 peripheral clock enable in low power mode register (RCC_APB1LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.3.22 RCC APB2 peripheral clock enabled in low power mode register (RCC_APB2LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.3.23 RCC Backup domain control register (RCC_BDCR) . . . . . . . . . . . . . . 171 6.3.24 RCC clock control & status register (RCC_CSR) . . . . . . . . . . . . . . . . 172 6.3.25 RCC spread spectrum clock generation register (RCC_SSCGR) . . . . 174 6.3.26 RCC PLLI2S configuration register (RCC_PLLI2SCFGR) . . . . . . . . . 175 6.3.27 RCC Dedicated Clocks Configuration Register (RCC_DCKCFGR) . . 177 6.3.28 RCC clocks gated enable register (CKGATENR) . . . . . . . . . . . . . . . . 179 6.3.29 RCC Dedicated Clocks Configuration Register (RCC_DCKCFGR2) . 180 6.3.30 RCC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 General-purpose I/Os (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 RM0430 Rev 8 5/1324 36 Contents RM0430 7.1 GPIO introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.2 GPIO main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.3 GPIO functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.4 8 6/1324 7.3.1 General-purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7.3.2 I/O pin multiplexer and mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.3.3 I/O port control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.3.4 I/O port data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.3.5 I/O data bitwise handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.3.6 GPIO locking mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7.3.7 I/O alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.3.8 External interrupt/wakeup lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.3.9 Input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.3.10 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 7.3.11 Alternate function configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.3.12 Analog configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins . . . . 194 7.3.15 Selection of RTC additional functions . . . . . . . . . . . . . . . . . . . . . . . . . 195 GPIO registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7.4.1 GPIO port mode register (GPIOx_MODER) (x = A...H) . . . . . . . . . . . . 196 7.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A...H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A...H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A...H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 7.4.5 GPIO port input data register (GPIOx_IDR) (x = A...H) . . . . . . . . . . . . 198 7.4.6 GPIO port output data register (GPIOx_ODR) (x = A...H) . . . . . . . . . . 198 7.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A...H) . . . . . . . . . 198 7.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A...H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A...H) . . . . . 200 7.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A...H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 7.4.11 GPIO register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 System configuration controller (SYSCFG) . . . . . . . . . . . . . . . . . . . . 204 RM0430 Rev 8 RM0430 9 Contents 8.1 I/O compensation cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 8.2 SYSCFG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 8.2.1 SYSCFG memory remap register (SYSCFG_MEMRMP) . . . . . . . . . . 204 8.2.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC) . . 205 8.2.3 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.2.4 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.2.5 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8.2.6 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 8.2.7 SYSCFG configuration register 2 (SYSCFG_CFGR2) . . . . . . . . . . . . 208 8.2.8 Compensation cell control register (SYSCFG_CMPCR) . . . . . . . . . . . 209 8.2.9 SYSCFG configuration register (SYSCFG_CFGR) . . . . . . . . . . . . . . . 210 8.2.10 DFSDM Multi-channel delay control register (SYSCFG_MCHDLYCR) 210 8.2.11 SYSCFG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . 214 9.1 DMA introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 9.2 DMA main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 9.3 DMA functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9.3.1 DMA block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9.3.2 DMA overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9.3.3 DMA transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 9.3.4 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 9.3.5 Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 9.3.6 DMA streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 9.3.7 Source, destination and transfer modes . . . . . . . . . . . . . . . . . . . . . . . 219 9.3.8 Pointer incrementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9.3.9 Circular mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 9.3.10 Double-buffer mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 9.3.11 Programmable data width, packing/unpacking, endianness . . . . . . . . 224 9.3.12 Single and burst transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.3.13 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.3.14 DMA transfer completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 9.3.15 DMA transfer suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 9.3.16 Flow controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 RM0430 Rev 8 7/1324 36 Contents 10 RM0430 Summary of the possible DMA configurations . . . . . . . . . . . . . . . . . . . 231 9.3.18 Stream configuration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 9.3.19 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 9.4 DMA interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 9.5 DMA registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 9.5.1 DMA low interrupt status register (DMA_LISR) . . . . . . . . . . . . . . . . . . 235 9.5.2 DMA high interrupt status register (DMA_HISR) . . . . . . . . . . . . . . . . . 236 9.5.3 DMA low interrupt flag clear register (DMA_LIFCR) . . . . . . . . . . . . . . 237 9.5.4 DMA high interrupt flag clear register (DMA_HIFCR) . . . . . . . . . . . . . 237 9.5.5 DMA stream x configuration register (DMA_SxCR) . . . . . . . . . . . . . . . 238 9.5.6 DMA stream x number of data register (DMA_SxNDTR) . . . . . . . . . . 241 9.5.7 DMA stream x peripheral address register (DMA_SxPAR) . . . . . . . . . 242 9.5.8 DMA stream x memory 0 address register (DMA_SxM0AR) . . . . . . . . 242 9.5.9 DMA stream x memory 1 address register (DMA_SxM1AR) . . . . . . . . 242 9.5.10 DMA stream x FIFO control register (DMA_SxFCR) . . . . . . . . . . . . . . 243 9.5.11 DMA register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 10.1 10.2 10.3 8/1324 9.3.17 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 249 10.1.1 NVIC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 10.1.2 SysTick calibration value register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 10.1.3 Interrupt and exception vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . 249 10.2.1 EXTI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 10.2.2 EXTI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 10.2.3 Wakeup event management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 10.2.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 10.2.5 External interrupt/event line mapping . . . . . . . . . . . . . . . . . . . . . . . . . 257 EXTI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 10.3.1 Interrupt mask register (EXTI_IMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 10.3.2 Event mask register (EXTI_EMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 10.3.3 Rising trigger selection register (EXTI_RTSR) . . . . . . . . . . . . . . . . . . 259 10.3.4 Falling trigger selection register (EXTI_FTSR) . . . . . . . . . . . . . . . . . . 260 10.3.5 Software interrupt event register (EXTI_SWIER) . . . . . . . . . . . . . . . . 261 10.3.6 Pending register (EXTI_PR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 10.3.7 EXTI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 RM0430 Rev 8 RM0430 11 Contents Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . 264 11.1 FSMC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 11.2 FMC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 11.3 AHB interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 11.3.1 11.4 External device address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 11.4.1 11.5 11.6 12 Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . 266 NOR/PSRAM address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 NOR Flash/PSRAM controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 11.5.1 External memory interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 11.5.2 Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . 271 11.5.3 General timing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 11.5.4 NOR Flash/PSRAM controller asynchronous transactions . . . . . . . . . 273 11.5.5 Synchronous transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 11.5.6 NOR/PSRAM controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 FSMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 Quad-SPI interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 12.2 QUADSPI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 12.3 QUADSPI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 12.3.1 QUADSPI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 12.3.2 QUADSPI pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 12.3.3 QUADSPI command sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 12.3.4 QUADSPI signal interface protocol modes . . . . . . . . . . . . . . . . . . . . . 311 12.3.5 QUADSPI indirect mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 12.3.6 QUADSPI status flag polling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 12.3.7 QUADSPI memory-mapped mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 12.3.8 QUADSPI Flash memory configuration . . . . . . . . . . . . . . . . . . . . . . . . 316 12.3.9 QUADSPI delayed data sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 12.3.10 QUADSPI configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 12.3.11 QUADSPI usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 12.3.12 Sending the instruction only once . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 12.3.13 QUADSPI error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 12.3.14 QUADSPI busy bit and abort functionality . . . . . . . . . . . . . . . . . . . . . . 320 12.3.15 nCS behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 12.4 QUADSPI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 RM0430 Rev 8 9/1324 36 Contents RM0430 12.5 QUADSPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 12.5.1 QUADSPI control register (QUADSPI_CR) . . . . . . . . . . . . . . . . . . . . . 323 12.5.2 QUADSPI device configuration register (QUADSPI_DCR) . . . . . . . . . 326 12.5.3 QUADSPI status register (QUADSPI_SR) . . . . . . . . . . . . . . . . . . . . . 327 12.5.4 QUADSPI flag clear register (QUADSPI_FCR) . . . . . . . . . . . . . . . . . . 328 12.5.5 QUADSPI data length register (QUADSPI_DLR) . . . . . . . . . . . . . . . . 328 12.5.6 QUADSPI communication configuration register (QUADSPI_CCR) . . 329 12.5.7 QUADSPI address register (QUADSPI_AR) . . . . . . . . . . . . . . . . . . . . 331 12.5.8 QUADSPI alternate bytes registers (QUADSPI_ABR) . . . . . . . . . . . . 332 12.5.9 QUADSPI data register (QUADSPI_DR) . . . . . . . . . . . . . . . . . . . . . . . 332 12.5.10 QUADSPI polling status mask register (QUADSPI _PSMKR) . . . . . . . 333 12.5.11 QUADSPI polling status match register (QUADSPI _PSMAR) . . . . . . 333 12.5.12 QUADSPI polling interval register (QUADSPI _PIR) . . . . . . . . . . . . . . 334 12.5.13 QUADSPI low-power timeout register (QUADSPI_LPTR) . . . . . . . . . . 334 12.5.14 QUADSPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 13 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 13.1 ADC introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 13.2 ADC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 13.3 ADC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 13.3.1 ADC on-off control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 13.3.2 ADC clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 13.3.3 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 13.3.4 Single conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 13.3.5 Continuous conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 13.3.6 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 13.3.7 Analog watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 13.3.8 Scan mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 13.3.9 Injected channel management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 13.3.10 Discontinuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 13.4 Data alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 13.5 Channel-wise programmable sampling time . . . . . . . . . . . . . . . . . . . . . 344 13.6 Conversion on external trigger and trigger polarity . . . . . . . . . . . . . . . . 345 13.7 Fast conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 13.8 Data management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 13.8.1 10/1324 Using the DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 RM0430 Rev 8 RM0430 Contents 13.9 13.8.2 Managing a sequence of conversions without using the DMA . . . . . . 347 13.8.3 Conversions without DMA and without overrun detection . . . . . . . . . . 348 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348 13.10 Battery charge monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 13.11 ADC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 13.12 ADC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 13.12.1 ADC status register (ADC_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 13.12.2 ADC control register 1 (ADC_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 13.12.3 ADC control register 2 (ADC_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 13.12.4 ADC sample time register 1 (ADC_SMPR1) . . . . . . . . . . . . . . . . . . . . 356 13.12.5 ADC sample time register 2 (ADC_SMPR2) . . . . . . . . . . . . . . . . . . . . 357 13.12.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4) . . 357 13.12.7 ADC watchdog higher threshold register (ADC_HTR) . . . . . . . . . . . . . 357 13.12.8 ADC watchdog lower threshold register (ADC_LTR) . . . . . . . . . . . . . . 358 13.12.9 ADC regular sequence register 1 (ADC_SQR1) . . . . . . . . . . . . . . . . . 358 13.12.10 ADC regular sequence register 2 (ADC_SQR2) . . . . . . . . . . . . . . . . . 359 13.12.11 ADC regular sequence register 3 (ADC_SQR3) . . . . . . . . . . . . . . . . . 360 13.12.12 ADC injected sequence register (ADC_JSQR) . . . . . . . . . . . . . . . . . . 361 13.12.13 ADC injected data register x (ADC_JDRx) (x= 1..4) . . . . . . . . . . . . . . 361 13.12.14 ADC regular data register (ADC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . 362 13.12.15 ADC Common status register (ADC_CSR) . . . . . . . . . . . . . . . . . . . . . 362 13.12.16 ADC common control register (ADC_CCR) . . . . . . . . . . . . . . . . . . . . . 363 13.12.17 ADC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 14.1 DAC introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 14.2 DAC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 14.3 DAC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 14.3.1 DAC channel enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 14.3.2 DAC output buffer enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 14.3.3 DAC data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 14.3.4 DAC conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 14.3.5 DAC output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 14.3.6 DAC trigger selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 14.3.7 DMA request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 14.3.8 Noise generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 RM0430 Rev 8 11/1324 36 Contents RM0430 14.3.9 14.4 Triangle-wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 Dual DAC channel conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 14.4.1 Independent trigger without wave generation . . . . . . . . . . . . . . . . . . . 374 14.4.2 Independent trigger with single LFSR generation . . . . . . . . . . . . . . . . 374 14.4.3 Independent trigger with different LFSR generation . . . . . . . . . . . . . . 374 14.4.4 Independent trigger with single triangle generation . . . . . . . . . . . . . . . 375 14.4.5 Independent trigger with different triangle generation . . . . . . . . . . . . . 375 14.4.6 Simultaneous software start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 14.4.7 Simultaneous trigger without wave generation . . . . . . . . . . . . . . . . . . 376 14.4.8 Simultaneous trigger with single LFSR generation . . . . . . . . . . . . . . . 376 14.4.9 Simultaneous trigger with different LFSR generation . . . . . . . . . . . . . 376 14.4.10 Simultaneous trigger with single triangle generation . . . . . . . . . . . . . . 377 14.4.11 Simultaneous trigger with different triangle generation . . . . . . . . . . . . 377 14.5 DAC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 14.5.1 DAC control register (DAC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 14.5.2 DAC software trigger register (DAC_SWTRIGR) . . . . . . . . . . . . . . . . . 381 14.5.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 14.5.4 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 14.5.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 14.5.6 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 14.5.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 14.5.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 14.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 14.5.10 DUAL DAC 12-bit left aligned data holding register (DAC_DHR12LD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 14.5.11 DUAL DAC 8-bit right aligned data holding register (DAC_DHR8RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 14.5.12 DAC channel1 data output register (DAC_DOR1) . . . . . . . . . . . . . . . . 385 14.5.13 DAC channel2 data output register (DAC_DOR2) . . . . . . . . . . . . . . . . 385 14.5.14 DAC status register (DAC_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 14.5.15 DAC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 15 12/1324 Digital filter for sigma delta modulators (DFSDM) . . . . . . . . . . . . . . . 388 RM0430 Rev 8 RM0430 Contents 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 15.2 DFSDM main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 15.3 DFSDM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 15.4 DFSDM functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 15.4.1 DFSDM block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 15.4.2 DFSDM pins and internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 15.4.3 DFSDM reset and clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 15.4.4 Serial channel transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 15.4.5 Configuring the input serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . 407 15.4.6 Parallel data inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 15.4.7 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 15.4.8 Digital filter configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 15.4.9 Integrator unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 15.4.10 Analog watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 15.4.11 Short-circuit detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 15.4.12 Extreme detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 15.4.13 Data unit block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 15.4.14 Signed data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 15.4.15 Launching conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 15.4.16 Continuous and fast continuous modes . . . . . . . . . . . . . . . . . . . . . . . . 417 15.4.17 Request precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 15.4.18 Power optimization in run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 15.5 DFSDM interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 15.6 DFSDM DMA transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 15.7 DFSDM channel y registers (y=0..7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 15.8 15.7.1 DFSDM channel y configuration register (DFSDM_CHyCFGR1) . . . . 420 15.7.2 DFSDM channel y configuration register (DFSDM_CHyCFGR2) . . . . 423 15.7.3 DFSDM channel y analog watchdog and short-circuit detector register (DFSDM_CHyAWSCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 15.7.4 DFSDM channel y watchdog filter data register (DFSDM_CHyWDATR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 15.7.5 DFSDM channel y data input register (DFSDM_CHyDATINR) . . . . . . 425 DFSDM filter x module registers (x=0..3) . . . . . . . . . . . . . . . . . . . . . . . . 426 15.8.1 DFSDM filter x control register 1 (DFSDM_FLTxCR1) . . . . . . . . . . . . 426 15.8.2 DFSDM filter x control register 2 (DFSDM_FLTxCR2) . . . . . . . . . . . . 429 15.8.3 DFSDM filter x interrupt and status register (DFSDM_FLTxISR) . . . . . 430 15.8.4 DFSDM filter x interrupt flag clear register (DFSDM_FLTxICR) . . . . . 432 RM0430 Rev 8 13/1324 36 Contents RM0430 15.8.5 DFSDM filter x injected channel group selection register (DFSDM_FLTxJCHGR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 15.8.6 DFSDM filter x control register (DFSDM_FLTxFCR) . . . . . . . . . . . . . . 433 15.8.7 DFSDM filter x data register for injected group (DFSDM_FLTxJDATAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 15.8.8 DFSDM filter x data register for the regular channel (DFSDM_FLTxRDATAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 15.8.9 DFSDM filter x analog watchdog high threshold register (DFSDM_FLTxAWHTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 15.8.10 DFSDM filter x analog watchdog low threshold register (DFSDM_FLTxAWLTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 15.8.11 DFSDM filter x analog watchdog status register (DFSDM_FLTxAWSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 15.8.12 DFSDM filter x analog watchdog clear flag register (DFSDM_FLTxAWCFR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 15.8.13 DFSDM filter x extremes detector maximum register (DFSDM_FLTxEXMAX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 15.8.14 DFSDM filter x extremes detector minimum register (DFSDM_FLTxEXMIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 15.8.15 DFSDM filter x conversion timer register (DFSDM_FLTxCNVTIMR) . . 439 15.8.16 DFSDM register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 16 14/1324 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . 450 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 16.2 RNG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 16.3 RNG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 16.3.1 RNG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 16.3.2 RNG internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 16.3.3 Random number generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 16.3.4 RNG initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 16.3.5 RNG operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 16.3.6 RNG clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 16.3.7 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 16.4 RNG low-power usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 16.5 RNG interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 16.6 RNG processing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 16.7 Entropy source validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 16.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 16.7.2 Validation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 RM0430 Rev 8 RM0430 Contents 16.7.3 16.8 17 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 RNG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 16.8.1 RNG control register (RNG_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 16.8.2 RNG status register (RNG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 16.8.3 RNG data register (RNG_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 16.8.4 RNG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 Advanced-control timers (TIM1&TIM8) . . . . . . . . . . . . . . . . . . . . . . . . 462 17.1 TIM1&TIM8 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 17.2 TIM1&TIM8 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 17.3 TIM1&TIM8 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 17.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 17.3.2 Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 17.3.3 Repetition counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 17.3.4 Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 17.3.5 Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 17.3.6 Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 17.3.7 PWM input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 17.3.8 Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 17.3.9 Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 17.3.10 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 17.3.11 Complementary outputs and dead-time insertion . . . . . . . . . . . . . . . . 490 17.3.12 Using the break function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 17.3.13 Clearing the OCxREF signal on an external event . . . . . . . . . . . . . . . 495 17.3.14 6-step PWM generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 17.3.15 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 17.3.16 Encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 17.3.17 Timer input XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 17.3.18 Interfacing with Hall sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501 17.3.19 TIMx and external trigger synchronization . . . . . . . . . . . . . . . . . . . . . . 503 17.3.20 Timer synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 17.3.21 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 17.4 TIM1&TIM8 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 17.4.1 TIM1&TIM8 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . 507 17.4.2 TIM1&TIM8 control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . 508 17.4.3 TIM1&TIM8 slave mode control register (TIMx_SMCR) . . . . . . . . . . . 510 17.4.4 TIM1&TIM8 DMA/interrupt enable register (TIMx_DIER) . . . . . . . . . . 512 RM0430 Rev 8 15/1324 36 Contents RM0430 17.4.5 TIM1&TIM8 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . 514 17.4.6 TIM1&TIM8 event generation register (TIMx_EGR) . . . . . . . . . . . . . . 515 17.4.7 TIM1&TIM8 capture/compare mode register 1 (TIMx_CCMR1) . . . . . 517 17.4.8 TIM1&TIM8 capture/compare mode register 2 (TIMx_CCMR2) . . . . . 520 17.4.9 TIM1&TIM8 capture/compare enable register (TIMx_CCER) . . . . . . . 521 17.4.10 TIM1&TIM8 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 17.4.11 TIM1&TIM8 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 17.4.12 TIM1 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . . . . . . 525 17.4.13 TIM1&TIM8 repetition counter register (TIMx_RCR) . . . . . . . . . . . . . . 526 17.4.14 TIM1&TIM8 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . 526 17.4.15 TIM1 capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . . . . . . . 527 17.4.16 TIM1&TIM8 capture/compare register 3 (TIMx_CCR3) . . . . . . . . . . . . 527 17.4.17 TIM1&TIM8 capture/compare register 4 (TIMx_CCR4) . . . . . . . . . . . . 528 17.4.18 TIM1&TIM8 break and dead-time register (TIMx_BDTR) . . . . . . . . . . 528 17.4.19 TIM1&TIM8 DMA control register (TIMx_DCR) . . . . . . . . . . . . . . . . . . 530 17.4.20 TIM1&TIM8 DMA address for full transfer (TIMx_DMAR) . . . . . . . . . . 531 17.4.21 TIM1&TIM8 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 18 General-purpose timers (TIM2 to TIM5) . . . . . . . . . . . . . . . . . . . . . . . . 534 18.1 TIM2 to TIM5 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 18.2 TIM2 to TIM5 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 18.3 TIM2 to TIM5 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 18.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 18.3.2 Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 18.3.3 Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 18.3.4 Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 18.3.5 Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 18.3.6 PWM input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 18.3.7 Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 18.3.8 Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 18.3.9 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 18.3.10 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 18.3.11 Clearing the OCxREF signal on an external event . . . . . . . . . . . . . . . 559 18.3.12 Encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 18.3.13 Timer input XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 18.3.14 Timers and external trigger synchronization . . . . . . . . . . . . . . . . . . . . 563 18.3.15 Timer synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 16/1324 RM0430 Rev 8 RM0430 Contents 18.3.16 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571 18.4 TIM2 to TIM5 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572 18.4.1 TIMx control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . 572 18.4.2 TIMx control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . 574 18.4.3 TIMx slave mode control register (TIMx_SMCR) . . . . . . . . . . . . . . . . . 575 18.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER) . . . . . . . . . . . . . . . . 577 18.4.5 TIMx status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 18.4.6 TIMx event generation register (TIMx_EGR) . . . . . . . . . . . . . . . . . . . . 580 18.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) . . . . . . . . . . . 581 18.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2) . . . . . . . . . . . 584 18.4.9 TIMx capture/compare enable register (TIMx_CCER) . . . . . . . . . . . . . 585 18.4.10 TIMx counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 18.4.11 TIMx prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 18.4.12 TIMx auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . . . . . . 587 18.4.13 TIMx capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . . . . . . 588 18.4.14 TIMx capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . . . . . . . 588 18.4.15 TIMx capture/compare register 3 (TIMx_CCR3) . . . . . . . . . . . . . . . . . 589 18.4.16 TIMx capture/compare register 4 (TIMx_CCR4) . . . . . . . . . . . . . . . . . 589 18.4.17 TIMx DMA control register (TIMx_DCR) . . . . . . . . . . . . . . . . . . . . . . . 590 18.4.18 TIMx DMA address for full transfer (TIMx_DMAR) . . . . . . . . . . . . . . . 590 18.4.19 TIM2 option register (TIM2_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591 18.4.20 TIM5 option register (TIM5_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592 18.4.21 TIMx register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 19 General-purpose timers (TIM9 to TIM14) . . . . . . . . . . . . . . . . . . . . . . . 595 19.1 TIM9 to TIM14 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 19.2 TIM9 to TIM14 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 19.3 19.2.1 TIM9/TIM12 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 19.2.2 TIM10/TIM11 and TIM13/TIM14 main features . . . . . . . . . . . . . . . . . . 596 TIM9 to TIM14 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 19.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598 19.3.2 Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 19.3.3 Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603 19.3.4 Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 19.3.5 Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 19.3.6 PWM input mode (only for TIM9/12) . . . . . . . . . . . . . . . . . . . . . . . . . . 607 19.3.7 Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608 RM0430 Rev 8 17/1324 36 Contents RM0430 19.3.8 Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609 19.3.9 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610 19.3.10 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 19.3.11 TIM9/12 external trigger synchronization . . . . . . . . . . . . . . . . . . . . . . . 613 19.3.12 Timer synchronization (TIM9/12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616 19.3.13 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616 19.4 TIM9 and TIM12 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616 19.4.1 TIM9/12 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . . . . 616 19.4.2 TIM9/12 slave mode control register (TIMx_SMCR) . . . . . . . . . . . . . . 618 19.4.3 TIM9/12 Interrupt enable register (TIMx_DIER) . . . . . . . . . . . . . . . . . 619 19.4.4 TIM9/12 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 620 19.4.5 TIM9/12 event generation register (TIMx_EGR) . . . . . . . . . . . . . . . . . 622 19.4.6 TIM9/12 capture/compare mode register 1 (TIMx_CCMR1) . . . . . . . . 622 19.4.7 TIM9/12 capture/compare enable register (TIMx_CCER) . . . . . . . . . . 626 19.4.8 TIM9/12 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 19.4.9 TIM9/12 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 19.4.10 TIM9/12 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . . . 627 19.4.11 TIM9/12 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . . . . 628 19.4.12 TIM9/12 capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . . . . . 628 19.4.13 TIM9/12 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 19.5 TIM10/11/13/14 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631 19.5.1 TIM10/11/13/14 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . 631 19.5.2 TIM10/11/13/14 Interrupt enable register (TIMx_DIER) . . . . . . . . . . . . 632 19.5.3 TIM10/11/13/14 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . 632 19.5.4 TIM10/11/13/14 event generation register (TIMx_EGR) . . . . . . . . . . . 633 19.5.5 TIM10/11/13/14 capture/compare mode register 1 (TIMx_CCMR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 19.5.6 TIM10/11/13/14 capture/compare enable register (TIMx_CCER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 19.5.7 TIM10/11/13/14 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . 638 19.5.8 TIM10/11/13/14 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . 638 19.5.9 TIM10/11/13/14 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . 638 19.5.10 TIM10/11/13/14 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . 639 19.5.11 TIM11 option register 1 (TIM11_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . 639 19.5.12 TIM10/11/13/14 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 20 18/1324 Basic timers (TIM6/7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 RM0430 Rev 8 RM0430 Contents 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 20.2 TIM6/7 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 20.3 TIM6/7 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 20.4 21 20.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 20.3.2 Counting mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 20.3.3 Clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 20.3.4 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649 TIM6/7 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 20.4.1 TIM6/7 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . 650 20.4.2 TIM6/7 control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . 651 20.4.3 TIM6/7 DMA/Interrupt enable register (TIMx_DIER) . . . . . . . . . . . . . . 651 20.4.4 TIM6/7 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 20.4.5 TIM6/7 event generation register (TIMx_EGR) . . . . . . . . . . . . . . . . . . 652 20.4.6 TIM6/7 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 20.4.7 TIM6/7 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653 20.4.8 TIM6/7 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . . . . 653 20.4.9 TIM6/7 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 Low-power timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 21.2 LPTIM main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 21.3 LPTIM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 21.4 LPTIM functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 21.4.1 LPTIM block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 21.4.2 LPTIM trigger mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 21.4.3 LPTIM input1 multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 21.4.4 LPTIM reset and clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 21.4.5 Glitch filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657 21.4.6 Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658 21.4.7 Trigger multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 21.4.8 Operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 21.4.9 Timeout function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661 21.4.10 Waveform generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661 21.4.11 Register update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662 21.4.12 Counter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 21.4.13 Timer enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 RM0430 Rev 8 19/1324 36 Contents RM0430 21.4.14 Encoder mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664 21.4.15 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 21.5 LPTIM interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 21.6 LPTIM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 21.6.1 LPTIM interrupt and status register (LPTIM_ISR) . . . . . . . . . . . . . . . . 666 21.6.2 LPTIM interrupt clear register (LPTIM_ICR) . . . . . . . . . . . . . . . . . . . . 667 21.6.3 LPTIM interrupt enable register (LPTIM_IER) . . . . . . . . . . . . . . . . . . . 668 21.6.4 LPTIM configuration register (LPTIM_CFGR) . . . . . . . . . . . . . . . . . . . 670 21.6.5 LPTIM control register (LPTIM_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . 672 21.6.6 LPTIM compare register (LPTIM_CMP) . . . . . . . . . . . . . . . . . . . . . . . 673 21.6.7 LPTIM autoreload register (LPTIM_ARR) . . . . . . . . . . . . . . . . . . . . . . 674 21.6.8 LPTIM counter register (LPTIM_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . 674 21.6.9 LPTIM1 option register (LPTIM1_OPTR) . . . . . . . . . . . . . . . . . . . . . . 675 21.6.10 LPTIM register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676 22 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 22.1 IWDG introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 22.2 IWDG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 22.3 IWDG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 22.4 23 20/1324 22.3.1 Hardware watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 22.3.2 Register access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 22.3.3 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679 IWDG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680 22.4.1 Key register (IWDG_KR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680 22.4.2 Prescaler register (IWDG_PR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681 22.4.3 Reload register (IWDG_RLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682 22.4.4 Status register (IWDG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682 22.4.5 IWDG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 23.1 WWDG introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 23.2 WWDG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 23.3 WWDG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 23.4 How to program the watchdog timeout . . . . . . . . . . . . . . . . . . . . . . . . . . 686 23.5 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687 23.6 WWDG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688 RM0430 Rev 8 RM0430 24 Contents 23.6.1 Control register (WWDG_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688 23.6.2 Configuration register (WWDG_CFR) . . . . . . . . . . . . . . . . . . . . . . . . . 689 23.6.3 Status register (WWDG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689 23.6.4 WWDG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690 AES hardware accelerator (AES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 24.2 AES main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 24.3 AES implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 24.4 AES functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 24.4.1 AES block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 24.4.2 AES internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 24.4.3 AES cryptographic core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 24.4.4 AES procedure to perform a cipher operation . . . . . . . . . . . . . . . . . . . 698 24.4.5 AES decryption key preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702 24.4.6 AES ciphertext stealing and data padding . . . . . . . . . . . . . . . . . . . . . . 703 24.4.7 AES task suspend and resume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704 24.4.8 AES basic chaining modes (ECB, CBC) . . . . . . . . . . . . . . . . . . . . . . . 705 24.4.9 AES counter (CTR) mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710 24.4.10 AES Galois/counter mode (GCM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712 24.4.11 AES Galois message authentication code (GMAC) . . . . . . . . . . . . . . 717 24.4.12 AES counter with CBC-MAC (CCM) . . . . . . . . . . . . . . . . . . . . . . . . . . 719 24.4.13 .AES data registers and data swapping . . . . . . . . . . . . . . . . . . . . . . . . 724 24.4.14 AES key registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726 24.4.15 AES initialization vector registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726 24.4.16 AES DMA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726 24.4.17 AES error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729 24.5 AES interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729 24.6 AES processing latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730 24.7 AES registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 24.7.1 AES control register (AES_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731 24.7.2 AES status register (AES_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734 24.7.3 AES data input register (AES_DINR) . . . . . . . . . . . . . . . . . . . . . . . . . 735 24.7.4 AES data output register (AES_DOUTR) . . . . . . . . . . . . . . . . . . . . . . 736 24.7.5 AES key register 0 (AES_KEYR0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736 24.7.6 AES key register 1 (AES_KEYR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 RM0430 Rev 8 21/1324 36 Contents RM0430 24.7.7 AES key register 2 (AES_KEYR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 24.7.8 AES key register 3 (AES_KEYR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738 24.7.9 AES initialization vector register 0 (AES_IVR0) . . . . . . . . . . . . . . . . . . 738 24.7.10 AES initialization vector register 1 (AES_IVR1) . . . . . . . . . . . . . . . . . . 738 24.7.11 AES initialization vector register 2 (AES_IVR2) . . . . . . . . . . . . . . . . . . 739 24.7.12 AES initialization vector register 3 (AES_IVR3) . . . . . . . . . . . . . . . . . . 739 24.7.13 AES key register 4 (AES_KEYR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740 24.7.14 AES key register 5 (AES_KEYR5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740 24.7.15 AES key register 6 (AES_KEYR6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740 24.7.16 AES key register 7 (AES_KEYR7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 24.7.17 AES suspend registers (AES_SUSPxR) . . . . . . . . . . . . . . . . . . . . . . . 741 24.7.18 AES register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742 25 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744 25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744 25.2 RTC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744 25.3 RTC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 25.3.1 Clock and prescalers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 25.3.2 Real-time clock and calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 25.3.3 Programmable alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 25.3.4 Periodic auto-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 25.3.5 RTC initialization and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 748 25.3.6 Reading the calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750 25.3.7 Resetting the RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 25.3.8 RTC synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 25.3.9 RTC reference clock detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 25.3.10 RTC coarse digital calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752 25.3.11 RTC smooth digital calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753 25.3.12 Timestamp function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755 25.3.13 Tamper detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756 25.3.14 Calibration clock output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 25.3.15 Alarm output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758 25.4 RTC and low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758 25.5 RTC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 25.6 RTC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 25.6.1 22/1324 RTC time register (RTC_TR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 RM0430 Rev 8 RM0430 Contents 25.6.2 RTC date register (RTC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761 25.6.3 RTC control register (RTC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 25.6.4 RTC initialization and status register (RTC_ISR) . . . . . . . . . . . . . . . . . 764 25.6.5 RTC prescaler register (RTC_PRER) . . . . . . . . . . . . . . . . . . . . . . . . . 766 25.6.6 RTC wakeup timer register (RTC_WUTR) . . . . . . . . . . . . . . . . . . . . . . 767 25.6.7 RTC calibration register (RTC_CALIBR) . . . . . . . . . . . . . . . . . . . . . . . 767 25.6.8 RTC alarm A register (RTC_ALRMAR) . . . . . . . . . . . . . . . . . . . . . . . . 769 25.6.9 RTC alarm B register (RTC_ALRMBR) . . . . . . . . . . . . . . . . . . . . . . . . 770 25.6.10 RTC write protection register (RTC_WPR) . . . . . . . . . . . . . . . . . . . . . 771 25.6.11 RTC sub second register (RTC_SSR) . . . . . . . . . . . . . . . . . . . . . . . . . 771 25.6.12 RTC shift control register (RTC_SHIFTR) . . . . . . . . . . . . . . . . . . . . . . 772 25.6.13 RTC time stamp time register (RTC_TSTR) . . . . . . . . . . . . . . . . . . . . 773 25.6.14 RTC time stamp date register (RTC_TSDR) . . . . . . . . . . . . . . . . . . . . 773 25.6.15 RTC timestamp sub second register (RTC_TSSSR) . . . . . . . . . . . . . . 774 25.6.16 RTC calibration register (RTC_CALR) . . . . . . . . . . . . . . . . . . . . . . . . . 774 25.6.17 RTC tamper and alternate function configuration register (RTC_TAFCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 25.6.18 RTC alarm A sub second register (RTC_ALRMASSR) . . . . . . . . . . . . 777 25.6.19 RTC alarm B sub second register (RTC_ALRMBSSR) . . . . . . . . . . . . 778 25.6.20 RTC backup registers (RTC_BKPxR) . . . . . . . . . . . . . . . . . . . . . . . . . 779 25.6.21 RTC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779 26 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface . . . . . . . 782 26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 26.2 FMPI2C main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 26.3 FMPI2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 26.4 FMPI2C functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 26.4.1 FMPI2C block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 26.4.2 FMPI2C clock requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 26.4.3 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 26.4.4 FMPI2C initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 26.4.5 Software reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790 26.4.6 Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791 26.4.7 FMPI2C slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793 26.4.8 FMPI2C master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802 26.4.9 FMPI2C_TIMINGR register configuration examples . . . . . . . . . . . . . . 814 26.4.10 SMBus specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815 RM0430 Rev 8 23/1324 36 Contents RM0430 26.4.11 SMBus initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 26.4.12 SMBus: FMPI2C_TIMEOUTR register configuration examples . . . . . 820 26.4.13 SMBus slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 26.4.14 Error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827 26.4.15 DMA requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829 26.4.16 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 26.5 FMPI2C low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 26.6 FMPI2C interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 26.7 FMPI2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 26.7.1 Control register 1 (FMPI2C_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 26.7.2 Control register 2 (FMPI2C_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 26.7.3 Own address 1 register (FMPI2C_OAR1) . . . . . . . . . . . . . . . . . . . . . . 837 26.7.4 Own address 2 register (FMPI2C_OAR2) . . . . . . . . . . . . . . . . . . . . . . 838 26.7.5 Timing register (FMPI2C_TIMINGR) . . . . . . . . . . . . . . . . . . . . . . . . . . 839 26.7.6 Timeout register (FMPI2C_TIMEOUTR) . . . . . . . . . . . . . . . . . . . . . . . 840 26.7.7 Interrupt and status register (FMPI2C_ISR) . . . . . . . . . . . . . . . . . . . . 841 26.7.8 Interrupt clear register (FMPI2C_ICR) . . . . . . . . . . . . . . . . . . . . . . . . . 843 26.7.9 PEC register (FMPI2C_PECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844 26.7.10 Receive data register (FMPI2C_RXDR) . . . . . . . . . . . . . . . . . . . . . . . 845 26.7.11 Transmit data register (FMPI2C_TXDR) . . . . . . . . . . . . . . . . . . . . . . . 845 26.7.12 FMPI2C register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846 27 Inter-integrated circuit (I2C) interface . . . . . . . . . . . . . . . . . . . . . . . . . 848 27.1 I2C introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848 27.2 I2C main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849 27.3 I2C functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 27.4 24/1324 27.3.1 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 27.3.2 I2C slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851 27.3.3 I2C master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854 27.3.4 Error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 27.3.5 Programmable noise filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861 27.3.6 SDA/SCL line control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862 27.3.7 SMBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862 27.3.8 DMA requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865 27.3.9 Packet error checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866 I2C interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867 RM0430 Rev 8 RM0430 Contents 27.5 I2C debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 27.6 I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 27.6.1 I2C Control register 1 (I2C_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 27.6.2 I2C Control register 2 (I2C_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871 27.6.3 I2C Own address register 1 (I2C_OAR1) . . . . . . . . . . . . . . . . . . . . . . . 873 27.6.4 I2C Own address register 2 (I2C_OAR2) . . . . . . . . . . . . . . . . . . . . . . . 873 27.6.5 I2C Data register (I2C_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 27.6.6 I2C Status register 1 (I2C_SR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 27.6.7 I2C Status register 2 (I2C_SR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878 27.6.8 I2C Clock control register (I2C_CCR) . . . . . . . . . . . . . . . . . . . . . . . . . 879 27.6.9 I2C TRISE register (I2C_TRISE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880 27.6.10 I2C FLTR register (I2C_FLTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881 27.6.11 I2C register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882 28 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitter (UART) . . . . . . . . . . . 883 28.1 USART introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883 28.2 USART main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884 28.3 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 28.4 USART functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 28.4.1 USART character description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888 28.4.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889 28.4.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892 28.4.4 Fractional baud rate generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897 28.4.5 USART receiver tolerance to clock deviation . . . . . . . . . . . . . . . . . . . . 906 28.4.6 Multiprocessor communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907 28.4.7 Parity control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909 28.4.8 LIN (local interconnection network) mode . . . . . . . . . . . . . . . . . . . . . . 910 28.4.9 USART synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912 28.4.10 Single-wire half-duplex communication . . . . . . . . . . . . . . . . . . . . . . . . 914 28.4.11 Smartcard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915 28.4.12 IrDA SIR ENDEC block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917 28.4.13 Continuous communication using DMA . . . . . . . . . . . . . . . . . . . . . . . . 919 28.4.14 Hardware flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921 28.5 USART interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 28.6 USART registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924 RM0430 Rev 8 25/1324 36 Contents 29 RM0430 28.6.1 Status register (USART_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924 28.6.2 Data register (USART_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927 28.6.3 Baud rate register (USART_BRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927 28.6.4 Control register 1 (USART_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 28.6.5 Control register 2 (USART_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930 28.6.6 Control register 3 (USART_CR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931 28.6.7 Guard time and prescaler register (USART_GTPR) . . . . . . . . . . . . . . 933 28.6.8 USART register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 Serial peripheral interface/ inter-IC sound (SPI/I2S) . . . . . . . . . . . . . 935 29.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935 29.1.1 SPI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936 29.1.2 SPI extended features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 29.1.3 I2S features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 29.2 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 29.3 SPI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 29.3.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 29.3.2 Communications between one master and one slave . . . . . . . . . . . . . 939 29.3.3 Standard multi-slave communication . . . . . . . . . . . . . . . . . . . . . . . . . . 942 29.3.4 Multi-master communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943 29.3.5 Slave select (NSS) pin management . . . . . . . . . . . . . . . . . . . . . . . . . . 943 29.3.6 Communication formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945 29.3.7 SPI configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947 29.3.8 Procedure for enabling SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 947 29.3.9 Data transmission and reception procedures . . . . . . . . . . . . . . . . . . . 948 29.3.10 Procedure for disabling the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950 29.3.11 Communication using DMA (direct memory addressing) . . . . . . . . . . 951 29.3.12 SPI status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953 29.3.13 SPI error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954 29.4 26/1324 SPI special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955 29.4.1 TI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955 29.4.2 CRC calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956 29.5 SPI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958 29.6 I2S functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959 29.6.1 I2S general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959 29.6.2 I2S full-duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960 RM0430 Rev 8 RM0430 Contents 29.6.3 Supported audio protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961 29.6.4 Clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967 29.6.5 I2S master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 970 29.6.6 I2S slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972 29.6.7 I2S status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973 29.6.8 I2S error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974 29.6.9 I2S interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 29.6.10 DMA features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 29.7 SPI and I2S registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976 29.7.1 SPI control register 1 (SPI_CR1) (not used in I2S mode) . . . . . . . . . . 976 29.7.2 SPI control register 2 (SPI_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978 29.7.3 SPI status register (SPI_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979 29.7.4 SPI data register (SPI_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981 29.7.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981 29.7.6 SPI RX CRC register (SPI_RXCRCR) (not used in I2S mode) . . . . . . 982 29.7.7 SPI TX CRC register (SPI_TXCRCR) (not used in I2S mode) . . . . . . 982 29.7.8 SPI_I2S configuration register (SPI_I2SCFGR) . . . . . . . . . . . . . . . . . . 983 29.7.9 SPI_I2S prescaler register (SPI_I2SPR) . . . . . . . . . . . . . . . . . . . . . . . 984 29.7.10 SPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986 30 Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987 30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987 30.2 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988 30.3 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988 30.4 Main SAI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 990 30.5 SAI synchronization mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 30.6 Audio data size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 30.7 Frame synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 30.7.1 Frame length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 30.7.2 Frame synchronization polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 30.7.3 Frame synchronization active level length . . . . . . . . . . . . . . . . . . . . . . 993 30.7.4 Frame synchronization offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993 30.7.5 FS signal role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993 30.8 Slot configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994 30.9 SAI clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996 RM0430 Rev 8 27/1324 36 Contents RM0430 30.10 Internal FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997 30.11 AC’97 link controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 30.12 Specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 30.12.1 Mute mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001 30.12.2 MONO/STEREO function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001 30.12.3 Companding mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002 30.12.4 Output data line management on an inactive slot . . . . . . . . . . . . . . . 1003 30.13 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 30.13.1 FIFO overrun/underrun (OVRUDR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 30.13.2 Anticipated frame synchronisation detection (AFSDET) . . . . . . . . . . 1007 30.13.3 Late frame synchronization detection . . . . . . . . . . . . . . . . . . . . . . . . 1007 30.13.4 Codec not ready (CNRDY AC’97) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008 30.13.5 Wrong clock configuration in master mode (with NODIV = 0) . . . . . . 1008 30.14 Interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1008 30.15 Disabling the SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009 30.16 SAI DMA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1010 30.17 SAI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1011 30.17.1 SAI xConfiguration register 1 (SAI_xCR1) where x is A or B . . . . . . 1011 30.17.2 SAI xConfiguration register 2 (SAI_xCR2) where x is A or B . . . . . . 1014 30.17.3 SAI xFrame configuration register (SAI_XFRCR) where x is A or B . 1016 30.17.4 SAI xSlot register (SAI_xSLOTR) where x is A or B . . . . . . . . . . . . . 1018 30.17.5 SAI xInterrupt mask register2(SAI_xIM) where x is A or B . . . . . . . . 1019 30.17.6 SAI xStatus register (SAI_xSR) where x is A or B . . . . . . . . . . . . . . . 1021 30.17.7 SAI xClear flag register (SAI_xCLRFR) where X is A or B . . . . . . . . 1023 30.17.8 SAI xData register (SAI_xDR) where x is A or B . . . . . . . . . . . . . . . . 1024 30.17.9 SAI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024 31 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . 1026 31.1 SDIO main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026 31.2 SDIO bus topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026 31.3 SDIO functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 31.4 28/1324 31.3.1 SDIO adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 31.3.2 SDIO APB2 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1041 Card functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042 31.4.1 Card identification mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042 31.4.2 Card reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043 RM0430 Rev 8 RM0430 Contents 31.4.3 Operating voltage range validation . . . . . . . . . . . . . . . . . . . . . . . . . . 1043 31.4.4 Card identification process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043 31.4.5 Block write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044 31.4.6 Block read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045 31.4.7 Stream access, stream write and stream read (MultiMediaCard only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045 31.4.8 Erase: group erase and sector erase . . . . . . . . . . . . . . . . . . . . . . . . 1047 31.4.9 Wide bus selection or deselection . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047 31.4.10 Protection management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047 31.4.11 Card status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051 31.4.12 SD status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054 31.4.13 SD I/O mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058 31.4.14 Commands and responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059 31.5 31.6 Response formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 31.5.1 R1 (normal response command) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 31.5.2 R1b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 31.5.3 R2 (CID, CSD register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 31.5.4 R3 (OCR register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 31.5.5 R4 (Fast I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 31.5.6 R4b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 31.5.7 R5 (interrupt request) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 31.5.8 R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 SDIO I/O card-specific operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 31.6.1 SDIO I/O read wait operation by SDIO_D2 signalling . . . . . . . . . . . . 1066 31.6.2 SDIO read wait operation by stopping SDIO_CK . . . . . . . . . . . . . . . 1067 31.6.3 SDIO suspend/resume operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 31.6.4 SDIO interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 31.7 HW flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 31.8 SDIO registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068 31.8.1 SDIO power control register (SDIO_POWER) . . . . . . . . . . . . . . . . . . 1068 31.8.2 SDIO clock control register (SDIO_CLKCR) . . . . . . . . . . . . . . . . . . . 1068 31.8.3 SDIO argument register (SDIO_ARG) . . . . . . . . . . . . . . . . . . . . . . . . 1070 31.8.4 SDIO command register (SDIO_CMD) . . . . . . . . . . . . . . . . . . . . . . . 1070 31.8.5 SDIO command response register (SDIO_RESPCMD) . . . . . . . . . . 1071 31.8.6 SDIO response 1..4 register (SDIO_RESPx) . . . . . . . . . . . . . . . . . . 1071 31.8.7 SDIO data timer register (SDIO_DTIMER) . . . . . . . . . . . . . . . . . . . . 1072 31.8.8 SDIO data length register (SDIO_DLEN) . . . . . . . . . . . . . . . . . . . . . 1073 RM0430 Rev 8 29/1324 36 Contents RM0430 31.8.9 SDIO data control register (SDIO_DCTRL) . . . . . . . . . . . . . . . . . . . . 1073 31.8.10 SDIO data counter register (SDIO_DCOUNT) . . . . . . . . . . . . . . . . . . 1076 31.8.11 SDIO status register (SDIO_STA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 31.8.12 SDIO interrupt clear register (SDIO_ICR) . . . . . . . . . . . . . . . . . . . . . 1077 31.8.13 SDIO mask register (SDIO_MASK) . . . . . . . . . . . . . . . . . . . . . . . . . . 1079 31.8.14 SDIO FIFO counter register (SDIO_FIFOCNT) . . . . . . . . . . . . . . . . . 1081 31.8.15 SDIO data FIFO register (SDIO_FIFO) . . . . . . . . . . . . . . . . . . . . . . . 1082 31.8.16 SDIO register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083 32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 32.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 32.2 bxCAN main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 32.3 bxCAN general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 32.4 32.5 30/1324 32.3.1 CAN 2.0B active core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 32.3.2 Control, status and configuration registers . . . . . . . . . . . . . . . . . . . . 1087 32.3.3 Tx mailboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087 32.3.4 Acceptance filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087 bxCAN operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089 32.4.1 Initialization mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089 32.4.2 Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 32.4.3 Sleep mode (low-power) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091 32.5.1 Silent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091 32.5.2 Loop back mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092 32.5.3 Loop back combined with silent mode . . . . . . . . . . . . . . . . . . . . . . . . 1092 32.6 Behavior in debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093 32.7 bxCAN functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093 32.7.1 Transmission handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093 32.7.2 Time triggered communication mode . . . . . . . . . . . . . . . . . . . . . . . . . 1095 32.7.3 Reception handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095 32.7.4 Identifier filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096 32.7.5 Message storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100 32.7.6 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102 32.7.7 Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102 32.8 bxCAN interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1105 32.9 CAN registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1106 RM0430 Rev 8 RM0430 33 Contents 32.9.1 Register access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106 32.9.2 CAN control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106 32.9.3 CAN mailbox registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116 32.9.4 CAN filter registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123 32.9.5 bxCAN register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127 USB on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . . . . . . . . . . 1131 33.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1131 33.2 OTG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1132 33.2.1 General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132 33.2.2 Host-mode features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133 33.2.3 Peripheral-mode features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133 33.2.4 Split rail for USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133 33.3 OTG implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1134 33.4 OTG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1135 33.5 33.6 33.7 33.8 33.9 33.4.1 OTG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 33.4.2 USB OTG pin and internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 33.4.3 OTG core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136 33.4.4 Full-speed OTG PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136 OTG dual role device (DRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1137 33.5.1 ID line detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137 33.5.2 HNP dual role device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138 33.5.3 SRP dual role device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138 USB peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1138 33.6.1 SRP-capable peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139 33.6.2 Peripheral states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139 33.6.3 Peripheral endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1140 USB host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1142 33.7.1 SRP-capable host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143 33.7.2 USB host states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143 33.7.3 Host channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145 33.7.4 Host scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146 SOF trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1147 33.8.1 Host SOFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147 33.8.2 Peripheral SOFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147 OTG low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1148 RM0430 Rev 8 31/1324 36 Contents RM0430 33.10 Dynamic update of the OTG_HFIR register . . . . . . . . . . . . . . . . . . . . . .1149 33.11 USB data FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1149 33.11.1 Peripheral FIFO architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150 33.11.2 Host FIFO architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151 33.11.3 FIFO RAM allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152 33.12 OTG_FS system performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1154 33.13 OTG_FS interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1154 33.14 OTG_FS control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . .1156 33.14.1 CSR memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156 33.15 OTG_FS registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1160 33.15.1 OTG control and status register (OTG_GOTGCTL) . . . . . . . . . . . . . 1161 33.15.2 OTG interrupt register (OTG_GOTGINT) . . . . . . . . . . . . . . . . . . . . . 1164 33.15.3 OTG AHB configuration register (OTG_GAHBCFG) . . . . . . . . . . . . . 1165 33.15.4 OTG USB configuration register (OTG_GUSBCFG) . . . . . . . . . . . . . 1166 33.15.5 OTG reset register (OTG_GRSTCTL) . . . . . . . . . . . . . . . . . . . . . . . . 1168 33.15.6 OTG core interrupt register (OTG_GINTSTS) . . . . . . . . . . . . . . . . . . 1171 33.15.7 OTG interrupt mask register (OTG_GINTMSK) . . . . . . . . . . . . . . . . . 1175 33.15.8 OTG receive status debug read/OTG status read and pop registers (OTG_GRXSTSR/OTG_GRXSTSP) . . . . . . . . . . . . . . 1178 33.15.9 OTG receive FIFO size register (OTG_GRXFSIZ) . . . . . . . . . . . . . . 1180 33.15.10 OTG host non-periodic transmit FIFO size register (OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size (OTG_DIEPTXF0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1180 33.15.11 OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181 33.15.12 OTG general core configuration register (OTG_GCCFG) . . . . . . . . . 1182 33.15.13 OTG core ID register (OTG_CID) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1184 33.15.14 OTG core LPM configuration register (OTG_GLPMCFG) . . . . . . . . . 1184 33.15.15 OTG host periodic transmit FIFO size register (OTG_HPTXFSIZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188 33.15.16 OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5, where x is the FIFO number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188 33.15.17 Host-mode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189 33.15.18 OTG host configuration register (OTG_HCFG) . . . . . . . . . . . . . . . . . 1189 33.15.19 OTG host frame interval register (OTG_HFIR) . . . . . . . . . . . . . . . . . 1190 33.15.20 OTG host frame number/frame time remaining register (OTG_HFNUM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191 32/1324 RM0430 Rev 8 RM0430 Contents 33.15.21 OTG_Host periodic transmit FIFO/queue status register (OTG_HPTXSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191 33.15.22 OTG host all channels interrupt register (OTG_HAINT) . . . . . . . . . . 1192 33.15.23 OTG host all channels interrupt mask register (OTG_HAINTMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193 33.15.24 OTG host port control and status register (OTG_HPRT) . . . . . . . . . . 1194 33.15.25 OTG host channel x characteristics register (OTG_HCCHARx) (x = 0..11, where x = Channel number) . . . . . . . . . . . . . . . . . . . . . . . 1196 33.15.26 OTG host channel x interrupt register (OTG_HCINTx) (x = 0..11, where x = Channel number) . . . . . . . . . . . . . . . . . . . . . . . 1197 33.15.27 OTG host channel x interrupt mask register (OTG_HCINTMSKx) (x = 0..11, where x = Channel number) . . . . . . . . . . . . . . . . . . . . . . . 1198 33.15.28 OTG host channel x transfer size register (OTG_HCTSIZx) (x = 0..11, where x = Channel number) . . . . . . . . . . . . . . . . . . . . . . . 1199 33.15.29 Device-mode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200 33.15.30 OTG device configuration register (OTG_DCFG) . . . . . . . . . . . . . . . 1200 33.15.31 OTG device control register (OTG_DCTL) . . . . . . . . . . . . . . . . . . . . 1201 33.15.32 OTG device status register (OTG_DSTS) . . . . . . . . . . . . . . . . . . . . . 1204 33.15.33 OTG device IN endpoint common interrupt mask register (OTG_DIEPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205 33.15.34 OTG device OUT endpoint common interrupt mask register (OTG_DOEPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206 33.15.35 OTG device all endpoints interrupt register (OTG_DAINT) . . . . . . . . 1207 33.15.36 OTG all endpoints interrupt mask register (OTG_DAINTMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208 33.15.37 OTG device VBUS discharge time register (OTG_DVBUSDIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208 33.15.38 OTG device VBUS pulsing time register (OTG_DVBUSPULSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209 33.15.39 OTG device IN endpoint FIFO empty interrupt mask register (OTG_DIEPEMPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1209 33.15.40 OTG device control IN endpoint 0 control register (OTG_DIEPCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210 33.15.41 OTG device IN endpoint x control register (OTG_DIEPCTLx) (x = 1..5 , where x = endpoint number) . . . . . . . . . . . . . . . . . . . . . . . 1211 33.15.42 OTG device IN endpoint x interrupt register (OTG_DIEPINTx) (x = 0..5, where x = Endpoint number) . . . . . . . . . . . . . . . . . . . . . . . 1214 33.15.43 OTG device IN endpoint 0 transfer size register (OTG_DIEPTSIZ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215 33.15.44 OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5, where x = endpoint number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216 RM0430 Rev 8 33/1324 36 Contents RM0430 33.15.45 OTG device IN endpoint x transfer size register (OTG_DIEPTSIZx) (x = 1..5, where x = endpoint number) . . . . . . . . . . . . . . . . . . . . . . . . 1217 33.15.46 OTG device control OUT endpoint 0 control register (OTG_DOEPCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218 33.15.47 OTG device OUT endpoint x interrupt register (OTG_DOEPINTx) (x = 0..5, where x = Endpoint number) . . . . . . . . . . . . . . . . . . . . . . . 1219 33.15.48 OTG device OUT endpoint 0 transfer size register (OTG_DOEPTSIZ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221 33.15.49 OTG device OUT endpoint x control register (OTG_DOEPCTLx) (x = 1..5, where x = endpoint number) . . . . . . . . . . . . . . . . . . . . . . . . 1222 33.15.50 OTG device OUT endpoint x transfer size register (OTG_DOEPTSIZx) (x = 1..5, where x = Endpoint number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224 33.15.51 OTG power and clock gating control register (OTG_PCGCCTL) . . . 1225 33.15.52 OTG_FS register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226 33.16 OTG_FS programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234 33.16.1 Core initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234 33.16.2 Host initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234 33.16.3 Device initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235 33.16.4 Host programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236 33.16.5 Device programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257 33.16.6 Worst case response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276 33.16.7 OTG programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1278 34 Debug support (DBG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284 34.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284 34.2 Reference Arm® documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285 34.3 SWJ debug port (serial wire and JTAG) . . . . . . . . . . . . . . . . . . . . . . . . 1285 34.3.1 34.4 34/1324 Mechanism to select the JTAG-DP or the SW-DP . . . . . . . . . . . . . . . 1286 Pinout and debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 34.4.1 SWJ debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 34.4.2 Flexible SWJ-DP pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 34.4.3 Internal pull-up and pull-down on JTAG pins . . . . . . . . . . . . . . . . . . . 1288 34.4.4 Using serial wire and releasing the unused debug pins as GPIOs . . 1289 34.5 JTAG TAP connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289 34.6 ID codes and locking mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291 34.6.1 MCU device ID code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291 34.6.2 Boundary scan TAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291 RM0430 Rev 8 RM0430 Contents 34.6.3 Cortex®-M4 with FPU TAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291 34.6.4 Cortex®-M4 with FPU JEDEC-106 ID code . . . . . . . . . . . . . . . . . . . . 1292 34.7 JTAG debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292 34.8 SW debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294 34.9 34.8.1 SW protocol introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294 34.8.2 SW protocol sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294 34.8.3 SW-DP state machine (reset, idle states, ID code) . . . . . . . . . . . . . . 1295 34.8.4 DP and AP read/write accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295 34.8.5 SW-DP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296 34.8.6 SW-AP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297 AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297 34.10 Core debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298 34.11 Capability of the debugger host to connect under system reset . . . . . 1299 34.12 FPB (Flash patch breakpoint) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299 34.13 DWT (data watchpoint trigger) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300 34.14 ITM (instrumentation trace macrocell) . . . . . . . . . . . . . . . . . . . . . . . . . 1300 34.14.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300 34.14.2 Time stamp packets, synchronization and overflow packets . . . . . . . 1300 34.15 ETM (Embedded trace macrocell) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302 34.15.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302 34.15.2 Signal protocol, packet types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302 34.15.3 Main ETM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302 34.15.4 Configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303 34.16 MCU debug component (DBGMCU) . . . . . . . . . . . . . . . . . . . . . . . . . . 1303 34.16.1 Debug support for low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . 1303 34.16.2 Debug support for timers, watchdog, bxCAN and I2C . . . . . . . . . . . . 1304 34.16.3 Debug MCU configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . 1304 34.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) . . . . . . . . 1305 34.16.5 Debug MCU APB2 Freeze register (DBGMCU_APB2_FZ) . . . . . . . . 1307 34.17 TPIU (trace port interface unit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307 34.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307 34.17.2 TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309 34.17.3 TPUI formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310 34.17.4 TPUI frame synchronization packets . . . . . . . . . . . . . . . . . . . . . . . . . 1311 34.17.5 Transmission of the synchronization frame packet . . . . . . . . . . . . . . 1311 RM0430 Rev 8 35/1324 36 Contents RM0430 34.17.6 Synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311 34.17.7 Asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312 34.17.8 TRACECLKIN connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312 34.17.9 TPIU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312 34.17.10 Example of configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1313 34.18 DBG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314 35 36 36/1324 Device electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315 35.1 Unique device ID register (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315 35.2 Flash size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316 35.3 Package data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318 RM0430 Rev 8 RM0430 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Boot modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Embedded bootloader interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Memory mapping vs. Boot mode/physical remap in STM32F413/423 . . . . . . . . . . . . . . . . 65 Flash module organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Number of wait states according to CPU clock (HCLK) frequency . . . . . . . . . . . . . . . . . . . 68 Program/erase parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Flash interrupt request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Option byte organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Description of the option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Access versus read protection level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 OTP area organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Flash register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 CRC calculation unit register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Low-power mode summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Sleep-now entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Sleep-on-exit entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 BAM-now entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 BAM-on-exit entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Stop operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Stop mode entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Standby mode entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 PWR - register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 RCC register map and reset values for STM32F413/423. . . . . . . . . . . . . . . . . . . . . . . . . 181 Port bit configuration table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Flexible SWJ-DP pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 RTC additional functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 GPIO register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 SYSCFG register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 DMA1 request mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 DMA2 request mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Source and destination address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Source and destination address registers in double-buffer mode (DBM = 1) . . . . . . . . . . 224 Packing/unpacking and endian behavior (bit PINC = MINC = 1) . . . . . . . . . . . . . . . . . . . 225 Restriction on NDT versus PSIZE and MSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 FIFO threshold configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Possible DMA configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 DMA interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 DMA register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 Vector table for STM32F413/423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 External interrupt/event controller register map and reset values. . . . . . . . . . . . . . . . . . . 263 NOR/PSRAM bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 NOR/PSRAM External memory address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 Programmable NOR/PSRAM access parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Non-multiplexed I/O NOR Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 16-bit multiplexed I/O NOR Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 Non-multiplexed I/Os PSRAM/SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 16-Bit multiplexed I/O PSRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 RM0430 Rev 8 37/1324 42 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. 38/1324 RM0430 NOR Flash/PSRAM: example of supported memories and transactions . . . . . . . . . . . . . 272 FSMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 FSMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 FSMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 FSMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 FSMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 FSMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 FSMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 FSMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 FSMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 FSMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 FSMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 FSMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 FSMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 FSMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 FSMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 FSMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 FSMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 FSMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 FSMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 FSMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 FSMC register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 QUADSPI pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 QUADSPI interrupt requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 QUADSPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 ADC pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 Analog watchdog channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 Configuring the trigger polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 External trigger for regular channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 External trigger for injected channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 ADC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 ADC global register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 ADC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 ADC register map and reset values (common ADC registers) . . . . . . . . . . . . . . . . . . . . . 365 DAC pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 External triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 DAC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 DFSDMx implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 DFSDM external pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 DFSDM internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 DFSDM1 triggers connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 DFSDM2 triggers connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 DFSDM break connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 Demultiplexers (DM[6:1]) operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 Use-cases examples for beamforming applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406 Filter maximum output resolution (peak data values from filter output) for some FOSR values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 Integrator maximum output resolution (peak data values from integrator output) for some IOSR values and FOSR = 256 and Sinc3 filter type (largest data) . . . . 411 DFSDM interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 DFSDM register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 RNG internal input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 RM0430 Rev 8 RM0430 Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 129. Table 130. Table 131. Table 132. Table 133. Table 134. Table 135. Table 136. Table 137. Table 138. Table 139. Table 140. Table 141. Table 142. Table 143. Table 144. Table 145. Table 146. Table 147. Table 148. List of tables RNG interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456 RNG register map and reset map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 Counting direction versus encoder signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 TIMx Internal trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 Output control bits for complementary OCx and OCxN channels with break feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 TIM1&TIM8 register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 Counting direction versus encoder signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561 TIMx internal trigger connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576 Output control bit for standard OCx channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 TIM2 to TIM5 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 TIMx internal trigger connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619 Output control bit for standard OCx channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 TIM9/12 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 Output control bit for standard OCx channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637 TIM10/11/13/14 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 TIM6 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654 STM32F413/423 LPTIM features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 LPTIM1 external trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 Prescaler division ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658 Encoder counting scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664 Interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 LPTIM register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676 Min/max IWDG timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679 IWDG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683 WWDG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690 AES internal input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 CTR mode initialization vector definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711 GCM last block definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 GCM mode IVI bitfield initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 Initialization of AES_IVRx registers in CCM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721 Key endianness in AES_KEYRx registers (128- or 256-bit key length) . . . . . . . . . . . . . . 726 DMA channel configuration for memory-to-AES data transfer . . . . . . . . . . . . . . . . . . . . . 727 DMA channel configuration for AES-to-memory data transfer . . . . . . . . . . . . . . . . . . . . . 728 AES interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730 Processing latency (in clock cycle) for ECB, CBC and CTR. . . . . . . . . . . . . . . . . . . . . . . 730 Processing latency for GCM and CCM (in clock cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . 730 AES register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742 Effect of low power modes on RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758 Interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 RTC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779 STM32F413/423 FMPI2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 I2C-SMBUS specification data setup and hold times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789 FMPI2C configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793 I2C-SMBUS specification clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804 Examples of timing settings for fI2CCLK = 8 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814 Examples of timings settings for fI2CCLK = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814 SMBus timeout specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817 SMBUS with PEC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819 Examples of TIMEOUTA settings for various FMPI2CCLK frequencies (max tTIMEOUT = 25 ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 Examples of TIMEOUTB settings for various FMPI2CCLK frequencies. . . . . . . . . . . . . . 820 RM0430 Rev 8 39/1324 42 List of tables RM0430 Table 149. Examples of TIMEOUTA settings for various FMPI2CCLK frequencies (max tIDLE = 50 µs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 Table 150. Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830 Table 151. FMPI2C Interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 Table 152. FMPI2C register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846 Table 153. Maximum DNF[3:0] value to be compliant with Thd:dat(max) . . . . . . . . . . . . . . . . . . . . . 861 Table 154. SMBus vs. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 Table 155. I2C Interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867 Table 156. I2C register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882 Table 157. USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 Table 158. Noise detection from sampled data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895 Table 159. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899 Table 160. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899 Table 161. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900 Table 162. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 Table 163. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 Table 164. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902 Table 165. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903 Table 166. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903 Table 167. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 Hz, oversampling by 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904 Table 168. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 MHz, oversampling by 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905 Table 169. USART receiver tolerance when DIV fraction is 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906 Table 170. USART receiver tolerance when DIV_Fraction is different from 0 . . . . . . . . . . . . . . . . . . 907 Table 171. Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909 Table 172. USART interrupt requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 Table 173. USART register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 Table 174. STM32F413/423 SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937 Table 175. SPI interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958 Table 176. Audio-frequency precision using standard 8 MHz HSE . . . . . . . . . . . . . . . . . . . . . . . . . . 969 Table 177. I2S interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 Table 178. SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986 Table 179. Example of possible audio frequency sampling range . . . . . . . . . . . . . . . . . . . . . . . . . . . 997 Table 180. Interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009 Table 181. SAI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024 Table 182. SDIO I/O definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029 Table 183. Command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034 Table 184. Short response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 Table 185. Long response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 Table 186. Command path status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 Table 187. Data token format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 Table 188. DPSM flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039 Table 189. Transmit FIFO status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 40/1324 RM0430 Rev 8 RM0430 Table 190. Table 191. Table 192. Table 193. Table 194. Table 195. Table 196. Table 197. Table 198. Table 199. Table 200. Table 201. Table 202. Table 203. Table 204. Table 205. Table 206. Table 207. Table 208. Table 209. Table 210. Table 211. Table 212. Table 213. Table 214. Table 215. Table 216. Table 217. Table 218. Table 219. Table 220. Table 221. Table 222. Table 223. Table 224. Table 225. Table 226. Table 227. Table 228. Table 229. Table 230. Table 231. Table 232. Table 233. Table 234. Table 235. Table 236. Table 237. Table 238. Table 239. Table 240. Table 241. List of tables Receive FIFO status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 Card status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051 SD status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054 Speed class code field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055 Performance move field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 AU_SIZE field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 Maximum AU size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 Erase size field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057 Erase timeout field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057 Erase offset field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057 Block-oriented write commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060 Block-oriented write protection commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 Erase commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 I/O mode commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 Lock card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 Application-specific commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 R1 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 R2 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 R3 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 R4 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 R4b response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 R5 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065 R6 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1066 Response type and SDIO_RESPx registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072 SDIO register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083 CAN implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 Transmit mailbox mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101 Receive mailbox mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101 bxCAN register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127 OTG_FS speeds supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131 OTG implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134 OTG_FS input/output pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 OTG_FS input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1136 Compatibility of STM32 low power modes with the OTG . . . . . . . . . . . . . . . . . . . . . . . . 1148 Core global control and status registers (CSRs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156 Host-mode control and status registers (CSRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1157 Device-mode control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158 Data FIFO (DFIFO) access register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160 Power and clock gating control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160 TRDT values (FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168 Minimum duration for soft disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203 OTG_FS register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226 SWJ debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 Flexible SWJ-DP pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 JTAG debug port data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292 32-bit debug port registers addressed through the shifted value A[3:2] . . . . . . . . . . . . . 1293 Packet request (8-bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294 ACK response (3 bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295 DATA transfer (33 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295 SW-DP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296 Cortex®-M4 with FPU AHB-AP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297 Core debug registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298 RM0430 Rev 8 41/1324 42 List of tables Table 242. Table 243. Table 244. Table 245. Table 246. Table 247. Table 248. Table 249. 42/1324 RM0430 Main ITM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301 Main ETM registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303 Asynchronous TRACE pin assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309 Synchronous TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309 Flexible TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1310 Important TPIU registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312 DBG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318 RM0430 Rev 8 RM0430 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Flash memory interface connection inside system architecture . . . . . . . . . . . . . . . . . . . . . 66 Sequential 32-bit instruction execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 RDP levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 PCROP levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 CRC calculation unit block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Power-on reset/power-down reset waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PVD thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Simplified diagram of the reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 HSE/ LSE clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Frequency measurement with TIM5 in Input capture mode . . . . . . . . . . . . . . . . . . . . . . . 127 Frequency measurement with TIM11 in Input capture mode . . . . . . . . . . . . . . . . . . . . . . 128 Basic structure of a five-volt tolerant I/O port bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Selecting an alternate function on STM32F413/423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Input floating/pull up/pull down configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Alternate function configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 High impedance-analog configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 DMA block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Peripheral-to-memory mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Memory-to-peripheral mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Memory-to-memory mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 FIFO structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 External interrupt/event controller block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 External interrupt/event GPIO mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 FSMC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 FSMC memory banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Mode1 read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Mode1 write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 ModeA read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 ModeA write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Mode2 and mode B read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Mode2 write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 ModeB write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 ModeC read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 ModeC write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 ModeD read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 ModeD write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Muxed read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Muxed write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Asynchronous wait during a read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Asynchronous wait during a write access waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 Wait configuration waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 RM0430 Rev 8 43/1324 51 List of figures Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. Figure 89. Figure 90. Figure 91. Figure 92. Figure 93. Figure 94. Figure 95. Figure 96. Figure 97. Figure 98. 44/1324 RM0430 Synchronous multiplexed read mode waveforms - NOR, PSRAM (CRAM) . . . . . . . . . . . 293 Synchronous multiplexed write mode waveforms - PSRAM (CRAM). . . . . . . . . . . . . . . . 295 QUADSPI block diagram when dual-flash mode is disabled . . . . . . . . . . . . . . . . . . . . . . 307 QUADSPI block diagram when dual-flash mode is enabled . . . . . . . . . . . . . . . . . . . . . . 308 An example of a read command in quad mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 An example of a DDR command in quad mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 nCS when CKMODE = 0 (T = CLK period). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 nCS when CKMODE = 1 in SDR mode (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . 320 nCS when CKMODE = 1 in DDR mode (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . 321 nCS when CKMODE = 1 with an abort (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . . 321 Single ADC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 Analog watchdog’s guarded area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 Injected conversion latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 Right alignment of 12-bit data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 Left alignment of 12-bit data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 Left alignment of 6-bit data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 Temperature sensor and VREFINT channel block diagram . . . . . . . . . . . . . . . . . . . . . . 348 DAC channel block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 Data registers in single DAC channel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 Data registers in dual DAC channel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 Timing diagram for conversion with trigger disabled TEN = 0 . . . . . . . . . . . . . . . . . . . . . 370 DAC LFSR register calculation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 DAC conversion (SW trigger enabled) with LFSR wave generation. . . . . . . . . . . . . . . . . 372 DAC triangle wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 DAC conversion (SW trigger enabled) with triangle wave generation . . . . . . . . . . . . . . . 373 Single DFSDM block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 Input channel pins redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 Channel transceiver timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Clock absence timing diagram for SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398 Clock absence timing diagram for Manchester coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 First conversion for Manchester coding (Manchester synchronization) . . . . . . . . . . . . . . 401 Multi-channel delay block for pulse skipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404 Pulses skipper operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 DFSDM_CHyDATINR registers operation modes and assignment . . . . . . . . . . . . . . . . . 409 Example: Sinc3 filter response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 RNG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 Entropy source model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 Advanced-control timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 465 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 465 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 RM0430 Rev 8 RM0430 Figure 99. Figure 100. Figure 101. Figure 102. Figure 103. Figure 104. Figure 105. Figure 106. Figure 107. Figure 108. Figure 109. Figure 110. Figure 111. Figure 112. Figure 113. Figure 114. Figure 115. Figure 116. Figure 117. Figure 118. Figure 119. Figure 120. Figure 121. Figure 122. Figure 123. Figure 124. Figure 125. Figure 126. Figure 127. Figure 128. Figure 129. Figure 130. Figure 131. Figure 132. Figure 133. Figure 134. Figure 135. Figure 136. Figure 137. Figure 138. Figure 139. Figure 140. Figure 141. Figure 142. Figure 143. Figure 144. Figure 145. Figure 146. Figure 147. Figure 148. Figure 149. Figure 150. List of figures Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 Counter timing diagram, update event when repetition counter is not used . . . . . . . . . . . 472 Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 . . . . . . . . . . . . . . 473 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 . . . . . . . . . . . . . . 474 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 Counter timing diagram, update event with ARPE=1 (counter underflow) . . . . . . . . . . . . 475 Counter timing diagram, update event with ARPE=1 (counter overflow) . . . . . . . . . . . . . 475 Update rate examples depending on mode and TIMx_RCR register settings . . . . . . . . . 477 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 478 TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 External trigger input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 Control circuit in external clock mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 482 Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 Output stage of capture/compare channel (channels 1 to 3) . . . . . . . . . . . . . . . . . . . . . . 483 Output stage of capture/compare channel (channel 4). . . . . . . . . . . . . . . . . . . . . . . . . . . 483 PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 Output compare mode, toggle on OC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488 Center-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 Complementary output with dead-time insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Dead-time waveforms with delay greater than the negative pulse. . . . . . . . . . . . . . . . . . 491 Dead-time waveforms with delay greater than the positive pulse. . . . . . . . . . . . . . . . . . . 491 Output behavior in response to a break.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 Clearing TIMx OCxREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 6-step generation, COM example (OSSR=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 Example of one pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 Example of counter operation in encoder interface mode. . . . . . . . . . . . . . . . . . . . . . . . . 500 Example of encoder interface mode with TI1FP1 polarity inverted. . . . . . . . . . . . . . . . . . 500 Example of Hall sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502 Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 Control circuit in gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504 Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505 Control circuit in external clock mode 2 + trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . 506 General-purpose timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 536 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 537 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded). . . . . 539 Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded). . . . . . . . 540 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 Counter timing diagram, Update event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542 Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 . . . . . . . . . . . . . . . 543 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 RM0430 Rev 8 45/1324 51 List of figures Figure 151. Figure 152. Figure 153. Figure 154. Figure 155. Figure 156. Figure 157. Figure 158. Figure 159. Figure 160. Figure 161. Figure 162. Figure 163. Figure 164. Figure 165. Figure 166. Figure 167. Figure 168. Figure 169. Figure 170. Figure 171. Figure 172. Figure 173. Figure 174. Figure 175. Figure 176. Figure 177. Figure 178. Figure 179. Figure 180. Figure 181. Figure 182. Figure 183. Figure 184. Figure 185. Figure 186. Figure 187. Figure 188. Figure 189. Figure 190. Figure 191. Figure 192. Figure 193. Figure 194. Figure 195. Figure 196. Figure 197. Figure 198. Figure 199. Figure 200. 46/1324 RM0430 Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 . . . . . . . . . . . . . . 544 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 Counter timing diagram, Update event with ARPE=1 (counter underflow). . . . . . . . . . . . 545 Counter timing diagram, Update event with ARPE=1 (counter overflow) . . . . . . . . . . . . . 545 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 546 TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 External trigger input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 Control circuit in external clock mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 550 Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 Output stage of capture/compare channel (channel 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 551 PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 Output compare mode, toggle on OC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556 Center-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 Example of one-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 Clearing TIMx OCxREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 Example of counter operation in encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . 562 Example of encoder interface mode with TI1FP1 polarity inverted . . . . . . . . . . . . . . . . . 562 Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 Control circuit in gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 Control circuit in external clock mode 2 + trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . 566 Master/Slave timer example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 Gating timer 2 with OC1REF of timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567 Gating timer 2 with Enable of timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568 Triggering timer 2 with update of timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569 Triggering timer 2 with Enable of timer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570 Triggering timer 1 and 2 with timer 1 TI1 input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571 General-purpose timer block diagram (TIM9 and TIM12) . . . . . . . . . . . . . . . . . . . . . . . . 596 General-purpose timer block diagram (TIM10/11/13/14) . . . . . . . . . . . . . . . . . . . . . . . . . 597 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 599 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 599 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 603 TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604 Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604 Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 605 Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 Output stage of capture/compare channel (channel 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 606 PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608 Output compare mode, toggle on OC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610 Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 Example of one pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612 RM0430 Rev 8 RM0430 Figure 201. Figure 202. Figure 203. Figure 204. Figure 205. Figure 206. Figure 207. Figure 208. Figure 209. Figure 210. Figure 211. Figure 212. Figure 213. Figure 214. Figure 215. Figure 216. Figure 217. Figure 218. Figure 219. Figure 220. Figure 221. Figure 222. Figure 223. Figure 224. Figure 225. Figure 226. Figure 227. Figure 228. Figure 229. Figure 230. Figure 231. Figure 232. Figure 233. Figure 234. Figure 235. Figure 236. Figure 237. Figure 238. Figure 239. Figure 240. Figure 241. Figure 242. Figure 243. Figure 244. Figure 245. Figure 246. Figure 247. Figure 248. Figure 249. List of figures Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614 Control circuit in gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 Basic timer block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 644 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 644 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not preloaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 649 Low-power timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 Glitch filter timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658 LPTIM output waveform, single counting mode configuration . . . . . . . . . . . . . . . . . . . . . 660 LPTIM output waveform, Single counting mode configuration and Set-once mode activated (WAVE bit is set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660 LPTIM output waveform, Continuous counting mode configuration . . . . . . . . . . . . . . . . . 661 Waveform generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662 Encoder mode counting sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 Independent watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679 Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 Window watchdog timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686 AES block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 ECB encryption and decryption principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694 CBC encryption and decryption principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 CTR encryption and decryption principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 GCM encryption and authentication principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 GMAC authentication principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697 CCM encryption and authentication principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698 STM32 cryptolib AES flowchart examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699 STM32 cryptolib AES flowchart examples (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . 700 Encryption key derivation for ECB/CBC decryption (Mode 2). . . . . . . . . . . . . . . . . . . . . . 703 Example of suspend mode management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704 ECB encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 ECB decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 CBC encryption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706 CBC decryption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 706 ECB/CBC encryption (Mode 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707 ECB/CBC decryption (Mode 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708 Message construction in CTR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710 CTR encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711 CTR decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711 Message construction in GCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713 GCM authenticated encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714 Message construction in GMAC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718 GMAC authentication mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718 Message construction in CCM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719 CCM mode authenticated decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721 RM0430 Rev 8 47/1324 51 List of figures Figure 250. Figure 251. Figure 252. Figure 253. Figure 254. Figure 255. Figure 256. Figure 257. Figure 258. Figure 259. Figure 260. Figure 261. Figure 262. Figure 263. Figure 264. Figure 265. Figure 266. Figure 267. Figure 268. Figure 269. Figure 270. Figure 271. Figure 272. Figure 273. Figure 274. Figure 275. Figure 276. Figure 277. Figure 278. Figure 279. Figure 280. Figure 281. Figure 282. Figure 283. Figure 284. Figure 285. Figure 286. Figure 287. Figure 288. Figure 289. Figure 290. Figure 291. Figure 292. Figure 293. Figure 294. Figure 295. Figure 296. Figure 297. Figure 298. Figure 299. Figure 300. Figure 301. 48/1324 RM0430 128-bit block construction with respect to data swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725 DMA transfer of a 128-bit data block during input phase . . . . . . . . . . . . . . . . . . . . . . . . . 727 DMA transfer of a 128-bit data block during output phase . . . . . . . . . . . . . . . . . . . . . . . . 728 AES interrupt signal generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729 RTC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 FMPI2C block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 Setup and hold timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787 FMPI2C initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790 Data reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791 Data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792 Slave initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795 Transfer sequence flowchart for FMPI2C slave transmitter, NOSTRETCH=0 . . . . . . . . . 797 Transfer sequence flowchart for FMPI2C slave transmitter, NOSTRETCH=1 . . . . . . . . . 798 Transfer bus diagrams for FMPI2C slave transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799 Transfer sequence flowchart for slave receiver with NOSTRETCH=0 . . . . . . . . . . . . . . 800 Transfer sequence flowchart for slave receiver with NOSTRETCH=1 . . . . . . . . . . . . . . 801 Transfer bus diagrams for FMPI2C slave receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801 Master clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 Master initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805 10-bit address read access with HEAD10R=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 805 10-bit address read access with HEAD10R=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806 Transfer sequence flowchart for FMPI2C master transmitter for N≤255 bytes. . . . . . . . . 807 Transfer sequence flowchart for FMPI2C master transmitter for N>255 bytes. . . . . . . . . 808 Transfer bus diagrams for FMPI2C master transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . 809 Transfer sequence flowchart for FMPI2C master receiver for N≤255 bytes . . . . . . . . . . . 811 Transfer sequence flowchart for FMPI2C master receiver for N >255 bytes . . . . . . . . . . 812 Transfer bus diagrams for FMPI2C master receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813 Timeout intervals for tLOW:SEXT, tLOW:MEXT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817 Transfer sequence flowchart for SMBus slave transmitter N bytes + PEC. . . . . . . . . . . . 821 Transfer bus diagrams for SMBus slave transmitter (SBC=1) . . . . . . . . . . . . . . . . . . . . . 822 Transfer sequence flowchart for SMBus slave receiver N Bytes + PEC . . . . . . . . . . . . . 823 Bus transfer diagrams for SMBus slave receiver (SBC=1). . . . . . . . . . . . . . . . . . . . . . . . 824 Bus transfer diagrams for SMBus master transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 Bus transfer diagrams for SMBus master receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827 I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 I2C block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851 Transfer sequence diagram for slave transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 Transfer sequence diagram for slave receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 854 Transfer sequence diagram for master transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 Transfer sequence diagram for master receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859 I2C interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868 USART block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887 Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 888 Configurable stop bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 890 TC/TXE behavior when transmitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 891 Start bit detection when oversampling by 16 or 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892 Data sampling when oversampling by 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895 Data sampling when oversampling by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895 Mute mode using Idle line detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908 Mute mode using address mark detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908 Break detection in LIN mode (11-bit break length - LBDL bit is set) . . . . . . . . . . . . . . . . . 911 RM0430 Rev 8 RM0430 Figure 302. Figure 303. Figure 304. Figure 305. Figure 306. Figure 307. Figure 308. Figure 309. Figure 310. Figure 311. Figure 312. Figure 313. Figure 314. Figure 315. Figure 316. Figure 317. Figure 318. Figure 319. Figure 320. Figure 321. Figure 322. Figure 323. Figure 324. Figure 325. Figure 326. Figure 327. Figure 328. Figure 329. Figure 330. Figure 331. Figure 332. Figure 333. Figure 334. Figure 335. Figure 336. Figure 337. Figure 338. Figure 339. Figure 340. Figure 341. Figure 342. Figure 343. Figure 344. Figure 345. Figure 346. Figure 347. Figure 348. Figure 349. Figure 350. List of figures Break detection in LIN mode vs. Framing error detection. . . . . . . . . . . . . . . . . . . . . . . . . 912 USART example of synchronous transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913 USART data clock timing diagram (M=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913 USART data clock timing diagram (M=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 RX data setup/hold time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 ISO 7816-3 asynchronous protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915 Parity error detection using the 1.5 stop bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916 IrDA SIR ENDEC- block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918 IrDA data modulation (3/16) -Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918 Transmission using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920 Reception using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921 Hardware flow control between 2 USARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921 RTS flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922 CTS flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922 USART interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924 SPI block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 Full-duplex single master/ single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939 Half-duplex single master/ single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940 Simplex single master/single slave application (master in transmit-only/ slave in receive-only mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941 Master and three independent slaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 942 Multi-master application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 943 Hardware/software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944 Data clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946 TXE/RXNE/BSY behavior in master / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 949 TXE/RXNE/BSY behavior in slave / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950 Transmission using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952 Reception using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953 TI mode transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956 I2S block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959 I2S full-duplex block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 960 I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0). . . . . . . . . . . . . . . . . 962 I2S Philips standard waveforms (24-bit frame with CPOL = 0) . . . . . . . . . . . . . . . . . . . . . 962 Transmitting 0x8EAA33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962 Receiving 0x8EAA33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963 I2S Philips standard (16-bit extended to 32-bit packet frame with CPOL = 0) . . . . . . . . . 963 Example of 16-bit data frame extended to 32-bit channel frame . . . . . . . . . . . . . . . . . . . 963 MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0 . . . . . . . . . . . . . . . . . . 964 MSB justified 24-bit frame length with CPOL = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964 MSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 . . . . . . . . . . . . . . . . 964 LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0 . . . . . . . . . . . . . . . . . . . . . . . . 965 LSB justified 24-bit frame length with CPOL = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965 Operations required to transmit 0x3478AE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965 Operations required to receive 0x3478AE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966 LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 . . . . . . . . . . . . . . . . 966 Example of 16-bit data frame extended to 32-bit channel frame . . . . . . . . . . . . . . . . . . . 966 PCM standard waveforms (16-bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967 PCM standard waveforms (16-bit extended to 32-bit packet frame). . . . . . . . . . . . . . . . . 967 Audio sampling frequency definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968 I2S clock generator architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968 RM0430 Rev 8 49/1324 51 List of figures Figure 351. Figure 352. Figure 353. Figure 354. Figure 355. Figure 356. Figure 357. Figure 358. Figure 359. Figure 360. Figure 361. Figure 362. Figure 363. Figure 364. Figure 365. Figure 366. Figure 367. Figure 368. Figure 369. Figure 370. Figure 371. Figure 372. Figure 373. Figure 374. Figure 375. Figure 376. Figure 377. Figure 378. Figure 379. Figure 380. Figure 381. Figure 382. Figure 383. Figure 384. Figure 385. Figure 386. Figure 387. Figure 388. Figure 389. Figure 390. Figure 391. Figure 392. Figure 393. Figure 394. Figure 395. Figure 396. Figure 397. Figure 398. Figure 399. Figure 400. Figure 401. Figure 402. 50/1324 RM0430 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989 Audio frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 FS role is start of frame + channel side identification (FSDEF = TRIS = 1) . . . . . . . . . . . 993 FS role is start of frame (FSDEF = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 994 Slot size configuration with FBOFF = 0 in SAI_xSLOTR . . . . . . . . . . . . . . . . . . . . . . . . . 995 First bit offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995 Audio block clock generator overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996 AC’97 audio frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 Data companding hardware in an audio block in the SAI . . . . . . . . . . . . . . . . . . . . . . . . 1002 Tristate strategy on SD output line on an inactive slot . . . . . . . . . . . . . . . . . . . . . . . . . . 1004 Tristate on output data line in a protocol like I2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1005 Overrun detection error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1006 FIFO underrun event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 “No response” and “no data” operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027 (Multiple) block read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027 (Multiple) block write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027 Sequential read operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 Sequential write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 SDIO block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 SDIO adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 Control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 SDIO_CK clock dephasing (BYPASS = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 SDIO adapter command path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032 Command path state machine (SDIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033 SDIO command transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034 Data path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036 Data path state machine (DPSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037 CAN network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 Dual-CAN block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088 Single-CAN block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089 bxCAN operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091 bxCAN in silent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092 bxCAN in loop back mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092 bxCAN in combined mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093 Transmit mailbox states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094 Receive FIFO states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095 Filter bank scale configuration - register organization . . . . . . . . . . . . . . . . . . . . . . . . . . 1098 Example of filter numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099 Filtering mechanism - example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1100 CAN error state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101 Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103 CAN frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104 Event flags and interrupt generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105 CAN mailbox registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117 OTG full-speed block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135 OTG_FS A-B device connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137 USB_FS peripheral-only connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139 USB_FS host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143 SOF connectivity (SOF trigger output to TIM and ITR1 connection) . . . . . . . . . . . . . . . 1147 Updating OTG_HFIR dynamically (RLDCTRL = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149 Device-mode FIFO address mapping and AHB FIFO access mapping . . . . . . . . . . . . . 1150 Host-mode FIFO address mapping and AHB FIFO access mapping . . . . . . . . . . . . . . . 1151 RM0430 Rev 8 RM0430 List of figures Figure 403. Figure 404. Figure 405. Figure 406. Figure 407. Figure 408. Figure 409. Figure 410. Figure 411. Figure 412. Figure 413. Figure 414. Figure 415. Figure 416. Figure 417. Figure 418. Figure 419. Figure 420. Interrupt hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155 Transmit FIFO write task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237 Receive FIFO read task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238 Normal bulk/control OUT/SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239 Bulk/control IN transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243 Normal interrupt OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246 Normal interrupt IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251 Isochronous OUT transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253 Isochronous IN transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256 Receive FIFO packet read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260 Processing a SETUP packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262 Bulk OUT transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269 TRDT max timing case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1277 A-device SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1278 B-device SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279 A-device HNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1280 B-device HNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1282 Block diagram of STM32 MCU and Cortex®-M4 with FPU-level debug support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284 Figure 421. SWJ debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 Figure 422. JTAG TAP connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290 Figure 423. TPIU block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1308 RM0430 Rev 8 51/1324 51 Documentation conventions RM0430 1 Documentation conventions 1.1 General information The STM32F413/423 devices have an Arm®(a) Cortex®-M4 with FPU core 1.2 List of abbreviations for registers The following abbreviations(b) are used in register descriptions: read/write (rw) Software can read and write to this bit. read-only (r) Software can only read this bit. write-only (w) Software can only write to this bit. Reading this bit returns the reset value. read/clear write0 (rc_w0) Software can read as well as clear this bit by writing 0. Writing 1 has no effect on the bit value. read/clear write1 (rc_w1) Software can read as well as clear this bit by writing 1. Writing 0 has no effect on the bit value. read/clear write (rc_w) Software can read as well as clear this bit by writing to the register. The value written to this bit is not important. read/clear by read (rc_r) Software can read this bit. Reading this bit automatically clears it to 0. Writing this bit has no effect on the bit value. read/set by read (rs_r) Software can read this bit. Reading this bit automatically sets it to 1. Writing this bit has no effect on the bit value. read/set (rs) Software can read as well as set this bit. Writing 0 has no effect on the bit value. read/write once (rwo) Software can only write once to this bit and can also read it at any time. Only a reset can return the bit to its reset value. toggle (t) The software can toggle this bit by writing 1. Writing 0 has no effect. read-only write trigger (rt_w1) Software can read this bit. Writing 1 triggers an event but has no effect on the bit value. Reserved (Res.) Reserved bit, must be kept at reset value. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. b. This is an exhaustive list of all abbreviations applicable to STM microcontrollers, some of them may not be used in the current document. 52/1324 RM0430 Rev 8 RM0430 1.3 Documentation conventions Glossary This section gives a brief definition of acronyms and abbreviations used in this document: • 1.4 Word: data of 32-bit length. • Half-word: data of 16-bit length. • Byte: data of 8-bit length. • IAP (in-application programming): IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running. • ICP (in-circuit programming): ICP is the ability to program the Flash memory of a microcontroller using the JTAG protocol, the SWD protocol or the bootloader while the device is mounted on the user application board. • Option bytes: product configuration bits stored in the Flash memory. • AHB: advanced high-performance bus. Availability of peripherals For availability of peripherals and their number across all sales types, refer to the particular device datasheet. RM0430 Rev 8 53/1324 53 System and memory overview RM0430 2 System and memory overview 2.1 System architecture In STM32F413/423, the main system consists of 32-bit multilayer AHB bus matrix that interconnects: • • Six masters: – Cortex®-M4 with FPU core I-bus, D-bus and S-bus – DMA1 memory bus – DMA2 memory bus – DMA2 peripheral bus Seven slaves: – Internal Flash memory ICode bus – Internal Flash memory DCode bus – Main internal SRAM1 (256 KB) – Auxiliary internal SRAM2 (64 KB) – AHB1 peripherals including AHB to APB bridges and APB peripherals – AHB2 peripherals – FSMC / QuadSPI The bus matrix provides access from a master to a slave, enabling concurrent access and efficient operation even when several high-speed peripherals work simultaneously. This architecture is shown in Figure 1. 54/1324 RM0430 Rev 8 RM0430 System and memory overview Figure 1. System architecture 6 6 6 $FFHVVWKURXJKUHPDS $FFHVVE\DOLDVLQJ '0$B3 '0$B0(0 '0$B0(0 '0$B3, 6EXV 6 *3 '0$ *3 '0$ 6 0 ,&2'( 0 '&2'( %XVPDWUL[6 $&&(/ 6 'EXV ,EXV $50 &RUWH[0 )ODVK 8SWR0% 0 65$0 .% 0 $+% SHULSK $3% 0 $+% SHULSK $3% 0 )60&H[WHUQDO 0HP&WUO 4XDG63, 0 65$0 .% 06Y9 2.1.1 I-bus This bus connects the Instruction bus of the Cortex®-M4 with FPU core to the BusMatrix. This bus is used by the core to fetch instructions. The target of this bus is a memory containing code (internal Flash memory/SRAM1/SRAM2). 2.1.2 D-bus This bus connects the databus of the Cortex®-M4 with FPU to the BusMatrix. This bus is used by the core for literal load and debug access. The target of this bus is a memory containing code or data (internal Flash memory/SRAM1/SRAM2). 2.1.3 S-bus This bus connects the system bus of the Cortex®-M4 with FPU core to a BusMatrix. This bus is used to access data located in a peripheral or in SRAM1 or in SRAM2. Instructions may also be fetch on this bus (less efficient than ICode). The targets of this bus are the internal SRAM1/SRAM2, the AHB1 peripherals including the APB peripherals, the AHB2 peripherals and the external memories through the FSMC and the QUADSPI. 2.1.4 DMA memory bus This bus connects the DMA memory bus master interface to the BusMatrix. It is used by the DMA to perform transfer to/from memories. The targets of this bus are data memories: internal Flash memory, internal SRAM1/SRAM2 and additionally for S4 the AHB1/AHB2 peripherals including the APB peripherals. RM0430 Rev 8 55/1324 56 System and memory overview 2.1.5 RM0430 DMA peripheral bus This bus connects the DMA peripheral master bus interface to the BusMatrix. This bus is used by the DMA to access AHB peripherals or to perform memory-to-memory transfers. The targets of this bus are the AHB and APB peripherals plus data memories: Flash memory and internal SRAM1/SRAM2. 2.1.6 BusMatrix The BusMatrix manages the access arbitration between masters. The arbitration uses a round-robin algorithm. 2.1.7 AHB/APB bridges (APB) The two AHB/APB bridges, APB1 and APB2, provide full synchronous connections between the AHB and the two APB buses, allowing flexible selection of the peripheral frequency. Refer to the device datasheets for more details on APB1 and APB2 maximum frequencies, and to Table 1 for the address mapping of AHB and APB peripherals. After each device reset, all peripheral clocks are disabled (except for the SRAM and Flash memory interface). Before using a peripheral you have to enable its clock in the RCC_AHBxENR or RCC_APBxENR register. Note: 56/1324 When a 16- or an 8-bit access is performed on an APB register, the access is transformed into a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector. RM0430 Rev 8 RM0430 2.2 Memory organization 2.2.1 Introduction Program memory, data memory, registers and I/O ports are organized within the same linear 4-Gbyte address space. The bytes are coded in memory in Little Endian format. The lowest numbered byte in a word is considered the word’s least significant byte and the highest numbered byte the most significant. The addressable memory space is divided into eight main blocks, of 512 Mbytes each. The access to some part of the address space is master dependent, see Section 2: Memory and bus architecture for details. RM0430 Rev 8 57/1324 65 RM0430 2.2.2 Memory map and register boundary addresses Figure 2. Memory map 5HVHUYHG &RUWH[ą0LQWHUQDO SHULSKHUDOV 5HVHUYHG [([)))))))) [([())))) [$±')))))) $))) $+% [ [))))))) $+% [)))))))) 0E\WH EORFN 5HVHUYHG [ [[))))))) [)) LQWHUQDO SHULSKHUDOV [( ['))))))) 0E\WH EORFN 1RWXVHG [& [%))))))) $+% 5HVHUYHG [$ [$))) 5HVHUYHG [ [[)))) [)) )0& $QG 4XDG63, [ [))))))) [ [))))))) $3% 0E\WH EORFN SHULSKHUDOV 0E\WH EORFNLQF 65$065$0 [ [))))))) 0E\WH EORFN &RGH [ 5HVHUYHG 65$0 .%DOLDVHG E\ELWEDQGLQJ 65$0 .%DOLDVHG E\ELWEDQGLQJ 5HVHUYHG 8VHURSWLRQE\WHV 5HVHUYHG 273DUHDORFN 6\VWHPPHPRU\ [[))))))) [[)))) 5HVHUYHG [[)))) [ [[)))) [))) [)))&[))))))) [)))&[)))&) [)))$[)))%))) [)))[)))$) [)))[))))) 5HVHUYHG [[))()))) 65$0 .%DFFHVVHGE\ [[)))) &38YLD,EXVDQG'EXV 5HVHUYHG [[))))))) )ODVKPHPRU\ [[)))) $OLDVHGWR)ODVKV\VWHP PHPRU\RU65$0 GHSHQGLQJRQWKH%227SLQV [[)))))) $3% [ 06Y9 All the memory map areas that are not allocated to on-chip memories and peripherals are considered “Reserved”. For the detailed mapping of available memory and register areas, refer to the following table. 58/1324 RM0430 Rev 8 RM0430 The following table gives the boundary addresses of the peripherals available in the devices. Table 1. Register boundary addresses Bus Boundary address - 0xE010 0000 - 0xFFFF FFFF Reserved Cortex®-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals 0xA000 2000 - 0xDFFF FFFF Reserved 0xA000 1000 - 0xA000 1FFF QuadSPI control register 0xA000 0000 - 0xA000 0FFF FSMC control register 0x9000 0000 - 0x9FFF FFFF QUADSPI 0x7000 0000 - 0x08FFF FFFF Reserved 0x6000 0000 - 0x6FFF FFFF FSMC 0x5006 0C00 - 0x5FFF FFFF Reserved AHB3 AHB2 AHB1 Peripheral 0x5006 0800 0x5006 0BFF RNG 0x5006 0400 - 0x5006 07FF Reserved 0x5006 0000 - 0x5006 03FF AES(1) 0x5004 0000 - 0x5005 FFFF Reserved 0x5000 0000 - 0x5003 FFFF USB OTG FS 0x4002 6800 - 0x4FFF FFFF Reserved 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0x4002 4000 - 0X4002 5FFF Reserved 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC 0x4002 3400 - 0x4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2000 - 0x4002 2FFF Reserved 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1800 - 0x4002 1BFF GPIOG 0x4002 1400 - 0x4002 17FF GPIOF 0x4002 1000 - 0x4002 13FF GPIOE 0x4002 0C00 - 0x4002 0FFF GPIOD 0x4002 0800 - 0x4002 0BFF GPIOC 0x4002 0400 - 0x4002 07FF GPIOB 0x4002 0000 - 0x4002 03FF GPIOA RM0430 Rev 8 59/1324 65 RM0430 Table 1. Register boundary addresses (continued) Bus APB2 60/1324 Boundary address Peripheral 0x4001 6800 - 0x4001 FFFF Reserved 0x4001 6400 - 0x4001 67FF DFSDM2 0x4001 6000 - 0x4001 63FF DFSDM1 0x4001 5C00 - 0x4001 5FFF Reserved 0x4001 5800 - 0x4001 5BFF SAI1 0x4001 5400 - 0x4001 57FF Reserved 0x4001 5000 - 0x4001 53FF SPI5/I2S5 0x4001 4C00 - 0x4001 4FFF Reserved 0x4001 4800 - 0x4001 4BFF TIM11 0x4001 4400 - 0x4001 47FF TIM10 0x4001 4000 - 0x4001 43FF TIM9 0x4001 3C00 - 0x4001 3FFF EXTI 0x4001 3800 - 0x4001 3BFF SYSCFG 0x4001 3400 - 0x4001 37FF SPI4/I2S4 0x4001 3000 - 0x4001 33FF SPI1/I2S1 0x4001 2C00 - 0x4001 2FFF SDIO 0x4001 2400 - 0x4001 2BFF Reserved 0x4001 2000 - 0x4001 23FF ADC1 0x4001 1C00 - 0x4001 1FFF UART10 0x4001 1800 - 0x4001 1BFF UART9 0x4001 1400 - 0x4001 17FF USART6 0x4001 1000 - 0x4001 13FF USART1 0x4001 0800 - 0x4001 0FFF Reserved 0x4001 0400 - 0x4001 07FF TIM8 0x4001 0000 - 0x4001 03FF TIM1 RM0430 Rev 8 RM0430 Table 1. Register boundary addresses (continued) Bus APB1 Boundary address Peripheral 0x4000 8000 - 0x4000 FFFF Reserved 0x4000 7C00 - 0x4000 7FFF UART8 0x4000 7800 - 0x4000 7BFF UART7 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PWR 0x4000 6C00 - 0x4000 6FFF CAN3 0x4000 6800 - 0x4000 6BFF CAN2 0x4000 6400 - 0x4000 67FF CAN1 0x4000 6000 - 0x4000 63FF I2CFMP1 0x4000 5C00 - 0x4000 5FFF I2C3 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 0x4000 5000 - 0x4000 53FF UART5 0x4000 4C00 - 0x4000 4FFF UART4 0x4000 4800 - 0x4000 4BFF USART3 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF I2S3ext 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3400 - 0x4000 37FF I2S2ext 0x4000 3000 - 0x4000 33FF IWDG 0x4000 2C00 - 0x4000 2FFF WWDG 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers 0x4000 2400 - 0x4000 27FF LPTIM1 0x4000 2000 - 0x4000 23FF TIM14 0x4000 1C00 - 0x4000 1FFF TIM13 0x4000 1800 - 0x4000 1BFF TIM12 0x4000 1400 - 0x4000 17FF TIM7 0x4000 1000 - 0x4000 13FF TIM6 0x4000 0C00 - 0x4000 0FFF TIM5 0x4000 0800 - 0x4000 0BFF TIM4 0x4000 0400 - 0x4000 07FF TIM3 0x4000 0000 - 0x4000 03FF TIM2 1. AES is only available for STM32F423xx. This boundary address is reserved for STM32F413xx. RM0430 Rev 8 61/1324 65 RM0430 2.3 Embedded SRAM STM32F413/423 devices feature 320 Kbytes of system SRAM. The embedded SRAM can be accessed as bytes, half-words (16 bits) or full words (32 bits). Read and write operations are performed at CPU speed with 0 wait state. The embedded SRAM is divided into two blocks: • SRAM1 mapped at address 0x2000 0000 and accessible by all AHB masters. • SRAM2 mapped at address 0x2004 0000 and accessible by all AHB masters. The CPU can access the embedded SRAM1, through the System Bus or through the ICode/D-Code buses when boot from SRAM1 is selected or when physical remap is selected (See Section 8.2.1: SYSCFG memory remap register (SYSCFG_MEMRMP)). To get the max performance on SRAM1 execution, physical remap should be selected (boot or software selection). The CPU can access the embedded SRAM2, through the System Bus or through the ICode/D-Code buses when SRAM2 is mapped at the address range: 0x1000 0000 to 0x1000 FFFF. To get the max performance on SRAM2 execution, mapping at the address 0x1000 0000 should be selected. To get the max performance on embedded SRAM, use SRAM1/SRAM2 to execute code via I-code and SRAM2/SRAM1 to store data 2.4 Flash memory overview The Flash memory interface manages CPU AHB I-Code and D-Code accesses to the Flash memory. It implements the erase and program Flash memory operations and the read and write protection mechanisms. It accelerates code execution with a system of instruction prefetch and cache lines. The Flash memory is organized as follows: • A main memory block divided into sectors. • System memory from which the device boots in System memory boot mode • 512 OTP (one-time programmable) bytes for user data. • Option bytes to configure read and write protection, BOR level, watchdog software/hardware and reset when the device is in Standby or Stop mode. Refer to Section 3: Embedded Flash memory interface for more details. 2.5 Bit banding The Cortex®-M4 with FPU memory map includes two bit-band regions. These regions map each word in an alias region of memory to a bit in a bit-band region of memory. Writing to a word in the alias region has the same effect as a read-modify-write operation on the targeted bit in the bit-band region. In the STM32F4x3xx devices both the peripheral registers and the SRAM1 are mapped to a bit-band region, so that single bit-band write and read operations are allowed. The operations are only available for Cortex®-M4 with FPU accesses, and not from other bus masters (e.g. DMA). 62/1324 RM0430 Rev 8 RM0430 A mapping formula shows how to reference each word in the alias region to a corresponding bit in the bit-band region. The mapping formula is: bit_word_addr = bit_band_base + (byte_offset x 32) + (bit_number × 4) where: – bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit – bit_band_base is the starting address of the alias region – byte_offset is the number of the byte in the bit-band region that contains the targeted bit – bit_number is the bit position (0-7) of the targeted bit Example The following example shows how to map bit 2 of the byte located at SRAM1 address 0x20000300 to the alias region: 0x22006008 = 0x22000000 + (0x300*32) + (2*4) Writing to address 0x22006008 has the same effect as a read-modify-write operation on bit 2 of the byte at SRAM1 address 0x20000300. Reading address 0x22006008 returns the value (0x01 or 0x00) of bit 2 of the byte at SRAM1 address 0x20000300 (0x01: bit set; 0x00: bit reset). For more information on bit-banding, refer to the Cortex®-M4 with FPU programming manual (see Related documents on page 1. 2.6 Boot configuration Due to its fixed memory map, the code area starts from address 0x0000 0000 (accessed through the ICode/DCode buses) while the data area (SRAM) starts from address 0x2000 0000 (accessed through the system bus). The Cortex®-M4 with FPU CPU always fetches the reset vector on the ICode bus, which implies to have the boot space available only in the code area (typically, Flash memory). STM32F4xx microcontrollers implement a special mechanism to be able to boot from other memories (like the internal SRAM). In the STM32F4x3xx, three different boot modes can be selected through the BOOT[1:0] pins as shown in Table 2. Table 2. Boot modes Boot mode selection pins Boot mode Aliasing BOOT1 BOOT0 x 0 Main Flash memory Main Flash memory is selected as the boot space 0 1 System memory System memory is selected as the boot space 1 1 Embedded SRAM Embedded SRAM is selected as the boot space The values on the BOOT pins are latched on the 4th rising edge of SYSCLK after a reset. It is up to the user to set the BOOT1 and BOOT0 pins after reset to select the required boot mode. RM0430 Rev 8 63/1324 65 RM0430 BOOT0 is a dedicated pin while BOOT1 is shared with a GPIO pin. Once BOOT1 has been sampled, the corresponding GPIO pin is free and can be used for other purposes. The BOOT pins are also resampled when the device exits the Standby mode. Consequently, they must be kept in the required Boot mode configuration when the device is in the Standby mode. After this startup delay is over, the CPU fetches the top-of-stack value from address 0x0000 0000, then starts code execution from the boot memory starting from 0x0000 0004. Note: When the device boots from SRAM, in the application initialization code, you have to relocate the vector table in SRAM using the NVIC exception table and the offset register. Embedded bootloader The embedded bootloader mode is used to reprogram the Flash memory using one of the interface described in Table 32. The availability of the interface is package dependent. Table 3. Embedded bootloader interfaces Package USART1 USART2 USART3 I2C1 PA9/ PD6/ PB11/ PB6/ PA10 PD5 PB10 PB7 SPI3 I2C2 PF0/ PF1 I2C3 PA8/ PB4 I2C FMP1 PB14/ PB15 SPI1 PA4/ PA5/ PA6/ PA7 PA15/ PC10/ PC11/ PC12 SPI4 PE11/ CAN2 USB PE12/ PB5/ PA11 PE13/ PB13 /P12 PE14 UFQFPN48 Y - - Y - Y Y Y - - Y Y LQFP64 Y - - Y - Y Y Y Y - Y Y WLCSP81 Y - - Y - Y Y Y Y Y Y Y LQFP100 Y Y - Y - Y Y Y Y Y Y Y LQFP144 Y Y Y Y Y Y Y Y Y Y Y Y UFBGA100 Y Y Y Y - Y Y Y Y Y Y Y UFBGA144 Y Y Y Y Y Y Y Y Y Y Y Y The USART peripherals operate at the internal 16 MHz oscillator (HSI) frequency, while the CAN and USB OTG FS require an external clock (HSE) multiple of 1 MHz (ranging from 4 to 26 MHz). The embedded bootloader code is located in system memory. It is programmed by ST during production. For additional information, refer to application note AN2606. Physical remap in STM32F413/423 Once the boot pins are selected, the application software can modify the memory accessible in the code area (in this way the code can be executed through the ICode bus in place of the System bus). This modification is performed by programming the Section 8.2.1: SYSCFG memory remap register (SYSCFG_MEMRMP) in the SYSCFG controller. The following memories can thus be remapped: 64/1324 • Main Flash memory • System memory • Embedded SRAM RM0430 Rev 8 RM0430 Table 4. Memory mapping vs. Boot mode/physical remap in STM32F413/423 Addresses Boot/Remap in main Flash memory Boot/Remap in embedded SRAM Boot/Remap in System memory 0x2000 0000 - 0x2003 FFFF SRAM (256 KB) SRAM (256KB) SRAM (256KB) 0x1FFF 0000 - 0x1FFF 77FF System memory System memory System memory 0x0802 0000 - 0x1FFE FFFF Reserved Reserved Reserved 0x0800 0000 - 0x080F FFFF Flash memory Flash memory Flash memory 0x0400 000 - 0x07FF FFFF Reserved Reserved Reserved 0x0000 0000 - 0x0003 FFFF(1) Flash (1M) Aliased SRAM1 (256 KB) Aliased System memory (30 KB) Aliased 1. Even when aliased in the boot memory space, the related memory is still accessible at its original memory space. RM0430 Rev 8 65/1324 65 Embedded Flash memory interface RM0430 3 Embedded Flash memory interface 3.1 Introduction The Flash memory interface manages CPU AHB I-Code and D-Code accesses to the Flash memory. It implements the erase and program Flash memory operations and the read and write protection mechanisms. The Flash memory interface accelerates code execution with a system of instruction prefetch and cache lines. 3.2 Main features • Flash memory read operations • Flash memory program/erase operations • Read / write protections • Prefetch on I-Code • 64 cache lines of 128 bits on I-Code • 8 cache lines of 128 bits on D-Code Figure 3 shows the Flash memory interface connection inside the system architecture. Figure 3. Flash memory interface connection inside system architecture &RUWH[0ZLWK)38 ,&RGHEXV ,&RGH $+% ELW LQVWUXFWLRQ )ODVKLQWHUIDFH EXV )ODVK PHPRU\ '&RGH &RUWH[ FRUH 6EXV 'FRGHEXV $+% ELW GDWDEXV )/,7)UHJLVWHUV $+% ELW V\VWHPEXV '0$ )ODVK PHPRU\ EXV ELWV '0$ $+% SHULSK 65$0DQG ([WHUQDO PHPRULHV $+% SHULSK $FFHVVWRLQVWUXFWLRQLQ)ODVKPHPRU\ $FFHVVWRGDWDDQGOLWHUDOSRROLQ)ODVKPHPRU\ )/,7)UHJLVWHUDFFHVV 069 66/1324 RM0430 Rev 8 RM0430 3.3 Embedded Flash memory interface Embedded Flash memory The Flash memory has the following main features: • Capacity up to 1.5 Mbyte • 128 bits wide data read • Byte, half-word, word and double word write • Sector and mass erase • Memory organization The Flash memory is organized as follows: – A main memory block divided into 4 sectors of 16 Kbyte, plus 1 sector of 64 Kbyte and plus 11 sector of 128 Kbyte. – System memory from which the device boots in System memory boot mode – 512 OTP (one-time programmable) bytes for user data The OTP area contains 32 additional bits used to lock the corresponding OTP data block. – • Option bytes to configure read and write protection, BOR level, watchdog software/hardware and reset when the device is in Standby or Stop mode. Low-power modes (for details refer to the Power control (PWR) section of the reference manual) Table 5. Flash module organization Block Main memory Name Block base addresses Size Sector 0 0x0800 0000 - 0x0800 3FFF 16 Kbyte Sector 1 0x0800 4000 - 0x0800 7FFF 16 Kbyte Sector 2 0x0800 8000 - 0x0800 BFFF 16 Kbyte Sector 3 0x0800 C000 - 0x0800 FFFF 16 Kbyte Sector 4 0x0801 0000 - 0x0801 FFFF 64 Kbyte Sector 5 0x0802 0000 - 0x0803 FFFF 128 Kbyte Sector 6 0x0804 0000 - 0x0805 FFFF 128 Kbyte Sector 7 0x0806 0000 - 0x0807 FFFF 128 Kbyte Sector 8 0x0808 0000 - 0x0809 FFFF 128 Kbyte Sector 9 0x080A 0000 - 0x080B FFFF 128 Kbyte Sector 10 0x080C 0000 - 0x080D FFFF 128 Kbyte Sector 11 0x080E 0000 - 0x080F FFFF 128 Kbyte Sector 12 0x08010 0000 - 0x0811 FFFF 128 Kbyte Sector 13 0x0812 0000 - 0x0813 FFFF 128 Kbyte Sector 14 0x0814 0000 - 0x0815 FFFF 128 Kbyte Sector 15 0x0816 0000 - 0x0817 FFFF 128 Kbyte 0x1FFF 0000 - 0x1FFF 77FF 30 Kbyte System memory RM0430 Rev 8 67/1324 89 Embedded Flash memory interface RM0430 Table 5. Flash module organization (continued) Block Name Block base addresses Size OTP area 0x1FFF 7800 - 0x1FFF 7A0F 528 byte Option bytes 0x1FFF C000 - 0x1FFF C00F 16 byte 3.4 Read interface 3.4.1 Relation between CPU clock frequency and Flash memory read time To correctly read data from Flash memory, the number of wait states (LATENCY) must be correctly programmed in the Flash access control register (FLASH_ACR) according to the frequency of the CPU clock (HCLK) and the supply voltage of the device. • When VOS[1:0] = 0x01, the maximum value of fHCLK = 64 MHz. • When VOS[1:0] = 0x10, the maximum value of fHCLK = 84 MHz. • When VOS[1:0] = 0x11, the maximum value of fHCLK = 100 MHz. Table 6. Number of wait states according to CPU clock (HCLK) frequency HCLK (MHz) Wait states (WS) Voltage range Voltage range Voltage range Voltage range 2.7 V - 3.6 V 2.4 V - 2.7 V 2.1 V - 2.4 V 1.7 V - 2.1 V 0 WS (1 CPU cycle) 0 < HCLK ≤ 25 0 < HCLK ≤ 20 0 < HCLK ≤ 18 0 < HCLK ≤ 16 1 WS (2 CPU cycles) 25 < HCLK ≤ 50 20 < HCLK ≤ 40 18 < HCLK ≤ 36 161, 1->2, 0->2) there is no mass erase. • Level 2: debug/chip read protection disabled The read protection Level 2 is activated by writing 0xCC to the RDP option byte. When the read protection Level 2 is set: – All protections provided by Level 1 are active. – Booting from RAM or system memory bootloader is no more allowed. – JTAG, SWV (single-wire viewer), ETM, and boundary scan are disabled. – User option bytes can no longer be changed. – When booting from Flash memory, accesses (read, erase and program) to Flash memory from user code are allowed. Memory read protection Level 2 is an irreversible operation. When Level 2 is activated, the level of protection cannot be decreased to Level 0 or Level 1. Note: The JTAG port is permanently disabled when Level 2 is active (acting as a JTAG fuse). As a consequence, boundary scan cannot be performed. STMicroelectronics is not able to perform analysis on defective parts on which the Level 2 protection has been set. RM0430 Rev 8 77/1324 89 Embedded Flash memory interface -- Memory area RM0430 Table 11. Access versus read protection level Protection Level Debug features, Boot from RAM or from System memory bootloader Read Main Flash Memory Option Bytes OTP Level 1 Write Erase Booting from Flash memory Read Write NO(1) NO Erase YES Level 2 NO YES Level 1 YES YES Level 2 NO NO Level 1 NO NA YES NA Level 2 NO NA YES NA 1. The main Flash memory is only erased when the RDP changes from level 1 to 0. The OTP area remains unchanged. Figure 5 shows how to go from one RDP level to another. Figure 5. RDP levels 2$0 !!H ##H /THERS OPTIONS MODIFIED ,EVEL 2$0 !!H 2$0 ##H DEFAULT 7RITE OPTIONS INCLUDING 2$0 ##H 7RITE OPTIONSINCLUDING 2$0 ##H !!H , EV E L 2$0 ##H 7RITE OPTIONS INCLUDING 2$0 !!H , EV E L 7RITE OPTIONS INCLUDING 2$0 ##H /PTIONS WRITE 2$0 LEVEL INCREASE INCLUDES /PTIONS ERASE .EW OPTIONS PROGRAM /PTIONS WRITE 2$0 LEVEL DECREASE INCLUDES -ASS ERASE /PTIONS ERASE .EW OPTIONS PROGRAM 2$0 !! H 2$0 !!H /THERS OPTIONS MODIFIED /PTIONS WRITE 2$0 LEVEL IDENTICAL INCLUDES /PTIONS ERASE .EW OPTIONS PROGRAM AI 3.6.4 Write protections Up to 16 user sectors in Flash memory can be protected against unwanted write operations due to loss of program counter contexts. When the non-write protection nWRPi bit (0 ≤ i ≤ 14) in the FLASH_OPTCR registers is low, the corresponding sector cannot be erased or programmed. Consequently, a mass erase cannot be performed if one of the sectors is write-protected. 78/1324 RM0430 Rev 8 RM0430 Embedded Flash memory interface If an erase/program operation to a write-protected part of the Flash memory is attempted (sector protected by write protection bit, OTP part locked or part of the Flash memory that can never be written like the ICP), the write protection error flag (WRPERR) is set in the FLASH_SR register. Note: When the memory read protection level is selected (RDP level = 1), it is not possible to program or erase Flash memory sector i if the CPU debug features are connected (JTAG or single wire) or boot code is being executed from RAM, even if nWRPi = 1. Sector 14 and 15 are linked together and cannot be write-protected separately. Write protection error flag If an erase/program operation to a write protected area of the Flash memory is performed, the Write Protection Error flag (WRPERR) is set in the FLASH_SR register. If an erase operation is requested, the WRPERR bit is set when: • Mass, sector erase are configured (MER or MER/MER1 and SER = 1) • A sector erase is requested and the Sector Number SNB field is not valid • A mass erase is requested while at least one of the user sector is write protected by option bit (MER or MER/MER1 = 1 and nWRPi = 0 with 0 ≤ i ≤ 14 bits in the FLASH_OPTCRx register • A sector erase is requested on a write protected sector. (SER = 1, SNB = i and nWRPi = 0 with 0 ≤ i ≤ 14 bits in the FLASH_OPTCRx register) • The Flash memory is readout protected and an intrusion is detected. If a program operation is requested, the WRPERR bit is set when: 3.6.5 • A write operation is performed on system memory or on the reserved part of the user specific sector. • A write operation is performed to the user configuration sector • A write operation is performed on a sector write protected by option bit. • A write operation is requested on an OTP area which is already locked • The Flash memory is read protected and an intrusion is detected. Proprietary code readout protection (PCROP) Flash memory user sectors (0 to 15) can be protected against D-bus read accesses by using the proprietary readout protection (PCROP). The PCROP protection is selected as follows, through the SPRMOD option bit in the FLASH_CR register: • SPRMOD = 0: nWRPi control the write protection of respective user sectors • SPRMOD = 1: nWRPi control the read and write protection (PCROP) of respective user sectors. When a sector is readout protected (PCROP mode activated), it can only be accessed for code fetch through ICODE Bus on Flash interface: • Any read access performed through the D-bus triggers a RDERR flag error. • Any program/erase operation on a PCROPed sector triggers a WRPERR flag error. RM0430 Rev 8 79/1324 89 Embedded Flash memory interface RM0430 Figure 6. PCROP levels 7RITE OPTIONS 30-/$ ACTIVE AND VALID N720I ,EVEL 2$0 X!! 2$0 X## DEFAULT 7RITE OPTIONS 30-/$ ACTIVE AND VALID N720I 7RITE OPTIONS 30-/$ ACTIVE AND VALID N720I .O RESTRICTION ON 7RITE OPTIONS ,EVEL ,EVEL 2$0 X## 2$0 X!! 7RITE OPTIONS 30-/$ ACTIVE AND VALID N720I 5SER OPTION SECTOR ERASE 0ROGRAM NEW OPTIONS 7RITE OPTIONS 30-/$ ACTIVE AND VALID N720I 'LOBAL MASS ERASE 5SER OPTION SECTION ERASE 0ROGRAM NEW OPTIONS 6ALID N720I MEANS THAT NONE OF THE N720 BITS SET CAN BE RESET TRANSITION FROM TO -36 The deactivation of the SPRMOD and/or the unprotection of PCROPed user sectors can only occur when, at the same time, the RDP level changes from 1 to 0. If this condition is not respected, the user option byte modification is canceled and the write error WRPERR flag is set. The modification of the users option bytes (BOR_LEV, RST_STDBY, ..) is allowed since none of the active nWRPi bits is reset and SPRMOD is kept active. Note: 80/1324 The active value of nWRPi bits is inverted when PCROP mode is active (SPRMOD =1). RM0430 Rev 8 RM0430 3.7 Embedded Flash memory interface One-time programmable bytes Table 12 shows the organization of the one-time programmable (OTP) part of the OTP area. Table 12. OTP area organization Block 0 1 [128:96] [95:64] [63:32] [31:0] Address byte 0 OTP0 OTP0 OTP0 OTP0 0x1FFF 7800 OTP0 OTP0 OTP0 OTP0 0x1FFF 7810 OTP1 OTP1 OTP1 OTP1 0x1FFF 7820 OTP1 OTP1 OTP1 OTP1 0x1FFF 7830 . . . 15 Lock block . . . . . . OTP15 OTP15 OTP15 OTP15 0x1FFF 79E0 OTP15 OTP15 OTP15 OTP15 0x1FFF 79F0 LOCKB15 ... LOCKB12 LOCKB11 ... LOCKB8 LOCKB7 ... LOCKB4 LOCKB3 ... LOCKB0 0x1FFF 7A00 The OTP area is divided into 16 OTP data blocks of 32 bytes and one lock OTP block of 16 bytes. The OTP data and lock blocks cannot be erased. The lock block contains 16 bytes LOCKBi (0 ≤ i ≤ 15) to lock the corresponding OTP data block (blocks 0 to 15). Each OTP data block can be programmed until the value 0x00 is programmed in the corresponding OTP lock byte. The lock bytes must only contain 0x00 and 0xFF values, otherwise the OTP bytes might not be taken into account correctly. RM0430 Rev 8 81/1324 89 Embedded Flash memory interface RM0430 3.8 Flash interface registers 3.8.1 Flash access control register (FLASH_ACR) The Flash access control register is used to enable/disable the acceleration features and control the Flash memory access time according to CPU frequency. Address offset: 0x00 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 12 11 3 2 1 0 15 14 13 Res. Res. Res. DCRST ICRST rw w 10 9 8 7 6 5 4 DCEN ICEN PRFTEN Res. Res. Res. Res. rw rw rw LATENCY rw rw rw rw Bits 31:13 Reserved, must be kept cleared. Bit 12 DCRST: Data cache reset 0: Data cache is not reset 1: Data cache is reset This bit can be written only when the D cache is disabled. Bit 11 ICRST: Instruction cache reset 0: Instruction cache is not reset 1: Instruction cache is reset This bit can be written only when the I cache is disabled. Bit 10 DCEN: Data cache enable 0: Data cache is disabled 1: Data cache is enabled Bit 9 ICEN: Instruction cache enable 0: Instruction cache is disabled 1: Instruction cache is enabled Bit 8 PRFTEN: Prefetch enable 0: Prefetch is disabled 1: Prefetch is enabled Bits 7:4 Reserved, must be kept cleared. Bits 3:0 LATENCY: Latency These bits represent the ratio of the CPU clock period to the Flash memory access time. 0000: Zero wait state 0001: One wait state 0010: Two wait states 1110: Fourteen wait states 1111: Fifteen wait states 82/1324 RM0430 Rev 8 RM0430 Embedded Flash memory interface 3.8.2 Flash key register (FLASH_KEYR) The Flash key register is used to allow access to the Flash control register and so, to allow program and erase operations. Address offset: 0x04 Reset value: 0x0000 0000 Access: no wait state, word access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 KEY[31:16] w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 w w w w w w w KEY[15:0] w w w w w w w w w Bits 31:0 FKEYR: FPEC key The following values must be programmed consecutively to unlock the FLASH_CR register and allow programming/erasing it: a) KEY1 = 0x45670123 b) KEY2 = 0xCDEF89AB 3.8.3 Flash option key register (FLASH_OPTKEYR) The Flash option key register is used to allow program and erase operations in the user configuration sector. Address offset: 0x08 Reset value: 0x0000 0000 Access: no wait state, word access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 OPTKEYR[31:16 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 w w w w w w w OPTKEYR[15:0] w w w w w w w w w Bits 31:0 OPTKEYR: Option byte key The following values must be programmed consecutively to unlock the FLASH_OPTCR register and allow programming it: a) OPTKEY1 = 0x08192A3B b) OPTKEY2 = 0x4C5D6E7F RM0430 Rev 8 83/1324 89 Embedded Flash memory interface 3.8.4 RM0430 Flash status register (FLASH_SR) The Flash status register gives information on ongoing program and erase operations. Address offset: 0x0C Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BSY 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. OPERR EOP rc_w1 rc_w1 r RDERR PGSERR PGPERR PGAERR WRPERR rw rc_w1 rc_w1 rc_w1 rc_w1 Bits 31:17 Reserved, must be kept cleared. Bit 16 BSY: Busy This bit indicates that a Flash memory operation is in progress. It is set at the beginning of a Flash memory operation and cleared when the operation finishes or an error occurs. 0: no Flash memory operation ongoing 1: Flash memory operation ongoing Bits 15:9 Reserved, must be kept cleared. Bit 8 RDERR: Read Protection Error (PCROP) Set by hardware when an address to be read through the Dbus belongs to a read protected part of the flash. Reset by writing 1. Bit 7 PGSERR: Programming sequence error Set by hardware when a write access to the Flash memory is performed by the code while the control register has not been correctly configured. Cleared by writing 1. Bit 6 PGPERR: Programming parallelism error Set by hardware when the size of the access (byte, half-word, word, double word) during the program sequence does not correspond to the parallelism configuration PSIZE (x8, x16, x32, x64). Cleared by writing 1. Bit 5 PGAERR: Programming alignment error Set by hardware when the data to program cannot be contained in the same 128-bit Flash memory row. Cleared by writing 1. Bit 4 WRPERR: Write protection error Set by hardware when an address to be erased/programmed belongs to a write-protected part of the Flash memory. Cleared by writing 1. 84/1324 RM0430 Rev 8 RM0430 Embedded Flash memory interface Bits 3:2 Reserved, must be kept cleared. Bit 1 OPERR: Operation error Set by hardware when a flash operation (programming / erase /read) request is detected and can not be run because of parallelism, alignment, or write protection error. This bit is set only if error interrupts are enabled (ERRIE = 1). Bit 0 EOP: End of operation Set by hardware when one or more Flash memory operations (program/erase) has/have completed successfully. It is set only if the end of operation interrupts are enabled (EOPIE = 1). Cleared by writing a 1. 3.8.5 Flash control register (FLASH_CR) The Flash control register is used to configure and start Flash memory operations. Address offset: 0x10 Reset value: 0x8000 0000 Access: no wait state when no Flash memory operation is ongoing, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 LOCK Res. Res. Res. Res. Res. ERRIE EOPIE Res. Res. Res. Res. Res. Res. Res. STRT rw rw 9 8 rs 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. PSIZE[1:0] rw rs 7 6 Res. rw 5 4 3 SNB[3:0] rw rw rw rw 2 1 0 MER SER PG rw rw rw Bit 31 LOCK: Lock Write to 1 only. When it is set, this bit indicates that the FLASH_CR register is locked. It is cleared by hardware after detecting the unlock sequence. In the event of an unsuccessful unlock operation, this bit remains set until the next reset. Bits 30:26 Reserved, must be kept cleared. Bit 25 ERRIE: Error interrupt enable This bit enables the interrupt generation when the OPERR bit in the FLASH_SR register is set to 1. 0: Error interrupt generation disabled 1: Error interrupt generation enabled Bit 24 EOPIE: End of operation interrupt enable This bit enables the interrupt generation when the EOP bit in the FLASH_SR register goes to 1. 0: Interrupt generation disabled 1: Interrupt generation enabled Bits 23:17 Reserved, must be kept cleared. Bit 16 STRT: Start This bit triggers an erase operation when set. It is set only by software and cleared when the BSY bit is cleared. Bits 15:10 Reserved, must be kept cleared. RM0430 Rev 8 85/1324 89 Embedded Flash memory interface RM0430 Bits 9:8 PSIZE: Program size These bits select the program parallelism. 00 program x8 01 program x16 10 program x32 11 program x64 Bit 7 Reserved, must be kept cleared. Bits 6:3 SNB: Sector number These bits select the sector to erase. 0000 sector 0 0001 sector 1 ... 1010 sector 10 1011 sector 11 1100 sector 12 1101 sector 13 1110 sector 14 1111 sector 15 Bit 2 MER: Mass Erase Erase activated for all user sectors. Bit 1 SER: Sector Erase Sector Erase activated. Bit 0 PG: Programming Flash programming activated. 3.8.6 Flash option control register (FLASH_OPTCR) The FLASH_OPTCR register is used to modify the user option bytes. Address offset: 0x14 Reset value: 0x0FFF FFED. The option bits are loaded with values from Flash memory at reset release. Access: no wait state when no Flash memory operation is ongoing, word, half-word and byte access. 31 30 SPR MOD nWRP 14_15 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw nWRP[13:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 nRST_ STDBY nRST_ STOP WDG_ SW OPT STRT OPT LOCK rw rw rw rs rs RDP[7:0] rw 86/1324 rw rw rw rw rw rw rw RM0430 Rev 8 Res. BOR_LEV rw rw RM0430 Embedded Flash memory interface Bit 31 SPRMOD: Selection of Protection Mode of nWPRi bits 0: PCROP disabled, nWPRi bits used for Write Protection on sector i 1: PCROP enabled, nWPRi bits used for PCROP Protection on sector i Bit 30 nWRP14_15: Not write protect This bit contains the value of the write-protection option byte of sectors 14 and 15. They can be written to program a new write protect value into Flash memory. Sectors 14 and 15 are linked together and cannot be programmed separately 0: Write protection active on sectors 14 and 15 1: Write protection not active on sectors 14 and 15 These bits contain the value of the write-protection and read-protection (PCROP) option bytes for sectors 14 and 15 after reset. They can be written to program a new write-protect or PCROP value into Flash memory. If SPRMOD is reset: 0: Write protection active on sectors 14 and 15 1: Write protection not active on sectors 14 and 15 If SPRMOD is set: 0: PCROP protection not active on sectors 14 and 15 1: PCROP protection active on sectors 14 and 15 Bits 29:16 nWRP[13:0]: Not write protect These bits contain the value of the write-protection option bytes of sectors after reset. They can be written to program a new write protect value into Flash memory. 0: Write protection active on selected sector 1: Write protection not active on selected sector These bits contain the value of the write-protection and read-protection (PCROP) option bytes for sectors 0 to 13 after reset. They can be written to program a new write-protect or PCROP value into Flash memory. If SPRMOD is reset: 0: Write protection active on sector i 1: Write protection not active on sector i If SPRMOD is set: 0: PCROP protection not active on sector i 1: PCROP protection active on sector i Bits 15:8 RDP: Read protect These bits contain the value of the read-protection option level after reset. They can be written to program a new read protection value into Flash memory. 0xAA: Level 0, read protection not active 0xCC: Level 2, chip read protection active Others: Level 1, read protection of memories active Bits 7:5 USER: User option bytes These bits contain the value of the user option byte after reset. They can be written to program a new user option byte value into Flash memory. Bit 7: nRST_STDBY Bit 6: nRST_STOP Bit 5: WDG_SW Note: When changing the WDG mode from hardware to software or from software to hardware, a system reset is required to make the change effective. Bit 4 Reserved, must be kept cleared. Always read as “0”. RM0430 Rev 8 87/1324 89 Embedded Flash memory interface RM0430 Bits 3:2 BOR_LEV: BOR reset Level These bits contain the supply level threshold that activates/releases the reset. They can be written to program a new BOR level. By default, BOR is off. When the supply voltage (VDD) drops below the selected BOR level, a device reset is generated. 00: BOR Level 3 (VBOR3), brownout threshold level 3 01: BOR Level 2 (VBOR2), brownout threshold level 2 10: BOR Level 1 (VBOR1), brownout threshold level 1 11: BOR off, POR/PDR reset threshold level is applied Note: For full details about BOR characteristics, refer to the “Electrical characteristics” section in the device datasheet. Bit 1 OPTSTRT: Option start This bit triggers a user option operation when set. It is set only by software and cleared when the BSY bit is cleared. Bit 0 OPTLOCK: Option lock Write to 1 only. When this bit is set, it indicates that the FLASH_OPTCR register is locked. This bit is cleared by hardware after detecting the unlock sequence. In the event of an unsuccessful unlock operation, this bit remains set until the next reset. 88/1324 RM0430 Rev 8 RM0430 3.8.7 Embedded Flash memory interface Flash interface register map 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. ICEN PRFTEN Res. Res. DCEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FLASH_SR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BSY Res. Res. Res. Res. Res. Res. Res. RDERR PGSERR PGPERR PGAERR WRPERR Res. OPTKEYR[15:0] Res. OPTKEYR[31:16] 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 Res. PSIZE[1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EOPIE Res. Res. ERRIE Res. Res. nWRP[13:0] 0 0 1 0 RDP[7:0] 1 1 1 1 RM0430 Rev 8 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 BOR_LEV 1 0 WDG_SW Res. 0 0 nRST_STOP Reset value 0 SNB[3:0] nRST_STDBY FLASH_OPTCR Res. 1 Res. Reset value SPRMOD FLASH_CR LOCK Res. 0 EOP FLASH_ OPTKEYR 0 KEY[15:0] PG 0 0 OPTLOCK 0 0 Res. 0 0 OPERR 0 0 SER 0 nWRP14_15 0x14 0 KEY[31:16] Reset value 0x10 0 Res. 0x0C 0 Res. 0x08 0 MER Reset value 0 LATENCY OPTSTRT FLASH_KEYR STRT Res. 0x04 ICRST Res. Reset value DCRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FLASH_ACR Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 13. Flash register map and reset values 1 89/1324 89 CRC calculation unit RM0430 4 CRC calculation unit 4.1 CRC introduction The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a way of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 4.2 CRC main features • Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7 – X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X +1 • Single input/output 32-bit data register • CRC computation done in four AHB clock cycles (HCLK) • General-purpose 8-bit register (can be used for temporary storage) The block diagram is shown in Figure 7. Figure 7. CRC calculation unit block diagram $+%EXV ELW UHDGDFFHVV 'DWDUHJLVWHU RXWSXW &5&FRPSXWDWLRQ SRO\QRPLDO[&'% ELW ZULWHDFFHVV 'DWDUHJLVWHU LQSXW DL 4.3 CRC functional description The CRC calculation unit mainly consists of a single 32-bit data register, which: 90/1324 • is used as an input register to enter new data in the CRC calculator (when writing into the register) • holds the result of the previous CRC calculation (when reading the register) RM0430 Rev 8 RM0430 CRC calculation unit Each write operation into the data register creates a combination of the previous CRC value and the new one (CRC computation is done on the whole 32-bit data word, and not byte per byte). The write operation is stalled until the end of the CRC computation, thus allowing back-toback write accesses or consecutive write and read accesses. The CRC calculator can be reset to 0xFFFF FFFF with the RESET control bit in the CRC_CR register. This operation does not affect the contents of the CRC_IDR register. 4.4 CRC registers The CRC calculation unit contains two data registers and a control register.The peripheral The CRC registers have to be accessed by words (32 bits). 4.4.1 Data register (CRC_DR) Address offset: 0x00 Reset value: 0xFFFF FFFF 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DR [31:16] DR [15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 Data register bits Used as an input register when writing new data into the CRC calculator. Holds the previous CRC calculation result when it is read. RM0430 Rev 8 91/1324 93 CRC calculation unit 4.4.2 RM0430 Independent data register (CRC_IDR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw rw rw rw rw IDR[7:0] rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 General-purpose 8-bit data register bits Can be used as a temporary storage location for one byte. This register is not affected by CRC resets generated by the RESET bit in the CRC_CR register. 4.4.3 Control register (CRC_CR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RESET w Bits 31:1 Reserved, must be kept at reset value. Bit 0 RESET bit Resets the CRC calculation unit and sets the data register to 0xFFFF FFFF. This bit can only be set, it is automatically cleared by hardware. 92/1324 RM0430 Rev 8 0x08 CRC_CR Reset value RM0430 Rev 8 RESET Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CRC_IDR Res. 0x04 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 Res. Offset Res. 4.4.4 Res. RM0430 CRC calculation unit CRC register map Table 14. CRC calculation unit register map and reset values CRC_DR Data register Reset value 0xFFFF FFFF Independent data register 0x0000 0 93/1324 93 Power controller (PWR) RM0430 5 Power controller (PWR) 5.1 Power supplies There are two main power supply schemes: • VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal regulator disabled, provided externally through VDD pins. Requires the use of an external power supply supervisor connected to the VDD and PDR_ON pins. • VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. • VDD_USB = 3.0 to 3.6 V VDD_USB is a dedicated independent USB power supply for full speed transceivers. Note: VDD_USB value does not dependent on VDD and VDDA. However, VDD_USB must be the last supply to be delivered to the device and the first to be switched off. When the three power supplies are shut down, if VDD_USB remains active for a short period of time and VDDA/VDDIO fall below the functional range, the device is not be damaged. The device is still functional when VDD_USB is switched off. The real-time clock (RTC), and the RTC backup registers can be powered from the VBAT voltage when the main VDD supply is powered off. Note: 94/1324 Depending on the operating power supply range, some peripheral may be used with limited functionality and performance. For more details refer to section "General operating conditions" in the datasheet. RM0430 Rev 8 RM0430 Power controller (PWR) Figure 8. Power supply overview 9%$7 9%$7 WR9 *3,2V 9&$3B 9&$3B î) 9'' 966 îQ) î) 9''B86% ,1 ,2 /RJLF .HUQHOORJLF &38GLJLWDO 5$0 9ROWDJH UHJXODWRU %<3$66B5(* Q) ) 3'5B21 9'' )ODVKPHPRU\ 27* )6 3+< 9''B86% 5HVHW FRQWUROOHU 9''$ 95() Q) ) /HYHOVKLIWHU 287 9'' %DFNXSFLUFXLWU\ 26&.57& :DNHXSORJLF %DFNXSUHJLVWHUV 3RZHU VZLWFK Q) ) 95() 95() $'& $QDORJ 5&V 3// 966$ 06Y9 1. VDDA and VSSA must be connected to VDD and VSS, respectively. 5.1.1 Independent A/D converter supply and reference voltage To improve conversion accuracy, the ADC has an independent power supply which can be separately filtered and shielded from noise on the PCB. • The ADC voltage supply input is available on a separate VDDA pin. • An isolated supply ground connection is provided on pin VSSA. To ensure a better accuracy of low voltage inputs, the user can connect a separate external reference voltage ADC input on VREF. The voltage on VREF ranges from 1.7 V to VDDA. 5.1.2 Battery backup domain Backup domain description To retain the content of the RTC backup registers and supply the RTC when VDD is turned off, VBAT pin can be connected to an optional standby voltage supplied by a battery or by another source. RM0430 Rev 8 95/1324 116 Power controller (PWR) RM0430 To allow the RTC to operate even when the main digital supply (VDD) is turned off, the VBAT pin powers the following blocks: • The RTC • The LSE oscillator • PC13 to PC15 I/Os The switch to the VBAT supply is controlled by the power-down reset embedded in the Reset block. Warning: During tRSTTEMPO (temporization at VDD startup) or after a PDR is detected, the power switch between VBAT and VDD remains connected to VBAT. During the startup phase, if VDD is established in less than tRSTTEMPO (Refer to the datasheet for the value of tRSTTEMPO) and VDD > VBAT + 0.6 V, a current may be injected into VBAT through an internal diode connected between VDD and the power switch (VBAT). If the power supply/battery connected to the VBAT pin cannot support this current injection, it is strongly recommended to connect an external low-drop diode between this power supply and the VBAT pin. If no external battery is used in the application, it is recommended to connect the VBAT pin to VDD with a 100 nF external decoupling ceramic capacitor in parallel. When the backup domain is supplied by VDD (analog switch connected to VDD), the following functions are available: Note: • PC14 and PC15 can be used as either GPIO or LSE pins • PC13 can be used as a GPIO or additional functions can be configured (refer to Table 27: RTC additional functions for more details about this pin configuration) Due to the fact that the switch only sinks a limited amount of current (3 mA), the use of PC13 to PC15 GPIOs in output mode is restricted: the speed has to be limited to 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). When the backup domain is supplied by VBAT (analog switch connected to VBAT because VDD is not present), the following functions are available: 96/1324 • PC14 and PC15 can be used as LSE pins only • PC13 can be used as the RTC additional function pin (refer to Table 27: RTC additional functions for more details about this pin configuration) RM0430 Rev 8 RM0430 Power controller (PWR) Backup domain access After reset, the backup domain (RTC registers, and RTC backup register) is protected against possible unwanted write accesses. To enable access to the backup domain, proceed as follows: • Access to the RTC and RTC backup registers 1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR register (see Section 6.3.14: RCC AHB3 peripheral clock enable register (RCC_AHB3ENR)) 2. Set the DBP bit in the Section 5.4.1 to enable access to the backup domain 3. Select the RTC clock source: see Section 6.2.8: RTC/AWU clock 4. Enable the RTC clock by programming the RTCEN [15] bit in the Section 6.3.23: RCC Backup domain control register (RCC_BDCR) RTC and RTC backup registers The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a timeof-day clock/calendar, two programmable alarm interrupts, and a periodic programmable wakeup flag with interrupt capability. The RTC contains 20 backup data registers (80 bytes) which are reset when a tamper detection event occurs. For more details refer to Section 25: Real-time clock (RTC). 5.1.3 Voltage regulator An embedded linear voltage regulator supplies all the digital circuitries except for the backup domain and the Standby circuitry. The regulator output voltage is around 1.2 V. This voltage regulator requires one or two external capacitors to be connected to one or two dedicated pins, VCAP_1 and for some packages VCAP_2. Specific pins must be connected either to VSS or VDD to activate or deactivate the voltage regulator. These pins depend on the package. When activated by software, the voltage regulator is always enabled after Reset. It works in three different modes depending on the application modes. • In Run mode, the regulator supplies full power to the 1.2 V domain (core, memories and digital peripherals). In this mode, the regulator output voltage (around 1.2 V) can be scaled by software to different voltage values, Scale 1, scale 2, or scale 3, that can be configured through the VOS[1:0] bits of the PWR_CR register. After reset the VOS register is set to scale 2. When the PLL is OFF, the voltage regulator is set to scale 3 independently of the VOS register content. The VOS register content is only taken into account once the PLL is activated and the HSI or HSE is selected as clock source. The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency. • In Stop mode, the main regulator or the low-power regulator supplies low power to the 1.2 V domain, thus preserving the content of registers and internal SRAM. The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). The programmed voltage scale remains the same during Stop mode: Voltage scale 3 is automatically selected when the microcontroller enters Stop mode (see Section 5.4.1: PWR power control register (PWR_CR)). • In Standby mode, the regulator is powered down. The content of the registers and SRAM are lost except for the Standby circuitry and the backup domain. RM0430 Rev 8 97/1324 116 Power controller (PWR) RM0430 Note: For more details, refer to the voltage regulator section in the STM32F413/423 datasheet. 5.2 Power supply supervisor 5.2.1 Power-on reset (POR)/power-down reset (PDR) The device has an integrated POR/PDR circuitry that allows proper operation starting from 1.8 V. To use the device below 1.8 V, the internal power supervisor must be switched off using the PDR_ON pin (please refer to section Power supply supervisor of the STM32F413/423 datasheet). The device remains in Reset mode when VDD/VDDA is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. For more details concerning the power on/power-down reset threshold, refer to the electrical characteristics of the datasheet. Figure 9. Power-on reset/power-down reset waveform 6$$6$$! 0$2 M6 HYSTERESIS 0$2 4EMPORIZATION T2344%-0/ 2ESET -36 5.2.2 Brownout reset (BOR) During power on, the Brownout reset (BOR) keeps the device under reset until the supply voltage reaches the specified VBOR threshold. VBOR is configured through device option bytes. By default, BOR is off. 3 programmable VBOR threshold levels can be selected: Note: 98/1324 • BOR Level 3 (VBOR3). Brownout threshold level 3. • BOR Level 2 (VBOR2). Brownout threshold level 2. • BOR Level 1 (VBOR1). Brownout threshold level 1. For full details about BOR characteristics, refer to the "Electrical characteristics" section in the device datasheet. RM0430 Rev 8 RM0430 Power controller (PWR) When the supply voltage (VDD) drops below the selected VBOR threshold, a device reset is generated. The BOR can be disabled by programming the device option bytes. In this case, the power-on and power-down is then monitored by the POR/ PDR or by an external power supervisor if the PDR is switched off through the PDR_ON pin (see Section 5.2.1: Power-on reset (POR)/power-down reset (PDR)). The BOR threshold hysteresis is ~100 mV (between the rising and the falling edge of the supply voltage). Figure 10. BOR thresholds 6$$6$$! "/2 THRESHOLD M6 HYSTERESIS 2ESET -36 5.2.3 Programmable voltage detector (PVD) You can use the PVD to monitor the VDD power supply by comparing it to a threshold selected by the PLS[2:0] bits in the PWR power control register (PWR_CR). The PVD is enabled by setting the PVDE bit. A PVDO flag is available, in the PWR power control/status register (PWR_CSR), to indicate if VDD is higher or lower than the PVD threshold. This event is internally connected to the EXTI line16 and can generate an interrupt if enabled through the EXTI registers. The PVD output interrupt can be generated when VDD drops below the PVD threshold and/or when VDD rises above the PVD threshold depending on EXTI line16 rising/falling edge configuration. As an example the service routine could perform emergency shutdown tasks. RM0430 Rev 8 99/1324 116 Power controller (PWR) RM0430 Figure 11. PVD thresholds 9'' 39'WKUHVKROG P9 K\VWHUHVLV 39'RXWSXW 069 5.3 Low-power modes By default, the microcontroller is in Run mode after a system or a power-on reset. In Run mode the CPU is clocked by HCLK and the program code is executed. Several low-power modes are available to save power when the CPU does not need to be kept running, for example when waiting for an external event. It is up to the user to select the mode that gives the best compromise between low-power consumption, short startup time and available wakeup sources. The devices feature four low-power modes: • Sleep mode (Cortex®-M4 with FPU core stopped, peripherals kept running) • Stop mode (all clocks are stopped) • Standby mode (1.2 V domain powered off) • Batch acquisition mode (BAM): the devices are in Sleep mode, the Flash memory is off, needed peripheral are kept running, data transfer are still possible through DMA. In addition, the power consumption in Run mode can be reduce by one of the following means: • Slowing down the system clocks • Gating the clocks to the APBx and AHBx peripherals when they are unused. Entering low-power mode Low-power modes are entered by the MCU by executing the WFI (Wait For Interrupt), or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit in the Cortex®-M4 with FPU System Control register is set on Return from ISR. Entering Low-power mode through WFI or WFE will be executed only if no interrupt is pending or no event is pending. 100/1324 RM0430 Rev 8 RM0430 Power controller (PWR) Exiting low-power mode The MCU exits from Sleep and Stop modes low-power mode depending on the way the lowpower mode was entered: • If the WFI instruction or Return from ISR was used to enter the low-power mode, any peripheral interrupt acknowledged by the NVIC can wake up the device. • If the WFE instruction is used to enter the low-power mode, the MCU exits the lowpower mode as soon as an event occurs. The wakeup event can be generated either by: – NVIC IRQ interrupt: When SEVONPEND = 0 in the Cortex®-M4 with FPU System Control register: by enabling an interrupt in the peripheral control register and in the NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. Only NVIC interrupts with sufficient priority will wakeup and interrupt the MCU. When SEVONPEND = 1 in the Cortex®-M4 with FPU System Control register: by enabling an interrupt in the peripheral control register and optionally in the NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and when enabled the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. All NVIC interrupts will wakeup the MCU, even the disabled ones.Only enabled NVIC interrupts with sufficient priority will wakeup and interrupt the MCU. – Event This is done by configuring a EXTI line in event mode. When the CPU resumes from WFE, it is not necessary to clear the EXTI peripheral interrupt pending bit or the NVIC IRQ channel pending bit as the pending bits corresponding to the event line is not set. It may be necessary to clear the interrupt flag in the peripheral. The MCU exits from Standby low-power mode through an external reset (NRST pin), an IWDG reset, a rising edge on one of the enabled WKUPx pins or a RTC event occurs (see Figure 254: RTC block diagram). After waking up from Standby mode, program execution restarts in the same way as after a Reset (boot pin sampling, option bytes loading, reset vector is fetched, etc.). RM0430 Rev 8 101/1324 116 Power controller (PWR) RM0430 Only enabled NVIC interrupts with sufficient priority will wakeup and interrupt the MCU. Table 15. Low-power mode summary Mode name Entry Wakeup Sleep and BAM(1) (Sleep now or Sleep-onexit) WFI or Return from ISR Any interrupt WFE Wakeup event Stop Standby Effect on 1.2 V domain clocks Effect on VDD domain clocks Voltage regulator CPU CLK OFF no effect on other clocks or analog clock sources None ON SLEEPDEEP bit Any EXTI line (configured + WFI, Return in the EXTI registers, from ISR or WFE internal and external lines) PDDS bit + SLEEPDEEP bit + WFI, Return from ISR or WFE WKUP pin rising edge, RTC alarm (Alarm A or Alarm B), RTC Wakeup event, RTC tamper events, RTC time stamp event, external reset in NRST pin, IWDG reset All 1.2 V domain clocks OFF HSI and HSE oscillator s OFF Main regulator or Low-Power regulator (depends on PWR power control register (PWR_CR) OFF 1. Refer to Section 5.3.4: Batch acquisition mode for specific BAM entry and exit requirements. 5.3.1 Slowing down system clocks In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK1, PCLK2) can be reduced by programming the prescaler registers. These prescalers can also be used to slow down peripherals before entering Sleep mode. For more details refer to Section 6.3.3: RCC clock configuration register (RCC_CFGR). 5.3.2 Peripheral clock gating In Run mode, the HCLKx and PCLKx for individual peripherals and memories can be stopped at any time to reduce power consumption. To further reduce power consumption in Sleep mode the peripheral clocks can be disabled prior to executing the WFI or WFE instructions. Peripheral clock gating is controlled by the AHB1 peripheral clock enable register (RCC_AHB1ENR), AHB2 peripheral clock enable register (RCC_AHB2ENR) (see Section 6.3.11: RCC AHB1 peripheral clock enable register (RCC_AHB1ENR), Section 6.3.12: RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) for STM32F413xx and Section 6.3.14: RCC AHB3 peripheral clock enable register (RCC_AHB3ENR)). Disabling the peripherals clocks in Sleep mode can be performed automatically by resetting the corresponding bit in RCC_AHBxLPENR and RCC_APBxLPENR registers. 102/1324 RM0430 Rev 8 RM0430 5.3.3 Power controller (PWR) Sleep mode Entering Sleep mode The Sleep mode is entered according to Entering low-power mode, when the SLEEPDEEP bit in the Cortex®-M4 with FPU System Control register is cleared. Refer to Table 16 and Table 17 for details on how to enter Sleep mode. Note: All interrupt pending bits must be cleared before the sleep mode entry. Exiting Sleep mode The Sleep mode is exited according to Exiting low-power mode. Refer to Table 16 and Table 17 for more details on how to exit Sleep mode. Table 16. Sleep-now entry and exit Sleep-now mode Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – SLEEPDEEP = 0, and – No interrupt (for WFI) or event (for WFE) is pending. Refer to the Cortex®-M4 with FPU System Control register. Mode entry On Return from ISR while: – SLEEPDEEP = 0 and – SLEEPONEXIT = 1, – No interrupt is pending. Refer to the Cortex®-M4 with FPU System Control register. Mode exit If WFI or Return from ISR was used for entry: Interrupt: Refer to Table 40: Vector table for STM32F413/423 If WFE was used for entry and SEVONPEND = 0 Wakeup event: Refer to Section 10.2.3: Wakeup event management f WFE was used for entry and SEVONPEND = 1 Interrupt even when disabled in NVIC: refer to Table 40: Vector table for STM32F413/423 or Wakeup event (see Section 10.2.3: Wakeup event management). Wakeup latency None Table 17. Sleep-on-exit entry and exit Sleep-on-exit Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – SLEEPDEEP = 0, and – No interrupt (for WFI) or event (for WFE) is pending. Refer to the Cortex®-M4 with FPU System Control register. Mode entry On Return from ISR while: – SLEEPDEEP = 0, and – SLEEPONEXIT = 1, and – No interrupt is pending. Refer to the Cortex®-M4 with FPU System Control register. RM0430 Rev 8 103/1324 116 Power controller (PWR) RM0430 Table 17. Sleep-on-exit entry and exit (continued) Sleep-on-exit 5.3.4 Description Mode exit Interrupt: refer to Table 40: Vector table for STM32F413/423 Wakeup latency None Batch acquisition mode Entering BAM The BAM is entered according to Section : Entering low-power mode, when the SLEEPDEEP bit in the Cortex®-M4 with FPU System Control register is cleared. Refer to Table 18 and Table 19 for details on how to enter Sleep mode. Before entering Sleep mode, the Flash memory must be configured by software to operate in the required low- power mode. If data need to be transferred from peripheral to RAM during BAM, the DMA must be enabled before entering Sleep mode. Exiting BAM The BAM is exited according to Section : Exiting low-power mode. Refer to Table 18 and Table 19 for more details on how to exit Sleep mode. After waking up from BAM, the Flash memory must first to be waked up if code execution restarts from Flash memory. This wakeup time must be managed by software running from the internal SRAM. Table 18. BAM-now entry and exit Sleep-now mode 104/1324 Description Mode entry Set the Flash memory in low-power mode: – FISSR/FMSSR and FPDS bits of the PWR_CR register WFI (Wait for Interrupt) or WFE (Wait for Event) while: – SLEEPDEEP = 0 and – SLEEPONEXIT = 0 Refer to the Cortex®-M4 with FPU System Control register. Mode exit If WFI was used for entry: Interrupt: Refer to Table 40: Vector table for STM32F413/423 If WFE was used for entry Wakeup event: Refer to Section 10.2.3: Wakeup event management If Flash memory wakeup time is needed, FISSR/FMSSR bits of PWR_CR register must be set Wakeup latency None if code executed from RAM Low-power mode Flash memory wakeup time, before restarting code execution from Flash memory (refer to the Flash memory wakeup time in the Electrical characteristics section of the datasheet). RM0430 Rev 8 RM0430 Power controller (PWR) Table 19. BAM-on-exit entry and exit Sleep-on-exit Description Mode entry Set the Flash memory in low-power mode: – FISSR/FMSSR and FPDS bits of the PWR_CR register WFI (wait for interrupt) while: – SLEEPDEEP = 0 and – SLEEPONEXIT = 1 Refer to the Cortex®-M4 with FPU System Control register. Mode exit Interrupt: refer to Table 40: Vector table for STM32F413/423 If Flash memory wakeup time is needed, FISSR/FMSSR bits of PWR_CR register must be set Wakeup latency None when code executed from internal SRAM Low-power mode Flash memory wakeup time, before restarting code execution from Flash memory (refer to the Flash memory wakeup time in the Electrical characteristics section of the datasheet). Note: The BAM has been enhanced by adding SRAM2 that allows SRAM code to be executed through the Ibus and Dbus, thus improving code execution performance. 5.3.5 Stop mode The Stop mode is based on the Cortex®-M4 with FPU deepsleep mode combined with peripheral clock gating. The voltage regulator can be configured either in normal or lowpower mode. In Stop mode, all clocks in the 1.2 V domain are stopped, the PLLs, the HSI and the HSE RC oscillators are disabled. Internal SRAM and register contents are preserved. Some settings in the PWR_CR register allow to further reduce the power consumption. When the Flash memory is in power-down mode, an additional startup delay is incurred when waking up from Stop mode (see Table 20: Stop operating modes and Section 5.4.1: PWR power control register (PWR_CR)). RM0430 Rev 8 105/1324 116 Power controller (PWR) RM0430 Normal mode Table 20. Stop operating modes Stop mode MRLV bit LPLV bit FPDS bit LPDS bit Wakeup latency STOP MR 0 - 0 0 HSI RC startup time STOP MRFPD 0 - 1 0 HSI RC startup time + Flash wakeup time from Deep Power Down mode STOP LP 0 0 0 1 HSI RC startup time + regulator wakeup time from LP mode 1 HSI RC startup time + Flash wakeup time from Deep Power Down mode + regulator wakeup time from LP mode 0 HSI RC startup time + Flash wakeup time from Deep Power Down mode + Main regulator from low voltage mode 1 HSI RC startup time + Flash wakeup time from Deep Power Down mode + regulator wakeup time from Low Voltage LP mode STOP LPFPD STOP MRLV STOP LPLV - 1 - 0 - 1 1 - - Entering Stop mode The Stop mode is entered according to Section : Entering low-power mode, when the SLEEPDEEP bit in the Cortex®-M4 with FPU System Control register is set. Refer to Table 21 for details on how to enter the Stop mode. To further reduce power consumption in Stop mode, the internal voltage regulator can be put in low-power mode. This is configured by the LPDS bit of the PWR power control register (PWR_CR). If Flash memory programming is ongoing, the Stop mode entry is delayed until the memory access is finished. If an access to the APB domain is ongoing, The Stop mode entry is delayed until the APB access is finished. In Stop mode, the following features can be selected by programming individual control bits: • 106/1324 Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by hardware option. Once started it cannot be stopped except by a Reset. See RM0430 Rev 8 RM0430 Power controller (PWR) Section 23.3 in Section 23: Window watchdog (WWDG). • Real-time clock (RTC): this is configured by the RTCEN bit in the Section 6.3.23: RCC Backup domain control register (RCC_BDCR) • Internal RC oscillator (LSI RC): this is configured by the LSION bit in the Section 6.3.24: RCC clock control & status register (RCC_CSR). • External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the Section 6.3.23: RCC Backup domain control register (RCC_BDCR). The ADC can also consume power during the Stop mode, unless it is disabled before entering it. To disable it, the ADON bit in the ADC_CR2 register must be written to 0. Note: If the application needs to disable the external clock before entering Stop mode, the HSEON bit must first be disabled and the system clock switched to HSI. Otherwise, if the HSEON bit is kept enabled while the external clock (external oscillator) can be removed before entering stop mode, the clock security system (CSS) feature must be enabled to detect any external oscillator failure and avoid a malfunction behavior when entering stop mode. Exiting Stop mode The Stop mode is exited according to Section : Exiting low-power mode. Refer to Table 21 for more details on how to exit Stop mode. When exiting Stop mode by issuing an interrupt or a wakeup event, the HSI RC oscillator is selected as system clock. When the voltage regulator operates in low-power mode, an additional startup delay is incurred when waking up from Stop mode. By keeping the internal regulator ON during Stop mode, the consumption is higher although the startup time is reduced. Table 21. Stop mode entry and exit Stop mode Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – No interrupt (for WFI) or event (for WFE) is pending, – SLEEPDEEP bit is set in Cortex®-M4 with FPU System Control register, – PDDS bit is cleared in Power Control register (PWR_CR), – Select the voltage regulator mode by configuring LPDS bit in PWR_CR. Mode entry On Return from ISR: – No interrupt is pending, – SLEEPDEEP bit is set in Cortex®-M4 with FPU System Control register, – SLEEPONEXIT = 1, – PDDS bit is cleared in Power Control register (PWR_CR). Note: To enter Stop mode, all EXTI Line pending bits (in Section 10.3.6: Pending register (EXTI_PR)), all peripheral interrupts pending bits, the RTC Alarm (Alarm A and Alarm B), RTC wakeup, RTC tamper, and RTC time stamp flags, must be reset. Otherwise, the Stop mode entry procedure is ignored and program execution continues. RM0430 Rev 8 107/1324 116 Power controller (PWR) RM0430 Table 21. Stop mode entry and exit Stop mode 5.3.6 Description Mode exit If WFI or Return from ISR was used for entry: Any EXTI lines configured in Interrupt mode (the corresponding EXTI Interrupt vector must be enabled in the NVIC). The interrupt source can be external interrupts or peripherals with wakeup capability. Refer to Table 40: Vector table for STM32F413/423. If WFE was used for entry and SEVONPEND = 0 Any EXTI lines configured in event mode. Refer to Section 10.2.3: Wakeup event management. If WFE was used for entry and SEVONPEND = 1: – Any EXTI lines configured in Interrupt mode (even if the corresponding EXTI Interrupt vector is disabled in the NVIC). The interrupt source can be an external interrupt or a peripheral with wakeup capability. Refer to Table 40: Vector table for STM32F413/423. – Wakeup event: refer to Section 10.2.3: Wakeup event management. Wakeup latency See Table 20: Stop operating modes Standby mode The Standby mode allows to achieve the lowest power consumption. It is based on the Cortex®-M4 with FPU deepsleep mode, with the voltage regulator disabled. The 1.2 V domain is consequently powered off. The PLLs, the HSI oscillator and the HSE oscillator are also switched off. SRAM and register contents are lost except for registers in the backup domain (RTC registers and RTC backup register), and Standby circuitry (see Figure 8). Entering Standby mode The Standby mode is entered according to Section : Entering low-power mode, when the SLEEPDEEP bit in the Cortex®-M4 with FPU System Control register is set. Refer to Table 22 for more details on how to enter Standby mode. In Standby mode, the following features can be selected by programming individual control bits: • Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by hardware option. Once started it cannot be stopped except by a reset. See Section 22.3 in Section 22: Independent watchdog (IWDG). • Real-time clock (RTC): this is configured by the RTCEN bit in the backup domain control register (RCC_BDCR) • Internal RC oscillator (LSI RC): this is configured by the LSION bit in the Control/status register (RCC_CSR). • External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the backup domain control register (RCC_BDCR) Exiting Standby mode The Standby mode is exited according to Section : Exiting low-power mode. The SBF status flag in PWR_CR (see Section 5.4.2: PWR power control/status register (PWR_CSR)) indicates that the MCU was in Standby mode. All registers are reset after wakeup from Standby except for PWR_CR. 108/1324 RM0430 Rev 8 RM0430 Power controller (PWR) Refer to Table 22 for more details on how to exit Standby mode. Table 22. Standby mode entry and exit Standby mode Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – SLEEPDEEP is set in Cortex®-M4 with FPU System Control register, – PDDS bit is set in Power Control register (PWR_CR), – No interrupt (for WFI) or event (for WFE) is pending, – WUF bit is cleared in Power Control register (PWR_CR), – the RTC flag corresponding to the chosen wakeup source (RTC Alarm A, RTC Alarm B, RTC wakeup, Tamper or Timestamp flags) is cleared Mode entry On return from ISR while: – SLEEPDEEP bit is set in Cortex®-M4 with FPU System Control register, and – SLEEPONEXIT = 1, and – PDDS bit is set in Power Control register (PWR_CR), and – No interrupt is pending, – WUF bit is cleared in Power Control/Status register (PWR_SR), – The RTC flag corresponding to the chosen wakeup source (RTC Alarm A, RTC Alarm B, RTC wakeup, Tamper or Timestamp flags) is cleared. Mode exit WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup, tamper event, time stamp event, external reset in NRST pin, IWDG reset. Wakeup latency Reset phase. I/O states in Standby mode In Standby mode, all I/O pins are high impedance except for: • Reset pad (still available) • RTC_AF1 pin (PC13) if configured for tamper, time stamp, RTC Alarm out, or RTC clock calibration out • WKUP pin (PA0/PC0/PC1), if enabled Debug mode By default, the debug connection is lost if the application puts the MCU in Stop or Standby mode while the debug features are used. This is due to the fact that the Cortex®-M4 with FPU core is no longer clocked. However, by setting some configuration bits in the DBGMCU_CR register, the software can be debugged even when using the low-power modes extensively. For more details, refer to Section 34.16.1: Debug support for low-power modes. 5.3.7 Programming the RTC alternate functions to wake up the device from the Stop and Standby modes The MCU can be woken up from a low-power mode by an RTC alternate function. The RTC alternate functions are the RTC alarms (Alarm A and Alarm B), RTC wakeup, RTC tamper event detection and RTC time stamp event detection. RM0430 Rev 8 109/1324 116 Power controller (PWR) RM0430 These RTC alternate functions can wake up the system from the Stop and Standby lowpower modes. The system can also wake up from low-power modes without depending on an external interrupt (Auto-wakeup mode), by using the RTC alarm or the RTC wakeup events. The RTC provides a programmable time base for waking up from the Stop or Standby mode at regular intervals. For this purpose, two of the three alternate RTC clock sources can be selected by programming the RTCSEL[1:0] bits in the Section 6.3.23: RCC Backup domain control register (RCC_BDCR): • Low-power 32.768 kHz external crystal oscillator (LSE OSC) This clock source provides a precise time base with a very low-power consumption (additional consumption of less than 1 µA under typical conditions) • Low-power internal RC oscillator (LSI RC) This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This internal RC oscillator is designed to use minimum power. RTC alternate functions to wake up the device from the Stop mode • • • To wake up the device from the Stop mode with an RTC alarm event, it is necessary to: a) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt or Event modes) b) Enable the RTC Alarm Interrupt in the RTC_CR register c) Configure the RTC to generate the RTC alarm To wake up the device from the Stop mode with an RTC tamper or time stamp event, it is necessary to: a) Configure the EXTI Line 21 to be sensitive to rising edges (Interrupt or Event modes) b) Enable the RTC time stamp Interrupt in the RTC_CR register or the RTC tamper interrupt in the RTC_TAFCR register c) Configure the RTC to detect the tamper or time stamp event To wake up the device from the Stop mode with an RTC wakeup event, it is necessary to: a) Configure the EXTI Line 22 to be sensitive to rising edges (Interrupt or Event modes) b) Enable the RTC wakeup interrupt in the RTC_CR register c) Configure the RTC to generate the RTC Wakeup event RTC alternate functions to wake up the device from the Standby mode • • To wake up the device from the Standby mode with an RTC alarm event, it is necessary to: a) Enable the RTC alarm interrupt in the RTC_CR register b) Configure the RTC to generate the RTC alarm To wake up the device from the Standby mode with an RTC tamper or time stamp event, it is necessary to: a) 110/1324 Enable the RTC time stamp interrupt in the RTC_CR register or the RTC tamper interrupt in the RTC_TAFCR register RM0430 Rev 8 RM0430 Power controller (PWR) b) • Configure the RTC to detect the tamper or time stamp event To wake up the device from the Standby mode with an RTC wakeup event, it is necessary to: a) Enable the RTC wakeup interrupt in the RTC_CR register b) Configure the RTC to generate the RTC wakeup event Safe RTC alternate function wakeup flag clearing sequence If the selected RTC alternate function is set before the PWR wakeup flag (WUTF) is cleared, it will not be detected on the next event as detection is made once on the rising edge. To avoid bouncing on the pins onto which the RTC alternate functions are mapped, and exit correctly from the Stop and Standby modes, it is recommended to follow the sequence below before entering the Standby mode: • • • • When using RTC alarm to wake up the device from the low-power modes: a) Disable the RTC alarm interrupt (ALRAIE or ALRBIE bits in the RTC_CR register) b) Clear the RTC alarm (ALRAF/ALRBF) flag c) Clear the PWR Wakeup (WUF) flag d) Enable the RTC alarm interrupt e) Re-enter the low-power mode When using RTC wakeup to wake up the device from the low-power modes: a) Disable the RTC Wakeup interrupt (WUTIE bit in the RTC_CR register) b) Clear the RTC Wakeup (WUTF) flag c) Clear the PWR Wakeup (WUF) flag d) Enable the RTC Wakeup interrupt e) Re-enter the low-power mode When using RTC tamper to wake up the device from the low-power modes: a) Disable the RTC tamper interrupt (TAMPIE bit in the RTC_TAFCR register) b) Clear the Tamper (TAMP1F/TSF) flag c) Clear the PWR Wakeup (WUF) flag d) Enable the RTC tamper interrupt e) Re-enter the low-power mode When using RTC time stamp to wake up the device from the low-power modes: a) Disable the RTC time stamp interrupt (TSIE bit in RTC_CR) b) Clear the RTC time stamp (TSF) flag c) Clear the PWR Wakeup (WUF) flag d) Enable the RTC TimeStamp interrupt e) Re-enter the low-power mode RM0430 Rev 8 111/1324 116 Power controller (PWR) RM0430 5.4 Power control registers 5.4.1 PWR power control register (PWR_CR) Address offset: 0x00 Reset value: 0x0000 8000 (reset by wakeup from Standby mode) 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 Res. MRLV DS LPLV DS FPDS DBP rw rw rw rw VOS rw ADCDC1 rw rw 21 rw 19 18 17 16 Res. Res. Res. Res. rw rw 5 4 3 2 1 0 PVDE CSBF CWUF PDDS LPDS rw w w rw rw PLS[2:0] rw 20 FISSR FMSSR rw Bits 31:22 Reserved, must be kept at reset value. Bit 21 FISSR: Flash Interface Stop while System Run 0: Flash Interface clock run (Default value). 1: Flash Interface clock off. Note: This bit could not be set while executing with the Flash itself. It should be done with specific routine executed from RAM. Bit 20 FMSSR: Flash Memory Sleep System Run. 0: Flash standard mode (Default value) 1: Flash forced to be in STOP or DeepPower Down mode (depending of FPDS value bit) by hardware. Note: This bit could not be set while executing with the Flash itself. It should be done with specific routine executed from RAM. Bits 19:16 Reserved, must be kept at reset value. Bits 15:14 VOS[1:0]: Regulator voltage scaling output selection These bits control the main internal voltage regulator output voltage to achieve a trade-off between performance and power consumption when the device does not operate at the maximum frequency (refer to the corresponding datasheet for more details). These bits can be modified only when the PLL is OFF. The new value programmed is active only when the PLL is ON. When the PLL is OFF, the voltage regulator is set to scale 3 independently of the VOS register content. 00: Reserved (Scale 3 mode selected) 01: Scale 3 mode <= 64 MHz 10: Scale 2 mode (reset value) <= 84 MHz 11: Scale 1 mode <= 100 MHz Bit 13 ADCDC1: 0: No effect. 1: Refer to AN4073 for details on how to use this bit. Note: This bit can only be set when operating at supply voltage range 2.7 to 3.6V and when the Prefetch is OFF. 112/1324 RM0430 Rev 8 RM0430 Power controller (PWR) Bit 12 Reserved, must be kept at reset value. Bit 11 MRLVDS: Main regulator Low Voltage in Deep Sleep 0: Main regulator in Voltage scale 3 when the device is in Stop mode. 1: Main regulator in Low Voltage and Flash memory in Deep Sleep mode when the device is in Stop mode. Bit 10 LPLVDS: Low-power regulator Low Voltage in Deep Sleep 0: Low-power regulator on if LPDS bit is set when the device is in Stop mode. 1: Low-power regulator in Low Voltage and Flash memory in Deep Sleep mode if LPDS bit is set when device is in Stop mode. Bit 9 FPDS: Flash power-down in Stop mode When set, the Flash memory enters power-down mode when the device enters Stop mode. This allows to achieve a lower consumption in stop mode but a longer restart time. 0: Flash memory not in power-down when the device is in Stop mode 1: Flash memory in power-down when the device is in Stop mode Bit 8 DBP: Disable backup domain write protection In reset state, the RCC_BDCR register, the RTC registers (including the backup registers), and the BRE bit of the PWR_CSR register, are protected against parasitic write access. This bit must be set to enable write access to these registers. 0: Access to RTC and RTC Backup registers. 1: Access to RTC and RTC Backup registers. Bits 7:5 PLS[2:0]: PVD level selection These bits are written by software to select the voltage threshold detected by the Power Voltage Detector 000: 2.2 V 001: 2.3 V 010: 2.4 V 011: 2.5 V 100: 2.6 V 101: 2.7 V 110: 2.8 V 111: 2.9 V Note: Refer to the electrical characteristics of the datasheet for more details. Bit 4 PVDE: Power voltage detector enable This bit is set and cleared by software. 0: PVD disabled 1: PVD enabled Bit 3 CSBF: Clear standby flag This bit is always read as 0. 0: No effect. 1: Clear the SBF Standby Flag (write). Bit 2 CWUF: Clear wakeup flag This bit is always read as 0. 0: No effect. 1: Clear the WUF Wakeup Flag after 2 System clock cycles. RM0430 Rev 8 113/1324 116 Power controller (PWR) RM0430 Bit 1 PDDS: Power-down deepsleep This bit is set and cleared by software. It works together with the LPDS bit. 0: Enter Stop mode when the CPU enters deepsleep. The regulator status depends on the LPDS bit. 1: Enter Standby mode when the CPU enters deepsleep. Bit 0 LPDS: Low-power deepsleep This bit is set and cleared by software. It works together with the PDDS bit. 0: Voltage regulator on during Stop mode. 1: Low-power Voltage regulator on during Stop mode. 5.4.2 PWR power control/status register (PWR_CSR) Address offset: 0x04 Reset value: 0x0000 0000 (not reset by wakeup from Standby mode) Additional APB cycles are needed to read this register versus a standard APB read. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. VOS RDY BRE EWUP 1 EWUP 2 EWUP 3 Res. Res. BRR PVDO SBF WUF rw rw rw rw r r r r r Res. Res. Res. Res. Bits 31:15 Reserved, must be kept at reset value. Bit 14 VOSRDY: Regulator voltage scaling output selection ready bit 0: Not ready 1: Ready Bits 13:10 Reserved, must be kept at reset value. Bit 9 BRE: Backup regulator enable When set, the Backup regulator (used to maintain the backup domain content) is enabled. If BRE is reset, the backup regulator is switched off. Once set, the application must wait that the Backup Regulator Ready flag (BRR) is set to indicate that the data written into the backup registers will be maintained in the Standby and VBAT modes. 0: Backup regulator disabled 1: Backup regulator enabled Note: This bit is not reset when the device wakes up from Standby mode, by a system reset, or by a power reset. Bit 8 EWUP1: Enable WKUP1 pin (PA0) This bit is set and cleared by software. 0: WKUP1 pin is used for general purpose I/O. An event on the WKUP1 pin does not wakeup the device from Standby mode. 1: WKUP1 pin is used for wakeup from Standby mode and forced in input pull down configuration (rising edge on WKUP1 pin wakes-up the system from Standby mode). Note: This bit is reset by a system reset. 114/1324 RM0430 Rev 8 RM0430 Power controller (PWR) Bit 7 EWUP2: Enable WKUP2 pin (PC0) This bit is set and cleared by software. 0: WKUP2 pin is used for general purpose I/O. An event on the WKUP2 pin does not wakeup the device from Standby mode. 1: WKUP2 pin is used for wakeup from Standby mode and forced in input pull down configuration (rising edge on WKUP2 pin wakes-up the system from Standby mode). Note: This bit is reset by a system reset. Bit 6 EWUP3: Enable WKUP3 pin (PC1) This bit is set and cleared by software. 0: WKUP3 pin is used for general purpose I/O. An event on the WKUP3 pin does not wakeup the device from Standby mode. 1: WKUP3 pin is used for wakeup from Standby mode and forced in input pull down configuration (rising edge on WKUP3 pin wakes-up the system from Standby mode). Note: This bit is reset by a system reset. Bits 5:4 Reserved, must be kept at reset value. Bit 3 BRR: Backup regulator ready Set by hardware to indicate that the Backup Regulator is ready. 0: Backup Regulator not ready 1: Backup Regulator ready Note: This bit is not reset when the device wakes up from Standby mode or by a system reset or power reset. Bit 2 PVDO: PVD output This bit is set and cleared by hardware. It is valid only if PVD is enabled by the PVDE bit. 0: VDD is higher than the PVD threshold selected with the PLS[2:0] bits. 1: VDD is lower than the PVD threshold selected with the PLS[2:0] bits. Note: The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after Standby or reset until the PVDE bit is set. Bit 1 SBF: Standby flag This bit is set by hardware and cleared only by a POR/PDR (power-on reset/power-down reset) or by setting the CSBF bit in the PWR_CR register. 0: Device has not been in Standby mode 1: Device has been in Standby mode Bit 0 WUF: Wakeup flag This bit is set by hardware and cleared either by a system reset or by setting the CWUF bit in the PWR_CR register. 0: No wakeup event occurred 1: A wakeup event was received from the WKUP pin or from the RTC alarm (Alarm A or Alarm B), RTC Tamper event, RTC TimeStamp event or RTC Wakeup). Note: An additional wakeup event is detected if the WKUP pin is enabled (by setting the EWUP bit) when the WKUP pin level is already high. RM0430 Rev 8 115/1324 116 Power controller (PWR) 5.5 RM0430 PWR register map The following table summarizes the PWR registers. Res. Refer to Section 2.2.2 on page 58 for the register boundary addresses. 116/1324 RM0430 Rev 8 LPDS EWUP3 0 PDDS EWUP2 0 0 0 0 0 SBF EWUP1 0 0 WUF BRE 0 CSBF 0 CWUF 0 PVDO 0 PVDE DBP 0 Res. FPDS 0 PLS[2:0] BRR LPLVDS 0 Res. Res. MRLVDS Res. 0 0 Res. ADCDC1 0 Res. 1 VOSRDY Res. VOS[1:0] 1 Res. Res. Res. Res. Reset value Res. Res. Res. FMSSR 0 Res. 0 Res. Res. FISSR Res. Res. Res. Res. Res. Res. Res. Res. PWR_CSR Res. 0x004 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. PWR_CR Res. 0x000 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 23. PWR - register map and reset values 0 0 0 0 RM0430 Reset and clock control (RCC) for STM32F413/423 6 Reset and clock control (RCC) for STM32F413/423 6.1 Reset There are three types of reset, defined as system Reset, power Reset and backup domain Reset. 6.1.1 System reset A system reset sets all registers to their reset values except the reset flags in the clock controller CSR register and the registers in the Backup domain. A system reset is generated when one of the following events occurs: 1. A low level on the NRST pin (external reset) 2. Window watchdog end of count condition (WWDG reset) 3. Independent watchdog end of count condition (IWDG reset) 4. A software reset (SW reset) (see Software reset) 5. Low-power management reset (see Low-power management reset) Software reset The reset source can be identified by checking the reset flags in the RCC clock control & status register (RCC_CSR). The SYSRESETREQ bit in Cortex®-M4 with FPU Application Interrupt and Reset Control Register must be set to force a software reset on the device. Refer to the Cortex®-M4 with FPU technical reference manual for more details. RM0430 Rev 8 117/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 Low-power management reset There are two ways of generating a low-power management reset: 1. Reset generated when entering the Standby mode: This type of reset is enabled by resetting the nRST_STDBY bit in the user option bytes. In this case, whenever a Standby mode entry sequence is successfully executed, the device is reset instead of entering the Standby mode. 2. Reset when entering the Stop mode: This type of reset is enabled by resetting the nRST_STOP bit in the user option bytes. In this case, whenever a Stop mode entry sequence is successfully executed, the device is reset instead of entering the Stop mode. For further information on the user option bytes, refer to the STM32F413/423 Flash programming manual available from your ST sales office. 6.1.2 Power reset A power reset is generated when one of the following events occurs: 1. Power-on/power-down reset (POR/PDR reset) or brownout (BOR) reset 2. When exiting the Standby mode A power reset sets all registers to their reset values except the Backup domain. These sources act on the NRST pin and it is always kept low during the delay phase. The RESET service routine vector is fixed at address 0x0000_0004 in the memory map. The system reset signal provided to the device is output on the NRST pin. The pulse generator guarantees a minimum reset pulse duration of 20 µs for each internal reset source. In case of an external reset, the reset pulse is generated while the NRST pin is asserted low. Figure 12. Simplified diagram of the reset circuit 9''9''$ 538 ([WHUQDO UHVHW )LOWHU 6\VWHPUHVHW 1567 3XOVH JHQHUDWRU PLQV ::'*UHVHW ,:'*UHVHW 3RZHUUHVHW 6RIWZDUHUHVHW /RZSRZHUPDQDJHPHQWUHVHW DLF 118/1324 RM0430 Rev 8 RM0430 6.1.3 Reset and clock control (RCC) for STM32F413/423 Backup domain reset The backup domain reset sets all RTC registers and the RCC_BDCR register to their reset values. A backup domain reset is generated when one of the following events occurs: 6.2 1. Software reset, triggered by setting the BDRST bit in the RCC Backup domain control register (RCC_BDCR). 2. VDD or VBAT power on, if both supplies have previously been powered off. Clocks Three different clock sources can be used to drive the system clock (SYSCLK): • HSI oscillator clock • HSE oscillator clock • Main PLL (PLL) clock The devices have the two following secondary clock sources: • 32 kHz low-speed internal RC (LSI RC) which drives the independent watchdog and, optionally, the RTC used for Auto-wakeup from the Stop/Standby mode. • 32.768 kHz low-speed external crystal (LSE crystal) which optionally drives the RTC clock (RTCCLK) Each clock source can be switched on or off independently when it is not used, to optimize power consumption. RM0430 Rev 8 119/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 Figure 13. Clock tree #9 FNBUFOV /6,5& HQDEOH :DWFKGRJ :DWFKGRJ /6 FORFN /6,WHPSR FNBOVL /6 #9VZ #9 #9 / 6 0&2 3$' /6 FNBV\V FNBSOOU ! IURP86%)6,S FNB[WOV /6(WHPSR /6(26& /6 FNBOVH /HYHOVKLIWHU FNBKVH FNB[WKV 6\VWHP $+% &ORFN 35(6& FNBV\V FNBKVL FNBUFKV 3 4 5 ,SHQDEOH $3% 35(6& FNBSOO ,SHQDEOH LI $3%SUHVF [ [ HOVH FNBKVL +6,WHPSR ,SHQDEOH ,SHQDEOH +6(WHPSR 3//65& FNBSOOLQ [1 3RZHUFWUO FORFN QRWGHHSVOHHS &ORFN 6RXUFH &RQWURO +6,5& 9&2 FSXFORFN ! ! #9 #9 /SWLPHU FORFN 2 #9 OHYHOVKLIWHUV ,SHQDEOH FNBKVHB0 3$' #9 OHYHOVKLIWHUV &ORFN 'HWHFWRU 57&$:8 FNBDSE FORFN FNBOVL FNBKVL FNBOVH QRW VOHHSRUGHHSVOHHS #9 #9 / 6 0&2 +6( 26& DGSBFON DGSBFONBUHT 57&$:8HQDEOH FNBSOOS &.06(/ FNBSOOT ,SHQDEOH LI $3%SUHVF [ HOVH [ FNBSOOU 6\VWLFN FORFN $3%SHULSKHUDO FORFNV $3%WLPHU FORFNV ,SHQDEOH $3% 35(6& 3//0 $+%3HULSKHUDO FORFNV ,SHQDEOH $3%SHULSKHUDO FORFNV $3%WLPHU FORFNV 3// 3//,665& FNBV\V ,SHQDEOH ')6'0 FORFN ,SHQDEOH ')6'0 FORFN &.')6'06(/ 3//,60 9&2 [1 3 4 5 &.6',26(/ FNBSOOLVBH[W FNBSOT FNBSOOU ,SHQDEOH 6',2 FORFN ,SHQDEOH 86%)6 51* ,665& 3// ,SHQDEOH FNBLVBDSE ,SHQDEOH ,6 FORFN ,SHQDEOH L6 FORFNV FNBLVBDSE ,SHQDEOH &.')6'0$6(/ ,SHQDEOH &.')6'0$6(/ ,665& FNBSOOLVBH[W ,SHQDEOH ,SHQDEOH +6BFN 3//',95 GLYWR 6$,$65& 5 FNBKVL FNBV\V FNBDSE ,SHQDEOH ,&6(/ ,SHQDEOH 3//,6',95 GLYWR 5 6$,%65& ,& FORFNV ,SHQDEOH 6$,B$ FORFNV GLVDEOHBGHEXJ #9 #9 / 6 FNBMWFN 3$' ')6'0 FORFNV ,SHQDEOH ,6B&.,1 ,SHQDEOH ')6'0 6$,B% FORFNV -7$* FORFNV 06Y9 1. For full details about the internal and external clock source characteristics, refer to the Electrical characteristics section in the device datasheet. 120/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 The clock controller provides a high degree of flexibility to the application in the choice of the external crystal or the oscillator to run the core and peripherals at the highest frequency and, guarantee the appropriate frequency for peripherals that need a specific clock like USB OTG FS, I2S and SDIO. Several prescalers are used to configure the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB domain is 100 MHz. The maximum allowed frequency of the high-speed APB2 domain is 100 MHz. The maximum allowed frequency of the low-speed APB1 domain is 50 MHz All peripheral clocks are derived from the system clock (SYSCLK) except for: • The USB OTG FS clock (48 MHz) and the SDIO clock (≤ 48 MHz) which are coming from a specific output of PLL (PLL48CLK) • The I2S clock To achieve high-quality audio performance, the I2S clock can be derived either from a specific PLL (PLLI2S) or from an external clock mapped on the I2S_CKIN pin. For more information about I2S clock frequency and precision, refer to Section 29.6.4: Clock generator. • I2CFMP1 clock which can also be generated from HSI, SYSCLK or APB1 clock. The RCC feeds the external clock of the Cortex System Timer (SysTick) with the AHB clock (HCLK) divided by 8. The SysTick can work either with this clock or with the Cortex clock (HCLK), configurable in the SysTick control and status register. The timer clock frequencies are automatically set by hardware. There are two cases depending on the value of TIMPRE bit in RCC_DCKCFGR register: • If TIMPRE bit is reset: If the APB prescaler is configured to a division factor of 1, the timer clock frequencies (TIMxCLK) are set to HCLK. Otherwise, the timer clock frequencies are twice the frequency of the APB domain to which the timers are connected: TIMxCLK = 2xPCLKx. • If TIMPRE bit is set: If the APB prescaler is configured to a division factor of 1 or 2, the timer clock frequencies (TIMxCLK) are set to HCLK. Otherwise, the timer clock frequencies is four times the frequency of the APB domain to which the timers are connected: TIMxCLK = 4xPCLKx. FCLK acts as Cortex®-M4 with FPU free-running clock. For more details, refer to the Cortex®-M4 with FPU technical reference manual. 6.2.1 HSE clock The high speed external clock signal (HSE) can be generated from two possible clock sources: • HSE external crystal/ceramic resonator • HSE external user clock The resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. The loading capacitance values must be adjusted according to the selected oscillator. RM0430 Rev 8 121/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 Figure 14. HSE/ LSE clock sources Hardware configuration OSC_OUT External clock (HI-Z) External source OSC_IN OSC_OUT Crystal/ceramic resonators CL1 Load capacitors CL2 External source (HSE bypass) In this mode, an external clock source must be provided. You select this mode by setting the HSEBYP and HSEON bits in the RCC clock control register (RCC_CR). The external clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC_IN pin while the OSC_OUT pin should be left HI-Z. See Figure 14. External crystal/ceramic resonator (HSE crystal) The HSE has the advantage of producing a very accurate rate on the main clock. The associated hardware configuration is shown in Figure 14. Refer to the electrical characteristics section of the datasheet for more details. The HSERDY flag in the RCC clock control register (RCC_CR) indicates if the high-speed external oscillator is stable or not. At startup, the clock is not released until this bit is set by hardware. An interrupt can be generated if enabled in the RCC clock interrupt register (RCC_CIR). The HSE Crystal can be switched on and off using the HSEON bit in the RCC clock control register (RCC_CR). 6.2.2 HSI clock The HSI clock signal is generated from an internal 16 MHz RC oscillator and can be used directly as a system clock, or used as PLL input. The HSI RC oscillator has the advantage of providing a clock source at low cost (no external components). It also has a faster startup time than the HSE crystal oscillator however, even with calibration the frequency is less accurate than an external crystal oscillator or ceramic resonator. 122/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 Calibration RC oscillator frequencies can vary from one chip to another due to manufacturing process variations, this is why each device is factory calibrated by ST for 1% accuracy at TA= 25 °C. After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the RCC clock control register (RCC_CR). If the application is subject to voltage or temperature variations this may affect the RC oscillator speed. You can trim the HSI frequency in the application using the HSITRIM[4:0] bits in the RCC clock control register (RCC_CR). The HSIRDY flag in the RCC clock control register (RCC_CR) indicates if the HSI RC is stable or not. At startup, the HSI RC output clock is not released until this bit is set by hardware. The HSI RC can be switched on and off using the HSION bit in the RCC clock control register (RCC_CR). The HSI signal can also be used as a backup source (Auxiliary clock) if the HSE crystal oscillator fails. Refer to Section 6.2.7: Clock security system (CSS) on page 124. 6.2.3 PLL configuration The STM32F413/423 devices feature two PLLs: • • A main PLL (PLL) clocked by the HSE or HSI oscillator and featuring two different output clocks: – The first output is used to generate the high speed system clock (up to 100 MHz) – The second output is used to generate the clock for the USB OTG FS (48 MHz), RNG and the SDIO (≤ 50 MHz). A dedicated PLL (PLLI2S) used to generate an accurate clock to achieve high-quality audio performance on the I2S interface. Since the main-PLL configuration parameters cannot be changed once PLL is enabled, it is recommended to configure PLL before enabling it (selection of the HSI or HSE oscillator as PLL clock source, and configuration of division factors M, P, Q and multiplication factor N). The PLLI2S uses the same input clock as the main PLL (HSI or HSE). However, the PLLI2S has dedicated enable/disable and division factors configuration bits. Refer to Section 6.3.1: RCC clock control register (RCC_CR), Section 6.3.2: RCC PLL configuration register (RCC_PLLCFGR) and Section 6.3.26: RCC PLLI2S configuration register (RCC_PLLI2SCFGR). Once the PLLI2S is enabled, the configuration parameters cannot be changed. The two PLLs are disabled by hardware when entering Stop and Standby modes, or when an HSE failure occurs when HSE or PLL (clocked by HSE) are used as system clock. RCC PLL configuration register (RCC_PLLCFGR) and RCC clock configuration register (RCC_CFGR) can be used to configure PLL and PLLI2S, respectively. 6.2.4 LSE clock The LSE clock is generated using a 32.768kHz low speed external crystal or ceramic resonator. It has the advantage providing a low-power but highly accurate clock source to the real-time clock peripheral (RTC) for clock/calendar or other timing functions. RM0430 Rev 8 123/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 The LSE oscillator is switched on and off using the LSEON bit in RCC Backup domain control register (RCC_BDCR). The LSERDY flag in the RCC Backup domain control register (RCC_BDCR) indicates if the LSE crystal is stable or not. At startup, the LSE crystal output clock signal is not released until this bit is set by hardware. An interrupt can be generated if enabled in the RCC clock interrupt register (RCC_CIR). External source (LSE bypass) In this mode, an external clock source must be provided. It must have a frequency up to 1 MHz. You select this mode by setting the LSEBYP and LSEON bits in the RCC Backup domain control register (RCC_BDCR). The external clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC32_IN pin while the OSC32_OUT pin should be left HI-Z. See Figure 14. 6.2.5 LSI clock The LSI RC acts as an low-power clock source that can be kept running in Stop and Standby mode for the independent watchdog (IWDG) and Auto-wakeup unit (AWU). The clock frequency is around 32 kHz. For more details, refer to the electrical characteristics section of the datasheets. The LSI RC can be switched on and off using the LSION bit in the RCC clock control & status register (RCC_CSR). The LSIRDY flag in the RCC clock control & status register (RCC_CSR) indicates if the lowspeed internal oscillator is stable or not. At startup, the clock is not released until this bit is set by hardware. An interrupt can be generated if enabled in the RCC clock interrupt register (RCC_CIR). 6.2.6 System clock (SYSCLK) selection After a system reset, the HSI oscillator is selected as the system clock. When a clock source is used directly or through PLL as the system clock, it is not possible to stop it. A switch from one clock source to another occurs only if the target clock source is ready (clock stable after startup delay or PLL locked). If a clock source that is not yet ready is selected, the switch occurs when the clock source is ready. Status bits in the RCC clock control register (RCC_CR) indicate which clock(s) is (are) ready and which clock is currently used as the system clock. 6.2.7 Clock security system (CSS) The clock security system can be activated by software. In this case, the clock detector is enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped. If a failure is detected on the HSE clock, this oscillator is automatically disabled, a clock failure event is sent to the break inputs of advanced-control timer TIM1, and an interrupt is generated to inform the software about the failure (clock security system interrupt CSSI), allowing the MCU to perform rescue operations. The CSSI is linked to the Cortex®-M4 with FPU NMI (non-maskable interrupt) exception vector. Note: 124/1324 When the CSS is enabled, if the HSE clock happens to fail, the CSS generates an interrupt, which causes the automatic generation of an NMI. The NMI is executed indefinitely unless the CSS interrupt pending bit is cleared. As a consequence, the application has to clear the RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 CSS interrupt in the NMI ISR by setting the CSSC bit in the Clock interrupt register (RCC_CIR). If the HSE oscillator is used directly or indirectly as the system clock (indirectly meaning that it is directly used as PLL input clock, and that PLL clock is the system clock) and a failure is detected, then the system clock switches to the HSI oscillator and the HSE oscillator is disabled. If the HSE oscillator clock was the clock source of PLL used as the system clock when the failure occurred, PLL is also disabled. In this case, if the PLLI2S was enabled, it is also disabled when the HSE fails. 6.2.8 RTC/AWU clock Once the RTCCLK clock source has been selected, the only possible way of modifying the selection is to reset the power domain. The RTCCLK clock source can be either the HSE 1 MHz (HSE divided by a programmable prescaler), the LSE or the LSI clock. This is selected by programming the RTCSEL[1:0] bits in the RCC Backup domain control register (RCC_BDCR) and the RTCPRE[4:0] bits in RCC clock configuration register (RCC_CFGR). This selection cannot be modified without resetting the Backup domain. If the LSE is selected as the RTC clock, the RTC will work normally if the backup or the system supply disappears. If the LSI is selected as the AWU clock, the AWU state is not guaranteed if the system supply disappears. If the HSE oscillator divided by a value between 2 and 31 is used as the RTC clock, the RTC state is not guaranteed if the backup or the system supply disappears. The LSE clock is in the Backup domain, whereas the HSE and LSI clocks are not. As a consequence: • • If LSE is selected as the RTC clock: – The RTC continues to work even if the VDD supply is switched off, provided the VBAT supply is maintained. – The RTC remains clocked and functional under system reset. If LSI is selected as the Auto-wakeup unit (AWU) clock: – • The AWU state is not guaranteed if the VDD supply is powered off. Refer to Section 6.2.5: LSI clock for more details on LSI calibration. If the HSE clock is used as the RTC clock: – The RTC state is not guaranteed if the VDD supply is powered off or if the internal voltage regulator is powered off (removing power from the 1.2 V domain). Note: To read the RTC calendar register when the APB1 clock frequency is less than seven times the RTC clock frequency (fAPB1 < 7xfRTCLCK), the software must read the calendar time and date registers twice. The data are correct if the second read access to RTC_TR gives the same result than the first one. Otherwise a third read access must be performed. 6.2.9 Watchdog clock If the independent watchdog (IWDG) is started by either hardware option or software access, the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator temporization, the clock is provided to the IWDG. RM0430 Rev 8 125/1324 183 Reset and clock control (RCC) for STM32F413/423 6.2.10 RM0430 Clock-out capability Two microcontroller clock output (MCO) pins are available: • MCO1 You can output four different clock sources onto the MCO1 pin (PA8) using the configurable prescaler (from 1 to 5): – HSI clock – LSE clock – HSE clock – PLL clock The desired clock source is selected using the MCO1PRE[2:0] and MCO1[1:0] bits in the RCC clock configuration register (RCC_CFGR). • MCO2 You can output four different clock sources onto the MCO2 pin (PC9) using the configurable prescaler (from 1 to 5): – HSE clock – PLL clock – System clock (SYSCLK) – PLLI2S clock The desired clock source is selected using the MCO2PRE[2:0] and MCO2 bits in the RCC clock configuration register (RCC_CFGR). For the different MCO pins, the corresponding GPIO port has to be programmed in alternate function mode. The selected clock to output onto MCO must not exceed 100 MHz (the maximum I/O speed). 6.2.11 Internal/external clock measurement using TIM5/TIM11 It is possible to indirectly measure the frequencies of all on-board clock source generators by means of the input capture of TIM5 channel4 and TIM11 channel1 as shown in Figure 15 and Figure 16. Internal/external clock measurement using TIM5 channel4 TIM5 has an input multiplexer which allows choosing whether the input capture is triggered by the I/O or by an internal clock. This selection is performed through the TI4_RMP [1:0] bits in the TIM5_OR register. The primary purpose of having the LSE connected to the channel4 input capture is to be able to precisely measure the HSI (this requires to have the HSI used as the system clock source). The number of HSI clock counts between consecutive edges of the LSE signal provides a measurement of the internal clock period. Taking advantage of the high precision of LSE crystals (typically a few tens of ppm) we can determine the internal clock frequency with the same resolution, and trim the source to compensate for manufacturing-process and/or temperature- and voltage-related frequency deviations. The HSI oscillator has dedicated, user-accessible calibration bits for this purpose. 126/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 The basic concept consists in providing a relative measurement (e.g. HSI/LSE ratio): the precision is therefore tightly linked to the ratio between the two clock sources. The greater the ratio, the better the measurement. It is also possible to measure the LSI frequency: this is useful for applications that do not have a crystal. The ultralow-power LSI oscillator has a large manufacturing process deviation: by measuring it versus the HSI clock source, it is possible to determine its frequency with the precision of the HSI. The measured value can be used to have more accurate RTC time base timeouts (when LSI is used as the RTC clock source) and/or an IWDG timeout with an acceptable accuracy. Use the following procedure to measure the LSI frequency: 1. Enable the TIM5 timer and configure channel4 in Input capture mode. 2. Set the TI4_RMP bits in the TIM5_OR register to 0x01 to connect the LSI clock internally to TIM5 channel4 input capture for calibration purposes. 3. Measure the LSI clock frequency using the TIM5 capture/compare 4 event or interrupt. 4. Use the measured LSI frequency to update the prescaler of the RTC depending on the desired time base and/or to compute the IWDG timeout. Figure 15. Frequency measurement with TIM5 in Input capture mode 4)- 4)?2-0;= '0)/ 24#?7AKE5P?)4 ,3% ,3) 4) AI6 RM0430 Rev 8 127/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 Internal/external clock measurement using TIM11 channel1 TIM11 has an input multiplexer which allows choosing whether the input capture is triggered by the I/O or by an internal clock. This selection is performed through TI1_RMP [1:0] bits in the TIM11_OR register. The HSE_RTC clock (HSE divided by a programmable prescaler) is connected to channel 1 input capture to have a rough indication of the external crystal frequency. This requires that the HSI is the system clock source. This can be useful for instance to ensure compliance with the IEC 60730/IEC 61335 standards which require to be able to determine harmonic or subharmonic frequencies (–50/+100% deviations). Figure 16. Frequency measurement with TIM11 in Input capture mode 4)- 4)?2-0;= '0)/ 4) (3%?24# -(Z AI 128/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 6.3 RCC registers Refer to Section 1.2: List of abbreviations for registers for a list of abbreviations used in register descriptions. 6.3.1 RCC clock control register (RCC_CR) Address offset: 0x00 Reset value: 0x0000 XX81 where X is undefined. Access: no wait state, word, half-word and byte access 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 27 26 25 24 PLLI2S PLLI2S PLLRDY PLLON RDY ON r rw r rw 11 10 9 8 23 22 21 20 19 18 17 16 Res. Res. Res. Res. CSS ON HSE BYP HSE RDY HSE ON rw rw r rw 7 6 5 4 3 2 1 0 Res. HSI RDY HSION r rw HSICAL[7:0] r r r r r HSITRIM[4:0] r r r rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bit 27 PLLI2SRDY: PLLI2S clock ready flag Set by hardware to indicate that the PLLI2S is locked. 0: PLLI2S unlocked 1: PLLI2S locked Bit 26 PLLI2SON: PLLI2S enable Set and cleared by software to enable PLLI2S. Cleared by hardware when entering Stop or Standby mode. 0: PLLI2S OFF 1: PLLI2S ON Bit 25 PLLRDY: Main PLL (PLL) clock ready flag Set by hardware to indicate that PLL is locked. 0: PLL unlocked 1: PLL locked Bit 24 PLLON: Main PLL (PLL) enable Set and cleared by software to enable PLL. Cleared by hardware when entering Stop or Standby mode. This bit cannot be reset if PLL clock is used as the system clock. 0: PLL OFF 1: PLL ON Bits 23:20 Reserved, must be kept at reset value. Bit 19 CSSON: Clock security system enable Set and cleared by software to enable the clock security system. When CSSON is set, the clock detector is enabled by hardware when the HSE oscillator is ready, and disabled by hardware if an oscillator failure is detected. 0: Clock security system OFF (Clock detector OFF) 1: Clock security system ON (Clock detector ON if HSE oscillator is stable, OFF if not) RM0430 Rev 8 129/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 Bit 18 HSEBYP: HSE clock bypass Set and cleared by software to bypass the oscillator with an external clock. The external clock must be enabled with the HSEON bit, to be used by the device. The HSEBYP bit can be written only if the HSE oscillator is disabled. 0: HSE oscillator not bypassed 1: HSE oscillator bypassed with an external clock Bit 17 HSERDY: HSE clock ready flag Set by hardware to indicate that the HSE oscillator is stable. After the HSEON bit is cleared, HSERDY goes low after 6 HSE oscillator clock cycles. 0: HSE oscillator not ready 1: HSE oscillator ready Bit 16 HSEON: HSE clock enable Set and cleared by software. Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock. 0: HSE oscillator OFF 1: HSE oscillator ON Bits 15:8 HSICAL[7:0]: Internal high-speed clock calibration These bits are initialized automatically at startup. Bits 7:3 HSITRIM[4:0]: Internal high-speed clock trimming These bits provide an additional user-programmable trimming value that is added to the HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature that influence the frequency of the internal HSI RC. Bit 2 Reserved, must be kept at reset value. Bit 1 HSIRDY: Internal high-speed clock ready flag Set by hardware to indicate that the HSI oscillator is stable. After the HSION bit is cleared, HSIRDY goes low after 6 HSI clock cycles. 0: HSI oscillator not ready 1: HSI oscillator ready Bit 0 HSION: Internal high-speed clock enable Set and cleared by software. Set by hardware to force the HSI oscillator ON when leaving the Stop or Standby mode or in case of a failure of the HSE oscillator used directly or indirectly as the system clock. This bit cannot be cleared if the HSI is used directly or indirectly as the system clock. 0: HSI oscillator OFF 1: HSI oscillator ON 130/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 6.3.2 RCC PLL configuration register (RCC_PLLCFGR) Address offset: 0x04 Reset value: 0x2400 3010 Access: no wait state, word, half-word and byte access. This register is used to configure the PLL clock outputs according to the formulas: 31 30 Res. 15 • f(VCO clock) = f(PLL clock input) × (PLLN / PLLM) • f(PLL general clock output) = f(VCO clock) / PLLP • f(USB OTG FS, SDIO, RNG clock output) = f(VCO clock) / PLLQ • f(I2S, DFSDM clock output) = f(VCO clock)/ PLLR 29 28 27 PLLR[2:0] 26 25 24 PLLQ[3:0] 23 22 21 20 19 18 Res. PLLSRC Res. Res. Res. Res. 2 rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 3 rw rw rw rw rw rw rw rw rw rw rw Res. rw PLLN[8:0] rw 17 16 PLLP[1:0] rw rw 1 0 rw rw PLLM[5:0] rw Bit 31 Reserved, must be kept at reset value. Bits 30:28 PLLR[2:0]: Main PLL (PLL) division factor for I2S, DFSDM clocks Set and cleared by software to control the frequency of the clock. These bits should be written only if PLL is disabled. Clock frequency = VCO frequency / PLLR with 2 ≤ PLLR ≤ 7 000: PLLR = 0, wrong configuration 001: PLLR = 1, wrong configuration 010: PLLR = 2 011: PLLR = 3 ... 111: PLLR = 7 Bits 27:24 PLLQ[3:0]: Main PLL (PLL) division factor for USB OTG FS, SDIO and random number generator clocks. Set and cleared by software to control the frequency of USB OTG FS clock, the random number generator clock and the SDIO clock. These bits should be written only if PLL is disabled. Caution: The USB OTG FS requires a 48 MHz clock to work correctly. The SDIO and the random number generator need a frequency lower than or equal to 48 MHz to work correctly. USB OTG FS clock frequency = VCO frequency / PLLQ with 2 ≤ PLLQ ≤ 15 0000: PLLQ = 0, wrong configuration 0001: PLLQ = 1, wrong configuration 0010: PLLQ = 2 0011: PLLQ = 3 0100: PLLQ = 4 ... 1111: PLLQ = 15 Bit 23 Reserved, must be kept at reset value. RM0430 Rev 8 131/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 Bit 22 PLLSRC: Main PLL(PLL) and audio PLL (PLLI2S) entry clock source Set and cleared by software to select PLL and PLLI2S clock source. This bit can be written only when PLL and PLLI2S are disabled. 0: HSI clock selected as PLL and PLLI2S clock entry 1: HSE oscillator clock selected as PLL and PLLI2S clock entry Bits 21:18 Reserved, must be kept at reset value. Bits 17:16 PLLP[1:0]: Main PLL (PLL) division factor for main system clock Set and cleared by software to control the frequency of the general PLL output clock. These bits can be written only if PLL is disabled. Caution: The software has to set these bits correctly not to exceed 100 MHz on this domain. PLL output clock frequency = VCO frequency / PLLP with PLLP = 2, 4, 6, or 8 00: PLLP = 2 01: PLLP = 4 10: PLLP = 6 11: PLLP = 8 Bits 14:6 PLLN[8:0]: Main PLL (PLL) multiplication factor for VCO Set and cleared by software to control the multiplication factor of the VCO. These bits can be written only when PLL is disabled. Only half-word and word accesses are allowed to write these bits. Caution: The software has to set these bits correctly to ensure that the VCO output frequency is between 100 and 432 MHz. (check also Section 6.3.26: RCC PLLI2S configuration register (RCC_PLLI2SCFGR)) VCO output frequency = VCO input frequency × PLLN with 50 ≤ PLLN ≤ 432 000000000: PLLN = 0, wrong configuration 000000001: PLLN = 1, wrong configuration ... 000110010: PLLN = 50 ... 001100011: PLLN = 99 001100100: PLLN = 100 ... 110110000: PLLN = 432 110110001: PLLN = 433, wrong configuration ... 111111111: PLLN = 511, wrong configuration Note: Multiplication factors possible for VCO input frequency higher than 1 MHz but care must be taken to fulfill the VCO output frequency range as specified above. 132/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 Bits 5:0 PLLM[5:0]: Division factor for the main PLL (PLL) input clock Set and cleared by software to divide the PLL and PLLI2S input clock before the VCO. These bits can be written only when the PLL and PLLI2S are disabled. Caution: The software has to set these bits correctly to ensure that the VCO input frequency ranges from 1 to 2 MHz. It is recommended to select a frequency of 2 MHz to limit PLL jitter. VCO input frequency = PLL input clock frequency / PLLM with 2 ≤ PLLM ≤ 63 000000: PLLM = 0, wrong configuration 000001: PLLM = 1, wrong configuration 000010: PLLM = 2 000011: PLLM = 3 000100: PLLM = 4 ... 111110: PLLM = 62 111111: PLLM = 63 6.3.3 RCC clock configuration register (RCC_CFGR) Address offset: 0x08 Reset value: 0x0000 0000 Access: 0 ≤ wait state ≤ 2, word, half-word and byte access 1 or 2 wait states inserted only if the access occurs during a clock source switch. 31 30 MCO2[1:0] 29 28 27 26 MCO2 PRE[2:0] 25 24 MCO1 PRE[2:0] Res. rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 Res. Res. PPRE2[2:0] rw rw PPRE1[2:0] rw rw rw rw 23 22 21 19 rw rw 4 3 MCO1[1:0] rw 7 20 6 5 rw rw 17 16 rw rw rw 2 1 0 RTCPRE[4:0] HPRE[3:0] rw 18 SWS[1:0] rw r r SW[1:0] rw rw Bits 31:30 MCO2[1:0]: Microcontroller clock output 2 Set and cleared by software. Clock source selection may generate glitches on MCO2. It is highly recommended to configure these bits only after reset before enabling the external oscillators and the PLLs. 00: System clock (SYSCLK) selected 01: PLLI2S clock selected 10: HSE oscillator clock selected 11: PLL clock selected RM0430 Rev 8 133/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 Bits 29:27 MCO2PRE[1:0]: MCO2 prescaler Set and cleared by software to configure the prescaler of the MCO2. Modification of this prescaler may generate glitches on MCO2. It is highly recommended to change this prescaler only after reset before enabling the external oscillators and the PLLs. 0xx: no division 100: division by 2 101: division by 3 110: division by 4 111: division by 5 Bits 26:24 MCO1PRE[1:0]: MCO1 prescaler Set and cleared by software to configure the prescaler of the MCO1. Modification of this prescaler may generate glitches on MCO1. It is highly recommended to change this prescaler only after reset before enabling the external oscillators and the PLL. 0xx: no division 100: division by 2 101: division by 3 110: division by 4 111: division by 5 Bit 23 Reserved, always read as 0. Bits 22:21 MCO1[1:0]: Microcontroller clock output 1 Set and cleared by software. Clock source selection may generate glitches on MCO1. It is highly recommended to configure these bits only after reset before enabling the external oscillators and PLL. 00: HSI clock selected 01: LSE oscillator selected 10: HSE oscillator clock selected 11: PLL clock selected Bits 20:16 RTCPRE[4:0]: HSE division factor for RTC clock Set and cleared by software to divide the HSE clock input clock to generate a 1 MHz clock for RTC. Caution: The software has to set these bits correctly to ensure that the clock supplied to the RTC is 1 MHz. These bits must be configured if needed before selecting the RTC clock source. 00000: no clock 00001: no clock 00010: HSE/2 00011: HSE/3 00100: HSE/4 ... 11110: HSE/30 11111: HSE/31 Bits 15:13 PPRE2[2:0]: APB high-speed prescaler (APB2) Set and cleared by software to control APB high-speed clock division factor. Caution: The software has to set these bits correctly not to exceed 100 MHz on this domain. The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after PPRE2 write. 0xx: AHB clock not divided 100: AHB clock divided by 2 101: AHB clock divided by 4 110: AHB clock divided by 8 111: AHB clock divided by 16 134/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 Bits 12:10 PPRE1[2:0]: APB Low speed prescaler (APB1) Set and cleared by software to control APB low-speed clock division factor. Caution: The software has to set these bits correctly not to exceed 50 MHz on this domain. The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after PPRE1 write. 0xx: AHB clock not divided 100: AHB clock divided by 2 101: AHB clock divided by 4 110: AHB clock divided by 8 111: AHB clock divided by 16 Bits 9:8 Reserved, must be kept at reset value. Bits 7:4 HPRE[3:0]: AHB prescaler Set and cleared by software to control AHB clock division factor. Caution: The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after HPRE write. Caution: The AHB clock frequency must be at least 25 MHz when the Ethernet is used. 0xxx: system clock not divided 1000: system clock divided by 2 1001: system clock divided by 4 1010: system clock divided by 8 1011: system clock divided by 16 1100: system clock divided by 64 1101: system clock divided by 128 1110: system clock divided by 256 1111: system clock divided by 512 Bits 3:2 SWS[1:0]: System clock switch status Set and cleared by hardware to indicate which clock source is used as the system clock. 00: HSI oscillator used as the system clock 01: HSE oscillator used as the system clock 10: PLL used as the system clock 11: not applicable Bits 1:0 SW[1:0]: System clock switch Set and cleared by software to select the system clock source. Set by hardware to force the HSI selection when leaving the Stop or Standby mode or in case of failure of the HSE oscillator used directly or indirectly as the system clock. 00: HSI oscillator selected as system clock 01: HSE oscillator selected as system clock 10: PLL selected as system clock 11: not allowed RM0430 Rev 8 135/1324 183 Reset and clock control (RCC) for STM32F413/423 6.3.4 RM0430 RCC clock interrupt register (RCC_CIR) Address offset: 0x0C Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. CSSC Res. PLLI2S RDYC PLL RDYC HSE RDYC HSI RDYC LSE RDYC LSI RDYC w w w w w w w 15 Res. 14 Res. 13 12 11 10 PLLI2S PLL HSE HSI RDYIE RDYIE RDYIE RDYIE rw rw rw rw 9 8 LSE RDYIE LSI RDYIE 7 CSSF rw rw r 6 5 4 3 2 1 0 Res. PLLI2S RDYF PLL RDYF HSE RDYF HSI RDYF LSE RDYF LSI RDYF r r r r r r Bits 31:24 Reserved, must be kept at reset value. Bit 23 CSSC: Clock security system interrupt clear This bit is set by software to clear the CSSF flag. 0: No effect 1: Clear CSSF flag Bit 22 Reserved, must be kept at reset value. Bit 21 PLLI2SRDYC: PLLI2S ready interrupt clear This bit is set by software to clear the PLLI2SRDYF flag. 0: No effect 1: PLLI2SRDYF cleared Bit 20 PLLRDYC: Main PLL(PLL) ready interrupt clear This bit is set by software to clear the PLLRDYF flag. 0: No effect 1: PLLRDYF cleared Bit 19 HSERDYC: HSE ready interrupt clear This bit is set by software to clear the HSERDYF flag. 0: No effect 1: HSERDYF cleared Bit 18 HSIRDYC: HSI ready interrupt clear This bit is set software to clear the HSIRDYF flag. 0: No effect 1: HSIRDYF cleared Bit 17 LSERDYC: LSE ready interrupt clear This bit is set by software to clear the LSERDYF flag. 0: No effect 1: LSERDYF cleared Bit 16 LSIRDYC: LSI ready interrupt clear This bit is set by software to clear the LSIRDYF flag. 0: No effect 1: LSIRDYF cleared 136/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 Bits 15:14 Reserved, must be kept at reset value. Bit 13 PLLI2SRDYIE: PLLI2S ready interrupt enable Set and cleared by software to enable/disable interrupt caused by PLLI2S lock. 0: PLLI2S lock interrupt disabled 1: PLLI2S lock interrupt enabled Bit 12 PLLRDYIE: Main PLL (PLL) ready interrupt enable Set and cleared by software to enable/disable interrupt caused by PLL lock. 0: PLL lock interrupt disabled 1: PLL lock interrupt enabled Bit 11 HSERDYIE: HSE ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the HSE oscillator stabilization. 0: HSE ready interrupt disabled 1: HSE ready interrupt enabled Bit 10 HSIRDYIE: HSI ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the HSI oscillator stabilization. 0: HSI ready interrupt disabled 1: HSI ready interrupt enabled Bit 9 LSERDYIE: LSE ready interrupt enable Set and cleared by software to enable/disable interrupt caused by the LSE oscillator stabilization. 0: LSE ready interrupt disabled 1: LSE ready interrupt enabled Bit 8 LSIRDYIE: LSI ready interrupt enable Set and cleared by software to enable/disable interrupt caused by LSI oscillator stabilization. 0: LSI ready interrupt disabled 1: LSI ready interrupt enabled Bit 7 CSSF: Clock security system interrupt flag Set by hardware when a failure is detected in the HSE oscillator. Cleared by software setting the CSSC bit. 0: No clock security interrupt caused by HSE clock failure 1: Clock security interrupt caused by HSE clock failure Bit 6 Reserved, must be kept at reset value. Bit 5 PLLI2SRDYF: PLLI2S ready interrupt flag Set by hardware when the PLLI2S locks and PLLI2SRDYDIE is set. Cleared by software setting the PLLRI2SDYC bit. 0: No clock ready interrupt caused by PLLI2S lock 1: Clock ready interrupt caused by PLLI2S lock Bit 4 PLLRDYF: Main PLL (PLL) ready interrupt flag Set by hardware when PLL locks and PLLRDYDIE is set. Cleared by software setting the PLLRDYC bit. 0: No clock ready interrupt caused by PLL lock 1: Clock ready interrupt caused by PLL lock RM0430 Rev 8 137/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 Bit 3 HSERDYF: HSE ready interrupt flag Set by hardware when External High Speed clock becomes stable and HSERDYDIE is set. Cleared by software setting the HSERDYC bit. 0: No clock ready interrupt caused by the HSE oscillator 1: Clock ready interrupt caused by the HSE oscillator Bit 2 HSIRDYF: HSI ready interrupt flag Set by hardware when the Internal High Speed clock becomes stable and HSIRDYDIE is set. Cleared by software setting the HSIRDYC bit. 0: No clock ready interrupt caused by the HSI oscillator 1: Clock ready interrupt caused by the HSI oscillator Bit 1 LSERDYF: LSE ready interrupt flag Set by hardware when the External Low Speed clock becomes stable and LSERDYDIE is set. Cleared by software setting the LSERDYC bit. 0: No clock ready interrupt caused by the LSE oscillator 1: Clock ready interrupt caused by the LSE oscillator Bit 0 LSIRDYF: LSI ready interrupt flag Set by hardware when the internal low speed clock becomes stable and LSIRDYDIE is set. Cleared by software setting the LSIRDYC bit. 0: No clock ready interrupt caused by the LSI oscillator 1: Clock ready interrupt caused by the LSI oscillator 6.3.5 RCC AHB1 peripheral reset register (RCC_AHB1RSTR) Address offset: 0x10 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DMA2 RST DMA1 RST Res. Res. Res. Res. Res. rw rw 4 3 2 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 Res. GPIOH RST GPIOG RST rw rw Res. Res. Res. CRCRST Res. Res. Res. rw Bits 31:23 Reserved, must be kept at reset value. Bit 22 DMA2RST: DMA2 reset Set and cleared by software. 0: does not reset DMA2 1: resets DMA2 Bit 21 DMA1RST: DMA1 reset Set and cleared by software. 0: does not reset DMA1 1: resets DMA1 Bits 20:13 Reserved, must be kept at reset value. 138/1324 RM0430 Rev 8 5 GPIOF GPIOE GPIOD GPIOC GPIOB RST RST RST RST RST rw rw rw rw rw 0 GPIOA RST rw RM0430 Reset and clock control (RCC) for STM32F413/423 Bit 12 CRCRST: CRC reset Set and cleared by software. 0: does not reset CRC 1: resets CRC Bits 11:8 Reserved, must be kept at reset value. Bit 7 GPIOHRST: IO port H reset Set and cleared by software. 0: does not reset IO port H 1: resets IO port H Bit 6 GPIOGRST: IO port G reset Set and cleared by software. 0: does not reset IO port G 1: resets IO port G Bit 5 GPIOFRST: IO port F reset Set and cleared by software. 0: does not reset IO port F 1: resets IO port F Bit 4 GPIOERST: IO port E reset Set and cleared by software. 0: does not reset IO port E 1: resets IO port E Bit 3 GPIODRST: IO port D reset Set and cleared by software. 0: does not reset IO port D 1: resets IO port D Bit 2 GPIOCRST: IO port C reset Set and cleared by software. 0: does not reset IO port C 1: resets IO port C Bit 1 GPIOBRST: IO port B reset Set and cleared by software. 0: does not reset IO port B 1:resets IO port B Bit 0 GPIOARST: IO port A reset Set and cleared by software. 0: does not reset IO port A 1: resets IO port A RM0430 Rev 8 139/1324 183 Reset and clock control (RCC) for STM32F413/423 6.3.6 RM0430 RCC AHB2 peripheral reset register (RCC_AHB2RSTR) for STM32F413xx Address offset: 0x14 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. OTGFS RST RNG RST Res. Res. Res. Res. Res. Res. rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSRST: USB OTG FS module reset Set and cleared by software. 0: does not reset the USB OTG FS module 1: resets the USB OTG FS module Bit 6 RNGSRST: RNG module reset Set and cleared by software. 0: does not reset RNG module 1: resets RNG module Bits 5:0 Reserved, must be kept at reset value. 140/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 6.3.7 RCC AHB2 peripheral reset register (RCC_AHB2RSTR) for STM32F423xx Address offset: 0x14 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. OTGFS RST RNG RST Res. CRYP RST Res. Res. Res. Res. rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSRST: USB OTG FS module reset Set and cleared by software. 0: does not reset the USB OTG FS module 1: resets the USB OTG FS module Bit 6 RNGSRST: RNG module reset Set and cleared by software. 0: does not reset RNG module 1: resets RNG module Bit 5 Reserved, must be kept at reset value. Bit 4 CRYPRST: CRYP module reset Set and reset by software. 0: does not reset CRYP module 1: resets CRYP module Bits 3:0 Reserved, must be kept at reset value. RM0430 Rev 8 141/1324 183 Reset and clock control (RCC) for STM32F413/423 6.3.8 RM0430 RCC AHB3 peripheral reset register (RCC_AHB3RSTR) Address offset: 0x18 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 QSPIRST FSMC RST rw rw Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:2 Reserved, must be kept at reset value. Bit 1 QSPIRST: QUADSPI module reset Set and cleared by software. 0: does not reset QUADSPI module 1: resets QUADSPI module Bit 0 FSMCRST: Flexible memory controller module reset Set and cleared by software. 0: does not reset the FSMC module 1: resets the FSMC module 6.3.9 RCC APB1 peripheral reset register for (RCC_APB1RSTR) Address offset: 0x20 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 UART8 UART7 RST RST 29 28 27 26 25 24 23 22 21 DAC RST PWR RST CAN3 RST CAN2 RST CAN1 RST I2C4 RST I2C3 RST I2C2 RST I2C1 RST 20 19 18 17 UART5 UART4 USART3 USART2 RST RST RST RST 16 Res. rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SPI3 RST SPI2 RST Res. Res. WWDG RST Res. LPTIMER1 RST TIM14 RST TIM7 RST TIM6 RST TIM5 RST TIM4 RST TIM3 RST TIM2 RST rw rw rw rw rw rw rw rw rw rw 142/1324 rw TIM13 TIM12 RST RST rw RM0430 Rev 8 rw RM0430 Reset and clock control (RCC) for STM32F413/423 Bit 31 UART8RST: UART 8 reset Set and reset by software. 0: does not reset UART 8 1: resets the UART 8 Bit 30 UART7RST: UART 7 reset Set and reset by software. 0: does not reset UART 7 1: resets the UART 7 Bit 29 DACRST: DAC reset Set and reset by software. 0: does not reset DAC 1: resets DAC Bit 28 PWRRST: Power interface reset Set and reset by software. 0: does not reset the power interface 1: resets the power interface Bit 27 CAN3RST: CAN 3 reset Set and reset by software. 0: does not reset CAN 3 1: resets CAN 3 Bit 26 CAN2RST: CAN2 reset Set and cleared by software. 0: does not reset CAN2 1: resets CAN2 Bit 25 CAN1RST: CAN1 reset Set and cleared by software. 0: does not reset CAN1 1: resets CAN1 Bit 24 I2C4RST: I2C4 reset Set and reset by software. 0: does not reset I2C4 1: resets I2C4 Bit 23 I2C3RST: I2C3 reset Set and reset by software. 0: does not reset I2C3 1: resets I2C3 Bit 22 I2C2RST: I2C2 reset Set and cleared by software. 0: does not reset I2C2 1: resets I2C2 Bit 21 I2C1RST: I2C1 reset Set and reset by software. 0: does not reset I2C1 1: resets I2C1 RM0430 Rev 8 143/1324 183 Reset and clock control (RCC) for STM32F413/423 Bit 20 UART5RST: UART5 reset Set and reset by software. 0: does not reset UART5 1: resets UART5 Bit 19 UART4RST: UART4 reset Set and reset by software. 0: does not reset UART4 1: resets UART4 Bit 18 USART3RST: USART3 reset Set and cleared by software. 0: does not reset USART3 1: resets USART3 Bit 17 USART2RST: USART2 reset Set and cleared by software. 0: does not reset USART2 1: resets USART2 Bit 16 Reserved, must be kept at reset value. Bit 15 SPI3RST: SPI3 reset Set and cleared by software. 0: does not reset SPI3 1: resets SPI3 Bit 14 SPI2RST: SPI2 reset Set and cleared by software. 0: does not reset SPI2 1: resets SPI2 Bits 13:12 Reserved, must be kept at reset value. Bit 11 WWDGRST: Window watchdog reset Set and cleared by software. 0: does not reset the window watchdog 1: resets the window watchdog Bit 10 Reserved, must be kept at reset value. Bit 9 LPTIMER1RST: LPTimer1 reset Set and reset by software. 0: does not reset timer 1 1: resets timer 1 Bit 8 TIM14RST: TIM14 reset Set and cleared by software. 0: does not reset TIM14 1: resets TIM14 Bit 7 TIM13RST: TIM13 reset Set and cleared by software. 0: does not reset TIM13 1: resets TIM13 144/1324 RM0430 Rev 8 RM0430 RM0430 Reset and clock control (RCC) for STM32F413/423 Bit 6 TIM12RST: TIM12 reset Set and cleared by software. 0: does not reset TIM12 1: resets TIM12 Bit 5 TIM7RST: TIM7 reset Set and cleared by software. 0: does not reset TIM7 1: resets TIM7 Bit 4 TIM6RST: TIM6 reset Set and cleared by software. 0: does not reset TIM6 1: resets TIM6 Bit 3 TIM5RST: TIM5 reset Set and cleared by software. 0: does not reset TIM5 1: resets TIM5 Bit 2 TIM4RST: TIM4 reset Set and cleared by software. 0: does not reset TIM4 1: resets TIM4 Bit 1 TIM3RST: TIM3 reset Set and cleared by software. 0: does not reset TIM3 1: resets TIM3 Bit 0 TIM2RST: TIM2 reset Set and cleared by software. 0: does not reset TIM2 1: resets TIM2 RM0430 Rev 8 145/1324 183 Reset and clock control (RCC) for STM32F413/423 6.3.10 RM0430 RCC APB2 peripheral reset register (RCC_APB2RSTR) Address offset: 0x24 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 Res. Res. Res. Res. Res. 15 14 13 12 11 SYSCFG SPI4 Res. RST RST SPI1 RST SDIO RST rw rw rw rw 26 25 24 DFSDM2 DFSDM1 Res. RST RST 10 Res. 23 22 Res. SAI1 RST rw rw 9 8 7 6 Res. ADC RST UART10 RST UART9 RST rw rw rw 20 Res. SPI5 RST rw Bits 31:26 Reserved, must be kept at reset value. Bit 25 DFSDM2RST: DFSDM2 reset Set and cleared by software. 0: does not reset DFSDM2 1: resets DFSDM2 Bit 24 DFSDM1RST: DFSDM1 reset Set and cleared by software. 0: does not reset DFSDM1 1: resets DFSDM1 Bit 23 Reserved, always read as 0. Bit 22 SAI1RST: SAI1 reset Set and reset by software. 0: does not reset SAI1 1: resets SAI1 Bit 21 Reserved, always read as 0. Bit 20 SPI5RST: SPI5RST This bit is set and cleared by software. 0: does not reset SPI5 1: resets SPI5 Bit 19 Reserved, must be kept at reset value. Bit 18 TIM11RST: TIM11 reset Set and cleared by software. 0: does not reset TIM11 1: resets TIM11 Bit 17 TIM10RST: TIM10 reset Set and cleared by software. 0: does not reset TIM10 1: resets TIM10 Bit 16 TIM9RST: TIM9 reset Set and cleared by software. 0: does not reset TIM9 1: resets TIM9 146/1324 21 RM0430 Rev 8 19 18 17 16 Res. TIM11 RST TIM10 RST TIM9 RST rw rw rw 2 1 0 Res. TIM8 RST TIM1 RST rw rw rw 5 4 USART6 USART1 RST RST rw rw 3 Res. RM0430 Reset and clock control (RCC) for STM32F413/423 Bit 15 Reserved, must be kept at reset value. Bit 14 SYSCFGRST: System configuration controller reset Set and cleared by software. 0: does not reset the System configuration controller 1: resets the System configuration controller Bit 13 SPI4RST: SPI4 reset Set and reset by software. 0: does not reset SPI4 1: resets SPI4 Bit 12 SPI1RST: SPI1 reset Set and cleared by software. 0: does not reset SPI1 1: resets SPI1 Bit 11 SDIORST: SDIO reset Set and cleared by software. 0: does not reset the SDIO module 1: resets the SDIO module Bits 10:9 Reserved, must be kept at reset value. Bit 8 ADCRST: ADC interface reset Set and cleared by software. 0: does not reset the ADC interface 1: resets the ADC interface Bit 7 UART10RST: UART10 reset Set and cleared by software. 0: does not reset UART10 1: resets UART10 Bit 6 UART9RST: UART9 reset Set and cleared by software. 0: does not reset UART9 1: resets UART9 Bit 5 USART6RST: USART6 reset Set and cleared by software. 0: does not reset USART6 1: resets USART6 Bit 4 USART1RST: USART1 reset Set and cleared by software. 0: does not reset USART1 1: resets USART1 RM0430 Rev 8 147/1324 183 Reset and clock control (RCC) for STM32F413/423 Bits 3:2 Reserved, must be kept at reset value. Bit 1 TIM8RST: TIM8 reset Set and cleared by software. 0: does not reset TIM8 1: resets TIM8 Bit 0 TIM1RST: TIM1 reset Set and cleared by software. 0: does not reset TIM1 1: resets TIM1 148/1324 RM0430 Rev 8 RM0430 RM0430 Reset and clock control (RCC) for STM32F413/423 6.3.11 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR) Address offset: 0x30 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 Res. Res. Res. Res. Res. Res. Res. Res. Res. 22 15 14 13 12 11 10 9 8 7 6 5 4 Res. GPIOH EN GPIOG EN GPIOF EN GPIOE EN rw rw rw rw rw Res. Res. Res. CRCEN Res. Res. Res. rw 21 DMA2EN DMA1EN 20 19 18 17 16 Res. Res. Res. Res. Res. 3 2 1 0 rw GPIOD GPIOC GPIOB GPIOA EN EN EN EN rw rw rw rw Bits 31:23 Reserved, must be kept at reset value. Bit 22 DMA2EN: DMA2 clock enable Set and cleared by software. 0: DMA2 clock disabled 1: DMA2 clock enabled Bit 21 DMA1EN: DMA1 clock enable Set and cleared by software. 0: DMA1 clock disabled 1: DMA1 clock enabled Bits 20:13 Reserved, must be kept at reset value. Bit 12 CRCEN: CRC clock enable Set and cleared by software. 0: CRC clock disabled 1: CRC clock enabled Bits 11:8 Reserved, must be kept at reset value. Bit 7 GPIOHEN: IO port H clock enable Set and reset by software. 0: IO port H clock disabled 1: IO port H clock enabled Bit 6 GPIOGEN: IO port G clock enable Set and cleared by software. 0: IO port G clock disabled 1: IO port G clock enabled Bit 5 GPIOFEN: IO port F clock enable Set and cleared by software. 0: IO port F clock disabled 1: IO port F clock enabled Bit 4 GPIOEEN: IO port E clock enable Set and cleared by software. 0: IO port E clock disabled 1: IO port E clock enabled RM0430 Rev 8 149/1324 183 Reset and clock control (RCC) for STM32F413/423 Bit 3 GPIODEN: IO port D clock enable Set and cleared by software. 0: IO port D clock disabled 1: IO port D clock enabled Bit 2 GPIOCEN: IO port C clock enable Set and cleared by software. 0: IO port C clock disabled 1: IO port C clock enabled Bit 1 GPIOBEN: IO port B clock enable Set and cleared by software. 0: IO port B clock disabled 1: IO port B clock enabled Bit 0 GPIOAEN: IO port A clock enable Set and cleared by software. 0: IO port A clock disabled 1: IO port A clock enabled 150/1324 RM0430 Rev 8 RM0430 RM0430 Reset and clock control (RCC) for STM32F413/423 6.3.12 RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) for STM32F413xx Address offset: 0x34 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. OTGFS EN RNG EN Res. Res. Res. Res. Res. Res. rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSEN: USB OTG FS clock enable Set and cleared by software. 0: USB OTG FS clock disabled 1: USB OTG FS clock enabled Bit 6 RNGEN: RNG clock enable Set and cleared by software. 0: RNG clock disabled 1: RNG clock enabled Bits 5:0 Reserved, always read as 0. RM0430 Rev 8 151/1324 183 Reset and clock control (RCC) for STM32F413/423 6.3.13 RM0430 RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) for STM32F423xx Address offset: 0x34 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. CRYP EN Res. Res. Res. Res. OTGFS MGEN EN rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSEN: USB OTG FS clock enable Set and cleared by software. 0: USB OTG FS clock disabled 1: USB OTG FS clock enabled Bit 6 RNGEN: RNG clock enable Set and cleared by software. 0: RNG clock disabled 1: RNG clock enabled Bit 5 Reserved, always read as 0. Bit 4 CRYPEN: CRYP clock enable Set and reset by software. 0: CRYP clock disabled 1: CRYP clock enabled Bits 3:0 Reserved, always read as 0. 152/1324 RM0430 Rev 8 rw rw RM0430 Reset and clock control (RCC) for STM32F413/423 6.3.14 RCC AHB3 peripheral clock enable register (RCC_AHB3ENR) Address offset: 0x38 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. QSPI EN FSMC EN rw rw Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:2 Reserved, must be kept at reset value. Bit 1 QSPIEN: QUADSPI memory controller module clock enable Set and cleared by software. 0: QUADSPI clock disabled 1: QUADSPI clock enabled Bit 0 FSMCEN: Flexible memory controller module clock enable Set and cleared by software. 0: FSMC module clock disabled 1: FSMC module clock enabled 6.3.15 RCC APB1 peripheral clock enable register (RCC_APB1ENR) Address offset: 0x40 Reset value: 0x0000 0400 Access: no wait state, word, half-word and byte access. 31 30 UART8 UART7 EN EN 29 28 27 26 25 24 23 22 21 DAC EN PWR EN CAN3 EN CAN2 EN CAN1 EN I2CFMP1 EN I2C3 EN I2C2 EN I2C1 EN 20 19 18 17 16 UART4 UART4 USART3 USART2 EN EN EN EN Res. rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SPI3 EN SPI2 EN TIM14 EN TIM13 EN TIM12 EN TIM7 EN TIM6 EN TIM5 EN TIM4 EN TIM3 EN TIM2 EN rw rw rw rw rw rw rw rw rw rw rw Res. Res. WWDG RTCAPB LPTIMER1 EN EN EN rw rw rw RM0430 Rev 8 rw 153/1324 183 Reset and clock control (RCC) for STM32F413/423 Bit 31 UART8EN: UART8 clock enable Set and reset by software. 0: UART8 clock disabled 1: UART8 clock enable Bit 30 UART7EN: UART7 clock enable Set and reset by software. 0: UART7 clock disabled 1: UART7 clock enable Bit 29 DACEN: DAC clock enable Set and reset by software. 0: DAC clock disabled 1: DAC clock enable Bit 28 PWREN: Power interface clock enable Set and reset by software. 0: Power interface clock disabled 1: Power interface clock enable Bit 27 CAN3EN: CAN 3 clock enable This bit is set and cleared by software. 0: CAN 3 clock disabled 1: CAN 3 clock enabled Bit 26 CAN2EN: CAN 2 clock enable This bit is set and cleared by software. 0: CAN 2 clock disabled 1: CAN 2 clock enabled Bit 25 CAN1EN: CAN 1 clock enable This bit is set and cleared by software. 0: CAN 1 clock disabled 1: CAN 1 clock enabled Bit 24 I2CFMP1EN: I2CFMP1 clock enable This bit is set and cleared by software. 0: I2CFMP1 clock disabled 1: I2CFMP1 clock enabled Bit 23 I2C3EN: I2C3 clock enable Set and cleared by software. 0: I2C3 clock disabled 1: I2C3 clock enabled Bit 22 I2C2EN: I2C2 clock enable Set and cleared by software. 0: I2C2 clock disabled 1: I2C2 clock enabled Bit 21 I2C1EN: I2C1 clock enable Set and cleared by software. 0: I2C1 clock disabled 1: I2C1 clock enabled 154/1324 RM0430 Rev 8 RM0430 RM0430 Reset and clock control (RCC) for STM32F413/423 Bit 20 UART5EN: UART 5 clock enable Set and RESET by software. 0: UART 5 clock disabled 1: UART 5 clock enabled Bit 19 UART4EN: UART 4 clock enable Set and cleared by software. 0: UART 4 clock disabled 1: UART 4 clock enabled Bit 18 USART3EN: USART3 clock enable Set and cleared by software. 0: USART3 clock disabled 1: USART3 clock enabled Bit 17 USART2EN: USART2 clock enable Set and cleared by software. 0: USART2 clock disabled 1: USART2 clock enabled Bit 16 Reserved, must be kept at reset value. Bit 15 SPI3EN: SPI3 clock enable Set and cleared by software. 0: SPI3 clock disabled 1: SPI3 clock enabled Bit 14 SPI2EN: SPI2 clock enable Set and cleared by software. 0: SPI2 clock disabled 1: SPI2 clock enabled Bits 13:12 Reserved, must be kept at reset value. Bit 11 WWDGEN: Window watchdog clock enable Set and cleared by software. 0: Window watchdog clock disabled 1: Window watchdog clock enabled Bit 10 RTC APB: clock enable Set and cleared by software. 0: RTC APB clock disabled 1: RTC APB clock enabled (default value). Bit 9 LPTIMER1EN: LPTimer 1 clock enable Set and reset by software. 0: LPTimer 1 clock disabled 1: LPTimer 1 clock enabled Bit 8 TIM14EN: TIM14 reset Set and cleared by software. 0: does not reset TIM14 1: resets TIM14 Bit 7 TIM13EN: TIM13 reset Set and cleared by software. 0: does not reset TIM13 1: resets TIM13 RM0430 Rev 8 155/1324 183 Reset and clock control (RCC) for STM32F413/423 Bit 6 TIM12EN: TIM12 reset Set and cleared by software. 0: does not reset TIM12 1: resets TIM12 Bit 5 TIM7EN: TIM7 reset Set and cleared by software. 0: does not reset TIM7 1: resets TIM7 Bit 4 TIM6EN: TIM6 reset Set and cleared by software. 0: does not reset TIM6 1: resets TIM6 Bit 3 TIM5EN: TIM5 clock enable Set and cleared by software. 0: TIM5 clock disabled 1: TIM5 clock enabled Bit 2 TIM4EN: TIM4 clock enable Set and cleared by software. 0: TIM4 clock disabled 1: TIM4 clock enabled Bit 1 TIM3EN: TIM3 clock enable Set and cleared by software. 0: TIM3 clock disabled 1: TIM3 clock enabled Bit 0 TIM2EN: TIM2 clock enable Set and cleared by software. 0: TIM2 clock disabled 1: TIM2 clock enabled 156/1324 RM0430 Rev 8 RM0430 RM0430 Reset and clock control (RCC) for STM32F413/423 6.3.16 RCC APB2 peripheral clock enable register (RCC_APB2ENR) Address offset: 0x44 Reset value: 0x0000 8000 Access: no wait state, word, half-word and byte access. 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 25 24 DFSDM2 DFSDM1 Res. EN EN 23 22 Res. SAI1 EN 21 20 Res. SPI5 EN rw 15 14 13 EXTIT SYSCFG SPI4EN EN EN rw rw rw 12 11 SPI1 EN SDIO EN rw rw 10 Res. 9 8 Res. ADC1 EN rw 19 18 17 16 Res. TIM11 EN TIM10 EN TIM9 EN rw rw rw rw 7 6 5 4 UART10 UART9 USART6 USART1 EN EN EN EN rw rw rw rw 3 Res. 2 1 0 Res. TIM8 EN TIM1 EN rw rw Bits 31:26 Reserved, always read as 0. Bit 25 DFSDM2EN: DFSDM2 clock enable Set and cleared by software 0: DFSDM2 clock disabled 1: DFSDM2 clock enabled Bit 24 DFSDM1EN: DFSDM1 clock enable Set and cleared by software 0: DFSDM1 clock disabled 1: DFSDM1 clock enabled Bit 23 Reserved, always read as 0. Bit 22 SAI1EN:SAI 1 clock enable Set and cleared by software 0: SAI 1 clock disabled 1: SAI 1 clock enabled Bit 21 Reserved, always read as 0. Bit 20 SPI5EN:SPI5 clock enable Set and cleared by software 0: SPI5 clock disabled 1: SPI5 clock enabled Bit 19 Reserved, always read as 0. Bit 18 TIM11EN: TIM11 clock enable Set and cleared by software. 0: TIM11 clock disabled 1: TIM11 clock enabled Bit 17 TIM10EN: TIM10 clock enable Set and cleared by software. 0: TIM10 clock disabled 1: TIM10 clock enabled RM0430 Rev 8 157/1324 183 Reset and clock control (RCC) for STM32F413/423 Bit 16 TIM9EN: TIM9 clock enable Set and cleared by software. 0: TIM9 clock disabled 1: TIM9 clock enabled Bit 15 EXITEN: Extit Apb sysctrl pfree clock enable Set and cleared by software. 0: Extit Apb sysctrl pfree clock disabled 1: Extit Apb sysctrl pfree clock enabled Bit 14 SYSCFGEN: System configuration controller clock enable Set and cleared by software. 0: System configuration controller clock disabled 1: System configuration controller clock enabled Bit 13 SPI4EN: SPI4 clock enable Set and reset by software. 0: SPI4 clock disabled 1: SPI4 clock enable Bit 12 SPI1EN: SPI1 clock enable Set and cleared by software. 0: SPI1 clock disabled 1: SPI1 clock enabled Bit 11 SDIOEN: SDIO clock enable Set and cleared by software. 0: SDIO module clock disabled 1: SDIO module clock enabled Bit 8 ADC1EN: ADC1 clock enable Set and cleared by software. 0: ADC1 clock disabled 1: ADC1 clock disabled Bit 7 UART10EN: UART10 clock enable Set and cleared by software. 0: UART10 clock disabled 1: UART10 clock enabled Bit 5 UART9EN: UART9 clock enable Set and cleared by software. 0: UART9 clock disabled 1: UART9 clock enabled Bit 5 USART6EN: USART6 clock enable Set and cleared by software. 0: USART6 clock disabled 1: USART6 clock enabled Bit 4 USART1EN: USART1 clock enable Set and cleared by software. 0: USART1 clock disabled 1: USART1 clock enabled 158/1324 RM0430 Rev 8 RM0430 RM0430 Reset and clock control (RCC) for STM32F413/423 Bits 3:2 Reserved, must be kept at reset value. Bit 1 TIM8EN: TIM8 clock enable Set and cleared by software. 0: TIM8 clock disabled 1: TIM8 clock enabled Bit 0 TIM1EN: TIM1 clock enable Set and cleared by software. 0: TIM1 clock disabled 1: TIM1 clock enabled RM0430 Rev 8 159/1324 183 Reset and clock control (RCC) for STM32F413/423 6.3.17 RM0430 RCC AHB1 peripheral clock enable in low power mode register (RCC_AHB1LPENR) Address offset: 0x50 Reset value: 0x0063 90FF Access: no wait state, word, half-word and byte access. 31 Res. 15 FLITF LPEN 30 Res. 14 Res. rw 29 Res. 28 Res. 13 12 Res. CRC LPEN 27 Res. 11 Res. 26 Res. 10 Res. 25 Res. 9 Res. 24 Res. 8 Res. 23 22 21 Res. DMA2 LPEN DMA1 LPEN rw rw 6 5 7 20 Res. Res. 4 3 GPIOH GPIOG GPIOF GPIOE GPIOD LPEN LPEN LPEN LPEN LPEN rw rw rw rw rw Bit 22 DMA2LPEN: DMA2 clock enable during Sleep mode Set and cleared by software. 0: DMA2 clock disabled during Sleep mode 1: DMA2 clock enabled during Sleep mode Bit 21 DMA1LPEN: DMA1 clock enable during Sleep mode Set and cleared by software. 0: DMA1 clock disabled during Sleep mode 1: DMA1 clock enabled during Sleep mode Bits 20:18 Reserved, must be kept at reset value. Bit 17 SRAM2LPEN: SRAM2interface clock enable during Sleep mode Set and cleared by software. 0: SRAM2 interface clock disabled during Sleep mode 1: SRAM2 interface clock enabled during Sleep mode Bit 16 SRAM1LPEN: SRAM1interface clock enable during Sleep mode Set and cleared by software. 0: SRAM1 interface clock disabled during Sleep mode 1: SRAM1 interface clock enabled during Sleep mode Bit 15 FLITFLPEN: Flash interface clock enable during Sleep mode Set and cleared by software. 0: Flash interface clock disabled during Sleep mode 1: Flash interface clock enabled during Sleep mode Bits 14:13 Reserved, must be kept at reset value. Bit 12 CRCLPEN: CRC clock enable during Sleep mode Set and cleared by software. 0: CRC clock disabled during Sleep mode 1: CRC clock enabled during Sleep mode Bits 11:8 Reserved, must be kept at reset value. RM0430 Rev 8 18 Res. 17 16 SRAM2 SRAM1 LPEN LPEN rw Bits 31:23 Reserved, must be kept at reset value. 160/1324 19 rw 2 GPIOC LPEN rw 1 0 GPIOB GPIOA LPEN LPEN rw rw RM0430 Reset and clock control (RCC) for STM32F413/423 Bit 7 GPIOHLPEN: IO port H clock enable during sleep mode Set and reset by software. 0: IO port H clock disabled during sleep mode 1: IO port H clock enabled during sleep mode Bit 6 GPIOGLPEN: IO port G clock enable during Sleep mode Set and cleared by software. 0: IO port G clock disabled during Sleep mode 1: IO port G clock enabled during Sleep mode Bit 5 GPIOFLPEN: IO port F clock enable during Sleep mode Set and cleared by software. 0: IO port F clock disabled during Sleep mode 1: IO port F clock enabled during Sleep mode Bit 4 GPIOELPEN: IO port E clock enable during Sleep mode Set and cleared by software. 0: IO port E clock disabled during Sleep mode 1: IO port E clock enabled during Sleep mode Bit 3 GPIODLPEN: IO port D clock enable during Sleep mode Set and cleared by software. 0: IO port D clock disabled during Sleep mode 1: IO port D clock enabled during Sleep mode Bit 2 GPIOCLPEN: IO port C clock enable during Sleep mode Set and cleared by software. 0: IO port C clock disabled during Sleep mode 1: IO port C clock enabled during Sleep mode Bit 1 GPIOBLPEN: IO port B clock enable during Sleep mode Set and cleared by software. 0: IO port B clock disabled during Sleep mode 1: IO port B clock enabled during Sleep mode Bit 0 GPIOALPEN: IO port A clock enable during sleep mode Set and cleared by software. 0: IO port A clock disabled during Sleep mode 1: IO port A clock enabled during Sleep mode RM0430 Rev 8 161/1324 183 Reset and clock control (RCC) for STM32F413/423 6.3.18 RM0430 RCC AHB2 peripheral clock enable in low power mode register (RCC_AHB2LPENR) for STM32F413xx Address offset: 0x54 Reset value: 0x0000 00C0 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTGFS RNG LPEN LPEN rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSLPEN: USB OTG FS clock enable during Sleep mode Set and cleared by software. 0: USB OTG FS clock disabled during Sleep mode 1: USB OTG FS clock enabled during Sleep mode Bit 6 RNGLPEN: RNG clock enable during Sleep mode Set and cleared by software. 0: RNG clock disabled during Sleep mode 1: RNG clock enabled during Sleep mode Bits 5:0 Reserved, must be kept at reset value. 162/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 6.3.19 RCC AHB2 peripheral clock enable in low power mode register (RCC_AHB2LPENR) for STM32F423xx Address offset: 0x54 Reset value: 0x0000 00D0 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. CRYP LPEN Res. Res. Res. Res. OTGFS RNG LPEN LPEN rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGSLPEN: USB OTG FS clock enable during sleep mode Set and cleared by software. 0: USB OTG FS clock disabled during Sleep mode 1: USB OTG FS clock enabled during Sleep mode Bit 6 RNGLPEN: RNG clock enable during sleep mode Set and cleared by software. 0: RNG clock disabled during Sleep mode 1: RNG clock enabled during Sleep mode Bit 5 Reserved, always read as 0. Bit 4 CRYPLPEN: CRYPG clock enable during sleep mode Set and cleared by software. 0: CRYP clock disabled during Sleep mode 1: CRYP clock enabled during Sleep mode Bits 3:0 Reserved, must be kept at reset value. 6.3.20 RCC AHB3 peripheral clock enable in low power mode register (RCC_AHB3LPENR) Address offset: 0x58 Reset value: 0x0000 0003 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. QSPI LPEN FSMC LPEN rw rw Res. Res. Res. Res. Res. Res. Res. Res. Res. RM0430 Rev 8 Res. Res. Res. Res. 163/1324 183 Reset and clock control (RCC) for STM32F413/423 Bits 31:2 Reserved, must be kept at reset value. Bit 1 QSPILPEN: QUADSPI memory controller module clock enable during Sleep mode Set and cleared by software. 0: QUADSPI module clock disabled during Sleep mode 1: QUADSPI module clock enabled during Sleep mode Bit 0 FSMCLPEN: Flexible memory controller module clock enable during Sleep mode Set and cleared by software. 0: FSMC clock disabled during Sleep mode 1: FSMC clock enabled during Sleep mode 164/1324 RM0430 Rev 8 RM0430 RM0430 6.3.21 Reset and clock control (RCC) for STM32F413/423 RCC APB1 peripheral clock enable in low power mode register (RCC_APB1LPENR) Address offset: 0x60 Reset value: 0xFFFF CFFF Access: no wait state, word, half-word and byte access. 31 30 29 28 UART8 UART7 DACLP PWR LPEN LPEN LPEN LPEN 27 26 25 24 23 22 CAN3 LPEN CAN2 LPEN CAN1 LPEN I2C4 LPEN I2C3 LPEN I2C2 LPEN rw rw rw rw rw 10 9 rw 15 14 SPI3 LPEN SPI2 LPEN rw rw 13 Res. 12 Res. 11 WWDG RTCAPB IPTIMER1 LPEN LPEN LPEN rw rw rw 21 20 19 18 17 16 I2C1 UART5 UART4 USART3 USART2 LPEN LPEN LPEN LPEN LPEN rw rw Res. rw 8 7 6 5 4 3 2 1 0 TIM14 LPEN TIM13 LPEN TIM12 LPEN TIM7 LPEN TIM6 LPEN TIM5 LPEN TIM4 LPEN TIM3 LPEN TIM2 LPEN rw rw rw rw rw rw rw rw rw Bit 31 UART8LPEN: UART8 clock enable during Sleep mode Set and cleared by software. 0: UART8 clock disabled during Sleep mode 1: UART8 clock enabled during Sleep mode Bit 30 UART7LPEN: UART7 clock enable during Sleep mode Set and cleared by software. 0: UART7 clock disabled during Sleep mode 1: UART7 clock enabled during Sleep mode Bit 29 DACLPEN: DAC clock enable during Sleep mode Set and cleared by software. 0: DAC clock disabled during Sleep mode 1: DAC clock enabled during Sleep mode Bit 28 PWRLPEN: Power interface clock enable during Sleep mode Set and cleared by software. 0: Power interface clock disabled during Sleep mode 1: Power interface clock enabled during Sleep mode Bit 27 CAN3LPEN: CAN3 clock enable during Sleep mode Set and cleared by software. 0: CAN3 clock disabled during Sleep mode 1: CAN3 clock enabled during Sleep mode Bit 26 CAN2LPEN: CAN2 clock enable during Sleep mode Set and cleared by software. 0: CAN2 clock disabled during Sleep mode 1: CAN2 clock enabled during Sleep mode Bit 25 CAN1LPEN: CAN1 clock enable during Sleep mode Set and cleared by software. 0: CAN1 clock disabled during Sleep mode 1: CAN1 clock enabled during Sleep mode Bit 24 I2CFMP1LPEN: I2CFMP1 clock enable during Sleep mode Set and cleared by software. 0: I2CFMP1 clock disabled during Sleep mode 1: I2CFMP1 clock enabled during Sleep mode RM0430 Rev 8 165/1324 183 Reset and clock control (RCC) for STM32F413/423 Bit 23 I2C3LPEN: I2C3 clock enable during Sleep mode Set and cleared by software. 0: I2C3 clock disabled during Sleep mode 1: I2C3 clock enabled during Sleep mode Bit 22 I2C2LPEN: I2C2 clock enable during Sleep mode Set and cleared by software. 0: I2C2 clock disabled during Sleep mode 1: I2C2 clock enabled during Sleep mode Bit 21 I2C1LPEN: I2C1 clock enable during Sleep mode Set and cleared by software. 0: I2C1 clock disabled during Sleep mode 1: I2C1 clock enabled during Sleep mode Bit 20 UART5LPEN: UART5 clock enable during Sleep mode Set and cleared by software. 0: UART5 clock disabled during Sleep mode 1: UART5 clock enabled during Sleep mode Bit 19 UART4LPEN: UART4 clock enable during Sleep mode Set and cleared by software. 0: UART4 clock disabled during Sleep mode 1: UART4 clock enabled during Sleep mode Bit 18 USART3LPEN: USART3 clock enable during Sleep mode Set and cleared by software. 0: USART3 clock disabled during Sleep mode 1: USART3 clock enabled during Sleep mode Bit 17 USART2LPEN: USART2 clock enable during Sleep mode Set and cleared by software. 0: USART2 clock disabled during Sleep mode 1: USART2 clock enabled during Sleep mode Bit 16 Reserved, must be kept at reset value. Bit 15 SPI3LPEN: SPI3 clock enable during Sleep mode Set and cleared by software. 0: SPI3 clock disabled during Sleep mode 1: SPI3 clock enabled during Sleep mode Bit 14 SPI2LPEN: SPI2 clock enable during Sleep mode Set and cleared by software. 0: SPI2 clock disabled during Sleep mode 1: SPI2 clock enabled during Sleep mode Bits 13:12 Reserved, must be kept at reset value. Bit 11 WWDGLPEN: Window watchdog clock enable during Sleep mode Set and cleared by software. 0: Window watchdog clock disabled during sleep mode 1: Window watchdog clock enabled during sleep mode Bit 10 RTCAPBEN: RTC APB clock enable during Sleep mode Set and cleared by software. 0: RTC APB clock disabled during sleep mode 1: RTC APB watchdog clock enabled during sleep mode 166/1324 RM0430 Rev 8 RM0430 RM0430 Reset and clock control (RCC) for STM32F413/423 Bit 9 LPTIMER1LPEN: TIM14 clock enable during Sleep mode Set and cleared by software. 0: LPTimer 1 clock disabled during Sleep mode 1: LPTimer 1 clock enabled during Sleep mode Bit 8 TIM14LPEN: TIM14 clock enable during Sleep mode Set and cleared by software. 0: TIM14 clock disabled during Sleep mode 1: TIM14 clock enabled during Sleep mode Bit 7 TIM13LPEN: TIM13 clock enable during Sleep mode Set and cleared by software. 0: TIM13 clock disabled during Sleep mode 1: TIM13 clock enabled during Sleep mode Bit 6 TIM12LPEN: TIM12 clock enable during Sleep mode Set and cleared by software. 0: TIM12 clock disabled during Sleep mode 1: TIM12 clock enabled during Sleep mode Bit 5 TIM7LPEN: TIM7 clock enable during Sleep mode Set and cleared by software. 0: TIM7 clock disabled during Sleep mode 1: TIM7 clock enabled during Sleep mode Bit 4 TIM6LPEN: TIM6 clock enable during Sleep mode Set and cleared by software. 0: TIM6 clock disabled during Sleep mode 1: TIM6 clock enabled during Sleep mode Bit 3 TIM5LPEN: TIM5 clock enable during Sleep mode Set and cleared by software. 0: TIM5 clock disabled during Sleep mode 1: TIM5 clock enabled during Sleep mode Bit 2 TIM4LPEN: TIM4 clock enable during Sleep mode Set and cleared by software. 0: TIM4 clock disabled during Sleep mode 1: TIM4 clock enabled during Sleep mode Bit 1 TIM3LPEN: TIM3 clock enable during Sleep mode Set and cleared by software. 0: TIM3 clock disabled during Sleep mode 1: TIM3 clock enabled during Sleep mode Bit 0 TIM2LPEN: TIM2 clock enable during Sleep mode Set and cleared by software. 0: TIM2 clock disabled during Sleep mode 1: TIM2 clock enabled during Sleep mode RM0430 Rev 8 167/1324 183 Reset and clock control (RCC) for STM32F413/423 6.3.22 RM0430 RCC APB2 peripheral clock enabled in low power mode register (RCC_APB2LPENR) Address offset: 0x64 Reset value: 0x0317 F9F3h Access: no wait state, word, half-word and byte access. 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 25 24 DFSDM2 DFSDM1 Res. LPEN LPEN 23 22 Res. SAI1 IPEN 21 20 Res. SPI5 LPEN rw 15 14 13 SYSC EXTIT SPI4LP FG LPEN EN LPEN rw rw rw 12 11 10 9 8 7 6 SPI1 LPEN SDIO LPEN Res. Res. ADC1 LPEN UART10 LPEN UART9 LPEN rw rw rw rw rw 5 3 USART6 USART1 Res. LPEN LPEN rw Bit 25 DFSDM2LPEN: DFSDM2 clock enable during Sleep mode This bit is set and cleared by software 0: DFSDM2 clock disabled during Sleep mode 1: DFSDM2 clock enabled during Sleep mode Bit 24 DFSDM1LPEN: DFSDM1 clock enable during Sleep mode This bit is set and cleared by software 0: DFSDM1 clock disabled during Sleep mode 1: DFSDM1 clock enabled during Sleep mode Bit 23 Reserved, must be kept at reset value. Bit 22 SAI1LPEN: SAI1 clock enable during Sleep mode This bit is set and cleared by software 0: SAI1 clock disabled during Sleep mode 1: SAI1 clock enabled during Sleep mode Bit 21 Reserved, must be kept at reset value. Bit 20 SPI5LPEN: SPI5 clock enable during Sleep mode This bit is set and cleared by software 0: SPI5 clock disabled during Sleep mode 1: SPI5 clock enabled during Sleep mode Bit 19 Reserved, must be kept at reset value. Bit 18 TIM11LPEN: TIM11 clock enable during Sleep mode Set and cleared by software. 0: TIM11 clock disabled during Sleep mode 1: TIM11 clock enabled during Sleep mode Bit 17 TIM10LPEN: TIM10 clock enable during Sleep mode Set and cleared by software. 0: TIM10 clock disabled during Sleep mode 1: TIM10 clock enabled during Sleep mode RM0430 Rev 8 4 rw 18 17 16 TIM10 LPEN TIM9 LPEN rw rw rw 2 1 0 Res. TIM8 LPEN TIM1 LPEN rw rw TIM11 Res. LPEN rw Bits 31:26 Reserved, must be kept at reset value. 168/1324 19 RM0430 Reset and clock control (RCC) for STM32F413/423 Bit 16 TIM9LPEN: TIM9 clock enable during sleep mode Set and cleared by software. 0: TIM9 clock disabled during Sleep mode 1: TIM9 clock enabled during Sleep mode Bit 15 EXTITLPEN: EXTIT APB and SYSCTRL PFREE clock enable during Sleep mode Set and cleared by software. 0: EXTIT APB and SYSCTRL PFREE clock disabled during Sleep mode 1: EXTIT APB and SYSCTRL PFREE clock enabled during Sleep mode Bit 14 SYSCFGLPEN: System configuration controller clock enable during Sleep mode Set and cleared by software. 0: System configuration controller clock disabled during Sleep mode 1: System configuration controller clock enabled during Sleep mode Bit 13 SPI4LPEN: SPI4 clock enable during sleep mode Set and reset by software. 0: SPI4 clock disabled during sleep mode 1: SPI4 clock enabled during sleep mode Bit 12 SPI1LPEN: SPI1 clock enable during Sleep mode Set and cleared by software. 0: SPI1 clock disabled during Sleep mode 1: SPI1 clock enabled during Sleep mode Bit 11 SDIOLPEN: SDIO clock enable during Sleep mode Set and cleared by software. 0: SDIO module clock disabled during Sleep mode 1: SDIO module clock enabled during Sleep mode Bits 10:9 Reserved, must be kept at reset value. Bit 8 ADC1LPEN: ADC1 clock enable during Sleep mode Set and cleared by software. 0: ADC1 clock disabled during Sleep mode 1: ADC1 clock disabled during Sleep mode Bit 7 UART10LPEN: UART10 clock enable during Sleep mode Set and cleared by software. 0: UART10 clock disabled during Sleep mode 1: UART10 clock enabled during Sleep mode Bit 6 UART9LPEN: UART9 clock enable during Sleep mode Set and cleared by software. 0: UART9 clock disabled during Sleep mode 1: UART9 clock enabled during Sleep mode Bit 5 USART6LPEN: USART6 clock enable during Sleep mode Set and cleared by software. 0: USART6 clock disabled during Sleep mode 1: USART6 clock enabled during Sleep mode Bit 4 USART1LPEN: USART1 clock enable during Sleep mode Set and cleared by software. 0: USART1 clock disabled during Sleep mode 1: USART1 clock enabled during Sleep mode RM0430 Rev 8 169/1324 183 Reset and clock control (RCC) for STM32F413/423 Bits 3:2 Reserved, must be kept at reset value. Bit 1 TIM8LPEN: TIM8 clock enable during Sleep mode Set and cleared by software. 0: TIM8 clock disabled during Sleep mode 1: TIM8 clock enabled during Sleep mode Bit 0 TIM1LPEN: TIM1 clock enable during Sleep mode Set and cleared by software. 0: TIM1 clock disabled during Sleep mode 1: TIM1 clock enabled during Sleep mode 170/1324 RM0430 Rev 8 RM0430 RM0430 Reset and clock control (RCC) for STM32F413/423 6.3.23 RCC Backup domain control register (RCC_BDCR) Address offset: 0x70 Reset value: 0x0000 0000, reset by Backup domain reset. Access: 0 ≤ wait state ≤ 3, word, half-word and byte access Wait states are inserted in case of successive accesses to this register. The LSEON, LSEBYP, RTCSEL and RTCEN bits in the RCC Backup domain control register (RCC_BDCR) are in the Backup domain. As a result, after Reset, these bits are write-protected and the DBP bit in the Section 5.4.1: PWR power control register (PWR_CR) has to be set before these can be modified. Refer to Section 5.4.2: PWR power control/status register (PWR_CSR) for further information. These bits are only reset after a Backup domain Reset (see Section 6.1.3: Backup domain reset). Any internal or external Reset will not have any effect on these bits. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BDRST 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 RTCEN Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw RTCSEL[1:0] rw rw 0 LSEMOD LSEBYP LSERDY LSEON rw rw r rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 BDRST: Backup domain software reset Set and cleared by software. 0: Reset not activated 1: Resets the entire Backup domain Bit 15 RTCEN: RTC clock enable Set and cleared by software. 0: RTC clock disabled 1: RTC clock enabled Bits 14:10 Reserved, must be kept at reset value. Bits 9:8 RTCSEL[1:0]: RTC clock source selection Set by software to select the clock source for the RTC. Once the RTC clock source has been selected, it cannot be changed anymore unless the Backup domain is reset. The BDRST bit can be used to reset them. 00: No clock 01: LSE oscillator clock used as the RTC clock 10: LSI oscillator clock used as the RTC clock 11: HSE oscillator clock divided by a programmable prescaler (selection through the RTCPRE[4:0] bits in the RCC clock configuration register (RCC_CFGR)) used as the RTC clock Bits 7:4 Reserved, must be kept at reset value. Bit 3 LSEMOD: External low-speed oscillator bypass Set and reset by software to select crystal mode for low speed oscillator. Two power modes are available. 0: LSE oscillator “low power” mode selection 1: LSE oscillator “high drive” mode selection RM0430 Rev 8 171/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 Bit 2 LSEBYP: External low-speed oscillator bypass Set and cleared by software to bypass oscillator in debug mode. This bit can be written only when the LSE clock is disabled. 0: LSE oscillator not bypassed 1: LSE oscillator bypassed Bit 1 LSERDY: External low-speed oscillator ready Set and cleared by hardware to indicate when the external 32 kHz oscillator is stable. After the LSEON bit is cleared, LSERDY goes low after 6 external low-speed oscillator clock cycles. 0: LSE clock not ready 1: LSE clock ready Bit 0 LSEON: External low-speed oscillator enable Set and cleared by software. 0: LSE clock OFF 1: LSE clock ON 6.3.24 RCC clock control & status register (RCC_CSR) Address offset: 0x74 Reset value: 0x0E00 0000, reset by system reset, except reset flags by power reset only. Access: 0 ≤ wait state ≤ 3, word, half-word and byte access Wait states are inserted in case of successive accesses to this register. 31 30 LPWR WWDG RSTF RSTF 29 28 27 26 25 24 23 22 21 20 19 18 17 16 IWDG RSTF SFT RSTF POR RSTF PIN RSTF BORRS TF RMVF Res. Res. Res. Res. Res. Res. Res. Res. rt_w 1 0 r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LSIRDY LSION r rw Bit 31 LPWRRSTF: Low-power reset flag Set by hardware when a Low-power management reset occurs. Cleared by writing to the RMVF bit. 0: No Low-power management reset occurred 1: Low-power management reset occurred For further information on Low-power management reset, refer to Low-power management reset. Bit 30 WWDGRSTF: Window watchdog reset flag Set by hardware when a window watchdog reset occurs. Cleared by writing to the RMVF bit. 0: No window watchdog reset occurred 1: Window watchdog reset occurred Bit 29 IWDGRSTF: Independent watchdog reset flag Set by hardware when an independent watchdog reset from VDD domain occurs. Cleared by writing to the RMVF bit. 0: No watchdog reset occurred 1: Watchdog reset occurred 172/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 Bit 28 SFTRSTF: Software reset flag Set by hardware when a software reset occurs. Cleared by writing to the RMVF bit. 0: No software reset occurred 1: Software reset occurred Bit 27 PORRSTF: POR/PDR reset flag Set by hardware when a POR/PDR reset occurs. Cleared by writing to the RMVF bit. 0: No POR/PDR reset occurred 1: POR/PDR reset occurred Bit 26 PINRSTF: PIN reset flag Set by hardware when a reset from the NRST pin occurs. Cleared by writing to the RMVF bit. 0: No reset from NRST pin occurred 1: Reset from NRST pin occurred Bit 25 BORRSTF: BOR reset flag Cleared by software by writing the RMVF bit. Set by hardware when a POR/PDR or BOR reset occurs. 0: No POR/PDR or BOR reset occurred 1: POR/PDR or BOR reset occurred Bit 24 RMVF: Remove reset flag Set by software to clear the reset flags. 0: No effect 1: Clear the reset flags Bits 23:2 Reserved, must be kept at reset value. Bit 1 LSIRDY: Internal low-speed oscillator ready Set and cleared by hardware to indicate when the internal RC 40 kHz oscillator is stable. After the LSION bit is cleared, LSIRDY goes low after 3 LSI clock cycles. 0: LSI RC oscillator not ready 1: LSI RC oscillator ready Bit 0 LSION: Internal low-speed oscillator enable Set and cleared by software. 0: LSI RC oscillator OFF 1: LSI RC oscillator ON RM0430 Rev 8 173/1324 183 Reset and clock control (RCC) for STM32F413/423 6.3.25 RM0430 RCC spread spectrum clock generation register (RCC_SSCGR) Address offset: 0x80 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. The spread spectrum clock generation is available only for the main PLL. The RCC_SSCGR register must be written either before the main PLL is enabled or after the main PLL disabled. Note: For full details about PLL spread spectrum clock generation (SSCG) characteristics, refer to the “Electrical characteristics” section in your device datasheet. 31 30 29 28 SSCG EN SPREAD SEL Res. Res. rw rw 15 14 13 12 27 26 25 24 23 rw 21 20 19 18 17 16 INCSTEP[14:3] rw rw rw rw rw 11 10 9 8 7 INCSTEP[2:0] rw 22 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw MODPER[11:0] rw rw rw rw rw rw rw rw Bit 31 SSCGEN: Spread spectrum modulation enable Set and cleared by software. 0: Spread spectrum modulation DISABLE. (To write after clearing CR[24]=PLLON bit) 1: Spread spectrum modulation ENABLE. (To write before setting CR[24]=PLLON bit) Bit 30 SPREADSEL: Spread Select Set and cleared by software. To write before to set CR[24]=PLLON bit. 0: Center spread 1: Down spread Bits 29:28 Reserved, must be kept at reset value. Bits 27:13 INCSTEP[14:0]: Incrementation step Set and cleared by software. To write before setting CR[24]=PLLON bit. Configuration input for modulation profile amplitude. Bits 12:0 MODPER[11:0]: Modulation period Set and cleared by software. To write before setting CR[24]=PLLON bit. Configuration input for modulation profile period. 174/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 6.3.26 RCC PLLI2S configuration register (RCC_PLLI2SCFGR) Address offset: 0x84 Reset value: 0x2400 3010 Access: no wait state, word, half-word and byte access. This register is used to configure the PLLI2S clock outputs according to the formulas: • 31 30 Res. 15 f(VCO clock) = f(PLLI2S clock input) × (PLLI2SN / PLLI2SM) • f(USB OTG FS, SDIO, RNG clock output) = f(VCO clock) / PLLQ • f(DFSDM, I2S clock output) = f(VCO clock) / PLLR 29 28 27 PLLI2SR[2:0] 26 25 24 PLLI2SQ[3:0] rw rw rw rw 14 13 12 11 Res. 23 Res. rw rw rw 10 9 8 22 21 20 rw rw rw rw 18 17 16 rw 7 6 5 4 PLLI2SN[8:0] rw 19 Res Res Res Res Res. Res. PLLI2SSRC . . . . 3 2 1 0 rw rw PLLI2SM[5:0] rw rw rw rw rw rw rw rw Bit 31 Reserved, must be kept at reset value. Bits 30:28 PLLI2SR[2:0]: PLLI2S division factor for I2S clocks Set and cleared by software to control the I2S clock frequency. These bits should be written only if the PLLI2S is disabled. The factor must be chosen in accordance with the prescaler values inside the I2S peripherals, to reach 0.3% error when using standard crystals and 0% error with audio crystals. For more information about I2S clock frequency and precision, refer to Section 29.6.4: Clock generator in the I2S chapter. Caution: The I2Ss requires a frequency lower than or equal to 192 MHz to work correctly. I2S clock frequency = VCO frequency / PLLR with 2 ≤ PLLR ≤ 7 000: PLLR = 0, wrong configuration 001: PLLR = 1, wrong configuration 010: PLLR = 2 ... 111: PLLR = 7 Bits 27:24 PLLI2SQ[3:0]: PLLI2S division factor for USB OTG FS/SDIO/RNG clock Set and cleared by software to control the USB OTG FS/SDIO/RNG clock frequency. These bits can be written only when the PLLI2S is disabled. USB OTG FS/SDIO/RNG clock frequency = VCO frequency / PLLI2SQ with 2 ≤ PLLI2SQ ≤ 15 0000: PLLI2SQ = 0, wrong configuration 0001: PLLI2SQ = 1, wrong configuration 0010: PLLI2SQ = 2 0011: PLLI2SQ = 3 0100: PLLI2SQ = 4 0101: PLLI2SQ = 5 ... 1111: PLLI2SQ = 15 Bit 23 Reserved, must be kept at reset value. RM0430 Rev 8 175/1324 183 Reset and clock control (RCC) for STM32F413/423 RM0430 Bit 22 PLLI2SSRC: PLLI2S entry clock source Set and cleared by software to select PLLI2S clock source. This bit can be written only when PLLI2S is disabled. 0: HSE or HSI depending on PLLSRC of PLLCFGR 1: external AFI clock (CK_I2S_EXT) selected as PLL clock entry Bits 21:15 Reserved, must be kept at reset value. Bits 14:6 PLLI2SN[8:0]: PLLI2S multiplication factor for VCO Set and cleared by software to control the multiplication factor of the VCO. These bits can be written only when the PLLI2S is disabled. Only half-word and word accesses are allowed to write these bits. Caution: The software has to set these bits correctly to ensure that the VCO output frequency is between 100 and 432 MHz. With VCO input frequency ranges from 1 to 2 MHz (refer to Figure 14 and divider factor M of the RCC PLL configuration register (RCC_PLLCFGR)) VCO output frequency = VCO input frequency × PLLI2SN with 50 ≤ PLLI2SN ≤ 432 000000000: PLLI2SN = 0, wrong configuration 000000001: PLLI2SN = 1, wrong configuration ... 001100010: PLLI2SN = 50 ... 001100011: PLLI2SN = 99 001100100: PLLI2SN = 100 001100101: PLLI2SN = 101 001100110: PLLI2SN = 102 ... 110110000: PLLI2SN = 432 110110000: PLLI2SN = 433, wrong configuration ... 111111111: PLLI2SN = 511, wrong configuration Note: Between 50 and 99 multiplication factors are possible for VCO input frequency higher than 1 MHz. However care must be taken to fulfill the minimum VCO output frequency as specified above. Bits 5:0 PLLI2SM[5:0]: Division factor for the main PLL (PLL) and audio PLL (PLLI2S) input clock Set and cleared by software to divide the PLL and PLLI2S input clock before the VCO. These bits can be written only when the PLL and PLLI2S are disabled. Caution: The software has to set these bits correctly to ensure that the VCO input frequency ranges from 1 to 2 MHz.It is recommended to select a frequency of 2 MHz to limit PLL jitter. VCO input frequency = PLL input clock frequency / PLLI2SM with 2 ≤ PLLI2SM ≤ 63 000000: PLLI2SM = 0, wrong configuration 000001: PLLI2SM = 1, wrong configuration... 000010: PLLI2SM = 2 000011: PLLI2SM = 3 000100: PLLI2SM = 4 ....... 111110: PLLI2SM = 62 111111: PLLI2SM = 63 176/1324 RM0430 Rev 8 RM0430 Reset and clock control (RCC) for STM32F413/423 6.3.27 RCC Dedicated Clocks Configuration Register (RCC_DCKCFGR) Address offset: 0x8C Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 CKDFSD M1SEL Res. Res. 14 13 28 I2S2RC[1:0] rw 15 26 rw 12 11 PLLDIVR 25 24 I2S1RC[1:0] TIMPRE rw rw rw CKDFSD CKDFSD M1ASEL M2ASEL rw 27 10 9 23 22 SAI1BSRC 21 20 SAI1ASRC rw 19 18 17 16 Res. Res. Res. Res. 3 2 1 0 rw 8 7 6 5 Res. Res. Res. Res. rw 4 PLL2SDIVR rw Bit 31 CKDFSDMSEL: DFSDM1 & DFSDM2 Kernel clock selection. 0: APB2 clock USED as Kernel clock 1: System clock used as Kernel clock Bits 30:29 Reserved, must be kept at reset value. Bits 28:27 I2S2SRC: I2S APB2 clocks source selection (I2S1/4/5) Set and reset by software. These bits should be written when the PLL and PLLI2S are disabled. 00: I2S APB2 clock frequency = f(PLLI2S_R) 01: I2S APB2 clock frequency = external I2S clock from pads - Alternate function input frequency 10: I2S APB2 clock frequency = f(PLL_R) 11: I2S APB2 clock frequency = HSI/HSE depending on PLLSRC (PLLCFGR(22)) Bits 26:25 I2S1SRC: I2S APB1 clocks source selection (I2S2/3) Set and reset by software to control the frequency of the APB1 I2S clock. These bits should be written when the PLL and PLLI2S are disabled. 00: I2S APB1 clock frequency = f(PLLI2S_R) 01: I2S APB1 clock frequency = external I2S clock from pads - alternate function input frequency 10: I2S APB1 clock frequency = f(PLL_R) 11: I2S APB1 clock frequency = HSI/HSE depending on PLLSRC (PLLCFGR(22)) Bit 24 TIMPRE: Timers clocks prescalers selection Set and reset by software to control the clock frequency of all the timers kernels (ck_tim & ck_tgo) either on APB1 or APB2 domain. 0: The Timers kernels clock prescaler is equal to HPRE if PPREx is corresponding to division by 1 or 2, else it is equal to [(HPRE * PPREx) / 2] if PPREx is corresponding to division by 4 or more. (Fck_tim = 2*Fck_pclk). 1: The Timers kernels clock prescaler is equal to HPRE if PPREx is corresponding to division by 1, 2 or 4, else it is equal to [(HPRE * PPREx) / 4] if PPREx is corresponding to division by 8 or more. (Fck_tim = 4 * Fck_pclk). RM0430 Rev 8 177/1324 183 Reset and clock control (RCC) for STM32F413/423 Bits 23:22 SAII1BSRC: SAI1 B clock selection Set and reset by software. 00: PLLI2S_R divided (R2) as SAI1 B clock 01: I2S_CLIN as SAI1 B clock 00: PLL_R divided (R1) as SAI1 B clock 11: HS_CK as SAI1 B clock Bits 21:20 SAII1ASRC: SAI1 A clock selection Set and reset by software. 00: PLLI2S_R divided (R2) as SAI1 A clock 01: I2S_CLIN as SAI1 A clock 00: PLL_R divided (R1) as SAI1 A clock 11: HS_CK as SAI1 A clock Bits 19: 16 Reserved, must be kept at reset value. Bit 15 CKDFSDM1ASEL: DFSDM1 audio clock selection. 0: CK_I2S_APB1 selected as audio clock 1: CK_I2S_APB2 selected as audio clock Bit 14 CKDFSDM2ASEL: DFSDM2 audio clock selection. 0: CK_I2S_APB1 selected as audio clock 1: CK_I2S_APB2 selected as audio clock Bit 13 Reserved, must be kept at reset value. Bits 12:8 PLLDIVR: PLL division factor for SAI1 A/B clock Set and reset by software to control the division factor of PLL_R1 clock. These bits should be written when the PLL is disabled. 00000: PLL_R1 = wrong configuration 00001: PLL_R1 = div/1 .... 10000: PLL_R1 = div/16 .... 11111: PLL_R1 = div/31 Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 PLLI2SDIVR: PLLI2S division factor for SAI1 A/B clock Set and reset by software to control the division factor of PLLI2S_R2 clock. These bits should be written when the PLLI2S is disabled. 00000: PLLI2S_R2 = wrong configuration 00001: PLLI2S_R2 = div/1 .... 10000: PLLI2S_R2 = div/16 .... 11111: PLLI2S_R2 = div/31 178/1324 RM0430 Rev 8 RM0430 RM0430 6.3.28 Reset and clock control (RCC) for STM32F413/423 RCC clocks gated enable register (CKGATENR) Address offset: 0x90 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. This register allows to enable or disable the clock gating for the specified IPs. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. AHB2APB2 _CKEN AHB2APB1 _CKEN rw rw EVTCL RCC FLITF SRAM SPARE CM4DBG _CKEN _CKEN _CKEN _CKEN _CKEN _CKEN rw rw rw rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 EVTCL_CKEN 0: the clock gating is enabled 1: the cock gating is disabled, the clock is always enabled Bit 6 RCC_CKEN: RCC clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 5 FLITF_CKEN: Flash Interface clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 4 SRAM_CKEN: SRAM (SRAM1 and SRAM2) controller clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 3 SPARE_CKEN: Spare clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 2 CM4DBG_CKEN: Cortex M4 ETM clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 1 AHB2APB2_CKEN: AHB to APB2 Bridge clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. Bit 0 AHB2APB1_CKEN: AHB to APB1 Bridge clock enable 0: the clock gating is enabled 1: the clock gating is disabled, the clock is always enabled. RM0430 Rev 8 179/1324 183 Reset and clock control (RCC) for STM32F413/423 6.3.29 RM0430 RCC Dedicated Clocks Configuration Register (RCC_DCKCFGR2) Address offset: 0x94 Reset value: 0x0000 0000 This register allows to enable or disable the clock gating for the specified IPs. 31 30 LPTIMER1 SEL 29 28 27 Res. SDIO SEL CK48M SEL rw 26 25 24 23 22 I2CFMP1 SEL[1:0] Res. 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. rw rw 15 14 13 12 11 10 9 8 7 rw 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:30 LPTIMER1SEL: LPTIMER1 kernel clock source selection. 00: APB clock selected as LPTIMER1 clock 01: HSI clock selected as LPTIMER1 clock 10: LSI clock selected as LPTIMER1 clock 11: LSE clock selected as LPTIMER1 clock Bit:29 Reserved, must be kept at reset value. Bit 28 CKSDIOSEL: SDIO clock selection. 0: CK_48MHz (see CK48MSEL bit definition) 1: clock system Bit 27 CK48MSEL: SDIO/USBFS clock selection. 0: f(PLL_Q) 1: f(PLLI2S_Q) Bits 26:24 Reserved, must be kept at reset value. Bits 23:22 I2CFMP1SEL[1:0]: I2CFMP1 kernel clock source selection 00: APB clock selected as I2CFMP1 clock 01: System clock selected as I2CFMP1 clock 10: HSI clock selected as I2CFMP1 clock 11: APB clock selected as I2CFMP1 (same as “00”) Bits 21: 0 Reserved, must be kept at reset value. 180/1324 RM0430 Rev 8 RCC_ AHB1ENR Res. Res. Res. Res. Res. Res. Res. Res. Res. DMA2EN DMA1EN Res. Res. Res. Res. Res. Res. Res. Res. CRCEN Res. Res. Res. Res. 0x34 RCC_ AHB2ENR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CAN1RST I2C1RST UART5RST UART4 RST Res. SPI5RST Res. RM0430 Rev 8 SPI1RST GPIOCEN GPIOBEN GPIOAEN Res. Res. TIM1RST TIM8RST Res. TIM2RST TIM3RST TIM4RST TIM5RST TIM6RST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FSMCRST QSPIRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CRCRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CSSF LSIRDYIE LSERDYIE HSIRDYIE HSERDYIE PLLRDYIE PLLI2SRDYIE Res. Res. LSIRDYC LSERDYC HSIRDYC HSERDYC PLLRDYC GPIOARST GPIOBRST GPIOCRST GPIODRST LSIRDYF LSERDYF HSIRDYF HSERDYF PLLRDYF GPIOFRST PLLI2SRDYF GPIOGRST CRYPRST(1) GPIOERST Res. RNGRST OTGFSRST GPIOHRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CSSC Res. Res. Res. Res. Res. Res. Res. DMA1RST PLLI2SRDYC DMA2RST Res. Res. Res. Res. Res. Res. Res. Res. MCO1[1:0] Res. MCO1PRE[2:0] MCO2PRE[2:0] Res. Res. PPRE1[2:0] PPRE2[2:0] SW[1:0] SWS[1:0] Res. Res. PLLP[1:0] HSEBYP Res. HSEON HSERDY Res. CSSON Res. Res. Res. Res. PLLSRC Res. Res. Res. PLL ON PLL RDY PLL I2SON PLL I2SRDY HSION HSIRDY Res. HSITRIM[4:0] Res. Res. USART1RST Res. Res. HPRE[3:0] GPIODEN TIM7RST TIM12RST TIM13RST TIM14RST LPTIMER1RST Res. WWDGRST Res. Res. Res. Res. PLLN[8:0] Res. CRYPEN(1) GPIOEEN UART9RST USART6RST GPIOFEN UART10RST ADCRST Res. Res. SDIORST GPIOGEN Reserved Res. Reserved HSICAL[7:0] RNGEN 0x28 0x2C SPI2RST 0x1C SP45RST Res. RCC_ AHB3RSTR RTCPRE[4:0] SYSCFGRST Res. 0x18 SPI3RST RCC_ AHB2RSTR Res. 0x14 Res. RCC_ AHB1RSTR TIM9RST 0x10 Res. RCC_ CIR Res. 0x0C USART2RST RCC_ CFGR TIM10RST 0x08 USART3RST I2C2RST SAI1RST Res. PLLR[2:0] TIM11RST I2C3RST Res. RCC_ PLLCFGR Res. Res. 0x04 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RCC_ CR MCO2[1:0] 0x00 Res. Register name Res. Addr. offset PLLQ[3:0] Res. DFSDM1RST I2CFMP1RST CAN2RST Res. DFSDM2RST CAN3RST Res. Res. DACRST UART7RST RCC_ APB2RSTR PWRRST UART8RST 0x24 Res. RCC_ APB1RSTR Res. 0x20 Res. 6.3.30 OTGFSEN GPIOHEN 0x30 Res. RM0430 Reset and clock control (RCC) for STM32F413/423 RCC register map Table 24 gives the register map and reset values Table 24. RCC register map and reset values for STM32F413/423 PLLM[5:0] Reserved 181/1324 183 182/1324 Res. Res. Res. Res. 0x78 Reserved 0x7C Reserved RM0430 Rev 8 UART9LPEN USART6LPEN USART1LPEN Res. Res. TIM8LPEN TIM1LPEN Res. Res. Res. LSEMOD LSEBYP LSERDY LSEON Res. Res. Res. Res. Res. LSIRDY LSION ADC1LPEN Res. Res. SDIOLPEN SPI1LPEN SPI4LPEN SYSCFGLPEN UART10LPEN Reserved Res. Reserved Res. 0x68 0x6C EXTITEN TIM9LPEN TIM10LPEN TIM2LPEN TIM3LPEN TIM4LPEN TIM5LPEN TIM6LPEN TIM7LPEN TIM12LPEN TIM13LPEN TIM14LPEN LPTIMER1EN Res. WWDGLPEN Res. Res. SPI2LPEN SPI3LPEN Res. USART2LPEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FSMCLPEN QSPILPEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CRCLPEN Res. Res. FLITFLPEN SRAM1LPEN SRAM2LPEN Res. Res. Res. DMA1LPEN DMA2LPEN Res. Res. Res. Res. Res. Res. Res. GPIOCLPEN GPIOBLPEN GPIOALPEN Res. Res. Res. GPIOELPEN GPIODLPEN (1) GPIOFLPEN GPIOGLPEN CRYPLPEN Res. Res. RNGLPEN OTGFSLPEN GPIOHLPEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reserved Res. UART4 LPEN Res. Res. Res. Res. Reserved RTCSEL[1:0] Res. Res. UART5LPEN SPI5LPEN USART3LPEN I2C1LPEN SAI1LPEN TIM11LPEN I2C2LPEN Res. Res. Res. 0x48 0x4C Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RTCEN Res. Res. I2C3LPEN Res. 0x5C Res. Res. Res. DFSDM1LPEN I2CFMP1LPEN Res. RCC_ AHB3LPENR BDRST Res. RMVF CAN1LPEN DFSDM2LPEN Res. 0x58 Res. Res. BORRSTF CAN2LPEN Res. RCC_ AHB2LPENR Res. Res. PADRSTF CAN3LPEN RCC_ APB2LPENR Res. 0x54 Res. Res. PORRSTF 0x64 DACLPEN RCC_ AHB1LPENR Res. 0x50 Res. CAN3EN CAN2EN CAN1EN Res. Res. DFSDM2EN I2C1EN UART5EN UART4 EN Res. SPI5EN Res. TIM1EN TIM8EN Res. Res. USART1EN USART6EN UART9EN UART10EN ADC1EN Res. Res. SDIOEN SPI1EN SPI4EN SYSCFGEN Res. TIM9EN TIM10EN TIM2EN TIM3EN TIM4EN TIM5EN TIM6EN TIM7EN TIM12EN TIM13EN TIM14EN LPTIMER1EN RTCAPBEN WWDGEN Res. Res. SPI2EN SPI3EN Res. USART2EN USART3EN I2C2EN SAI1EN TIM11EN I2C3EN Res. DFSDM1EN I2CFMP1EN DACEN PWREN Res. Res. UART7EN Res. Res. UART8EN RCC_ APB2ENR PWRLPEN UART7LPEN 0x44 Res. UART8LPEN RCC_ APB1ENR Res. RCC_ APB1LPENR Res. 0x40 Res. Res. SFTRSTF 0x60 Res. 0x3C Res. Res. WDGRSTF RCC_ CSR Res. 0x74 Res. RCC_ BDCR LPWRRSTF 0x70 WWDGRSTF Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x38 RCC_ AHB3ENR FSMCEN QSPIEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Addr. offset Res. Reset and clock control (RCC) for STM32F413/423 RM0430 Table 24. RCC register map and reset values for STM32F413/423 (continued) Reserved Reserved CKGATENR 0x94 RCC_ DCKCFGR2 Res. Res. Res. CKDFSDM1ASEL CKDFSDM2ASEL Res. Res. Res. Res. Res. Res. Res. RM0430 Rev 8 AHB2APB2_CKEN AHB2APB1_CKEN SPARE _CKEN Res. Res. SRAM12_CKGA_BPEN Res. Res. Res. FLITF_CKEN Res. CM4DBG_CKEN Res. RCC_CKEN Res. Res. Res. Res. Res. Res. Res. PLLI2SSRC Res. PLLI2SQ[3:0] PLLI2SN[8:0]] Res. Res. PLLI2SDIVR[4:0]] EVTCL_CKEN PLLDIVR[4:0]] Res. Res. Res. Res. INCSTEP[14:0] Res. Res. Res. Res. Res. 0x88 Res. Res. Res. Res. SAI1ASR[1:0] SAI1BSR[1:0] I2CFMP1SEL[1:0] Res. TIMPRE I2S1SRC[1:0] I2S2SRC[1:0] Res. Res. Res. CK48MSEL RCC_ PLLI2SCFGR PLLI2SR[2:0] SSCGEN 0x84 Res. RCC_ SSCGR SDIOSEL 0x80 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name SPREADSEL Addr. offset Res. Res. 0x90 CKDFSDM1SEL RCC_ DCKCFGR LPTIMER1SEL0 0x8C LPTIMER1SEL1 RM0430 Reset and clock control (RCC) for STM32F413/423 Table 24. RCC register map and reset values for STM32F413/423 (continued) MODPER[11:0] PLLI2SM[5:0] Reserved 1. Only available for STM32F423xx. Refer to Table 1 for the register boundary addresses. 183/1324 183 General-purpose I/Os (GPIO) RM0430 7 General-purpose I/Os (GPIO) 7.1 GPIO introduction Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers (GPIOx_IDR and GPIOx_ODR), a 32-bit set/reset register (GPIOx_BSRR), a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function selection register (GPIOx_AFRH and GPIOx_AFRL). 7.2 7.3 GPIO main features • Up to 16 I/Os under control • Output states: push-pull or open drain + pull-up/down • Output data from output data register (GPIOx_ODR) or peripheral (alternate function output) • Speed selection for each I/O • Input states: floating, pull-up/down, analog • Input data to input data register (GPIOx_IDR) or peripheral (alternate function input) • Bit set and reset register (GPIOx_BSRR) for bitwise write access to GPIOx_ODR • Locking mechanism (GPIOx_LCKR) provided to freeze the I/O configuration • Analog function • Alternate function input/output selection registers (at most 16 AFs per I/O) • Fast toggle capable of changing every two clock cycles • Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several peripheral functions GPIO functional description Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in several modes: • Input floating • Input pull-up • Input-pull-down • Analog • Output open-drain with pull-up or pull-down capability • Output push-pull with pull-up or pull-down capability • Alternate function push-pull with pull-up or pull-down capability • Alternate function open-drain with pull-up or pull-down capability Each I/O port bit is freely programmable, however the I/O port registers have to be accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR register is to allow atomic read/modify accesses to any of the GPIO registers. In this way, there is no risk of an IRQ occurring between the read and the modify access. 184/1324 RM0430 Rev 8 RM0430 General-purpose I/Os (GPIO) Figure 17 show the basic structure of a 5 V tolerant I/O port bit. Table 25 gives the possible port bit configurations. Figure 17. Basic structure of a five-volt tolerant I/O port bit !NALOG 4O ON CHIP PERIPHERAL !LTERNATE FUNCTION INPUT 2EADWRITE &ROM ON CHIP PERIPHERAL )NPUT DATA REGISTER ONOFF 6$$ 44, 3CHMITT TRIGGER ONOFF 6$$?&4 0ROTECTION DIODE 0ULL UP )NPUT DRIVER /UTPUT DATA REGISTER 7RITE "IT SETRESET REGISTERS 2EAD )/ PIN /UTPUT DRIVER 6$$ ONOFF 0 -/3 633 /UTPUT CONTROL 0ROTECTION DIODE 0ULL DOWN 633 . -/3 633 !LTERNATE FUNCTION OUTPUT 0USH PULL OPEN DRAIN OR DISABLED !NALOG AIB 1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD. Table 25. Port bit configuration table(1) MODER(i) [1:0] 01 OTYPER(i) OSPEEDR(i) [B:A] PUPDR(i) [1:0] I/O configuration 0 0 0 GP output PP 0 0 1 GP output PP + PU 0 1 0 GP output PP + PD 1 1 Reserved 0 0 GP output OD 1 0 1 GP output OD + PU 1 1 0 GP output OD + PD 1 1 1 Reserved (GP output OD) 0 1 SPEED [B:A] RM0430 Rev 8 185/1324 203 General-purpose I/Os (GPIO) RM0430 Table 25. Port bit configuration table(1) (continued) MODER(i) [1:0] 10 00 11 OTYPER(i) OSPEEDR(i) [B:A] PUPDR(i) [1:0] I/O configuration 0 0 0 AF PP 0 0 1 AF PP + PU 0 1 0 AF PP + PD 1 1 Reserved 0 0 AF OD 1 0 1 AF OD + PU 1 1 0 AF OD + PD 1 1 1 Reserved 0 SPEED [B:A] 1 x x x 0 0 Input Floating x x x 0 1 Input PU x x x 1 0 Input PD x x x 1 1 Reserved (input floating) x x x 0 0 Input/output x x x 0 1 x x x 1 0 x x x 1 1 Analog Reserved 1. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function. 7.3.1 General-purpose I/O (GPIO) During and just after reset, the alternate functions are not active and the I/O ports are configured in input floating mode. The debug pins are in AF pull-up/pull-down after reset: • PA15: JTDI in pull-up • PA14: JTCK/SWCLK in pull-down • PA13: JTMS/SWDAT in pull-up • PB4: NJTRST in pull-up • PB3: JTDO in floating state When the pin is configured as output, the value written to the output data register (GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull mode or open-drain mode (only the N-MOS is activated when 0 is output). The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB1 clock cycle. All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or not depending on the value in the GPIOx_PUPDR register. 186/1324 RM0430 Rev 8 RM0430 7.3.2 General-purpose I/Os (GPIO) I/O pin multiplexer and mapping The microcontroller I/O pins are connected to onboard peripherals/modules through a multiplexer that allows only one peripheral’s alternate function (AF) connected to an I/O pin at a time. In this way, there can be no conflict between peripherals sharing the same I/O pin. Each I/O pin has a multiplexer with sixteen alternate function inputs (AF0 to AF15) that can be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to 15) registers: • After reset all I/Os are connected to the system’s alternate function 0 (AF0) • The peripherals’ alternate functions are mapped from AF1 to AF13 • Cortex®-M4 with FPU EVENTOUT is mapped on AF15 This structure is shown in Figure 18: Selecting an alternate function on STM32F413/423 below. In addition to this flexible I/O multiplexing architecture, each peripheral has alternate functions mapped onto different I/O pins to optimize the number of peripherals available in smaller packages. To use an I/O in a given configuration, proceed as follows: • System function Connect the I/O to AF0 and configure it depending on the function used: Note: – JTAG/SWD, after each device reset these pins are assigned as dedicated pins immediately usable by the debugger host (not controlled by the GPIO controller) – RTC_REFIN: this pin should be configured in Input floating mode – MCO1 and MCO2: these pins have to be configured in alternate function mode. You can disable some or all of the JTAG/SWD pins and so release the associated pins for GPIO usage. For more details please refer to Section 6.2.10: Clock-out capability. RM0430 Rev 8 187/1324 203 General-purpose I/Os (GPIO) RM0430 Table 26. Flexible SWJ-DP pin assignment SWJ I/O pin assigned PA13 / JTMS/ SWDIO PA14 / JTCK/ SWCLK PA15 / JTDI PB3 / JTDO PB4/ NJTRST Full SWJ (JTAG-DP + SW-DP) - Reset state X X X X X Full SWJ (JTAG-DP + SW-DP) but without NJTRST X X X X JTAG-DP Disabled and SW-DP Enabled X X Available debug ports JTAG-DP Disabled and SW-DP Disabled • Released GPIO Configure the desired I/O as output or input in the GPIOx_MODER register. • Peripheral alternate function For the ADC, configure the desired I/O as analog in the GPIOx_MODER register. For other peripherals: • – Configure the desired I/O as an alternate function in the GPIOx_MODER register – Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER, GPIOx_PUPDR and GPIOx_OSPEEDR registers, respectively – Connect the I/O to the desired AFx in the GPIOx_AFRL or GPIOx_AFRH register EVENTOUT Configure the I/O pin used to output the Cortex®-M4 with FPU EVENTOUT signal by connecting it to AF15 Note: 188/1324 Please refer to the “Alternate function mapping” table in the datasheets for the detailed mapping of the system and peripherals’ alternate function I/O pins. RM0430 Rev 8 RM0430 General-purpose I/Os (GPIO) Figure 18. Selecting an alternate function on STM32F413/423 )RUSLQVWRWKH*3,2[B$)5/>@UHJLVWHUVHOHFWVWKHGHGLFDWHGDOWHUQDWHIXQFWLRQ $) V\VWHP $) 7,07,0 $) 7,0 $) 7,0 $) ,&,&)03 $) 63, $) 63,')6'0 3LQ[ [ $) 63,86$57 $) ')6'086$57&$1 $) ,&,&)03&$17,048$'63, $) ')6'0)60&48$'63,27*B)6 $) $) )0&6',2 $) $) $) (9(17287 $)5/>@ )RUSLQVWRWKH*3,2[B$)5+>@UHJLVWHUVHOHFWVWKHGHGLFDWHGDOWHUQDWHIXQFWLRQ $) V\VWHP $) 7,07,0 $) 7,0 $) 7,0 $) ,&,&)03 $) 63, $) 63,')6'0 3LQ[ [ $) 63,86$57 $) ')6'086$57&$1 $) ,&,&)03&$17,048$'63, $) ')6'0)60&48$'63,27*B)6 $) $) )0&6',2 $) $) $) (9(17287 $)5+>@ 06Y9 RM0430 Rev 8 189/1324 203 General-purpose I/Os (GPIO) 7.3.3 RM0430 I/O port control registers Each of the GPIOs has four 32-bit memory-mapped control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os. The GPIOx_MODER register is used to select the I/O direction (input, output, AF, analog). The GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (push-pull or open-drain) and speed (the I/O speed pins are directly connected to the corresponding GPIOx_OSPEEDR register bits whatever the I/O direction). The GPIOx_PUPDR register is used to select the pull-up/pull-down whatever the I/O direction. 7.3.4 I/O port data registers Each GPIO has two 16-bit memory-mapped data registers: input and output data registers (GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write accessible. The data input through the I/O are stored into the input data register (GPIOx_IDR), a read-only register. See Section 7.4.5: GPIO port input data register (GPIOx_IDR) (x = A...H) and Section 7.4.6: GPIO port output data register (GPIOx_ODR) (x = A...H) for the register descriptions. 7.3.5 I/O data bitwise handling The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset register has twice the size of GPIOx_ODR. To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BSRR(i) and BSRR(i+SIZE). When written to 1, bit BSRR(i) sets the corresponding ODR(i) bit. When written to 1, bit BSRR(i+SIZE) resets the ODR(i) corresponding bit. Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set action takes priority. Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a “one-shot” effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always be accessed directly. The GPIOx_BSRR register provides a way of performing atomic bitwise handling. There is no need for the software to disable interrupts when programming the GPIOx_ODR at bit level: it is possible to modify one or more bits in a single atomic AHB1 write access. 7.3.6 GPIO locking mechanism It is possible to freeze the GPIO control registers by applying a specific write sequence to the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must be the same). When the LOCK sequence has been applied to a port bit, the value of the port bit can no longer be modified until the next MCU or peripheral reset. Each GPIOx_LCKR bit freezes the corresponding bit in the control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH). 190/1324 RM0430 Rev 8 RM0430 General-purpose I/Os (GPIO) The LOCK sequence (refer to Section 7.4.8: GPIO port configuration lock register (GPIOx_LCKR) (x = A...H)) can only be performed using a word (32-bit long) access to the GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the same time as the [15:0] bits. For more details please refer to LCKR register description in Section 7.4.8: GPIO port configuration lock register (GPIOx_LCKR) (x = A...H). 7.3.7 I/O alternate function input/output Two registers are provided to select one out of the sixteen alternate function inputs/outputs available for each I/O. With these registers, you can connect an alternate function to some other pin as required by your application. This means that a number of possible peripheral functions are multiplexed on each GPIO using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can thus select any one of the possible functions for each I/O. The AF selection signal being common to the alternate function input and alternate function output, a single channel is selected for the alternate function input/output of one I/O. To know which functions are multiplexed on each GPIO pin, refer to the datasheets. Note: The application is allowed to select one of the possible peripheral functions for each I/O at a time. 7.3.8 External interrupt/wakeup lines All ports have external interrupt capability. To use external interrupt lines, the port must be configured in input mode, refer to Section 10.2: External interrupt/event controller (EXTI) and Section 10.2.3: Wakeup event management. 7.3.9 Input configuration When the I/O port is programmed as Input: • the output buffer is disabled • the Schmitt trigger input is activated • the pull-up and pull-down resistors are activated depending on the value in the GPIOx_PUPDR register • The data present on the I/O pin are sampled into the input data register every AHB1 clock cycle • A read access to the input data register provides the I/O State Figure 19 shows the input configuration of the I/O port bit. RM0430 Rev 8 191/1324 203 General-purpose I/Os (GPIO) RM0430 )NPUT DATA REGISTER Figure 19. Input floating/pull up/pull down configurations 2EADWRITE /UTPUT DATA REGISTER 7RITE "IT SETRESET REGISTERS 2EAD ON 44, 3CHMITT TRIGGER 6$$ 6$$ ONOFF PULL UP INPUT DRIVER PROTECTION DIODE )/ PIN ONOFF OUTPUT DRIVER PULL DOWN 633 PROTECTION DIODE 633 AIB 7.3.10 Output configuration When the I/O port is programmed as output: • The output buffer is enabled: – Open drain mode: A “0” in the Output register activates the N-MOS whereas a “1” in the Output register leaves the port in Hi-Z (the P-MOS is never activated) – Push-pull mode: A “0” in the Output register activates the N-MOS whereas a “1” in the Output register activates the P-MOS • The Schmitt trigger input is activated • The weak pull-up and pull-down resistors are activated or not depending on the value in the GPIOx_PUPDR register • The data present on the I/O pin are sampled into the input data register every AHB1 clock cycle • A read access to the input data register gets the I/O state • A read access to the output data register gets the last written value Figure 20 shows the output configuration of the I/O port bit. 192/1324 RM0430 Rev 8 RM0430 General-purpose I/Os (GPIO) )NPUT DATA REGISTER Figure 20. Output configuration 7RITE 2EADWRITE ON 6$$ 6$$ 44, 3CHMITT TRIGGER ONOFF )NPUT DRIVER /UTPUT DATA REGISTER "IT SETRESET REGISTERS 2EAD PROTECTION DIODE PULL UP /UTPUT DRIVER 6$$ )/ PIN ONOFF 0 -/3 /UTPUT CONTROL PROTECTION DIODE PULL DOWN 633 633 . -/3 0USH PULL OR 633 /PEN DRAIN AIB Alternate function configuration When the I/O port is programmed as alternate function: • The output buffer can be configured as open-drain or push-pull • The output buffer is driven by the signal coming from the peripheral (transmitter enable and data) • The Schmitt trigger input is activated • The weak pull-up and pull-down resistors are activated or not depending on the value in the GPIOx_PUPDR register • The data present on the I/O pin are sampled into the input data register every AHB1 clock cycle • A read access to the input data register gets the I/O state Figure 21 shows the Alternate function configuration of the I/O port bit. Figure 21. Alternate function configuration !LTERNATE FUNCTION INPUT 2EAD 2EADWRITE &ROM ON CHIP PERIPHERAL 6$$ 6$$ 44, 3CHMITT TRIGGER ONOFF PROTECTION DIODE 0ULL UP )NPUT DRIVER /UTPUT DATA REGISTER 7RITE ON )NPUT DATA REGISTER 4O ON CHIP PERIPHERAL "IT SETRESET REGISTERS 7.3.11 )/ PIN /UTPUT DRIVER ONOFF 6$$ 0 -/3 /UTPUT CONTROL PROTECTION DIODE 0ULL DOWN 633 633 . -/3 633 PUSH PULL OR OPEN DRAIN !LTERNATE FUNCTION OUTPUT AIB RM0430 Rev 8 193/1324 203 General-purpose I/Os (GPIO) 7.3.12 RM0430 Analog configuration When the I/O port is programmed as analog configuration: Note: • The output buffer is disabled • The Schmitt trigger input is deactivated, providing zero consumption for every analog value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0). • The weak pull-up and pull-down resistors are disabled • Read access to the input data register gets the value “0” In the analog configuration, the I/O pins cannot be 5 Volt tolerant. Figure 22 shows the high-impedance, analog-input configuration of the I/O port bit. Figure 22. High impedance-analog configuration )NPUT DATA REGISTER !NALOG 4O ON CHIP PERIPHERAL 2EADWRITE &ROM ON CHIP PERIPHERAL 7.3.13 /UTPUT DATA REGISTER 7RITE "IT SETRESET REGISTERS 2EAD OFF 6$$ 44, 3CHMITT TRIGGER PROTECTION DIODE )NPUT DRIVER )/ PIN PROTECTION DIODE 633 !NALOG AI Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general-purpose PC14 and PC15 I/Os, respectively, when the LSE oscillator is off. The PC14 and PC15 I/Os are only configured as LSE oscillator pins OSC32_IN and OSC32_OUT when the LSE oscillator is ON. This is done by setting the LSEON bit in the RCC_BDCR register. The LSE has priority over the GPIO function. Note: The PC14/PC15 GPIO functionality is lost when the 1.2 V domain is powered off (by the device entering the standby mode) or when the backup domain is supplied by VBAT (VDD no more supplied). In this case the I/Os are set in analog input mode. 7.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os, respectively, when the HSE oscillator is OFF. (after reset, the HSE oscillator is off). The PH0/PH1 I/Os are only configured as OSC_IN/OSC_OUT HSE oscillator pins when the HSE oscillator is ON. This is done by setting the HSEON bit in the RCC_CR register. The HSE has priority over the GPIO function. 194/1324 RM0430 Rev 8 RM0430 7.3.15 General-purpose I/Os (GPIO) Selection of RTC additional functions The STM32F4xx feature one GPIO pin RTC_AF1 that can be used for the detection of a tamper or time stamp event, or RTC_ALARM, or RTC_CALIB RTC outputs. • The RTC_AF1 (PC13) can be used for the following purposes: RTC_ALARM output: this output can be RTC Alarm A, RTC Alarm B or RTC Wakeup depending on the OSEL[1:0] bits in the RTC_CR register • RTC_CALIB output: this feature is enabled by setting the COE[23] in the RTC_CR register • RTC_TAMP1: tamper event detection • RTC_TS: time stamp event detection The selection of the corresponding pin is performed through the RTC_TAFCR register as follows: • TAMP1INSEL is used to select which pin is used as the RTC_TAMP1 tamper input • TSINSEL is used to select which pin is used as the RTC_TS time stamp input • ALARMOUTTYPE is used to select whether the RTC_ALARM is output in push-pull or open-drain mode The output mechanism follows the priority order listed in Table 27. Table 27. RTC additional functions(1) Pin configuration and function TSINSEL Time TAMP1INSEL TIMESTAMP stamp TAMPER1 pin enabled pin selection selection enabled enabled Tamper enabled Alarm out output OD 1 Don’t care Don’t care Don’t care Don’t care Don’t care 0 Alarm out output PP 1 Don’t care Don’t care Don’t care Don’t care Don’t care 1 Calibration out output PP 0 1 Don’t care Don’t care Don’t care Don’t care Don’t care TAMPER1 input floating 0 0 1 0 0 Don’t care Don’t care TIMESTAMP and TAMPER1 input floating 0 0 1 1 0 0 Don’t care TIMESTAMP input floating 0 0 0 1 Don’t care 0 Don’t care Standard GPIO 0 0 0 0 Don’t care Don’t care Don’t care ALARMOUTTYP configuration 1. OD: open drain; PP: push-pull. RM0430 Rev 8 195/1324 203 General-purpose I/Os (GPIO) 7.4 RM0430 GPIO registers This section gives a detailed description of the GPIO registers. For a summary of register bits, register address offsets and reset values, refer to Table 28. The GPIO registers can be accessed by byte (8 bits), half-words (16 bits) or words (32 bits). 7.4.1 GPIO port mode register (GPIOx_MODER) (x = A...H) Address offset: 0x00 Reset values: 31 30 MODER15[1:0] • 0x0A800 0000 for port A • 0x0000 0280 for port B • 0x0000 0000 for other ports 29 28 MODER14[1:0] 27 26 MODER13[1:0] 25 24 MODER12[1:0] 23 22 MODER11[1:0] 21 20 MODER10[1:0] 19 18 MODER9[1:0] 17 16 MODER8[1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MODER7[1:0] rw rw MODER6[1:0] rw rw MODER5[1:0] rw rw MODER4[1:0] rw rw MODER3[1:0] rw rw MODER2[1:0] rw rw MODER1[1:0] rw rw MODER0[1:0] rw rw Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15) These bits are written by software to configure the I/O direction mode. 00: Input (reset state) 01: General purpose output mode 10: Alternate function mode 11: Analog mode 7.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A...H) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OT15 OT14 OT13 OT12 OT11 OT10 OT9 OT8 OT7 OT6 OT5 OT4 OT3 OT2 OT1 OT0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 OTy: Port x configuration bits (y = 0..15) These bits are written by software to configure the output type of the I/O port. 0: Output push-pull (reset state) 1: Output open-drain 196/1324 RM0430 Rev 8 RM0430 General-purpose I/Os (GPIO) 7.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A...H) Address offset: 0x08 Reset values: 31 • 0x0C00 0000 for port A • 0x0000 00C0 for port B • 0x0000 0000 for other ports 30 29 OSPEEDR15 [1:0] 28 27 OSPEEDR14 [1:0] 26 25 OSPEEDR13 [1:0] 24 OSPEEDR12 [1:0] 23 22 OSPEEDR11 [1:0] 21 20 OSPEEDR10 [1:0] 19 18 17 16 OSPEEDR9 [1:0] OSPEEDR8 [1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OSPEEDR7[1:0] OSPEEDR6[1:0] OSPEEDR5[1:0] OSPEEDR4[1:0] rw rw rw rw rw rw rw OSPEEDR3[1:0] rw rw OSPEEDR2[1:0] rw rw OSPEEDR1 [1:0] OSPEEDR0 1:0] rw rw rw rw rw Bits 2y:2y+1 OSPEEDRy[1:0]: Port x configuration bits (y = 0..15) These bits are written by software to configure the I/O output speed. 00: Low speed 01: Medium speed 10: Fast speed 11: High speed Note: Refer to the product datasheets for the values of OSPEEDRy bits versus VDD range and external load. 7.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A...H) Address offset: 0x0C Reset values: 31 30 PUPDR15[1:0] • 0x6400 0000 for port A • 0x0000 0100 for port B • 0x0000 0000 for other ports 29 28 PUPDR14[1:0] 27 26 PUPDR13[1:0] 25 24 PUPDR12[1:0] 23 22 PUPDR11[1:0] 21 20 PUPDR10[1:0] 19 18 PUPDR9[1:0] 17 16 PUPDR8[1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PUPDR7[1:0] rw rw PUPDR6[1:0] rw rw PUPDR5[1:0] rw rw PUPDR4[1:0] rw rw PUPDR3[1:0] rw rw PUPDR2[1:0] rw rw PUPDR1[1:0] rw rw PUPDR0[1:0] rw rw Bits 2y:2y+1 PUPDRy[1:0]: Port x configuration bits (y = 0..15) These bits are written by software to configure the I/O pull-up or pull-down 00: No pull-up, pull-down 01: Pull-up 10: Pull-down 11: Reserved RM0430 Rev 8 197/1324 203 General-purpose I/Os (GPIO) 7.4.5 RM0430 GPIO port input data register (GPIOx_IDR) (x = A...H) Address offset: 0x10 Reset value: 0x0000 XXXX (where X means undefined) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0 r r r r r r r r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 IDRy: Port input data (y = 0..15) These bits are read-only and can be accessed in word mode only. They contain the input value of the corresponding I/O port. 7.4.6 GPIO port output data register (GPIOx_ODR) (x = A...H) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 ODR15 ODR14 ODR13 ODR12 ODR11 ODR10 rw rw rw rw rw rw 9 8 7 6 5 4 3 2 1 0 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0 rw rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 ODRy: Port output data (y = 0..15) These bits can be read and written by software. Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the GPIOx_BSRR register (x = A...H). 7.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A...H) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BS15 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0 w w w w w w w w w w w w w w w w 198/1324 RM0430 Rev 8 RM0430 General-purpose I/Os (GPIO) Bits 31:16 BRy: Port x reset bit y (y = 0..15) These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000. 0: No action on the corresponding ODRx bit 1: Resets the corresponding ODRx bit Note: If both BSx and BRx are set, BSx has priority. Bits 15:0 BSy: Port x set bit y (y= 0..15) These bits are write-only and can be accessed in word, half-word or byte mode. A read to these bits returns the value 0x0000. 0: No action on the corresponding ODRx bit 1: Sets the corresponding ODRx bit 7.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A...H) This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit, the value of this port bit can no longer be modified until the next MCU or peripheral reset. Note: A specific write sequence is used to write to the GPIOx_LCKR register. Only word access (32-bit long) is allowed during this write sequence. Each lock bit freezes a specific configuration register (control and alternate function registers). Address offset: 0x1C Reset value: 0x0000 0000 Access: 32-bit word only, read/write register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LCKK 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LCK15 LCK14 LCK13 LCK12 LCK11 LCK10 LCK9 LCK8 LCK7 LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw RM0430 Rev 8 199/1324 203 General-purpose I/Os (GPIO) RM0430 Bits 31:17 Reserved, must be kept at reset value. Bit 16 LCKK[16]: Lock key This bit can be read any time. It can only be modified using the lock key write sequence. 0: Port configuration lock key not active 1: Port configuration lock key active. The GPIOx_LCKR register is locked until an MCU reset or a peripheral reset occurs. LOCK key write sequence: WR LCKR[16] = ‘1’ + LCKR[15:0] WR LCKR[16] = ‘0’ + LCKR[15:0] WR LCKR[16] = ‘1’ + LCKR[15:0] RD LCKR RD LCKR[16] = ‘1’ (this read operation is optional but it confirms that the lock is active) Note: During the LOCK key write sequence, the value of LCK[15:0] must not change. Any error in the lock sequence aborts the lock. After the first lock sequence on any bit of the port, any read access on the LCKK bit will return ‘1’ until the next CPU reset. Bits 15:0 LCKy: Port x lock bit y (y= 0..15) These bits are read/write but can only be written when the LCKK bit is ‘0. 0: Port configuration not locked 1: Port configuration locked 7.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A...H) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 27 AFRL7[3:0] 26 25 24 23 AFRL6[3:0] 22 21 20 19 AFRL5[3:0] 18 17 16 AFRL4[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw AFRL3[3:0] rw AFRL2[3:0] rw rw AFRL1[3:0] rw AFRL0[3:0] Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7) These bits are written by software to configure alternate function I/Os AFRLy selection: 0000: AF0 0001: AF1 0010: AF2 0011: AF3 0100: AF4 0101: AF5 0110: AF6 0111: AF7 200/1324 1000: AF8 1001: AF9 1010: AF10 1011: AF11 1100: AF12 1101: AF13 1110: AF14 1111: AF15 RM0430 Rev 8 rw rw RM0430 General-purpose I/Os (GPIO) 7.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A...H) Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 26 AFRH15[3:0] 25 24 23 22 AFRH14[3:0] 21 20 19 18 AFRH13[3:0] 17 16 AFRH12[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AFRH11[3:0] rw rw AFRH10[3:0] rw rw rw rw AFRH9[3:0] rw rw rw rw AFRH8[3:0] rw rw rw rw rw rw Bits 31:0 AFRHy: Alternate function selection for port x bit y (y = 8..15) These bits are written by software to configure alternate function I/Os AFRHy selection: 0000: AF0 0001: AF1 0010: AF2 0011: AF3 0100: AF4 0101: AF5 0110: AF6 0111: AF7 7.4.11 1000: AF8 1001: AF9 1010: AF10 1011: AF11 1100: AF12 1101: AF13 1110: AF14 1111: AF15 GPIO register map The following table gives the GPIO register map and the reset values. Reset value 0 RM0430 Rev 8 0 0 0 0 0 0 0 MODER0[1:0] MODER1[1:0] MODER2[1:0] 0 0 0 0 0 0 0 0 0 MODER0[1:0] 0 0 0 0 MODER0[1:0] 1 0 MODER1[1:0] 0 MODER3[1:0] MODER4[1:0] 0 0 0 MODER1[1:0] 0 1 0 MODER2[1:0] 0 0 0 MODER2[1:0] 0 0 MODER3[1:0] 0 MODER5[1:0] MODER6[1:0] 0 0 0 MODER3[1:0] 0 0 0 MODER4[1:0] 0 0 0 MODER4[1:0] 0 0 MODER5[1:0] 0 MODER7[1:0] MODER8[1:0] 0 0 0 MODER5[1:0] 0 0 0 MODER6[1:0] 0 0 0 MODER6[1:0] 0 0 MODER7[1:0] 0 MODER9[1:0] MODER10[1:0] 0 0 0 MODER7[1:0] 0 0 0 MODER8[1:0] 0 0 0 MODER8[1:0] 0 0 MODER9[1:0] 0 MODER11[1:0] MODER12[1:0] 0 0 0 MODER9[1:0] 0 0 0 MODER10[1:0] 0 0 0 MODER10[1:0] 0 0 0 MODER11[1:0] 0 0 1 MODER12[1:0] 0 MODER13[1:0] MODER14[1:0] 0 1 MODER11[1:0] 0x00 GPIOx_MODER (where x = C...H) 0 0 MODER12[1:0] Reset value 0 MODER13[1:0] GPIOB_ MODER 0 MODER13[1:0] 0x00 0 MODER14[1:0] Reset value MODER14[1:0] GPIOA_ MODER MODER15[1:0] 0x00 MODER15[1:0] Register MODER15[1:0] Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 28. GPIO register map and reset values 0 201/1324 203 0x18 GPIOx_BSRR (where x = A...H) BR13 BR12 BR11 BR10 BR9 BR8 BR7 202/1324 BR6 BR5 BR4 BR3 BR2 BR1 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 ODR13 ODR12 ODR11 ODR10 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0 0 0 0 0 0 0 GPIOx_IDR (where x = A...H) Reset value IDR0 0 IDR1 0 IDR2 0 IDR3 0 IDR4 0 IDR5 0 IDR6 0 IDR7 0 IDR8 0 IDR9 0 IDR10 0 IDR11 0 IDR12 0 IDR13 0 0 OSPEEDR7[1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 OT1 OT0 0 0 0 0 0 0 0 0 0 0 OSPEEDR0[1:0] 0 OSPEEDR0[1:0] 0 OSPEEDR0[1:0] 0 PUPDR0[1:0] OT2 0 PUPDR0[1:0] OT3 OSPEEDR1[1:0] 0 OSPEEDR1[1:0] 0 OSPEEDR1[1:0] 0 PUPDR1[1:0] OT4 0 PUPDR1[1:0] OT5 OSPEEDR2[1:0] 0 OSPEEDR2[1:0] 0 OSPEEDR2[1:0] 0 PUPDR2[1:0] OT6 0 PUPDR2[1:0] OT7 OSPEEDR3[1:0] 0 OSPEEDR3[1:0] 0 OSPEEDR3[1:0] 0 PUPDR3[1:0] OT8 0 PUPDR3[1:0] OT9 OSPEEDR4[1:0] 0 OSPEEDR4[1:0] 0 OSPEEDR4[1:0] 0 PUPDR4[1:0] 0 PUPDR4[1:0] OT11 OT10 OSPEEDR5[1:0] 0 OSPEEDR5[1:0] 0 OSPEEDR5[1:0] 0 PUPDR5[1:0] OT12 0 PUPDR5[1:0] OT13 OSPEEDR6[1:0] 0 OSPEEDR6[1:0] 0 OSPEEDR6[1:0] 0 PUPDR6[1:0] 0 PUPDR6[1:0] 0 0 0 PUPDR0[1:0] 0 0 0 0 PUPDR1[1:0] 0 0 0 PUPDR2[1:0] 0 0 0 PUPDR3[1:0] 0 0 PUPDR4[1:0] 0 0 PUPDR5[1:0] 0 PUPDR6[1:0] 0 OT14 OSPEEDR7[1:0] 0 OT15 OSPEEDR7[1:0] 0 PUPDR7[1:0] 0 PUPDR7[1:0] 0 PUPDR7[1:0] 0 IDR14 0 ODR14 0 BS14 OSPEEDR8[1:0] OSPEEDR9[1:0] OSPEEDR10[1:0] OSPEEDR11[1:0] OSPEEDR12[1:0] OSPEEDR13[1:0] OSPEEDR14[1:0] OSPEEDR15[1:0] Reset value IDR15 0 ODR15 0 OSPEEDR8[1:0] 0 OSPEEDR8[1:0] 0 PUPDR8[1:0] 0 PUPDR8[1:0] 0 PUPDR8[1:0] 0 0 BS15 0 Res. 0 0 Res. 0 0 0 BR0 0 Res. 0 OSPEEDR9[1:0] 0 OSPEEDR9[1:0] 0 PUPDR9[1:0] 0 PUPDR9[1:0] 0 PUPDR9[1:0] 0 0 Res. 0 Res. 0 0 0 Res. 0 Res. 0 OSPEEDR10[1:0] 0 OSPEEDR10[1:0] 0 PUPDR10[1:0] 0 PUPDR10[1:0] 0 PUPDR10[1:0] 0 0 Res. 0 Res. 0 0 0 Res. 0 Res. 0 OSPEEDR11[1:0] 0 OSPEEDR11[1:0] 1 PUPDR11[1:0] 0 PUPDR11[1:0] 0 PUPDR11[1:0] 0 0 Res. 0 Res. 0 1 0 Res. 0 Res. 0 OSPEEDR12[1:0] 0 OSPEEDR12[1:0] 0 PUPDR12[1:0] 0 PUPDR12[1:0] 0 PUPDR12[1:0] OSPEEDR13[1:0] 0 OSPEEDR13[1:0] 0 PUPDR13[1:0] OSPEEDR14[1:0] 1 PUPDR13[1:0] OSPEEDR14[1:0] OSPEEDR15[1:0] 1 1 0 Res. 0 Res. GPIOx_PUPDR (where x = C...H) 0 0 0 0 Res. 0 Res. Reset value 0 PUPDR13[1:0] GPIOB_PUPDR 0 0 0 Res. 0 Res. Reset value 0 0 Res. 0 Res. GPIOA_PUPDR 0 PUPDR14[1:0] Reset value PUPDR14[1:0] GPIOB_ OSPEEDR PUPDR14[1:0] 0x08 0 0 Res. 0 Res. 0x10 Reset value Res. Reset value 0 Res. 0x0C GPIOA_ OSPEEDER 0 Res. 0x08 OSPEEDR15[1:0] Reset value PUPDR15[1:0] 0x08 GPIOx_ OSPEEDR (where x = C...H) PUPDR15[1:0] 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x04 GPIOx_ OTYPER (where x = A...H) PUPDR15[1:0] 0x0C Res. 0x0C Res. Register Res. Offset Res. GPIOx_ODR (where x = A...H) BR14 Reset value 0x14 BR15 General-purpose I/Os (GPIO) RM0430 Table 28. GPIO register map and reset values (continued) 0 0 0 0 0 x x x x x x x x x x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 General-purpose I/Os (GPIO) Table 28. GPIO register map and reset values (continued) Register 0x1C GPIOx_LCKR (where x = A...H) 0x20 GPIOx_AFRL (where x = A...H) 0x24 GPIOx_AFRH AFRH15[3:0] AFRH14[3:0] AFRH13[3:0] AFRH12[3:0] AFRH11[3:0] AFRH10[3:0] (where x = A...H) Reset value Reset value LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0 0 LCK7 0 LCK8 LCK12 0 LCK9 LCK13 0 LCK11 LCK14 0 LCK10 LCK15 Res. Reset value LCKK Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset 0 0 0 0 0 0 0 0 0 0 0 0 AFRL7[3:0] AFRL6[3:0] AFRL5[3:0] AFRL4[3:0] AFRL3[3:0] AFRL2[3:0] AFRL1[3:0] AFRL0[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AFRH9[3:0] AFRH8[3:0] 0 0 0 0 0 0 0 0 Refer to Section: Memory map for the register boundary addresses. RM0430 Rev 8 203/1324 203 System configuration controller (SYSCFG) 8 RM0430 System configuration controller (SYSCFG) The system configuration controller is mainly used to remap the memory accessible in the code area and manage the external interrupt line connection to the GPIOs. 8.1 I/O compensation cell By default the I/O compensation cell is not used. However when the I/O output buffer speed is configured in 50 MHz or 100 MHz mode, it is recommended to use the compensation cell for slew rate control on I/O tf(IO)out)/tr(IO)out commutation to reduce the I/O noise on power supply. When the compensation cell is enabled, a READY flag is set to indicate that the compensation cell is ready and can be used. The I/O compensation cell can be used only when the supply voltage ranges from 2.4 to 3.6 V. 8.2 SYSCFG registers 8.2.1 SYSCFG memory remap register (SYSCFG_MEMRMP) This register is used for specific configurations on memory remap: • Two bits are used to configure the type of memory accessible at address 0x0000 0000. These bits are used to select the physical remap by software and so, bypass the BOOT pins. • After reset these bits take the value selected by the BOOT pins. When booting from main Flash memory with BOOT0 pin set to 0, this register takes the value 0x00. In remap mode, the CPU can access the external memory via ICode bus instead of System bus which boosts up the performance. Address offset: 0x00 Reset value: 0x0000 000X (X is the memory mode selected by the BOOT pins) ) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MEM_MODE rw 204/1324 RM0430 Rev 8 rw RM0430 System configuration controller (SYSCFG) Bits 31:2 Reserved, must be kept at reset value. Bits 1:0 MEM_MODE: Memory mapping selection Set and cleared by software. This bit controls the memory internal mapping at address 0x0000 0000. After reset these bits take the value selected by the Boot pins. 00: Main Flash memory mapped at 0x0000 0000 01: System Flash memory mapped at 0x0000 0000 10: reserved 11: Embedded SRAM mapped at 0x0000 0000 Note: Refer to Figure 2: Memory map for details about the memory mapping at address 0x0000 0000. 8.2.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC) Address offset: 0x04 Reset value: 0x0000 0000 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 Res. 25 Res. 24 Res. 23 Res. 22 Res. 21 Res. 20 Res. 19 Res. 18 Res. 17 16 Res. ADC1D C2 rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:17 Reserved, must be kept at reset value. Bit 16 ADC1DC2: 0: No effect. 1: Refer to AN4073 on how to use this bit Note: These bits can be set only if the following conditions are met: - ADC clock higher or equal to 30 MHz. - Only one ADC1DC2 bit must be selected if ADC conversions do not start at the same time and the sampling times differ. - These bits must not be set when the ADCDC1 bit is set in PWR_CR register. Bits 15:0 Reserved, must be kept at reset value. RM0430 Rev 8 205/1324 213 System configuration controller (SYSCFG) 8.2.3 RM0430 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw EXTI3[3:0] rw EXTI2[3:0] rw EXTI1[3:0] rw EXTI0[3:0] rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 0 to 3) These bits are written by software to select the source input for the EXTIx external interrupt. 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin 0111: PH[x] pin (Reserved for EXTI3 and EXTI2 configurations) Other configurations: reserved 8.2.4 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EXTI7[3:0] rw 206/1324 rw rw EXTI6[3:0] rw rw rw rw EXTI5[3:0] rw rw RM0430 Rev 8 rw rw EXTI4[3:0] rw rw rw rw rw RM0430 System configuration controller (SYSCFG) Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 4 to 7) These bits are written by software to select the source input for the EXTIx external interrupt. 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin Other configurations: reserved 8.2.5 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw EXTI11[3:0] rw rw rw EXTI10[3:0] rw rw EXTI9[3:0] rw EXTI8[3:0] rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 8 to 11) These bits are written by software to select the source input for the EXTIx external interrupt. 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin Other configurations: reserved RM0430 Rev 8 207/1324 213 System configuration controller (SYSCFG) 8.2.6 RM0430 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 EXTI15[3:0] rw rw rw EXTI14[3:0] rw rw rw rw EXTI13[3:0] rw rw rw rw EXTI12[3:0] rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 12 to 15) These bits are written by software to select the source input for the EXTIx external interrupt. 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin 8.2.7 SYSCFG configuration register 2 (SYSCFG_CFGR2) Address offset: 0x1C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PVDL Res. CLL rw Bits 31:3 Reserved, must be kept at reset value. 208/1324 RM0430 Rev 8 rw RM0430 System configuration controller (SYSCFG) Bit 2 PVDL: PVD lock This bit is set by software. It can be cleared only by a system reset. It enables and locks the PVD connection to TIM1/8 Break input. It also locks (write protection) the PVDE and PVDS[2:0] bits of PWR_CR register. 0: PVD interrupt not connected to TIM1/8 Break input. PVDE and PVDS[2:0] can be read and modified 1: PVD interrupt connected to TIM1/8 Break input. PVDE and PVDS[2:0] are readonly Bit 1 Reserved, must be kept at reset value. Bit 0 CLL: core lockup lock This bit is set and cleared by software. It enables and locks the LOCKUP (Hardfault) output of the Cortex®-M4 with FPU core with TIM1/8 Break input. 0: Cortex®-M4 with FPU LOCKUP output not connected to TIM1/8 Break input 1: Cortex®-M4 with FPU LOCKUP output connected to TIM1/8 Break input 8.2.8 Compensation cell control register (SYSCFG_CMPCR) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. READY Res. Res. Res. Res. Res. Res. Res. CMP_PD r rw Bits 31:9 Reserved, must be kept at reset value. Bit 8 READY: Compensation cell ready flag 0: I/O compensation cell not ready 1: O compensation cell ready Bits 7:2 Reserved, must be kept at reset value. Bit 0 CMP_PD: Compensation cell power-down 0: I/O compensation cell power-down mode 1: I/O compensation cell enabled RM0430 Rev 8 209/1324 213 System configuration controller (SYSCFG) 8.2.9 RM0430 SYSCFG configuration register (SYSCFG_CFGR) Address offset: 0x2C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. I2CFMP1_SDA I2CFMP1_SCL rw rw Bits 31:2 Reserved, must be kept at reset value. Bit 1 I2CFMP1_SDA Set and cleared by software. When this bit is set, it forces FM+ drive capability on I2CFMP1_SDA pin selected through GPIO port mode register and GPIO alternate function selection bits. Bit 0 I2CFMP1_SCL Set and cleared by software. When this bit is set, it forces FM+ drive capability on I2CFMP1_SCL pin selected through GPIO port mode register and GPIO alternate function selection bits. 8.2.10 DFSDM Multi-channel delay control register (SYSCFG_MCHDLYCR) Address offset: 0x30 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r r r r r r rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 DFSDM2 DFSDM2 DFSDM2 DFSDM2 DFSDM2 DFSDM _CK26 _CK15 _CK04 _D6 _D4 2_D2 SEL SEL SEL SEL SEL SEL rw rw rw rw rw rw DFSDM DFSDM1 DFSDM1 DFSDM DFSDM1 DFSDM1 MCHDL DFSDM1 2_D0 _CKO _CK13 1_CK02 _D2 _D0 YEN2 _CFG SEL SEL SEL SEL SEL SEL rw rw rw rw rw rw rw 17 16 DFSDM2 DFSDM DFSDM2 _CKO 2_CK37 _CFG SEL SEL rw rw rw 1 0 MCHDL YEN1 BSCK SEL rw rw Bits 31:19 Reserved, must be kept at reset value. 210/1324 Bit 18 DFSDM2_CKOSEL: Source selection for DFSDM2_CKOUT (M2 multiplexer on Figure 81: Multi-channel delay block for pulse skipping 0: The source for DFSDM2_CKOUT is the CkOut generated by the DFSDM2 1: The source for DFSDM2_CKOUT is the output of M27 Bit 17 DFSDM2_CFG: CkIn source selection for DFSDM2 (M9, M10, M11, M12, M13, M14, M15, M16 and M2 multiplexers on Figure 81: Multi-channel delay block for pulse skipping 0: The source for CkIn[7:0] signals are the pins DFSDM2_CKINy (M[16:9] = 0) 1: The source for CkIn[7:0] signals are provided by the outputs of DM[6:3] (M16:9] = 1) RM0430 Rev 8 RM0430 System configuration controller (SYSCFG) Bit 16 DFSDM2_CK37SEL: Distribution of the DFSDM2 bitstream clock gated by TIM3 OC1 (DM3 demultiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The gated clock is distributed to CkIn3 (DM3 = 0) 1: The gated clock is distributed to CkIn7 (DM3 = 1) Bit 15 DFSDM2_CK26SEL: Distribution of the DFSDM2 bitstream clock gated by TIM3 OC2 (DM4 demultiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The gated clock is distributed to CkIn2 (DM4 = 0) 1: The gated clock is distributed to CkIn6 (DM4 = 1) Bit14 DFSDM2_CK15SEL: Distribution of the DFSDM2 bitstream clock gated by TIM3 OC3 (DM5 demultiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The gated clock is distributed to CkIn1 (DM5 = 0) 1: The gated clock is distributed to CkIn5 (DM5 = 1) Bit 13 DFSDM2_CK04SEL: Distribution of the DFSDM2 bitstream clock gated by TIM3 OC4 (DM6 demultiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The gated clock is distributed to CkIn0 (DM6 = 0) 1: The gated clock is distributed to CkIn4 (DM6 = 1) Bit 12 DFSDM2_D6SEL: Source selection for DatIn6 of DFSDM2 (M20 multiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The source for DatIn6 is from the DFSDM2_DATIN6 pin (M20 = 0) 1: DatIn6 is sharing the same data than DatIn7 (M20 = 1) Bit 11 DFSDM2_D4SEL: Source selection for DatIn4 of DFSDM2 (M19 multiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The source for DatIn4 is from the DFSDM2_DATIN4 pin (M19 = 0) 1: DatIn4 is sharing the same data than DatIn5 (M19 = 1) Bit 10 DFSDM2_D2SEL: Source selection for DatIn2 of DFSDM2 (M18 multiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The source for DatIn2 is from the DFSDM2_DATIN2 pin (M18 = 0) 1: DatIn2 is sharing the same data than DatIn3 (M18 = 1) Bit 9 DFSDM2_D0SEL: Source selection for DatIn0 of DFSDM2 (M17 multiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The source for DatIn0 is from the DFSDM2_DATIN0 pin (M17 = 0) 1: DatIn0 is sharing the same data than DatIn1 (M17 = 1) Bit 8 MCHDLYEN2: MCHDLY clock enable for DFSDM2 (G3,G4,G5,G6 gating signal on Figure 81: Multi-channel delay block for pulse skipping) 0: Delay clock for DFSDM2 is disabled (G[6:3] = 0) 1: Delay clock for DFSDM2 is enabled (G[6:3] = 1) Bit 7 DFSDM1_CKOSEL: Source selection for DFSDM1_CKOUT (M1 multiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The source for DFSDM1_CKOUT is the CkOut generated by the DFSDM1 (M1=0) 1: The source for DFSDM1_CKOUT is the output of M27 (M1=1) Bit 6 DFSDM1_CFG: CkIn source selection for DFSDM1 (M3,M4,M5,M6 multiplexer on Figure 1) 0: The source for CkIn[3:0] signals are the pins DFSDM1_CKINy (M[6:3] = 0) 1: The source for CkIn[3:0] signals are provided by the outputs of DM[2:1] (M[6:3] = 1) Bit 5 DFSDM1_CK13SEL: Distribution of the DFSDM1 bitstream clock gated by TIM4 OC1 (DM1 demultiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The gated clock is distributed to CkIn1 (DM1 = 0) 1: The gated clock is distributed to CkIn3 (DM1 = 1) RM0430 Rev 8 211/1324 213 System configuration controller (SYSCFG) 212/1324 RM0430 Bit 4 DFSDM1_CK02SEL: Distribution of the DFSDM1 bitstream clock gated by TIM4 OC2 (DM2 demultiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The gated clock is distributed to CkIn0 (DM2 = 0) 1: The gated clock is distributed to CkIn2 (DM2 = 1) Bit 3 DFSDM1_D2SEL: Source selection for DatIn2 of DFSDM1 (M8 multiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The source for DatIn2 is from the DFSDM1_DATIN2 pin (M8 = 0) 1: DatIn2 is sharing the same data than DatIn3 (M8 = 1) Bit 2 DFSDM1_D0SEL: Source selection for DatIn0 of DFSDM1 (M7 multiplexer on Figure 81: Multi-channel delay block for pulse skipping) 0: The source for DatIn0 is from the DFSDM1_DATIN0 pin (M7 = 0) 1: DatIn0 is sharing the same data than DatIn1 (M7 = 1) Bit 1 MCHDLYEN1: MCHDLY clock enable for DFSDM1 (G1,G2 gating signal on Figure 81: Multi-channel delay block for pulse skipping) 0: Delay clock for DFSDM1 is disabled (G[2:1] = 0) 1: Delay clock for DFSDM1 is enabled (G[2:1] = 1) Bit 0 BSCKSEL: Bitstream clock source selection (M27, M28, M29 multiplexers on Figure 81: Multi-channel delay block for pulse skipping) 0: The clock source is stopped for the bitstream clock (M[29:27] = 0) 1: The DFSDM2 is selected as clock source for the bitstream clock (M[29:27] = 1) RM0430 Rev 8 0x30 SYSCFG_MCHDLYCR RM0430 Rev 8 DFSDM2_CK37SEL DFSDM2_CK26SEL DFSDM2_CK15SEL DFSDM2_CK04SEL DFSDM2_D6SEL DFSDM2_D4SEL DFSDM2_D2SEL DFSDM2_D0SEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I2CFMP1_SCL 0 0 0 BSCKSEL Reset value Res. CLL 0 0 0 Res. CMP_PD 0 Res. 0 Res. I2CFMP1_SDA 0 Res. PVDL 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 DFSDM1_D0SEL MCHDLYEN1 DFSDM1_D2SEL 0 DFSDM1_CK02SEL Reset value 0 Res. Reset value DFSDM1_CK13SEL 0 Res. 0 0 Res. 0 0 0 Res. 0 Res. 0 0 DFSDM1_CFG 0 Res. 0 0 0 Res. READY 0 0 Res. READY 0 Res. EXTI9[3:0] 0 0 Res. 0 0 Res. 0 Res. EXTI10[3:0] 0 Res. EXTI11[3:0] 0 Res. EXTI12[3:0] 0 Res. EXTI5[3:0] 0 0 Res. EXTI1[3:0] 0 Res. EXTI13[3:0] 0 Res. EXTI6[3:0] 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EXTI2[3:0] 0 Res. EXTI14[3:0] 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EXTI7[3:0] 0 0 Res. EXTI15[3:0] 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EXTI3[3:0] 0 Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value MCHDLYEN2 DFSDM1_CKOSEL DFSDM2_CFG Res. Res. Res. Res. Res. Res. Res. DFSDM2_CKOSEL Reset value Res. SYSCFG_CFGR Res. 0x2C SYSCFG_CMPCR Res. 0x20 SYSCFG_CFGR2 Res. 0x1C SYSCFG_EXTICR4 Res. 0x14 SYSCFG_EXTICR3 Res. 0x10 SYSCFG_EXTICR2 Res. 0x0C SYSCFG_EXTICR1 Res. 0x08 0 0 0 0 0 x x Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC1DC2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SYSCFG_PMC Res. 0x04 Res. Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 SYSCFG_ MEMRMP MEM_MODE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Offset Res. 8.2.11 Res. RM0430 System configuration controller (SYSCFG) SYSCFG register map The following table gives the SYSCFG register map and the reset values. Table 29. SYSCFG register map and reset values 0 EXTI0[3:0] 0 0 0 0 0 0 0 EXTI4[3:0] 0 EXTI8[3:0] 0 0 0 0 Refer to Section 2.2.2 on page 58 for the register boundary addresses. 213/1324 213 Direct memory access controller (DMA) RM0430 9 Direct memory access controller (DMA) 9.1 DMA introduction Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory and between memory and memory. Data can be quickly moved by DMA without any CPU action. This keeps CPU resources free for other operations. The DMA controller combines a powerful dual AHB master bus architecture with independent FIFO to optimize the bandwidth of the system, based on a complex bus matrix architecture. The two DMA controllers (DMA1 and DMA2) have 16 streams in total (8 for each controller), each dedicated to managing memory access requests from one or more peripherals. Each stream can have up to 16 channels (requests) in total. Each DMA controller has an arbiter for handling the priority between DMA requests. 9.2 DMA main features The main DMA features are: • Dual AHB master bus architecture, one dedicated to memory accesses and one dedicated to peripheral accesses • AHB slave programming interface supporting only 32-bit accesses • 8 streams for each DMA controller, up to 16 channels (requests) per stream • Four-word depth 32 first-in, first-out memory buffers (FIFOs) per stream, that can be used in FIFO mode or direct mode: • 214/1324 – FIFO mode: with threshold level software selectable between 1/4, 1/2 or 3/4 of the FIFO size – Direct mode: each DMA request immediately initiates a transfer from/to the memory. When it is configured in direct mode (FIFO disabled), to transfer data in memory-to-peripheral mode, the DMA preloads only one data from the memory to the internal FIFO to ensure an immediate data transfer as soon as a DMA request is triggered by a peripheral. Each stream can be configured to be: – a regular channel that supports peripheral-to-memory, memory-to-peripheral and memory-to-memory transfers – a double buffer channel that also supports double buffering on the memory side • Priorities between DMA stream requests are software-programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (for example, request 0 has priority over request 1) • Each stream also supports software trigger for memory-to-memory transfers (only available for the DMA2 controller) • Each stream request can be selected among up to 16 possible channel requests. This selection is software-configurable and allows several peripherals to initiate DMA requests • The number of data items to be transferred can be managed either by the DMA controller or by the peripheral: RM0430 Rev 8 RM0430 Direct memory access controller (DMA) – DMA flow controller: the number of data items to be transferred is softwareprogrammable from 1 to 65535 – Peripheral flow controller: the number of data items to be transferred is unknown and controlled by the source or the destination peripheral that signals the end of the transfer by hardware • Independent source and destination transfer width (byte, half-word, word): when the data widths of the source and destination are not equal, the DMA automatically packs/unpacks the necessary transfers to optimize the bandwidth. This feature is only available in FIFO mode • Incrementing or non-incrementing addressing for source and destination • Supports incremental burst transfers of 4, 8 or 16 beats. The size of the burst is software-configurable, usually equal to half the FIFO size of the peripheral • Each stream supports circular buffer management • 5 event flags (DMA half transfer, DMA transfer complete, DMA transfer error, DMA FIFO error, direct mode error) logically ORed together in a single interrupt request for each stream RM0430 Rev 8 215/1324 248 Direct memory access controller (DMA) RM0430 9.3 DMA functional description 9.3.1 DMA block diagram Figure 23 shows the block diagram of a DMA. Figure 23. DMA block diagram '0$FRQWUROOHU $+%PDVWHU 5(4B675B&+ 5(4B675B&+ 675($0 675($0 ),)2 ),)2 $+%PDVWHU 675($0 675($0 ),)2 675($0 675($0 675($0 675($0 ),)2 675($0 675($0 ),)2 ),)2 675($0 5(4B675B&+ 5(4B675B&+ 675($0 5(4B675($0 ),)2 $UELWHU 5(4B675($0 5(4B675($0 675($0 5(4B675($0 5(4B675($0 ),)2 5(4B675($0 5(4B675($0 675($0 5(4B675B&+ 5(4B675($0 675($0 5(4B675B&+ 5(4B675B&+ 675($0 5(4B675B&+ 0HPRU\SRUW 5(4B675B&+ 3HULSKHUDOSRUW &KDQQHO VHOHFWLRQ $+%VODYH SURJUDPPLQJ LQWHUIDFH 3URJUDPPLQJSRUW 06Y9 9.3.2 DMA overview The DMA controller performs direct memory transfer: as an AHB master, it can take the control of the AHB bus matrix to initiate AHB transactions. It carries out the following transactions: • peripheral-to-memory • memory-to-peripheral • memory-to-memory The DMA controller provides two AHB master ports: the AHB memory port, intended to be connected to memories and the AHB peripheral port, intended to be connected to peripherals. However, to allow memory-to-memory transfers, the AHB peripheral port must also have access to the memories. The AHB slave port is used to program the DMA controller (it supports only 32-bit accesses). 216/1324 RM0430 Rev 8 RM0430 9.3.3 Direct memory access controller (DMA) DMA transactions A DMA transaction consists of a sequence of a given number of data transfers. The number of data items to be transferred and their width (8-bit, 16-bit or 32-bit) are softwareprogrammable. Each DMA transfer consists of three operations: • a loading from the peripheral data register or a location in memory, addressed through the DMA_SxPAR or DMA_SxM0AR register • a storage of the data loaded to the peripheral data register or a location in memory addressed through the DMA_SxPAR or DMA_SxM0AR register • a post-decrement of the DMA_SxNDTR register, containing the number of transactions that still have to be performed After an event, the peripheral sends a request signal to the DMA controller. The DMA controller serves the request depending on the channel priorities. As soon as the DMA controller accesses the peripheral, an Acknowledge signal is sent to the peripheral by the DMA controller. The peripheral releases its request as soon as it gets the Acknowledge signal from the DMA controller. Once the request has been deasserted by the peripheral, the DMA controller releases the Acknowledge signal. If there are more requests, the peripheral can initiate the next transaction. 9.3.4 Channel selection Each stream is associated with a DMA request that can be selected out of 16 possible channel requests. The selection is controlled by the CHSEL[3:0] bits in the DMA_SxCR register. Figure 24. Channel selection 5(4B675[B&+ 5(4B675($0[ 5(4B675[B&+ 5(4B675[B&+ 5(4B675[B&+ 5(4B675[B&+ '0$B6[&5 &+6(/>@ D^ǀϯϵϲϮϵsϭ The 16 requests from the peripherals (such as TIM, ADC, SPI, I2C) are independently connected to each channel and their connection depends on the product implementation. Table 30 and Table 31 give examples of DMA request mappings. RM0430 Rev 8 217/1324 248 Direct memory access controller (DMA) RM0430 Table 30. DMA1 request mapping Peripheral requests Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7 Channel 0 SPI3_RX I2C1_TX SPI3_RX SPI2_RX SPI2_TX SPI3_TX - SPI3_TX Channel 1 I2C1_RX I2C3_RX TIM7_UP I2CFMP1_RX TIM7_UP I2C1_RX I2C1_TX I2C1_TX Channel 2 TIM4_CH1 TIM4_CH2 I2S2_EXT_TX I2S3_EXT_TX TIM4_UP TIM4_CH3 Channel 3 I2S3_EXT_RX TIM2_UP TIM2_CH3 I2C3_RX I2S2_EXT_RX I2C3_TX TIM2_CH1 TIM2_CH2 TIM2_CH4 TIM2_UP TIM2_CH4 Channel 4 UART5_RX USART3_RX UART4_RX USART3_TX UART4_TX USART2_RX USART2_TX I2CFMP1_TX Channel 5 UART8_RX UART7_TX TIM3_UP TIM3_CH4 UART7_RX TIM3_CH1 TIM3_TRIG TIM3_CH2 UART8_RX TIM3_CH3 Channel 6 TIM5_CH3 TIM5_UP TIM5_CH4 TIM5_TRIG TIM5_CH1 TIM5_CH4 ‘TIM5_TRIG TIM5_CH2 I2C3_TX TIM5_UP USART2_RX Channel 7 I2CFMP1_RX TIM6_UP I2C2_RX I2C2_RX USART3_TX DAC1 DAC2 I2C2_TX Channel 8 - - - - - - - UART5_TX I2CFMP1_TX I2S3_EXT_RX Table 31. DMA2 request mapping Peripheral requests Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7 Channel 0 ADC1 SAI1_A TIM8_CH1 TIM8_CH2 TIM8_CH3 SAI1_A ADC1 SAI1_B TIM1_CH1 TIM1_CH2 TIM1_CH3 UART9_RX Channel 1 UART9_TX - - - SAI1B - - - Channel 2 - - SPI1_TX SPI5_RX SPI5_TX AES_OUT(1) AES_IN(1) - Channel 3 SPI1_RX DFSDM1_ FLT1 SPI1_RX SPI1_TX DFSDM1_ FLT1 SPI1_TX DFSDM1_ FLT0 QUADSPI Channel 4 SPI4_RX SPI4_TX USART1_RX SDIO SPI4_RX USART1_RX SDIO USART1_TX Channel 5 UART10_RX USART6_RX USART6_RX SPI4_RX SPI4_TX SPI5_TX USART6_TX USART6_TX TIM1_UP TIM1_CH3 UART10_TX Channel 6 TIM1_TRIG TIM1_CH1 TIM1_CH2 TIM1_CH1 TIM1_CH4 TIM1_TRIG TIM1_COM Channel 7 DFSDM1_ FLT0 TIM8_UP TIM8_CH1 TIM8_CH2 TIM8_CH3 SPI5_RX SPI5_TX TIM8_CH4 TIM8_TRIG TIM8_COM Channel 8 DFSDM2_ FLT0 DFSDM2_ FLT1 DFSDM2_ FLT2 DFSDM2_ FLT3 DFSDM2_ FLT0 DFSDM2_ FLT1 DFSDM2_ FLT2 DFSDM2_ FLT3 Channel 9 - - - UART10_RX - UART10_TX - - 1. Only available for STM32F423xx. 218/1324 RM0430 Rev 8 RM0430 9.3.5 Direct memory access controller (DMA) Arbiter An arbiter manages the 8 DMA stream requests based on their priority for each of the two AHB master ports (memory and peripheral ports) and launches the peripheral/memory access sequences. Priorities are managed in two stages: • • 9.3.6 Software: each stream priority can be configured in the DMA_SxCR register. There are four levels: – Very high priority – High priority – Medium priority – Low priority Hardware: If two requests have the same software priority level, the stream with the lower number takes priority over the stream with the higher number. For example, stream 2 takes priority over stream 4. DMA streams Each of the 8 DMA controller streams provides a unidirectional transfer link between a source and a destination. Each stream can be configured to perform: • Regular type transactions: memory-to-peripherals, peripherals-to-memory or memoryto-memory transfers • Double-buffer type transactions: double buffer transfers using two memory pointers for the memory (while the DMA is reading/writing from/to a buffer, the application can write/read to/from the other buffer). The amount of data to be transferred (up to 65535) is programmable and related to the source width of the peripheral that requests the DMA transfer connected to the peripheral AHB port. The register that contains the amount of data items to be transferred is decremented after each transaction. 9.3.7 Source, destination and transfer modes Both source and destination transfers can address peripherals and memories in the entire 4 Gbytes area, at addresses comprised between 0x0000 0000 and 0xFFFF FFFF. The direction is configured using the DIR[1:0] bits in the DMA_SxCR register and offers three possibilities: memory-to-peripheral, peripheral-to-memory or memory-to-memory transfers. Table 32 describes the corresponding source and destination addresses. Table 32. Source and destination address Bits DIR[1:0] of the DMA_SxCR register Direction Source address Destination address 00 Peripheral-to-memory DMA_SxPAR DMA_SxM0AR 01 Memory-to-peripheral DMA_SxM0AR DMA_SxPAR 10 Memory-to-memory DMA_SxPAR DMA_SxM0AR 11 Reserved - - RM0430 Rev 8 219/1324 248 Direct memory access controller (DMA) RM0430 When the data width (programmed in the PSIZE or MSIZE bits in the DMA_SxCR register) is a half-word or a word, respectively, the peripheral or memory address written into the DMA_SxPAR or DMA_SxM0AR/M1AR registers has to be aligned on a word or half-word address boundary, respectively. Peripheral-to-memory mode Figure 25 describes this mode. When this mode is enabled (by setting the bit EN in the DMA_SxCR register), each time a peripheral request occurs, the stream initiates a transfer from the source to fill the FIFO. When the threshold level of the FIFO is reached, the contents of the FIFO are drained and stored into the destination. The transfer stops once the DMA_SxNDTR register reaches zero, when the peripheral requests the end of transfers (in case of a peripheral flow controller) or when the EN bit in the DMA_SxCR register is cleared by software. In direct mode (when the DMDIS value in the DMA_SxFCR register is ‘0’), the threshold level of the FIFO is not used: after each single data transfer from the peripheral to the FIFO, the corresponding data are immediately drained and stored into the destination. The stream has access to the AHB source or destination port only if the arbitration of the corresponding stream is won. This arbitration is performed using the priority defined for each stream using the PL[1:0] bits in the DMA_SxCR register. Figure 25. Peripheral-to-memory mode $-!?3X-!2 $-! CONTROLLER $-!?3X-!2 !(" MEMORY PORT -EMORY BUS -EMORY DESTINATION 2%1?342%!-X &)&/ LEVEL !RBITER &)&/ !(" PERIPHERAL PORT 0ERIPHERAL BUS PERIPHERAL SOURCE $-!?3X0!2 0ERIPHERAL $-! REQUEST AI 1. For double-buffer mode. Memory-to-peripheral mode Figure 26 describes this mode. When this mode is enabled (by setting the EN bit in the DMA_SxCR register), the stream immediately initiates transfers from the source to entirely fill the FIFO. 220/1324 RM0430 Rev 8 RM0430 Direct memory access controller (DMA) Each time a peripheral request occurs, the contents of the FIFO are drained and stored into the destination. When the level of the FIFO is lower than or equal to the predefined threshold level, the FIFO is fully reloaded with data from the memory. The transfer stops once the DMA_SxNDTR register reaches zero, when the peripheral requests the end of transfers (in case of a peripheral flow controller) or when the EN bit in the DMA_SxCR register is cleared by software. In direct mode (when the DMDIS value in the DMA_SxFCR register is '0'), the threshold level of the FIFO is not used. Once the stream is enabled, the DMA preloads the first data to transfer into an internal FIFO. As soon as the peripheral requests a data transfer, the DMA transfers the preloaded value into the configured destination. It then reloads again the empty internal FIFO with the next data to be transfer. The preloaded data size corresponds to the value of the PSIZE bitfield in the DMA_SxCR register. The stream has access to the AHB source or destination port only if the arbitration of the corresponding stream is won. This arbitration is performed using the priority defined for each stream using the PL[1:0] bits in the DMA_SxCR register. Figure 26. Memory-to-peripheral mode $-!?3X-!2 $-! CONTROLLER $-!?3X-!2 !(" MEMORY PORT -EMORY BUS -EMORY SOURCE 2%1?342%!-X !RBITER &)&/ LEVEL &)&/ !(" PERIPHERAL PORT $-!?3X0!2 0ERIPHERAL BUS 0ERIPHERAL DESTINATION 0ERIPHERAL $-! REQUEST AI 1. For double-buffer mode. Memory-to-memory mode The DMA channels can also work without being triggered by a request from a peripheral. This is the memory-to-memory mode, described in Figure 27. When the stream is enabled by setting the Enable bit (EN) in the DMA_SxCR register, the stream immediately starts to fill the FIFO up to the threshold level. When the threshold level is reached, the FIFO contents are drained and stored into the destination. The transfer stops once the DMA_SxNDTR register reaches zero or when the EN bit in the DMA_SxCR register is cleared by software. RM0430 Rev 8 221/1324 248 Direct memory access controller (DMA) RM0430 The stream has access to the AHB source or destination port only if the arbitration of the corresponding stream is won. This arbitration is performed using the priority defined for each stream using the PL[1:0] bits in the DMA_SxCR register. Note: When memory-to-memory mode is used, the circular and direct modes are not allowed. Figure 27. Memory-to-memory mode $-!?3X-!2 $-! CONTROLLER $-!?3X-!2 !(" MEMORY PORT -EMORY BUS -EMORY DESTINATION !RBITER 3TREAM ENABLE &)&/ LEVEL &)&/ !(" PERIPHERAL PORT $-!?3X0!2 0ERIPHERAL BUS -EMORY SOURCE AI 1. For double-buffer mode. 9.3.8 Pointer incrementation Peripheral and memory pointers can optionally be automatically post-incremented or kept constant after each transfer depending on the PINC and MINC bits in the DMA_SxCR register. Disabling the increment mode is useful when the peripheral source or destination data is accessed through a single register. If the increment mode is enabled, the address of the next transfer is the address of the previous one incremented by 1 (for bytes), 2 (for half-words) or 4 (for words) depending on the data width programmed in the PSIZE or MSIZE bits in the DMA_SxCR register. In order to optimize the packing operation, it is possible to fix the increment offset size for the peripheral address whatever the size of the data transferred on the AHB peripheral port. The PINCOS bit in the DMA_SxCR register is used to align the increment offset size with the data size on the peripheral AHB port, or on a 32-bit address (the address is then incremented by 4). The PINCOS bit has an impact on the AHB peripheral port only. If the PINCOS bit is set, the address of the following transfer is the address of the previous one incremented by 4 (automatically aligned on a 32-bit address), whatever the PSIZE value. The AHB memory port, however, is not impacted by this operation. 222/1324 RM0430 Rev 8 RM0430 9.3.9 Direct memory access controller (DMA) Circular mode The circular mode is available to handle circular buffers and continuous data flows (e.g. ADC scan mode). This feature can be enabled using the CIRC bit in the DMA_SxCR register. When the circular mode is activated, the number of data items to be transferred is automatically reloaded with the initial value programmed during the stream configuration phase, and the DMA requests continue to be served. Note: In the circular mode, it is mandatory to respect the following rule in case of a burst mode configured for memory: DMA_SxNDTR = Multiple of ((Mburst beat) × (Msize)/(Psize)), where: – (Mburst beat) = 4, 8 or 16 (depending on the MBURST bits in the DMA_SxCR register) – ((Msize)/(Psize)) = 1, 2, 4, 1/2 or 1/4 (Msize and Psize represent the MSIZE and PSIZE bits in the DMA_SxCR register. They are byte dependent) – DMA_SxNDTR = Number of data items to transfer on the AHB peripheral port For example: Mburst beat = 8 (INCR8), MSIZE = ‘00’ (byte) and PSIZE = ‘01’ (half-word), in this case: DMA_SxNDTR must be a multiple of (8 × 1/2 = 4). If this formula is not respected, the DMA behavior and data integrity are not guaranteed. NDTR must also be a multiple of the Peripheral burst size multiplied by the peripheral data size, otherwise this could result in a bad DMA behavior. 9.3.10 Double-buffer mode This mode is available for all the DMA1 and DMA2 streams. The double-buffer mode is enabled by setting the DBM bit in the DMA_SxCR register. A double-buffer stream works as a regular (single buffer) stream with the difference that it has two memory pointers. When the double-buffer mode is enabled, the circular mode is automatically enabled (CIRC bit in DMA_SxCR is not relevant) and at each end of transaction, the memory pointers are swapped. In this mode, the DMA controller swaps from one memory target to another at each end of transaction. This allows the software to process one memory area while the second memory area is being filled/used by the DMA transfer. The double-buffer stream can work in both directions (the memory can be either the source or the destination) as described in Table 33: Source and destination address registers in double-buffer mode (DBM = 1). Note: In double-buffer mode, it is possible to update the base address for the AHB memory port on-the-fly (DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled, by respecting the following conditions: • When the CT bit is ‘0’ in the DMA_SxCR register, the DMA_SxM1AR register can be written. Attempting to write to this register while CT = '1' sets an error flag (TEIF) and the stream is automatically disabled. • When the CT bit is ‘1’ in the DMA_SxCR register, the DMA_SxM0AR register can be written. Attempting to write to this register while CT = '0', sets an error flag (TEIF) and the stream is automatically disabled. To avoid any error condition, it is advised to change the base address as soon as the TCIF flag is asserted because, at this point, the targeted memory must have changed from RM0430 Rev 8 223/1324 248 Direct memory access controller (DMA) RM0430 memory 0 to 1 (or from 1 to 0) depending on the value of CT in the DMA_SxCR register in accordance with one of the two above conditions. For all the other modes (except the double-buffer mode), the memory address registers are write-protected as soon as the stream is enabled. Table 33. Source and destination address registers in double-buffer mode (DBM = 1) Bits DIR[1:0] of the DMA_SxCR register Direction Source address Destination address 00 Peripheral-to-memory DMA_SxPAR DMA_SxM0AR / DMA_SxM1AR 01 Memory-to-peripheral DMA_SxM0AR / DMA_SxM1AR DMA_SxPAR Not allowed(1) 10 11 Reserved - - 1. When the double-buffer mode is enabled, the circular mode is automatically enabled. Since the memory-to-memory mode is not compatible with the circular mode, when the double-buffer mode is enabled, it is not allowed to configure the memory-to-memory mode. 9.3.11 Programmable data width, packing/unpacking, endianness The number of data items to be transferred has to be programmed into DMA_SxNDTR (number of data items to transfer bit, NDT) before enabling the stream (except when the flow controller is the peripheral, PFCTRL bit in DMA_SxCR is set). When using the internal FIFO, the data widths of the source and destination data are programmable through the PSIZE and MSIZE bits in the DMA_SxCR register (can be 8-, 16- or 32-bit). When PSIZE and MSIZE are not equal: • The data width of the number of data items to transfer, configured in the DMA_SxNDTR register is equal to the width of the peripheral bus (configured by the PSIZE bits in the DMA_SxCR register). For instance, in case of peripheral-to-memory, memory-toperipheral or memory-to-memory transfers and if the PSIZE[1:0] bits are configured for half-word, the number of bytes to be transferred is equal to 2 × NDT. • The DMA controller only copes with little-endian addressing for both source and destination. This is described in Table 34: Packing/unpacking and endian behavior (bit PINC = MINC = 1). This packing/unpacking procedure may present a risk of data corruption when the operation is interrupted before the data are completely packed/unpacked. So, to ensure data coherence, the stream may be configured to generate burst transfers: in this case, each group of transfers belonging to a burst are indivisible (refer to Section 9.3.12: Single and burst transfers). In direct mode (DMDIS = 0 in the DMA_SxFCR register), the packing/unpacking of data is not possible. In this case, it is not allowed to have different source and destination transfer data widths: both are equal and defined by the PSIZE bits in the DMA_SxCR register. MSIZE bits are not relevant. 224/1324 RM0430 Rev 8 RM0430 Direct memory access controller (DMA) Table 34. Packing/unpacking and endian behavior (bit PINC = MINC = 1) Number AHB AHB of data Memory memory peripheral items to transfer port port transfer - number width width (NDT) 8 8 4 1 2 -3 4 8 16 2 -3 Peripheral port address / byte lane Memory port address / byte lane Peripheral transfer number PINCOS = 1 PINCOS = 0 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 2 3 4 0x0 / B0[7:0] 0x4 / B1[7:0] 0x8 / B2[7:0] 0xC / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 2 1 0x0 / B1|B0[15:0] 0x0 / B1|B0[15:0] 2 0x4 / B3|B2[15:0] 0x2 / B3|B2[15:0] 4 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 0x0 / B3|B2|B1|B0[31:0] 0x0 / B3|B2|B1|B0[31:0] 1 2 3 4 0x0 / B0[7:0] 0x4 / B1[7:0] 0x8 / B2[7:0] 0xC / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 8 32 1 1 2 -3 4 1 0x0 / B1|B0[15:0] 16 8 4 -2 0x2 / B3|B2[15:0] 0x0 / B1|B0[15:0] 1 0x0 / B1|B0[15:0] 0x0 / B1|B0[15:0] 16 2 - 1 16 2 0x2 / B1|B0[15:0] 2 0x4 / B3|B2[15:0] 0x2 / B3|B2[15:0] 1 0x0 / B1|B0[15:0] 0x2 / B3|B2[15:0] 1 0x0 / B3|B2|B1|B0[31:0] 0x0 / B3|B2|B1|B0[31:0] 1 0x0 / B3|B2|B1|B0[31:0] 1 2 3 4 0x0 / B0[7:0] 0x4 / B1[7:0] 0x8 / B2[7:0] 0xC / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 0x0 /B3|B2|B1|B0[31:0] 1 2 0x0 / B1|B0[15:0] 0x4 / B3|B2[15:0] 0x0 / B1|B0[15:0] 0x2 / B3|B2[15:0] 0x0 /B3|B2|B1|B0 [31:0] 1 0x0 /B3|B2|B1|B0 [31:0] 0x0 / B3|B2|B1|B0[31:0] 16 32 1 -2 32 8 4 - 32 16 2 - 32 32 1 -1 Note: Peripheral port may be the source or the destination (it could also be the memory source in the case of memory-to-memory transfer). PSIZE, MSIZE and NDT[15:0] have to be configured so as to ensure that the last transfer will not be incomplete. This can occur when the data width of the peripheral port (PSIZE bits) is lower than the data width of the memory port (MSIZE bits). This constraint is summarized in Table 35. Table 35. Restriction on NDT versus PSIZE and MSIZE PSIZE[1:0] of DMA_SxCR MSIZE[1:0] of DMA_SxCR NDT[15:0] of DMA_SxNDTR 00 (8-bit) 01 (16-bit) must be a multiple of 2 00 (8-bit) 10 (32-bit) must be a multiple of 4 01 (16-bit) 10 (32-bit) must be a multiple of 2 RM0430 Rev 8 225/1324 248 Direct memory access controller (DMA) 9.3.12 RM0430 Single and burst transfers The DMA controller can generate single transfers or incremental burst transfers of 4, 8 or 16 beats. The size of the burst is configured by software independently for the two AHB ports by using the MBURST[1:0] and PBURST[1:0] bits in the DMA_SxCR register. The burst size indicates the number of beats in the burst, not the number of bytes transferred. To ensure data coherence, each group of transfers that form a burst are indivisible: AHB transfers are locked and the arbiter of the AHB bus matrix does not degrant the DMA master during the sequence of the burst transfer. Depending on the single or burst configuration, each DMA request initiates a different number of transfers on the AHB peripheral port: • When the AHB peripheral port is configured for single transfers, each DMA request generates a data transfer of a byte, half-word or word depending on the PSIZE[1:0] bits in the DMA_SxCR register • When the AHB peripheral port is configured for burst transfers, each DMA request generates 4,8 or 16 beats of byte, half word or word transfers depending on the PBURST[1:0] and PSIZE[1:0] bits in the DMA_SxCR register. The same as above has to be considered for the AHB memory port considering the MBURST and MSIZE bits. In direct mode, the stream can only generate single transfers and the MBURST[1:0] and PBURST[1:0] bits are forced by hardware. The address pointers (DMA_SxPAR or DMA_SxM0AR registers) must be chosen so as to ensure that all transfers within a burst block are aligned on the address boundary equal to the size of the transfer. The burst configuration has to be selected in order to respect the AHB protocol, where bursts must not cross the 1 Kbyte address boundary because the minimum address space that can be allocated to a single slave is 1 Kbyte. This means that the 1 Kbyte address boundary must not be crossed by a burst block transfer, otherwise an AHB error is generated, that is not reported by the DMA registers. 9.3.13 FIFO FIFO structure The FIFO is used to temporarily store data coming from the source before transmitting them to the destination. Each stream has an independent 4-word FIFO and the threshold level is softwareconfigurable between 1/4, 1/2, 3/4 or full. To enable the use of the FIFO threshold level, the direct mode must be disabled by setting the DMDIS bit in the DMA_SxFCR register. The structure of the FIFO differs depending on the source and destination data widths, and is described in Figure 28: FIFO structure. 226/1324 RM0430 Rev 8 RM0430 Direct memory access controller (DMA) Figure 28. FIFO structure WORDS %MPTY 3OURCE BYTE " " " " " " " " " " " " " " " " &ULL BYTE LANE " " " " BYTE LANE " " " " BYTE LANE " " " " BYTE LANE 7 " 7 " 7 " 7 " $ESTINATION WORD 7 7 7 7 WORDS %MPTY BYTE LANE 3OURCE BYTE " " " " " " " " " " " " " " " " " " " BYTE LANE ( " ( " ( " " " " BYTE LANE ( " ( " ( " BYTE LANE &ULL " ( $ESTINATION HALF WORD " ( ( ( ( ( ( ( ( " ( " WORDS %MPTY 3OURCE HALF WORD BYTE LANE ( ( ( ( ( ( ( ( &ULL BYTE LANE ( ( ( ( ( ( ( ( $ESTINATION WORD 7 7 7 7 BYTE LANE BYTE LANE 7 7 7 7 WORDS %MPTY 3OURCE HALF WORD ( ( ( ( ( ( ( ( BYTE LANE " " " BYTE LANE ( " ( " ( " " " " BYTE LANE ( " ( " ( " BYTE LANE &ULL " ( $ESTINATION BYTE " " ( " " " " " " " " " " " " " " " " " AI FIFO threshold and burst configuration Caution is required when choosing the FIFO threshold (bits FTH[1:0] of the DMA_SxFCR register) and the size of the memory burst (MBURST[1:0] of the DMA_SxCR register): The content pointed by the FIFO threshold must exactly match an integer number of memory burst transfers. If this is not in the case, a FIFO error (flag FEIFx of the DMA_HISR or DMA_LISR register) is generated when the stream is enabled, then the stream is automatically disabled. The allowed and forbidden configurations are described in Table 36. The forbidden configurations are highlighted in gray in the table. Table 36. FIFO threshold configurations MSIZE Byte FIFO level MBURST = INCR4 MBURST = INCR8 1/4 1 burst of 4 beats Forbidden 1/2 2 bursts of 4 beats 1 burst of 8 beats 3/4 3 bursts of 4 beats Forbidden Full 4 bursts of 4 beats 2 bursts of 8 beats RM0430 Rev 8 MBURST = INCR16 Forbidden 1 burst of 16 beats 227/1324 248 Direct memory access controller (DMA) RM0430 Table 36. FIFO threshold configurations (continued) MSIZE Half-word FIFO level MBURST = INCR4 1/4 Forbidden 1/2 1 burst of 4 beats 3/4 Forbidden Full 2 bursts of 4 beats MBURST = INCR8 Forbidden 1 burst of 8 beats 1/4 Word 1/2 Forbidden 3/4 Full MBURST = INCR16 Forbidden Forbidden 1 burst of 4 beats In all cases, the burst size multiplied by the data size must not exceed the FIFO size (data size can be: 1 (byte), 2 (half-word) or 4 (word)). Incomplete burst transfer at the end of a DMA transfer may happen if one of the following conditions occurs: • For the AHB peripheral port configuration: the total number of data items (set in the DMA_SxNDTR register) is not a multiple of the burst size multiplied by the data size. • For the AHB memory port configuration: the number of remaining data items in the FIFO to be transferred to the memory is not a multiple of the burst size multiplied by the data size. In such cases, the remaining data to be transferred is managed in single mode by the DMA, even if a burst transaction is requested during the DMA stream configuration. Note: When burst transfers are requested on the peripheral AHB port and the FIFO is used (DMDIS = 1 in the DMA_SxCR register), it is mandatory to respect the following rule to avoid permanent underrun or overrun conditions, depending on the DMA stream direction: If (PBURST × PSIZE) = FIFO_SIZE (4 words), FIFO_Threshold = 3/4 is forbidden with PSIZE = 1, 2 or 4 and PBURST = 4, 8 or 16. This rule ensures that enough FIFO space at a time is free to serve the request from the peripheral. FIFO flush The FIFO can be flushed when the stream is disabled by resetting the EN bit in the DMA_SxCR register and when the stream is configured to manage peripheral-to-memory or memory-to-memory transfers. If some data are still present in the FIFO when the stream is disabled, the DMA controller continues transferring the remaining data to the destination (even though stream is effectively disabled). When this flush is completed, the transfer complete status bit (TCIFx) in the DMA_LISR or DMA_HISR register is set. The remaining data counter DMA_SxNDTR keeps the value in this case to indicate how many data items are currently available in the destination memory. Note that during the FIFO flush operation, if the number of remaining data items in the FIFO to be transferred to memory (in bytes) is less than the memory data width (for example 2 bytes in FIFO while MSIZE is configured to word), data is sent with the data width set in the MSIZE bit in the DMA_SxCR register. This means that memory is written with an undesired 228/1324 RM0430 Rev 8 RM0430 Direct memory access controller (DMA) value. The software may read the DMA_SxNDTR register to determine the memory area that contains the good data (start address and last address). If the number of remaining data items in the FIFO is lower than a burst size (if the MBURST bits in DMA_SxCR register are set to configure the stream to manage burst on the AHB memory port), single transactions are generated to complete the FIFO flush. Direct mode By default, the FIFO operates in direct mode (DMDIS bit in the DMA_SxFCR is reset) and the FIFO threshold level is not used. This mode is useful when the system requires an immediate and single transfer to or from the memory after each DMA request. When the DMA is configured in direct mode (FIFO disabled), to transfer data in memory-toperipheral mode, the DMA preloads one data from the memory to the internal FIFO to ensure an immediate data transfer as soon as a DMA request is triggered by a peripheral. To avoid saturating the FIFO, it is recommended to configure the corresponding stream with a high priority. This mode is restricted to transfers where: • the source and destination transfer widths are equal and both defined by the PSIZE[1:0] bits in DMA_SxCR (MSIZE[1:0] bits are not relevant) • burst transfers are not possible (PBURST[1:0] and MBURST[1:0] bits in DMA_SxCR are don’t care) Direct mode must not be used when implementing memory-to-memory transfers. 9.3.14 DMA transfer completion Different events can generate an end of transfer by setting the TCIFx bit in the DMA_LISR or DMA_HISR status register: • • Note: In DMA flow controller mode: – The DMA_SxNDTR counter has reached zero in the memory-to-peripheral mode. – The stream is disabled before the end of transfer (by clearing the EN bit in the DMA_SxCR register) and (when transfers are peripheral-to-memory or memoryto-memory) all the remaining data have been flushed from the FIFO into the memory. In Peripheral flow controller mode: – The last external burst or single request has been generated from the peripheral and (when the DMA is operating in peripheral-to-memory mode) the remaining data have been transferred from the FIFO into the memory – The stream is disabled by software, and (when the DMA is operating in peripheralto-memory mode) the remaining data have been transferred from the FIFO into the memory The transfer completion is dependent on the remaining data in FIFO to be transferred into memory only in the case of peripheral-to-memory mode. This condition is not applicable in memory-to-peripheral mode. If the stream is configured in noncircular mode, after the end of the transfer (that is when the number of data to be transferred reaches zero), the DMA is stopped (EN bit in DMA_SxCR register is cleared by Hardware) and no DMA request is served unless the software reprograms the stream and re-enables it (by setting the EN bit in the DMA_SxCR register). RM0430 Rev 8 229/1324 248 Direct memory access controller (DMA) 9.3.15 RM0430 DMA transfer suspension At any time, a DMA transfer can be suspended to be restarted later on or to be definitively disabled before the end of the DMA transfer. There are two cases: • The stream disables the transfer with no later-on restart from the point where it was stopped. There is no particular action to do, except to clear the EN bit in the DMA_SxCR register to disable the stream. The stream may take time to be disabled (ongoing transfer is completed first). The transfer complete interrupt flag (TCIF in the DMA_LISR or DMA_HISR register) is set in order to indicate the end of transfer. The value of the EN bit in DMA_SxCR is now ‘0’ to confirm the stream interruption. The DMA_SxNDTR register contains the number of remaining data items at the moment when the stream was stopped so that the software can determine how many data items have been transferred before the stream was interrupted. • The stream suspends the transfer before the number of remaining data items to be transferred in the DMA_SxNDTR register reaches 0. The aim is to restart the transfer later by re-enabling the stream. In order to restart from the point where the transfer was stopped, the software has to read the DMA_SxNDTR register after disabling the stream by writing the EN bit in DMA_SxCR register (and then checking that it is at ‘0’) to know the number of data items already collected. Then: – The peripheral and/or memory addresses have to be updated in order to adjust the address pointers – The SxNDTR register has to be updated with the remaining number of data items to be transferred (the value read when the stream was disabled) – The stream may then be re-enabled to restart the transfer from the point it was stopped Note: A transfer complete interrupt flag (TCIF in DMA_LISR or DMA_HISR) is set to indicate the end of transfer due to the stream interruption. 9.3.16 Flow controller The entity that controls the number of data to be transferred is known as the flow controller. This flow controller is configured independently for each stream using the PFCTRL bit in the DMA_SxCR register. The flow controller can be: • The DMA controller: in this case, the number of data items to be transferred is programmed by software into the DMA_SxNDTR register before the DMA stream is enabled. • The peripheral source or destination: this is the case when the number of data items to be transferred is unknown. The peripheral indicates by hardware to the DMA controller when the last data are being transferred. This feature is only supported for peripherals that are able to signal the end of the transfer. When the peripheral flow controller is used for a given stream, the value written into the DMA_SxNDTR has no effect on the DMA transfer. Actually, whatever the value written, it will be forced by hardware to 0xFFFF as soon as the stream is enabled, to respect the following schemes: • 230/1324 Anticipated stream interruption: EN bit in DMA_SxCR register is reset to 0 by the software to stop the stream before the last data hardware signal (single or burst) is sent by the peripheral. In such a case, the stream is switched off and the FIFO flush is RM0430 Rev 8 RM0430 Direct memory access controller (DMA) triggered in the case of a peripheral-to-memory DMA transfer. The TCIFx flag of the corresponding stream is set in the status register to indicate the DMA completion. To know the number of data items transferred during the DMA transfer, read the DMA_SxNDTR register and apply the following formula: – Note: Number_of_data_transferred = 0xFFFF – DMA_SxNDTR • Normal stream interruption due to the reception of a last data hardware signal: the stream is automatically interrupted when the peripheral requests the last transfer (single or burst) and when this transfer is complete. the TCIFx flag of the corresponding stream is set in the status register to indicate the DMA transfer completion. To know the number of data items transferred, read the DMA_SxNDTR register and apply the same formula as above. • The DMA_SxNDTR register reaches 0: the TCIFx flag of the corresponding stream is set in the status register to indicate the forced DMA transfer completion. The stream is automatically switched off even though the last data hardware signal (single or burst) has not been yet asserted. The already transferred data is not lost. This means that a maximum of 65535 data items can be managed by the DMA in a single transaction, even in peripheral flow control mode. When configured in memory-to-memory mode, the DMA is always the flow controller and the PFCTRL bit is forced to 0 by hardware. The circular mode is forbidden in the peripheral flow controller mode. 9.3.17 Summary of the possible DMA configurations Table 37 summarizes the different possible DMA configurations. The forbidden configurations are highlighted in gray in the table. Table 37. Possible DMA configurations DMA transfer mode Peripheral-tomemory Memory-toperipheral Memory-tomemory Source Destination Flow controller Circular mode DMA Possible Peripheral Forbidden DMA Possible Peripheral Forbidden DMA only Forbidden AHB AHB peripheral port memory port AHB memory port AHB peripheral port AHB AHB peripheral port memory port RM0430 Rev 8 Transfer type Direct mode single Possible burst Forbidden single Possible burst Forbidden single Possible burst Forbidden single Possible burst Forbidden single burst Doublebuffer mode Possible Forbidden Possible Forbidden Forbidden Forbidden 231/1324 248 Direct memory access controller (DMA) 9.3.18 RM0430 Stream configuration procedure The following sequence must be followed to configure a DMA stream x (where x is the stream number): 1. If the stream is enabled, disable it by resetting the EN bit in the DMA_SxCR register, then read this bit in order to confirm that there is no ongoing stream operation. Writing this bit to 0 is not immediately effective since it is actually written to 0 once all the current transfers are finished. When the EN bit is read as 0, this means that the stream is ready to be configured. It is therefore necessary to wait for the EN bit to be cleared before starting any stream configuration. All the stream dedicated bits set in the status register (DMA_LISR and DMA_HISR) from the previous data block DMA transfer must be cleared before the stream can be re-enabled. 2. Set the peripheral port register address in the DMA_SxPAR register. The data is moved from/ to this address to/ from the peripheral port after the peripheral event. 3. Set the memory address in the DMA_SxMA0R register (and in the DMA_SxMA1R register in the case of a double-buffer mode). The data is written to or read from this memory after the peripheral event. 4. Configure the total number of data items to be transferred in the DMA_SxNDTR register. After each peripheral event or each beat of the burst, this value is decremented. 5. Select the DMA channel (request) using CHSEL[3:0] in the DMA_SxCR register. 6. If the peripheral is intended to be the flow controller and if it supports this feature, set the PFCTRL bit in the DMA_SxCR register. 7. Configure the stream priority using the PL[1:0] bits in the DMA_SxCR register. 8. Configure the FIFO usage (enable or disable, threshold in transmission and reception) 9. Configure the data transfer direction, peripheral and memory incremented/fixed mode, single or burst transactions, peripheral and memory data widths, circular mode, double-buffer mode and interrupts after half and/or full transfer, and/or errors in the DMA_SxCR register. 10. Activate the stream by setting the EN bit in the DMA_SxCR register. As soon as the stream is enabled, it can serve any DMA request from the peripheral connected to the stream. Once half the data have been transferred on the AHB destination port, the half-transfer flag (HTIF) is set and an interrupt is generated if the half-transfer interrupt enable bit (HTIE) is set. At the end of the transfer, the transfer complete flag (TCIF) is set and an interrupt is generated if the transfer complete interrupt enable bit (TCIE) is set. Warning: 232/1324 To switch off a peripheral connected to a DMA stream request, it is mandatory to, first, switch off the DMA stream to which the peripheral is connected, then to wait for EN bit = 0. Only then can the peripheral be safely disabled. RM0430 Rev 8 RM0430 9.3.19 Direct memory access controller (DMA) Error management The DMA controller can detect the following errors: • • • Transfer error: the transfer error interrupt flag (TEIFx) is set when: – a bus error occurs during a DMA read or a write access – a write access is requested by software on a memory address register in double-buffer mode whereas the stream is enabled and the current target memory is the one impacted by the write into the memory address register (refer to Section 9.3.10: Double-buffer mode) FIFO error: the FIFO error interrupt flag (FEIFx) is set if: – a FIFO underrun condition is detected – a FIFO overrun condition is detected (no detection in memory-to-memory mode because requests and transfers are internally managed by the DMA) – the stream is enabled while the FIFO threshold level is not compatible with the size of the memory burst (refer to Table 36: FIFO threshold configurations) Direct mode error: the direct mode error interrupt flag (DMEIFx) can only be set in the peripheral-to-memory mode while operating in direct mode and when the MINC bit in the DMA_SxCR register is cleared. This flag is set when a DMA request occurs while the previous data have not yet been fully transferred into the memory (because the memory bus was not granted). In this case, the flag indicates that 2 data items were be transferred successively to the same destination address, which could be an issue if the destination is not able to manage this situation In direct mode, the FIFO error flag can also be set under the following conditions: • In the peripheral-to-memory mode, the FIFO can be saturated (overrun) if the memory bus is not granted for several peripheral requests. • In the memory-to-peripheral mode, an underrun condition may occur if the memory bus has not been granted before a peripheral request occurs. If the TEIFx or the FEIFx flag is set due to incompatibility between burst size and FIFO threshold level, the faulty stream is automatically disabled through a hardware clear of its EN bit in the corresponding stream configuration register (DMA_SxCR). If the DMEIFx or the FEIFx flag is set due to an overrun or underrun condition, the faulty stream is not automatically disabled and it is up to the software to disable or not the stream by resetting the EN bit in the DMA_SxCR register. This is because there is no data loss when this kind of errors occur. When the stream's error interrupt flag (TEIF, FEIF, DMEIF) in the DMA_LISR or DMA_HISR register is set, an interrupt is generated if the corresponding interrupt enable bit (TEIE, FEIE, DMIE) in the DMA_SxCR or DMA_SxFCR register is set. Note: When a FIFO overrun or underrun condition occurs, the data is not lost because the peripheral request is not acknowledged by the stream until the overrun or underrun condition is cleared. If this acknowledge takes too much time, the peripheral itself may detect an overrun or underrun condition of its internal buffer and data might be lost. RM0430 Rev 8 233/1324 248 Direct memory access controller (DMA) 9.4 RM0430 DMA interrupts For each DMA stream, an interrupt can be produced on the following events: • Half-transfer reached • Transfer complete • Transfer error • FIFO error (overrun, underrun or FIFO level error) • Direct mode error Separate interrupt enable control bits are available for flexibility as shown in Table 38. Table 38. DMA interrupt requests Interrupt event Event flag Enable control bit Half-transfer HTIF HTIE Transfer complete TCIF TCIE Transfer error TEIF TEIE FIFO overrun/underrun FEIF FEIE DMEIF DMEIE Direct mode error Note: 234/1324 Before setting an enable control bit EN = 1, the corresponding event flag must be cleared, otherwise an interrupt is immediately generated. RM0430 Rev 8 RM0430 Direct memory access controller (DMA) 9.5 DMA registers The DMA registers have to be accessed by words (32 bits). 9.5.1 DMA low interrupt status register (DMA_LISR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. TCIF3 HTIF3 TEIF3 DMEIF3 Res. FEIF3 TCIF2 HTIF2 TEIF2 DMEIF2 Res. FEIF2 r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. TCIF1 HTIF1 TEIF1 DMEIF1 Res. FEIF1 TCIF0 HTIF0 TEIF0 DMEIF0 Res. FEIF0 r r r r r r r r r r Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 TCIF[3:0]: stream x transfer complete interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: no transfer complete event on stream x 1: a transfer complete event occurred on stream x Bits 26, 20, 10, 4 HTIF[3:0]: stream x half transfer interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: no half transfer event on stream x 1: a half transfer event occurred on stream x Bits 25, 19, 9, 3 TEIF[3:0]: stream x transfer error interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: no transfer error on stream x 1: a transfer error occurred on stream x Bits 24, 18, 8, 2 DMEIF[3:0]: stream x direct mode error interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: No direct mode error on stream x 1: a direct mode error occurred on stream x Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 FEIF[3:0]: stream x FIFO error interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: no FIFO error event on stream x 1: a FIFO error event occurred on stream x RM0430 Rev 8 235/1324 248 Direct memory access controller (DMA) 9.5.2 RM0430 DMA high interrupt status register (DMA_HISR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. TCIF7 HTIF7 TEIF7 DMEIF7 Res. FEIF7 TCIF6 HTIF6 TEIF6 DMEIF6 Res. FEIF6 r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. TCIF5 HTIF5 TEIF5 DMEIF5 Res. FEIF5 TCIF4 HTIF4 TEIF4 DMEIF4 Res. FEIF4 r r r r r r r r r r r Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 TCIF[7:4]: stream x transfer complete interrupt flag (x = 7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: no transfer complete event on stream x 1: atransfer complete event occurred on stream x Bits 26, 20, 10, 4 HTIF[7:4]: stream x half transfer interrupt flag (x = 7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: no half transfer event on stream x 1: a half transfer event occurred on stream x Bits 25, 19, 9, 3 TEIF[7:4]: stream x transfer error interrupt flag (x = 7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: no transfer error on stream x 1: a transfer error occurred on stream x Bits 24, 18, 8, 2 DMEIF[7:4]: stream x direct mode error interrupt flag (x = 7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: no direct mode error on stream x 1: a direct mode error occurred on stream x Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 FEIF[7:4]: stream x FIFO error interrupt flag (x = 7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: no FIFO error event on stream x 1: a FIFO error event occurred on stream x 236/1324 RM0430 Rev 8 RM0430 Direct memory access controller (DMA) 9.5.3 DMA low interrupt flag clear register (DMA_LIFCR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 Res. Res. Res. Res. 27 15 14 13 12 Res. Res. Res. Res. 26 25 24 CTCIF3 CHTIF3 CTEIF3 CDMEIF3 w w w w 11 10 9 8 CTCIF1 CHTIF1 CTEIF1 CDMEIF1 w w w 23 22 21 Res. CFEIF3 CTCIF2 20 19 18 CHTIF2 CTEIF2 CDMEIF2 w w w w w 7 6 5 4 3 2 Res. CFEIF1 CTCIF0 w w w CHTIF0 CTEIF0 CDMEIF0 w w 17 16 Res. CFEIF2 w 1 0 Res. CFEIF0 w w Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 CTCIF[3:0]: stream x clear transfer complete interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_LISR register. Bits 26, 20, 10, 4 CHTIF[3:0]: stream x clear half transfer interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding HTIFx flag in the DMA_LISR register Bits 25, 19, 9, 3 CTEIF[3:0]: Stream x clear transfer error interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding TEIFx flag in the DMA_LISR register. Bits 24, 18, 8, 2 CDMEIF[3:0]: stream x clear direct mode error interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding DMEIFx flag in the DMA_LISR register. Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 CFEIF[3:0]: stream x clear FIFO error interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding CFEIFx flag in the DMA_LISR register. 9.5.4 DMA high interrupt flag clear register (DMA_HIFCR) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. CTCIF7 CHTIF7 CTEIF7 CDMEIF7 15 14 13 12 w w w w 11 10 9 8 Res. Res. Res. Res. CTCIF5 CHTIF5 CTEIF5 CDMEIF5 w w w 23 22 21 20 Res. CFEIF7 CTCIF6 CHTIF6 w w w 7 6 5 4 Res. CFEIF5 CTCIF4 CHTIF4 w w w w 19 18 CTEIF6 CDMEIF6 w w 3 2 CTEIF4 CDMEIF4 w 17 16 Res. CFEIF6 w 1 0 Res. CFEIF4 w w Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 CTCIF[7:4]: stream x clear transfer complete interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_HISR register. Bits 26, 20, 10, 4 CHTIF[7:4]: stream x clear half transfer interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding HTIFx flag in the DMA_HISR register. Bits 25, 19, 9, 3 CTEIF[7:4]: stream x clear transfer error interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding TEIFx flag in the DMA_HISR register. RM0430 Rev 8 237/1324 248 Direct memory access controller (DMA) RM0430 Bits 24, 18, 8, 2 CDMEIF[7:4]: stream x clear direct mode error interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding DMEIFx flag in the DMA_HISR register. Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 CFEIF[7:4]: stream x clear FIFO error interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding CFEIFx flag in the DMA_HISR register. 9.5.5 DMA stream x configuration register (DMA_SxCR) This register is used to configure the concerned stream. Address offset: 0x10 + 0x18 * x, (x = 0 to 7) Reset value: 0x0000 0000 31 30 29 Res. Res. Res. 15 PINCOS rw 14 13 28 27 rw rw 12 11 MSIZE[1:0] PSIZE[1:0] rw rw rw 26 25 CHSEL[3:0] rw rw 24 23 MBURST[1:0] rw 22 rw rw rw 7 6 10 9 8 MINC PINC CIRC rw rw rw DIR[1:0] rw 21 PBURST[1:0] rw 20 19 18 Res. CT DBM rw rw rw 17 rw 5 4 3 2 1 0 TCIE HTIE TEIE DMEIE EN rw rw rw rw rw rw Bits 28:25 CHSEL[3:0]: channel selection These bits are set and cleared by software. 0000: channel 0 selected 0001: channel 1 selected 0010: channel 2 selected 0011: channel 3 selected 0100: channel 4 selected 0101: channel 5 selected 0110: channel 6 selected 0111: channel 7 selected 1000: channel 8 selected 1001: channel 9 selected 1010: channel 10 selected 1011: channel 11 selected 1100: channel 12 selected 1101: channel 13 selected 1110: channel 14 selected 1111: channel 15 selected These bits are protected and can be written only if EN is ‘0’. Bits 24:23 MBURST[1:0]: memory burst transfer configuration These bits are set and cleared by software. 00: single transfer 01: INCR4 (incremental burst of 4 beats) 10: INCR8 (incremental burst of 8 beats) 11: INCR16 (incremental burst of 16 beats) These bits are protected and can be written only if EN is ‘0’. In direct mode, these bits are forced to 0x0 by hardware as soon as bit EN= '1'. RM0430 Rev 8 rw PFCTRL Bits 31:29 Reserved, must be kept at reset value. 238/1324 16 PL[1:0] RM0430 Direct memory access controller (DMA) Bits 22:21 PBURST[1:0]: peripheral burst transfer configuration These bits are set and cleared by software. 00: single transfer 01: INCR4 (incremental burst of 4 beats) 10: INCR8 (incremental burst of 8 beats) 11: INCR16 (incremental burst of 16 beats) These bits are protected and can be written only if EN is ‘0’. In direct mode, these bits are forced to 0x0 by hardware. Bit 20 Reserved, must be kept at reset value. Bit 19 CT: current target (only in double-buffer mode) This bit is set and cleared by hardware. It can also be written by software. 0: current target memory is Memory 0 (addressed by the DMA_SxM0AR pointer) 1: current target memory is Memory 1 (addressed by the DMA_SxM1AR pointer) This bit can be written only if EN is ‘0’ to indicate the target memory area of the first transfer. Once the stream is enabled, this bit operates as a status flag indicating which memory area is the current target. Bit 18 DBM: double-buffer mode This bit is set and cleared by software. 0: no buffer switching at the end of transfer 1: memory target switched at the end of the DMA transfer This bit is protected and can be written only if EN is ‘0’. Bits 17:16 PL[1:0]: priority level These bits are set and cleared by software. 00: low 01: medium 10: high 11: very high These bits are protected and can be written only if EN is ‘0’. Bit 15 PINCOS: peripheral increment offset size This bit is set and cleared by software 0: The offset size for the peripheral address calculation is linked to the PSIZE 1: The offset size for the peripheral address calculation is fixed to 4 (32-bit alignment). This bit has no meaning if bit PINC = '0'. This bit is protected and can be written only if EN = '0'. This bit is forced low by hardware when the stream is enabled (bit EN = '1') if the direct mode is selected or if PBURST are different from “00”. Bits 14:13 MSIZE[1:0]: memory data size These bits are set and cleared by software. 00: byte (8-bit) 01: half-word (16-bit) 10: word (32-bit) 11: reserved These bits are protected and can be written only if EN is ‘0’. In direct mode, MSIZE is forced by hardware to the same value as PSIZE as soon as bit EN = '1'. RM0430 Rev 8 239/1324 248 Direct memory access controller (DMA) RM0430 Bits 12:11 PSIZE[1:0]: peripheral data size These bits are set and cleared by software. 00: byte (8-bit) 01: half-word (16-bit) 10: word (32-bit) 11: reserved These bits are protected and can be written only if EN is ‘0’. Bit 10 MINC: memory increment mode This bit is set and cleared by software. 0: memory address pointer is fixed 1: memory address pointer is incremented after each data transfer (increment is done according to MSIZE) This bit is protected and can be written only if EN is ‘0’. Bit 9 PINC: peripheral increment mode This bit is set and cleared by software. 0: peripheral address pointer is fixed 1: peripheral address pointer is incremented after each data transfer (increment is done according to PSIZE) This bit is protected and can be written only if EN is ‘0’. Bit 8 CIRC: circular mode This bit is set and cleared by software and can be cleared by hardware. 0: circular mode disabled 1: circular mode enabled When the peripheral is the flow controller (bit PFCTRL = 1) and the stream is enabled (bit EN = 1), then this bit is automatically forced by hardware to 0. It is automatically forced by hardware to 1 if the DBM bit is set, as soon as the stream is enabled (bit EN ='1'). Bits 7:6 DIR[1:0]: data transfer direction These bits are set and cleared by software. 00: peripheral-to-memory 01: memory-to-peripheral 10: memory-to-memory 11: reserved These bits are protected and can be written only if EN is ‘0’. Bit 5 PFCTRL: peripheral flow controller This bit is set and cleared by software. 0: DMA is the flow controller 1: The peripheral is the flow controller This bit is protected and can be written only if EN is ‘0’. When the memory-to-memory mode is selected (bits DIR[1:0]=10), then this bit is automatically forced to 0 by hardware. Bit 4 TCIE: transfer complete interrupt enable This bit is set and cleared by software. 0: TC interrupt disabled 1: TC interrupt enabled Bit 3 HTIE: half transfer interrupt enable This bit is set and cleared by software. 0: HT interrupt disabled 1: HT interrupt enabled 240/1324 RM0430 Rev 8 RM0430 Direct memory access controller (DMA) Bit 2 TEIE: transfer error interrupt enable This bit is set and cleared by software. 0: TE interrupt disabled 1: TE interrupt enabled Bit 1 DMEIE: direct mode error interrupt enable This bit is set and cleared by software. 0: DME interrupt disabled 1: DME interrupt enabled Bit 0 EN: stream enable / flag stream ready when read low This bit is set and cleared by software. 0: stream disabled 1: stream enabled This bit may be cleared by hardware: – on a DMA end of transfer (stream ready to be configured) – if a transfer error occurs on the AHB master buses – when the FIFO threshold on memory AHB port is not compatible with the size of the burst When this bit is read as 0, the software is allowed to program the configuration and FIFO bits registers. It is forbidden to write these registers when the EN bit is read as 1. Note: Before setting EN bit to '1' to start a new transfer, the event flags corresponding to the stream in DMA_LISR or DMA_HISR register must be cleared. 9.5.6 DMA stream x number of data register (DMA_SxNDTR) Address offset: 0x14 + 0x18 * x, (x = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw NDT[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 NDT[15:0]: number of data items to transfer (0 up to 65535) This register can be written only when the stream is disabled. When the stream is enabled, this register is read-only, indicating the remaining data items to be transmitted. This register decrements after each DMA transfer. Once the transfer is completed, this register can either stay at zero (when the stream is in normal mode) or be reloaded automatically with the previously programmed value in the following cases: – when the stream is configured in circular mode. – when the stream is enabled again by setting EN bit to '1'. If the value of this register is zero, no transaction can be served even if the stream is enabled. RM0430 Rev 8 241/1324 248 Direct memory access controller (DMA) 9.5.7 RM0430 DMA stream x peripheral address register (DMA_SxPAR) Address offset: 0x18 + 0x18 * x, (x = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PAR[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw PAR[15:0] rw Bits 31:0 PAR[31:0]: peripheral address Base address of the peripheral data register from/to which the data is read/written. These bits are write-protected and can be written only when bit EN = '0' in the DMA_SxCR register. 9.5.8 DMA stream x memory 0 address register (DMA_SxM0AR) Address offset: 0x1C + 0x18 * x, (x = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 M0A[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw M0A[15:0] rw Bits 31:0 M0A[31:0]: memory 0 address Base address of memory area 0 from/to which the data is read/written. These bits are write-protected. They can be written only if: – the stream is disabled (bit EN= '0' in the DMA_SxCR register) or – the stream is enabled (EN=’1’ in DMA_SxCR register) and bit CT = '1' in the DMA_SxCR register (in double-buffer mode). 9.5.9 DMA stream x memory 1 address register (DMA_SxM1AR) Address offset: 0x20 + 0x18 * x, (x = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 M1A[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw M1A[15:0] rw 242/1324 rw rw rw rw rw rw rw rw RM0430 Rev 8 RM0430 Direct memory access controller (DMA) Bits 31:0 M1A[31:0]: memory 1 address (used in case of double-buffer mode) Base address of memory area 1 from/to which the data is read/written. This register is used only for the double-buffer mode. These bits are write-protected. They can be written only if: – the stream is disabled (bit EN= '0' in the DMA_SxCR register) or – the stream is enabled (EN=’1’ in DMA_SxCR register) and bit CT = '0' in the DMA_SxCR register. 9.5.10 DMA stream x FIFO control register (DMA_SxFCR) Address offset: 0x24 + 0x24 * x, (x = 0 to 7) Reset value: 0x0000 0021 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. Res. Res. Res. FEIE Res. rw FS[2:0] r r DMDIS r rw FTH[1:0] rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 FEIE: FIFO error interrupt enable This bit is set and cleared by software. 0: FE interrupt disabled 1: FE interrupt enabled Bit 6 Reserved, must be kept at reset value. Bits 5:3 FS[2:0]: FIFO status These bits are read-only. 000: 0 < fifo_level < 1/4 001: 1/4 ≤ fifo_level < 1/2 010: 1/2 ≤ fifo_level < 3/4 011: 3/4 ≤ fifo_level < full 100: FIFO is empty 101: FIFO is full others: no meaning These bits are not relevant in the direct mode (DMDIS bit is zero). Bit 2 DMDIS: direct mode disable This bit is set and cleared by software. It can be set by hardware. 0: direct mode enabled 1: direct mode disabled This bit is protected and can be written only if EN is ‘0’. This bit is set by hardware if the memory-to-memory mode is selected (DIR bit in DMA_SxCR are “10”) and the EN bit in the DMA_SxCR register is ‘1’ because the direct mode is not allowed in the memory-to-memory configuration. RM0430 Rev 8 243/1324 248 Direct memory access controller (DMA) RM0430 Bits 1:0 FTH[1:0]: FIFO threshold selection These bits are set and cleared by software. 00: 1/4 full FIFO 01: 1/2 full FIFO 10: 3/4 full FIFO 11: full FIFO These bits are not used in the direct mode when the DMIS value is zero. These bits are protected and can be written only if EN is ‘0’. 244/1324 RM0430 Rev 8 0x002C 0x0030 DMA_S1NDTR Reset value 0 0 0 0 0 0 0 0 0 0 Res 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S0M0AR 0 DMA_S0M1AR 0 0 0 DMA_S1PAR 0 RM0430 Rev 8 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 DMA_S0FCR 0 0 DMEIE EN 0 TEIE 0 0 0 0 CFEIF4 0 0 0 0 0 FS[2:0] Res 0 0 0 0 0 0 0 0 FEIF4 0 0 0 0 0 0 0 0 Res TEIF0 DMEIF0 0 CFEIF0 0 CDMEIF4 HTIF0 DMEIF4 CDMEIF0 0 CTEIF4 TCIF0 TEIF4 CTEIF0 0 HTIE 0 CHTIF4 HTIF4 0 CTCIF4 TCIF4 CHTIF0 0 TCIE CTCIF0 0 PFCTRL 0 Res FEIF0 Res. Res. FEIF1 0 Res FEIF5 0 CFEIF5 0 Res CFEIF1 0 Res 0 DIR[1:0] TEIF1 DMEIF1 DMEIF5 CDMEIF1 CDMEIF5 0 CIRC TEIF5 Res. Res. Res. Res. HTIF1 HTIF5 CTEIF1 CTEIF5 CHTIF1 CHTIF5 0 PINC Res. FEIF2 TCIF1 Res Res Res Res Res TCIF5 Res Res Res Res CTCIF1 Res Res 0 MINC 0 CTCIF5 PSIZE[1:0] 0 FTH[1:0] Reset value 0 MSIZE[1:0] 0 Res 0 Res 0 EN DMA_S0PAR PINCOS 0 Res FEIF6 0 DMDIS 0 0 Res 0 DMEIE 0 Res 0 0 0 PL[1:0] 0 TEIE 0 FEIE 0 0 0 Res 0 HTIE 0 Res 0 0 Res TEIF2 DMEIF2 0 TCIE 0 Res CFEIF6 0 CDMEIF6 0 PFCTRL 0 Res 0 0 DBM 0 DIR[1:0] 0 Res 0 0 0 Res HTIF2 0 CIRC 0 Res 0 CTEIF6 0 CFEIF2 0 0 CT DMEIF6 CDMEIF2 0 0 Res TCIF2 TEIF6 CTEIF2 0 CHTIF6 HTIF6 CHTIF2 0 CTCIF6 TCIF6 CTCIF2 0 Res 0 PINC 0 Res 0 PBURST[1:0] 0 MINC 0 Res Res 0 Res. FEIF3 0 Res FEIF7 0 Res CFEIF3 0 Res 0 CFEIF7 0 PSIZE[1:0] 0 Res Res 0 MSIZE[1:0] 0 Res 0 MBURST[1:0] 0 0 PINCOS 0 Res Res TEIF3 DMEIF3 DMEIF7 CDMEIF3 CDMEIF7 0 0 PL[1:0] 0 Res 0 Res 0 Res 0 DBM 0 Res 0 Res 0 Res TEIF7 HTIF3 HTIF7 TEIF3 CTEIF7 Res. Res. Res. Res. TCIF3 Res Res Res Res TCIF7 Res Res Res Res CHTIF3 CHTIF7 0 Res 0 Res CHSEL[3:0] 0 CT 0 Res 0 Res 0 Res 0 Res 0 0 Res 0 Res 0 CTCIF3 Reset value CTCIF7 Res Res Reset value PBURST[1:0] 0 Res 0 Res Res Res Res Reset value MBURST[1:0] 0 Res 0 Res Res Res Reset value Res 0 Res Reset value Res 0 Res 0 Res 0 Res 0 0 Res DMA_S1CR 0 0 CHSEL[3:0] Reset value 0 Res 0 Res Reset value Res Reset value Res 0x0028 0 Res 0x0024 Reset value Res 0x0020 DMA_S0NDTR Res 0x001C DMA_S0CR Res 0x0018 DMA_HIFCR Res 0x0014 DMA_LIFCR Res 0x0010 DMA_HISR Res 0x000C Res 0x0008 Res 0x0004 DMA_LISR Res 0x0000 Res 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20 Offset Register name Res 9.5.11 Res RM0430 Direct memory access controller (DMA) DMA register map Table 39 summarizes the DMA registers. Table 39. DMA register map and reset values 0 0 0 0 0 0 0 NDT[15:0] PA[31:0] M0A[31:0] M1A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 NDT[15:0] PA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 245/1324 248 Direct memory access controller (DMA) RM0430 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S1FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PSIZE[1:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x0064 0x0068 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S2FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res Res 0 PSIZE[1:0] MSIZE[1:0] PL[1:0] PINCOS 0 0 0 0 CIRC Res 0 PINC Res 0 MINC Res 0 Res Res 0 Res 0 DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[3:0] 0 Res Res Res Res Res 0 Res Res Res 0 0 0 0 0 0 FS[2:0] FTH[1:0] 0 1 0 0 0 0 1 EN 0 DMEIE 0 DMDIS 0 TEIE 0 HTIE 0 TCIE 0 0 0 0 0 0 0 NDT[15:0] 0 DMA_S3PAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S3M0AR 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S3M1AR 246/1324 0 0 0 Reset value 0 0 0 Reset value 0 0 0 Reset value 0 0 0 Reset value 0x0060 0 0 0 DMA_S3NDTR 1 0 Reset value DMA_S3CR 0 M1A[31:0] Reset value 0x005C 0 0 NDT[15:0] Reset value 0x0058 0 0 M0A[31:0] DMA_S2M1AR 0x0054 0 Res 0x0050 0 0 PA[31:0] DMA_S2M0AR Reset value 0 DIR[1:0] 0x004C 0 1 PFCTRL Reset value 0 0 DMA_S2PAR 0x0048 MSIZE[1:0] PINCOS PL[1:0] 0 CIRC Res 0 PINC Res 0 MINC Res 0 Res 0 Res 0 DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[3:0] 0 Res Res Res DMA_S2NDTR Res 0x0044 Res Reset value Res Res DMA_S2CR 0x0040 0 Res Reset value FS[2:0] FTH[1:0] 0 EN 0 DMDIS 0 TEIE 0 DMEIE 0 HTIE 0 TCIE 0 PFCTRL Reset value Res M1A[31:0] Res 0x003C 0 Res DMA_S1M1AR 0 Res 0 Res 0x0038 0 DIR [1:0] Reset value M0A[31:0] Res DMA_S1M0AR FEIE 0x0034 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 Table 39. DMA register map and reset values (continued) 0 0 0 0 M1A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 0 0 0 RM0430 Direct memory access controller (DMA) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FTH[1:0] DMDIS TEIE EN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S4FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res Res 0 PSIZE[1:0] 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 NDT[15:0] 0 DMA_S5PAR MSIZE[1:0] PL[1:0] PINCOS 0 CIRC Res 0 PINC Res 0 MINC Res 0 Res Res 0 Res 0 DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[3:0] 0 Res Res Res Res Res 0 Res Res Res 0 FS[2:0] FTH[1:0] 0 EN 0 DMEIE 0 DMDIS 0 TEIE 0 HTIE 0 TCIE 0 PFCTRL 0 Res M1A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S5M0AR 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S5FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res 0 0 0 RM0430 Rev 8 0 0 0 PSIZE[1:0] MSIZE[1:0] 0 PINCOS 0 PL[1:0] Res. 0 0 0 0 CIRC 0 PINC 0 MINC 0 DBM 0 CT 0 PBURST[1:0] MBURST[1:0] CHSEL[3:0] Res. Res. Res. 0 0 0 0 0 0 FS[2:0] FTH[1:0] 0 1 0 0 0 0 1 EN 0 DMEIE 0 DMDIS 0 TEIE 0 HTIE 0 TCIE Reset value Res M1A[31:0] Res DMA_S5M1AR Reset value DMEIE 0 0 DMA_S6CR HTIE Res Res 0 Reset value 0x00A0 0 0 Res 0x009C 0 0 Res 0x0098 0 0 0 Reset value 0 0 0 Reset value 0x0094 DIR [1:0] PSIZE[1:0] MSIZE[1:0] PINCOS PL[1:0] 0 Reset value 0x0090 0 0 Reset value DMA_S5NDTR 0 0 Res DMA_S4M1AR DMA_S5CR 1 M0A[31:0] Reset value 0x008C 0 0 0 Reset value 0x0088 0 Res 0x0084 0 Res 0x0080 0 0 PA[31:0] DMA_S4M0AR Reset value 0 DIR[1:0] 0x007C 0 0 PFCTRL Reset value 0 0 NDT[15:0] 0 DMA_S4PAR 0 DIR[1:0] 0x0078 0 1 TCIE Res Reset value 0 FS[2:0] PFCTRL Res 0 CIRC Res 0 PINC Res 0 MINC Res 0 Res 0 Res 0 DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[3:0] 0 Res Res Res DMA_S4NDTR Res 0x0074 Res Reset value Res DMA_S4CR Res 0x0070 0 Res Reset value FEIE Res Res Res Res Res Res Res Res Res 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res Res Res Res Res Res Res Res Res Res Res Res DMA_S3FCR 31 30 29 28 27 26 25 24 23 22 21 20 0x006C Res Offset Register name Res Table 39. DMA register map and reset values (continued) 0 0 0 0 0 0 247/1324 248 Direct memory access controller (DMA) RM0430 Res 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S6FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PSIZE[1:0] 0 0 0 0 1 0 0 0 0 0 0 NDT[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S7FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res M1A[31:0] Reset value 0 Refer to Section 2.2.2 on page 58 for the register boundary addresses. 248/1324 0 0 M0A[31:0] DMA_S7M1AR 0x00CC 0 Res 0x00C8 0 0 PA[31:0] DMA_S7M0AR Reset value 0 0 RM0430 Rev 8 FS[2:0] 1 0 0 0 FTH[1:0] 0x00C4 0 1 DMDIS Reset value 0 0 DMA_S7PAR 0x00C0 MSIZE[1:0] PINCOS PL[1:0] 0 CIRC Res 0 PINC Res 0 MINC Res 0 Res 0 Res 0 DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[3:0] 0 Res Res Res DMA_S7NDTR Res 0x00BC Res Reset value Res Res DMA_S7CR 0x00B8 0 Res Reset value FS[2:0] FTH[1:0] 0 EN 0 DMDIS 0 TEIE 0 DMEIE 0 HTIE 0 TCIE 0 PFCTRL Reset value Res M1A[31:0] Res DMA_S6M1AR 0x00B4 0 Res 0x00B0 0 PA[31:0] DMA_S6M0AR Reset value 0 DIR[1:0] Reset value 0 Res DMA_S6PAR 0x00A8 0x00AC 0 Res Reset value NDT[15:0] FEIE Res 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res Res Res Res Res Res Res Res Res Res Res Res DMA_S6NDTR 31 30 29 28 27 26 25 24 23 22 21 20 0x00A4 Res Offset Register name Res Table 39. DMA register map and reset values (continued) 0 1 RM0430 Interrupts and events 10 Interrupts and events 10.1 Nested vectored interrupt controller (NVIC) 10.1.1 NVIC features The nested vector interrupt controller NVIC includes the following features: • 52 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M4 with FPU) • 16 programmable priority levels (4 bits of interrupt priority are used) • low-latency exception and interrupt handling • power management control • implementation of system control registers The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. All interrupts including the core exceptions are managed by the NVIC. For more information on exceptions and NVIC programming, refer to programming manual PM0214. 10.1.2 SysTick calibration value register The SysTick calibration value is fixed to 10500, which gives a reference time base of 1 ms with the SysTick clock set to 10.5 MHz (HCLK/8, with HCLK set to 84 MHz). 10.1.3 Interrupt and exception vectors See Table 40, for the vector table for the STM32F413/423 devices. 10.2 External interrupt/event controller (EXTI) The external interrupt/event controller consists of up to 23 edge detectors for generating event/interrupt requests. Each input line can be independently configured to select the type (interrupt or event) and the corresponding trigger event (rising or falling or both). Each line can also masked independently. A pending register maintains the status line of the interrupt requests. RM0430 Rev 8 249/1324 263 Interrupts and events RM0430 Position Priority Table 40. Vector table for STM32F413/423 Type of priority - - - - Reserved 0x0000 0000 - -3 fixed Reset Reset 0x0000 0004 - -2 fixed NMI Non maskable interrupt, Clock Security System 0x0000 0008 - -1 fixed HardFault All class of fault 0x0000 000C - 0 settable MemManage Memory management 0x0000 0010 - 1 settable BusFault Pre-fetch fault, memory access fault 0x0000 0014 - 2 settable UsageFault Undefined instruction or illegal state 0x0000 0018 - - - - Reserved 0x0000 001C 0x0000 002B - 3 settable SVCall System Service call via SWI instruction 0x0000 002C - 4 settable Debug Monitor Debug Monitor 0x0000 0030 - - Reserved 0x0000 0034 - Acronym Description Address - 5 settable PendSV Pendable request for system service 0x0000 0038 - 6 settable Systick System tick timer 0x0000 003C 0 7 settable WWDG Window Watchdog interrupt 0x0000 0040 1 8 settable PVD PVD through EXTI line detection interrupt 0x0000 0044 2 9 settable TAMP_STAMP Tamper and TimeStamp interrupts through the EXTI line 0x0000 0048 3 10 settable RTC_WKUP RTC Wakeup interrupt through the EXTI line 0x0000 004C 4 11 settable FLASH Flash global interrupt 0x0000 0050 5 12 settable RCC RCC global interrupt 0x0000 0054 6 13 settable EXTI0 EXTI Line0 interrupt 0x0000 0058 7 14 settable EXTI1 EXTI Line1 interrupt 0x0000 005C 8 15 settable EXTI2 EXTI Line2 interrupt 0x0000 0060 9 16 settable EXTI3 EXTI Line3 interrupt 0x0000 0064 10 17 settable EXTI4 EXTI Line4 interrupt 0x0000 0068 11 18 settable DMA1_Stream0 DMA1 Stream0 global interrupt 0x0000 006C 12 19 settable DMA1_Stream1 DMA1 Stream1 global interrupt 0x0000 0070 13 20 settable DMA1_Stream2 DMA1 Stream2 global interrupt 0x0000 0074 14 21 settable DMA1_Stream3 DMA1 Stream3 global interrupt 0x0000 0078 250/1324 RM0430 Rev 8 RM0430 Interrupts and events Position Priority Table 40. Vector table for STM32F413/423 (continued) Type of priority 15 22 settable DMA1_Stream4 DMA1 Stream4 global interrupt 0x0000 007C 16 23 settable DMA1_Stream5 DMA1 Stream5 global interrupt 0x0000 0080 17 24 settable DMA1_Stream6 DMA1 Stream6 global interrupt 0x0000 0084 18 25 settable ADC ADC1 global interrupt 0x0000 0088 19 26 settable CAN1_TX CAN1 TX interrupt 0x0000 008C 20 27 settable CAN1_RX0 CAN1 RX0 interrupt 0x0000 0090 21 28 settable CAN1_RX1 CAN1 RX1 interrupt 0x0000 0094 22 29 settable CAN1_SCE CAN1 SCE interrupt 0x0000 0098 23 30 settable EXTI9_5 EXTI Line[9:5] interrupts 0x0000 009C 24 31 settable TIM1_BRK_TIM9 TIM1 Break interrupt and TIM9 global interrupt 0x0000 00A0 25 32 settable TIM1_UP_TIM10 TIM1 update interrupt and TIM10 global interrupt 0x0000 00A4 26 33 settable TIM_TRG_COM_TIM11 TIM1 Trigger & Commutation interrupts and TIM11 global interrupt 0x0000 00A8 27 34 settable TIM1_CC TIM1 Capture Compare interrupt 0x0000 00AC 28 35 settable TIM2 TIM2 global interrupt 0x0000 00B0 29 36 settable TIM3 TIM3 global interrupt 0x0000 00B4 30 37 settable TIM4 TIM4 global interrupt 0x0000 00B8 31 38 settable I2C1_EVT I2C1 global event interrupt 0x0000 00BC 32 39 settable I2C1_ERR I2C1 global error interrupt 0x0000 00C0 33 40 settable I2C2_EVT I2C2 global event interrupt 0x0000 00C4 34 41 settable I2C2_ERR I2C2 global error interrupt 0x0000 00C8 35 42 settable SPI1 SPI1 global interrupt 0x0000 00CC 36 43 settable SPI2 SPI2 global interrupt 0x0000 00D0 37 44 settable USART1 USART1 global interrupt 0x0000 00D4 38 45 settable USART2 USART2 global interrupt 0x0000 00D8 39 46 settable USART 3 USART3 global interrupt 0x0000 00DC 40 47 settable EXTI15_10 EXTI Line[15:10] interrupts 0x0000 00E0 Acronym Description Address RM0430 Rev 8 251/1324 263 Interrupts and events RM0430 Position Priority Table 40. Vector table for STM32F413/423 (continued) Type of priority 41 48 settable EXTI17 / RTC Alarm EXTI Line 17 interrupt / RTC Alarms (A and B) through EXTI line interrupt 0x0000 00E4 42 49 settable EXTI18 / OTG_FS_WKUP EXTI Line 18 interrupt / USB On-The-Go FS Wakeup through EXTI line interrupt 0x0000 00E8 43 50 settable TIM8_BRK_TIM12 TIM8 Break interrupt TIM12 global interrupt 0x0000 00EC 44 51 settable TIM8_UP_TIM13 TIM8 Update interrupt TIM13 global interrupt 0x0000 00F0 45 52 settable TIM8_TRG_COM_TIM14 TIM8 Trigger & Commutation interrupt TIM14 global interrupt 0x0000 00F4 46 53 settable TIM8_CC TIM8 Cap/Com interrupt 0x0000 00F8 47 54 settable DMA1_Stream7 DMA1 global interrupt Channel 7 0x0000 00FC 48 55 settable FSMC FSMC global interrupt 0x0000 0100 49 56 settable SDIO SDIO global interrupt 0x0000 0104 50 57 settable TIM5 TIM5 global interrupt 0x0000 0108 51 58 settable SPI3 SPI3 global interrupt 0x0000 010C 52 59 settable UART4 UART4 global interrupt 0x0000 0110 53 60 settable UART5 UART5 global interrupt 0x0000 0114 54 61 settable TIM6_GLB_IT/DAC1/DAC2 TIMER6, DAC1 and DAC2 global interrupt 0x0000 0118 55 62 settable TIM7 TIM7 global interrupt 0x0000 011C 56 63 settable DMA2_Stream0 DMA2 Stream0 global interrupt 0x0000 0120 57 64 settable DMA2_Stream1 DMA2 Stream1 global interrupt 0x0000 0124 58 65 settable DMA2_Stream2 DMA2 Stream2 global interrupt 0x0000 0128 59 66 settable DMA2_Stream3 DMA2 Stream3 global interrupt 0x0000 012C 60 67 settable DMA2_Stream4 DMA2 Stream4 global interrupt 0x0000 0130 61 68 settable DFSDM1_FLT0 SD filter0 global interrupt 0x0000 0134 62 69 settable DFSDM1_FLT1 SD filter1 global interrupt 0x0000 0138 63 70 settable CAN2_TX CAN2 TX interrupt 0x0000 013C 64 71 settable CAN2_RX0 BXCAN2 RX0 interrupt 0x0000 0140 65 72 settable CAN2_RX1 BXCAN2 RX1 interrupt 0x0000 0144 66 73 settable CAN2_SCE CAN2 SCE interrupt 0x0000 0148 252/1324 Acronym Description Address RM0430 Rev 8 RM0430 Interrupts and events Position Priority Table 40. Vector table for STM32F413/423 (continued) Type of priority 67 74 settable OTG_FS USB On The Go FS global interrupt 0x0000 014C 68 75 settable DMA2_Stream5 DMA2 Stream5 global interrupt 0x0000 0150 69 76 settable DMA2_Stream6 DMA2 Stream6 global interrupt 0x0000 0154 70 77 settable DMA2_Stream7 DMA2 Stream7 global interrupt 0x0000 0158 71 78 settable USART6 USART6 global interrupt 0x0000 015C 72 79 settable Acronym Description Address I2C3_EV I 2C3 event interrupt 0x0000 0160 73 80 settable I2C3_ER I2C3 error interrupt 0x0000 0164 74 81 settable CAN3_TX CAN 3 TX interrupt 0x0000 0168 75 82 settable CAN3_RX0 BxCAN 3 RX0 interrupt 0x0000 016C 76 83 settable CAN3_RX1 BxCAN 3 RX1 interrupt 0x0000 0170 77 84 settable CAN3_SCE CAN 3 SCE interrupt 0x0000 0174 79 86 settable CRYPTO(1) AES global interrupt 0x0000 017C 80 87 settable RNG RNG global interrupt 0x0000 0180 81 88 settable FPU FPU global interrupt 0x0000 0184 82 89 settable UART7 UART7 global interrupt 0x0000 0188 83 90 settable UART8 UART8 global interrupt 0x0000 018C 84 91 settable SPI4 SPI4 global interrupt 0x0000 0190 85 92 settable SPI5 SPI5 global interrupt 0x0000 0194 87 94 settable SAI1 SAI1 global interrupt 0x0000 019C 88 95 settable UART9 UART9 global interrupt 0x0000 01A0 89 96 settable UART10 UART10 global interrupt 0x0000 01A4 92 99 settable Quad-SPI Quad-SPI global interrupt 0x0000 01B0 95 102 settable I2CFMP1 event I2CFMP1 event interrupt 0x0000 01BC 96 103 settable I2CFMP1 error I2CFMP1 error interrupt 0x0000 01C0 97 104 settable EXTI23 / LPTIM1 LP Timer global interrupt or EXTI interrupt line 23 0x0000 01C4 98 105 settable DFSDM2_FLT0 DFSDM2 SD filter 0 global interrupt 0x0000 01C8 99 106 settable DFSDM2_FLT1 DFSDM2 SD filter 1 global interrupt 0x0000 01CC 100 107 settable DFSDM2_FLT2 DFSDM2 SD filter 2 global interrupt 0x0000 01D0 101 108 settable DFSDM2_FLT3 DFSDM2 SD filter 3 global interrupt 0x0000 01D4 1. Only available for STM32F423xx. RM0430 Rev 8 253/1324 263 Interrupts and events 10.2.1 RM0430 EXTI main features The main features of the EXTI controller are the following: 10.2.2 • independent trigger and mask on each interrupt/event line • dedicated status bit for each interrupt line • generation of up to 23 software event/interrupt requests • detection of external signals with a pulse width lower than the APB2 clock period. Refer to the electrical characteristics section of the STM32F4xx datasheets for details on this parameter. EXTI block diagram Figure 29 shows the block diagram. Figure 29. External interrupt/event controller block diagram $0%$$3%EXV 3&/. 3HULSKHUDOLQWHUIDFH 3HQGLQJ UHTXHVW UHJLVWHU ,QWHUUXSW PDVN UHJLVWHU 6RIWZDUH LQWHUUXSW HYHQW UHJLVWHU 7R19,&LQWHUUXSW FRQWUROOHU 5LVLQJ WULJJHU VHOHFWLRQ UHJLVWHU )DOOLQJ WULJJHU VHOHFWLRQ UHJLVWHU 3XOVH JHQHUDWRU (GJHGHWHFW FLUFXLW ,QSXW OLQH (YHQW PDVN UHJLVWHU 069 10.2.3 Wakeup event management The STM32F4xx are able to handle external or internal events in order to wake up the core (WFE). The wakeup event can be generated either by: • 254/1324 enabling an interrupt in the peripheral control register but not in the NVIC, and enabling the SEVONPEND bit in the Cortex®-M4 with FPU System Control register. When the MCU resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC RM0430 Rev 8 RM0430 Interrupts and events IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. • or configuring an external or internal EXTI line in event mode. When the CPU resumes from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC IRQ channel pending bit as the pending bit corresponding to the event line is not set. To use an external line as a wakeup event, refer to Section 10.2.4: Functional description. RM0430 Rev 8 255/1324 263 Interrupts and events 10.2.4 RM0430 Functional description To generate the interrupt, the interrupt line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the interrupt request by writing a ‘1’ to the corresponding bit in the interrupt mask register. When the selected edge occurs on the external interrupt line, an interrupt request is generated. The pending bit corresponding to the interrupt line is also set. This request is reset by writing a ‘1’ in the pending register. To generate the event, the event line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the event request by writing a ‘1’ to the corresponding bit in the event mask register. When the selected edge occurs on the event line, an event pulse is generated. The pending bit corresponding to the event line is not set. An interrupt/event request can also be generated by software by writing a ‘1’ in the software interrupt/event register. Hardware interrupt selection To configure the 23 lines as interrupt sources, use the following procedure: • Configure the mask bits of the 23 interrupt lines (EXTI_IMR) • Configure the Trigger selection bits of the interrupt lines (EXTI_RTSR and EXTI_FTSR) • Configure the enable and mask bits that control the NVIC IRQ channel mapped to the external interrupt controller (EXTI) so that an interrupt coming from one of the 23 lines can be correctly acknowledged. Hardware event selection To configure the 23 lines as event sources, use the following procedure: • Configure the mask bits of the 23 event lines (EXTI_EMR) • Configure the Trigger selection bits of the event lines (EXTI_RTSR and EXTI_FTSR) Software interrupt/event selection The 23 lines can be configured as software interrupt/event lines. The following is the procedure to generate a software interrupt. 256/1324 • Configure the mask bits of the 23 interrupt/event lines (EXTI_IMR, EXTI_EMR) • Set the required bit in the software interrupt register (EXTI_SWIER) RM0430 Rev 8 RM0430 10.2.5 Interrupts and events External interrupt/event line mapping Up to STM32F413/423 are connected to the 16 external interrupt/event lines in the following manner: Figure 30. External interrupt/event GPIO mapping (;7,>@ELWVLQWKH6<6&)*B(;7,&5UHJLVWHU 3$ 3% 3& 3' 3( 3) (;7, 3* 3+ (;7,>@ELWVLQWKH6<6&)*B(;7,&5UHJLVWHU 3$ 3% 3& 3' 3( 3) 3* 3+ (;7, (;7,>@ELWVLQWKH6<6&)*B(;7,&5UHJLVWHU 3$ 3% 3& 3' 3( 3) 3* (;7, 06Y9 The five other EXTI lines are connected as follows: • EXTI line 16 is connected to the PVD output • EXTI line 17 is connected to the RTC Alarm event • EXTI line 18 is connected to the USB OTG FS Wakeup event • EXTI line 21 is connected to the RTC Tamper and TimeStamp events • EXTI line 22 is connected to the RTC Wakeup event • EXTI line 23 is connected to the LPTIM1 asynchronous event RM0430 Rev 8 257/1324 263 Interrupts and events 10.3 RM0430 EXTI registers Refer to Section 1.2: List of abbreviations for registers for a list of abbreviations used in register descriptions. 10.3.1 Interrupt mask register (EXTI_IMR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. MR23 MR22 MR21 Res. Res. MR18 MR17 MR16 rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:21 MR[23:21]: Interrupt mask on line x 0: Interrupt request from line x is masked 1: Interrupt request from line x is not masked Bits 20:19 Reserved, must be kept at reset value. Bits 18:0 MR[18:0]: Interrupt mask on line x 0: Interrupt request from line x is masked 1: Interrupt request from line x is not masked 10.3.2 Event mask register (EXTI_EMR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. MR23 MR22 MR21 Res. Res. MR18 MR17 MR16 rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:21 MR[23:21]: Interrupt mask on line x 0: Interrupt request from line x is masked 1: Interrupt request from line x is not masked Bits 20:19 Reserved, must be kept at reset value. Bits 18:0 MR[18:0]: Interrupt mask on line x 0: Interrupt request from line x is masked 1: Interrupt request from line x is not masked 258/1324 RM0430 Rev 8 RM0430 Interrupts and events 10.3.3 Rising trigger selection register (EXTI_RTSR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. TR23 TR22 TR21 Res. Res. TR18 TR17 TR16 rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:21 TR[23:21]: Rising trigger event configuration bit of line x 0: Rising trigger disabled (for Event and Interrupt) for input line 1: Rising trigger enabled (for Event and Interrupt) for input line Bits 20:19 Reserved, must be kept at reset value. Bits 18:0 TR[18:0]: Rising trigger event configuration bit of line x 0: Rising trigger disabled (for Event and Interrupt) for input line 1: Rising trigger enabled (for Event and Interrupt) for input line Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines. If a rising edge occurs on the external interrupt line while writing to the EXTI_RTSR register, the pending bit is be set. Rising and falling edge triggers can be set for the same interrupt line. In this configuration, both generate a trigger condition. RM0430 Rev 8 259/1324 263 Interrupts and events 10.3.4 RM0430 Falling trigger selection register (EXTI_FTSR) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. TR23 TR22 TR21 Res. Res. TR18 TR17 TR16 rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:21 TR[23:21]: Falling trigger event configuration bit of line x 0: Falling trigger disabled (for Event and Interrupt) for input line 1: Falling trigger enabled (for Event and Interrupt) for input line. Bits 20:19 Reserved, must be kept at reset value. Bits 18:0 TR[18:0]: Falling trigger event configuration bit of line x 0: Falling trigger disabled (for Event and Interrupt) for input line 1: Falling trigger enabled (for Event and Interrupt) for input line. Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines. If a falling edge occurs on the external interrupt line while writing to the EXTI_FTSR register, the pending bit is not set. Rising and falling edge triggers can be set for the same interrupt line. In this configuration, both generate a trigger condition. 260/1324 RM0430 Rev 8 RM0430 Interrupts and events 10.3.5 Software interrupt event register (EXTI_SWIER) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 SWIER SWIER SWIER SWIER SWIER SWIER SWIER 15 14 13 12 11 10 9 rw rw rw rw rw rw rw 23 22 21 SWIER SWIER SWIER 23 22 21 rw rw rw 7 6 5 20 19 Res. Res. 4 3 18 17 16 SWIER SWIER SWIER 18 17 16 rw rw rw 2 1 0 SWIER SWIER SWIER SWIER SWIER SWIER SWIER SWIER SWIER 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:21 SWIER[23:21]: Software Interrupt on line x If interrupt are enabled on line x in the EXTI_IMR register, writing '1' to SWIERx bit when it is set at '0' sets the corresponding pending bit in the EXTI_PR register, thus resulting in an interrupt request generation. This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a 1 to the bit). Bits 20:19 Reserved, must be kept at reset value. Bits 18:0 SWIER[18:0]: Software Interrupt on line x If interrupt are enabled on line x in the EXTI_IMR register, writing '1' to SWIERx bit when it is set at '0' sets the corresponding pending bit in the EXTI_PR register, thus resulting in an interrupt request generation. This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a 1 to the bit). RM0430 Rev 8 261/1324 263 Interrupts and events 10.3.6 RM0430 Pending register (EXTI_PR) Address offset: 0x14 Reset value: undefined 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. PR23 PR22 PR21 Res. Res. PR18 PR17 PR16 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PR15 PR14 PR13 PR12 PR11 PR10 PR9 PR8 PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Bits 31:24 Reserved, must be kept at reset value. Bits 23:21 PR[22:21]: Pending bit 0: No trigger request occurred 1: selected trigger request occurred This bit is set when the selected edge event arrives on the external interrupt line. This bit is cleared by programming it to ‘1’. Bits 20:19 Reserved, must be kept at reset value. Bits 18:0 PR[18:0]: Pending bit 0: No trigger request occurred 1: selected trigger request occurred This bit is set when the selected edge event arrives on the external interrupt line. This bit is cleared by programming it to ‘1’. 262/1324 RM0430 Rev 8 RM0430 10.3.7 Interrupts and events EXTI register map Table 41 gives the EXTI register map and the reset values. Reset value 0 0 0 Res. Res. 0 Res. Res. 0 0 0 0 0 0 0 0 Res. Res. 0 0 0 0 0 0 0 0 Res. Res. 0 0 0 0 0 0 0 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TR[18:0] 0 Res. 0 TR[18:0] 0 0 0 0 0 0 0 SWIER[18:0] 0 0 0 0 0 0 0 0 Res. 0 0 MR[18:0] 0 0 PR [23:21] Res. Res. Res. Res. Res. Res. EXTI_PR Res. 0x14 0 SWIER [23:21] 0 Res. Reset value 0 MR[18:0] 0 Res. Res. Res. Res. Res. Res. Res. EXTI_SWIER Res. 0x10 0 Res. Reset value 0 TR [23:21] Res. Res. Res. Res. Res. Res. EXTI_FTSR Res. 0x0C 0 Res. Reset value 0 TR [23:21] Res. Res. Res. Res. Res. Res. EXTI_RTSR Res. 0x08 0 Res. Reset value 0 MR [23:21] Res. Res. Res. Res. Res. Res. Res. EXTI_EMR 0 Res. Reset value 0x04 MR [23:21] Res. Res. Res. Res. Res. Res. EXTI_IMR Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 41. External interrupt/event controller register map and reset values 0 0 0 PR[18:0] 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2: Memory map and register boundary addresses for the register boundary addresses. RM0430 Rev 8 263/1324 263 Flexible static memory controller (FSMC) 11 RM0430 Flexible static memory controller (FSMC) The Flexible static memory controller (FSMC) includes one memory controller: • 11.1 The NOR/PSRAM memory controller FSMC main features The FSMC functional block makes the interface with: synchronous and asynchronous static memories. Its main purposes are: • to translate AHB transactions into the appropriate external device protocol • to meet the access time requirements of the external memory devices All external memories share the addresses, data and control signals with the controller. Each external device is accessed by means of a unique chip select. The FSMC performs only one access at a time to an external device. The main features of the FSMC controller are the following: • Interface with static-memory mapped devices including: – Static random access memory (SRAM) – NOR Flash memory – PSRAM (4 memory banks) • Interface with parallel LCD modules, supporting Intel 8080 and Motorola 6800 modes. • Burst mode support for faster access to synchronous devices such as NOR Flash memory, PSRAM) • Programmable continuous clock output for asynchronous and synchronous accesses • 8-,16-bit wide data bus • Independent chip select control for each memory bank • Independent configuration for each memory bank • Write enable and byte lane select outputs for use with PSRAM, SRAM devices • External asynchronous wait control • Write FIFO with 16 x32-bit depth The Write FIFO is common to all memory controllers and consists of: • a Write Data FIFO which stores the AHB data to be written to the memory (up to 32 bits) plus one bit for the AHB transfer (burst or not sequential mode) • a Write Address FIFO which stores the AHB address (up to 28 bits) plus the AHB data size (up to 2 bits). When operating in burst mode, only the start address is stored except when crossing a page boundary (for PSRAM). In this case, the AHB burst is broken into two FIFO entries. The Write FIFO can be disabled by setting the WFDIS bit in the FSMC_BCR1 register. At startup the FSMC pins must be configured by the user application. The FSMC I/O pins which are not used by the application can be used for other purposes. The FSMC registers that define the external device type and associated characteristics are usually set at boot time and do not change until the next reset or power-up. However, the settings can be changed at any time. 264/1324 RM0430 Rev 8 RM0430 11.2 Flexible static memory controller (FSMC) FMC block diagram The FSMC consists of the following main blocks: • The AHB interface (including the FSMC configuration registers) • The NOR Flash/PSRAM/SRAM controller The block diagram is shown in the figure below. Figure 31. FSMC block diagram )60&LQWHUUXSWVWR19,& )60&B1/ RU1$'9 )60&B&/. )URPFORFN FRQWUROOHU +&/. &RQILJXUDWLRQ UHJLVWHUV 125365$0 PHPRU\ FRQWUROOHU 125365$0 VLJQDOV )60&B1%/>@ 125365$065$0 VKDUHGVLJQDOV )60&B$>@ )60&B'>@ 6KDUHGVLJQDOV )60&B1(>@ )60&B12( )60&B1:( )60&B1:$,7 125365$065$0 VKDUHGVLJQDOV 06Y9 RM0430 Rev 8 265/1324 306 Flexible static memory controller (FSMC) 11.3 RM0430 AHB interface The AHB slave interface allows internal CPUs and other bus master peripherals to access the external memories. AHB transactions are translated into the external device protocol. In particular, if the selected external memory is 16- or 8-bit wide, 32-bit wide transactions on the AHB are split into consecutive 16- or 8-bit accesses. The FSMC chip select (FSMC_NEx) does not toggle between the consecutive accesses except in case of Access mode D when the Extended mode is enabled. The FSMC generates an AHB error in the following conditions: • When reading or writing to an FSMC bank (Bank 1 to 4) which is not enabled. • When reading or writing to the NOR Flash bank while the FACCEN bit is reset in the FSMC_BCRx register. The effect of an AHB error depends on the AHB master which has attempted the R/W access: • If the access has been attempted by the Cortex®-M4 with FPU CPU, a hard fault interrupt is generated. • If the access has been performed by a DMA controller, a DMA transfer error is generated and the corresponding DMA channel is automatically disabled. The AHB clock (HCLK) is the reference clock for the FSMC. 11.3.1 Supported memories and transactions General transaction rules The requested AHB transaction data size can be 8-, 16- or 32-bit wide whereas the accessed external device has a fixed data width. This may lead to inconsistent transfers. Therefore, some simple transaction rules must be followed: • AHB transaction size and memory data size are equal There is no issue in this case. • AHB transaction size is greater than the memory size: In this case, the FSMC splits the AHB transaction into smaller consecutive memory accesses to meet the external data width. The FSMC chip select (FSMC_NEx) does not toggle between the consecutive accesses. • AHB transaction size is smaller than the memory size: The transfer may or not be consistent depending on the type of external device: – Accesses to devices that have the byte select feature (SRAM, ROM, PSRAM) In this case, the FSMC allows read/write transactions and accesses the right data through its byte lanes NBL[1:0]. Bytes to be written are addressed by NBL[1:0]. All memory bytes are read (NBL[1:0] are driven low during read transaction) and the useless ones are discarded. – Accesses to devices that do not have the byte select feature (NOR) This situation occurs when a byte access is requested to a 16-bit wide Flash memory. Since the device cannot be accessed in Byte mode (only 16-bit words can be read/written from/to the Flash memory), Write transactions and Read 266/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) transactions are allowed (the controller reads the entire 16-bit memory word and uses only the required byte). Wrap support for NOR Flash/PSRAM Wrap burst mode for synchronous memories is not supported. The memories must be configured in Linear burst mode of undefined length. Configuration registers The FSMC can be configured through a set of registers. Refer to Section 11.5.6, for a detailed description of the NOR Flash/PSRAM controller registers. 11.4 External device address mapping From the FSMC point of view, the external memory is divided into fixed-size banks of 256 Mbytes each (see Figure 32): • Bank 1 used to address up to 4 NOR Flash memory or PSRAM devices. This bank is split into 4 NOR/PSRAM subbanks with 4 dedicated chip selects, as follows: – Bank 1 - NOR/PSRAM 1 – Bank 1 - NOR/PSRAM 2 – Bank 1 - NOR/PSRAM 3 – Bank 1 - NOR/PSRAM 4 For each bank the type of memory to be used can be configured by the user application through the Configuration register. Figure 32. FSMC memory banks $GGUHVV %DQN 6XSSRUWHGPHPRU\W\SH [ %DQN [0% 125365$065$0 [))))))) 069 11.4.1 NOR/PSRAM address mapping HADDR[27:26] bits are used to select one of the four memory banks as shown in Table 42. Table 42. NOR/PSRAM bank selection HADDR[27:26](1) Selected bank 00 Bank 1 - NOR/PSRAM 1 01 Bank 1 - NOR/PSRAM 2 10 Bank 1 - NOR/PSRAM 3 11 Bank 1 - NOR/PSRAM 4 1. HADDR are internal AHB address lines that are translated to external memory. RM0430 Rev 8 267/1324 306 Flexible static memory controller (FSMC) RM0430 The HADDR[25:0] bits contain the external memory address. Since HADDR is a byte address whereas the memory is addressed at word level, the address actually issued to the memory varies according to the memory data width, as shown in the following table. Table 43. NOR/PSRAM External memory address Memory width(1) Data address issued to the memory Maximum memory capacity (bits) 8-bit HADDR[25:0] 64 Mbytes x 8 = 512 Mbit 16-bit HADDR[25:1] >> 1 64 Mbytes/2 x 16 = 512 Mbit 1. In case of a 16-bit external memory width, the FSMC will internally use HADDR[25:1] to generate the address for external memory FSMC_A[24:0]. Whatever the external memory width, FSMC_A[0] should be connected to external memory address A[0]. 11.5 NOR Flash/PSRAM controller The FSMC generates the appropriate signal timings to drive the following types of memories: • • • Asynchronous SRAM and ROM – 8 bits – 16 bits PSRAM (CellularRAM™) – Asynchronous mode – Burst mode for synchronous accesses – Multiplexed or non-multiplexed NOR Flash memory – Asynchronous mode – Burst mode for synchronous accesses – Multiplexed or non-multiplexed The FSMC outputs a unique chip select signal, NE[4:1], per bank. All the other signals (addresses, data and control) are shared. The FSMC supports a wide range of devices through a programmable timings among which: • Programmable wait states (up to 15) • Programmable bus turnaround cycles (up to 15) • Programmable output enable and write enable delays (up to 15) • Independent read and write timings and protocol to support the widest variety of memories and timings • Programmable continuous clock (FSMC_CLK) output. The FSMC Clock (FSMC_CLK) is a submultiple of the HCLK clock. It can be delivered to the selected external device either during synchronous accesses only or during asynchronous 268/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) and synchronous accesses depending on the CCKEN bit configuration in the FSMC_BCR1 register: • If the CCLKEN bit is reset, the FSMC generates the clock (CLK) only during synchronous accesses (Read/write transactions). • If the CCLKEN bit is set, the FSMC generates a continuous clock during asynchronous and synchronous accesses. To generate the FSMC_CLK continuous clock, Bank 1 must be configured in Synchronous mode (see Section 11.5.6: NOR/PSRAM controller registers). Since the same clock is used for all synchronous memories, when a continuous output clock is generated and synchronous accesses are performed, the AHB data size has to be the same as the memory data width (MWID) otherwise the FSMC_CLK frequency will be changed depending on AHB data transaction (refer to Section 11.5.5: Synchronous transactions for FSMC_CLK divider ratio formula). The size of each bank is fixed and equal to 64 Mbytes. Each bank is configured through dedicated registers (see Section 11.5.6: NOR/PSRAM controller registers). The programmable memory parameters include access times (see Table 44) and support for wait management (for PSRAM and NOR Flash accessed in Burst mode). Table 44. Programmable NOR/PSRAM access parameters 11.5.1 Parameter Function Access mode Unit Min. Max. Address setup Duration of the address setup phase Asynchronous AHB clock cycle (HCLK) 0 15 Address hold Duration of the address hold phase Asynchronous, muxed I/Os AHB clock cycle (HCLK) 1 15 Data setup Duration of the data setup phase Asynchronous AHB clock cycle (HCLK) 1 256 Bust turn Duration of the bus turnaround phase Asynchronous and AHB clock cycle synchronous read (HCLK) / write 0 15 Clock divide ratio Number of AHB clock cycles (HCLK) to build one memory clock cycle (CLK) Synchronous AHB clock cycle (HCLK) 2 16 Data latency Number of clock cycles to issue to the memory before the first data of the burst Synchronous Memory clock cycle (CLK) 2 17 External memory interface signals Table 45, Table 46 and Table 47 list the signals that are typically used to interface with NOR Flash memory, SRAM and PSRAM. Note: The prefix “N” identifies the signals that are active low. RM0430 Rev 8 269/1324 306 Flexible static memory controller (FSMC) RM0430 NOR Flash memory, non-multiplexed I/Os Table 45. Non-multiplexed I/O NOR Flash memory FSMC signal name I/O Function CLK O Clock (for synchronous access) A[25:0] O Address bus D[15:0] I/O Bidirectional data bus NE[x] O Chip select, x = 1..4 NOE O Output enable NWE O Write enable NL(=NADV) O Latch enable (this signal is called address valid, NADV, by some NOR Flash devices) NWAIT I NOR Flash wait input signal to the FSMC The maximum capacity is 512 Mbits (26 address lines). NOR Flash memory, 16-bit multiplexed I/Os Table 46. 16-bit multiplexed I/O NOR Flash memory FSMC signal name I/O Function CLK O Clock (for synchronous access) A[25:16] O Address bus AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus (the 16-bit address A[15:0] and data D[15:0] are multiplexed on the databus) NE[x] O Chip select, x = 1..4 NOE O Output enable NWE O Write enable NL(=NADV) O Latch enable (this signal is called address valid, NADV, by some NOR Flash devices) NWAIT I NOR Flash wait input signal to the FSMC The maximum capacity is 512 Mbits. PSRAM/SRAM, non-multiplexed I/Os Table 47. Non-multiplexed I/Os PSRAM/SRAM 270/1324 FSMC signal name I/O Function CLK O Clock (only for PSRAM synchronous access) A[25:0] O Address bus D[15:0] I/O Data bidirectional bus RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) Table 47. Non-multiplexed I/Os PSRAM/SRAM (continued) FSMC signal name I/O Function NE[x] O Chip select, x = 1..4 (called NCE by PSRAM (CellularRAM™ i.e. CRAM)) NOE O Output enable NWE O Write enable NL(= NADV) O Address valid only for PSRAM input (memory signal name: NADV) NWAIT I PSRAM wait input signal to the FSMC NBL[1:0] O Byte lane output. Byte 0 and Byte 1 control (upper and lower byte enable) The maximum capacity is 512 Mbits. PSRAM, 16-bit multiplexed I/Os Table 48. 16-Bit multiplexed I/O PSRAM FSMC signal name I/O Function CLK O Clock (for synchronous access) A[25:16] O Address bus AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus (the 16-bit address A[15:0] and data D[15:0] are multiplexed on the databus) NE[x] O Chip select, x = 1..4 (called NCE by PSRAM (CellularRAM™ i.e. CRAM)) NOE O Output enable NWE O Write enable NL(= NADV) O Address valid PSRAM input (memory signal name: NADV) NWAIT I PSRAM wait input signal to the FSMC NBL[1:0] O Byte lane output. Byte 0 and Byte 1 control (upper and lower byte enable) The maximum capacity is 512 Mbits (26 address lines). 11.5.2 Supported memories and transactions Table 49 below shows an example of the supported devices, access modes and transactions when the memory data bus is 16-bit wide for NOR Flash memory, PSRAM and SRAM. The transactions not allowed (or not supported) by the FSMC are shown in gray in this example. RM0430 Rev 8 271/1324 306 Flexible static memory controller (FSMC) RM0430 Table 49. NOR Flash/PSRAM: example of supported memories and transactions Device NOR Flash (muxed I/Os and nonmuxed I/Os) PSRAM (multiplexed I/Os and nonmultiplexed I/Os) SRAM and ROM 272/1324 Mode R/W AHB data size Memory data size Allowed/ not allowed Comments Asynchronous R 8 16 Y - Asynchronous W 8 16 N - Asynchronous R 16 16 Y - Asynchronous W 16 16 Y - Asynchronous R 32 16 Y Split into 2 FSMC accesses Asynchronous W 32 16 Y Split into 2 FSMC accesses Asynchronous page R - 16 N Mode is not supported Synchronous R 8 16 N - Synchronous R 16 16 Y - Synchronous R 32 16 Y - Asynchronous R 8 16 Y - Asynchronous W 8 16 Y Use of byte lanes NBL[1:0] Asynchronous R 16 16 Y - Asynchronous W 16 16 Y - Asynchronous R 32 16 Y Split into 2 FSMC accesses Asynchronous W 32 16 Y Split into 2 FSMC accesses Asynchronous page R - 16 N Mode is not supported Synchronous R 8 16 N - Synchronous R 16 16 Y - Synchronous R 32 16 Y - Synchronous W 8 16 Y Use of byte lanes NBL[1:0] Synchronous W 16/32 16 Y - Asynchronous R 8 / 16 16 Y - Asynchronous W 8 / 16 16 Y Use of byte lanes NBL[1:0] Asynchronous R 32 16 Y Split into 2 FSMC accesses Asynchronous W 32 16 Y Split into 2 FSMC accesses Use of byte lanes NBL[1:0] RM0430 Rev 8 RM0430 11.5.3 Flexible static memory controller (FSMC) General timing rules Signals synchronization 11.5.4 • All controller output signals change on the rising edge of the internal clock (HCLK) • In Synchronous mode (read or write), all output signals change on the rising edge of HCLK. Whatever the CLKDIV value, all outputs change as follows: – NOEL/NWEL/ NEL/NADVL/ NADVH /NBLL/ Address valid outputs change on the falling edge of FSMC_CLK clock. – NOEH/ NWEH / NEH/ NOEH/NBLH/ Address invalid outputs change on the rising edge of FSMC_CLK clock. NOR Flash/PSRAM controller asynchronous transactions Asynchronous static memories (NOR Flash, PSRAM, SRAM) • Signals are synchronized by the internal clock HCLK. This clock is not issued to the memory • The FSMC always samples the data before de-asserting the NOE signal. This guarantees that the memory data hold timing constraint is met (minimum Chip Enable high to data transition is usually 0 ns) • If the Extended mode is enabled (EXTMOD bit is set in the FSMC_BCRx register), up to four extended modes (A, B, C and D) are available. It is possible to mix A, B, C and D modes for read and write operations. For example, read operation can be performed in mode A and write in mode B. • If the Extended mode is disabled (EXTMOD bit is reset in the FSMC_BCRx register), the FSMC can operate in Mode1 or Mode2 as follows: – Mode 1 is the default mode when SRAM/PSRAM memory type is selected (MTYP = 0x0 or 0x01 in the FSMC_BCRx register) – Mode 2 is the default mode when NOR memory type is selected (MTYP = 0x10 in the FSMC_BCRx register). RM0430 Rev 8 273/1324 306 Flexible static memory controller (FSMC) RM0430 Mode 1 - SRAM/PSRAM (CRAM) The next figures show the read and write transactions for the supported modes followed by the required configuration of FSMC_BCRx, and FSMC_BTRx/FSMC_BWTRx registers. Figure 33. Mode1 read access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1%/>@ 1([ 12( 1:( +LJK GDWDGULYHQ E\PHPRU\ '>@ $''6(7 +&/.F\FOHV '$7$67 +&/.F\FOHV 069 Figure 34. Mode1 write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1%/>@ 1([ 12( +&/. 1:( '>@ GDWDGULYHQE\)60& $''6(7 '$7$67 +&/.F\FOHV +&/.F\FOHV 06Y9 274/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) The one HCLK cycle at the end of the write transaction helps guarantee the address and data hold time after the NWE rising edge. Due to the presence of this HCLK cycle, the DATAST value must be greater than zero (DATAST > 0). Table 50. FSMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in Asynchronous mode) 18:16 CPSIZE 0x0 (no effect in Asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x0 13 WAITEN 0x0 (no effect in Asynchronous mode) 12 WREN 11 Reserved 0x0 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN Don’t care 5:4 MWID As needed 3:2 MTYP As needed, exclude 0x2 (NOR Flash memory) 1 MUXE 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. As needed Table 51. FSMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD Don’t care 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST+1 HCLK cycles for write accesses, DATAST HCLK cycles for read accesses). 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles). Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). RM0430 Rev 8 275/1324 306 Flexible static memory controller (FSMC) RM0430 Mode A - SRAM/PSRAM (CRAM) OE toggling Figure 35. ModeA read access waveforms -EMORY TRANSACTION !;= .",;= .%X ./% .7% (IGH DATA DRIVEN BY MEMORY $;= !$$3%4 (#,+ CYCLES $!4!34 (#,+ CYCLES -36 1. NBL[1:0] are driven low during the read access Figure 36. ModeA write access waveforms DĞŵŽƌLJƚƌĂŶƐĂĐƚŝŽŶ Ϯϱ͗Ϭ E>ϭ͗Ϭ Edž EK ϭ,>< Et ĚĂƚĂĚƌŝǀĞŶďLJ&^D ϭϱ͗Ϭ ^d ,><ĐLJĐůĞƐ ;d^dнϭͿ ,><ĐLJĐůĞƐ D^ϯϰϰϴϬsϭ 276/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) The differences compared with Mode1 are the toggling of NOE and the independent read and write timings. Table 52. FSMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in Asynchronous mode) 18:16 CPSIZE 0x0 (no effect in Asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 13 WAITEN 0x0 (no effect in Asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN Don’t care 5:4 MWID As needed 3:2 MTYP As needed, exclude 0x2 (NOR Flash memory) 1 MUXEN 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. Table 53. FSMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). RM0430 Rev 8 277/1324 306 Flexible static memory controller (FSMC) RM0430 Table 54. FSMC_BWTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for write accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). Mode 2/B - NOR Flash Figure 37. Mode2 and mode B read access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1$'9 1([ 12( 1:( +LJK GDWDGULYHQ E\PHPRU\ '>@ $''6(7 +&/.F\FOHV '$7$67 +&/.F\FOHV 069 278/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) Figure 38. Mode2 write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1$'9 1([ 12( +&/. 1:( '>@ GDWDGULYHQE\)0& $''6(7 +&/.F\FOHV '$7$67 +&/.F\FOHV 069 Figure 39. ModeB write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1$'9 1([ 12( +&/. 1:( '>@ GDWDGULYHQE\)60& $''6(7 +&/.F\FOHV '$7$67 +&/.F\FOHV 06Y9 The differences with Mode1 are the toggling of NWE and the independent read and write timings when extended mode is set (Mode B). RM0430 Rev 8 279/1324 306 Flexible static memory controller (FSMC) RM0430 Table 55. FSMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in Asynchronous mode) 18:16 CPSIZE 0x0 (no effect in Asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 for mode B, 0x0 for mode 2 13 WAITEN 0x0 (no effect in Asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN 0x1 5:4 MWID As needed 3:2 MTYP 0x2 (NOR Flash memory) 1 MUXEN 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. Table 56. FSMC_BTRx bit fields 280/1324 Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x1 if Extended mode is set 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the access second phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the access first phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) Table 57. FSMC_BWTRx bit fields Note: Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x1 if Extended mode is set 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the access second phase (DATAST HCLK cycles) for write accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the access first phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). The FSMC_BWTRx register is valid only if the Extended mode is set (mode B), otherwise its content is don’t care. Mode C - NOR Flash - OE toggling Figure 40. ModeC read access waveforms -EMORY TRANSACTION !;= .!$6 .%X ./% .7% (IGH DATA DRIVEN BY MEMORY $;= !$$3%4 (#,+ CYCLES $!4!34 (#,+ CYCLES -36 RM0430 Rev 8 281/1324 306 Flexible static memory controller (FSMC) RM0430 Figure 41. ModeC write access waveforms -EMORY TRANSACTION !;= .!$6 .%X ./% (#,+ .7% $;= DATA DRIVEN BY &3-# !$$3%4 (#,+ CYCLES $!4!34 (#,+ CYCLES -36 The differences compared with Mode1 are the toggling of NOE and the independent read and write timings. Table 58. FSMC_BCRx bit fields 282/1324 Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in Asynchronous mode) 18:16 CPSIZE 0x0 (no effect in Asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 13 WAITEN 0x0 (no effect in Asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN 0x1 5:4 MWID 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. As needed RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) Table 58. FSMC_BCRx bit fields (continued) Bit number Bit name Value to set 3:2 MTYP 1 MUXEN 0x0 0 MBKEN 0x1 0x02 (NOR Flash memory) Table 59. FSMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x2 27:24 DATLAT 0x0 23:20 CLKDIV 0x0 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). Table 60. FSMC_BWTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x2 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for write accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). RM0430 Rev 8 283/1324 306 Flexible static memory controller (FSMC) RM0430 Mode D - asynchronous access with extended address Figure 42. ModeD read access waveforms -EMORY TRANSACTION !;= .!$6 .%X ./% .7% (IGH DATA DRIVEN BY MEMORY $;= !$$3%4 (#,+ CYCLES !$$(,$ (#,+ CYCLES $!4!34 (#,+ CYCLES Figure 43. ModeD write access waveforms 284/1324 RM0430 Rev 8 -36 RM0430 Flexible static memory controller (FSMC) The differences with Mode1 are the toggling of NOE that goes on toggling after NADV changes and the independent read and write timings. Table 61. FSMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in Asynchronous mode) 18:16 CPSIZE 0x0 (no effect in Asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 13 WAITEN 0x0 (no effect in Asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN Set according to memory support 5:4 MWID As needed 3:2 MTYP As needed 1 MUXEN 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. Table 62. FSMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x3 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Duration of the middle phase of the read access (ADDHLD HCLK cycles) 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 1. Time between NEx high to NEx low (BUSTURN HCLK). RM0430 Rev 8 285/1324 306 Flexible static memory controller (FSMC) RM0430 Table 63. FSMC_BWTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x3 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST + 1 HCLK cycles) for write accesses. 7:4 ADDHLD Duration of the middle phase of the write access (ADDHLD HCLK cycles) 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 1. Time between NEx high to NEx low (BUSTURN HCLK). Muxed mode - multiplexed asynchronous access to NOR Flash memory Figure 44. Muxed read access waveforms 286/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) Figure 45. Muxed write access waveforms 0HPRU\WUDQVDFWLRQ $>@ 1$'9 1([ 12( +&/. 1:( /RZHUDGGUHVV $'>@ GDWDGULYHQE\)60& $''6(7 $''+/' '$7$67 +&/.F\FOHV +&/.F\FOHV +&/.F\FOHV 06Y9 The difference with ModeD is the drive of the lower address byte(s) on the data bus. Table 64. FSMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in Asynchronous mode) 18:16 CPSIZE 0x0 (no effect in Asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x0 13 WAITEN 0x0 (no effect in Asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN 0x1 5:4 MWID 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. As needed RM0430 Rev 8 287/1324 306 Flexible static memory controller (FSMC) RM0430 Table 64. FSMC_BCRx bit fields (continued) Bit number Bit name Value to set 3:2 MTYP 1 MUXEN 0x1 0 MBKEN 0x1 0x2 (NOR Flash memory) or 0x1(PSRAM) Table 65. FSMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles for read accesses and DATAST+1 HCLK cycles for write accesses). 7:4 ADDHLD Duration of the middle phase of the access (ADDHLD HCLK cycles). 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles). Minimum value for ADDSET is 1. Time between NEx high to NEx low (BUSTURN HCLK). WAIT management in asynchronous accesses If the asynchronous memory asserts the WAIT signal to indicate that it is not yet ready to accept or to provide data, the ASYNCWAIT bit has to be set in FSMC_BCRx register. If the WAIT signal is active (high or low depending on the WAITPOL bit), the second access phase (Data setup phase), programmed by the DATAST bits, is extended until WAIT becomes inactive. Unlike the data setup phase, the first access phases (Address setup and Address hold phases), programmed by the ADDSET and ADDHLD bits, are not WAIT sensitive and so they are not prolonged. The data setup phase must be programmed so that WAIT can be detected 4 HCLK cycles before the end of the memory transaction. The following cases must be considered: 288/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) 1. The memory asserts the WAIT signal aligned to NOE/NWE which toggles: DATAST ≥ ( 4 × HCLK ) + max_wait_assertion_time 2. The memory asserts the WAIT signal aligned to NEx (or NOE/NWE not toggling): if max_wait_assertion_time > address_phase + hold_phase then: DATAST ≥ ( 4 × HCLK ) + ( max_wait_assertion_time – address_phase – hold_phase ) otherwise DATAST ≥ 4 × HCLK where max_wait_assertion_time is the maximum time taken by the memory to assert the WAIT signal once NEx/NOE/NWE is low. Figure 46 and Figure 47 show the number of HCLK clock cycles that are added to the memory access phase after WAIT is released by the asynchronous memory (independently of the above cases). Figure 46. Asynchronous wait during a read access waveforms 0HPRU\WUDQVDFWLRQ $>@ DGGUHVVSKDVH GDWDVHWXSSKDVH 1([ .7!)4 DONT CARE DONT CARE 12( GDWDGULYHQE\PHPRU\ '>@ +&/. 069 1. NWAIT polarity depends on WAITPOL bit setting in FSMC_BCRx register. RM0430 Rev 8 289/1324 306 Flexible static memory controller (FSMC) RM0430 Figure 47. Asynchronous wait during a write access waveforms 0HPRU\WUDQVDFWLRQ $>@ DGGUHVVSKDVH GDWDVHWXSSKDVH 1([ .7!)4 DONT CARE DONT CARE +&/. 1:( '>@ GDWDGULYHQE\)60& +&/. 069 1. NWAIT polarity depends on WAITPOL bit setting in FSMC_BCRx register. 11.5.5 Synchronous transactions The memory clock, FSMC_CLK, is a submultiple of HCLK. It depends on the value of CLKDIV and the MWID/ AHB data size, following the formula given below: FSMC_CLK divider ratio = max (CLKDIV + 1,MWID ( AHB data size )) Whatever MWID size: 16 or 8-bit, the FSMC_CLK divider ratio is always defined by the programmed CLKDIV value. Example: • If CLKDIV=1, MWID = 16 bits, AHB data size=8 bits, FSMC_CLK=HCLK/2. NOR Flash memories specify a minimum time from NADV assertion to CLK high. To meet this constraint, the FSMC does not issue the clock to the memory during the first internal clock cycle of the synchronous access (before NADV assertion). This guarantees that the rising edge of the memory clock occurs in the middle of the NADV low pulse. Data latency versus NOR memory latency The data latency is the number of cycles to wait before sampling the data. The DATLAT value must be consistent with the latency value specified in the NOR Flash configuration register. The FSMC does not include the clock cycle when NADV is low in the data latency count. 290/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) Caution: Some NOR Flash memories include the NADV Low cycle in the data latency count, so that the exact relation between the NOR Flash latency and the FSMC DATLAT parameter can be either: • NOR Flash latency = (DATLAT + 2) CLK clock cycles • or NOR Flash latency = (DATLAT + 3) CLK clock cycles Some recent memories assert NWAIT during the latency phase. In such cases DATLAT can be set to its minimum value. As a result, the FSMC samples the data and waits long enough to evaluate if the data are valid. Thus the FSMC detects when the memory exits latency and real data are processed. Other memories do not assert NWAIT during latency. In this case the latency must be set correctly for both the FSMC and the memory, otherwise invalid data are mistaken for good data, or valid data are lost in the initial phase of the memory access. Single-burst transfer When the selected bank is configured in Burst mode for synchronous accesses, if for example an AHB single-burst transaction is requested on 16-bit memories, the FSMC performs a burst transaction of length 1 (if the AHB transfer is 16 bits), or length 2 (if the AHB transfer is 32 bits) and de-assert the chip select signal when the last data is strobed. Such transfers are not the most efficient in terms of cycles compared to asynchronous read operations. Nevertheless, a random asynchronous access would first require to re-program the memory access mode, which would altogether last longer. Cross boundary page for CellularRAM™ 1.5 CellularRAM™ 1.5 does not allow burst access to cross the page boundary. The FSMC controller allows to split automatically the burst access when the memory page size is reached by configuring the CPSIZE bits in the FSMC_BCR1 register following the memory page size. Wait management For synchronous NOR Flash memories, NWAIT is evaluated after the programmed latency period, which corresponds to (DATLAT+2) CLK clock cycles. If NWAIT is active (low level when WAITPOL = 0, high level when WAITPOL = 1), wait states are inserted until NWAIT is inactive (high level when WAITPOL = 0, low level when WAITPOL = 1). When NWAIT is inactive, the data is considered valid either immediately (bit WAITCFG = 1) or on the next clock edge (bit WAITCFG = 0). During wait-state insertion via the NWAIT signal, the controller continues to send clock pulses to the memory, keeping the chip select and output enable signals valid. It does not consider the data as valid. In Burst mode, there are two timing configurations for the NOR Flash NWAIT signal: • The Flash memory asserts the NWAIT signal one data cycle before the wait state (default after reset). • The Flash memory asserts the NWAIT signal during the wait state The FSMC supports both NOR Flash wait state configurations, for each chip select, thanks to the WAITCFG bit in the FSMC_BCRx registers (x = 0..3). RM0430 Rev 8 291/1324 306 Flexible static memory controller (FSMC) RM0430 Figure 48. Wait configuration waveforms 0HPRU\WUDQVDFWLRQ EXUVWRIKDOIZRUGV +&/. &/. $>@ DGGU>@ 1$'9 1:$,7 :$,7&)* 1:$,7 :$,7&)* LQVHUWHGZDLWVWDWH $'>@ DGGU>@ GDWD GDWD GDWD DLF 292/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) Figure 49. Synchronous multiplexed read mode waveforms - NOR, PSRAM (CRAM) 0HPRU\WUDQVDFWLRQ EXUVWRIKDOIZRUGV +&/. &/. $>@ DGGU>@ 1([ 12( 1:( +LJK 1$'9 1:$,7 :$,7&)* '$7/$7 &/.F\FOHV $'>@ $GGU>@ LQVHUWHGZDLWVWDWH GDWD FORFN FORFN F\FOH F\FOH GDWD GDWD GDWD 'DWDVWUREHV 'DWDVWUREHV DLI 1. Byte lane outputs (NBL are not shown; for NOR access, they are held high, and, for PSRAM (CRAM) access, they are held low. Table 66. FSMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 18:16 CPSIZE 15 ASYNCWAIT 0x0 14 EXTMOD 0x0 13 WAITEN To be set to 1 if the memory supports this feature, to be kept at 0 otherwise 12 WREN No effect on synchronous read 11 WAITCFG To be set according to memory 10 Reserved 0x0 0x000 No effect on synchronous read 0x0 (no effect in Asynchronous mode) RM0430 Rev 8 293/1324 306 Flexible static memory controller (FSMC) RM0430 Table 66. FSMC_BCRx bit fields (continued) Bit number Bit name Value to set 9 WAITPOL To be set according to memory 8 BURSTEN 0x1 7 Reserved 0x1 6 FACCEN Set according to memory support (NOR Flash memory) 5-4 MWID As needed 3-2 MTYP 0x1 or 0x2 1 MUXEN As needed 0 MBKEN 0x1 Table 67. FSMC_BTRx bit fields 294/1324 Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27-24 DATLAT Data latency 27-24 DATLAT Data latency 23-20 CLKDIV 0x0 to get CLK = HCLK 0x1 to get CLK = 2 × HCLK .. 19-16 BUSTURN 15-8 DATAST Don’t care 7-4 ADDHLD Don’t care 3-0 ADDSET Don’t care Time between NEx high to NEx low (BUSTURN HCLK). RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) Figure 50. Synchronous multiplexed write mode waveforms - PSRAM (CRAM) -EMORY TRANSACTION BURST OF HALF WORDS (#,+ #,+ !;= ADDR;= .%X (I : ./% .7% .!$6 .7!)4 7!)4#&' $!4,!4 #,+ CYCLES !$;= !DDR;= INSERTED WAIT STATE DATA DATA CLOCK CLOCK AIF 1. The memory must issue NWAIT signal one cycle in advance, accordingly WAITCFG must be programmed to 0. 2. Byte Lane (NBL) outputs are not shown, they are held low while NEx is active. Table 68. FSMC_BCRx bit fields Bit number Bit name 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 18:16 15 Value to set 0x000 CBURSTRW 0x1 CPSIZE As needed (0x1 for CRAM 1.5) ASYNCWAIT 0x0 14 EXTMOD 0x0 13 WAITEN To be set to 1 if the memory supports this feature, to be kept at 0 otherwise. RM0430 Rev 8 295/1324 306 Flexible static memory controller (FSMC) RM0430 Table 68. FSMC_BCRx bit fields (continued) Bit number Bit name Value to set 12 WREN 0x1 11 WAITCFG 0x0 10 Reserved 0x0 9 WAITPOL to be set according to memory 8 BURSTEN no effect on synchronous write 7 Reserved 0x1 6 FACCEN Set according to memory support 5-4 MWID As needed 3-2 MTYP 0x1 1 MUXEN As needed 0 MBKEN 0x1 Table 69. FSMC_BTRx bit fields 296/1324 Bit number Bit name Value to set 31-30 Reserved 0x0 29:28 ACCMOD 0x0 27-24 DATLAT Data latency 23-20 CLKDIV 0x0 to get CLK = HCLK 0x1 to get CLK = 2 × HCLK 19-16 BUSTURN 15-8 DATAST Don’t care 7-4 ADDHLD Don’t care 3-0 ADDSET Don’t care Time between NEx high to NEx low (BUSTURN HCLK). RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) 11.5.6 NOR/PSRAM controller registers SRAM/NOR-Flash chip-select control register for bank x (FSMC_BCRx) (x = 1 to 4) Address offset: 8 * (x – 1), (x = 1 to 4) Reset value: Bank 1: 0x0000 30DB Reset value: Bank 2: 0x0000 30D2 Reset value: Bank 3: 0x0000 30D2 Reset value: Bank 4: 0x0000 30D2 This register contains the control information of each memory bank, used for SRAMs, PSRAM and NOR Flash memories. 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 15 14 13 12 11 ASYNC WAIT EXT MOD WAIT EN WREN WAIT CFG rw rw rw rw rw 26 Res. 25 Res. 24 Res. 10 9 8 Res. WAIT POL BURST EN rw rw 23 Res. 22 Res. 7 6 Res. FACC EN rw 21 20 19 WFDIS CCLK EN CBURST RW 18 rw rw rw rw 5 4 3 2 16 CPSIZE[2:0] MWID[1:0] MTYP[1:0] rw rw rw 17 rw rw rw 1 0 MUX EN MBK EN rw rw Bits 31:22 Reserved, must be kept at reset value. Bit 21 WFDIS: Write FIFO Disable This bit disables the Write FIFO used by the FSMC controller. 0: Write FIFO enabled (Default after reset) 1: Write FIFO disabled Note: The WFDIS bit of the FSMC_BCR2..4 registers is don’t care. It is only enabled through the FSMC_BCR1 register. Bit 20 CCLKEN: Continuous Clock Enable. This bit enables the FSMC_CLK clock output to external memory devices. 0: The FSMC_CLK is only generated during the synchronous memory access (read/write transaction). The FSMC_CLK clock ratio is specified by the programmed CLKDIV value in the FSMC_BCRx register (default after reset). 1: The FSMC_CLK is generated continuously during asynchronous and synchronous access. The FSMC_CLK clock is activated when the CCLKEN is set. Note: The CCLKEN bit of the FSMC_BCR2..4 registers is don’t care. It is only enabled through the FSMC_BCR1 register. Bank 1 must be configured in Synchronous mode to generate the FSMC_CLK continuous clock. Note: If CCLKEN bit is set, the FSMC_CLK clock ratio is specified by CLKDIV value in the FSMC_BTR1 register. CLKDIV in FSMC_BWTR1 is don’t care. Note: If the Synchronous mode is used and CCLKEN bit is set, the synchronous memories connected to other banks than Bank 1 are clocked by the same clock (the CLKDIV value in the FSMC_BTR2..4 and FSMC_BWTR2..4 registers for other banks has no effect.) RM0430 Rev 8 297/1324 306 Flexible static memory controller (FSMC) RM0430 Bit 19 CBURSTRW: Write burst enable. For PSRAM (CRAM) operating in Burst mode, the bit enables synchronous accesses during write operations. The enable bit for synchronous read accesses is the BURSTEN bit in the FSMC_BCRx register. 0: Write operations are always performed in Asynchronous mode 1: Write operations are performed in Synchronous mode. Bits 18:16 CPSIZE[2:0]: CRAM page size. These are used for CellularRAM™ 1.5 which does not allow burst access to cross the address boundaries between pages. When these bits are configured, the FSMC controller splits automatically the burst access when the memory page size is reached (refer to memory datasheet for page size). 000: No burst split when crossing page boundary (default after reset) 001: 128 bytes 010: 256 bytes 011: 512 bytes 100: 1024 bytes Others: reserved Bit 15 ASYNCWAIT: Wait signal during asynchronous transfers This bit enables/disables the FSMC to use the wait signal even during an asynchronous protocol. 0: NWAIT signal is not taken in to account when running an asynchronous protocol (default after reset) 1: NWAIT signal is taken in to account when running an asynchronous protocol Bit 14 EXTMOD: Extended mode enable. This bit enables the FSMC to program the write timings for non multiplexed asynchronous accesses inside the FSMC_BWTR register, thus resulting in different timings for read and write operations. 0: values inside FSMC_BWTR register are not taken into account (default after reset) 1: values inside FSMC_BWTR register are taken into account Note: When the Extended mode is disabled, the FSMC can operate in Mode1 or Mode2 as follows: – Mode 1 is the default mode when the SRAM/PSRAM memory type is selected (MTYP =0x0 or 0x01) – Mode 2 is the default mode when the NOR memory type is selected (MTYP = 0x10). Bit 13 WAITEN: Wait enable bit. This bit enables/disables wait-state insertion via the NWAIT signal when accessing the memory in Synchronous mode. 0: NWAIT signal is disabled (its level not taken into account, no wait state inserted after the programmed Flash latency period) 1: NWAIT signal is enabled (its level is taken into account after the programmed latency period to insert wait states if asserted) (default after reset) Bit 12 WREN: Write enable bit. This bit indicates whether write operations are enabled/disabled in the bank by the FSMC: 0: Write operations are disabled in the bank by the FSMC, an AHB error is reported, 1: Write operations are enabled for the bank by the FSMC (default after reset). Bit 11 WAITCFG: Wait timing configuration. The NWAIT signal indicates whether the data from the memory are valid or if a wait state must be inserted when accessing the memory in Synchronous mode. This configuration bit determines if NWAIT is asserted by the memory one clock cycle before the wait state or during the wait state: 0: NWAIT signal is active one data cycle before wait state (default after reset), 1: NWAIT signal is active during wait state (not used for PSRAM). 298/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) Bit 10 Reserved, must be kept at reset value. Bit 9 WAITPOL: Wait signal polarity bit. Defines the polarity of the wait signal from memory used for either in Synchronous or Asynchronous mode: 0: NWAIT active low (default after reset), 1: NWAIT active high. Bit 8 BURSTEN: Burst enable bit. This bit enables/disables synchronous accesses during read operations. It is valid only for synchronous memories operating in Burst mode: 0: Burst mode disabled (default after reset). Read accesses are performed in Asynchronous mode. 1: Burst mode enable. Read accesses are performed in Synchronous mode. Bit 7 Reserved, must be kept at reset value. Bit 6 FACCEN: Flash access enable Enables NOR Flash memory access operations. 0: Corresponding NOR Flash memory access is disabled 1: Corresponding NOR Flash memory access is enabled (default after reset) Bits 5:4 MWID[1:0]: Memory data bus width. Defines the external memory device width, valid for all type of memories. 00: 8 bits 01: 16 bits (default after reset) 10: reserved 11: reserved Bits 3:2 MTYP[1:0]: Memory type. Defines the type of external memory attached to the corresponding memory bank: 00: SRAM (default after reset for Bank 2...4) 01: PSRAM (CRAM) 10: NOR Flash (default after reset for Bank 1) 11: reserved Bit 1 MUXEN: Address/data multiplexing enable bit. When this bit is set, the address and data values are multiplexed on the data bus, valid only with NOR and PSRAM memories: 0: Address/Data non multiplexed 1: Address/Data multiplexed on databus (default after reset) Bit 0 MBKEN: Memory bank enable bit. Enables the memory bank. After reset Bank1 is enabled, all others are disabled. Accessing a disabled bank causes an ERROR on AHB bus. 0: Corresponding memory bank is disabled 1: Corresponding memory bank is enabled SRAM/NOR-Flash chip-select timing register for bank x (FSMC_BTRx) Address offset: 0x04 + 8 * (x – 1), (x = 1 to 4) Reset value: 0x0FFF FFFF This register contains the control information of each memory bank, used for SRAMs, PSRAM and NOR Flash memories.If the EXTMOD bit is set in the FSMC_BCRx register, then this register is partitioned for write and read access, that is, 2 registers are available: one to configure read accesses (this register) and one to configure write accesses (FSMC_BWTRx registers). RM0430 Rev 8 299/1324 306 Flexible static memory controller (FSMC) 31 30 Res. Res. 29 14 27 ACCMOD[1:0] rw 15 28 13 26 25 RM0430 24 23 DATLAT[3:0] rw rw rw rw rw rw rw 12 11 10 9 8 7 rw rw 21 20 19 CLKDIV[3:0] rw DATAST[7:0] rw 22 rw rw rw rw rw rw 6 5 4 3 rw rw 17 16 BUSTURN[3:0] rw ADDHLD[3:0] rw 18 rw rw rw 2 1 0 ADDSET[3:0] rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:28 ACCMOD[1:0]: Access mode Specifies the asynchronous access modes as shown in the timing diagrams. These bits are taken into account only when the EXTMOD bit in the FSMC_BCRx register is 1. 00: Access mode A 01: Access mode B 10: Access mode C 11: Access mode D Bits 27:24 DATLAT[3:0]: (see note below bit descriptions): Data latency for synchronous memory For synchronous access with read/write Burst mode enabled (BURSTEN / CBURSTRW bits set), defines the number of memory clock cycles (+2) to issue to the memory before reading/writing the first data: This timing parameter is not expressed in HCLK periods, but in FSMC_CLK periods. For asynchronous access, this value is don't care. 0000: Data latency of 2 CLK clock cycles for first burst access 1111: Data latency of 17 CLK clock cycles for first burst access (default value after reset) Bits 23:20 CLKDIV[3:0]: Clock divide ratio (for FSMC_CLK signal) Defines the period of FSMC_CLK clock output signal, expressed in number of HCLK cycles: 0000: FSMC_CLK period= 1x HCLK period 0001: FSMC_CLK period = 2 × HCLK periods 0010: FSMC_CLK period = 3 × HCLK periods 1111: FSMC_CLK period = 16 × HCLK periods (default value after reset) In asynchronous NOR Flash, SRAM or PSRAM accesses, this value is don’t care. Note: Refer to Section 11.5.5: Synchronous transactions for FSMC_CLK divider ratio formula) 300/1324 RM0430 Rev 8 RM0430 Flexible static memory controller (FSMC) Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration These bits are written by software to add a delay at the end of a write-to-read (and read-towrite) transaction. This delay allows to match the minimum time between consecutive transactions (tEHEL from NEx high to NEx low) and the maximum time needed by the memory to free the data bus after a read access (tEHQZ). The programmed bus turnaround delay is inserted between an asynchronous read (muxed or mode D) or write transaction and any other asynchronous /synchronous read or write to or from a static bank. The bank can be the same or different in case of read, in case of write the bank can be different except for muxed or mode D. In some cases, whatever the programmed BUSTURN values, the bus turnaround delay is fixed as follows: • The bus turnaround delay is not inserted between two consecutive asynchronous write transfers to the same static memory bank except for muxed and D modes. • There is a bus turnaround delay of 1 HCLK clock cycle between: –Two consecutive asynchronous read transfers to the same static memory bank except for muxed and D modes. –An asynchronous read to an asynchronous or synchronous write to any static bank or dynamic bank except for muxed and D modes. –An asynchronous (modes 1, 2, A, B or C) read and a read from another static bank. • There is a bus turnaround delay of 2 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to the same bank. –A synchronous write (burst or single) access and an asynchronous write or read transfer to or from static memory bank (the bank can be the same or different for the case of read. –Two consecutive synchronous reads (burst or single) followed by any synchronous/asynchronous read or write from/to another static memory bank. • There is a bus turnaround delay of 3 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to different static bank. –A synchronous write (burst or single) access and a synchronous read from the same or a different bank. 0000: BUSTURN phase duration = 0 HCLK clock cycle added ... 1111: BUSTURN phase duration = 15 x HCLK clock cycles added (default value after reset) Bits 15:8 DATAST[7:0]: Data-phase duration These bits are written by software to define the duration of the data phase (refer to Figure 33 to Figure 45), used in asynchronous accesses: 0000 0000: Reserved 0000 0001: DATAST phase duration = 1 × HCLK clock cycles 0000 0010: DATAST phase duration = 2 × HCLK clock cycles ... 1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset) For each memory type and access mode data-phase duration, refer to the respective figure (Figure 33 to Figure 45). Example: Mode1, write access, DATAST=1: Data-phase duration= DATAST+1 = 2 HCLK clock cycles. Note: In synchronous accesses, this value is don’t care. RM0430 Rev 8 301/1324 306 Flexible static memory controller (FSMC) RM0430 Bits 7:4 ADDHLD[3:0]: Address-hold phase duration These bits are written by software to define the duration of the address hold phase (refer to Figure 33 to Figure 45), used in mode D or multiplexed accesses: 0000: Reserved 0001: ADDHLD phase duration =1 × HCLK clock cycle 0010: ADDHLD phase duration = 2 × HCLK clock cycle ... 1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset) For each access mode address-hold phase duration, refer to the respective figure (Figure 33 to Figure 45). Note: In synchronous accesses, this value is not used, the address hold phase is always 1 memory clock period duration. Bits 3:0 ADDSET[3:0]: Address setup phase duration These bits are written by software to define the duration of the address setup phase (refer to Figure 33 to Figure 45), used in SRAMs, ROMs, asynchronous NOR Flash and PSRAM: 0000: ADDSET phase duration = 0 × HCLK clock cycle ... 1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset) For each access mode address setup phase duration, refer to the respective figure (Figure 33 to Figure 45). Note: In synchronous accesses, this value is don’t care. In Muxed mode or Mode D, the minimum value for ADDSET is 1. In mode 1 and PSRAM memory, the minimum value for ADDSET is 1. Note: PSRAMs (CRAMs) have a variable latency due to internal refresh. Therefore these memories issue the NWAIT signal during the whole latency phase to prolong the latency as needed. With PSRAMs (CRAMs) the filled DATLAT must be set to 0, so that the FSMC exits its latency phase soon and starts sampling NWAIT from memory, then starts to read or write when the memory is ready. This method can be used also with the latest generation of synchronous Flash memories that issue the NWAIT signal, unlike older Flash memories (check the datasheet of the specific Flash memory being used). SRAM/NOR-Flash write timing registers 1..4 (FSMC_BWTR1..4) Address offset: 0x104 + 8 * (x – 1), x = 1...4 Reset value: 0x0FFF FFFF This register contains the control information of each memory bank. It is used for SRAMs, PSRAMs and NOR Flash memories. When the EXTMOD bit is set in the FSMC_BCRx register, then this register is active for write access. 31 30 Res. Res. 29 28 rw rw 15 14 13 12 rw rw rw ACCMOD[1:0] 27 26 25 24 23 22 21 20 Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw rw 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw DATAST[7:0] rw rw RM0430 Rev 8 rw rw 18 17 16 BUSTURN[3:0] ADDHLD[3:0] Bits 31:30 Reserved, must be kept at reset value. 302/1324 19 ADDSET[3:0] rw rw rw RM0430 Flexible static memory controller (FSMC) Bits 29:28 ACCMOD[1:0]: Access mode. Specifies the asynchronous access modes as shown in the next timing diagrams.These bits are taken into account only when the EXTMOD bit in the FSMC_BCRx register is 1. 00: Access mode A 01: Access mode B 10: Access mode C 11: Access mode D Bits 27:20 Reserved, must be kept at reset value. Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration The programmed bus turnaround delay is inserted between an asynchronous write transfer and any other asynchronous /synchronous read or write transfer to or from a static bank. The bank can be the same or different in case of read, in case of write the bank can be different expect for muxed or mode D. In some cases, whatever the programmed BUSTURN values, the bus turnaround delay is fixed as follows: • The bus turnaround delay is not inserted between two consecutive asynchronous write transfers to the same static memory bank except for muxed and D modes. • There is a bus turnaround delay of 2 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to the same bank. –A synchronous write (burst or single) transfer and an asynchronous write or read transfer to or from static memory bank. • There is a bus turnaround delay of 3 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to different static bank. –A synchronous write (burst or single) transfer and a synchronous read from the same or a different bank. 0000: BUSTURN phase duration = 0 HCLK clock cycle added ... 1111: BUSTURN phase duration = 15 HCLK clock cycles added (default value after reset) Bits 15:8 DATAST[7:0]: Data-phase duration. These bits are written by software to define the duration of the data phase (refer to Figure 33 to Figure 45), used in asynchronous SRAM, PSRAM and NOR Flash memory accesses: 0000 0000: Reserved 0000 0001: DATAST phase duration = 1 × HCLK clock cycles 0000 0010: DATAST phase duration = 2 × HCLK clock cycles ... 1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset) Bits 7:4 ADDHLD[3:0]: Address-hold phase duration. These bits are written by software to define the duration of the address hold phase (refer to Figure 42 to Figure 45), used in asynchronous multiplexed accesses: 0000: Reserved 0001: ADDHLD phase duration = 1 × HCLK clock cycle 0010: ADDHLD phase duration = 2 × HCLK clock cycle ... 1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset) Note: In synchronous NOR Flash accesses, this value is not used, the address hold phase is always 1 Flash clock period duration. RM0430 Rev 8 303/1324 306 Flexible static memory controller (FSMC) RM0430 Bits 3:0 ADDSET[3:0]: Address setup phase duration. These bits are written by software to define the duration of the address setup phase in HCLK cycles (refer to Figure 33 to Figure 45), used in asynchronous accesses: 0000: ADDSET phase duration = 0 × HCLK clock cycle ... 1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset) Note: In synchronous accesses, this value is not used, the address setup phase is always 1 Flash clock period duration. In muxed mode, the minimum ADDSET value is 1. 304/1324 RM0430 Rev 8 RM0430 11.6 Flexible static memory controller (FSMC) FSMC register map Reset value CPSIZE [2:0] FACCEN WAITEN WREN WAITCFG WAITPOL BURSTEN 0 1 1 0 0 0 1 CPSIZE [2:0] WAITEN WREN WAITCFG WAITPOL BURSTEN FACCEN 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 DATLAT[3:0] CLKDIV[3:0] BUSTURN[3:0] 1 1 1 1 1 1 1 1 1 1 1 1 DATLAT[3:0] CLKDIV[3:0] BUSTURN[3:0] 1 1 1 1 1 1 DATLAT[3:0] CLKDIV[3:0] BUSTURN[3:0] 1 1 1 1 1 1 1 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 1 Res. Res. Res. Res. Res. 1 1 1 1 1 1 1 1 1 1 1 RM0430 Rev 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MWID MTYP [1:0] [1:0] 0 1 0 MWID MTYP [1:0] [1:0] 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 1 1 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 DATAST[7:0] 1 0 0 ADDHLD[3:0] ADDSET[3:0] DATAST[7:0] 1 1 1 ADDHLD[3:0] ADDSET[3:0] DATAST[7:0] 1 Res. Res. 1 DATAST[7:0] BUSTURN[3:0] 1 1 1 0 0 ADDHLD[3:0] ADDSET[3:0] DATAST[7:0] BUSTURN[3:0] 1 Res. 1 DATAST[7:0] Res. EXTMOD 0 0 Res. ASYNCWAIT 0 0 MBKEN 1 MUXEN 0 MBKEN BURSTEN 0 MUXEN WAITPOL 0 MWID MTYP [1:0] [1:0] 1 MBKEN FACCEN WAITCFG 1 1 1 MUXEN BURSTEN WREN 1 Res. WAITEN 0 1 0 MBKEN WAITPOL EXTMOD 0 0 Res. ASYNCWAIT 0 0 0 MWID MTYP [1:0] [1:0] MUXEN WREN WAITCFG CPSIZE [2:0] Res. WAITEN 1 FACCEN EXTMOD 0 Res. ASYNCWAIT 0 1 0 0 0 Res. ACCMOD[1:0] ACCMOD[1:0] ACCMOD[1:0] 0 1 CLKDIV[3:0] BUSTURN[3:0] Res. FSMC_BWTR2 Res. 0x10C 0 Res. Reset value 0 1 Res. FSMC_BWTR1 Res. 0x104 0 Res. Reset value 0 0 0 DATLAT[3:0] Res. FSMC_BTR4 Res. 0x1C 0 Res. Reset value 0 ACCMOD[1:0] FSMC_BTR3 Res. 0x14 0 Res. Reset value 0 ACCMOD[1:0] FSMC_BTR2 Res. 0x0C 0 Res. Reset value ACCMOD[1:0] FSMC_BTR1 Res. 0x04 0 Res. Reset value 0 0 EXTMOD Res. Res. CBURSTRW Res. Res. Res. Res. Res. Res. Res. FSMC_BCR4 Res. 0 Res. Reset value CBURSTRW Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FSMC_BCR3 0 CPSIZE [2:0] ASYNCWAIT CCLKEN CBURSTRW 0 CBURSTRW Res. WFDIS Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. 0x18 0 Reset value Res. 0x10 FSMC_BCR2 Res. 0x08 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. FSMC_BCR1 Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 70. FSMC register map 1 1 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 1 1 1 1 1 1 1 1 305/1324 306 Flexible static memory controller (FSMC) RM0430 Reset value 0 Res. Res. Res. Res. Res. Res. Res. Res. ACCMOD[1:0] 0 BUSTURN[3:0] Res. Res. Res. Res. Res. Res. 1 Res. 0 Res. FSMC_BWTR4 Res. 0x11C 0 Res. Reset value ACCMOD[1:0] FSMC_BWTR3 Res. 0x114 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 70. FSMC register map (continued) 1 1 1 DATAST[7:0] 1 1 BUSTURN[3:0] 1 1 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 DATAST[7:0] 1 1 1 1 1 1 1 RM0430 Rev 8 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 Refer to Section 2.2.2 on page 58 for the register boundary addresses. 306/1324 1 1 1 1 1 1 1 1 1 RM0430 Quad-SPI interface (QUADSPI) 12 Quad-SPI interface (QUADSPI) 12.1 Introduction The QUADSPI is a specialized communication interface targeting single, dual or quad SPI Flash memories. It can operate in any of the three following modes: • indirect mode: all the operations are performed using the QUADSPI registers • status polling mode: the external Flash memory status register is periodically read and an interrupt can be generated in case of flag setting • memory-mapped mode: the external Flash memory is mapped to the microcontroller address space and is seen by the system as if it was an internal memory Both throughput and capacity can be increased two-fold using dual-flash mode, where two Quad-SPI Flash memories are accessed simultaneously. 12.2 QUADSPI main features • Three functional modes: indirect, status-polling, and memory-mapped • Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two Flash memories in parallel. • SDR and DDR support • Fully programmable opcode for both indirect and memory mapped mode • Fully programmable frame format for both indirect and memory mapped mode • Integrated FIFO for reception and transmission • 8, 16, and 32-bit data accesses are allowed • DMA channel for indirect mode operations • Interrupt generation on FIFO threshold, timeout, operation complete, and access error 12.3 QUADSPI functional description 12.3.1 QUADSPI block diagram Figure 51. QUADSPI block diagram when dual-flash mode is disabled 48$'63, 5HJLVWHUV FRQWURO &ORFN PDQDJHPHQW $+% ),)2 6KLIWUHJLVWHU 63,)/$6+ &/. %.B,262 %.B,26, %.B,2 %.B,2 %.BQ&6 &/. 46, 462 4:3 4+2/' &6 069 RM0430 Rev 8 307/1324 335 Quad-SPI interface (QUADSPI) RM0430 Figure 52. QUADSPI block diagram when dual-flash mode is enabled 48$'63, 5HJLVWHUV FRQWURO &ORFN PDQDJHPHQW 63,)/$6+ &/. %.B,262 %.B,26, %.B,2 %.B,2 %.BQ&6 $+% ),)2 &/. 46, 462 4:3 4+2/' &6 63,)/$6+ 6KLIWUHJLVWHU &/. 46, 462 4:3 4+2/' &6 %.B,262 %.B,26, %.B,2 %.B,2 %.BQ&6 069 12.3.2 QUADSPI pins Table 71 lists the QUADSPI pins, six for interfacing with a single Flash memory, or 10 to 11 for interfacing with two Flash memories (FLASH 1 and FLASH 2) in dual-flash mode. Table 71. QUADSPI pins 308/1324 Signal name Signal type Description CLK Digital output Clock to FLASH 1 and FLASH 2 BK1_IO0/SO Digital input/output Bidirectional IO in dual/quad modes or serial output in single mode, for FLASH 1 BK1_IO1/SI Digital input/output Bidirectional IO in dual/quad modes or serial input in single mode, for FLASH 1 BK1_IO2 Digital input/output Bidirectional IO in quad mode, for FLASH 1 BK1_IO3 Digital input/output Bidirectional IO in quad mode, for FLASH 1 BK2_IO0/SO Digital input/output Bidirectional IO in dual/quad modes or serial output in single mode, for FLASH 2 BK2_IO1/SI Digital input/output Bidirectional IO in dual/quad modes or serial input in single mode, for FLASH 2 BK2_IO2 Digital input/output Bidirectional IO in quad mode, for FLASH 2 BK2_IO3 Digital input/output Bidirectional IO in quad mode, for FLASH 2 BK1_nCS Digital output Chip select (active low) for FLASH 1. Can also be used for FLASH 2 if QUADSPI is always used in dual-flash mode. BK2_nCS Digital output Chip select (active low) for FLASH 2. Can also be used for FLASH 1 if QUADSPI is always used in dual-flash mode. RM0430 Rev 8 RM0430 12.3.3 Quad-SPI interface (QUADSPI) QUADSPI command sequence The QUADSPI communicates with the Flash memory using commands. Each command can include 5 phases: instruction, address, alternate byte, dummy, data. Any of these phases can be configured to be skipped, but at least one of the instruction, address, alternate byte, or data phase must be present. nCS falls before the start of each command and rises again after each command finishes. Figure 53. An example of a read command in quad mode ,QVWUXFWLRQ $GGUHVV $OW 'XPP\ 'DWD Q&6 6&/. ,2 ,2 ,2 ,2 $ $ $ 0 %\WH ,2VZLWFKIURP RXWSXWWRLQSXW %\WH 069 Instruction phase During this phase, an 8-bit instruction, configured in INSTRUCTION field of QUADSPI_CCR[7:0] register, is sent to the Flash memory, specifying the type of operation to be performed. Though most Flash memories can receive instructions only one bit at a time from the IO0/SO signal (single SPI mode), the instruction phase can optionally send 2 bits at a time (over IO0/IO1 in dual SPI mode) or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI mode). This can be configured using the IMODE[1:0] field of QUADSPI_CCR[9:8] register. When IMODE = 00, the instruction phase is skipped, and the command sequence starts with the address phase, if present. Address phase In the address phase, 1-4 bytes are sent to the Flash memory to indicate the address of the operation. The number of address bytes to be sent is configured in the ADSIZE[1:0] field of QUADSPI_CCR[13:12] register. In indirect and automatic-polling modes, the address bytes to be sent are specified in the ADDRESS[31:0] field of QUADSPI_AR register, while in memory-mapped mode the address is given directly via the AHB (from the Cortex® or from a DMA). The address phase can send 1 bit at a time (over SO in single SPI mode), 2 bits at a time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI mode). This can be configured using the ADMODE[1:0] field of QUADSPI_CCR[11:10] register. When ADMODE = 00, the address phase is skipped, and the command sequence proceeds directly to the next phase, if any. RM0430 Rev 8 309/1324 335 Quad-SPI interface (QUADSPI) RM0430 Alternate-bytes phase In the alternate-bytes phase, 1-4 bytes are sent to the Flash memory, generally to control the mode of operation. The number of alternate bytes to be sent is configured in the ABSIZE[1:0] field of QUADSPI_CCR[17:16] register. The bytes to be sent are specified in the QUADSPI_ABR register. The alternate-bytes phase can send 1 bit at a time (over SO in single SPI mode), 2 bits at a time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI mode). This can be configured using the ABMODE[1:0] field of QUADSPI_CCR[15:14] register. When ABMODE = 00, the alternate-bytes phase is skipped, and the command sequence proceeds directly to the next phase, if any. There may be times when only a single nibble needs to be sent during the alternate-byte phase rather than a full byte, such as when dual-mode is used and only two cycles are used for the alternate bytes. In this case, firmware can use quad-mode (ABMODE = 11) and send a byte with bits 7 and 3 of ALTERNATE set to ‘1’ (keeping the IO3 line high), and bits 6 and 2 set to ‘0’ (keeping the IO2 line low). In this case the upper two bits of the nibble to be sent are placed in bits 4:3 of ALTERNATE while the lower two bits are placed in bits 1 and 0. For example, if the nibble 2 (0010) is to be sent over IO0/IO1, then ALTERNATE should be set to 0x8A (1000_1010). Dummy-cycles phase In the dummy-cycles phase, 1-31 cycles are given without any data being sent or received, in order to allow the Flash memory the time to prepare for the data phase when higher clock frequencies are used. The number of cycles given during this phase is specified in the DCYC[4:0] field of QUADSPI_CCR[22:18] register. In both SDR and DDR modes, the duration is specified as a number of full CLK cycles. When DCYC is zero, the dummy-cycles phase is skipped, and the command sequence proceeds directly to the data phase, if present. The operating mode of the dummy-cycles phase is determined by DMODE. In order to assure enough “turn-around” time for changing the data signals from output mode to input mode, there must be at least one dummy cycle when using dual or quad mode to receive data from the Flash memory. Data phase During the data phase, any number of bytes can be sent to, or received from the Flash memory. In indirect and automatic-polling modes, the number of bytes to be sent/received is specified in the QUADSPI_DLR register. In indirect write mode the data to be sent to the Flash memory must be written to the QUADSPI_DR register, while in indirect read mode the data received from the Flash memory is obtained by reading from the QUADSPI_DR register. In memory-mapped mode, the data which is read is sent back directly over the AHB to the Cortex or to a DMA. The data phase can send/receive 1 bit at a time (over SO/SI in single SPI mode), 2 bits at a time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI 310/1324 RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) mode). This can be configured using the ABMODE[1:0] field of QUADSPI_CCR[15:14] register. When DMODE = 00, the data phase is skipped, and the command sequence finishes immediately by raising nCS. This configuration must only be used in only indirect write mode. 12.3.4 QUADSPI signal interface protocol modes Single SPI mode Legacy SPI mode allows just a single bit to be sent/received serially. In this mode, data is sent to the Flash memory over the SO signal (whose I/O shared with IO0). Data received from the Flash memory arrives via SI (whose I/O shared with IO1). The different phases can each be configured separately to use this single bit mode by setting the IMODE/ADMODE/ABMODE/DMODE fields (in QUADSPI_CCR) to 01. In each phase which is configured in single mode: • IO0 (SO) is in output mode • IO1 (SI) is in input mode (high impedance) • IO2 is in output mode and forced to ‘0’ (to deactivate the “write protect” function) • IO3 is in output mode and forced to ‘1’ (to deactivate the “hold” function) This is the case even for the dummy phase if DMODE = 01. Dual SPI mode In dual SPI mode, two bits are sent/received simultaneously over the IO0/IO1 signals. The different phases can each be configured separately to use dual SPI mode by setting the IMODE/ADMODE/ABMODE/DMODE fields of QUADSPI_CCR register to 10. In each phase which is configured in dual mode: • IO0/IO1 are at high-impedance (input) during the data phase for read operations, and outputs in all other cases • IO2 is in output mode and forced to ‘0’ • IO3 is in output mode and forced to ‘1’ In the dummy phase when DMODE = 01, IO0/IO1 are always high-impedance. Quad SPI mode In quad SPI mode, four bits are sent/received simultaneously over the IO0/IO1/IO2/IO3 signals. The different phases can each be configured separately to use quad SPI mode by setting the IMODE/ADMODE/ABMODE/DMODE fields of QUADSPI_CCR register to 11. In each phase which is configured in quad mode, IO0/IO1/IO2/IO3 are all are at highimpedance (input) during the data phase for read operations, and outputs in all other cases. In the dummy phase when DMODE = 11, IO0/IO1/IO2/IO3 are all high-impedance. IO2 and IO3 are used only in Quad SPI mode. If none of the phases are configured to use Quad SPI mode, then the pins corresponding to IO2 and IO3 can be used for other functions even while QUADSPI is active. RM0430 Rev 8 311/1324 335 Quad-SPI interface (QUADSPI) RM0430 SDR mode By default, the DDRM bit (QUADSPI_CCR[31]) is 0 and the QUADSPI operates in single data rate (SDR) mode. In SDR mode, when the QUADSPI is driving the IO0/SO, IO1, IO2, IO3 signals, these signals transition only with the falling edge of CLK. When receiving data in SDR mode, the QUADSPI assumes that the Flash memories also send the data using CLK’s falling edge. By default (when SSHIFT = 0), the signals are sampled using the following (rising) edge of CLK. DDR mode When the DDRM bit (QUADSPI_CCR[31]) is set to 1, the QUADSPI operates in double data rate (DDR) mode. In DDR mode, when the QUADSPI is driving the IO0/SO, IO1, IO2, IO3 signals in the address/alternate-byte/data phases, a bit is sent on each of the falling and rising edges of CLK. The instruction phase is not affected by DDRM. The instruction is always sent using CLK’s falling edge. When receiving data in DDR mode, the QUADSPI assumes that the Flash memories also send the data using both rising and falling CLK edges. When DDRM = 1, firmware must clear SSHIFT bit (bit 4 of QUADSPI_CR). Thus, the signals are sampled one half of a CLK cycle later (on the following, opposite edge). Figure 54. An example of a DDR command in quad mode ,QVWUXFWLRQ $GGUHVV $OW 'XPP\ 'DWD Q&6 6&/. ,2 ,2 ,2 ,2 $$ $ 0 %\WH%\WH ,2VZLWFKIURP RXWSXWWRLQSXW 069 Dual-flash mode When the DFM bit (bit 6 of QUADSPI_CR) is 1, the QUADSPI is in dual-flash mode, where two external quad SPI Flash memories (FLASH 1 and FLASH 2) are used in order to send/receive 8 bits (or 16 bits in DDR mode) every cycle, effectively doubling the throughput as well as the capacity. Each of the Flash memories use the same CLK and optionally the same nCS signals, but each have separate IO0, IO1, IO2, and IO3 signals. Dual-flash mode can be used in conjunction with single-bit, dual-bit, and quad-bit modes, as well as with either SDR or DDR mode. 312/1324 RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) The Flash memory size, as specified in FSIZE[4:0] (QUADSPI_DCR[20:16]), should reflect the total Flash memory capacity, which is double the size of one individual component. If address X is even, then the byte which the QUADSPI gives for address X is the byte at the address X/2 of FLASH 1, and the byte which the QUADSPI gives for address X+1 is the byte at the address X/2 of FLASH 2. In other words, bytes at even addresses are all stored in FLASH 1 and bytes at odd addresses are all stored in FLASH 2. When reading the Flash memories status registers in dual-flash mode, twice as many bytes should be read compared to doing the same read in single-flash mode. This means that if each Flash memory gives 8 valid bits after the instruction for fetching the status register, then the QUADSPI must be configured with a data length of 2 bytes (16 bits), and the QUADSPI will receive one byte from each Flash memory. If each Flash memory gives a status of 16 bits, then the QUADSPI must be configured to read 4 bytes to get all the status bits of both Flash memories in dual-flash mode. The least-significant byte of the result (in the data register) is the least-significant byte of FLASH 1 status register, while the next byte is the least-significant byte of FLASH 2 status register. Then, the third byte of the data register is FLASH 1 second byte, while the forth byte is FLASH 2 second byte (in the case that the Flash memories have 16-bit status registers). An even number of bytes must always be accessed in dual-flash mode. For this reason, bit 0 of the data length field (QUADSPI_DLR[0]) is stuck at 1 when DRM = 1. In dual-flash mode, the behavior of FLASH 1 interface signals are basically the same as in normal mode. FLASH 2 interface signals have exactly the same waveforms as FLASH 1 during the instruction, address, alternate-byte, and dummy-cycles phases. In other words, each Flash memory always receives the same instruction and the same address. Then, during the data phase, the BK1_IOx and BK2_IOx buses are both transferring data in parallel, but the data that are sent to (or received from) FLASH 1 are distinct from those of FLASH 2. 12.3.5 QUADSPI indirect mode When in indirect mode, commands are started by writing to QUADSPI registers and data is transferred by writing or reading the data register, in the same way as for other communication peripherals. When FMODE = 00 (QUADSPI_CCR[27:26]), the QUADSPI is in indirect write mode, where bytes are sent to the Flash memory during the data phase. Data are provided by writing to the data register (QUADSPI_DR). When FMODE = 01, the QUADSPI is in indirect read mode, where bytes are received from the Flash memory during the data phase. Data are recovered by reading QUADSPI_DR. The number of bytes to be read/written is specified in the data length register (QUADSPI_DLR). If QUADSPI_DLR = 0xFFFF_FFFF (all 1’s), then the data length is considered undefined and the QUADSPI simply continues to transfer data until the end of Flash memory (as defined by FSIZE) is reached. If no bytes are to be transferred, DMODE (QUADSPI_CCR[25:24]) should be set to 00. If QUADSPI_DLR = 0xFFFF_FFFF and FSIZE = 0x1F (max value indicating a 4GB Flash memory), then in this special case the transfers continue indefinitely, stopping only after an abort request or after the QUADSPI is disabled. After the last memory address is read (at address 0xFFFF_FFFF), reading continues with address = 0x0000_0000. When the programmed number of bytes to be transmitted or received is reached, TCF is set and an interrupt is generated if TCIE = 1. In the case of undefined number of data, the TCF RM0430 Rev 8 313/1324 335 Quad-SPI interface (QUADSPI) RM0430 is set when the limit of the external SPI memory is reached according to the Flash memory size defined in the QUADSPI_CR. Triggering the start of a command Essentially, a command starts as soon as firmware gives the last information that is necessary for this command. Depending on the QUADSPI configuration, there are three different ways to trigger the start of a command in indirect mode. The commands starts immediately after: 1. a write is performed to INSTRUCTION[7:0] (QUADSPI_CCR), if no address is necessary (when ADMODE = 00) and if no data needs to be provided by the firmware (when FMODE = 01 or DMODE = 00) 2. a write is performed to ADDRESS[31:0] (QUADSPI_AR), if an address is necessary (when ADMODE != 00) and if no data needs to be provided by the firmware (when FMODE = 01 or DMODE = 00) 3. a write is performed to DATA[31:0] (QUADSPI_DR), if an address is necessary (when ADMODE != 00) and if data needs to be provided by the firmware (when FMODE = 00 and DMODE != 00) Writes to the alternate byte register (QUADSPI_ABR) never trigger the communication start. If alternate bytes are required, they must be programmed before. As soon as a command is started, the BUSY bit (bit 5 of QUADSPI_SR) is automatically set. FIFO and data management In indirect mode, data go through a 32-byte FIFO which is internal to the QUADSPI. FLEVEL[5:0] (QUADSPI_SR[13:8]) indicates how many bytes are currently being held in the FIFO. In indirect write mode (FMODE = 00), firmware adds data to the FIFO when it writes QUADSPI_DR. Word writes add 4 bytes to the FIFO, halfword writes add 2 bytes, and byte writes add only 1 byte. If firmware adds too many bytes to the FIFO (more than is indicated by DL[31:0]), the extra bytes are flushed from the FIFO at the end of the write operation (when TCF is set). Byte/halfword accesses to QUADSPI_DR must be done only to the least significant byte/halfword of the 32-bit register. FTHRES[3:0] is used to define a FIFO threshold. When the threshold is reached, the FTF (FIFO threshold flag) is set. In indirect read mode, FTF is set when the number of valid bytes to be read from the FIFO is above the threshold. FTF is also set if there are data in the FIFO after the last byte is read from the Flash memory, regardless of the FTHRES setting. In indirect write mode, FTF is set when the number of empty bytes in the FIFO is above the threshold. If FTIE = 1, there is an interrupt when FTF is set. If DMAEN = 1, a DMA transfer is initiated when FTF is set. FTF is cleared by HW as soon as the threshold condition is no longer true (after enough data has been transferred by the CPU or DMA). In indirect read mode when the FIFO becomes full, the QUADSPI temporarily stops reading bytes from the Flash memory to avoid an overrun. Note that the reading of the Flash memory does not restart until 4 bytes become vacant in the FIFO (when FLEVEL ≤ 11). Thus, when FTHRES ≥ 13, the application must take care to read enough bytes to assure that the QUADSPI starts retrieving data from the Flash memory again. Otherwise, the FTF flag stays at '0' as long as 11 < FLEVEL < FTHRES. 314/1324 RM0430 Rev 8 RM0430 12.3.6 Quad-SPI interface (QUADSPI) QUADSPI status flag polling mode In automatic-polling mode, the QUADSPI periodically starts a command to read a defined number of status bytes (up to 4). The received bytes can be masked to isolate some status bits and an interrupt can be generated when the selected bits have a defined value. The accesses to the Flash memory begin in the same way as in indirect read mode: if no address is required (AMODE = 00), accesses begin as soon as the QUADSPI_CCR is written. Otherwise, if an address is required, the first access begins when QUADSPI_AR is written. BUSY goes high at this point and stays high even between the periodic accesses. The contents of MASK[31:0] (QUADSPI_PSMAR) are used to mask the data from the Flash memory in automatic-polling mode. If the MASK[n] = 0, then bit n of the result is masked and not considered. If MASK[n] = 1, and the content of bit[n] is the same as MATCH[n] (QUADSPI_PSMAR), then there is a match for bit n. If the polling match mode bit (PMM, bit 23 of QUADSPI_CR) is 0, then “AND” match mode is activated. This means status match flag (SMF) is set only when there is a match on all of the unmasked bits. If PMM = 1, then “OR” match mode is activated. This means SMF is set if there is a match on any of the unmasked bits. An interrupt is called when SMF is set if SMIE = 1. If the automatic-polling-mode-stop (APMS) bit is set, operation stops and BUSY goes to 0 as soon as a match is detected. Otherwise, BUSY stays at ‘1’ and the periodic accesses continue until there is an abort or the QUADSPI is disabled (EN = 0). The data register (QUADSPI_DR) contains the latest received status bytes (the FIFO is deactivated). The content of the data register is not affected by the masking used in the matching logic. The FTF status bit is set as soon as a new reading of the status is complete, and FTF is cleared as soon as the data is read. 12.3.7 QUADSPI memory-mapped mode When configured in memory-mapped mode, the external SPI device is seen as an internal memory. It is forbidden to access QUADSPI Flash bank area before having properly configured and enabled the QUADSPI peripheral. No more than 256MB can addressed even if the Flash memory capacity is larger. If an access is made to an address outside of the range defined by FSIZE but still within the 256MB range, then a bus error is given. The effect of this error depends on the bus master that attempted the access: • If it is the Cortex® CPU, bus fault exception is generated when enabled (or a hard fault exception when bus fault is disabled) • If it is a DMA, a DMA transfer error is generated and the corresponding DMA channel is automatically disabled. Byte, halfword, and word access types are all supported. Support for execute in place (XIP) operation is implemented, where the QUADSPI anticipates the next microcontroller access and load in advance the byte at the following address. If the subsequent access is indeed made at a continuous address, the access will be completed faster since the value is already prefetched. RM0430 Rev 8 315/1324 335 Quad-SPI interface (QUADSPI) RM0430 By default, the QUADSPI never stops its prefetch operation, keeping the previous read operation active with nCS maintained low, even if no access to the Flash memory occurs for a long time. Since Flash memories tend to consume more when nCS is held low, the application might want to activate the timeout counter (TCEN = 1, bit 3 of QUADSPI_CR) so that nCS is released after a period of TIMEOUT[15:0] (QUADSPI_LPTR) cycles have elapsed without any access since when the FIFO becomes full with prefetch data. BUSY goes high as soon as the first memory-mapped access occurs. Because of the prefetch operations, BUSY does not fall until there is a timeout, there is an abort, or the peripheral is disabled. 12.3.8 QUADSPI Flash memory configuration The device configuration register (QUADSPI_DCR) can be used to specify the characteristics of the external SPI Flash memory. The FSIZE[4:0] field defines the size of external memory using the following formula: Number of bytes in Flash memory = 2[FSIZE+1] FSIZE+1 is effectively the number of address bits required to address the Flash memory. The Flash memory capacity can be up to 4GB (addressed using 32 bits) in indirect mode, but the addressable space in memory-mapped mode is limited to 256MB. If DFM = 1, FSIZE indicates the total capacity of the two Flash memories together. When the QUADSPI executes two commands, one immediately after the other, it raises the chip select signal (nCS) high between the two commands for only one CLK cycle by default. If the Flash memory requires more time between commands, the chip select high time (CSHT) field can be used to specify the minimum number of CLK cycles (up to 8) that nCS must remain high. The clock mode (CKMODE) bit indicates the CLK signal logic level in between commands (when nCS = 1). 12.3.9 QUADSPI delayed data sampling By default, the QUADSPI samples the data driven by the Flash memory one half of a CLK cycle after the Flash memory drives the signal. In case of external signal delays, it may be beneficial to sample the data later. Using the SSHIFT bit (bit 4 of QUADSPI_CR), the sampling of the data can be shifted by half of a CLK cycle. Clock shifting is not supported in DDR mode: the SSHIFT bit must be clear when DDRM bit is set. 12.3.10 QUADSPI configuration The QUADSPI configuration is done in two phases: • QUADSPI IP configuration • QUADSPI Flash memory configuration Once configured and enabled, the QUADSPI can be used in one of its three operating modes: indirect mode, status-polling mode, or memory-mapped mode. QUADSPI IP configuration 316/1324 RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) The QUADSPI IP is configured using the QUADSPI_CR. The user shall configure the clock prescaler division factor and the sample shifting settings for the incoming data. DDR mode can be set through the DDRM bit. Once enabled, the address and the alternate bytes are sent on both clock edges and the data are sent/received on both clock edges. Regardless of the DDRM bit setting, instructions are always sent in SDR mode. The DMA requests are enabled setting the DMAEN bit. In case of interrupt usage, their respective enable bit can be also set during this phase. FIFO level for either DMA request generation or interrupt generation is programmed in the FTHRES bits. If timeout counter is needed, the TCEN bit can be set and the timeout value programmed in the QUADSPI_LPTR register. Dual-flash mode can be activated by setting DFM to 1. QUADSPI Flash memory configuration The parameters related to the targeted external Flash memory are configured through the QUADSPI_DCR register.The user shall program the Flash memory size in the FSIZE bits, the Chip Select minimum high time in the CSHT bits, and the functional mode (Mode 0 or Mode 3) in the MODE bit. 12.3.11 QUADSPI usage The operating mode is selected using FMODE[1:0] (QUADSPI_CCR[27:26]). Indirect mode procedure When FMODE is programmed to 00, indirect write mode is selected and data can be sent to the Flash memory. With FMODE = 01, indirect read mode is selected where data can be read from the Flash memory. When the QUADSPI is used in indirect mode, the frames are constructed in the following way: 1. Specify a number of data bytes to read or write in the QUADSPI_DLR. 2. Specify the frame format, mode and instruction code in the QUADSPI_CCR. 3. Specify optional alternate byte to be sent right after the address phase in the QUADSPI_ABR. 4. Specify the operating mode in the QUADSPI_CR. If FMODE = 00 (indirect write mode) and DMAEN = 1, then QUADSPI_AR should be specified before QUADSPI_CR, because otherwise QUADSPI_DR might be written by the DMA before QUADSPI_AR is updated (if the DMA controller has already been enabled) 5. Specify the targeted address in the QUADSPI_AR. 6. Read/Write the data from/to the FIFO through the QUADSPI_DR. RM0430 Rev 8 317/1324 335 Quad-SPI interface (QUADSPI) RM0430 When writing the control register (QUADSPI_CR) the user specifies the following settings: • The enable bit (EN) set to ‘1’ • The DMA enable bit (DMAEN) for transferring data to/from RAM • Timeout counter enable bit (TCEN) • Sample shift setting (SSHIFT) • FIFO threshold level (FTRHES) to indicate when the FTF flag should be set • Interrupt enables • Automatic polling mode parameters: match mode and stop mode (valid when FMODE = 11) • Clock prescaler When writing the communication configuration register (QUADSPI_CCR) the user specifies the following parameters: • The instruction byte through the INSTRUCTION bits • The way the instruction has to be sent through the IMODE bits (1/2/4 lines) • The way the address has to be sent through the ADMODE bits (None/1/2/4 lines) • The address size (8/16/24/32-bit) through the ADSIZE bits • The way the alternate bytes have to be sent through the ABMODE (None/1/2/4 lines) • The alternate bytes number (1/2/3/4) through the ABSIZE bits • The presence or not of dummy bytes through the DBMODE bit • The number of dummy bytes through the DCYC bits • The way the data have to be sent/received (None/1/2/4 lines) through the DMODE bits If neither the address register (QUADSPI_AR) nor the data register (QUADSPI_DR) need to be updated for a particular command, then the command sequence starts as soon as QUADSPI_CCR is written. This is the case when both ADMODE and DMODE are 00, or if just ADMODE = 00 when in indirect read mode (FMODE = 01). When an address is required (ADMODE is not 00) and the data register does not need to be written (when FMODE = 01 or DMODE = 00), the command sequence starts as soon as the address is updated with a write to QUADSPI_AR. In case of data transmission (FMODE = 00 and DMODE! = 00), the communication start is triggered by a write in the FIFO through QUADSPI_DR. Status flag polling mode The status flag polling mode is enabled setting the FMODE field (QUADSPI_CCR[27:26]) to 10. In this mode, the programmed frame will be sent and the data retrieved periodically. The maximum amount of data read in each frame is 4 bytes. If more data is requested in QUADSPI_DLR, it will be ignored and only 4 bytes will be read. The periodicity is specified in the QUADSPI_PISR register. Once the status data has been retrieved, it can internally be processed i order to: • set the status match flag and generate an interrupt if enabled • stop automatically the periodic retrieving of the status bytes The received value can be masked with the value stored in the QUADSPI_PSMKR and ORed or ANDed with the value stored in the QUADSPI_PSMAR. 318/1324 RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) In case of match, the status match flag is set and an interrupt is generated if enabled, and the QUADSPI can be automatically stopped if the AMPS bit is set. In any case, the latest retrieved value is available in the QUADSPI_DR. Memory-mapped mode In memory-mapped mode, the external Flash memory is seen as internal memory but with some latency during accesses. Only read operations are allowed to the external Flash memory in this mode. Memory-mapped mode is entered by setting the FMODE to 11 in the QUADSPI_CCR register. The programmed instruction and frame is sent when a master is accessing the memory mapped space. The FIFO is used as a prefetch buffer to anticipate linear reads. Any access to QUADSPI_DR in this mode returns zero. The data length register (QUADSPI_DLR) has no meaning in memory-mapped mode. 12.3.12 Sending the instruction only once Some Flash memories (e.g. Winbound) might provide a mode where an instruction must be sent only with the first command sequence, while subsequent commands start directly with the address. One can take advantage of such a feature using the SIOO bit (QUADSPI_CCR[28]). SIOO is valid for all functional modes (indirect, automatic polling, and memory-mapped). If the SIOO bit is set, the instruction is sent only for the first command following a write to QUADSPI_CCR. Subsequent command sequences skip the instruction phase, until there is a write to QUADSPI_CCR. SIOO has no effect when IMODE = 00 (no instruction). 12.3.13 QUADSPI error management An error can be generated in the following case: • In indirect mode or status flag polling mode when a wrong address has been programmed in the QUADSPI_AR (according to the Flash memory size defined by FSIZE[4:0] in the QUADSPI_DCR): this will set the TEF and an interrupt is generated if enabled. • Also in indirect mode, if the address plus the data length exceeds the Flash memory size, TEF will be set as soon as the access is triggered. • In memory-mapped mode, when an out of range access is done by a master or when the QUADSPI is disabled: this will generate a bus error as a response to the faulty bus master request. • When a master is accessing the memory mapped space while the memory mapped mode is disabled: this will generate a bus error as a response to the faulty bus master request. RM0430 Rev 8 319/1324 335 Quad-SPI interface (QUADSPI) 12.3.14 RM0430 QUADSPI busy bit and abort functionality Once the QUADSPI starts an operation with the Flash memory, the BUSY bit is automatically set in the QUADSPI_SR. In indirect mode, the BUSY bit is reset once the QUADSPI has completed the requested command sequence and the FIFO is empty. In automatic-polling mode, BUSY goes low only after the last periodic access is complete, due to a match when APMS = 1, or due to an abort. After the first access in memory-mapped mode, BUSY goes low only on a timeout event or on an abort. Any operation can be aborted by setting the ABORT bit in the QUADSPI_CR. Once the abort is completed, the BUSY bit and the ABORT bit are automatically reset, and the FIFO is flushed. Note: Some Flash memories might misbehave if a write operation to a status registers is aborted. 12.3.15 nCS behavior By default, nCS is high, deselecting the external Flash memory. nCS falls before an operation begins and rises as soon as it finishes. When CKMODE = 0 (“mode0”, where CLK stays low when no operation is in progress) nCS falls one CLK cycle before an operation first rising CLK edge, and nCS rises one CLK cycle after the operation final rising CLK edge, as shown in Figure 55. Figure 55. nCS when CKMODE = 0 (T = CLK period) 7 7 Q&6 6&/. 069 When CKMODE=1 (“mode3”, where CLK goes high when no operation is in progress) and DDRM=0 (SDR mode), nCS still falls one CLK cycle before an operation first rising CLK edge, and nCS rises one CLK cycle after the operation final rising CLK edge, as shown in Figure 56. Figure 56. nCS when CKMODE = 1 in SDR mode (T = CLK period) 7 7 Q&6 6&/. 069 320/1324 RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) When CKMODE = 1 (“mode3”) and DDRM = 1 (DDR mode), nCS falls one CLK cycle before an operation first rising CLK edge, and nCS rises one CLK cycle after the operation final active rising CLK edge, as shown in Figure 57. Because DDR operations must finish with a falling edge, CLK is low when nCS rises, and CLK rises back up one half of a CLK cycle afterwards. Figure 57. nCS when CKMODE = 1 in DDR mode (T = CLK period) 7 7 7 Q&6 6&/. 069 When the FIFO stays full in a read operation or if the FIFO stays empty in a write operation, the operation stalls and CLK stays low until firmware services the FIFO. If an abort occurs when an operation is stalled, nCS rises just after the abort is requested and then CLK rises one half of a CLK cycle later, as shown in Figure 58. Figure 58. nCS when CKMODE = 1 with an abort (T = CLK period) 7 &ORFNVWDOOHG 7 Q&6 6&/. $ERUW 069 When not in dual-flash mode (DFM = 0), only FLASH 1 is accessed and thus the BK2_nCS stays high. In dual-flash mode, BK2_nCS behaves exactly the same as BK1_nCS. Thus, if there is a FLASH 2 and if the application always stays in dual-flash mode, then FLASH 2 may use BK1_nCS and the pin outputting BK2_nCS can be used for other functions. RM0430 Rev 8 321/1324 335 Quad-SPI interface (QUADSPI) 12.4 RM0430 QUADSPI interrupts An interrupt can be produced on the following events: • Timeout • Status match • FIFO threshold • Transfer complete • Transfer error Separate interrupt enable bits are available for flexibility. Table 72. QUADSPI interrupt requests Interrupt event 322/1324 Event flag Enable control bit Timeout TOF TOIE Status match SMF SMIE FIFO threshold FTF FTIE Transfer complete TCF TCIE Transfer error TEF TEIE RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) 12.5 QUADSPI registers 12.5.1 QUADSPI control register (QUADSPI_CR) Address offset: 0x0000 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 PRESCALER[7:0] 23 22 21 20 19 18 17 16 PMM APMS Res. TOIE SMIE FTIE TCIE TEIE rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. FSEL DFM Res. SSHIFT TCEN rw rw rw rw FTHRES[4:0] rw rw rw rw rw DMAEN ABORT rw rw EN rw Bits 31:24 PRESCALER[7:0]: Clock prescaler This field defines the scaler factor for generating CLK based on the AHB clock (value+1). 0: FCLK = FAHB, AHB clock used directly as QUADSPI CLK (prescaler bypassed) 1: FCLK = FAHB/2 2: FCLK = FAHB/3 ... 255: FCLK = FAHB/256 For odd clock division factors, CLK’s duty cycle is not 50%. The clock signal remains low one cycle longer than it stays high. This field can be modified only when BUSY = 0. Bit 23 PMM: Polling match mode This bit indicates which method should be used for determining a “match” during automatic polling mode. 0: AND match mode. SMF is set if all the unmasked bits received from the Flash memory match the corresponding bits in the match register. 1: OR match mode. SMF is set if any one of the unmasked bits received from the Flash memory matches its corresponding bit in the match register. This bit can be modified only when BUSY = 0. Bit 22 APMS: Automatic poll mode stop This bit determines if automatic polling is stopped after a match. 0: Automatic polling mode is stopped only by abort or by disabling the QUADSPI. 1: Automatic polling mode stops as soon as there is a match. This bit can be modified only when BUSY = 0. Bit 21 Reserved, must be kept at reset value. Bit 20 TOIE: TimeOut interrupt enable This bit enables the TimeOut interrupt. 0: Interrupt disable 1: Interrupt enabled Bit 19 SMIE: Status match interrupt enable This bit enables the status match interrupt. 0: Interrupt disable 1: Interrupt enabled RM0430 Rev 8 323/1324 335 Quad-SPI interface (QUADSPI) RM0430 Bit 18 FTIE: FIFO threshold interrupt enable This bit enables the FIFO threshold interrupt. 0: Interrupt disabled 1: Interrupt enabled Bit 17 TCIE: Transfer complete interrupt enable This bit enables the transfer complete interrupt. 0: Interrupt disabled 1: Interrupt enabled Bit 16 TEIE: Transfer error interrupt enable This bit enables the transfer error interrupt. 0: Interrupt disable 1: Interrupt enabled Bits 15:13 Reserved, must be kept at reset value. Bits 12:8 FTHRES[4:0] FIFO threshold level Defines, in indirect mode, the threshold number of bytes in the FIFO that will cause the FIFO threshold flag (FTF, QUADSPI_SR[2]) to be set. In indirect write mode (FMODE = 00): 0: FTF is set if there are 1 or more free bytes available to be written to in the FIFO 1: FTF is set if there are 2 or more free bytes available to be written to in the FIFO ... 31: FTF is set if there are 32 free bytes available to be written to in the FIFO In indirect read mode (FMODE = 01): 0: FTF is set if there are 1 or more valid bytes that can be read from the FIFO 1: FTF is set if there are 2 or more valid bytes that can be read from the FIFO ... 31: FTF is set if there are 32 valid bytes that can be read from the FIFO If DMAEN = 1, then the DMA controller for the corresponding channel must be disabled before changing the FTHRES value. Bit 7 FSEL: Flash memory selection This bit selects the Flash memory to be addressed in single flash mode (when DFM = 0). 0: FLASH 1 selected 1: FLASH 2 selected This bit can be modified only when BUSY = 0. This bit is ignored when DFM = 1. Bit 6 DFM: Dual-flash mode This bit activates dual-flash mode, where two external Flash memories are used simultaneously to double throughput and capacity. 0: Dual-flash mode disabled 1: Dual-flash mode enabled This bit can be modified only when BUSY = 0. Bit 5 Reserved, must be kept at reset value. 324/1324 RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) Bit 4 SSHIFT: Sample shift By default, the QUADSPI samples data 1/2 of a CLK cycle after the data is driven by the Flash memory. This bit allows the data is to be sampled later in order to account for external signal delays. 0: No shift 1: 1/2 cycle shift Firmware must assure that SSHIFT = 0 when in DDR mode (when DDRM = 1). This field can be modified only when BUSY = 0. Bit 3 TCEN: Timeout counter enable This bit is valid only when memory-mapped mode (FMODE = 11) is selected. Activating this bit causes the chip select (nCS) to be released (and thus reduces consumption) if there has not been an access after a certain amount of time, where this time is defined by TIMEOUT[15:0] (QUADSPI_LPTR). Enable the timeout counter. By default, the QUADSPI never stops its prefetch operation, keeping the previous read operation active with nCS maintained low, even if no access to the Flash memory occurs for a long time. Since Flash memories tend to consume more when nCS is held low, the application might want to activate the timeout counter (TCEN = 1, bit 3 of QUADSPI_CR) so that nCS is released after a period of TIMEOUT[15:0] (QUADSPI_LPTR) cycles have elapsed without an access since when the FIFO becomes full with prefetch data. 0: Timeout counter is disabled, and thus the chip select (nCS) remains active indefinitely after an access in memory-mapped mode. 1: Timeout counter is enabled, and thus the chip select is released in memory-mapped mode after TIMEOUT[15:0] cycles of Flash memory inactivity. This bit can be modified only when BUSY = 0. Bit 2 DMAEN: DMA enable In indirect mode, DMA can be used to input or output data via the QUADSPI_DR register. DMA transfers are initiated when the FIFO threshold flag, FTF, is set. 0: DMA is disabled for indirect mode 1: DMA is enabled for indirect mode Bit 1 ABORT: Abort request This bit aborts the on-going command sequence. It is automatically reset once the abort is complete. This bit stops the current transfer. In polling mode or memory-mapped mode, this bit also reset the APM bit or the DM bit. 0: No abort requested 1: Abort requested Bit 0 EN: Enable Enable the QUADSPI. 0: QUADSPI is disabled 1: QUADSPI is enabled RM0430 Rev 8 325/1324 335 Quad-SPI interface (QUADSPI) 12.5.2 RM0430 QUADSPI device configuration register (QUADSPI_DCR) Address offset: 0x0004 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. CSHT[2:0] rw rw Res. Res. rw Res. 20 19 18 17 16 rw FSIZE[4:0] rw rw rw rw 4 3 2 1 0 Res. CK MODE Res. Res. Res. rw Bits 31:21 Reserved, must be kept at reset value. Bits 20:16 FSIZE[4:0]: Flash memory size This field defines the size of external memory using the following formula: Number of bytes in Flash memory = 2[FSIZE+1] FSIZE+1 is effectively the number of address bits required to address the Flash memory. The Flash memory capacity can be up to 4GB (addressed using 32 bits) in indirect mode, but the addressable space in memory-mapped mode is limited to 256MB. If DFM = 1, FSIZE indicates the total capacity of the two Flash memories together. This field can be modified only when BUSY = 0. Bits 15:11 Reserved, must be kept at reset value. Bits 10:8 CSHT[2:0]: Chip select high time CSHT+1 defines the minimum number of CLK cycles which the chip select (nCS) must remain high between commands issued to the Flash memory. 0: nCS stays high for at least 1 cycle between Flash memory commands 1: nCS stays high for at least 2 cycles between Flash memory commands ... 7: nCS stays high for at least 8 cycles between Flash memory commands This field can be modified only when BUSY = 0. Bits 7:1 Reserved, must be kept at reset value. Bit 0 CKMODE: Mode 0 / mode 3 This bit indicates the level that CLK takes between commands (when nCS = 1). 0: CLK must stay low while nCS is high (chip select released). This is referred to as mode 0. 1: CLK must stay high while nCS is high (chip select released). This is referred to as mode 3. This field can be modified only when BUSY = 0. 326/1324 RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) 12.5.3 QUADSPI status register (QUADSPI_SR) Address offset: 0x0008 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. BUSY TOF SMF FTF TCF TEF r r r r r r FLEVEL[5:0] r r r r r r Bits 31:14 Reserved, must be kept at reset value. Bits 13:8 FLEVEL[5:0]: FIFO level This field gives the number of valid bytes which are being held in the FIFO. FLEVEL = 0 when the FIFO is empty, and 32 when it is full. In memory-mapped mode and in automatic status polling mode, FLEVEL is zero. Bits 7:6 Reserved, must be kept at reset value. Bit 5 BUSY: Busy This bit is set when an operation is on going. This bit clears automatically when the operation with the Flash memory is finished and the FIFO is empty. Bit 4 TOF: Timeout flag This bit is set when timeout occurs. It is cleared by writing 1 to CTOF. Bit 3 SMF: Status match flag This bit is set in automatic polling mode when the unmasked received data matches the corresponding bits in the match register (QUADSPI_PSMAR). It is cleared by writing 1 to CSMF. Bit 2 FTF: FIFO threshold flag In indirect mode, this bit is set when the FIFO threshold has been reached, or if there is any data left in the FIFO after reads from the Flash memory are complete. It is cleared automatically as soon as threshold condition is no longer true. In automatic polling mode this bit is set every time the status register is read, and the bit is cleared when the data register is read. Bit 1 TCF: Transfer complete flag This bit is set in indirect mode when the programmed number of data has been transferred or in any mode when the transfer has been aborted.It is cleared by writing 1 to CTCF. Bit 0 TEF: Transfer error flag This bit is set in indirect mode when an invalid address is being accessed in indirect mode. It is cleared by writing 1 to CTEF. RM0430 Rev 8 327/1324 335 Quad-SPI interface (QUADSPI) 12.5.4 RM0430 QUADSPI flag clear register (QUADSPI_FCR) Address offset: 0x000C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CTOF CSMF Res. CTCF CTEF w w w w Bits 31:5 Reserved, must be kept at reset value. Bit 4 CTOF: Clear timeout flag Writing 1 clears the TOF flag in the QUADSPI_SR register Bit 3 CSMF: Clear status match flag Writing 1 clears the SMF flag in the QUADSPI_SR register Bit 2 Reserved, must be kept at reset value. Bit 1 CTCF: Clear transfer complete flag Writing 1 clears the TCF flag in the QUADSPI_SR register Bit 0 CTEF: Clear transfer error flag Writing 1 clears the TEF flag in the QUADSPI_SR register 12.5.5 QUADSPI data length register (QUADSPI_DLR) Address offset: 0x0010 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DL[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DL[15:0] rw 328/1324 rw rw rw rw rw rw rw rw RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) Bits 31:0 DL[31:0]: Data length Number of data to be retrieved (value+1) in indirect and status-polling modes. A value no greater than 3 (indicating 4 bytes) should be used for status-polling mode. All 1s in indirect mode means undefined length, where QUADSPI will continue until the end of memory, as defined by FSIZE. 0x0000_0000: 1 byte is to be transferred 0x0000_0001: 2 bytes are to be transferred 0x0000_0002: 3 bytes are to be transferred 0x0000_0003: 4 bytes are to be transferred ... 0xFFFF_FFFD: 4,294,967,294 (4G-2) bytes are to be transferred 0xFFFF_FFFE: 4,294,967,295 (4G-1) bytes are to be transferred 0xFFFF_FFFF: undefined length -- all bytes until the end of Flash memory (as defined by FSIZE) are to be transferred. Continue reading indefinitely if FSIZE = 0x1F. DL[0] is stuck at ‘1’ in dual-flash mode (DFM = 1) even when ‘0’ is written to this bit, thus assuring that each access transfers an even number of bytes. This field has no effect when in memory-mapped mode (FMODE = 10). This field can be written only when BUSY = 0. 12.5.6 QUADSPI communication configuration register (QUADSPI_CCR) Address offset: 0x0014 Reset value: 0x0000 0000 31 30 29 28 DDRM DHHC Res. SIOO 13 rw rw 15 14 ABMODE[1:0] rw rw 26 25 24 FMODE[1:0] DMODE[1:0] rw rw rw rw rw 12 11 10 9 8 ADSIZE[1:0] rw 27 rw ADMODE[1:0] rw rw 23 22 21 Res. 7 rw 19 18 DCYC[4:0] 17 16 ABSIZE[1:0] rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw IMODE[1:0] rw 20 INSTRUCTION[7:0] rw rw rw rw rw Bit 31 DDRM: Double data rate mode This bit sets the DDR mode for the address, alternate byte and data phase: 0: DDR Mode disabled 1: DDR Mode enabled This field can be written only when BUSY = 0. Bit 30 DHHC: DDR hold Delay the data output by 1/4 of the QUADSPI output clock cycle in DDR mode: 0: Delay the data output using analog delay 1: Delay the data output by 1/4 of a QUADSPI output clock cycle. This feature is only active in DDR mode. This field can be written only when BUSY = 0. Bit 29 Reserved, must be kept at reset value. RM0430 Rev 8 329/1324 335 Quad-SPI interface (QUADSPI) RM0430 Bit 28 SIOO: Send instruction only once mode See Section 12.3.12: Sending the instruction only once on page 319. This bit has no effect when IMODE = 00. 0: Send instruction on every transaction 1: Send instruction only for the first command This field can be written only when BUSY = 0. Bits 27:26 FMODE[1:0]: Functional mode This field defines the QUADSPI functional mode of operation. 00: Indirect write mode 01: Indirect read mode 10: Automatic polling mode 11: Memory-mapped mode If DMAEN = 1 already, then the DMA controller for the corresponding channel must be disabled before changing the FMODE value. This field can be written only when BUSY = 0. Bits 25:24 DMODE[1:0]: Data mode This field defines the data phase’s mode of operation: 00: No data 01: Data on a single line 10: Data on two lines 11: Data on four lines This field also determines the dummy phase mode of operation. This field can be written only when BUSY = 0. Bit 23 Reserved, must be kept at reset value. Bits 22:18 DCYC[4:0]: Number of dummy cycles This field defines the duration of the dummy phase. In both SDR and DDR modes, it specifies a number of CLK cycles (0-31). This field can be written only when BUSY = 0. Bits 17:16 ABSIZE[1:0]: Alternate bytes size This bit defines alternate bytes size: 00: 8-bit alternate byte 01: 16-bit alternate bytes 10: 24-bit alternate bytes 11: 32-bit alternate bytes This field can be written only when BUSY = 0. Bits 15:14 ABMODE[1:0]: Alternate bytes mode This field defines the alternate-bytes phase mode of operation: 00: No alternate bytes 01: Alternate bytes on a single line 10: Alternate bytes on two lines 11: Alternate bytes on four lines This field can be written only when BUSY = 0. 330/1324 RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) Bits 13:12 ADSIZE[1:0]: Address size This bit defines address size: 00: 8-bit address 01: 16-bit address 10: 24-bit address 11: 32-bit address This field can be written only when BUSY = 0. Bits 11:10 ADMODE[1:0]: Address mode This field defines the address phase mode of operation: 00: No address 01: Address on a single line 10: Address on two lines 11: Address on four lines This field can be written only when BUSY = 0. Bits 9:8 IMODE[1:0]: Instruction mode This field defines the instruction phase mode of operation: 00: No instruction 01: Instruction on a single line 10: Instruction on two lines 11: Instruction on four lines This field can be written only when BUSY = 0. Bits 7:0 INSTRUCTION[7:0]: Instruction Instruction to be send to the external SPI device. This field can be written only when BUSY = 0. 12.5.7 QUADSPI address register (QUADSPI_AR) Address offset: 0x0018 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ADDRESS[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ADDRESS[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 ADDRESS[31:0]: Address Address to be send to the external Flash memory Writes to this field are ignored when BUSY = 0 or when FMODE = 11 (memory-mapped mode). In dual flash mode, ADDRESS[0] is automatically stuck to ‘0’ as the address should always be even RM0430 Rev 8 331/1324 335 Quad-SPI interface (QUADSPI) 12.5.8 RM0430 QUADSPI alternate bytes registers (QUADSPI_ABR) Address offset: 0x001C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ALTERNATE[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ALTERNATE[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 ALTERNATE[31:0]: Alternate Bytes Optional data to be send to the external SPI device right after the address. This field can be written only when BUSY = 0. 12.5.9 QUADSPI data register (QUADSPI_DR) Address offset: 0x0020 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATA[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DATA[31:0]: Data Data to be sent/received to/from the external SPI device. In indirect write mode, data written to this register is stored on the FIFO before it is sent to the Flash memory during the data phase. If the FIFO is too full, a write operation is stalled until the FIFO has enough space to accept the amount of data being written. In indirect read mode, reading this register gives (via the FIFO) the data which was received from the Flash memory. If the FIFO does not have as many bytes as requested by the read operation and if BUSY=1, the read operation is stalled until enough data is present or until the transfer is complete, whichever happens first. In automatic polling mode, this register contains the last data read from the Flash memory (without masking). Word, halfword, and byte accesses to this register are supported. In indirect write mode, a byte write adds 1 byte to the FIFO, a halfword write 2, and a word write 4. Similarly, in indirect read mode, a byte read removes 1 byte from the FIFO, a halfword read 2, and a word read 4. Accesses in indirect mode must be aligned to the bottom of this register: a byte read must read DATA[7:0] and a halfword read must read DATA[15:0]. 332/1324 RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) 12.5.10 QUADSPI polling status mask register (QUADSPI _PSMKR) Address offset: 0x0024 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MASK[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MASK[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 MASK[31:0]: Status mask Mask to be applied to the status bytes received in polling mode. For bit n: 0: Bit n of the data received in automatic polling mode is masked and its value is not considered in the matching logic 1: Bit n of the data received in automatic polling mode is unmasked and its value is considered in the matching logic This field can be written only when BUSY = 0. 12.5.11 QUADSPI polling status match register (QUADSPI _PSMAR) Address offset: 0x0028 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MATCH[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MATCH[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 MATCH[31:0]: Status match Value to be compared with the masked status register to get a match. This field can be written only when BUSY = 0. RM0430 Rev 8 333/1324 335 Quad-SPI interface (QUADSPI) 12.5.12 RM0430 QUADSPI polling interval register (QUADSPI _PIR) Address offset: 0x002C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw INTERVAL[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 INTERVAL[15:0]: Polling interval Number of CLK cycles between to read during automatic polling phases. This field can be written only when BUSY = 0. 12.5.13 QUADSPI low-power timeout register (QUADSPI_LPTR) Address offset: 0x0030 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw TIMEOUT[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 TIMEOUT[15:0]: Timeout period After each access in memory-mapped mode, the QUADSPI prefetches the subsequent bytes and holds these bytes in the FIFO. This field indicates how many CLK cycles the QUADSPI waits after the FIFO becomes full until it raises nCS, putting the Flash memory in a lower-consumption state. This field can be written only when BUSY = 0. 334/1324 RM0430 Rev 8 RM0430 Quad-SPI interface (QUADSPI) 12.5.14 QUADSPI register map 0x0018 0x001C 0x0020 0x0024 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 DCYC[4:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ABORT EN Res. TEF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 INSTRUCTION[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MASK[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 QUADSPI_ PSMAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 QUADSPI_PIR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MATCH[31:0] Reset value 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 INTERVAL[15:0] 0 Res. QUADSPI_ LPTR 0 DATA[31:0] Reset value 0x0030 CKMODE TCF 0 ALTERNATE[31:0] QUADSPI_ PSMKR 0x002C TCEN 0 ADDRESS[31:0] 0 QUADSPI_DR Reset value DMAEN 0 CTEF 0 QUADSPI_ABR Reset value Res. FTF 0 CTCF 0 IMODE[1:0] 0 ADMODE[1:0] 0 QUADSPI_AR Reset value 0x0028 0 ADSIZE[1:0] 0 0 ABMODE[1:0] 0 0 ABSIZE[1:0] 0 0 Res. 0 0 DMODE[1:0] DHHC Reset value 0 FMODE[1:0] QUADSPI_CCR 0 Res. 0 SIOO 0 0x0014 Res. DFM Res. Res. 0 DL[31:0] Reset value DDRM QUADSPI_DLR SSHIFT 0 Reset value 0x0010 Res. FSEL Res. Res. SMF 0 Res. 0 CSMF 0 TOF 0 0 CTOF 0 0 BUSY 0 0 Res. 0 Res. FLEVEL[6:0] 0 0 0 Res. Res. Res. 0 Res. 0 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. QUADSPI_FCR CSHT 0 Reset value 0x000C 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. Res. 0 Res. Res. Res. 0 Res. Res. Res. FSIZE[4:0] 0 Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. 0 FTHRES [4:0] Res. Res. Res. TEIE Res. Res. Res. 0 Res. Res. Res. QUADSPI_SR Res. Reset value 0x0008 0 Res. QUADSPI_DCR 0x0004 0 Res. 0 FTIE 0 TCIE 0 Res. 0 SMIE 0 Res. 0 Res. 0 Res. 0 TOIE 0 PRESCALER[7:0] Res. 0 QUADSPI_CR 0x0000 Res. PMM APMS Reset value Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 73. QUADSPI register map and reset values Register name 0 0 0 0 TIMEOUT[15:0] 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 58 for the register boundary addresses. RM0430 Rev 8 335/1324 335 Analog-to-digital converter (ADC) RM0430 13 Analog-to-digital converter (ADC) 13.1 ADC introduction The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 19 multiplexed channels allowing it to measure signals from 16 external sources, two internal sources, and the VBAT channel. The A/D conversion of the channels can be performed in single, continuous, scan or discontinuous mode. The result of the ADC is stored into a leftor right-aligned 16-bit data register. The analog watchdog feature allows the application to detect if the input voltage goes beyond the user-defined, higher or lower thresholds. 13.2 ADC main features • 12-bit, 10-bit, 8-bit or 6-bit configurable resolution • Interrupt generation at the end of conversion, end of injected conversion, and in case of analog watchdog or overrun events • Single and continuous conversion modes • Scan mode for automatic conversion of channel 0 to channel ‘n’ • Data alignment with in-built data coherency • Channel-wise programmable sampling time • External trigger option with configurable polarity for both regular and injected conversions • Discontinuous mode • Configurable delay between conversions in Dual/Triple interleaved mode • ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at slower speed • ADC input range: VREF– ≤ VIN ≤ VREF+ • DMA request generation during regular channel conversion Figure 59 shows the block diagram of the ADC. Note: VREF–, if available (depending on package), must be tied to VSSA. 13.3 ADC functional description Figure 59 shows a single ADC block diagram and Table 74 gives the ADC pin description. 336/1324 RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) Figure 59. Single ADC block diagram ,QWHUUXSW HQDEOHELWV )ODJV '0$RYHUUXQ (QGRIFRQYHUVLRQ (QGRILQMHFWHGFRQYHUVLRQ $QDORJZDWFKGRJHYHQW 295295,( (2& (2&,( -(2& -(2&,( $:' $:',( $'&,QWHUUXSWWR19,& $QDORJZDWFKGRJ &RPSDUHUHVXOW +LJKHUWKUHVKROG ELWV ,QMHFWHGGDWDUHJLVWHUV [ELWV 9 5() 9 5() 5HJXODUGDWDUHJLVWHU ELWV 9 ''$ 9 66$ $QDORJ PX[ $GGUHVVGDWDEXV /RZHUWKUHVKROG ELWV '0$UHTXHVW $'&[B,1 $'&[B,1 *3,2 SRUWV XSWR XSWR $'&[B,1 $'&&/. ,QMHFWHG FKDQQHOV $QDORJ WR GLJLWDO 5HJXODU FKDQQHOV FRQYHUWHU 7HPSVHQVRU 9 5(),17 9 %$7 )URP$'&SUHVFDOHU (;76(/>@ELWV -(;76(/>@ELWV 7,0B&+ 7,0B75*2 7,0B&+ 7,0B75*2 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B75*2 7,0B&+ 7,0B75*2 7,0B&+ 7,0B&+ 7,0B&+ (;7(1 >@ELWV -(;7(1 >@ELWV 6WDUWWULJJHU LQMHFWHGJURXS 6WDUWWULJJHU UHJXODUJURXS 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B75*2 7,0B&+ 7,0B75*2 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B&+ 7,0B75*2 (;7,B (;7,B DL RM0430 Rev 8 337/1324 365 Analog-to-digital converter (ADC) RM0430 Table 74. ADC pins Name 13.3.1 Signal type Remarks VREF+ Input, analog reference positive The higher/positive reference voltage for the ADC, 1.8 V ≤ VREF+ ≤ VDDA VDDA Input, analog supply Analog power supply equal to VDD and 2.4 V ≤VDDA ≤VDD (3.6 V) for full speed 1.8 V ≤VDDA ≤VDD (3.6 V) for reduced speed VREF– Input, analog reference negative The lower/negative reference voltage for the ADC, VREF– = VSSA VSSA Input, analog supply ground Ground for analog power supply equal to VSS ADCx_IN[15:0] Analog input signals 16 analog input channels ADC on-off control The ADC is powered on by setting the ADON bit in the ADC_CR2 register. When the ADON bit is set for the first time, it wakes up the ADC from the Power-down mode. The conversion starts when either the SWSTART or the JSWSTART bit is set. The user can stop conversion and put the ADC in power down mode by clearing the ADON bit. In this mode the ADC consumes almost no power (only a few µA). 13.3.2 ADC clock The ADC features two clock schemes: • Clock for the analog circuitry: ADCCLK This clock is generated from the APB2 clock divided by a programmable prescaler that allows the ADC to work at fPCLK2/2, /4, /6 or /8. Refer to the datasheets for the maximum value of ADCCLK. • Clock for the digital interface (used for registers read/write access) This clock is equal to the APB2 clock. The digital interface clock can be enabled/disabled individually for each ADC through the RCC APB2 peripheral clock enable register (RCC_APB2ENR). 13.3.3 Channel selection There are 16 multiplexed channels. It is possible to organize the conversions in two groups: regular and injected. A group consists of a sequence of conversions that can be done on any channel and in any order. For instance, it is possible to implement the conversion sequence in the following order: ADC_IN3, ADC_IN8, ADC_IN2, ADC_IN2, ADC_IN0, ADC_IN2, ADC_IN2, ADC_IN15. 338/1324 • A regular group is composed of up to 16 conversions. The regular channels and their order in the conversion sequence must be selected in the ADC_SQRx registers. The total number of conversions in the regular group must be written in the L[3:0] bits in the ADC_SQR1 register. • An injected group is composed of up to 4 conversions. The injected channels and their order in the conversion sequence must be selected in the ADC_JSQR register. RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) The total number of conversions in the injected group must be written in the L[1:0] bits in the ADC_JSQR register. If the ADC_SQRx or ADC_JSQR registers are modified during a conversion, the current conversion is reset and a new start pulse is sent to the ADC to convert the newly chosen group. Temperature sensor, VREFINT and VBAT internal channels • The temperature sensor is internally connected to ADC1_IN18 channel which is shared with VBAT. Only one conversion, temperature sensor or VBAT, must be selected at a time. When the temperature sensor and VBAT conversion are set simultaneously, only the VBAT conversion is performed. The internal reference voltage VREFINT is connected to ADC1_IN17. The VBAT channel is connected to ADC1_IN18 channel. It can also be converted as an injected or regular channel. 13.3.4 Single conversion mode In Single conversion mode the ADC does one conversion. This mode is started with the CONT bit at 0 by either: • setting the SWSTART bit in the ADC_CR2 register (for a regular channel only) • setting the JSWSTART bit (for an injected channel) • external trigger (for a regular or injected channel) Once the conversion of the selected channel is complete: • • If a regular channel was converted: – The converted data are stored into the 16-bit ADC_DR register – The EOC (end of conversion) flag is set – An interrupt is generated if the EOCIE bit is set If an injected channel was converted: – The converted data are stored into the 16-bit ADC_JDR1 register – The JEOC (end of conversion injected) flag is set – An interrupt is generated if the JEOCIE bit is set Then the ADC stops. 13.3.5 Continuous conversion mode In continuous conversion mode, the ADC starts a new conversion as soon as it finishes one. This mode is started with the CONT bit at 1 either by external trigger or by setting the SWSTRT bit in the ADC_CR2 register (for regular channels only). After each conversion: • Note: If a regular group of channels was converted: – The last converted data are stored into the 16-bit ADC_DR register – The EOC (end of conversion) flag is set – An interrupt is generated if the EOCIE bit is set Injected channels cannot be converted continuously. The only exception is when an injected channel is configured to be converted automatically after regular channels in continuous RM0430 Rev 8 339/1324 365 Analog-to-digital converter (ADC) RM0430 mode (using JAUTO bit), refer to Auto-injection section). 13.3.6 Timing diagram As shown in Figure 60, the ADC needs a stabilization time of tSTAB before it starts converting accurately. After the start of the ADC conversion and after 15 clock cycles, the EOC flag is set and the 16-bit ADC data register contains the result of the conversion. Figure 60. Timing diagram !$#?#,+ !$/. 3734!24 *3734!24 3TART ST CONVERSION 3TART NEXT CONVERSION !$# CONVERSION !$# .EXT !$# CONVERSION #ONVERSION TIME T34!" TOTAL CONV TIME %/# 3OFTWARE CLEARS THE %/# BIT AIB 13.3.7 Analog watchdog The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is below a lower threshold or above a higher threshold. These thresholds are programmed in the 12 least significant bits of the ADC_HTR and ADC_LTR 16-bit registers. An interrupt can be enabled by using the AWDIE bit in the ADC_CR1 register. The threshold value is independent of the alignment selected by the ALIGN bit in the ADC_CR2 register. The analog voltage is compared to the lower and higher thresholds before alignment. Table 75 shows how the ADC_CR1 register should be configured to enable the analog watchdog on one or more channels. Figure 61. Analog watchdog’s guarded area $QDORJYROWDJH +LJKHUWKUHVKROG +75 *XDUGHGDUHD /RZHUWKUHVKROG /75 DL 340/1324 RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) Table 75. Analog watchdog channel selection Channels guarded by the analog watchdog ADC_CR1 register control bits (x = don’t care) AWDSGL bit AWDEN bit JAWDEN bit None x 0 0 All injected channels 0 0 1 All regular channels 0 1 0 All regular and injected channels 0 1 1 (1) injected channel 1 0 1 (1) regular channel 1 1 0 1 1 1 Single Single Single (1) regular or injected channel 1. Selected by the AWDCH[4:0] bits 13.3.8 Scan mode This mode is used to scan a group of analog channels. The Scan mode is selected by setting the SCAN bit in the ADC_CR1 register. Once this bit has been set, the ADC scans all the channels selected in the ADC_SQRx registers (for regular channels) or in the ADC_JSQR register (for injected channels). A single conversion is performed for each channel of the group. After each end of conversion, the next channel in the group is converted automatically. If the CONT bit is set, regular channel conversion does not stop at the last selected channel in the group but continues again from the first selected channel. If the DMA bit is set, the direct memory access (DMA) controller is used to transfer the data converted from the regular group of channels (stored in the ADC_DR register) to SRAM after each regular channel conversion. The EOC bit is set in the ADC_SR register: • At the end of each regular group sequence if the EOCS bit is cleared to 0 • At the end of each regular channel conversion if the EOCS bit is set to 1 The data converted from an injected channel are always stored into the ADC_JDRx registers. 13.3.9 Injected channel management Triggered injection To use triggered injection, the JAUTO bit must be cleared in the ADC_CR1 register. 1. Start the conversion of a group of regular channels either by external trigger or by setting the SWSTART bit in the ADC_CR2 register. 2. If an external injected trigger occurs or if the JSWSTART bit is set during the conversion of a regular group of channels, the current conversion is reset and the injected channel sequence switches to Scan-once mode. 3. Then, the regular conversion of the regular group of channels is resumed from the last interrupted regular conversion. If a regular event occurs during an injected conversion, the injected conversion is not RM0430 Rev 8 341/1324 365 Analog-to-digital converter (ADC) RM0430 interrupted but the regular sequence is executed at the end of the injected sequence. Figure 62 shows the corresponding timing diagram. Note: When using triggered injection, one must ensure that the interval between trigger events is longer than the injection sequence. For instance, if the sequence length is 30 ADC clock cycles (that is two conversions with a sampling time of 3 clock periods), the minimum interval between triggers must be 31 ADC clock cycles. Auto-injection If the JAUTO bit is set, then the channels in the injected group are automatically converted after the regular group of channels. This can be used to convert a sequence of up to 20 conversions programmed in the ADC_SQRx and ADC_JSQR registers. In this mode, external trigger on injected channels must be disabled. If the CONT bit is also set in addition to the JAUTO bit, regular channels followed by injected channels are continuously converted. Note: It is not possible to use both the auto-injected and discontinuous modes simultaneously. Figure 62. Injected conversion latency !$##,+ )NJECTION EVENT 2ESET !$# 3/# MAX LATENCY AI 1. The maximum latency value can be found in the electrical characteristics of the STM32F413/423 datasheets. 13.3.10 Discontinuous mode Regular group This mode is enabled by setting the DISCEN bit in the ADC_CR1 register. It can be used to convert a short sequence of n conversions (n ≤ 8) that is part of the sequence of conversions selected in the ADC_SQRx registers. The value of n is specified by writing to the DISCNUM[2:0] bits in the ADC_CR1 register. When an external trigger occurs, it starts the next n conversions selected in the ADC_SQRx registers until all the conversions in the sequence are done. The total sequence length is defined by the L[3:0] bits in the ADC_SQR1 register. 342/1324 RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) Example: Note: • n = 3, channels to be converted = 0, 1, 2, 3, 6, 7, 9, 10 • 1st trigger: sequence converted 0, 1, 2. An EOC event is generated at each conversion. • 2nd trigger: sequence converted 3, 6, 7. An EOC event is generated at each conversion • 3rd trigger: sequence converted 9, 10.An EOC event is generated at each conversion • 4th trigger: sequence converted 0, 1, 2. An EOC event is generated at each conversion When a regular group is converted in discontinuous mode, no rollover occurs. When all subgroups are converted, the next trigger starts the conversion of the first subgroup. In the example above, the 4th trigger reconverts the channels 0, 1 and 2 in the 1st subgroup. Injected group This mode is enabled by setting the JDISCEN bit in the ADC_CR1 register. It can be used to convert the sequence selected in the ADC_JSQR register, channel by channel, after an external trigger event. When an external trigger occurs, it starts the next channel conversions selected in the ADC_JSQR registers until all the conversions in the sequence are done. The total sequence length is defined by the JL[1:0] bits in the ADC_JSQR register. Example: n = 1, channels to be converted = 1, 2, 3 1st trigger: channel 1 converted 2nd trigger: channel 2 converted 3rd trigger: channel 3 converted and JEOC event generated 4th trigger: channel 1 Note: When all injected channels are converted, the next trigger starts the conversion of the first injected channel. In the example above, the 4th trigger reconverts the 1st injected channel 1. It is not possible to use both the auto-injected and discontinuous modes simultaneously. Discontinuous mode must not be set for regular and injected groups at the same time. Discontinuous mode must be enabled only for the conversion of one group. 13.4 Data alignment The ALIGN bit in the ADC_CR2 register selects the alignment of the data stored after conversion. Data can be right- or left-aligned as shown in Figure 63 and Figure 64. The converted data value from the injected group of channels is decreased by the userdefined offset written in the ADC_JOFRx registers so the result can be a negative value. The SEXT bit represents the extended sign value. For channels in a regular group, no offset is subtracted so only twelve bits are significant. RM0430 Rev 8 343/1324 365 Analog-to-digital converter (ADC) RM0430 Figure 63. Right alignment of 12-bit data )NJECTED GROUP 3%84 3%84 3%84 3%84 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 2EGULAR GROUP AI Figure 64. Left alignment of 12-bit data )NJECTED GROUP 3%84 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 2EGULAR GROUP $ $ $ $ $ AI Special case: when left-aligned, the data are aligned on a half-word basis except when the resolution is set to 6-bit. in that case, the data are aligned on a byte basis as shown in Figure 65. Figure 65. Left alignment of 6-bit data )NJECTED GROUP 3%84 3%84 3%84 3%84 3%84 3%84 3%84 3%84 3%84 $ $ $ $ $ $ $ $ $ 2EGULAR GROUP $ $ $ AI 13.5 Channel-wise programmable sampling time The ADC samples the input voltage for a number of ADCCLK cycles that can be modified using the SMP[2:0] bits in the ADC_SMPR1 and ADC_SMPR2 registers. Each channel can be sampled with a different sampling time. The total conversion time is calculated as follows: Tconv = Sampling time + 12 cycles Example: With ADCCLK = 30 MHz and sampling time = 3 cycles: Tconv = 3 + 12 = 15 cycles = 0.5 µs with APB2 at 60 MHz 344/1324 RM0430 Rev 8 RM0430 13.6 Analog-to-digital converter (ADC) Conversion on external trigger and trigger polarity Conversion can be triggered by an external event (e.g. timer capture, EXTI line). If the EXTEN[1:0] control bits (for a regular conversion) or JEXTEN[1:0] bits (for an injected conversion) are different from “0b00”, then external events are able to trigger a conversion with the selected polarity. Table 76 provides the correspondence between the EXTEN[1:0] and JEXTEN[1:0] values and the trigger polarity. Table 76. Configuring the trigger polarity Source Note: EXTEN[1:0] / JEXTEN[1:0] Trigger detection disabled 00 Detection on the rising edge 01 Detection on the falling edge 10 Detection on both the rising and falling edges 11 The polarity of the external trigger can be changed on the fly. The EXTSEL[3:0] and JEXTSEL[3:0] control bits are used to select which out of 16 possible events can trigger conversion for the regular and injected groups. Table 77 gives the possible external trigger for regular conversion. Table 77. External trigger for regular channels Source Type EXTSEL[3:0] TIM1_CH1 event 0000 TIM1_CH2 event 0001 TIM1_CH3 event 0010 TIM2_CH2 event 0011 TIM2_CH3 event 0100 TIM2_CH4 event 0101 TIM2_TRGO event 0110 TIM3_CH1 event Internal signal from on-chip timers 0111 TIM3_TRGO event 1000 TIM4_CH4 event 1001 TIM5_CH1 event 1010 TIM5_CH2 event 1011 TIM5_CH3 event 1100 TIM8_CH1 event 1101 TIM8_TRGO event 1110 EXTI line11 External pin RM0430 Rev 8 1111 345/1324 365 Analog-to-digital converter (ADC) RM0430 Table 78 gives the possible external trigger for injected conversion. Table 78. External trigger for injected channels Source Connection type JEXTSEL[3:0] TIM1_CH4 event 0000 TIM1_TRGO event 0001 TIM2_CH1 event 0010 TIM2_TRGO event 0011 TIM3_CH2 event 0100 TIM3_CH4 event 0101 TIM4_CH1 event 0110 TIM4_CH2 event Internal signal from on-chip timers 0111 TIM4_CH3 event 1000 TIM4_TRGO event 1001 TIM5_CH4 event 1010 TIM5_TRGO event 1011 TIM8_CH2 event 1100 TIM8_CH3 event 1101 TIM8_CH4 event 1110 EXTI line15 External pin 1111 Software source trigger events can be generated by setting SWSTART (for regular conversion) or JSWSTART (for injected conversion) in ADC_CR2. A regular group conversion can be interrupted by an injected trigger. Note: The trigger selection can be changed on the fly. However, when the selection changes, there is a time frame of 1 APB clock cycle during which the trigger detection is disabled. This is to avoid spurious detection during transitions. 13.7 Fast conversion mode It is possible to perform faster conversion by reducing the ADC resolution. The RES bits are used to select the number of bits available in the data register. The minimum conversion time for each resolution is then as follows: 346/1324 • 12 bits: 3 + 12 = 15 ADCCLK cycles • 10 bits: 3 + 10 = 13 ADCCLK cycles • 8 bits: 3 + 8 = 11 ADCCLK cycles • 6 bits: 3 + 6 = 9 ADCCLK cycles RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) 13.8 Data management 13.8.1 Using the DMA Since converted regular channel values are stored into a unique data register, it is useful to use DMA for conversion of more than one regular channel. This avoids the loss of the data already stored in the ADC_DR register. When the DMA mode is enabled (DMA bit set to 1 in the ADC_CR2 register), after each conversion of a regular channel, a DMA request is generated. This allows the transfer of the converted data from the ADC_DR register to the destination location selected by the software. Despite this, if data are lost (overrun), the OVR bit in the ADC_SR register is set and an interrupt is generated (if the OVRIE enable bit is set). DMA transfers are then disabled and DMA requests are no longer accepted. In this case, if a DMA request is made, the regular conversion in progress is aborted and further regular triggers are ignored. It is then necessary to clear the OVR flag and the DMAEN bit in the used DMA stream, and to reinitialize both the DMA and the ADC to have the wanted converted channel data transferred to the right memory location. Only then can the conversion be resumed and the data transfer, enabled again. Injected channel conversions are not impacted by overrun errors. When OVR = 1 in DMA mode, the DMA requests are blocked after the last valid data have been transferred, which means that all the data transferred to the RAM can be considered as valid. At the end of the last DMA transfer (number of transfers configured in the DMA controller’s DMA_SxNTR register): • No new DMA request is issued to the DMA controller if the DDS bit is cleared to 0 in the ADC_CR2 register (this avoids generating an overrun error). However the DMA bit is not cleared by hardware. It must be written to 0, then to 1 to start a new transfer. • Requests can continue to be generated if the DDS bit is set to 1. This allows configuring the DMA in double-buffer circular mode. To recover the ADC from OVR state when the DMA is used, follow the steps below: 13.8.2 1. Reinitialize the DMA (adjust destination address and NDTR counter) 2. Clear the ADC OVR bit in ADC_SR register 3. Trigger the ADC to start the conversion. Managing a sequence of conversions without using the DMA If the conversions are slow enough, the conversion sequence can be handled by the software. In this case the EOCS bit must be set in the ADC_CR2 register for the EOC status bit to be set at the end of each conversion, and not only at the end of the sequence. When EOCS = 1, overrun detection is automatically enabled. Thus, each time a conversion is complete, EOC is set and the ADC_DR register can be read. The overrun management is the same as when the DMA is used. To recover the ADC from OVR state when the EOCS is set, follow the steps below: 1. Clear the ADC OVR bit in ADC_SR register 2. Trigger the ADC to start the conversion. RM0430 Rev 8 347/1324 365 Analog-to-digital converter (ADC) 13.8.3 RM0430 Conversions without DMA and without overrun detection It may be useful to let the ADC convert one or more channels without reading the data each time (if there is an analog watchdog for instance). For that, the DMA must be disabled (DMA = 0) and the EOC bit must be set at the end of a sequence only (EOCS = 0). In this configuration, overrun detection is disabled. 13.9 Temperature sensor The temperature sensor can be used to measure the ambient temperature (TA) of the device. Figure 66 shows the block diagram of the temperature sensor. When not in use, the sensor can be put in power down mode. Note: The TSVREFE bit must be set to enable the conversion of both internal channels: the ADC1_IN18 (temperature sensor) and the ADC1_IN17 (VREFINT). Main features • Supported temperature range: –40 to 125 °C • Precision: ±1.5 °C Figure 66. Temperature sensor and VREFINT channel block diagram 7695()(FRQWUROELW 9 6(16( $'&B,1 FRQYHUWHGGDWD $'& ,QWHUQDO SRZHUEORFN 95(),17 $GGUHVVGDWDEXV 7HPSHUDWXUH VHQVRU $'&B,1 069 1. VSENSE is input to ADC1_IN18. 348/1324 RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) Reading the temperature To use the sensor: 3. Select ADC1_IN18 input channel. 4. Select a sampling time greater than the minimum sampling time specified in the datasheet. 5. Set the TSVREFE bit in the ADC_CCR register to wake up the temperature sensor from power down mode 6. Start the ADC conversion by setting the SWSTART bit (or by external trigger) 7. Read the resulting VSENSE data in the ADC data register 8. Calculate the temperature using the following formula: Temperature (in °C) = {(VSENSE – V25) / Avg_Slope} + 25 Where: – V25 = VSENSE value for 25° C – Avg_Slope = average slope of the temperature vs. VSENSE curve (given in mV/°C or µV/°C) Refer to the datasheet electrical characteristics section for the actual values of V25 and Avg_Slope. Note: The sensor has a startup time after waking from power down mode before it can output VSENSE at the correct level. The ADC also has a startup time after power-on, so to minimize the delay, the ADON and TSVREFE bits should be set at the same time. The temperature sensor output voltage changes linearly with temperature. The offset of this linear function depends on each chip due to process variation (up to 45 °C from one chip to another). The internal temperature sensor is more suited for applications that detect temperature variations instead of absolute temperatures. If accurate temperature reading is required, an external temperature sensor should be used. 13.10 Battery charge monitoring The VBATE bit in the ADC_CCR register is used to switch to the battery voltage. As the VBAT voltage could be higher than VDDA, to ensure the correct operation of the ADC, the VBAT pin is internally connected to a bridge divider. When the VBATE is set, the bridge is automatically enabled to connect: • Note: VBAT/4 to the ADC1_IN18 input channel The VBAT and temperature sensor are connected to the same ADC internal channel (ADC1_IN18). Only one conversion, either temperature sensor or VBAT, must be selected at a time. When both conversion are enabled simultaneously, only the VBAT conversion is performed. RM0430 Rev 8 349/1324 365 Analog-to-digital converter (ADC) 13.11 RM0430 ADC interrupts An interrupt can be produced on the end of conversion for regular and injected groups, when the analog watchdog status bit is set and when the overrun status bit is set. Separate interrupt enable bits are available for flexibility. Two other flags are present in the ADC_SR register, but there is no interrupt associated with them: • JSTRT (Start of conversion for channels of an injected group) • STRT (Start of conversion for channels of a regular group) Table 79. ADC interrupts Interrupt event 350/1324 Event flag Enable control bit End of conversion of a regular group EOC EOCIE End of conversion of an injected group JEOC JEOCIE Analog watchdog status bit is set AWD AWDIE Overrun OVR OVRIE RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) 13.12 ADC registers Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions. The peripheral registers must be written at word level (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 13.12.1 ADC status register (ADC_SR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OVR STRT JSTRT JEOC EOC AWD rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Bits 31:6 Reserved, must be kept at reset value. Bit 5 OVR: Overrun This bit is set by hardware when data are lost (either in single mode or in dual/triple mode). It is cleared by software. Overrun detection is enabled only when DMA = 1 or EOCS = 1. 0: No overrun occurred 1: Overrun has occurred Bit 4 STRT: Regular channel start flag This bit is set by hardware when regular channel conversion starts. It is cleared by software. 0: No regular channel conversion started 1: Regular channel conversion has started Bit 3 JSTRT: Injected channel start flag This bit is set by hardware when injected group conversion starts. It is cleared by software. 0: No injected group conversion started 1: Injected group conversion has started Bit 2 JEOC: Injected channel end of conversion This bit is set by hardware at the end of the conversion of all injected channels in the group. It is cleared by software. 0: Conversion is not complete 1: Conversion complete Bit 1 EOC: Regular channel end of conversion This bit is set by hardware at the end of the conversion of a regular group of channels. It is cleared by software or by reading the ADC_DR register. 0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1) 1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1) Bit 0 AWD: Analog watchdog flag This bit is set by hardware when the converted voltage crosses the values programmed in the ADC_LTR and ADC_HTR registers. It is cleared by software. 0: No analog watchdog event occurred 1: Analog watchdog event occurred RM0430 Rev 8 351/1324 365 Analog-to-digital converter (ADC) 13.12.2 RM0430 ADC control register 1 (ADC_CR1) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 Res. Res. Res. Res. Res. OVRIE rw rw rw rw rw 15 14 13 12 11 10 9 8 7 SCAN rw DISCNUM[2:0] rw rw rw 25 24 RES JDISCEN DISCEN JAUTO AWDSGL rw rw rw rw 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. 6 5 4 3 2 1 0 JEOCIE AWDIE EOCIE rw rw rw rw rw rw rw AWDEN JAWDEN AWDCH[4:0] rw Bits 31:27 Reserved, must be kept at reset value. Bit 26 OVRIE: Overrun interrupt enable This bit is set and cleared by software to enable/disable the Overrun interrupt. 0: Overrun interrupt disabled 1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set. Bits 25:24 RES[1:0]: Resolution These bits are written by software to select the resolution of the conversion. 00: 12-bit (minimum 15 ADCCLK cycles) 01: 10-bit (minimum 13 ADCCLK cycles) 10: 8-bit (minimum 11 ADCCLK cycles) 11: 6-bit (minimum 9 ADCCLK cycles) Bit 23 AWDEN: Analog watchdog enable on regular channels This bit is set and cleared by software. 0: Analog watchdog disabled on regular channels 1: Analog watchdog enabled on regular channels Bit 22 JAWDEN: Analog watchdog enable on injected channels This bit is set and cleared by software. 0: Analog watchdog disabled on injected channels 1: Analog watchdog enabled on injected channels Bits 21:16 Reserved, must be kept at reset value. Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count These bits are written by software to define the number of regular channels to be converted in discontinuous mode, after receiving an external trigger. 000: 1 channel 001: 2 channels ... 111: 8 channels Bit 12 JDISCEN: Discontinuous mode on injected channels This bit is set and cleared by software to enable/disable discontinuous mode on the injected channels of a group. 0: Discontinuous mode on injected channels disabled 1: Discontinuous mode on injected channels enabled 352/1324 RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) Bit 11 DISCEN: Discontinuous mode on regular channels This bit is set and cleared by software to enable/disable Discontinuous mode on regular channels. 0: Discontinuous mode on regular channels disabled 1: Discontinuous mode on regular channels enabled Bit 10 JAUTO: Automatic injected group conversion This bit is set and cleared by software to enable/disable automatic injected group conversion after regular group conversion. 0: Automatic injected group conversion disabled 1: Automatic injected group conversion enabled Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode This bit is set and cleared by software to enable/disable the analog watchdog on the channel identified by the AWDCH[4:0] bits. 0: Analog watchdog enabled on all channels 1: Analog watchdog enabled on a single channel Bit 8 SCAN: Scan mode This bit is set and cleared by software to enable/disable the Scan mode. In Scan mode, the inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted. 0: Scan mode disabled 1: Scan mode enabled Note: An EOC interrupt is generated if the EOCIE bit is set: – At the end of each regular group sequence if the EOCS bit is cleared to 0 – At the end of each regular channel conversion if the EOCS bit is set to 1 Note: A JEOC interrupt is generated only on the end of conversion of the last channel if the JEOCIE bit is set. Bit 7 JEOCIE: Interrupt enable for injected channels This bit is set and cleared by software to enable/disable the end of conversion interrupt for injected channels. 0: JEOC interrupt disabled 1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set. Bit 6 AWDIE: Analog watchdog interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. 0: Analog watchdog interrupt disabled 1: Analog watchdog interrupt enabled Bit 5 EOCIE: Interrupt enable for EOC This bit is set and cleared by software to enable/disable the end of conversion interrupt. 0: EOC interrupt disabled 1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set. Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits These bits are set and cleared by software. They select the input channel to be guarded by the analog watchdog. Note: 00000: ADC analog input Channel0 00001: ADC analog input Channel1 ... 01111: ADC analog input Channel15 10000: ADC analog input Channel16 10001: ADC analog input Channel17 10010: ADC analog input Channel18 Other values reserved RM0430 Rev 8 353/1324 365 Analog-to-digital converter (ADC) 13.12.3 RM0430 ADC control register 2 (ADC_CR2) Address offset: 0x08 Reset value: 0x0000 0000 31 30 Res. SWSTART 29 28 27 rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. DDS DMA Res. Res. Res. Res. Res. Res. CONT ADON rw rw rw rw EXTEN 26 25 24 EXTSEL[3:0] ALIGN EOCS rw rw 23 22 Res. JSWSTART 21 20 19 JEXTEN 18 17 16 JEXTSEL[3:0] Bit 31 Reserved, must be kept at reset value. Bit 30 SWSTART: Start conversion of regular channels This bit is set by software to start conversion and cleared by hardware as soon as the conversion starts. 0: Reset state 1: Starts conversion of regular channels Note: This bit can be set only when ADON = 1 otherwise no conversion is launched. Bits 29:28 EXTEN: External trigger enable for regular channels These bits are set and cleared by software to select the external trigger polarity and enable the trigger of a regular group. 00: Trigger detection disabled 01: Trigger detection on the rising edge 10: Trigger detection on the falling edge 11: Trigger detection on both the rising and falling edges Bits 27:24 EXTSEL[3:0]: External event select for regular group These bits select the external event used to trigger the start of conversion of a regular group: 0000: Timer 1 CC1 event 0001: Timer 1 CC2 event 0010: Timer 1 CC3 event 0011: Timer 2 CC2 event 0100: Timer 2 CC3 event 0101: Timer 2 CC4 event 0110: Timer 2 TRGO event 0111: Timer 3 CC1 event 1000: Timer 3 TRGO event 1001: Timer 4 CC4 event 1010: Timer 5 CC1 event 1011: Timer 5 CC2 event 1100: Timer 5 CC3 event 1101: Timer 8 CC1 event 1110: Timer 8 TRGO event 1111: EXTI line 11 Bit 23 Reserved, must be kept at reset value. 354/1324 RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) Bit 22 JSWSTART: Start conversion of injected channels This bit is set by software and cleared by hardware as soon as the conversion starts. 0: Reset state 1: Starts conversion of injected channels This bit can be set only when ADON = 1 otherwise no conversion is launched. Bits 21:20 JEXTEN: External trigger enable for injected channels These bits are set and cleared by software to select the external trigger polarity and enable the trigger of an injected group. 00: Trigger detection disabled 01: Trigger detection on the rising edge 10: Trigger detection on the falling edge 11: Trigger detection on both the rising and falling edges Bits 19:16 JEXTSEL[3:0]: External event select for injected group These bits select the external event used to trigger the start of conversion of an injected group. 0000: Timer 1 CC4 event 0001: Timer 1 TRGO event 0010: Timer 2 CC1 event 0011: Timer 2 TRGO event 0100: Timer 3 CC2 event 0101: Timer 3 CC4 event 0110: Timer 4 CC1 event 0111: Timer 4 CC2 event 1000: Timer 4 CC3 event 1001: Timer 4 TRGO event 1010: Timer 5 CC4 event 1011: Timer 5 TRGO event 1100: Timer 8 CC2 event 1101: Timer 8 CC3 event 1110: Timer 8 CC4 event 1111: EXTI line15 Bits 15:12 Reserved, must be kept at reset value. Bit 11 ALIGN: Data alignment This bit is set and cleared by software. Refer to Figure 63 and Figure 64. 0: Right alignment 1: Left alignment Bit 10 EOCS: End of conversion selection This bit is set and cleared by software. 0: The EOC bit is set at the end of each sequence of regular conversions. Overrun detection is enabled only if DMA=1. 1: The EOC bit is set at the end of each regular conversion. Overrun detection is enabled. Bit 9 DDS: DMA disable selection (for single ADC mode) This bit is set and cleared by software. 0: No new DMA request is issued after the last transfer (as configured in the DMA controller) 1: DMA requests are issued as long as data are converted and DMA=1 RM0430 Rev 8 355/1324 365 Analog-to-digital converter (ADC) RM0430 Bit 8 DMA: Direct memory access mode (for single ADC mode) This bit is set and cleared by software. Refer to the DMA controller chapter for more details. 0: DMA mode disabled 1: DMA mode enabled Bits 7:2 Reserved, must be kept at reset value. Bit 1 CONT: Continuous conversion This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared. 0: Single conversion mode 1: Continuous conversion mode Bit 0 ADON: A/D Converter ON / OFF This bit is set and cleared by software. 0: Disable ADC conversion and go to power down mode 1: Enable ADC 13.12.4 ADC sample time register 1 (ADC_SMPR1) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 Res. Res. Res. Res. Res. 15 14 13 12 11 rw rw SMP15_0 rw SMP14[2:0] rw rw 26 25 24 23 SMP18[2:0] 22 21 20 SMP17[2:0] 19 18 SMP16[2:0] 17 16 SMP15[2:1] rw rw rw rw rw rw rw rw rw rw rw 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw SMP13[2:0] rw SMP12[2:0] rw SMP11[2:0] rw SMP10[2:0] rw rw Bits 31: 27 Reserved, must be kept at reset value. Bits 26:0 SMPx[2:0]: Channel x sampling time selection These bits are written by software to select the sampling time individually for each channel. During sampling cycles, the channel selection bits must remain unchanged. Note: 000: 3 cycles 001: 15 cycles 010: 28 cycles 011: 56 cycles 100: 84 cycles 101: 112 cycles 110: 144 cycles 111: 480 cycles 356/1324 RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) 13.12.5 ADC sample time register 2 (ADC_SMPR2) Address offset: 0x10 Reset value: 0x0000 0000 31 30 Res. Res. 15 14 SMP5_0 29 28 27 26 SMP9[2:0] rw 24 23 22 21 20 SMP7[2:0] 19 18 SMP6[2:0] 17 16 SMP5[2:1] rw rw rw rw rw rw rw rw rw rw rw rw rw rw 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw SMP4[2:0] rw 25 SMP8[2:0] rw SMP3[2:0] rw SMP2[2:0] SMP1[2:0] rw SMP0[2:0] rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:0 SMPx[2:0]: Channel x sampling time selection These bits are written by software to select the sampling time individually for each channel. During sample cycles, the channel selection bits must remain unchanged. Note: 000: 3 cycles 001: 15 cycles 010: 28 cycles 011: 56 cycles 100: 84 cycles 101: 112 cycles 110: 144 cycles 111: 480 cycles 13.12.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4) Address offset: 0x14-0x20 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw 15 14 13 12 Res. Res. Res. Res. JOFFSETx[11:0] rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 JOFFSETx[11:0]: Data offset for injected channel x These bits are written by software to define the offset to be subtracted from the raw converted data when converting injected channels. The conversion result can be read from in the ADC_JDRx registers. 13.12.7 ADC watchdog higher threshold register (ADC_HTR) Address offset: 0x24 Reset value: 0x0000 0FFF RM0430 Rev 8 357/1324 365 Analog-to-digital converter (ADC) RM0430 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw 15 14 13 12 Res. Res. Res. Res. HT[11:0] rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 HT[11:0]: Analog watchdog higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Note: The software can write to these registers when an ADC conversion is ongoing. The programmed value will be effective when the next conversion is complete. Writing to this register is performed with a write delay that can create uncertainty on the effective time at which the new value is programmed. 13.12.8 ADC watchdog lower threshold register (ADC_LTR) Address offset: 0x28 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw 15 14 13 12 Res. Res. Res. Res. LT[11:0] rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 LT[11:0]: Analog watchdog lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Note: The software can write to these registers when an ADC conversion is ongoing. The programmed value will be effective when the next conversion is complete. Writing to this register is performed with a write delay that can create uncertainty on the effective time at which the new value is programmed. 13.12.9 ADC regular sequence register 1 (ADC_SQR1) Address offset: 0x2C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 SQ16_0 rw 358/1324 12 11 10 9 8 SQ15[4:0] rw rw rw 23 22 21 20 19 18 rw rw rw rw rw rw 7 rw rw 6 5 4 3 2 1 0 rw rw L[3:0] rw rw rw rw RM0430 Rev 8 16 SQ16[4:1] SQ14[4:0] rw 17 SQ13[4:0] rw rw rw rw rw RM0430 Analog-to-digital converter (ADC) Bits 31:24 Reserved, must be kept at reset value. Bits 23:20 L[3:0]: Regular channel sequence length These bits are written by software to define the total number of conversions in the regular channel conversion sequence. 0000: 1 conversion 0001: 2 conversions ... 1111: 16 conversions Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence These bits are written by software with the channel number (0..18) assigned as the 16th in the conversion sequence. Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence 13.12.10 ADC regular sequence register 2 (ADC_SQR2) Address offset: 0x30 Reset value: 0x0000 0000 31 30 Res. Res. 15 14 29 28 rw rw 13 12 26 25 24 23 rw rw rw rw rw 11 10 9 8 7 SQ12[4:0] SQ10_0 rw 27 rw rw 21 20 19 18 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw SQ11[4:0] SQ9[4:0] rw 22 rw rw rw rw 16 SQ10[4:1] SQ8[4:0] rw 17 SQ7[4:0] rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence These bits are written by software with the channel number (0..18) assigned as the 12th in the sequence to be converted. Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence Bits 9:5 SQ8[4:0]: 8th conversion in regular sequence Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence RM0430 Rev 8 359/1324 365 Analog-to-digital converter (ADC) RM0430 13.12.11 ADC regular sequence register 3 (ADC_SQR3) Address offset: 0x34 Reset value: 0x0000 0000 31 30 Res. Res. 29 rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 27 26 25 24 23 rw rw rw rw rw rw rw rw rw rw rw rw SQ6[4:0] SQ4_0 rw 28 SQ3[4:0] rw 22 21 20 19 SQ5[4:0] 17 16 SQ4[4:1] SQ2[4:0] rw 18 SQ1[4:0] rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence These bits are written by software with the channel number (0..18) assigned as the 6th in the sequence to be converted. Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence Bits 19:15 SQ4[4:0]: 4th conversion in regular sequence Bits 14:10 SQ3[4:0]: 3rd conversion in regular sequence Bits 9:5 SQ2[4:0]: 2nd conversion in regular sequence Bits 4:0 SQ1[4:0]: 1st conversion in regular sequence 360/1324 RM0430 Rev 8 RM0430 Analog-to-digital converter (ADC) 13.12.12 ADC injected sequence register (ADC_JSQR) Address offset: 0x38 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw JSQ4[0] rw JSQ3[4:0] rw 21 20 19 JL[1:0] 17 16 JSQ4[4:1] JSQ2[4:0] rw 18 JSQ1[4:0] rw Bits 31:22 Reserved, must be kept at reset value. Bits 21:20 JL[1:0]: Injected sequence length These bits are written by software to define the total number of conversions in the injected channel conversion sequence. 00: 1 conversion 01: 2 conversions 10: 3 conversions 11: 4 conversions Bits 19:15 JSQ4[4:0]: 4th conversion in injected sequence (when JL[1:0]=3, see note below) These bits are written by software with the channel number (0..18) assigned as the 4th in the sequence to be converted. Bits 14:10 JSQ3[4:0]: 3rd conversion in injected sequence (when JL[1:0]=3, see note below) Bits 9:5 JSQ2[4:0]: 2nd conversion in injected sequence (when JL[1:0]=3, see note below) Bits 4:0 JSQ1[4:0]: 1st conversion in injected sequence (when JL[1:0]=3, see note below) Note: When JL[1:0]=3 (4 injected conversions in the sequencer), the ADC converts the channels in the following order: JSQ1[4:0], JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0]. When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in the following order: JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0]. When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in starting from JSQ3[4:0], and then JSQ4[4:0]. When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0] channel. 13.12.13 ADC injected data register x (ADC_JDRx) (x= 1..4) Address offset: 0x3C - 0x48 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r r JDATA[15:0] r RM0430 Rev 8 361/1324 365 Analog-to-digital converter (ADC) RM0430 Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 JDATA[15:0]: Injected data These bits are read-only. They contain the conversion result from injected channel x. The data are left -or right-aligned as shown in Figure 63 and Figure 64. 13.12.14 ADC regular data register (ADC_DR) Address offset: 0x4C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r DATA[15:0] r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 DATA[15:0]: Regular data These bits are read-only. They contain the conversion result from the regular channels. The data are left- or right-aligned as shown in Figure 63 and Figure 64. 13.12.15 ADC Common status register (ADC_CSR) Address offset: 0x00 (this offset address is relative to ADC1 base address + 0x300) Reset value: 0x0000 0000 This register provides an image of the status bits of ADC1. Nevertheless it is read-only and does not allow to clear the different status bits. Instead each status bit must be cleared by writing it to 0 in the corresponding ADC_SR register. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 4 3 2 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OVR1 STRT1 JSTRT1 JEOC 1 r r Bits 31:6 Reserved, must be kept at reset value. Bit 5 OVR1: Overrun flag of ADC1 This bit is a copy of the OVR bit in the ADC1_SR register. Bit 4 STRT1: Regular channel Start flag of ADC1 This bit is a copy of the STRT bit in the ADC1_SR register. Bit 3 JSTRT1: Injected channel Start flag of ADC1 This bit is a copy of the JSTRT bit in the ADC1_SR register. 362/1324 RM0430 Rev 8 r r 1 0 EOC1 AWD1 r r RM0430 Analog-to-digital converter (ADC) Bit 2 JEOC1: Injected channel end of conversion of ADC1 This bit is a copy of the JEOC bit in the ADC1_SR register. Bit 1 EOC1: End of conversion of ADC1 This bit is a copy of the EOC bit in the ADC1_SR register. Bit 0 AWD1: Analog watchdog flag of ADC1 This bit is a copy of the AWD bit in the ADC1_SR register. 13.12.16 ADC common control register (ADC_CCR) Address offset: 0x04 (this offset address is relative to ADC1 base address + 0x300) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 23 22 21 20 19 18 Res. Res. Res. Res. rw rw 15 14 13 12 11 10 9 8 7 rw rw 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TSVREFE VBATE 17 16 ADCPRE Bits 31:24 Reserved, must be kept at reset value. Bit 23 TSVREFE: Temperature sensor and VREFINT enable This bit is set and cleared by software to enable/disable the temperature sensor and the VREFINT channel. 0: Temperature sensor and VREFINT channel disabled 1: Temperature sensor and VREFINT channel enabled Note: VBATE must be disabled when TSVREFE is set. If both bits are set, only the VBAT conversion is performed. Bit 22 VBATE: VBAT enable This bit is set and cleared by software to enable/disable the VBAT channel. 0: VBAT channel disabled 1: VBAT channel enabled Bits 21:18 Reserved, must be kept at reset value. Bits 17:16 ADCPRE: ADC prescaler Set and cleared by software to select the frequency of the clock to the ADC. The clock is common for all the ADCs. Note: 00: PCLK2 divided by 2 01: PCLK2 divided by 4 10: PCLK2 divided by 6 11: PCLK2 divided by 8 Bits 15:0 Reserved, must be kept at reset value. RM0430 Rev 8 363/1324 365 Analog-to-digital converter (ADC) RM0430 13.12.17 ADC register map The following table summarizes the ADC registers. Table 80. ADC global register map Offset Register 0x000 - 0x04C ADC1 0x050 - 0x2FC Reserved 0x300 - 0x308 Common registers 0 Reset value 0 0 0 0 JEOCIE AWDIE EOCIE 0 0 0 0 0 0 0 0 Res. Res. Res. DDS DMA Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ADC_JOFR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 364/1324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 JOFFSET1[11:0] Res. 0 0 0 0 0 0 0 0 0 JOFFSET3[11:0] 0 0 0 0 0 0 0 JOFFSET4[11:0] 0 0 0 0 0 0 HT[11:0] 1 1 1 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 JOFFSET2[11:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 1 1 LT[11:0] 0 0 0 0 0 0 Regular channel sequence SQx_x bits 0 Res. 0x30 L[3:0] 0 Res. Reset value ADC_SQR2 0 0 Res. ADC_SQR1 0 1 Reset value 0x2C 0 0 Res. 0x28 0 0 Reset value ADC_LTR 0 0 Res. ADC_HTR 0 0 Reset value 0x24 AWDCH[4:0] Sample time bits SMPx_x Reset value 0x20 EOC SCAN 0 0 ADC_JOFR4 AWD AWD SGL 0 0 ADC_JOFR3 JEOC JAUTO 0 Reset value 0x1C STRT DISCEN 0 Reset value 0x18 JSTRT Res. JDISCEN 0 Reset value ADC_JOFR2 0 Res. Res. Res. Res. 0 0 Sample time bits SMPx_x ADC_SMPR2 0x14 Res. Res. JEXTEN[1:0] JAWDEN JSWSTART 0 Res. AWDEN 0 0 ADON 0 ADC_SMPR1 0 CONT 0 JEXTSEL [3:0] 0 EOCS 0 0 Res. RES[1:0] EXTSEL [3:0] 0 Res. 0x10 0 0 DISC NUM [2:0] Res. 0x0C 0 0 0 ALIGN Reset value EXTEN[1:0] Res. ADC_CR2 0x08 0 SWSTART Reset value OVRIE Res. Res. Res. Res. ADC_CR1 0x04 Res. Reset value OVR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_SR 0x00 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 81. ADC register map and reset values 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Regular channel sequence SQx_x bits 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 0 0 0 0 0 0 0 RM0430 Analog-to-digital converter (ADC) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADC_SQR3 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_JDR1 Res. 0x3C Res. Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JDATA[15:0] 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_DR 0 JDATA[15:0] 0 Res. Reset value 0x4C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x48 0 JDATA[15:0] 0 Res. Reset value ADC_JDR4 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_JDR3 0 JDATA[15:0] 0 Res. Reset value 0x44 0 0 Res. 0x40 0 Injected channel sequence JSQx_x bits Reset value ADC_JDR2 0 JL[1:0] Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. 0x38 Res. Reset value ADC_JSQR Regular channel sequence SQx_x bits Res. 0x34 Register Res. Offset Res. Table 81. ADC register map and reset values (continued) 0 0 0 0 0 Regular DATA[15:0] 0 0 0 0 0 0 0 0 0 0 0 STRT JSTRT JEOC EOC AWD 0 0 0 Res. Res. Res. Res. 0 0 Res. Res. 0 OVR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADCPRE[1:0] Res. Res. 0 Res. 0 Res. VBATE Res. Res. Res. Res. Res. TSVREFE. Reset value Res. ADC_CCR Res. 0x04 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_CSR Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 Register Res. Offset Res. Table 82. ADC register map and reset values (common ADC registers) Refer to Section 2.2.2 on page 58 for the register boundary addresses. RM0430 Rev 8 365/1324 365 Digital-to-analog converter (DAC) RM0430 14 Digital-to-analog converter (DAC) 14.1 DAC introduction The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In 12-bit mode, the data could be left- or right-aligned. The DAC has two output channels, each with its own converter. In dual DAC channel mode, conversions could be done independently or simultaneously when both channels are grouped together for synchronous update operations. An input reference pin, VREF+ (shared with ADC) is available for better resolution. 14.2 DAC main features • Two DAC converters: one output channel each • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • Dual DAC channel for independent or simultaneous conversions • DMA capability for each channel • DMA underrun error detection • External triggers for conversion • Input voltage reference, VREF+ Figure 67 shows the block diagram of a DAC channel and Table 83 gives the pin description. 366/1324 RM0430 Rev 8 RM0430 Digital-to-analog converter (DAC) Figure 67. DAC channel block diagram DAC control register EXTI_9 SWTR IGx TIM2_T RGO TIM4_T RGO TIM5_T RGO TIM6_T RGO TIM7_T RGO TIM8_T RGO Trigger selectorx TSELx[2:0] bits DMAENx DM A req ue stx DHRx 12-bit Control logicx LFSRx trianglex TENx MAMPx[3:0] bits WAVENx[1:0] bits 12-bit DORx 12-bit VDDA DAC_ OU Tx Digital-to-analog converterx VSSA VR EF+ ai14708b Table 83. DAC pins Name Note: Signal type Remarks VREF+ Input, analog reference positive The higher/positive reference voltage for the DAC, V ≤ VREF+ ≤ VDDA VDDA Input, analog supply Analog power supply VSSA Input, analog supply ground Ground for analog power supply DAC_OUTx Analog output signal DAC channelx analog output Once the DAC channelx is enabled, the corresponding GPIO pin (PA4 or PA5) is automatically connected to the analog converter output (DAC_OUTx). In order to avoid parasitic consumption, the PA4 or PA5 pin should first be configured to analog (AIN). RM0430 Rev 8 367/1324 387 Digital-to-analog converter (DAC) RM0430 14.3 DAC functional description 14.3.1 DAC channel enable Each DAC channel can be powered on by setting its corresponding ENx bit in the DAC_CR register. The DAC channel is then enabled after a startup time tWAKEUP. Note: The ENx bit enables the analog DAC Channelx macrocell only. The DAC Channelx digital interface is enabled even if the ENx bit is reset. 14.3.2 DAC output buffer enable The DAC integrates two output buffers that can be used to reduce the output impedance, and to drive external loads directly without having to add an external operational amplifier. Each DAC channel output buffer can be enabled and disabled using the corresponding BOFFx bit in the DAC_CR register. 14.3.3 DAC data format Depending on the selected configuration mode, the data have to be written into the specified register as described below: • Single DAC channelx, there are three possibilities: – 8-bit right alignment: the software has to load data into the DAC_DHR8Rx [7:0] bits (stored into the DHRx[11:4] bits) – 12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4] bits (stored into the DHRx[11:0] bits) – 12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0] bits (stored into the DHRx[11:0] bits) Depending on the loaded DAC_DHRyyyx register, the data written by the user is shifted and stored into the corresponding DHRx (data holding registerx, which are internal non-memorymapped registers). The DHRx register is then loaded into the DORx register either automatically, by software trigger or by an external event trigger. 368/1324 RM0430 Rev 8 RM0430 Digital-to-analog converter (DAC) Figure 68. Data registers in single DAC channel mode ELWULJKWDOLJQHG ELWOHIWDOLJQHG ELWULJKWDOLJQHG DLE • Dual DAC channels, there are three possibilities: – 8-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR8RD [7:0] bits (stored into the DHR1[11:4] bits) and data for DAC channel2 to be loaded into the DAC_DHR8RD [15:8] bits (stored into the DHR2[11:4] bits) – 12-bit left alignment: data for DAC channel1 to be loaded into the DAC_DHR12LD [15:4] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be loaded into the DAC_DHR12LD [31:20] bits (stored into the DHR2[11:0] bits) – 12-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR12RD [11:0] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be loaded into the DAC_DHR12LD [27:16] bits (stored into the DHR2[11:0] bits) Depending on the loaded DAC_DHRyyyD register, the data written by the user is shifted and stored into DHR1 and DHR2 (data holding registers, which are internal non-memorymapped registers). The DHR1 and DHR2 registers are then loaded into the DOR1 and DOR2 registers, respectively, either automatically, by software trigger or by an external event trigger. Figure 69. Data registers in dual DAC channel mode 31 24 15 7 0 8-bit right aligned ELWULJKWDOLJQHG 12-bit left aligned ELWOHIWDOLJQHG 12-bit right aligned ELWULJKWDOLJQHG ai14709 DLE 14.3.4 DAC conversion The DAC_DORx cannot be written directly and any data transfer to the DAC channelx must be performed by loading the DAC_DHRx register (write to DAC_DHR8Rx, DAC_DHR12Lx, DAC_DHR12Rx, DAC_DHR8RD, DAC_DHR12LD or DAC_DHR12LD). Data stored in the DAC_DHRx register are automatically transferred to the DAC_DORx register after one APB1 clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR register is set) and a trigger occurs, the transfer is performed three APB1 clock cycles later. RM0430 Rev 8 369/1324 387 Digital-to-analog converter (DAC) RM0430 When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage becomes available after a time tSETTLING that depends on the power supply voltage and the analog output load. Figure 70. Timing diagram for conversion with trigger disabled TEN = 0 !0"?#,+ $(2 $/2 X!# /UTPUT VOLTAGE AVAILABLE ON $!#?/54 PIN X!# T3%44,).' 14.3.5 AIC DAC output voltage Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+. The analog output voltages on each DAC channel pin are determined by the following equation: DOR DACoutput = V REF × -------------4096 14.3.6 DAC trigger selection If the TENx control bit is set, conversion can then be triggered by an external event (timer counter, external interrupt line). The TSELx[2:0] control bits determine which out of 8 possible events will trigger conversion as shown in Table 84. Table 84. External triggers Source Type TSEL[2:0] Timer 6 TRGO event 000 Timer 8 TRGO event 001 Timer 7 TRGO event Timer 5 TRGO event Internal signal from on-chip timers 010 011 Timer 2 TRGO event 100 Timer 4 TRGO event 101 EXTI line9 External pin 110 SWTRIG Software control bit 111 Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on the selected external interrupt line 9, the last data stored into the DAC_DHRx register are transferred into the DAC_DORx register. The DAC_DORx register is updated three APB1 cycles after the trigger occurs. 370/1324 RM0430 Rev 8 RM0430 Digital-to-analog converter (DAC) If the software trigger is selected, the conversion starts once the SWTRIG bit is set. SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the DAC_DHRx register contents. Note: TSELx[2:0] bit cannot be changed when the ENx bit is set. When software trigger is selected, the transfer from the DAC_DHRx register to the DAC_DORx register takes only one APB1 clock cycle. 14.3.7 DMA request Each DAC channel has a DMA capability. Two DMA channels are used to service DAC channel DMA requests. A DAC DMA request is generated when an external trigger (but not a software trigger) occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred into the DAC_DORx register. In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one DMA request is needed, the user should set only the corresponding DMAENx bit. In this way, the application can manage both DAC channels in dual mode by using one DMA request and a unique DMA channel. DMA underrun The DAC DMA request is not queued so that if a second external trigger arrives before the acknowledgement for the first external trigger is received (first request), then no new request is issued and the DMA channelx underrun flag DMAUDRx in the DAC_SR register is set, reporting the error condition. DMA data transfers are then disabled and no further DMA request is treated. The DAC channelx continues to convert old data. The software should clear the DMAUDRx flag by writing “1”, clear the DMAEN bit of the used DMA stream and re-initialize both DMA and DAC channelx to restart the transfer correctly. The software should modify the DAC trigger conversion frequency or lighten the DMA workload to avoid a new DMA underrun. Finally, the DAC conversion could be resumed by enabling both DMA data transfer and conversion trigger. For each DAC channelx, an interrupt is also generated if its corresponding DMAUDRIEx bit in the DAC_CR register is enabled. 14.3.8 Noise generation In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift register) is available. DAC noise generation is selected by setting WAVEx[1:0] to “01”. The preloaded value in LFSR is 0xAAA. This register is updated three APB1 clock cycles after each trigger event, following a specific calculation algorithm. RM0430 Rev 8 371/1324 387 Digital-to-analog converter (DAC) RM0430 Figure 71. DAC LFSR register calculation algorithm ;25 ; ; ; ; ; 125 DLF The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this value is then stored into the DAC_DORx register. If LFSR is 0x0000, a ‘1 is injected into it (antilock-up mechanism). It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits. Figure 72. DAC conversion (SW trigger enabled) with LFSR wave generation $3%B&/. '+5 [ [$$$ '25 [' 6:75,* DLE Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the DAC_CR register. 14.3.9 Triangle-wave generation It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal. DAC triangle-wave generation is selected by setting WAVEx[1:0] to “10”. The amplitude is configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter is incremented three APB1 clock cycles after each trigger event. The value of this counter is then added to the DAC_DHRx register without overflow and the sum is stored into the DAC_DORx register. The triangle counter is incremented as long as it is less than the maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is reached, the counter is decremented down to 0, then incremented again and so on. 372/1324 RM0430 Rev 8 RM0430 Digital-to-analog converter (DAC) It is possible to reset triangle wave generation by resetting the WAVEx[1:0] bits. Figure 73. DAC triangle wave generation N TIO TA M EN N )N TIO TA EN CR E M RE C $E -!-0X;= MAX AMPLITUDE $!#?$(2X BASE VALUE $!#?$(2X BASE VALUE AIC Figure 74. DAC conversion (SW trigger enabled) with triangle wave generation $3%B&/. '+5 '25 [ [$$$ [' 6:75,* DLE Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the DAC_CR register. The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot be changed. 14.4 Dual DAC channel conversion To efficiently use the bus bandwidth in applications that require the two DAC channels at the same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A unique register access is then required to drive both DAC channels at the same time. Eleven possible conversion modes are possible using the two DAC channels and these dual registers. All the conversion modes can nevertheless be obtained using separate DHRx registers if needed. All modes are described in the paragraphs below. RM0430 Rev 8 373/1324 387 Digital-to-analog converter (DAC) 14.4.1 RM0430 Independent trigger without wave generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1 (three APB1 clock cycles later). When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_DOR2 (three APB1 clock cycles later). 14.4.2 Independent trigger with single LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask value in the MAMPx[3:0] bits • Load the dual DAC channel data into the desired DHR register (DHR12RD, DHR12LD or DHR8RD) When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). Then the LFSR1 counter is updated. When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). Then the LFSR2 counter is updated. 14.4.3 Independent trigger with different LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR masks values in the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). Then the LFSR1 counter is updated. When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). Then the LFSR2 counter is updated. 374/1324 RM0430 Rev 8 RM0430 14.4.4 Digital-to-analog converter (DAC) Independent trigger with single triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum amplitude value in the MAMPx[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with the same triangle amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then updated. When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with the same triangle amplitude, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then updated. 14.4.5 Independent trigger with different triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then updated. When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then updated. 14.4.6 Simultaneous software start To configure the DAC in this conversion mode, the following sequence is required: • Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) In this configuration, one APB1 clock cycle later, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and DAC_DOR2, respectively. RM0430 Rev 8 375/1324 387 Digital-to-analog converter (DAC) 14.4.7 RM0430 Simultaneous trigger without wave generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and DAC_DOR2, respectively (after three APB1 clock cycles). 14.4.8 Simultaneous trigger with single LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask value in the MAMPx[3:0] bits • Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or DHR8RD) When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The LFSR2 counter is then updated. 14.4.9 Simultaneous trigger with different LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR mask values using the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The LFSR2 counter is then updated. 376/1324 RM0430 Rev 8 RM0430 14.4.10 Digital-to-analog converter (DAC) Simultaneous trigger with single triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum amplitude value using the MAMPx[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the DAC channel1 triangle counter, with the same triangle amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then updated. At the same time, the DAC channel2 triangle counter, with the same triangle amplitude, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then updated. 14.4.11 Simultaneous trigger with different triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). Then the DAC channel1 triangle counter is updated. At the same time, the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated. RM0430 Rev 8 377/1324 387 Digital-to-analog converter (DAC) 14.5 RM0430 DAC registers Refer to Section 1.2: List of abbreviations for registers for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by words (32 bits). 14.5.1 DAC control register (DAC_CR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 Reserved 15 14 Reserved 29 28 DMAU DRIE2 DMA EN2 27 26 25 24 MAMP2[3:0] 23 22 21 WAVE2[1:0] 20 19 TSEL2[2:0] 18 17 16 TEN2 BOFF2 EN2 rw rw rw rw rw rw rw rw rw rw rw rw rw rw 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DMAU DRIE1 DMA EN1 TEN1 BOFF1 EN1 rw rw rw rw rw MAMP1[3:0] rw rw rw WAVE1[1:0] rw rw rw TSEL1[2:0] rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bits 29 DMAUDRIE2: DAC channel2 DMA underrun interrupt enable This bit is set and cleared by software. 0: DAC channel2 DMA underrun interrupt disabled 1: DAC channel2 DMA underrun interrupt enabled Bit 28 DMAEN2: DAC channel2 DMA enable This bit is set and cleared by software. 0: DAC channel2 DMA mode disabled 1: DAC channel2 DMA mode enabled Bits 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector These bits are written by software to select mask in wave generation mode or amplitude in triangle generation mode. 0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1 0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3 0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7 0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15 0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31 0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63 0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127 0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255 1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511 1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023 1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047 ≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095 Bits 23:22 WAVE2[1:0]: DAC channel2 noise/triangle wave generation enable These bits are set/reset by software. 00: wave generation disabled 01: Noise wave generation enabled 1x: Triangle wave generation enabled Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled) 378/1324 RM0430 Rev 8 RM0430 Digital-to-analog converter (DAC) Bits 21:19 TSEL2[2:0]: DAC channel2 trigger selection These bits select the external event used to trigger DAC channel2 000: Timer 6 TRGO event 001: Timer 8 TRGO event 010: Timer 7 TRGO event 011: 5 TRGO event 100: Timer 2 TRGO event 101: Timer 4 TRGO event 110: External line9 111: Software trigger Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled). Bit 18 TEN2: DAC channel2 trigger enable This bit is set and cleared by software to enable/disable DAC channel2 trigger 0: DAC channel2 trigger disabled and data written into the DAC_DHRx register are transferred one APB1 clock cycle later to the DAC_DOR2 register 1: DAC channel2 trigger enabled and data from the DAC_DHRx register are transferred three APB1 clock cycles later to the DAC_DOR2 register Note: When software trigger is selected, the transfer from the DAC_DHRx register to the DAC_DOR2 register takes only one APB1 clock cycle. Bit 17 BOFF2: DAC channel2 output buffer disable This bit is set and cleared by software to enable/disable DAC channel2 output buffer. 0: DAC channel2 output buffer enabled 1: DAC channel2 output buffer disabled Bit 16 EN2: DAC channel2 enable This bit is set and cleared by software to enable/disable DAC channel2. 0: DAC channel2 disabled 1: DAC channel2 enabled Bits 15:14 Reserved, must be kept at reset value. Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable This bit is set and cleared by software. 0: DAC channel1 DMA Underrun Interrupt disabled 1: DAC channel1 DMA Underrun Interrupt enabled Bit 12 DMAEN1: DAC channel1 DMA enable This bit is set and cleared by software. 0: DAC channel1 DMA mode disabled 1: DAC channel1 DMA mode enabled RM0430 Rev 8 379/1324 387 Digital-to-analog converter (DAC) RM0430 Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector These bits are written by software to select mask in wave generation mode or amplitude in triangle generation mode. 0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1 0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3 0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7 0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15 0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31 0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63 0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127 0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255 1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511 1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023 1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047 ≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095 Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable These bits are set and cleared by software. 00: wave generation disabled 01: Noise wave generation enabled 1x: Triangle wave generation enabled Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled). Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection These bits select the external event used to trigger DAC channel1. 000: Timer 6 TRGO event 001: Timer 8 TRGO event 010: Timer 7 TRGO event 011: Timer TRGO event 100: Timer 2 TRGO event 101: Timer 4 TRGO event 110: External line9 111: Software trigger Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled). Bit 2 TEN1: DAC channel1 trigger enable This bit is set and cleared by software to enable/disable DAC channel1 trigger. 0: DAC channel1 trigger disabled and data written into the DAC_DHRx register are transferred one APB1 clock cycle later to the DAC_DOR1 register 1: DAC channel1 trigger enabled and data from the DAC_DHRx register are transferred three APB1 clock cycles later to the DAC_DOR1 register Note: When software trigger is selected, the transfer from the DAC_DHRx register to the DAC_DOR1 register takes only one APB1 clock cycle. Bit 1 BOFF1: DAC channel1 output buffer disable This bit is set and cleared by software to enable/disable DAC channel1 output buffer. 0: DAC channel1 output buffer enabled 1: DAC channel1 output buffer disabled Bit 0 EN1: DAC channel1 enable This bit is set and cleared by software to enable/disable DAC channel1. 0: DAC channel1 disabled 1: DAC channel1 enabled 380/1324 RM0430 Rev 8 RM0430 Digital-to-analog converter (DAC) 14.5.2 DAC software trigger register (DAC_SWTRIGR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 6 5 4 3 2 17 16 1 0 Reserved 15 14 13 12 11 10 9 8 7 SWTRIG2 SWTRIG1 Reserved w w Bits 31:2 Reserved, must be kept at reset value. Bit 1 SWTRIG2: DAC channel2 software trigger This bit is set and cleared by software to enable/disable the software trigger. 0: Software trigger disabled 1: Software trigger enabled Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR2 register value has been loaded into the DAC_DOR2 register. Bit 0 SWTRIG1: DAC channel1 software trigger This bit is set and cleared by software to enable/disable the software trigger. 0: Software trigger disabled 1: Software trigger enabled Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR1 register value has been loaded into the DAC_DOR1 register. 14.5.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 6 5 4 3 2 1 0 rw rw rw rw rw Reserved Reserved 7 DACC1DHR[11:0] rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. RM0430 Rev 8 381/1324 387 Digital-to-analog converter (DAC) 14.5.4 RM0430 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 3 2 1 0 Reserved 15 14 13 12 11 10 9 8 7 6 5 4 rw rw rw rw rw DACC1DHR[11:0] rw rw rw rw rw rw rw Reserved Bits 31:16 Reserved, must be kept at reset value. Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. Bits 3:0 Reserved, must be kept at reset value. 14.5.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 6 5 20 19 18 17 16 4 3 2 1 0 rw rw rw Reserved 15 14 13 12 11 10 9 8 7 DACC1DHR[7:0] Reserved rw rw rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel1. 382/1324 RM0430 Rev 8 RM0430 Digital-to-analog converter (DAC) 14.5.6 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 6 5 4 3 2 1 0 rw rw rw rw rw Reserved 15 14 13 12 11 10 9 8 7 DACC2DHR[11:0] Reserved rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. 14.5.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 3 2 1 0 Reserved 15 14 13 12 11 rw rw rw rw rw 10 9 8 7 6 5 4 rw rw rw rw rw DACC2DHR[11:0] rw rw Reserved Bits 31:16 Reserved, must be kept at reset value. Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data These bits are written by software which specify 12-bit data for DAC channel2. Bits 3:0 Reserved, must be kept at reset value. 14.5.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2) Address offset: 0x1C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 15 14 13 12 11 10 9 8 23 22 21 6 5 20 19 18 17 16 4 3 2 1 0 rw rw rw Reserved 7 DACC2DHR[7:0] Reserved rw rw rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel2. RM0430 Rev 8 383/1324 387 Digital-to-analog converter (DAC) 14.5.9 RM0430 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 14 13 26 25 24 23 22 21 20 19 18 17 16 DACC2DHR[11:0] Reserved 15 27 12 rw rw rw rw rw rw rw rw rw rw rw rw 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw 17 16 DACC1DHR[11:0] Reserved rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. Bits 15:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. 14.5.10 DUAL DAC 12-bit left aligned data holding register (DAC_DHR12LD) Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 rw rw rw rw rw 15 14 13 12 11 26 25 24 23 22 21 20 19 DACC2DHR[11:0] rw rw rw rw rw rw rw 10 9 8 7 6 5 4 rw rw rw rw rw DACC1DHR[11:0] rw rw rw rw rw rw rw 18 Reserved 3 2 Reserved Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. Bits 19:16 Reserved, must be kept at reset value. Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. Bits 3:0 Reserved, must be kept at reset value. 384/1324 RM0430 Rev 8 1 0 RM0430 Digital-to-analog converter (DAC) 14.5.11 DUAL DAC 8-bit right aligned data holding register (DAC_DHR8RD) Address offset: 0x28 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 6 5 20 19 18 17 16 4 3 2 1 0 rw rw rw Reserved 15 14 13 12 11 10 9 8 7 DACC2DHR[7:0] rw rw rw rw rw DACC1DHR[7:0] rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel2. Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel1. 14.5.12 DAC channel1 data output register (DAC_DOR1) Address offset: 0x2C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 6 5 4 3 2 1 0 r r r r r Reserved 15 14 13 12 11 10 9 8 7 r r r r r DACC1DOR[11:0] Reserved r r Bits 31:12 Reserved, must be kept at reset value. Bit 11:0 DACC1DOR[11:0]: DAC channel1 data output These bits are read-only, they contain data output for DAC channel1. 14.5.13 DAC channel2 data output register (DAC_DOR2) Address offset: 0x30 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 6 5 4 3 2 1 0 r r r r r Reserved 15 14 13 Reserved 12 11 10 9 8 7 DACC2DOR[11:0] r r r r r r r Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC2DOR[11:0]: DAC channel2 data output These bits are read-only, they contain data output for DAC channel2. RM0430 Rev 8 385/1324 387 Digital-to-analog converter (DAC) 14.5.14 RM0430 DAC status register (DAC_SR) Address offset: 0x34 Reset value: 0x0000 0000 31 30 Reserved 15 29 27 26 25 24 23 22 13 21 20 19 18 17 16 5 4 3 2 1 0 Reserved rc_w1 14 Reserved 28 DMAUDR2 12 11 10 9 8 7 6 DMAUDR1 Reserved rc_w1 Bits 31:30 Reserved, must be kept at reset value. Bit 29 DMAUDR2: DAC channel2 DMA underrun flag This bit is set by hardware and cleared by software (by writing it to 1). 0: No DMA underrun error condition occurred for DAC channel2 1: DMA underrun error condition occurred for DAC channel2 (the currently selected trigger is driving DAC channel2 conversion at a frequency higher than the DMA service capability rate) Bits 28:14 Reserved, must be kept at reset value. Bit 13 DMAUDR1: DAC channel1 DMA underrun flag This bit is set by hardware and cleared by software (by writing it to 1). 0: No DMA underrun error condition occurred for DAC channel1 1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is driving DAC channel1 conversion at a frequency higher than the DMA service capability rate) Bits 12:0 Reserved, must be kept at reset value. 14.5.15 DAC register map Table 85 summarizes the DAC registers. 386/1324 Reserved DACC1DHR[11:0] DACC1DHR[11:0] Reserved Reserved RM0430 Rev 8 EN1 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 20 21 22 Reserved SWTRIG1 DAC_ DHR12R2 Reserved TEN1 0x14 WAVE TSEL1[2 :0] 1[2:0] BOFF1 DAC_ DHR8R1 MAMP1[3:0] SWTRIG2 0x10 DMAEN1 DAC_ DHR12L1 DMAUDRIE1 0x0C Reserved DAC_ DHR12R1 TSEL2[2:0] EN2 0x08 WAVE 2[2:0] BOFF2 DAC_ SWTRIGR MAMP2[3:0] TEN2 0x04 DMAEN2 DAC_CR DMAUDRIE2 0x00 Reserved Offset Register 31 30 29 28 27 26 25 24 23 Table 85. DAC register map Reserved DACC1DHR[7:0] DACC2DHR[11:0] RM0430 Digital-to-analog converter (DAC) 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 20 21 22 Offset Register 31 30 29 28 27 26 25 24 23 Table 85. DAC register map (continued) 0x18 DAC_ DHR12L2 0x1C DAC_ DHR8R2 0x20 DAC_ DHR12RD 0x24 DAC_ DHR12LD 0x28 DAC_ DHR8RD 0x2C DAC_ DOR1 Reserved DACC1DOR[11:0] 0x30 DAC_ DOR2 Reserved DACC2DOR[11:0] 0x34 DAC_SR Reserved DACC2DHR[11:0] Reserved DACC2DHR[11:0] DACC2DHR[11:0] Reserved Reserved DMAUDR2 Reserved Reserved DACC2DHR[7:0] DACC1DHR[11:0] DACC1DHR[11:0] DACC2DHR[7:0] Reserved Reserved DACC1DHR[7:0] DMAUDR1 Reserved Reserved Reserved Refer to Section 2.2.2: Memory map and register boundary addresses. RM0430 Rev 8 387/1324 387 Digital filter for sigma delta modulators (DFSDM) RM0430 15 Digital filter for sigma delta modulators (DFSDM) 15.1 Introduction Digital filter for sigma delta modulators (DFSDM) is a high-performance module dedicated to interface external Σ∆ modulators to a microcontroller. It is featuring up to 8 external digital serial interfaces (channels) and up to 4 digital filters with flexible Sigma Delta stream digital processing options to offer up to 24-bit final ADC resolution. DFSDM also features optional parallel data stream input from microcontroller memory. An external Σ∆ modulator provides digital data stream of converted analog values from the external Σ∆ modulator analog input. This digital data stream is sent into a DFSDM input channel through a serial interface. DFSDM supports several standards to connect various Σ∆ modulator outputs: SPI interface and Manchester coded 1-wire interface (both with adjustable parameters). DFSDM module supports the connection of up to 8 multiplexed input digital serial channels which are shared with up to 4 DFSDM modules. DFSDM module also supports alternative parallel data inputs from up to 8 internal 16-bit data channels (from microcontrollers memory). DFSDM is converting an input data stream into a final digital data word which represents an analog input value on a Σ∆ modulator analog input. The conversion is based on a configurable digital process: the digital filtering and decimation of the input serial data stream. The conversion speed and resolution are adjustable according to configurable parameters for digital processing: filter type, filter order, length of filter, integrator length. The maximum output data resolution is up to 24 bits. There are two conversion modes: single conversion mode and continuous mode. The data can be automatically stored in a system RAM buffer through DMA, thus reducing the software overhead. A flexible timer triggering system can be used to control the start of conversion of DFSDM. This timing control is capable of triggering simultaneous conversions or inserting a programmable delay between conversions. DFSDM features an analog watchdog function. Analog watchdog can be assigned to any of the input channel data stream or to final output data. Analog watchdog has its own digital filtering of input data stream to reach the required speed and resolution of watched data. To detect short-circuit in control applications, there is a short-circuit detector. This block watches each input channel data stream for occurrence of stable data for a defined time duration (several 0’s or 1’s in an input data stream). An extremes detector block watches final output data and stores maximum and minimum values from the output data values. The extremes values stored can be restarted by software. Two power modes are supported: normal mode and stop mode. 388/1324 RM0430 Rev 8 RM0430 15.2 Digital filter for sigma delta modulators (DFSDM) DFSDM main features • • • • Up to 8 multiplexed input digital serial channels: – configurable SPI interface to connect various Σ∆ modulators – configurable Manchester coded 1 wire interface support – clock output for Σ∆ modulator(s) Alternative inputs from up to 8 internal digital parallel channels: – inputs with up to 16 bit resolution – internal sources: memory (CPU/DMA write) data streams Adjustable digital signal processing: – Sincx filter: filter order/type (1..5), oversampling ratio (up to 1..1024) – integrator: oversampling ratio (1..256) Up to 24-bit output data resolution: – right bit-shifter on final data (0..31 bits) • Signed output data format • Automatic data offset correction (offset stored in register by user) • Continuous or single conversion • Start-of-conversion synchronization with: • • – software trigger – internal timers – external events – start-of-conversion synchronously with first DFSDM filter (DFSDM_FLT0) Analog watchdog feature: – low value and high value data threshold registers – own configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32) – input from output data register or from one or more input digital serial channels – continuous monitoring independently from standard conversion Short-circuit detector to detect saturated analog input values (bottom and top ranges): – up to 8-bit counter to detect 1..256 consecutive 0’s or 1’s on input data stream – monitoring continuously each channel (8 serial channel transceiver outputs) • Break generation on analog watchdog event or short-circuit detector event • Extremes detector: – store minimum and maximum values of output data values – refreshed by software • DMA may be used to read the conversion data • Interrupts: end of conversion, overrun, analog watchdog, short-circuit, channel clock absence • “regular” or “injected” conversions: – “regular” conversions can be requested at any time or even in continuous mode without having any impact on the timing of “injected” conversions RM0430 Rev 8 389/1324 449 Digital filter for sigma delta modulators (DFSDM) 15.3 RM0430 DFSDM implementation This section describes the configuration implemented in DFSDMx. Table 86. DFSDMx implementation DFSDM features DFSDM1 DFSDM2 Number of channels 4 8 Number of filters 2 4 Input from internal ADC - - 10 10 Supported trigger sources Pulses skipper ID registers support (1) X - 1. Specific pulses skipper implemented (see Section : Pulses skipper). 390/1324 RM0430 Rev 8 X(1) - RM0430 Digital filter for sigma delta modulators (DFSDM) 15.4 DFSDM functional description 15.4.1 DFSDM block diagram Figure 75. Single DFSDM block diagram $3%EXV 6DPSOH 6DPSOH 3DUDOOHOLQSXWGDWD UHJLVWHU 6DPSOH 6DPSOH &KDQQHOPXOWLSOH[HU 3DUDOOHOLQSXWGDWD UHJLVWHU (;75*>@ &ORFN FRQWURO &.287 '$7,1 6HULDOWUDQVFHLYHU &.,1 &ORFN 'DWDLQ )LOWHU RUGHU 2YHUVDPSOLQJ UDWLR 6LQF[ILOWHU &ORFNLQ ZDWFKGRJILOWHUV ZDWFKGRJFRPSDUDWRUV V VFRXQWHU WKUHVKROG 6KRUWFLUFXLW V VFRXQWHU GHWHFWRU WKUHVKROG ,QWHUUXSW EUHDN )LOWHU FRQILJ ,QWHUUXSW EUHDN +LJKWKUHVKROG /RZWKUHVKROG $QDORJZDWFKGRJ 6KRUWFLUFXLW GHWHFWRU )LOWHU FRQILJ 2YHUVDPSOLQJ UDWLR 6LQF[ILOWHU ,QWHJUDWRUXQLW )LOWHU 2YHUVDPSOLQJ 2YHUVDPSOLQJ RUGHU UDWLR UDWLR 6WDWXV '$7,1 'DWD &RQILJ &.,1 0RGH FRQWURO 6HULDOWUDQVFHLYHU 0RGH &ORFN FRQWURO FRQWURO 'DWD &ORFN +LJKWKUHVKROG /RZWKUHVKROG ,QWHJUDWRUXQLW 5LJKWELWVKLIW FRXQW 5LJKWELWVKLIW &DOLEUDWLRQGDWD FRXQW FRUUHFWLRQXQLW &DOLEUDWLRQGDWD ')6'0GDWD FRUUHFWLRQXQLW ')6'0GDWD 'DWDRXWSXW $QDORJZDWFKGRJ $3%EXV &RQWUROXQLW &RQILJXUDWLRQ UHJLVWHUV '0$LQWHUUXSWEUHDN FRQWUROFORFNFRQWURO 0D[LPXPYDOXH 0LQLPXPYDOXH ([WUHPHV ,QWHUUXSWVDQGHYHQWV GHWHFWRU HQGRIFRQYHUVLRQ 0D[LPXPYDOXH DQDORJZDWFKGRJ 0LQLPXPYDOXH VKRUWFLUFXLWGHWHFWLRQ ([WUHPHV RYHUUXQ GHWHFWRU RM0430 Rev 8 069 391/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 1. This example shows 4 DFSDM filters and 8 input channels (max. configuration). 15.4.2 DFSDM pins and internal signals Table 87. DFSDM external pins Name Signal Type Remarks VDD Power supply Digital power supply. VSS Power supply Digital ground power supply. CKIN[7:0] Clock input Clock signal provided from external Σ∆ modulator. FT input. DATIN[7:0] Data input Data signal provided from external Σ∆ modulator. FT input. CKOUT Clock output Clock output to provide clock signal into external Σ∆ modulator. EXTRG[1:0] External trigger Input trigger from two EXTI signals to start analog signal conversion (from GPIOs: EXTI11, EXTI15). Table 88. DFSDM internal signals Name Signal Type Remarks dfsdm_jtrg[10:0] Internal/ Input trigger from internal/external trigger sources to start external trigger analog conversion, see Table 89 and Table 90 for details. signal dfsdm_break[3:0] break signal output Break signals event generation from Analog watchdog or short-circuit detector dfsdm_dma[3:0] DMA request signal DMA request signal from each DFSDM_FLTx (x=0..3): end of injected conversion event. dfsdm_it[3:0] Interrupt request signal Interrupt signal for each DFSDM_FLTx (x=0..3) Table 89. DFSDM1 triggers connection Trigger name 392/1324 Trigger source dfsdm_jtrg0 TIM1_TRGO2 dfsdm_jtrg1 TIM3_TRGO2 dfsdm_jtrg2 TIM8_TRGO2 dfsdm_jtrg3 TIM10_OC1 dfsdm_jtrg4 N/A dfsdm_jtrg5 TIM4_TRGO2 dfsdm_jtrg6 N/A dfsdm_jtrg7 TIM6_TRGO1 dfsdm_jtrg8 N/A dfsdm_jtrg9 EXTI11 dfsdm_jtrg10 EXTI15 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) Table 90. DFSDM2 triggers connection Trigger name Trigger source dfsdm_jtrg0 TIM1_TRGO3 dfsdm_jtrg1 TIM3_TRGO3 dfsdm_jtrg2 TIM8_TRGO4 dfsdm_jtrg3 TIM10_OC1 dfsdm_jtrg4 TIM2_TRGO2 dfsdm_jtrg5 TIM4_TRGO4 dfsdm_jtrg6 TIM11_OC1 dfsdm_jtrg7 TIM6_TRGO2 dfsdm_jtrg8 TIM7_TRGO2 dfsdm_jtrg9 EXTI11 dfsdm_jtrg10 EXTI15 Table 91. DFSDM break connection Break name Break destination dfsdm_break[0] TIM1 break dfsdm_break[1] - dfsdm_break[2] TIM8 break dfsdm_break[3] 15.4.3 - DFSDM reset and clocks DFSDM on-off control The DFSDM interface is globally enabled by setting DFSDMEN=1 in the DFSDM_CH0CFGR1 register. Once DFSDM is globally enabled, all input channels (y=0..7) and digital filters DFSDM_FLTx (x=0..3) start to work if their enable bits are set (channel enable bit CHEN in DFSDM_CHyCFGR1 and DFSDM_FLTx enable bit DFEN in DFSDM_FLTxCR1). Digital filter x DFSDM_FLTx (x=0..3) is enabled by setting DFEN=1 in the DFSDM_FLTxCR1 register. Once DFSDM_FLTx is enabled (DFEN=1), both Sincx digital filter unit and integrator unit are reinitialized. By clearing DFEN, any conversion which may be in progress is immediately stopped and DFSDM_FLTx is put into stop mode. All register settings remain unchanged except DFSDM_FLTxAWSR and DFSDM_FLTxISR (which are reset). Channel y (y=0..7) is enabled by setting CHEN=1 in the DFSDM_CHyCFGR1 register. Once the channel is enabled, it receives serial data from the external Σ∆ modulator or parallel internal data sources (CPU/DMA wire from memory). DFSDM must be globally disabled (by DFSDMEN=0 in DFSDM_CH0CFGR1) before stopping the system clock to enter in the STOP mode of the device. RM0430 Rev 8 393/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 DFSDM clocks The internal DFSDM clock fDFSDMCLK, which is used to drive the channel transceivers, digital processing blocks (digital filter, integrator) and next additional blocks (analog watchdog, short-circuit detector, extremes detector, control block) is generated by the RCC block and is derived from the system clock SYSCLK or peripheral clock PCLK2 (see DFSDMSEL bit description in ). The DFSDM clock is automatically stopped in stop mode (if DFEN = 0 for all DFSDM_FLTx, x=0..3). The DFSDM serial channel transceivers can receive an external serial clock to sample an external serial data stream. The internal DFSDM clock must be at least 4 times faster than the external serial clock if standard SPI coding is used, and 6 times faster than the external serial clock if Manchester coding is used. DFSDM can provide one external output clock signal to drive external Σ∆ modulator(s) clock input(s). It is provided on CKOUT pin. This output clock signal must be in the range specified in given device datasheet and is derived from DFSDM clock or from audio clock (see CKOUTSRC bit in DFSDM_CH0CFGR1 register) by programmable divider in the range 2 - 256 (CKOUTDIV in DFSDM_CH0CFGR1 register). Audio clock source is SAI1 clock selected by SAI1SEL[1:0] field in RCC configuration (see ). 15.4.4 Serial channel transceivers There are 8 multiplexed serial data channels which can be selected for conversion by each filter or Analog watchdog or Short-circuit detector. Those serial transceivers receive data stream from external Σ∆ modulator. Data stream can be sent in SPI format or Manchester coded format (see SITP[1:0] bits in DFSDM_CHyCFGR1 register). The channel is enabled for operation by setting CHEN=1 in DFSDM_CHyCFGR1 register. Channel inputs selection Serial inputs (data and clock signals) from DATINy and CKINy pins can be redirected from the following channel pins. This serial input channel redirection is set by CHINSEL bit in DFSDM_CHyCFGR1 register. Channel redirection can be used to collect audio data from PDM (pulse density modulation) stereo microphone type. PDM stereo microphone has one data and one clock signal. Data signal provides information for both left and right audio channel (rising clock edge samples for left channel and falling clock edge samples for right channel). Configuration of serial channels for PDM microphone input: 394/1324 • PDM microphone signals (data, clock) will be connected to DFSDM input serial channel y (DATINy, CKOUT) pins. • Channel y will be configured: CHINSEL = 0 (input from given channel pins: DATINy, CKINy). • Channel (y-1) (modulo 8) will be configured: CHINSEL = 1 (input from the following channel ((y-1)+1) pins: DATINy, CKINy). • Channel y: SITP[1:0] = 0 (rising edge to strobe data) => left audio channel on channel y. • Channel (y-1): SITP[1:0] = 1 (falling edge to strobe data) => right audio channel on channel y-1. • Two DFSDM filters will be assigned to channel y and channel (y-1) (to filter left and right channels from PDM microphone). RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) Figure 76. Input channel pins redirection 'HFRGH '$7,1 \PD[ &.,1 \PD[ &+ \PD[ )/7 [PD[ 'HFRGH '$7,1\ &.,1\ &+\ )/7 [ )/7[ 'HFRGH '$7,1 \ &.,1 \ &+ \ )/7 'HFRGH '$7$,1 &.,1 &+ 5&+ &+,16(/ 06Y9 Output clock generation A clock signal can be provided on CKOUT pin to drive external Σ∆ modulator clock inputs. The frequency of this CKOUT signal is derived from DFSDM clock or from audio clock (see CKOUTSRC bit in DFSDM_CH0CFGR1 register) divided by a predivider (see CKOUTDIV bits in DFSDM_CH0CFGR1 register). If the output clock is stopped, then CKOUT signal is set to low state (output clock can be stopped by CKOUTDIV=0 in DFSDM_CHyCFGR1 register or by DFSDMEN=0 in DFSDM_CH0CFGR1 register). The output clock stopping is performed: • 4 system clocks after DFSDMEN is cleared (if CKOUTSRC=0) • 1 system clock and 3 audio clocks after DFSDMEN is cleared (if CKOUTSRC=1) Before changing CKOUTSRC the software has to wait for CKOUT being stopped to avoid glitch on CKOUT pin. The output clock signal frequency must be in the range 0 - 20 MHz. RM0430 Rev 8 395/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 SPI data input format operation In SPI format, the data stream is sent in serial format through data and clock signals. Data signal is always provided from DATINy pin. A clock signal can be provided externally from CKINy pin or internally from a signal derived from the CKOUT signal source. In case of external clock source selection (SPICKSEL[1:0]=0) data signal (on DATINy pin) is sampled on rising or falling clock edge (of CKINy pin) according SITP[1:0] bits setting (in DFSDM_CHyCFGR1 register). Internal clock sources - see SPICKSEL[1:0] in DFSDM_CHyCFGR1 register: • • • Note: CKOUT signal: – For connection to external Σ∆ modulator which uses directly its clock input (from CKOUT) to generate its output serial communication clock. – Sampling point: on rising/falling edge according SITP[1:0] setting. CKOUT/2 signal (generated on CKOUT rising edge): – For connection to external Σ∆ modulator which divides its clock input (from CKOUT) by 2 to generate its output serial communication clock (and this output clock change is active on each clock input rising edge). – Sampling point: on each second CKOUT falling edge. CKOUT/2 signal (generated on CKOUT falling edge): – For connection to external Σ∆ modulator which divides its clock input (from CKOUT) by 2 to generate its output serial communication clock (and this output clock change is active on each clock input falling edge). – Sampling point: on each second CKOUT rising edge. An internal clock source can only be used when the external Σ∆ modulator uses CKOUT signal as a clock input (to have synchronous clock and data operation). Internal clock source usage can save CKINy pin connection (CKINy pins can be used for other purpose). The clock source signal frequency must be in the range 0 - 20 MHz for SPI coding and less than fDFSDMCLK/4. Manchester coded data input format operation In Manchester coded format, the data stream is sent in serial format through DATINy pin only. Decoded data and clock signal are recovered from serial stream after Manchester decoding. There are two possible settings of Manchester codings (see SITP[1:0] bits in DFSDM_CHyCFGR1 register): • signal rising edge = log 0; signal falling edge = log 1 • signal rising edge = log 1; signal falling edge = log 0 The recovered clock signal frequency for Manchester coding must be in the range 0 - 10 MHz and less than fDFSDMCLK/6. To correctly receive Manchester coded data, the CKOUTDIV divider (in DFSDM_CH0CFGR1 register) must be set with respect to expected Manchester data rate according formula: ( ( CKOUTDIV + 1 ) × T SYSCLK ) < T Manchester clock < ( 2 × CKOUTDIV × T SYSCLK ) 396/1324 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) &.,1\ 63,&.6(/ WVX WK WZO WZK WU WI WU WI 6,73 '$7,1\ 63,WLPLQJ63,&.6(/ Figure 77. Channel transceiver timing diagrams WVX WK 6,73 &.287 63,&.6(/ 63,&.6(/ WVX WK WZO WZK 6,73 '$7,1\ 63,WLPLQJ63,&.6(/ 63,&.6(/ WVX WK 6,73 '$7,1\ 0DQFKHVWHUWLPLQJ 6,73 6,73 UHFRYHUHGFORFN UHFRYHUHGGDWD 069 RM0430 Rev 8 397/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Clock absence detection Channels serial clock inputs can be checked for clock absence/presence to ensure the correct operation of conversion and error reporting. Clock absence detection can be enabled or disabled on each input channel y by bit CKABEN in DFSDM_CHyCFGR1 register. If enabled, then this clock absence detection is performed continuously on a given channel. A clock absence flag is set (CKABF[y] = 1) and an interrupt can be invoked (if CKABIE=1) in case of an input clock error (see CKABF[7:0] in DFSDM_FLT0ISR register and CKABEN in DFSDM_CHyCFGR1). After a clock absence flag clearing (by CLRCKABF in DFSDM_FLT0ICR register), the clock absence flag is refreshed. Clock absence status bit CKABF[y] is set also by hardware when corresponding channel y is disabled (if CHEN[y] = 0 then CKABF[y] is held in set state). When a clock absence event has occurred, the data conversion (and/or analog watchdog and short-circuit detector) provides incorrect data. The user should manage this event and discard given data while a clock absence is reported. The clock absence feature is available only when the system clock is used for the CKOUT signal (CKOUTSRC=0 in DFSDM_CH0CFGR1 register). When the transceiver is not yet synchronized, the clock absence flag is set and cannot be cleared by CLRCKABF[y] bit (in DFSDM_FLT0ICR register). The software sequence concerning clock absence detection feature should be: • Enable given channel by CHEN = 1 • Try to clear the clock absence flag (by CLRCKABF = 1) until the clock absence flag is really cleared (CKABF = 0). At this time, the transceiver is synchronized (signal clock is valid) and is able to receive data. • Enable the clock absence feature CKABEN = 1 and the associated interrupt CKABIE = 1 to detect if the SPI clock is lost or Manchester data edges are missing. If SPI data format is used, then the clock absence detection is based on the comparison of an external input clock with an output clock generation (CKOUT signal). The external input clock signal into the input channel must be changed at least once per 8 signal periods of CKOUT signal (which is controlled by CKOUTDIV field in DFSDM_CH0CFGR1 register). Figure 78. Clock absence timing diagram for SPI 63,FORFNSUHVHQFH WLPLQJ PD[SHULRGV &.287 UHVWDUWFRXQWLQJ &.,1\ ODVWFORFNFKDQJH &.$%)>\@ HUURUUHSRUWHG 069 If Manchester data format is used, then the clock absence means that the clock recovery is unable to perform from Manchester coded signal. For a correct clock recovery, it is first necessary to receive data with 1 to 0 or 0 to 1 transition (see Figure 80 for Manchester synchronization). 398/1324 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) The detection of a clock absence in Manchester coding (after a first successful synchronization) is based on changes comparison of coded serial data input signal with output clock generation (CKOUT signal). There must be a voltage level change on DATINy pin during 2 periods of CKOUT signal (which is controlled by CKOUTDIV bits in DFSDM_CH0CFGR1 register). This condition also defines the minimum data rate to be able to correctly recover the Manchester coded data and clock signals. The maximum data rate of Manchester coded data must be less than the CKOUT signal. So to correctly receive Manchester coded data, the CKOUTDIV divider must be set according the formula: ( ( CKOUTDIV + 1 ) × T SYSCLK ) < T Manchester clock < ( 2 × CKOUTDIV × T SYSCLK ) A clock absence flag is set (CKABF[y] = 1) and an interrupt can be invoked (if CKABIE=1) in case of an input clock recovery error (see CKABF[7:0] in DFSDM_FLT0ISR register and CKABEN in DFSDM_CHyCFGR1). After a clock absence flag clearing (by CLRCKABF in DFSDM_FLT0ICR register), the clock absence flag is refreshed. Figure 79. Clock absence timing diagram for Manchester coding PD[SHULRGV &.287 6,73 '$7,1\ 0DQFKHVWHUFORFNSUHVHQFH WLPLQJ UHVWDUWFRXQWLQJ ODVWGDWDFKDQJH 6,73 UHFRYHUHGFORFN UHFRYHUHGGDWD " " &.$%)>\@ HUURUUHSRUWHG 069 RM0430 Rev 8 399/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Manchester/SPI code synchronization The Manchester coded stream must be synchronized the first time after enabling the channel (CHEN=1 in DFSDM_CHyCFGR1 register). The synchronization ends when a data transition from 0 to 1 or from 1 to 0 (to be able to detect valid data edge) is received. The end of the synchronization can be checked by polling CKABF[y]=0 for a given channel after it has been cleared by CLRCKABF[y] in DFSDM_FLT0ICR, following the software sequence detailed hereafter: CKABF[y] flag is cleared by setting CLRCKABF[y] bit. If channel y is not yet synchronized the hardware immediately set the CKABF[y] flag. Software is then reading back the CKABF[y] flag and if it is set then perform again clearing of this flag by setting CLRCKABF[y] bit. This software sequence (polling of CKABF[y] flag) continues until CKABF[y] flag is set (signalizing that Manchester stream is synchronized). To be able to synchronize/receive Manchester coded data the CKOUTDIV divider (in DFSDM_CH0CFGR1 register) must be set with respect to expected Manchester data rate according the formula below. ( ( CKOUTDIV + 1 ) × T SYSCLK ) < T Manchester clock < ( 2 × CKOUTDIV × T SYSCLK ) SPI coded stream is synchronized after first detection of clock input signal (valid rising/falling edge). Note: 400/1324 When the transceiver is not yet synchronized, the clock absence flag is set and cannot be cleared by CLRCKABF[y] bit (in DFSDM_FLT0ICR register). RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) Figure 80. First conversion for Manchester coding (Manchester synchronization) '$7,1\ 0DQFKHVWHUWLPLQJ 6,73 6,73 UHFRYHUHGFORFN GDWDIURP PRGXODWRU &+(1 UHDOVWDUWRIILUVWFRQYHUVLRQ ILUVWFRQYHUVLRQ VWDUWWULJJHU UHFRYHUHGGDWD ILUVWGDWDELWWRJJOHHQGRI0DQFKHVWHUV\QFKURQL]DWLRQ " " &.$%)>\@ FOHDULQJRI&.$%)>\@IODJE\VRIWZDUHSROOLQJ 069 External serial clock frequency measurement The measuring of a channel serial clock input frequency provides a real data rate from an external Σ∆ modulator, which is important for application purposes. An external serial clock input frequency can be measured by a timer counting DFSDM clocks (fDFSDMCLK) during one conversion duration. The counting starts at the first input data clock after a conversion trigger (regular or injected) and finishes by last input data clock before conversion ends (end of conversion flag is set). Each conversion duration (time between first serial sample and last serial sample) is updated in counter CNVCNT[27:0] in register DFSDM_FLTxCNVTIMR when the conversion finishes (JEOCF=1 or REOCF=1). The user can then compute the data rate according to the digital filter settings (FORD, FOSR, IOSR, FAST). The external serial frequency measurement is stopped only if the filter is bypassed (FOSR=0, only integrator is active, CNVCNT[27:0]=0 in DFSDM_FLTxCNVTIMR register). In case of parallel data input (Section 15.4.6: Parallel data inputs) the measured frequency is the average input data rate during one conversion. RM0430 Rev 8 401/1324 449 Digital filter for sigma delta modulators (DFSDM) Note: RM0430 When conversion is interrupted (e.g. by disabling/enabling the selected channel) the interruption time is also counted in CNVCNT[27:0]. Therefore it is recommended to not interrupt the conversion for correct conversion duration result. Conversion times: injected conversion or regular conversion with FAST = 0 (or first conversion if FAST=1): for Sincx filters (x=1..5): t = CNVCNT/fDFSDMCLK = [FOSR * (IOSR-1 + FORD) + FORD] / fCKIN for FastSinc filter: t = CNVCNT/fDFSDMCLK = [FOSR * (IOSR-1 + 4) + 2] / fCKIN regular conversion with FAST = 1 (except first conversion): for Sincx and FastSinc filters: t = CNVCNT/fDFSDMCLK = [FOSR * IOSR] / fCKIN in case if FOSR = FOSR[9:0]+1 = 1 (filter bypassed, active only integrator): t = IOSR / fCKIN (... but CNVCNT=0) where: • fCKIN is the channel input clock frequency (on given channel CKINy pin) or input data rate (in case of parallel data input) • FOSR is the filter oversampling ratio: FOSR = FOSR[9:0]+1 (see DFSDM_FLTxFCR register) • IOSR is the integrator oversampling ratio: IOSR = IOSR[7:0]+1 (see DFSDM_FLTxFCR register) • FORD is the filter order: FORD = FORD[2:0] (see DFSDM_FLTxFCR register) Channel offset setting Each channel has its own offset setting (in register) which is finally subtracted from each conversion result (injected or regular) from a given channel. Offset correction is performed after the data right bit shift. The offset is stored as a 24-bit signed value in OFFSET[23:0] field in DFSDM_CHyCFGR2 register. Data right bit shift To have the result aligned to a 24-bit value, each channel defines a number of right bit shifts which will be applied on each conversion result (injected or regular) from a given channel. The data bit shift number is stored in DTRBS[4:0] bits in DFSDM_CHyCFGR2 register. The right bit-shift is rounding the result to nearest integer value. The sign of shifted result is maintained, in order to have valid 24-bit signed format of result data. Pulses skipper Purpose of the pulses skipper is to implement delay line like behavior for given input channel(s). Given number of samples from input serial data stream (serial stream only) can be discarded before they enter into the filter. This data discarding is performed by skipping given number of sampling input clock pulses (given serial data samples are then not sampled by filter). The sampling clock is gated by pulses skipper function for given number of clock pulses. When given clock pulses are skipped then the filtering continues for following input data. With comparison to non skipped data stream this operation causes that 402/1324 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) the final output sample (and next samples) from filter will be calculated from later input data. This final sample then looks a bit in forward - because it is calculated from newer input samples than the “non-skipped” sample. The final “skipped sample” is converted later because the skipped input data samples must be replaced by followed input data samples. The final data buffers behavior (skipped and non-skipped output data buffers comparison) looks like the non-skipped data stream is a bit delayed - both data buffers will be phase shifted. The implementation of clock skipping is based on a block named MCHDLY (multi-channel delay block) added on the top level of DFSDMs (see Figure 81). This MCHDLY block is controlled via a MCHDLYCR register (see the Section 8.2.10: DFSDM Multi-channel delay control register (SYSCFG_MCHDLYCR)) where are all MCHDLY control bits. By using MCHDLY block, the DFSDMs can be used for beamforming with up to 6 digital microphones. In beamforming mode the clock to digital microphones (or sigma-delta modulators) is provided by DFSDM2 clock output (dfsdm2_ckout signal on Figure 81). This clock output signal is then distributed to (see Figure 81): • OR gates (to implement pulse skipping by clock masking/gating) • Trigger inputs (ETR) of two timers: TIM4 and TIM3 (to define how many pulses will be skipped) • DFSDM1_CKOUT and DFSDM2_CKOUT pins outputs through M1 and M2 multiplexers (to generate output clock signal on DFSDMx pins) The OR gates are used to skip the input serial clock pulses provided to the DFSDMs in order to generate a delay on the corresponding input channel. This clock gating is controlled by two timers (TIM4 and TIM3). Timers are programmed in one shot mode to generate masking pulse with defined length to gate required number of clock pulses. In the Figure 81, MIC1 receives its serial clock via another clock output pin (DFSDM1_CKOUT pin) which can provide either clock output from DFSDM2 or DFSDM1 CKOUT signal. This configuration allows to use for low-power use-cases only one microphone (MIC1) - while DFSDM2_CKOUT is disabled and DFSDM1_CKOUT enabled (for example voice detection), and reusing MIC1 for beamforming use cases (when DFSDM2_CKOUT is enabled). RM0430 Rev 8 403/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Figure 81. Multi-channel delay block for pulse skipping 0 'DW,Q 'DW,Q B&.,1 B&.,1 0 &N,Q B'$7,1 0 'DW,Q 'DW,Q B&.,1 ')6'0&.26(/ B&.,1 &N,Q &N,Q &N2XW% &N2XW $FON B&.287 0 B'$7,1 0 'DW,Q &N,Q &N,Q 0 'DW,Q B&.,1 /5 B'$7,1 B&.,1 B&.,1 /5 B'$7,1 B&.,1 &ONBJDWHG '0 &ONBJDWHG '0 &ONBJDWHG '0 &ONBJDWHG '0 &ONBJDWHG '0 &ONBJDWHG '0 0&+'/< 0&+'/<(1 2& * * (75 (75 3&/. 3&/. (75 RM0430 Rev 8 3&/. 2& 2& 2& 7,0 0 3&/. (75 2& 7,0 670 0 ,75 2& 0&+'/<(1 * * 0&+'/<(1 %6&.6(/ &N,Q &N,Q 0&+'/<(1 * 0 GIVGPBFNRXW B&.,1 3&/. 'DW,Q 0 B'$7,1 0 'DW,Q /5 9&& 404/1324 &N,Q &N,Q * 0,& *1' 0 'DW,Q 0 B'$7,1 ')6'0&)* 0,& 0 'DW,Q /5 0&+'/< &N,Q &N,Q ,75 0,& *1' 0 'DW,Q B&.,1 0 B'$7,1 0 0,& B'$7,1 ')6'0 1%7 1%) B&.,1 B&.,1 0 'DW,Q 0 B'$7,1 9&& )URP3//,6 B'$7,1 0 /5 $FON &N,Q 0 0,& *1' 3&/. /5 0 B'$7,1 9&& ')6'0 1%7 1%) ')6'0&)* 0 B'$7,1 ')6'0&.26(/ 0,& )URP3//,6 &N2XW% &N2XW B&.287 06YY RM0430 Digital filter for sigma delta modulators (DFSDM) The DFSDM shall be configured as follow: • CHINSEL must be set to 0 for all channels (channel data are taken from pins of the same channel) • SPICKSEL must be set to 0 for all channels (in order to select external CKINy as input clock) The TIM3 and TIM4 shall be configured as follow: • TIM4 outputs (OC[2:1]) and TIM3 outputs (OC[4:1]) must be low in inactive mode when no gating is required. When the application needs to provide delays to microphones, then the timers shall be programmed in One Pulse Mode (OPM). In this mode, the timer allows the counter to be started in response to a rising edge on ETRx (or ITRx) input and to generate a pulse with a programmable length. • The ETRx input must be used when the bitstream clock is generated by the DFSDM2. • The clock reference used by the timers can be its APB clock or its APB clock multiplied by 2 or 4. The higher this frequency is, the better it is. While TIM3 and TIM4 are working with DFSDM2 using ETRx input, the timers reference clock frequency must be at least 12 times the frequency of the input bitstream clock, taking the assumption that the bitstream clock duty cycle is 50%. This is due to the fact that ETRx input have a bigger propagation delay: up to 5 periods of the timers reference clock. • Using these rules will prevent timing violation. In case it is required to synchronize DFSDM1 and DFSDM2 filter conversions (for example for beamforming applications), the following sequence should take place (refer to Figure 81): • Enable audio clocks used by DFSDM • Program DFSDM to use the CkIn • Use the DFSDM2 CkOut to inject the DFSDM2 audio clock to the CkIn • Block the DFSDM2 CkOut signals: bit BSCKSEL=0 • Start all filters conversions (all used DFSDM1 and DFSDM2 filters) • Release the DFSDM2 CkOut: bit BSCKSEL=1 Figure 82. Pulses skipper operation 6RIWZDUHDFFHVV GIVGPBFNRXW 7,0B2& FONBJDWHG 7LPHUVFORFNUHIHUHQFH 0DUJLQ 06Y9 RM0430 Rev 8 405/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Table 92. Demultiplexers (DM[6:1]) operation Control Output 0 Output 1 0 input L 1 L input x 0 0 x x x x BSCKSEL DFSDM1_D0SEL M7 x MCHDLYEN1 DFSDM1_D2SEL M8 x G[2:1] DFSDM1_CK02SEL DM2 x M[29:27] DFSDM1_CFG DFSDM2_D0SEL M17 DFSDM1_CK13SEL DFSDM2_D2SEL M18 x Beamforming4_ DFSDM_3_5 DM1 DFSDM2_D4SEL M19 x ON OFF 1 1 0 0 0 0 x M[6:3] DFSDM2_D6SEL M20 x OFF ON MCHDLYEN2 DFSDM2_CK04SEL DM6 x Beamforming4_ DFSDM_1_3 DFSDM1_CKOSEL DFSDM2_CK15SEL DM5 x OFF OFF OFF ON M1 DFSDM2_CK26SEL DM4 x Speech recognition_1 G[6:3] DFSDM2_CK37SEL DM3 - DFSDM2_CFG - DFSDM2_CKOSEL - M2 DFSDM1 - M[16:9] DFSDM2 Multiplexer/ gate on schematic TIM3 Use cases TIM4 Table 93. Use-cases examples for beamforming applications x 0 0 x 1 1 1 0 x x x x x 0 1 OFF ON ON OFF 1 1 0 0 1 1 x 1 1 x 1 0 x x x x x 0 1 Beamforming4_ DFSDM_5_7 OFF ON ON OFF 1 1 1 1 1 1 1 1 x x 1 0 x x x x x 0 1 Beamforming4_ DFSDM_1_7 OFF ON ON OFF 1 1 1 1 0 0 1 x x 1 1 0 x x x x x 0 1 Beamforming6_ DFSDM_1_3_1 ON ON ON ON 1 1 0 0 0 0 x x 1 1 1 1 1 0 0 x 1 1 1 Beamforming6_ DFSDM_1_3_3 ON ON ON ON 1 1 0 0 0 0 x x 1 1 1 1 1 1 1 1 x 1 1 406/1324 RM0430 Rev 8 RM0430 15.4.5 Digital filter for sigma delta modulators (DFSDM) Configuring the input serial interface The following parameters must be configured for the input serial interface: 15.4.6 • Output clock predivider. There is a programmable predivider to generate the output clock from DFSDM clock (2 - 256). It is defined by CKOUTDIV[7:0] bits in DFSDM_CH0CFGR1 register. • Serial interface type and input clock phase. Selection of SPI or Manchester coding and sampling edge of input clock. It is defined by SITP [1:0] bits in DFSDM_CHyCFGR1 register. • Input clock source. External source from CKINy pin or internal from CKOUT pin. It is defined by SPICKSEL[1:0] field in DFSDM_CHyCFGR1 register. • Final data right bit-shift. Defines the final data right bit shift to have the result aligned to a 24-bit value. It is defined by DTRBS[4:0] in DFSDM_CHyCFGR2 register. • Channel offset per channel. Defines the analog offset of a given serial channel (offset of connected external Σ∆ modulator). It is defined by OFFSET[23:0] bits in DFSDM_CHyCFGR2 register. • short-circuit detector and clock absence per channel enable. To enable or disable the short-circuit detector (by SCDEN bit) and the clock absence monitoring (by CKABEN bit) on a given serial channel in register DFSDM_CHyCFGR1. • Analog watchdog filter and short-circuit detector threshold settings. To configure channel analog watchdog filter parameters and channel short-circuit detector parameters. Configurations are defined in DFSDM_CHyAWSCDR register. Parallel data inputs Each input channel provides a register for 16-bit parallel data input (besides serial data input). Each 16-bit parallel input can be sourced from internal data sources only: • direct CPU/DMA writing. The selection for using serial or parallel data input for a given channel is done by field DATMPX[1:0] of DFSDM_CHyCFGR1 register. In DATMPX[1:0] is also defined the parallel data source: direct write by CPU/DMA. Each channel contains a 32-bit data input register DFSDM_CHyDATINR in which it can be written a 16-bit data. Data are in 16-bit signed format. Those data can be used as input to the digital filter which is accepting 16-bit parallel data. If serial data input is selected (DATMPX[1:0] = 0), the DFSDM_CHyDATINR register is write protected. Input from memory (direct CPU/DMA write) The direct data write into DFSDM_CHyDATINR register by CPU or DMA (DATMPX[1:0]=2) can be used as data input in order to process digital data streams from memory or peripherals. Data can be written by CPU or DMA into DFSDM_CHyDATINR register: 1. CPU data write: Input data are written directly by CPU into DFSDM_CHyDATINR register. 2. DMA data write: The DMA should be configured in memory-to-memory transfer mode to transfer data from memory buffer into DFSDM_CHyDATINR register. The destination memory RM0430 Rev 8 407/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 address is the address of DFSDM_CHyDATINR register. Data are transferred at DMA transfer speed from memory to DFSDM parallel input. This DMA transfer is different from DMA used to read DFSDM conversion results. Both DMA can be used at the same time - first DMA (configured as memory-to-memory transfer) for input data writings and second DMA (configured as peripheral-to-memory transfer) for data results reading. The accesses to DFSDM_CHyDATINR can be either 16-bit or 32-bit wide, allowing to load respectively one or two samples in one write operation. 32-bit input data register (DFSDM_CHyDATINR) can be filled with one or two 16-bit data samples, depending on the data packing operation mode defined in field DATPACK[1:0] of DFSDM_CHyCFGR1 register: 1. Standard mode (DATPACK[1:0]=0): Only one sample is stored in field INDAT0[15:0] of DFSDM_CHyDATINR register which is used as input data for channel y. The upper 16 bits (INDAT1[15:0]) are ignored and write protected. The digital filter must perform one input sampling (from INDAT0[15:0]) to empty data register after it has been filled by CPU/DMA. This mode is used together with 16-bit CPU/DMA access to DFSDM_CHyDATINR register to load one sample per write operation. 2. Interleaved mode (DATPACK[1:0]=1): DFSDM_CHyDATINR register is used as a two sample buffer. The first sample is stored in INDAT0[15:0] and the second sample is stored in INDAT1[15:0]. The digital filter must perform two input samplings from channel y to empty DFSDM_CHyDATINR register. This mode is used together with 32-bit CPU/DMA access to DFSDM_CHyDATINR register to load two samples per write operation. 3. Dual mode (DATPACK[1:0]=2): Two samples are written into DFSDM_CHyDATINR register. The data INDAT0[15:0] is for channel y, the data in INDAT1[15:0] is for channel y+1. The data in INDAT1[15:0] is automatically copied INDAT0[15:0] of the following (y+1) channel data register DFSDM_CH[y+1]DATINR). The digital filters must perform two samplings - one from channel y and one from channel (y+1) - in order to empty DFSDM_CHyDATINR registers. Dual mode setting (DATPACK[1:0]=2) is available only on even channel numbers (y = 0, 2, 4, 6). If odd channel (y = 1, 3, 5, 7) is set to Dual mode then both INDAT0[15:0] and INDAT1[15:0] parts are write protected for this channel. If even channel is set to Dual mode then the following odd channel must be set into Standard mode (DATPACK[1:0]=0) for correct cooperation with even channels. See Figure 83 for DFSDM_CHyDATINR registers data modes and assignments of data samples to channels. 408/1324 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) Figure 83. DFSDM_CHyDATINR registers operation modes and assignment 6WDQGDUGPRGH ,QWHUOHDYHGPRGH 'XDOPRGH &K VDPSOH &K VDPSOH 8QXVHG &K VDPSOH &K VDPSOH &K VDPSOH 8QXVHG &K VDPSOH &K VDPSOH &K VDPSOH 8QXVHG &K VDPSOH &K VDPSOH &K VDPSOH 8QXVHG &K VDPSOH &K VDPSOH &K VDPSOH 8QXVHG &K VDPSOH &K VDPSOH &K VDPSOH 8QXVHG &K VDPSOH &K VDPSOH &K VDPSOH 8QXVHG &K VDPSOH &K VDPSOH &K VDPSOH 8QXVHG &K VDPSOH &K VDPSOH &K VDPSOH 8QXVHG \ &K VDPSOH \ &K VDPSOH &K VDPSOH \ 8QXVHG &K VDPSOH \ &K VDPSOH &K VDPSOH \ 8QXVHG &K VDPSOH \ &K VDPSOH &K VDPSOH \ 8QXVHG &K VDPSOH \ 069 The write into DFSDM_CHyDATINR register to load one or two samples must be performed after the selected input channel (channel y) is enabled for data collection (starting conversion for channel y). Otherwise written data are lost for next processing. For example: for single conversion and interleaved mode, do not start writing pair of data samples into DFSDM_CHyDATINR before the single conversion is started (any data present in the DFSDM_CHyDATINR before starting a conversion is discarded). 15.4.7 Channel selection There are 8 multiplexed channels which can be selected for conversion using the injected channel group and/or using the regular channel. The injected channel group is a selection of any or all of the 8 channels. JCHG[7:0] in the DFSDM_FLTxJCHGR register selects the channels of the injected group, where JCHG[y]=1 means that channel y is selected. Injected conversions can operate in scan mode (JSCAN=1) or single mode (JSCAN=0). In scan mode, each of the selected channels is converted, one after another. The lowest channel (channel 0, if selected) is converted first, followed immediately by the next higher channel until all the channels selected by JCHG[7:0] have been converted. In single mode (JSCAN=0), only one channel from the selected channels is converted, and the channel selection is moved to the next channel. Writing to JCHG[7:0] if JSCAN=0 resets the channel selection to the lowest selected channel. Injected conversions can be launched by software or by a trigger. They are never interrupted by regular conversions. The regular channel is a selection of just one of the 8 channels. RCH[2:0] in the DFSDM_FLTxCR1 register indicates the selected channel. Regular conversions can be launched only by software (not by a trigger). A sequence of continuous regular conversions is temporarily interrupted when an injected conversion is requested. Performing a conversion on a disabled channel (CHEN=0 in DFSDM_CHyCFGR1 register) causes that the conversion will never end - because no input data is provided (with no clock signal). In this case, it is necessary to enable a given channel (CHEN=1 in DFSDM_CHyCFGR1 register) or to stop the conversion by DFEN=0 in DFSDM_FLTxCR1 register. RM0430 Rev 8 409/1324 449 Digital filter for sigma delta modulators (DFSDM) 15.4.8 RM0430 Digital filter configuration DFSDM contains a Sincx type digital filter implementation. This Sincx filter performs an input digital data stream filtering, which results in decreasing the output data rate (decimation) and increasing the output data resolution. The Sincx digital filter is configurable in order to reach the required output data rates and required output data resolution. The configurable parameters are: • • Filter order/type: (see FORD[2:0] bits in DFSDM_FLTxFCR register): – FastSinc – Sinc1 – Sinc2 – Sinc3 – Sinc4 – Sinc5 Filter oversampling/decimation ratio (see FOSR[9:0] bits in DFSDM_FLTxFCR register): – FOSR = 1-1024 – FOSR = 1-215 – FOSR = 1-73 - for FastSinc filter and Sincx filter x = FORD = 1..3 - for Sincx filter x = FORD = 4 - for Sincx filter x = FORD = 5 The filter has the following transfer function (impulse response in H domain): • x Sincx filter type: ⎛ 1 – z – FOSR⎞ -⎟ H ( z ) = ⎜ ---------------------------⎝ 1 – z–1 ⎠ FastSinc filter type: ⎛ 1 – z– FOSR⎞ -⎟ ⋅ ( 1 + z –( 2 ⋅ H ( z ) = ⎜ ---------------------------–1 ⎝ 1–z ⎠ 2 • FOSR ) ) *DLQ G% Figure 84. Example: Sinc3 filter response 1RUPDOL]HGIUHTXHQF\ I,1I'$7$ 410/1324 RM0430 Rev 8 069 RM0430 Digital filter for sigma delta modulators (DFSDM) Table 94. Filter maximum output resolution (peak data values from filter output) for some FOSR values FOSR Sinc1 Sinc2 FastSinc Sinc3 Sinc4 Sinc5 x +/- x +/- x2 +/- 2x2 +/- x3 +/- x4 +/- x5 4 +/- 4 +/- 16 +/- 32 +/- 64 +/- 256 +/- 1024 8 +/- 8 +/- 64 +/- 128 +/- 512 +/- 4096 - 32 +/- 32 +/- 1024 +/- 2048 +/- 32768 +/- 1048576 +/- 33554432 64 +/- 64 +/- 4096 +/- 8192 +/- 262144 +/- 16777216 +/- 1073741824 128 +/- 128 +/- 16384 +/- 32768 +/- 2097152 +/- 268435456 256 +/- 256 +/- 65536 +/- 131072 +/- 16777216 1024 +/- 1024 +/- 1048576 Result can overflow on full scale input (> 32-bit signed integer) +/- 2097152 +/- 1073741824 For more information about Sinc filter type properties and usage, it is recommended to study the theory about digital filters (more resources can be downloaded from internet). 15.4.9 Integrator unit The integrator performs additional decimation and a resolution increase of data coming from the digital filter. The integrator simply performs the sum of data from a digital filter for a given number of data samples from a filter. The integrator oversampling ratio parameter defines how many data counts will be summed to one data output from the integrator. IOSR can be set in the range 1-256 (see IOSR[7:0] bits description in DFSDM_FLTxFCR register). Table 95. Integrator maximum output resolution (peak data values from integrator output) for some IOSR values and FOSR = 256 and Sinc3 filter type (largest data) IOSR x 15.4.10 Sinc1 Sinc2 FastSinc +/- FOSR. x +/- FOSR2. x +/- 2.FOSR2. x Sinc3 Sinc4 Sinc5 +/- FOSR3. x +/- FOSR4. x +/- FOSR5. x 4 - - - +/- 67 108 864 - - 32 - - - +/- 536 870 912 - - 128 - - - +/- 2 147 483 648 - - 256 - - - +/- 232 - - Analog watchdog The analog watchdog purpose is to trigger an external signal (break or interrupt) when an analog signal reaches or crosses given maximum and minimum threshold values. An interrupt/event/break generation can then be invoked. Each analog watchdog will supervise serial data receiver outputs (after the analog watchdog filter on each channel) or data output register (current injected or regular conversion result) according to AWFSEL bit setting (in DFSDM_FLTxCR1 register). The input channels to be monitored or not by the analog watchdog x will be selected by AWDCH[7:0] in DFSDM_FLTxCR2 register. RM0430 Rev 8 411/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Analog watchdog conversions on input channels are independent from standard conversions. In this case, the analog watchdog uses its own filters and signal processing on each input channel independently from the main injected or regular conversions. Analog watchdog conversions are performed in a continuous mode on the selected input channels in order to watch channels also when main injected or regular conversions are paused (RCIP = 0, JCIP = 0). There are high and low threshold registers which are compared with given data values (set by AWHT[23:0] bits in DFSDM_FLTxAWHTR register and by AWLT[23:0] bits in DFSDM_FLTxAWLTR register). There are 2 options for comparing the threshold registers with the data values • • Option1: in this case, the input data are taken from final output data register (AWFSEL=0). This option is characterized by: – high input data resolution (up to 24-bits) – slow response time - inappropriate for fast response applications like overcurrent detection – for the comparison the final data are taken after bit shifting and offset data correction – final data are available only after main regular or injected conversions are performed – can be used in case of parallel input data source (DATMPX[1:0] ≠ 0 in DFSDM_CHyCFGR1 register) Option2: in this case, the input data are taken from any serial data receivers output (AWFSEL=1). This option is characterized by: – input serial data are processed by dedicated analog watchdog Sincx channel filters with configurable oversampling ratio (1..32) and filter order (1..3) (see AWFOSR[4:0] and AWFORD[1:0] bits setting in DFSDM_CHyAWSCDR register) – lower resolution (up to 16-bit) – fast response time - appropriate for applications which require a fast response like overcurrent/overvoltage detection) – data are available in continuous mode independently from main regular or injected conversions activity In case of input channels monitoring (AWFSEL=1), the data for comparison to threshold is taken from channels selected by AWDCH[7:0] field (DFSDM_FLTxCR2 register). Each of the selected channels filter result is compared to one threshold value pair (AWHT[23:0] / AWLT[23:0]). In this case, only higher 16 bits (AWHT[23:8] / AWLT[23:8]) define the 16-bit threshold compared with the analog watchdog filter output because data coming from the analog watchdog filter is up to a 16-bit resolution. Bits AWHT[7:0] / AWLT[7:0] are not taken into comparison in this case (AWFSEL=1). Parameters of the analog watchdog filter configuration for each input channel are set in DFSDM_CHyAWSCDR register (filter order AWFORD[1:0] and filter oversampling ratio AWFOSR[4:0]). Each input channel has its own comparator which compares the analog watchdog data (from analog watchdog filter) with analog watchdog threshold values (AWHT/AWLT). When several channels are selected (field AWDCH[7:0] field of DFSDM_FLTxCR2 register), several comparison requests may be received simultaneously. In this case, the channel request with the lowest number is managed first and then continuing to higher selected channels. For each channel, the result can be recorded in a separate flag (fields 412/1324 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) AWHTF[7:0], AWLTF[7:0] of DFSDM_FLTxAWSR register). Each channel request is executed in 8 DFSDM clock cycles. So, the bandwidth from each channel is limited to 8 DFSDM clock cycles (if AWDCH[7:0] = 0xFF). Because the maximum input channel sampling clock frequency is the DFSDM clock frequency divided by 4, the configuration AWFOSR = 0 (analog watchdog filter is bypassed) cannot be used for analog watchdog feature at this input clock speed. Therefore user must properly configure the number of watched channels and analog watchdog filter parameters with respect to input sampling clock speed and DFSDM frequency. Analog watchdog filter data for given channel y is available for reading by firmware on field WDATA[15:0] in DFSDM_CHyWDATR register. That analog watchdog filter data is converted continuously (if CHEN=1 in DFSDM_CHyCFGR1 register) with the data rate given by the analog watchdog filter setting and the channel input clock frequency. The analog watchdog filter conversion works like a regular Fast Continuous Conversion without the intergator. The number of serial samples needed for one result from analog watchdog filter output (at channel input clock frequency fCKIN): first conversion: for Sincx filters (x=1..5): number of samples = [FOSR * FORD + FORD + 1] for FastSinc filter: number of samples = [FOSR * 4 + 2 + 1] next conversions: for Sincx and FastSinc filters: number of samples = [FOSR * IOSR] where: FOSR ....... filter oversampling ratio: FOSR = AWFOSR[4:0]+1 (see DFSDM_CHyAWSCDR register) FORD ....... the filter order: FORD = AWFORD[1:0] (see DFSDM_CHyAWSCDR register) In case of output data register monitoring (AWFSEL=0), the comparison is done after a right bit shift and an offset correction of final data (see OFFSET[23:0] and DTRBS[4:0] fields in DFSDM_CHyCFGR2 register). A comparison is performed after each injected or regular end of conversion for the channels selected by AWDCH[7:0] field (in DFSDM_FLTxCR2 register). The status of an analog watchdog event is signalized in DFSDM_FLTxAWSR register where a given event is latched. AWHTF[y]=1 flag signalizes crossing AWHT[23:0] value on channel y. AWLTF[y]=1 flag signalizes crossing AWLT[23:0] value on channel y. Latched events in DFSDM_FLTxAWSR register are cleared by writing ‘1’ into the corresponding clearing bit CLRAWHTF[y] or CLRAWLTF[y] in DFSDM_FLTxAWCFR register. The global status of an analog watchdog is signalized by the AWDF flag bit in DFSDM_FLTxISR register (it is used for the fast detection of an interrupt source). AWDF=1 signalizes that at least one watchdog occurred (AWHTF[y]=1 or AWLTF[y]=1 for at least one channel). AWDF bit is cleared when all AWHTF[7:0] and AWLTF[7:0] are cleared. An analog watchdog event can be assigned to break output signal. There are four break outputs to be assigned to a high or low threshold crossing event (dfsdm_break[3:0]). The break signal assignment to a given analog watchdog event is done by BKAWH[3:0] and BKAWL[3:0] fields in DFSDM_FLTxAWHTR and DFSDM_FLTxAWLTR register. RM0430 Rev 8 413/1324 449 Digital filter for sigma delta modulators (DFSDM) 15.4.11 RM0430 Short-circuit detector The purpose of a short-circuit detector is to signalize with a very fast response time if an analog signal reached saturated values (out of full scale ranges) and remained on this value given time. This behavior can detect short-circuit or open circuit errors (e.g. overcurrent or overvoltage). An interrupt/event/break generation can be invoked. Input data into a short-circuit detector is taken from channel transceiver outputs. There is an upcounting counter on each input channel which is counting consecutive 0’s or 1’s on serial data receiver outputs. A counter is restarted if there is a change in the data stream received - 1 to 0 or 0 to 1 change of data signal. If this counter reaches a short-circuit threshold register value (SCDT[7:0] bits in DFSDM_CHyAWSCDR register), then a shortcircuit event is invoked. Each input channel has its short-circuit detector. Any channel can be selected to be continuously monitored by setting the SCDEN bit (in DFSDM_CHyCFGR1 register) and it has its own short-circuit detector settings (threshold value in SCDT[7:0] bits, status bit SCDF[7:0], status clearing bits CLRSCDF[7:0]). Status flag SCDF[y] is cleared also by hardware when corresponding channel y is disabled (CHEN[y] = 0). On each channel, a short-circuit detector event can be assigned to break output signal dfsdm_break[3:0]. There are four break outputs to be assigned to a short-circuit detector event. The break signal assignment to a given channel short-circuit detector event is done by BKSCD[3:0] field in DFSDM_CHyAWSCDR register. Short circuit detector cannot be used in case of parallel input data channel selection (DATMPX[1:0] ≠ 0 in DFSDM_CHyCFGR1 register). Four break outputs are totally available (shared with the analog watchdog function). 15.4.12 Extreme detector The purpose of an extremes detector is to collect the minimum and maximum values of final output data words (peak to peak values). If the output data word is higher than the value stored in the extremes detector maximum register (EXMAX[23:0] bits in DFSDM_FLTxEXMAX register), then this register is updated with the current output data word value and the channel from which the data is stored is in EXMAXCH[2:0] bits (in DFSDM_FLTxEXMAX register) . If the output data word is lower than the value stored in the extremes detector minimum register (EXMIN[23:0] bits in DFSDM_FLTxEXMIN register), then this register is updated with the current output data word value and the channel from which the data is stored is in EXMINCH[2:0] bits (in DFSDM_FLTxEXMIN register). The minimum and maximum register values can be refreshed by software (by reading given DFSDM_FLTxEXMAX or DFSDM_FLTxEXMIN register). After refresh, the extremes detector minimum data register DFSDM_FLTxEXMIN is filled with 0x7FFFFF (maximum positive value) and the extremes detector maximum register DFSDM_FLTxEXMAX is filled with 0x800000 (minimum negative value). The extremes detector performs a comparison after a right bit shift and an offset data correction. For each extremes detector, the input channels to be considered into computing the extremes value are selected in EXCH[7:0] bits (in DFSDM_FLTxCR2 register). 414/1324 RM0430 Rev 8 RM0430 15.4.13 Digital filter for sigma delta modulators (DFSDM) Data unit block The data unit block is the last block of the whole processing path: External Σ∆ modulators Serial transceivers - Sinc filter - Integrator - Data unit block. The output data rate depends on the serial data stream rate, and filter and integrator settings. The maximum output data rate is: Datarate samples ⁄ s f CKIN = ---------------------------------------------------------------------------------------------------------F OSR ⋅ ( I OSR – 1 + F ORD ) + ( F ORD + 1 ) Datarate samples ⁄ s f CKIN = ----------------------------------------------------------------------------------F OSR ⋅ ( I OSR – 1 + 4 ) + ( 2 + 1 ) ...FAST = 0, Sincx filter ...FAST = 0, FastSinc filter or Datarate samples ⁄ s f CKIN = ---------------------------------F OSR ⋅ I OSR ...FAST = 1 Maximum output data rate in case of parallel data input: Datarate samples ⁄ s f DATAIN_RATE = ---------------------------------------------------------------------------------------------------------F OSR ⋅ ( I OSR – 1 + F ORD ) + ( F ORD + 1 ) ...FAST = 0, Sincx filter or Datarate samples ⁄ s f DATAIN_RATE = ----------------------------------------------------------------------------------F OSR ⋅ ( I OSR – 1 + 4 ) + ( 2 + 1 ) ...FAST = 0, FastSinc filter or Datarate samples ⁄ s f DATAIN_RATE = -----------------------------------F OSR ⋅ I OSR ...FAST=1 or any filter bypass case ( F OSR = 1 ) where: f DATAIN_RATE ...input data rate from CPU/DMA The right bit-shift of final data is performed in this module because the final data width is 24bit and data coming from the processing path can be up to 32 bits. This right bit-shift is configurable in the range 0-31 bits for each selected input channel (see DTRBS[4:0] bits in DFSDM_CHyCFGR2 register). The right bit-shift is rounding the result to nearest integer value. The sign of shifted result is maintained - to have valid 24-bit signed format of result data. In the next step, an offset correction of the result is performed. The offset correction value (OFFSET[23:0] stored in register DFSDM_CHyCFGR2) is subtracted from the output data for a given channel. Data in the OFFSET[23:0] field is set by software by the appropriate calibration routine. Due to the fact that all operations in digital processing are performed on 32-bit signed registers, the following conditions must be fulfilled not to overflow the result: FOSR FORD . IOSR <= 231 ... for Sincx filters, x = 1..5) 2 . FOSR 2 . IOSR <= 231 ... for FastSinc filter) RM0430 Rev 8 415/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Note: In case of filter and integrator bypass (IOSR[7:0]=0, FOSR[9:0]=0), the input data rate (fDATAIN_RATE) must be limited to be able to read all output data: fDATAIN_RATE ≤ fAPB where fAPB is the bus frequency to which the DFSDM peripheral is connected. 15.4.14 Signed data format Each DFSDM input serial channel can be connected to one external Σ∆ modulator. An external Σ∆ modulator can have 2 differential inputs (positive and negative) which can be used for a differential or single-ended signal measurement. A Σ∆ modulator output is always assumed in a signed format (a data stream of zeros and ones from a Σ∆ modulator represents values -1 and +1). Signed data format in registers: Data is in a signed format in registers for final output data, analog watchdog, extremes detector, offset correction. The msb of output data word represents the sign of value (two’s complement format). 15.4.15 Launching conversions Injected conversions can be launched using the following methods: • Software: writing ‘1’ to JSWSTART in the DFSDM_FLTxCR1 register. • Trigger: JEXTSEL[2:0] selects the trigger signal while JEXTEN activates the trigger and selects the active edge at the same time (see the DFSDM_FLTxCR1 register). • Synchronous with DFSDM_FLT0 if JSYNC=1: for DFSDM_FLTx (x>0), an injected conversion is automatically launched when in DFSDM_FLT0; the injected conversion is started by software (JSWSTART=1 in DFSDM_FLT0CR2 register). Each injected conversion in DFSDM_FLTx (x>0) is always executed according to its local configuration settings (JSCAN, JCHG, etc.). If the scan conversion is enabled (bit JSCAN=1) then, each time an injected conversion is triggered, all of the selected channels in the injected group (JCHG[7:0] bits in DFSDM_FLTxJCHGR register) are converted sequentially, starting with the lowest channel (channel 0, if selected). If the scan conversion is disabled (bit JSCAN=0) then, each time an injected conversion is triggered, only one of the selected channels in the injected group (JCHG[7:0] bits in DFSDM_FLTxJCHGR register) is converted and the channel selection is then moved to the next selected channel. Writing to the JCHG[7:0] bits when JSCAN=0 sets the channel selection to the lowest selected injected channel. Only one injected conversion can be ongoing at a given time. Thus, any request to launch an injected conversion is ignored if another request for an injected conversion has already been issued but not yet completed. Regular conversions can be launched using the following methods: • Software: by writing ‘1’ to RSWSTART in the DFSDM_FLTxCR1 register. • Synchronous with DFSDM_FLT0 if RSYNC=1: for DFSDM_FLTx (x>0), a regular conversion is automatically launched when in DFSDM_FLT0; a regular conversion is started by software (RSWSTART=1 in DFSDM_FLT0CR2 register). Each regular conversion in DFSDM_FLTx (x>0) is always executed according to its local configuration settings (RCONT, RCH, etc.). Only one regular conversion can be pending or ongoing at a given time. Thus, any request to launch a regular conversion is ignored if another request for a regular conversion has 416/1324 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) already been issued but not yet completed. A regular conversion can be pending if it was interrupted by an injected conversion or if it was started while an injected conversion was in progress. This pending regular conversion is then delayed and is performed when all injected conversion are finished. Any delayed regular conversion is signalized by RPEND bit in DFSDM_FLTxRDATAR register. 15.4.16 Continuous and fast continuous modes Setting RCONT in the DFSDM_FLTxCR1 register causes regular conversions to execute in continuous mode. RCONT=1 means that the channel selected by RCH[2:0] is converted repeatedly after ‘1’ is written to RSWSTART. The regular conversions executing in continuous mode can be stopped by writing ‘0’ to RCONT. After clearing RCONT, the on-going conversion is stopped immediately. In continuous mode, the data rate can be increased by setting the FAST bit in the DFSDM_FLTxCR1 register. In this case, the filter does not need to be refilled by new fresh data if converting continuously from one channel because data inside the filter is valid from previously sampled continuous data. The speed increase depends on the chosen filter order. The first conversion in fast mode (FAST=1) after starting a continuous conversion by RSWSTART=1 takes still full time (as when FAST=0), then each subsequent conversion is finished in shorter intervals. Conversion time in continuous mode: if FAST = 0 (or first conversion if FAST=1): for Sincx filters: t = CNVCNT/fDFSDMCLK = [FOSR * (IOSR-1 + FORD) + FORD] / fCKIN for FastSinc filter: t = CNVCNT/fDFSDMCLK = [FOSR * (IOSR-1 + 4) + 2] / fCKIN if FAST = 1 (except first conversion): for Sincx and FastSinc filters: t = CNVCNT/fDFSDMCLK = [FOSR * IOSR] / fCKIN in case FOSR = FOSR[9:0]+1 = 1 (filter bypassed, only integrator active): t = IOSR / fCKIN (... but CNVCNT=0) Continuous mode is not available for injected conversions. Injected conversions can be started by timer trigger to emulate the continuous mode with precise timing. If a regular continuous conversion is in progress (RCONT=1) and if a write access to DFSDM_FLTxCR1 register requesting regular continuous conversion (RCONT=1) is performed, then regular continuous conversion is restarted from the next conversion cycle (like new regular continuous conversion is applied for new channel selection - even if there is no change in DFSDM_FLTxCR1 register). 15.4.17 Request precedence An injected conversion has a higher precedence than a regular conversion. A regular conversion which is already in progress is immediately interrupted by the request of an injected conversion; this regular conversion is restarted after the injected conversion finishes. RM0430 Rev 8 417/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 An injected conversion cannot be launched if another injected conversion is pending or already in progress: any request to launch an injected conversion (either by JSWSTART or by a trigger) is ignored as long as bit JCIP is ‘1’ (in the DFSDM_FLTxISR register). Similarly, a regular conversion cannot be launched if another regular conversion is pending or already in progress: any request to launch a regular conversion (using RSWSTART) is ignored as long as bit RCIP is ‘1’ (in the DFSDM_FLTxISR register). However, if an injected conversion is requested while a regular conversion is already in progress, the regular conversion is immediately stopped and an injected conversion is launched. The regular conversion is then restarted and this delayed restart is signalized in bit RPEND. Injected conversions have precedence over regular conversions in that a injected conversion can temporarily interrupt a sequence of continuous regular conversions. When the sequence of injected conversions finishes, the continuous regular conversions start again if RCONT is still set (and RPEND bit will signalize the delayed start on the first regular conversion result). Precedence also matters when actions are initiated by the same write to DFSDM, or if multiple actions are pending at the end of another action. For example, suppose that, while an injected conversion is in process (JCIP=1), a single write operation to DFSDM_FLTxCR1 writes ‘1’ to RSWSTART, requesting a regular conversion. When the injected sequence finishes, the precedence dictates that the regular conversion is performed next and its delayed start is signalized in RPEND bit. 15.4.18 Power optimization in run mode In order to reduce the consumption, the DFSDM filter and integrator are automatically put into idle when not used by conversions (RCIP=0, JCIP=0). 15.5 DFSDM interrupts In order to increase the CPU performance, a set of interrupts related to the CPU event occurrence has been implemented: • • • End of injected conversion interrupt: – enabled by JEOCIE bit in DFSDM_FLTxCR2 register – indicated in JEOCF bit in DFSDM_FLTxISR register – cleared by reading DFSDM_FLTxJDATAR register (injected data) – indication of which channel end of conversion occurred, reported in JDATACH[2:0] bits in DFSDM_FLTxJDATAR register End of regular conversion interrupt: – enabled by REOCIE bit in DFSDM_FLTxCR2 register – indicated in REOCF bit in DFSDM_FLTxISR register – cleared by reading DFSDM_FLTxRDATAR register (regular data) – indication of which channel end of conversion occurred, reported in RDATACH[2:0] bits in DFSDM_FLTxRDATAR register Data overrun interrupt for injected conversions: – 418/1324 occurred when injected converted data were not read from DFSDM_FLTxJDATAR register (by CPU or DMA) and were overwritten by a new injected conversion RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) • • • • – enabled by JOVRIE bit in DFSDM_FLTxCR2 register – indicated in JOVRF bit in DFSDM_FLTxISR register – cleared by writing ‘1’ into CLRJOVRF bit in DFSDM_FLTxICR register Data overrun interrupt for regular conversions: – occurred when regular converted data were not read from DFSDM_FLTxRDATAR register (by CPU or DMA) and were overwritten by a new regular conversion – enabled by ROVRIE bit in DFSDM_FLTxCR2 register – indicated in ROVRF bit in DFSDM_FLTxISR register – cleared by writing ‘1’ into CLRROVRF bit in DFSDM_FLTxICR register Analog watchdog interrupt: – occurred when converted data (output data or data from analog watchdog filter according to AWFSEL bit setting in DFSDM_FLTxCR1 register) crosses over/under high/low thresholds in DFSDM_FLTxAWHTR / DFSDM_FLTxAWLTR registers – enabled by AWDIE bit in DFSDM_FLTxCR2 register (on selected channels AWDCH[7:0]) – indicated in AWDF bit in DFSDM_FLTxISR register – separate indication of high or low analog watchdog threshold error by AWHTF[7:0] and AWLTF[7:0] fields in DFSDM_FLTxAWSR register – cleared by writing ‘1’ into corresponding CLRAWHTF[7:0] or CLRAWLTF[7:0] bits in DFSDM_FLTxAWCFR register Short-circuit detector interrupt: – occurred when the number of stable data crosses over thresholds in DFSDM_CHyAWSCDR register – enabled by SCDIE bit in DFSDM_FLTxCR2 register (on channel selected by SCDEN bi tin DFSDM_CHyCFGR1 register) – indicated in SCDF[7:0] bits in DFSDM_FLTxISR register (which also reports the channel on which the short-circuit detector event occurred) – cleared by writing ‘1’ into the corresponding CLRSCDF[7:0] bit in DFSDM_FLTxICR register Channel clock absence interrupt: – occurred when there is clock absence on CKINy pin (see Clock absence detection in Section 15.4.4: Serial channel transceivers) – enabled by CKABIE bit in DFSDM_FLTxCR2 register (on channels selected by CKABEN bit in DFSDM_CHyCFGR1 register) – indicated in CKABF[y] bit in DFSDM_FLTxISR register – cleared by writing ‘1’ into CLRCKABF[y] bit in DFSDM_FLTxICR register Table 96. DFSDM interrupt requests Interrupt event Event/Interrupt clearing method Event flag Interrupt enable control bit End of injected conversion JEOCF reading DFSDM_FLTxJDATAR End of regular conversion REOCF reading DFSDM_FLTxRDATAR REOCIE Injected data overrun JOVRF writing CLRJOVRF = 1 RM0430 Rev 8 JEOCIE JOVRIE 419/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Table 96. DFSDM interrupt requests (continued) Interrupt event 15.6 Event/Interrupt clearing method Event flag Interrupt enable control bit Regular data overrun ROVRF writing CLRROVRF = 1 ROVRIE Analog watchdog AWDF, AWHTF[7:0], AWLTF[7:0] writing CLRAWHTF[7:0] = 1 writing CLRAWLTF[7:0] = 1 AWDIE, (AWDCH[7:0]) short-circuit detector SCDF[7:0] writing CLRSCDF[7:0] = 1 SCDIE, (SCDEN) Channel clock absence CKABF[7:0] writing CLRCKABF[7:0] = 1 CKABIE, (CKABEN) DFSDM DMA transfer To decrease the CPU intervention, conversions can be transferred into memory using a DMA transfer. A DMA transfer for injected conversions is enabled by setting bit JDMAEN=1 in DFSDM_FLTxCR1 register. A DMA transfer for regular conversions is enabled by setting bit RDMAEN=1 in DFSDM_FLTxCR1 register. Note: With a DMA transfer, the interrupt flag is automatically cleared at the end of the injected or regular conversion (JEOCF or REOCF bit in DFSDM_FLTxISR register) because DMA is reading DFSDM_FLTxJDATAR or DFSDM_FLTxRDATAR register. 15.7 DFSDM channel y registers (y=0..7) 15.7.1 DFSDM channel y configuration register (DFSDM_CHyCFGR1) This register specifies the parameters used by channel y. Address offset: 0x00 + 0x20 * y, (y = 0 to 7) Reset value: 0x0000 0000 31 30 DFSDM CKOUT EN SRC rw rw 15 14 DATPACK[1:0] rw 420/1324 rw 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. rw rw rw rw 13 12 11 10 9 8 7 6 5 4 Res. Res. Res. CHIN SEL CHEN CKAB EN SCDEN Res. rw rw rw rw DATMPX[1:0] rw rw 23 22 21 20 19 18 17 16 rw rw rw rw 3 2 1 0 CKOUTDIV[7:0] RM0430 Rev 8 SPICKSEL[1:0] rw rw SITP[1:0] rw rw RM0430 Digital filter for sigma delta modulators (DFSDM) Bit 31 DFSDMEN: Global enable for DFSDM interface 0: DFSDM interface disabled 1: DFSDM interface enabled If DFSDM interface is enabled, then it is started to operate according to enabled y channels and enabled x filters settings (CHEN bit in DFSDM_CHyCFGR1 and DFEN bit in DFSDM_FLTxCR1). Data cleared by setting DFSDMEN=0: –all registers DFSDM_FLTxISR are set to reset state (x = 0..3) –all registers DFSDM_FLTxAWSR are set to reset state (x = 0..3) Note: DFSDMEN is present only in DFSDM_CH0CFGR1 register (channel y=0) Bit 30 CKOUTSRC: Output serial clock source selection 0: Source for output clock is from system clock 1: Source for output clock is from audio clock This value can be modified only when DFSDMEN=0 (in DFSDM_CH0CFGR1 register). Note: CKOUTSRC is present only in DFSDM_CH0CFGR1 register (channel y=0) Bits 29:24 Reserved, must be kept at reset value. Bits 23:16 CKOUTDIV[7:0]: Output serial clock divider 0: Output clock generation is disabled (CKOUT signal is set to low state) 1- 255: Defines the division of system clock for the serial clock output for CKOUT signal in range 2 256 (Divider = CKOUTDIV+1). CKOUTDIV also defines the threshold for a clock absence detection. This value can only be modified when DFSDMEN=0 (in DFSDM_CH0CFGR1 register). If DFSDMEN=0 (in DFSDM_CH0CFGR1 register) then CKOUT signal is set to low state (setting is performed one DFSDM clock cycle after DFSDMEN=0). Note: CKOUTDIV is present only in DFSDM_CH0CFGR1 register (channel y=0) Bits 15:14 DATPACK[1:0]: Data packing mode in DFSDM_CHyDATINR register. 0: Standard: input data in DFSDM_CHyDATINR register are stored only in INDAT0[15:0]. To empty DFSDM_CHyDATINR register one sample must be read by the DFSDM filter from channel y. 1: Interleaved: input data in DFSDM_CHyDATINR register are stored as two samples: –first sample in INDAT0[15:0] (assigned to channel y) –second sample INDAT1[15:0] (assigned to channel y) To empty DFSDM_CHyDATINR register, two samples must be read by the digital filter from channel y (INDAT0[15:0] part is read as first sample and then INDAT1[15:0] part is read as next sample). 2: Dual: input data in DFSDM_CHyDATINR register are stored as two samples: –first sample INDAT0[15:0] (assigned to channel y) –second sample INDAT1[15:0] (assigned to channel y+1) To empty DFSDM_CHyDATINR register first sample must be read by the digital filter from channel y and second sample must be read by another digital filter from channel y+1. Dual mode is available only on even channel numbers (y = 0, 2, 4, 6), for odd channel numbers (y = 1, 3, 5, 7) DFSDM_CHyDATINR is write protected. If an even channel is set to dual mode then the following odd channel must be set into standard mode (DATPACK[1:0]=0) for correct cooperation with even channel. 3: Reserved This value can be modified only when CHEN=0 (in DFSDM_CHyCFGR1 register). RM0430 Rev 8 421/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Bits 13:12 DATMPX[1:0]: Input data multiplexer for channel y 0: Data to channel y are taken from external serial inputs as 1-bit values. DFSDM_CHyDATINR register is write protected. 1: Reserved 2: Data to channel y are taken from internal DFSDM_CHyDATINR register by direct CPU/DMA write. There can be written one or two 16-bit data samples according DATPACK[1:0] bit field setting. 3: Reserved Note: This value can be modified only when CHEN=0 (in DFSDM_CHyCFGR1 register). Bits 11:9 Reserved, must be kept at reset value. Bit 8 CHINSEL: Channel inputs selection 0: Channel inputs are taken from pins of the same channel y. 1: Channel inputs are taken from pins of the following channel (channel (y+1) modulo 8). This value can be modified only when CHEN=0 (in DFSDM_CHyCFGR1 register). Bit 7 CHEN: Channel y enable 0: Channel y disabled 1: Channel y enabled If channel y is enabled, then serial data receiving is started according to the given channel setting. Bit 6 CKABEN: Clock absence detector enable on channel y 0: Clock absence detector disabled on channel y 1: Clock absence detector enabled on channel y Bit 5 SCDEN: Short-circuit detector enable on channel y 0: Input channel y will not be guarded by the short-circuit detector 1: Input channel y will be continuously guarded by the short-circuit detector Bit 4 Reserved, must be kept at reset value. Bits 3:2 SPICKSEL[1:0]: SPI clock select for channel y 0: clock coming from external CKINy input - sampling point according SITP[1:0] 1: clock coming from internal CKOUT output - sampling point according SITP[1:0] 2: clock coming from internal CKOUT - sampling point on each second CKOUT falling edge. For connection to external Σ∆ modulator which divides its clock input (from CKOUT) by 2 to generate its output serial communication clock (and this output clock change is active on each clock input rising edge). 3: clock coming from internal CKOUT output - sampling point on each second CKOUT rising edge. For connection to external Σ∆ modulator which divides its clock input (from CKOUT) by 2 to generate its output serial communication clock (and this output clock change is active on each clock input falling edge). This value can be modified only when CHEN=0 (in DFSDM_CHyCFGR1 register). Bits 1:0 SITP[1:0]: Serial interface type for channel y 00: SPI with rising edge to strobe data 01: SPI with falling edge to strobe data 10: Manchester coded input on DATINy pin: rising edge = logic 0, falling edge = logic 1 11: Manchester coded input on DATINy pin: rising edge = logic 1, falling edge = logic 0 This value can only be modified when CHEN=0 (in DFSDM_CHyCFGR1 register). 422/1324 RM0430 Rev 8 RM0430 15.7.2 Digital filter for sigma delta modulators (DFSDM) DFSDM channel y configuration register (DFSDM_CHyCFGR2) This register specifies the parameters used by channel y. Address offset: 0x04 + 0x20 * y, (y = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 OFFSET[23:8] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. OFFSET[7:0] rw rw rw rw rw DTRBS[4:0] rw rw rw rw rw rw rw rw Bits 31:8 OFFSET[23:0]: 24-bit calibration offset for channel y For channel y, OFFSET is applied to the results of each conversion from this channel. This value is set by software. Bits 7:3 DTRBS[4:0]: Data right bit-shift for channel y 0-31: Defines the shift of the data result coming from the integrator - how many bit shifts to the right will be performed to have final results. Bit-shift is performed before offset correction. The data shift is rounding the result to nearest integer value. The sign of shifted result is maintained (to have valid 24-bit signed format of result data). This value can be modified only when CHEN=0 (in DFSDM_CHyCFGR1 register). Bits 2:0 Reserved, must be kept at reset value. 15.7.3 DFSDM channel y analog watchdog and short-circuit detector register (DFSDM_CHyAWSCDR) Short-circuit detector and analog watchdog settings for channel y. Address offset: 0x08 + 0x20 * y, (y = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 Res. Res. Res. Res. BKSCD[3:0] rw rw rw rw 23 22 AWFORD[1:0] rw rw 7 6 21 20 19 Res. 5 18 17 16 AWFOSR[4:0] rw rw rw rw rw 4 3 2 1 0 rw rw rw SCDT[7:0] rw RM0430 Rev 8 rw rw rw rw 423/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Bits 31:24 Reserved, must be kept at reset value. Bits 23:22 AWFORD[1:0]: Analog watchdog Sinc filter order on channel y 0: FastSinc filter type 1: Sinc1 filter type 2: Sinc2 filter type 3: Sinc3 filter type x ⎛ 1 – z – FOSR⎞ Sincx filter type transfer function: -⎟ H ( z ) = ⎜ ---------------------------⎝ 1 – z –1 ⎠ 2 ⎛ 1 – z– FOSR⎞ -⎟ ⋅ ( 1 + z –( 2 ⋅ H ( z ) = ⎜ ---------------------------⎝ 1 – z–1 ⎠ FastSinc filter type transfer function: FOSR ) ) This bit can be modified only when CHEN=0 (in DFSDM_CHyCFGR1 register). Bit 21 Reserved, must be kept at reset value. Bits 20:16 AWFOSR[4:0]: Analog watchdog filter oversampling ratio (decimation rate) on channel y 0 - 31: Defines the length of the Sinc type filter in the range 1 - 32 (AWFOSR + 1). This number is also the decimation ratio of the analog data rate. This bit can be modified only when CHEN=0 (in DFSDM_CHyCFGR1 register). Note: If AWFOSR = 0 then the filter has no effect (filter bypass). Bits 15:12 BKSCD[3:0]: Break signal assignment for short-circuit detector on channel y BKSCD[i] = 0: Break i signal not assigned to short-circuit detector on channel y BKSCD[i] = 1: Break i signal assigned to short-circuit detector on channel y Bits 11:8 Reserved, must be kept at reset value. Bits 7:0 SCDT[7:0]: short-circuit detector threshold for channel y These bits are written by software to define the threshold counter for the short-circuit detector. If this value is reached, then a short-circuit detector event occurs on a given channel. 15.7.4 DFSDM channel y watchdog filter data register (DFSDM_CHyWDATR) This register contains the data resulting from the analog watchdog filter associated to the input channel y. Address offset: 0x0C + 0x20 * y, (y = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r WDATA[15:0] r 424/1324 r r r r r r r r RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 WDATA[15:0]: Input channel y watchdog data Data converted by the analog watchdog filter for input channel y. This data is continuously converted (no trigger) for this channel, with a limited resolution (OSR=1..32/sinc order = 1..3). 15.7.5 DFSDM channel y data input register (DFSDM_CHyDATINR) This register contains 16-bit input data to be processed by DFSDM filter module. Address offset: 0x10 + 0x20 * y, (y = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 INDAT1[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw INDAT0[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 INDAT1[15:0]: Input data for channel y or channel y+1 Input parallel channel data to be processed by the digital filter if DATMPX[1:0]=1 or DATMPX[1:0]=2. Data can be written by CPU/DMA (if DATMPX[1:0]=2). If DATPACK[1:0]=0 (standard mode) INDAT0[15:0] is write protected (not used for input sample). If DATPACK[1:0]=1 (interleaved mode) Second channel y data sample is stored into INDAT1[15:0]. First channel y data sample is stored into INDAT0[15:0]. Both samples are read sequentially by DFSDM_FLTx filter as two channel y data samples. If DATPACK[1:0]=2 (dual mode). For even y channels: sample in INDAT1[15:0] is automatically copied into INDAT0[15:0] of channel (y+1). For odd y channels: INDAT1[15:0] is write protected. See Section 15.4.6: Parallel data inputs for more details. INDAT0[15:1] is in the16-bit signed format. Bits 15:0 INDAT0[15:0]: Input data for channel y Input parallel channel data to be processed by the digital filter if DATMPX[1:0]=1 or DATMPX[1:0]=2. Data can be written by CPU/DMA (if DATMPX[1:0]=2). If DATPACK[1:0]=0 (standard mode) Channel y data sample is stored into INDAT0[15:0]. If DATPACK[1:0]=1 (interleaved mode) First channel y data sample is stored into INDAT0[15:0]. Second channel y data sample is stored into INDAT1[15:0]. Both samples are read sequentially by DFSDM_FLTx filter as two channel y data samples. If DATPACK[1:0]=2 (dual mode). For even y channels: Channel y data sample is stored into INDAT0[15:0]. For odd y channels: INDAT0[15:0] is write protected. See Section 15.4.6: Parallel data inputs for more details. INDAT0[15:0] is in the16-bit signed format. RM0430 Rev 8 425/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 15.8 DFSDM filter x module registers (x=0..3) 15.8.1 DFSDM filter x control register 1 (DFSDM_FLTxCR1) Address offset: 0x100 + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 Res. AWF SEL rw rw 15 14 13 Res. 29 FAST JEXTEN[1:0] rw rw 28 27 Res. Res. 12 11 Res. 26 25 24 RCH[2:0] rw rw rw 10 9 8 Res. JEXTSEL[2:0] rw rw 23 22 21 Res. Res. RDMA EN 7 6 5 Res. JDMA EN 20 Res. rw Res. rw rw 4 19 17 16 RSW START Res. rw rw 3 2 1 0 Res. JSW START DFEN rt_w1 rw JSCAN JSYNC rw 18 RCON RSYNC T rw rt_w1 Bit 31 Reserved, must be kept at reset value. Bit 30 AWFSEL: Analog watchdog fast mode select 0: Analog watchdog on data output value (after the digital filter). The comparison is done after offset correction and shift 1: Analog watchdog on channel transceivers value (after watchdog filter) Bit 29 FAST: Fast conversion mode selection for regular conversions 0: Fast conversion mode disabled 1: Fast conversion mode enabled When converting a regular conversion in continuous mode, having enabled the fast mode causes each conversion (except the first) to execute faster than in standard mode. This bit has no effect on conversions which are not continuous. This bit can be modified only when DFEN=0 (DFSDM_FLTxCR1). if FAST=0 (or first conversion in continuous mode if FAST=1): t = [FOSR * (IOSR-1 + FORD) + FORD] / fCKIN..... for Sincx filters t = [FOSR * (IOSR-1 + 4) + 2] / fCKIN..... for FastSinc filter if FAST=1 in continuous mode (except first conversion): t = [FOSR * IOSR] / fCKIN in case if FOSR = FOSR[9:0]+1 = 1 (filter bypassed, active only integrator): t = IOSR / fCKIN (... but CNVCNT=0) where: fCKIN is the channel input clock frequency (on given channel CKINy pin) or input data rate in case of parallel data input. Bits 28:27 Reserved, must be kept at reset value. Bits 26:24 RCH[2:0]: Regular channel selection 0: Channel 0 is selected as the regular channel 1: Channel 1 is selected as the regular channel ... 7: Channel 7 is selected as the regular channel Writing these bits when RCIP=1 takes effect when the next regular conversion begins. This is especially useful in continuous mode (when RCONT=1). It also affects regular conversions which are pending (due to ongoing injected conversion). Bits 23:22 Reserved, must be kept at reset value. 426/1324 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) Bit 21 RDMAEN: DMA channel enabled to read data for the regular conversion 0: The DMA channel is not enabled to read regular data 1: The DMA channel is enabled to read regular data This bit can be modified only when DFEN=0 (DFSDM_FLTxCR1). Bit 20 Reserved, must be kept at reset value. Bit 19 RSYNC: Launch regular conversion synchronously with DFSDM_FLT0 0: Do not launch a regular conversion synchronously with DFSDM_FLT0 1: Launch a regular conversion in this DFSDM_FLTx at the very moment when a regular conversion is launched in DFSDM_FLT0 This bit can be modified only when DFEN=0 (DFSDM_FLTxCR1). Bit 18 RCONT: Continuous mode selection for regular conversions 0: The regular channel is converted just once for each conversion request 1: The regular channel is converted repeatedly after each conversion request Writing ‘0’ to this bit while a continuous regular conversion is already in progress stops the continuous mode immediately. Bit 17 RSWSTART: Software start of a conversion on the regular channel 0: Writing ‘0’ has no effect 1: Writing ‘1’ makes a request to start a conversion on the regular channel and causes RCIP to become ‘1’. If RCIP=1 already, writing to RSWSTART has no effect. Writing ‘1’ has no effect if RSYNC=1. This bit is always read as ‘0’. Bits 16:15 Reserved, must be kept at reset value. Bits 14:13 JEXTEN[1:0]: Trigger enable and trigger edge selection for injected conversions 00: Trigger detection is disabled 01: Each rising edge on the selected trigger makes a request to launch an injected conversion 10: Each falling edge on the selected trigger makes a request to launch an injected conversion 11: Both rising edges and falling edges on the selected trigger make requests to launch injected conversions This bit can be modified only when DFEN=0 (DFSDM_FLTxCR1). Bits 12:11 Reserved, must be kept at reset value. Bits 10:8 JEXTSEL[2:0]: Trigger signal selection for launching injected conversions 0x0-0x7: Trigger inputs selected by the following table. This bit can be modified only when DFEN=0 (DFSDM_FLTxCR1). DFSDM1_FLT0 DFSDM1_FLT1 0x00 dfsdm_jtrg0 dfsdm_jtrg0 0x01 dfsdm_jtrg1 dfsdm_jtrg1 0x02 dfsdm_jtrg2 dfsdm_jtrg2 0x03 dfsdm_jtrg3 dfsdm_jtrg3 0x04 dfsdm_jtrg5 dfsdm_jtrg5 0x05 dfsdm_jtrg7 dfsdm_jtrg7 0x06 dfsdm_jtrg9 dfsdm_jtrg9 0x07 dfsdm_jtrg10 dfsdm_jtrg10 Refer to Table 89: DFSDM1 triggers connection. RM0430 Rev 8 427/1324 449 Digital filter for sigma delta modulators (DFSDM) DFSDM2_FLT0 DFSDM2_FLT1 DFSDM2_FLT2 0x00 dfsdm_jtrg0 dfsdm_jtrg0 dfsdm_jtrg0 0x01 dfsdm_jtrg1 dfsdm_jtrg1 dfsdm_jtrg1 0x02 dfsdm_jtrg2 dfsdm_jtrg2 dfsdm_jtrg2 0x03 dfsdm_jtrg3 dfsdm_jtrg3 dfsdm_jtrg3 0x04 dfsdm_jtrg5 dfsdm_jtrg5 dfsdm_jtrg5 0x05 dfsdm_jtrg7 dfsdm_jtrg7 dfsdm_jtrg8 0x06 dfsdm_jtrg9 dfsdm_jtrg9 dfsdm_jtrg9 0x07 dfsdm_jtrg10 dfsdm_jtrg10 dfsdm_jtrg10 Refer to Table 90: DFSDM2 triggers connection. RM0430 DFSDM2_FLT3 dfsdm_jtrg0 dfsdm_jtrg1 dfsdm_jtrg2 dfsdm_jtrg4 dfsdm_jtrg6 dfsdm_jtrg8 dfsdm_jtrg9 dfsdm_jtrg10 Bits 7:6 Reserved, must be kept at reset value. Bit 5 JDMAEN: DMA channel enabled to read data for the injected channel group 0: The DMA channel is not enabled to read injected data 1: The DMA channel is enabled to read injected data This bit can be modified only when DFEN=0 (DFSDM_FLTxCR1). Bit 4 JSCAN: Scanning conversion mode for injected conversions 0: One channel conversion is performed from the injected channel group and next the selected channel from this group is selected. 1: The series of conversions for the injected group channels is executed, starting over with the lowest selected channel. This bit can be modified only when DFEN=0 (DFSDM_FLTxCR1). Writing JCHG if JSCAN=0 resets the channel selection to the lowest selected channel. Bit 3 JSYNC: Launch an injected conversion synchronously with the DFSDM_FLT0 JSWSTART trigger 0: Do not launch an injected conversion synchronously with DFSDM_FLT0 1: Launch an injected conversion in this DFSDM_FLTx at the very moment when an injected conversion is launched in DFSDM_FLT0 by its JSWSTART trigger This bit can be modified only when DFEN=0 (DFSDM_FLTxCR1). Bit 2 Reserved, must be kept at reset value. Bit 1 JSWSTART: Start a conversion of the injected group of channels 0: Writing ‘0’ has no effect. 1: Writing ‘1’ makes a request to convert the channels in the injected conversion group, causing JCIP to become ‘1’ at the same time. If JCIP=1 already, then writing to JSWSTART has no effect. Writing ‘1’ has no effect if JSYNC=1. This bit is always read as ‘0’. Bit 0 DFEN: DFSDM_FLTx enable 0: DFSDM_FLTx is disabled. All conversions of given DFSDM_FLTx are stopped immediately and all DFSDM_FLTx functions are stopped. 1: DFSDM_FLTx is enabled. If DFSDM_FLTx is enabled, then DFSDM_FLTx starts operating according to its setting. Data which are cleared by setting DFEN=0: –register DFSDM_FLTxISR is set to the reset state –register DFSDM_FLTxAWSR is set to the reset state 428/1324 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) 15.8.2 DFSDM filter x control register 2 (DFSDM_FLTxCR2) Address offset: 0x104 + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 EXCH[7:0] rw rw rw rw rw rw rw 23 22 21 20 19 18 17 16 rw AWDCH[7:0] rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 Res. CKAB IE ROVR IE JOVRI E REOC IE JEOCI E rw rw rw rw rw SCDIE AWDIE rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:16 AWDCH[7:0]: Analog watchdog channel selection These bits select the input channel to be guarded continuously by the analog watchdog. AWDCH[y] = 0: Analog watchdog is disabled on channel y AWDCH[y] = 1: Analog watchdog is enabled on channel y Bits 15:8 EXCH[7:0]: Extremes detector channel selection These bits select the input channels to be taken by the Extremes detector. EXCH[y] = 0: Extremes detector does not accept data from channel y EXCH[y] = 1: Extremes detector accepts data from channel y Bit 7 Reserved, must be kept at reset value. Bit 6 CKABIE: Clock absence interrupt enable 0: Detection of channel input clock absence interrupt is disabled 1: Detection of channel input clock absence interrupt is enabled Please see the explanation of CKABF[7:0] in DFSDM_FLTxISR. Note: CKABIE is present only in DFSDM_FLT0CR2 register (filter x=0) Bit 5 SCDIE: Short-circuit detector interrupt enable 0: short-circuit detector interrupt is disabled 1: short-circuit detector interrupt is enabled Please see the explanation of SCDF[7:0] in DFSDM_FLTxISR. Note: SCDIE is present only in DFSDM_FLT0CR2 register (filter x=0) Bit 4 AWDIE: Analog watchdog interrupt enable 0: Analog watchdog interrupt is disabled 1: Analog watchdog interrupt is enabled Please see the explanation of AWDF in DFSDM_FLTxISR. Bit 3 ROVRIE: Regular data overrun interrupt enable 0: Regular data overrun interrupt is disabled 1: Regular data overrun interrupt is enabled Please see the explanation of ROVRF in DFSDM_FLTxISR. RM0430 Rev 8 429/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Bit 2 JOVRIE: Injected data overrun interrupt enable 0: Injected data overrun interrupt is disabled 1: Injected data overrun interrupt is enabled Please see the explanation of JOVRF in DFSDM_FLTxISR. Bit 1 REOCIE: Regular end of conversion interrupt enable 0: Regular end of conversion interrupt is disabled 1: Regular end of conversion interrupt is enabled Please see the explanation of REOCF in DFSDM_FLTxISR. Bit 0 JEOCIE: Injected end of conversion interrupt enable 0: Injected end of conversion interrupt is disabled 1: Injected end of conversion interrupt is enabled Please see the explanation of JEOCF in DFSDM_FLTxISR. 15.8.3 DFSDM filter x interrupt and status register (DFSDM_FLTxISR) Address offset: 0x108 + 0x80 * x, (x = 0 to 3) Reset value: 0x00FF 0000 31 30 29 28 27 26 25 24 23 22 21 SCDF[7:0] 20 19 18 17 16 CKABF[7:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. RCIP JCIP Res. Res. Res. Res. Res. Res. Res. Res. r r AWDF ROVRF JOVRF REOCF JEOCF r r r r r Bits 31:24 SCDF[7:0]: short-circuit detector flag SDCF[y]=0: No short-circuit detector event occurred on channel y SDCF[y]=1: The short-circuit detector counter reaches, on channel y, the value programmed in the DFSDM_CHyAWSCDR registers This bit is set by hardware. It can be cleared by software using the corresponding CLRSCDF[y] bit in the DFSDM_FLTxICR register. SCDF[y] is cleared also by hardware when CHEN[y] = 0 (given channel is disabled). Note: SCDF[7:0] is present only in DFSDM_FLT0ISR register (filter x=0) Bits 23:16 CKABF[7:0]: Clock absence flag CKABF[y]=0: Clock signal on channel y is present. CKABF[y]=1: Clock signal on channel y is not present. Given y bit is set by hardware when clock absence is detected on channel y. It is held at CKABF[y]=1 state by hardware when CHEN=0 (see DFSDM_CHyCFGR1 register). It is held at CKABF[y]=1 state by hardware when the transceiver is not yet synchronized.It can be cleared by software using the corresponding CLRCKABF[y] bit in the DFSDM_FLTxICR register. Note: CKABF[7:0] is present only in DFSDM_FLT0ISR register (filter x=0) Bit 15 Reserved, must be kept at reset value. Bit 14 RCIP: Regular conversion in progress status 0: No request to convert the regular channel has been issued 1: The conversion of the regular channel is in progress or a request for a regular conversion is pending A request to start a regular conversion is ignored when RCIP=1. 430/1324 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) Bit 13 JCIP: Injected conversion in progress status 0: No request to convert the injected channel group (neither by software nor by trigger) has been issued 1: The conversion of the injected channel group is in progress or a request for a injected conversion is pending, due either to ‘1’ being written to JSWSTART or to a trigger detection A request to start an injected conversion is ignored when JCIP=1. Bits 12:5 Reserved, must be kept at reset value. Bit 4 AWDF: Analog watchdog 0: No Analog watchdog event occurred 1: The analog watchdog block detected voltage which crosses the value programmed in the DFSDM_FLTxAWLTR or DFSDM_FLTxAWHTR registers. This bit is set by hardware. It is cleared by software by clearing all source flag bits AWHTF[7:0] and AWLTF[7:0] in DFSDM_FLTxAWSR register (by writing ‘1’ into the clear bits in DFSDM_FLTxAWCFR register). Bit 3 ROVRF: Regular conversion overrun flag 0: No regular conversion overrun has occurred 1: A regular conversion overrun has occurred, which means that a regular conversion finished while REOCF was already ‘1’. RDATAR is not affected by overruns This bit is set by hardware. It can be cleared by software using the CLRROVRF bit in the DFSDM_FLTxICR register. Bit 2 JOVRF: Injected conversion overrun flag 0: No injected conversion overrun has occurred 1: An injected conversion overrun has occurred, which means that an injected conversion finished while JEOCF was already ‘1’. JDATAR is not affected by overruns This bit is set by hardware. It can be cleared by software using the CLRJOVRF bit in the DFSDM_FLTxICR register. Bit 1 REOCF: End of regular conversion flag 0: No regular conversion has completed 1: A regular conversion has completed and its data may be read This bit is set by hardware. It is cleared when the software or DMA reads DFSDM_FLTxRDATAR. Bit 0 JEOCF: End of injected conversion flag 0: No injected conversion has completed 1: An injected conversion has completed and its data may be read This bit is set by hardware. It is cleared when the software or DMA reads DFSDM_FLTxJDATAR. Note: For each of the flag bits, an interrupt can be enabled by setting the corresponding bit in DFSDM_FLTxCR2. If an interrupt is called, the flag must be cleared before exiting the interrupt service routine. All the bits of DFSDM_FLTxISR are automatically reset when DFEN=0. RM0430 Rev 8 431/1324 449 Digital filter for sigma delta modulators (DFSDM) 15.8.4 RM0430 DFSDM filter x interrupt flag clear register (DFSDM_FLTxICR) Address offset: 0x10C + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 CLRSCDF[7:0] 20 19 18 17 16 CLRCKABF[7:0] rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. CLRR OVRF CLRJ OVRF Res. Res. rc_w1 rc_w1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:24 CLRSCDF[7:0]: Clear the short-circuit detector flag CLRSCDF[y]=0: Writing ‘0’ has no effect CLRSCDF[y]=1: Writing ‘1’ to position y clears the corresponding SCDF[y] bit in the DFSDM_FLTxISR register Note: CLRSCDF[7:0] is present only in DFSDM_FLT0ICR register (filter x=0) Bits 23:16 CLRCKABF[7:0]: Clear the clock absence flag CLRCKABF[y]=0: Writing ‘0’ has no effect CLRCKABF[y]=1: Writing ‘1’ to position y clears the corresponding CKABF[y] bit in the DFSDM_FLTxISR register. When the transceiver is not yet synchronized, the clock absence flag is set and cannot be cleared by CLRCKABF[y]. Note: CLRCKABF[7:0] is present only in DFSDM_FLT0ICR register (filter x=0) Bits 15:4 Reserved, must be kept at reset value. Bit 3 CLRROVRF: Clear the regular conversion overrun flag 0: Writing ‘0’ has no effect 1: Writing ‘1’ clears the ROVRF bit in the DFSDM_FLTxISR register Bit 2 CLRJOVRF: Clear the injected conversion overrun flag 0: Writing ‘0’ has no effect 1: Writing ‘1’ clears the JOVRF bit in the DFSDM_FLTxISR register Bits 1:0 Reserved, must be kept at reset value. Note: 432/1324 The bits of DFSDM_FLTxICR are always read as ‘0’. RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) 15.8.5 DFSDM filter x injected channel group selection register (DFSDM_FLTxJCHGR) Address offset: 0x110 + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0001 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw JCHG[7:0] rw rw rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 JCHG[7:0]: Injected channel group selection JCHG[y]=0: channel y is not part of the injected group JCHG[y]=1: channel y is part of the injected group If JSCAN=1, each of the selected channels is converted, one after another. The lowest channel (channel 0, if selected) is converted first and the sequence ends at the highest selected channel. If JSCAN=0, then only one channel is converted from the selected channels, and the channel selection is moved to the next channel. Writing JCHG, if JSCAN=0, resets the channel selection to the lowest selected channel. At least one channel must always be selected for the injected group. Writes causing all JCHG bits to be zero are ignored. 15.8.6 DFSDM filter x control register (DFSDM_FLTxFCR) Address offset: 0x114 + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 29 FORD[2:0] 28 27 26 Res. Res. Res. 25 24 23 22 21 20 19 18 17 16 FOSR[9:0] rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw IOSR[7:0] rw RM0430 Rev 8 rw rw rw rw 433/1324 449 Digital filter for sigma delta modulators (DFSDM) Bits 31:29 FORD[2:0]: Sinc filter order 0: FastSinc filter type 1: Sinc1 filter type 2: Sinc2 filter type 3: Sinc3 filter type 4: Sinc4 filter type 5: Sinc5 filter type 6-7: Reserved Sincx filter type transfer function: RM0430 ⎛ 1 – z –FOSR⎞ -⎟ H ( z ) = ⎜ ---------------------------⎝ 1 – z –1 ⎠ x 2 ⎛ 1 – z– FOSR⎞ -⎟ ⋅ ( 1 + z – ( 2 ⋅ H ( z ) = ⎜ ---------------------------⎝ 1 – z–1 ⎠ FastSinc filter type transfer function: FOSR ) ) This bit can only be modified when DFEN=0 (DFSDM_FLTxCR1). Bits 28:26 Reserved, must be kept at reset value. Bits 25:16 FOSR[9:0]: Sinc filter oversampling ratio (decimation rate) 0 - 1023: Defines the length of the Sinc type filter in the range 1 - 1024 (FOSR = FOSR[9:0] +1). This number is also the decimation ratio of the output data rate from filter. This bit can only be modified when DFEN=0 (DFSDM_FLTxCR1) Note: If FOSR = 0, then the filter has no effect (filter bypass). Bits 15:8 Reserved, must be kept at reset value. Bits 7:0 IOSR[7:0]: Integrator oversampling ratio (averaging length) 0- 255: The length of the Integrator in the range 1 - 256 (IOSR + 1). Defines how many samples from Sinc filter will be summed into one output data sample from the integrator. The output data rate from the integrator will be decreased by this number (additional data decimation ratio). This bit can only be modified when DFEN=0 (DFSDM_FLTxCR1) Note: If IOSR = 0, then the Integrator has no effect (Integrator bypass). 15.8.7 DFSDM filter x data register for injected group (DFSDM_FLTxJDATAR) Address offset: 0x118 + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 JDATA[23:8] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. JDATA[7:0] r 434/1324 r r r r r r r RM0430 Rev 8 JDATACH[2:0] r r r RM0430 Digital filter for sigma delta modulators (DFSDM) Bits 31:8 JDATA[23:0]: Injected group conversion data When each conversion of a channel in the injected group finishes, its resulting data is stored in this field. The data is valid when JEOCF=1. Reading this register clears the corresponding JEOCF. Bits 7:3 Reserved, must be kept at reset value. Bits 2:0 JDATACH[2:0]: Injected channel most recently converted When each conversion of a channel in the injected group finishes, JDATACH[2:0] is updated to indicate which channel was converted. Thus, JDATA[23:0] holds the data that corresponds to the channel indicated by JDATACH[2:0]. Note: DMA may be used to read the data from this register. Half-word accesses may be used to read only the MSBs of conversion data. Reading this register also clears JEOCF in DFSDM_FLTxISR. Thus, the firmware must not read this register if DMA is activated to read data from this register. 15.8.8 DFSDM filter x data register for the regular channel (DFSDM_FLTxRDATAR) Address offset: 0x11C + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RDATA[23:8] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. RPEND Res. RDATA[7:0] r r r r r r r r r RDATACH[2:0] r r r Bits 31:8 RDATA[23:0]: Regular channel conversion data When each regular conversion finishes, its data is stored in this register. The data is valid when REOCF=1. Reading this register clears the corresponding REOCF. Bits 7:5 Reserved, must be kept at reset value. Bit 4 RPEND: Regular channel pending data Regular data in RDATA[23:0] was delayed due to an injected channel trigger during the conversion Bit 3 Reserved, must be kept at reset value. Bits 2:0 RDATACH[2:0]: Regular channel most recently converted When each regular conversion finishes, RDATACH[2:0] is updated to indicate which channel was converted (because regular channel selection RCH[2:0] in DFSDM_FLTxCR1 register can be updated during regular conversion). Thus RDATA[23:0] holds the data that corresponds to the channel indicated by RDATACH[2:0]. Note: Half-word accesses may be used to read only the MSBs of conversion data. Reading this register also clears REOCF in DFSDM_FLTxISR. RM0430 Rev 8 435/1324 449 Digital filter for sigma delta modulators (DFSDM) 15.8.9 RM0430 DFSDM filter x analog watchdog high threshold register (DFSDM_FLTxAWHTR) Address offset: 0x120 + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 AWHT[23:8] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. AWHT[7:0] rw rw rw rw rw rw rw rw BKAWH[3:0] rw rw rw rw Bits 31:8 AWHT[23:0]: Analog watchdog high threshold These bits are written by software to define the high threshold for the analog watchdog. Note: In case channel transceivers monitor (AWFSEL=1), the higher 16 bits (AWHT[23:8]) define the 16-bit threshold as compared with the analog watchdog filter output (because data coming from the analog watchdog filter are up to a 16-bit resolution). Bits AWHT[7:0] are not taken into comparison in this case. Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 BKAWH[3:0]: Break signal assignment to analog watchdog high threshold event BKAWH[i] = 0: Break i signal is not assigned to an analog watchdog high threshold event BKAWH[i] = 1: Break i signal is assigned to an analog watchdog high threshold event 15.8.10 DFSDM filter x analog watchdog low threshold register (DFSDM_FLTxAWLTR) Address offset: 0x124 + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 AWLT[23:8] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. AWLT[7:0] rw 436/1324 rw rw rw rw rw rw rw RM0430 Rev 8 BKAWL[3:0] rw rw rw rw RM0430 Digital filter for sigma delta modulators (DFSDM) Bits 31:8 AWLT[23:0]: Analog watchdog low threshold These bits are written by software to define the low threshold for the analog watchdog. Note: In case channel transceivers monitor (AWFSEL=1), only the higher 16 bits (AWLT[23:8]) define the 16-bit threshold as compared with the analog watchdog filter output (because data coming from the analog watchdog filter are up to a 16-bit resolution). Bits AWLT[7:0] are not taken into comparison in this case. Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 BKAWL[3:0]: Break signal assignment to analog watchdog low threshold event BKAWL[i] = 0: Break i signal is not assigned to an analog watchdog low threshold event BKAWL[i] = 1: Break i signal is assigned to an analog watchdog low threshold event 15.8.11 DFSDM filter x analog watchdog status register (DFSDM_FLTxAWSR) Address offset: 0x128 + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r AWHTF[7:0] r r r r r AWLTF[7:0] r r r r r r r r Bits 31:16 Reserved, must be kept at reset value. Bits 15:8 AWHTF[7:0]: Analog watchdog high threshold flag AWHTF[y]=1 indicates a high threshold error on channel y. It is set by hardware. It can be cleared by software using the corresponding CLRAWHTF[y] bit in the DFSDM_FLTxAWCFR register. Bits 7:0 AWLTF[7:0]: Analog watchdog low threshold flag AWLTF[y]=1 indicates a low threshold error on channel y. It is set by hardware. It can be cleared by software using the corresponding CLRAWLTF[y] bit in the DFSDM_FLTxAWCFR register. Note: All the bits of DFSDM_FLTxAWSR are automatically reset when DFEN=0. RM0430 Rev 8 437/1324 449 Digital filter for sigma delta modulators (DFSDM) 15.8.12 RM0430 DFSDM filter x analog watchdog clear flag register (DFSDM_FLTxAWCFR) Address offset: 0x12C + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rc_w1 rc_w1 rc_w1 CLRAWHTF[7:0] rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 CLRAWLTF[7:0] rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Bits 31:16 Reserved, must be kept at reset value. Bits 15:8 CLRAWHTF[7:0]: Clear the analog watchdog high threshold flag CLRAWHTF[y]=0: Writing ‘0’ has no effect CLRAWHTF[y]=1: Writing ‘1’ to position y clears the corresponding AWHTF[y] bit in the DFSDM_FLTxAWSR register Bits 7:0 CLRAWLTF[7:0]: Clear the analog watchdog low threshold flag CLRAWLTF[y]=0: Writing ‘0’ has no effect CLRAWLTF[y]=1: Writing ‘1’ to position y clears the corresponding AWLTF[y] bit in the DFSDM_FLTxAWSR register 15.8.13 DFSDM filter x extremes detector maximum register (DFSDM_FLTxEXMAX) Address offset: 0x130 + 0x80 * x, (x = 0 to 3) Reset value: 0x8000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 EXMAX[23:8] rs_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. EXMAX[7:0] rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r EXMAXCH[2:0] r r r Bits 31:8 EXMAX[23:0]: Extremes detector maximum value These bits are set by hardware and indicate the highest value converted by DFSDM_FLTx. EXMAX[23:0] bits are reset to value (0x800000) by reading of this register. Bits 7:3 Reserved, must be kept at reset value. Bits 2:0 EXMAXCH[2:0]: Extremes detector maximum data channel. These bits contains information about the channel on which the data is stored into EXMAX[23:0]. Bits are cleared by reading of this register. 438/1324 RM0430 Rev 8 RM0430 Digital filter for sigma delta modulators (DFSDM) 15.8.14 DFSDM filter x extremes detector minimum register (DFSDM_FLTxEXMIN) Address offset: 0x134 + 0x80 * x, (x = 0 to 3) Reset value: 0x7FFF FF00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 EXMIN[23:8] rc_r rs_r rs_r rs_r rs_r rs_r rs_r rs_r rs_r rs_r rs_r rs_r rs_r rs_r rs_r rs_r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. EXMIN[7:0] rs_r rs_r rs_r rs_r rs_r rs_r rs_r rs_r EXMINCH[2:0] r r r Bits 31:8 EXMIN[23:0]: Extremes detector minimum value These bits are set by hardware and indicate the lowest value converted by DFSDM_FLTx. EXMIN[23:0] bits are reset to value (0x7FFFFF) by reading of this register. Bits 7:3 Reserved, must be kept at reset value. Bits 2:0 EXMINCH[2:0]: Extremes detector minimum data channel These bits contain information about the channel on which the data is stored into EXMIN[23:0]. Bits are cleared by reading of this register. 15.8.15 DFSDM filter x conversion timer register (DFSDM_FLTxCNVTIMR) Address offset: 0x138 + 0x80 * x, (x = 0 to 3) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CNVCNT[27:12] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. CNVCNT[11:0] r r r r r r r r r RM0430 Rev 8 r r r 439/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Bits 31:4 CNVCNT[27:0]: 28-bit timer counting conversion time t = CNVCNT[27:0] / fDFSDMCLK The timer has an input clock from DFSDM clock (system clock fDFSDMCLK). Conversion time measurement is started on each conversion start and stopped when conversion finishes (interval between first and last serial sample). Only in case of filter bypass (FOSR[9:0] = 0) is the conversion time measurement stopped and CNVCNT[27:0] = 0. The counted time is: if FAST=0 (or first conversion in continuous mode if FAST=1): t = [FOSR * (IOSR-1 + FORD) + FORD] / fCKIN..... for Sincx filters t = [FOSR * (IOSR-1 + 4) + 2] / fCKIN..... for FastSinc filter if FAST=1 in continuous mode (except first conversion): t = [FOSR * IOSR] / fCKIN in case if FOSR = FOSR[9:0]+1 = 1 (filter bypassed, active only integrator): CNVCNT = 0 (counting is stopped, conversion time: t = IOSR / fCKIN) where: fCKIN is the channel input clock frequency (on given channel CKINy pin) or input data rate in case of parallel data input (from CPU/DMA write) Note: When conversion is interrupted (e.g. by disable/enable selected channel) the timer counts also this interruption time. Bits 3:0 Reserved, must be kept at reset value. 15.8.16 DFSDM register map The following table summarizes the DFSDM registers. 0 0 0 0 0 0 0 Res. Res. Res. 0 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 Res. 0 0 0 0 0 SITP[1:0] Res. SPICKSEL [1:0] Res. Res. Res. Res. Res. CHINSEL Res. Res. Res. SCDEN Res. Res. 0 Res. Res. Res. 0 Res. Res. DATMPX[1:0] 0 CHEN Res. 0 CKABEN Res. DFSDM_ CH1CFGR1 DATPACK[1:0] Res. Res. 0 Reserved Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 INDAT0[15:0] Res. 0 0 SCDT[7:0] 0 INDAT1[15:0] 0 Res. Res. Res. 0 0 WDATA[15:0] 0 DFSDM_ CH0DATINR 0 0 Res. 0 BKSCD[3:0] 0 Res. 0 Res. Res. Res. 0 Res. AWFORD [1:0] 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DFSDM_ CH0WDATR AWFOSR[4:0] SITP[1:0] 0 Res. 0 SPICKSEL [1:0] Res. Res. Res. DATMPX[1:0] 0 0 reset value 440/1324 0 0 reset value 0x20 0 reset value reset value 0x14 0x1C 0 DTRBS[4:0] reset value 0x10 0 Res. 0 SCDEN 0 CHEN 0 CKABEN 0 CHINSEL 0 OFFSET[23:0] DFSDM_ CH0AWSCDR 0x0C DATPACK[1:0] Res. Res. Res. Res. Res. 0 Res. DFSDMEN CKOUTSRC 0 CKOUTDIV[7:0] DFSDM_ CH0CFGR2 Res. 0x08 reset value Res. 0x04 DFSDM_ CH0CFGR1 Res. 0x00 Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 97. DFSDM register map and reset values Register name 0 0 RM0430 Digital filter for sigma delta modulators (DFSDM) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CHINSEL CHEN CKABEN SCDEN Res. 0 0 0 0 0 0 0 BKSCD[3:0] Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SITP[1:0] 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CHINSEL CHEN CKABEN SCDEN Res. 0 0 0 0 0 0 DTRBS[4:0] 0 RM0430 Rev 8 0 0 0 0 0 0 0 0 0 0 0 0 0 SITP[1:0] 0 0 0 Res. 0 Res. DATMPX[1:0] 0 SPICKSEL[1:0] Res. 0 DATPACK[1:0] Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 SCDT[7:0] OFFSET[23:0] 0 0 0 WDATA[15:0] 0 0 0 0 0 DFSDM_ CH3CFGR1 0 0 0 0 Reserved DFSDM_ CH3CFGR2 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 0 INDAT0[15:0] Res. 0 0 0 Res. 0 0 Res. AWFOSR[4:0] 0 Res. 0 Res. Res. Res. 0 Res. Res. Res. 0 Res. Res. Res. 0 Res. Res. 0 0 Res. 0 Res. 0 DTRBS[4:0] Res. 0 Res. Res. Res. 0 SPICKSEL[1:0] Res. Res. Res. DATMPX[1:0] Res. Res. Res. Res. Res. DATPACK[1:0] Res. Res. 0 Res. 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 INDAT1[15:0] 0 0 0 0 DFSDM_ CH2DATINR 0 WDATA[15:0] 0 Res. Res. Res. 0 0 0 Res. Res. Res. Res. 0 0 0 0 Res. Res. Res. Res. 0 Res. DFSDM_ CH2AWSCDR 0 0 0 Res. 0 Res. 0 0 0 Res. 0 0 0 0 Res. 0 AWFORD[1:0] 0 Res. 0 0 0 0 Res. 0 Res. 0 0 0 SCDT[7:0] OFFSET[23:0] reset value reset value 0 0 0 reset value 0x64 0 0 0 Res. 0x60 BKSCD[3:0] 0 DFSDM_ CH2CFGR2 reset value 0x54 0x5C 0 0 reset value 0x50 0 0 DFSDM_ CH2CFGR1 reset value 0x4C 0 0 Reserved DFSDM_ CH2WDATR 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0x48 0 0 0 INDAT0[15:0] reset value 0x44 0 INDAT1[15:0] Res. 0x40 0 Res. reset value 0x34 0x3C Res. 0 0 Res. 0x30 0 AWFOSR[4:0] reset value DFSDM_ CH1DATINR Res. 0 Res. Res. 0 Res. 0 0 Res. Res. Res. 0 0 Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. 0x2C DFSDM_ CH1WDATR Res. reset value 0 Res. DFSDM_ CH1AWSCDR 0 Res. 0 Res. 0 Res. 0 Res. 0 DTRBS[4:0] Res. 0 Res. 0 AWFORD[1:0] 0 Res. 0 Res. reset value Res. OFFSET[23:0] Res. 0x28 DFSDM_ CH1CFGR2 Res. 0x24 Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 97. DFSDM register map and reset values (continued) 0 441/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 0 0 0 0 0 Res. Res. Res. Res. reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CHINSEL CHEN CKABEN SCDEN Res. 0 0 0 0 0 Res. Res. 0 0 0 0 BKSCD[3:0] Res. Res. Res. AWFOSR[4:0] 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CHINSEL CHEN CKABEN SCDEN Res. 0 0 0 0 AWFOSR[4:0] 0 0 0 0 RM0430 Rev 8 0 0 0 0 0 0 0 BKSCD[3:0] 0 0 0 0 0 0 0 0 0 0 SITP[1:0] 0 0 0 Res. 0 Res. 0 Res. 0 DTRBS[4:0] Res. 0 0 Res. 0 Res. DATMPX[1:0] 0 Res. Res. SITP[1:0] Res. 0 0 SPICKSEL[1:0] Res. 0 DATPACK[1:0] 0 Res. 0 Res. 0 Res. Res. 0 0 Res. Res. 0 0 Res. Res. 0 0 Res. Res. 0 0 Res. Res. 0 0 Res. 0 0 0 Res. 0 0 0 Res. Res. 0 0 0 Res. DFSDM_ CH5AWSCDR 0 0 0 Res. 0 Res. 0 0 0 Res. 0 0 0 Res. 0 AWFORD[1:0] 0 0 0 0 Res. 0 0 0 SCDT[7:0] OFFSET[23:0] 0 0 0 WDATA[15:0] 0 0 0 0 DFSDM_ CH5CFGR1 reset value 0 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 0 INDAT0[15:0] Res. 0 0 Res. 0 Res. 0 Res. 0 SPICKSEL[1:0] Res. Res. Res. DATMPX[1:0] Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. 0 Res. Res. Res. 0 Res. 0 DFSDM_ CH5CFGR2 442/1324 DATPACK[1:0] Res. Res. Res. Res. Res. 0 Res. 0 0 DTRBS[4:0] Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. Res. Res. 0 0 0 Reserved reset value 0 0 INDAT1[15:0] Res. 0xA8 0 0 reset value 0xA4 0 0 Res. 0xA0 0 0 Res. reset value 0 0 0 DFSDM_ CH4DATINR 0x94 0x9C 0 0 reset value 0x90 0 0 Res. Res. Res. Res. 0 0 0 0 Res. Res. Res. Res. reset value 0 Res. DFSDM_ CH4AWSCDR 0 0 0 Res. 0 Res. 0 0 0 Res. 0 0 0 Res. 0 AWFORD[1:0] 0 Res. 0 0 0 Res. 0 Res. 0 0x8C 0 OFFSET[23:0] reset value 0 WDATA[15:0] 0 DFSDM_ CH4CFGR2 0 0 DFSDM_ CH4CFGR1 DFSDM_ CH4WDATR 0 0 Reserved Res. 0x88 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 reset value 0x84 0 SCDT[7:0] INDAT0[15:0] Res. 0x80 0 INDAT1[15:0] Res. reset value 0x74 0x7C 0 0 DFSDM_ CH3DATINR 0x70 BKSCD[3:0] Res. Res. Res. 0 AWFOSR[4:0] Res. AWFORD[1:0] 0 Res. Res. Res. Res. Res. Res. Res. Res. 0x6C Res. DFSDM_ CH3WDATR Res. reset value Res. Res. Res. Res. Res. Res. DFSDM_ CH3AWSCDR Res. 0x68 Res. Register name Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 97. DFSDM register map and reset values (continued) 0 0 0 SCDT[7:0] 0 0 0 0 0 0 RM0430 Digital filter for sigma delta modulators (DFSDM) Res. Res. Res. Res. Res. Res. reset value Res. Res. 0 0 0 0 0 0 0 BKSCD[3:0] Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CHINSEL CHEN CKABEN SCDEN Res. 0 0 0 0 0 Res. Res. AWFOSR[4:0] 0 0 0 0 0 BKSCD[3:0] Res. 0 Res. 0 Res. 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SITP[1:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DTRBS[4:0] Res. Res. Res. Res. Res. 0 0 Res. 0 Res. 0 Res. DATMPX[1:0] 0 SPICKSEL[1:0] Res. DATPACK[1:0] Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. 0 0 0 Res. Res. 0 0 0 Res. Res. 0 0 0 0 0 0 SCDT[7:0] 0 0 WDATA[15:0] 0 0 0 0 0 INDAT1[15:0] 0 0 0 0 DFSDM_ CH7DATINR 0 0 Res. Res. Res. 0 0 0 Res. Res. Res. Res. 0 0 0 0 Res. Res. Res. Res. 0 Res. DFSDM_ CH7AWSCDR 0 Res. 0 0 0 Res. 0 0 0 Res. 0 AWFORD[1:0] 0 Res. 0 0 0 Res. 0 0 0 Res. 0 Res. 0 0 0 SCDT[7:0] OFFSET[23:0] reset value 0 0 WDATA[15:0] 0 DFSDM_ CH7CFGR2 0 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 0 INDAT0[15:0] Res. 0 0 0 Res. 0 0 0 Res. 0 Res. 0 0 SITP[1:0] Res. Res. Res. Res. Res. Res. SCDEN 0 SPICKSEL[1:0] Res. CKABEN 0 Res. Res. Res. CHEN Res. Res. 0 DFSDM_ CH7CFGR1 reset value Res. Res. Res. 0 Res. AWFOSR[4:0] reset value 0xF0 0 0 INDAT1[15:0] reset value 0xEC 0 CHINSEL Res. 0 Reserved DFSDM_ CH7WDATR DATMPX[1:0] Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. 0 Res. Res. Res. 0 Res. Res. 0 0 DFSDM_ CH6DATINR Res. 0xE8 0 DTRBS[4:0] reset value 0xE4 DATPACK[1:0] Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. 0 0 0 Res. Res. Res. Res. 0 0 0 0 Res. Res. Res. Res. 0 0 0 Res. DFSDM_ CH6AWSCDR 0 0 0 Res. 0 0 0 Res. 0 Res. 0 Res. 0 AWFORD[1:0] 0 Res. 0 0 0 Res. 0 Res. 0 0 0 Res. 0xE0 0 OFFSET[23:0] reset value reset value 0xD4 0xDC 0 0 reset value 0xD0 0 0 0 DFSDM_ CH6CFGR2 reset value 0xCC 0 0 DFSDM_ CH6CFGR1 DFSDM_ CH6WDATR 0 0 Reserved Res. 0xC8 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 reset value 0xC4 0 INDAT0[15:0] Res. 0xC0 0 INDAT1[15:0] Res. reset value 0xB4 0xBC 0 DFSDM_ CH5DATINR Res. 0xB0 WDATA[15:0] Res. Res. Res. Res. Res. Res. Res. DFSDM_ CH5WDATR Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0xAC Register name Res. Offset Res. Table 97. DFSDM register map and reset values (continued) 0 0 0 0 INDAT0[15:0] 0 0 0 0 0 RM0430 Rev 8 0 0 0 0 0 0 0 0 0 0 0 443/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DFSDM_ FLT0AWSR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 JDMAEN JSCAN JSYNC Res. JSW START DFEN SCDIE AWDIE ROVRIE JOVRIE REOCIE JEOCIE Res. 0 0 0 0 Res. Res. 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 RDATA CH[2:0] 0 0 0 BKAWH[3:0] 0 0 0 0 BKAWL[3:0] 0 0 0 0 0 0 0 0 AWLTF[7:0] 0 0 0 0 CLRAWHTF[7:0] 0 Res. 0 AWHTF[7:0] 0 RM0430 Rev 8 0 CKABIE Res. Res. Res. Res. 0 Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 AWLT[23:0] reset value 444/1324 0 AWHT[23:0] DFSDM_ FLT0AWLTR DFSDM_ FLT0AWCFR 0 RDATA[23:0] reset value 0x12C 0 0 Res. 0 0 Res. 0 Res. Res. 0 Res. 0x128 0 Res. 0x124 0 Res. 0 DFSDM_ FLT0AWHTR reset value 0 Res. 0x120 0 JDATA[23:0] DFSDM_ FLT0RDATAR reset value 0 0 IOSR[7:0] Res. reset value 0 0 Res. 0 JEOCF Res. 0 Res. Res. 0 REOCF Res. 0 Res. Res. 0 0 JDATACH [2:0] Res. Res. Res. 0 JOVRF Res. 0 DFSDM_ FLT0JDATAR 0x118 0x11C 0 FOSR[9:0] CLR JOVRF Res. reset value Res. DFSDM_ FLT0FCR 0x114 0 JCHG[7:0] 0 FORD[2:0] reset value ROVRF 0 CLR ROVRF 0 0 Res. 0 AWDF 0 0 Res. 0 0 RPEND 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 0 0 Res. 0 Res. 0 DFSDM_ FLT0JCHGR 0 Res. reset value Res. CLRCKABF[7:0] 0 Res. 0 Res. 0 Res. 0 Res. 1 0 Res. 1 0 Res. 1 0 Res. Res. Res. Res. JEXTSEL[2:0] Res. Res. Res. Res. 1 Res. CLRSCDF[7:0] 1 0 0 Res. 1 0 0 JCIP 1 Res. Res. Res. 0 Res. 1 Res. Res. Res. 0 Res. 0 Res. Res. RSW START 0 CKABF[7:0] 0 JEXTEN[1:0] Res. 0 RCIP 0 0 Res. 0 0 Res. 0 Res. 0 0 EXCH[7:0] Res. 0x110 0 0 Res. DFSDM_ FLT0ICR 0x10C 0 RCONT Res. 0 0 AWDCH[7:0] SCDF[7:0] 0 0 Res. reset value 0 0 0 DFSDM_ FLT0ISR 0x108 Res. Res. RDMAEN reset value RSYNC Res. Res. 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. DFSDM_ FLT0CR2 0x104 0 Res. Res. Res. 0 Res. Res. Res. 0 reset value Res. Res. FAST RCH[2:0] Res. Res. DFSDM_ FLT0CR1 0x100 Res. Reserved Res. 0xF4 0xFC AWFSEL Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 97. DFSDM register map and reset values (continued) 0 0 0 0 CLRAWLTF[7:0] 0 0 0 0 0 0 0 0 0x198 reset value reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DFSDM_ FLT1JDATAR 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 JDATA[23:0] 0 0 0 0 0 0 0 0 0 Res. Res. reset value 0 0 0 0 REOCF JEOCF 0 0 0 0 0 JCHG[7:0] 0 0 IOSR[7:0] 0 0 0 0 0 Res. 0 Res. JOVRF 0 CLR JOVRF reset value ROVRF 0 Res. Res. 0 Res. 0 Res. 0 DFEN EXMINCH[2:0] Res. Res. Res. 0 JSW START Res. Res. Res. 0 JEOCIE Res. Res. JSYNC 0 CLR ROVRF 0 Res. CNVCNT[27:0] JSCAN 0 AWDF 1 Res. 1 Res. 1 JDMAEN 1 Res. 1 Res. Res. 1 Res. Res. 1 Res. Res. Res. 1 Res. Res. 1 Res. Res. Res. 1 Res. EXCH[7:0] Res. 0 JEXTSEL[2:0] Res. 0 Res. 0 Res. 0 REOCIE Res. 0 Res. 0 JOVRIE Res. 0 Res. 0 ROVRIE 0 Res. 0 Res. 0 Res. Res. Res. Res. 0 Res. 0 AWDIE 0 Res. 0 Res. 0 JDATACH[2:0] Res. Res. Res. 0 Res. 0 Res. Res. Res. 0 JEXTEN[1:0] 0 Res. 0 Res. 0 0 Res. 0 0 Res. reset value Res. 0 JCIP 0 Res. AWDCH[7:0] Res. 0 Res. 0 Res. 0 RCIP 0 0 Res. 0 Res. 0 Res. 0 0 Res. 0 Res. 0 Res. 0 Res. 0 0 Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. 0 RSW START EXMIN[23:0] 0 Res. FOSR[9:0] Res. Res. 0 Res. 1 Res. 0 Res. 0 RCONT 0 Res. 0 Res. 0 1 Res. 0 Res. 0 RSYNC DFSDM_ FLT0CNVTIMR 0 Res. 0 Res. 1 Res. Res. 0 Res. 1 0 Res. 0 Res. 1 Res. Res. RDMAEN 0 Res. 0 Res. DFSDM_ FLT0EXMIN Res. Res. Res. 0 Res. 0 Res. Res. 1 Res. reset value 0 Res. Res. Res. 0 Res. 0 Res. 1 Res. Res. 0 Res. 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. 1 Res. Res. Res. Res. FAST 0 Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. 1 Res. Res. Res. Res. Res. Res. EXMAXCH[2:0] Res. Res. Res. Res. Res. EXMAX[23:0] Res. DFSDM_ FLT1FCR 1 0 Res. DFSDM_ FLT1JCHGR 0 Res. DFSDM_ FLT1ICR Res. DFSDM_ FLT1ISR AWFSEL DFSDM_ FLT0EXMAX Res. 0x194 DFSDM_ FLT1CR2 RCH[2:0] Res. reset value 0 1 0 Res. 0x190 DFSDM_ FLT1CR1 1 0 Res. 0x18C Reserved 0 0 Res. 0x188 0 1 Res. 0x184 reset value 0 Res. 0x180 Res. 0x13C 0x17C 0 Res. 0x138 Res. reset value 1 Res. 0x134 Res. reset value Res. 0x130 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Offset FORD[2:0] RM0430 Digital filter for sigma delta modulators (DFSDM) Table 97. DFSDM register map and reset values (continued) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 445/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 CLRAWHTF[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 Res. 0 0 0 0 0 0 0 JEOCIE Res. REOCIE Res. 0 0 0 0 0 JEOCF Res. 0 REOCF Res. 0 0 0 0 0 0 Res. Res. 0 Res. Res. Res. 0 JOVRIE Res. Res. 0 ROVRIE Res. Res. 0 JOVRF Res. Res. 0 ROVRF Res. Res. 0 CLR JOVRF Res. Res. Res. Res. 0 CLR ROVRF 0 RM0430 Rev 8 0 AWDF 0 0 0 Res. 0 Res. 0 0 0 AWDIE Res. 0 Res. Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. EXCH[7:0] Res. Res. Res. 0 Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. AWDCH[7:0] 0 Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 JEXTSEL[2:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. RSW START Res. Res. RCONT Res. Res. Res. Res. Res. Res. 0 0 Res. 0 Res. 0 Res. RSYNC 0 Res. 0 Res. 0 Res. 0 RDMAEN 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 FAST 0 Res. 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RCH[2:0] Res. RPEND Res. 0 0 Res. 0 Res. 0 0 CLRAWLTF[7:0] 0 AWFSEL Reserved 0 0 BKAWL[3:0] 0 CNVCNT[27:0] 0 0 AWLTF[7:0] EXMIN[23:0] 0 Res. 0 Res. 0 reset value 446/1324 0 EXMAX[23:0] 1 0 AWHTF[7:0] 0 reset value DFSDM_ FLT2ICR 0 EXMAXCH[2:0] 0 reset value 0x20C 0 EXMINCH[2:0] 0 DFSDM_ FLT2ISR 0 Res. 0 reset value 0x208 0 Res. 0 DFSDM_ FLT2CR2 0 Res. 0 reset value 0x204 0 Res. 0 DFSDM_ FLT2CR1 0 AWLT[23:0] DFSDM_ FLT1CNVTIMR 0x200 0 DFEN 0 0 JSW START 0 Res. 0 Res. 0 Res. 0 Res. 0 0 BKAWH[3:0] Res. 0 0 Res. 0 0 Res. 0 DFSDM_ FLT1EXMIN 0x1BC 0x1FC 0 JSYNC 0 Res. 0x1B8 0 Res. 0 0 reset value 0 Res. 0 DFSDM_ FLT1EXMAX 0x1B4 0 Res. 0 DFSDM_ FLT1AWSR reset value 0 Res. 0 reset value 0x1B0 0 JSCAN 0 reset value 0x1AC 0 Res. 0 reset value DFSDM_ FLT1AWCFR 0 Res. Res. 0 Res. 0x1A8 0 AWHT[23:0] DFSDM_ FLT1AWLTR 0x1A4 0 JEXTEN[1:0] reset value 0 JCIP 0x1A0 0 Res. 0 Res. 0 Res. 0 Res. 0 JDMAEN 0 RDATA CH[2:0] Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 DFSDM_ FLT1AWHTR RCIP reset value RDATA[23:0] Res. DFSDM_ FLT1RDATAR Res. 0x19C Res. Register name Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 97. DFSDM register map and reset values (continued) 0 0 RM0430 Digital filter for sigma delta modulators (DFSDM) Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DFSDM_ FLT2EXMIN 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 CLRAWHTF[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 Res. Res. Res. Res. Res. JEXTSEL[2:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RSW START 0 Res. 0 RCONT Res. 0 Res. 0 RSYNC 0 Res. 0 Res. 0 Res. 0 RDMAEN 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 RM0430 Rev 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 0 0 0 0 0 RCH[2:0] 0 BKAWL[3:0] 0 0 Res. 0 Res. 0 Res. Reserved 0 0 CLRAWLTF[7:0] 0 FAST 0 JDATACH[2:0] Res. 0 CNVCNT[27:0] reset value 0 AWLTF[7:0] EXMIN[23:0] DFSDM_ FLT2CNVTIMR 0 BKAWH[3:0] 0 Res. 0 Res. 0 EXMAX[23:0] 0 0 0 AWHTF[7:0] 0 1 0 0 AWLT[23:0] DFSDM_ FLT2EXMAX Res. 0 RPEND Res. Res. Res. Res. Res. 0 EXMAXCH[2:0] 0 0 reset value 0 Res. 0 0 DFSDM_ FLT3CR1 0 AWHT[23:0] Res. 0x280 0 EXMINCH[2:0] 0 Res. 0 Res. 0 Res. 0 Res. 0 DFEN 0 RDATA CH[2:0] JSW START 0 0 Res. 0 0 Res. 0 0 Res. 0 Res. 0x23C 0x27C 0 Res. 0 Res. 0x238 0 Res. 0 DFSDM_ FLT2AWSR reset value 0 Res. 0 AWFSEL 0x234 0 Res. 0 reset value reset value 0 0 JSYNC 0 reset value 0x230 0 Res. 0 DFSDM_ FLT2AWLTR DFSDM_ FLT2AWCFR 0 RDATA[23:0] reset value 0x22C 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 Res. 0 0 JSCAN 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 JDATA[23:0] 0 Res. 0 1 Res. 0 0 Res. 0 0 Res. 0 0 JDMAEN 0 0 Res. 0 0 Res. 0 Res. Res. Res. 0 Res. 0x228 0 DFSDM_ FLT2AWHTR reset value 0x224 0 DFSDM_ FLT2RDATAR reset value 0x220 0 DFSDM_ FLT2JDATAR reset value 0x21C 0 0 IOSR[7:0] Res. 0x218 0 FOSR[9:0] JEXTEN[1:0] reset value Res. DFSDM_ FLT2FCR Res. 0x214 0 FORD[2:0] reset value JCHG[7:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DFSDM_ FLT2JCHGR Res. 0x210 Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 97. DFSDM register map and reset values (continued) 447/1324 449 Digital filter for sigma delta modulators (DFSDM) RM0430 JEOCIE 0 0 0 0 0 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DFSDM_ FLT3AWSR 448/1324 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 0 0 1 0 0 0 JDATACH[2:0] 0 0 0 0 0 0 RDATA CH[2:0] 0 0 0 BKAWH[3:0] 0 0 0 0 0 BKAWL[3:0] 0 0 0 0 0 0 0 0 AWLTF[7:0] 0 0 0 0 CLRAWHTF[7:0] 0 0 0 0 CLRAWLTF[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EXMAX[23:0] 1 Res. Res. Res. Res. Res. Res. Res. 0 AWHTF[7:0] 0 DFSDM_ FLT3EXMAX reset value 0 AWLT[23:0] reset value 0x2B0 0 AWHT[23:0] reset value 0x2AC 0 RDATA[23:0] DFSDM_ FLT3AWLTR DFSDM_ FLT3AWCFR 0 Res. 0 Res. 0 Res. 0x2A8 0 0 0 0 0 0 0 0 EXMAXCH[2:0] 0 Res. 0 Res. 0 RPEND 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 Res. 0x2A4 0 Res. 0 DFSDM_ FLT3AWHTR reset value 0 Res. 0x2A0 0 JDATA[23:0] DFSDM_ FLT3RDATAR reset value 0 Res. reset value 0 Res. 0 Res. 0 Res. 0 Res. 0 0 IOSR[7:0] Res. 0 DFSDM_ FLT3JDATAR 0x298 Res. Res. Res. 0 0 Res. 0 0 Res. 0 FOSR[9:0] 0 Res. reset value Res. DFSDM_ FLT3FCR 0x294 0x29C 0 FORD[2:0] reset value JCHG[7:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x290 Res. DFSDM_ FLT3JCHGR Res. reset value Res. JEOCF JOVRIE REOCIE 0 Res. REOCF ROVRIE JOVRF 0 ROVRF 0 CLR JOVRF 0 CLR ROVRF Res. AWDIE 0 AWDF Res. Res. 0 Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DFSDM_ FLT3ICR 0x28C Res. reset value Res. 0 Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. 0 JCIP 0 Res. 0 Res. 0 RCIP 0 Res. 0 Res. EXCH[7:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. DFSDM_ FLT3ISR 0x288 Res. reset value AWDCH[7:0] Res. Res. Res. Res. Res. Res. Res. DFSDM_ FLT3CR2 0x284 Res. Register name Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 97. DFSDM register map and reset values (continued) 0 0 0 RM0430 Digital filter for sigma delta modulators (DFSDM) 1 1 1 1 DFSDM_ FLT3CNVTIMR 1 1 1 1 1 1 1 1 1 1 1 1 Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Reserved 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. CNVCNT[27:0] reset value EXMINCH[2:0] Res. Res. Res. Res. 0 0 0 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 0x2BC 0x3FC 0 Res. 0x2B8 EXMIN[23:0] Res. reset value Res. DFSDM_ FLT3EXMIN Res. 0x2B4 Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 97. DFSDM register map and reset values (continued) Refer to Section 2.2.2 on page 58 for the register boundary addresses. RM0430 Rev 8 449/1324 449 True random number generator (RNG) RM0430 16 True random number generator (RNG) 16.1 Introduction The RNG is a true random number generator that continuously provides 32-bit entropy samples, based on an analog noise source. It can be used by the application as a live entropy source to build a NIST compliant Deterministic Random Bit Generator (DRBG). The RNG true random number generator has been validated according to the German AIS-31 standard. 16.2 RNG main features • The RNG delivers 32-bit true random numbers, produced by an analog entropy source post-processed with linear-feedback shift registers (LFSR). • It is validated according to the AIS-31 pre-defined class PTG.2 evaluation methodology, which is part of the German Common Criteria (CC) scheme. • It produces one 32-bit random samples every 42 RNG clock cycles (dedicated clock). • It allows embedded continuous basic health tests with associated error management – 450/1324 Includes too low sampling clock detection and repetition count tests. • It can be disabled to reduce power consumption. • It has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (else an AHB bus error is generated). Warning! any write not equal to 32 bits might corrupt the register content. RM0430 Rev 8 RM0430 True random number generator (RNG) 16.3 RNG functional description 16.3.1 RNG block diagram Figure 85 shows the RNG block diagram. ELW$+%%XV Figure 85. RNG block diagram 751*Y %DQNHG5HJLVWHUV FRQWURO $+% LQWHUIDFH UQJBKFON GDWD 51*B'5 VWDWXV 51*B65 $+%FORFNGRPDLQ $ODUPV UQJBLW 51*B&5 )DXOWGHWHFWLRQ &ORFNFKHFNHU ELW 'DWDVKLIWUHJ 3RVWSURFHVVLQJORJLF ELW ELW/)65 [ UQJBFON ELW 6DPSOLQJ 1RUPDOL]DWLRQ [ 51*FORFNGRPDLQ HQBRVF $QDORJ $QDORJ QRLVH QRLVH VRXUFH VRXUFH $QDORJQRLVHVRXUFH 06Y9 16.3.2 RNG internal signals Table 98 describes a list of useful-to-know internal signals available at the RNG level, not at the STM32 product level (on pads). Table 98. RNG internal input/output signals Signal name Signal type Description rng_it Digital output RNG global interrupt request rng_hclk Digital input AHB clock rng_clk Digital input RNG dedicated clock, asynchronous to rng_hclk RM0430 Rev 8 451/1324 461 True random number generator (RNG) 16.3.3 RM0430 Random number generation The true random number generator (RNG) delivers truly random data through its AHB interface at deterministic intervals. The RNG implements the entropy source model pictured on Figure 86, and provides three main functions to the application: • Collects the bitstring output of the entropy source box • Obtains samples of the noise source for validation purpose • Collects error messages from continuous health tests Figure 86. Entropy source model (UURU PHVVDJH +HDWK WHVWV 2XWSXW &RQGLWLRQLQJ RSWLRQDO 5DZGDWD 3RVWSURFHVVLQJ RSWLRQDO 'LJLWL]DWLRQ 1RLVH6RXUFH 2XWSXW UDZGDWDRU GLJLWL]HGQRLVH VRXUFH (QWURS\VRXUFH 06Y9 The main components of the RNG are: • A source of physical randomness (analog noise source) • A digitization stage for this analog noise source • A stage delivering post-processed noise source (raw data) • An output buffer for the raw data. If further cryptographic conditioning is required by the application it will need to be performed by software. • An optional output for the digitized noise source (unbuffered, on digital pads) • Basic health tests on the digitized noise source All those components are detailed below. Noise source The noise source is the component that contains the non-deterministic, entropy-providing activity that is ultimately responsible for the uncertainty associated with the bitstring output by the entropy source. It is composed of: • 452/1324 Two analog noise sources, each based on three XORed free-running ring oscillator outputs. It is possible to disable those analog oscillators to save power, as described in RM0430 Rev 8 RM0430 True random number generator (RNG) Section 16.4: RNG low-power usage. • A sampling stage of these outputs clocked by a dedicated clock input (rng_clk), delivering a 2-bit raw data output. This noise source sampling is independent to the AHB interface clock frequency (rng_hclk). Note: In Section 16.7: Entropy source validation recommended RNG clock frequencies are given. Post processing The sample values obtained from a true random noise source consist of 2-bit bitstrings. Because this noise source output is biased, the RNG implements a post-processing component that reduces that bias to a tolerable level. The RNG post-processing consists of two stages, applied to each noise source bits: • The RNG takes half of the bits from the sampled noise source, and half of the bits from inverted sampled noise source. Thus, if the source generates more ‘1’ than ‘0’ (or the opposite), it is filtered • A linear feedback shift register (LFSR) performs a whitening process, producing 8-bit strings. This component is clocked by the RNG clock. The times required between two random number generations, and between the RNG initialization and availability of first sample are described in Section 16.6: RNG processing time. Output buffer The RNG_DR data output register can store up to two 16-bit words which have been output from the post-processing component (LFSR). In order to read back 32-bit random samples it is required to wait 42 RNG clock cycles. Whenever a random number is available through the RNG_DR register the DRDY flag transitions from “0” to “1”. This flag remains high until output buffer becomes empty after reading one word from the RNG_DR register. Note: When interrupts are enabled an interrupt is generated when this data ready flag transitions from “0” to “1”. Interrupt is then cleared automatically by the RNG as explained above. RM0430 Rev 8 453/1324 461 True random number generator (RNG) RM0430 Health checks This component ensures that the entire entropy source (with its noise source) starts then operates as expected, obtaining assurance that failures are caught quickly and with a high probability and reliability. The RNG implements the following health check features: 1. 2. Behavior tests, applied to the entropy source at run-time – Repetition count test, flagging an error when: a) One of the noise source has provided more than 64 consecutive bits at a constant value (“0” or “1”) b) One of the noise sources has delivered more than 32 consecutive occurrence of two bits patterns (“01” or “10”) Vendor specific continuous test – Real-time “too slow” sampling clock detector, flagging an error when one RNG clock cycle is smaller than AHB clock cycle divided by 16. The CECS and SECS status bits in the RNG_SR register indicate when an error condition is detected, as detailed in Section 16.3.7: Error management. Note: An interrupt can be generated when an error is detected. 16.3.4 RNG initialization When a hardware reset occurs the following chain of events occurs: 1. The analog noise source is enabled, and logic starts sampling the analog output after four RNG clock cycles, filling LFSR shift register and associated 16-bit post-processing shift register. 2. The output buffer is refilled automatically according to the RNG usage. The associated initialization time can be found in Section 16.6: RNG processing time. 16.3.5 RNG operation Normal operations To run the RNG using interrupts the following steps are recommended: 454/1324 1. Enable the interrupts by setting the IE bit in the RNG_CR register. At the same time enable the RNG by setting the bit RNGEN=1. 2. An interrupt is now generated when a random number is ready or when an error occurs. Therefore at each interrupt, check that: – No error occurred. The SEIS and CEIS bits should be set to ‘0’ in the RNG_SR register. – A random number is ready. The DRDY bit must be set to ‘1’ in the RNG_SR register. – If above two conditions are true the content of the RNG_DR register can be read. RM0430 Rev 8 RM0430 True random number generator (RNG) To run the RNG in polling mode following steps are recommended: 1. Enable the random number generation by setting the RNGEN bit to “1” in the RNG_CR register. 2. Read the RNG_SR register and check that: 3. Note: – No error occurred (the SEIS and CEIS bits should be set to ‘0’) – A random number is ready (the DRDY bit should be set to ‘1’) If above conditions are true read the content of the RNG_DR register. When data is not ready (DRDY=”0”) RNG_DR returns zero. Low-power operations If the power consumption is a concern to the application, low-power strategies can be used, as described in Section 16.4: RNG low-power usage on page 456. Software post-processing If a NIST approved DRBG with 128 bits of security strength is required an approved random generator software must be built around the RNG true random number generator. 16.3.6 RNG clocking The RNG runs on two different clocks: the AHB bus clock and a dedicated RNG clock. The AHB clock is used to clock the AHB banked registers and the post-processing component. The RNG clock is used for noise source sampling. Recommended clock configurations are detailed in Section 16.7: Entropy source validation. Caution: When the CED bit in the RNG_CR register is set to “0”, the RNG clock frequency must be higher than AHB clock frequency divided by 16, otherwise the clock checker will flag a clock error (CECS or CEIS in the RNG_SR register) and the RNG will stop producing random numbers. See Section 16.3.1: RNG block diagram for details (AHB and RNG clock domains). 16.3.7 Error management In parallel to random number generation an health check block verifies the correct noise source behavior and the frequency of the RNG source clock as detailed in this section. Associated error state is also described. Clock error detection When the clock error detection is enabled (CED = 0) and if the RNG clock frequency is too low, the RNG stops generating random numbers and sets to “1” both the CEIS and CECS bits to indicate that a clock error occurred. In this case, the application should check that the RNG clock is configured correctly (see Section 16.3.6: RNG clocking) and then it must clear the CEIS bit interrupt flag. As soon as the RNG clock operates correctly, the CECS bit will be automatically cleared. The RNG operates only when the CECS flag is set to “0”. However note that the clock error has no impact on the previously generated random numbers, and the RNG_DR register contents can still be used. RM0430 Rev 8 455/1324 461 True random number generator (RNG) RM0430 Noise source error detection When a noise source (or seed) error occurs, the RNG stops generating random numbers and sets to “1” both SEIS and SECS bits to indicate that a seed error occurred. If a value is available in the RNG_DR register, it must not be used as it may not have enough entropy. In order to fully recover from a seed error application must clear the SEIS bit by writing it to “0”, then clear and set the RNGEN bit to reinitialize and restart the RNG. 16.4 RNG low-power usage If power consumption is a concern, the RNG can be disabled as soon as the DRDY bit is set to “1” by setting the RNGEN bit to “0” in the RNG_CR register. The 32-bit random value stored in the RNG_DR register will be still be available. If a new random is needed the application will need to re-enable the RNG and wait for 42+4 RNG clock cycles. When disabling the RNG the user deactivates all the analog seed generators, whose power consumption is given in the datasheet electrical characteristics section. 16.5 RNG interrupts In the RNG an interrupt can be produced on the following events: • Data ready flag • Seed error, see Section 16.3.7: Error management • Clock error, see Section 16.3.7: Error management Dedicated interrupt enable control bits are available as shown in Table 99 Table 99. RNG interrupt requests Interrupt event Event flag Enable control bit Data ready flag DRDY IE Seed error flag SEIS IE Clock error flag CEIS IE The user can enable or disable the above interrupt sources individually by changing the mask bits or the general interrupt control bit IE in the RNG_CR register. The status of the individual interrupt sources can be read from the RNG_SR register. Note: Interrupts are generated only when RNG is enabled. 16.6 RNG processing time The RNG can produce one 32-bit random numbers every 42 RNG clock cycles. After enabling or re-enabling the RNG using the RNGEN bit it takes 46 RNG clock cycles before random data are available. 456/1324 RM0430 Rev 8 RM0430 True random number generator (RNG) 16.7 Entropy source validation 16.7.1 Introduction In order to assess the amount of entropy available from the RNG, STMicroelectronics has tested the peripheral against AIS-31 PTG.2 set of tests. The results can be provided on demand or the customer can reproduce the measurements using the AIS reference software. The customer could also test the RNG against an older NIST SP800-22 set of tests. 16.7.2 Validation conditions STMicroelectronics has validated the RNG true random number generator in the following conditions: 16.7.3 • RNG clock rng_clk= 48 MHz (CED bit = ‘0’ in RNG_CR register) and rng_clk= 400kHz (CED bit=”1” in RNG_CR) • AHB clock rng_hclk= 60 MHz Data collection If raw data needs to be read instead of pre-processed data the developer is invited to contact STMicroelectronics to receive the correct procedure to follow. RM0430 Rev 8 457/1324 461 True random number generator (RNG) 16.8 RM0430 RNG registers The RNG is associated with a control register, a data register and a status register. 16.8.1 RNG control register (RNG_CR) Address offset: 0x000 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CED Res. IE RNGEN Res. Res. rw rw rw Bits 31:6 Reserved, must be kept at reset value Bit 5 CED: Clock error detection 0: Clock error detection is enable 1: Clock error detection is disable The clock error detection cannot be enabled nor disabled on-the-fly when the RNG is enabled, i.e. to enable or disable CED the RNG must be disabled. Bit 4 Reserved, must be kept at reset value. Bit 3 IE: Interrupt Enable 0: RNG Interrupt is disabled 1: RNG Interrupt is enabled. An interrupt is pending as soon as DRDY=’1’, SEIS=’1’ or CEIS=’1’ in the RNG_SR register. Bit 2 RNGEN: True random number generator enable 0: True random number generator is disabled. Analog noise sources are powered off and logic clocked by the RNG clock is gated. 1: True random number generator is enabled. Bits 1:0 Reserved, must be kept at reset value. 458/1324 RM0430 Rev 8 RM0430 True random number generator (RNG) 16.8.2 RNG status register (RNG_SR) Address offset: 0x004 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. SEIS CEIS Res. Res. SECS CECS DRDY rc_w0 rc_w0 r r r Bits 31:7 Reserved, must be kept at reset value. Bit 6 SEIS: Seed error interrupt status This bit is set at the same time as SECS. It is cleared by writing it to ‘0’. 0: No faulty sequence detected 1: At least one faulty sequence has been detected. See SECS bit description for details. An interrupt is pending if IE = ‘1’ in the RNG_CR register. Bit 5 CEIS: Clock error interrupt status This bit is set at the same time as CECS. It is cleared by writing it to ‘0’. 0: The RNG clock is correct (fRNGCLK > fHCLK/16) 1: The RNG has been detected too slow (fRNGCLK < fHCLK/16) An interrupt is pending if IE = ‘1’ in the RNG_CR register. Bits 4:3 Reserved, must be kept at reset value. Bit 2 SECS: Seed error current status 0: No faulty sequence has currently been detected. If the SEIS bit is set, this means that a faulty sequence was detected and the situation has been recovered. 1: One of the noise source has provided more than 64 consecutive bits at a constant value (“0” or “1”), or more than 32 consecutive occurrence of two bits patterns (“01” or “10”) Bit 1 CECS: Clock error current status 0: The RNG clock is correct (fRNGCLK> fHCLK/16). If the CEIS bit is set, this means that a slow clock was detected and the situation has been recovered. 1: The RNG clock is too slow (fRNGCLK< fHCLK/16). Note: CECS bit is valid only if the CED bit in the RNG_CR register is set to “0”. Bit 0 DRDY: Data Ready 0: The RNG_DR register is not yet valid, no random data is available. 1: The RNG_DR register contains valid random data. Once the RNG_DR register has been read, this bit returns to ‘0’ until a new random value is generated. If IE=’1’ in the RNG_CR register, an interrupt is generated when DRDY=’1’. RM0430 Rev 8 459/1324 461 True random number generator (RNG) 16.8.3 RM0430 RNG data register (RNG_DR) Address offset: 0x008 Reset value: 0x0000 0000 The RNG_DR register is a read-only register that delivers a 32-bit random value when read. After being read this register delivers a new random value after 42 periods of RNG clock if the output FIFO is empty. The content of this register is valid when DRDY=’1’, even if RNGEN=’0’. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RNDATA[31:16] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r RNDATA[15:0] r r Bits 31:0 RNDATA[31:0]: Random data 32-bit random data which are valid when DRDY=’1’. When DRDY=’0’ RNDATA value is zero. 460/1324 RM0430 Rev 8 RM0430 16.8.4 True random number generator (RNG) RNG register map Table 100 gives the RNG register map and reset values. 0x000 RNG_CR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CED Res. IE RNGEN Res. Res. Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 100. RNG register map and reset map 0x004 0x008 0 0 0 RNG_SR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SEIS CEIS Res. Res. SECS CECS DRDY Reset value Reset value RNG_DR Reset value 0 0 0 0 0 RNDATA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 461/1324 461 Advanced-control timers (TIM1&TIM8) RM0430 17 Advanced-control timers (TIM1&TIM8) 17.1 TIM1&TIM8 introduction The advanced-control timer (TIM1&TIM8) consist of a 16-bit auto-reload counter driven by a programmable prescaler. It may be used for a variety of purposes, including measuring the pulse length of input signals (input capture) or generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The advanced-control (TIM1) and general-purpose (TIMx) timers are completely independent, and do not share any resources. They can be synchronized together as described in Section 17.3.20. 17.2 TIM1&TIM8 main features TIM1&TIM8 timer features include: 462/1324 • 16-bit up, down, up/down auto-reload counter. • 16-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock frequency either by any factor between 1 and 65536. • Up to 4 independent channels for: – Input Capture – Output Compare – PWM generation (Edge and Center-aligned Mode) – One-pulse mode output • Complementary outputs with programmable dead-time • Synchronization circuit to control the timer with external signals and to interconnect several timers together. • Repetition counter to update the timer registers only after a given number of cycles of the counter. • Break input to put the timer’s output signals in reset state or in a known state. • Interrupt/DMA generation on the following events: – Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) – Trigger event (counter start, stop, initialization or count by internal/external trigger) – Input capture – Output compare – Break input • Supports incremental (quadrature) encoder and Hall-sensor circuitry for positioning purposes • Trigger input for external clock or cycle-by-cycle current management RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) 7,0[B(75 Figure 87. Advanced-control timer block diagram &.B7,0IURP5&& (75 ,QWHUQDOFORFN &.B,17 7ULJJHU FRQWUROOHU (75) 3RODULW\VHOHFWLRQ (GJHGHWHFWRUDQG3UHVFDOHU (753 75*2 7RRWKHUWLPHUV 7R'$&DQG$'& ,QSXWILOWHU ,75 7*, ,75 75*, ,75 ,75 6ODYHPRGH FRQWUROOHU 7,)B(' 5(35HJLVWHU 7,0[B&+ 7,0[B&+ ,& 3UHVFDOHU 7,)3 75& 7, ,QSXWILOWHU (GJHGHWHFWRU 7,)3 &&, ,& 3UHVFDOHU 7, ,QSXWILOWHU (GJHGHWHFWRU 7,)3 7, ,QSXWILOWHU (GJHGHWHFWRU &&, ,& 3UHVFDOHU 75& 7,)3 3UHVFDOHU 7,)3 3RODULW\VHOHFWLRQ &&, &DSWXUH&RPSDUH 2&5() 5HJLVWHU 2&1 8 &&, 2& &DSWXUH&RPSDUH 2&5() 5HJLVWHU 8 &&, ,&36 &DSWXUH&RPSDUH 2&5() 5HJLVWHU 8 75& %5. 8 ,&36 &&, ,& &DSWXUH&RPSDUH 2&5() 5HJLVWHU ,&36 7,)3 7,)3 &&, ,&36 2& 7,)3 ,QSXWILOWHU (GJHGHWHFWRU 2& %, &ORFNIDLOXUHHYHQWIURPFORFNFRQWUROOHU &66 &ORFN6HFXULW\6\VWHP ,QWHUUXSW '0$RXWSXW /HJHQG 5HJ (YHQW '7* 7,0[B&+ '7*>@UHJLVWHUV &&, 7, 75& 7,0[B%.,1 &17 FRXQWHU 2&1 7,0[B&+ 7,0[B&+ 36& SUHVFDOHU &.B&17 7,0[B&+1 5HSHWLWLRQFRXQWHU &.B36& 7,0[B&+1 2& $XWR5HORDG 5HJLVWHU 7,0[B&+1 7,0[B&+ 8 7,0[B&+ 8 7,0[B&+ (QFRGHU LQWHUIDFH 7,)3 8, 2&1 7,)3 5HVHW (QDEOH 8S'RZQ &RXQW 2XWSXWFRQWURO 3UHORDGUHJLVWHUVWUDQVIHUUHGWRDFWLYHUHJLVWHUVRQ8HYHQWDFFRUGLQJWRFRQWUROELW 069 RM0430 Rev 8 463/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 17.3 TIM1&TIM8 functional description 17.3.1 Time-base unit The main block of the programmable advanced-control timer is a 16-bit counter with its related auto-reload register. The counter can count up, down or both up and down. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: • Counter register (TIMx_CNT) • Prescaler register (TIMx_PSC) • Auto-reload register (TIMx_ARR) • Repetition counter register (TIMx_RCR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detailed for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 88 and Figure 89 give some examples of the counter behavior when the prescaler ratio is changed on the fly: 464/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Figure 88. Counter timing diagram with prescaler division change from 1 to 2 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 Figure 89. Counter timing diagram with prescaler division change from 1 to 4 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 RM0430 Rev 8 465/1324 533 Advanced-control timers (TIM1&TIM8) 17.3.2 RM0430 Counter modes Upcounting mode In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. If the repetition counter is used, the update event (UEV) is generated after upcounting is repeated for the number of times programmed in the repetition counter register plus one (TIMx_RCR+1). Else the update event is generated at each counter overflow. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The repetition counter is reloaded with the content of TIMx_RCR register, • The auto-reload shadow register is updated with the preload value (TIMx_ARR), • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 90. Counter timing diagram, internal clock divided by 1 <ͺW^ EdͺE dŝŵĞƌĐůŽĐŬс<ͺEd ŽƵŶƚĞƌƌĞŐŝƐƚĞƌ ϯϭ ϯϮ ϯϯ ϯϰ ϯϱ ϯϲ ϬϬ Ϭϭ ϬϮ Ϭϯ Ϭϰ Ϭϱ Ϭϲ Ϭϳ ŽƵŶƚĞƌŽǀĞƌĨůŽǁ hƉĚĂƚĞĞǀĞŶƚ;hsͿ hƉĚĂƚĞŝŶƚĞƌƌƵƉƚĨůĂŐ;h/&Ϳ 069 466/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Figure 91. Counter timing diagram, internal clock divided by 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 92. Counter timing diagram, internal clock divided by 4 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 93. Counter timing diagram, internal clock divided by N &.B36& 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 RM0430 Rev 8 467/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Figure 94. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) <ͺW^ E dŝŵĞƌĐůŽĐŬс<ͺEd ŽƵŶƚĞƌƌĞŐŝƐƚĞƌ ϯϭ ϯϯ ϯϮ ϯϰ ϯϱ ϯϲ ϬϬ Ϭϭ ϬϮ Ϭϯ Ϭϰ Ϭϱ Ϭϲ Ϭϳ ŽƵŶƚĞƌŽǀĞƌĨůŽǁ hƉĚĂƚĞĞǀĞŶƚ;hsͿ hƉĚĂƚĞŝŶƚĞƌƌƵƉƚĨůĂŐ;h/&Ϳ ƵƚŽͲƌĞůŽĂĚƉƌĞůŽĂĚƌĞŐŝƐƚĞƌ && ϯϲ tƌŝƚĞĂŶĞǁǀĂůƵĞŝŶd/DdžͺZZ 069 Figure 95. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) ) ) ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDG UHJLVWHU ) $XWRUHORDGVKDGRZ UHJLVWHU ) :ULWHDQHZYDOXHLQ7,0[B$55 468/1324 RM0430 Rev 8 069 RM0430 Advanced-control timers (TIM1&TIM8) Downcounting mode In downcounting mode, the counter counts from the auto-reload value (content of the TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a counter underflow event. If the repetition counter is used, the update event (UEV) is generated after downcounting is repeated for the number of times programmed in the repetition counter register plus one (TIMx_RCR+1). Else the update event is generated at each counter underflow. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter restarts from the current auto-reload value, whereas the counter of the prescaler restarts from 0 (but the prescale rate doesn’t change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The repetition counter is reloaded with the content of TIMx_RCR register • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register) • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so that the next period is the expected one The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. RM0430 Rev 8 469/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Figure 96. Counter timing diagram, internal clock divided by 1 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ FQWBXGI 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 97. Counter timing diagram, internal clock divided by 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 470/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Figure 98. Counter timing diagram, internal clock divided by 4 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 99. Counter timing diagram, internal clock divided by N &.B36& 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 RM0430 Rev 8 471/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Figure 100. Counter timing diagram, update event when repetition counter is not used &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDG UHJLVWHU )) :ULWHDQHZYDOXHLQ7,0[B$55 069 Center-aligned mode (up/down counting) In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register) – 1, generates a counter overflow event, then counts from the autoreload value down to 1 and generates a counter underflow event. Then it restarts counting from 0. Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to '00'. The Output compare interrupt flag of channels configured in output is set when: the counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = "11"). In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated by hardware and gives the current direction of the counter. The update event can be generated at each counter overflow and at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. In this case, the counter restarts counting from 0, as well as the counter of the prescaler. The UEV update event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter continues counting up and down, based on the current auto-reload value. In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an UEV update event but without setting the UIF flag (thus no interrupt or 472/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The repetition counter is reloaded with the content of TIMx_RCR register • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register) • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that if the update source is a counter overflow, the autoreload is updated before the counter is reloaded, so that the next period is the expected one (the counter is loaded with the new value). The following figures show some examples of the counter behavior for different clock frequencies. Figure 101. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 1. Here, center-aligned mode 1 is used (for more details refer to Section 17.4: TIM1&TIM8 registers). Figure 102. Counter timing diagram, internal clock divided by 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 RM0430 Rev 8 473/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Figure 103. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 1. Center-aligned mode 2 or 3 is used with an UIF on overflow. Figure 104. Counter timing diagram, internal clock divided by N &.B36& 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 474/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Figure 105. Counter timing diagram, update event with ARPE=1 (counter underflow) &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU )' :ULWHDQHZYDOXHLQ7,0[B$55 $XWRUHORDGDFWLYHUHJLVWHU )' 069 Figure 106. Counter timing diagram, update event with ARPE=1 (counter overflow) &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU )' :ULWHDQHZYDOXHLQ7,0[B$55 $XWRUHORDGDFWLYHUHJLVWHU )' 069 17.3.3 Repetition counter Section 17.3.1: Time-base unit describes how the update event (UEV) is generated with respect to the counter overflows/underflows. It is actually generated only when the repetition counter has reached zero. This can be useful when generating PWM signals. This means that data are transferred from the preload registers to the shadow registers (TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx capture/compare registers in compare mode) every N+1 counter overflows or underflows, where N is the value in the TIMx_RCR repetition counter register. RM0430 Rev 8 475/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 The repetition counter is decremented: • At each counter overflow in upcounting mode, • At each counter underflow in downcounting mode, • At each counter overflow and at each counter underflow in center-aligned mode. Although this limits the maximum number of repetition to 128 PWM cycles, it makes it possible to update the duty cycle twice per PWM period. When refreshing compare registers only once per PWM period in center-aligned mode, maximum resolution is 2xTck, due to the symmetry of the pattern. The repetition counter is an auto-reload type; the repetition rate is maintained as defined by the TIMx_RCR register value (refer to Figure 107). When the update event is generated by software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave mode controller, it occurs immediately whatever the value of the repetition counter is and the repetition counter is reloaded with the content of the TIMx_RCR register. In center-aligned mode, for odd values of RCR, the update event occurs either on the overflow or on the underflow depending on when the RCR register was written and when the counter was started. If the RCR was written before starting the counter, the UEV occurs on the overflow. If the RCR was written after starting the counter, the UEV occurs on the underflow. For example for RCR = 3, the UEV is generated on each 4th overflow or underflow event depending on when RCR was written. 476/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Figure 107. Update rate examples depending on mode and TIMx_RCR register settings (GJHDOLJQHGPRGH &RXQWHUDOLJQHGPRGH 8SFRXQWLQJ &RXQWHU 7,0[B&17 7,0[B5&5 7,0[B5&5 7,0[B5&5 7,0[B5&5 7,0[B5&5 DQG UHV\QFKURQL]DWLRQ 8(9 8(9 8(9 8(9 8(9 E\6: 8(9 'RZQFRXQWLQJ E\6: E\6: 8SGDWHHYHQW3UHORDGUHJLVWHUVWUDQVIHUUHGWRDFWLYHUHJLVWHUVDQGXSGDWHLQWHUUXSWJHQHUDWHG 8SGDWH(YHQWLIWKHUHSHWLWLRQFRXQWHUXQGHUIORZRFFXUVZKHQWKHFRXQWHULVHTXDOWRWKHDXWRUHORDGYDOXH 06Y9 RM0430 Rev 8 477/1324 533 Advanced-control timers (TIM1&TIM8) 17.3.4 RM0430 Clock selection The counter clock can be provided by the following clock sources: • Internal clock (CK_INT) • External clock mode1: external input pin • External clock mode2: external trigger input ETR • Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to Using one timer as prescaler for another timer for more details. Internal clock source (CK_INT) If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. Figure 108 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 108. Control circuit in normal mode, internal clock divided by 1 ,QWHUQDOFORFN &(1 &17B(1 8* &17B,1,7 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 069 External clock source mode 1 This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. 478/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Figure 109. TI2 external clock connection example 7,0[B60&5 76>@ RU 7,) 7,) ,75[ 7,B(' 7, )LOWHU (GJH GHWHFWRU 7,)B5LVLQJ 7,)B)DOOLQJ 7,)3 7,)3 (75) RU RU [[ 75*, (75) &.B,17 ,&)>@ &&3 7,0[B&&05 7,0[B&&(5 LQWHUQDOFORFN (QFRGHU PRGH ([WHUQDOFORFN PRGH ([WHUQDOFORFN PRGH &.B36& ,QWHUQDOFORFN PRGH (&( 606>@ 7,0[B60&5 069 For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: Note: 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in the TIMx_CCMR1 register. 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000). 3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER register. 4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register. 5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register. 6. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The capture prescaler is not used for triggering, so you don’t need to configure it. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. RM0430 Rev 8 479/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Figure 110. Control circuit in external clock mode 1 7, &17B(1 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) :ULWH7,) 069 External clock source mode 2 This mode is selected by writing ECE=1 in the TIMx_SMCR register. The counter can count at each rising or falling edge on the external trigger input ETR. Figure 111 gives an overview of the external trigger input block. Figure 111. External trigger input block RU 7,) 7,) (75 RU RU 75*, (75SLQ 'LYLGHU (753 I'76 )LOWHU GRZQFRXQWHU (75) &.B,17 (73 (736>@ (7)>@ 7,0[B60&5 7,0[B60&5 7,0[B60&5 LQWHUQDOFORFN (QFRGHU PRGH ([WHUQDOFORFN PRGH ([WHUQDOFORFN PRGH &.B36& ,QWHUQDOFORFN PRGH (&( 606>@ 7,0[B60&5 069 For example, to configure the upcounter to count each 2 rising edges on ETR, use the following procedure: 480/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) 1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register. 2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register 3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR register 4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register. 5. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The counter counts once each 2 ETR rising edges. The delay between the rising edge on ETR and the actual clock of the counter is due to the resynchronization circuit on the ETRP signal. Figure 112. Control circuit in external clock mode 2 I &.B,17 &17B(1 (75 (753 (75) &RXQWHUFORFN &.B,17 &.B36& &RXQWHUUHJLVWHU 069 17.3.5 Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control). Figure 113 to Figure 116 give an overview of one Capture/Compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). RM0430 Rev 8 481/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Figure 113. Capture/compare channel (example: channel 1 input stage) 7,)B(' 7RWKHVODYHPRGHFRQWUROOHU 7,)B5LVLQJ 7, )LOWHU 7,) GRZQFRXQWHU I'76 (GJH GHWHFWRU 7,)B)DOOLQJ 7,)3 7,)3 &&3&&13 ,&)>@ 75& 7,0[B&&(5 7,0[B&&05 7,)B5LVLQJ IURPFKDQQHO 7,)B)DOOLQJ IURPFKDQQHO ,& IURPVODYHPRGH FRQWUROOHU ,&36 'LYLGHU &&6>@ ,&36>@ &&( 7,0[B&&05 7,0[B&&(5 069 The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. Figure 114. Capture/compare channel 1 main circuit $3%%XV 5HDG&&5/ UHDGBLQBSURJUHVV &&6>@ ,&36 ZULWHBLQBSURJUHVV ,QSXW PRGH 6 ZULWH&&5+ &DSWXUHFRPSDUHSUHORDGUHJLVWHU 5 5 FRPSDUHBWUDQVIHU FDSWXUHBWUDQVIHU &&6>@ ORZ 5HDG&&5+ 6 KLJK LIELW 0&8SHULSKHUDOLQWHUIDFH 2XWSXW PRGH &17!&&5 &RXQWHU &&* &&6>@ 8(9 &RPSDUDWRU &&( &&6>@ 2&3( &DSWXUHFRPSDUHVKDGRZUHJLVWHU &DSWXUH ZULWH&&5/ IURPWLPH EDVHXQLW 2&3( 7,0B&&05 &17 &&5 7,0B(*5 069 482/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Figure 115. Output stage of capture/compare channel (channels 1 to 3) 7RWKHPDVWHUPRGH FRQWUROOHU (75) µ¶ 2&5() 2&B'7 &17!&&5 2XWSXW PRGH &17 &&5 FRQWUROOHU 2&[5() 2&5() 2&5()& 2XWSXW VHOHFWRU 'HDGWLPH JHQHUDWRU [ 2XWSXW HQDEOH FLUFXLW 2& 2XWSXW HQDEOH FLUFXLW 2&1 &&3 7,0B&&(5 2&1B'7 µ¶ [ &&1( &&( 7,0B&&(5 2&&( 2&0>@ '7*>@ &&1( &&( &&13 02( 266, 2665 7,0B&&05 7,0B%'75 7,0B&&(5 7,0B&&(5 7,0B%'75 069 Figure 116. Output stage of capture/compare channel (channel 4) 7RWKHPDVWHU PRGHFRQWUROOHU (75 &17!&&5 &17!&&5 2XWSXW PRGH FRQWUROOHU 2XWSXW HQDEOH FLUFXLW 2& &&3 2&5() 7,0B&&(5 &&( 02( 2&0>@ 7,0B&&05 266, 2,6 7,0B&&(5 7,0B%'75 7,0B&5 069 The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. RM0430 Rev 8 483/1324 533 Advanced-control timers (TIM1&TIM8) 17.3.6 RM0430 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to ‘0’ or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to ‘0’. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: • Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only. • Program the input filter duration you need with respect to the signal you connect to the timer (by programming ICxF bits in the TIMx_CCMRx register if the input is a TIx input). Let’s imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the TIMx_CCMR1 register. • Select the edge of the active transition on the TI1 channel by writing CC1P and CC1NP bits to 0 in the TIMx_CCER register (rising edge in this case). • Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the TIMx_CCMR1 register). • Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. • If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register. When an input capture occurs: • The TIMx_CCR1 register gets the value of the counter on the active transition. • CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. • An interrupt is generated depending on the CC1IE bit. • A DMA request is generated depending on the CC1DE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: 484/1324 IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. RM0430 Rev 8 RM0430 17.3.7 Advanced-control timers (TIM1&TIM8) PWM input mode This mode is a particular case of input capture mode. The procedure is the same except: • Two ICx signals are mapped on the same TIx input. • These 2 ICx signals are active on edges with opposite polarity. • One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): • Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 register (TI1 selected). • Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): write the CC1P and CC1NP bits to ‘0’ (active on rising edge). • Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 register (TI1 selected). • Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P and CC2NP bits to ‘1’ (active on falling edge). • Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register (TI1FP1 selected). • Configure the slave mode controller in reset mode: write the SMS bits to 100 in the TIMx_SMCR register. • Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register. Figure 117. PWM input mode timing TI1 TIMx_CNT 0004 0000 0001 0002 TIMx_CCR1 0004 TIMx_CCR2 0002 IC1 capture IC2 capture reset counter 0003 0004 IC2 capture pulse width measurement 0000 IC1 capture period measurement ai15413 17.3.8 Forced output mode In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. RM0430 Rev 8 485/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 To force an output compare signal (OCXREF/OCx) to its active level, you just need to write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. For example: CCxP=0 (OCx active high) => OCx is forced to high level. The OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx register. Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the output compare mode section below. 17.3.9 Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: • Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match. • Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register). • Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). • Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One Pulse mode). Procedure: 1. Select the counter clock (internal, external, prescaler). 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. 3. Set the CCxIE bit if an interrupt request is to be generated. 4. 5. Select the output mode. For example: – Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx – Write OCxPE = 0 to disable preload register – Write CCxP = 0 to select active high polarity – Write CCxE = 1 to enable the output Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in Figure 118. 486/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Figure 118. Output compare mode, toggle on OC1. :ULWH%KLQWKH&&5UHJLVWHU 7,0B&17 7,0B&&5 $ % % % % $ 2&5() 2& 0DWFKGHWHFWHGRQ&&5 ,QWHUUXSWJHQHUDWHGLIHQDEOHG 069 17.3.10 PWM mode Pulse Width Modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register. OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by a combination of the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers). Refer to the TIMx_CCER register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction of the counter). The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the TIMx_CR1 register. RM0430 Rev 8 487/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 PWM edge-aligned mode • Upcounting configuration Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Upcounting mode. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’. Figure 119 shows some edge-aligned PWM waveforms in an example where TIMx_ARR=8. Figure 119. Edge-aligned PWM waveforms (ARR=8) &RXQWHUUHJLVWHU &&5[ 2&;5() &&[,) 2&;5() &&5[ &&[,) 2&;5() µ¶ &&5[! &&[,) 2&;5() µ¶ &&5[ &&[,) 069 • Downcounting configuration Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Downcounting mode. In PWM mode 1, the reference signal OCxRef is low as long as TIMx_CNT > TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in TIMx_ARR, then OCxREF is held at ‘1’. 0% PWM is not possible in this mode. PWM center-aligned mode Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from ‘00’ (all the remaining configurations having the same effect on the OCxRef/OCx signals). The compare flag is set when the counter counts up, when it counts down or both when it counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to Center-aligned mode (up/down counting). 488/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Figure 120 shows some center-aligned PWM waveforms in an example where: • TIMx_ARR=8, • PWM mode is the PWM mode 1, • The flag is set when the counter counts down corresponding to the center-aligned mode 1 selected for CMS=01 in TIMx_CR1 register. Figure 120. Center-aligned PWM waveforms (ARR=8) &RXQWHUUHJLVWHU 2&[5() &&5[ &06 &06 &06 &&[,) 2&[5() &&5[ &06 RU &&[,) 2&[5() µ¶ &&5[ &&[,) 2&[5() &&5[! µ¶ &06 &06 &06 &&[,) 2&[5() &&5[ &&[,) &06 &06 &06 µ¶ &06 &06 &06 $,E RM0430 Rev 8 489/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Hints on using center-aligned mode: • When starting in center-aligned mode, the current up-down configuration is used. It means that the counter counts up or down depending on the value written in the DIR bit in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the same time by the software. • Writing to the counter while running in center-aligned mode is not recommended as it can lead to unexpected results. In particular: • 17.3.11 – The direction is not updated if you write a value in the counter that is greater than the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was counting up, it continues to count up. – The direction is updated if you write 0 or write the TIMx_ARR value in the counter but no Update Event UEV is generated. The safest way to use center-aligned mode is to generate an update by software (setting the UG bit in the TIMx_EGR register) just before starting the counter and not to write the counter while it is running. Complementary outputs and dead-time insertion The advanced-control timers (TIM1&TIM8) can output two complementary signals and manage the switching-off and the switching-on instants of the outputs. This time is generally known as dead-time and you have to adjust it depending on the devices you have connected to the outputs and their characteristics (intrinsic delays of levelshifters, delays due to power switches...) You can select the polarity of the outputs (main output OCx or complementary OCxN) independently for each output. This is done by writing to the CCxP and CCxNP bits in the TIMx_CCER register. The complementary signals OCx and OCxN are activated by a combination of several control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx, OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Table 103 for more details. In particular, the dead-time is activated when switching to the IDLE state (MOE falling down to 0). Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the break circuit is present. DTG[7:0] bits of the TIMx_BDTR register are used to control the dead-time generation for all channels. From a reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are active high: • The OCx output signal is the same as the reference signal except for the rising edge, which is delayed relative to the reference rising edge. • The OCxN output signal is the opposite of the reference signal except for the rising edge, which is delayed relative to the reference falling edge. If the delay is greater than the width of the active output (OCx or OCxN) then the corresponding pulse is not generated. The following figures show the relationships between the output signals of the dead-time generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1, CCxE=1 and CCxNE=1 in these examples). 490/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Figure 121. Complementary output with dead-time insertion. 2&[5() 2&[ GHOD\ 2&[1 GHOD\ 069 Figure 122. Dead-time waveforms with delay greater than the negative pulse. 2&[5() 2&[ GHOD\ 2&[1 069 Figure 123. Dead-time waveforms with delay greater than the positive pulse. 2&[5() 2&[ 2&[1 GHOD\ 069 The dead-time delay is the same for each of the channels and is programmable with the DTG bits in the TIMx_BDTR register. Refer to Section 17.4.18: TIM1&TIM8 break and deadtime register (TIMx_BDTR) for delay calculation. Re-directing OCxREF to OCx or OCxN In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER register. This allows you to send a specific waveform (such as PWM or static active level) on one output while the complementary remains at its inactive level. Other alternative possibilities RM0430 Rev 8 491/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 are to have both outputs at inactive level or both outputs active and complementary with dead-time. Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes active when OCxREF is high whereas OCxN is complemented and becomes active when OCxREF is low. 17.3.12 Using the break function When using the break function, the output enable signals and inactive levels are modified according to additional control bits (MOE, OSSI and OSSR bits in the TIMx_BDTR register, OISx and OISxN bits in the TIMx_CR2 register). In any case, the OCx and OCxN outputs cannot be set both to active level at a given time. Refer to Table 103 for more details. The break source can be either the break input pin or a clock failure event, generated by the Clock Security System (CSS), from the Reset Clock Controller. For further information on the Clock Security System, refer to Section 6.2.7: Clock security system (CSS). When exiting from reset, the break circuit is disabled and the MOE bit is low. You can enable the break function by setting the BKE bit in the TIMx_BDTR register. The break input polarity can be selected by configuring the BKP bit in the same register. BKE and BKP can be modified at the same time. When the BKE and BKP bits are written, a delay of 1 APB clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1 APB clock period to correctly read back the bit after the write operation. Because MOE falling edge can be asynchronous, a resynchronization circuit has been inserted between the actual signal (acting on the outputs) and the synchronous control bit (accessed in the TIMx_BDTR register). It results in some delays between the asynchronous and the synchronous signals. In particular, when writing MOE to 1 whereas it was low, user must insert a delay (dummy instruction) before reading it correctly. This is because user writes the asynchronous signal and reads the synchronous signal. When a break occurs (selected level on the break input): 492/1324 • The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state or in reset state (selected by the OSSI bit). This feature functions even if the MCU oscillator is off. • Each output channel is driven with the level programmed in the OISx bit in the TIMx_CR2 register as soon as MOE=0. If OSSI=0 then the timer releases the enable output else the enable output remains high. • When complementary outputs are used: – The outputs are first put in reset state inactive state (depending on the polarity). This is done asynchronously so that it works even if no clock is provided to the timer. – If the timer clock is still present, then the dead-time generator is reactivated in order to drive the outputs with the level programmed in the OISx and OISxN bits after a dead-time. Even in this case, OCx and OCxN cannot be driven to their RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) active level together. Note that because of the resynchronization on MOE, the dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles). – Note: If OSSI=0 then the timer releases the enable outputs else the enable outputs remain or become high as soon as one of the CCxE or CCxNE bits is high. • The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be generated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if the BDE bit in the TIMx_DIER register is set. • If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again at the next update event UEV. This can be used to perform a regulation, for instance. Else, MOE remains low until you write it to ‘1’ again. In this case, it can be used for security and you can connect the break input to an alarm from power drivers, thermal sensors or any security components. The break inputs is acting on level. Thus, the MOE cannot be set while the break input is active (neither automatically nor by software). In the meantime, the status flag BIF cannot be cleared. The break can be generated by the BRK input which has a programmable polarity and an enable bit BKE in the TIMx_BDTR Register. There are two solutions to generate a break: • By using the BRK input which has a programmable polarity and an enable bit BKE in the TIMx_BDTR register • By software through the BG bit of the TIMx_EGR register. In addition to the break input and the output management, a write protection has been implemented inside the break circuit to safeguard the application. It allows you to freeze the configuration of several parameters (dead-time duration, OCx/OCxN polarities and state when disabled, OCxM configurations, break enable and polarity). You can choose from 3 levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer to Section 17.4.18: TIM1&TIM8 break and dead-time register (TIMx_BDTR). The LOCK bits can be written only once after an MCU reset. Figure 124 shows an example of behavior of the outputs in response to a break. RM0430 Rev 8 493/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Figure 124. Output behavior in response to a break. %5($. 02( 2&[5() 2&[ 2&[1QRWLPSOHPHQWHG&&[3 2,6[ 2&[ 2&[1QRWLPSOHPHQWHG&&[3 2,6[ 2&[ 2&[1QRWLPSOHPHQWHG&&[3 2,6[ 2&[ 2&[1QRWLPSOHPHQWHG&&[3 2,6[ 2&[ GHOD\ GHOD\ 2&[1 &&[( &&[3 2,6[ &&[1( &&[13 2,6[1 GHOD\ 2&[ GHOD\ GHOD\ 2&[1 &&[( &&[3 2,6[ &&[1( &&[13 2,6[1 GHOD\ 2&[ 2&[1 &&[( &&[3 2,6[ &&[1( &&[13 2,6[1 GHOD\ 2&[ 2&[1 &&[( &&[3 2,6[ &&[1( &&[13 2,6[1 GHOD\ 2&[ 2&[1 &&[( &&[3 &&[1( &&[13 2,6[ 2,6[1 RU2,6[ 2,6[1 069 494/1324 RM0430 Rev 8 RM0430 17.3.13 Advanced-control timers (TIM1&TIM8) Clearing the OCxREF signal on an external event The OCxREF signal for a given channel can be driven Low by applying a High level to the ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to ‘1’). The OCxREF signal remains Low until the next update event, UEV, occurs. This function can only be used in output compare and PWM modes, and does not work in forced mode. For example, the ETR signal can be connected to the output of a comparator to be used for current handling. In this case, the ETR must be configured as follow: 1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR register set to ‘00’. 2. The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set to ‘0’. 3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be configured according to the user needs. Figure 125 shows the behavior of the OCxREF signal when the ETRF Input becomes High, for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in PWM mode. Figure 125. Clearing TIMx OCxREF &&5[ &RXQWHU &17 (75) 2&[5() 2&[&( µ¶ 2&[5() 2&[&( µ¶ (75)EHFRPHVKLJK (75)VWLOOKLJK 06Y9 Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), then OCxREF is enabled again at the next counter overflow. RM0430 Rev 8 495/1324 533 Advanced-control timers (TIM1&TIM8) 17.3.14 RM0430 6-step PWM generation When complementary outputs are used on a channel, preload bits are available on the OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the COM commutation event. Thus you can program in advance the configuration for the next step and change the configuration of all the channels at the same time. COM can be generated by software by setting the COM bit in the TIMx_EGR register or by hardware (on TRGI rising edge). A flag is set when the COM event occurs (COMIF bit in the TIMx_SR register), which can generate an interrupt (if the COMIE bit is set in the TIMx_DIER register) or a DMA request (if the COMDE bit is set in the TIMx_DIER register). Figure 126 describes the behavior of the OCx and OCxN outputs when a COM event occurs, in 3 different examples of programmed configurations. Figure 126. 6-step generation, COM example (OSSR=1) counter (CNT) (CCRx) OCxREF Write COM to 1 COM event Example 1 CCxE=1 write OCxM to 100 CCxNE=0 OCxM=100 (forced inactive) CCxE=1 CCxNE=0 OCxM=100 Write CCxNE to 1 and OCxM to 101 CCxE=1 CCxNE=0 OCxM=100 (forced inactive) CCxE=0 CCxNE=1 OCxM=101 OCx OCxN OCx Example 2 OCxN write CCxNE to 0 CCxE=1 and OCxM to 100 CCxNE=0 OCxM=100 (forced inactive) Example 3 CCxE=1 CCxNE=0 OCxM=100 OCx OCxN ai14910 496/1324 RM0430 Rev 8 RM0430 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be: • In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx) • In downcounting: CNT > CCRx Figure 127. Example of one pulse mode. 7, 2&5() 2& 7,0B$55 &RXQWHU 17.3.15 Advanced-control timers (TIM1&TIM8) 7,0B&&5 ƚ>z ƚWh>^ ƚ 069 For example you may want to generate a positive pulse on OC1 with a length of tPULSE and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin. Let’s use TI2FP2 as trigger 1: • Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register. • TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER register. • Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in the TIMx_SMCR register. • TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register (trigger mode). RM0430 Rev 8 497/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). • The tDELAY is defined by the value written in the TIMx_CCR1 register. • The tPULSE is defined by the difference between the auto-reload value and the compare value (TIMx_ARR - TIMx_CCR1). • Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to ‘0’ in this example. In our example, the DIR and CMS bits in the TIMx_CR1 register should be low. You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected. Particular case: OCx fast enable: In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay tDELAY min we can get. If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. 17.3.16 Encoder interface mode To select Encoder Interface mode write SMS=‘001’ in the TIMx_SMCR register if the counter is counting on TI2 edges only, SMS=’010’ if it is counting on TI1 edges only and SMS=’011’ if it is counting on both TI1 and TI2 edges. Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER register. When needed, you can program the input filter as well. CC1NP and CC2NP must be kept low. The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to Table 101. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in TIMx_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated and generates count pulses as well as the direction signal. Depending on the sequence the counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever the counter is counting on TI1 only, TI2 only or both TI1 and TI2. Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value in the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must 498/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) configure TIMx_ARR before starting. in the same way, the capture, compare, prescaler, repetition counter, trigger output features continue to work as normal. Encoder mode and External clock mode 2 are not compatible and must not be selected together. In this mode, the counter is modified automatically following the speed and the direction of the incremental encoder and its content, therefore, always represents the encoder’s position. The count direction correspond to the rotation direction of the connected sensor. Table 101 summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the same time. Table 101. Counting direction versus encoder signals Level on opposite signal (TI1FP1 for TI2, TI2FP2 for TI1) Rising Falling Rising Falling Counting on TI1 only High Down Up No Count No Count Low Up Down No Count No Count Counting on TI2 only High No Count No Count Up Down Low No Count No Count Down Up Counting on TI1 and TI2 High Down Up Up Down Low Up Down Down Up Active edge TI1FP1 signal TI2FP2 signal An external incremental encoder can be connected directly to the MCU without external interface logic. However, comparators are normally be used to convert the encoder’s differential outputs to digital signals. This greatly increases noise immunity. The third encoder output which indicate the mechanical zero position, may be connected to an external interrupt input and trigger a counter reset. Figure 128 gives an example of counter operation, showing count signal generation and direction control. It also shows how input jitter is compensated where both edges are selected. This might occur if the sensor is positioned near to one of the switching points. For this example we assume that the configuration is the following: • CC1S=’01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1). • CC2S=’01’ (TIMx_CCMR2 register, TI1FP2 mapped on TI2). • CC1P=’0’, CC1NP=’0’, and IC1F = ‘0000’ (TIMx_CCER register, TI1FP1 non-inverted, TI1FP1=TI1). • CC2P=’0’, CC2NP=’0’, and IC2F = ‘0000’ (TIMx_CCER register, TI1FP2 non-inverted, TI1FP2= TI2). • SMS=’011’ (TIMx_SMCR register, both inputs are active on both rising and falling edges). • CEN=’1’ (TIMx_CR1 register, Counter enabled). RM0430 Rev 8 499/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Figure 128. Example of counter operation in encoder interface mode. IRUZDUG MLWWHU EDFNZDUG MLWWHU IRUZDUG 7, 7, &RXQWHU XS GRZQ XS 069 Figure 129 gives an example of counter behavior when TI1FP1 polarity is inverted (same configuration as above except CC1P=’1’). Figure 129. Example of encoder interface mode with TI1FP1 polarity inverted. IRUZDUG MLWWHU EDFNZDUG MLWWHU IRUZDUG 7, 7, &RXQWHU GRZQ XS GRZQ 069 The timer, when configured in Encoder Interface mode provides information on the sensor’s current position. You can obtain dynamic information (speed, acceleration, deceleration) by measuring the period between two encoder events using a second timer configured in capture mode. The output of the encoder which indicates the mechanical zero can be used for this purpose. Depending on the time between two events, the counter can also be read at regular times. You can do this by latching the counter value into a third input capture register if available (then the capture signal must be periodic and can be generated by another timer). when available, it is also possible to read its value through a DMA request generated by a real-time clock. 500/1324 RM0430 Rev 8 RM0430 17.3.17 Advanced-control timers (TIM1&TIM8) Timer input XOR function The TI1S bit in the TIMx_CR2 register allows the input filter of channel 1 to be connected to the output of a XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and TIMx_CH3. The XOR output can be used with all the timer input functions such as trigger or input capture. An example of this feature used to interface Hall sensors is given in Section 17.3.18 below. 17.3.18 Interfacing with Hall sensors This is done using the advanced-control timers (TIM1 or TIM8) to generate PWM signals to drive the motor and another timer TIMx (TIM2, TIM3, TIM4 orTIM5) referred to as “interfacing timer” in Figure 130. The “interfacing timer” captures the 3 timer input pins (TIMx_CH1, TIMx_CH2, and TIMx_CH3) connected through a XOR to the TI1 input channel (selected by setting the TI1S bit in the TIMx_CR2 register). The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus, each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a time base triggered by any change on the Hall inputs. On the “interfacing timer”, capture/compare channel 1 is configured in capture mode, capture signal is TRC (see Figure 113). The captured value, which corresponds to the time elapsed between 2 changes on the inputs, gives information about motor speed. The “interfacing timer” can be used in output mode to generate a pulse which changes the configuration of the channels of the advanced-control timer (TIM1 or TIM8) (by triggering a COM event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this, the interfacing timer channel must be programmed so that a positive pulse is generated after a programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-control timer (TIM1or TIM8) through the TRGO output. Example: you want to change the PWM configuration of your advanced-control timer TIM1 after a programmed delay each time a change occurs on the Hall inputs connected to one of the TIMx timers. • Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the TIMx_CR2 register to ‘1’, • Program the time base: write the TIMx_ARR to the max value (the counter must be cleared by the TI1 change. Set the prescaler to get a maximum counter period longer than the time between 2 changes on the sensors, • Program channel 1 in capture mode (TRC selected): write the CC1S bits in the TIMx_CCMR1 register to ‘11’. You can also program the digital filter if needed, • Program channel 2 in PWM 2 mode with the desired delay: write the OC2M bits to ‘111’ and the CC2S bits to ‘00’ in the TIMx_CCMR1 register, • Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 register to ‘101’, In the advanced-control timer TIM1, the right ITR input must be selected as trigger input, the timer is programmed to generate PWM signals, the capture/compare control signals are preloaded (CCPC=1 in the TIMx_CR2 register) and the COM event is controlled by the trigger input (CCUS=1 in the TIMx_CR2 register). The PWM control bits (CCxE, OCxM) are written after a COM event for the next step (this can be done in an interrupt subroutine generated by the rising edge of OC2REF). RM0430 Rev 8 501/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Figure 130 describes this example. Figure 130. Example of Hall sensor interface 7,+ ,QWHUIDFLQJWLPHU 7,+ 7,+ &RXQWHU &17 &&5 &&5 &$ &$ & &$ &$% & 75*2 2&5() &20 2& $GYDQFHGFRQWUROWLPHUV 2&1 2& 2&1 2& 2&1 :ULWH&&[(&&[1( DQG2&[0IRUQH[WVWHS DLE 502/1324 RM0430 Rev 8 RM0430 17.3.19 Advanced-control timers (TIM1&TIM8) TIMx and external trigger synchronization The TIMx timer can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode. Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: • Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write CC1P=0 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect rising edges only). • Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. • Start the counter by writing CEN=1 in the TIMx_CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register). The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. Figure 131. Control circuit in reset mode 7, 8* &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) 069 RM0430 Rev 8 503/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: • Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. • Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn’t start if CEN=0, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. Figure 132. Control circuit in gated mode 7, &17B(1 &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) :ULWH7,) 069 504/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: • Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC2S bits are configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI2 as the input source by writing TS=110 in TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 133. Control circuit in trigger mode 7, &17B(1 &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) 069 Slave mode: external clock mode 2 + trigger mode The external clock mode 2 can be used in addition to another slave mode (except external clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock input, and another input can be selected as trigger input (in reset mode, gated mode or trigger mode). It is recommended not to select ETR as TRGI through the TS bits of TIMx_SMCR register. In the following example, the upcounter is incremented at each rising edge of the ETR signal as soon as a rising edge of TI1 occurs: 1. Configure the external trigger input circuit by programming the TIMx_SMCR register as follows: – ETF = 0000: no filter – ETPS = 00: prescaler disabled – ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock mode 2. RM0430 Rev 8 505/1324 533 Advanced-control timers (TIM1&TIM8) 2. 3. RM0430 Configure the channel 1 as follows, to detect rising edges on TI: – IC1F=0000: no filter. – The capture prescaler is not used for triggering and does not need to be configured. – CC1S=01 in TIMx_CCMR1 register to select only the input capture source – CC1P=0 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect rising edge only). Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on ETR rising edges. The delay between the rising edge of the ETR signal and the actual reset of the counter is due to the resynchronization circuit on ETRP input. Figure 134. Control circuit in external clock mode 2 + trigger mode 7, &(1&17B(1 (75 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) 069 17.3.20 Timer synchronization The TIM timers are linked together internally for timer synchronization or chaining. Refer to Section 18.3.15: Timer synchronization on page 566 for details. 17.3.21 Debug mode When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For more details, refer to Section 37.16.2: Debug support for timers, watchdog, bxCAN and I2C. 506/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) 17.4 TIM1&TIM8 registers Refer to Section 1.2: List of abbreviations for registers for a list of abbreviations used in register descriptions. The peripheral registers must be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-word (16 bits) or words (32 bits). 17.4.1 TIM1&TIM8 control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 9 8 CKD[1:0] rw 7 ARPE rw rw 6 5 CMS[1:0] rw rw 4 3 2 1 0 DIR OPM URS UDIS CEN rw rw rw rw rw Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 CKD[1:0]: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters (ETR, TIx), 00: tDTS=tCK_INT 01: tDTS=2*tCK_INT 10: tDTS=4*tCK_INT 11: Reserved, do not program this value Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered 1: TIMx_ARR register is buffered Bits 6:5 CMS[1:0]: Center-aligned mode selection 00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR). 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down. 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down. Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1) Bit 4 DIR: Direction 0: Counter used as upcounter 1: Counter used as downcounter Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode. RM0430 Rev 8 507/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Bit 3 OPM: One pulse mode 0: Counter is not stopped at update event 1: Counter stops counting at the next update event (clearing the bit CEN) Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generate an update interrupt or DMA request if enabled. These events can be: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller 1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. 0: UEV enabled. The Update (UEV) event is generated by one of the following events: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. 17.4.2 TIM1&TIM8 control register 2 (TIMx_CR2) Address offset: 0x04 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 Res. OIS4 OIS3N OIS3 OIS2N OIS2 OIS1N OIS1 TI1S rw rw rw rw rw rw rw rw Bit 15 Reserved, must be kept at reset value. Bit 14 OIS4: Output Idle state 4 (OC4 output) refer to OIS1 bit Bit 13 OIS3N: Output Idle state 3 (OC3N output) refer to OIS1N bit Bit 12 OIS3: Output Idle state 3 (OC3 output) refer to OIS1 bit 508/1324 RM0430 Rev 8 6 5 4 MMS[2:0] rw rw rw 3 2 1 0 CCDS CCUS Res. CCPC rw rw rw RM0430 Advanced-control timers (TIM1&TIM8) Bit 11 OIS2N: Output Idle state 2 (OC2N output) refer to OIS1N bit Bit 10 OIS2: Output Idle state 2 (OC2 output) refer to OIS1 bit Bit 9 OIS1N: Output Idle state 1 (OC1N output) 0: OC1N=0 after a dead-time when MOE=0 1: OC1N=1 after a dead-time when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 8 OIS1: Output Idle state 1 (OC1 output) 0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0 1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 7 TI1S: TI1 selection 0: The TIMx_CH1 pin is connected to TI1 input 1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) Bits 6:4 MMS[2:0]: Master mode selection These bits allow to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: 000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. 001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enable. The Counter Enable signal is generated by a logic OR between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR register). 010: Update - The update event is selected as trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer. 011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO). 100: Compare - OC1REF signal is used as trigger output (TRGO) 101: Compare - OC2REF signal is used as trigger output (TRGO) 110: Compare - OC3REF signal is used as trigger output (TRGO) 111: Compare - OC4REF signal is used as trigger output (TRGO) Bit 3 CCDS: Capture/compare DMA selection 0: CCx DMA request sent when CCx event occurs 1: CCx DMA requests sent when update event occurs Bit 2 CCUS: Capture/compare control update selection 0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit only 1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit or when an rising edge occurs on TRGI Note: This bit acts only on channels that have a complementary output. RM0430 Rev 8 509/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Bit 1 Reserved, must be kept at reset value. Bit 0 CCPC: Capture/compare preloaded control 0: CCxE, CCxNE and OCxM bits are not preloaded 1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated only when a commutation event (COM) occurs (COMG bit set or rising edge detected on TRGI, depending on the CCUS bit). Note: This bit acts only on channels that have a complementary output. 17.4.3 TIM1&TIM8 slave mode control register (TIMx_SMCR) Address offset: 0x08 Reset value: 0x0000 15 14 ETP ECE rw rw 13 12 11 ETPS[1:0] rw rw 10 9 8 ETF[3:0] rw rw rw 7 6 MSM rw rw 5 4 TS[2:0] rw rw 3 2 Res. rw 1 0 SMS[2:0] rw rw rw Bit 15 ETP: External trigger polarity This bit selects whether ETR or ETR is used for trigger operations 0: ETR is non-inverted, active at high level or rising edge. 1: ETR is inverted, active at low level or falling edge. Bit 14 ECE: External clock enable This bit enables External clock mode 2. 0: External clock mode 2 disabled 1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal. Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=111). 2: It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 111). 3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF. Bits 13:12 ETPS[1:0]: External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of TIMxCLK frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks. 00: Prescaler OFF 01: ETRP frequency divided by 2 10: ETRP frequency divided by 4 11: ETRP frequency divided by 8 510/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Bits 11:8 ETF[3:0]: External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 Bit 7 MSM: Master/slave mode 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event. Bits 6:4 TS[2:0]: Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. 000: Internal Trigger 0 (ITR0) 001: Internal Trigger 1 (ITR1) 010: Internal Trigger 2 (ITR2) 011: Internal Trigger 3 (ITR3) 100: TI1 Edge Detector (TI1F_ED) 101: Filtered Timer Input 1 (TI1FP1) 110: Filtered Timer Input 2 (TI2FP2) 111: External Trigger input (ETRF) See Table 102: TIMx Internal trigger connection for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition. Bit 3 Reserved, must be kept at reset value. RM0430 Rev 8 511/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Bits 2:0 SMS: Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. 000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal clock. 001: Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level. 010: Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level. 011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. 100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers. 101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled. 110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled. 111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Table 102. TIMx Internal trigger connection Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) TIM1 TIM5 TIM2 TIM8 TIM1 TIM2 ITR2 (TS = 010) TIM3 or ITR3 (TS = 011) LPTIM1(1) TIM4 TIM4 TIM5 1. The selection of TIM3 or LPTIM1 is done via LPTIM1_OR register bit 2. TIM3 is selected by default. 17.4.4 TIM1&TIM8 DMA/interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 Res. TDE rw 13 12 11 10 9 COMDE CC4DE CC3DE CC2DE CC1DE rw rw rw rw rw 8 7 6 5 4 3 2 1 0 UDE BIE TIE COMIE CC4IE CC3IE CC2IE CC1IE UIE rw rw rw rw rw rw rw rw rw Bit 15 Reserved, must be kept at reset value. Bit 14 TDE: Trigger DMA request enable 0: Trigger DMA request disabled 1: Trigger DMA request enabled Bit 13 COMDE: COM DMA request enable 0: COM DMA request disabled 1: COM DMA request enabled 512/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Bit 12 CC4DE: Capture/Compare 4 DMA request enable 0: CC4 DMA request disabled 1: CC4 DMA request enabled Bit 11 CC3DE: Capture/Compare 3 DMA request enable 0: CC3 DMA request disabled 1: CC3 DMA request enabled Bit 10 CC2DE: Capture/Compare 2 DMA request enable 0: CC2 DMA request disabled 1: CC2 DMA request enabled Bit 9 CC1DE: Capture/Compare 1 DMA request enable 0: CC1 DMA request disabled 1: CC1 DMA request enabled Bit 8 UDE: Update DMA request enable 0: Update DMA request disabled 1: Update DMA request enabled Bit 7 BIE: Break interrupt enable 0: Break interrupt disabled 1: Break interrupt enabled Bit 6 TIE: Trigger interrupt enable 0: Trigger interrupt disabled 1: Trigger interrupt enabled Bit 5 COMIE: COM interrupt enable 0: COM interrupt disabled 1: COM interrupt enabled Bit 4 CC4IE: Capture/Compare 4 interrupt enable 0: CC4 interrupt disabled 1: CC4 interrupt enabled Bit 3 CC3IE: Capture/Compare 3 interrupt enable 0: CC3 interrupt disabled 1: CC3 interrupt enabled Bit 2 CC2IE: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled 1: CC2 interrupt enabled Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled 1: CC1 interrupt enabled Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled RM0430 Rev 8 513/1324 533 Advanced-control timers (TIM1&TIM8) 17.4.5 RM0430 TIM1&TIM8 status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. CC4OF CC3OF CC2OF CC1OF Res. BIF TIF COMIF CC4IF CC3IF CC2IF CC1IF UIF rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Bits 15:13 Reserved, must be kept at reset value. Bit 12 CC4OF: Capture/Compare 4 overcapture flag refer to CC1OF description Bit 11 CC3OF: Capture/Compare 3 overcapture flag refer to CC1OF description Bit 10 CC2OF: Capture/Compare 2 overcapture flag refer to CC1OF description Bit 9 CC1OF: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to ‘0’. 0: No overcapture has been detected. 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set Bit 8 Reserved, must be kept at reset value. Bit 7 BIF: Break interrupt flag This flag is set by hardware as soon as the break input goes active. It can be cleared by software if the break input is not active. 0: No break event occurred. 1: An active level has been detected on the break input. Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. 0: No trigger event occurred. 1: Trigger interrupt pending. Bit 5 COMIF: COM interrupt flag This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE, CCxNE, OCxM - have been updated). It is cleared by software. 0: No COM event occurred. 1: COM interrupt pending. Bit 4 CC4IF: Capture/Compare 4 interrupt flag refer to CC1IF description Bit 3 CC3IF: Capture/Compare 3 interrupt flag refer to CC1IF description 514/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Bit 2 CC2IF: Capture/Compare 2 interrupt flag refer to CC1IF description Bit 1 CC1IF: Capture/Compare 1 interrupt flag If channel CC1 is configured as output: This flag is set by hardware when the counter matches the compare value, with some exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register description). It is cleared by software. 0: No match. 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow (in downcounting mode) If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register. 0: No input capture occurred 1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1 which matches the selected polarity) Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: –At overflow or underflow regarding the repetition counter value (update if repetition counter = 0) and if the UDIS=0 in the TIMx_CR1 register. –When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register. –When CNT is reinitialized by a trigger event (refer to Section 17.4.3: TIM1&TIM8 slave mode control register (TIMx_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register. 17.4.6 TIM1&TIM8 event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. BG TG COMG CC4G CC3G CC2G CC1G UG w w w w w w w w Bits 15:8 Reserved, must be kept at reset value. Bit 7 BG: Break generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or DMA transfer can occur if enabled. Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled. RM0430 Rev 8 515/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Bit 5 COMG: Capture/Compare control update generation This bit can be set by software, it is automatically cleared by hardware 0: No action 1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits Note: This bit acts only on channels having a complementary output. Bit 4 CC4G: Capture/Compare 4 generation refer to CC1G description Bit 3 CC3G: Capture/Compare 3 generation refer to CC1G description Bit 2 CC2G: Capture/Compare 2 generation refer to CC1G description Bit 1 CC1G: Capture/Compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Reinitialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx_ARR) if DIR=1 (downcounting). 516/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) 17.4.7 TIM1&TIM8 capture/compare mode register 1 (TIMx_CCMR1) Address offset: 0x18 Reset value: 0x0000 The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. For a given bit, OCxx describes its function when the channel is configured in output, ICxx describes its function when the channel is configured in input. So you must take care that the same bit can have a different meaning for the input stage and for the output stage. 15 14 OC2 CE 13 12 OC2M[2:0] IC2F[3:0] rw rw rw 11 10 OC2 PE OC2 FE 9 8 CC2S[1:0] 7 IC2PSC[1:0] rw rw rw 6 OC1 CE 5 4 OC1M[2:0] IC1F[3:0] rw rw rw rw rw 3 2 OC1 PE OC1 FE 1 0 CC1S[1:0] IC1PSC[1:0] rw rw rw rw rw Output compare mode: Bit 15 OC2CE: Output Compare 2 clear enable Bits 14:12 OC2M[2:0]: Output Compare 2 mode Bit 11 OC2PE: Output Compare 2 preload enable Bit 10 OC2FE: Output Compare 2 fast enable Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER). Bit 7 OC1CE: Output Compare 1 clear enable OC1CE: Output Compare 1 Clear Enable 0: OC1Ref is not affected by the ETRF Input 1: OC1Ref is cleared as soon as a High level is detected on ETRF input RM0430 Rev 8 517/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Bits 6:4 OC1M: Output Compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits. 000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base). 001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1. 100: Force inactive level - OC1REF is forced low. 101: Force active level - OC1REF is forced high. 110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT TIMx_CCR1 else active (OC1REF=’1’). 111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT TIMx_CCR1 else inactive. Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in output). 2: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from “frozen” mode to “PWM” mode. 3: On channels having a complementary output, this bit field is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the OC1M active bits take the new value from the preloaded bits only when a COM event is generated. Bit 3 OC1PE: Output Compare 1 preload enable 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in output). 2: The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. Bit 2 OC1FE: Output Compare 1 fast enable This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. 1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently from the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode. 518/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER). Input capture mode Bits 15:12 IC2F: Input capture 2 filter Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler Bits 9:8 CC2S: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER). Bits 7:4 IC1F[3:0]: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 RM0430 Rev 8 519/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Bits 3:2 IC1PSC: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events Bits 1:0 CC1S: Capture/Compare 1 Selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER). 17.4.8 TIM1&TIM8 capture/compare mode register 2 (TIMx_CCMR2) Address offset: 0x1C Reset value: 0x0000 Refer to the above CCMR1 register description. 15 14 OC4 CE 13 12 OC4M[2:0] IC4F[3:0] rw rw rw 11 10 OC4 PE OC4 FE 9 8 CC4S[1:0] 7 IC4PSC[1:0] rw rw rw 6 OC3 CE. 5 4 OC3M[2:0] IC3F[3:0] rw rw rw rw rw 3 2 OC3 PE OC3 FE 1 0 CC3S[1:0] IC3PSC[1:0] rw rw rw rw rw Output compare mode Bit 15 OC4CE: Output compare 4 clear enable Bits 14:12 OC4M: Output compare 4 mode Bit 11 OC4PE: Output compare 4 preload enable Bit 10 OC4FE: Output compare 4 fast enable Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER). Bit 7 OC3CE: Output compare 3 clear enable Bits 6:4 OC3M: Output compare 3 mode 520/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Bit 3 OC3PE: Output compare 3 preload enable Bit 2 OC3FE: Output compare 3 fast enable Bits 1:0 CC3S: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER). Input capture mode Bits 15:12 IC4F: Input capture 4 filter Bits 11:10 IC4PSC: Input capture 4 prescaler Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER). Bits 7:4 IC3F: Input capture 3 filter Bits 3:2 IC3PSC: Input capture 3 prescaler Bits 1:0 CC3S: Capture/compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER). 17.4.9 TIM1&TIM8 capture/compare enable register (TIMx_CCER) Address offset: 0x20 Reset value: 0x0000 15 14 13 12 Res. Res. CC4P CC4E rw rw 11 10 CC3NP CC3NE rw rw 9 8 CC3P CC3E rw rw 7 6 CC2NP CC2NE rw rw 5 4 CC2P CC2E rw rw 3 2 CC1NP CC1NE rw rw 1 0 CC1P CC1E rw rw Bits 15:14 Reserved, must be kept at reset value. Bit 13 CC4P: Capture/Compare 4 output polarity refer to CC1P description RM0430 Rev 8 521/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Bit 12 CC4E: Capture/Compare 4 output enable refer to CC1E description Bit 11 CC3NP: Capture/Compare 3 complementary output polarity refer to CC1NP description Bit 10 CC3NE: Capture/Compare 3 complementary output enable refer to CC1NE description Bit 9 CC3P: Capture/Compare 3 output polarity refer to CC1P description Bit 8 CC3E: Capture/Compare 3 output enable refer to CC1E description Bit 7 CC2NP: Capture/Compare 2 complementary output polarity refer to CC1NP description Bit 6 CC2NE: Capture/Compare 2 complementary output enable refer to CC1NE description Bit 5 CC2P: Capture/Compare 2 output polarity refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable refer to CC1E description Bit 3 CC1NP: Capture/Compare 1 complementary output polarity CC1 channel configured as output: 0: OC1N active high. 1: OC1N active low. CC1 channel configured as input: This bit is used in conjunction with CC1P to define the polarity of TI1FP1 and TI2FP1. Refer to CC1P description. Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NP active bit takes the new value from the preloaded bit only when a Commutation event is generated. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=”00” (the channel is configured in output). Bit 2 CC1NE: Capture/Compare 1 complementary output enable 0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. 1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NE active bit takes the new value from the preloaded bit only when a Commutation event is generated. 522/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Bit 1 CC1P: Capture/Compare 1 output polarity CC1 channel configured as output: 0: OC1 active high 1: OC1 active low CC1 channel configured as input: CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture operations. 00: non-inverted/rising edge The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder mode). 01: inverted/falling edge The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder mode). 10: reserved, do not use this configuration. 11: non-inverted/both edges The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode). This configuration must not be used in encoder mode. Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1P active bit takes the new value from the preloaded bit only when a Commutation event is generated. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 0 CC1E: Capture/Compare 1 output enable CC1 channel configured as output: 0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits. 1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits. CC1 channel configured as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not. 0: Capture disabled. 1: Capture enabled. Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1E active bit takes the new value from the preloaded bit only when a Commutation event is generated. RM0430 Rev 8 523/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Table 103. Output control bits for complementary OCx and OCxN channels with break feature Output states(1) Control bits MOE OSSI OSSR CCxE CCxNE OCx output state bit bit bit bit bit 0 Output Disabled (not driven by the timer) OCx=0, OCx_EN=0 Output Disabled (not driven by the timer) OCxN=0, OCxN_EN=0 1 Output Disabled (not driven by the timer) OCx=0, OCx_EN=0 OCxREF + Polarity OCxN=OCxREF xor CCxNP, OCxN_EN=1 0 OCxREF + Polarity OCx=OCxREF xor CCxP, OCx_EN=1 Output Disabled (not driven by the timer) OCxN=0, OCxN_EN=0 1 OCREF + Polarity + dead-time OCx_EN=1 Complementary to OCREF (not OCREF) + Polarity + dead-time OCxN_EN=1 0 Output Disabled (not driven by the timer) OCx=CCxP, OCx_EN=0 Output Disabled (not driven by the timer) OCxN=CCxNP, OCxN_EN=0 1 Off-State (output enabled with inactive state) OCx=CCxP, OCx_EN=1 OCxREF + Polarity OCxN=OCxREF xor CCxNP, OCxN_EN=1 0 OCxREF + Polarity OCx=OCxREF xor CCxP, OCx_EN=1 Off-State (output enabled with inactive state) OCxN=CCxNP, OCxN_EN=1 1 OCREF + Polarity + dead-time OCx_EN=1 Complementary to OCREF (not OCREF) + Polarity + dead-time OCxN_EN=1 0 Output Disabled (not driven by the timer) OCx=CCxP, OCx_EN=0 Output Disabled (not driven by the timer) OCxN=CCxNP, OCxN_EN=0 0 0 1 1 X 0 1 1 0 1 0 0 1 0 1 X 0 0 1 1 0 1 OCxN output state 1 Output Disabled (not driven by the timer) Asynchronously: OCx=CCxP, OCx_EN=0, OCxN=CCxNP, OCxN_EN=0 Then if the clock is present: OCx=OISx and OCxN=OISxN after a deadtime, assuming that OISx and OISxN do not correspond to OCX and OCxN both in active state. Output Disabled (not driven by the timer) OCx=CCxP, OCx_EN=0 Output Disabled (not driven by the timer) OCxN=CCxNP, OCxN_EN=0 Off-State (output enabled with inactive state) Asynchronously: OCx=CCxP, OCx_EN=1, OCxN=CCxNP, OCxN_EN=1 Then if the clock is present: OCx=OISx and OCxN=OISxN after a deadtime, assuming that OISx and OISxN do not correspond to OCX and OCxN both in active state 1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN, CCxP and CCxNP bits must be kept cleared. 524/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels depends on the OCx and OCxN channel state and the GPIO registers. 17.4.10 TIM1&TIM8 counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CNT[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CNT[15:0]: Counter value 17.4.11 TIM1&TIM8 prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 PSC[15:0] rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in “reset mode”). 17.4.12 TIM1 auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to Section 17.3.1: Time-base unit for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. RM0430 Rev 8 525/1324 533 Advanced-control timers (TIM1&TIM8) 17.4.13 RM0430 TIM1&TIM8 repetition counter register (TIMx_RCR) Address offset: 0x30 Reset value: 0x0000 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw REP[7:0] rw rw rw rw rw Bits 15:8 Reserved, must be kept at reset value. Bits 7:0 REP[7:0]: Repetition counter value These bits allow the user to set-up the update rate of the compare registers (i.e. periodic transfers from preload to active registers) when preload registers are enable, as well as the update interrupt generation rate, if this interrupt is enable. Each time the REP_CNT related downcounter reaches zero, an update event is generated and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until the next repetition update event. It means in PWM mode (REP+1) corresponds to: – the number of PWM periods in edge-aligned mode – the number of half PWM period in center-aligned mode. 17.4.14 TIM1&TIM8 capture/compare register 1 (TIMx_CCR1) Address offset: 0x34 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR1[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR1[15:0]: Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. If channel CC1 is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). 526/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) 17.4.15 TIM1 capture/compare register 2 (TIMx_CCR2) Address offset: 0x38 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR2[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR2[15:0]: Capture/Compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC2 output. If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). 17.4.16 TIM1&TIM8 capture/compare register 3 (TIMx_CCR3) Address offset: 0x3C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR3[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR3[15:0]: Capture/Compare value If channel CC3 is configured as output: CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC3 output. If channel CC3 is configured as input: CCR3 is the counter value transferred by the last input capture 3 event (IC3). RM0430 Rev 8 527/1324 533 Advanced-control timers (TIM1&TIM8) 17.4.17 RM0430 TIM1&TIM8 capture/compare register 4 (TIMx_CCR4) Address offset: 0x40 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR4[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR4[15:0]: Capture/Compare value If channel CC4 is configured as output: CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR4 register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC4 output. If channel CC4 is configured as input: CCR4 is the counter value transferred by the last input capture 4 event (IC4). 17.4.18 TIM1&TIM8 break and dead-time register (TIMx_BDTR) Address offset: 0x44 Reset value: 0x0000 15 14 13 12 11 10 MOE AOE BKP BKE OSSR OSSI rw rw rw rw rw rw Note: 9 8 7 6 5 LOCK[1:0] rw rw 4 3 2 1 0 rw rw rw DTG[7:0] rw rw rw rw rw As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on the LOCK configuration, it can be necessary to configure all of them during the first write access to the TIMx_BDTR register. Bit 15 MOE: Main output enable This bit is cleared asynchronously by hardware as soon as the break input is active. It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. 0: OC and OCN outputs are disabled or forced to idle state. 1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in TIMx_CCER register). See OC/OCN enable description for more details (Section 17.4.9: TIM1&TIM8 capture/compare enable register (TIMx_CCER) on page 521). Bit 14 AOE: Automatic output enable 0: MOE can be set only by software 1: MOE can be set by software or automatically at the next update event (if the break input is not be active) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). 528/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) Bit 13 BKP: Break polarity 0: Break input BRK is active low 1: Break input BRK is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. Bit 12 BKE: Break enable 0: Break inputs (BRK and CSS clock failure event) disabled 1; Break inputs (BRK and CSS clock failure event) enabled Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. Bit 11 OSSR: Off-state selection for Run mode This bit is used when MOE=1 on channels having a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (Section 17.4.9: TIM1&TIM8 capture/compare enable register (TIMx_CCER) on page 521). 0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0). 1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1. Then, OC/OCN enable output signal=1 Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register). Bit 10 OSSI: Off-state selection for Idle mode This bit is used when MOE=0 on channels configured as outputs. See OC/OCN enable description for more details (Section 17.4.9: TIM1&TIM8 capture/compare enable register (TIMx_CCER) on page 521). 0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0). 1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or CCxNE=1. OC/OCN enable output signal=1) Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register). Bits 9:8 LOCK[1:0]: Lock configuration These bits offer a write protection against software errors. 00: LOCK OFF - No bit is write protected. 01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2 register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written. 10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER register, as long as the related channel is configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be written. 11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in TIMx_CCMRx registers, as long as the related channel is configured in output through the CCxS bits) can no longer be written. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset. RM0430 Rev 8 529/1324 533 Advanced-control timers (TIM1&TIM8) RM0430 Bits 7:0 DTG[7:0]: Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS. DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS. DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS. DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS. Example if TDTS=125ns (8MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 us to 31750 ns by 250 ns steps, 32 us to 63us by 1 us steps, 64 us to 126 us by 2 us steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). 17.4.19 TIM1&TIM8 DMA control register (TIMx_DCR) Address offset: 0x48 Reset value: 0x0000 15 14 13 Res. Res. Res. 12 11 rw rw 10 9 8 rw rw DBL[4:0] rw 7 6 5 Res. Res. Res. 4 3 rw rw 2 1 0 rw rw DBA[4:0] rw Bits 15:13 Reserved, must be kept at reset value. Bits 12:8 DBL[4:0]: DMA burst length This 5-bit vector defines the number of DMA transfers (the timer detects a burst transfer when a read or a write access to the TIMx_DMAR register address is performed). the TIMx_DMAR address) 00000: 1 transfer 00001: 2 transfers 00010: 3 transfers ... 10001: 18 transfers Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 DBA[4:0]: DMA base address This 5-bits vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: 00000: TIMx_CR1, 00001: TIMx_CR2, 00010: TIMx_SMCR, ... Example: Let us consider the following transfer: DBL = 7 transfers and DBA = TIMx_CR1. In this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address. 530/1324 RM0430 Rev 8 RM0430 Advanced-control timers (TIM1&TIM8) 17.4.20 TIM1&TIM8 DMA address for full transfer (TIMx_DMAR) Address offset: 0x4C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAB[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 DMAB[15:0]: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) x 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR). Example of how to use the DMA burst feature In this example the timer DMA burst feature is used to update the contents of the CCRx registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers. This is done in the following steps: 1. Note: Configure the corresponding DMA channel as follows: – DMA channel peripheral address is the DMAR register address – DMA channel memory address is the address of the buffer in the RAM containing the data to be transferred by DMA into CCRx registers. – Number of data to transfer = 3 (See note below). – Circular mode disabled. 2. Configure the DCR register by configuring the DBA and DBL bit fields as follows: DBL = 3 transfers, DBA = 0xE. 3. Enable the TIMx update DMA request (set the UDE bit in the DIER register). 4. Enable TIMx 5. Enable the DMA channel This example is for the case where every CCRx register to be updated once. If every CCRx register is to be updated twice for example, the number of data to transfer should be 6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6. The data is transferred to the CCRx registers as follows: on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is transferred to CCR3 and data6 is transferred to CCR4. RM0430 Rev 8 531/1324 533 0x30 532/1324 TIMx_RCR Reset value RM0430 Rev 8 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Reset value Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 CC3E 0 0 0 0 0 IC2F[3:0] 0 0 OC4M [2:0] 0 0 IC4F[3:0] 0 0 CC2S [1:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 UDE BIE TIE COMIE CC4IE CC3IE CC2IE CC1IE UIE 0 0 0 0 0 0 0 0 0 0 Res. IC2 CC2S PSC [1:0] [1:0] 0 0 0 CC4S [1:0] IC4 CC4S PSC [1:0] [1:0] 0 0 0 0 0 CC2IF CC1IF UIF 0 0 0 0 CC1G UG 0 0 OC1M [2:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 CNT[15:0] PSC[15:0] ARR[15:0] REP[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CC2G CC3IF 0 0 0 0 OC1FE CC4IF OIS1 TI1S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ARPE DIR OPM URS UDIS CEN 0 0 0 0 0 MMS[2:0] CCDS CCUS Res. CCPC 0 0 0 0 0 TS[2:0] IC1F[3:0] 0 0 OC3M [2:0] 0 0 IC3F[3:0] 0 Res. OIS1N 0 CC3G COMIF 0 COMG OIS2 0 OC1PE TIF 0 TG MSM OIS2N 0 CC4G BIF 0 BG Res. ETF[3:0] OC1CE OIS3 0 0 0 0 OC3FE 0 Res. OIS3N OIS4 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 CMS [1:0] OC3PE 0 OC3CE CC1DE 0 CC1OF 0 CC2OF 0 CC3OF 0 CC4OF 0 Res. CC2DE 0 0 0 Res. 0 0 0 OC2FE OC2M [2:0] OC4FE 0 CC3DE 0 0 0 Res. 0 0 0 OC2PE 0 CC4DE 0 COMDE 0 Res. ECE 0 TDE ETP 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 CC1E 0 CC2NP 0 0 0 CC1P 0 CC3P 0 0 0 CC1NE 0 CC3NE 0 Res. Reset value OC4PE Res. OC2CE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 ETPS [1:0] 0 CC1NP 0 CC3NP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 CC2E 0 CC4E O24CE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 CC2P 0 CC4P Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value CKD [1:0] CC2NE 0 Res. Reset value 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_ARR Res. 0x2C TIMx_PSC Res. 0x28 TIMx_CNT Res. 0x24 TIMx_CCER Res. 0x20 Res. Reset value TIMx_CCMR1 Output Compare mode Reset value TIMx_CCMR1 Input Capture mode Reset value TIMx_CCMR2 Output Compare mode Reset value TIMx_CCMR2 Input Capture mode Reset value Res. TIMx_EGR Res. 0x14 Res. TIMx_SR Res. 0x10 Res. TIMx_DIER Res. 0x0C Res. TIMx_SMCR Res. 0x08 Res. TIMx_CR2 Res. 0x1C TIMx_CR1 Res. 0x04 Res. 0x00 Res. 0x18 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 17.4.21 Res. Advanced-control timers (TIM1&TIM8) RM0430 TIM1&TIM8 register map TIM1&TIM8 registers are mapped as 16-bit addressable registers as described in the table below: Table 104. TIM1&TIM8 register map and reset values 0 0 0 0 0 0 SMS[2:0] 0 0 0 CC1S [1:0] IC1 CC1S PSC [1:0] [1:0] 0 0 0 0 0 CC3S [1:0] IC3 CC3S PSC [1:0] [1:0] 0 RM0430 Advanced-control timers (TIM1&TIM8) TIMx_CCR1 CCR1[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DT[7:0] 0 DBL[4:0] 0 0 0 0 0 Res. 0 0 LOCK [1:0] Res. 0 0 Res. OSSI 0 BKE 0 OSSR 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 BKP 0 0 Res. TIMx_DMAR 0 AOE 0 Reset value 0x4C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_DCR Res. Reset value 0x48 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_BDTR 0 CCR4[15:0] 0 Res. Reset value 0x44 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCR4 0 CCR3[15:0] 0 Res. Reset value 0x40 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCR3 0 CCR2[15:0] 0 Res. Reset value 0x3C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCR2 Res. 0x38 0 Res. Reset value MOE 0x34 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 104. TIM1&TIM8 register map and reset values (continued) 0 0 0 DBA[4:0] 0 0 0 0 0 0 0 0 0 0 DMAB[15:0] 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 58 for the register boundary addresses. RM0430 Rev 8 533/1324 533 General-purpose timers (TIM2 to TIM5) RM0430 18 General-purpose timers (TIM2 to TIM5) 18.1 TIM2 to TIM5 introduction The general-purpose timers consist of a 16-bit or 32-bit auto-reload counter driven by a programmable prescaler. They may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare and PWM). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The timers are completely independent, and do not share any resources. They can be synchronized together as described in Section 18.3.15. 18.2 TIM2 to TIM5 main features General-purpose TIMx timer features include: 534/1324 • 16-bit (TIM3 and TIM4) or 32-bit (TIM2 and TIM5) up, down, up/down auto-reload counter. • 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock frequency by any factor between 1 and 65536. • Up to 4 independent channels for: – Input capture – Output compare – PWM generation (Edge- and Center-aligned modes) – One-pulse mode output • Synchronization circuit to control the timer with external signals and to interconnect several timers. • Interrupt/DMA generation on the following events: – Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) – Trigger event (counter start, stop, initialization or count by internal/external trigger) – Input capture – Output compare • Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes • Trigger input for external clock or cycle-by-cycle current management RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Figure 135. General-purpose timer block diagram ,QWHUQDOFORFN &.B,17 7,0[&/.IURP5&& (75) (75 7,0[B(75 7ULJJHU FRQWUROOHU 75*2 3RODULW\VHOHFWLRQ HGJH (753 ,QSXWILOWHU GHWHFWRU SUHVFDOHU ,75 ,75 ,75 ,75 WRRWKHUWLPHUV WR'$&$'& 7*, ,75 75& 75*, 6ODYH FRQWUROOHU 5HVHWHQDEOHXSFRXQW PRGH 7,)B(' (QFRGHU LQWHUIDFH 7,)3 7,)3 8 $XWRUHORDGUHJLVWHU 6WRSFOHDURUXSGRZQ &.B36& ;25 7, 7,0[B&+ 7, 7,0[B&+ ,QSXWILOWHU HGJHGHWHFWRU ,QSXWILOWHU HGJHGHWHFWRU 7,)3 7,)3 ,& 36& &.B&17 SUHVFDOHU &&, 8 3UHVFDOHU 75& 7,)3 7,)3 75& ,&36 &&, ,& 3UHVFDOHU 7, 7,0[B&+ 7, 7,0[B&+ ,QSXWILOWHU HGJHGHWHFWRU ,QSXWILOWHU HGJHGHWHFWRU ,& 3UHVFDOHU 75& 7,)3 7,)3 &&, &DSWXUH&RPSDUHUHJLVWHU 2&5() &DSWXUH&RPSDUHUHJLVWHU ,&36 2XWSXW 2& FRQWURO 7,0[B&+ 2XWSXW 2& FRQWURO 7,0[B&+ 2XWSXW 2& FRQWURO 7,0[B&+ 2XWSXW 2& FRQWURO 7,0[B&+ &&, 8 ,&36 2&5() &&, 8 3UHVFDOHU 2&5() &&, 8 ,&36 &&, ,& 8 &17FRXQWHU &DSWXUH&RPSDUHUHJLVWHU &&, 7,)3 7,)3 8, &DSWXUH&RPSDUHUHJLVWHU 2&5() 75& (75) 1RWHV 5HJ 3UHORDGUHJLVWHUVWUDQVIHUUHG WRDFWLYHUHJLVWHUVRQ8HYHQW DFFRUGLQJWRFRQWUROELW (YHQW ,QWHUUXSW '0$RXWSXW 069 18.3 TIM2 to TIM5 functional description 18.3.1 Time-base unit The main block of the programmable timer is a 16-bit/32-bit counter with its related autoreload register. The counter can count up. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. RM0430 Rev 8 535/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 The time-base unit includes: • Counter Register (TIMx_CNT) • Prescaler Register (TIMx_PSC): • Auto-Reload Register (TIMx_ARR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detail for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit/32-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 136 and Figure 137 give some examples of the counter behavior when the prescaler ratio is changed on the fly: Figure 136. Counter timing diagram with prescaler division change from 1 to 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 536/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Figure 137. Counter timing diagram with prescaler division change from 1 to 4 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 18.3.2 Counter modes Upcounting mode In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. An Update event can be generated at each counter overflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller). The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register) • The auto-reload shadow register is updated with the preload value (TIMx_ARR) The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. RM0430 Rev 8 537/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Figure 138. Counter timing diagram, internal clock divided by 1 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 139. Counter timing diagram, internal clock divided by 2 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 140. Counter timing diagram, internal clock divided by 4 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 538/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Figure 141. Counter timing diagram, internal clock divided by N &.B,17 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 Figure 142. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded) &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGUHJLVWHU )) :ULWHDQHZYDOXHLQ7,0[B$55 06Y9 RM0430 Rev 8 539/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Figure 143. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded) &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) ) ) ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU $XWRUHORDGVKDGRZUHJLVWHU ) ) :ULWHDQHZYDOXHLQ7,0[B$55 06Y9 Downcounting mode In downcounting mode, the counter counts from the auto-reload value (content of the TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a counter underflow event. An Update event can be generate at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter restarts from the current auto-reload value, whereas the counter of the prescaler restarts from 0 (but the prescale rate doesn’t change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so that the next period is the expected one. The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. 540/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Figure 144. Counter timing diagram, internal clock divided by 1 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ FQWBXGI 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 Figure 145. Counter timing diagram, internal clock divided by 2 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 Figure 146. Counter timing diagram, internal clock divided by 4 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 06Y9 RM0430 Rev 8 541/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Figure 147. Counter timing diagram, internal clock divided by N &.B,17 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 148. Counter timing diagram, Update event &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU )) :ULWHDQHZYDOXHLQ7,0[B$55 069 Center-aligned mode (up/down counting) In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register) – 1, generates a counter overflow event, then counts from the autoreload value down to 1 and generates a counter underflow event. Then it restarts counting from 0. Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to '00'. The Output compare interrupt flag of channels configured in output is set when: the counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = "11"). 542/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated by hardware and gives the current direction of the counter. The update event can be generated at each counter overflow and at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. In this case, the counter restarts counting from 0, as well as the counter of the prescaler. The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter continues counting up and down, based on the current auto-reload value. In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupt when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that if the update source is a counter overflow, the autoreload is updated before the counter is reloaded, so that the next period is the expected one (the counter is loaded with the new value). The following figures show some examples of the counter behavior for different clock frequencies. Figure 149. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 1. Here, center-aligned mode 1 is used (for more details refer to Section 18.4.1: TIMx control register 1 (TIMx_CR1) on page 572). RM0430 Rev 8 543/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Figure 150. Counter timing diagram, internal clock divided by 2 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 151. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ FQWBRYI 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 1. Center-aligned mode 2 or 3 is used with an UIF on overflow. Figure 152. Counter timing diagram, internal clock divided by N &.B,17 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 544/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Figure 153. Counter timing diagram, Update event with ARPE=1 (counter underflow) &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHUXQGHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU )' :ULWHDQHZYDOXHLQ7,0[B$55 $XWRUHORDGDFWLYHUHJLVWHU )' 069 Figure 154. Counter timing diagram, Update event with ARPE=1 (counter overflow) &.B,17 &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDGUHJLVWHU )' :ULWHDQHZYDOXHLQ7,0[B$55 $XWRUHORDGDFWLYHUHJLVWHU )' 069 RM0430 Rev 8 545/1324 594 General-purpose timers (TIM2 to TIM5) 18.3.3 RM0430 Clock selection The counter clock can be provided by the following clock sources: • Internal clock (CK_INT) • External clock mode1: external input pin (TIx) • External clock mode2: external trigger input (ETR) available on TIM2, TIM3 and TIM4 only. • Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for example, you can configure Timer to act as a prescaler for Timer 2. Refer to Using one timer as prescaler for another for more details. Internal clock source (CK_INT) If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. Figure 155 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 155. Control circuit in normal mode, internal clock divided by 1 ,QWHUQDOFORFN &(1 &17B(1 8* &17B,1,7 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 069 External clock source mode 1 This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. 546/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Figure 156. TI2 external clock connection example 7,0[B60&5 76>@ RU 7,) 7,) ,75[ 7,B(' 7, )LOWHU (GJH GHWHFWRU 7,)B5LVLQJ 7,)B)DOOLQJ 7,)3 7,)3 (75) RU RU [[ 75*, (75) &.B,17 ,&)>@ &&3 7,0[B&&05 7,0[B&&(5 LQWHUQDOFORFN (QFRGHU PRGH ([WHUQDOFORFN PRGH ([WHUQDOFORFN PRGH &.B36& ,QWHUQDOFORFN PRGH (&( 606>@ 7,0[B60&5 069 For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: Note: 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01 in the TIMx_CCMR1 register. 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. 3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER register. 4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register. 5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register. 6. Enable the counter by writing CEN=1 in the TIMx_CR1 register. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. RM0430 Rev 8 547/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Figure 157. Control circuit in external clock mode 1 7, &17B(1 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) :ULWH7,) 069 External clock source mode 2 This mode is selected by writing ECE=1 in the TIMx_SMCR register. The counter can count at each rising or falling edge on the external trigger input ETR. Figure 158 gives an overview of the external trigger input block. Figure 158. External trigger input block RU 7,) 7,) (75 (75SLQ 'LYLGHU (73 (736>@ (753 &.B,17 7,0[B60&5 7,0[B60&5 )LOWHU GRZQFRXQWHU (7)>@ RU RU (QFRGHU PRGH 75*, ([WHUQDOFORFN &.B36& PRGH (75) ([WHUQDOFORFN PRGH &.B,17 ,QWHUQDOFORFN LQWHUQDOFORFN PRGH 7,0[B60&5 (&( 606>@ 7,0[B60&5 069 For example, to configure the upcounter to count each 2 rising edges on ETR, use the following procedure: 1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register. 2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register 3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR register 4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register. 5. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The counter counts once each 2 ETR rising edges. 548/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) The delay between the rising edge on ETR and the actual clock of the counter is due to the resynchronization circuit on the ETRP signal. Figure 159. Control circuit in external clock mode 2 &.B,17 &17B(1 (75 (753 (75) &RXQWHUFORFN &.B,17 &.B36& &RXQWHUUHJLVWHU 069 18.3.4 Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control). The following figure gives an overview of one Capture/Compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). RM0430 Rev 8 549/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Figure 160. Capture/compare channel (example: channel 1 input stage) 7,)B(' 7RWKHVODYHPRGHFRQWUROOHU 7,)B5LVLQJ 7, )LOWHU 7,) GRZQFRXQWHU I'76 (GJH GHWHFWRU 7,)B)DOOLQJ 7,)3 7,)3 &&3&&13 ,&)>@ 75& 7,0[B&&(5 7,0[B&&05 7,)B5LVLQJ IURPFKDQQHO 7,)B)DOOLQJ IURPFKDQQHO ,& IURPVODYHPRGH FRQWUROOHU ,&36 'LYLGHU &&6>@ ,&36>@ &&( 7,0[B&&05 7,0[B&&(5 069 The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. Figure 161. Capture/compare channel 1 main circuit $3%%XV 5HDG&&5/ UHDGBLQBSURJUHVV &&6>@ ,&36 ZULWHBLQBSURJUHVV ,QSXW PRGH 6 ZULWH&&5+ &DSWXUHFRPSDUHSUHORDGUHJLVWHU 5 5 FRPSDUHBWUDQVIHU FDSWXUHBWUDQVIHU &&6>@ ORZ 5HDG&&5+ 6 KLJK LIELW 0&8SHULSKHUDOLQWHUIDFH 2XWSXW PRGH &17!&&5 &RXQWHU &&* &&6>@ 8(9 &RPSDUDWRU &&( &&6>@ 2&3( &DSWXUHFRPSDUHVKDGRZUHJLVWHU &DSWXUH ZULWH&&5/ IURPWLPH EDVHXQLW 2&3( 7,0[B&&05 &17 &&5 7,0[B(*5 069 550/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Figure 162. Output stage of capture/compare channel (channel 1) KZ&ͺ>Z dZ& Ϭ KZ&ͺ>Zͺ/Ed ϭ dŽƚŚĞŵĂƐƚĞƌŵŽĚĞ ĐŽŶƚƌŽůůĞƌ Ϭ K^ ϭ d/Ddžͺ^DZ EdхZϭ EdсZϭ KƵƚƉƵƚ ŶĂďůĞ ŝƌĐƵŝƚ Kϭ ϭW KƵƚƉƵƚŵŽĚĞ ĐŽŶƚƌŽůůĞƌ ŽĐϭƌĞĨ d/DdžͺZ ϭ d/DdžͺZ KϭDϮ͗Ϭ d/DdžͺDZϭ Ăŝϭϳϭϴϳ The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. 18.3.5 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to 0 or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to 0. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: • Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only. • Program the input filter duration you need with respect to the signal you connect to the timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the RM0430 Rev 8 551/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 new level have been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the TIMx_CCMR1 register. • Select the edge of the active transition on the TI1 channel by writing the CC1P and CC1NP bits to 00 in the TIMx_CCER register (rising edge in this case). • Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the TIMx_CCMR1 register). • Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. • If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register. When an input capture occurs: • The TIMx_CCR1 register gets the value of the counter on the active transition. • CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. • An interrupt is generated depending on the CC1IE bit. • A DMA request is generated depending on the CC1DE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. 18.3.6 PWM input mode This mode is a particular case of input capture mode. The procedure is the same except: 552/1324 • Two ICx signals are mapped on the same TIx input. • These 2 ICx signals are active on edges with opposite polarity. • One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): • Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 register (TI1 selected). • Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): write the CC1P to ‘0’ and the CC1NP bit to ‘0’ (active on rising edge). • Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 register (TI1 selected). • Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P bit to ‘1’ and the CC2NP bit to ’0’(active on falling edge). • Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register (TI1FP1 selected). • Configure the slave mode controller in reset mode: write the SMS bits to 100 in the TIMx_SMCR register. • Enable the captures: write the CC1E and CC2E bits to ‘1 in the TIMx_CCER register. Figure 163. PWM input mode timing TI1 TIMx_CNT 0004 0000 0001 0002 TIMx_CCR1 0004 TIMx_CCR2 0002 IC1 capture IC2 capture reset counter 0003 0004 IC2 capture pulse width measurement 0000 IC1 capture period measurement ai15413 18.3.7 Forced output mode In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (ocxref/OCx) to its active level, you just need to write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. e.g.: CCxP=0 (OCx active high) => OCx is forced to high level. ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx register. RM0430 Rev 8 553/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the Output Compare Mode section. 18.3.8 Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: • Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match. • Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register). • Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). • Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on ocxref and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode). Procedure: 1. Select the counter clock (internal, external, prescaler). 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. 3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be generated. 4. Select the output mode. For example, you must write OCxM=011, OCxPE=0, CCxP=0 and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx preload is not used, OCx is enabled and active high. 5. Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in Figure 164. 554/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Figure 164. Output compare mode, toggle on OC1 :ULWH%KLQWKH&&5UHJLVWHU 7,0[B&17 7,0[B&&5 $ % $ % % % 2&5() 2& 0DWFKGHWHFWHGRQ&&5 ,QWHUUXSWJHQHUDWHGLIHQDEOHG 069 18.3.9 PWM mode Pulse width modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register. OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by the CCxE bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction of the counter). However, to comply with the ETRF (OCREF can be cleared by an external event through the ETR signal until the next PWM period), the OCREF signal is asserted only: • When the result of the comparison changes, or • When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from the “frozen” configuration (no comparison, OCxM=‘000) to one of the PWM modes (OCxM=‘110 or ‘111). This forces the PWM by software while the timer is running. The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the TIMx_CR1 register. RM0430 Rev 8 555/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 PWM edge-aligned mode Upcounting configuration Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Upcounting mode on page 537. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in TIMx_ARR, then ocxref is held at ‘1. 0% PWM is not possible in this mode. PWM center-aligned mode Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from ‘00 (all the remaining configurations having the same effect on the ocxref/OCx signals). The compare flag is set when the counter counts up, when it counts down or both when it counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to 556/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Center-aligned mode (up/down counting) on page 542. Figure 166 shows some center-aligned PWM waveforms in an example where: • TIMx_ARR=8, • PWM mode is the PWM mode 1, • The flag is set when the counter counts down corresponding to the center-aligned mode 1 selected for CMS=01 in TIMx_CR1 register. Figure 166. Center-aligned PWM waveforms (ARR=8) &RXQWHUUHJLVWHU 2&[5() &&5[ &06 &06 &06 &&[,) 2&[5() &&5[ &06 RU &&[,) 2&[5() µ¶ &&5[ &&[,) 2&[5() &&5[! µ¶ &06 &06 &06 &&[,) 2&[5() &&5[ &&[,) &06 &06 &06 µ¶ &06 &06 &06 $,E Hints on using center-aligned mode: • When starting in center-aligned mode, the current up-down configuration is used. It means that the counter counts up or down depending on the value written in the DIR bit RM0430 Rev 8 557/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the same time by the software. • • 18.3.10 Writing to the counter while running in center-aligned mode is not recommended as it can lead to unexpected results. In particular: – The direction is not updated if you write a value in the counter that is greater than the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was counting up, it continues to count up. – The direction is updated if you write 0 or write the TIMx_ARR value in the counter but no Update Event UEV is generated. The safest way to use center-aligned mode is to generate an update by software (setting the UG bit in the TIMx_EGR register) just before starting the counter and not to write the counter while it is running. One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be: • In upcounting: CNT CCRx. Figure 167. Example of one-pulse mode 7, 2&5() 2& &RXQWHU 7,0B$55 7,0B&&5 W'(/$< W38/6( W 069 For example you may want to generate a positive pulse on OC1 with a length of tPULSE and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin. 558/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Let’s use TI2FP2 as trigger 1: • Map TI2FP2 on TI2 by writing CC2S=01 in the TIMx_CCMR1 register. • TI2FP2 must detect a rising edge, write CC2P=0 and CC2NP=’0’ in the TIMx_CCER register. • Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=110 in the TIMx_SMCR register. • TI2FP2 is used to start the counter by writing SMS to ‘110 in the TIMx_SMCR register (trigger mode). The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). • The tDELAY is defined by the value written in the TIMx_CCR1 register. • The tPULSE is defined by the difference between the auto-reload value and the compare value (TIMx_ARR - TIMx_CCR + 1). • Let’s say you want to build a waveform with a transition from ‘0 to ‘1 when a compare match occurs and a transition from ‘1 to ‘0 when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE=1 in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to ‘0 in this example. In our example, the DIR and CMS bits in the TIMx_CR1 register should be low. You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected. Particular case: OCx fast enable: In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay tDELAY min we can get. If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) is forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. 18.3.11 Clearing the OCxREF signal on an external event The OCxREF signal for a given channel can be driven Low by applying a High level to the ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to '1'). The OCxREF signal remains Low until the next update event, UEV, occurs. This function can only be used in output compare and PWM modes, and does not work in forced mode. For example, the ETR signal can be connected to the output of a comparator to be used for current handling. In this case, ETR must be configured as follows: RM0430 Rev 8 559/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 1. The external trigger prescaler should be kept off: bits ETPS[1:0] in the TIMx_SMCR register are cleared to 00. 2. The external clock mode 2 must be disabled: bit ECE in the TIM1_SMCR register is cleared to 0. 3. The external trigger polarity (ETP) and the external trigger filter (ETF) can be configured according to the application’s needs. Figure 168 shows the behavior of the OCxREF signal when the ETRF input becomes high, for both values of the OCxCE enable bit. In this example, the timer TIMx is programmed in PWM mode. Figure 168. Clearing TIMx OCxREF &&5[ &RXQWHU &17 (75) 2&[5() 2&[&( µ¶ 2&[5() 2&[&( µ¶ (75)EHFRPHVKLJK (75)VWLOOKLJK 069 1. In case of a PWM with a 100% duty cycle (if CCRx>ARR), OCxREF is enabled again at the next counter overflow. 18.3.12 Encoder interface mode To select Encoder Interface mode write SMS=‘001 in the TIMx_SMCR register if the counter is counting on TI2 edges only, SMS=010 if it is counting on TI1 edges only and SMS=011 if it is counting on both TI1 and TI2 edges. Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER register. When needed, you can program the input filter as well. The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to Table 105. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in TIMx_CR1 register written to ‘1). The sequence of transitions of the two inputs is evaluated and generates count pulses as well as the direction signal. Depending on the sequence the counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever the counter is counting on TI1 only, TI2 only or both TI1 and TI2. Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value in the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must configure TIMx_ARR before starting. In the same way, the capture, compare, prescaler, trigger output features continue to work as normal. 560/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) In this mode, the counter is modified automatically following the speed and the direction of the incremental encoder and its content, therefore, always represents the encoder’s position. The count direction correspond to the rotation direction of the connected sensor. The table summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the same time. Table 105. Counting direction versus encoder signals Level on opposite signal (TI1FP1 for TI2, TI2FP2 for TI1) Rising Falling Rising Falling Counting on TI1 only High Down Up No Count No Count Low Up Down No Count No Count Counting on TI2 only High No Count No Count Up Down Low No Count No Count Down Up Counting on TI1 and TI2 High Down Up Up Down Low Up Down Down Up Active edge TI1FP1 signal TI2FP2 signal An external incremental encoder can be connected directly to the MCU without external interface logic. However, comparators are normally be used to convert the encoder’s differential outputs to digital signals. This greatly increases noise immunity. The third encoder output which indicate the mechanical zero position, may be connected to an external interrupt input and trigger a counter reset. Figure 169 gives an example of counter operation, showing count signal generation and direction control. It also shows how input jitter is compensated where both edges are selected. This might occur if the sensor is positioned near to one of the switching points. For this example we assume that the configuration is the following: • CC1S= ‘01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1) • CC2S= ‘01’ (TIMx_CCMR2 register, TI2FP2 mapped on TI2) • CC1P= ‘0’, CC1NP = ‘0’, IC1F =’0000’ (TIMx_CCER register, TI1FP1 noninverted, TI1FP1=TI1) • CC2P= ‘0’, CC2NP = ‘0’, IC2F =’0000’ (TIMx_CCER register, TI2FP2 noninverted, TI2FP2=TI2) • SMS= ‘011’ (TIMx_SMCR register, both inputs are active on both rising and falling edges) • CEN = 1 (TIMx_CR1 register, Counter is enabled) RM0430 Rev 8 561/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Figure 169. Example of counter operation in encoder interface mode IRUZDUG MLWWHU EDFNZDUG MLWWHU IRUZDUG 7, 7, &RXQWHU XS GRZQ XS 069 Figure 170 gives an example of counter behavior when TI1FP1 polarity is inverted (same configuration as above except CC1P=1). Figure 170. Example of encoder interface mode with TI1FP1 polarity inverted IRUZDUG MLWWHU EDFNZDUG MLWWHU IRUZDUG 7, 7, &RXQWHU GRZQ XS GRZQ 069 The timer, when configured in Encoder Interface mode provides information on the sensor’s current position. You can obtain dynamic information (speed, acceleration, deceleration) by measuring the period between two encoder events using a second timer configured in capture mode. The output of the encoder which indicates the mechanical zero can be used for this purpose. Depending on the time between two events, the counter can also be read at regular times. You can do this by latching the counter value into a third input capture register if available (then the capture signal must be periodic and can be generated by another timer). when available, it is also possible to read its value through a DMA request generated by a Real-Time clock. 562/1324 RM0430 Rev 8 RM0430 18.3.13 General-purpose timers (TIM2 to TIM5) Timer input XOR function The TI1S bit in the TIM_CR2 register, allows the input filter of channel 1 to be connected to the output of a XOR gate, combining the three input pins TIMx_CH1 to TIMx_CH3. The XOR output can be used with all the timer input functions such as trigger or input capture. 18.3.14 Timers and external trigger synchronization The TIMx Timers can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode. Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: • Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect rising edges only). • Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. • Start the counter by writing CEN=1 in the TIMx_CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register). The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. Figure 171. Control circuit in reset mode 7, 8* &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) 069 RM0430 Rev 8 563/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: • Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. • Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn’t start if CEN=0, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. Figure 172. Control circuit in gated mode 7, &17B(1 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) :ULWH7,) 069 1. The configuration “CCxP=CCxNP=1” (detection of both rising and falling edges) does not have any effect in gated mode because gated mode acts on a level and not on an edge. Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: • Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. CC2S bits are selecting the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write CC2P=1 in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI2 as the input source by writing TS=110 in TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. 564/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 173. Control circuit in trigger mode 7, &17B(1 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) 069 Slave mode: External Clock mode 2 + trigger mode The external clock mode 2 can be used in addition to another slave mode (except external clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock input, and another input can be selected as trigger input when operating in reset mode, gated mode or trigger mode. It is recommended not to select ETR as TRGI through the TS bits of TIMx_SMCR register. In the following example, the upcounter is incremented at each rising edge of the ETR signal as soon as a rising edge of TI1 occurs: 1. 2. 3. Configure the external trigger input circuit by programming the TIMx_SMCR register as follows: – ETF = 0000: no filter – ETPS = 00: prescaler disabled – ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock mode 2. Configure the channel 1 as follows, to detect rising edges on TI: – IC1F = 0000: no filter. – The capture prescaler is not used for triggering and does not need to be configured. – CC1S = 01 in TIMx_CCMR1 register to select only the input capture source – CC1P = 0 in TIMx_CCER register to validate the polarity (and detect rising edge only). Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on ETR rising edges. The delay between the rising edge of the ETR signal and the actual reset of the counter is due to the resynchronization circuit on ETRP input. RM0430 Rev 8 565/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Figure 174. Control circuit in external clock mode 2 + trigger mode 7, &(1&17B(1 (75 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) 069 18.3.15 Timer synchronization The TIMx timers are linked together internally for timer synchronization or chaining. When one Timer is configured in Master Mode, it can reset, start, stop or clock the counter of another Timer configured in Slave Mode. Figure 175 presents an overview of the trigger selection and the master mode selection blocks. Using one timer as prescaler for another Figure 175. Master/Slave timer example 7,0 7,0 &ORFN 76 006 8(9 3UHVFDOHU &RXQWHU 0DVWHU PRGH FRQWURO 75*2 ,75 606 6ODYH &.B36& PRGH FRQWURO 3UHVFDOHU &RXQWHU ,QSXWWULJJHU VHOHFWLRQ 069 566/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) For example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to Figure 175. To do this: Note: • Configure Timer 1 in master mode so that it outputs a periodic trigger signal on each update event UEV. If you write MMS=010 in the TIM1_CR2 register, a rising edge is output on TRGO1 each time an update event is generated. • To connect the TRGO1 output of Timer 1 to Timer 2, Timer 2 must be configured in slave mode using ITR0 as internal trigger. You select this through the TS bits in the TIM2_SMCR register (writing TS=000). • Then you put the slave mode controller in external clock mode 1 (write SMS=111 in the TIM2_SMCR register). This causes Timer 2 to be clocked by the rising edge of the periodic Timer 1 trigger signal (which correspond to the timer 1 counter overflow). • Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1 register). If OCx is selected on Timer 1 as trigger output (MMS=1xx), its rising edge is used to clock the counter of timer 2. Using one timer to enable another timer In this example, we control the enable of Timer 2 with the output compare 1 of Timer 1. Refer to Figure 175 for connections. Timer 2 counts on the divided internal clock only when OC1REF of Timer 1 is high. Both counter clock frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3). Note: • Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF) signal as trigger output (MMS=100 in the TIM1_CR2 register). • Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register). • Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register). • Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register). • Enable Timer 2 by writing ‘1 in the CEN bit (TIM2_CR1 register). • Start Timer 1 by writing ‘1 in the CEN bit (TIM1_CR1 register). The counter 2 clock is not synchronized with counter 1, this mode only affects the Timer 2 counter enable signal. Figure 176. Gating timer 2 with OC1REF of timer 1 &.B,17 7,0(52&5() 7,0(5&17 )& 7,0(5&17 )' )( )) 7,0(57,) :ULWH7,) 069 In the example in Figure 176, the Timer 2 counter and prescaler are not initialized before being started. So they start counting from their current value. It is possible to start from a given value by resetting both timers before starting Timer 1. You can then write any value RM0430 Rev 8 567/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 you want in the timer counters. The timers can easily be reset by software using the UG bit in the TIMx_EGR registers. In the next example, we synchronize Timer 1 and Timer 2. Timer 1 is the master and starts from 0. Timer 2 is the slave and starts from 0xE7. The prescaler ratio is the same for both timers. Timer 2 stops when Timer 1 is disabled by writing ‘0 to the CEN bit in the TIM1_CR1 register: • Configure Timer 1 master mode to send its Output Compare 1 Reference (OC1REF) signal as trigger output (MMS=100 in the TIM1_CR2 register). • Configure the Timer 1 OC1REF waveform (TIM1_CCMR1 register). • Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register). • Configure Timer 2 in gated mode (SMS=101 in TIM2_SMCR register). • Reset Timer 1 by writing ‘1 in UG bit (TIM1_EGR register). • Reset Timer 2 by writing ‘1 in UG bit (TIM2_EGR register). • Initialize Timer 2 to 0xE7 by writing ‘0xE7’ in the timer 2 counter (TIM2_CNTL). • Enable Timer 2 by writing ‘1 in the CEN bit (TIM2_CR1 register). • Start Timer 1 by writing ‘1 in the CEN bit (TIM1_CR1 register). • Stop Timer 1 by writing ‘0 in the CEN bit (TIM1_CR1 register). Figure 177. Gating timer 2 with Enable of timer 1 &.B,17 7,0(5&(1 &17B(1 7,0(5&17B,1,7 7,0(5&17 7,0(5&17 $% ( ( ( 7,0(5&17B,1,7 7,0(5ZULWH&17 7,0(57,) :ULWH7,) 069 Using one timer to start another timer In this example, we set the enable of Timer 2 with the update event of Timer 1. Refer to Figure 175 for connections. Timer 2 starts counting from its current value (which can be nonzero) on the divided internal clock as soon as the update event is generated by Timer 1. When Timer 2 receives the trigger signal its CEN bit is automatically set and the counter 568/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) counts until we write ‘0 to the CEN bit in the TIM2_CR1 register. Both counter clock frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3). • Configure Timer 1 master mode to send its Update Event (UEV) as trigger output (MMS=010 in the TIM1_CR2 register). • Configure the Timer 1 period (TIM1_ARR registers). • Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register). • Configure Timer 2 in trigger mode (SMS=110 in TIM2_SMCR register). • Start Timer 1 by writing ‘1 in the CEN bit (TIM1_CR1 register). Figure 178. Triggering timer 2 with update of timer 1 &.B,17 7,0(58(9 7,0(5&17 7,0(5&17 )' )( )) 7,0(5&(1 &17B(1 7,0(57,) :ULWH7,) 069 As in the previous example, you can initialize both counters before starting counting. Figure 179 shows the behavior with the same configuration as in Figure 176, but in trigger mode instead of gated mode (SMS=110 in the TIM2_SMCR register). RM0430 Rev 8 569/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Figure 179. Triggering timer 2 with Enable of timer 1 &.B,17 7,0(5&(1 &17B(1 7,0(5&17B,1,7 7,0(5&17 7,0(5&17 &' ( ( ( ($ 7,0(5&17B,1,7 7,0(5ZULWH&17 7,0(57,) :ULWH7,) 069 Using one timer as prescaler for another timer For example, you can configure Timer 1 to act as a prescaler for Timer 2. Refer to Figure 175 for connections. To do this: • Configure Timer 1 master mode to send its Update Event (UEV) as trigger output (MMS=010 in the TIM1_CR2 register). then it outputs a periodic signal on each counter overflow. • Configure the Timer 1 period (TIM1_ARR registers). • Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register). • Configure Timer 2 in external clock mode 1 (SMS=111 in TIM2_SMCR register). • Start Timer 2 by writing ‘1 in the CEN bit (TIM2_CR1 register). • Start Timer 1 by writing ‘1 in the CEN bit (TIM1_CR1 register). Starting 2 timers synchronously in response to an external trigger In this example, we set the enable of timer 1 when its TI1 input rises, and the enable of Timer 2 with the enable of Timer 1. Refer to Figure 175 for connections. To ensure the 570/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) counters are aligned, Timer 1 must be configured in Master/Slave mode (slave with respect to TI1, master with respect to Timer 2): • Configure Timer 1 master mode to send its Enable as trigger output (MMS=001 in the TIM1_CR2 register). • Configure Timer 1 slave mode to get the input trigger from TI1 (TS=100 in the TIM1_SMCR register). • Configure Timer 1 in trigger mode (SMS=110 in the TIM1_SMCR register). • Configure the Timer 1 in Master/Slave mode by writing MSM=1 (TIM1_SMCR register). • Configure Timer 2 to get the input trigger from Timer 1 (TS=000 in the TIM2_SMCR register). • Configure Timer 2 in trigger mode (SMS=110 in the TIM2_SMCR register). When a rising edge occurs on TI1 (Timer 1), both counters starts counting synchronously on the internal clock and both TIF flags are set. Note: In this example both timers are initialized before starting (by setting their respective UG bits). Both counters starts from 0, but you can easily insert an offset between them by writing any of the counter registers (TIMx_CNT). You can see that the master/slave mode insert a delay between CNT_EN and CK_PSC on timer 1. Figure 180. Triggering timer 1 and 2 with timer 1 TI1 input &.B,17 7,0(57, 7,0(5&(1 &17B(1 7,0(5&.B36& 7,0(5&17 7,0(57,) 7,0(5&(1 &17B(1 7,0(5&.B36& 7,0(5&17 7,0(57,) 069 18.3.16 Debug mode When the microcontroller enters debug mode (Cortex®-M4 with FPU core - halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBGMCU module. For more details, refer to Section 37.16.2: Debug support for timers, watchdog, bxCAN and I2C. RM0430 Rev 8 571/1324 594 General-purpose timers (TIM2 to TIM5) 18.4 RM0430 TIM2 to TIM5 registers Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions. The 32-bit peripheral registers have to be written by words (32 bits). All other peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 18.4.1 TIMx control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 9 8 CKD[1:0] rw 7 6 ARPE rw rw 5 CMS rw rw 4 3 2 1 0 DIR OPM URS UDIS CEN rw rw rw rw rw Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 CKD: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (ETR, TIx), 00: tDTS = tCK_INT 01: tDTS = 2 × tCK_INT 10: tDTS = 4 × tCK_INT 11: Reserved Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered 1: TIMx_ARR register is buffered Bits 6:5 CMS: Center-aligned mode selection 00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR). 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down. 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down. Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1) Bit 4 DIR: Direction 0: Counter used as upcounter 1: Counter used as downcounter Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode. Bit 3 OPM: One-pulse mode 0: Counter is not stopped at update event 1: Counter stops counting at the next update event (clearing the bit CEN) 572/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generate an update interrupt or DMA request if enabled. These events can be: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller 1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. 0: UEV enabled. The Update (UEV) event is generated by one of the following events: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. CEN is cleared automatically in one-pulse mode, when an update event occurs. RM0430 Rev 8 573/1324 594 General-purpose timers (TIM2 to TIM5) 18.4.2 RM0430 TIMx control register 2 (TIMx_CR2) Address offset: 0x04 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. TI1S rw 6 5 4 MMS[2:0] rw rw rw 3 2 1 0 CCDS Res. Res. Res. rw Bits 15:8 Reserved, must be kept at reset value. Bit 7 TI1S: TI1 selection 0: The TIMx_CH1 pin is connected to TI1 input 1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) Bits 6:4 MMS[2:0]: Master mode selection These bits allow to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: 000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. 001: Enable - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR register). 010: Update - The update event is selected as trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer. 011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO) 100: Compare - OC1REF signal is used as trigger output (TRGO) 101: Compare - OC2REF signal is used as trigger output (TRGO) 110: Compare - OC3REF signal is used as trigger output (TRGO) 111: Compare - OC4REF signal is used as trigger output (TRGO) Bit 3 CCDS: Capture/compare DMA selection 0: CCx DMA request sent when CCx event occurs 1: CCx DMA requests sent when update event occurs Bits 2:0 Reserved, must be kept at reset value. 574/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) 18.4.3 TIMx slave mode control register (TIMx_SMCR) Address offset: 0x08 Reset value: 0x0000 15 14 ETP ECE rw rw 13 12 11 ETPS[1:0] rw rw 10 9 8 ETF[3:0] rw rw rw 7 6 MSM rw rw 5 4 TS[2:0] rw rw 3 2 Res. rw 1 0 SMS[2:0] rw rw rw Bit 15 ETP: External trigger polarity This bit selects whether ETR or ETR is used for trigger operations 0: ETR is noninverted, active at high level or rising edge 1: ETR is inverted, active at low level or falling edge Bit 14 ECE: External clock enable This bit enables External clock mode 2. 0: External clock mode 2 disabled 1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal. 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=111). 2: It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 111). 3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF. Bits 13:12 ETPS: External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks. 00: Prescaler OFF 01: ETRP frequency divided by 2 10: ETRP frequency divided by 4 11: ETRP frequency divided by 8 Bits 11:8 ETF[3:0]: External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 RM0430 Rev 8 575/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Bit 7 MSM: Master/Slave mode 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event. Bits 6:4 TS: Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. 000: Internal Trigger 0 (ITR0) 001: Internal Trigger 1 (ITR1). 010: Internal Trigger 2 (ITR2). 011: Internal Trigger 3 (ITR3). 100: TI1 Edge Detector (TI1F_ED) 101: Filtered Timer Input 1 (TI1FP1) 110: Filtered Timer Input 2 (TI2FP2) 111: External Trigger input (ETRF) See Table 106 for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition. Bit 3 Reserved, must be kept at reset value. Bits 2:0 SMS: Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. 000: Slave mode disabled - if CEN = ‘1 then the prescaler is clocked directly by the internal clock. 001: Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level. 010: Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level. 011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. 100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers. 101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled. 110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled. 111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Table 106. TIMx internal trigger connections Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011) TIM2 TIM1 TIM8 TIM3 TIM4 TIM3 TIM1 TIM2 TIM5 TIM4 TIM4 TIM1 TIM2 TIM3 TIM8 TIM5 TIM2 TIM3 or LPTIM1(1) TIM4 TIM8 1. The selection of TIM3 or LPTIM1 is done via LPTIM1_OR register bit 3. TIM3 is selected by default. 576/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) 18.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 13 Res. TDE Res. rw 12 rw Bit 15 11 10 9 CC4DE CC3DE CC2DE CC1DE rw rw rw 8 7 6 5 4 3 2 1 0 UDE Res. TIE Res. CC4IE CC3IE CC2IE CC1IE UIE rw rw rw rw rw rw rw Reserved, must be kept at reset value. Bit 14 TDE: Trigger DMA request enable 0: Trigger DMA request disabled. 1: Trigger DMA request enabled. Bit 13 Reserved, always read as 0 Bit 12 CC4DE: Capture/Compare 4 DMA request enable 0: CC4 DMA request disabled. 1: CC4 DMA request enabled. Bit 11 CC3DE: Capture/Compare 3 DMA request enable 0: CC3 DMA request disabled. 1: CC3 DMA request enabled. Bit 10 CC2DE: Capture/Compare 2 DMA request enable 0: CC2 DMA request disabled. 1: CC2 DMA request enabled. Bit 9 CC1DE: Capture/Compare 1 DMA request enable 0: CC1 DMA request disabled. 1: CC1 DMA request enabled. Bit 8 UDE: Update DMA request enable 0: Update DMA request disabled. 1: Update DMA request enabled. Bit 7 Reserved, must be kept at reset value. Bit 6 TIE: Trigger interrupt enable 0: Trigger interrupt disabled. 1: Trigger interrupt enabled. Bit 5 Reserved, must be kept at reset value. Bit 4 CC4IE: Capture/Compare 4 interrupt enable 0: CC4 interrupt disabled. 1: CC4 interrupt enabled. Bit 3 CC3IE: Capture/Compare 3 interrupt enable 0: CC3 interrupt disabled 1: CC3 interrupt enabled RM0430 Rev 8 577/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Bit 2 CC2IE: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled 1: CC2 interrupt enabled Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled 1: CC1 interrupt enabled Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled 18.4.5 TIMx status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 Res. Res. Res. 12 rc_w0 Bits 15:13 11 10 9 CC4OF CC3OF CC2OF CC1OF rc_w0 rc_w0 8 7 6 5 4 3 2 1 0 Res. Res. TIF Res. CC4IF CC3IF CC2IF CC1IF UIF rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Reserved, must be kept at reset value. Bit 12 CC4OF: Capture/Compare 4 overcapture flag refer to CC1OF description Bit 11 CC3OF: Capture/Compare 3 overcapture flag refer to CC1OF description Bit 10 CC2OF: Capture/compare 2 overcapture flag refer to CC1OF description Bit 9 CC1OF: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to ‘0. 0: No overcapture has been detected 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set Bits 8:7 Reserved, must be kept at reset value. Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. 0: No trigger event occurred 1: Trigger interrupt pending Bit 5 Reserved, must be kept at reset value. Bit 4 CC4IF: Capture/Compare 4 interrupt flag refer to CC1IF description Bit 3 CC3IF: Capture/Compare 3 interrupt flag refer to CC1IF description 578/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Bit 2 CC2IF: Capture/Compare 2 interrupt flag refer to CC1IF description Bit 1 CC1IF: Capture/compare 1 interrupt flag If channel CC1 is configured as output: This flag is set by hardware when the counter matches the compare value, with some exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register description). It is cleared by software. 0: No match 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow (in downcounting mode) If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register. 0: No input capture occurred 1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1 which matches the selected polarity) Bit 0 UIF: Update interrupt flag ″ This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: ″ At overflow or underflow (for TIM2 to TIM5) and if UDIS=0 in the TIMx_CR1 register. ″ When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register. When CNT is reinitialized by a trigger event (refer to the synchro control register description), if URS=0 and UDIS=0 in the TIMx_CR1 register. RM0430 Rev 8 579/1324 594 General-purpose timers (TIM2 to TIM5) 18.4.6 RM0430 TIMx event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. TG Res. CC4G CC3G CC2G CC1G UG w w w w w w Bits 15:7 Reserved, must be kept at reset value. Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled. Bit 5 Reserved, must be kept at reset value. Bit 4 CC4G: Capture/compare 4 generation refer to CC1G description Bit 3 CC3G: Capture/compare 3 generation refer to CC1G description Bit 2 CC2G: Capture/compare 2 generation refer to CC1G description Bit 1 CC1G: Capture/compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx_ARR) if DIR=1 (downcounting). 580/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) 18.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) Address offset: 0x18 Reset value: 0x0000 The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. For a given bit, OCxx describes its function when the channel is configured in output, ICxx describes its function when the channel is configured in input. So you must take care that the same bit can have a different meaning for the input stage and for the output stage. 15 14 OC2CE 13 12 OC2M[2:0] IC2F[3:0] rw rw rw 11 10 OC2PE OC2FE IC2PSC[1:0] rw rw rw 9 8 CC2S[1:0] rw 7 6 OC1CE rw 5 4 OC1M[2:0] IC1F[3:0] rw rw rw 3 2 OC1PE OC1FE IC1PSC[1:0] rw rw rw 1 0 CC1S[1:0] rw rw Output compare mode Bit 15 OC2CE: Output compare 2 clear enable Bits 14:12 OC2M[2:0]: Output compare 2 mode Bit 11 OC2PE: Output compare 2 preload enable Bit 10 OC2FE: Output compare 2 fast enable Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). Bit 7 OC1CE: Output compare 1 clear enable OC1CE: Output Compare 1 Clear Enable 0: OC1Ref is not affected by the ETRF input 1: OC1Ref is cleared as soon as a High level is detected on ETRF input RM0430 Rev 8 581/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Bits 6:4 OC1M: Output compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits. 000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base). 001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1. 100: Force inactive level - OC1REF is forced low. 101: Force active level - OC1REF is forced high. 110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT TIMx_CCR1 else active (OC1REF=1). 111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT TIMx_CCR1 else inactive. Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from “frozen” mode to “PWM” mode. Bit 3 OC1PE: Output compare 1 preload enable 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in output). 2: The PWM mode can be used without validating the preload register only in onepulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. Bit 2 OC1FE: Output compare 1 fast enable This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. 1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently from the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode. Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output. 01: CC1 channel is configured as input, IC1 is mapped on TI1. 10: CC1 channel is configured as input, IC1 is mapped on TI2. 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). 582/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Input capture mode Bits 15:12 IC2F: Input capture 2 filter Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler Bits 9:8 CC2S: Capture/compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output. 01: CC2 channel is configured as input, IC2 is mapped on TI2. 10: CC2 channel is configured as input, IC2 is mapped on TI1. 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). Bits 7:4 IC1F: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 Bits 3:2 IC1PSC: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E=0 (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). RM0430 Rev 8 583/1324 594 General-purpose timers (TIM2 to TIM5) 18.4.8 RM0430 TIMx capture/compare mode register 2 (TIMx_CCMR2) Address offset: 0x1C Reset value: 0x0000 Refer to the above CCMR1 register description. 15 14 OC4CE 13 12 OC4M[2:0] IC4F[3:0] rw rw rw 11 10 OC4PE OC4FE IC4PSC[1:0] rw rw rw 9 8 CC4S[1:0] rw 7 6 OC3CE rw 5 4 OC3M[2:0] IC3F[3:0] rw rw rw 3 2 OC3PE OC3FE IC3PSC[1:0] rw rw rw 1 0 CC3S[1:0] rw rw Output compare mode Bit 15 OC4CE: Output compare 4 clear enable Bits 14:12 OC4M: Output compare 4 mode Bit 11 OC4PE: Output compare 4 preload enable Bit 10 OC4FE: Output compare 4 fast enable Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER). Bit 7 OC3CE: Output compare 3 clear enable Bits 6:4 OC3M: Output compare 3 mode Bit 3 OC3PE: Output compare 3 preload enable Bit 2 OC3FE: Output compare 3 fast enable Bits 1:0 CC3S: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER). 584/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) Input capture mode Bits 15:12 IC4F: Input capture 4 filter Bits 11:10 IC4PSC: Input capture 4 prescaler Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER). Bits 7:4 IC3F: Input capture 3 filter Bits 3:2 IC3PSC: Input capture 3 prescaler Bits 1:0 CC3S: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER). 18.4.9 TIMx capture/compare enable register (TIMx_CCER) Address offset: 0x20 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CC4NP Res. CC4P CC4E CC3NP Res. CC3P CC3E CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E rw rw rw rw rw rw rw rw rw rw rw rw Bit 15 CC4NP: Capture/Compare 4 output Polarity. Refer to CC1NP description Bit 14 Reserved, must be kept at reset value. Bit 13 CC4P: Capture/Compare 4 output Polarity. refer to CC1P description Bit 12 CC4E: Capture/Compare 4 output enable. refer to CC1E description Bit 11 CC3NP: Capture/Compare 3 output Polarity. refer to CC1NP description Bit 10 Reserved, must be kept at reset value. Bit 9 CC3P: Capture/Compare 3 output Polarity. refer to CC1P description Bit 8 CC3E: Capture/Compare 3 output enable. refer to CC1E description RM0430 Rev 8 585/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Bit 7 CC2NP: Capture/Compare 2 output Polarity. refer to CC1NP description Bit 6 Reserved, must be kept at reset value. Bit 5 CC2P: Capture/Compare 2 output Polarity. refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable. refer to CC1E description Bit 3 CC1NP: Capture/Compare 1 output Polarity. CC1 channel configured as output: CC1NP must be kept cleared in this case. CC1 channel configured as input: This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity. refer to CC1P description. Bit 2 Reserved, must be kept at reset value. Bit 1 CC1P: Capture/Compare 1 output Polarity. CC1 channel configured as output: 0: OC1 active high 1: OC1 active low CC1 channel configured as input: CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations. 00: noninverted/rising edge Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode). 01: inverted/falling edge Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is inverted (trigger in gated mode, encoder mode). 10: reserved, do not use this configuration. 11: noninverted/both edges Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration must not be used for encoder mode. Bit 0 CC1E: Capture/Compare 1 output enable. CC1 channel configured as output: 0: Off - OC1 is not active 1: On - OC1 signal is output on the corresponding output pin CC1 channel configured as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not. 0: Capture disabled 1: Capture enabled Table 107. Output control bit for standard OCx channels CCxE bit Note: 586/1324 OCx output state 0 Output Disabled (OCx=0, OCx_EN=0) 1 OCx=OCxREF + Polarity, OCx_EN=1 The state of the external IO pins connected to the standard OCx channels depends on the OCx channel state and the GPIO registers. RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) 18.4.10 TIMx counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CNT[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw Bits 15:0 CNT[15:0]: Counter value 18.4.11 TIMx prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 PSC[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event. 18.4.12 TIMx auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] Bits 15:0 rw ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to the Section 18.3.1: Time-base unit on page 535 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. RM0430 Rev 8 587/1324 594 General-purpose timers (TIM2 to TIM5) 18.4.13 RM0430 TIMx capture/compare register 1 (TIMx_CCR1) Address offset: 0x34 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CCR1[31:16] (depending on timers) rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw CCR1[15:0] rw rw Bits 31:16 CCR1[31:16]: High Capture/Compare 1 value (on TIM2 and TIM5). Bits 15:0 CCR1[15:0]: Low Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. If channel CC1is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). 18.4.14 TIMx capture/compare register 2 (TIMx_CCR2) Address offset: 0x38 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR2[31:16] (depending on timers) CCR2[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 CCR2[31:16]: High Capture/Compare 2 value (on TIM2 and TIM5). Bits 15:0 CCR2[15:0]: Low Capture/Compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC2 output. If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). 588/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) 18.4.15 TIMx capture/compare register 3 (TIMx_CCR3) Address offset: 0x3C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CCR3[31:16] (depending on timers) rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw CCR3[15:0] rw rw Bits 31:16 CCR3[31:16]: High Capture/Compare 3 value (on TIM2 and TIM5). Bits 15:0 CCR3[15:0]: Low Capture/Compare value If channel CC3 is configured as output: CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC3 output. If channel CC3 is configured as input: CCR3 is the counter value transferred by the last input capture 3 event (IC3). 18.4.16 TIMx capture/compare register 4 (TIMx_CCR4) Address offset: 0x40 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CCR4[31:16] (depending on timers) rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw CCR4[15:0] rw rw Bits 31:16 CCR4[31:16]: High Capture/Compare 4 value (onTIM2 and TIM5). Bits 15:0 CCR4[15:0]: Low Capture/Compare value 1. if CC4 channel is configured as output (CC4S bits): CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC4 output. 2. if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register): CCR4 is the counter value transferred by the last input capture 4 event (IC4). RM0430 Rev 8 589/1324 594 General-purpose timers (TIM2 to TIM5) 18.4.17 RM0430 TIMx DMA control register (TIMx_DCR) Address offset: 0x48 Reset value: 0x0000 15 14 13 Res. Res. Res. 12 11 10 9 8 DBL[4:0] rw rw rw rw 7 6 5 Res. Res. Res. rw 4 3 2 1 0 rw rw DBA[4:0] rw rw rw Bits 15:13 Reserved, must be kept at reset value. Bits 12:8 DBL[4:0]: DMA burst length This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address). 00000: 1 transfer, 00001: 2 transfers, 00010: 3 transfers, ... 10001: 18 transfers. Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 DBA[4:0]: DMA base address This 5-bit vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: 00000: TIMx_CR1, 00001: TIMx_CR2, 00010: TIMx_SMCR, ... Example: Let us consider the following transfer: DBL = 7 transfers & DBA = TIMx_CR1. In this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address. 18.4.18 TIMx DMA address for full transfer (TIMx_DMAR) Address offset: 0x4C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAB[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 DMAB[15:0]: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) x 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR). Example of how to use the DMA burst feature In this example the timer DMA burst feature is used to update the contents of the CCRx registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers. This is done in the following steps: 590/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM2 to TIM5) 1. Configure the corresponding DMA channel as follows: – DMA channel peripheral address is the DMAR register address – DMA channel memory address is the address of the buffer in the RAM containing the data to be transferred by DMA into CCRx registers. – Number of data to transfer = 3 (See note below). – Circular mode disabled. 2. Configure the DCR register by configuring the DBA and DBL bit fields as follows: DBL = 3 transfers, DBA = 0xE. 3. Enable the TIMx update DMA request (set the UDE bit in the DIER register). 4. Enable TIMx 5. Enable the DMA channel Note: This example is for the case where every CCRx register to be updated once. If every CCRx register is to be updated twice for example, the number of data to transfer should be 6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6. The data is transferred to the CCRx registers as follows: on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is transferred to CCR3 and data6 is transferred to CCR4. 18.4.19 TIM2 option register (TIM2_OR) Address offset: 0x50 Reset value: 0x0000 15 14 13 12 Res. Res. Res. Res. 11 10 ITR1_RMP rw 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw Bits 15:12 Reserved, must be kept at reset value. Bits 11:10 ITR1_RMP: Internal trigger 1 remap Set and cleared by software. 00: TIM8_TRGOUT 01: Reserved 10: OTG FS SOF is connected to the TIM2_ITR1 input 11: OTG HS SOF is connected to the TIM2_ITR1 input Bits 9:0 Reserved, must be kept at reset value. RM0430 Rev 8 591/1324 594 General-purpose timers (TIM2 to TIM5) 18.4.20 RM0430 TIM5 option register (TIM5_OR) Address offset: 0x50 Reset value: 0x0000 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 TI4_RMP rw 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. rw Bits 15:8 Reserved, must be kept at reset value. Bits 7:6 TI4_RMP: Timer Input 4 remap Set and cleared by software. 00: TIM5 Channel4 is connected to the GPIO: Refer to the Alternate function mapping table in the datasheets. 01: the LSI internal clock is connected to the TIM5_CH4 input for calibration purposes 10: the LSE internal clock is connected to the TIM5_CH4 input for calibration purposes 11: the RTC wakeup interrupt is connected to TIM5_CH4 input for calibration purposes. Wakeup interrupt should be enabled. Bits 5:0 Reserved, must be kept at reset value. 592/1324 RM0430 Rev 8 0x20 0x24 TIMx_CCER TIMx_CNT Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 RM0430 Rev 8 0 0 0 0 0 0 0 0 0 CC2NP Res. 0 0 0 0 0 0 0 0 CC2S [1:0] 0 0 0 OC4M [2:0] CC4S [1:0] 0 0 0 0 0 0 0 IC4F[3:0] 0 0 CC2S [1:0] OC1CE 0 0 0 CNT[31:16] (TIM2 and TIM5 only, reserved on the other timers) 0 0 0 0 0 IC4 PSC [1:0] CC4S [1:0] 0 0 Reset value 0 0 0 0 0 0 0 UIE UIF UG OC1M [2:0] CC1G 0 CC2G CC1IE CC1IF 0 0 0 0 0 0 OC1FE CC2IE CC2IF 0 CC3G CC3IE CC3IF 0 OC1PE 0 0 0 0 0 0 Res. CC4IE 0 Res. CC4IF 0 Res. 0 CC4G TIE 0 TIF 0 TG Res. 0 Res. Res. UDE Res. 0 Res. CC1OF 0 Res. CC1DE CC2OF 0 Res. 0 CC3OF 0 Res. 0 CC4OF 0 Res. CC2DE 0 0 MSM DIR OPM URS UDIS CEN CCDS Res. Res. Res. 0 0 0 0 TS[2:0] 0 IC1F[3:0] 0 0 OC3M [2:0] 0 IC3F[3:0] Res. MMS[2:0] ARPE TI1S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 IC1 PSC [1:0] CC1S [1:0] 0 0 0 OC3FE 0 OC2FE 0 CC3DE 0 CC4DE 0 COMDE 0 Res. ECE 0 TDE ETP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 OC3PE OC2M [2:0] OC2PE 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 CNT[15:0] 0 0 0 0 0 0 IC3 PSC [1:0] CC3S [1:0] 0 0 0 0 CC1E 0 IC2 PSC [1:0] OC3CE IC2F[3:0] OC4FE 0 OC4PE OC2CE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ETPS [1:0] ETF[3:0] 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 CMS [1:0] CC1P O24CE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 CC1NP 0 CC3E TIMx_CCMR2 Output Compare mode Res. Res. Res. Res. Res. Reset value 0 CC2E 0 CC3P 0 Res. Res. Res. Reset value CKD [1:0] CC2P 0 Res. 0 0 CC3NP Reset value CC4E Reset value CC4P Reset value Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value CC4NP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCMR2 Input Capture mode Res. 0x1C TIMx_CCMR1 Input Capture mode Res. TIMx_CCMR1 Output Compare mode Res. 0x18 TIMx_EGR Res. 0x14 TIMx_SR Res. 0x10 TIMx_DIER Res. 0x0C TIMx_SMCR Res. 0x08 TIMx_CR2 Res. 0x04 TIMx_CR1 Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 18.4.21 Res. RM0430 General-purpose timers (TIM2 to TIM5) TIMx register map TIMx registers are mapped as described in the table below: Table 108. TIM2 to TIM5 register map and reset values SMS[2:0] 0 0 0 CC1S [1:0] 0 0 0 0 CC3S [1:0] 0 0 0 0 0 0 0 0 0 593/1324 594 General-purpose timers (TIM2 to TIM5) RM0430 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. DBL[4:0] 0 0 Res. 0 Res. Res. Res. 0 Res. Res. Res. 0 0 Res. Reset value 0 0 ITR1_ RMP Res. Res. Res. Res. Res. Res. 0 0 Res. Res. Res. 0 0 Res. Res. 0 0 Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 DBA[4:0] 0 0 0 0 0 DMAB[15:0] 0 Res. 0 0 0 Res. TIM5_OR 0 0 Reset value 0x50 0 0 TIMx_DCR TIM2_OR 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 CCR4[15:0] Res. 0 0 CCR3[15:0] Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 0 IT4_ RMP Res. 0 0 Res. 0 0 Res. 0 Reset value 0x50 0 Res. 0 Reserved TIMx_DMAR 0 CCR2[15:0] Reset value 0x4C 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 CCR1[15:0] 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0x48 0 Res. 0x44 0 Res. Reset value 0 0 CCR4[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR4 0 0 0 0 0 0 CCR3[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR3 0 0 0 0 0 0 CCR2[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR2 0 0 Res. 0x40 0 0 ARR[15:0] CCR1[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR1 0 Res. Reserved 0 Res. 0 Reset value 0 Res. 0x3C 0 Res. Reset value Reset value 0 Res. 0x38 0 ARR[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_ARR Reset value 0 Res. 0x34 0 Res. 0x30 0 Res. 0x2C PSC[15:0] Res. TIMx_PSC Res. 0x28 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 108. TIM2 to TIM5 register map and reset values (continued) 0 0 Refer to Section 2.2.2: Memory map and register boundary addresses for the register boundary addresses. 594/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) 19 General-purpose timers (TIM9 to TIM14) 19.1 TIM9 to TIM14 introduction The TIM9 to TIM14 general-purpose timers consist of a 16-bit auto-reload counter driven by a programmable prescaler. They may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare, PWM). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The TIM9 to TIM14 timers are completely independent, and do not share any resources. They can be synchronized together as described in Section 19.3.12. 19.2 TIM9 to TIM14 main features 19.2.1 TIM9/TIM12 main features The features of the TIM9 to TIM14 general-purpose timers include: • 16-bit auto-reload upcounter • 16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536 (can be changed “on the fly”) • Up to 2 independent channels for: – Input capture – Output compare – PWM generation (edge-aligned mode) – One-pulse mode output • Synchronization circuit to control the timer with external signals and to interconnect several timers together • Interrupt generation on the following events: – Update: counter overflow, counter initialization (by software or internal trigger) – Trigger event (counter start, stop, initialization or count by internal trigger) – Input capture – Output compare RM0430 Rev 8 595/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 Figure 181. General-purpose timer block diagram (TIM9 and TIM12) Internal clock (CK_INT) ITR0 ITR1 TGI ITR ITR2 TRC Trigger controller TRGI ITR3 TI1F_ED Slave mode controller Reset, Enable, Count TI1FP1 TI2FP2 U Auto-reload register Stop, Clear CK_PSC PSC CK_CNT Prescaler +/- Input filter & Edge detector TIMx_CH1 TI1FP1 TI1FP2 IC1 Prescaler CC1I TIMx_CH2 Input filter & Edge detector Capture/Compare 1 register OC1REF output OC1 control TRC TI2 IC1PS U U CNT COUNTER CC1I TI1 UI TI2FP1 TI2FP2 CC2I IC2 CC2I IC2PS U Prescaler TIMx_CH1 Capture/Compare 2 register OC2REF output OC2 TIMx_CH2 control TRC Notes: Reg Preload registers transferred to active registers on U event according to control bit event interrupt ai17190 19.2.2 TIM10/TIM11 and TIM13/TIM14 main features The features of general-purpose timers TIM10/TIM11 and TIM13/TIM14 include: • 16-bit auto-reload upcounter • 16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536 (can be changed “on the fly”) • independent channel for: • 596/1324 – Input capture – Output compare – PWM generation (edge-aligned mode) – One-pulse mode output Interrupt generation on the following events: – Update: counter overflow, counter initialization (by software) – Input capture – Output compare RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Figure 182. General-purpose timer block diagram (TIM10/11/13/14) )NTERNAL CLOCK #+?).4 4RIGGER #ONTROLLER 5 %NABLE COUNTER !UTORELOAD REGISTER 3TOP #LEAR #+?03# 03# PRESCALER #+?#.4 5) 5 #.4 COUNTER ##) 4) 4)-X?#( )NPUT FILTER EDGE DETECTOR 4)&0 )# ##) 5 0RESCALER )#03 #APTURE#OMPARE REGISTER /#2%& OUTPUT /# CONTROL 4)-X?#( .OTES 2EG 0RELOAD REGISTERS TRANSFERRED TO ACTIVE REGISTERS ON 5 EVENT ACCORDING TO CONTROL BIT EVENT INTERRUPT $-! OUTPUT AIC RM0430 Rev 8 597/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 19.3 TIM9 to TIM14 functional description 19.3.1 Time-base unit The main block of the timer is a 16-bit counter with its related auto-reload register. The counters counts up. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: • Counter register (TIMx_CNT) • Prescaler register (TIMx_PSC) • Auto-reload register (TIMx_ARR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in details for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 183 and Figure 184 give some examples of the counter behavior when the prescaler ratio is changed on the fly. 598/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Figure 183. Counter timing diagram with prescaler division change from 1 to 2 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 Figure 184. Counter timing diagram with prescaler division change from 1 to 4 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 RM0430 Rev 8 599/1324 641 General-purpose timers (TIM9 to TIM14) 19.3.2 RM0430 Counter modes Upcounting mode In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller on TIM9 and TIM12) also generates an update event. The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The auto-reload shadow register is updated with the preload value (TIMx_ARR), • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 185. Counter timing diagram, internal clock divided by 1 <ͺW^ EdͺE dŝŵĞƌĐůŽĐŬс<ͺEd ŽƵŶƚĞƌƌĞŐŝƐƚĞƌ ϯϭ ϯϮ ϯϯ ϯϰ ϯϱ ϯϲ ϬϬ Ϭϭ ϬϮ Ϭϯ Ϭϰ Ϭϱ Ϭϲ Ϭϳ ŽƵŶƚĞƌŽǀĞƌĨůŽǁ hƉĚĂƚĞĞǀĞŶƚ;hsͿ hƉĚĂƚĞŝŶƚĞƌƌƵƉƚĨůĂŐ;h/&Ϳ 069 600/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Figure 186. Counter timing diagram, internal clock divided by 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 187. Counter timing diagram, internal clock divided by 4 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 188. Counter timing diagram, internal clock divided by N &.B36& 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 RM0430 Rev 8 601/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 Figure 189. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) <ͺW^ E dŝŵĞƌĐůŽĐŬс<ͺEd ŽƵŶƚĞƌƌĞŐŝƐƚĞƌ ϯϭ ϯϯ ϯϮ ϯϰ ϯϱ ϯϲ ϬϬ Ϭϭ ϬϮ Ϭϯ Ϭϰ Ϭϱ Ϭϲ Ϭϳ ŽƵŶƚĞƌŽǀĞƌĨůŽǁ hƉĚĂƚĞĞǀĞŶƚ;hsͿ hƉĚĂƚĞŝŶƚĞƌƌƵƉƚĨůĂŐ;h/&Ϳ ƵƚŽͲƌĞůŽĂĚƉƌĞůŽĂĚƌĞŐŝƐƚĞƌ && ϯϲ tƌŝƚĞĂŶĞǁǀĂůƵĞŝŶd/DdžͺZZ 069 Figure 190. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) ) ) ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDG UHJLVWHU ) $XWRUHORDGVKDGRZ UHJLVWHU ) :ULWHDQHZYDOXHLQ7,0[B$55 602/1324 RM0430 Rev 8 069 RM0430 19.3.3 General-purpose timers (TIM9 to TIM14) Clock selection The counter clock can be provided by the following clock sources: • Internal clock (CK_INT) • External clock mode1 (for TIM9 and TIM12): external input pin (TIx) • Internal trigger inputs (ITRx) (for TIM9 and TIM12): connecting the trigger output from another timer. Refer to Using one timer as prescaler for another for more details. Internal clock source (CK_INT) The internal clock source is the default clock source for TIM10/TIM11 and TIM13/TIM14. For TIM9 and TIM12, the internal clock source is selected when the slave mode controller is disabled (SMS=’000’). The CEN bit in the TIMx_CR1 register and the UG bit in the TIMx_EGR register are then used as control bits and can be changed only by software (except for UG which remains cleared). As soon as the CEN bit is programmed to 1, the prescaler is clocked by the internal clock CK_INT. Figure 191 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 191. Control circuit in normal mode, internal clock divided by 1 ,QWHUQDOFORFN &(1 &17B(1 8* &17B,1,7 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 069 External clock source mode 1(TIM9 and TIM12) This mode is selected when SMS=’111’ in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. RM0430 Rev 8 603/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 Figure 192. TI2 external clock connection example 7,0[B60&5 76>@ RU 7,) 7,) ,75[ 7,B(' 7, (GJH GHWHFWRU )LOWHU 7,)B5LVLQJ 7,)B)DOOLQJ 7,)3 7,)3 RU RU [[ 75*, &.B,17 ,&)>@ &&3 7,0[B&&05 7,0[B&&(5 &.B36& ([WHUQDOFORFN PRGH LQWHUQDOFORFN ,QWHUQDOFORFN PRGH 606>@ 7,0[B60&5 069 For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: Note: 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in the TIMx_CCMR1 register. 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=’0000’). 3. Select the rising edge polarity by writing CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER register. 4. Configure the timer in external clock mode 1 by writing SMS=’111’ in the TIMx_SMCR register. 5. Select TI2 as the trigger input source by writing TS=’110’ in the TIMx_SMCR register. 6. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register. The capture prescaler is not used for triggering, so you don’t need to configure it. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. Figure 193. Control circuit in external clock mode 1 7, &17B(1 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 7,) :ULWH7,) 604/1324 RM0430 Rev 8 069 RM0430 19.3.4 General-purpose timers (TIM9 to TIM14) Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control). Figure 194 to Figure 196 give an overview of one capture/compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). Figure 194. Capture/compare channel (example: channel 1 input stage) 7,)B(' 7RWKHVODYHPRGHFRQWUROOHU 7, I'76 7,)B5LVLQJ )LOWHU 7,) GRZQFRXQWHU (GJH GHWHFWRU 7,)B)DOOLQJ 7,)3 7,)3 ,&)>@ 7,0[B&&05 &&3&&13 7,0[B&&(5 7,)B5LVLQJ IURPFKDQQHO 7,)B)DOOLQJ IURPFKDQQHO 75& IURPVODYHPRGH FRQWUROOHU ,& ,&36 'LYLGHU &&6>@ ,&36>@ &&( 7,0[B&&05 7,0[B&&(5 069 The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. RM0430 Rev 8 605/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 Figure 195. Capture/compare channel 1 main circuit $3%%XV 5HDG&&5/ UHDGBLQBSURJUHVV &&6>@ ZULWHBLQBSURJUHVV ,QSXW PRGH 5 2XWSXW PRGH FRPSDUHBWUDQVIHU ZULWH&&5/ &&6>@ &&6>@ 2&3( &DSWXUHFRPSDUHVKDGRZUHJLVWHU 8(9 &RPSDUDWRU &DSWXUH ,&36 6 ZULWH&&5+ &DSWXUHFRPSDUHSUHORDGUHJLVWHU 5 FDSWXUHBWUDQVIHU &&6>@ ORZ 5HDG&&5+ 6 KLJK LIELW 0&8SHULSKHUDOLQWHUIDFH &&( &17!&&5 &RXQWHU 2&3( 7,0B&&05 IURPWLPH EDVHXQLW &17 &&5 &&* 7,0B(*5 069 Figure 196. Output stage of capture/compare channel (channel 1) 7RWKHPDVWHU PRGHFRQWUROOHU &17!&&5 2XWSXW PRGH &17 &&5 FRQWUROOHU 2&B5() 2XWSXW HQDEOH FLUFXLW 2& &&3 7,0[B&&(5 2&0>@ &&( 7,0[B&&(5 7,0[B&&05 DL The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. 19.3.5 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be 606/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) cleared by software by writing it to ‘0’ or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to ‘0’. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: 1. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to ‘01’ in the TIMx_CCMR1 register. As soon as CC1S becomes different from ‘00’, the channel is configured in input mode and the TIMx_CCR1 register becomes readonly. 2. Program the input filter duration you need with respect to the signal you connect to the timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been detected (sampled at fDTS frequency). Then write IC1F bits to ‘0011’ in the TIMx_CCMR1 register. 3. Select the edge of the active transition on the TI1 channel by programming CC1P and CC1NP bits to ‘00’ in the TIMx_CCER register (rising edge in this case). 4. Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the TIMx_CCMR1 register). 5. Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. 6. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register. When an input capture occurs: • The TIMx_CCR1 register gets the value of the counter on the active transition. • CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. • An interrupt is generated depending on the CC1IE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. 19.3.6 PWM input mode (only for TIM9/12) This mode is a particular case of input capture mode. The procedure is the same except: • Two ICx signals are mapped on the same TIx input. • These 2 ICx signals are active on edges with opposite polarity. • One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): RM0430 Rev 8 607/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 1. Select the active input for TIMx_CCR1: write the CC1S bits to ‘01’ in the TIMx_CCMR1 register (TI1 selected). 2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): program the CC1P and CC1NP bits to ‘00’ (active on rising edge). 3. Select the active input for TIMx_CCR2: write the CC2S bits to ‘10’ in the TIMx_CCMR1 register (TI1 selected). 4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): program the CC2P and CC2NP bits to ‘11’ (active on falling edge). 5. Select the valid trigger input: write the TS bits to ‘101’ in the TIMx_SMCR register (TI1FP1 selected). 6. Configure the slave mode controller in reset mode: write the SMS bits to ‘100’ in the TIMx_SMCR register. 7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register. Figure 197. PWM input mode timing TI1 TIMx_CNT 0004 0000 0001 0002 TIMx_CCR1 0004 TIMx_CCR2 0002 IC1 capture IC2 capture reset counter 0003 0004 IC2 capture pulse width measurement 0000 IC1 capture period measurement ai15413 1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only TI1FP1 and TI2FP2 are connected to the slave mode controller. 19.3.7 Forced output mode In output mode (CCxS bits = ‘00’ in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (OCXREF/OCx) to its active level, you just need to write ‘101’ in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. For example: CCxP=’0’ (OCx active high) => OCx is forced to high level. The OCxREF signal can be forced low by writing the OCxM bits to ‘100’ in the TIMx_CCMRx register. Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is described in the output compare mode section below. 608/1324 RM0430 Rev 8 RM0430 19.3.8 General-purpose timers (TIM9 to TIM14) Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: 1. Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=’000’), be set active (OCxM=’001’), be set inactive (OCxM=’010’) or can toggle (OCxM=’011’) on match. 2. Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register). 3. Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode). Procedure: 1. Select the counter clock (internal, external, prescaler). 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. 3. Set the CCxIE bit if an interrupt request is to be generated. 4. Select the output mode. For example: 5. – Write OCxM = ‘011’ to toggle OCx output pin when CNT matches CCRx – Write OCxPE = ‘0’ to disable preload register – Write CCxP = ‘0’ to select active high polarity – Write CCxE = ‘1’ to enable the output Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in Figure 198. RM0430 Rev 8 609/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 Figure 198. Output compare mode, toggle on OC1. :ULWH%KLQWKH&&5UHJLVWHU 7,0B&17 $ 7,0B&&5 % $ % % % 2&5() 2& 0DWFKGHWHFWHGRQ&&5 ,QWHUUXSWJHQHUDWHGLIHQDEOHG 069 19.3.9 PWM mode Pulse Width Modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register. The OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. The OCx output is enabled by the CCxE bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CNT ≤ TIMx_CCRx. The timer is able to generate PWM in edge-aligned mode only since the counter is upcounting. PWM edge-aligned mode In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’. Figure 199 shows some edgealigned PWM waveforms in an example where TIMx_ARR=8. 610/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Figure 199. Edge-aligned PWM waveforms (ARR=8) &RXQWHUUHJLVWHU &&5[ 2&;5() &&[,) 2&;5() &&5[ &&[,) 2&;5() µ¶ &&5[! &&[,) 2&;5() µ¶ &&5[ &&[,) 069 19.3.10 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be as follows: CNT < CCRx ≤ ARR (in particular, 0 < CCRx) RM0430 Rev 8 611/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 Figure 200. Example of one pulse mode. 7, 2&5() 2& &RXQWHU 7,0B$55 7,0B&&5 W'(/$< W38/6( W 069 For example you may want to generate a positive pulse on OC1 with a length of tPULSE and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin. Use TI2FP2 as trigger 1: 1. Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register. 2. TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP = ‘0’ in the TIMx_CCER register. 3. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in the TIMx_SMCR register. 4. TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register (trigger mode). The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). • The tDELAY is defined by the value written in the TIMx_CCR1 register. • The tPULSE is defined by the difference between the auto-reload value and the compare value (TIMx_ARR - TIMx_CCR1). • Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M=’111’ in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to ‘0’ in this example. You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected. 612/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Particular case: OCx fast enable In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay tDELAY min we can get. If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. 19.3.11 TIM9/12 external trigger synchronization The TIM9/12 timers can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode. Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: 1. Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=’0000’). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S = ‘01’ in the TIMx_CCMR1 register. Program CC1P and CC1NP to ‘00’ in TIMx_CCER register to validate the polarity (and detect rising edges only). 2. Configure the timer in reset mode by writing SMS=’100’ in TIMx_SMCR register. Select TI1 as the input source by writing TS=’101’ in TIMx_SMCR register. 3. Start the counter by writing CEN=’1’ in the TIMx_CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request can be sent if enabled (depending on the TIE bit in TIMx_DIER register). The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. RM0430 Rev 8 613/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 Figure 201. Control circuit in reset mode 7, 8* &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) 069 Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: 1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=’0000’). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S=’01’ in TIMx_CCMR1 register. Program CC1P=’1’ and CC1NP= ‘0’ in TIMx_CCER register to validate the polarity (and detect low level only). 2. Configure the timer in gated mode by writing SMS=’101’ in TIMx_SMCR register. Select TI1 as the input source by writing TS=’101’ in TIMx_SMCR register. 3. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register (in gated mode, the counter doesn’t start if CEN=’0’, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. 614/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Figure 202. Control circuit in gated mode 7, FQWBHQ &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) :ULWH7,) 069 Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: 1. Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC2F=’0000’). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC2S bits are configured to select the input capture source only, CC2S=’01’ in TIMx_CCMR1 register. Program CC2P=’1’ and CC2NP=’0’ in TIMx_CCER register to validate the polarity (and detect low level only). 2. Configure the timer in trigger mode by writing SMS=’110’ in TIMx_SMCR register. Select TI2 as the input source by writing TS=’110’ in TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 203. Control circuit in trigger mode 7, FQWBHQ &RXQWHUFORFN FNBFQW FNBSVF &RXQWHUUHJLVWHU 7,) 069 RM0430 Rev 8 615/1324 641 General-purpose timers (TIM9 to TIM14) 19.3.12 RM0430 Timer synchronization (TIM9/12) The TIM timers are linked together internally for timer synchronization or chaining. Refer to Section 18.3.15: Timer synchronization for details. 19.3.13 Debug mode When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For more details, refer to Section 37.16.2: Debug support for timers, watchdog, bxCAN and I2C. 19.4 TIM9 and TIM12 registers Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions. The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 19.4.1 TIM9/12 control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 9 8 CKD[1:0] rw 7 6 5 4 3 2 1 0 ARPE Res. Res. Res. OPM URS UDIS CEN rw rw rw rw rw rw Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 CKD: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (TIx), 00: tDTS = tCK_INT 01: tDTS = 2 × tCK_INT 10: tDTS = 4 × tCK_INT 11: Reserved Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered. 1: TIMx_ARR register is buffered. Bits 6:4 Reserved, must be kept at reset value. Bit 3 OPM: One-pulse mode 0: Counter is not stopped on the update event 1: Counter stops counting on the next update event (clearing the CEN bit). 616/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generates an update interrupt if enabled: – Counter overflow – Setting the UG bit 1: Only counter overflow generates an update interrupt if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable update event (UEV) generation. 0: UEV enabled. An UEV is generated by one of the following events: – Counter overflow – Setting the UG bit Buffered registers are then loaded with their preload values. 1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC, CCRx). The counter and the prescaler are reinitialized if the UG bit is set. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled CEN is cleared automatically in one-pulse mode, when an update event occurs. RM0430 Rev 8 617/1324 641 General-purpose timers (TIM9 to TIM14) 19.4.2 RM0430 TIM9/12 slave mode control register (TIMx_SMCR) Address offset: 0x08 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. MSM rw 6 5 4 TS[2:0] rw rw 3 2 Res. rw 1 0 SMS[2:0] rw rw rw Bits 15:8 Reserved, must be kept at reset value. Bit 7 MSM: Master/Slave mode 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful in order to synchronize several timers on a single external event. Bits 6:4 TS: Trigger selection This bitfield selects the trigger input to be used to synchronize the counter. 000: Internal Trigger 0 (ITR0) 001: Internal Trigger 1 (ITR1) 010: Internal Trigger 2 (ITR2) 011: Internal Trigger 3 (ITR3) 100: TI1 Edge Detector (TI1F_ED) 101: Filtered Timer Input 1 (TI1FP1) 110: Filtered Timer Input 2 (TI2FP2) 111: Reserved. See Table 109 for more details on the meaning of ITRx for each timer. Note: These bits must be changed only when they are not used (e.g. when SMS=’000’) to avoid wrong edge detections at the transition. Bit 3 Reserved, must be kept at reset value. Bits 2:0 SMS: Slave mode selection When external signals are selected, the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input control register and Control register descriptions. 000: Slave mode disabled - if CEN = 1 then the prescaler is clocked directly by the internal clock 001: Reserved 010: Reserved 011: Reserved 100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers 101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Counter starts and stops are both controlled 110: Trigger mode - The counter starts on a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled 111: External clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter Note: The Gated mode must not be used if TI1F_ED is selected as the trigger input (TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the Gated mode checks the level of the trigger signal. 618/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Table 109. TIMx internal trigger connections Slave TIM ITR0 (TS = ‘000’) ITR1 (TS = ‘001’) ITR2 (TS = ‘010’) ITR3 (TS = ‘011’) TIM9 TIM2 TIM3 or LPTIM1(1) TIM10_OC TIM11_OC TIM12 TIM4 TIM5 TIM13_OC TIM14_OC 1. The selection of TIM3 or LPTIM1 is done via LPTIM1_OR register bit 4. TIM3 is selected by default. 19.4.3 TIM9/12 Interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. TIE Res. Res. Res. CC2IE CC1IE UIE rw rw rw rw Bits 15:7 Reserved, must be kept at reset value. Bit 6 TIE: Trigger interrupt enable 0: Trigger interrupt disabled. 1: Trigger interrupt enabled. Bits 5:3 Reserved, must be kept at reset value. Bit 2 CC2IE: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled. 1: CC2 interrupt enabled. Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled. 1: CC1 interrupt enabled. Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled. 1: Update interrupt enabled. RM0430 Rev 8 619/1324 641 General-purpose timers (TIM9 to TIM14) 19.4.4 RM0430 TIM9/12 status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 Res. Res. Res. Res. Res. 10 rc_w0 Bits 15:11 9 CC2OF CC1OF 8 7 6 5 4 3 2 1 0 Res. Res. TIF Res. Res. Res. CC2IF CC1IF UIF rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Reserved, must be kept at reset value. Bit 10 CC2OF: Capture/compare 2 overcapture flag refer to CC1OF description Bit 9 CC1OF: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to ‘0’. 0: No overcapture has been detected. 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set Bits 8:7 Reserved, must be kept at reset value. Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. 0: No trigger event occurred. 1: Trigger interrupt pending. Bits 5:3 Reserved, must be kept at reset value. Bit 2 CC2IF: Capture/Compare 2 interrupt flag refer to CC1IF description 620/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Bit 1 CC1IF: Capture/compare 1 interrupt flag If channel CC1 is configured as output: This flag is set by hardware when the counter matches the compare value. It is cleared by software. 0: No match. 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow. If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register. 0: No input capture occurred. 1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1 which matches the selected polarity). Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: – At overflow and if UDIS=’0’ in the TIMx_CR1 register. – When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register. – When CNT is reinitialized by a trigger event (refer to the synchro control register description), if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register. RM0430 Rev 8 621/1324 641 General-purpose timers (TIM9 to TIM14) 19.4.5 RM0430 TIM9/12 event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. TG Res. Res. Res. CC2G CC1G UG w w w w Bits 15:7 Reserved, must be kept at reset value. Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: The TIF flag is set in the TIMx_SR register. Related interrupt can occur if enabled Bits 5:3 Reserved, must be kept at reset value. Bit 2 CC2G: Capture/compare 2 generation refer to CC1G description Bit 1 CC1G: Capture/compare 1 generation This bit is set by software to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: If channel CC1 is configured as output: the CC1IF flag is set, the corresponding interrupt is sent if enabled. If channel CC1 is configured as input: The current counter value is captured in the TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Re-initializes the counter and generates an update of the registers. The prescaler counter is also cleared and the prescaler ratio is not affected. The counter is cleared. 19.4.6 TIM9/12 capture/compare mode register 1 (TIMx_CCMR1) Address offset: 0x18 Reset value: 0x0000 The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits in this register have different functions in input and output modes. For a given bit, OCxx describes its function when the channel is configured in output mode, ICxx describes its function when the channel is configured in input mode. So you must take care that the same bit can have different meanings for the input stage and the output stage. 15 14 Res. 13 12 OC2M[2:0] IC2F[3:0] rw 622/1324 rw rw 11 10 OC2PE OC2FE IC2PSC[1:0] rw rw rw 9 8 CC2S[1:0] rw rw 7 6 Res. 5 4 OC1M[2:0] IC1F[3:0] rw RM0430 Rev 8 rw rw 3 2 OC1PE OC1FE IC1PSC[1:0] rw rw rw 1 0 CC1S[1:0] rw rw RM0430 General-purpose timers (TIM9 to TIM14) Output compare mode Bit 15 Reserved, must be kept at reset value. Bits 14:12 OC2M[2:0]: Output compare 2 mode Bit 11 OC2PE: Output compare 2 preload enable Bit 10 OC2FE: Output compare 2 fast enable Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal trigger input is selected through the TS bit (TIMx_SMCR register Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). Bit 7 Reserved, must be kept at reset value. Bits 6:4 OC1M: Output compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas the active levels of OC1 and OC1N depend on the CC1P and CC1NP bits, respectively. 000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base). 001: Set channel 1 to active level on match. The OC1REF signal is forced high when the TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1). 010: Set channel 1 to inactive level on match. The OC1REF signal is forced low when the TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1). 011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1 100: Force inactive level - OC1REF is forced low 101: Force active level - OC1REF is forced high 110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT TIMx_CCR1, else it is active (OC1REF=’1’) 111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT TIMx_CCR1 else it is inactive. Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from “frozen” mode to “PWM” mode. RM0430 Rev 8 623/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 Bit 3 OC1PE: Output compare 1 preload enable 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken into account immediately 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded into the active register at each update event Note: The PWM mode can be used without validating the preload register only in one-pulse mode (OPM bit set in the TIMx_CR1 register). Else the behavior is not guaranteed. Bit 2 OC1FE: Output compare 1 fast enable This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on the counter and CCR1 values even when the trigger is ON. The minimum delay to activate the CC1 output when an edge occurs on the trigger input is 5 clock cycles 1: An active edge on the trigger input acts like a compare match on the CC1 output. Then, OC is set to the compare level independently of the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the channel is configured in PWM1 or PWM2 mode. Bits 1:0 CC1S: Capture/Compare 1 selection This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). 624/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Input capture mode Bits 15:12 IC2F: Input capture 2 filter Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler Bits 9:8 CC2S: Capture/compare 2 selection This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). Bits 7:4 IC1F: Input capture 1 filter This bitfield defines the frequency used to sample the TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS1000: fSAMPLING=fDTS/8, N=6 0001: fSAMPLING=fCK_INT, N=21001: fSAMPLING=fDTS/8, N=8 0010: fSAMPLING=fCK_INT, N=41010: fSAMPLING=fDTS/16, N=5 0011: fSAMPLING=fCK_INT, N=8 1011: fSAMPLING=fDTS/16, N=6 0100: fSAMPLING=fDTS/2, N=61100: fSAMPLING=fDTS/16, N=8 0101: fSAMPLING=fDTS/2, N=81101: fSAMPLING=fDTS/32, N=5 0110: fSAMPLING=fDTS/4, N=61110: fSAMPLING=fDTS/32, N=6 0111: fSAMPLING=fDTS/4, N=81111: fSAMPLING=fDTS/32, N=8 Bits 3:2 IC1PSC: Input capture 1 prescaler This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1). The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events Bits 1:0 CC1S: Capture/Compare 1 selection This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). RM0430 Rev 8 625/1324 641 General-purpose timers (TIM9 to TIM14) 19.4.7 RM0430 TIM9/12 capture/compare enable register (TIMx_CCER) Address offset: 0x20 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E rw rw rw rw rw rw Bits 15:8 Reserved, must be kept at reset value. Bit 7 CC2NP: Capture/Compare 2 output Polarity refer to CC1NP description Bit 6 Reserved, must be kept at reset value. Bit 5 CC2P: Capture/Compare 2 output Polarity refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable refer to CC1E description Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity CC1 channel configured as output: CC1NP must be kept cleared CC1 channel configured as input: CC1NP is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity (refer to CC1P description). Bit 2 Reserved, must be kept at reset value. Bit 1 CC1P: Capture/Compare 1 output Polarity. CC1 channel configured as output: 0: OC1 active high. 1: OC1 active low. CC1 channel configured as input: CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations. 00: noninverted/rising edge Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode). 01: inverted/falling edge Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is inverted (trigger in gated mode, encoder mode). 10: reserved, do not use this configuration. Note: 11: noninverted/both edges Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration must not be used for encoder mode. Bit 0 CC1E: Capture/Compare 1 output enable. CC1 channel configured as output: 0: Off - OC1 is not active. 1: On - OC1 signal is output on the corresponding output pin. CC1 channel configured as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not. 0: Capture disabled. 1: Capture enabled. 626/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Table 110. Output control bit for standard OCx channels CCxE bit OCx output state 0 Output disabled (OCx=’0’, OCx_EN=’0’) 1 OCx=OCxREF + Polarity, OCx_EN=’1’ Note: The states of the external I/O pins connected to the standard OCx channels depend on the state of the OCx channel and on the GPIO registers. 19.4.8 TIM9/12 counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CNT[15:0] rw rw rw rw rw rw rw rw Bits 15:0 CNT[15:0]: Counter value 19.4.9 TIM9/12 prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw PSC[15:0] rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded into the active prescaler register at each update event. 19.4.10 TIM9/12 auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded into the actual auto-reload register. Refer to Section 19.3.1: Time-base unit for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. RM0430 Rev 8 627/1324 641 General-purpose timers (TIM9 to TIM14) 19.4.11 RM0430 TIM9/12 capture/compare register 1 (TIMx_CCR1) Address offset: 0x34 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR1[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR1[15:0]: Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded into the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (OC1PE bit). Else the preload value is copied into the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the TIMx_CNT counter and signaled on the OC1 output. If channel CC1is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). 19.4.12 TIM9/12 capture/compare register 2 (TIMx_CCR2) Address offset: 0x38 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR2[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR2[15:0]: Capture/Compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded into the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (OC2PE bit). Else the preload value is copied into the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the TIMx_CNT counter and signalled on the OC2 output. If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). 628/1324 RM0430 Rev 8 0x30 Reserved RM0430 Rev 8 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 IC2 PSC [1:0] CC2S [1:0] 0 0 0 0 0 0 0 Reset value 0 0 0 0 CC1NP Res. 0 Res. 0 CC2E 0 Res. Res. 0 0 CC2P OC2FE 0 Res. OC2PE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. IC2F[3:0] CC2S [1:0] 0 0 0 0 0 0 IC1F[3:0] CC1G UG Res. Res. Res. TG Res. 0 0 0 PSC[15:0] 0 0 0 0 0 0 0 0 0 UIF 0 CC2IE CC1IE UIE 0 CC1IF Res. Res. Res. TIE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 CC2IF Res. Res. Res. TIF Res. Res. CC1OF Res. Res. CC2OF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC2G 0 0 0 0 OC1FE 0 OC1PE OC1M [2:0] CNT[15:0] ARR[15:0] Res. 0 Res. Res. Res. Res. Res. Res. Reset value CC1E 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. 0 Res. Res. Res. 0 0 0 CC2NP Res. Res. Res. Res. Res. Res. Res. Res. Reset value URS CEN SMS[2:0] UDIS OPM 0 Res. Res. Res. Res. ARPE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MSM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TS[2:0] Res. 0 Res. Res. Res. Res. Res. 0 0 Res. 0 Res. Res. Res. Reset value OC2M [2:0] 0 CC1P 0 Res. Res. TIMx_CCER Res. Res. Res. Reset value 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value CKD [1:0] Res. 0 Res. Reset value Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_ARR Res. TIMx_PSC Res. TIMx_CNT Res. 0x2C TIMx_CCMR1 Input Capture mode Res. 0x28 Res. TIMx_CCMR1 Output Compare mode Res. 0x24 Res. 0x20 Reserved Res. 0x1C Res. 0x18 TIMx_EGR Res. 0x14 TIMx_SR Res. 0x10 TIMx_DIER Res. 0x0C TIMx_SMCR Res. 0x08 TIMx_CR1 Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 19.4.13 Res. RM0430 General-purpose timers (TIM9 to TIM14) TIM9/12 register map TIM9/12 registers are mapped as 16-bit addressable registers as described below: Table 111. TIM9/12 register map and reset values 0 0 0 0 0 0 0 0 0 0 0 0 CC1 S [1:0] 0 0 0 0 IC1 PSC [1:0] CC1 S [1:0] 0 0 0 0 0 629/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 RM0430 Rev 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CCR2[15:0] Refer to Section 2.2.2 on page 58 for the register boundary addresses. 630/1324 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reserved Res. Reset value 0x3C to 0x4C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCR2 Res. 0x38 0 Res. Reset value CCR1[15:0] Res. TIMx_CCR1 Res. 0x34 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 111. TIM9/12 register map and reset values (continued) RM0430 General-purpose timers (TIM9 to TIM14) 19.5 TIM10/11/13/14 registers The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 19.5.1 TIM10/11/13/14 control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 9 8 CKD[1:0] rw 7 6 5 4 3 2 1 0 ARPE Res. Res. Res. Res. URS UDIS CEN rw rw rw rw rw Bits 15:10 Reserved, must be kept at reset value. Bits 9:8 CKD: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (TIx), 00: tDTS = tCK_INT 01: tDTS = 2 × tCK_INT 10: tDTS = 4 × tCK_INT 11: Reserved Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered 1: TIMx_ARR register is buffered Bits 6:3 Reserved, must be kept at reset value. Bit 2 URS: Update request source This bit is set and cleared by software to select the update interrupt (UEV) sources. 0: Any of the following events generate an UEV if enabled: – Counter overflow – Setting the UG bit 1: Only counter overflow generates an UEV if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable update interrupt (UEV) event generation. 0: UEV enabled. An UEV is generated by one of the following events: – Counter overflow – Setting the UG bit. Buffered registers are then loaded with their preload values. 1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC, CCRx). The counter and the prescaler are reinitialized if the UG bit is set. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled RM0430 Rev 8 631/1324 641 General-purpose timers (TIM9 to TIM14) 19.5.2 RM0430 TIM10/11/13/14 Interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1IE UIE rw rw 0 Bits 15:2 Reserved, must be kept at reset value. Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled 1: CC1 interrupt enabled Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled 19.5.3 TIM10/11/13/14 status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Res. Res. Res. Res. Res. Res. CC1OF Res. Res. Res. Res. Res. Res. Res. CC1IF UIF rc_w0 rc_w0 rc_w0 Bits 15:10 Reserved, must be kept at reset value. Bit 9 CC1OF: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to ‘0’. 0: No overcapture has been detected. 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set Bits 8:2 632/1324 Reserved, must be kept at reset value. RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) Bit 1 CC1IF: Capture/compare 1 interrupt flag If channel CC1 is configured as output: This flag is set by hardware when the counter matches the compare value. It is cleared by software. 0: No match. 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow. If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register. 0: No input capture occurred. 1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1 which matches the selected polarity). Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: – At overflow and if UDIS=’0’ in the TIMx_CR1 register. – When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register. 19.5.4 TIM10/11/13/14 event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1G UG w w Bits 15:2 Reserved, must be kept at reset value. Bit 1 CC1G: Capture/compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Re-initialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared. RM0430 Rev 8 633/1324 641 General-purpose timers (TIM9 to TIM14) 19.5.5 RM0430 TIM10/11/13/14 capture/compare mode register 1 (TIMx_CCMR1) Address offset: 0x18 Reset value: 0x0000 The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. For a given bit, OCxx describes its function when the channel is configured in output, ICxx describes its function when the channel is configured in input. So you must take care that the same bit can have a different meaning for the input stage and for the output stage. 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 5 4 OC1M[2:0] RM0430 Rev 8 rw rw 3 2 OC1PE OC1FE IC1F[3:0] rw 634/1324 6 IC1PSC[1:0] rw rw rw 1 0 CC1S[1:0] rw rw RM0430 General-purpose timers (TIM9 to TIM14) Output compare mode Bits 15:7 Reserved, must be kept at reset value. Bits 6:4 OC1M: Output compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 is derived. OC1REF is active high whereas OC1 active level depends on CC1P bit. 000: Frozen. The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs. 001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 011: Toggle - OC1REF toggles when TIMx_CNT = TIMx_CCR1. 100: Force inactive level - OC1REF is forced low. 101: Force active level - OC1REF is forced high. 110: PWM mode 1 - Channel 1 is active as long as TIMx_CNT < TIMx_CCR1 else inactive. 111: PWM mode 2 - Channel 1 is inactive as long as TIMx_CNT < TIMx_CCR1 else active. Note: In PWM mode 1 or 2, the OCREF level changes when the result of the comparison changes or when the output compare mode switches from frozen to PWM mode. Bit 3 OC1PE: Output compare 1 preload enable 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. Bit 2 OC1FE: Output compare 1 fast enable This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. 1: An active edge on the trigger input acts like a compare match on CC1 output. OC is then set to the compare level independently of the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the channel is configured in PWM1 or PWM2 mode. Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output. 01: CC1 channel is configured as input, IC1 is mapped on TI1. 10: 11: Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). RM0430 Rev 8 635/1324 641 General-purpose timers (TIM9 to TIM14) RM0430 Input capture mode Bits 15:8 Reserved, must be kept at reset value. Bits 7:4 IC1F: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS1000: fSAMPLING=fDTS/8, N=6 0001: fSAMPLING=fCK_INT, N=21001: fSAMPLING=fDTS/8, N=8 0010: fSAMPLING=fCK_INT, N=41010: fSAMPLING=fDTS/16, N=5 0011: fSAMPLING=fCK_INT, N=81011: fSAMPLING=fDTS/16, N=6 0100: fSAMPLING=fDTS/2, N=61100: fSAMPLING=fDTS/16, N=8 0101: fSAMPLING=fDTS/2, N=81101: fSAMPLING=fDTS/32, N=5 0110: fSAMPLING=fDTS/4, N=61110: fSAMPLING=fDTS/32, N=6 0111: fSAMPLING=fDTS/4, N=81111: fSAMPLING=fDTS/32, N=8 Bits 3:2 IC1PSC: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: Reserved 11: Reserved Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). 636/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) 19.5.6 TIM10/11/13/14 capture/compare enable register (TIMx_CCER) Address offset: 0x20 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1NP Res. CC1P CC1E rw rw rw Bits 15:4 Reserved, must be kept at reset value. Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity. CC1 channel configured as output: CC1NP must be kept cleared. CC1 channel configured as input: CC1NP bit is used in conjunction with CC1P to define TI1FP1 polarity (refer to CC1P description). Bit 2 Reserved, must be kept at reset value. Bit 1 CC1P: Capture/Compare 1 output Polarity. CC1 channel configured as output: 0: OC1 active high 1: OC1 active low CC1 channel configured as input: The CC1P bit selects TI1FP1 and TI2FP1 polarity for trigger or capture operations. 00: noninverted/rising edge Circuit is sensitive to TI1FP1 rising edge (capture mode), TI1FP1 is not inverted. 01: inverted/falling edge Circuit is sensitive to TI1FP1 falling edge (capture mode), TI1FP1 is inverted. 10: reserved, do not use this configuration. 11: noninverted/both edges Circuit is sensitive to both TI1FP1 rising and falling edges (capture mode), TI1FP1 is not inverted. Bit 0 CC1E: Capture/Compare 1 output enable. CC1 channel configured as output: 0: Off - OC1 is not active 1: On - OC1 signal is output on the corresponding output pin CC1 channel configured as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not. 0: Capture disabled 1: Capture enabled Table 112. Output control bit for standard OCx channels CCxE bit Note: OCx output state 0 Output Disabled (OCx=’0’, OCx_EN=’0’) 1 OCx=OCxREF + Polarity, OCx_EN=’1’ The state of the external I/O pins connected to the standard OCx channels depends on the OCx channel state and the GPIO registers. RM0430 Rev 8 637/1324 641 General-purpose timers (TIM9 to TIM14) 19.5.7 RM0430 TIM10/11/13/14 counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CNT[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CNT[15:0]: Counter value 19.5.8 TIM10/11/13/14 prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 PSC[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event. 19.5.9 TIM10/11/13/14 auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to Section 19.3.1: Time-base unit for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. 638/1324 RM0430 Rev 8 RM0430 General-purpose timers (TIM9 to TIM14) 19.5.10 TIM10/11/13/14 capture/compare register 1 (TIMx_CCR1) Address offset: 0x34 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR1[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR1[15:0]: Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. If channel CC1is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). 19.5.11 TIM11 option register 1 (TIM11_OR) Address offset: 0x50 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 0 TI1_RMP[1:0] rw Bits 15:2 Bits 1:0 Reserved, must be kept at reset value. TI1_RMP[1:0]: TIM11 Input 1 remapping capability Set and cleared by software. 00,01,11: TIM11 Channel1 is connected to the GPIO (refer to the Alternate function mapping table in the datasheets). 10: HSE_RTC clock (HSE divided by programmable prescaler) is connected to the TIM11_CH1 input for measurement purposes. RM0430 Rev 8 639/1324 641 0x30 640/1324 Reserved RM0430 Rev 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_ARR Res. 0x2C TIMx_PSC Res. 0x28 TIMx_CNT Res. 0x24 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_CCER Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. Res. 0 0 Res. Res. Res. Res. Reset value 0 0 0 0 0 0 0 0 0 IC1F[3:0] Reset value 0 0 0 0 Res. CC1S [1:0] CC1E IC1 PSC [1:0] Res. OC1FE 0 CC1P 0 Res. 0 OC1PE OC1M [2:0] Res. Reset value 0 UIF Res. Res. Res. Res. 0 0 UG Reset value CC1IF 0 CC1G Res. Res. Res. Res. Res. Res. Res. CC1OF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1IE UIE Reset value Res. Reset value Res. URS UDIS CEN Res. Res. Res. Res. ARPE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value CKD [1:0] CC1NP Res. Reserved Res. 0x20 TIMx_CCMR1 Input capture mode Res. TIMx_CCMR1 Output compare mode Res. TIMx_EGR Res. TIMx_SR Res. TIMx_DIER Res. 0x1C Res. 0x18 Res. 0x14 Res. 0x10 Res. 0x0C Res. TIMx_SMCR Res. 0x08 Res. TIMx_CR1 Res. 0x00 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 19.5.12 Res. General-purpose timers (TIM9 to TIM14) RM0430 TIM10/11/13/14 register map TIMx registers are mapped as 16-bit addressable registers as described in the table below: Table 113. TIM10/11/13/14 register map and reset values 0 0 0 0 0 0 0 CC1S [1:0] 0 0 0 0 0 0 0 CNT[15:0] PSC[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 ARR[15:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 RM0430 Rev 8 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 Res. 0 Res. Res. Res. TIMx_CCR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register TI1_RMP Res. TIMx_OR Res. 0x50 Reserved Res. 0x38 to 0x4C Res. 0x34 Res. Offset Res. RM0430 General-purpose timers (TIM9 to TIM14) Table 113. TIM10/11/13/14 register map and reset values (continued) CCR1[15:0] 0 0 Refer to Section 2.2.2 on page 58 for the register boundary addresses. 641/1324 641 Basic timers (TIM6/7) RM0430 20 Basic timers (TIM6/7) 20.1 Introduction The basic timers TIM6, TIM7 consist of a 16-bit auto-reload counter driven by a programmable prescaler. 20.2 TIM6/7 main features Basic timer (TIM6/TIM7) features include: • 16-bit auto-reload upcounter • 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock frequency by any factor between 1 and 65536 • Interrupt/DMA generation on the update event: counter overflow Figure 204. Basic timer block diagram 7,0[&/.IURP5&& ,QWHUQDOFORFN &.B,17 7ULJJHU &RQWUROOHU &RQWURO 8 5HVHWHQDEOH&RXQW $XWRUHORDGUHJLVWHU 6WRSFOHDURUXS &.B36& 75*2 36& &.B&17 SUHVFDOHU 8, 8 &17FRXQWHU 1RWHV 5HJ 3UHORDGUHJLVWHUVWUDQVIHUUHG WRDFWLYHUHJLVWHUVRQ8HYHQW DFFRUGLQJWRFRQWUROELW (YHQW ,QWHUUXSW '0$RXWSXW 06Y9 642/1324 RM0430 Rev 8 RM0430 Basic timers (TIM6/7) 20.3 TIM6/7 functional description 20.3.1 Time-base unit The main block of the programmable timer is a 16-bit upcounter with its related auto-reload register. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: • Counter Register (TIMx_CNT) • Prescaler Register (TIMx_PSC) • Auto-Reload Register (TIMx_ARR) The auto-reload register is preloaded. The preload register is accessed each time an attempt is made to write or read the auto-reload register. The contents of the preload register are transferred into the shadow register permanently or at each update event UEV, depending on the auto-reload preload enable bit (ARPE) in the TIMx_CR1 register. The update event is sent when the counter reaches the overflow value and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detail for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in the TIMx_CR1 register is set. Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as the TIMx_PSC control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 205 and Figure 206 give some examples of the counter behavior when the prescaler ratio is changed on the fly. RM0430 Rev 8 643/1324 654 Basic timers (TIM6/7) RM0430 Figure 205. Counter timing diagram with prescaler division change from 1 to 2 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 Figure 206. Counter timing diagram with prescaler division change from 1 to 4 &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) )$ )% )& 8SGDWHHYHQW 8(9 3UHVFDOHUFRQWUROUHJLVWHU :ULWHDQHZYDOXHLQ7,0[B36& 3UHVFDOHUEXIIHU 3UHVFDOHUFRXQWHU 069 644/1324 RM0430 Rev 8 RM0430 20.3.2 Basic timers (TIM6/7) Counting mode The counter counts from 0 to the auto-reload value (contents of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. An update event can be generate at each counter overflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller). The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This avoids updating the shadow registers while writing new values into the preload registers. In this way, no update event occurs until the UDIS bit has been written to 0, however, the counter and the prescaler counter both restart from 0 (but the prescale rate does not change). In addition, if the URS (update request selection) bit in the TIMx_CR1 register is set, setting the UG bit generates an update event UEV, but the UIF flag is not set (so no interrupt or DMA request is sent). When an update event occurs, all the registers are updated and the update flag (UIF bit in the TIMx_SR register) is set (depending on the URS bit): • The buffer of the prescaler is reloaded with the preload value (contents of the TIMx_PSC register) • The auto-reload shadow register is updated with the preload value (TIMx_ARR) The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR = 0x36. Figure 207. Counter timing diagram, internal clock divided by 1 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 RM0430 Rev 8 645/1324 654 Basic timers (TIM6/7) RM0430 Figure 208. Counter timing diagram, internal clock divided by 2 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 209. Counter timing diagram, internal clock divided by 4 &.B36& &17B(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 646/1324 RM0430 Rev 8 RM0430 Basic timers (TIM6/7) Figure 210. Counter timing diagram, internal clock divided by N &.B36& 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) 069 Figure 211. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not preloaded) &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDG UHJLVWHU )) :ULWHDQHZYDOXHLQ7,0[B$55 069 RM0430 Rev 8 647/1324 654 Basic timers (TIM6/7) RM0430 Figure 212. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) &.B36& &(1 7LPHUFORFN &.B&17 &RXQWHUUHJLVWHU ) ) ) ) ) ) &RXQWHURYHUIORZ 8SGDWHHYHQW 8(9 8SGDWHLQWHUUXSWIODJ 8,) $XWRUHORDGSUHORDG UHJLVWHU ) $XWRUHORDGVKDGRZ UHJLVWHU ) :ULWHDQHZYDOXHLQ7,0[B$55 20.3.3 069 Clock source The counter clock is provided by the Internal clock (CK_INT) source. The CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except for UG that remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. Figure 213 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. 648/1324 RM0430 Rev 8 RM0430 Basic timers (TIM6/7) Figure 213. Control circuit in normal mode, internal clock divided by 1 ,QWHUQDOFORFN &(1 &17B(1 8* &17B,1,7 &RXQWHUFORFN &.B&17 &.B36& &RXQWHUUHJLVWHU 069 20.3.4 Debug mode When the microcontroller enters the debug mode (Cortex®-M4 with FPU core - halted), the TIMx counter either continues to work normally or stops, depending on the DBG_TIMx_STOP configuration bit in the DBG module. For more details, refer to Section 34.16.2: Debug support for timers, watchdog, bxCAN and I2C. RM0430 Rev 8 649/1324 654 Basic timers (TIM6/7) 20.4 RM0430 TIM6/7 registers Refer to Section 1.2: List of abbreviations for registers for a list of abbreviations used in register descriptions. The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 20.4.1 TIM6/7 control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. ARPE Res. Res. Res. OPM URS UDIS CEN rw rw rw rw rw Bits 15:8 Reserved, must be kept at reset value. Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered. 1: TIMx_ARR register is buffered. Bits 6:4 Reserved, must be kept at reset value. Bit 3 OPM: One-pulse mode 0: Counter is not stopped at update event 1: Counter stops counting at the next update event (clearing the CEN bit). Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generates an update interrupt or DMA request if enabled. These events can be: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller 1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. 0: UEV enabled. The Update (UEV) event is generated by one of the following events: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled Note: Gated mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. CEN is cleared automatically in one-pulse mode, when an update event occurs. 650/1324 RM0430 Rev 8 RM0430 Basic timers (TIM6/7) 20.4.2 TIM6/7 control register 2 (TIMx_CR2) Address offset: 0x04 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. 6 5 4 MMS[2:0] rw rw 3 2 1 0 Res. Res. Res. Res. rw Bits 15:7 Reserved, must be kept at reset value. Bits 6:4 MMS: Master mode selection These bits are used to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: 000: Reset - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. 001: Enable - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR register). 010: Update - The update event is selected as a trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer. Bits 3:0 Reserved, must be kept at reset value. 20.4.3 TIM6/7 DMA/Interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. UDE Res. Res. Res. Res. Res. Res. Res. UIE rw rw Bits 15:9 Reserved, must be kept at reset value. Bit 8 UDE: Update DMA request enable 0: Update DMA request disabled. 1: Update DMA request enabled. Bits 7:1 Reserved, must be kept at reset value. Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled. 1: Update interrupt enabled. RM0430 Rev 8 651/1324 654 Basic timers (TIM6/7) 20.4.4 RM0430 TIM6/7 status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 UIF rc_w0 Bits 15:1 Reserved, must be kept at reset value. Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: – At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the TIMx_CR1 register. – When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS = 0 and UDIS = 0 in the TIMx_CR1 register. 20.4.5 TIM6/7 event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. UG w Bits 15:1 Reserved, must be kept at reset value. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action. 1: Re-initializes the timer counter and generates an update of the registers. Note that the prescaler counter is cleared too (but the prescaler ratio is not affected). 20.4.6 TIM6/7 counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CNT[15:0] rw rw Bits 15:0 652/1324 rw rw rw rw rw rw rw CNT[15:0]: Counter value RM0430 Rev 8 RM0430 Basic timers (TIM6/7) 20.4.7 TIM6/7 prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw PSC[15:0] rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in “reset mode”). 20.4.8 TIM6/7 auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0xFFFF 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded into the actual auto-reload register. Refer to Section 20.3.1: Time-base unit on page 643 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. RM0430 Rev 8 653/1324 654 Basic timers (TIM6/7) 20.4.9 RM0430 TIM6/7 register map TIMx registers are mapped as 16-bit addressable registers as described in the table below: 6 5 4 3 2 1 0 Res. Res. Res. OPM URS UDIS CEN Res. Res. Res. Res. 7 ARPE Res. Res. Reset value 0 0x18 Res. 0x1C Res. 0x20 Res. 0x24 TIMx_CNT Reset value 0x28 0x2C CNT[15:0] 0 0 0 0 0 0 0 TIMx_PSC Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 PSC[15:0] 0 0 0 0 0 0 0 TIMx_ARR Reset value 0 0 ARR[15:0] 1 1 1 1 1 1 1 1 1 Refer to Section 2.2.2 on page 58 for the register boundary addresses. 654/1324 UG Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_EGR Res. 0x14 0 Res. Reset value UIF Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. TIMx_SR Res. 0x10 0 0 Res. Reset value UDE Res. Res. Res. Res. Res. TIMx_DIER Res. 0x0C 0 Res. Res. 0x08 0 UIE 8 Res. Res. Reset value MMS[2:0] Res. 9 Res. Res. Res. Res. Res. Res. Res. TIMx_CR2 Res. 0x04 Res. 10 Res. 0 Res. 11 Res. 0 Res. 12 Res. 0 0 Res. 13 Res. 0 Reset value Res. 14 TIMx_CR1 Res. 0x00 Register 15 Offset Res. Table 114. TIM6 register map and reset values RM0430 Rev 8 RM0430 Low-power timer (LPTIM) 21 Low-power timer (LPTIM) 21.1 Introduction The LPTIM is a 16-bit timer that benefits from the ultimate developments in power consumption reduction. Thanks to its diversity of clock sources, the LPTIM is able to keep running in all power modes except for Standby mode. Given its capability to run even with no internal clock source, the LPTIM can be used as a “Pulse Counter” which can be useful in some applications. Also, the LPTIM capability to wake up the system from low-power modes, makes it suitable to realize “Timeout functions” with extremely low power consumption. The LPTIM introduces a flexible clock scheme that provides the needed functionalities and performance, while minimizing the power consumption. 21.2 21.3 LPTIM main features • 16 bit upcounter • 3-bit prescaler with 8 possible dividing factors (1,2,4,8,16,32,64,128) • Selectable clock – Internal clock sources: LSE, LSI, HSI or APB clock – External clock source over LPTIM input (working with no LP oscillator running, used by Pulse Counter application) • 16 bit ARR autoreload register • 16 bit compare register • Continuous/One-shot mode • Selectable software/hardware input trigger • Programmable Digital Glitch filter • Configurable output: Pulse, PWM • Configurable I/O polarity • Encoder mode LPTIM implementation Table 115 describes LPTIM implementation on STM32F413/423 devices. Table 115. STM32F413/423 LPTIM features LPTIM modes/features(1) Encoder mode LPTIM1 X 1. X = supported. RM0430 Rev 8 655/1324 677 Low-power timer (LPTIM) RM0430 21.4 LPTIM functional description 21.4.1 LPTIM block diagram Figure 214. Low-power timer block diagram /37,0 $3%B,7) .HUQHO 8SGRZQ (QFRGHU *OLWFK ILOWHU ,QSXW *OLWFK ILOWHU ,QSXW $) SDGLQSXW 7,0'$&WULJJHU XSWRH[W WULJJHU *OLWFK ILOWHU 5&& 3$SDG $) SDGLQSXW VZ WULJJHU ELW$55 /37,0B25 0X[WULJJHU $3%FORFN /6( 3%SDG &/.08; /6, &2817 02'( 3UHVFDOHU 2XW ELWFRXQWHU +6, ELWFRPSDUH 06Y9 21.4.2 LPTIM trigger mapping The LPTIM external trigger connections are detailed hereafter: Table 116. LPTIM1 external trigger connection 656/1324 TRIGSEL External trigger lptim_ext_trig0 PB6 or PC3 input on AF1 lptim_ext_trig1 RTC alarm A output signal lptim_ext_trig2 RTC alarm B output signal lptim_ext_trig3 RTC tamper output signal lptim_ext_trig4 TIM1 trigger output (4) output signal lptim_ext_trig5 TIM5 trigger output (3) output signal RM0430 Rev 8 RM0430 Low-power timer (LPTIM) Table 116. LPTIM1 external trigger connection (continued) 21.4.3 TRIGSEL External trigger lptim_ext_trig6 Reserved lptim_ext_trig7 Reserved LPTIM input1 multiplexing Various inputs can be selected for LPTIM1 input 1 through the LPTMI option register (LPTIM1_OR). This input can either be connected to the pads selected by the LPTIM alternate function (AF1) or directly connected internally to PA4, PB9 pad or to TIM6/DAC trigger. In case of internal connection to PA4 or PB9, the selected alternate function for this pad defines the peripheral to which the timer is connected. PA4 and PB9 can also be configured as GPIO. 21.4.4 LPTIM reset and clocks The LPTIM can be clocked using several clock sources. It can be clocked using an internal clock signal which can be chosen among APB, LSI, LSE or HSI sources through the Reset and Clock controller (RCC). Also, the LPTIM can be clocked using an external clock signal injected on its external Input1. When clocked with an external clock source, the LPTIM may run in one of these two possible configurations: • The first configuration is when the LPTIM is clocked by an external signal but in the same time an internal clock signal is provided to the LPTIM either from APB or any other embedded oscillator including LSE, LSI and HSI. • The second configuration is when the LPTIM is solely clocked by an external clock source through its external Input1. This configuration is the one used to realize Timeout function or Pulse counter function when all the embedded oscillators are turned off after entering a low-power mode. Programming the CKSEL and COUNTMODE bits allows controlling whether the LPTIM will use an external clock source or an internal one. When configured to use an external clock source, the CKPOL bits are used to select the external clock signal active edge. If both edges are configured to be active ones, an internal clock signal should also be provided (first configuration). In this case, the internal clock signal frequency should be at least four times higher than the external clock signal frequency. 21.4.5 Glitch filter The LPTIM inputs, either external (mapped to microcontroller GPIOs) or internal (mapped on the chip-level to other embedded peripherals, such as embedded comparators), are protected with digital filters that prevent any glitches and noise perturbations to propagate inside the LPTIM. This is in order to prevent spurious counts or triggers. Before activating the digital filters, an internal clock source should first be provided to the LPTIM. This is necessary to guarantee the proper operation of the filters. RM0430 Rev 8 657/1324 677 Low-power timer (LPTIM) RM0430 The digital filters are divided into two groups: Note: • The first group of digital filters protects the LPTIM external inputs. The digital filters sensitivity is controlled by the CKFLT bits • The second group of digital filters protects the LPTIM internal trigger inputs. The digital filters sensitivity is controlled by the TRGFLT bits. The digital filters sensitivity is controlled by groups. It is not possible to configure each digital filter sensitivity separately inside the same group. The filter sensitivity acts on the number of consecutive equal samples that should be detected on one of the LPTIM inputs to consider a signal level change as a valid transition. Figure 215 shows an example of glitch filter behavior in case of a 2 consecutive samples programmed. Figure 215. Glitch filter timing diagram &/.08; ,QSXW )LOWHURXW FRQVHFXWLYHVDPSOHV FRQVHFXWLYHVDPSOHV )LOWHUHG 069 Note: In case no internal clock signal is provided, the digital filter must be deactivated by setting the CKFLT and TRGFLT bits to ‘0’. In that case, an external analog filter may be used to protect the LPTIM external inputs against glitches. 21.4.6 Prescaler The LPTIM 16-bit counter is preceded by a configurable power-of-2 prescaler. The prescaler division ratio is controlled by the PRESC[2:0] 3-bit field. The table below lists all the possible division ratios: Table 117. Prescaler division ratios 658/1324 programming dividing factor 000 /1 001 /2 010 /4 011 /8 100 /16 101 /32 110 /64 111 /128 RM0430 Rev 8 RM0430 21.4.7 Low-power timer (LPTIM) Trigger multiplexer The LPTIM counter may be started either by software or after the detection of an active edge on one of the 8 trigger inputs. TRIGEN[1:0] is used to determine the LPTIM trigger source: • When TRIGEN[1:0] equals ‘00’, The LPTIM counter is started as soon as one of the CNTSTRT or the SNGSTRT bits is set by software. The three remaining possible values for the TRIGEN[1:0] are used to configure the active edge used by the trigger inputs. The LPTIM counter starts as soon as an active edge is detected. • When TRIGEN[1:0] is different than ‘00’, TRIGSEL[2:0] is used to select which of the 8 trigger inputs is used to start the counter. The external triggers are considered asynchronous signals for the LPTIM. So after a trigger detection, a two-counter-clock period latency is needed before the timer starts running due to the synchronization. If a new trigger event occurs when the timer is already started it will be ignored (unless timeout function is enabled). Note: The timer must be enabled before setting the SNGSTRT/CNTSTRT bits. Any write on these bits when the timer is disabled will be discarded by hardware. 21.4.8 Operating mode The LPTIM features two operating modes: • The Continuous mode: the timer is free running, the timer is started from a trigger event and never stops until the timer is disabled • One-shot mode: the timer is started from a trigger event and stops when reaching the ARR value. One-shot mode To enable the one-shot counting, the SNGSTRT bit must be set. A new trigger event will re-start the timer. Any trigger event occurring after the counter starts and before the counter reaches ARR will be discarded. In case an external trigger is selected, each external trigger event arriving after the SNGSTRT bit is set, and after the counter register has stopped (contains zero value), will start the counter for a new one-shot counting cycle as shown in Figure 216. RM0430 Rev 8 659/1324 677 Low-power timer (LPTIM) RM0430 Figure 216. LPTIM output waveform, single counting mode configuration /37,0B$55 &RPSDUH 3:0 ([WHUQDOWULJJHUHYHQW 06Y9 - Set-once mode activated: It should be noted that when the WAVE bit-field in the LPTIM_CFGR register is set, the Setonce mode is activated. In this case, the counter is only started once following the first trigger, and any subsequent trigger event is discarded as shown in Figure 217. Figure 217. LPTIM output waveform, Single counting mode configuration and Set-once mode activated (WAVE bit is set) /37,0B$55 &RPSDUH 'LVFDUGHGWULJJHU 3:0 ([WHUQDOWULJJHUHYHQW 06Y9 In case of software start (TRIGEN[1:0] = ‘00’), the SNGSTRT setting will start the counter for one-shot counting. Continous mode To enable the continuous counting, the CNTSTRT bit must be set. In case an external trigger is selected, an external trigger event arriving after CNTSTRT is set will start the counter for continuous counting. Any subsequent external trigger event will be discarded as shown in Figure 218. In case of software start (TRIGEN[1:0] = ‘00’), setting CNTSTRT will start the counter for continuous counting. 660/1324 RM0430 Rev 8 RM0430 Low-power timer (LPTIM) Figure 218. LPTIM output waveform, Continuous counting mode configuration 'LVFDUGHGWULJJHUV /37,0B$55 &RPSDUH 3:0 ([WHUQDOWULJJHUHYHQW 06Y9 SNGSTRT and CNTSTRT bits can only be set when the timer is enabled (The ENABLE bit is set to ‘1’). It is possible to change “on the fly” from One-shot mode to Continuous mode. If the Continuous mode was previously selected, setting SNGSTRT will switch the LPTIM to the One-shot mode. The counter (if active) will stop as soon as it reaches ARR. If the One-shot mode was previously selected, setting CNTSTRT will switch the LPTIM to the Continuous mode. The counter (if active) will restart as soon as it reaches ARR. 21.4.9 Timeout function The detection of an active edge on one selected trigger input can be used to reset the LPTIM counter. This feature is controlled through the TIMOUT bit. The first trigger event will start the timer, any successive trigger event will reset the counter and the timer will restart. A low-power timeout function can be realized. The timeout value corresponds to the compare value; if no trigger occurs within the expected time frame, the MCU is waked-up by the compare match event. 21.4.10 Waveform generation Two 16-bit registers, the LPTIM_ARR (autoreload register) and LPTIM_CMP (compare register), are used to generate several different waveforms on LPTIM output The timer can generate the following waveforms: • The PWM mode: the LPTIM output is set as soon as a match occurs between the LPTIM_CMP and the LPTIM_CNT registers. The LPTIM output is reset as soon as a match occurs between the LPTIM_ARR and the LPTIM_CNT registers • The One-pulse mode: the output waveform is similar to the one of the PWM mode for the first pulse, then the output is permanently reset • The Set-once mode: the output waveform is similar to the One-pulse mode except that the output is kept to the last signal level (depends on the output configured polarity). The above described modes require that the LPTIM_ARR register value be strictly greater than the LPTIM_CMP register value. RM0430 Rev 8 661/1324 677 Low-power timer (LPTIM) RM0430 The LPTIM output waveform can be configured through the WAVE bit as follow: • Resetting the WAVE bit to ‘0’ forces the LPTIM to generate either a PWM waveform or a One pulse waveform depending on which bit is set: CNTSTRT or SNGSTRT. • Setting the WAVE bit to ‘1’ forces the LPTIM to generate a Set-once mode waveform. The WAVPOL bit controls the LPTIM output polarity. The change takes effect immediately, so the output default value will change immediately after the polarity is re-configured, even before the timer is enabled. Signals with frequencies up to the LPTIM clock frequency divided by 2 can be generated. Figure 219 below shows the three possible waveforms that can be generated on the LPTIM output. Also, it shows the effect of the polarity change using the WAVPOL bit. Figure 219. Waveform generation /37,0B$55 &RPSDUH 3:0 2QHVKRW 3RO 6HWRQFH 3:0 3RO 2QHVKRW 6HWRQFH 069 21.4.11 Register update The LPTIM_ARR register and LPTIM_CMP register are updated immediately after the APB bus write operation, or at the end of the current period if the timer is already started. The PRELOAD bit controls how the LPTIM_ARR and the LPTIM_CMP registers are updated: • When the PRELOAD bit is reset to ‘0’, the LPTIM_ARR and the LPTIM_CMP registers are immediately updated after any write access. • When the PRELOAD bit is set to ‘1’, the LPTIM_ARR and the LPTIM_CMP registers are updated at the end of the current period, if the timer has been already started. The LPTIM APB interface and the LPTIM kernel logic use different clocks, so there is some latency between the APB write and the moment when these values are available to the 662/1324 RM0430 Rev 8 RM0430 Low-power timer (LPTIM) counter comparator. Within this latency period, any additional write into these registers must be avoided. The ARROK flag and the CMPOK flag in the LPTIM_ISR register indicate when the write operation is completed to respectively the LPTIM_ARR register and the LPTIM_CMP register. After a write to the LPTIM_ARR register or the LPTIM_CMP register, a new write operation to the same register can only be performed when the previous write operation is completed. Any successive write before respectively the ARROK flag or the CMPOK flag be set, will lead to unpredictable results. 21.4.12 Counter mode The LPTIM counter can be used to count external events on the LPTIM Input1 or it can be used to count internal clock cycles. The CKSEL and COUNTMODE bits control which source will be used for updating the counter. In case the LPTIM is configured to count external events on Input1, the counter can be updated following a rising edge, falling edge or both edges depending on the value written to the CKPOL[1:0] bits. The count modes below can be selected, depending on CKSEL and COUNTMODE values: • CKSEL = 0: the LPTIM is clocked by an internal clock source – COUNTMODE = 0 The LPTIM is configured to be clocked by an internal clock source and the LPTIM counter is configured to be updated following each internal clock pulse. – COUNTMODE = 1 The LPTIM external Input1 is sampled with the internal clock provided to the LPTIM. Consequently, in order not to miss any event, the frequency of the changes on the external Input1 signal should never exceed the frequency of the internal clock provided to the LPTIM. Also, the internal clock provided to the LPTIM must not be prescaled (PRESC[2:0] = 000). • CKSEL = 1: the LPTIM is clocked by an external clock source COUNTMODE value is don’t care. In this configuration, the LPTIM has no need for an internal clock source (except if the glitch filters are enabled). The signal injected on the LPTIM external Input1 is used as system clock for the LPTIM. This configuration is suitable for operation modes where no embedded oscillator is enabled. For this configuration, the LPTIM counter can be updated either on rising edges or falling edges of the input1 clock signal but not on both rising and falling edges. Since the signal injected on the LPTIM external Input1 is also used to clock the LPTIM kernel logic, there is some initial latency (after the LPTIM is enabled) before the counter is incremented. More precisely, the first five active edges on the LPTIM external Input1 (after LPTIM is enable) are lost. 21.4.13 Timer enable The ENABLE bit located in the LPTIM_CR register is used to enable/disable the LPTIM kernel logic. After setting the ENABLE bit, a delay of two counter clock is needed before the LPTIM is actually enabled. RM0430 Rev 8 663/1324 677 Low-power timer (LPTIM) RM0430 The LPTIM_CFGR and LPTIM_IER registers must be modified only when the LPTIM is disabled. 21.4.14 Encoder mode This mode allows handling signals from quadrature encoders used to detect angular position of rotary elements. Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value programmed into the LPTIM_ARR register (0 up to ARR or ARR down to 0 depending on the direction). Therefore you must configure LPTIM_ARR before starting. From the two external input signals, Input1 and Input2, a clock signal is generated to clock the LPTIM counter. The phase between those two signals determines the counting direction. The Encoder mode is only available when the LPTIM is clocked by an internal clock source. The signals frequency on both Input1 and Input2 inputs must not exceed the LPTIM internal clock frequency divided by 4. This is mandatory in order to guarantee a proper operation of the LPTIM. Direction change is signalized by the two Down and Up flags in the LPTIM_ISR register. Also, an interrupt can be generated for both direction change events if enabled through the DOWNIE bit. To activate the Encoder mode the ENC bit has to be set to ‘1’. The LPTIM must first be configured in Continuous mode. When Encoder mode is active, the LPTIM counter is modified automatically following the speed and the direction of the incremental encoder. Therefore, its content always represents the encoder’s position. The count direction, signaled by the Up and Down flags, correspond to the rotation direction of the encoder rotor. According to the edge sensitivity configured using the CKPOL[1:0] bits, different counting scenarios are possible. The following table summarizes the possible combinations, assuming that Input1 and Input2 do not switch at the same time. Table 118. Encoder counting scenarios Active edge Rising Edge Falling Edge Both Edges Level on opposite signal (Input1 for Input2, Input2 for Input1) Input1 signal Input2 signal Rising Falling Rising Falling High Down No count Up No count Low Up No count Down No count High No count Up No count Down Low No count Down No count Up High Down Up Up Down Low Up Down Down Up The following figure shows a counting sequence for Encoder mode where both-edge sensitivity is configured. Caution: 664/1324 In this mode the LPTIM must be clocked by an internal clock source, so the CKSEL bit must be maintained to its reset value which is equal to ‘0’. Also, the prescaler division ratio must be equal to its reset value which is 1 (PRESC[2:0] bits must be ‘000’). RM0430 Rev 8 RM0430 Low-power timer (LPTIM) Figure 220. Encoder mode counting sequence 7 7 &RXQWHU XS 21.4.15 GRZQ XS 069 Debug mode When the microcontroller enters debug mode (core halted), the LPTIM counter either continues to work normally or stops, depending on the DBG_LPTIM_STOP configuration bit in the DBG module. 21.5 LPTIM interrupts The following events generate an interrupt/wake-up event, if they are enabled through the LPTIM_IER register: Note: • Compare match • Auto-reload match (whatever the direction if encoder mode) • External trigger event • Autoreload register write completed • Compare register write completed • Direction change (encoder mode), programmable (up / down / both). If any bit in the LPTIM_IER register (Interrupt Enable Register) is set after that its corresponding flag in the LPTIM_ISR register (Status Register) is set, the interrupt is not asserted. RM0430 Rev 8 665/1324 677 Low-power timer (LPTIM) RM0430 Table 119. Interrupt events Interrupt event Description Compare match Interrupt flag is raised when the content of the Counter register (LPTIM_CNT) matches the content of the compare register (LPTIM_CMP). Auto-reload match Interrupt flag is raised when the content of the Counter register (LPTIM_CNT) matches the content of the Auto-reload register (LPTIM_ARR). External trigger event Interrupt flag is raised when an external trigger event is detected Auto-reload register update OK Interrupt flag is raised when the write operation to the LPTIM_ARR register is complete. Compare register update OK Interrupt flag is raised when the write operation to the LPTIM_CMP register is complete. Direction change Used in Encoder mode. Two interrupt flags are embedded to signal direction change: – UP flag signals up-counting direction change – DOWN flag signals down-counting direction change. 21.6 LPTIM registers 21.6.1 LPTIM interrupt and status register (LPTIM_ISR) Address offset: 0x000 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. DOWN UP ARRO K CMP OK EXTTR IG ARRM CMPM r r r r r r r Bits 31:22 Reserved, must be kept at reset value. Bit 21 Reserved, must be kept at reset value. Bit 20 Reserved, must be kept at reset value. Bit 19 Reserved, must be kept at reset value. Bits 18:16 Reserved, must be kept at reset value. Bit 15 Reserved, must be kept at reset value. Bit 14 Reserved, must be kept at reset value. Bit 13 Reserved, must be kept at reset value. Bit 12 Reserved, must be kept at reset value. Bit 11 Reserved, must be kept at reset value. 666/1324 RM0430 Rev 8 RM0430 Low-power timer (LPTIM) Bit 10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bits 8:7 Reserved, must be kept at reset value. Bit 6 DOWN: Counter direction change up to down In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has changed from up to down. Bit 5 UP: Counter direction change down to up In Encoder mode, UP bit is set by hardware to inform application that the counter direction has changed from down to up. Bit 4 ARROK: Autoreload register update OK ARROK is set by hardware to inform application that the APB bus write operation to the LPTIM_ARR register has been successfully completed. Bit 3 CMPOK: Compare register update OK CMPOK is set by hardware to inform application that the APB bus write operation to the LPTIM_CMP register has been successfully completed. Bit 2 EXTTRIG: External trigger edge event EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger input has occurred. If the trigger is ignored because the timer has already started, then this flag is not set. Bit 1 ARRM: Autoreload match ARRM is set by hardware to inform application that LPTIM_CNT register’s value reached the LPTIM_ARR register’s value. Bit 0 CMPM: Compare match The CMPM bit is set by hardware to inform application that LPTIM_CNT register value reached the LPTIM_CMP register’s value. 21.6.2 LPTIM interrupt clear register (LPTIM_ICR) Address offset: 0x004 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. DOWN CF UPCF ARRO KCF w w w Res. Res. Res. Res. Res. Res. Res. Res. CMPO EXTTR KCF IGCF w w 1 0 ARRM CF CMPM CF w w Bits 31:22 Reserved, must be kept at reset value. Bit 21 Reserved, must be kept at reset value. Bit 20 Reserved, must be kept at reset value. Bit 19 Reserved, must be kept at reset value. RM0430 Rev 8 667/1324 677 Low-power timer (LPTIM) RM0430 Bits 18:16 Reserved, must be kept at reset value. Bit 15 Reserved, must be kept at reset value. Bit 14 Reserved, must be kept at reset value. Bit 13 Reserved, must be kept at reset value. Bit 12 Reserved, must be kept at reset value. Bit 11 Reserved, must be kept at reset value. Bit 10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bits 8:7 Reserved, must be kept at reset value. Bit 6 DOWNCF: Direction change to down clear flag Writing 1 to this bit clear the DOWN flag in the LPTIM_ISR register. Bit 5 UPCF: Direction change to UP clear flag Writing 1 to this bit clear the UP flag in the LPTIM_ISR register. Bit 4 ARROKCF: Autoreload register update OK clear flag Writing 1 to this bit clears the ARROK flag in the LPTIM_ISR register Bit 3 CMPOKCF: Compare register update OK clear flag Writing 1 to this bit clears the CMPOK flag in the LPTIM_ISR register Bit 2 EXTTRIGCF: External trigger valid edge clear flag Writing 1 to this bit clears the EXTTRIG flag in the LPTIM_ISR register Bit 1 ARRMCF: Autoreload match clear flag Writing 1 to this bit clears the ARRM flag in the LPTIM_ISR register Bit 0 CMPMCF: Compare match clear flag Writing 1 to this bit clears the CMP flag in the LPTIM_ISR register 21.6.3 LPTIM interrupt enable register (LPTIM_IER) Address offset: 0x008 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Res. DOWNI E UPIE ARRO KIE rw rw rw Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:28 Reserved, must be kept at reset value. Bit 27 Reserved, must be kept at reset value. Bit 26 Reserved, must be kept at reset value. Bit 25 Reserved, must be kept at reset value. 668/1324 RM0430 Rev 8 CMPO EXT ARRM KIE TRIGIE IE rw rw rw 0 CMPM IE rw RM0430 Low-power timer (LPTIM) Bit 24 Reserved, must be kept at reset value. Bit 23 Reserved, must be kept at reset value. Bit 22 Reserved, must be kept at reset value. Bit 21 Reserved, must be kept at reset value. Bit 20 Reserved, must be kept at reset value. Bit 19 Reserved, must be kept at reset value. Bits 18:17 Reserved, must be kept at reset value. Bit 16 Reserved, must be kept at reset value. Bit 15 Reserved, must be kept at reset value. Bit 14 Reserved, must be kept at reset value. Bit 13 Reserved, must be kept at reset value. Bit 12 Reserved, must be kept at reset value. Bit 11 Reserved, must be kept at reset value. Bit 10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bits 8:7 Reserved, must be kept at reset value. Bit 6 DOWNIE: Direction change to down Interrupt Enable 0: DOWN interrupt disabled 1: DOWN interrupt enabled Bit 5 UPIE: Direction change to UP Interrupt Enable 0: UP interrupt disabled 1: UP interrupt enabled Bit 4 ARROKIE: Autoreload register update OK Interrupt Enable 0: ARROK interrupt disabled 1: ARROK interrupt enabled Bit 3 CMPOKIE: Compare register update OK Interrupt Enable 0: CMPOK interrupt disabled 1: CMPOK interrupt enabled Bit 2 EXTTRIGIE: External trigger valid edge Interrupt Enable 0: EXTTRIG interrupt disabled 1: EXTTRIG interrupt enabled Bit 1 ARRMIE: Autoreload match Interrupt Enable 0: ARRM interrupt disabled 1: ARRM interrupt enabled Bit 0 CMPMIE: Compare match Interrupt Enable 0: CMPM interrupt disabled 1: CMPM interrupt enabled Caution: The LPTIM_IER register must only be modified when the LPTIM is disabled (ENABLE bit reset to ‘0’) RM0430 Rev 8 669/1324 677 Low-power timer (LPTIM) 21.6.4 RM0430 LPTIM configuration register (LPTIM_CFGR) Address offset: 0x00C Reset value: 0x0000 0000 31 30 29 28 27 26 25 Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 TRIGSEL[2:0] rw rw rw Res. PRESC[2:0] rw rw 24 ENC 23 22 21 COUNT PRELOAD WAVPOL MODE 20 19 WAVE TIMOUT 18 17 TRIGEN[1:0] rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 Res. TRGFLT[1:0] rw rw rw Res. CKFLT[1:0] rw rw 16 CKPOL[1:0] rw Res. 0 CKSEL rw Bits 31:30 Reserved, must be kept at reset value. Bit 29 Reserved, must be kept at reset value. Bits 28:25 Reserved, must be kept at reset value. Bit 24 ENC: Encoder mode enable The ENC bit controls the Encoder mode 0: Encoder mode disabled 1: Encoder mode enabled Bit 23 COUNTMODE: counter mode enabled The COUNTMODE bit selects which clock source is used by the LPTIM to clock the counter: 0: the counter is incremented following each internal clock pulse 1: the counter is incremented following each valid clock pulse on the LPTIM external Input1 Bit 22 PRELOAD: Registers update mode The PRELOAD bit controls the LPTIM_ARR and the LPTIM_CMP registers update modality 0: Registers are updated after each APB bus write access 1: Registers are updated at the end of the current LPTIM period Bit 21 WAVPOL: Waveform shape polarity The WAVEPOL bit controls the output polarity 0: The LPTIM output reflects the compare results between LPTIM_ARR and LPTIM_CMP registers 1: The LPTIM output reflects the inverse of the compare results between LPTIM_ARR and LPTIM_CMP registers Bit 20 WAVE: Waveform shape The WAVE bit controls the output shape 0: Deactivate Set-once mode, PWM / One Pulse waveform (depending on OPMODE bit) 1: Activate the Set-once mode Bit 19 TIMOUT: Timeout enable The TIMOUT bit controls the Timeout feature 0: a trigger event arriving when the timer is already started will be ignored 1: A trigger event arriving when the timer is already started will reset and restart the counter 670/1324 RM0430 Rev 8 rw RM0430 Low-power timer (LPTIM) Bits 18:17 TRIGEN[1:0]: Trigger enable and polarity The TRIGEN bits controls whether the LPTIM counter is started by an external trigger or not. If the external trigger option is selected, three configurations are possible for the trigger active edge: 00: software trigger (counting start is initiated by software) 01: rising edge is the active edge 10: falling edge is the active edge 11: both edges are active edges Bit 16 Reserved, must be kept at reset value. Bits 15:13 TRIGSEL[2:0]: Trigger selector The TRIGSEL bits select the trigger source that will serve as a trigger event for the LPTIM among the below 8 available sources: 000: lptim_ext_trig0 001: lptim_ext_trig1 010: lptim_ext_trig2 011: lptim_ext_trig3 100: lptim_ext_trig4 101: lptim_ext_trig5 110: lptim_ext_trig6 111: lptim_ext_trig7 See Section 21.4.2: LPTIM trigger mapping for details. Bit 12 Reserved, must be kept at reset value. Bits 11:9 PRESC[2:0]: Clock prescaler The PRESC bits configure the prescaler division factor. It can be one among the following division factors: 000: /1 001: /2 010: /4 011: /8 100: /16 101: /32 110: /64 111: /128 Bit 8 Reserved, must be kept at reset value. Bits 7:6 TRGFLT[1:0]: Configurable digital filter for trigger The TRGFLT value sets the number of consecutive equal samples that should be detected when a level change occurs on an internal trigger before it is considered as a valid level transition. An internal clock source must be present to use this feature 00: any trigger active level change is considered as a valid trigger 01: trigger active level change must be stable for at least 2 clock periods before it is considered as valid trigger. 10: trigger active level change must be stable for at least 4 clock periods before it is considered as valid trigger. 11: trigger active level change must be stable for at least 8 clock periods before it is considered as valid trigger. Bit 5 Reserved, must be kept at reset value. RM0430 Rev 8 671/1324 677 Low-power timer (LPTIM) RM0430 Bits 4:3 CKFLT[1:0]: Configurable digital filter for external clock The CKFLT value sets the number of consecutive equal samples that should be detected when a level change occurs on an external clock signal before it is considered as a valid level transition. An internal clock source must be present to use this feature 00: any external clock signal level change is considered as a valid transition 01: external clock signal level change must be stable for at least 2 clock periods before it is considered as valid transition. 10: external clock signal level change must be stable for at least 4 clock periods before it is considered as valid transition. 11: external clock signal level change must be stable for at least 8 clock periods before it is considered as valid transition. Bits 2:1 CKPOL[1:0]: Clock Polarity If LPTIM is clocked by an external clock source: When the LPTIM is clocked by an external clock source, CKPOL bits is used to configure the active edge or edges used by the counter: 00: the rising edge is the active edge used for counting 01: the falling edge is the active edge used for counting 10: both edges are active edges. When both external clock signal edges are considered active ones, the LPTIM must also be clocked by an internal clock source with a frequency equal to at least four time the external clock frequency. 11: not allowed If the LPTIM is configured in Encoder mode (ENC bit is set): 00: the encoder sub-mode 1 is active 01: the encoder sub-mode 2 is active 10: the encoder sub-mode 3 is active Refer to Section 21.4.14: Encoder mode for more details about Encoder mode sub-modes. Bit 0 CKSEL: Clock selector The CKSEL bit selects which clock source the LPTIM will use: 0: LPTIM is clocked by internal clock source (APB clock or any of the embedded oscillators) 1: LPTIM is clocked by an external clock source through the LPTIM external Input1 Caution: The LPTIM_CFGR register must only be modified when the LPTIM is disabled (ENABLE bit reset to ‘0’). 21.6.5 LPTIM control register (LPTIM_CR) Address offset: 0x010 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. CNT STRT SNG STRT ENA BLE rw rw rw Res. Res. 672/1324 Res. Res. Res. Res. Res. Res. Res. RM0430 Rev 8 Res. Res. Res. RM0430 Low-power timer (LPTIM) Bits 31:3 Reserved, must be kept at reset value. Bit 2 CNTSTRT: Timer start in Continuous mode This bit is set by software and cleared by hardware. In case of software start (TRIGEN[1:0] = ‘00’), setting this bit starts the LPTIM in Continuous mode. If the software start is disabled (TRIGEN[1:0] different than ‘00’), setting this bit starts the timer in Continuous mode as soon as an external trigger is detected. If this bit is set when a single pulse mode counting is ongoing, then the timer will not stop at the next match between the LPTIM_ARR and LPTIM_CNT registers and the LPTIM counter keeps counting in Continuous mode. This bit can be set only when the LPTIM is enabled. It will be automatically reset by hardware. Bit 1 SNGSTRT: LPTIM start in Single mode This bit is set by software and cleared by hardware. In case of software start (TRIGEN[1:0] = ‘00’), setting this bit starts the LPTIM in single pulse mode. If the software start is disabled (TRIGEN[1:0] different than ‘00’), setting this bit starts the LPTIM in single pulse mode as soon as an external trigger is detected. If this bit is set when the LPTIM is in continuous counting mode, then the LPTIM will stop at the following match between LPTIM_ARR and LPTIM_CNT registers. This bit can only be set when the LPTIM is enabled. It will be automatically reset by hardware. Bit 0 ENABLE: LPTIM enable The ENABLE bit is set and cleared by software. 0:LPTIM is disabled 1:LPTIM is enabled 21.6.6 LPTIM compare register (LPTIM_CMP) Address offset: 0x014 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CMP[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 CMP[15:0]: Compare value CMP is the compare value used by the LPTIM. Caution: The LPTIM_CMP register must only be modified when the LPTIM is enabled (ENABLE bit set to ‘1’). RM0430 Rev 8 673/1324 677 Low-power timer (LPTIM) 21.6.7 RM0430 LPTIM autoreload register (LPTIM_ARR) Address offset: 0x018 Reset value: 0x0000 0001 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw ARR[15:0] rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 ARR[15:0]: Auto reload value ARR is the autoreload value for the LPTIM. This value must be strictly greater than the CMP[15:0] value. Caution: The LPTIM_ARR register must only be modified when the LPTIM is enabled (ENABLE bit set to ‘1’). 21.6.8 LPTIM counter register (LPTIM_CNT) Address offset: 0x01C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r CNT[15:0] r r Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 CNT[15:0]: Counter value When the LPTIM is running with an asynchronous clock, reading the LPTIM_CNT register may return unreliable values. So in this case it is necessary to perform two consecutive read accesses and verify that the two returned values are identical. It should be noted that for a reliable LPTIM_CNT register read access, two consecutive read accesses must be performed and compared. A read access can be considered reliable when the values of the two consecutive read accesses are equal. 674/1324 RM0430 Rev 8 RM0430 21.6.9 Low-power timer (LPTIM) LPTIM1 option register (LPTIM1_OPTR) Address offset: 0x020 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIM9_ITR1 TIM5_ITR1 TIM1_ITR2 _RMP _RMP _RMP rw rw rw LPT_IN1 _RMP rw Bits 31:5 Reserved, must be kept at reset value. Bit 4 TIM9_ITR1_RMP: TIMER9 input Trigger 1 remap Set and cleared by software. 0: TIM3 output trigger 1: Output channel of LPTIMERS Bit 3 TIM5_ITR1_RMP: TIMER5 input Trigger 1 remap Set and cleared by software. 0: TIM3 output trigger 1: Output channel of LPTIMERS Bit 2 TIM1_ITR2_RMP: TIMER1 input Trigger 2 remap Set and cleared by software. 0: TIM3 output trigger 1: Output channel of LPTIMERS Bits 1:0 LPT_IN1_RMP: LPTimer input Trigger 2 remap Set and cleared by software. 00: Port B5 or Port C0 selected by alternate function with AF1 01: Port A4 direct IO input (signal input not depending to any alternate function selection) 10: Port B9 direct IO input (signal input not depending to any alternate function selection) 11: Output channel of LPTIMER RM0430 Rev 8 675/1324 677 0x010 0x014 0x018 0x01C 0x020 676/1324 LPTIM_CFGR Reset value LPTIM_CR LPTIM_CMP LPTIM_ARR LPTIM_CNT LPTIM_OR 0 0 0 0 0 0 0 0 Reset value Reset value Reset value Reset value RM0430 Rev 8 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 LPT_IN1_RMP 0x00C CKSEL CKPOL CKFLT Res. TRGFLT Res. PRESC Res. TRIGSEL[2:0] Res. TRIGEN Res. Res. Res. Res. Res. Res. Res. ENC COUNTMODE PRELOAD WAVPOL WAVE TIMOUT LPTIM_ISR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DOWN UP ARROK CMPOK EXTTRIG ARRM CMPM Reset value 0 0 0 0 0 0 0 LPTIM_ICR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DOWNCF UPCF ARROKCF CMPOKCF EXTTRIGCF ARRMCF CMPMCF Reset value 0 0 0 0 0 0 0 LPTIM_IER Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DOWNIE UPIE ARROKIE CMPOKIE EXTTRIGIE ARRMIE CMPMIE 0x008 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RSTARE Res. CNTSTRT SNGSTRT ENABLE 0x004 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x000 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset Register name Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 21.6.10 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIM9_ITR1_RMP TIM5_ITR1_RMP TIM1_ITR2_RMP Low-power timer (LPTIM) RM0430 LPTIM register map The following table summarizes the LPTIM registers. Table 120. LPTIM register map and reset values Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CMP[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ARR[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 CNT[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Low-power timer (LPTIM) Refer to Section 2.2.2 on page 58 for the register boundary addresses. RM0430 Rev 8 677/1324 677 Independent watchdog (IWDG) RM0430 22 Independent watchdog (IWDG) 22.1 IWDG introduction The devices feature two embedded watchdog peripherals that offer a combination of high safety level, timing accuracy and flexibility of use. Both watchdog peripherals (Independent and Window) serve to detect and resolve malfunctions due to software failure, and to trigger system reset or an interrupt (window watchdog only) when the counter reaches a given timeout value. The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock (LSI) and thus stays active even if the main clock fails. The window watchdog (WWDG) clock is prescaled from the APB1 clock and has a configurable time-window that can be programmed to detect abnormally late or early application behavior. The IWDG is best suited for applications that require the watchdog to run as a totally independent process outside the main application, but have lower timing accuracy constraints. The WWDG is best suited for applications that require the watchdog to react within an accurate timing window. For further information on the window watchdog, refer to Section 23: Window watchdog (WWDG). 22.2 22.3 IWDG main features • Free-running downcounter • Clocked from an independent RC oscillator (can operate in Standby and Stop modes) • Reset (if watchdog activated) when the downcounter value of 0x000 is reached IWDG functional description Figure 221 shows the functional blocks of the independent watchdog module. When the independent watchdog is started by writing the value 0xCCCC in the Key register (IWDG_KR), the counter starts counting down from the reset value of 0xFFF. When it reaches the end of count value (0x000) a reset signal is generated (IWDG reset). Whenever the key value 0xAAAA is written in the IWDG_KR register, the IWDG_RLR value is reloaded in the counter and the watchdog reset is prevented. 22.3.1 Hardware watchdog If the “Hardware watchdog” feature is enabled through the device option bits, the watchdog is automatically enabled at power-on, and will generate a reset unless the Key register is written by the software before the counter reaches end of count. 22.3.2 Register access protection Write access to the IWDG_PR and IWDG_RLR registers is protected. To modify them, you must first write the code 0x5555 in the IWDG_KR register. A write access to this register with a different value will break the sequence and register access will be protected again. This implies that it is the case of the reload operation (writing 0xAAAA). 678/1324 RM0430 Rev 8 RM0430 Independent watchdog (IWDG) A status register is available to indicate that an update of the prescaler or the down-counter reload value is on going. 22.3.3 Debug mode When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the IWDG counter either continues to work normally or stops, depending on DBG_IWDG_STOP configuration bit in DBG module. For more details, refer to Section 37.16.4: Debug MCU APB1 freeze register (DBGMCU_APB1_FZ). Figure 221. Independent watchdog block diagram #/2% 0RESCALER REGISTER )7$'?02 3TATUS REGISTER )7$'?32 2ELOAD REGISTER )7$'?2,2 +EY REGISTER )7$'?+2 BIT RELOAD VALUE BIT ,3) K(Z PRESCALER BIT DOWNCOUNTER )7$' RESET 6$$ VOLTAGE DOMAIN -36 Note: The watchdog function is implemented in the VDD voltage domain that is still functional in Stop and Standby modes. Table 121. Min/max IWDG timeout period at 32 kHz (LSI)(1) Prescaler divider PR[2:0] bits Min timeout (ms) RL[11:0]= 0x000 Max timeout (ms) RL[11:0]= 0xFFF /4 0 0.125 512 /8 1 0.25 1024 /16 2 0.5 2048 /32 3 1 4096 /64 4 2 8192 /128 5 4 16384 /256 6 8 32768 1. These timings are given for a 32 kHz clock but the microcontroller internal RC frequency can vary. Refers to LSI oscillator characteristics table in device datasheet for from max and min values. RM0430 Rev 8 679/1324 683 Independent watchdog (IWDG) 22.4 RM0430 IWDG registers Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits). 22.4.1 Key register (IWDG_KR) Address offset: 0x00 Reset value: 0x0000 0000 (reset by Standby mode) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 w w w w w w w KEY[15:0] w w w w w w w w w Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 KEY[15:0]: Key value (write only, read 0000h) These bits must be written by software at regular intervals with the key value AAAAh, otherwise the watchdog generates a reset when the counter reaches 0. Writing the key value 5555h to enable access to the IWDG_PR and IWDG_RLR registers (see Section 22.3.2) Writing the key value CCCCh starts the watchdog (except if the hardware watchdog option is selected) 680/1324 RM0430 Rev 8 RM0430 Independent watchdog (IWDG) 22.4.2 Prescaler register (IWDG_PR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PR[2:0] rw rw rw Bits 31:3 Reserved, must be kept at reset value. Bits 2:0 PR[2:0]: Prescaler divider These bits are write access protected seeSection 22.3.2. They are written by software to select the prescaler divider feeding the counter clock. PVU bit of IWDG_SR must be reset in order to be able to change the prescaler divider. 000: divider /4 001: divider /8 010: divider /16 011: divider /32 100: divider /64 101: divider /128 110: divider /256 111: divider /256 Note: Reading this register returns the prescaler value from the VDD voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing. For this reason the value read from this register is valid only when the PVU bit in the IWDG_SR register is reset. RM0430 Rev 8 681/1324 683 Independent watchdog (IWDG) 22.4.3 RM0430 Reload register (IWDG_RLR) Address offset: 0x08 Reset value: 0x0000 0FFF (reset by Standby mode) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. rw rw rw rw rw rw rw rw rw rw rw RL[11:0] rw Bits 31:12 Reserved, must be kept at reset value. Bits11:0 RL[11:0]: Watchdog counter reload value These bits are write access protected see Section 22.3.2. They are written by software to define the value to be loaded in the watchdog counter each time the value AAAAh is written in the IWDG_KR register. The watchdog counter counts down from this value. The timeout period is a function of this value and the clock prescaler. Refer to Table 121. The RVU bit in the IWDG_SR register must be reset in order to be able to change the reload value. Note: Reading this register returns the reload value from the VDD voltage domain. This value may not be up to date/valid if a write operation to this register is ongoing on this register. For this reason the value read from this register is valid only when the RVU bit in the IWDG_SR register is reset. 22.4.4 Status register (IWDG_SR) Address offset: 0x0C Reset value: 0x0000 0000 (not reset by Standby mode) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RVU PVU r r Bits 31:2 Reserved, must be kept at reset value. Bit 1 RVU: Watchdog counter reload value update This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset by hardware when the reload value update operation is completed in the VDD voltage domain (takes up to 5 RC 40 kHz cycles). Reload value can be updated only when RVU bit is reset. Bit 0 PVU: Watchdog prescaler value update This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is reset by hardware when the prescaler update operation is completed in the VDD voltage domain (takes up to 5 RC 40 kHz cycles). Prescaler value can be updated only when PVU bit is reset. 682/1324 RM0430 Rev 8 RM0430 Independent watchdog (IWDG) Note: If several reload values or prescaler values are used by application, it is mandatory to wait until RVU bit is reset before changing the reload value and to wait until PVU bit is reset before changing the prescaler value. However, after updating the prescaler and/or the reload value it is not necessary to wait until RVU or PVU is reset before continuing code execution (even in case of low-power mode entry, the write operation is taken into account and will complete) 22.4.5 IWDG register map The following table gives the IWDG register map and reset values. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. IWDG_PR Res. 0x04 Res. Reset value KEY[15:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. IWDG_KR Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 122. IWDG register map and reset values PR[2:0] Res. 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 Res. Res. Res. Res. Res. Res. Res. Res. RVU PVU RL[11:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. IWDG_SR Res. 0x0C Res. Reset value 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. IWDG_RLR Res. 0x08 Res. Reset value 0 0 0 Reset value Refer to Section 2.2.2 on page 58 for the register boundary addresses. RM0430 Rev 8 683/1324 683 Window watchdog (WWDG) RM0430 23 Window watchdog (WWDG) 23.1 WWDG introduction The window watchdog is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also generated if the 7-bit downcounter value (in the control register) is refreshed before the downcounter has reached the window register value. This implies that the counter must be refreshed in a limited window. 23.2 WWDG main features • Programmable free-running downcounter • Conditional reset • 23.3 – Reset (if watchdog activated) when the downcounter value becomes less than 0x40 – Reset (if watchdog activated) if the downcounter is reloaded outside the window (see Figure 223) Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when the downcounter is equal to 0x40. WWDG functional description If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the 7-bit downcounter (T[6:0] bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates a reset. If the software reloads the counter while the counter is greater than the value stored in the window register, then a reset is generated. 684/1324 RM0430 Rev 8 RM0430 Window watchdog (WWDG) Figure 222. Watchdog block diagram 5(6(7 :DWFKGRJFRQILJXUDWLRQUHJLVWHU ::'*B&)5 FRPSDUDWRU ZKHQ 7!: : : : : : : : :ULWH::'*B&5 :DWFKGRJFRQWUROUHJLVWHU ::'*B&5 :'*$ 3&/. IURP5&&FORFNFRQWUROOHU 7 7 7 7 7 7 7 ELWGRZQFRXQWHU &17 :'*SUHVFDOHU :'*7% 06Y9 The application program must write in the WWDG_CR register at regular intervals during normal operation to prevent an MCU reset. This operation must occur only when the counter value is lower than the window register value. The value to be stored in the WWDG_CR register must be between 0xFF and 0xC0. Enabling the watchdog The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in the WWDG_CR register, then it cannot be disabled again except by a reset. Controlling the downcounter This downcounter is free-running, counting down even if the watchdog is disabled. When the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset. The T[5:0] bits contain the number of increments which represents the time delay before the watchdog produces a reset. The timing varies between a minimum and a maximum value due to the unknown status of the prescaler when writing to the WWDG_CR register (see Figure 223). The Configuration register (WWDG_CFR) contains the high limit of the window: To prevent a reset, the downcounter must be reloaded when its value is lower than the window register value and greater than 0x3F. Figure 223 describes the window watchdog process. Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared). Advanced watchdog interrupt feature The Early Wakeup Interrupt (EWI) can be used if specific safety operations or data logging must be performed before the actual reset is generated. The EWI interrupt is enabled by setting the EWI bit in the WWDG_CFR register. When the downcounter reaches the value 0x40, an EWI interrupt is generated and the corresponding interrupt service routine (ISR) can be used to trigger specific actions (such as communications or data logging), before resetting the device. RM0430 Rev 8 685/1324 690 Window watchdog (WWDG) RM0430 In some applications, the EWI interrupt can be used to manage a software system check and/or system recovery/graceful degradation, without generating a WWDG reset. In this case, the corresponding interrupt service routine (ISR) should reload the WWDG counter to avoid the WWDG reset, then trigger the required actions. The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register. Note: When the EWI interrupt cannot be served, e.g. due to a system lock in a higher priority task, the WWDG reset will eventually be generated. 23.4 How to program the watchdog timeout The formula in Figure 223 must be used to calculate the WWDG timeout. Warning: When writing to the WWDG_CR register, always write 1 in the T6 bit to avoid generating an immediate reset. Figure 223. Window watchdog timing diagram 4;= #.4 DOWNCOUNTER 7;= X& 4IME 2EFRESH NOT ALLOWED 2EFRESH ALLOWED 4 BIT 2%3%4 AIC The formula to calculate the timeout value is given by: t WWDG = t PCLK1 × 4096 × 2 WDGTB[1:0] where: tWWDG: WWDG timeout tPCLK1: APB1 clock period measured in ms 4096: value corresponding to internal divider. 686/1324 RM0430 Rev 8 × ( T5:0] + 1 ) ( ms ) RM0430 Window watchdog (WWDG) As an example, let us assume APB1 frequency is equal to 24 MHz, WDGTB[1:0] is set to 3 and T[5:0] is set to 63: 3 t WWDG = 1 ⁄ 24000 × 4096 × 2 × ( 63 + 1 ) = 21.85 ms Refer to the datasheets for the minimum and maximum values of the tWWDG. 23.5 Debug mode When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the WWDG counter either continues to work normally or stops, depending on DBG_WWDG_STOP configuration bit in DBG module. For more details, refer to Section 37.16.2: Debug support for timers, watchdog, bxCAN and I2C. RM0430 Rev 8 687/1324 690 Window watchdog (WWDG) 23.6 RM0430 WWDG registers Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits). 23.6.1 Control register (WWDG_CR) Address offset: 0x00 Reset value: 0x0000 007F 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. WDGA T[6:0] rs rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 WDGA: Activation bit This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset. 0: Watchdog disabled 1: Watchdog enabled Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB) These bits contain the value of the watchdog counter. It is decremented every (4096 x 2WDGTB[1:0]) PCLK1 cycles. A reset is produced when it rolls over from 0x40 to 0x3F (T6 becomes cleared). 688/1324 RM0430 Rev 8 RM0430 Window watchdog (WWDG) 23.6.2 Configuration register (WWDG_CFR) Address offset: 0x04 Reset value: 0x0000 007F 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. EWI WDGTB[1:0] W[6:0] rs rw rw Bits 31:10 Reserved, must be kept at reset value. Bit 9 EWI: Early wakeup interrupt When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is only cleared by hardware after a reset. Bits 8:7 WDGTB[1:0]: Timer base The time base of the prescaler can be modified as follows: 00: CK Counter Clock (PCLK1 div 4096) div 1 01: CK Counter Clock (PCLK1 div 4096) div 2 10: CK Counter Clock (PCLK1 div 4096) div 4 11: CK Counter Clock (PCLK1 div 4096) div 8 Bits 6:0 W[6:0]: 7-bit window value These bits contain the window value to be compared to the downcounter. 23.6.3 Status register (WWDG_SR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EWIF rc_w0 Bits 31:1 Reserved, must be kept at reset value. Bit 0 EWIF: Early wakeup interrupt flag This bit is set by hardware when the counter has reached the value 0x40. It must be cleared by software by writing ‘0’. A write of ‘1’ has no effect. This bit is also set if the interrupt is not enabled. RM0430 Rev 8 689/1324 690 0x08 690/1324 WWDG_SR RM0430 Rev 8 WDGTB1 WDGTB0 0 0 0 1 1 1 1 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EWI Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. WWDG_CFR Res. 0x04 Reset value 0 Reset value Refer to Section 2.2.2 on page 58 for the register boundary addresses. 1 1 1 1 W[6:0] 1 1 1 1 Res. 1 EWIF WWDG_CR Res. 0x00 WDGA Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 23.6.4 Res. Window watchdog (WWDG) RM0430 WWDG register map The following table gives the WWDG register map and reset values. Table 123. WWDG register map and reset values T[6:0] 0 RM0430 AES hardware accelerator (AES) 24 AES hardware accelerator (AES) 24.1 Introduction The AES hardware accelerator (AES) encrypts or decrypts data, using an algorithm and implementation fully compliant with the advanced encryption standard (AES) defined in Federal information processing standards (FIPS) publication 197. Multiple chaining modes are supported (ECB, CBC, CTR, GCM, GMAC, CCM), for key sizes of 128 or 256 bits. The AES accelerator is a 32-bit AHB peripheral. It supports DMA single transfers for incoming and outgoing data (two DMA channels required). The AES peripheral provides hardware acceleration to AES cryptographic algorithms packaged in STM32 cryptographic library. AES is an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (otherwise an AHB bus error is generated and write accesses are ignored). 24.2 AES main features • Compliance with NIST “Advanced encryption standard (AES), FIPS publication 197” from November 2001 • 128-bit data block processing • Support for cipher key lengths of 128-bit and 256-bit • Encryption and decryption with multiple chaining modes: – Electronic codebook (ECB) mode – Cipher block chaining (CBC) mode – Counter (CTR) mode – Galois counter mode (GCM) – Galois message authentication code (GMAC) mode – Counter with CBC-MAC (CCM) mode • 51 or 75 clock cycle latency in ECB mode for processing one 128-bit block of data with, respectively, 128-bit or 256-bit key • Integrated key scheduler with its key derivation stage (ECB or CBC decryption only) • AMBA AHB slave peripheral, accessible through 32-bit word single accesses only • 256-bit register for storing the cryptographic key (eight 32-bit registers) • 128-bit register for storing initialization vector (four 32-bit registers) • 32-bit buffer for data input and output • Automatic data flow control with support of single-transfer direct memory access (DMA) using two channels (one for incoming data, one for processed data) • Data-swapping logic to support 1-, 8-, 16- or 32-bit data • Possibility for software to suspend a message if AES needs to process another message with a higher priority, then resume the original message RM0430 Rev 8 691/1324 743 AES hardware accelerator (AES) 24.3 RM0430 AES implementation The device has a single instance of AES peripheral. 24.4 AES functional description 24.4.1 AES block diagram Figure 224 shows the block diagram of AES. Figure 224. AES block diagram $(6 ELW $+%EXV ELW DFFHVV %DQNHGUHJLVWHUV NH\ $(6B.(<5[ .(< ,9FRXQWHU $(6B,95[ ,9, $+% LQWHUIDFH DHVBKFON VWDWXV $(6B65 FRQWURO $(6B&5 GDWDLQ $(6B',15 GDWDRXW $(6B'2875 $(6B68635[ DHVBLQBGPD DHVBRXWBGPD DHVBLW '0$ LQWHUIDFH VZDS ',1 '287 $(6 &RUH $($ 6DYH5HVWRUH &RQWURO/RJLF ,54 LQWHUIDFH 06Y9 24.4.2 AES internal signals Table 124 describes the user relevant internal signals interfacing the AES peripheral. Table 124. AES internal input/output signals 692/1324 Signal name Signal type Description aes_hclk digital input aes_it digital output AES interrupt request aes_in_dma digital input/output Input DMA single request/acknowledge aes_out_dma digital input/output Output DMA single request/acknowledge AHB bus clock RM0430 Rev 8 RM0430 24.4.3 AES hardware accelerator (AES) AES cryptographic core Overview The AES cryptographic core consists of the following components: • AES algorithm (AEA) • multiplier over a binary Galois field (GF2mul) • key input • initialization vector (IV) input • chaining algorithm logic (XOR, feedback/counter, mask) The AES core works on 128-bit data blocks (four words) with 128-bit or 256-bit key length. Depending on the chaining mode, the AES requires zero or one 96-bit initialization vector IV (and a 32-bit counter field). The AES features the following modes of operation: • Mode 1: Plaintext encryption using a key stored in the AES_KEYRx registers • Mode 2: ECB or CBC decryption key preparation. It must be used prior to selecting Mode 3 with ECB or CBC chaining modes. The key prepared for decryption is stored automatically in the AES_KEYRx registers. Now the AES peripheral is ready to switch to Mode 3 for executing data decryption. • Mode 3: Ciphertext decryption using a key stored in the AES_KEYRx registers. When ECB and CBC chaining modes are selected, the key must be prepared beforehand, through Mode 2. • Mode 4: ECB or CBC ciphertext single decryption using the key stored in the AES_KEYRx registers (the initial key is derived automatically). Note: Mode 2 and mode 4 are only used when performing ECB and CBC decryption. When Mode 4 is selected only one decryption can be done, therefore usage of Mode 2 and Mode 3 is recommended instead. The operating mode is selected by programming the MODE[1:0] bitfield of the AES_CR register. It may be done only when the AES peripheral is disabled. Typical data processing Typical usage of the AES is described in Section 24.4.4: AES procedure to perform a cipher operation on page 698. Note: The outputs of the intermediate AEA stages are never revealed outside the cryptographic boundary, with the exclusion of the IVI bitfield. RM0430 Rev 8 693/1324 743 AES hardware accelerator (AES) RM0430 Chaining modes The following chaining modes are supported by AES, selected through the CHMOD[2:0] bitfield of the AES_CR register: Note: • Electronic code book (ECB) • Cipher block chaining (CBC) • Counter (CTR) • Galois counter mode (GCM) • Galois message authentication code (GMAC) • Counter with CBC-MAC (CCM) The chaining mode may be changed only when AES is disabled (bit EN of the AES_CR register set). Principle of each AES chaining mode is provided in the following subsections. Detailed information is in dedicated sections, starting from Section 24.4.8: AES basic chaining modes (ECB, CBC). Electronic codebook (ECB) mode Figure 225. ECB encryption and decryption principle (QFU\SWLRQ 3ODLQWH[WEORFN NH\ (QFU\SW &LSKHUWH[WEORFN 3ODLQWH[WEORFN NH\ (QFU\SW &LSKHUWH[WEORFN 3ODLQWH[WEORFN NH\ (QFU\SW &LSKHUWH[WEORFN 'HFU\SWLRQ 3ODLQWH[WEORFN /HJHQG LQSXW NH\ 'HFU\SW 3ODLQWH[WEORFN NH\ 'HFU\SW 3ODLQWH[WEORFN NH\ 'HFU\SW RXWSXW NH\ VFKHGXOLQJ &LSKHUWH[WEORFN &LSKHUWH[WEORFN &LSKHUWH[WEORFN 06Y9 ECB is the simplest mode of operation. There are no chaining operations, and no special initialization stage. The message is divided into blocks and each block is encrypted or decrypted separately. Note: 694/1324 For decryption, a special key scheduling is required before processing the first block. RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Cipher block chaining (CBC) mode Figure 226. CBC encryption and decryption principle (QFU\SWLRQ 3ODLQWH[WEORFN 3ODLQWH[WEORFN 3ODLQWH[WEORFN LQLWLDOL]DWLRQ YHFWRU NH\ (QFU\SW &LSKHUWH[WEORFN NH\ (QFU\SW &LSKHUWH[WEORFN NH\ (QFU\SW &LSKHUWH[WEORFN 'HFU\SWLRQ 3ODLQWH[WEORFN 3ODLQWH[WEORFN 3ODLQWH[WEORFN LQLWLDOL]DWLRQ YHFWRU /HJHQG LQSXW NH\ 'HFU\SW NH\ 'HFU\SW NH\ 'HFU\SW RXWSXW NH\ VFKHGXOLQJ &LSKHUWH[WEORFN &LSKHUWH[WEORFN &LSKHUWH[WEORFN 06Y9 In CBC mode the output of each block chains with the input of the following block. To make each message unique, an initialization vector is used during the first block processing. Note: For decryption, a special key scheduling is required before processing the first block. RM0430 Rev 8 695/1324 743 AES hardware accelerator (AES) RM0430 Counter (CTR) mode Figure 227. CTR encryption and decryption principle (QFU\SWLRQ &RXQWHU &RXQWHU YDOXH NH\ YDOXH NH\ (QFU\SW 3ODLQWH[WEORFN &RXQWHU NH\ (QFU\SW 3ODLQWH[WEORFN &LSKHUWH[WEORFN YDOXH (QFU\SW 3ODLQWH[WEORFN &LSKHUWH[WEORFN &LSKHUWH[WEORFN 'HFU\SWLRQ &RXQWHU &RXQWHU YDOXH /HJHQG NH\ LQSXW RXWSXW ;25 3ODLQWH[WEORFN YDOXH NH\ 'HFU\SW 3ODLQWH[WEORFN &LSKHUWH[WEORFN &RXQWHU YDOXH NH\ 'HFU\SW 'HFU\SW 3ODLQWH[WEORFN &LSKHUWH[WEORFN &LSKHUWH[WEORFN 06Y9 The CTR mode uses the AES core to generate a key stream. The keys are then XORed with the plaintext to obtain the ciphertext as specified in NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation. Note: 696/1324 Unlike with ECB and CBC modes, no key scheduling is required for the CTR decryption, since in this chaining scheme the AES core is always used in encryption mode for producing the key stream, or counter blocks. RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Galois/counter mode (GCM) Figure 228. GCM encryption and authentication principle ,QLWLDOL]DWLRQ YHFWRU &RXQWHU YDOXH NH\ NH\ ,QLW (QFU\SW 3ODLQWH[WEORFN + &RXQWHU YDOXH NH\ (QFU\SW &RXQWHU NH\ (QFU\SW 3ODLQWH[WEORFN YDOXH (QFU\SW 3ODLQWH[WEORFN &LSKHUWH[WEORFN &LSKHUWH[WEORFN &LSKHUWH[WEORFN *)PXO *)PXO *)PXO /HJHQG LQSXW RXWSXW ;25 )LQDO 7$* 06Y9 In Galois/counter mode (GCM), the plaintext message is encrypted while a message authentication code (MAC) is computed in parallel, thus generating the corresponding ciphertext and its MAC (also known as authentication tag). It is defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation Galois/Counter Mode (GCM) and GMAC. GCM mode is based on AES in counter mode for confidentiality. It uses a multiplier over a fixed finite field for computing the message authentication code. It requires an initial value and a particular 128-bit block at the end of the message. Galois message authentication code (GMAC) principle Figure 229. GMAC authentication principle ,QLWLDOL]DWLRQ YHFWRU NH\ /HJHQG ,QLW (QFU\SW + 3ODLQWH[WEORFN 3ODLQWH[WEORFN 3ODLQWH[WEORFN *)PXO *)PXO *)PXO LQSXW RXWSXW )LQDO 7$* ;25 06Y9 Galois message authentication code (GMAC) allows authenticating a message and generating the corresponding message authentication code (MAC). It is defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation Galois/Counter Mode (GCM) and GMAC. RM0430 Rev 8 697/1324 743 AES hardware accelerator (AES) RM0430 GMAC is similar to GCM, except that it is applied on a message composed only by plaintext authenticated data (that is, only header, no payload). Counter with CBC-MAC (CCM) principle Figure 230. CCM encryption and authentication principle % NH\ &RXQW ,QLW (QFU\SW NH\ 3ODLQWH[WEORFN ,QLWLDOL]DWLRQ YHFWRU NH\ (QFU\SW 3ODLQWH[WEORFN &LSKHUWH[WEORFN &RXQW &RXQW NH\ (QFU\SW (QFU\SW 3ODLQWH[WEORFN &LSKHUWH[WEORFN &LSKHUWH[WEORFN /HJHQG LQSXW (QFU\SW (QFU\SW (QFU\SW RXWSXW ;25 )LQDO 7$* 06Y9 In Counter with cipher block chaining-message authentication code (CCM) mode, the plaintext message is encrypted while a message authentication code (MAC) is computed in parallel, thus generating the corresponding ciphertext and the corresponding MAC (also known as tag). It is described by NIST in Special Publication 800-38C, Recommendation for Block Cipher Modes of Operation - The CCM Mode for Authentication and Confidentiality. CCM mode is based on AES in counter mode for confidentiality and it uses CBC for computing the message authentication code. It requires an initial value. Like GCM, the CCM chaining mode can be applied on a message composed only by plaintext authenticated data (that is, only header, no payload). Note that this way of using CCM is not called CMAC (it is not similar to GCM/GMAC), and its usage is not recommended by NIST. 24.4.4 AES procedure to perform a cipher operation Introduction A typical cipher operation is explained below. Detailed information is provided in sections starting from Section 24.4.8: AES basic chaining modes (ECB, CBC). The flowcharts shown in Figure 231 and Figure 232 describe the way STM32 cryptographic library implements the AES algorithm. AES accelerates the execution of the AES-128 and AES-256 cryptographic algorithms in ECB, CBC, CTR, CCM, and GCM operating modes. Note: 698/1324 For more details on the cryptographic library, refer to the UM1924 user manual “STM32 crypto library” available from www.st.com. RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Figure 231. STM32 cryptolib AES flowchart examples (QFU\SWLRQ 'HFU\SWLRQ %HJLQ %HJLQ $(6B[HQFU\SWLQLW $(6B[GHFU\SWLQLW (UURUVWDWXV (UURUVWDWXV VXFFHVV VXFFHVV $(6B[HQFU\SW DSSHQG $(6B[GHFU\SW DSSHQG 'DWDWRDSSHQG (UURUVWDWXV 'DWDWRDSSHQG (UURUVWDWXV VXFFHVV VXFFHVV $(6B[HQFU\SWILQLVK ILQDO $(6B[GHFU\SWILQLVK ILQDO (UURUVWDWXV (UURUVWDWXV VXFFHVV VXFFHVV (QG (QG 06Y9 RM0430 Rev 8 699/1324 743 AES hardware accelerator (AES) RM0430 Figure 232. STM32 cryptolib AES flowchart examples (continued) $XWKHQWLFDWHG(QFU\SWLRQ $XWKHQWLFDWHG'HFU\SWLRQ %HJLQ %HJLQ $(6B[HQFU\SWLQLW $(6B[GHFU\SWLQLW (UURUVWDWXV (UURUVWDWXV VXFFHVV VXFFHVV $(6B[KHDGHU DSSHQG 'DWDWRDSSHQG $(6B[HQFU\SW DSSHQG $(6B[GHFU\SW DSSHQG $(6B[KHDGHU DSSHQG 'DWDWRDSSHQG 'DWDWRDSSHQG (UURUVWDWXV VXFFHVV VXFFHVV (UURUVWDWXV 'DWDWRDSSHQG (UURUVWDWXV (UURUVWDWXV VXFFHVV VXFFHVV $(6B[HQFU\SW ILQLVKILQDO $(6B[GHFU\SW ILQLVKILQDO (UURUVWDWXV (UURUVWDWXV VXFFHVV VXFFHVV 5HWUHLYH7DJ 0$&7DJ FRPSDULVRQ (QG (QG 06Y9 Initialization of AES To initialize AES, first disable it by clearing the EN bit of the AES_CR register. Then perform the following steps in any order: • 700/1324 Configure the AES mode, by programming the MODE[1:0] bitfield of the AES_CR register. – For encryption, Mode 1 must be selected (MODE[1:0] = 00). – For decryption, Mode 3 must be selected (MODE[1:0] = 10), unless ECB or CBC chaining modes are used. In this latter case, an initial key derivation of the encryption key must be performed, as described in Section 24.4.5: AES decryption key preparation. • Select the chaining mode, by programming the CHMOD[2:0] bitfield of the AES_CR register • Configure the key size (128-bit or 256-bit), with the KEYSIZE bitfield of the AES_CR register. • Write a symmetric key into the AES_KEYRx registers (4 or 8 registers depending on the key size). • Configure the data type (1-, 8-, 16- or 32-bit), with the DATATYPE[1:0] bitfield in the AES_CR register. • When it is required (for example in CBC or CTR chaining modes), write the initialization vectors into the AES_IVRx register. RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Data append This section describes different ways of appending data for processing, where the size of data to process is not a multiple of 128 bits. For ECB, CBC and GCM encryption mode, refer to Section 24.4.6: AES ciphertext stealing and data padding. The second-last and the last block management in these cases is more complex than in the sequence described in this section. Data append through polling This method uses flag polling to control the data append. For all other cases, the data is appended through the following sequence: 1. Enable the AES peripheral by setting the EN bit of the AES_CR register. 2. Repeat the following sub-sequence until the payload is entirely processed: 3. Note: a) Write four input data words into the AES_DINR register. b) Wait until the status flag CCF is set in the AES_SR, then read the four data words from the AES_DOUTR register. c) Clear the CCF flag, by setting the CCFC bit of the AES_CR register. d) If the data block just processed is the second-last block of the message and the significant data in the last block to process is inferior to 128 bits, pad the remainder of the last block with zeros Discard the data that is not part of the payload, then disable the AES peripheral by clearing the EN bit of the AES_CR register. Up to three wait cycles are automatically inserted between two consecutive writes to the AES_DINR register, to allow sending the key to the AES processor. Data append using interrupt The method uses interrupt from the AES peripheral to control the data append, through the following sequence: Note: 1. Enable interrupts from AES by setting the CCFIE bit of the AES_CR register. 2. Enable the AES peripheral by setting the EN bit of the AES_CR register. 3. Write first four input data words into the AES_DINR register. 4. Handle the data in the AES interrupt service routine, upon interrupt: a) Read four output data words from the AES_DOUTR register. b) Clear the CCF flag and thus the pending interrupt, by setting the CCFC bit of the AES_CR register c) If the data block just processed is the second-last block of an message and the significant data in the last block to process is inferior to 128 bits, pad the remainder of the last block with zeros. Then proceed with point 4e). d) If the data block just processed is the last block of the message, discard the data that is not part of the payload, then disable the AES peripheral by clearing the EN bit of the AES_CR register and quit the interrupt service routine. e) Write next four input data words into the AES_DINR register and quit the interrupt service routine. AES is tolerant of delays between consecutive read or write operations, which allows, for example, an interrupt from another peripheral to be served between two AES computations. RM0430 Rev 8 701/1324 743 AES hardware accelerator (AES) RM0430 Data append using DMA With this method, all the transfers and processing are managed by DMA and AES. To use the method, proceed as follows: 1. Prepare the last four-word data block (if the data to process does not fill it completely), by padding the remainder of the block with zeros. 2. Configure the DMA controller so as to transfer the data to process from the memory to the AES peripheral input and the processed data from the AES peripheral output to the memory, as described in Section 24.4.16: AES DMA interface. Configure the DMA controller so as to generate an interrupt on transfer completion. 3. Enable the AES peripheral by setting the EN bit of the AES_CR register 4. Enable DMA requests by setting the DMAINEN and DMAOUTEN bits of the AES_CR register. 5. Upon DMA interrupt indicating the transfer completion, get the AES-processed data from the memory. Note: The CCF flag has no use with this method, because the reading of the AES_DOUTR register is managed by DMA automatically, without any software action, at the end of the computation phase. 24.4.5 AES decryption key preparation For an ECB or CBC decryption, a key for the first round of decryption must be derived from the key of the last round of encryption. This is why a complete key schedule of encryption is required before performing the decryption. This key preparation is not required for AES decryption in modes other than ECB or CBC. Recommended method is to select the Mode 2 by setting to 01 the MODE[1:0] bitfield of the AES_CR (key process only), then proceed with the decryption by setting MODE[1:0] to 10 (Mode 3, decryption only). Mode 2 usage is described below: Note: 1. Disable the AES peripheral by clearing the EN bit of the AES_CR register. 2. Select Mode 2 by setting to 01 the MODE[1:0] bitfield of the AES_CR. The CHMOD[2:0] bitfield is not significant in this case because this key derivation mode is independent of the chaining algorithm selected. 3. Set key length to 128 or 256 bits, via KEYSIZE bit of AES_CR register. 4. Write the AES_KEYRx registers (128 or 256 bits) with encryption key, as shown in Figure 233. Writes to the AES_IVRx registers have no effect. 5. Enable the AES peripheral, by setting the EN bit of the AES_CR register. 6. Wait until the CCF flag is set in the AES_SR register. 7. Derived key is available in AES core, ready to use for decryption. Application can also read the AES_KEYRx register to obtain the derived key if needed, as shown in Figure 233 (the processed key is loaded automatically into the AES_KEYRx registers). The AES is disabled by hardware when the derivation key is available. To restart a derivation key computation, repeat steps 4, 5, 6 and 7. 702/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Figure 233. Encryption key derivation for ECB/CBC decryption (Mode 2) :5 (. 06% :5 (. :5 (. :5 (. :DLWXQWLOIODJ&&) /6% ,QSXWSKDVH ZULWHRSHUDWLRQVLQWR $(6B.(<5[>@ 5' '. 5' '. 06% &RPSXWDWLRQSKDVH (1 LQWR$(6B&5 (. HQFU\SWLRQNH\ ZRUGV (.«(. '. GHFU\SWLRQNH\ ZRUGV '.«'. 5' '. 5' '. /6% 2XWSXWSKDVH RSWLRQDO UHDGRSHUDWLRQVRI $(6B.(<5[>@ ELWGHULYDWLRQNH\ VWRUHGLQWR$(6B.(<5[ 069 If the software stores the initial key prepared for decryption, it is enough to do the key schedule operation only once for all the data to be decrypted with a given cipher key. Note: The operation of the key preparation lasts 80 or 109 clock cycles, depending on the key size (128- or 256-bit). Note: Alternative key preparation is to select Mode 4 by setting to 11 the MODE[1:0] bitfield of the AES_CR register. In this case Mode 3 cannot be used. 24.4.6 AES ciphertext stealing and data padding When using AES in ECB or CBC modes to manage messages the size of which is not a multiple of the block size (128 bits), ciphertext stealing techniques are used, such as those described in NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext Stealing for CBC Mode. Since the AES peripheral on the device does not support such techniques, the last two blocks of input data must be handled in a special way by the application. Note: Ciphertext stealing techniques are not documented in this reference manual. Similarly, when AES is used in other modes than ECB or CBC, an incomplete input data block (that is, block with input data shorter than 128 bits) must be padded with zeros prior to encryption (that is, extra bits must be appended to the trailing end of the data string). After decryption, the extra bits must be discarded. As AES does not implement automatic data padding operation to the last block, the application must follow the recommendation given in Section 24.4.4: AES procedure to perform a cipher operation on page 698 to manage messages the size of which is not a multiple of 128 bits. Note: Padding data are swapped in a similar way as normal data, according to the DATATYPE[1:0] field of the AES_CR register (see Section 24.4.13: .AES data registers and data swapping on page 724 for details). A workaround is required in order to properly compute authentication tags for GCM encryption, when the input data in the last block is inferior to 128 bits. During GCM encryption payload phase and before inserting a last plaintext block smaller than 128 bits, then application must apply the following steps: RM0430 Rev 8 703/1324 743 AES hardware accelerator (AES) 24.4.7 RM0430 1. Disable the AES peripheral by clearing the EN bit of the AES_CR register 2. Change the mode to CTR by writing 010 to the CHMOD[2:0] bitfield of the AES_CR register. 3. Pad the last block (smaller than 128 bits) with zeros to have a complete block of 128 bits, then write it into AES_DINR register. 4. Upon encryption completion, read the 128-bit ciphertext from the AES_DOUTR register and store it as intermediate data. 5. Change again the mode to GCM by writing 011 to the CHMOD[2:0] bitfield of the AES_CR register. 6. Select Final phase by writing 11 to the GCMPH[1:0] bitfield of the AES_CR register. 7. In the intermediate data, set to zero the bits corresponding to the padded bits of the last block of payload, then insert the resulting data into AES_DINR register. 8. Wait for operation completion, and read data on AES_DOUTR. This data is to be discarded. 9. Apply the normal Final phase as described in Section 24.4.10: AES Galois/counter mode (GCM) on page 712 AES task suspend and resume A message can be suspended if another message with a higher priority must be processed. When this highest priority message is sent, the suspended message can resume in both encryption or decryption mode. Suspend/resume operations do not break the chaining operation and the message processing can resume as soon as AES is enabled again to receive the next data block. Figure 234 gives an example of suspend/resume operation: Message 1 is suspended in order to send a shorter and higher-priority Message 2. Figure 234. Example of suspend mode management 0HVVDJH 0HVVDJH ELWEORFN 1HZKLJKHUSULRULW\ PHVVDJHWREH SURFHVVHG ELWEORFN ELWEORFN $(6VXVSHQG VHTXHQFH ELWEORFN ELWEORFN ELWEORFN ELWEORFN $(6UHVXPH VHTXHQFH ELWEORFN 06Y9 A detailed description of suspend/resume operations is in the sections dedicated to each AES mode. 704/1324 RM0430 Rev 8 RM0430 24.4.8 AES hardware accelerator (AES) AES basic chaining modes (ECB, CBC) Overview This section gives a brief explanation of the four basic operation modes provided by the AES computing core: ECB encryption, ECB decryption, CBC encryption and CBC decryption. For detailed information, refer to the FIPS publication 197 from November 26, 2001. Figure 235 illustrates the electronic codebook (ECB) encryption. Figure 235. ECB encryption %ORFN %ORFN $(6B',15 SODLQWH[W3 '$7$7<3(>@ $(6B.(<5[ .(< $(6B',15 SODLQWH[W3 6ZDS PDQDJHPHQW , '$7$7<3(>@ $(6B.(<5[ .(< (QFU\SW /HJHQG '$7$7<3(>@ LQSXW RXWSXW 2 6ZDS PDQDJHPHQW 6ZDS PDQDJHPHQW , (QFU\SW $(6FRUH '$7$7<3(>@ $(6B'2875 FLSKHUWH[W& 2 6ZDS PDQDJHPHQW $(6B'2875 FLSKHUWH[W& 06Y9 In ECB encrypt mode, the 128-bit plaintext input data block Px in the AES_DINR register first goes through bit/byte/half-word swapping. The swap result Ix is processed with the AES core set in encrypt mode, using a 128- or 256-bit key. The encryption result Ox goes through bit/byte/half-word swapping, then is stored in the AES_DOUTR register as 128-bit ciphertext output data block Cx. The ECB encryption continues in this way until the last complete plaintext block is encrypted. Figure 236 illustrates the electronic codebook (ECB) decryption. Figure 236. ECB decryption %ORFN %ORFN $(6B',15 FLSKHUWH[W& '$7$7<3(>@ $(6B.(<5[ .(< 6ZDS PDQDJHPHQW , $(6B',15 FLSKHUWH[W& '$7$7<3(>@ $(6B.(<5[ .(< 'HFU\SW /HJHQG LQSXW RXWSXW '$7$7<3(>@ 2 6ZDS PDQDJHPHQW $(6B'2875 SODLQWH[W3 6ZDS PDQDJHPHQW , 'HFU\SW '$7$7<3(>@ 2 6ZDS PDQDJHPHQW $(6B'2875 SODLQWH[W3 06Y9 To perform an AES decryption in the ECB mode, the secret key has to be prepared by collecting the last-round encryption key (which requires to first execute the complete key schedule for encryption), and using it as the first-round key for the decryption of the ciphertext. This preparation is supported by the AES core. RM0430 Rev 8 705/1324 743 AES hardware accelerator (AES) RM0430 In ECB decrypt mode, the 128-bit ciphertext input data block C1 in the AES_DINR register first goes through bit/byte/half-word swapping. The keying sequence is reversed compared to that of the ECB encryption. The swap result I1 is processed with the AES core set in decrypt mode, using the formerly prepared decryption key. The decryption result goes through bit/byte/half-word swapping, then is stored in the AES_DOUTR register as 128-bit plaintext output data block P1. The ECB decryption continues in this way until the last complete ciphertext block is decrypted. Figure 237 illustrates the cipher block chaining (CBC) encryption mode. Figure 237. CBC encryption %ORFN %ORFN $(6B',15 SODLQWH[W3 '$7$7<3(>@ $(6B,95[ LQLWYHFWRU 6ZDS PDQDJHPHQW 3 ,9, , $(6B.(<5[ .(< %ORFNFLSKHU HQFU\SWLRQ $(6B',15 SODLQWH[W3 6ZDS PDQDJHPHQW 3 '$7$7<3(>@ , $(6B.(<5[ .(< %ORFNFLSKHU HQFU\SWLRQ 2 /HJHQG LQSXW '$7$7<3(>@ 6ZDS PDQDJHPHQW 2 6ZDS PDQDJHPHQW '$7$7<3(>@ RXWSXW $(6B'2875 FLSKHUWH[W& ;25 $(6B'2875 FLSKHUWH[W& 06Y9 In CBC encrypt mode, the first plaintext input block, after bit/byte/half-word swapping (P1’), is XOR-ed with a 128-bit IVI bitfield (initialization vector and counter), producing the I1 input data for encrypt with the AES core, using a 128- or 256-bit key. The resulting 128-bit output block O1, after swapping operation, is used as ciphertext C1. The O1 data is then XOR-ed with the second-block plaintext data P2’ to produce the I2 input data for the AES core to produce the second block of ciphertext data. The chaining of data blocks continues in this way until the last plaintext block in the message is encrypted. If the message size is not a multiple of 128 bits, the final partial data block is encrypted in the way explained in Section 24.4.6: AES ciphertext stealing and data padding. Figure 238 illustrates the cipher block chaining (CBC) decryption mode. Figure 238. CBC decryption %ORFN %ORFN $(6B',15 FLSKHUWH[W& '$7$7<3(>@ 6ZDS PDQDJHPHQW , $(6B.(<5[ .(< $(6B',15 FLSKHUWH[W& '$7$7<3(>@ , $(6B.(<5[ .(< 'HFU\SW $(6B,95[ ,9 ,9, /HJHQG '$7$7<3(>@ LQSXW RXWSXW $(6B'2875 SODLQWH[W3 ;25 706/1324 'HFU\SW 2 3 6ZDS PDQDJHPHQW 6ZDS PDQDJHPHQW 2 '$7$7<3(>@ 3 6ZDS PDQDJHPHQW $(6B'2875 SODLQWH[W3 06Y9 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) In CBC decrypt mode, like in ECB decrypt mode, the secret key must be prepared to perform an AES decryption. After the key preparation process, the decryption goes as follows: the first 128-bit ciphertext block (after the swap operation) is used directly as the AES core input block I1 for decrypt operation, using the 128-bit or 256-bit key. Its output O1 is XOR-ed with the 128-bit IVI field (that must be identical to that used during encryption) to produce the first plaintext block P1. The second ciphertext block is processed in the same way as the first block, except that the I1 data from the first block is used in place of the initialization vector. The decryption continues in this way until the last complete ciphertext block is decrypted. If the message size is not a multiple of 128 bits, the final partial data block is decrypted in the way explained in Section 24.4.6: AES ciphertext stealing and data padding. For more information on data swapping, refer to Section 24.4.13: .AES data registers and data swapping. ECB/CBC encryption sequence The sequence of events to perform an ECB/CBC encryption (more detail in Section 24.4.4): 1. Disable the AES peripheral by clearing the EN bit of the AES_CR register. 2. Select the Mode 1 by to 00 the MODE[1:0] bitfield of the AES_CR register and select ECB or CBC chaining mode by setting the CHMOD[2:0] bitfield of the AES_CR register to 000 or 001, respectively. Data type can also be defined, using DATATYPE[1:0] bitfield. 3. Select 128- or 256-bit key length through the KEYSIZE bit of the AES_CR register. 4. Write the AES_KEYRx registers (128 or 256 bits) with encryption key. Fill the AES_IVRx registers with the initialization vector data if CBC mode has been selected. 5. Enable the AES peripheral by setting the EN bit of the AES_CR register. 6. Write the AES_DINR register four times to input the plaintext (MSB first), as shown in Figure 239. 7. Wait until the CCF flag is set in the AES_SR register. 8. Read the AES_DOUTR register four times to get the ciphertext (MSB first) as shown in Figure 239. Then clear the CCF flag by setting the CCFC bit of the AES_CR register. 9. Repeat steps 6,7,8 to process all the blocks with the same encryption key. Figure 239. ECB/CBC encryption (Mode 1) :5 37 06% :5 37 :5 37 :5 37 :DLWXQWLOIODJ&&) /6% 5' &7 06% &RPSXWDWLRQSKDVH ,QSXWSKDVH ZULWHRSHUDWLRQVLQWR $(6B',15>@ 5' &7 5' &7 5' &7 /6% 2XWSXWSKDVH UHDGRSHUDWLRQVRI $(6B'2875>@ 37 SODLQWH[W ZRUGV 37«37 &7 FLSKHUWH[W ZRUGV &7«&7 069 RM0430 Rev 8 707/1324 743 AES hardware accelerator (AES) RM0430 ECB/CBC decryption sequence The sequence of events to perform an AES ECB/CBC decryption is as follows (more detail in Section 24.4.4): 1. Follow the steps described in Section 24.4.5: AES decryption key preparation on page 702, in order to prepare the decryption key in AES core. 2. Disable the AES peripheral by clearing the EN bit of the AES_CR register. 3. Select the Mode 3 by setting to 10 the MODE[1:0] bitfield of the AES_CR register and select ECB or CBC chaining mode by setting the CHMOD[2:0] bitfield of the AES_CR register to 000 or 001, respectively. Data type can also be defined, using DATATYPE[1:0] bitfield. 4. Select key length of 128 or 256 bits via KEYSIZE bitfield of the AES_CR register. 5. Write the AES_IVRx registers with the initialization vector (required in CBC mode only). 6. Enable AES by setting the EN bit of the AES_CR register. 7. Write the AES_DINR register four times to input the cipher text (MSB first), as shown in Figure 240. 8. Wait until the CCF flag is set in the AES_SR register. 9. Read the AES_DOUTR register four times to get the plain text (MSB first), as shown in Figure 240. Then clear the CCF flag by setting the CCFC bit of the AES_CR register. 10. Repeat steps 7,8,9 to process all the blocks encrypted with the same key. Figure 240. ECB/CBC decryption (Mode 3) :5 &7 06% :5 &7 :5 &7 :5 &7 5' 37 :DLWXQWLOIODJ&&) /6% 06% ,QSXWSKDVH ZULWHRSHUDWLRQVLQWR $(6B',15>@ &RPSXWDWLRQSKDVH 5' 37 5' 37 5' 37 /6% 2XWSXWSKDVH UHDGRSHUDWLRQVIURP $(6B'2875>@ 37 SODLQWH[W ZRUGV 37«37 &7 FLSKHUWH[W ZRUGV &7«&7 069 Suspend/resume operations in ECB/CBC modes To suspend the processing of a message, proceed as follows: 708/1324 1. If DMA is used, stop the AES DMA transfers to the IN FIFO by clearing the DMAINEN bit of the AES_CR register. 2. If DMA is not used, read four times the AES_DOUTR register to save the last processed block. If DMA is used, wait until the CCF flag is set in the AES_SR register RM0430 Rev 8 RM0430 AES hardware accelerator (AES) then stop the DMA transfers from the OUT FIFO by clearing the DMAOUTEN bit of the AES_CR register. Note: 3. If DMA is not used, poll the CCF flag of the AES_SR register until it becomes 1 (computation completed). 4. Clear the CCF flag by setting the CCFC bit of the AES_CR register. 5. Save initialization vector registers (only required in CBC mode as AES_IVRx registers are altered during the data processing). 6. Disable the AES peripheral by clearing the bit EN of the AES_CR register. 7. Save the current AES configuration in the memory (except AES initialization vector values). 8. If DMA is used, save the DMA controller status (pointers for IN and OUT data transfers, number of remaining bytes, and so on). In point 7, the derived key information stored in AES_KEYRx registers can optionally be saved in memory if the interrupted process is a decryption. Otherwise those registers do not need to be saved as the original key value is known by the application To resume the processing of a message, proceed as follows: 1. If DMA is used, configure the DMA controller so as to complete the rest of the FIFO IN and FIFO OUT transfers. 2. Ensure that AES is disabled (the EN bit of the AES_CR must be 0). 3. Restore the AES_CR and AES_KEYRx register setting, using the values of the saved configuration. In case of decryption, derived key information can be written in AES_KEYRx register instead of the original key value. 4. Prepare the decryption key as described in Section 24.4.5: AES decryption key preparation (only required for ECB or CBC decryption). This step is not necessary if derived key information has been loaded in AES_KEYRx registers. 5. Restore AES_IVRx registers using the saved configuration (only required in CBC mode). 6. Enable the AES peripheral by setting the EN bit of the AES_CR register. 7. If DMA is used, enable AES DMA transfers by setting the DMAINEN and DMAOUTEN bits of the AES_CR register. Alternative single ECB/CBC decryption using Mode 4 The sequence of events to perform a single round of ECB/CBC decryption using Mode 4 is: 1. Disable the AES peripheral by clearing the EN bit of the AES_CR register. 2. Select the Mode 4 by setting to 11 the MODE[1:0] bitfield of the AES_CR register and select ECB or CBC chaining mode by setting the CHMOD[2:0] bitfield of the AES_CR register to 000 or 001, respectively. 3. Select key length of 128 or 256 bits via KEYSIZE bitfield of the AES_CR register. 4. Write the AES_KEYRx registers with the encryption key. Write the AES_IVRx registers if the CBC mode is selected. 5. Enable the AES peripheral by setting the EN bit of the AES_CR register. 6. Write the AES_DINR register four times to input the cipher text (MSB first). 7. Wait until the CCF flag is set in the AES_SR register. 8. Read the AES_DOUTR register four times to get the plain text (MSB first). Then clear the CCF flag by setting the CCFC bit of the AES_CR register. RM0430 Rev 8 709/1324 743 AES hardware accelerator (AES) Note: RM0430 When mode 4 is selected mode 3 cannot be used. In mode 4, the AES_KEYRx registers contain the encryption key during all phases of the processing. No derivation key is stored in these registers. It is stored internally in AES. 24.4.9 AES counter (CTR) mode Overview The counter mode (CTR) uses AES as a key-stream generator. The generated keys are then XOR-ed with the plaintext to obtain the ciphertext. CTR chaining is defined in NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation. A typical message construction in CTR mode is given in Figure 241. Figure 241. Message construction in CTR mode E\WHERXQGDULHV &LSKHUWH[W & =HUR SDGGLQJ GHFU\SW ,&% E\WHERXQGDULHV 3ODLQWH[W 3 ,QLWLDOL]DWLRQYHFWRU ,9 &RXQWHU 06Y9 The structure of this message is: • • A 16-byte initial counter block (ICB), composed of two distinct fields: – Initialization vector (IV): a 96-bit value that must be unique for each encryption cycle with a given key. – Counter: a 32-bit big-endian integer that is incremented each time a block processing is completed. The initial value of the counter should be set to 1. The plaintext P is encrypted as ciphertext C, with a known length. This length can be non-multiple of 16 bytes, in which case a plaintext padding is required. CTR encryption and decryption Figure 242 and Figure 243 describe the CTR encryption and decryption process, respectively, as implemented in the AES peripheral. The CTR mode is selected by writing 010 to the CHMOD[2:0] bitfield of AES_CR register. 710/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Figure 242. CTR encryption %ORFN $(6B,95[ ,9ELWFRXQWHU %ORFN $(6B,95[ &RXQWHU LQFUHPHQW , $(6B.(<5[ .(< , $(6B.(<5[ .(< (QFU\SW $(6B',15 SODLQWH[W3 6ZDS PDQDJHPHQW 2 '$7$7<3(>@ (QFU\SW $(6B',15 SODLQWH[W3 6ZDS PDQDJHPHQW '$7$7<3(>@ 3 /HJHQG 3 & 6ZDS PDQDJHPHQW '$7$7<3(>@ LQSXW 2 '$7$7<3(>@ & 6ZDS PDQDJHPHQW RXWSXW $(6B'2875 FLSKHUWH[W& ;25 $(6B'2875 FLSKHUWH[W& 06Y9 Figure 243. CTR decryption %ORFN %ORFN $(6B,95[ $(6B,95[ 1RQFHELWFRXQWHU 1RQFHELWFRXQWHU &RXQWHU LQFUHPHQW , , $(6B.(<5[ .(< $(6B.(<5[ .(< (QFU\SW $(6B',15 FLSKHUWH[W& 6ZDS PDQDJHPHQW 2 '$7$7<3(>@ (QFU\SW $(6B',15 FLSKHUWH[W& 6ZDS PDQDJHPHQW '$7$7<3(>@ & /HJHQG LQSXW '$7$7<3(>@ 3 6ZDS PDQDJHPHQW 2 & '$7$7<3(>@ 3 6ZDS PDQDJHPHQW RXWSXW $(6B'2875 SODLQWH[W3 ;25 $(6B'2875 SODLQWH[W3 06Y9 In CTR mode, the cryptographic core output (also called keystream) Ox is XOR-ed with relevant input block (Px' for encryption, Cx' for decryption), to produce the correct output block (Cx' for encryption, Px' for decryption). Initialization vectors in AES must be initialized as shown in Table 125. Table 125. CTR mode initialization vector definition AES_IVR3[31:0] AES_IVR2[31:0] AES_IVR1[31:0] AES_IVR0[31:0] Nonce[31:0] Nonce[63:32] Nonce[95:64] 32-bit counter = 0x0001 Unlike in CBC mode that uses the AES_IVRx registers only once when processing the first data block, in CTR mode AES_IVRx registers are used for processing each data block, and the AES peripheral increments the counter bits of the initialization vector (leaving the nonce bits unchanged). CTR decryption does not differ from CTR encryption, since the core always encrypts the current counter block to produce the key stream that is then XOR-ed with the plaintext (CTR RM0430 Rev 8 711/1324 743 AES hardware accelerator (AES) RM0430 encryption) or ciphertext (CTR decryption) input. In CTR mode, the MODE[1:0] bitfield settings 11, 10 or 00 default all to encryption mode, and the setting 01 (key derivation) is forbidden. The sequence of events to perform an encryption or a decryption in CTR chaining mode: 1. Ensure that AES is disabled (the EN bit of the AES_CR must be 0). 2. Select CTR chaining mode by setting to 010 the CHMOD[2:0] bitfield of the AES_CR register. Set MODE[1:0] bitfield to any value other than 01. 3. Initialize the AES_KEYRx registers, and load the AES_IVRx registers as described in Table 125. 4. Set the EN bit of the AES_CR register, to start encrypting the current counter (EN is automatically reset when the calculation finishes). 5. If it is the last block, pad the data with zeros to have a complete block, if needed. 6. Append data in AES, and read the result. The three possible scenarios are described in Section 24.4.4: AES procedure to perform a cipher operation. 7. Repeat the previous step till the second-last block is processed. For the last block, apply the two previous steps and discard the bits that are not part of the payload (if the size of the significant data in the last input block is less than 16 bytes). Suspend/resume operations in CTR mode Like for the CBC mode, it is possible to interrupt a message to send a higher priority message, and resume the message that was interrupted. Detailed CBC suspend/resume sequence is described in Section 24.4.8: AES basic chaining modes (ECB, CBC). Note: Like for CBC mode, the AES_IVRx registers must be reloaded during the resume operation. 24.4.10 AES Galois/counter mode (GCM) Overview The AES Galois/counter mode (GCM) allows encrypting and authenticating a plaintext message into the corresponding ciphertext and tag (also known as message authentication code). To ensure confidentiality, GCM algorithm is based on AES counter mode. It uses a multiplier over a fixed finite field to generate the tag. GCM chaining is defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation - Galois/Counter Mode (GCM) and GMAC. A typical message construction in GCM mode is given in Figure 244. 712/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Figure 244. Message construction in GCM >/HQ $ @ >/HQ & @ ,QLWLDOL]DWLRQYHFWRU ,9 &RXQWHU /DVW EORFN HQFU\SW E\WHERXQGDULHV 3ODLQWH[W 3 $XWKHQWLFDWHG HQFU\SWHGFLSKHUWH[W & DXWK $GGLWLRQDODXWKHQWLFDWHGGDWD $$' DXWKHQWLFDWH ,&% /HQ 3 /HQ & DXWKHQWLFDWH /HQ $ E\WH ERXQGDULHV $XWKHQWLFDWLRQWDJ 7 =HURSDGGLQJ]HURHGELWV 06Y9 The message has the following structure: • 16-byte initial counter block (ICB), composed of two distinct fields: – Initialization vector (IV): a 96-bit value that must be unique for each encryption cycle with a given key. Note that the GCM standard supports IVs with less than 96 bits, but in this case strict rules apply. – Counter: a 32-bit big-endian integer that is incremented each time a block processing is completed. According to NIST specification, the counter value is 0x2 when processing the first block of payload. • Authenticated header AAD (also knows as additional authentication data) has a known length Len(A) that may be a non-multiple of 16 bytes, and must not exceed 264 – 1 bits. This part of the message is only authenticated, not encrypted. • Plaintext message P is both authenticated and encrypted as ciphertext C, with a known length Len(P) that may be non-multiple of 16 bytes, and cannot exceed 232 - 2 128-bit blocks. • Last block contains the AAD header length (bits [32:63]) and the payload length (bits [96:127]) information, as shown in Table 126. The GCM standard specifies that ciphertext C has the same bit length as the plaintext P. When a part of the message (AAD or P) has a length that is a non-multiple of 16-bytes a special padding scheme is required. Table 126. GCM last block definition Endianness Input data Bit[0] ---------- Bit[31] 0x0 Bit[32]---------- Bit[63] AAD length[31:0] RM0430 Rev 8 Bit[64] -------- Bit[95] Bit[96] --------- Bit[127] 0x0 Payload length[31:0] 713/1324 743 AES hardware accelerator (AES) RM0430 GCM processing Figure 245 describes the GCM implementation in the AES peripheral. The GCM is selected by writing 011 to the CHMOD[2:0] bitfield of the AES_CR register. Figure 245. GCM authenticated encryption 3D\ORDG %ORFN $(6B,95[ ,&% ELWFRXQWHU [ ,QLW $(6B.(<5[ .(< &RXQWHU LQFUHPHQW %ORFNQ $(6B,95[ &%Q &% >@ &%Q $(6B.(<5[ .(< $(6B.(<5[ .(< (QFU\SW (QFU\SW $(6B',15 SODLQWH[W3 + 6ZDS PDQDJHPHQW 6ZDS PDQDJHPHQW $(6B',15 SODLQWH[W3Q '$7$7<3( >@ '$7$7<3( >@ +HDGHU $(6B',15 $$' *)PXO 6ZDS PDQDJHPHQW 6ZDS PDQDJHPHQW '$7$7<3( >@ 6ZDS PDQDJHPHQW '$7$7<3(>@ $(6B',15 $$'L '$7$7<3( >@ 6ZDS PDQDJHPHQW + *)PXO $(6B'2875 FLSKHUWH[W&Q $(6B'2875 FLSKHUWH[W& + + (QFU\SW *)PXO )LQDO /HQ $ LQSXW *)PXO + *)PXO $(6B',15 & __/HQ $(6B,95[ ,9ELWFRXQWHU [ /HJHQG + 6 (QFU\SW RXWSXW ;25 $(6B.(<5[ NH\ $(6B'2875 $XWKHQWLFDWLRQ7$*7 06Y9 The mechanism for the confidentiality of the plaintext in GCM mode is similar to that in the Counter mode, with a particular increment function (denoted 32-bit increment) that generates the sequence of input counter blocks. AES_IVRx registers keeping the counter block of data are used for processing each data block. The AES peripheral automatically increments the Counter[31:0] bitfield. The first counter block (CB1) is derived from the initial counter block ICB by the application software (see Table 127). Table 127. GCM mode IVI bitfield initialization Register AES_IVR3[31:0] AES_IVR2[31:0] AES_IVR1[31:0] AES_IVR0[31:0] Input data ICB[31:0] ICB[63:32] ICB[95:64] Counter[31:0] = 0x2 Note: 714/1324 In GCM mode, the settings 01 and 11 of the MODE[1:0] bitfield are forbidden. RM0430 Rev 8 RM0430 AES hardware accelerator (AES) The authentication mechanism in GCM mode is based on a hash function called GF2mul that performs multiplication by a fixed parameter, called hash subkey (H), within a binary Galois field. A GCM message is processed through the following phases, further described in next subsections: • Init phase: AES prepares the GCM hash subkey (H). • Header phase: AES processes the additional authenticated data (AAD), with hash computation only. • Payload phase: AES processes the plaintext (P) with hash computation, counter block encryption and data XOR-ing. It operates in a similar way for ciphertext (C). • Final phase: AES generates the authenticated tag (T) using the last block of the message. GCM init phase During this first step, the GCM hash subkey (H) is calculated and saved internally, to be used for processing all the blocks. The recommended sequence is: 1. Ensure that AES is disabled (the EN bit of the AES_CR must be 0). 2. Select GCM chaining mode, by setting to 011 the CHMOD[2:0] bitfield of the AES_CR register, and set to 00 (no data swapping) the DATATYPE[1:0] bitfield. 3. Indicate the Init phase, by setting to 00 the GCMPH[1:0] bitfield of the AES_CR register. 4. Set the MODE[1:0] bitfield of the AES_CR register to 00 or 10. 5. Initialize the AES_KEYRx registers with a key, and initialize AES_IVRx registers with the information as defined in Table 127. 6. Start the calculation of the hash key, by setting to 1 the EN bit of the AES_CR register (EN is automatically reset when the calculation finishes). 7. Wait until the end of computation, indicated by the CCF flag of the AES_SR transiting to 1. Alternatively, use the corresponding interrupt. 8. Clear the CCF flag of the AES_SR register, by setting to 1 the CCFC bit of the AES_CR register, and optionally set the data type (1-, 8- or 16-bit) using the DATATYPE[1:0] bitfield. GCM header phase This phase coming after the GCM Init phase must be completed before the payload phase. The sequence to execute, identical for encryption and decryption, is: Note: 1. Indicate the header phase, by setting to 01 the GCMPH[1:0] bitfield of the AES_CR register. Do not modify the MODE[1:0] bitfield as set in the Init phase. 2. Enable the AES peripheral by setting the EN bit of the AES_CR register. 3. If it is the last block and the AAD size in the block is inferior to 128 bits, pad the remainder of the block with zeros. Then append the data block into AES in one of ways described in Section 24.4.4: AES procedure to perform a cipher operation on page 698. 4. Repeat the step 3 until the last additional authenticated data block is processed. The header phase can be skipped if there is no AAD, that is, Len(A) = 0. RM0430 Rev 8 715/1324 743 AES hardware accelerator (AES) RM0430 GCM payload phase This phase, identical for encryption and decryption, is executed after the GCM header phase. During this phase, the encrypted/decrypted payload is stored in the AES_DOUTR register. The sequence to execute is: Note: 1. If the header phase was skipped, enable the AES peripheral by setting the EN bit of the AES_CR register. 2. Indicate the payload phase, by setting to 10 the GCMPH[1:0] bitfield of the AES_CR register. Do not modify the MODE[1:0] bitfield as set in the Init phase. 3. If it is the last block and the plaintext (encryption) or ciphertext (decryption) size in the block is inferior to 128 bits, pad the remainder of the block with zeros. 4. Append the data block into AES in one of ways described in Section 24.4.4: AES procedure to perform a cipher operation on page 698, and read the result. 5. Repeat the previous step till the second-last plaintext block is encrypted or till the last block of ciphertext is decrypted. For the last block of plaintext (encryption only), execute the two previous steps. For the last block, discard the bits that are not part of the payload when the last block size is less than 16 bytes. The payload phase can be skipped if there is no payload data, that is, Len(C) = 0 (see GMAC mode). GCM final phase In this last phase, the AES peripheral generates the GCM authentication tag and stores it in the AES_DOUTR register. The sequence to execute is: Note: 1. Indicate the final phase, by setting to 11 the GCMPH[1:0] bitfield of the AES_CR register. Select encrypt mode by setting to 00 the MODE[1:0] bitfield of the AES_CR register. 2. Compose the data of the block, by concatenating the AAD bit length and the payload bit length, as shown in Table 126. Write the block into the AES_DINR register. 3. Wait until the end of computation, indicated by the CCF flag of the AES_SR transiting to 1. 4. Get the GCM authentication tag, by reading the AES_DOUTR register four times. 5. Clear the CCF flag in the AES_SR register, by setting to 1 the CCFC bit of the AES_CR register. 6. Disable the AES peripheral, by clearing the bit EN of the AES_CR register. If it is an authenticated decryption, compare the generated tag with the expected tag passed with the message. In the final phase, data must be swapped according to the data type set in the DATATYPE[1:0] bitfield of the AES_CR register. When transiting from the header or the payload phase to the final phase, the AES peripheral must not be disabled, otherwise the result is wrong. 716/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Suspend/resume operations in GCM mode To suspend the processing of a message, proceed as follows: 1. If DMA is used, stop the AES DMA transfers to the IN FIFO by clearing the DMAINEN bit of the AES_CR register. If DMA is not used, make sure that the current computation is completed, which is indicated by the CCF flag of the AES_SR register set to 1. 2. In the payload phase, if DMA is not used, read four times the AES_DOUTR register to save the last-processed block. If DMA is used, wait until the CCF flag is set in the AES_SR register then stop the DMA transfers from the OUT FIFO by clearing the DMAOUTEN bit of the AES_CR register. 3. Clear the CCF flag of the AES_SR register, by setting to 1 the CCFC bit of the AES_CR register. 4. Save the AES_SUSPxR registers in the memory, where x is from 0 to 7. 5. In the payload phase, save the AES_IVRx registers as, during the data processing, they changed from their initial values. In the header phase, this step is not required. 6. Disable the AES peripheral, by clearing the EN bit of the AES_CR register. 7. Save the current AES configuration in the memory, excluding the initialization vector registers AES_IVRx. Key registers do not need to be saved as the original key value is known by the application. 8. If DMA is used, save the DMA controller status (pointers for IN data transfers, number of remaining bytes, and so on). In the payload phase, pointers for OUT data transfers must also be saved. To resume the processing of a message, proceed as follows: 24.4.11 1. If DMA is used, configure the DMA controller in order to complete the rest of the FIFO IN transfers. In the payload phase, the rest of the FIFO OUT transfers must also be configured in the DMA controller. 2. Ensure that the AES peripheral is disabled (the EN bit of the AES_CR register must be 0). 3. Write the suspend register values, previously saved in the memory, back into their corresponding AES_SUSPxR registers, where x is from 0 to 7. 4. In the payload phase, write the initialization vector register values, previously saved in the memory, back into their corresponding AES_IVRx registers. In the header phase, write initial setting values back into the AES_IVRx registers. 5. Restore the initial setting values in the AES_CR and AES_KEYRx registers. 6. Enable the AES peripheral by setting the EN bit of the AES_CR register. 7. If DMA is used, enable AES DMA requests by setting the DMAINEN bit (and DMAOUTEN bit if in payload phase) of the AES_CR register. AES Galois message authentication code (GMAC) Overview The Galois message authentication code (GMAC) allows the authentication of a plaintext, generating the corresponding tag information (also known as message authentication code). It is based on GCM algorithm, as defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation - Galois/Counter Mode (GCM) and GMAC. RM0430 Rev 8 717/1324 743 AES hardware accelerator (AES) RM0430 A typical message construction for GMAC is given in Figure 246. Figure 246. Message construction in GMAC mode >/HQ $ @ >@ /HQ $ E\WH ERXQGDULHV $XWKHQWLFDWHGGDWD /DVW EORFN DXWK ,&% E\WHERXQGDULHV $XWKHQWLFDWLRQWDJ 7 ,QLWLDOL]DWLRQYHFWRU ,9 &RXQWHU =HURSDGGLQJ 06Y9 AES GMAC processing Figure 247 describes the GMAC mode implementation in the AES peripheral. This mode is selected by writing 011 to the CHMOD[2:0] bitfield of the AES_CR register. Figure 247. GMAC authentication mode ,QLW >@ )LQDO $(6B,95[ ,9ELWFRXQWHU [ $(6B.(<5[ .(< (QFU\SW + $(6B.(<5[ .(< (QFU\SW +HDGHU $(6B',15 PHVVDJHEORFN 6ZDS PDQDJHPHQW $(6B',15 OHQ $ __OHQ & $(6B',15 PHVVDJHEORFNQ '$7$7<3( >@ 6ZDS PDQDJHPHQW + + *)PXO + *)PXO *)PXO 6 /HJHQG $(6B'2875 DXWKHQWLFDWLRQWDJ7 LQSXW RXWSXW ;25 06Y9 The GMAC algorithm corresponds to the GCM algorithm applied on a message only containing a header. As a consequence, all steps and settings are the same as with the GCM, except that the payload phase is omitted. Suspend/resume operations in GMAC In GMAC mode, the sequence described for the GCM applies except that only the header phase can be interrupted. 718/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) 24.4.12 AES counter with CBC-MAC (CCM) Overview The AES counter with cipher block chaining-message authentication code (CCM) algorithm allows encryption and authentication of plaintext, generating the corresponding ciphertext and tag (also known as message authentication code). To ensure confidentiality, the CCM algorithm is based on AES in counter mode. It uses cipher block chaining technique to generate the message authentication code. This is commonly called CBCMAC. Note: NIST does not approve this CBC-MAC as an authentication mode outside the context of the CCM specification. CCM chaining is specified in NIST Special Publication 800-38C, Recommendation for Block Cipher Modes of Operation - The CCM Mode for Authentication and Confidentiality. A typical message construction for CCM is given in Figure 248. Figure 248. Message construction in CCM mode /HQ & /HQ $ $VVRFLDWHGGDWD $ E\WHERXQGDULHV IODJV 1RQFH 1 /HQ 1 4 3ODLQWH[W 3 /HQ 7 (QF 7 HQFU\SW >D@ >D@ % DXWKHQWLFDWH E\WH ERXQGDULHV /HQ 3 $XWKHQWLFDWHG HQFU\SWHGFLSKHUWH[W & 'HFU\SWDQGFRPSDUH 0$& 7 =HURSDGGLQJ 06Y9 The structure of the message is: • • 16-byte first authentication block (B0), composed of three distinct fields: – Q: a bit string representation of the octet length of P (Len(P)) – Nonce (N): a single-use value (that is, a new nonce should be assigned to each new communication) of Len(N) size. The sum Len(N) + Len(P) must be equal to 15 bytes. – Flags: most significant octet containing four flags for control information, as specified by the standard. It contains two 3-bit strings to encode the values t (MAC length expressed in bytes) and Q (plaintext length such that Len(P) < 28q bytes). The counter blocks range associated to Q is equal to 28Q-4, that is, if the maximum value of Q is 8, the counter blocks used in cipher shall be on 60 bits. 16-byte blocks (B) associated to the Associated Data (A). This part of the message is only authenticated, not encrypted. This section has a known length Len(A) that can be a non-multiple of 16 bytes (see Figure 248). The RM0430 Rev 8 719/1324 743 AES hardware accelerator (AES) RM0430 standard also states that, on MSB bits of the first message block (B1), the associated data length expressed in bytes (a) must be encoded as follows: – – – If 0 < a < 216 - 28, then it is encoded as [a]16, that is, on two bytes. If 216 - 28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, that is, on six bytes. If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, that is, on ten bytes. • 16-byte blocks (B) associated to the plaintext message P, which is both authenticated and encrypted as ciphertext C, with a known length Len(P). This length can be a nonmultiple of 16 bytes (see Figure 248). • Encrypted MAC (T) of length Len(T) appended to the ciphertext C of overall length Len(C). When a part of the message (A or P) has a length that is a non-multiple of 16-bytes, a special padding scheme is required. Note: CCM chaining mode can also be used with associated data only (that is, no payload). As an example, the C.1 section in NIST Special Publication 800-38C gives the following values (hexadecimal numbers): N: 10111213 141516 (Len(N)= 56 bits or 7 bytes) A: 00010203 04050607 (Len(A)= 64 bits or 8 bytes) P: 20212223 (Len(P)= 32 bits or 4 bytes) T: 6084341B (Len(T)= 32 bits or t = 4) B0: 4F101112 13141516 00000000 00000004 B1: 00080001 02030405 06070000 00000000 B2: 20212223 00000000 00000000 00000000 CTR0: 0710111213 141516 00000000 00000000 CTR1: 0710111213 141516 00000000 00000001 Generation of formatted input data blocks Bx (especially B0 and B1) must be managed by the application. 720/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) CCM processing Figure 249 describes the CCM implementation within the AES peripheral (decryption example). Figure 249. CCM mode authenticated decryption &&0 DXWKHQWLFDWLRQRQO\ &75 %ORFN $(6B',15 ILUVWEORFN % $(6B,95[ &75 6:SURFHVVLQJ '$7$7<3(>@ $(6B.(<5[ .(< 6ZDS PDQDJHPHQW 3D\ORDG %ORFNP $(6B,95[ &75P ELW LQFUHPHQW $(6B.(<5[ .(< (QFU\SW (QFU\SW $(6B'2875 FLSKHUWH[W PLQXVWDJODVWEORFN&P $(6B'2875 FLSKHUWH[W& (QFU\SW 6 '$7$7<3( >@ 6ZDS PDQDJHPHQW 6P 6ZDS PDQDJHPHQW '$7$7<3( >@ $(6B.(<5[ NH\ $(6B',15 DVVRFLDWHG GDWDEORFN% $(6B',15 DVVRFLDWHG GDWDODVWEORFN%X 6ZDS PDQDJHPHQW '$7$7<3(>@ '$7$7<3( >@ 6ZDS PDQDJHPHQW $(6B',15 SODLQWH[WODVWEORFN3P $(6B',15 SODLQWH[W3 6ZDS PDQDJHPHQW '$7$7<3(>@ 6ZDS PDQDJHPHQW '$7$7<3(>@ %U %X $(6B.(<5[ .(< (QFU\SW (QFU\SW (QFU\SW (QFU\SW $(6B',15 &75 $(6B.(<5[ .(< $(6B.(<5[ .(< $(6B.(<5[ .(< %ORFNFLSKHU HQFU\SWLRQ /HJHQG 6 0$& 7 LQSXW RXWSXW $(6B.(<5[ .(< ;25 $(6B'2875 DXWKHQWLFDWLRQWDJ7 $(6&&0ILQDO 06Y9 The data input to the generation-encryption process are a valid nonce, a valid payload string, and a valid associated data string, all properly formatted. The CBC chaining mechanism is applied to the formatted plaintext data to generate a MAC, with a known length. Counter mode encryption that requires a sufficiently long sequence of counter blocks as input, is applied to the payload string and separately to the MAC. The resulting ciphertext C is the output of the generation-encryption process on plaintext P. AES_IVRx registers are used for processing each data block, AES automatically incrementing the CTR counter with a bit length defined by the first block B0. Table 128 shows how the application must load the B0 data. Table 128. Initialization of AES_IVRx registers in CCM mode Register AES_IVR3[31:0] AES_IVR2[31:0] AES_IVR1[31:0] AES_IVR0[31:0] Input data B0[31:0] B0[63:32] B0[95:64] B0[127:96] RM0430 Rev 8 721/1324 743 AES hardware accelerator (AES) RM0430 A CCM message is processed through two distinct processes - first, payload encryption or decryption, in which the AES peripheral is configured in CTR mode, then associated data and payload authentication, in which the AES peripheral first executes the CCM header phase, then the CCM final phase. Payload encryption/decryption This step is performed independently of the tag computation. It uses standard CTR chaining mode. Refer to Section 24.4.9: AES counter (CTR) mode for details. The construction of the CTR1 initialization vector (see Figure 249) to load into AES_IVRx registers is defined in NIST Special Publication 800-38C. Note: This phase can be skipped if there is no payload data, that is, when Len(P) = 0 or Len(C) = Len(T). Remove LSBLen(T)(C) encrypted tag information when decrypting ciphertext C. Associated data and payload authentication In order to compute the CCM authentication tag associated with the plaintext message, it is recommended to execute the following header phase sequence: 1. Ensure that the AES peripheral is disabled (the EN bit of the AES_CR must be 0). 2. Select CCM chaining mode, by setting to 100 the CHMOD[2:0] bitfield of the AES_CR register, and optionally, set the DATATYPE[1:0] bitfield. 3. Indicate the header phase, by setting to 01 the GCMPH[1:0] bitfield of the AES_CR register. Select encrypt mode by setting to 00 the MODE[1:0] bitfield of the AES_CR register. 4. Initialize the AES_KEYRx registers with a key, and initialize AES_IVRx registers with zero values. 5. Enable the AES peripheral by setting the EN bit of the AES_CR register. 6. Write the AES_DINR register with B0, as shown in Table 128. B0 data must be swapped according to the DATATYPE[1:0] bitfield of the AES_CR register. 7. Wait until the end-of-computation flag CCF of the AES_SR register is set to 1. 8. Clear the CCF flag of the AES_SR register by setting the CCFC bit of the AES_CR register. 9. Process data block. If it is the last block of associated data or plaintext and data size in the block is inferior to 128 bits, pad the remainder of the block with zeros. Then append the data block into AES in one of ways described in Section 24.4.4: AES procedure to perform a cipher operation on page 698. 10. Repeat the previous step to process all data blocks, starting from the first block of associated data and ending with the last block of plaintext payload data. 722/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) In final phase, the AES peripheral generates the CCM authentication tag and stores it in the AES_DOUTR register: 11. Indicate the final phase, by setting to 11 the GCMPH[1:0] bitfield of the AES_CR register. Keep as-is the encryption mode in the MODE[1:0] bitfield. 12. Write four times the last data input into the AES_DIN register. This input must be the 128-bit value CTR0, formatted from the original B0 packet (that is, 5 flag bits set to 0, and Q length bits set to 0). 13. Wait until the end-of-computation flag CCF of the AES_SR register is set. 14. Read four times the AES_DOUTR register: the output corresponds to the encrypted CCM authentication tag. 15. Clear the CCF flag of the AES_SR register by setting the CCFC bit of the AES_CR register. 16. Disable the AES peripheral, by clearing the EN bit of the AES_CR register. 17. For authenticated decryption, compare the generated encrypted tag with the encrypted tag padded in the ciphertext. Note: In this final phase, data must be swapped according to the DATATYPE[1:0] bitfield of the AES_CR register. When transiting from the header phase to the final phase, the AES peripheral must not be disabled, otherwise the result is wrong. Application must mask the authentication tag output with tag length to obtain a valid tag. Suspend/resume operations in CCM mode To suspend the authentication of the associated data and payload (GCMPH[1:0]= 01), proceed as follows. Suspending the message during the encryption/decryption phase is described in Section 24.4.9: AES counter (CTR) mode on page 710. 1. If DMA is used, stop the AES DMA transfers to the IN FIFO by clearing the DMAINEN bit of the AES_CR register. If DMA is not used, make sure that the current computation is completed, which is indicated by the CCF flag of the AES_SR register set to 1. 2. Clear the CCF flag of the AES_SR register, by setting to 1 the CCFC bit of the AES_CR register. 3. Save the AES_SUSPxR registers (where x is from 0 to 7) in the memory. 4. Save the AES_IVRx registers, as during the data processing they changed from their initial values. 5. Disable the AES peripheral, by clearing the bit EN of the AES_CR register. 6. Save the current AES configuration in the memory, excluding the initialization vector registers AES_IVRx. Key registers do not need to be saved as the original key value is known by the application. 7. If DMA is used, save the DMA controller status (pointers for IN data transfers, number of remaining bytes, and so on). RM0430 Rev 8 723/1324 743 AES hardware accelerator (AES) RM0430 To resume the authentication of the associated data and payload (GCMPH[1:0]= 01 or 11), proceed as follows: 1. If DMA is used, configure the DMA controller in order to complete the rest of the FIFO IN transfers. 2. Ensure that AES processor is disabled (the EN bit of the AES_CR register must be 0). 3. Write the suspend register values, previously saved in the memory, back into their corresponding AES_SUSPxR registers (where x is from 0 to 7). 4. Write the initialization vector register values, previously saved in the memory, back into their corresponding AES_IVRx registers. 5. Restore the initial setting values in the AES_CR and AES_KEYRx registers. 6. Enable the AES peripheral by setting the EN bit of the AES_CR register. 7. If DMA is used, enable AES DMA requests by setting the DMAINEN bit of the AES_CR register. Note: In CCM mode the MODE[1:0] bitfield settings 01 and 11 (key derivation) are forbidden. 24.4.13 .AES data registers and data swapping Data input and output A 128-bit data block is entered into the AES peripheral with four successive 32-bit word writes into the AES_DINR register (bitfield DIN[127:0]), the most significant word (bits [127:96]) first, the least significant word (bits [31:0]) last. A 128-bit data block is retrieved from the AES peripheral with four successive 32-bit word reads from the AES_DOUTR register (bitfield DOUT[127:0]), the most significant word (bits [127:96]) first, the least significant word (bits [31:0]) last. The 32-bit data word for AES_DINR register or from AES_DOUTR register is organized in big endian order, that is: • the most significant byte of a word to write into AES_DINR must be put on the lowest address out of the four adjacent memory locations keeping the word to write, or • the most significant byte of a word read from AES_DOUTR goes to the lowest address out of the four adjacent memory locations receiving the word For using DMA for input data block write into AES, the four words of the input block must be stored in the memory consecutively and in big-endian order, that is, the most significant word on the lowest address. See Section 24.4.16: AES DMA interface. Data swapping The AES peripheral can be configured to perform a bit-, a byte-, a half-word-, or no swapping on the input data word in the AES_DINR register, before loading it to the AES processing core, and on the data output from the AES processing core, before sending it to the AES_DOUTR register. The choice depends on the type of data. For example, a byte swapping is used for an ASCII text stream. The data swap type is selected through the DATATYPE[1:0] bitfield of the AES_CR register. The selection applies both to the input and the output of the AES core. For different data swap types, Figure 250 shows the construction of AES processing core input buffer data P127..0, from the input data entered through the AES_DINR register, or the construction of the output data available through the AES_DOUTR register, from the AES processing core output buffer data P127..0. 724/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Figure 250. 128-bit block construction with respect to data swap LQFUHDVLQJPHPRU\DGGUHVV E\WH ' '$7$7<3(>@ QRVZDSSLQJ E\WH ' ' E\WH ' ' E\WH ' ' ' 06% /6% :RUG :RUG ' ' ' ' ' 3 :RUG ' ' ' ' ' :RUG ' ' ' ' ' ' /6% 06% '$7$7<3(>@ ELW KDOIZRUG VZDSSLQJ 06% /6% :RUG ' ' :RUG ' ' ' ' ' ' ' ' ' ' ' :RUG :RUG ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' /6% 06% '$7$7<3(>@ ELW E\WH VZDSSLQJ 06% /6% :RUG ' ' :RUG ' ' ' ' ' :RUG ' ' ' ' ' ' ' :RUG ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 06% ' /6% '$7$7<3(>@ ELWVZDSSLQJ 06% /6% :RUG :RUG ' ' ' ' ' ' ' ' ' :RUG ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' :RUG ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' /6% 06% /HJHQG $(6LQSXWRXWSXWGDWDEORFNLQPHPRU\ 06% $(6FRUHLQSXWRXWSXWEXIIHUGDWD /6% OHDVWVLJQLILFDQWELW RIPHPRU\GDWDEORFN$(&FRUHEXIIHU =HURSDGGLQJ H[DPSOH 'DWDVZDS Note: ' '[ PRVWVLJQLILFDQWELW RIPHPRU\GDWDEORFN$(&FRUHEXIIHU 2UGHURIZULWHWR$(6B',15UHDGIURP$(6B'2875 LQSXWRXWSXWGDWDELWµ[¶ 06Y9 The data in AES key registers (AES_KEYRx) and initialization registers (AES_IVRx) are not sensitive to the swap mode selection. Data padding Figure 250 also gives an example of memory data block padding with zeros such that the zeroed bits after the data swap form a contiguous zone at the MSB end of the AES core input buffer. The example shows the padding of an input data block containing: • 48 message bits, with DATATYPE[1:0] = 01 • 56 message bits, with DATATYPE[1:0] = 10 • 34 message bits, with DATATYPE[1:0] = 11 RM0430 Rev 8 725/1324 743 AES hardware accelerator (AES) 24.4.14 RM0430 AES key registers The AES_KEYRx registers store the encryption or decryption key bitfield KEY[127:0] or KEY[255:0]. The data to write to or to read from each register is organized in the memory in little-endian order, that is, with most significant byte on the highest address. The key is spread over the eight registers as shown in Table 129. Table 129. Key endianness in AES_KEYRx registers (128- or 256-bit key length) AES_KEYR7 [31:0] AES_KEYR6 [31:0] AES_KEYR5 [31:0] AES_KEYR4 [31:0] AES_KEYR3 [31:0] AES_KEYR2 [31:0] AES_KEYR1 [31:0] AES_KEYR0 [31:0] - - - - KEY[127:96] KEY[95:64] KEY[63:32] KEY[31:0] KEY[127:96] KEY[95:64] KEY[63:32] KEY[31:0] KEY[255:224] KEY[223:192] KEY[191:160] KEY[159:128] The key for encryption or decryption may be written into these registers when the AES peripheral is disabled. The key registers are not affected by the data swapping controlled by DATATYPE[1:0] bitfield of the AES_CR register. 24.4.15 AES initialization vector registers The four AES_IVRx registers keep the initialization vector input bitfield IVI[127:0]. The data to write to or to read from each register is organized in the memory in little-endian order, that is, with most significant byte on the highest address. The registers are also ordered from lowest address (AES_IVR0) to highest address (AES_IVR3). The signification of data in the bitfield depends on the chaining mode selected. When used, the bitfield is updated upon each computation cycle of the AES core. Write operations to the AES_IVRx registers when the AES peripheral is enabled have no effect to the register contents. For modifying the contents of the AES_IVRx registers, the EN bit of the AES_CR register must first be cleared. Reading the AES_IVRx registers returns the latest counter value (useful for managing suspend mode). The AES_IVRx registers are not affected by the data swapping feature controlled by the DATATYPE[1:0] bitfield of the CRYP_CR register. 24.4.16 AES DMA interface The AES peripheral provides an interface to connect to the DMA (direct memory access) controller. The DMA operation is controlled through the AES_CR register. Data input using DMA Setting the DMAINEN bit of the AES_CR register enables DMA writing into AES. The AES peripheral then initiates a DMA request during the input phase each time it requires a word to be written to the AES_DINR register. It asserts four DMA requests to transfer one 128-bit (four-word) input data block from memory, as shown in Figure 251. See Table 130 for recommended DMA configuration. 726/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Table 130. DMA channel configuration for memory-to-AES data transfer DMA channel control register field Recommended configuration Transfer size Message length: a multiple of 128 bits. According to the algorithm and the mode selected, special padding/ ciphertext stealing might be required. Refer to Section 24.4.6: AES ciphertext stealing and data padding on page 703 for details. Source burst size (memory) Single Destination burst size (peripheral) Single DMA FIFO size AES FIFO_size = 4 bytes. Source transfer width (memory) 32-bit words Destination transfer width (peripheral) 32-bit words Source address increment (memory) Yes, after each 32-bit transfer Destination address Fixed address of AES_DINR (no increment) increment (peripheral) Figure 251. DMA transfer of a 128-bit data block during input phase ' 06% :RUG ',1>@ '0$UHT1 '0$ VLQJOHZULWH ' ' '0$UHT1 0HPRU\DFFHVVHGWKURXJK'0$ :RUG :RUG ',1>@ ',1>@ ' ' '0$ VLQJOHZULWH '0$UHT1 '0$ VLQJOHZULWH ' ' '0$UHT1 :RUG ',1>@ ' /6% 6\VWHP &KURQRORJLFDORUGHU ,QFUHDVLQJDGGUHVV '0$ VLQJOHZULWH 1RVZDSSLQJ $(6FRUHLQSXWEXIIHU , , , , , , , , $(6 SHULSKHUDO $(6B',15 /6% 06% 2UGHURIZULWHWR$(6B',15 06Y9 Data output using DMA Setting the DMAOUTEN bit of the AES_CR register enables DMA reading from AES. The AES peripheral then initiates a DMA request during the Output phase each time it requires a word to be read from the AES_DOUTR register. It asserts four DMA requests to transfer one 128-bit (four-word) output data block to memory, as shown in Figure 252. See Table 131 for recommended DMA configuration. RM0430 Rev 8 727/1324 743 AES hardware accelerator (AES) RM0430 Table 131. DMA channel configuration for AES-to-memory data transfer DMA channel control register field Recommended configuration Transfer size It is the message length multiple of AES block size (4 words). According to the case extra bytes will have to be discarded. Source burst size (peripheral) Single Destination burst size (memory) Single DMA FIFIO size AES FIFO_size = 4 bytes Source transfer width (peripheral) 32-bit words Destination transfer width (memory) 32-bit words Source address Fixed address of AES_DINR (no increment) increment (peripheral) Destination address increment (memory) Yes, after each 32-bit transfer Figure 252. DMA transfer of a 128-bit data block during output phase '0$UHT1 '0$ VLQJOHUHDG ' ' '0$UHT1 0HPRU\DFFHVVHGWKURXJK'0$ :RUG :RUG '287>@ '287>@ ' ' '0$ VLQJOHUHDG '0$UHT1 '0$ VLQJOHUHDG ' ' '0$UHT1 :RUG '287>@ ' /6% '0$ VLQJOHUHDG $(6B'2875 1RVZDSSLQJ $(6FRUHRXWSXWEXIIHU 2 2 2 2 2 2 2 2 $(6 SHULSKHUDO ' 06% :RUG '287>@ 6\VWHP &KURQRORJLFDORUGHU ,QFUHDVLQJDGGUHVV /6% 06% 2UGHURIUHDGIURP$(6B'2875 06Y9 DMA operation in different operating modes DMA operations are usable when Mode 1 (encryption) or Mode 3 (decryption) are selected via the MODE[1:0] bitfield of the register AES_CR. As in Mode 2 (key derivation) the AES_KEYRx registers must be written by software, enabling the DMA transfer through the DMAINEN and DMAOUTEN bits of the AES_CR register have no effect in that mode. DMA single requests are generated by AES until it is disabled. So, after the data output phase at the end of processing of a 128-bit data block, AES switches automatically to a new data input phase for the next data block, if any. When the data transferring between AES and memory is managed by DMA, the CCF flag is not relevant and can be ignored (left set) by software. It must only be cleared when transiting back to data transferring managed by software. See Suspend/resume operations 728/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) in ECB/CBC modes in Section 24.4.8: AES basic chaining modes (ECB, CBC) as example. 24.4.17 AES error management The read error flag (RDERR) and write error flag (WRERR) of the AES_SR register are set when an unexpected read or write operation, respectively, is detected. An interrupt can be generated if the error interrupt enable (ERRIE) bit of the AES_CR register is set. For more details, refer to Section 24.5: AES interrupts. Note: AES is not disabled after an error detection and continues processing. AES can be re-initialized at any moment by clearing then setting the EN bit of the AES_CR register. Read error flag (RDERR) When an unexpected read operation is detected during the computation phase or during the input phase, the AES read error flag (RDERR) is set in the AES_SR register. An interrupt is generated if the ERRIE bit of the AES_CR register is set. The RDERR flag is cleared by setting the corresponding ERRC bit of the AES_CR register. Write error flag (WDERR) When an unexpected write operation is detected during the computation phase or during the output phase, the AES write error flag (WRERR) is set in the AES_SR register. An interrupt is generated if the ERRIE bit of the AES_CR register is set. The WDERR flag is cleared by setting the corresponding ERRC bit of the AES_CR register. 24.5 AES interrupts There are three individual maskable interrupt sources generated by the AES peripheral, to signal the following events: • computation completed • read error, see Section 24.4.17 • write error, see Section 24.4.17 These three sources are combined into a common interrupt signal aes_it that connects to NVIC (nested vectored interrupt controller). Figure 253. AES interrupt signal generation &&) &&),( )ODJVLQ$(6B65UHJLVWHU %LWVRI$(6B&5UHJLVWHU :5(55 (55,( DHVBLW JRHVWR19,& 5'(55 (55,( 06Y9 Each AES interrupt source can individually be enabled/disabled, by setting/clearing the corresponding enable bit of the AES_CR register. See Figure 253. RM0430 Rev 8 729/1324 743 AES hardware accelerator (AES) RM0430 The status of the individual maskable interrupt sources can be read from the AES_SR register. Table 132 gives a summary of the interrupt sources, their event flags and enable bits. Table 132. AES interrupt requests 24.6 AES interrupt event Event flag Enable bit computation completed flag CCF CCFIE read error flag RDERR ERRIE write error flag WRERR ERRIE AES processing latency The tables below summarize the latency to process a 128-bit block for each mode of operation. Table 133. Processing latency (in clock cycle) for ECB, CBC and CTR Key size Algorithm Input phase Computation phase Output phase Total ECB, CBC, CTR 8 202 4 214 - - 80 - 80 ECB, CBC, CTR 8 202 4 214 ECB, CBC 8 276 4 288 ECB, CBC, CTR 8 286 4 298 - - 109 - 109 ECB, CBC, CTR 8 286 4 298 ECB, CBC 8 380 4 392 Mode of operation Mode 1: Encryption Mode 2: Key derivation 128-bit Mode 3: Decryption Mode 4: Key derivation then decryption Mode 1: Encryption Mode 2: Key derivation 256-bit Mode 3: Decryption Mode 4: Key derivation then decryption Table 134. Processing latency for GCM and CCM (in clock cycle) Key size 128-bit Mode of operation Mode 1: Encryption/ Mode 3: Decryption - 256-bit Mode 1: Encryption/ Mode 3: Decryption - 730/1324 Algorithm Init Phase Header phase Payload phase Tag phase GCM 215 67 202 202 CCM authentication - 206 - 202 GCM 299 67 286 286 CCM authentication - 290 - 286 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Note: Data insertion can include wait states forced by AES on the AHB bus (maximum 3 cycles, typical 1 cycle). This applies to all header/payload/tag phases. 24.7 AES registers 24.7.1 AES control register (AES_CR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 KEYSI ZE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 CCFIE ERRC CCFC rw rw rw 17 16 Res. CHMO D[2] rw Res. GCMPH[1:0] rw rw DMAO UTEN rw DMAIN ERRIE EN rw rw CHMOD[1:0] MODE[1:0] rw rw rw rw 2 rw 1 0 DATATYPE[1:0] rw rw EN rw Bits 31:19 Reserved, must be kept at zero Bit 18 KEYSIZE: Key size selection This bitfield defines the length of the key used in the AES cryptographic core, in bits: 0: 128 1: 256 The bit value change is allowed only when AES is disabled, so as to avoid an unpredictable behavior. Bit 17 Reserved, must be kept at zero Bit 16 CHMOD[2]: Chaining mode selection, bit [2] Refer to the bits [5:6] of the register for the description of the CHMOD[2:0] bitfield Bit 15 Reserved, must be kept at zero Bits 14:13 GCMPH[1:0]: GCM or CCM phase selection This bitfield selects the phase of GCM, GMAC or CCM algorithm: 00: Init phase 01: Header phase 10: Payload phase 11: Final phase The bitfield has no effect if other than GCM, GMAC or CCM algorithms are selected (through the ALGOMODE bitfield). RM0430 Rev 8 731/1324 743 AES hardware accelerator (AES) RM0430 Bit 12 DMAOUTEN: DMA output enable This bit enables/disables data transferring with DMA, in the output phase: 0: Disable 1: Enable When the bit is set, DMA requests are automatically generated by AES during the output data phase. This feature is only effective when Mode 1 or Mode 3 is selected through the MODE[1:0] bitfield. It is not effective for Mode 2 (key derivation). Usage of DMA with Mode 4 (single decryption) is not recommended. Bit 11 DMAINEN: DMA input enable This bit enables/disables data transferring with DMA, in the input phase: 0: Disable 1: Enable When the bit is set, DMA requests are automatically generated by AES during the input data phase. This feature is only effective when Mode 1 or Mode 3 is selected through the MODE[1:0] bitfield. It is not effective for Mode 2 (key derivation). Usage of DMA with Mode 4 (single decryption) is not recommended. Bit 10 ERRIE: Error interrupt enable This bit enables or disables (masks) the AES interrupt generation when RDERR and/or WRERR is set: 0: Disable (mask) 1: Enable Bit 9 CCFIE: CCF interrupt enable This bit enables or disables (masks) the AES interrupt generation when CCF (computation complete flag) is set: 0: Disable (mask) 1: Enable Bit 8 ERRC: Error flag clear Upon written to 1, this bit clears the RDERR and WRERR error flags in the AES_SR register: 0: No effect 1: Clear RDERR and WRERR flags Reading the flag always returns zero. Bit 7 CCFC: Computation complete flag clear Upon written to 1, this bit clears the computation complete flag (CCF) in the AES_SR register: 0: No effect 1: Clear CCF Reading the flag always returns zero. 732/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Bits 6:5 CHMOD[1:0]: Chaining mode selection, bits [1:0] These bits, together with the bit CHMOD[2] (see bit 16 of this register), form CHMOD[2:0] bitfield that selects the AES chaining mode: 000: Electronic codebook (ECB) 001: Cipher-Block Chaining (CBC) 010: Counter Mode (CTR) 011: Galois Counter Mode (GCM) and Galois Message Authentication Code (GMAC) 100: Counter with CBC-MAC (CCM) >100: Reserved The bitfield value change is allowed only when AES is disabled, so as to avoid an unpredictable behavior. Bits 4:3 MODE[1:0]: AES operating mode This bitfield selects the AES operating mode: 00: Mode 1: encryption 01: Mode 2: key derivation (or key preparation for ECB/CBC decryption) 10: Mode 3: decryption 11: Mode 4: key derivation then single decryption The bitfield value change is allowed only when AES is disabled, so as to avoid an unpredictable behavior. Any attempt to selecting Mode 4 while either ECB or CBC chaining mode is not selected, defaults to effective selection of Mode 3. It is not possible to select a Mode 3 following a Mode 4. Bits 2:1 DATATYPE[1:0]: Data type selection This bitfield defines the format of data written in the AES_DINR register or read from the AES_DOUTR register, through selecting the mode of data swapping: 00: None 01: Half-word (16-bit) 10: Byte (8-bit) 11: Bit For more details, refer to Section 24.4.13: .AES data registers and data swapping. The bitfield value change is allowed only when AES is disabled, so as to avoid an unpredictable behavior. Bit 0 EN: AES enable This bit enables/disables the AES peripheral: 0: Disable 1: Enable At any moment, clearing then setting the bit re-initializes the AES peripheral. This bit is automatically cleared by hardware when the key preparation process ends (Mode 2). RM0430 Rev 8 733/1324 743 AES hardware accelerator (AES) 24.7.2 RM0430 AES status register (AES_SR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BUSY r r r r r r r r r r r r r WRERR RDERR r r CCF r Bits 31:4 Reserved, must be kept at zero Bit 3 BUSY: Busy This flag indicates whether AES is idle or busy during GCM payload encryption phase: 0: Idle 1: Busy The flag is controlled by hardware. When the flag indicates “idle”, the current message processing may be suspended to process a higher-priority message. This flag is effective only in GCM payload encryption phase. in other chaining modes, or in GCM phases other than payload encryption, the flag must be ignored. 734/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Bit 2 WRERR: Write error This flag indicates the detection of an unexpected write operation to the AES_DINR register (during computation or data output phase): 0: Not detected 1: Detected The flag is set by hardware. It is cleared by software upon setting the ERRC bit of the AES_CR register. Upon the flag setting, an interrupt is generated if enabled through the ERRIE bit of the AES_CR register. The flag setting has no impact on the AES operation. The flag is not effective when key derivation mode, or GCM/CCM Init phase is selected. Bit 1 RDERR: Read error flag This flag indicates the detection of an unexpected read operation from the AES_DOUTR register (during computation or data input phase): 0: Not detected 1: Detected The flag is set by hardware. It is cleared by software upon setting the ERRC bit of the AES_CR register. Upon the flag setting, an interrupt is generated if enabled through the ERRIE bit of the AES_CR register. The flag setting has no impact on the AES operation. The flag is not effective when key derivation mode, nor GCM/CCM init/header phase is selected. Bit 0 CCF: Computation completed flag This flag indicates whether the computation is completed: 0: Not completed 1: Completed The flag is set by hardware upon the completion of the computation. It is cleared by software, upon setting the CCFC bit of the AES_CR register. Upon the flag setting, an interrupt is generated if enabled through the CCFIE bit of the AES_CR register. The flag is significant only when the DMAOUTEN bit is 0. It may stay high when DMA_EN is 1. 24.7.3 AES data input register (AES_DINR) Address offset: 0x08 Reset value: 0x0000 0000 Only 32-bit access type is supported. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DIN[x+31:x+16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DIN[x+15:x] rw rw rw rw rw rw rw rw rw RM0430 Rev 8 735/1324 743 AES hardware accelerator (AES) RM0430 Bits 31:0 DIN[x+31:x]: One of four 32-bit words of a 128-bit input data block being written into the peripheral This bitfield feeds a 32-bit input buffer. A 4-fold sequential write to this bitfield during the input phase virtually writes a complete 128-bit block of input data to the AES peripheral. Upon each write, the data from the input buffer are handled by the data swap block according to the DATATYPE[1:0] bitfield, then written into the AES core 128-bit input buffer. The substitution for “x”, from the first to the fourth write operation, is: 96, 64, 32, and 0. In other words, data from the first to the fourth write operation are: DIN[127:96], DIN[95:64], DIN[63:32], and DIN[31:0]. The data signification of the input data block depends on the AES operating mode: - Mode 1 (encryption): plaintext - Mode 2 (key derivation): the bitfield is not used (AES_KEYRx registers used for input) - Mode 3 (decryption) and Mode 4 (key derivation then single decryption): ciphertext The data swap operation is described in Section 24.4.13: .AES data registers and data swapping on page 724. 24.7.4 AES data output register (AES_DOUTR) Address offset: 0x0C Reset value: 0x0000 0000 Only 32-bit access type is supported. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r DOUT[x+31:x+16] DOUT[x+15:0] r r r r r r r r r Bits 31:0 DOUT[x+31:x]: One of four 32-bit words of a 128-bit output data block being read from the peripheral This bitfield fetches a 32-bit output buffer. A 4-fold sequential read of this bitfield, upon the computation completion (CCF set), virtually reads a complete 128-bit block of output data from the AES peripheral. Before reaching the output buffer, the data produced by the AES core are handled by the data swap block according to the DATATYPE[1:0] bitfield. The substitution for DOUT[x+31:x], from the first to the fourth read operation, is: 96, 64, 32, and 0. In other words, data from the first to the fourth read operation are: DOUT[127:96], DOUT[95:64], DOUT[63:32], and DOUT[31:0]. The data signification of the output data block depends on the AES operating mode: - Mode 1 (encryption): ciphertext - Mode 2 (key derivation): the bitfield is not used (AES_KEYRx registers used for output). - Mode 3 (decryption) and Mode 4 (key derivation then single decryption): plaintext The data swap operation is described in Section 24.4.13: .AES data registers and data swapping on page 724. 24.7.5 AES key register 0 (AES_KEYR0) Address offset: 0x10 Reset value: 0x0000 0000 736/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw KEY[31:16] KEY[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 KEY[31:0]: Cryptographic key, bits [31:0] This bitfield contains the bits [31:0] of the AES encryption or decryption key, depending on the operating mode: - In Mode 1 (encryption), Mode 2 (key derivation) and Mode 4 (key derivation then single decryption): the value to write into the bitfield is the encryption key. - In Mode 3 (decryption): the value to write into the bitfield is the encryption key to be derived before being used for decryption. After writing the encryption key into the bitfield, its reading before enabling AES returns the same value. Its reading after enabling AES and after the CCF flag is set returns the decryption key derived from the encryption key. Note: In mode 4 (key derivation then decryption) the bitfield always contains the encryption key. The AES_KEYRx registers may be written only when the AES peripheral is disabled. Refer to Section 24.4.14: AES key registers on page 726 for more details. 24.7.6 AES key register 1 (AES_KEYR1) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 KEY[63:48] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw KEY[47:32] rw rw rw rw rw rw rw rw rw Bits 31:0 KEY[63:32]: Cryptographic key, bits [63:32] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. 24.7.7 AES key register 2 (AES_KEYR2) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 KEY[95:80] rw rw rw rw rw rw rw 15 14 13 12 11 10 9 rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw KEY[79:64] rw rw rw rw rw rw rw rw rw RM0430 Rev 8 737/1324 743 AES hardware accelerator (AES) RM0430 Bits 31:0 KEY[95:64]: Cryptographic key, bits [95:64] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. 24.7.8 AES key register 3 (AES_KEYR3) Address offset: 0x1C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 KEY[127:112] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw KEY[111:96] rw rw rw rw rw rw rw rw rw Bits 31:0 KEY[127:96]: Cryptographic key, bits [127:96] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. 24.7.9 AES initialization vector register 0 (AES_IVR0) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 IVI[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw IVI[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 IVI[31:0]: Initialization vector input, bits [31:0] Refer to Section 24.4.15: AES initialization vector registers on page 726 for description of the IVI[127:0] bitfield. The initialization vector is only used in chaining modes other than ECB. The initialization vector may be written only when the AES peripheral is disabled. 24.7.10 AES initialization vector register 1 (AES_IVR1) Address offset: 0x24 Reset value: 0x0000 0000 738/1324 RM0430 Rev 8 RM0430 AES hardware accelerator (AES) 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw IVI[63:48] IVI[47:32] rw rw rw rw rw rw rw rw rw Bits 31:0 IVI[63:32]: Initialization vector input, bits [63:32] Refer to Section 24.4.15: AES initialization vector registers on page 726 for description of the IVI[127:0] bitfield. The initialization vector is only used in chaining modes other than ECB. The initialization vector may be written only when the AES peripheral is disabled. 24.7.11 AES initialization vector register 2 (AES_IVR2) Address offset: 0x28 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 IVI[95:80] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw IVI[79:64] rw rw rw rw rw rw rw rw rw Bits 31:0 IVI[95:64]: Initialization vector input, bits [95:64] Refer to Section 24.4.15: AES initialization vector registers on page 726 for description of the IVI[127:0] bitfield. The initialization vector is only used in chaining modes other than ECB. The initialization vector may be written only when the AES peripheral is disabled. 24.7.12 AES initialization vector register 3 (AES_IVR3) Address offset: 0x2C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 IVI[127:112] rw rw rw rw rw rw rw 15 14 13 12 11 10 9 rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw IVI[111:96] rw rw rw rw rw rw rw rw rw RM0430 Rev 8 739/1324 743 AES hardware accelerator (AES) RM0430 Bits 31:0 IVI[127:96]: Initialization vector input, bits [127:96] Refer to Section 24.4.15: AES initialization vector registers on page 726 for description of the IVI[127:0] bitfield. The initialization vector is only used in chaining modes other than ECB. The initialization vector may be written only when the AES peripheral is disabled. 24.7.13 AES key register 4 (AES_KEYR4) Address offset: 0x30 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 KEY[159:144] rw rw rw rw rw rw rw 15 14 13 12 11 10 9 rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw KEY[143:128] rw rw rw rw rw rw rw rw rw Bits 31:0 KEY[159:128]: Cryptographic key, bits [159:128] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. 24.7.14 AES key register 5 (AES_KEYR5) Address offset: 0x34 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 KEY[191:176] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw KEY[175:160] rw rw rw rw rw rw rw rw rw Bits 31:0 KEY[191:160]: Cryptographic key, bits [191:160] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. 24.7.15 AES key register 6 (AES_KEYR6) Address offset: 0x38 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw KEY[223:208] KEY[207:192] rw 740/1324 rw rw rw rw rw rw rw rw RM0430 Rev 8 RM0430 AES hardware accelerator (AES) Bits 31:0 KEY[223:192]: Cryptographic key, bits [223:192] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. 24.7.16 AES key register 7 (AES_KEYR7) Address offset: 0x3C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 KEY[255:240] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw KEY[239:224] rw rw rw rw rw rw rw rw rw Bits 31:0 KEY[255:224]: Cryptographic key, bits [255:224] Refer to the AES_KEYR0 register for description of the KEY[255:0] bitfield. Note: The key registers from 4 to 7 are used only when the key length of 256 bits is selected. They have no effect when the key length of 128 bits is selected (only key registers 0 to 3 are used in that case). 24.7.17 AES suspend registers (AES_SUSPxR) Address offset: 0x040 + x * 0x4, (x = 0 to 7) Reset value: 0x0000 0000 These registers contain the complete internal register states of the AES processor when the AES processing of the current task is suspended to process a higher-priority task. Upon suspend, the software reads and saves the AES_SUSPxR register contents (where x is from 0 to 7) into memory, before using the AES processor for the higher-priority task. Upon completion, the software restores the saved contents back into the corresponding suspend registers, before resuming the original task. Note: These registers are used only when GCM, GMAC, or CCM chaining mode is selected. These registers can be read only when AES is enabled. Reading these registers while AES is disabled returns 0x0000 0000. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 SUSPx rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw SUSPx rw rw rw rw rw rw rw rw Bits 31:0 SUSPx: AES suspend Upon suspend operation, this bitfield of every AES_SUSPxR register takes the value of one of internal AES registers. RM0430 Rev 8 741/1324 743 AES hardware accelerator (AES) 24.7.18 RM0430 AES register map ERRC CCFC 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 AES_DINR x=96,64,32,0 Reset value 0x000 C 0x0010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x0014 0x001 C 0x0020 Reset value 0x0030 Reset value 0 0 0 0 0 0 0 0 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KEY[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KEY[63:32] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KEY[95:64] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KEY[127:96] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IVI[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IVI[63:32] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IVI[95:64] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IVI[127:96] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AES_KEYR4 0 0 0 0 KEY[159:128] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AES_KEYR5 0 0 0 0 KEY[191:160] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AES_KEYR6 Reset value 742/1324 0 AES_IVR3 Reset value 0x0038 0 AES_IVR2 Reset value 0x0034 0 AES_IVR1 Reset value 0x002 C 0 AES_IVR0 Reset value 0x0028 0 AES_KEYR3 Reset value 0x0024 0 AES_KEYR2 Reset value 0 DOUT[x+31:x] AES_KEYR1 Reset value 0x0018 0 AES_KEYR0 Reset value 0 DIN[x+31:x] AES_DOUTR x=96,64,32,0 Reset value CCF 0 RDERR 0 WRERR 0 BUSY 0 Reset value 0x0008 EN CCFIE 0 DATATYPE[1:0] ERRIE 0 MODE[1:0] DMAINEN 0 Res. Res. CHMOD[1:0] DMAOUTEN 0 GCMPH[1:0] 0 Res. Res. CHMOD[2] Res. Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. AES_SR 0x0004 0 Res. Reset value KEYSIZE Res. Res. Res. Res. Res. Res. Res. Res. Res. AES_CR Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x0000 Register Res. Offset Res. Table 135. AES register map and reset values 0 0 0 0 KEY[223:192] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 0 0 0 RM0430 AES hardware accelerator (AES) Offset 0x003 C 0x0040 Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 135. AES register map and reset values (continued) AES_KEYR7 KEY[255:224] Reset value 0x0050 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SUSP1[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SUSP2[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SUSP3[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SUSP4[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SUSP5[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AES_SUSP6R 0 0 0 0 SUSP6[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AES_SUSP7R Reset value 0 SUSP0[31:0] AES_SUSP5R Reset value 0x005 C 0 AES_SUSP4R Reset value 0x0058 0 AES_SUSP3R Reset value 0x0054 0 AES_SUSP2R Reset value 0x004 C 0 AES_SUSP1R Reset value 0x0048 0 AES_SUSP0R Reset value 0x0044 0 0 0 0 0 SUSP7[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 0 0 0 743/1324 743 Real-time clock (RTC) RM0430 25 Real-time clock (RTC) 25.1 Introduction The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a time-of-day clock/calendar, two programmable alarm interrupts, and a periodic programmable wakeup flag with interrupt capability. The RTC also includes an automatic wakeup unit to manage low power modes. Two 32-bit registers contain the seconds, minutes, hours (12- or 24-hour format), day (day of week), date (day of month), month, and year, expressed in binary coded decimal format (BCD). The sub-seconds value is also available in binary format. Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed automatically. Daylight saving time compensation can also be performed. Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date. A digital calibration feature is available to compensate for any deviation in crystal oscillator accuracy. After backup domain reset, all RTC registers are protected against possible parasitic write accesses. As long as the supply voltage remains in the operating range, the RTC never stops, regardless of the device status (Run mode, low power mode or under reset). 25.2 RTC main features The RTC unit main features are the following (see Figure 254): • Calendar with subseconds, seconds, minutes, hours (12 or 24 format), day (day of week), date (day of month), month, and year. • Daylight saving compensation programmable by software. • Two programmable alarms with interrupt function. The alarms can be triggered by any combination of the calendar fields. • Automatic wakeup unit generating a periodic flag that triggers an automatic wakeup interrupt. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. • Accurate synchronization with an external clock using the subsecond shift feature. • Maskable interrupts/events: • – Alarm A – Alarm B – Wakeup interrupt – Timestamp – Tamper detection Digital calibration circuit (periodic counter correction) – 744/1324 5 ppm accuracy RM0430 Rev 8 RM0430 Real-time clock (RTC) – 0.95 ppm accuracy, obtained in a calibration window of several seconds • Timestamp function for event saving (1 event) • Tamper detection: – 2 tamper events with configurable filter and internal pull-up. • 20 backup registers (80 bytes). The backup registers are reset when a tamper detection event occurs. • Alternate function output (RTC_OUT) which selects one of the following two outputs: – RTC_CALIB: 512 Hz or 1 Hz clock output (with an LSE frequency of 32.768 kHz). This output is enabled by setting the COE bit in the RTC_CR register. It is routed to the device RTC_AF1 function. – RTC_ALARM (Alarm A, Alarm B or wakeup). This output is selected by configuring the OSEL[1:0] bits in the RTC_CR register. It is routed to the device RTC_AF1 function. • RTC alternate function inputs: – RTC_TS: timestamp event detection. It is routed to the device RTC_AF1. – RTC_TAMP1: TAMPER1 event detection. It is routed to the device RTC_AF1. – RTC_REFIN: reference clock input (usually the mains, 50 or 60 Hz). Figure 254. RTC block diagram 57&B76 +] +] 7LPH VWDPS UHJLVWHUV 76) 57&B&$/,% &NBDSUH GHIDXOW+] 6PRRWK &DOLEUDWLRQ 57&B&$/ 5 /6( +] +6(B57& 0+]PD[ /6, 57&B35(5 $V\QFKURQRXV ELWSUHVFDOHU GHIDXOW 57&B35(5 6\QFKURQRXV ELWSUHVFDOHU GHIDXOW $ODUP$ 57&B$/50$5 57&B$/50$665 FNBVSUH UHJLVWHUV GHIDXOW +] 6KDGRZ 5HJLVWHUV 57&B665 &DOHQGDU 6KDGRZ 5HJLVWHUV 57&B75'5 57&B287 57&B$) $/5$) 57&B$/$50 57&&/. :8&.6(/>@ 3UHVFDOHU 57&B7$03 &RDUVH FDOLEUDWLRQ 57&B&$/ ,%5 2XWSXW FRQWURO 57&B:875 $ODUP% 57&B$/50%5 57&B$/50%665 UHJLVWHUV $/5%) :87) ELWZDNHXS DXWRUHORDGWLPHU %DFNXSDQG 57&WDPSHU FRQWURO UHJLVWHUV 7$03( 76( 06Y9 RM0430 Rev 8 745/1324 781 Real-time clock (RTC) RM0430 25.3 RTC functional description 25.3.1 Clock and prescalers The RTC clock source (RTCCLK) is selected through the clock controller among the LSE clock, the LSI oscillator clock, and the HSE clock. For more information on the RTC clock source configuration, refer to Section 6: Reset and clock control (RCC) for STM32F413/423. A programmable prescaler stage generates a 1 Hz clock which is used to update the calendar. To minimize power consumption, the prescaler is split into 2 programmable prescalers (see Figure 254: RTC block diagram): Note: • A 7-bit asynchronous prescaler configured through the PREDIV_A bits of the RTC_PRER register. • A 15-bit synchronous prescaler configured through the PREDIV_S bits of the RTC_PRER register. When both prescalers are used, it is recommended to configure the asynchronous prescaler to a high value to minimize consumption. The asynchronous prescaler division factor is set to 128, and the synchronous division factor to 256, to obtain an internal clock frequency of 1 Hz (ck_spre) with an LSE frequency of 32.768 kHz. The minimum division factor is 1 and the maximum division factor is 222. This corresponds to a maximum input frequency of around 4 MHz. fck_apre is given by the following formula: f RTCCLK f CK_APRE = --------------------------------------PREDIV_A + 1 The ck_apre clock is used to clock the binary RTC_SSR subseconds downcounter. When it reaches 0, RTC_SSR is reloaded with the content of PREDIV_S. fck_spre is given by the following formula: f RTCCLK f CK_SPRE = ----------------------------------------------------------------------------------------------( PREDIV_S + 1 ) × ( PREDIV_A + 1 ) The ck_spre clock can be used either to update the calendar or as timebase for the 16-bit wakeup auto-reload timer. To obtain short timeout periods, the 16-bit wakeup auto-reload timer can also run with the RTCCLK divided by the programmable 4-bit asynchronous prescaler (see Section 25.3.4 for details). 25.3.2 Real-time clock and calendar The RTC calendar time and date registers are accessed through shadow registers which are synchronized with PCLK1 (APB1 clock). They can also be accessed directly in order to avoid waiting for the synchronization duration. 746/1324 • RTC_SSR for the subseconds • RTC_TR for the time • RTC_DR for the date RM0430 Rev 8 RM0430 Real-time clock (RTC) Every two RTCCLK periods, the current calendar value is copied into the shadow registers, and the RSF bit of RTC_ISR register is set (see Section 25.6.4). The copy is not performed in Stop and Standby mode. When exiting these modes, the shadow registers are updated after up to two RTCCLK periods. When the application reads the calendar registers, it accesses the content of the shadow registers.It is possible to make a direct access to the calendar registers by setting the BYPSHAD control bit in the RTC_CR register. By default, this bit is cleared, and the user accesses the shadow registers. When reading the RTC_SSR, RTC_TR or RTC_DR registers in BYPSHAD=0 mode, the frequency of the APB clock (fAPB) must be at least 7 times the frequency of the RTC clock (fRTCCLK). The shadow registers are reset by system reset. 25.3.3 Programmable alarms The RTC unit provides two programmable alarms, Alarm A and Alarm B. The programmable alarm functions are enabled through the ALRAIE and ALRBIE bits in the RTC_CR register. The ALRAF and ALRBF flags are set to 1 if the calendar subseconds, seconds, minutes, hours, date or day match the values programmed in the alarm registers RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR, respectively. Each calendar field can be independently selected through the MSKx bits of the RTC_ALRMAR and RTC_ALRMBR registers, and through the MASKSSx bits of the RTC_ALRMASSR and RTC_ALRMBSSR registers. The alarm interrupts are enabled through the ALRAIE and ALRBIE bits in the RTC_CR register. Alarm A and Alarm B (if enabled by bits OSEL[1:0] in RTC_CR register) can be routed to the RTC_ALARM output. RTC_ALARM polarity can be configured through bit POL in the RTC_CR register. Caution: If the seconds field is selected (MSK0 bit reset in RTC_ALRMAR or RTC_ALRMBR), the synchronous prescaler division factor set in the RTC_PRER register must be at least 3 to ensure correct behavior. 25.3.4 Periodic auto-wakeup The periodic wakeup flag is generated by a 16-bit programmable auto-reload down-counter. The wakeup timer range can be extended to 17 bits. The wakeup function is enabled through the WUTE bit in the RTC_CR register. The wakeup timer clock input can be: • RTC clock (RTCCLK) divided by 2, 4, 8, or 16. When RTCCLK is LSE(32.768 kHz), this allows to configure the wakeup interrupt period from 122 µs to 32 s, with a resolution down to 61µs. • ck_spre (usually 1 Hz internal clock) When ck_spre frequency is 1Hz, this allows to achieve a wakeup time from 1 s to around 36 hours with one-second resolution. This large programmable time range is divided in 2 parts: – from 1s to 18 hours when WUCKSEL [2:1] = 10 – and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is added to the 16-bit counter current value.When the initialization sequence is RM0430 Rev 8 747/1324 781 Real-time clock (RTC) RM0430 complete (see Programming the wakeup timer), the timer starts counting down.When the wakeup function is enabled, the down-counting remains active in low power modes. In addition, when it reaches 0, the WUTF flag is set in the RTC_ISR register, and the wakeup counter is automatically reloaded with its reload value (RTC_WUTR register value). The WUTF flag must then be cleared by software. When the periodic wakeup interrupt is enabled by setting the WUTIE bit in the RTC_CR2 register, it can exit the device from low power modes. The periodic wakeup flag can be routed to the RTC_ALARM output provided it has been enabled through bits OSEL[1:0] of RTC_CR register. RTC_ALARM polarity can be configured through the POL bit in the RTC_CR register. System reset, as well as low power modes (Sleep, Stop and Standby) have no influence on the wakeup timer. 25.3.5 RTC initialization and configuration RTC register access The RTC registers are 32-bit registers. The APB interface introduces 2 wait-states in RTC register accesses except on read accesses to calendar shadow registers when BYPSHAD=0. RTC register write protection After system reset, the RTC registers are protected against parasitic write access with the DBP bit of the PWR power control register (PWR_CR). The DBP bit must be set to enable RTC registers write access. After backup domain reset, all the RTC registers are write-protected. Writing to the RTC registers is enabled by writing a key into the Write Protection register, RTC_WPR. The following steps are required to unlock the write protection on all the RTC registers except for RTC_ISR[13:8], RTC_TAFCR, and RTC_BKPxR. 1. Write ‘0xCA’ into the RTC_WPR register. 2. Write ‘0x53’ into the RTC_WPR register. Writing a wrong key reactivates the write protection. The protection mechanism is not affected by system reset. Calendar initialization and configuration To program the initial time and date calendar values, including the time format and the prescaler configuration, the following sequence is required: 748/1324 1. Set INIT bit to 1 in the RTC_ISR register to enter initialization mode. In this mode, the calendar counter is stopped and its value can be updated. 2. Poll INITF bit of in the RTC_ISR register. The initialization phase mode is entered when INITF is set to 1. It takes from 1 to 2 RTCCLK clock cycles (due to clock synchronization). 3. To generate a 1 Hz clock for the calendar counter, program first the synchronous prescaler factor in RTC_PRER register, and then program the asynchronous prescaler RM0430 Rev 8 RM0430 Real-time clock (RTC) factor. Even if only one of the two fields needs to be changed, 2 separate write accesses must be performed to the RTC_PRER register. 4. Load the initial time and date values in the shadow registers (RTC_TR and RTC_DR), and configure the time format (12 or 24 hours) through the FMT bit in the RTC_CR register. 5. Exit the initialization mode by clearing the INIT bit. The actual calendar counter value is then automatically loaded and the counting restarts after 4 RTCCLK clock cycles. When the initialization sequence is complete, the calendar starts counting. Note: After a system reset, the application can read the INITS flag in the RTC_ISR register to check if the calendar has been initialized or not. If this flag equals 0, the calendar has not been initialized since the year field is set at its backup domain reset default value (0x00). To read the calendar after initialization, the software must first check that the RSF flag is set in the RTC_ISR register. Daylight saving time The daylight saving time management is performed through bits SUB1H, ADD1H, and BKP of the RTC_CR register. Using SUB1H or ADD1H, the software can subtract or add one hour to the calendar in one single operation without going through the initialization procedure. In addition, the software can use the BKP bit to memorize this operation. Programming the alarm A similar procedure must be followed to program or update the programmable alarm (Alarm A or Alarm B): Note: 1. Clear ALRAE or ALRBIE in RTC_CR to disable Alarm A or Alarm B. 2. Poll ALRAWF or ALRBWF in RTC_ISR until it is set to make sure the access to alarm registers is allowed. This takes 1 to 2 RTCCLK clock cycles (due to clock synchronization). 3. Program the Alarm A or Alarm B registers (RTC_ALRMASSR/RTC_ALRMAR or RTC_ALRMBSSR/RTC_ALRMBR). 4. Set ALRAE or ALRBIE in the RTC_CR register to enable Alarm A or Alarm B again. Each change of the RTC_CR register is taken into account after 1 to 2 RTCCLK clock cycles due to clock synchronization. Programming the wakeup timer The following sequence is required to configure or change the wakeup timer auto-reload value (WUT[15:0] in RTC_WUTR): 1. Clear WUTE in RTC_CR to disable the wakeup timer. 2. Poll WUTWF until it is set in RTC_ISR to make sure the access to wakeup auto-reload counter and to WUCKSEL[2:0] bits is allowed. It takes 1 to 2 RTCCLK clock cycles (due to clock synchronization). 3. Program the wakeup auto-reload value WUT[15:0] and the wakeup clock selection (WUCKSEL[2:0] bits in RTC_CR).Set WUTE in RTC_CR to enable the timer again. The wakeup timer restarts down-counting. Due to clock synchronization, the WUTWF bit is cleared up to 2 RTCCLK clocks cycles after WUTE is cleared. RM0430 Rev 8 749/1324 781 Real-time clock (RTC) 25.3.6 RM0430 Reading the calendar When BYPSHAD control bit is cleared in the RTC_CR register To read the RTC calendar registers (RTC_SSR, RTC_TR and RTC_DR) properly, the APB1 clock frequency (fPCLK1) must be equal to or greater than seven times the fRTCCLK RTC clock frequency. This ensures a secure behavior of the synchronization mechanism. If the APB1 clock frequency is less than seven times the RTC clock frequency, the software must read the calendar time and date registers twice. If the second read of the RTC_TR gives the same result as the first read, this ensures that the data is correct. Otherwise a third read access must be done. In any case the APB1 clock frequency must never be lower than the RTC clock frequency. The RSF bit is set in RTC_ISR register each time the calendar registers are copied into the RTC_SSR, RTC_TR and RTC_DR shadow registers. The copy is performed every two RTCCLK cycles. To ensure consistency between the 3 values, reading either RTC_SSR or RTC_TR locks the values in the higher-order calendar shadow registers until RTC_DR is read. In case the software makes read accesses to the calendar in a time interval smaller than 2 RTCCLK periods: RSF must be cleared by software after the first calendar read, and then the software must wait until RSF is set before reading again the RTC_SSR, RTC_TR and RTC_DR registers. After waking up from low power mode (Stop or Standby), RSF must be cleared by software. The software must then wait until it is set again before reading the RTC_SSR, RTC_TR and RTC_DR registers. The RSF bit must be cleared after wakeup and not before entering low power mode. Note: After a system reset, the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. Indeed, a system reset resets the shadow registers to their default values. After an initialization (refer to Calendar initialization and configuration): the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. After synchronization (refer to Section 25.3.8): the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. When the BYPSHAD control bit is set in the RTC_CR register (bypass shadow registers) Reading the calendar registers gives the values from the calendar counters directly, thus eliminating the need to wait for the RSF bit to be set. This is especially useful after exiting from low power modes (STOP or Standby), since the shadow registers are not updated during these modes. When the BYPSHAD bit is set to 1, the results of the different registers might not be coherent with each other if an RTCCLK edge occurs between two read accesses to the registers. Additionally, the value of one of the registers may be incorrect if an RTCCLK edge occurs during the read operation. The software must read all the registers twice, and then compare the results to confirm that the data is coherent and correct. Alternatively, the software can just compare the two results of the least-significant calendar register. Note: 750/1324 While BYPSHAD=1, instructions which read the calendar registers require one extra APB cycle to complete. RM0430 Rev 8 RM0430 25.3.7 Real-time clock (RTC) Resetting the RTC The calendar shadow registers (RTC_SSR, RTC_TR and RTC_DR) and some bits of the RTC status register (RTC_ISR) are reset to their default values by all available system reset sources. On the contrary, the following registers are resetted to their default values by a backup domain reset and are not affected by a system reset: the RTC current calendar registers, the RTC control register (RTC_CR), the prescaler register (RTC_PRER), the RTC calibration registers (RTC_CALIBR or RTC_CALR), the RTC shift register (RTC_SHIFTR), the RTC timestamp registers (RTC_TSSSR, RTC_TSTR and RTC_TSDR), the RTC tamper and alternate function configuration register (RTC_TAFCR), the RTC backup registers (RTC_BKPxR), the wakeup timer register (RTC_WUTR), the Alarm A and Alarm B registers (RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR). In addition, when clocked by LSE, the RTC keeps on running under system reset if the reset source is different from the Backup domain reset one (refer to RCC for details about the list of RTC clock sources not affected by system reset). When a backup domain reset occurs, the RTC is stopped and all the RTC registers are set to their reset values. 25.3.8 RTC synchronization The RTC can be synchronized to a remote clock with a high degree of precision. After reading the sub-second field (RTC_SSR or RTC_TSSSR), a calculation can be made of the precise offset between the times being maintained by the remote clock and the RTC. The RTC can then be adjusted to eliminate this offset by “shifting” its clock by a fraction of a second using RTC_SHIFTR. RTC_SSR contains the value of the synchronous prescaler’s counter. This allows one to calculate the exact time being maintained by the RTC down to a resolution of 1 / (PREDIV_S + 1) seconds. As a consequence, the resolution can be improved by increasing the synchronous prescaler value (PREDIV_S[14:0]. The maximum resolution allowed (30.52 μs with a 32768 Hz clock) is obtained with PREDIV_S set to 0x7FFF. However, increasing PREDIV_S means that PREDIV_A must be decreased in order to maintain the synchronous prescaler’s output at 1 Hz. In this way, the frequency of the asynchronous prescaler’s output increases, which may increase the RTC dynamic consumption. The RTC can be finely adjusted using the RTC shift control register (RTC_SHIFTR). Writing to RTC_SHIFTR can shift (either delay or advance) the clock by up to a second with a resolution of 1 / (PREDIV_S + 1) seconds. The shift operation consists of adding the SUBFS[14:0] value to the synchronous prescaler counter SS[15:0]: this will delay the clock. If at the same time the ADD1S bit is set, this results in adding one second and at the same time subtracting a fraction of second, so this will advance the clock. Caution: Before initiating a shift operation, the user must check that SS[15] = 0 in order to ensure that no overflow will occur. As soon as a shift operation is initiated by a write to the RTC_SHIFTR register, the SHPF flag is set by hardware to indicate that a shift operation is pending. This bit is cleared by hardware as soon as the shift operation has completed. Caution: This synchronization feature is not compatible with the reference clock detection feature: firmware must not write to RTC_SHIFTR when REFCKON=1. RM0430 Rev 8 751/1324 781 Real-time clock (RTC) 25.3.9 RM0430 RTC reference clock detection The RTC calendar update can be synchronized to a reference clock RTC_REFIN, usually the mains (50 or 60 Hz). The RTC_REFIN reference clock should have a higher precision than the 32.768 kHz LSE clock. When the RTC_REFIN detection is enabled (REFCKON bit of RTC_CR set to 1), the calendar is still clocked by the LSE, and RTC_REFIN is used to compensate for the imprecision of the calendar update frequency (1 Hz). Each 1 Hz clock edge is compared to the nearest reference clock edge (if one is found within a given time window). In most cases, the two clock edges are properly aligned. When the 1 Hz clock becomes misaligned due to the imprecision of the LSE clock, the RTC shifts the 1 Hz clock a bit so that future 1 Hz clock edges are aligned. Thanks to this mechanism, the calendar becomes as precise as the reference clock. The RTC detects if the reference clock source is present by using the 256 Hz clock (ck_apre) generated from the 32.768 kHz quartz. The detection is performed during a time window around each of the calendar updates (every 1 s). The window equals 7 ck_apre periods when detecting the first reference clock edge. A smaller window of 3 ck_apre periods is used for subsequent calendar updates. Each time the reference clock is detected in the window, the asynchronous prescaler which outputs the ck_apre clock is forced to reload. This has no effect when the reference clock and the 1 Hz clock are aligned because the prescaler is being reloaded at the same moment. When the clocks are not aligned, the reload shifts future 1 Hz clock edges a little for them to be aligned with the reference clock. If the reference clock halts (no reference clock edge occurred during the 3 ck_apre window), the calendar is updated continuously based solely on the LSE clock. The RTC then waits for the reference clock using a large 7 ck_apre period detection window centered on the ck_spre edge. When the reference clock detection is enabled, PREDIV_A and PREDIV_S must be set to their default values: • PREDIV_A = 0x007F • PREDIV_S = 0x00FF Note: The reference clock detection is not available in Standby mode. Caution: The reference clock detection feature cannot be used in conjunction with the coarse digital calibration: RTC_CALIBR must be kept at 0x0000 0000 when REFCKON=1. 25.3.10 RTC coarse digital calibration Two digital calibration methods are available: coarse and smooth calibration. To perform coarse calibration refer to Section 25.6.7: RTC calibration register (RTC_CALIBR). The two calibration methods are not intended to be used together, the application must select one of the two methods. Coarse calibration is provided for compatibly reasons. To perform smooth calibration refer to Section 25.3.11: RTC smooth digital calibration and to Section 25.6.16: RTC calibration register (RTC_CALR) The coarse digital calibration can be used to compensate crystal inaccuracy by adding (positive calibration) or masking (negative calibration) clock cycles at the output of the asynchronous prescaler (ck_apre). Positive and negative calibration are selected by setting the DCS bit in RTC_CALIBR register to ‘0’ and ‘1’, respectively. 752/1324 RM0430 Rev 8 RM0430 Real-time clock (RTC) When positive calibration is enabled (DCS = ‘0’), 2 ck_apre cycles are added every minute (around 15360 ck_apre cycles) for 2xDC minutes. This causes the calendar to be updated sooner, thereby adjusting the effective RTC frequency to be a bit higher. When negative calibration is enabled (DCS = ‘1’), 1 ck_apre cycle is removed every minute (around 15360 ck_apre cycles) for 2xDC minutes. This causes the calendar to be updated later, thereby adjusting the effective RTC frequency to be a bit lower. DC is configured through bits DC[4:0] of RTC_CALIBR register. This number ranges from 0 to 31 corresponding to a time interval (2xDC) ranging from 0 to 62. The coarse digital calibration can be configured only in initialization mode, and starts when the INIT bit is cleared. The full calibration cycle lasts 64 minutes. The first 2xDC minutes of the 64 -minute cycle are modified as just described. Negative calibration can be performed with a resolution of about 2 ppm while positive calibration can be performed with a resolution of about 4 ppm. The maximum calibration ranges from -63 ppm to 126 ppm. The calibration can be performed either on the LSE or on the HSE clock. Caution: Digital calibration may not work correctly if PREDIV_A < 6. Case of RTCCLK=32.768 kHz and PREDIV_A+1=128 The following description assumes that ck_apre frequency is 256 Hz obtained with an LSE clock nominal frequency of 32.768 kHz, and PREDIV_A set to 127 (default value). The ck_spre clock frequency is only modified during the first 2xDC minutes of the 64-minute cycle. For example, when DC equals 1, only the first 2 minutes are modified. This means that the first 2xDC minutes of each 64-minute cycle have, once per minute, one second either shortened by 256 or lengthened by 128 RTCCLK cycles, given that each ck_apre cycle represents 128 RTCCLK cycles (with PREDIV_A+1=128). Therefore each calibration step has the effect of adding 512 or subtracting 256 oscillator cycles for every 125829120 RTCCLK cycles (64min x 60 s/min x 32768 cycles/s). This is equivalent to +4.069 ppm or-2.035 ppm per calibration step. As a result, the calibration resolution is +10.5 or -5.27 seconds per month, and the total calibration ranges from +5.45 to -2.72 minutes per month. In order to measure the clock deviation, a 512 Hz clock is output for calibration.Refer to Section 25.3.14: Calibration clock output. 25.3.11 RTC smooth digital calibration RTC frequency can be digitally calibrated with a resolution of about 0.954 ppm with a range from -487.1 ppm to +488.5 ppm. The correction of the frequency is performed using series of small adjustments (adding and/or subtracting individual RTCCLK pulses). These adjustments are fairly well distributed so that the RTC is well calibrated even when observed over short durations of time. The smooth digital calibration is performed during a cycle of about 220 RTCCLK pulses, or 32 seconds when the input frequency is 32768 Hz. This cycle is maintained by a 20-bit counter, cal_cnt[19:0], clocked by RTCCLK. RM0430 Rev 8 753/1324 781 Real-time clock (RTC) RM0430 The smooth calibration register (RTC_CALR) specifies the number of RTCCLK clock cycles to be masked during the 32-second cycle: Note: • Setting the bit CALM[0] to 1 causes exactly one pulse to be masked during the 32second cycle. • Setting CALM[1] to 1 causes two additional cycles to be masked • Setting CALM[2] to 1 causes four additional cycles to be masked • and so on up to CALM[8] set to 1 which causes 256 clocks to be masked. CALM[8:0] (RTC_CALRx) specifies the number of RTCCLK pulses to be masked during the 32-second cycle. Setting the bit CALM[0] to ‘1’ causes exactly one pulse to be masked during the 32-second cycle at the moment when cal_cnt[19:0] is 0x80000; CALM[1]=1 causes two other cycles to be masked (when cal_cnt is 0x40000 and 0xC0000); CALM[2]=1 causes four other cycles to be masked (cal_cnt = 0x20000/0x60000/0xA0000/ 0xE0000); and so on up to CALM[8]=1 which causes 256 clocks to be masked (cal_cnt = 0xXX800). While CALM allows the RTC frequency to be reduced by up to 487.1 ppm with fine resolution, the bit CALP can be used to increase the frequency by 488.5 ppm. Setting CALP to ‘1’ effectively inserts an extra RTCCLK pulse every 211 RTCCLK cycles, which means that 512 clocks are added during every 32-second cycle. Using CALM together with CALP, an offset ranging from -511 to +512 RTCCLK cycles can be added during the 32-second cycle, which translates to a calibration range of -487.1 ppm to +488.5 ppm with a resolution of about 0.954 ppm. The formula to calculate the effective calibrated frequency (FCAL) given the input frequency (FRTCCLK) is as follows: FCAL = FRTCCLK x [1 + (CALP x 512 - CALM) / (220 + CALM - CALP x 512)] Calibration when PREDIV_A<3 The CALP bit can not be set to 1 when the asynchronous prescaler value (PREDIV_A bits in RTC_PRER register) is less than 3. If CALP was already set to 1 and PREDIV_A bits are set to a value less than 3, CALP is ignored and the calibration operates as if CALP was equal to 0. To perform a calibration with PREDIV_A less than 3, the synchronous prescaler value (PREDIV_S) should be reduced so that each second is accelerated by 8 RTCCLK clock cycles, which is equivalent to adding 256 clock cycles every 32 seconds. As a result, between 255 and 256 clock pulses (corresponding to a calibration range from 243.3 to 244.1 ppm) can effectively be added during each 32-second cycle using only the CALM bits. With a nominal RTCCLK frequency of 32768 Hz, when PREDIV_A equals 1 (division factor of 2), PREDIV_S should be set to 16379 rather than 16383 (4 less). The only other interesting case is when PREDIV_A equals 0, PREDIV_S should be set to 32759 rather than 32767 (8 less). If PREDIV_S is reduced in this way, the formula given the effective frequency of the calibrated input clock is as follows: FCAL = FRTCCLK x [1 + (256 - CALM) / (220 + CALM - 256)] In this case, CALM[7:0] equals 0x100 (the midpoint of the CALM range) is the correct setting if RTCCLK is exactly 32768.00 Hz. 754/1324 RM0430 Rev 8 RM0430 Real-time clock (RTC) Verifying the RTC calibration RTC precision is performed by measuring the precise frequency of RTCCLK and calculating the correct CALM value and CALP values. An optional 1 Hz output is provided to allow applications to measure and verify the RTC precision. Measuring the precise frequency of the RTC over a limited interval can result in a measurement error of up to 2 RTCCLK clock cycles over the measurement period, depending on how the digital calibration cycle is aligned with the measurement period. However, this measurement error can be eliminated if the measurement period is the same length as the calibration cycle period. In this case, the only error observed is the error due to the resolution of the digital calibration. • By default, the calibration cycle period is 32 seconds. Using this mode and measuring the accuracy of the 1 Hz output over exactly 32 seconds guarantees that the measure is within 0.477 ppm (0.5 RTCCLK cycles over 32 seconds, due to the limitation of the calibration resolution). • CALW16 bit of the RTC_CALR register can be set to 1 to force a 16- second calibration cycle period. In this case, the RTC precision can be measured during 16 seconds with a maximum error of 0.954 ppm (0.5 RTCCLK cycles over 16 seconds). However, since the calibration resolution is reduced, the long term RTC precision is also reduced to 0.954 ppm: CALM[0] bit is stuck at 0 when CALW16 is set to 1. • CALW8 bit of the RTC_CALR register can be set to 1 to force a 8- second calibration cycle period. In this case, the RTC precision can be measured during 8 seconds with a maximum error of 1.907 ppm (0.5 RTCCLK cycles over 8s). The long term RTC precision is also reduced to 1.907 ppm: CALM[1:0] bits are stuck at 00 when CALW8 is set to 1. Re-calibration on-the-fly The calibration register (RTC_CALR) can be updated on-the-fly while RTC_ISR/INITF=0, by using the follow process: 25.3.12 1. Poll the RTC_ISR/RECALPF (re-calibration pending flag). 2. If it is set to 0, write a new value to RTC_CALR, if necessary. RECALPF is then automatically set to 1 3. Within three ck_apre cycles after the write operation to RTC_CALR, the new calibration settings take effect. Timestamp function Timestamp is enabled by setting the TSE bit of RTC_CR register to 1. The calendar is saved in the timestamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR) when a timestamp event is detected on the pin to which the TIMESTAMP alternate function is mapped. When a timestamp event occurs, the timestamp flag bit (TSF) in RTC_ISR register is set. By setting the TSIE bit in the RTC_CR register, an interrupt is generated when a timestamp event occurs. RM0430 Rev 8 755/1324 781 Real-time clock (RTC) RM0430 If a new timestamp event is detected while the timestamp flag (TSF) is already set, the timestamp overflow flag (TSOVF) flag is set and the timestamp registers (RTC_TSTR and RTC_TSDR) maintain the results of the previous event. Note: TSF is set 2 ck_apre cycles after the timestamp event occurs due to synchronization process. There is no delay in the setting of TSOVF. This means that if two timestamp events are close together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is recommended to poll TSOVF only after TSF has been set. Caution: If a timestamp event occurs immediately after the TSF bit is supposed to be cleared, then both TSF and TSOVF bits are set. To avoid masking a timestamp event occurring at the same moment, the application must not write ‘0’ into TSF bit unless it has already read it to ‘1’. Optionally, a tamper event can cause a timestamp to be recorded. See the description of the TAMPTS control bit in Section 25.6.17: RTC tamper and alternate function configuration register (RTC_TAFCR). If the timestamp event is on the same pin as a tamper event configured in filtered mode (TAMPFLT set to a non-zero value), the timestamp on tamper detection event mode must be selected by setting TAMPTS='1' in RTC_TAFCR register. TIMESTAMP alternate function The TIMESTAMP additional function is mapped to RTC_AF1. 25.3.13 Tamper detection Two tamper detection inputs are available. They can be configured either for edge detection, or for level detection with filtering. RTC backup registers The backup registers (RTC_BKPxR) are twenty 32-bit registers for storing 80 bytes of user application data. They are implemented in the backup domain that remains powered-on by VBAT when the VDD power is switched off. They are not reset by system reset or when the device wakes up from Standby mode. They are reset by a backup domain reset The backup registers are reset when a tamper detection event occurs (see Section 25.6.20: RTC backup registers (RTC_BKPxR) and Tamper detection initialization on page 756. Tamper detection initialization Each tamper detection input is associated with the TAMP1F/TAMP2F flags in the RTC_ISR2 register. Each input can be enabled by setting the corresponding TAMP1E/TAMP2E bits to 1 in the RTC_TAFCR register. A tamper detection event resets all backup registers (RTC_BKPxR). By setting the TAMPIE bit in the RTC_TAFCR register, an interrupt is generated when a tamper detection event occurs. Timestamp on tamper event With TAMPTS set to ‘1 , any tamper event causes a timestamp to occur. In this case, either the TSF bit or the TSOVF bit are set in RTC_ISR, in the same manner as if a normal timestamp event occurs. The affected tamper flag register (TAMP1F, TAMP2F) is set at the same time that TSF or TSOVF is set. 756/1324 RM0430 Rev 8 RM0430 Real-time clock (RTC) Edge detection on tamper inputs If the TAMPFLT bits are “00”, the TAMPER pins generate tamper detection events (RTC_TAMP[2:1]) when either a rising edge is observed or an falling edge is observed depending on the corresponding TAMPxTRG bit. The internal pull-up resistors on the TAMPER inputs are deactivated when edge detection is selected. Caution: To avoid losing tamper detection events, the signal used for edge detection is logically ANDed with TAMPxE in order to detect a tamper detection event in case it occurs before the TAMPERx pin is enabled. • When TAMPxTRG = 0: if the TAMPERx alternate function is already high before tamper detection is enabled (TAMPxE bit set to 1), a tamper event is detected as soon as TAMPERx is enabled, even if there was no rising edge on TAMPERx after TAMPxE was set. • When TAMPxTRG = 1: if the TAMPERx alternate function is already low before tamper detection is enabled, a tamper event is detected as soon as TAMPERx is enabled (even if there was no falling edge on TAMPERx after TAMPxE was set. After a tamper event has been detected and cleared, the TAMPERx alternate function should be disabled and then re-enabled (TAMPxE set to 1) before re-programming the backup registers (RTC_BKPxR). This prevents the application from writing to the backup registers while the TAMPERx value still indicates a tamper detection. This is equivalent to a level detection on the TAMPERx alternate function. Note: Tamper detection is still active when VDD power is switched off. To avoid unwanted resetting of the backup registers, the pin to which the TAMPER alternate function is mapped should be externally tied to the correct level. Level detection with filtering on tamper inputs Level detection with filtering is performed by setting TAMPFLT to a non-zero value. A tamper detection event is generated when either 2, 4, or 8 (depending on TAMPFLT) consecutive samples are observed at the level designated by the TAMPxTRG bits (TAMP1TRG/TAMP2TRG). The TAMPER inputs are pre-charged through the I/O internal pull-up resistance before its state is sampled, unless disabled by setting TAMPPUDIS to 1,The duration of the precharge is determined by the TAMPPRCH bits, allowing for larger capacitances on the tamper inputs. The trade-off between tamper detection latency and power consumption through the pull-up can be optimized by using TAMPFREQ to determine the frequency of the sampling for level detection. Note: Refer to the datasheets for the electrical characteristics of the pull-up resistors. TAMPER alternate function detection The TAMPER1 additional function is mapped to RTC_AF1 pin. 25.3.14 Calibration clock output When the COE bit is set to 1 in the RTC_CR register, a reference clock is provided on the RTC_CALIB device output. If the COSEL bit in the RTC_CR register is reset and PREDIV_A = 0x7F, the RTC_CALIB frequency is fRTCCLK/64. This corresponds to a calibration output at 512 Hz for an RTCCLK frequency at 32.768 kHz. RM0430 Rev 8 757/1324 781 Real-time clock (RTC) RM0430 The RTC_CALIB output is not impacted by the calibration value programmed in RTC_CALIBR register. The RTC_CALIB duty cycle is irregular: there is a light jitter on falling edges. It is therefore recommended to use rising edges. If COSEL is set and “PREDIV_S+1” is a non-zero multiple of 256 (i.e: PREDIV_S[7:0] = 0xFF), the RTC_CALIB frequency is fRTCCLK/(256 * (PREDIV_A+1)). This corresponds to a calibration output at 1 Hz for prescaler default values (PREDIV_A = Ox7F, PREDIV_S = 0xFF), with an RTCCLK frequency at 32.768 kHz. Calibration alternate function output When the COE bit in the RTC_CR register is set to 1, the calibration alternate function (RTC_CALIB) is enabled on RTC_AF1. Note: When RTC_CALIB or RTC_ALARM is selected, RTC_AF1 is automatically configured in output alternate function. 25.3.15 Alarm output Three functions can be selected on Alarm output: ALRAF, ALRBF and WUTF. These functions reflect the contents of the corresponding flags in the RTC_ISR register. The OSEL[1:0] control bits in the RTC_CR register are used to activate the alarm alternate function output (RTC_ALARM) in RTC_AF1, and to select the function which is output on RTC_ALARM. The polarity of the output is determined by the POL control bit in RTC_CR so that the opposite of the selected flag bit is output when POL is set to 1. Alarm alternate function output RTC_ALARM can be configured in output open drain or output push-pull using the control bit ALARMOUTTYPE in the RTC_TAFCR register. Note: Once RTC_ALARM is enabled, it has priority over RTC_CALIB (COE bit is don't care on RTC_AF1). When RTC_CALIB or RTC_ALARM is selected, RTC_AF1 is automatically configured in output alternate function. 25.4 RTC and low power modes Table 136. Effect of low power modes on RTC Mode Description Sleep No effect RTC interrupts cause the device to exit the Sleep mode. Stop The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC tamper event, RTC time stamp event, and RTC Wakeup cause the device to exit the Stop mode. The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC Standby tamper event, RTC time stamp event, and RTC Wakeup cause the device to exit the Standby mode. 758/1324 RM0430 Rev 8 RM0430 25.5 Real-time clock (RTC) RTC interrupts All RTC interrupts are connected to the EXTI controller. To enable the RTC Alarm interrupt, the following sequence is required: 1. Configure and enable the EXTI Line 17 in interrupt mode and select the rising edge sensitivity. 2. Configure and enable the RTC_Alarm IRQ channel in the NVIC. 3. Configure the RTC to generate RTC alarms (Alarm A or Alarm B). To enable the RTC Wakeup interrupt, the following sequence is required: 1. Configure and enable the EXTI Line 22 in interrupt mode and select the rising edge sensitivity. 2. Configure and enable the RTC_WKUP IRQ channel in the NVIC. 3. Configure the RTC to generate the RTC wakeup timer event. To enable the RTC Tamper interrupt, the following sequence is required: 1. Configure and enable the EXTI Line 21 in interrupt mode and select the rising edge sensitivity. 2. Configure and Enable the TAMP_STAMP IRQ channel in the NVIC. 3. Configure the RTC to detect the RTC tamper event. To enable the RTC TimeStamp interrupt, the following sequence is required: 1. Configure and enable the EXTI Line 21 in interrupt mode and select the rising edge sensitivity. 2. Configure and Enable the TAMP_STAMP IRQ channel in the NVIC. 3. Configure the RTC to detect the RTC timestamp event. Table 137. Interrupt control bits Event flag Enable control bit Exit the Sleep mode Exit the Stop mode Exit the Standby mode Alarm A ALRAF ALRAIE yes yes(1) yes(1) Alarm B ALRBF ALRBIE yes yes(1) yes(1) Wakeup WUTF WUTIE yes yes(1) yes(1) TSF TSIE yes yes(1) yes(1) TAMP1F TAMPIE yes yes(1) yes(1) Interrupt event TimeStamp Tamper1 detection 1. Wakeup from STOP and Standby modes is possible only when the RTC clock source is LSE or LSI. RM0430 Rev 8 759/1324 781 Real-time clock (RTC) 25.6 RM0430 RTC registers Refer to Section 1.2 on page 52 of this reference manual for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by words (32 bits). 25.6.1 RTC time register (RTC_TR) The RTC_TR is the calendar time shadow register. This register must be written in initialization mode only. Refer to Calendar initialization and configuration and Reading the calendar. Address offset: 0x00 Backup domain reset value: 0x0000 0000 System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1. 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. PM 15 14 Res. 13 12 11 MNT[2:0] rw rw 10 9 8 MNU[3:0] rw rw rw rw 7 20 19 18 HT[1:0] 17 16 HU[3:0] rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw Res. rw 21 ST[2:0] rw rw SU[3:0] rw rw rw Bits 31-24 Reserved, must be kept at reset value Bit 23 Reserved, must be kept at reset value. Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format Bits 19:16 HU[3:0]: Hour units in BCD format Bit 15 Reserved, must be kept at reset value. Bits 14:12 MNT[2:0]: Minute tens in BCD format Bits 11:8 MNU[3:0]: Minute units in BCD format Bit 7 Reserved, must be kept at reset value. Bits 6:4 ST[2:0]: Second tens in BCD format Bits 3:0 SU[3:0]: Second units in BCD format Note: 760/1324 This register is write protected. The write access procedure is described in RTC register write protection. RM0430 Rev 8 RM0430 Real-time clock (RTC) 25.6.2 RTC date register (RTC_DR) The RTC_DR is the calendar date shadow register. This register must be written in initialization mode only. Refer to Calendar initialization and configuration and Reading the calendar. Address offset: 0x04 Backup domain reset value: 0x0000_2101 System reset: 0x0000 2101 when BYPSHAD = 0. Not affected when BYPSHAD = 1. 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 rw rw rw rw WDU[2:0] rw rw MT rw rw MU[3:0] 23 22 21 20 19 18 YT[3:0] 17 16 YU[3:0] rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 Res. Res. rw rw rw rw rw DT[1:0] rw DU[3:0] Bits 31-24 Reserved, must be kept at reset value Bits 23:20 YT[3:0]: Year tens in BCD format Bits 19:16 YU[3:0]: Year units in BCD format Bits 15:13 WDU[2:0]: Week day units 000: forbidden 001: Monday ... 111: Sunday Bit 12 MT: Month tens in BCD format Bits 11:8 MU: Month units in BCD format Bits 7:6 Reserved, must be kept at reset value. Bits 5:4 DT[1:0]: Date tens in BCD format Bits 3:0 DU[3:0]: Date units in BCD format Note: This register is write protected. The write access procedure is described in RTC register write protection. RM0430 Rev 8 761/1324 781 Real-time clock (RTC) 25.6.3 RM0430 RTC control register (RTC_CR) Address offset: 0x08 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 Res. Res. Res. Res. Res. Res. Res. Res. COE 15 14 13 12 11 10 9 8 TSIE rw WUTIE ALRBIE ALRAIE rw rw rw TSE rw WUTE ALRBE ALRAE rw rw rw 22 21 OSEL[1:0] 20 19 POL COSEL 18 17 16 BKP SUB1H ADD1H rw rw rw rw rw rw w w 7 6 5 4 3 2 1 0 DCE FMT rw rw BYPSHAD REFCKON TSEDGE rw rw rw WUCKSEL[2:0] rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bit 23 COE: Calibration output enable This bit enables the RTC_CALIB output 0: Calibration output disabled 1: Calibration output enabled Bits 22:21 OSEL[1:0]: Output selection These bits are used to select the flag to be routed to RTC_ALARM output 00: Output disabled 01: Alarm A output enabled 10:Alarm B output enabled 11: Wakeup output enabled Bit 20 POL: Output polarity This bit is used to configure the polarity of RTC_ALARM output 0: The pin is high when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]) 1: The pin is low when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]). Bit 19 COSEL: Calibration output selection When COE=1, this bit selects which signal is output on RTC_CALIB. 0: Calibration output is 512 Hz 1: Calibration output is 1 Hz These frequencies are valid for RTCCLK at 32.768 kHz and prescalers at their default values (PREDIV_A=127 and PREDIV_S=255). Refer to Section 25.3.14: Calibration clock output Bit 18 BKP: Backup This bit can be written by the user to memorize whether the daylight saving time change has been performed or not. Bit 17 SUB1H: Subtract 1 hour (winter time change) When this bit is set outside initialization mode, 1 hour is subtracted to the calendar time if the current hour is not 0. This bit is always read as 0. Setting this bit has no effect when current hour is 0. 0: No effect 1: Subtracts 1 hour to the current time. This can be used for winter time change. 762/1324 RM0430 Rev 8 RM0430 Real-time clock (RTC) Bit 16 ADD1H: Add 1 hour (summer time change) When this bit is set outside initialization mode, 1 hour is added to the calendar time. This bit is always read as 0. 0: No effect 1: Adds 1 hour to the current time. This can be used for summer time change Bit 15 TSIE: Timestamp interrupt enable 0: Timestamp Interrupt disable 1: Timestamp Interrupt enable Bit 14 WUTIE: Wakeup timer interrupt enable 0: Wakeup timer interrupt disabled 1: Wakeup timer interrupt enabled Bit 13 ALRBIE: Alarm B interrupt enable 0: Alarm B Interrupt disable 1: Alarm B Interrupt enable Bit 12 ALRAIE: Alarm A interrupt enable 0: Alarm A interrupt disabled 1: Alarm A interrupt enabled Bit 11 TSE: Time stamp enable 0: Time stamp disable 1: Time stamp enable Bit 10 WUTE: Wakeup timer enable 0: Wakeup timer disabled 1: Wakeup timer enabled Bit 9 ALRBE: Alarm B enable 0: Alarm B disabled 1: Alarm B enabled Bit 8 ALRAE: Alarm A enable 0: Alarm A disabled 1: Alarm A enabled Bit 7 DCE: Coarse digital calibration enable 0: Digital calibration disabled 1: Digital calibration enabled PREDIV_A must be 6 or greater Bit 6 FMT: Hour format 0: 24 hour/day format 1: AM/PM hour format Bit 5 BYPSHAD: Bypass the shadow registers 0: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken from the shadow registers, which are updated once every two RTCCLK cycles. 1: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken directly from the calendar counters. Note: If the frequency of the APB1 clock is less than seven times the frequency of RTCCLK, BYPSHAD must be set to ‘1’. RM0430 Rev 8 763/1324 781 Real-time clock (RTC) RM0430 Bit 4 REFCKON: Reference clock detection enable (50 or 60 Hz) 0: Reference clock detection disabled 1: Reference clock detection enabled Note: PREDIV_S must be 0x00FF. Bit 3 TSEDGE: Timestamp event active edge 0: TIMESTAMP rising edge generates a timestamp event 1: TIMESTAMP falling edge generates a timestamp event TSE must be reset when TSEDGE is changed to avoid unwanted TSF setting Bits 2:0 WUCKSEL[2:0]: Wakeup clock selection 000: RTC/16 clock is selected 001: RTC/8 clock is selected 010: RTC/4 clock is selected 011: RTC/2 clock is selected 10x: ck_spre (usually 1 Hz) clock is selected 11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value (see note below) Note: WUT = Wakeup unit counter value. WUT = (0x0000 to 0xFFFF) + 0x10000 added when WUCKSEL[2:1 = 11]. Bits 7, 6 and 4 of this register can be written in initialization mode only (RTC_ISR/INITF = 1). Bits 2 to 0 of this register can be written only when RTC_CR WUTE bit = 0 and RTC_ISR WUTWF bit = 1. It is recommended not to change the hour during the calendar hour increment as it could mask the incrementation of the calendar hour. ADD1H and SUB1H changes are effective in the next second. This register is write protected. The write access procedure is described in RTC register write protection. 25.6.4 RTC initialization and status register (RTC_ISR) Address offset: 0x0C Backup domain reset value: 0x0000 0007 System reset value: Not affected except INIT, INITF and RSF which are cleared to 0. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RECALPF r 15 14 Res. Res 13 12 TAMP1F TSOVF rc_w0 rc_w0 11 10 TSF WUTF ALRBF ALRAF 9 8 rc_w0 rc_w0 rc_w0 7 6 5 INIT INITF RSF rw r rc_w0 rc_w0 4 3 2 1 0 INITS SHPF WUT WF ALRB WF ALRA WF r r r r r Bits 31:17 Reserved, must be kept at reset value Bit 16 RECALPF: Recalibration pending Flag The RECALPF status flag is automatically set to ‘1’ when software writes to the RTC_CALR register, indicating that the RTC_CALR register is blocked. When the new calibration settings are taken into account, this bit returns to ‘0’. Refer to Re-calibration on-the-fly. Bits 15:14 Reserved, must be kept at reset value. 764/1324 RM0430 Rev 8 RM0430 Real-time clock (RTC) Bit 13 TAMP1F: Tamper detection flag This flag is set by hardware when a tamper detection event is detected. It is cleared by software writing 0. Bit 12 TSOVF: Timestamp overflow flag This flag is set by hardware when a timestamp event occurs while TSF is already set. This flag is cleared by software by writing 0. It is recommended to check and then clear TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a timestamp event occurs immediately before the TSF bit is cleared. Bit 11 TSF: Timestamp flag This flag is set by hardware when a timestamp event occurs. This flag is cleared by software by writing 0. Bit 10 WUTF: Wakeup timer flag This flag is set by hardware when the wakeup auto-reload counter reaches 0. This flag is cleared by software by writing 0. This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1 again. Bit 9 ALRBF: Alarm B flag This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the Alarm B register (RTC_ALRMBR). This flag is cleared by software by writing 0. Bit 8 ALRAF: Alarm A flag This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the Alarm A register (RTC_ALRMAR). This flag is cleared by software by writing 0. Bit 7 INIT: Initialization mode 0: Free running mode 1: Initialization mode used to program time and date register (RTC_TR and RTC_DR), and prescaler register (RTC_PRER). Counters are stopped and start counting from the new value when INIT is reset. Bit 6 INITF: Initialization flag When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler registers can be updated. 0: Calendar registers update is not allowed 1: Calendar registers update is allowed. Bit 5 RSF: Registers synchronization flag This bit is set by hardware each time the calendar registers are copied into the shadow registers (RTC_SSRx, RTC_TRx and RTC_DRx). This bit is cleared by hardware in initialization mode, while a shift operation is pending (SHPF=1), or when in bypass shadow register mode (BYPSHAD=1). This bit can also be cleared by software. 0: Calendar shadow registers not yet synchronized 1: Calendar shadow registers synchronized Bit 4 INITS: Initialization status flag This bit is set by hardware when the calendar year field is different from 0 (backup domain reset value state). 0: Calendar has not been initialized 1: Calendar has been initialized RM0430 Rev 8 765/1324 781 Real-time clock (RTC) RM0430 Bit 3 SHPF: Shift operation pending 0: No shift operation is pending 1: A shift operation is pending This flag is set by hardware as soon as a shift operation is initiated by a write to the RTC_SHIFTR. It is cleared by hardware when the corresponding shift operation has been executed. Writing to SHPF has no effect. Bit 2 WUTWF: Wakeup timer write flag This bit is set by hardware up to 2 RTCCLK cycles after the WUTE bit has been set to 0 in RTC_CR. It is cleared up to 2 RTCCLK cycles after the WUTE bit has been set to 1. The wakeup timer values can be changed when WUTE bit is cleared and WUTWF is set. 0: Wakeup timer configuration update not allowed 1: Wakeup timer configuration update allowed Bit 1 ALRBWF: Alarm B write flag This bit is set by hardware when Alarm B values can be changed, after the ALRBIE bit has been set to 0 in RTC_CR. It is cleared by hardware in initialization mode. 0: Alarm B update not allowed 1: Alarm B update allowed. Bit 0 ALRAWF: Alarm A write flag This bit is set by hardware when Alarm A values can be changed, after the ALRAE bit has been set to 0 in RTC_CR. It is cleared by hardware in initialization mode. 0: Alarm A update not allowed 1: Alarm A update allowed Note: The ALRAF, ALRBF, WUTF and TSF bits are cleared 2 APB clock cycles after programming them to 0. This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure is described in RTC register write protection. 25.6.5 RTC prescaler register (RTC_PRER) Address offset: 0x10 Backup domain reset value: 0x007F 00FF System reset: not affected 31 30 29 28 27 26 25 24 23 Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 Res. 21 20 19 18 17 16 PREDIV_A[6:0] rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw PREDIV_S[14:0] rw 766/1324 22 rw rw rw rw rw rw rw RM0430 Rev 8 RM0430 Real-time clock (RTC) Bits 31:23 Reserved, must be kept at reset value Bits 22:16 PREDIV_A[6:0]: Asynchronous prescaler factor This is the asynchronous division factor: ck_apre frequency = RTCCLK frequency/(PREDIV_A+1) Bit 15 Reserved, must be kept at reset value. Bits 14:0 PREDIV_S[14:0]: Synchronous prescaler factor This is the synchronous division factor: ck_spre frequency = ck_apre frequency/(PREDIV_S+1) Note: This register must be written in initialization mode only. The initialization must be performed in two separate write accesses. Refer to Calendar initialization and configuration This register is write protected. The write access procedure is described in RTC register write protection. 25.6.6 RTC wakeup timer register (RTC_WUTR) Address offset: 0x14 Backup domain reset value: 0x0000 FFFF System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw WUT[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value Bits 15:0 WUT[15:0]: Wakeup auto-reload value bits When the wakeup timer is enabled (WUTE set to 1), the WUTF flag is set every (WUT[15:0] + 1) ck_wut cycles. The ck_wut period is selected through WUCKSEL[2:0] bits of the RTC_CR register When WUCKSEL[2] = 1, the wakeup timer becomes 17-bits and WUCKSEL[1] effectively becomes WUT[16] the most-significant bit to be reloaded into the timer. Note: The first assertion of WUTF occurs (WUT+1) ck_wut cycles after WUTE is set. Setting WUT[15:0] to 0x0000 with WUCKSEL[2:0] =011 (RTCCLK/2) is forbidden. Note: This register can be written only when WUTWF is set to 1 in RTC_ISR. This register is write protected. The write access procedure is described in RTC register write protection. 25.6.7 RTC calibration register (RTC_CALIBR) Address offset: 0x18 Backup domain reset value: 0x0000 0000 System reset: not affected RM0430 Rev 8 767/1324 781 Real-time clock (RTC) RM0430 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 4 3 2 1 0 rw rw 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. Res. Res. Res. DCS Res. Res. rw DC[4:0] rw rw rw Bits 31:8 Reserved, must be kept at reset value Bit 7 DCS: Digital calibration sign 0: Positive calibration: calendar update frequency is increased 1: Negative calibration: calendar update frequency is decreased Bits 6:5 Reserved, must be kept at reset value. Bits 4:0 DC[4:0]: Digital calibration DCS = 0 (positive calibration) 00000: +0 ppm 00001: +4 ppm (rounded value) 00010: +8 ppm (rounded value) .. 11111: +126 ppm (rounded value) DCS = 1 (negative calibration) 00000: -0 ppm 00001: -2 ppm (rounded value) 00010: -4 ppm (rounded value) .. 11111: - 63 ppm (rounded value) Refer to Case of RTCCLK=32.768 kHz and PREDIV_A+1=128 for the exact step value. Note: This register can be written in initialization mode only (RTC_ISR/INITF = ‘1’). This register is write protected. The write access procedure is described in RTC register write protection. 768/1324 RM0430 Rev 8 RM0430 Real-time clock (RTC) 25.6.8 RTC alarm A register (RTC_ALRMAR) Address offset: 0x1C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 MSK4 WDSEL 29 28 27 DT[1:0] 26 25 24 DU[3:0] 23 22 MSK3 PM 21 20 19 18 HT[1:0] 17 16 HU[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw MSK2 rw MNT[2:0] rw rw MNU[3:0] rw rw rw rw MSK1 rw rw ST[2:0] rw rw SU[3:0] rw rw rw Bit 31 MSK4: Alarm A date mask 0: Alarm A set if the date/day match 1: Date/day don’t care in Alarm A comparison Bit 30 WDSEL: Week day selection 0: DU[3:0] represents the date units 1: DU[3:0] represents the week day. DT[1:0] is don’t care. Bits 29:28 DT[1:0]: Date tens in BCD format. Bits 27:24 DU[3:0]: Date units or day in BCD format. Bit 23 MSK3: Alarm A hours mask 0: Alarm A set if the hours match 1: Hours don’t care in Alarm A comparison Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format. Bits 19:16 HU[3:0]: Hour units in BCD format. Bit 15 MSK2: Alarm A minutes mask 0: Alarm A set if the minutes match 1: Minutes don’t care in Alarm A comparison Bits 14:12 MNT[2:0]: Minute tens in BCD format. Bits 11:8 MNU[3:0]: Minute units in BCD format. Bit 7 MSK1: Alarm A seconds mask 0: Alarm A set if the seconds match 1: Seconds don’t care in Alarm A comparison Bits 6:4 ST[2:0]: Second tens in BCD format. Bits 3:0 SU[3:0]: Second units in BCD format. Note: This register can be written only when ALRAWF is set to 1 in RTC_ISR, or in initialization mode. This register is write protected. The write access procedure is described in RTC register write protection. RM0430 Rev 8 769/1324 781 Real-time clock (RTC) 25.6.9 RM0430 RTC alarm B register (RTC_ALRMBR) Address offset: 0x20 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 MSK4 WDSEL 29 28 27 DT[1:0] 26 25 24 DU[3:0] 23 22 MSK3 PM 21 20 19 18 HT[1:0] 17 16 HU[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw MSK2 rw MNT[2:0] rw rw MNU[3:0] rw rw rw rw MSK1 rw rw ST[2:0] rw rw SU[3:0] rw rw rw Bit 31 MSK4: Alarm B date mask 0: Alarm B set if the date and day match 1: Date and day don’t care in Alarm B comparison Bit 30 WDSEL: Week day selection 0: DU[3:0] represents the date units 1: DU[3:0] represents the week day. DT[1:0] is don’t care. Bits 29:28 DT[1:0]: Date tens in BCD format Bits 27:24 DU[3:0]: Date units or day in BCD format Bit 23 MSK3: Alarm B hours mask 0: Alarm B set if the hours match 1: Hours don’t care in Alarm B comparison Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format Bits 19:16 HU[3:0]: Hour units in BCD format Bit 15 MSK2: Alarm B minutes mask 0: Alarm B set if the minutes match 1: Minutes don’t care in Alarm B comparison Bits 14:12 MNT[2:0]: Minute tens in BCD format Bits 11:8 MNU[3:0]: Minute units in BCD format Bit 7 MSK1: Alarm B seconds mask 0: Alarm B set if the seconds match 1: Seconds don’t care in Alarm B comparison Bits 6:4 ST[2:0]: Second tens in BCD format Bits 3:0 SU[3:0]: Second units in BCD format Note: This register can be written only when ALRBWF is set to 1 in RTC_ISR, or in initialization mode. This register is write protected. The write access procedure is described in RTC register write protection. 770/1324 RM0430 Rev 8 RM0430 Real-time clock (RTC) 25.6.10 RTC write protection register (RTC_WPR) Address offset: 0x24 Backup domain reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. w w w w w w w w KEY Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 KEY: Write protection key This byte is written by software. Reading this byte always returns 0x00. Refer to RTC register write protection for a description of how to unlock RTC register write protection. 25.6.11 RTC sub second register (RTC_SSR) Address offset: 0x28 Backup domain reset value: 0x0000 0000 System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1 . 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r SS[15:0] r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value Bits 15:0 SS: Sub second value SS[15:0] is the value in the synchronous prescaler’s counter. The fraction of a second is given by the formula below: Second fraction = ( PREDIV_S - SS ) / ( PREDIV_S + 1 ) Note: SS can be larger than PREDIV_S only after a shift operation. In that case, the correct time/date is one second less than as indicated by RTC_TR/RTC_DR. RM0430 Rev 8 771/1324 781 Real-time clock (RTC) 25.6.12 RM0430 RTC shift control register (RTC_SHIFTR) Address offset: 0x2C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ADD1S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 w w w w w w w w 15 Res. SUBFS[14:0] w w w w w w w w Bit 31 ADD1S: Add one second 0: No effect 1: Add one second to the clock/calendar This bit is write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF=1, in RTC_ISR). This function is intended to be used with SUBFS (see description below) in order to effectively add a fraction of a second to the clock in an atomic operation. Bits 30:15 Reserved, must be kept at reset value Bits 14:0 SUBFS: Subtract a fraction of a second These bits are write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF=1, in RTC_ISR). The value which is written to SUBFS is added to the synchronous prescaler’s counter. Since this counter counts down, this operation effectively subtracts from (delays) the clock by: Delay (seconds) = SUBFS / ( PREDIV_S + 1 ) A fraction of a second can effectively be added to the clock (advancing the clock) when the ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by: Advance (seconds) = ( 1 - ( SUBFS / ( PREDIV_S + 1 ) ) ) . Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF=1 to be sure that the shadow registers have been updated with the shifted time. Refer to Section 25.3.8: RTC synchronization. Note: 772/1324 This register is write protected. The write access procedure is described in RTC register write protection RM0430 Rev 8 RM0430 Real-time clock (RTC) 25.6.13 RTC time stamp time register (RTC_TSTR) Address offset: 0x30 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. PM r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r Res. MNT[2:0] r r MNU[3:0] r Res. r 21 20 19 18 HT[1:0] ST[2:0] r r 17 16 HU[3:0] SU[3:0] r r Bits 31:23 Reserved, must be kept at reset value. Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format. Bits 19:16 HU[3:0]: Hour units in BCD format. Bit 15 Reserved, must be kept at reset value. Bits 14:12 MNT[2:0]: Minute tens in BCD format. Bits 11:8 MNU[3:0]: Minute units in BCD format. Bit 7 Reserved, must be kept at reset value. Bits 6:4 ST[2:0]: Second tens in BCD format. Bits 3:0 SU[3:0]: Second units in BCD format. Note: The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when TSF bit is reset. 25.6.14 RTC time stamp date register (RTC_TSDR) Address offset: 0x34 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. r r 15 WDU[1:0] r r MT r r MU[3:0] r r r r RM0430 Rev 8 DT[1:0] r DU[3:0] r r r 773/1324 781 Real-time clock (RTC) RM0430 Bits 31:16 Reserved, must be kept at reset value. Bits 15:13 WDU[1:0]: Week day units Bit 12 MT: Month tens in BCD format Bits 11:8 MU[3:0]: Month units in BCD format Bits 7:6 Reserved, must be kept at reset value. Bits 5:4 DT[1:0]: Date tens in BCD format Bits 3:0 DU[3:0]: Date units in BCD format Note: The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when TSF bit is reset. 25.6.15 RTC timestamp sub second register (RTC_TSSSR) Address offset: 0x38 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r SS[15:0] r r r r r r r r r Bits 31:16 Reserved Bits 15:0 SS: Sub second value SS[15:0] is the value of the synchronous prescaler’s counter when the timestamp event occurred. Note: The content of this register is valid only when RTC_ISR/TSF is set. It is cleared when the RTC_ISR/TSF bit is reset. 25.6.16 RTC calibration register (RTC_CALR) Address offset: 0x3C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. r r r r rw rw rw rw rw rw rw rw CALP CALW8 CALW16 rw 774/1324 rw rw CALM[8:0] RM0430 Rev 8 rw RM0430 Real-time clock (RTC) Bits 31:16 Reserved, must be kept at reset value Bit 15 CALP: Increase frequency of RTC by 488.5 ppm 0: No RTCCLK pulses are added. 1: One RTCCLK pulse is effectively inserted every 211 pulses (frequency increased by 488.5 ppm). This feature is intended to be used in conjunction with CALM, which lowers the frequency of the calendar with a fine resolution. if the input frequency is 32768 Hz, the number of RTCCLK pulses added during a 32-second window is calculated as follows: (512 * CALP) CALM. Refer to Section 25.3.11: RTC smooth digital calibration. Bit 14 CALW8: Use an 8-second calibration cycle period When CALW8 is set to ‘1’, the 8-second calibration cycle period is selected. CALM[1:0] are stuck at “00” when CALW8=’1’. Refer to Section 25.3.11: RTC smooth digital calibration. Bit 13 CALW16: Use a 16-second calibration cycle period When CALW16 is set to ‘1’, the 16-second calibration cycle period is selected. This bit must not be set to ‘1’ if CALW8=1. Note: CALM[0] is stuck at ‘0’ when CALW16=’1’. Refer to Section 25.3.11: RTC smooth digital calibration. Bits 12:9 Reserved, must be kept at reset value Bits 8:0 CALM[8:0]: Calibration minus The frequency of the calendar is reduced by masking CALM out of 220 RTCCLK pulses (32 seconds if the input frequency is 32768 Hz). This decreases the frequency of the calendar with a resolution of 0.9537 ppm. To increase the frequency of the calendar, this feature should be used in conjunction with CALP. See Section 25.3.11: RTC smooth digital calibration on page 753. Note: This register is write protected. The write access procedure is described in RTC register write protection. 25.6.17 RTC tamper and alternate function configuration register (RTC_TAFCR) Address offset: 0x40 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ALARMOUT TYPE TSIN SEL TAMP1I NSEL rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TAMPTS Res. Res. Res. Res. TAMPIE TAMP PUDIS rw TAMP PRCH[1:0] rw rw TAMP FLT[1:0] rw rw TAMP FREQ[2:0] rw rw rw rw RM0430 Rev 8 rw TAMP1TRG TAMP1E rw rw 775/1324 781 Real-time clock (RTC) RM0430 Bits 31:19 Reserved, must be kept at reset value. Always read as 0. Bit 18 ALARMOUTTYPE: RTC_ALARM output type 0: RTC_ALARM is an open-drain output 1: RTC_ALARM is a push-pull output Bit 17 TSINSEL: TIMESTAMP mapping 0: RTC_AF1 used as TIMESTAMP 1: Reserved Bit 16 TAMP1INSEL: TAMPER1 mapping 0: RTC_AF1 used as TAMPER1 1: Reserved Note: TAMP1E must be reset when TAMP1INSEL is changed to avoid unwanted setting of TAMP1F. Bit 15 TAMPPUDIS: TAMPER pull-up disable This bit determines if each of the tamper pins are pre-charged before each sample. 0: Precharge tamper pins before sampling (enable internal pull-up) 1: Disable precharge of tamper pins Note: Bits 14:13 TAMPPRCH[1:0]: Tamper precharge duration These bit determines the duration of time during which the pull-up/is activated before each sample. TAMPPRCH is valid for each of the tamper inputs. 0x0: 1 RTCCLK cycle 0x1: 2 RTCCLK cycles 0x2: 4 RTCCLK cycles 0x3: 8 RTCCLK cycles Bits 12:11 TAMPFLT[1:0]: Tamper filter count These bits determines the number of consecutive samples at the specified level (TAMP*TRG) necessary to activate a Tamper event. TAMPFLT is valid for each of the tamper inputs. 0x0: Tamper is activated on edge of tamper input transitions to the active level (no internal pull-up on tamper input). 0x1: Tamper is activated after 2 consecutive samples at the active level. 0x2: Tamper is activated after 4 consecutive samples at the active level. 0x3: Tamper is activated after 8 consecutive samples at the active level. Bits 10:8 TAMPFREQ[2:0]: Tamper sampling frequency Determines the frequency at which each of the tamper inputs are sampled. 0x0: RTCCLK / 32768 (1 Hz when RTCCLK = 32768 Hz) 0x1: RTCCLK / 16384 (2 Hz when RTCCLK = 32768 Hz) 0x2: RTCCLK / 8192 (4 Hz when RTCCLK = 32768 Hz) 0x3: RTCCLK / 4096 (8 Hz when RTCCLK = 32768 Hz) 0x4: RTCCLK / 2048 (16 Hz when RTCCLK = 32768 Hz) 0x5: RTCCLK / 1024 (32 Hz when RTCCLK = 32768 Hz) 0x6: RTCCLK / 512 (64 Hz when RTCCLK = 32768 Hz) 0x7: RTCCLK / 256 (128 Hz when RTCCLK = 32768 Hz) Bit 7 TAMPTS: Activate timestamp on tamper detection event 0: Tamper detection event does not cause a timestamp to be saved 1: Save timestamp on tamper detection event TAMPTS is valid even if TSE=0 in the RTC_CR register. 776/1324 RM0430 Rev 8 RM0430 Real-time clock (RTC) Bits 6:3 Reserved. Always read as 0. Bit 2 TAMPIE: Tamper interrupt enable 0: Tamper interrupt disabled 1: Tamper interrupt enabled Bit 1 TAMP1TRG: Active level for tamper 1 if TAMPFLT != 00: 0: TAMPER1 staying low triggers a tamper detection event. 1: TAMPER1 staying high triggers a tamper detection event. if TAMPFLT = 00: 0: TAMPER1 rising edge triggers a tamper detection event. 1: TAMPER1 falling edge triggers a tamper detection event. Caution: When TAMPFLT = 0, TAMP1E must be reset when TAMP1TRG is changed to avoid spuriously setting TAMP1F. Bit 0 TAMP1E: Tamper 1 detection enable 0: Tamper 1 detection disabled 1: Tamper 1 detection enabled 25.6.18 RTC alarm A sub second register (RTC_ALRMASSR) Address offset: 0x44 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 27 26 25 24 MASKSS[3:0] rw rw rw rw 11 10 9 8 Res. 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw rw w rw rw SS[14:0] rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit 0: No comparison on sub seconds for Alarm A. The alarm is set when the seconds unit is incremented (assuming that the rest of the fields match). 1: SS[14:1] are don’t care in Alarm A comparison. Only SS[0] is compared. 2: SS[14:2] are don’t care in Alarm A comparison. Only SS[1:0] are compared. 3: SS[14:3] are don’t care in Alarm A comparison. Only SS[2:0] are compared. ... 12: SS[14:12] are don’t care in Alarm A comparison. SS[11:0] are compared. 13: SS[14:13] are don’t care in Alarm A comparison. SS[12:0] are compared. 14: SS[14] is don’t care in Alarm A comparison. SS[13:0] are compared. 15: All 15 SS bits are compared and must match to activate alarm. The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be different from 0 only after a shift operation. RM0430 Rev 8 777/1324 781 Real-time clock (RTC) RM0430 Bits 23:15 Reserved, must be kept at reset value Bits 14:0 SS[14:0]: Sub seconds value This value is compared with the contents of the synchronous prescaler’s counter to determine if Alarm A is to be activated. Only bits 0 up MASKSS-1 are compared. Note: This register can be written only when ALRAE is reset in RTC_CR register, or in initialization mode. This register is write protected. The write access procedure is described in RTC register write protection on page 748 25.6.19 RTC alarm B sub second register (RTC_ALRMBSSR) Address offset: 0x48 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 Res. Res. Res. Res. 27 26 25 24 MASKSS[3:0] 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. r r r r rw rw rw rw r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw w rw rw Res. r SS[14:0] rw Bits 31:28 Reserved, must be kept at reset value Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit 0x0: No comparison on sub seconds for Alarm B. The alarm is set when the seconds unit is incremented (assuming that the rest of the fields match). 0x1: SS[14:1] are don’t care in Alarm B comparison. Only SS[0] is compared. 0x2: SS[14:2] are don’t care in Alarm B comparison. Only SS[1:0] are compared. 0x3: SS[14:3] are don’t care in Alarm B comparison. Only SS[2:0] are compared. ... 0xC: SS[14:12] are don’t care in Alarm B comparison. SS[11:0] are compared. 0xD: SS[14:13] are don’t care in Alarm B comparison. SS[12:0] are compared. 0xE: SS[14] is don’t care in Alarm B comparison. SS[13:0] are compared. 0xF: All 15 SS bits are compared and must match to activate alarm. The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be different from 0 only after a shift operation. Bits 23:15 Reserved, must be kept at reset value Bits 14:0 SS[14:0]: Sub seconds value This value is compared with the contents of the synchronous prescaler’s counter to determine if Alarm B is to be activated. Only bits 0 up to MASKSS-1 are compared. Note: This register can be written only when ALRBIE is reset in RTC_CR register, or in initialization mode. This register is write protected.The write access procedure is described in RTC register write protection 778/1324 RM0430 Rev 8 RM0430 Real-time clock (RTC) 25.6.20 RTC backup registers (RTC_BKPxR) Address offset: 0x50 to 0x9C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 BKP[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw w rw rw BKP[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 BKP[31:0] The application can write or read data to and from these registers. They are powered-on by VBAT when VDD is switched off, so that they are not reset by System reset, and their contents remain valid when the device operates in low-power mode. This register is reset on a tamper detection event, as long as TAMPxF=1. 25.6.21 RTC register map 0 0 YT[3:0] 0 0 0 YU[3:0] 0 0 DU[3:0] Res. ALRAE DCE FMT BYPSHAD REFCKON TSEDGE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. TAMP1F TSOVF TSF WUTF ALRBF ALRAF INIT INITF 0 0 0 0 0 0 0 0 Res. Res. Res. Res. 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 WUT[15:0] 1 1 1 1 1 1 1 1 1 1 1 Res. Res. Res. Res. 1 Res. Res. 0 Res. Res. Res. Res. 0 0 RM0430 Rev 8 0 DCS Res. Res. Res. Reset value 0 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 0 PREDIV_S[14:0] Res. 1 Res. PREDIV_A[6:0] ALRAWF WUTE ALRBE 0 ALRBWF TSE 0 SHPF ALRAIE 0 WUTWF ALRBIE 0 RSF TSIE WUTIE 0 INITS ADD1H 0 Res. 1 BKP 0 SUB1H 0 Res. 0 Res. 0 POL 0 COSEL 1 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. RTC_CALIBR 0 DT [1:0] 0 0 Reset value 0x18 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. RTC_WUTR 0 0 WCKSEL [2:0] Reset value 0x14 MU[3:0] 0 Res. 0 0 Res. 1 0 Res. 0 0 Res. 0 0 SU[3:0] OSEL [1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. RTC_PRER 0 WDU[2:0] Reset value 0x10 0 ST[2:0] COE Res. Res. Res. Res. Res. Res. RTC_ISR Res. 0x0C Res. Reset value 0 MNU[3:0] Res. Res. Res. Res. Res. Res. Res. RTC_CR Res. 0x08 Res. Reset value MNT[2:0] Res. 0 HU[3:0] Res. 0 Res. HT [1:0] MT Res. Res. Res. Res. Res. Res. RTC_DR Res. 0x04 Res. Reset value PM Res. Res. Res. Res. Res. Res. Res. RTC_TR Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 138. RTC register map and reset values DC[4:0] 0 0 0 0 0 779/1324 781 0x48 780/1324 RTC_ ALRMBSSR Reset value 0 0 0 MASKSS[3:0] 0 RM0430 Rev 8 0 0 0 0 0 0 0 Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MSK3 PM MSK3 PM MSK2 MSK2 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MNU[3:0] 0 0 0 0 0 0 0 0 0 MSK1 ST[2:0] 0 0 MSK2 MNU[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 SS[14:0] 0 0 0 SS[14:0] 0 TAMP1E 0 0 TAMP1ETRG RTC_WPR 0 Res. 0 0 TAMPIE 0 0 0 Res. 0 0 0 Res. 0 MNT[2:0] 0 Res. 0 0 0 0 Res. 0 0 MNU[3:0] TAMPTS 0 MNT[2:0] TAMPFREQ[2:0] 0 Res. MNT[2:0] 0 TAMPFLT[1:0] 0 Res. Reset value 0 CALW16 Reset value Res. Reset value CALW8 HU[3:0] Res. Res. 0 HU[3:0] CALP Res. Res. 0 0 TAMPPRCH[1:0] TAMPPUDIS 0 Res. 0 Res. Res. 0 0 Res. 0 Res. Res. 0 HU[3:0] Res. TAMP1INSEL 0 Res. Res. Res. 0 0 Res. TSINSEL Reset value Res. 0 Res. Res. Res. 0 0 Res. Res. 0 0 Res. 0 Res. HT[1:0] Res. Res. 0 0 ALARMOUTTYPE 0 Res. Res. Res. 0 0 Res. 0 Res. PM Res. 0 HT [1:0] 0 Res. Res. Res. 0 Res. Res. Res. 0 0 Res. Res. Res. Res. Res. Res. Res. 0 0 Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Reset value 0 Res. MASKSS[3:0] Res. Res. Res. Res. Res. Res. Res. MSK4 WDSEL DT [1:0] DU[3:0] Res. Res. Res. Res. Res. Res. Res. RTC_ALRMBR 0 Res. 0 Res. Res. Res. Res. Res. Res. 0 HT [1:0] Res. 0 Res. Res. Res. Res. Res. MSK4 WDSEL 0 0 Res. 0 Res. Res. Res. Res. Res. Res. 0 0 Res. Reset value Res. Res. Res. ADD1S Res. Res. Reset value 0 Res. RTC_ ALRMASSR Res. DT [1:0] 0 Res. RTC_TAFCR Res. RTC_ CALR Res. RTC_TSSSR Res. RTC_ALRMAR DU[3:0] Res. 0x44 RTC_TSTR Res. 0x40 0 Res. 0x3C Reset value Res. 0x38 RTC_SHIFTR Res. 0x2C Res. 0x30 RTC_SSR Res. 0x28 Res. 0x24 Res. 0x20 Res. 0x1C 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. Real-time clock (RTC) RM0430 Table 138. RTC register map and reset values (continued) ST[2:0] 0 0 0 0 0 0 ST[2:0] SU[3:0] 0 0 0 0 0 SU[3:0] 0 0 0 KEY[7:0] SS[15:0] SUBFS[14:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SU[3:0] SS[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CALM[8:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Real-time clock (RTC) Offset 0x50 to 0x9C Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 138. RTC register map and reset values (continued) RTC_BKP0R BKP[31:0] Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 to RTC_BKP19R Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BKP[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 58 for the register boundary addresses. Caution: In Table 138, the reset value is the value after a backup domain reset. The majority of the registers are not affected by a system reset. For more information, refer to Section 25.3.7: Resetting the RTC. RM0430 Rev 8 781/1324 781 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0430 26 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface 26.1 Introduction The I2C (inter-integrated circuit) bus interface handles communications between the microcontroller and the serial I2C bus. It provides multimaster capability, and controls all I2C bus-specific sequencing, protocol, arbitration and timing. It supports Standard-mode (Sm), Fast-mode (Fm) and Fast-mode Plus (Fm+). It is also SMBus (system management bus) and PMBus (power management bus) compatible. DMA can be used to reduce CPU overload. 26.2 FMPI2C main features • 782/1324 I2C bus specification rev03 compatibility: – Slave and master modes – Multimaster capability – Standard-mode (up to 100 kHz) – Fast-mode (up to 400 kHz) – Fast-mode Plus (up to 1 MHz) – 7-bit and 10-bit addressing mode – Multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) – All 7-bit addresses acknowledge mode – General call – Programmable setup and hold times – Easy to use event management – Optional clock stretching – Software reset • 1-byte buffer with DMA capability • Programmable analog and digital noise filters RM0430 Rev 8 RM0430 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface The following additional features are also available depending on the product implementation (see Section 26.3: FMPI2C implementation): • SMBus specification rev 3.0 compatibility: – 26.3 Hardware PEC (Packet Error Checking) generation and verification with ACK control – Command and data acknowledge control – Address resolution protocol (ARP) support – Host and Device support – SMBus alert – Timeouts and idle condition detection • PMBus rev 1.3 standard compatibility • Independent clock: a choice of independent clock sources allowing the FMPI2C communication speed to be independent from the PCLK reprogramming FMPI2C implementation This manual describes the full set of features implemented in FMPI2C1. Table 139. STM32F413/423 FMPI2C implementation I2C features(1) I2CFMP1 7-bit addressing mode X 10-bit addressing mode X Standard-mode (up to 100 kbit/s) X Fast-mode (up to 400 kbit/s) X Fast-mode Plus (2)(up to 1 Mbit/s) X Independent clock X Wakeup from Stop mode - SMBus/PMBus X 1. X = supported. 2. 20 mA output drive for Fm+ mode is not supported. 26.4 FMPI2C functional description In addition to receiving and transmitting data, this interface converts it from serial to parallel format and vice versa. The interrupts are enabled or disabled by software. The interface is connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected with a standard (up to 100 kHz), Fast-mode (up to 400 kHz) or Fast-mode Plus (up to 1 MHz) I2C bus. This interface can also be connected to a SMBus with the data pin (SDA) and clock pin (SCL). If SMBus feature is supported: the additional optional SMBus Alert pin (SMBA) is also available. RM0430 Rev 8 783/1324 847 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface 26.4.1 RM0430 FMPI2C block diagram The block diagram of the FMPI2C interface is shown in Figure 255. Figure 255. FMPI2C block diagram ,FBNHUBFN ,&&/. 'DWDFRQWURO 6KLIWUHJLVWHU 'LJLWDO QRLVH ILOWHU $QDORJ QRLVH ILOWHU *3,2 ORJLF ,&B6'$ 'LJLWDO QRLVH ILOWHU $QDORJ QRLVH ILOWHU *3,2 ORJLF ,&B6&/ 60%86 3(& JHQHUDWLRQ FKHFN :DNHXS RQ DGGUHVV PDWFK &ORFNFRQWURO 0DVWHUFORFN JHQHUDWLRQ 6ODYHFORFN VWUHWFKLQJ 60%XV 7LPHRXW FKHFN 60%XV$OHUW FRQWURO VWDWXV ,FBSFON 3&/. ,&B60%$ 5HJLVWHUV $3%EXV 06Y9 The FMPI2C is clocked by an independent clock source which allows to the FMPI2C to operate independently from the PCLK frequency. This independent clock source can be selected from the following clock sources: • PCLK1: APB1 clock (default value) • HSI: high speed internal oscillator • SYSCLK: system clock Refer to Section 6: Reset and clock control (RCC) for STM32F413/423 for more details. 784/1324 RM0430 Rev 8 RM0430 26.4.2 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface FMPI2C clock requirements The FMPI2C kernel is clocked by FMPI2CCLK. The FMPI2CCLK period tI2CCLK must respect the following conditions: tI2CCLK < (tLOW - tfilters) / 4 and tI2CCLK < tHIGH with: tLOW: SCL low time and tHIGH: SCL high time tfilters: when enabled, sum of the delays brought by the analog filter and by the digital filter. Analog filter delay is maximum 260 ns. Digital filter delay is DNF x tI2CCLK. The PCLK clock period tPCLK must respect the following condition: tPCLK < 4/3 tSCL with tSCL: SCL period Caution: When the FMPI2C kernel is clocked by PCLK, this clock must respect the conditions for tI2CCLK. 26.4.3 Mode selection The interface can operate in one of the four following modes: • Slave transmitter • Slave receiver • Master transmitter • Master receiver By default, it operates in slave mode. The interface automatically switches from slave to master when it generates a START condition, and from master to slave if an arbitration loss or a STOP generation occurs, allowing multimaster capability. Communication flow In Master mode, the FMPI2C interface initiates a data transfer and generates the clock signal. A serial data transfer always begins with a START condition and ends with a STOP condition. Both START and STOP conditions are generated in master mode by software. In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and the General Call address. The General Call address detection can be enabled or disabled by software. The reserved SMBus addresses can also be enabled by software. Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the START condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is always transmitted in Master mode. A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must send an acknowledge bit to the transmitter. Refer to the following figure. RM0430 Rev 8 785/1324 847 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0430 Figure 256. I2C bus protocol 6'$ 06% $&. 6&/ 6WDUW FRQGLWLRQ 6WRS FRQGLWLRQ 069 Acknowledge can be enabled or disabled by software. The FMPI2C interface addresses can be selected by software. 26.4.4 FMPI2C initialization Enabling and disabling the peripheral The FMPI2C peripheral clock must be configured and enabled in the clock controller (refer to Section 6: Reset and clock control (RCC) for STM32F413/423). Then the FMPI2C can be enabled by setting the PE bit in the FMPI2C_CR1 register. When the FMPI2C is disabled (PE=0), the I2C performs a software reset. Refer to Section 26.4.5: Software reset for more details. Noise filters Before enabling the FMPI2C peripheral by setting the PE bit in FMPI2C_CR1 register, the user must configure the noise filters, if needed. By default, an analog noise filter is present on the SDA and SCL inputs. This analog filter is compliant with the I2C specification which requires the suppression of spikes with a pulse width up to 50 ns in Fast-mode and Fastmode Plus. The user can disable this analog filter by setting the ANFOFF bit, and/or select a digital filter by configuring the DNF[3:0] bit in the FMPI2C_CR1 register. When the digital filter is enabled, the level of the SCL or the SDA line is internally changed only if it remains stable for more than DNF x FMPI2CCLK periods. This allows to suppress spikes with a programmable length of 1 to 15 FMPI2CCLK periods. Caution: 786/1324 Changing the filter configuration is not allowed when the FMPI2C is enabled. RM0430 Rev 8 RM0430 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface FMPI2C timings The timings must be configured in order to guarantee a correct data hold and setup time, used in master and slave modes. This is done by programming the PRESC[3:0], SCLDEL[3:0] and SDADEL[3:0] bits in the FMPI2C_TIMINGR register. The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C configuration window Figure 257. Setup and hold timings d,K>d/D 6&/IDOOLQJHGJHLQWHUQDO GHWHFWLRQ W6<1& 6'$'(/6&/VWUHWFKHGORZE\WKH,& 6'$RXWSXWGHOD\ 6&/ 6'$ W+''$7 'DWDKROGWLPHLQFDVHRIWUDQVPLVVLRQWKHGDWDLVVHQWRQ6'$RXWSXWDIWHU WKH6'$'(/GHOD\LILWLVDOUHDG\DYDLODEOHLQ,&B7;'5 d^dhWd/D 6&/'(/ 6&/VWUHWFKHGORZE\WKH,& 6&/ 6'$ W68'$7 6867$ 'DWDVHWXSWLPHLQFDVHRIWUDQVPLVVLRQWKH6&/'(/FRXQWHUVWDUWV ZKHQWKHGDWDLVVHQWRQ6'$RXWSXW 06Y9 069 RM0430 Rev 8 787/1324 847 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface • RM0430 When the SCL falling edge is internally detected, a delay is inserted before sending SDA output. This delay is tSDADEL = SDADEL x tPRESC + tI2CCLK where tPRESC = (PRESC+1) x tI2CCLK. TSDADEL impacts the hold time tHD;DAT. The total SDA output delay is: tSYNC1 + {[SDADEL x (PRESC+1) + 1] x tI2CCLK } tSYNC1 duration depends on these parameters: – SCL falling slope – When enabled, input delay brought by the analog filter: tAF(min) < tAF < tAF(max) ns. – When enabled, input delay brought by the digital filter: tDNF = DNF x tI2CCLK – Delay due to SCL synchronization to FMPI2CCLK clock (2 to 3 FMPI2CCLK periods) In order to bridge the undefined region of the SCL falling edge, the user must program SDADEL in such a way that: {tf (max) +tHD;DAT (min) -tAF(min) - [(DNF +3) x tI2CCLK]} / {(PRESC +1) x tI2CCLK } ≤ SDADEL SDADEL ≤ {tHD;DAT (max) -tAF(max) - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK } Note: tAF(min) / tAF(max) are part of the equation only when the analog filter is enabled. Refer to device datasheet for tAF values. The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for Standard-mode, Fast-mode and Fast-mode Plus, but must be less than the maximum of tVD;DAT by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock. The SDA rising edge is usually the worst case, so in this case the previous equation becomes: SDADEL ≤ {tVD;DAT (max) -tr (max) -260 ns - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK }. Note: This condition can be violated when NOSTRETCH=0, because the device stretches SCL low to guarantee the set-up time, according to the SCLDEL value. Refer to Table 140: I2C-SMBUS specification data setup and hold times for tf, tr, tHD;DAT and tVD;DAT standard values. • After tSDADEL delay, or after sending SDA output in case the slave had to stretch the clock because the data was not yet written in I2C_TXDR register, SCL line is kept at low level during the setup time. This setup time is tSCLDEL = (SCLDEL+1) x tPRESC where tPRESC = (PRESC+1) x tI2CCLK. tSCLDEL impacts the setup time tSU;DAT . In order to bridge the undefined region of the SDA transition (rising edge usually worst case), the user must program SCLDEL in such a way that: {[tr (max) + tSU;DAT (min)] / [(PRESC+1)] x tI2CCLK]} - 1 <= SCLDEL Refer to Table 140: I2C-SMBUS specification data setup and hold times for tr and tSU;DAT standard values. 788/1324 RM0430 Rev 8 RM0430 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface The SDA and SCL transition time values to be used are the ones in the application. Using the maximum values from the standard increases the constraints for the SDADEL and SCLDEL calculation, but ensures the feature whatever the application. Note: At every clock pulse, after SCL falling edge detection, the I2C master or slave stretches SCL low during at least [(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK, in both transmission and reception modes. In transmission mode, in case the data is not yet written in I2C_TXDR when SDADEL counter is finished, the I2C keeps on stretching SCL low until the next data is written. Then new data MSB is sent on SDA output, and SCLDEL counter starts, continuing stretching SCL low to guarantee the data setup time. If NOSTRETCH=1 in slave mode, the SCL is not stretched. Consequently the SDADEL must be programmed in such a way to guarantee also a sufficient setup time. Table 140. I2C-SMBUS specification data setup and hold times Symbol Parameter Standard-mode (Sm) Fast-mode (Fm) Fast-mode Plus (Fm+) SMBUS Unit Min. Max Min. Max Min. Max Min. Max tHD;DAT Data hold time 0 - 0 - 0 - 0.3 - tVD;DAT Data valid time - 3.45 - 0.9 - 0.45 - - tSU;DAT Data setup time 250 - 100 - 50 - 250 - µs tr Rise time of both SDA and SCL signals - 1000 - 300 - 120 - 1000 tf Fall time of both SDA and SCL signals - 300 - 300 - 120 - 300 ns Additionally, in master mode, the SCL clock high and low levels must be configured by programming the PRESC[3:0], SCLH[7:0] and SCLL[7:0] bits in the FMPI2C_TIMINGR register. • When the SCL falling edge is internally detected, a delay is inserted before releasing the SCL output. This delay is tSCLL = (SCLL+1) x tPRESC where tPRESC = (PRESC+1) x tI2CCLK. tSCLL impacts the SCL low time tLOW . • When the SCL rising edge is internally detected, a delay is inserted before forcing the SCL output to low level. This delay is tSCLH = (SCLH+1) x tPRESC where tPRESC = (PRESC+1) x tI2CCLK. tSCLH impacts the SCL high time tHIGH . Refer to FMPI2C master initialization for more details. Caution: Changing the timing configuration is not allowed when the FMPI2C is enabled. The FMPI2C slave NOSTRETCH mode must also be configured before enabling the peripheral. Refer to FMPI2C slave initialization for more details. Caution: Changing the NOSTRETCH configuration is not allowed when the FMPI2C is enabled. RM0430 Rev 8 789/1324 847 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0430 Figure 258. FMPI2C initialization flowchart ,QLWLDOVHWWLQJV &OHDU3(ELWLQ)03,&B&5 &RQILJXUH$1)2))DQG'1)>@LQ )03,&B&5 &RQILJXUH35(6&>@ 6'$'(/>@6&/'(/>@6&/+>@ 6&//>@LQ)03,&B7,0,1*5 &RQILJXUH12675(7&+LQ)03,&B&5 6HW3(ELWLQ)03,&B&5 (QG D^ǀϯϱϵϲϮsϭ 26.4.5 Software reset A software reset can be performed by clearing the PE bit in the FMPI2C_CR1 register. In that case FMPI2C lines SCL and SDA are released. Internal states machines are reset and communication control bits, as well as status bits come back to their reset value. The configuration registers are not impacted. Here is the list of impacted register bits: 1. FMPI2C_CR2 register: START, STOP, NACK 2. FMPI2C_ISR register: BUSY, TXE, TXIS, RXNE, ADDR, NACKF, TCR, TC, STOPF, BERR, ARLO, OVR and in addition when the SMBus feature is supported: 1. FMPI2C_CR2 register: PECBYTE 2. FMPI2C_ISR register: PECERR, TIMEOUT, ALERT PE must be kept low during at least 3 APB clock cycles in order to perform the software reset. This is ensured by writing the following software sequence: - Write PE=0 - Check PE=0 - Write PE=1. 790/1324 RM0430 Rev 8 RM0430 26.4.6 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface Data transfer The data transfer is managed through transmit and receive data registers and a shift register. Reception The SDA input fills the shift register. After the 8th SCL pulse (when the complete data byte is received), the shift register is copied into FMPI2C_RXDR register if it is empty (RXNE=0). If RXNE=1, meaning that the previous received data byte has not yet been read, the SCL line is stretched low until FMPI2C_RXDR is read. The stretch is inserted between the 8th and 9th SCL pulse (before the Acknowledge pulse). Figure 259. Data reception <ƉƵůƐĞ <ƉƵůƐĞ ůĞŐĞŶĚ͗ ^> ^ŚŝĨƚƌĞŐŝƐƚĞƌ ^> ƐƚƌĞƚĐŚ dždž ĚĂƚĂϭ dždž ĚĂƚĂϮ dždž ZyE ƌĚĚĂƚĂϬ ƌĚĚĂƚĂϭ &DW/ϮͺZyZ ĚĂƚĂϬ ĚĂƚĂϭ ĚĂƚĂϮ D^ǀϯϱϵϳϲsϭ RM0430 Rev 8 791/1324 847 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0430 Transmission If the FMPI2C_TXDR register is not empty (TXE=0), its content is copied into the shift register after the 9th SCL pulse (the Acknowledge pulse). Then the shift register content is shifted out on SDA line. If TXE=1, meaning that no data is written yet in FMPI2C_TXDR, SCL line is stretched low until FMPI2C_TXDR is written. The stretch is done after the 9th SCL pulse. Figure 260. Data transmission <ƉƵůƐĞ <ƉƵůƐĞ ůĞŐĞŶĚ͗ dždž dždž ĚĂƚĂϮ ^ŚŝĨƚƌĞŐŝƐƚĞƌ ĚĂƚĂϭ ^> ^> ƐƚƌĞƚĐŚ dždž dy ǁƌĚĂƚĂϭ &DW/ϮͺdyZ ĚĂƚĂϬ ǁƌĚĂƚĂϮ ĚĂƚĂϭ ĚĂƚĂϮ D^ǀϯϱϵϳϳsϭ Hardware transfer management The FMPI2C has a byte counter embedded in hardware in order to manage byte transfer and to close the communication in various modes such as: – NACK, STOP and ReSTART generation in master mode – ACK control in slave receiver mode – PEC generation/checking when SMBus feature is supported The byte counter is always used in master mode. By default it is disabled in slave mode, but it can be enabled by software by setting the SBC (Slave Byte Control) bit in the FMPI2C_CR2 register. The number of bytes to be transferred is programmed in the NBYTES[7:0] bit field in the FMPI2C_CR2 register. If the number of bytes to be transferred (NBYTES) is greater than 255, or if a receiver wants to control the acknowledge value of a received data byte, the reload mode must be selected by setting the RELOAD bit in the FMPI2C_CR2 register. In this mode, TCR flag is set when the number of bytes programmed in NBYTES has been transferred, and an interrupt is generated if TCIE is set. SCL is stretched as long as TCR flag is set. TCR is cleared by software when NBYTES is written to a non-zero value. When the NBYTES counter is reloaded with the last number of bytes, RELOAD bit must be cleared. 792/1324 RM0430 Rev 8 RM0430 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface When RELOAD=0 in master mode, the counter can be used in 2 modes: Caution: • Automatic end mode (AUTOEND = ‘1’ in the FMPI2C_CR2 register). In this mode, the master automatically sends a STOP condition once the number of bytes programmed in the NBYTES[7:0] bit field has been transferred. • Software end mode (AUTOEND = ‘0’ in the FMPI2C_CR2 register). In this mode, software action is expected once the number of bytes programmed in the NBYTES[7:0] bit field has been transferred; the TC flag is set and an interrupt is generated if the TCIE bit is set. The SCL signal is stretched as long as the TC flag is set. The TC flag is cleared by software when the START or STOP bit is set in the FMPI2C_CR2 register. This mode must be used when the master wants to send a RESTART condition. The AUTOEND bit has no effect when the RELOAD bit is set. Table 141. FMPI2C configuration 26.4.7 Function SBC bit RELOAD bit AUTOEND bit Master Tx/Rx NBYTES + STOP x 0 1 Master Tx/Rx + NBYTES + RESTART x 0 0 Slave Tx/Rx all received bytes ACKed 0 x x Slave Rx with ACK control 1 1 x FMPI2C slave mode FMPI2C slave initialization In order to work in slave mode, the user must enable at least one slave address. Two registers FMPI2C_OAR1 and FMPI2C_OAR2 are available in order to program the slave own addresses OA1 and OA2. • OA1 can be configured either in 7-bit mode (by default) or in 10-bit addressing mode by setting the OA1MODE bit in the FMPI2C_OAR1 register. OA1 is enabled by setting the OA1EN bit in the FMPI2C_OAR1 register. • If additional slave addresses are required, the 2nd slave address OA2 can be configured. Up to 7 OA2 LSB can be masked by configuring the OA2MSK[2:0] bits in the FMPI2C_OAR2 register. Therefore for OA2MSK configured from 1 to 6, only OA2[7:2], OA2[7:3], OA2[7:4], OA2[7:5], OA2[7:6] or OA2[7] are compared with the received address. As soon as OA2MSK is not equal to 0, the address comparator for OA2 excludes the FMPI2C reserved addresses (0000 XXX and 1111 XXX), which are not acknowledged. If OA2MSK=7, all received 7-bit addresses are acknowledged (except reserved addresses). OA2 is always a 7-bit address. These reserved addresses can be acknowledged if they are enabled by the specific enable bit, if they are programmed in the FMPI2C_OAR1 or FMPI2C_OAR2 register with OA2MSK=0. OA2 is enabled by setting the OA2EN bit in the FMPI2C_OAR2 register. • The General Call address is enabled by setting the GCEN bit in the FMPI2C_CR1 register. When the FMPI2C is selected by one of its enabled addresses, the ADDR interrupt status flag is set, and an interrupt is generated if the ADDRIE bit is set. RM0430 Rev 8 793/1324 847 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0430 By default, the slave uses its clock stretching capability, which means that it stretches the SCL signal at low level when needed, in order to perform software actions. If the master does not support clock stretching, the FMPI2C must be configured with NOSTRETCH=1 in the FMPI2C_CR1 register. After receiving an ADDR interrupt, if several addresses are enabled the user must read the ADDCODE[6:0] bits in the FMPI2C_ISR register in order to check which address matched. DIR flag must also be checked in order to know the transfer direction. Slave clock stretching (NOSTRETCH = 0) In default mode, the FMPI2C slave stretches the SCL clock in the following situations: • When the ADDR flag is set: the received address matches with one of the enabled slave addresses. This stretch is released when the ADDR flag is cleared by software setting the ADDRCF bit. • In transmission, if the previous data transmission is completed and no new data is written in FMPI2C_TXDR register, or if the first data byte is not written when the ADDR flag is cleared (TXE=1). This stretch is released when the data is written to the FMPI2C_TXDR register. • In reception when the FMPI2C_RXDR register is not read yet and a new data reception is completed. This stretch is released when FMPI2C_RXDR is read. • When TCR = 1 in Slave Byte Control mode, reload mode (SBC=1 and RELOAD=1), meaning that the last data byte has been transferred. This stretch is released when then TCR is cleared by writing a non-zero value in the NBYTES[7:0] field. • After SCL falling edge detection, the FMPI2C stretches SCL low during [(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK. Slave without clock stretching (NOSTRETCH = 1) When NOSTRETCH = 1 in the FMPI2C_CR1 register, the FMPI2C slave does not stretch the SCL signal. 794/1324 • The SCL clock is not stretched while the ADDR flag is set. • In transmission, the data must be written in the FMPI2C_TXDR register before the first SCL pulse corresponding to its transfer occurs. If not, an underrun occurs, the OVR flag is set in the FMPI2C_ISR register and an interrupt is generated if the ERRIE bit is set in the FMPI2C_CR1 register. The OVR flag is also set when the first data transmission starts and the STOPF bit is still set (has not been cleared). Therefore, if the user clears the STOPF flag of the previous transfer only after writing the first data to be transmitted in the next transfer, he ensures that the OVR status is provided, even for the first data to be transmitted. • In reception, the data must be read from the FMPI2C_RXDR register before the 9th SCL pulse (ACK pulse) of the next data byte occurs. If not an overrun occurs, the OVR flag is set in the FMPI2C_ISR register and an interrupt is generated if the ERRIE bit is set in the FMPI2C_CR1 register. RM0430 Rev 8 RM0430 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface Slave Byte Control mode In order to allow byte ACK control in slave reception mode, Slave Byte Control mode must be enabled by setting the SBC bit in the FMPI2C_CR1 register. This is required to be compliant with SMBus standards. Reload mode must be selected in order to allow byte ACK control in slave reception mode (RELOAD=1). To get control of each byte, NBYTES must be initialized to 0x1 in the ADDR interrupt subroutine, and reloaded to 0x1 after each received byte. When the byte is received, the TCR bit is set, stretching the SCL signal low between the 8th and 9th SCL pulses. The user can read the data from the FMPI2C_RXDR register, and then decide to acknowledge it or not by configuring the ACK bit in the FMPI2C_CR2 register. The SCL stretch is released by programming NBYTES to a non-zero value: the acknowledge or notacknowledge is sent and next byte can be received. NBYTES can be loaded with a value greater than 0x1, and in this case, the reception flow is continuous during NBYTES data reception. Note: The SBC bit must be configured when the FMPI2C is disabled, or when the slave is not addressed, or when ADDR=1. The RELOAD bit value can be changed when ADDR=1, or when TCR=1. Caution: Slave Byte Control mode is not compatible with NOSTRETCH mode. Setting SBC when NOSTRETCH=1 is not allowed. Figure 261. Slave initialization flowchart 6ODYH LQLWLDOL]DWLRQ ,QLWLDOVHWWLQJV &OHDU^2$(12$(1`LQ)03,&B2$5DQG)03,&B2$5 &RQILJXUH^2$>@2$02'(2$(1 2$>@2$06.>@2$(1*&(1` &RQILJXUH6%&LQ)03,&B&5 (QDEOHLQWHUUXSWVDQGRU '0$LQ)03,&B&5 (QG 6%&PXVWEHVHWWRVXSSRUW60%XVIHDWXUHV D^ǀϯϱϵϲϯsϭ RM0430 Rev 8 795/1324 847 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0430 Slave transmitter A transmit interrupt status (TXIS) is generated when the FMPI2C_TXDR register becomes empty. An interrupt is generated if the TXIE bit is set in the FMPI2C_CR1 register. The TXIS bit is cleared when the FMPI2C_TXDR register is written with the next data byte to be transmitted. When a NACK is received, the NACKF bit is set in the FMPI2C_ISR register and an interrupt is generated if the NACKIE bit is set in the FMPI2C_CR1 register. The slave automatically releases the SCL and SDA lines in order to let the master perform a STOP or a RESTART condition. The TXIS bit is not set when a NACK is received. When a STOP is received and the STOPIE bit is set in the FMPI2C_CR1 register, the STOPF flag is set in the FMPI2C_ISR register and an interrupt is generated. In most applications, the SBC bit is usually programmed to ‘0’. In this case, If TXE = 0 when the slave address is received (ADDR=1), the user can choose either to send the content of the FMPI2C_TXDR register as the first data byte, or to flush the FMPI2C_TXDR register by setting the TXE bit in order to program a new data byte. In Slave Byte Control mode (SBC=1), the number of bytes to be transmitted must be programmed in NBYTES in the address match interrupt subroutine (ADDR=1). In this case, the number of TXIS events during the transfer corresponds to the value programmed in NBYTES. Caution: When NOSTRETCH=1, the SCL clock is not stretched while the ADDR flag is set, so the user cannot flush the FMPI2C_TXDR register content in the ADDR subroutine, in order to program the first data byte. The first data byte to be sent must be previously programmed in the FMPI2C_TXDR register: • This data can be the data written in the last TXIS event of the previous transmission message. • If this data byte is not the one to be sent, the FMPI2C_TXDR register can be flushed by setting the TXE bit in order to program a new data byte. The STOPF bit must be cleared only after these actions, in order to guarantee that they are executed before the first data transmission starts, following the address acknowledge. If STOPF is still set when the first data transmission starts, an underrun error will be generated (the OVR flag is set). If a TXIS event is needed, (Transmit Interrupt or Transmit DMA request), the user must set the TXIS bit in addition to the TXE bit, in order to generate a TXIS event. 796/1324 RM0430 Rev 8 RM0430 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface Figure 262. Transfer sequence flowchart for FMPI2C slave transmitter, NOSTRETCH=0 6ODYH WUDQVPLVVLRQ 6ODYHLQLWLDOL]DWLRQ 1R )03,&B,65$''5 " 255 bytes 0DVWHU WUDQVPLVVLRQ 0DVWHULQLWLDOL]DWLRQ 1%<7(6 [))1 1 5(/2$' &RQILJXUHVODYHDGGUHVV 6HW)03,&B&567$57 1R 1R )03,&B,651$&.) )03,&B,657;,6 " " 255 bytes 0DVWHUUHFHSWLRQ 0DVWHULQLWLDOL]DWLRQ 1%<7(6 [))1 1 5(/2$' &RQILJXUHVODYHDGGUHVV 6HW)03,&B&567$57 )03,&B,655;1( " 1R 2 -byte reception, from N-2 data reception 27.3.4 • Wait until BTF = 1 (data N-2 in DR, data N-1 in shift register, SCL stretched low until data N-2 is read) • Set ACK low • Read data N-2 • Wait until BTF = 1 (data N-1 in DR, data N in shift register, SCL stretched low until a data N-1 is read) • Set STOP high • Read data N-1 and N Error conditions The following are the error conditions which may cause communication to fail. Bus error (BERR) This error occurs when the I2C interface detects an external Stop or Start condition during an address or a data transfer. In this case: • the BERR bit is set and an interrupt is generated if the ITERREN bit is set • in Slave mode: data are discarded and the lines are released by hardware: • – in case of a misplaced Start, the slave considers it is a restart and waits for an address, or a Stop condition – in case of a misplaced Stop, the slave behaves like for a Stop condition and the lines are released by hardware In Master mode: the lines are not released and the state of the current transmission is not affected. It is up to the software to abort or not the current transmission Acknowledge failure (AF) This error occurs when the interface detects a nonacknowledge bit. In this case: • the AF bit is set and an interrupt is generated if the ITERREN bit is set • a transmitter which receives a NACK must reset the communication: – If Slave: lines are released by hardware – If Master: a Stop or repeated Start condition must be generated by software Arbitration lost (ARLO) This error occurs when the I2C interface detects an arbitration lost condition. In this case, 860/1324 • the ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is set) • the I2C Interface goes automatically back to slave mode (the MSL bit is cleared). When the I2C loses the arbitration, it is not able to acknowledge its slave address in the same transfer, but it can acknowledge it after a repeated Start from the winning master. • lines are released by hardware RM0430 Rev 8 Inter-integrated circuit (I2C) interface RM0430 Overrun/underrun error (OVR) An overrun error can occur in slave mode when clock stretching is disabled and the I2C interface is receiving data. The interface has received a byte (RxNE=1) and the data in DR has not been read, before the next byte is received by the interface. In this case, • The last received byte is lost. • In case of Overrun error, software should clear the RxNE bit and the transmitter should re-transmit the last received byte. Underrun error can occur in slave mode when clock stretching is disabled and the I2C interface is transmitting data. The interface has not updated the DR with the next byte (TxE=1), before the clock comes for the next byte. In this case, • The same byte in the DR register will be sent again • The user should make sure that data received on the receiver side during an underrun error are discarded and that the next bytes are written within the clock low time specified in the I2C bus standard. For the first byte to be transmitted, the DR must be written after ADDR is cleared and before the first SCL rising edge. If not possible, the receiver must discard the first data. 27.3.5 Programmable noise filter In Fm mode, the I2C standard requires that spikes are suppressed to a length of 50 ns on SDA and SCL lines. An analog noise filter is implemented in the SDA and SCL I/Os. This filter is enabled by default and can be disabled by setting the ANOFF bit in the I2C_FLTR register. A digital noise filter can be enabled by configuring the DNF[3:0] bits to a non-zero value. This suppresses the spikes on SDA and SCL inputs with a length of up to DNF[3:0] * TPCLK1. Enabling the digital noise filter increases the SDA hold time by (DNF[3:0] +1)* TPCLK. To be compliant with the maximum hold time of the I2C-bus specification version 2.1 (Thd:dat), the DNF bits must be programmed using the constraints shown in Table 153, and assuming that the analog filter is disabled. Note: DNF[3:0] must only be configured when the I2C is disabled (PE = 0). If the analog filter is also enabled, the digital filter is added to the analog filter. Table 153. Maximum DNF[3:0] value to be compliant with Thd:dat(max) Maximum DNF value PCLK1 frequency Sm mode Fm mode 2 <= FPCLK1 <= 5 2 0 5 < FPCLK1 <= 10 12 0 10 < FPCLK1 <= 20 15 1 20 < FPCLK1 <= 30 15 7 30 < FPCLK1 <= 40 15 13 40 < FPCLK1 <= 50 15 15 RM0430 Rev 8 861/1324 882 Inter-integrated circuit (I2C) interface RM0430 Note: For each frequency range, the constraint is given based on the worst case which is the minimum frequency of the range. Greater DNF values can be used if the system can support maximum hold time violation. 27.3.6 SDA/SCL line control • • 27.3.7 If clock stretching is enabled: – Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low before transmission to wait for the microcontroller to write the byte in the Data Register (both buffer and shift register are empty). – Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after reception to wait for the microcontroller to read the byte in the Data Register (both buffer and shift register are full). If clock stretching is disabled in Slave mode: – Overrun Error in case of RxNE=1 and no read of DR has been done before the next byte is received. The last received byte is lost. – Underrun Error in case TxE=1 and no write into DR has been done before the next byte must be transmitted. The same byte will be sent again. – Write Collision not managed. SMBus Introduction The System Management Bus (SMBus) is a two-wire interface through which various devices can communicate with each other and with the rest of the system. It is based on I2C principles of operation. SMBus provides a control bus for system and power management related tasks. A system may use SMBus to pass messages to and from devices instead of toggling individual control lines. The System Management Bus Specification refers to three types of devices. A slave is a device that is receiving or responding to a command. A master is a device that issues commands, generates the clocks, and terminates the transfer. A host is a specialized master that provides the main interface to the system's CPU. A host must be a master-slave and must support the SMBus host notify protocol. Only one host is allowed in a system. Similarities between SMBus and I2C • 2 wire bus protocol (1 Clk, 1 Data) + SMBus Alert line optional • Master-slave communication, Master provides clock • Multi master capability • SMBus data format similar to I2C 7-bit addressing format (Figure 285). Differences between SMBus and I2C The following table describes the differences between SMBus and I2C. 862/1324 RM0430 Rev 8 Inter-integrated circuit (I2C) interface RM0430 Table 154. SMBus vs. I2C I2C SMBus Max. speed 100 kHz Max. speed 400 kHz Min. clock speed 10 kHz No minimum clock speed 35 ms clock low timeout No timeout Logic levels are fixed Logic levels are VDD dependent Different address types (reserved, dynamic etc.) 7-bit, 10-bit and general call slave address types Different bus protocols (quick command, process No bus protocols call etc.) SMBus application usage With System Management Bus, a device can provide manufacturer information, tell the system what its model/part number is, save its state for a suspend event, report different types of errors, accept control parameters, and return its status. SMBus provides a control bus for system and power management related tasks. Device identification Any device that exists on the System Management Bus as a slave has a unique address called the Slave Address. For the list of reserved slave addresses, refer to the SMBus specification version. 2.0 (http://smbus.org/). Bus protocols The SMBus specification supports up to 9 bus protocols. For more details of these protocols and SMBus address types, refer to SMBus specification version. 2.0. These protocols should be implemented by the user software. Address resolution protocol (ARP) SMBus slave address conflicts can be resolved by dynamically assigning a new unique address to each slave device. The Address Resolution Protocol (ARP) has the following attributes: • Address assignment uses the standard SMBus physical layer arbitration mechanism • Assigned addresses remain constant while device power is applied; address retention through device power loss is also allowed • No additional SMBus packet overhead is incurred after address assignment. (i.e. subsequent accesses to assigned slave addresses have the same overhead as accesses to fixed address devices.) • Any SMBus master can enumerate the bus Unique device identifier (UDID) In order to provide a mechanism to isolate each device for the purpose of address assignment, each device must implement a unique device identifier (UDID). For the details on 128 bit UDID and more information on ARP, refer to SMBus specification version 2.0. RM0430 Rev 8 863/1324 882 Inter-integrated circuit (I2C) interface RM0430 SMBus alert mode SMBus Alert is an optional signal with an interrupt line for devices that want to trade their ability to master for a pin. SMBA is a wired-AND signal just as the SCL and SDA signals are. SMBA is used in conjunction with the SMBus General Call Address. Messages invoked with the SMBus are 2 bytes long. A slave-only device can signal the host through SMBA that it wants to talk by setting ALERT bit in I2C_CR1 register. The host processes the interrupt and simultaneously accesses all SMBA devices through the Alert Response Address (known as ARA having a value 0001 100X). Only the device(s) which pulled SMBA low will acknowledge the Alert Response Address. This status is identified using SMBALERT Status flag in I2C_SR1 register. The host performs a modified Receive Byte operation. The 7 bit device address provided by the slave transmit device is placed in the 7 most significant bits of the byte. The eighth bit can be a zero or one. If more than one device pulls SMBA low, the highest priority (lowest address) device will win communication rights via standard arbitration during the slave address transfer. After acknowledging the slave address the device must disengage its SMBA pull-down. If the host still sees SMBA low when the message transfer is complete, it knows to read the ARA again. A host which does not implement the SMBA signal may periodically access the ARA. For more details on SMBus Alert mode, refer to SMBus specification version 2.0 (http://smbus.org/). Timeout error There are differences in the timing specifications between I2C and SMBus. SMBus defines a clock low timeout, TIMEOUT of 35 ms. Also SMBus specifies TLOW: SEXT as the cumulative clock low extend time for a slave device. SMBus specifies TLOW: MEXT as the cumulative clock low extend time for a master device. For more details on these timeouts, refer to SMBus specification version 2.0. The status flag Timeout or Tlow Error in I2C_SR1 shows the status of this feature. How to use the interface in SMBus mode To switch from I2C mode to SMBus mode, the following sequence should be performed. • Set the SMBus bit in the I2C_CR1 register • Configure the SMBTYPE and ENARP bits in the I2C_CR1 register as required for the application If you want to configure the device as a master, follow the Start condition generation procedure in Section 27.3.3: I2C master mode. Otherwise, follow the sequence in Section 27.3.2: I2C slave mode. The application has to control the various SMBus protocols by software. 864/1324 • SMB Device Default Address acknowledged if ENARP=1 and SMBTYPE=0 • SMB Host Header acknowledged if ENARP=1 and SMBTYPE=1 • SMB Alert Response Address acknowledged if SMBALERT=1 RM0430 Rev 8 Inter-integrated circuit (I2C) interface RM0430 27.3.8 DMA requests DMA requests (when enabled) are generated only for data transfer. DMA requests are generated by Data Register becoming empty in transmission and Data Register becoming full in reception. The DMA must be initialized and enabled before the I2C data transfer. The DMAEN bit must be set in the I2C_CR2 register before the ADDR event. In master mode or in slave mode when clock stretching is enabled, the DMAEN bit can also be set during the ADDR event, before clearing the ADDR flag. The DMA request must be served before the end of the current byte transfer. When the number of data transfers which has been programmed for the corresponding DMA stream is reached, the DMA controller sends an End of Transfer EOT signal to the I2C interface and generates a Transfer Complete interrupt if enabled: • Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA requests then wait for a BTF event before programming the Stop condition. • Master receiver – When the number of bytes to be received is equal to or greater than two, the DMA controller sends a hardware signal, EOT_1, corresponding to the last but one data byte (number_of_bytes – 1). If, in the I2C_CR2 register, the LAST bit is set, I2C automatically sends a NACK after the next byte following EOT_1. The user can generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled. – When a single byte must be received: the NACK must be programmed during EV6 event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag. Then the user can program the STOP condition either after clearing ADDR flag, or in the DMA Transfer Complete interrupt routine. Transmission using DMA DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register. Data will be loaded from a Memory area configured using the DMA peripheral (refer to the DMA specification) to the I2C_DR register whenever the TxE bit is set. To map a DMA stream x for I2C transmission (where x is the stream number), perform the following sequence: 1. Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event. 2. Set the memory address in the DMA_SxMA0R register (and in DMA_SxMA1R register in the case of a bouble buffer mode). The data will be loaded into I2C_DR from this memory after each TxE event. 3. Configure the total number of bytes to be transferred in the DMA_SxNDTR register. After each TxE event, this value will be decremented. 4. Configure the DMA stream priority using the PL[0:1] bits in the DMA_SxCR register 5. Set the DIR bit in the DMA_SxCR register and configure interrupts after half transfer or full transfer depending on application requirements. 6. Activate the stream by setting the EN bit in the DMA_SxCR register. When the number of data transfers which has been programmed in the DMA Controller registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the I2C interface and the DMA generates an interrupt, if enabled, on the DMA stream interrupt vector. Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for transmission. RM0430 Rev 8 865/1324 882 Inter-integrated circuit (I2C) interface RM0430 Reception using DMA DMA mode can be enabled for reception by setting the DMAEN bit in the I2C_CR2 register. Data will be loaded from the I2C_DR register to a Memory area configured using the DMA peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA stream x for I2C reception (where x is the stream number), perform the following sequence: 1. Set the I2C_DR register address in DMA_SxPAR register. The data will be moved from this address to the memory after each RxNE event. 2. Set the memory address in the DMA_SxMA0R register (and in DMA_SxMA1R register in the case of a bouble buffer mode). The data will be loaded from the I2C_DR register to this memory area after each RxNE event. 3. Configure the total number of bytes to be transferred in the DMA_SxNDTR register. After each RxNE event, this value will be decremented. 4. Configure the stream priority using the PL[0:1] bits in the DMA_SxCR register 5. Reset the DIR bit and configure interrupts in the DMA_SxCR register after half transfer or full transfer depending on application requirements. 6. Activate the stream by setting the EN bit in the DMA_SxCR register. When the number of data transfers which has been programmed in the DMA Controller registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the I2C interface and DMA generates an interrupt, if enabled, on the DMA stream interrupt vector. Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for reception. 27.3.9 Packet error checking A PEC calculator has been implemented to improve the reliability of communication. The PEC is calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial serially on each bit. • 866/1324 PEC calculation is enabled by setting the ENPEC bit in the I2C_CR1 register. PEC is a CRC-8 calculated on all message bytes including addresses and R/W bits. – In transmission: set the PEC transfer bit in the I2C_CR1 register after the TxE event corresponding to the last byte. The PEC will be transferred after the last transmitted byte. – In reception: set the PEC bit in the I2C_CR1 register after the RxNE event corresponding to the last byte so that the receiver sends a NACK if the next received byte is not equal to the internally calculated PEC. In case of MasterReceiver, a NACK must follow the PEC whatever the check result. The PEC must RM0430 Rev 8 Inter-integrated circuit (I2C) interface RM0430 be set before the ACK of the CRC reception in slave mode. It must be set when the ACK is set low in master mode. 27.4 • A PECERR error flag/interrupt is also available in the I2C_SR1 register. • If DMA and PEC calculation are both enabled:– In transmission: when the I2C interface receives an EOT signal from the DMA controller, it automatically sends a PEC after the last byte. – In reception: when the I2C interface receives an EOT_1 signal from the DMA controller, it will automatically consider the next byte as a PEC and will check it. A DMA request is generated after PEC reception. • To allow intermediate PEC transfers, a control bit is available in the I2C_CR2 register (LAST bit) to determine if it is really the last DMA transfer or not. If it is the last DMA request for a master receiver, a NACK is automatically sent after the last received byte. • PEC calculation is corrupted by an arbitration loss. I2C interrupts The table below gives the list of I2C interrupt requests. Table 155. I2C Interrupt requests Interrupt event Event flag Start bit sent (Master) SB Address sent (Master) or Address matched (Slave) ADDR 10-bit header sent (Master) ADD10 Stop received (Slave) STOPF Data byte transfer finished BTF Receive buffer not empty RxNE Transmit buffer empty TxE Bus error BERR Arbitration loss (Master) ARLO Acknowledge failure ITEVFEN ITEVFEN and ITBUFEN AF Overrun/Underrun OVR PEC error PECERR Timeout/Tlow error TIMEOUT SMBus Alert Note: Enable control bit ITERREN SMBALERT SB, ADDR, ADD10, STOPF, BTF, RxNE and TxE are logically ORed on the same interrupt channel. BERR, ARLO, AF, OVR, PECERR, TIMEOUT and SMBALERT are logically ORed on the same interrupt channel. RM0430 Rev 8 867/1324 882 Inter-integrated circuit (I2C) interface RM0430 Figure 291. I2C interrupt mapping diagram SB ITEVFEN ADDR ADD10 STOPF it_event BTF TxE ITBUFEN RxNE ITERREN BERR ARLO it_error AF OVR PECERR TIMEOUT SMBALERT 868/1324 RM0430 Rev 8 Inter-integrated circuit (I2C) interface RM0430 I2C debug mode 27.5 When the microcontroller enters the debug mode (Cortex®-M4 with FPU core halted), the SMBUS timeout either continues to work normally or stops, depending on the DBG_I2Cx_SMBUS_TIMEOUT configuration bits in the DBG module. For more details, refer to Section 34.16.2: Debug support for timers, watchdog, bxCAN and I2C. I2C registers 27.6 Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits). I2C Control register 1 (I2C_CR1) 27.6.1 Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 9 SW RST Res. ALERT PEC POS ACK STOP rw rw rw rw rw rw 8 7 NO START STRET CH rw rw 6 5 4 ENGC ENPEC ENARP rw rw rw 3 2 1 0 SMB TYPE Res. SM BUS PE rw rw rw Bit 15 SWRST: Software reset When set, the I2C is under reset state. Before resetting this bit, make sure the I2C lines are released and the bus is free. 0: I2C Peripheral not under reset 1: I2C Peripheral under reset state Note: This bit can be used to reinitialize the peripheral after an error or a locked state. As an example, if the BUSY bit is set and remains locked due to a glitch on the bus, the SWRST bit can be used to exit from this state. Bit 14 Reserved, must be kept at reset value Bit 13 ALERT: SMBus alert This bit is set and cleared by software, and cleared by hardware when PE=0. 0: Releases SMBA pin high. Alert Response Address Header followed by NACK. 1: Drives SMBA pin low. Alert Response Address Header followed by ACK. Bit 12 PEC: Packet error checking This bit is set and cleared by software, and cleared by hardware when PEC is transferred or by a START or Stop condition or when PE=0. 0: No PEC transfer 1: PEC transfer (in Tx or Rx mode) Note: PEC calculation is corrupted by an arbitration loss. RM0430 Rev 8 869/1324 882 Inter-integrated circuit (I2C) interface RM0430 Bit 11 POS: Acknowledge/PEC Position (for data reception) This bit is set and cleared by software and cleared by hardware when PE=0. 0: ACK bit controls the (N)ACK of the current byte being received in the shift register. The PEC bit indicates that current byte in shift register is a PEC. 1: ACK bit controls the (N)ACK of the next byte which will be received in the shift register. The PEC bit indicates that the next byte in the shift register is a PEC Note: The POS bit must be used only in 2-byte reception configuration in master mode. It must be configured before data reception starts, as described in the 2-byte reception procedure recommended in Master receiver. Bit 10 ACK: Acknowledge enable This bit is set and cleared by software and cleared by hardware when PE=0. 0: No acknowledge returned 1: Acknowledge returned after a byte is received (matched address or data) Bit 9 STOP: Stop generation The bit is set and cleared by software, cleared by hardware when a Stop condition is detected, set by hardware when a timeout error is detected. In Master Mode: 0: No Stop generation. 1: Stop generation after the current byte transfer or after the current Start condition is sent. In Slave mode: 0: No Stop generation. 1: Release the SCL and SDA lines after the current byte transfer. Bit 8 START: Start generation This bit is set and cleared by software and cleared by hardware when start is sent or PE=0. In Master Mode: 0: No Start generation 1: Repeated start generation In Slave mode: 0: No Start generation 1: Start generation when the bus is free Bit 7 NOSTRETCH: Clock stretching disable (Slave mode) This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until it is reset by software. 0: Clock stretching enabled 1: Clock stretching disabled Bit 6 ENGC: General call enable 0: General call disabled. Address 00h is NACKed. 1: General call enabled. Address 00h is ACKed. Bit 5 ENPEC: PEC enable 0: PEC calculation disabled 1: PEC calculation enabled Bit 4 ENARP: ARP enable 0: ARP disable 1: ARP enable SMBus Device default address recognized if SMBTYPE=0 SMBus Host address recognized if SMBTYPE=1 Bit 3 SMBTYPE: SMBus type 0: SMBus Device 1: SMBus Host 870/1324 RM0430 Rev 8 Inter-integrated circuit (I2C) interface RM0430 Bit 2 Reserved, must be kept at reset value Bit 1 SMBUS: SMBus mode 0: I2C mode 1: SMBus mode Bit 0 PE: Peripheral enable 0: Peripheral disable 1: Peripheral enable Note: If this bit is reset while a communication is on going, the peripheral is disabled at the end of the current communication, when back to IDLE state. All bit resets due to PE=0 occur at the end of the communication. In master mode, this bit must not be reset before the end of the communication. Note: When the STOP, START or PEC bit is set, the software must not perform any write access to I2C_CR1 before this bit is cleared by hardware. Otherwise there is a risk of setting a second STOP, START or PEC request. 27.6.2 I2C Control register 2 (I2C_CR2) Address offset: 0x04 Reset value: 0x0000 15 Res. 14 Res. 13 Res. 12 11 10 9 8 7 6 LAST DMA EN ITBUF EN ITEVT EN ITERR EN Res. Res. rw rw rw rw rw 5 4 3 2 1 0 rw rw FREQ[5:0] rw rw rw rw Bits 15:13 Reserved, must be kept at reset value Bit 12 LAST: DMA last transfer 0: Next DMA EOT is not the last transfer 1: Next DMA EOT is the last transfer Note: This bit is used in master receiver mode to permit the generation of a NACK on the last received data. Bit 11 DMAEN: DMA requests enable 0: DMA requests disabled 1: DMA request enabled when TxE=1 or RxNE =1 Bit 10 ITBUFEN: Buffer interrupt enable 0: TxE = 1 or RxNE = 1 does not generate any interrupt. 1: TxE = 1 or RxNE = 1 generates Event Interrupt (whatever the state of DMAEN) Bit 9 ITEVTEN: Event interrupt enable 0: Event interrupt disabled 1: Event interrupt enabled This interrupt is generated when: – SB = 1 (Master) – ADDR = 1 (Master/Slave) – ADD10= 1 (Master) – STOPF = 1 (Slave) – BTF = 1 with no TxE or RxNE event – TxE event to 1 if ITBUFEN = 1 – RxNE event to 1if ITBUFEN = 1 RM0430 Rev 8 871/1324 882 Inter-integrated circuit (I2C) interface RM0430 ITERREN: Error interrupt enable 0: Error interrupt disabled 1: Error interrupt enabled This interrupt is generated when: – BERR = 1 – ARLO = 1 – AF = 1 – OVR = 1 – PECERR = 1 – TIMEOUT = 1 – SMBALERT = 1 Bits 7:6 Reserved, must be kept at reset value Bits 5:0 FREQ[5:0]: Peripheral clock frequency The FREQ bits must be configured with the APB clock frequency value (I2C peripheral connected to APB). The FREQ field is used by the peripheral to generate data setup and hold times compliant with the I2C specifications. The minimum allowed frequency is 2 MHz, the maximum frequency is limited by the maximum APB frequency and cannot exceed 50 MHz (peripheral intrinsic maximum limit). 0b000000: Not allowed 0b000001: Not allowed 0b000010: 2 MHz ... 0b110010: 50 MHz Higher than 0b101010: Not allowed 872/1324 RM0430 Rev 8 Inter-integrated circuit (I2C) interface RM0430 I2C Own address register 1 (I2C_OAR1) 27.6.3 Address offset: 0x08 Reset value: 0x0000 15 14 13 12 11 10 ADD MODE Res. Res. Res. Res. Res. rw 9 8 7 6 5 ADD[9:8] rw rw 4 3 2 1 ADD[7:1] rw rw rw 0 ADD0 rw rw rw rw 4 3 2 1 rw Bit 15 ADDMODE Addressing mode (slave mode) 0: 7-bit slave address (10-bit address not acknowledged) 1: 10-bit slave address (7-bit address not acknowledged) Bit 14 Bits 13:10 Should always be kept at 1 by software. Reserved, must be kept at reset value Bits 9:8 ADD[9:8]: Interface address 7-bit addressing mode: don’t care 10-bit addressing mode: bits9:8 of address Bits 7:1 ADD[7:1]: Interface address bits 7:1 of address Bit 0 ADD0: Interface address 7-bit addressing mode: don’t care 10-bit addressing mode: bit 0 of address I2C Own address register 2 (I2C_OAR2) 27.6.4 Address offset: 0x0C Reset value: 0x0000 15 Res. 14 13 Res. Res. 12 Res. 11 Res. 10 Res. 9 Res. 8 7 6 5 Res. ADD2[7:1] rw rw rw rw 0 EN DUAL rw rw rw rw Bits 15:8 Reserved, must be kept at reset value Bits 7:1 ADD2[7:1]: Interface address bits 7:1 of address in dual addressing mode Bit 0 ENDUAL: Dual addressing mode enable 0: Only OAR1 is recognized in 7-bit addressing mode 1: Both OAR1 and OAR2 are recognized in 7-bit addressing mode RM0430 Rev 8 873/1324 882 Inter-integrated circuit (I2C) interface RM0430 I2C Data register (I2C_DR) 27.6.5 Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw rw DR[7:0] rw rw rw rw Bits 15:8 Reserved, must be kept at reset value Bits 7:0 DR[7:0] 8-bit data register Byte received or to be transmitted to the bus. – Transmitter mode: Byte transmission starts automatically when a byte is written in the DR register. A continuous transmit stream can be maintained if the next data to be transmitted is put in DR once the transmission is started (TxE=1) – Receiver mode: Received byte is copied into DR (RxNE=1). A continuous transmit stream can be maintained if DR is read before the next data byte is received (RxNE=1). Note: In slave mode, the address is not copied into DR. Write collision is not managed (DR can be written if TxE=0). If an ARLO event occurs on ACK pulse, the received byte is not copied into DR and so cannot be read. I2C Status register 1 (I2C_SR1) 27.6.6 Address offset: 0x14 Reset value: 0x0000 15 14 SMB TIMEO ALERT UT rc_w0 rc_w0 874/1324 13 12 11 10 9 8 7 6 5 Res. PEC ERR OVR AF ARLO BERR TxE RxNE Res. rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r RM0430 Rev 8 4 3 STOPF ADD10 r r 2 1 0 BTF ADDR SB r r r Inter-integrated circuit (I2C) interface RM0430 Bit 15 SMBALERT: SMBus alert In SMBus host mode: 0: no SMBALERT 1: SMBALERT event occurred on pin In SMBus slave mode: 0: no SMBALERT response address header 1: SMBALERT response address header to SMBALERT LOW received – Cleared by software writing 0, or by hardware when PE=0. Bit 14 TIMEOUT: Timeout or Tlow error 0: No timeout error 1: SCL remained LOW for 25 ms (Timeout) or Master cumulative clock low extend time more than 10 ms (Tlow:mext) or Slave cumulative clock low extend time more than 25 ms (Tlow:sext) – When set in slave mode: slave resets the communication and lines are released by hardware – When set in master mode: Stop condition sent by hardware – Cleared by software writing 0, or by hardware when PE=0. Note: This functionality is available only in SMBus mode. Bit 13 Reserved, must be kept at reset value Bit 12 PECERR: PEC Error in reception 0: no PEC error: receiver returns ACK after PEC reception (if ACK=1) 1: PEC error: receiver returns NACK after PEC reception (whatever ACK) – Cleared by software writing 0, or by hardware when PE=0. – Note: When the received CRC is wrong, PECERR is not set in slave mode if the PEC control bit is not set before the end of the CRC reception. Nevertheless, reading the PEC value determines whether the received CRC is right or wrong. Bit 11 OVR: Overrun/Underrun 0: No overrun/underrun 1: Overrun or underrun – Set by hardware in slave mode when NOSTRETCH=1 and: – In reception when a new byte is received (including ACK pulse) and the DR register has not been read yet. New received byte is lost. – In transmission when a new byte should be sent and the DR register has not been written yet. The same byte is sent twice. – Cleared by software writing 0, or by hardware when PE=0. Note: If the DR write occurs very close to SCL rising edge, the sent data is unspecified and a hold timing error occurs Bit 10 AF: Acknowledge failure 0: No acknowledge failure 1: Acknowledge failure – Set by hardware when no acknowledge is returned. – Cleared by software writing 0, or by hardware when PE=0. RM0430 Rev 8 875/1324 882 Inter-integrated circuit (I2C) interface RM0430 Bit 9 ARLO: Arbitration lost (master mode) 0: No Arbitration Lost detected 1: Arbitration Lost detected Set by hardware when the interface loses the arbitration of the bus to another master – Cleared by software writing 0, or by hardware when PE=0. After an ARLO event the interface switches back automatically to Slave mode (MSL=0). Note: In SMBUS, the arbitration on the data in slave mode occurs only during the data phase, or the acknowledge transmission (not on the address acknowledge). Bit 8 BERR: Bus error 0: No misplaced Start or Stop condition 1: Misplaced Start or Stop condition – Set by hardware when the interface detects an SDA rising or falling edge while SCL is high, occurring in a non-valid position during a byte transfer. – Cleared by software writing 0, or by hardware when PE=0. Bit 7 TxE: Data register empty (transmitters) 0: Data register not empty 1: Data register empty – Set when DR is empty in transmission. TxE is not set during address phase. – Cleared by software writing to the DR register or by hardware after a start or a stop condition or when PE=0. TxE is not set if either a NACK is received, or if next byte to be transmitted is PEC (PEC=1) Note: TxE is not cleared by writing the first data being transmitted, or by writing data when BTF is set, as in both cases the data register is still empty. Bit 6 RxNE: Data register not empty (receivers) 0: Data register empty 1: Data register not empty – Set when data register is not empty in receiver mode. RxNE is not set during address phase. – Cleared by software reading or writing the DR register or by hardware when PE=0. RxNE is not set in case of ARLO event. Note: RxNE is not cleared by reading data when BTF is set, as the data register is still full. Bit 5 Reserved, must be kept at reset value Bit 4 STOPF: Stop detection (slave mode) 0: No Stop condition detected 1: Stop condition detected – Set by hardware when a Stop condition is detected on the bus by the slave after an acknowledge (if ACK=1). – Cleared by software reading the SR1 register followed by a write in the CR1 register, or by hardware when PE=0 Note: The STOPF bit is not set after a NACK reception. It is recommended to perform the complete clearing sequence (READ SR1 then WRITE CR1) after the STOPF is set. Refer to Figure 288: Transfer sequence diagram for slave receiver on page 854. 876/1324 RM0430 Rev 8 Inter-integrated circuit (I2C) interface RM0430 Bit 3 ADD10: 10-bit header sent (Master mode) 0: No ADD10 event occurred. 1: Master has sent first address byte (header). – Set by hardware when the master has sent the first byte in 10-bit address mode. – Cleared by software reading the SR1 register followed by a write in the DR register of the second address byte, or by hardware when PE=0. Note: ADD10 bit is not set after a NACK reception Bit 2 BTF: Byte transfer finished 0: Data byte transfer not done 1: Data byte transfer succeeded – Set by hardware when NOSTRETCH=0 and: – In reception when a new byte is received (including ACK pulse) and DR has not been read yet (RxNE=1). – In transmission when a new byte should be sent and DR has not been written yet (TxE=1). – Cleared by software by either a read or write in the DR register or by hardware after a start or a stop condition in transmission or when PE=0. Note: The BTF bit is not set after a NACK reception The BTF bit is not set if next byte to be transmitted is the PEC (TRA=1 in I2C_SR2 register and PEC=1 in I2C_CR1 register) Bit 1 ADDR: Address sent (master mode)/matched (slave mode) This bit is cleared by software reading SR1 register followed reading SR2, or by hardware when PE=0. Address matched (Slave) 0: Address mismatched or not received. 1: Received address matched. – Set by hardware as soon as the received slave address matched with the OAR registers content or a general call or a SMBus Device Default Address or SMBus Host or SMBus Alert is recognized. (when enabled depending on configuration). Note: In slave mode, it is recommended to perform the complete clearing sequence (READ SR1 then READ SR2) after ADDR is set. Refer to Figure 288: Transfer sequence diagram for slave receiver on page 854. Address sent (Master) 0: No end of address transmission 1: End of address transmission – For 10-bit addressing, the bit is set after the ACK of the 2nd byte. – For 7-bit addressing, the bit is set after the ACK of the byte. Note: ADDR is not set after a NACK reception Bit 0 SB: Start bit (Master mode) 0: No Start condition 1: Start condition generated. – Set when a Start condition generated. – Cleared by software by reading the SR1 register followed by writing the DR register, or by hardware when PE=0 RM0430 Rev 8 877/1324 882 Inter-integrated circuit (I2C) interface RM0430 I2C Status register 2 (I2C_SR2) 27.6.7 Address offset: 0x18 Reset value: 0x0000 Note: 15 Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found set in I2C_SR1 or when the STOPF bit is cleared. 14 13 12 11 10 9 8 PEC[7:0] r r r r r r r 7 6 5 4 3 2 1 0 DUALF SMB HOST SMB DEFAU LT GEN CALL Res. TRA BUSY MSL r r r r r r r r Bits 15:8 PEC[7:0] Packet error checking register This register contains the internal PEC when ENPEC=1. Bit 7 DUALF: Dual flag (Slave mode) 0: Received address matched with OAR1 1: Received address matched with OAR2 – Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0. Bit 6 SMBHOST: SMBus host header (Slave mode) 0: No SMBus Host address 1: SMBus Host address received when SMBTYPE=1 and ENARP=1. – Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0. Bit 5 SMBDEFAULT: SMBus device default address (Slave mode) 0: No SMBus Device Default address 1: SMBus Device Default address received when ENARP=1 – Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0. Bit 4 GENCALL: General call address (Slave mode) 0: No General Call 1: General Call Address received when ENGC=1 – Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0. Bit 3 Reserved, must be kept at reset value 878/1324 RM0430 Rev 8 Inter-integrated circuit (I2C) interface RM0430 Bit 2 TRA: Transmitter/receiver 0: Data bytes received 1: Data bytes transmitted This bit is set depending on the R/W bit of the address byte, at the end of total address phase. It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start condition, loss of bus arbitration (ARLO=1), or when PE=0. Bit 1 BUSY: Bus busy 0: No communication on the bus 1: Communication ongoing on the bus – Set by hardware on detection of SDA or SCL low – cleared by hardware on detection of a Stop condition. It indicates a communication in progress on the bus. This information is still updated when the interface is disabled (PE=0). Bit 0 MSL: Master/slave 0: Slave Mode 1: Master Mode – Set by hardware as soon as the interface is in Master mode (SB=1). – Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration (ARLO=1), or by hardware when PE=0. Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found set in I2C_SR1 or when the STOPF bit is cleared. 27.6.8 I2C Clock control register (I2C_CCR) Address offset: 0x1C Reset value: 0x0000 Note: fPCLK1 must be at least 2 MHz to achieve Sm mode I²C frequencies. It must be at least 4 MHz to achieve Fm mode I²C frequencies. It must be a multiple of 10MHz to reach the 400 kHz maximum I²C Fm mode clock. The CCR register must be configured only when the I2C is disabled (PE = 0). 15 14 13 12 F/S DUTY Res. Res. rw rw 11 10 9 8 7 6 rw rw rw rw rw rw 5 4 3 2 1 0 rw rw rw rw rw CCR[11:0] rw Bit 15 F/S: I2C master mode selection 0: Sm mode I2C 1: Fm mode I2C RM0430 Rev 8 879/1324 882 Inter-integrated circuit (I2C) interface RM0430 Bit 14 DUTY: Fm mode duty cycle 0: Fm mode tlow/thigh = 2 1: Fm mode tlow/thigh = 16/9 (see CCR) Bits 13:12 Reserved, must be kept at reset value Bits 11:0 CCR[11:0]: Clock control register in Fm/Sm mode (Master mode) Controls the SCL clock in master mode. Sm mode or SMBus: Thigh = CCR * TPCLK1 Tlow = CCR * TPCLK1 Fm mode: If DUTY = 0: Thigh = CCR * TPCLK1 Tlow = 2 * CCR * TPCLK1 If DUTY = 1: (to reach 400 kHz) Thigh = 9 * CCR * TPCLK1 Tlow = 16 * CCR * TPCLK1 For instance: in Sm mode, to generate a 100 kHz SCL frequency: If FREQR = 08, TPCLK1 = 125 ns so CCR must be programmed with 0x28 (0x28 <=> 40d x 125 ns = 5000 ns.) Note: The minimum allowed value is 0x04, except in FAST DUTY mode where the minimum allowed value is 0x01 thigh = tr(SCL) + tw(SCLH). See device datasheet for the definitions of parameters. tlow = tf(SCL) + tw(SCLL). See device datasheet for the definitions of parameters. I2C communication speed, fSCL ~ 1/(thigh + tlow). The real frequency may differ due to the analog noise filter input delay. The CCR register must be configured only when the I2C is disabled (PE = 0). I2C TRISE register (I2C_TRISE) 27.6.9 Address offset: 0x20 Reset value: 0x0002 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 5 4 3 2 1 0 rw rw TRISE[5:0] rw rw rw rw Bits 15:6 Reserved, must be kept at reset value Bits 5:0 TRISE[5:0]: Maximum rise time in Fm/Sm mode (Master mode) These bits should provide the maximum duration of the SCL feedback loop in master mode. The purpose is to keep a stable SCL frequency whatever the SCL rising edge duration. These bits must be programmed with the maximum SCL rise time given in the I2C bus specification, incremented by 1. For instance: in Sm mode, the maximum allowed SCL rise time is 1000 ns. If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to 0x08 and TPCLK1 = 125 ns therefore the TRISE[5:0] bits must be programmed with 09h. (1000 ns / 125 ns = 8 + 1) The filter value can also be added to TRISE[5:0]. If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order to respect the tHIGH parameter. Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0). 880/1324 RM0430 Rev 8 Inter-integrated circuit (I2C) interface RM0430 I2C FLTR register (I2C_FLTR) 27.6.10 Address offset: 0x24 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ANOFF rw 3 2 rw rw 1 0 DNF[3:0] rw rw Bits 15:5 Reserved, must be kept at reset value Bit 4 ANOFF: Analog noise filter OFF 0: Analog noise filter enable 1: Analog noise filter disable Note: ANOFF must be configured only when the I2C is disabled (PE = 0). Bits 3:0 DNF[3:0]: Digital noise filter These bits are used to configure the digital noise filter on SDA and SCL inputs. The digital filter will suppress the spikes with a length of up to DNF[3:0] * TPCLK1. 0000: Digital noise filter disable 0001: Digital noise filter enabled and filtering capability up to 1* TPCLK1. ... 1111: Digital noise filter enabled and filtering capability up to 15* TPCLK1. Note: DNF[3:0] must be configured only when the I2C is disabled (PE = 0). If the analog filter is also enabled, the digital filter is added to the analog filter. RM0430 Rev 8 881/1324 882 0x24 882/1324 I2C_FLTR RM0430 Rev 8 Reset value Refer to Section 2.2.2 for the register boundary addresses. 0 0 0 0 0 0 Reset value 0 0 0 ADD[7:1] 0 0 0 0 0 0 0 0 0 0 0 0 ADD0 0 0 0 0 0 0 0 SMBUS PE Res. ENARP 0 ADD2[7:1] ENDUAL 0 SB ITERREN SMBTYPE Res. ITEVTEN ENGC Res. ITBUFEN Res. 0 0 0 0 0 0 CCR[11:0] MSL 0 0 BTF 0 0 ADDR 0 TRA 0 BUSY Reset value 0 ADD10 Reset value 0 ENPEC START NOSTRETCH Res. LAST 0 ADD[ 9:8] GENCALL Res. 0 Res. ACK STOP 0 0 SMBHOST Res. 0 Res. Res. 0 0 SMBDEFAULT STOPF PEC[7:0] RxNE Res. 0 TxE 0 BERR 0 DUALF Res. PEC POS 0 DMAEN Res. ALERT 0 ANOFF 0 Res. 0 Res. Res. Res. 0 Res. 0 Res. 0 Res. AF ARLO Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SWRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. 0 Res. OVR Res. Res. Res. ADDMODE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. 0 Res. PECERR 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. TIMEOUT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. 0 0 Res. DUTY SMBALERT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Reset value 0 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value F/S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. I2C_TRISE Res. 0x20 I2C_CCR Res. 0x1C I2C_SR2 Res. 0x18 I2C_SR1 Res. 0x14 I2C_DR Res. 0x10 I2C_OAR2 Res. 0x0C I2C_OAR1 Res. 0x08 I2C_CR2 Res. 0x04 I2C_CR1 Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 27.6.11 Res. Inter-integrated circuit (I2C) interface RM0430 I2C register map The table below provides the I2C register map and reset values. Table 156. I2C register map and reset values 0 0 FREQ[5:0] 0 0 0 0 0 0 0 1 0 0 0 DR[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 TRISE[5:0] 0 DNF[3:0] 0 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver 28 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitter (UART) 28.1 USART introduction The universal synchronous asynchronous receiver transmitter (USART) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The USART offers a very wide range of baud rates using a fractional baud rate generator. It supports synchronous one-way communication and half-duplex single wire communication. It also supports the LIN (local interconnection network), Smartcard Protocol and IrDA (infrared data association) SIR ENDEC specifications, and modem operations (CTS/RTS). It allows multiprocessor communication. High speed data communication is possible by using the DMA for multibuffer configuration. RM0430 Rev 8 883/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- 28.2 USART main features • Full duplex, asynchronous communications • NRZ standard format (Mark/Space) • Configurable oversampling method by 16 or by 8 to give flexibility between speed and clock tolerance • Fractional baud rate generator systems – • Programmable data word length (8 or 9 bits) • Configurable stop bits - support for 1 or 2 stop bits • LIN Master Synchronous Break send capability and LIN slave break detection capability – 13-bit break generation and 10/11 bit break detection when USART is hardware configured for LIN • Transmitter clock output for synchronous transmission • IrDA SIR encoder decoder – • Support for 3/16 bit duration for normal mode Smartcard emulation capability – The Smartcard interface supports the asynchronous protocol Smartcards as defined in the ISO 7816-3 standards – 0.5, 1.5 stop bits for Smartcard operation • Single-wire half-duplex communication • Configurable multibuffer communication using DMA (direct memory access) – Buffering of received/transmitted bytes in reserved SRAM using centralized DMA • Separate enable bits for transmitter and receiver • Transfer detection flags: • • • 884/1324 Common programmable transmit and receive baud rate (refer to the datasheets for the value of the baud rate at the maximum APB frequency. – Receive buffer full – Transmit buffer empty – End of transmission flags Parity control: – Transmits parity bit – Checks parity of received data byte Four error detection flags: – Overrun error – Noise detection – Frame error – Parity error Ten interrupt sources with flags: – CTS changes – LIN break detection – Transmit data register empty – Transmission complete RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver 28.3 – Receive data register full – Idle line received – Overrun error – Framing error – Noise error – Parity error • Multiprocessor communication - enter into mute mode if address match does not occur • Wake up from mute mode (by idle line detection or address mark detection) • Two receiver wakeup modes: Address bit (MSB, 9th bit), Idle line USART implementation This section describes the full set of features implemented in USART1. Refer to Table 157: USART features for the differences between USART instances. Table 157. USART features USART USART USART USART modes/features(1) 1 2 3 UART 4 UART 5 USART 6 UART 7 UART 8 UART 9 UART 10 Asynchronous mode X X X X X X X X X X Hardware flow control X X X NA NA X NA NA NA NA Multibuffer communication (DMA) X X X X X X X X X X Multiprocessor communication X X X X X X X X X X Synchronous mode X X X NA NA X NA NA NA NA Smartcard mode X X X NA NA X NA NA NA NA Half-duplex (single-wire mode) X X X X X X X X X X IrDA SIR ENDEC block X X X X X X X X X X IrDA mode X X X X X X X X X X LIN mode X X X X X X X X X X 1. X = supported. 28.4 USART functional description The interface is externally connected to another device by three pins (see Figure 292). Any USART bidirectional communication requires a minimum of two pins: Receive Data In (RX) and Transmit Data Out (TX): RM0430 Rev 8 885/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitRX: Receive Data Input is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. TX: Transmit Data Output. When the transmitter is disabled, the output pin returns to its I/O port configuration. When the transmitter is enabled and nothing is to be transmitted, the TX pin is at high level. In single-wire and smartcard modes, this I/O is used to transmit and receive the data (at USART level, data are then received on SW_RX). Through these pins, serial data is transmitted and received in normal USART mode as frames comprising: • An Idle Line prior to transmission or reception • A start bit • A data word (8 or 9 bits) least significant bit first • 0.5,1, 1.5, 2 Stop bits indicating that the frame is complete • This interface uses a fractional baud rate generator - with a 12-bit mantissa and 4-bit fraction • A status register (USART_SR) • Data Register (USART_DR) • A baud rate register (USART_BRR) - 12-bit mantissa and 4-bit fraction. • A Guardtime Register (USART_GTPR) in case of Smartcard mode. Refer to Section 28.6: USART registers for the definition of each bit. The following pin is required to interface in synchronous mode: • SCLK: Transmitter clock output. This pin outputs the transmitter data clock for synchronous transmission corresponding to SPI master mode (no clock pulses on start bit and stop bit, and a software option to send a clock pulse on the last data bit). In parallel data can be received synchronously on RX. This can be used to control peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity are software programmable. In smartcard mode, SCLK can provide the clock to the smartcard. The following pins are required in Hardware flow control mode: 886/1324 • nCTS: Clear To Send blocks the data transmission at the end of the current transfer when high • nRTS: Request to send indicates that the USART is ready to receive a data (when low). RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Figure 292. USART block diagram PWDATA PRDATA Write Read (CPU or DMA) (CPU or DMA) TX RX SW_RX (Data register) DR Transmit data register (TDR) Receive data register (RDR) Transmit Shift Register Receive Shift Register IrDA SIR ENDEC block IRDA_OUT IRDA_IN GTPR GT PSC CR3 SCLK control DMAT DMAR SCEN NACK HD IRLP IREN LINE STOP[1:0] CKEN CPOL CPHA LBCL CR2 CR1 UE USART Address nRTS nCTS SCLK CR2 M WAKE PCE PS PEIE Hardware flow controller Wakeup unit Transmit control Receiver clock Receiver control SR CR1 IDLE TE TXEIE TCIE RXNE IE IE CTS LBD RE RWU SBK TXE TC RXNE IDLE ORE NF FE PE USART interrupt control USART_BRR CR1 OVER8 Transmitter clock / [8 x (2 - OVER8)] Transmitter rate control TE /USARTDIV SAMPLING DIVIDER DIV_Mantissa 15 fPCLKx(x=1,2) DIV_Fraction 4 0 Receiver rate control RE Conventional baud rate generator USARTDIV = DIV_Mantissa + (DIV_Fraction / 8 × (2 – OVER8)) RM0430 Rev 8 ai16099 887/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- 28.4.1 USART character description Word length may be selected as being either 8 or 9 bits by programming the M bit in the USART_CR1 register (see Figure 293). The TX pin is in low state during the start bit. It is in high state during the stop bit. An Idle character is interpreted as an entire frame of “1”s followed by the start bit of the next frame that contains data (The number of “1” ‘s will include the number of stop bits). A Break character is interpreted on receiving “0”s for a frame period. At the end of the break frame the transmitter inserts either 1 or 2 stop bits (logic “1” bit) to acknowledge the start bit. Transmission and reception are driven by a common baud rate generator, the clock for each is generated when the enable bit is set respectively for the transmitter and receiver. The details of each block is given below. Figure 293.JWord length programming S 'DWDIUDPH 6WDUW %LW ELW %LW %LW %LW %LW %LW 3RVVLEOH SDULW\ELW %LW %LW %LW 1H[WGDWDIUDPH 1H[W 6WRS 6WDUW ELW ELW &ORFN 6WDUW ELW ,GOHIUDPH 6WRS 6WDUW ELW ELW %UHDNIUDPH ELWZRUGOHQJWK 0ELWLVUHVHW 6WRSELW 'DWDIUDPH 6WDUW %LW ELW %LW %LW %LW %LW %LW 1H[WGDWDIUDPH 3RVVLEOH SDULW\ELW 1H[W 6WRS 6WDUW %LW %LW ELW ELW &ORFN ,GOHIUDPH %UHDNIUDPH 6WDUW ELW 6WRS 6WDUW ELW ELW /%&/ELWFRQWUROVODVWGDWDFORFNSXOVH 069 888/1324 RM0430 Rev 8 RM0430 28.4.2 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Transmitter The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the transmit enable bit (TE) is set, the data in the transmit shift register is output on the TX pin and the corresponding clock pulses are output on the SCLK pin. Character transmission During an USART transmission, data shifts out least significant bit first on the TX pin. In this mode, the USART_DR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 292). Every character is preceded by a start bit that is a logic level low for one bit period. The character is terminated by a configurable number of stop bits. The following stop bits are supported by USART: 0.5, 1, 1.5 and 2 stop bits. Note: The TE bit should not be reset during transmission of data. Resetting the TE bit during the transmission will corrupt the data on the TX pin as the baud rate counters will get frozen. The current data being transmitted will be lost. An idle frame will be sent after the TE bit is enabled. Configurable stop bits The number of stop bits to be transmitted with every character can be programmed in Control register 2, bits 13,12. • 1 stop bit: This is the default value of number of stop bits. • 2 Stop bits: This will be supported by normal USART, single-wire and modem modes. • 0.5 stop bit: To be used when receiving data in Smartcard mode. • 1.5 stop bits: To be used when transmitting and receiving data in Smartcard mode. An idle frame transmission will include the stop bits. A break transmission will be 10 low bits followed by the configured number of stop bits (when m = 0) and 11 low bits followed by the configured number of stop bits (when m = 1). It is not possible to transmit long breaks (break of length greater than 10/11 low bits). RM0430 Rev 8 889/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitFigure 294. Configurable stop bits 8-bit Word length (M bit is reset) Possible parity bit Data frame Start Bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Stop bit Bit7 CLOCK Next data frame Next start bit **** ** ** LBCL bit controls last data clock pulse a) 1 Stop Bit Possible Parity Bit Data frame Start Bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 1 1/2 stop bits Possible parity bit Data frame Bit0 c) 2 Stop Bits Start Bit Bit0 Next start bit Bit7 b) 1 1/2 stop Bits Start Bit Next data frame Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Possible Parity Bit Data frame Bit1 Bit2 Bit7 Bit3 Bit4 Bit5 Bit6 Bit7 Next data frame 2 Stop Bits Next Start Bit Next data frame Next start bit 1/2 stop bit d) 1/2 Stop Bit Procedure: 1. Enable the USART by writing the UE bit in USART_CR1 register to 1. 2. Program the M bit in USART_CR1 to define the word length. 3. Program the number of stop bits in USART_CR2. 4. Select DMA enable (DMAT) in USART_CR3 if Multi buffer Communication is to take place. Configure the DMA register as explained in multibuffer communication. 5. Select the desired baud rate using the USART_BRR register. 6. Set the TE bit in USART_CR1 to send an idle frame as first transmission. 7. Write the data to send in the USART_DR register (this clears the TXE bit). Repeat this for each data to be transmitted in case of single buffer. 8. After writing the last data into the USART_DR register, wait until TC=1. This indicates that the transmission of the last frame is complete. This is required for instance when the USART is disabled or enters the Halt mode to avoid corrupting the last transmission. Single byte communication Clearing the TXE bit is always performed by a write to the data register. The TXE bit is set by hardware and it indicates: • The data has been moved from TDR to the shift register and the data transmission has started. • The TDR register is empty. • The next data can be written in the USART_DR register without overwriting the previous data. This flag generates an interrupt if the TXEIE bit is set. 890/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver When a transmission is taking place, a write instruction to the USART_DR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission. When no transmission is taking place, a write instruction to the USART_DR register places the data directly in the shift register, the data transmission starts, and the TXE bit is immediately set. If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An interrupt is generated if the TCIE bit is set in the USART_CR1 register. After writing the last data into the USART_DR register, it is mandatory to wait for TC=1 before disabling the USART or causing the microcontroller to enter the low power mode (see Figure 295: TC/TXE behavior when transmitting). The TC bit is cleared by the following software sequence: Note: 1. A read from the USART_SR register 2. A write to the USART_DR register The TC bit can also be cleared by writing a ‘0 to it. This clearing sequence is recommended only for Multibuffer communication. Figure 295. TC/TXE behavior when transmitting Break characters Setting the SBK bit transmits a break character. The break frame length depends on the M bit (see Figure 293). If the SBK bit is set to ‘1 a break character is sent on the TX line after completing the current character transmission. This bit is reset by hardware when the break character is completed (during the stop bit of the break character). The USART inserts a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame. Note: If the software resets the SBK bit before the commencement of break transmission, the break character will not be transmitted. For two consecutive breaks, the SBK bit should be set after the stop bit of the previous break. Idle characters Setting the TE bit drives the USART to send an idle frame before the first data frame. RM0430 Rev 8 891/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- 28.4.3 Receiver The USART can receive data words of either 8 or 9 bits depending on the M bit in the USART_CR1 register. Start bit detection The start bit detection sequence is the same when oversampling by 16 or by 8. In the USART, the start bit is detected when a specific sequence of samples is recognized. This sequence is: 1 1 1 0 X 0 X 0 X 0 0 0 0. Figure 296. Start bit detection when oversampling by 16 or 8 5;VWDWH ,GOH 6WDUWELW 5;OLQH ,GHDO VDPSOH FORFN 5HDO VDPSOH FORFN ; 6DPSOHGYDOXHV ; ; ; ; ; ; ; 2QHELWWLPH &RQGLWLRQV WRYDOLGDWH WKHVWDUWELW )DOOLQJHGJH GHWHFWLRQ ; ; ; $WOHDVWELWV RXWRIDW ; ; ; ; ; ; $WOHDVWELWV RXWRIDW DLE Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the idle state (no flag is set) where it waits for a falling edge. The start bit is confirmed (RXNE flag set, interrupt generated if RXNEIE=1) if the 3 sampled bits are at 0 (first sampling on the 3rd, 5th and 7th bits finds the 3 bits at 0 and second sampling on the 8th, 9th and 10th bits also finds the 3 bits at 0). The start bit is validated (RXNE flag set, interrupt generated if RXNEIE=1) but the NE noise flag is set if, for both samplings, at least 2 out of the 3 sampled bits are at 0 (sampling on the 3rd, 5th and 7th bits and sampling on the 8th, 9th and 10th bits). If this condition is not met, the start detection aborts and the receiver returns to the idle state (no flag is set). If, for one of the samplings (sampling on the 3rd, 5th and 7th bits or sampling on the 8th, 9th and 10th bits), 2 out of the 3 bits are found at 0, the start bit is validated but the NE noise flag bit is set. Character reception During an USART reception, data shifts in least significant bit first through the RX pin. In this mode, the USART_DR register consists of a buffer (RDR) between the internal bus and the received shift register. 892/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Procedure: 1. Enable the USART by writing the UE bit in USART_CR1 register to 1. 2. Program the M bit in USART_CR1 to define the word length. 3. Program the number of stop bits in USART_CR2. 4. Select DMA enable (DMAR) in USART_CR3 if multibuffer communication is to take place. Configure the DMA register as explained in multibuffer communication. STEP 3 5. Select the desired baud rate using the baud rate register USART_BRR 6. Set the RE bit USART_CR1. This enables the receiver that begins searching for a start bit. When a character is received Note: • The RXNE bit is set. It indicates that the content of the shift register is transferred to the RDR. In other words, data has been received and can be read (as well as its associated error flags). • An interrupt is generated if the RXNEIE bit is set. • The error flags can be set if a frame error, noise or an overrun error has been detected during reception. • In multibuffer, RXNE is set after every byte received and is cleared by the DMA read to the Data Register. • In single buffer mode, clearing the RXNE bit is performed by a software read to the USART_DR register. The RXNE flag can also be cleared by writing a zero to it. The RXNE bit must be cleared before the end of the reception of the next character to avoid an overrun error. The RE bit should not be reset while receiving data. If the RE bit is disabled during reception, the reception of the current byte will be aborted. Break character When a break character is received, the USART handles it as a framing error. Idle character When an idle frame is detected, there is the same procedure as a data received character plus an interrupt if the IDLEIE bit is set. Overrun error An overrun error occurs when a character is received when RXNE has not been reset. Data can not be transferred from the shift register to the RDR register until the RXNE bit is cleared. RM0430 Rev 8 893/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitThe RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set when the next data is received or the previous DMA request has not been serviced. When an overrun error occurs: Note: • The ORE bit is set. • The RDR content will not be lost. The previous data is available when a read to USART_DR is performed. • The shift register will be overwritten. After that point, any data received during overrun is lost. • An interrupt is generated if either the RXNEIE bit is set or both the EIE and DMAR bits are set. • The ORE bit is reset by a read to the USART_SR register followed by a USART_DR register read operation. The ORE bit, when set, indicates that at least 1 data has been lost. There are two possibilities: • if RXNE=1, then the last valid data is stored in the receive register RDR and can be read, • if RXNE=0, then it means that the last valid data has already been read and thus there is nothing to be read in the RDR. This case can occur when the last valid data is read in the RDR at the same time as the new (and lost) data is received. It may also occur when the new data is received during the reading sequence (between the USART_SR register read access and the USART_DR read access). Selecting the proper oversampling method The receiver implements different user-configurable oversampling techniques (except in synchronous mode) for data recovery by discriminating between valid incoming data and noise. The oversampling method can be selected by programming the OVER8 bit in the USART_CR1 register and can be either 16 or 8 times the baud rate clock (Figure 297 and Figure 298). Depending on the application: • select oversampling by 8 (OVER8=1) to achieve higher speed (up to fPCLK/8). In this case the maximum receiver tolerance to clock deviation is reduced (refer to Section 28.4.5: USART receiver tolerance to clock deviation) • select oversampling by 16 (OVER8=0) to increase the tolerance of the receiver to clock deviations. In this case, the maximum speed is limited to maximum fPCLK/16 Programming the ONEBIT bit in the USART_CR3 register selects the method used to evaluate the logic level. There are two options: • the majority vote of the three samples in the center of the received bit. In this case, when the 3 samples used for the majority vote are not equal, the NF bit is set • a single sample in the center of the received bit Depending on the application: 894/1324 – select the three samples’ majority vote method (ONEBIT=0) when operating in a noisy environment and reject the data when a noise is detected (refer to Figure 158) because this indicates that a glitch occurred during the sampling. – select the single sample method (ONEBIT=1) when the line is noise-free to increase the receiver tolerance to clock deviations (see Section 28.4.5: USART RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver receiver tolerance to clock deviation). In this case the NF bit will never be set. When noise is detected in a frame: • The NF bit is set at the rising edge of the RXNE bit. • The invalid data is transferred from the Shift register to the USART_DR register. • No interrupt is generated in case of single byte communication. However this bit rises at the same time as the RXNE bit that itself generates an interrupt. In case of multibuffer communication an interrupt will be issued if the EIE bit is set in the USART_CR3 register. The NF bit is reset by a USART_SR register read operation followed by a USART_DR register read operation. Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes. In those modes, the OVER8 bit is forced to ‘0 by hardware. Figure 297. Data sampling when oversampling by 16 5;OLQH VDPSOHGYDOXHV 6DPSOHFORFN 2QHELWWLPH 06Y9 Figure 298. Data sampling when oversampling by 8 5;OLQH VDPSOHGYDOXHV 6DPSOH FORFN [ 2QHELWWLPH 06Y9 Table 158. Noise detection from sampled data Sampled value NE status Received bit value 000 0 0 001 1 0 RM0430 Rev 8 895/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitTable 158. Noise detection from sampled data (continued) Sampled value NE status Received bit value 010 1 0 011 1 1 100 1 0 101 1 1 110 1 1 111 0 1 Framing error A framing error is detected when: The stop bit is not recognized on reception at the expected time, following either a desynchronization or excessive noise. When the framing error is detected: • The FE bit is set by hardware • The invalid data is transferred from the Shift register to the USART_DR register. • No interrupt is generated in case of single byte communication. However this bit rises at the same time as the RXNE bit that itself generates an interrupt. In case of multibuffer communication an interrupt will be issued if the EIE bit is set in the USART_CR3 register. The FE bit is reset by a USART_SR register read operation followed by a USART_DR register read operation. Configurable stop bits during reception The number of stop bits to be received can be configured through the control bits of Control Register 2 - it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode. 896/1324 1. 0.5 stop bit (reception in Smartcard mode): No sampling is done for 0.5 stop bit. As a consequence, no framing error and no break frame can be detected when 0.5 stop bit is selected. 2. 1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples. 3. 1.5 stop bits (Smartcard mode): When transmitting in smartcard mode, the device must check that the data is correctly sent. Thus the receiver block must be enabled (RE =1 in the USART_CR1 register) and the stop bit is checked to test if the smartcard has detected a parity error. In the event of a parity error, the smartcard forces the data signal low during the sampling - NACK signal-, which is flagged as a framing error. Then, the FE flag is set with the RXNE at the end of the 1.5 stop bit. Sampling for 1.5 stop bits is done on the 16th, 17th and 18th samples (1 baud clock period after the beginning of the stop bit). The 1.5 stop bit can be decomposed into two parts: one 0.5 baud clock period during which nothing happens, followed by 1 normal stop bit period during which sampling occurs halfway through. Refer to Section 28.4.11 for more details. 4. 2 stop bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the first stop bit. If a framing error is detected during the first stop bit the framing error flag will RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver be set. The second stop bit is not checked for framing error. The RXNE flag will be set at the end of the first stop bit. 28.4.4 Fractional baud rate generation The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as programmed in the Mantissa and Fraction values of USARTDIV. Equation 1: Baud rate for standard USART (SPI mode included) f CK Tx/Rx baud = ------------------------------------------------------------------------------------8 × ( 2 – OVER8 ) × USARTDIV Equation 2: Baud rate in Smartcard, LIN and IrDA modes f CK Tx/Rx baud = ---------------------------------------------16 × USARTDIV USARTDIV is an unsigned fixed point number that is coded on the USART_BRR register. Note: • When OVER8=0, the fractional part is coded on 4 bits and programmed by the DIV_fraction[3:0] bits in the USART_BRR register • When OVER8=1, the fractional part is coded on 3 bits and programmed by the DIV_fraction[2:0] bits in the USART_BRR register, and bit DIV_fraction[3] must be kept cleared. The baud counters are updated to the new value in the baud registers after a write operation to USART_BRR. Hence the baud rate register value should not be changed during communication. How to derive USARTDIV from USART_BRR register values when OVER8=0 Example 1: If DIV_Mantissa = 0d27 and DIV_Fraction = 0d12 (USART_BRR = 0x1BC), then Mantissa (USARTDIV) = 0d27 Fraction (USARTDIV) = 12/16 = 0d0.75 Therefore USARTDIV = 0d27.75 Example 2: To program USARTDIV = 0d25.62 This leads to: DIV_Fraction = 16*0d0.62 = 0d9.92 The nearest real number is 0d10 = 0xA DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19 Then, USART_BRR = 0x19A hence USARTDIV = 0d25.625 Example 3: To program USARTDIV = 0d50.99 RM0430 Rev 8 897/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitThis leads to: DIV_Fraction = 16*0d0.99 = 0d15.84 The nearest real number is 0d16 = 0x10 => overflow of DIV_frac[3:0] => carry must be added up to the mantissa DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33 Then, USART_BRR = 0x330 hence USARTDIV = 0d51.000 How to derive USARTDIV from USART_BRR register values when OVER8=1 Example 1: If DIV_Mantissa = 0x27 and DIV_Fraction[2:0]= 0d6 (USART_BRR = 0x1B6), then Mantissa (USARTDIV) = 0d27 Fraction (USARTDIV) = 6/8 = 0d0.75 Therefore USARTDIV = 0d27.75 Example 2: To program USARTDIV = 0d25.62 This leads to: DIV_Fraction = 8*0d0.62 = 0d4.96 The nearest real number is 0d5 = 0x5 DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19 Then, USART_BRR = 0x195 => USARTDIV = 0d25.625 Example 3: To program USARTDIV = 0d50.99 This leads to: DIV_Fraction = 8*0d0.99 = 0d7.92 The nearest real number is 0d8 = 0x8 => overflow of the DIV_frac[2:0] => carry must be added up to the mantissa DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33 Then, USART_BRR = 0x0330 => USARTDIV = 0d51.000 898/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Table 159. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 16(1) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 8 MHz fPCLK = 12 MHz Value % Error = programmed (Calculated in the baud Desired) B.rate / rate register Desired B.rate Actual Value programmed in the baud rate register % Error S.No Desired Actual 1 1.2 KBps 1.2 KBps 416.6875 0 1.2 KBps 625 0 2 2.4 KBps 2.4 KBps 208.3125 0.01 2.4 KBps 312.5 0 3 9.6 KBps 9.604 KBps 52.0625 0.04 9.6 KBps 78.125 0 4 19.2 KBps 19.185 KBps 26.0625 0.08 19.2 KBps 39.0625 0 5 38.4 KBps 38.462 KBps 13 0.16 38.339 KBps 19.5625 0.16 6 57.6 KBps 57.554 KBps 8.6875 0.08 57.692 KBps 13 0.16 7 115.2 KBps 115.942 KBps 4.3125 0.64 115.385 KBps 6.5 0.16 8 230.4 KBps 228.571 KBps 2.1875 0.79 230.769 KBps 3.25 0.16 9 460.8 KBps 470.588 KBps 1.0625 2.12 461.538 KBps 1.625 0.16 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. Table 160. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 8(1) Oversampling by 8 (OVER8 = 1) Baud rate fPCLK = 8 MHz fPCLK = 12 MHz % Error = Value (Calculated programmed Desired) in the baud B.rate / rate register Desired B.rate Value programmed % Error in the baud rate register S.No Desired Actual 1 1.2 KBps 1.2 KBps 833.375 0 1.2 KBps 1250 0 2 2.4 KBps 2.4 KBps 416.625 0.01 2.4 KBps 625 0 3 9.6 KBps 9.604 KBps 104.125 0.04 9.6 KBps 156.25 0 4 19.2 KBps 19.185 KBps 52.125 0.08 19.2 KBps 78.125 0 5 38.4 KBps 38.462 KBps 26 0.16 38.339 KBps 39.125 0.16 6 57.6 KBps 57.554 KBps 17.375 0.08 57.692 KBps 26 0.16 7 115.2 KBps 115.942 KBps 8.625 0.64 115.385 KBps 13 0.16 8 230.4 KBps 228.571 KBps 4.375 0.79 230.769 KBps 6.5 0.16 RM0430 Rev 8 Actual 899/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitTable 160. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 8(1) (continued) Oversampling by 8 (OVER8 = 1) Baud rate fPCLK = 8 MHz fPCLK = 12 MHz % Error = Value (Calculated programmed Desired) in the baud B.rate / rate register Desired B.rate Value programmed % Error in the baud rate register S.No Desired Actual 9 460.8 KBps 470.588 KBps 2.125 2.12 461.538 KBps 3.25 0.16 10 921.6 KBps 888.889 KBps 1.125 3.55 923.077 KBps 1.625 0.16 Actual 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. Table 161. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 16(1) Oversampling by 16 (OVER8 = 0) Baud rate fPCLK = 16 MHz fPCLK Value % Error = programmed (Calculated in the baud Desired) B.rate / rate register Desired B.rate = 24 MHz Value programmed % Error in the baud rate register S.No Desired Actual 1 1.2 KBps 1.2 KBps 833.3125 0 1.2 1250 0 2 2.4 KBps 2.4 KBps 416.6875 0 2.4 625 0 3 9.6 KBps 9.598 KBps 104.1875 0.02 9.6 156.25 0 4 19.2 KBps 19.208 KBps 52.0625 0.04 19.2 78.125 0 5 38.4 KBps 38.369 KBps 26.0625 0.08 38.4 39.0625 0 6 57.6 KBps 57.554 KBps 17.375 0.08 57.554 26.0625 0.08 7 115.2 KBps 115.108 KBps 8.6875 0.08 115.385 13 0.16 8 230.4 KBps 231.884 KBps 4.3125 0.64 230.769 6.5 0.16 9 460.8 KBps 457.143 KBps 2.1875 0.79 461.538 3.25 0.16 10 921.6 KBps 941.176 KBps 1.0625 2.12 923.077 1.625 0.16 Actual 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 900/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Table 162. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 8(1) Oversampling by 8 (OVER8=1) Baud rate fPCLK = 16 MHz fPCLK = 24 MHz Value % Error = programmed (Calculated in the baud Desired) B.rate / rate register Desired B.rate Value programmed % Error in the baud rate register S.No Desired Actual 1 1.2 KBps 1.2 KBps 1666.625 0 1.2 KBps 2500 0 2 2.4 KBps 2.4 KBps 833.375 0 2.4 KBps 1250 0 3 9.6 KBps 9.598 KBps 208.375 0.02 9.6 KBps 312.5 0 4 19.2 KBps 19.208 KBps 104.125 0.04 19.2 KBps 156.25 0 5 38.4 KBps 38.369 KBps 52.125 0.08 38.4 KBps 78.125 0 6 57.6 KBps 57.554 KBps 34.75 0.08 57.554 KBps 52.125 0.08 7 115.2 KBps 115.108 KBps 17.375 0.08 115.385 KBps 26 0.16 8 230.4 KBps 231.884 KBps 8.625 0.64 230.769 KBps 13 0.16 9 460.8 KBps 457.143 KBps 4.375 0.79 461.538 KBps 6.5 0.16 10 921.6 KBps 941.176 KBps 2.125 2.12 923.077 KBps 3.25 0.16 11 2 MBps 2000 KBps 1 0 2000 KBps 1.5 0 12 3 MBps NA NA NA 3000 KBps 1 0 Actual 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. Table 163. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 16(1) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 8 MHz fPCLK = 16 MHz S.No Desired Actual Value programmed in the baud rate register % Error = (Calculated Desired)B.Rate /Desired B.Rate Actual 1 2.4 KBps 2.400 KBps 208.3125 0.00% 2.400 KBps 416.6875 0.00% 2 9.6 KBps 9.604 KBps 52.0625 0.04% 9.598 KBps 104.1875 0.02% 3 19.2 KBps 19.185 KBps 26.0625 0.08% 19.208 KBps 52.0625 0.04% 4 57.6 KBps 57.554 KBps 8.6875 0.08% 57.554 KBps 17.3750 0.08% 5 115.2 KBps 115.942 KBps 4.3125 0.64% 115.108 KBps 8.6875 0.08% 6 230.4 KBps 228.571 KBps 2.1875 0.79% 231.884 KBps 4.3125 0.64% 7 460.8 KBps 470.588 KBps 1.0625 2.12% 457.143 KBps 2.1875 0.79% RM0430 Rev 8 Value programmed % Error in the baud rate register 901/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitTable 163. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 16(1) (continued) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 8 MHz fPCLK = 16 MHz S.No Desired Actual Value programmed in the baud rate register % Error = (Calculated Desired)B.Rate /Desired B.Rate Actual 8 896 KBps NA NA NA 888.889 KBps 1.1250 0.79% 9 921.6 KBps NA NA NA 941.176 KBps 1.0625 2.12% Value programmed % Error in the baud rate register 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. Table 164. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 8(1) Oversampling by 8 (OVER8=1) Baud rate fPCLK = 8 MHz fPCLK = 16 MHz % Error = Value (Calculated programmed in the baud Desired)B.Rate rate register /Desired B.Rate Actual Value programmed in the baud rate register % Error S.No Desired Actual 1 2.4 KBps 2.400 KBps 416.625 0.01% 2.400 KBps 833.375 0.00% 2 9.6 KBps 9.604 KBps 104.125 0.04% 9.598 KBps 208.375 0.02% 3 19.2 KBps 19.185 KBps 52.125 0.08% 19.208 KBps 104.125 0.04% 4 57.6 KBps 57.557 KBps 17.375 0.08% 57.554 KBps 34.750 0.08% 5 115.2 KBps 115.942 KBps 8.625 0.64% 115.108 KBps 17.375 0.08% 6 230.4 KBps 228.571 KBps 4.375 0.79% 231.884 KBps 8.625 0.64% 7 460.8 KBps 470.588 KBps 2.125 2.12% 457.143 KBps 4.375 0.79% 8 896 KBps 888.889 KBps 1.125 0.79% 888.889 KBps 2.250 0.79% 9 921.6 KBps 888.889 KBps 1.125 3.55% 941.176 KBps 2.125 2.12% 10 1.792 MBps NA NA NA 1.7777 MBps 1.125 0.79% 11 1.8432 MBps NA NA NA 1.7777 MBps 1.125 3.55% 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 902/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Table 165. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 16(1)(2) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 30 MHz fPCLK = 60 MHz S.No Desired Actual Value programmed in the baud rate register % Error = (Calculated Desired)B.Rate /Desired B.Rate 1 2.4 KBps 2.400 KBps 781.2500 0.00% 2.400 KBps 1562.5000 0.00% 2 9.6 KBps 9.600 KBps 195.3125 0.00% 9.600 KBps 390.6250 0.00% 3 19.2 KBps 19.194 KBps 97.6875 0.03% 19.200 KBps 195.3125 0.00% 4 57.6 KBps 57.582KBps 32.5625 0.03% 57.582 KBps 65.1250 0.03% 5 115.2 KBps 115.385 KBps 16.2500 0.16% 115.163 KBps 32.5625 0.03% 6 230.4 KBps 230.769 KBps 8.1250 0.16% 230.769 KBps 16.2500 0.16% 7 460.8 KBps 461.538 KBps 4.0625 0.16% 461.538 KBps 8.1250 0.16% 8 896 KBps 909.091 KBps 2.0625 1.46% 895.522 KBps 4.1875 0.05% 9 921.6 KBps 909.091 KBps 2.0625 1.36% 923.077 KBps 4.0625 0.16% 10 1.792 MBps 1.1764 MBps 1.0625 1.52% 1.8182 MBps 2.0625 1.36% 11 1.8432 MBps 1.8750 MBps 1.0000 1.73% 1.8182 MBps 2.0625 1.52% 12 3.584 MBps NA NA NA 3.2594 MBps 1.0625 1.52% 13 3.6864 MBps NA NA NA 3.7500 MBps 1.0000 1.73% Actual Value programmed in the baud rate register % Error 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device datasheets for the maximum values for PCLK1 and PCLK2. Table 166. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 8(1) (2) Oversampling by 8 (OVER8=1) Baud rate fPCLK = 30 MHz fPCLK =60 MHz Value % Error = programmed (Calculated in the baud Desired)B.Rate rate register /Desired B.Rate Actual Value programmed in the baud rate register % Error S.No Desired Actual 1 2.4 KBps 2.400 KBps 1562.5000 0.00% 2.400 KBps 3125.0000 0.00% 2 9.6 KBps 9.600 KBps 390.6250 0.00% 9.600 KBps 781.2500 0.00% 3 19.2 KBps 19.194 KBps 195.3750 0.03% 19.200 KBps 390.6250 0.00% 4 57.6 KBps 57.582 KBps 65.1250 0.16% 57.582 KBps 130.2500 0.03% 5 115.2 KBps 115.385 KBps 32.5000 0.16% 115.163 KBps 65.1250 0.03% 6 230.4 KBps 230.769 KBps 16.2500 0.16% 230.769 KBps 32.5000 0.16% RM0430 Rev 8 903/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitTable 166. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 8(1) (2) (continued) Oversampling by 8 (OVER8=1) Baud rate fPCLK = 30 MHz fPCLK =60 MHz Value % Error = programmed (Calculated in the baud Desired)B.Rate rate register /Desired B.Rate Actual Value programmed in the baud rate register % Error S.No Desired Actual 7 460.8 KBps 461.538 KBps 8.1250 0.16% 461.538 KBps 16.2500 0.16% 8 896 KBps 909.091 KBps 4.1250 1.46% 895.522 KBps 8.3750 0.05% 9 921.6 KBps 909.091 KBps 4.1250 1.36% 923.077 KBps 8.1250 0.16% 10 1.792 MBps 1.7647 MBps 2.1250 1.52% 1.8182 MBps 4.1250 1.46% 11 1.8432 MBps 1.8750 MBps 2.0000 1.73% 1.8182 MBps 4.1250 1.36% 12 3.584 MBps 3.7500 MBps 1.0000 4.63% 3.5294 MBps 2.1250 1.52% 13 3.6864 MBps 3.7500 MBps 1.0000 1.73% 3.7500 MBps 2.0000 1.73% 14 7.168 MBps NA NA NA 7.5000 MBps 1.0000 4.63% 15 7.3728 MBps NA NA NA 7.5000 MBps 1.0000 1.73% 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device datasheets for the maximum values for PCLK1 and PCLK2. Table 167. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 Hz, oversampling by 16(1)(2) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 42 MHz fPCLK = 84 MHz S.No Desired Actual Value programmed in the baud rate register 1 1.2 KBps 1.2 KBps 2187.5 0 1.2 KBps 4375 0 2 2.4 KBps 2.4 KBps 1093.75 0 2.4 KBps 2187.5 0 3 9.6 KBps 9.6 KBps 273.4375 0 9.6 KBps 546.875 0 4 19.2 KBps 19.195 KBps 136.75 0.02 19.2 KBps 273.4375 0 5 38.4 KBps 38.391 KBps 68.375 0.02 38.391 KBps 136.75 0.02 6 57.6 KBps 57.613 KBps 45.5625 0.02 57.613 KBps 91.125 0.02 7 115.2 KBps 115.068 KBps 22.8125 0.11 115.226 KBps 45.5625 0.02 8 230.4 KBps 230.769 KBps 11.375 0.16 230.137 KBps 22.8125 0.11 9 460.8 KBps 461.538 KBps 5.6875 0.16 461.538 KBps 11.375 0.16 904/1324 % Error = (Calculated Desired)B.Rate /Desired B.Rate RM0430 Rev 8 Actual Value programmed in the baud rate register % Error RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Table 167. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 Hz, oversampling by 16(1)(2) (continued) Oversampling by 16 (OVER8=0) Baud rate fPCLK = 42 MHz fPCLK = 84 MHz S.No Desired Actual Value programmed in the baud rate register % Error = (Calculated Desired)B.Rate /Desired B.Rate 10 921.6 KBps 913.043 KBps 2.875 0.93 923.076 KBps 5.6875 0.93 11 1.792 MBps 1.826 MBps 1.4375 1.9 1.787 MBps 2.9375 0.27 12 1.8432 MBps 1.826 MBps 1.4375 0.93 1.826 MBps 2.875 0.93 13 3.584 MBps NA NA NA 3.652 MBps 1.4375 1.9 14 3.6864 MBps NA NA NA 3.652 MBps 1.4375 0.93 Actual Value programmed in the baud rate register % Error 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device datasheets for the maximum values for PCLK1 and PCLK2. Table 168. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 MHz, oversampling by 8(1)(2) Oversampling by 8 (OVER8=1) Baud rate fPCLK = 42 MHz fPCLK = 84 MHz Value % Error = programmed (Calculated in the baud Desired)B.Rate rate register /Desired B.Rate Actual Value programmed in the baud rate register % Error S.No Desired Actual 1 1.2 KBps 1.2 KBps 4375 0 1.2 KBps 8750 0 2 2.4 KBps 2.4 KBps 2187.5 0 2.4 KBps 4375 0 3 9.6 KBps 9.6 KBps 546.875 0 9.6 KBps 1093.75 0 4 19.2 KBps 19.195 KBps 273.5 0.02 19.2 KBps 546.875 0 5 38.4 KBps 38.391 KBps 136.75 0.02 38.391 KBps 273.5 0.02 6 57.6 KBps 57.613 KBps 91.125 0.02 57.613 KBps 182.25 0.02 7 115.2 KBps 115.068 KBps 45.625 0.11 115.226 KBps 91.125 0.02 8 230.4 KBps 230.769 KBps 22.75 0.11 230.137 KBps 45.625 0.11 9 460.8 KBps 461.538 KBps 11.375 0.16 461.538 KBps 22.75 0.16 10 921.6 KBps 913.043 KBps 5.75 0.93 923.076 KBps 11.375 0.93 11 1.792 MBps 1.826 MBps 2.875 1.9 1.787Mbps 5.875 0.27 12 1.8432 MBps 1.826 MBps 2.875 0.93 1.826 MBps 5.75 0.93 13 3.584 MBps 3.5 MBps 1.5 2.34 3.652 MBps 2.875 1.9 14 3.6864 MBps 3.82 MBps 1.375 3.57 3.652 MBps 2.875 0.93 RM0430 Rev 8 905/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitTable 168. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 MHz, oversampling by 8(1)(2) (continued) Oversampling by 8 (OVER8=1) Baud rate fPCLK = 42 MHz fPCLK = 84 MHz Value % Error = programmed (Calculated in the baud Desired)B.Rate rate register /Desired B.Rate Actual Value programmed in the baud rate register % Error S.No Desired Actual 15 7.168 MBps NA NA NA 7 MBps 1.5 2.34 16 7.3728 MBps NA NA NA 7.636 MBps 1.375 3.57 18 9 MBps NA NA NA 9.333 MBps 1.125 3.7 20 10.5 MBps NA NA NA 10.5 MBps 1 0 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device datasheets for the maximum values for PCLK1 and PCLK2. 28.4.5 USART receiver tolerance to clock deviation The USART asynchronous receiver works correctly only if the total clock system deviation is smaller than the USART receiver tolerance. The causes that contribute to the total deviation are: • DTRA: Deviation due to the transmitter error (also includes the deviation of the transmitter local oscillator) • DQUANT: Error due to the baud rate quantization of the receiver • DREC: Deviation of the receiver local oscillator • DTCL: Deviation due to the transmission line (generally due to the transceivers that can introduce an asymmetry between the low-to-high transition timing and the high-to-low transition timing) DTRA + DQUANT + DREC + DTCL < USART receiver tolerance The USART receiver tolerance to properly receive data is equal to the maximum tolerated deviation and depends on the following choices: • 10- or 11-bit character length defined by the M bit in the USART_CR1 register • oversampling by 8 or 16 defined by the OVER8 bit in the USART_CR1 register • use of fractional baud rate or not • use of 1 bit or 3 bits to sample the data, depending on the value of the ONEBIT bit in the USART_CR3 register Table 169. USART receiver tolerance when DIV fraction is 0 M bit 906/1324 OVER8 bit = 0 OVER8 bit = 1 ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1 0 3.75% 4.375% 2.50% 3.75% 1 3.41% 3.97% 2.27% 3.41% RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Table 170. USART receiver tolerance when DIV_Fraction is different from 0 M bit OVER8 bit = 0 OVER8 bit = 1 ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1 0 3.33% 3.88% 2% 3% 1 3.03% 3.53% 1.82% 2.73% Note: The figures specified in Table 169 and Table 170 may slightly differ in the special case when the received frames contain some Idle frames of exactly 10-bit times when M=0 (11-bit times when M=1). 28.4.6 Multiprocessor communication There is a possibility of performing multiprocessor communication with the USART (several USARTs connected in a network). For instance one of the USARTs can be the master, its TX output is connected to the RX input of the other USART. The others are slaves, their respective TX outputs are logically ANDed together and connected to the RX input of the master. In multiprocessor configurations it is often desirable that only the intended message recipient should actively receive the full message contents, thus reducing redundant USART service overhead for all non addressed receivers. The non addressed devices may be placed in mute mode by means of the muting function. In mute mode: • None of the reception status bits can be set. • All the receive interrupts are inhibited. • The RWU bit in USART_CR1 register is set to 1. RWU can be controlled automatically by hardware or written by the software under certain conditions. The USART can enter or exit from mute mode using one of two methods, depending on the WAKE bit in the USART_CR1 register: • Idle Line detection if the WAKE bit is reset, • Address Mark detection if the WAKE bit is set. Idle line detection (WAKE=0) The USART enters mute mode when the RWU bit is written to 1. It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but the IDLE bit is not set in the USART_SR register. RWU can also be written to 0 by software. An example of mute mode behavior using Idle line detection is given in Figure 299. RM0430 Rev 8 907/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitFigure 299. Mute mode using Idle line detection 5;1( 'DWD 'DWD 'DWD 'DWD 5; ,'/( 0XWHPRGH 5:8 0054ZULWWHQWR 5;1( 'DWD 'DWD 1RUPDOPRGH ,GOHIUDPHGHWHFWHG 06Y9 Address mark detection (WAKE=1) In this mode, bytes are recognized as addresses if their MSB is a ‘1 else they are considered as data. In an address byte, the address of the targeted receiver is put on the 4 LSB. This 4-bit word is compared by the receiver with its own address that is programmed in the ADD bits in the USART_CR2 register. The USART enters mute mode when an address character is received that does not match its programmed address. In this case, the RWU bit is set by hardware. The RXNE flag is not set for this address byte and no interrupt nor DMA request is issued as the USART would have entered mute mode. It exits from mute mode when an address character is received that matches the programmed address. Then the RWU bit is cleared and subsequent bytes are received normally. The RXNE bit is set for the address character since the RWU bit has been cleared. The RWU bit can be written to as 0 or 1 when the receiver buffer contains no data (RXNE=0 in the USART_SR register). Otherwise the write attempt is ignored. An example of mute mode behavior using address mark detection is given in Figure 300. Figure 300. Mute mode using address mark detection ,QWKLVH[DPSOHWKHFXUUHQWDGGUHVVRIWKHUHFHLYHULV SURJUDPPHGLQWKH86$57B&5UHJLVWHU 5;1( ,'/( 5; $GGU 'DWD 'DWD 5:8 ,'/( 5;1( $GGU 'DWD 'DWD $GGU 'DWD 0XWHPRGH 1RUPDOPRGH 0DWFKLQJDGGUHVV 0054ZULWWHQWR 5;1(ZDVFOHDUHG 5;1( 0XWHPRGH 1RQPDWFKLQJDGGUHVV 1RQPDWFKLQJDGGUHVV 06Y9 908/1324 RM0430 Rev 8 RM0430 28.4.7 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Parity control Parity control (generation of parity bit in transmission and parity checking in reception) can be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame length defined by the M bit, the possible USART frame formats are as listed in Table 171. Table 171. Frame formats M bit PCE bit USART frame(1) 0 0 | SB | 8 bit data | STB | 0 1 | SB | 7-bit data | PB | STB | 1 0 | SB | 9-bit data | STB | 1 1 | SB | 8-bit data PB | STB | 1. Legends: SB: start bit, STB: stop bit, PB: parity bit. Even parity The parity bit is calculated to obtain an even number of “1s” inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit. E.g.: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit in USART_CR1 = 0). Odd parity The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit. E.g.: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit in USART_CR1 = 1). Parity checking in reception If the parity check fails, the PE flag is set in the USART_SR register and an interrupt is generated if PEIE is set in the USART_CR1 register. The PE flag is cleared by a software sequence (a read from the status register followed by a read or write access to the USART_DR data register). Note: In case of wakeup by an address mark: the MSB bit of the data is taken into account to identify an address but not the parity bit. And the receiver does not check the parity of the address data (PE is not set in case of a parity error). Parity generation in transmission If the PCE bit is set in USART_CR1, then the MSB bit of the data written in the data register is transmitted but is changed by the parity bit (even number of “1s” if even parity is selected (PS=0) or an odd number of “1s” if odd parity is selected (PS=1)). Note: The software routine that manages the transmission can activate the software sequence that clears the PE flag (a read from the status register followed by a read or write access to the data register). When operating in half-duplex mode, depending on the software, this can cause the PE flag to be unexpectedly cleared. RM0430 Rev 8 909/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- 28.4.8 LIN (local interconnection network) mode The LIN mode is selected by setting the LINEN bit in the USART_CR2 register. In LIN mode, the following bits must be kept cleared: • STOP[1:0] and CLKEN in the USART_CR2 register • SCEN, HDSEL and IREN in the USART_CR3 register. LIN transmission The same procedure explained in Section 28.4.2 has to be applied for LIN Master transmission than for normal USART transmission with the following differences: • Clear the M bit to configure 8-bit word length. • Set the LINEN bit to enter LIN mode. In this case, setting the SBK bit sends 13 ‘0 bits as a break character. Then a bit of value ‘1 is sent to allow the next start detection. LIN reception A break detection circuit is implemented on the USART interface. The detection is totally independent from the normal USART receiver. A break can be detected whenever it occurs, during Idle state or during a frame. When the receiver is enabled (RE=1 in USART_CR1), the circuit looks at the RX input for a start signal. The method for detecting start bits is the same when searching break characters or data. After a start bit has been detected, the circuit samples the next bits exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in USART_CR2) or 11 (when LBDL=1 in USART_CR2) consecutive bits are detected as ‘0, and are followed by a delimiter character, the LBD flag is set in USART_SR. If the LBDIE bit=1, an interrupt is generated. Before validating the break, the delimiter is checked for as it signifies that the RX line has returned to a high level. If a ‘1 is sampled before the 10 or 11 have occurred, the break detection circuit cancels the current detection and searches for a start bit again. If the LIN mode is disabled (LINEN=0), the receiver continues working as normal USART, without taking into account the break detection. If the LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit detected at ‘0, which will be the case for any break frame), the receiver stops until the break detection circuit receives either a ‘1, if the break word was not complete, or a delimiter character if a break has been detected. The behavior of the break detector state machine and the break flag is shown in Figure 301. Examples of break frames are given on Figure 302, where we suppose that LBDL=1 (11-bit break length), and M=0 (8-bit data). 910/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Figure 301. Break detection in LIN mode (11-bit break length - LBDL bit is set) &DVHEUHDNVLJQDOQRWORQJHQRXJK !EUHDNGLVFDUGHG/%')LVQRWVHW %UHDNIUDPH 5;OLQH &DSWXUHVWUREH %UHDNVWDWH PDFKLQH ,GOH %LW %LW %LW %LW 5HDGVDPSOHV %LW %LW %LW %LW %LW %LW %LW ,GOH &DVHEUHDNVLJQDOMXVWORQJHQRXJK !EUHDNGHWHFWHG/%')LVVHW %UHDNIUDPH 5;OLQH 'HOLPLWHULVLPPHGLDWH &DSWXUHVWUREH %UHDNVWDWH PDFKLQH ,GOH %LW %LW %LW %LW 5HDGVDPSOHV %LW %LW %LW %LW %LW %LW % ,GOH /%') &DVHEUHDNVLJQDOORQJHQRXJK !EUHDNGHWHFWHG/%')LVVHW %UHDNIUDPH 5;OLQH &DSWXUHVWUREH %UHDNVWDWH ,GOH PDFKLQH 5HDGVDPSOHV %LW %LW %LW %LW %LW %LW %LW %LW %LW %LW %LW ZDLWGHOLPLWHU ,GOH /%') 06Y9 RM0430 Rev 8 911/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitFigure 302. Break detection in LIN mode vs. Framing error detection &DVHEUHDNRFFXUULQJDIWHUDQ,GOH 5;OLQH GDWD ,'/( %5($. GDWDWLPH GDWD [ GDWD KHDGHU GDWDWLPH 5;1()( /%') &DVHEUHDNRFFXUULQJZKLOHGDWDLVEHLQJUHFHLYHG 5;OLQH GDWD GDWD %5($. GDWDWLPH GDWD [ GDWD KHDGHU GDWDWLPH 5;1()( /%') 06Y9 28.4.9 USART synchronous mode The synchronous mode is selected by writing the CLKEN bit in the USART_CR2 register to 1. In synchronous mode, the following bits must be kept cleared: • LINEN bit in the USART_CR2 register, • SCEN, HDSEL and IREN bits in the USART_CR3 register. The USART allows the user to control a bidirectional synchronous serial communications in master mode. The SCLK pin is the output of the USART transmitter clock. No clock pulses are sent to the SCLK pin during start bit and stop bit. Depending on the state of the LBCL bit in the USART_CR2 register clock pulses will or will not be generated during the last valid data bit (address mark). The CPOL bit in the USART_CR2 register allows the user to select the clock polarity, and the CPHA bit in the USART_CR2 register allows the user to select the phase of the external clock (see Figure 303, Figure 304 and Figure 305). During the Idle state, preamble and send break, the external SCLK clock is not activated. In synchronous mode the USART transmitter works exactly like in asynchronous mode. But as SCLK is synchronized with TX (according to CPOL and CPHA), the data on TX is synchronous. In this mode the USART receiver works in a different manner compared to the asynchronous mode. If RE=1, the data is sampled on SCLK (rising or falling edge, depending on CPOL and CPHA), without any oversampling. A setup and a hold time (that depends on the baud rate: 1/16 bit time) must be respected. Note: 912/1324 The SCLK pin works in conjunction with the TX pin. Thus, the clock is provided only if the transmitter is enabled (TE=1) and a data is being transmitted (the data register USART_DR RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver has been written). This means that it is not possible to receive a synchronous data without transmitting data. The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. These bits should not be changed while the transmitter or the receiver is enabled. It is advised that TE and RE are set in the same instruction in order to minimize the setup and the hold time of the receiver. The USART supports master mode only: it cannot receive or send data related to an input clock (SCLK is always an output). Figure 303. USART example of synchronous transmission 5; 7; 'DWDRXW 'DWDLQ 6\QFKURQRXVGHYLFH HJVODYH63, 86$57 &ORFN 6&/. 06Y9 Figure 304. USART data clock timing diagram (M=0) ,GOHRUSUHFHGLQJ 6WDUW WUDQVPLVVLRQ ,GOHRUQH[W 6WRS WUDQVPLVVLRQ 0ELWV GDWDELWV &ORFN &32/ &3+$ &ORFN &32/ &3+$ &ORFN &32/ &3+$ &ORFN &32/ &3+$ 'DWDRQ7; IURPPDVWHU 6WDUW 'DWDRQ5; IURPVODYH /6% 06% 6WRS 06% /6% &DSWXUHVWUREH /%&/ELWFRQWUROVODVWGDWDSXOVH 06Y9 RM0430 Rev 8 913/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitFigure 305. USART data clock timing diagram (M=1) ,GOHRU SUHFHGLQJ 6WDUW WUDQVPLVVLRQ 0ELWV GDWDELWV 6WRS ,GOHRUQH[W WUDQVPLVVLRQ &ORFN &32/ &3+$ &ORFN &32/ &3+$ &ORFN &32/ &3+$ &ORFN &32/ &3+$ 'DWDRQ7; IURPPDVWHU 'DWDRQ5; IURPVODYH 06% 6WDUW /6% /6% &DSWXUH VWUREH 6WRS 06% /%&/ELWFRQWUROVODVWGDWDSXOVH 06Y9 Figure 306. RX data setup/hold time 6&/. FDSWXUHVWUREHRQ6&/. ULVLQJHGJHLQWKLVH[DPSOH 'DWDRQ5; IURPVODYH 9DOLG'$7$ELW W6(783 W+2/' W6(783 W+2/'ELWWLPH 06Y9 Note: The function of SCLK is different in Smartcard mode. Refer to the Smartcard mode chapter for more details. 28.4.10 Single-wire half-duplex communication The single-wire half-duplex mode is selected by setting the HDSEL bit in the USART_CR3 register. In this mode, the following bits must be kept cleared: • LINEN and CLKEN bits in the USART_CR2 register, • SCEN and IREN bits in the USART_CR3 register. The USART can be configured to follow a single-wire half-duplex protocol where the TX and RX lines are internally connected. The selection between half- and full-duplex communication is made with a control bit ‘HALF DUPLEX SEL’ (HDSEL in USART_CR3). 914/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver As soon as HDSEL is written to 1: • the TX and RX lines are internally connected • the RX pin is no longer used • the TX pin is always released when no data is transmitted. Thus, it acts as a standard I/O in idle or in reception. It means that the I/O must be configured so that TX is configured as floating input (or output high open-drain) when not driven by the USART. Apart from this, the communications are similar to what is done in normal USART mode. The conflicts on the line must be managed by the software (by the use of a centralized arbiter, for instance). In particular, the transmission is never blocked by hardware and continue to occur as soon as a data is written in the data register while the TE bit is set. 28.4.11 Smartcard The Smartcard mode is selected by setting the SCEN bit in the USART_CR3 register. In smartcard mode, the following bits must be kept cleared: • LINEN bit in the USART_CR2 register, • HDSEL and IREN bits in the USART_CR3 register. Moreover, the CLKEN bit may be set in order to provide a clock to the smartcard. The Smartcard interface is designed to support asynchronous protocol Smartcards as defined in the ISO 7816-3 standard. The USART should be configured as: Note: • 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register • 1.5 stop bits when transmitting and receiving: where STOP=11 in the USART_CR2 register. It is also possible to choose 0.5 stop bit for receiving but it is recommended to use 1.5 stop bits for both transmitting and receiving to avoid switching between the two configurations. Figure 307 shows examples of what can be seen on the data line with and without parity error. Figure 307. ISO 7816-3 asynchronous protocol :LWKRXW3DULW\HUURU 6 *XDUGWLPH S 6WDUWELW :LWK3DULW\HUURU 6 *XDUGWLPH 6WDUWELW S /LQHSXOOHGORZE\UHFHLYHU GXULQJVWRSLQFDVHRISDULW\HUURU 06Y9 When connected to a Smartcard, the TX output of the USART drives a bidirectional line that is also driven by the Smartcard. The TX pin must be configured as open-drain. Smartcard is a single wire half duplex communication protocol. • Transmission of data from the transmit shift register is guaranteed to be delayed by a minimum of 1/2 baud clock. In normal operation a full transmit shift register will start RM0430 Rev 8 915/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitshifting on the next baud clock edge. In Smartcard mode this transmission is further delayed by a guaranteed 1/2 baud clock. Note: • If a parity error is detected during reception of a frame programmed with a 0.5 or 1.5 stop bit period, the transmit line is pulled low for a baud clock period after the completion of the receive frame. This is to indicate to the Smartcard that the data transmitted to USART has not been correctly received. This NACK signal (pulling transmit line low for 1 baud clock) will cause a framing error on the transmitter side (configured with 1.5 stop bits). The application can handle re-sending of data according to the protocol. A parity error is ‘NACK’ed by the receiver if the NACK control bit is set, otherwise a NACK is not transmitted. • The assertion of the TC flag can be delayed by programming the Guard Time register. In normal operation, TC is asserted when the transmit shift register is empty and no further transmit requests are outstanding. In Smartcard mode an empty transmit shift register triggers the guard time counter to count up to the programmed value in the Guard Time register. TC is forced low during this time. When the guard time counter reaches the programmed value TC is asserted high. • The de-assertion of TC flag is unaffected by Smartcard mode. • If a framing error is detected on the transmitter end (due to a NACK from the receiver), the NACK will not be detected as a start bit by the receive block of the transmitter. According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud clock periods. • On the receiver side, if a parity error is detected and a NACK is transmitted the receiver will not detect the NACK as a start bit. A break character is not significant in Smartcard mode. A 0x00 data with a framing error will be treated as data and not as a break. No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the other configurations) is not defined by the ISO protocol. Figure 308 details how the NACK signal is sampled by the USART. In this example the USART is transmitting a data and is configured with 1.5 stop bits. The receiver part of the USART is enabled in order to check the integrity of the data and the NACK signal. Figure 308. Parity error detection using the 1.5 stop bits %LW 3DULW\ELW 6WRSELW ELWWLPH ELWWLPH 6DPSOLQJDW 6DPSOLQJDW WKWKWK WKWKWK ELW WLPH 6DPSOLQJDW 6DPSOLQJDW WKWKWK WKWKWK 069 The USART can provide a clock to the smartcard through the SCLK output. In smartcard mode, SCLK is not associated to the communication but is simply derived from the internal peripheral input clock through a 5-bit prescaler. The division ratio is configured in the 916/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver prescaler register USART_GTPR. SCLK frequency can be programmed from fCK/2 to fCK/62, where fCK is the peripheral input clock. 28.4.12 IrDA SIR ENDEC block The IrDA mode is selected by setting the IREN bit in the USART_CR3 register. In IrDA mode, the following bits must be kept cleared: • LINEN, STOP and CLKEN bits in the USART_CR2 register, • SCEN and HDSEL bits in the USART_CR3 register. The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation scheme that represents logic 0 as an infrared light pulse (see Figure 309). The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream output from USART. The output pulse stream is transmitted to an external output driver and infrared LED. USART supports only bit rates up to 115.2Kbps for the SIR ENDEC. In normal mode the transmitted pulse width is specified as 3/16 of a bit period. The SIR receive decoder demodulates the return-to-zero bit stream from the infrared detector and outputs the received NRZ serial bit stream to USART. The decoder input is normally HIGH (marking state) in the Idle state. The transmit encoder output has the opposite polarity to the decoder input. A start bit is detected when the decoder input is low. • IrDA is a half duplex communication protocol. If the Transmitter is busy (i.e. the USART is sending data to the IrDA encoder), any data on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver is busy (USART is receiving decoded data from the USART), data on the TX from the USART to IrDA will not be encoded by IrDA. While receiving data, transmission should be avoided as the data to be transmitted could be corrupted. • A ‘0 is transmitted as a high pulse and a ‘1 is transmitted as a ‘0. The width of the pulse is specified as 3/16th of the selected bit period in normal mode (see Figure 310). • The SIR decoder converts the IrDA compliant receive signal into a bit stream for USART. • The SIR receive logic interprets a high state as a logic one and low pulses as logic zeros. • The transmit encoder output has the opposite polarity to the decoder input. The SIR output is in low state when Idle. • The IrDA specification requires the acceptance of pulses greater than 1.41 us. The acceptable pulse width is programmable. Glitch detection logic on the receiver end filters out pulses of width less than 2 PSC periods (PSC is the prescaler value programmed in the IrDA low-power Baud Register, USART_GTPR). Pulses of width less than 1 PSC period are always rejected, but those of width greater than one and less than two periods may be accepted or rejected, those greater than 2 periods will be accepted as a pulse. The IrDA encoder/decoder doesn’t work when PSC=0. • The receiver can communicate with a low-power transmitter. • In IrDA mode, the STOP bits in the USART_CR2 register must be configured to “1 stop bit”. RM0430 Rev 8 917/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- IrDA low-power mode Transmitter: In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the width of the pulse is 3 times the low-power baud rate that can be a minimum of 1.42 MHz. Generally this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode programmable divisor divides the system clock to achieve this value. Receiver: Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the USART should discard pulses of duration shorter than 1/PSC. A valid low is accepted only if its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in USART_GTPR). Note: A pulse of width less than two and greater than one PSC period(s) may or may not be rejected. The receiver set up time should be managed by software. The IrDA physical layer specification specifies a minimum of 10 ms delay between transmission and reception (IrDA is a half duplex protocol). Figure 309. IrDA SIR ENDEC- block diagram 6,5(1 7; 25 86$57 5; 86$57B7; 6,5 7UDQVPLW (QFRGHU ,U'$B287 6,5 5HFHLYH '(FRGHU ,U'$B,1 86$57B5; 06Y9 Figure 310. IrDA data modulation (3/16) -Normal mode 7; 6WDUW ELW 6WRS ELW ,U'$B287 %LWSHULRG ,U'$B,1 5; 06Y9 918/1324 RM0430 Rev 8 RM0430 28.4.13 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Continuous communication using DMA The USART is capable of continuous communication using the DMA. The DMA requests for Rx buffer and Tx buffer are generated independently. Transmission using DMA DMA mode can be enabled for transmission by setting DMAT bit in the USART_CR3 register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to the DMA specification) to the USART_DR register whenever the TXE bit is set. To map a DMA channel for USART transmission, use the following procedure (x denotes the channel number): 1. Write the USART_DR register address in the DMA control register to configure it as the destination of the transfer. The data will be moved to this address from memory after each TXE event. 2. Write the memory address in the DMA control register to configure it as the source of the transfer. The data will be loaded into the USART_DR register from this memory area after each TXE event. 3. Configure the total number of bytes to be transferred to the DMA control register. 4. Configure the channel priority in the DMA register 5. Configure DMA interrupt generation after half/ full transfer as required by the application. 6. Clear the TC bit in the SR register by writing 0 to it. 7. Activate the channel in the DMA register. When the number of data transfers programmed in the DMA Controller is reached, the DMA controller generates an interrupt on the DMA channel interrupt vector. In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART communication is complete. This is required to avoid corrupting the last transmission before disabling the USART or entering the Stop mode. The software must wait until TC=1. The TC flag remains cleared during all data transfers and it is set by hardware at the last frame end of transmission. RM0430 Rev 8 919/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitFigure 311. Transmission using DMA ,GOHSUHDPEOH )UDPH )UDPH )UDPH 7;OLQH 6HWE\KDUGZDUH FOHDUHGE\'0$UHDG 6HWE\KDUGZDUH FOHDUHGE\'0$UHDG 7;(IODJ 6HWE\KDUGZDUH ,JQRUHGE\WKH'0$EHFDXVH WKHWUDQVIHULVFRPSOHWH '0$UHTXHVW ) 86$57B7'5 ) ) 7&IODJ 6HWE\ KDUGZDUH '0$ZULWHV 86$57B7'5 '0$7&,)IODJ WUDQVIHU FRPSOHWH 6HWE\KDUGZDUH 6RIWZDUH FRQILJXUHV'0$ '0$ZULWHV '0$ZULWHV '0$ZULWHV )LQWR )LQWR )LQWR WRVHQGGDWD EORFNVDQG 86$57B7'5 86$57B7'5 86$57B7'5 HQDEOHV86$57 &OHDUHG E\ VRIWZDUH 7KH'0$ WUDQVIHULV FRPSOHWH 7&,) LQ '0$B,65 6RIWZDUHZDLWVXQWLO7& AIB Reception using DMA DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register. Data is loaded from the USART_DR register to a SRAM area configured using the DMA peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA channel for USART reception, use the following procedure: 1. Write the USART_DR register address in the DMA control register to configure it as the source of the transfer. The data will be moved from this address to the memory after each RXNE event. 2. Write the memory address in the DMA control register to configure it as the destination of the transfer. The data will be loaded from USART_DR to this memory area after each RXNE event. 3. Configure the total number of bytes to be transferred in the DMA control register. 4. Configure the channel priority in the DMA control register 5. Configure interrupt generation after half/ full transfer as required by the application. 6. Activate the channel in the DMA control register. When the number of data transfers programmed in the DMA Controller is reached, the DMA controller generates an interrupt on the DMA channel interrupt vector. The DMAR bit should be cleared by software in the USART_CR3 register during the interrupt subroutine. 920/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Figure 312. Reception using DMA )UDPH )UDPH )UDPH 7;OLQH 6HWE\KDUGZDUH FOHDUHGE\'0$UHDG 5;1(IODJ '0$UHTXHVW ) ) 86$57B7'5 ) '0$UHDGV 86$57B7'5 '0$7&,)IODJ WUDQVIHUFRPSOHWH 6RIWZDUHFRQILJXUHVWKH '0$WRUHFHLYHGDWD EORFNVDQGHQDEOHV WKH86$57 &OHDUHG E\ VRIWZDUH 6HWE\KDUGZDUH '0$UHDGV) IURP86$57B7'5 '0$UHDGV) IURP86$57B7'5 '0$UHDGV) IURP86$57B7'5 7KH'0$WUDQVIHU LVFRPSOHWH 7&,) LQ '0$B,65 DLE Error flagging and interrupt generation in multibuffer communication In case of multibuffer communication if any error occurs during the transaction the error flag will be asserted after the current byte. An interrupt will be generated if the interrupt enable flag is set. For framing error, overrun error and noise flag that are asserted with RXNE in case of single byte reception, there will be separate error flag interrupt enable bit (EIE bit in the USART_CR3 register), which if set will issue an interrupt after the current byte with either of these errors. 28.4.14 Hardware flow control It is possible to control the serial data flow between 2 devices by using the nCTS input and the nRTS output. The Figure 313 shows how to connect 2 devices in this mode: Figure 313. Hardware flow control between 2 USARTs 86$57 86$57 7; 7;FLUFXLW 5; Q&76 5; 5;FLUFXLW Q576 5;FLUFXLW 7; Q576 7;FLUFXLW Q&76 06Y9 RTS and CTS flow control can be enabled independently by writing respectively RTSE and CTSE bits to 1 (in the USART_CR3 register). RM0430 Rev 8 921/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- RTS flow control If the RTS flow control is enabled (RTSE=1), then nRTS is asserted (tied low) as long as the USART receiver is ready to receive a new data. When the receive register is full, nRTS is deasserted, indicating that the transmission is expected to stop at the end of the current frame. Figure 314 shows an example of communication with RTS flow control enabled. Figure 314. RTS flow control 6WDUW ELW 5; 'DWD 6WRS 6WDUW ,GOH ELW ELW 6WRS ELW 'DWD Q576 5;1( 5;1( 'DWDUHDG 'DWDFDQQRZEHWUDQVPLWWHG 06Y9 CTS flow control If the CTS flow control is enabled (CTSE=1), then the transmitter checks the nCTS input before transmitting the next frame. If nCTS is asserted (tied low), then the next data is transmitted (assuming that a data is to be transmitted, in other words, if TXE=0), else the transmission does not occur. When nCTS is deasserted during a transmission, the current transmission is completed before the transmitter stops. When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the nCTS input toggles. It indicates when the receiver becomes ready or not ready for communication. An interrupt is generated if the CTSIE bit in the USART_CR3 register is set. The figure below shows an example of communication with CTS flow control enabled. Figure 315. CTS flow control &76 &76 Q&76 7UDQVPLWGDWDUHJLVWHU 7'5 'DWD 7; 'DWD HPSW\ 6WRS 6WDUW ELW ELW HPSW\ 'DWD 'DWD :ULWLQJGDWDLQ7'5 6WRS 6WDUW ,GOH ELW ELW 'DWD 7UDQVPLVVLRQRI'DWDLV GHOD\HGXQWLOQ&76 06Y9 922/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Note: Special behavior of break frames: when the CTS flow is enabled, the transmitter does not check the nCTS input state to send a break. 28.5 USART interrupts Table 172. USART interrupt requests Interrupt event Event flag Enable control bit Transmit Data Register Empty TXE TXEIE CTS flag CTS CTSIE Transmission Complete TC TCIE Received Data Ready to be Read RXNE Overrun Error Detected ORE Idle Line Detected IDLE IDLEIE Parity Error PE PEIE Break Flag LBD LBDIE Noise Flag, Overrun error and Framing Error in multibuffer communication NF or ORE or FE EIE RXNEIE The USART interrupt events are connected to the same interrupt vector (see Figure 316). • During transmission: Transmission Complete, Clear to Send or Transmit Data Register empty interrupt. • While receiving: Idle Line detection, Overrun error, Receive Data register not empty, Parity error, LIN break detection, Noise Flag (only in multi buffer communication) and Framing Error (only in multi buffer communication). These events generate an interrupt if the corresponding Enable Control Bit is set. RM0430 Rev 8 923/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitFigure 316. USART interrupt mapping diagram 7& 7&,( 7;( 7;(,( &76 &76,( ,'/( ,'/(,( 5;1(,( 25( 5;1(,( 5;1( 86$57 LQWHUUXSW 3( 3(,( /%' /%',( )( 1( 25( (,( '0$5 069 28.6 USART registers Refer to Section 1.2 on page 52 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits). 28.6.1 Status register (USART_SR) Address offset: 0x00 Reset value: 0x00C0 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. CTS LBD TXE TC RXNE IDLE ORE NF FE PE rc_w0 rc_w0 r rc_w0 rc_w0 r r r r r 924/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Bits 31:10 Reserved, must be kept at reset value Bit 9 CTS: CTS flag This bit is set by hardware when the nCTS input toggles, if the CTSE bit is set. It is cleared by software (by writing it to 0). An interrupt is generated if CTSIE=1 in the USART_CR3 register. 0: No change occurred on the nCTS status line 1: A change occurred on the nCTS status line Note: This bit is not available for UART4 & UART5. Bit 8 LBD: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software (by writing it to 0). An interrupt is generated if LBDIE = 1 in the USART_CR2 register. 0: LIN Break not detected 1: LIN break detected Note: An interrupt is generated when LBD=1 if LBDIE=1 Bit 7 TXE: Transmit data register empty This bit is set by hardware when the content of the TDR register has been transferred into the shift register. An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register. It is cleared by a write to the USART_DR register. 0: Data is not transferred to the shift register 1: Data is transferred to the shift register) Note: This bit is used during single buffer transmission. Bit 6 TC: Transmission complete This bit is set by hardware if the transmission of a frame containing data is complete and if TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. It is cleared by a software sequence (a read from the USART_SR register followed by a write to the USART_DR register). The TC bit can also be cleared by writing a '0' to it. This clearing sequence is recommended only for multibuffer communication. 0: Transmission is not complete 1: Transmission is complete Bit 5 RXNE: Read data register not empty This bit is set by hardware when the content of the RDR shift register has been transferred to the USART_DR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register. It is cleared by a read to the USART_DR register. The RXNE flag can also be cleared by writing a zero to it. This clearing sequence is recommended only for multibuffer communication. 0: Data is not received 1: Received data is ready to be read. Bit 4 IDLE: IDLE line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the IDLEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the USART_SR register followed by a read to the USART_DR register). 0: No Idle Line is detected 1: Idle Line is detected Note: The IDLE bit will not be set again until the RXNE bit has been set itself (i.e. a new idle line occurs). RM0430 Rev 8 925/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- Bit 3 ORE: Overrun error This bit is set by hardware when the word currently being received in the shift register is ready to be transferred into the RDR register while RXNE=1. An interrupt is generated if RXNEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the USART_SR register followed by a read to the USART_DR register). 0: No Overrun error 1: Overrun error is detected Note: When this bit is set, the RDR register content will not be lost but the shift register will be overwritten. An interrupt is generated on ORE flag in case of Multi Buffer communication if the EIE bit is set. Bit 2 NF: Noise detected flag This bit is set by hardware when noise is detected on a received frame. It is cleared by a software sequence (an read to the USART_SR register followed by a read to the USART_DR register). 0: No noise is detected 1: Noise is detected Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit that itself generates an interrupting interrupt is generated on NF flag in case of Multi Buffer communication if the EIE bit is set. Note: When the line is noise-free, the NF flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section 28.4.5: USART receiver tolerance to clock deviation on page 906). Bit 1 FE: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by a software sequence (an read to the USART_SR register followed by a read to the USART_DR register). 0: No Framing error is detected 1: Framing error or break character is detected Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit that itself generates an interrupt. If the word currently being transferred causes both frame error and overrun error, it will be transferred and only the ORE bit will be set. An interrupt is generated on FE flag in case of Multi Buffer communication if the EIE bit is set. Bit 0 PE: Parity error This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software sequence (a read from the status register followed by a read or write access to the USART_DR data register). The software must wait for the RXNE flag to be set before clearing the PE bit. An interrupt is generated if PEIE = 1 in the USART_CR1 register. 0: No parity error 1: Parity error 926/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver 28.6.2 Data register (USART_DR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. rw rw rw rw rw rw rw rw DR[8:0] rw Bits 31:9 Reserved, must be kept at reset value Bits 8:0 DR[8:0]: Data value Contains the Received or Transmitted data character, depending on whether it is read from or written to. The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR) The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 1). The RDR register provides the parallel interface between the input shift register and the internal bus. When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. When receiving with the parity enabled, the value read in the MSB bit is the received parity bit. 28.6.3 Baud rate register (USART_BRR) Note: The baud counters stop counting if the TE or RE bits are disabled respectively. Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DIV_Mantissa[11:0] rw rw rw rw rw rw rw DIV_Fraction[3:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value Bits 15:4 DIV_Mantissa[11:0]: mantissa of USARTDIV These 12 bits define the mantissa of the USART Divider (USARTDIV) Bits 3:0 DIV_Fraction[3:0]: fraction of USARTDIV These 4 bits define the fraction of the USART Divider (USARTDIV). When OVER8=1, the DIV_Fraction3 bit is not considered and must be kept cleared. RM0430 Rev 8 927/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- 28.6.4 Control register 1 (USART_CR1) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OVER8 Res. UE M WAKE PCE PS PEIE TXEIE TCIE TE RE RWU SBK rw rw rw rw rw rw rw rw rw rw rw rw rw RXNEIE IDLEIE rw rw Bits 31:16 Reserved, must be kept at reset value Bit 15 OVER8: Oversampling mode 0: oversampling by 16 1: oversampling by 8 Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes: when SCEN=1,IREN=1 or LINEN=1 then OVER8 is forced to ‘0 by hardware. Bit 14 Reserved, must be kept at reset value Bit 13 UE: USART enable When this bit is cleared the USART prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption. This bit is set and cleared by software. 0: USART prescaler and outputs disabled 1: USART enabled Bit 12 M: Word length This bit determines the word length. It is set or cleared by software. 0: 1 Start bit, 8 Data bits, n Stop bit 1: 1 Start bit, 9 Data bits, n Stop bit Note: The M bit must not be modified during a data transfer (both transmission and reception) Bit 11 WAKE: Wakeup method This bit determines the USART wakeup method, it is set or cleared by software. 0: Idle Line 1: Address Mark Bit 10 PCE: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). 0: Parity control disabled 1: Parity control enabled Bit 9 PS: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity will be selected after the current byte. 0: Even parity 1: Odd parity 928/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Bit 8 PEIE: PE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated whenever PE=1 in the USART_SR register Bit 7 TXEIE: TXE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated whenever TXE=1 in the USART_SR register Bit 6 TCIE: Transmission complete interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated whenever TC=1 in the USART_SR register Bit 5 RXNEIE: RXNE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated whenever ORE=1 or RXNE=1 in the USART_SR register Bit 4 IDLEIE: IDLE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated whenever IDLE=1 in the USART_SR register Bit 3 TE: Transmitter enable This bit enables the transmitter. It is set and cleared by software. 0: Transmitter is disabled 1: Transmitter is enabled Note: 1: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble (idle line) after the current word, except in smartcard mode. 2: When TE is set there is a 1 bit-time delay before the transmission starts. Bit 2 RE: Receiver enable This bit enables the receiver. It is set and cleared by software. 0: Receiver is disabled 1: Receiver is enabled and begins searching for a start bit Bit 1 RWU: Receiver wakeup This bit determines if the USART is in mute mode or not. It is set and cleared by software and can be cleared by hardware when a wakeup sequence is recognized. 0: Receiver in active mode 1: Receiver in mute mode Note: 1: Before selecting Mute mode (by setting the RWU bit) the USART must first receive a data byte, otherwise it cannot function in Mute mode with wakeup by Idle line detection. 2: In Address Mark Detection wakeup configuration (WAKE bit=1) the RWU bit cannot be modified by software while the RXNE bit is set. Bit 0 SBK: Send break This bit set is used to send break characters. It can be set and cleared by software. It should be set by software, and will be reset by hardware during the stop bit of break. 0: No break character is transmitted 1: Break character will be transmitted RM0430 Rev 8 929/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- 28.6.5 Control register 2 (USART_CR2) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. LINEN CLKEN CPOL CPHA LBCL Res. LBDIE LBDL Res. rw rw rw rw rw rw rw rw rw STOP[1:0] rw rw ADD[3:0] rw rw Bits 31:15 Reserved, must be kept at reset value Bit 14 LINEN: LIN mode enable This bit is set and cleared by software. 0: LIN mode disabled 1: LIN mode enabled The LIN mode enables the capability to send LIN Synch Breaks (13 low bits) using the SBK bit in the USART_CR1 register, and to detect LIN Sync breaks. Bits 13:12 STOP: STOP bits These bits are used for programming the stop bits. 00: 1 Stop bit 01: 0.5 Stop bit 10: 2 Stop bits 11: 1.5 Stop bit Note: The 0.5 Stop bit and 1.5 Stop bit are not available for UART4 & UART5. Bit 11 CLKEN: Clock enable This bit allows the user to enable the SCLK pin. 0: SCLK pin disabled 1: SCLK pin enabled This bit is not available for UART4 & UART5. Bit 10 CPOL: Clock polarity This bit allows the user to select the polarity of the clock output on the SCLK pin in synchronous mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship 0: Steady low value on SCLK pin outside transmission window. 1: Steady high value on SCLK pin outside transmission window. This bit is not available for UART4 & UART5. Bit 9 CPHA: Clock phase This bit allows the user to select the phase of the clock output on the SCLK pin in synchronous mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see figures 304 to 305) 0: The first clock transition is the first data capture edge 1: The second clock transition is the first data capture edge Note: This bit is not available for UART4 & UART5. 930/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Bit 8 LBCL: Last bit clock pulse This bit allows the user to select whether the clock pulse associated with the last data bit transmitted (MSB) has to be output on the SCLK pin in synchronous mode. 0: The clock pulse of the last data bit is not output to the SCLK pin 1: The clock pulse of the last data bit is output to the SCLK pin Note: 1: The last bit is the 8th or 9th data bit transmitted depending on the 8 or 9 bit format selected by the M bit in the USART_CR1 register. 2: This bit is not available for UART4 & UART5. Bit 7 Reserved, must be kept at reset value Bit 6 LBDIE: LIN break detection interrupt enable Break interrupt mask (break detection using break delimiter). 0: Interrupt is inhibited 1: An interrupt is generated whenever LBD=1 in the USART_SR register Bit 5 LBDL: lin break detection length This bit is for selection between 11 bit or 10 bit break detection. 0: 10-bit break detection 1: 11-bit break detection Bit 4 Reserved, must be kept at reset value Bits 3:0 ADD[3:0]: Address of the USART node This bit-field gives the address of the USART node. This is used in multiprocessor communication during mute mode, for wake up with address mark detection. Note: These 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled. 28.6.6 Control register 3 (USART_CR3) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. ONEBIT CTSIE CTSE RTSE DMAT DMAR SCEN NACK HDSEL IRLP IREN EIE rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value Bit 11 ONEBIT: One sample bit method enable This bit allows the user to select the sample method. When the one sample bit method is selected the noise detection flag (NF) is disabled. 0: Three sample bit method 1: One sample bit method Bit 10 CTSIE: CTS interrupt enable 0: Interrupt is inhibited 1: An interrupt is generated whenever CTS=1 in the USART_SR register Note: This bit is not available for UART4 & UART5. RM0430 Rev 8 931/1324 934 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- Bit 9 CTSE: CTS enable 0: CTS hardware flow control disabled 1: CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0). If the nCTS input is deasserted while a data is being transmitted, then the transmission is completed before stopping. If a data is written into the data register while nCTS is deasserted, the transmission is postponed until nCTS is asserted. Note: This bit is not available for UART4 & UART5. Bit 8 RTSE: RTS enable 0: RTS hardware flow control disabled 1: RTS interrupt enabled, data is only requested when there is space in the receive buffer. The transmission of data is expected to cease after the current character has been transmitted. The nRTS output is asserted (tied to 0) when a data can be received. Note: This bit is not available for UART4 & UART5. Bit 7 DMAT: DMA enable transmitter This bit is set/reset by software 1: DMA mode is enabled for transmission. 0: DMA mode is disabled for transmission. Bit 6 DMAR: DMA enable receiver This bit is set/reset by software 1: DMA mode is enabled for reception 0: DMA mode is disabled for reception Bit 5 SCEN: Smartcard mode enable This bit is used for enabling Smartcard mode. 0: Smartcard Mode disabled 1: Smartcard Mode enabled Note: This bit is not available for UART4 & UART5. Bit 4 NACK: Smartcard NACK enable 0: NACK transmission in case of parity error is disabled 1: NACK transmission during parity error is enabled Note: This bit is not available for UART4 & UART5. Bit 3 HDSEL: Half-duplex selection Selection of Single-wire Half-duplex mode 0: Half duplex mode is not selected 1: Half duplex mode is selected Bit 2 IRLP: IrDA low-power This bit is used for selecting between normal and low-power IrDA modes 0: Normal mode 1: Low-power mode Bit 1 IREN: IrDA mode enable This bit is set and cleared by software. 0: IrDA disabled 1: IrDA enabled 932/1324 RM0430 Rev 8 RM0430 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver Bit 0 EIE: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USART_SR register) in case of Multi Buffer Communication (DMAR=1 in the USART_CR3 register). 0: Interrupt is inhibited 1: An interrupt is generated whenever DMAR=1 in the USART_CR3 register and FE=1 or ORE=1 or NF=1 in the USART_SR register. 28.6.7 Guard time and prescaler register (USART_GTPR) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw GT[7:0] rw PSC[7:0] rw Bits 31:16 Reserved, must be kept at reset value Bits 15:8 GT[7:0]: Guard time value This bit-field gives the Guard time value in terms of number of baud clocks. This is used in Smartcard mode. The Transmission Complete flag is set after this guard time value. Note: This bit is not available for UART4 & UART5. Bits 7:0 PSC[7:0]: Prescaler value – In IrDA Low-power mode: PSC[7:0] = IrDA Low-Power Baud Rate Used for programming the prescaler for dividing the system clock to achieve the low-power frequency: The source clock is divided by the value given in the register (8 significant bits): 00000000: Reserved - do not program this value 00000001: divides the source clock by 1 00000010: divides the source clock by 2 ... – In normal IrDA mode: PSC must be set to 00000001. – In smartcard mode: PSC[4:0]: Prescaler value Used for programming the prescaler for dividing the system clock to provide the smartcard clock. The value given in the register (5 significant bits) is multiplied by 2 to give the division factor of the source clock frequency: 00000: Reserved - do not program this value 00001: divides the source clock by 2 00010: divides the source clock by 4 00011: divides the source clock by 6 ... Note: 1: Bits [7:5] have no effect if Smartcard mode is used. 2: This bit is not available for UART4 & UART5. RM0430 Rev 8 933/1324 934 0x18 USART_GTPR 934/1324 Reset value RM0430 Rev 8 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. USART_CR3 Res. 0x14 Res. Reset value 0 RXNEIE IDLEIE TE RE RWU SBK 0 0 0 0 0 0 0 0 0 0 STOP [1:0] Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 58 for the register boundary addresses. 0 0 0 0 0 0 0 GT[7:0] PSC[7:0] 0 EIE 0 IREN 0 IRLP 0 IDLE ORE NF FE PE TXE TC LBD 1 RXNE CTS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 NACK Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 HDSEL LBDL 0 SCEN TCIE 0 LBDIE Reset value DMAR TXEIE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value DMAT 0 Res. Reset value PEIE Reset value 0 LBCL UE 0 RTSE 0 PS 0 CPHA 0 CTSE 0 PCE 0 CPOL 0 CTSIE 0 M 0 WAKE 0 CLKEN 0 Res. 0 ONEBIT 0 Res. 0 LINEN 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 OVER8 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. USART_CR2 Res. 0x10 Res. USART_CR1 Res. 0x0C Res. USART_BRR Res. 0x08 Res. USART_DR Res. 0x04 Res. USART_SR Res. 0x00 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 28.6.8 Res. Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit- USART register map The table below gives the USART register map and reset values. Table 173. USART register map and reset values 1 0 0 0 0 0 0 DR[8:0] 0 DIV_Mantissa[15:4] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DIV_Fraction [3:0] ADD[3:0] 0 0 0 0 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29.1 Introduction The SPI/I²S interface can be used to communicate with external devices using the SPI protocol or the I2S audio protocol. SPI or I2S mode is selectable by software. SPI mode is selected by default after a device reset. The serial peripheral interface (SPI) protocol supports half-duplex, full-duplex and simplex synchronous, serial communication with external devices. The interface can be configured as master and in this case it provides the communication clock (SCK) to the external slave device. The interface is also capable of operating in multimaster configuration. The Inter-IC sound (I2S) protocol is also a synchronous serial communication interface. It can operate in slave or master mode with full-duplex and half-duplex communication. It can address four different audio standards including the Philips I2S standard, the MSBand LSB-justified standards and the PCM standard. Warning: Since some SPI1 pins may be mapped onto some pins used by the JTAG interface, you can either map SPI/I2S onto other pins, disable the JTAG and use the SWD interface prior to configuring the pins listed as SPI I/Os (when debugging the application) or disable both JTAG/SWD interfaces (for standalone applications). For more information on the configuration of the JTAG/SWD interface pins, please refer to Section 7.3.2: I/O pin multiplexer and mapping. RM0430 Rev 8 935/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29.1.1 936/1324 RM0430 SPI main features • Master or slave operation • Full-duplex synchronous transfers on three lines • Half-duplex synchronous transfer on two lines (with bidirectional data line) • Simplex synchronous transfers on two lines (with unidirectional data line) • 8-bit to 16-bit transfer frame format selection • Multimaster mode capability • 8 master mode baud rate prescalers up to fPCLK/2. • Slave mode frequency up to fPCLK/2. • NSS management by hardware or software for both master and slave: dynamic change of master/slave operations • Programmable clock polarity and phase • Programmable data order with MSB-first or LSB-first shifting • Dedicated transmission and reception flags with interrupt capability • SPI bus busy status flag • SPI Motorola support • Hardware CRC feature for reliable communication: – CRC value can be transmitted as last byte in Tx mode – Automatic CRC error checking for last received byte • Master mode fault, overrun flags with interrupt capability • CRC Error flag • 1-byte/word transmission and reception buffer with DMA capability: Tx and Rx requests RM0430 Rev 8 RM0430 29.1.2 Serial peripheral interface/ inter-IC sound (SPI/I2S) SPI extended features • 29.1.3 I2S features • Full-duplex communication • Half-duplex communication (only transmitter or receiver) • Master or slave operations • 8-bit programmable linear prescaler to reach accurate audio sample frequencies (from 8 kHz to 192 kHz) • Data format may be 16-bit, 24-bit or 32-bit • Packet frame is fixed to 16-bit (16-bit data frame) or 32-bit (16-bit, 24-bit, 32-bit data frame) by audio channel • Programmable clock polarity (steady state) • Underrun flag in slave transmission mode, overrun flag in reception mode (master and slave) and Frame Error Flag in reception and transmitter mode (slave only) • 16-bit register for transmission and reception with one data register for both channel sides • Supported I2S protocols: • – I2S Philips standard – MSB-Justified standard (Left-Justified) – LSB-Justified standard (Right-Justified) – PCM standard (with short and long frame synchronization on 16-bit channel frame or 16-bit data frame extended to 32-bit channel frame) Data direction is always MSB first • DMA capability for transmission and reception (16-bit wide) • Master clock can be output to drive an external audio component. Ratio is fixed at 256 × FS (where FS is the audio sampling frequency) • 29.2 SPI TI mode support I2S (I2S1, I2S2, I2S3, I2S4 and I2S5) clock can be derived from an external clock mapped on the I2S_CKIN pin. SPI/I2S implementation This manual describes the full set of features implemented in SPI1, SPI2, SPI3, SPI4 and SPI5. Table 174. STM32F413/423 SPI implementation SPI Features(1) SPI1 SPI2 SPI3 SPI4 SPI5 Hardware CRC calculation X X X X X I2S mode X X X X X TI mode X X X X X 1. X = supported. RM0430 Rev 8 937/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29.3 SPI functional description 29.3.1 General description RM0430 The SPI allows synchronous, serial communication between the MCU and external devices. Application software can manage the communication by polling the status flag or using dedicated SPI interrupt. The main elements of SPI and their interactions are shown in the following block diagram Figure 317. Figure 317. SPI block diagram $GGUHVVDQGGDWDEXV 5HDG 5[ EXIIHU &5&FRQWUROOHU 026, 0,62 6KLIWUHJLVWHU /6%),567 &32/ &3+$ ')) 7; EXIIHU :ULWH %,',2( %,',02'( 5;2/1< 6&. %DXGUDWH JHQHUDWRU %5>@ &5&(1 &5&1(;7 &RPPXQLFDWLRQ FRQWUROOHU ,QWHUQDO166 166 ORJLF 166 06Y9 Four I/O pins are dedicated to SPI communication with external devices. • MISO: Master In / Slave Out data. In the general case, this pin is used to transmit data in slave mode and receive data in master mode. • MOSI: Master Out / Slave In data. In the general case, this pin is used to transmit data in master mode and receive data in slave mode. • SCK: Serial Clock output pin for SPI masters and input pin for SPI slaves. • NSS: Slave select pin. Depending on the SPI and NSS settings, this pin can be used to either: – select an individual slave device for communication – synchronize the data frame or – detect a conflict between multiple masters See Section 29.3.5: Slave select (NSS) pin management for details. The SPI bus allows the communication between one master device and one or more slave devices. The bus consists of at least two wires - one for the clock signal and the other for synchronous data transfer. Other signals can be added depending on the data exchange between SPI nodes and their slave select signal management. 938/1324 RM0430 Rev 8 RM0430 29.3.2 Serial peripheral interface/ inter-IC sound (SPI/I2S) Communications between one master and one slave The SPI allows the MCU to communicate using different configurations, depending on the device targeted and the application requirements. These configurations use 2 or 3 wires (with software NSS management) or 3 or 4 wires (with hardware NSS management). Communication is always initiated by the master. Full-duplex communication By default, the SPI is configured for full-duplex communication. In this configuration, the shift registers of the master and slave are linked using two unidirectional lines between the MOSI and the MISO pins. During SPI communication, data is shifted synchronously on the SCK clock edges provided by the master. The master transmits the data to be sent to the slave via the MOSI line and receives data from the slave via the MISO line. When the data frame transfer is complete (all the bits are shifted) the information between the master and slave is exchanged. Figure 318. Full-duplex single master/ single slave application 5[VKLIWUHJLVWHU 7[VKLIWUHJLVWHU 63,FORFN JHQHUDWRU 0,62 0,62 026, 026, 6&. 6&. 166 166 0DVWHU 7[VKLIWUHJLVWHU 5[VKLIWUHJLVWHU 6ODYH 06Y9 1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 29.3.5: Slave select (NSS) pin management. Half-duplex communication The SPI can communicate in half-duplex mode by setting the BIDIMODE bit in the SPIx_CR1 register. In this configuration, one single cross connection line is used to link the shift registers of the master and slave together. During this communication, the data is synchronously shifted between the shift registers on the SCK clock edge in the transfer direction selected reciprocally by both master and slave with the BDIOE bit in their SPIx_CR1 registers. In this configuration, the master’s MISO pin and the slave’s MOSI pin are free for other application uses and act as GPIOs. RM0430 Rev 8 939/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 Figure 319. Half-duplex single master/ single slave application 5[VKLIWUHJLVWHU 7[VKLIWUHJLVWHU 63,FORFN JHQHUDWRU 0,62 026, 0,62 Nȍ 5[VKLIWUHJLVWHU 6&. 6&. 166 026, 7[VKLIWUHJLVWHU 0DVWHU 166 6ODYH 06Y9 1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 29.3.5: Slave select (NSS) pin management. 2. In this configuration, the master’s MISO pin and the slave’s MOSI pin can be used as GPIOs. 3. A critical situation can happen when communication direction is changed not synchronously between two nodes working at bidirectionnal mode and new transmitter accesses the common data line while former transmitter still keeps an opposite value on the line (the value depends on SPI configuration and communication data). Both nodes then fight while providing opposite output levels on the common line temporary till next node changes its direction settings correspondingly, too. It is suggested to insert a serial resistance between MISO and MOSI pins at this mode to protect the outputs and limit the current blowing between them at this situation. Simplex communications The SPI can communicate in simplex mode by setting the SPI in transmit-only or in receiveonly using the RXONLY bit in the SPIx_CR2 register. In this configuration, only one line is used for the transfer between the shift registers of the master and slave. The remaining MISO and MOSI pins pair is not used for communication and can be used as standard GPIOs. 940/1324 • Transmit-only mode (RXONLY=0): The configuration settings are the same as for fullduplex. The application has to ignore the information captured on the unused input pin. This pin can be used as a standard GPIO. • Receive-only mode (RXONLY=1): The application can disable the SPI output function by setting the RXONLY bit. In slave configuration, the MISO output is disabled and the pin can be used as a GPIO. The slave continues to receive data from the MOSI pin while its slave select signal is active (see 29.3.5: Slave select (NSS) pin management). Received data events appear depending on the data buffer configuration. In the master configuration, the MOSI output is disabled and the pin can be used as a GPIO. The clock signal is generated continuously as long as the SPI is enabled. The only way to stop the clock is to clear the RXONLY bit or the SPE bit and wait until the incoming pattern from the MISO pin is finished and fills the data buffer structure, depending on its configuration. RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) Figure 320. Simplex single master/single slave application (master in transmit-only/ slave in receive-only mode) 5[VKLIWUHJLVWHU 7[VKLIWUHJLVWHU 63,FORFN JHQHUDWRU 0,62 0,62 026, 026, 6&. 6&. 166 166 0DVWHU 7[VKLIWUHJLVWHU 5[VKLIWUHJLVWHU ^ůĂǀĞ 06Y9 1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 29.3.5: Slave select (NSS) pin management. 2. An accidental input information is captured at the input of transmitter Rx shift register. All the events associated with the transmitter receive flow must be ignored in standard transmit only mode (e.g. OVF flag). 3. In this configuration, both the MISO pins can be used as GPIOs. Note: Any simplex communication can be alternatively replaced by a variant of the half-duplex communication with a constant setting of the transaction direction (bidirectional mode is enabled while BDIO bit is not changed). RM0430 Rev 8 941/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29.3.3 RM0430 Standard multi-slave communication In a configuration with two or more independent slaves, the master uses GPIO pins to manage the chip select lines for each slave (see Figure 321.). The master must select one of the slaves individually by pulling low the GPIO connected to the slave NSS input. When this is done, a standard master and dedicated slave communication is established. Figure 321. Master and three independent slaves 166 5[VKLIWUHJLVWHU 7[VKLIWUHJLVWHU 63,FORFN JHQHUDWRU 0DVWHU 0,62 0,62 026, 026, 6&. 6&. ,2 166 7[VKLIWUHJLVWHU 5[VKLIWUHJLVWHU 6ODYH ,2 ,2 0,62 026, 7[VKLIWUHJLVWHU 5[VKLIWUHJLVWHU 6&. 166 6ODYH 0,62 026, 7[VKLIWUHJLVWHU 5[VKLIWUHJLVWHU 6&. 166 6ODYH 06Y9 1. NSS pin is not used on master side at this configuration. It has to be managed internally (SSM=1, SSI=1) to prevent any MODF error. 2. As MISO pins of the slaves are connected together, all slaves must have the GPIO configuration of their MISO pin set as alternate function open-drain (see Section 7.3.7: I/O alternate function input/output on page 191). 942/1324 RM0430 Rev 8 RM0430 29.3.4 Serial peripheral interface/ inter-IC sound (SPI/I2S) Multi-master communication Unless SPI bus is not designed for a multi-master capability primarily, the user can use build in feature which detects a potential conflict between two nodes trying to master the bus at the same time. For this detection, NSS pin is used configured at hardware input mode. The connection of more than two SPI nodes working at this mode is impossible as only one node can apply its output on a common data line at time. When nodes are non active, both stay at slave mode by default. Once one node wants to overtake control on the bus, it switches itself into master mode and applies active level on the slave select input of the other node via dedicated GPIO pin. After the session is completed, the active slave select signal is released and the node mastering the bus temporary returns back to passive slave mode waiting for next session start. If potentially both nodes raised their mastering request at the same time a bus conflict event appears (see mode fault MODF event). Then the user can apply some simple arbitration process (e.g. to postpone next attempt by predefined different time-outs applied at both nodes). Figure 322. Multi-master application 5[ 7[ VKLIWUHJLVWHU 7[ 5[ VKLIWUHJLVWHU 63,FORFN JHQHUDWRU 0DVWHU 6ODYH 0,62 0,62 026, 026, 6&. 6&. *3,2 166 166 *3,2 5[ 7[ VKLIWUHJLVWHU 7[ 5[ VKLIWUHJLVWHU 63,FORFN JHQHUDWRU DĂƐƚĞƌ ;^ůĂǀĞͿ 06Y9 1. The NSS pin is configured at hardware input mode at both nodes. Its active level enables the MISO line output control as the passive node is configured as a slave. 29.3.5 Slave select (NSS) pin management In slave mode, the NSS works as a standard “chip select” input and lets the slave communicate with the master. In master mode, NSS can be used either as output or input. As an input it can prevent multimaster bus collision, and as an output it can drive a slave select signal of a single slave. Hardware or software slave select management can be set using the SSM bit in the SPIx_CR1 register: • Software NSS management (SSM = 1): in this configuration, slave select information is driven internally by the SSI bit value in register SPIx_CR1. The external NSS pin is free for other application uses. • Hardware NSS management (SSM = 0): in this case, there are two possible configurations. The configuration used depends on the NSS output configuration (SSOE bit in register SPIx_CR1). RM0430 Rev 8 943/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 – NSS output enable (SSM=0,SSOE = 1): this configuration is only used when the MCU is set as master. The NSS pin is managed by the hardware. The NSS signal is driven low as soon as the SPI is enabled in master mode (SPE=1), and is kept low until the SPI is disabled (SPE =0). – NSS output disable (SSM=0, SSOE = 0): if the microcontroller is acting as the master on the bus, this configuration allows multimaster capability. If the NSS pin is pulled low in this mode, the SPI enters master mode fault state and the device is automatically reconfigured in slave mode. In slave mode, the NSS pin works as a standard “chip select” input and the slave is selected while NSS line is at low level. Figure 323. Hardware/software slave select management 66,FRQWUROELW 660FRQWUROELW 166 ,QS 166 SLQ 0DVWHU PRGH 6ODYHPRGH 9GG 2. 1RQDFWLYH 9VV &RQIOLFW $FWLYH 166,QSXW *3,2 ORJLF 166 2XWSXW &RQWURO 1662XWSXW XVHGLQ0DVWHUPRGH 166 +:PDQDJHPHQWRQO\ 662(FRQWUROELW 166H[WHUQDOORJLF 166LQWHUQDOORJLF DLYH 944/1324 RM0430 Rev 8 RM0430 29.3.6 Serial peripheral interface/ inter-IC sound (SPI/I2S) Communication formats During SPI communication, receive and transmit operations are performed simultaneously. The serial clock (SCK) synchronizes the shifting and sampling of the information on the data lines. The communication format depends on the clock phase, the clock polarity and the data frame format. To be able to communicate together, the master and slaves devices must follow the same communication format. Clock phase and polarity controls Four possible timing relationships may be chosen by software, using the CPOL and CPHA bits in the SPIx_CR1 register. The CPOL (clock polarity) bit controls the idle state value of the clock when no data is being transferred. This bit affects both master and slave modes. If CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a high-level idle state. If the CPHA bit is set, the second edge on the SCK pin captures the first data bit transacted (falling edge if the CPOL bit is reset, rising edge if the CPOL bit is set). Data are latched on each occurrence of this clock transition type. If the CPHA bit is reset, the first edge on the SCK pin captures the first data bit transacted (falling edge if the CPOL bit is set, rising edge if the CPOL bit is reset). Data are latched on each occurrence of this clock transition type. The combination of CPOL (clock polarity) and CPHA (clock phase) bits selects the data capture clock edge. Figure 324, shows an SPI full-duplex transfer with the four combinations of the CPHA and CPOL bits. Note: Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit. The idle state of SCK must correspond to the polarity selected in the SPIx_CR1 register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0). RM0430 Rev 8 945/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 Figure 324. Data clock timing diagram &3+$ &32/ &32/ 026, /6%LW 06%LW 0,62 /6%LW 06%LW 166 WRVODYH &DSWXUHVWUREH &3+$ &32/ &32/ 026, 0,62 /6%LW 06%LW 06%LW /6%LW 166 WRVODYH &DSWXUHVWUREH DLG Note: The order of data bits depends on LSBFIRST bit setting. Data frame format The SPI shift register can be set up to shift out MSB-first or LSB-first, depending on the value of the LSBFIRST bit. Each data frame is 8 or 16 bit long depending on the size of the data programmed using the DFF bit in the SPI_CR1 register. The selected data frame format is applicable both for transmission and reception. 946/1324 RM0430 Rev 8 RM0430 29.3.7 Serial peripheral interface/ inter-IC sound (SPI/I2S) SPI configuration The configuration procedure is almost the same for master and slave. For specific mode setups, follow the dedicated chapters. When a standard communication is to be initialized, perform these steps: 1. Write proper GPIO registers: Configure GPIO for MOSI, MISO and SCK pins. 2. Write to the SPI_CR1 register: 3. Note: a) Configure the serial clock baud rate using the BR[2:0] bits (Note: 3). b) Configure the CPOL and CPHA bits combination to define one of the four relationships between the data transfer and the serial clock. (Note: 2 - except the case when CRC is enabled at TI mode). c) Select simplex or half-duplex mode by configuring RXONLY or BIDIMODE and BIDIOE (RXONLY and BIDIMODE can't be set at the same time). d) Configure the LSBFIRST bit to define the frame format (Note: 2). e) Configure the CRCEN and CRCEN bits if CRC is needed (while SCK clock signal is at idle state). f) Configure SSM and SSI (Note: 2). g) Configure the MSTR bit (in multimaster NSS configuration, avoid conflict state on NSS if master is configured to prevent MODF error). h) Set the DFF bit to configure the data frame format (8 or 16 bits). Write to SPI_CR2 register: a) Configure SSOE (Note: 1 & 2). b) Set the FRF bit if the TI protocol is required. 4. Write to SPI_CRCPR register: Configure the CRC polynomial if needed. 5. Write proper DMA registers: Configure DMA streams dedicated for SPI Tx and Rx in DMA registers if the DMA streams are used. (1) Step is not required in slave mode. (2) Step is not required in TI mode. (3) The step is not required in slave mode except slave working at TI mode. 29.3.8 Procedure for enabling SPI It is recommended to enable the SPI slave before the master sends the clock. Otherwise, undesired data transmission might occur. The slave data register must already contain data to be sent before starting communication with the master (either on the first edge of the communication clock, or before the end of the ongoing communication if the clock signal is continuous). The SCK signal must be settled at an idle state level corresponding to the selected polarity before the SPI slave is enabled. At full-duplex (or in any transmit-only mode), the master starts communicating when the SPI is enabled and data to be sent is written in the Tx Buffer. In any master receive-only mode (RXONLY=1 or BIDIMODE=1 & BIDIOE=0), the master starts communicating and the clock starts running immediately after the SPI is enabled. The slave starts communicating when it receives a correct clock signal from the master. The slave software must write the data to be sent before the SPI master initiates the transfer. Refer to Section 29.3.11: Communication using DMA (direct memory addressing) for details on how to handle DMA. RM0430 Rev 8 947/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29.3.9 RM0430 Data transmission and reception procedures Rx and Tx buffers In reception, data are received and then stored into an internal Rx buffer while in transmission, data are first stored into an internal Tx buffer before being transmitted. A read access to the SPI_DR register returns the Rx buffered value whereas a write access to the SPI_DR stores the written data into the Tx buffer. Tx buffer handling The data frame is loaded from the Tx buffer into the shift register during the first bit transmission. Bits are then shifted out serially from the shift register to a dedicated output pin depending on LSBFIRST bit setting.The TXE flag (Tx buffer empty) is set when the data are transferred from the Tx buffer to the shift register. It indicates that the internal Tx buffer is ready to be loaded with the next data. An interrupt can be generated if the TXEIE bit of the SPI_CR2 register is set. Clearing the TXE bit is performed by writing to the SPI_DR register. A continuous transmit stream can be achieved if the next data to be transmitted are stored in the Tx buffer while previous frame transmission is still ongoing. When the software writes to Tx buffer while the TXE flag is not set, the data waiting for transaction is overwritten. Rx buffer handling The RXNE flag (Rx buffer not empty) is set on the last sampling clock edge, when the data are transferred from the shift register to the Rx buffer. It indicates that data are ready to be read from the SPI_DR register. An interrupt can be generated if the RXNEIE bit in the SPI_CR2 register is set. Clearing the RXNE bit is performed by reading the SPI_DR register. If a device has not cleared the RXNE bit resulting from the previous data byte transmitted, an overrun condition occurs when the next value is buffered. The OVR bit is set and an interrupt is generated if the ERRIE bit is set. Another way to manage the data exchange is to use DMA (see Section 9.2: DMA main features). Sequence handling The BSY bit is set when a current data frame transaction is ongoing. When the clock signal runs continuously, the BSY flag remains set between data frames on the master side. However, on the slave side, it becomes low for a minimum duration of one SPI clock cycle between each data frame transfer. For some configurations, the BSY flag can be used during the last data transfer to wait until the completion of the transfer. When a receive-only mode is configured on the master side, either in half-duplex (BIDIMODE=1, BIDIOE=0) or simplex configuration (BIDIMODE=0, RXONLY=1), the master starts the receive sequence as soon as the SPI is enabled. Then the clock signal is provided by the master and it does not stop until either the SPI or the receive-only mode is disabled by the master. The master receives data frames continuously up to this moment. While the master can provide all the transactions in continuous mode (SCK signal is continuous), it has to respect slave capability to handle data flow and its content at anytime. When necessary, the master must slow down the communication and provide either a slower clock or separate frames or data sessions with sufficient delays. Be aware there is no 948/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) underflow error signal for slave operating in SPI mode, and that data from the slave are always transacted and processed by the master even if the slave cannot not prepare them correctly in time. It is preferable for the slave to use DMA, especially when data frames are shorter and bus rate is high. Each sequence must be encased by the NSS pulse in parallel with the multislave system to select just one of the slaves for communication. In single slave systems, using NSS to control the slave is not necessary. However, the NSS pulse can be used to synchronize the slave with the beginning of each data transfer sequence. NSS can be managed either by software or by hardware (see Section 29.3.4: Multi-master communication). Refer to Figure 325 and Figure 326 for a description of continuous transfers in master / fullduplex and slave full-duplex mode. Figure 325. TXE/RXNE/BSY behavior in master / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers ([DPSOHLQ0DVWHUPRGHZLWK&32/ &3+$ 6&. '$7$ [) 0,62026, RXW VHWE\KDUGZDUH FOHDUHGE\VRIWZDUH 7;(IODJ 7[EXIIHU ZULWH63,B'5 %6<IODJ '$7$ [) [) VHWE\KDUGZDUH FOHDUHGE\VRIWZDUH [) VHWE\KDUGZDUH UHVHWE\KDUGZDUH '$7$ [$ '$7$ [$ E E E E E E E E E E E E E E E E E E E E E E E E 5;1(IODJ VHWE\KDUGZDUH 5[EXIIHU UHDG63,B'5 VRIWZDUH ZULWHV[) LQWR63,B'5 VHWE\KDUGZDUH [) '$7$ [$ 0,62026, LQ '$7$ [) E E E E E E E E E E E E E E E E E E E E E E E E VRIWZDUHZDLWV XQWLO7;( DQG ZULWHV[)LQWR 63,B'5 FOHDUHGE\VRIWZDUH [$ VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 VRIWZDUHZDLWV XQWLO7;( DQG ZULWHV[)LQWR 63,B'5 [$ VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 [$ VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 DL RM0430 Rev 8 949/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 Figure 326. TXE/RXNE/BSY behavior in slave / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers ([DPSOHLQ6ODYHPRGHZLWK&32/ &3+$ 6&. '$7$ [) '$7$ [) 0,62026, RXW VHWE\KDUGZDUH FOHDUHGE\VRIWZDUH 7;(IODJ 7[EXIIHU ZULWHWR63,B'5 [) VHWE\KDUGZDUH FOHDUHGE\VRIWZDUH [) VHWE\KDUGZDUH [) VHWE\FOHDUHGE\VRIWZDUH %6<IODJ UHVHWE\KDUGZDUH '$7$ [$ '$7$ [$ 0,62026, LQ '$7$ [$ E E E E E E E E E E E E E E E E E E E E E E E E VHWE\KDUGZDUH 5;1(IODJ 5[EXIIHU UHDGIURP63,B'5 VRIWZDUH ZULWHV[) LQWR63,B'5 '$7$ [) E E E E E E E E E E E E E E E E E E E E E E E E FOHDUHGE\VRIWZDUH [$ VRIWZDUHZDLWV XQWLO7;( DQG ZULWHV[)LQWR 63,B'5 VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 VRIWZDUHZDLWV XQWLO7;( DQG ZULWHV[)LQWR 63,B'5 [$ VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 [$ VRIWZDUHZDLWV XQWLO5;1( DQGUHDGV[$ IURP63,B'5 DL 29.3.10 Procedure for disabling the SPI When SPI is disabled, it is mandatory to follow the disable procedures described in this paragraph. It is important to do this before the system enters a low-power mode when the peripheral clock is stopped. Ongoing transactions can be corrupted in this case. In some modes the disable procedure is the only way to stop continuous communication running. Master in full-duplex or transmit only mode can finish any transaction when it stops providing data for transmission. In this case, the clock stops after the last data transaction. Standard disable procedure is based on pulling BSY status together with TXE flag to check if a transmission session is fully completed. This check can be done in specific cases, too, when it is necessary to identify the end of ongoing transactions, for example: • When NSS signal is managed by an arbitrary GPIO toggle and the master has to provide proper end of NSS pulse for slave, or • When transactions’ streams from DMA are completed while the last data frame or CRC frame transaction is still ongoing in the peripheral bus. The correct disable procedure is (except when receive-only mode is used): 950/1324 1. Wait until RXNE=1 to receive the last data. 2. Wait until TXE=1 and then wait until BSY=0 before disabling the SPI. 3. Read received data. RM0430 Rev 8 RM0430 Note: Serial peripheral interface/ inter-IC sound (SPI/I2S) During discontinuous communications, there is a 2 APB clock period delay between the write operation to the SPI_DR register and BSY bit setting. As a consequence it is mandatory to wait first until TXE is set and then until BSY is cleared after writing the last data. The correct disable procedure for certain receive-only modes is: 1. Interrupt the receive flow by disabling SPI (SPE=0) in the specific time window while the last data frame is ongoing. 2. Wait until BSY=0 (the last data frame is processed). 3. Read received data. Note: To stop a continuous receive sequence, a specific time window must be respected during the reception of the last data frame. It starts when the first bit is sampled and ends before the last bit transfer starts. 29.3.11 Communication using DMA (direct memory addressing) To operate at its maximum speed and to facilitate the data register read/write process required to avoid overrun, the SPI features a DMA capability, which implements a simple request/acknowledge protocol. A DMA access is requested when the TXE or RXNE enable bit in the SPIx_CR2 register is set. Separate requests must be issued to the Tx and Rx buffers. • In transmission, a DMA request is issued each time TXE is set to 1. The DMA then writes to the SPIx_DR register. • In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads the SPIx_DR register. Refer to Figure 327 and Figure 328 for a description of the DMA transmission and reception waveforms. When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA channel. In this case, the OVR flag is set because the data received is not read. When the SPI is used only to receive data, it is possible to enable only the SPI Rx DMA channel. In transmission mode, when the DMA has written all the data to be transmitted (the TCIF flag is set in the DMA_ISR register), the BSY flag can be monitored to ensure that the SPI communication is complete. This is required to avoid corrupting the last transmission before disabling the SPI or entering the Stop mode. The software must first wait until TXE = 1 and then until BSY = 0. When starting communication using DMA, to prevent DMA channel management raising error events, these steps must be followed in order: 1. Enable DMA Rx buffer in the RXDMAEN bit in the SPI_CR2 register, if DMA Rx is used. 2. Enable DMA streams for Tx and Rx in DMA registers, if the streams are used. 3. Enable DMA Tx buffer in the TXDMAEN bit in the SPI_CR2 register, if DMA Tx is used. 4. Enable the SPI by setting the SPE bit. RM0430 Rev 8 951/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 To close communication it is mandatory to follow these steps in order: 1. Disable DMA streams for Tx and Rx in the DMA registers, if the streams are used. 2. Disable the SPI by following the SPI disable procedure. 3. Disable DMA Tx and Rx buffers by clearing the TXDMAEN and RXDMAEN bits in the SPI_CR2 register, if DMA Tx and/or DMA Rx are used. Figure 327. Transmission using DMA ([DPSOHZLWK&32/ &3+$ 6&. '$7$ [) '$7$ [) 0,62026, RXW VHWE\KDUGZDUH FOHDUHGE\'0$ZULWH 7;(IODJ VHWE\KDUGZDUH FOHDUE\'0$ZULWH VHWE\KDUGZDUH UHVHW E\KDUGZDUH VHWE\KDUGZDUH %6<IODJ LJQRUHGE\WKH'0$EHFDXVH '0$WUDQVIHULVFRPSOHWH '0$UHTXHVW 7[EXIIHU ZULWHWR63,B'5 '$7$ [) E E E E E E E E E E E E E E E E E E E E E E E E [) [) [) '0$ZULWHVWR63,B'5 VHWE\KDUGZDUH '0$7&,)IODJ '0$WUDQVIHUFRPSOHWH VRIWZDUHFRQILJXUHVWKH '0$63,7[FKDQQHO WRVHQGGDWDLWHPV DQGHQDEOHVWKH63, 952/1324 '0$ZULWHV '$7$LQWR 63,B'5 '0$ZULWHV '$7$LQWR 63,B'5 '0$ZULWHV '$7$LQWR 63,B'5 FOHDUE\VRIWZDUH '0$WUDQVIHULV FRPSOHWH 7&,) LQ '0$B,65 VRIWZDUHZDLWV XQWLO7;( VRIWZDUHZDLWVXQWLO%6< DL RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) Figure 328. Reception using DMA ([DPSOHZLWK&32/ &3+$ 6&. '$7$ [$ 0,62026, LQ '$7$ [$ '$7$ [$ E E E E E E E E E E E E E E E E E E E E E E E E 5;1(IODJ VHWE\KDUGZDUH FOHDUE\'0$UHDG '0$UHTXHVW 5[EXIIHU UHDGIURP63,B'5 [$ [$ [$ '0$UHDGIURP63,B'5 VHWE\KDUGZDUH IODJ'0$7&,) '0$WUDQVIHUFRPSOHWH VRIWZDUHFRQILJXUHVWKH '0$63,5[FKDQQHO WRUHFHLYHGDWDLWHPV DQGHQDEOHVWKH63, '0$UHDGV '$7$IURP 63,B'5 '0$UHDGV '$7$IURP 63,B'5 '0$UHDGV '$7$IURP 63,B'5 FOHDU E\VRIWZDUH 7KH'0$WUDQVIHULV FRPSOHWH 7&,) LQ '0$B,65 DL 29.3.12 SPI status flags Three status flags are provided for the application to completely monitor the state of the SPI bus. Tx buffer empty flag (TXE) When it is set, the TXE flag indicates that the Tx buffer is empty and that the next data to be transmitted can be loaded into the buffer. The TXE flag is cleared by writing to the SPI_DR register. Rx buffer not empty (RXNE) When set, the RXNE flag indicates that there are valid received data in the Rx buffer. It is cleared by reading from the SPI_DR register. Busy flag (BSY) The BSY flag is set and cleared by hardware (writing to this flag has no effect). When BSY is set, it indicates that a data transfer is in progress on the SPI (the SPI bus is busy). There is one exception in master bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0) where the BSY flag is kept low during reception. The BSY flag can be used in certain modes to detect the end of a transfer, thus preventing corruption of the last transfer when the SPI peripheral clock is disabled before entering a low-power mode or an NSS pulse end is handled by software. The BSY flag is also useful for preventing write collisions in a multimaster system. RM0430 Rev 8 953/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 The BSY flag is cleared under any one of the following conditions: • When the SPI is correctly disabled • When a fault is detected in Master mode (MODF bit set to 1) • In Master mode, when it finishes a data transmission and no new data is ready to be sent • In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between each data transfer. Note: It is recommended to use always the TXE and RXNE flags (instead of the BSY flags) to handle data transmission or reception operations. 29.3.13 SPI error flags An SPI interrupt is generated if one of the following error flags is set and interrupt is enabled by setting the ERRIE bit. Overrun flag (OVR) An overrun condition occurs when the master or the slave completes the reception of the next data frame while the read operation of the previous frame from the Rx buffer has not completed (case RXNE flag is set). In this case, the content of the Rx buffer is not updated with the new data received. A read operation from the SPI_DR register returns the frame previously received. All other subsequently transmitted data are lost. Clearing the OVR bit is done by a read access to the SPI_DR register followed by a read access to the SPI_SR register. Mode fault (MODF) Mode fault occurs when the master device has its internal NSS signal (NSS pin in NSS hardware mode, or SSI bit in NSS software mode) pulled low. This automatically sets the MODF bit. Master mode fault affects the SPI interface in the following ways: • The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set. • The SPE bit is cleared. This blocks all output from the device and disables the SPI interface. • The MSTR bit is cleared, thus forcing the device into slave mode. Use the following software sequence to clear the MODF bit: 1. Make a read or write access to the SPIx_SR register while the MODF bit is set. 2. Then write to the SPIx_CR1 register. To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can be restored to their original state after this clearing sequence. As a security, hardware does not allow the SPE and MSTR bits to be set while the MODF bit is set. In a slave device the MODF bit cannot be set except as the result of a previous multimaster conflict. 954/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) CRC error (CRCERR) This flag is used to verify the validity of the value received when the CRCEN bit in the SPIx_CR1 register is set. The CRCERR flag in the SPIx_SR register is set if the value received in the shift register does not match the receiver SPIx_RXCRC value. The flag is cleared by the software. TI mode frame format error (FRE) A TI mode frame format error is detected when an NSS pulse occurs during an ongoing communication when the SPI is operating in slave mode and configured to conform to the TI mode protocol. When this error occurs, the FRE flag is set in the SPIx_SR register. The SPI is not disabled when an error occurs, the NSS pulse is ignored, and the SPI waits for the next NSS pulse before starting a new transfer. The data may be corrupted since the error detection may result in the loss of two data bytes. The FRE flag is cleared when SPIx_SR register is read. If the ERRIE bit is set, an interrupt is generated on the NSS error detection. In this case, the SPI should be disabled because data consistency is no longer guaranteed and communications should be re-initiated by the master when the slave SPI is enabled again. 29.4 SPI special features 29.4.1 TI mode TI protocol in master mode The SPI interface is compatible with the TI protocol. The FRF bit of the SPIx_CR2 register can be used to configure the SPI to be compliant with this protocol. The clock polarity and phase are forced to conform to the TI protocol requirements whatever the values set in the SPIx_CR1 register. NSS management is also specific to the TI protocol which makes the configuration of NSS management through the SPIx_CR1 and SPIx_CR2 registers (SSM, SSI, SSOE) impossible in this case. In slave mode, the SPI baud rate prescaler is used to control the moment when the MISO pin state changes to HiZ when the current transaction finishes (see Figure 329). Any baud rate can be used, making it possible to determine this moment with optimal flexibility. However, the baud rate is generally set to the external master clock baud rate. The delay for the MISO signal to become HiZ (trelease) depends on internal resynchronization and on the baud rate value set in through the BR[2:0] bits in the SPIx_CR1 register. It is given by the formula: t baud_rate t baud_rate --------------------- + 4 × t pclk < t release < --------------------- + 6 × t pclk 2 2 If the slave detects a misplaced NSS pulse during a data frame transaction the TIFRE flag is set. This feature is not available for Motorola SPI communications (FRF bit set to 0). RM0430 Rev 8 955/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) Note: RM0430 To detect TI frame errors in slave transmitter only mode by using the Error interrupt (ERRIE=1), the SPI must be configured in 2-line unidirectional mode by setting BIDIMODE and BIDIOE to 1 in the SPI_CR1 register. When BIDIMODE is set to 0, OVR is set to 1 because the data register is never read and error interrupts are always generated, while when BIDIMODE is set to 1, data are not received and OVR is never set. Figure 329 shows the SPI communication waveforms when TI mode is selected. Figure 329. TI mode transfer SO L WUL QJ JJ HU VD P SO LQ J WU L JJ H VD U P SO LQ J P W 5(/($6( VD WUL JJ HU 166 6&. 026, 0,62 'RQRWFDUH RU 06% /6% 06% /6% 06% /6% 06% /6% )5$0( )5$0( 069 29.4.2 CRC calculation Two separate CRC calculators (on transmission and reception data flows) are implemented in order to check the reliability of transmitted and received data. The SPI offers CRC8 or CRC16 calculation depending on the data format selected through the DFF bit. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. CRC principle CRC calculation is enabled by setting the CRCEN bit in the SPIx_CR1 register before the SPI is enabled (SPE = 1). The CRC value is calculated using an odd programmable polynomial on each bit. The calculation is processed on the sampling clock edge defined by the CPHA and CPOL bits in the SPIx_CR1 register. The calculated CRC value is checked automatically at the end of the data block as well as for transfer managed by CPU or by the DMA. When a mismatch is detected between the CRC calculated internally on the received data and the CRC sent by the transmitter, a CRCERR flag is set to indicate a data corruption error. The right procedure for handling the CRC calculation depends on the SPI configuration and the chosen transfer management. Note: The polynomial value should only be odd. No even values are supported. CRC transfer managed by CPU Communication starts and continues normally until the last data frame has to be sent or received in the SPIx_DR register. Then CRCNEXT bit has to be set in the SPIx_CR1 register to indicate that the CRC frame transaction will follow after the transaction of the currently processed data frame. The CRCNEXT bit must be set before the end of the last data frame transaction. CRC calculation is frozen during CRC transaction. 956/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) The received CRC is stored in the Rx buffer like any other data frame. A CRC-format transaction takes one more data frame to communicate at the end of data sequence. When the last CRC data is received, an automatic check is performed comparing the received value and the value in the SPIx_RXCRC register. Software has to check the CRCERR flag in the SPIx_SR register to determine if the data transfers were corrupted or not. Software clears the CRCERR flag by writing '0' to it. After the CRC reception, the CRC value is stored in the Rx buffer and must be read in the SPIx_DR register in order to clear the RXNE flag. CRC transfer managed by DMA When SPI communication is enabled with CRC communication and DMA mode, the transmission and reception of the CRC at the end of communication is automatic (with the exception of reading CRC data in receive-only mode). The CRCNEXT bit does not have to be handled by the software. The counter for the SPI transmission DMA channel has to be set to the number of data frames to transmit excluding the CRC frame. On the receiver side, the received CRC value is handled automatically by DMA at the end of the transaction but user must take care to flush out the CRC frame received from SPI_DR as it is always loaded into it. At the end of the data and CRC transfers, the CRCERR flag in the SPIx_SR register is set if corruption occurred during the transfer. Resetting the SPIx_TXCRC and SPIx_RXCRC values The SPIx_TXCRC and SPIx_RXCRC values are cleared automatically when CRC calculation is enabled. When the SPI is configured in slave mode with the CRC feature enabled, a CRC calculation is performed even if a high level is applied on the NSS pin. This may happen for example in case of a multislave environment where the communication master addresses slaves alternately. Between a slave disabling (high level on NSS) and a new slave enabling (low level on NSS), the CRC value should be cleared on both master and slave sides to resynchronize the master and slave respective CRC calculation. To clear the CRC, follow the below sequence: Note: 1. Disable the SPI 2. Clear the CRCEN bit 3. Enable the CRCEN bit 4. Enable the SPI When the SPI interface is configured as a slave, the NSS internal signal needs to be kept low during transaction of the CRC phase once the CRCNEXT signal is released, (see more details at the product errata sheet). At TI mode, despite the fact that the clock phase and clock polarity setting is fixed and independent on the SPIx_CR1 register, the corresponding setting CPOL=0 CPHA=1 has to be kept at the SPIx_CR1 register anyway if CRC is applied. In addition, the CRC calculation has to be reset between sessions by the SPI disable sequence by re-enabling the CRCEN bit described above at both master and slave sides, else the CRC calculation can be corrupted at this specific mode. RM0430 Rev 8 957/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29.5 RM0430 SPI interrupts During SPI communication an interrupts can be generated by the following events: • Transmit Tx buffer ready to be loaded • Data received in Rx buffer • Master mode fault • Overrun error • TI frame format error Interrupts can be enabled and disabled separately. Table 175. SPI interrupt requests Interrupt event Event flag Enable Control bit TXE TXEIE Data received in Rx buffer RXNE RXNEIE Master Mode fault event MODF Transmit Tx buffer ready to be loaded Overrun error OVR CRC error CRCERR TI frame format error 958/1324 FRE RM0430 Rev 8 ERRIE RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29.6 I2S functional description 29.6.1 I2S general description The block diagram of the I2S is shown in Figure 330. Figure 330. I2S block diagram $GGUHVVDQGGDWDEXV 7[EXIIHU %6< 295 02') &+ &5& 7[( 5[1( )5( 8'5 6,'( (55 ELW 026,6' 6KLIWUHJLVWHU -)3/ )3EXT?3$ )3EXT?3$ /6%ILUVW &RPPXQLFDWLRQ FRQWURO ELW 5[EXIIHU 166:6 ,6&)* >@ ,667' >@ &. 32/ '$7/(1 &+ /(1 >@ ,6 02' ,6( 0DVWHUFRQWUROORJLF %LGL %LGL PRGH 2( 63, EDXGUDWHJHQHUDWRU &5& &5& 5[ ')) 660 66, (1 1H[W RQO\ /6% 63( %5 %5 %5 0675 &32/ &3+$ )LUVW &. ,6FORFNJHQHUDWRU ,6B&. ,602' 0&. ,6[&/. 0&.2( 2'' ,6',9>@ 069 1. I2S2ext_SD and I2S3ext_SD are the extended SD pins that control the I2S full-duplex mode. 2. MCK is mapped on the MISO pin. RM0430 Rev 8 959/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 The SPI can function as an audio I2S interface when the I2S capability is enabled (by setting the I2SMOD bit in the SPIx_I2SCFGR register). This interface mainly uses the same pins, flags and interrupts as the SPI. The I2S shares three common pins with the SPI: • SD: Serial Data (mapped on the MOSI pin) to transmit or receive the two timemultiplexed data channels (in half-duplex mode only). • WS: Word Select (mapped on the NSS pin) is the data control signal output in master mode and input in slave mode. • CK: Serial Clock (mapped on the SCK pin) is the serial clock output in master mode and serial clock input in slave mode. An additional pin can be used when a master clock output is needed for some external audio devices: • MCK: Master Clock (mapped separately) is used, when the I2S is configured in master mode (and when the MCKOE bit in the SPIx_I2SPR register is set), to output this additional clock generated at a preconfigured frequency rate equal to 256 × fS, where fS is the audio sampling frequency. The I2S uses its own clock generator to produce the communication clock when it is set in master mode. This clock generator is also the source of the master clock output. Two additional registers are available in I2S mode. One is linked to the clock generator configuration SPIx_I2SPR and the other one is a generic I2S configuration register SPIx_I2SCFGR (audio standard, slave/master mode, data format, packet frame, clock polarity, etc.). The SPIx_CR1 register and all CRC registers are not used in the I2S mode. Likewise, the SSOE bit in the SPIx_CR2 register and the MODF and CRCERR bits in the SPIx_SR are not used. The I2S uses the same SPI register for data transfer (SPIx_DR) in 16-bit wide mode. 29.6.2 I2S full-duplex To support I2S full-duplex mode, two extra I2S instances called extended I2Ss (I2S2_ext, I2S3_ext) are available in addition to I2S2 and I2S3 (see Figure 331). The first I2S fullduplex interface is consequently based on I2S2 and I2S2_ext, and the second one on I2S3 and I2S3_ext. Note: I2S2_ext an I2S3_ext are used only in full-duplex mode. Figure 331. I2S full-duplex block diagram 63,,6[ 63,[B026,,6[B6' LQRXW ,6[B6&. ,6B:6 ,6[BH[W ,6[BH[W6' LQRXW 069 1. Where x can be 2 or 3. 960/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) I2Sx can operate in master mode. As a result: • Only I2Sx can output SCK and WS in half-duplex mode • Only I2Sx can deliver SCK and WS to I2S2_ext and I2S3_ext in full-duplex mode. The extended I2Ss (I2Sx_ext) can be used only in full-duplex mode. The I2Sx_ext operate always in slave mode. Both I2Sx and I2Sx_ext can be configured as transmitters or receivers. 29.6.3 Supported audio protocols The three-line bus has to handle only audio data generally time-multiplexed on two channels: the right channel and the left channel. However there is only one 16-bit register for transmission or reception. So, it is up to the software to write into the data register the appropriate value corresponding to each channel side, or to read the data from the data register and to identify the corresponding channel by checking the CHSIDE bit in the SPIx_SR register. Channel left is always sent first followed by the channel right (CHSIDE has no meaning for the PCM protocol). Four data and packet frames are available. Data may be sent with a format of: • 16-bit data packed in a 16-bit frame • 16-bit data packed in a 32-bit frame • 24-bit data packed in a 32-bit frame • 32-bit data packed in a 32-bit frame When using 16-bit data extended on 32-bit packet, the first 16 bits (MSB) are the significant bits, the 16-bit LSB is forced to 0 without any need for software action or DMA request (only one read/write operation). The 24-bit and 32-bit data frames need two CPU read or write operations to/from the SPIx_DR register or two DMA operations if the DMA is preferred for the application. For 24bit data frame specifically, the 8 non significant bits are extended to 32 bits with 0-bits (by hardware). For all data formats and communication standards, the most significant bit is always sent first (MSB first). The I2S interface supports four audio standards, configurable using the I2SSTD[1:0] and PCMSYNC bits in the SPIx_I2SCFGR register. I2S Philips standard For this standard, the WS signal is used to indicate which channel is being transmitted. It is activated one CK clock cycle before the first bit (MSB) is available. RM0430 Rev 8 961/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 Figure 332. I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0) &. :6 WUDQVPLVVLRQ UHFHSWLRQ &DQEHELWRUELW 6' 06% /6% 06% &KDQQHOOHIW &KDQQHO ULJKW 069 Data are latched on the falling edge of CK (for the transmitter) and are read on the rising edge (for the receiver). The WS signal is also latched on the falling edge of CK. Figure 333. I2S Philips standard waveforms (24-bit frame with CPOL = 0) &. :6 7UDQVPLVVLRQ 5HFHSWLRQ ELWGDWD 6' ELWUHPDLQLQJIRUFHG 06% /6% &KDQQHOOHIWELW &KDQQHOULJKW 069 This mode needs two write or read operations to/from the SPIx_DR register. • In transmission mode: If 0x8EAA33 has to be sent (24-bit): Figure 334. Transmitting 0x8EAA33 )LUVWZULWHWR'DWDUHJLVWHU 6HFRQGZULWHWR'DWDUHJLVWHU [($$ [;; 2QO\WKH06%DUHVHQW WRFRPSDUHWKHELWV /6%VKDYHQRPHDQLQJ DQGFDQEHDQ\WKLQJ 069 • In reception mode: If data 0x8EAA33 is received: 962/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) Figure 335. Receiving 0x8EAA33 )LUVWUHDGWR'DWDUHJLVWHU 6HFRQGUHDGWR'DWDUHJLVWHU [($$ [;; 2QO\WKH06%DUHVHQW WRFRPSDUHWKHELWV /6%VKDYHQRPHDQLQJ DQGFDQEHDQ\WKLQJ 069 Figure 336. I2S Philips standard (16-bit extended to 32-bit packet frame with CPOL = 0) &. :6 7UDQVPLVVLRQ 5HFHSWLRQ ELWGDWD 6' 06% ELWUHPDLQLQJIRUFHG /6% &KDQQHOOHIWELW &KDQQHOULJKW 069 2 When 16-bit data frame extended to 32-bit channel frame is selected during the I S configuration phase, only one access to the SPIx_DR register is required. The 16 remaining bits are forced by hardware to 0x0000 to extend the data to 32-bit format. If the data to transmit or the received data are 0x76A3 (0x76A30000 extended to 32-bit), the operation shown in Figure 337 is required. Figure 337. Example of 16-bit data frame extended to 32-bit channel frame 2QO\RQHDFFHVVWR63,[B'5 [$ 069 For transmission, each time an MSB is written to SPIx_DR, the TXE flag is set and its interrupt, if allowed, is generated to load the SPIx_DR register with the new value to send. This takes place even if 0x0000 have not yet been sent because it is done by hardware. For reception, the RXNE flag is set and its interrupt, if allowed, is generated when the first 16 MSB half-word is received. In this way, more time is provided between two write or read operations, which prevents underrun or overrun conditions (depending on the direction of the data transfer). MSB justified standard For this standard, the WS signal is generated at the same time as the first data bit, which is the MSBit. RM0430 Rev 8 963/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 Figure 338. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0 &. 7UDQVPLVVLRQ :6 5HFHSWLRQ RUELWGDWD 6' /6% 06% 06% &KDQQHOOHIW &KDQQHOULJKW 069 Data are latched on the falling edge of CK (for transmitter) and are read on the rising edge (for the receiver). Figure 339. MSB justified 24-bit frame length with CPOL = 0 &. 7UDQVPLVVLRQ :6 5HFHSWLRQ ELWGDWD ELWUHPDLQLQJ IRUFHG 6' /6% 06% &KDQQHOOHIWELW &KDQQHOULJKW 069 Figure 340. MSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 &. 7UDQVPLVVLRQ :6 5HFHSWLRQ ELWGDWD ELWUHPDLQLQJ IRUFHG 6' 06% /6% &KDQQHOOHIWELW &KDQQHOULJKW 069 LSB justified standard This standard is similar to the MSB justified standard (no difference for the 16-bit and 32-bit full-accuracy frame formats). 964/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) Figure 341. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0 &. :6 5HFHSWLRQ 7UDQVPLVVLRQ RUELWGDWD 6' /6% 06% 06% &KDQQHOOHIW &KDQQHOULJKW 069 Figure 342. LSB justified 24-bit frame length with CPOL = 0 &. :6 5HFHSWLRQ 7UDQVPLVVLRQ 6' ELWGDWD IRUFHG ELWUHPDLQLQJ 06% /6% &KDQQHOOHIWELW &KDQQHOULJKW 069 • In transmission mode: If data 0x3478AE have to be transmitted, two write operations to the SPIx_DR register are required by software or by DMA. The operations are shown below. Figure 343. Operations required to transmit 0x3478AE )LUVWZULWHWR'DWDUHJLVWHU FRQGLWLRQHGE\7;( [;; 2QO\WKH/6%RIWKH KDOIZRUGDUHVLJQLILFDQW $ILHOGRI[LVIRUFHG LQVWHDGRIWKH06%V • 6HFRQGZULWHWR'DWDUHJLVWHU FRQGLWLRQHGE\7;( [$( 069 In reception mode: If data 0x3478AE are received, two successive read operations from the SPIx_DR register are required on each RXNE event. RM0430 Rev 8 965/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 Figure 344. Operations required to receive 0x3478AE )LUVWUHDGIURP'DWDUHJLVWHU FRQGLWLRQHGE\5;1( 6HFRQGUHDGIURP'DWDUHJLVWHU FRQGLWLRQHGE\5;1( [;; [$( 2QO\WKH/6%RIWKH KDOIZRUGDUHVLJQLILFDQW $ILHOGRI[LVIRUFHG LQVWHDGRIWKH06%V 069 Figure 345. LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 &. 5HFHSWLRQ :6 7UDQVPLVVLRQ 6' ELWUHPDLQLQJ ELWGDWD IRUFHG 06% /6% &KDQQHOOHIWELW &KDQQHOULJKW 069 When 16-bit data frame extended to 32-bit channel frame is selected during the I2S configuration phase, Only one access to the SPIx_DR register is required. The 16 remaining bits are forced by hardware to 0x0000 to extend the data to 32-bit format. In this case it corresponds to the half-word MSB. If the data to transmit or the received data are 0x76A3 (0x0000 76A3 extended to 32-bit), the operation shown in Figure 346 is required. Figure 346. Example of 16-bit data frame extended to 32-bit channel frame 2QO\RQHDFFHVVWRWKH63,['5UHJLVWHU [$ 069 In transmission mode, when a TXE event occurs, the application has to write the data to be transmitted (in this case 0x76A3). The 0x000 field is transmitted first (extension on 32-bit). The TXE flag is set again as soon as the effective data (0x76A3) is sent on SD. In reception mode, RXNE is asserted as soon as the significant half-word is received (and not the 0x0000 field). In this way, more time is provided between two write or read operations to prevent underrun or overrun conditions. 966/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) PCM standard For the PCM standard, there is no need to use channel-side information. The two PCM modes (short and long frame) are available and configurable using the PCMSYNC bit in SPIx_I2SCFGR register. Figure 347. PCM standard waveforms (16-bit) &. :6 VKRUWIUDPH ELWV :6 ORQJIUDPH 6' 06% /6% 06% 069 For long frame synchronization, the WS signal assertion time is fixed to 13 bits in master mode. For short frame synchronization, the WS synchronization signal is only one cycle long. Figure 348. PCM standard waveforms (16-bit extended to 32-bit packet frame) &. :6 VKRUWIUDPH 8SWRELWV :6 ORQJIUDPH ELWV 6' 06% /6% 069 Note: For both modes (master and slave) and for both synchronizations (short and long), the number of bits between two consecutive pieces of data (and so two synchronization signals) needs to be specified (DATLEN and CHLEN bits in the SPIx_I2SCFGR register) even in slave mode. 29.6.4 Clock generator The I2S bitrate determines the data flow on the I2S data line and the I2S clock signal frequency. I2S bitrate = number of bits per channel × number of channels × sampling audio frequency For a 16-bit audio, left and right channel, the I2S bitrate is calculated as follows: I2S bitrate = 16 × 2 × fS It will be: I2S bitrate = 32 x 2 x fS if the packet length is 32-bit wide. RM0430 Rev 8 967/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 Figure 349. Audio sampling frequency definition RUELW ULJKWFKDQQHO RUELWOHIW FKDQQHO RUELWV )6 VDPSOLQJSRLQW VDPSOLQJSRLQW )6DXGLRVDPSOLQJIUHTXHQF\ 069 When the master mode is configured, a specific action needs to be taken to properly program the linear divider in order to communicate with the desired audio frequency. Figure 350 presents the communication clock architecture. The I2Sx clock is always the system clock. Figure 350. I2S clock generator architecture 0&. ,ð6[&/. ELWOLQHDUGLYLGHU UHVKDSLQJVWDJH 'LY 'LYLGHUE\ &. ,ð6',9>@ &+/(1 0&.2( 2'' ,ð602' 0&.2( 069 1. Where x = 2. The audio sampling frequency may be 192 KHz, 96 kHz, 48 kHz, 44.1 kHz, 32 kHz, 22.05 kHz, 16 kHz, 11.025 kHz or 8 kHz (or any other value within this range). In order to reach the desired frequency, the linear divider needs to be programmed according to the formulas below: When the master clock is generated (MCKOE in the SPIx_I2SPR register is set): fS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD)*8)] when the channel frame is 16-bit wide fS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD)*4)] when the channel frame is 32-bit wide When the master clock is disabled (MCKOE bit cleared): fS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD))] when the channel frame is 16-bit wide fS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD))] when the channel frame is 32-bit wide Table 176 provides example precision values for different clock configurations. Note: 968/1324 Other configurations are possible that allow optimum clock precision. RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) Table 176. Audio-frequency precision using standard 8 MHz HSE(1) SYSCLK (MHz) Data length I2SDIV I2SODD MCLK Target fS (Hz) 48 16 8 0 No 96000 93750 2.3438% 48 32 4 0 No 96000 93750 2.3438% 48 16 15 1 No 48000 48387.0968 0.8065% 48 32 8 0 No 48000 46875 2.3438% 48 16 17 0 No 44100 44117.647 0.0400% 48 32 8 1 No 44100 44117.647 0.0400% 48 16 23 1 No 32000 31914.8936 0.2660% 48 32 11 1 No 32000 32608.696 1.9022% 48 16 34 0 No 22050 22058.8235 0.0400% 48 32 17 0 No 22050 22058.8235 0.0400% 48 16 47 0 No 16000 15957.4468 0.2660% 48 32 23 1 No 16000 15957.447 0.2660% 48 16 68 0 No 11025 11029.4118 0.0400% 48 32 34 0 No 11025 11029.412 0.0400% 48 16 94 0 No 8000 7978.7234 0.2660% 48 32 47 0 No 8000 7978.7234 0.2660% 48 16 2 0 Yes 48000 46875 2.3430% 48 32 2 0 Yes 48000 46875 2.3430% 48 16 2 0 Yes 44100 46875 6.2925% 48 32 2 0 Yes 44100 46875 6.2925% 48 16 3 0 Yes 32000 31250 2.3438% 48 32 3 0 Yes 32000 31250 2.3438% 48 16 4 1 Yes 22050 20833.333 5.5178% 48 32 4 1 Yes 22050 20833.333 5.5178% 48 16 6 0 Yes 16000 15625 2.3438% 48 32 6 0 Yes 16000 15625 2.3438% 48 16 8 1 Yes 11025 11029.4118 0.0400% 48 32 8 1 Yes 11025 11029.4118 0.0400% 48 16 11 1 Yes 8000 8152.17391 1.9022% 48 32 11 1 Yes 8000 8152.17391 1.9022% Real fS (KHz) Error 1. This table gives only example values for different clock configurations. Other configurations allowing optimum clock precision are possible. RM0430 Rev 8 969/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29.6.5 RM0430 I2S master mode The I2S can be configured as follows: • In master mode for transmission or reception (half-duplex mode using I2Sx) • In master mode transmission and reception (full-duplex mode using I2Sx and I2Sx_ext). This means that the serial clock is generated on the CK pin as well as the Word Select signal WS. Master clock (MCK) may be output or not, controlled by the MCKOE bit in the SPIx_I2SPR register. Procedure 1. Select the I2SDIV[7:0] bits in the SPIx_I2SPR register to define the serial clock baud rate to reach the proper audio sample frequency. The ODD bit in the SPIx_I2SPR register also has to be defined. 2. Select the CKPOL bit to define the steady level for the communication clock. Set the MCKOE bit in the SPIx_I2SPR register if the master clock MCK needs to be provided to the external ADC audio component (the I2SDIV and ODD values should be computed depending on the state of the MCK output, for more details refer to Section 29.6.4: Clock generator). 3. Set the I2SMOD bit in the SPIx_I2SCFGR register to activate the I2S functions and choose the I2S standard through the I2SSTD[1:0] and PCMSYNC bits, the data length through the DATLEN[1:0] bits and the number of bits per channel by configuring the CHLEN bit. Select also the I2S master mode and direction (Transmitter or Receiver) through the I2SCFG[1:0] bits in the SPIx_I2SCFGR register. 4. If needed, select all the potential interrupt sources and the DMA capabilities by writing the SPIx_CR2 register. 5. The I2SE bit in SPIx_I2SCFGR register must be set. WS and CK are configured in output mode. MCK is also an output, if the MCKOE bit in SPIx_I2SPR is set. Transmission sequence The transmission sequence begins when a half-word is written into the Tx buffer. Lets assume the first data written into the Tx buffer corresponds to the left channel data. When data are transferred from the Tx buffer to the shift register, TXE is set and data corresponding to the right channel have to be written into the Tx buffer. The CHSIDE flag indicates which channel is to be transmitted. It has a meaning when the TXE flag is set because the CHSIDE flag is updated when TXE goes high. A full frame has to be considered as a left channel data transmission followed by a right channel data transmission. It is not possible to have a partial frame where only the left channel is sent. The data half-word is parallel loaded into the 16-bit shift register during the first bit transmission, and then shifted out, serially, to the MOSI/SD pin, MSB first. The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt is generated if the TXEIE bit in the SPIx_CR2 register is set. For more details about the write operations depending on the I2S Standard-mode selected, refer to Section 29.6.3: Supported audio protocols). 970/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) To ensure a continuous audio data transmission, it is mandatory to write the SPIx_DR register with the next data to transmit before the end of the current transmission. To switch off the I2S, by clearing I2SE, it is mandatory to wait for TXE = 1 and BSY = 0. Reception sequence The operating mode is the same as for transmission mode except for the point 3 (refer to the procedure described in Section 29.6.5: I2S master mode), where the configuration should set the master reception mode through the I2SCFG[1:0] bits. Whatever the data or channel length, the audio data are received by 16-bit packets. This means that each time the Rx buffer is full, the RXNE flag is set and an interrupt is generated if the RXNEIE bit is set in SPIx_CR2 register. Depending on the data and channel length configuration, the audio value received for a right or left channel may result from one or two receptions into the Rx buffer. Clearing the RXNE bit is performed by reading the SPIx_DR register. CHSIDE is updated after each reception. It is sensitive to the WS signal generated by the I2S cell. For more details about the read operations depending on the I2S Standard-mode selected, refer to Section 29.6.3: Supported audio protocols. If data are received while the previously received data have not been read yet, an overrun is generated and the OVR flag is set. If the ERRIE bit is set in the SPIx_CR2 register, an interrupt is generated to indicate the error. To switch off the I2S, specific actions are required to ensure that the I2S completes the transfer cycle properly without initiating a new data transfer. The sequence depends on the configuration of the data and channel lengths, and on the audio protocol mode selected. In the case of: • • • Note: 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) using the LSB justified mode (I2SSTD = 10) a) Wait for the second to last RXNE = 1 (n – 1) b) Then wait 17 I2S clock cycles (using a software loop) c) Disable the I2S (I2SE = 0) 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) in MSB justified, I2S or PCM modes (I2SSTD = 00, I2SSTD = 01 or I2SSTD = 11, respectively) a) Wait for the last RXNE b) Then wait 1 I2S clock cycle (using a software loop) c) Disable the I2S (I2SE = 0) For all other combinations of DATLEN and CHLEN, whatever the audio mode selected through the I2SSTD bits, carry out the following sequence to switch off the I2S: a) Wait for the second to last RXNE = 1 (n – 1) b) Then wait one I2S clock cycle (using a software loop) c) Disable the I2S (I2SE = 0) The BSY flag is kept low during transfers. RM0430 Rev 8 971/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29.6.6 RM0430 I2S slave mode The I2S can be configured as follows: • In slave mode for transmission or reception (half-duplex mode using I2Sx) • In slave mode transmission and reception (full-duplex mode using I2Sx and I2Sx_ext). The operating mode is following mainly the same rules as described for the I2S master configuration. In slave mode, there is no clock to be generated by the I2S interface. The clock and WS signals are input from the external master connected to the I2S interface. There is then no need, for the user, to configure the clock. The configuration steps to follow are listed below: 1. Set the I2SMOD bit in the SPIx_I2SCFGR register to select I2S mode and choose the I2S standard through the I2SSTD[1:0] bits, the data length through the DATLEN[1:0] bits and the number of bits per channel for the frame configuring the CHLEN bit. Select also the mode (transmission or reception) for the slave through the I2SCFG[1:0] bits in SPIx_I2SCFGR register. 2. If needed, select all the potential interrupt sources and the DMA capabilities by writing the SPIx_CR2 register. 3. The I2SE bit in SPIx_I2SCFGR register must be set. Transmission sequence The transmission sequence begins when the external master device sends the clock and when the NSS_WS signal requests the transfer of data. The slave has to be enabled before the external master starts the communication. The I2S data register has to be loaded before the master initiates the communication. For the I2S, MSB justified and LSB justified modes, the first data item to be written into the data register corresponds to the data for the left channel. When the communication starts, the data are transferred from the Tx buffer to the shift register. The TXE flag is then set in order to request the right channel data to be written into the I2S data register. The CHSIDE flag indicates which channel is to be transmitted. Compared to the master transmission mode, in slave mode, CHSIDE is sensitive to the WS signal coming from the external master. This means that the slave needs to be ready to transmit the first data before the clock is generated by the master. WS assertion corresponds to left channel transmitted first. Note: The I2SE has to be written at least two PCLK cycles before the first clock of the master comes on the CK line. The data half-word is parallel-loaded into the 16-bit shift register (from the internal bus) during the first bit transmission, and then shifted out serially to the MOSI/SD pin MSB first. The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt is generated if the TXEIE bit in the SPIx_CR2 register is set. Note that the TXE flag should be checked to be at 1 before attempting to write the Tx buffer. For more details about the write operations depending on the I2S Standard-mode selected, refer to Section 29.6.3: Supported audio protocols. 972/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) To secure a continuous audio data transmission, it is mandatory to write the SPIx_DR register with the next data to transmit before the end of the current transmission. An underrun flag is set and an interrupt may be generated if the data are not written into the SPIx_DR register before the first clock edge of the next data communication. This indicates to the software that the transferred data are wrong. If the ERRIE bit is set into the SPIx_CR2 register, an interrupt is generated when the UDR flag in the SPIx_SR register goes high. In this case, it is mandatory to switch off the I2S and to restart a data transfer starting from the left channel. To switch off the I2S, by clearing the I2SE bit, it is mandatory to wait for TXE = 1 and BSY = 0. Reception sequence The operating mode is the same as for the transmission mode except for the point 1 (refer to the procedure described in Section 29.6.6: I2S slave mode), where the configuration should set the master reception mode using the I2SCFG[1:0] bits in the SPIx_I2SCFGR register. Whatever the data length or the channel length, the audio data are received by 16-bit packets. This means that each time the RX buffer is full, the RXNE flag in the SPIx_SR register is set and an interrupt is generated if the RXNEIE bit is set in the SPIx_CR2 register. Depending on the data length and channel length configuration, the audio value received for a right or left channel may result from one or two receptions into the RX buffer. The CHSIDE flag is updated each time data are received to be read from the SPIx_DR register. It is sensitive to the external WS line managed by the external master component. Clearing the RXNE bit is performed by reading the SPIx_DR register. For more details about the read operations depending the I2S Standard-mode selected, refer to Section 29.6.3: Supported audio protocols. If data are received while the preceding received data have not yet been read, an overrun is generated and the OVR flag is set. If the bit ERRIE is set in the SPIx_CR2 register, an interrupt is generated to indicate the error. To switch off the I2S in reception mode, I2SE has to be cleared immediately after receiving the last RXNE = 1. Note: The external master components should have the capability of sending/receiving data in 16bit or 32-bit packets via an audio channel. 29.6.7 I2S status flags Three status flags are provided for the application to fully monitor the state of the I2S bus. Busy flag (BSY) The BSY flag is set and cleared by hardware (writing to this flag has no effect). It indicates the state of the communication layer of the I2S. When BSY is set, it indicates that the I2S is busy communicating. There is one exception in master receive mode (I2SCFG = 11) where the BSY flag is kept low during reception. The BSY flag is useful to detect the end of a transfer if the software needs to disable the I2S. This avoids corrupting the last transfer. For this, the procedure described below must be strictly respected. The BSY flag is set when a transfer starts, except when the I2S is in master receiver mode. RM0430 Rev 8 973/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 The BSY flag is cleared: • When a transfer completes (except in master transmit mode, in which the communication is supposed to be continuous) • When the I2S is disabled When communication is continuous: Note: • In master transmit mode, the BSY flag is kept high during all the transfers • In slave mode, the BSY flag goes low for one I2S clock cycle between each transfer Do not use the BSY flag to handle each data transmission or reception. It is better to use the TXE and RXNE flags instead. Tx buffer empty flag (TXE) When set, this flag indicates that the Tx buffer is empty and the next data to be transmitted can then be loaded into it. The TXE flag is reset when the Tx buffer already contains data to be transmitted. It is also reset when the I2S is disabled (I2SE bit is reset). RX buffer not empty (RXNE) When set, this flag indicates that there are valid received data in the RX Buffer. It is reset when SPIx_DR register is read. Channel Side flag (CHSIDE) In transmission mode, this flag is refreshed when TXE goes high. It indicates the channel side to which the data to transfer on SD has to belong. In case of an underrun error event in slave transmission mode, this flag is not reliable and I2S needs to be switched off and switched on before resuming the communication. In reception mode, this flag is refreshed when data are received into SPIx_DR. It indicates from which channel side data have been received. Note that in case of error (like OVR) this flag becomes meaningless and the I2S should be reset by disabling and then enabling it (with configuration if it needs changing). This flag has no meaning in the PCM standard (for both Short and Long frame modes). When the OVR or UDR flag in the SPIx_SR is set and the ERRIE bit in SPIx_CR2 is also set, an interrupt is generated. This interrupt can be cleared by reading the SPIx_SR status register (once the interrupt source has been cleared). 29.6.8 I2S error flags There are three error flags for the I2S cell. Underrun flag (UDR) In slave transmission mode this flag is set when the first clock for data transmission appears while the software has not yet loaded any value into SPIx_DR. It is available when the I2SMOD bit in the SPIx_I2SCFGR register is set. An interrupt may be generated if the ERRIE bit in the SPIx_CR2 register is set. The UDR bit is cleared by a read operation on the SPIx_SR register. 974/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) Overrun flag (OVR) This flag is set when data are received and the previous data have not yet been read from the SPIx_DR register. As a result, the incoming data are lost. An interrupt may be generated if the ERRIE bit is set in the SPIx_CR2 register. In this case, the receive buffer contents are not updated with the newly received data from the transmitter device. A read operation to the SPIx_DR register returns the previous correctly received data. All other subsequently transmitted half-words are lost. Clearing the OVR bit is done by a read operation on the SPIx_DR register followed by a read access to the SPIx_SR register. Frame error flag (FRE) This flag can be set by hardware only if the I2S is configured in Slave mode. It is set if the external master is changing the WS line while the slave is not expecting this change. If the synchronization is lost, the following steps are required to recover from this state and resynchronize the external master device with the I2S slave device: 1. Disable the I2S. 2. Enable it again when the correct level is detected on the WS line (WS line is high in I2S mode or low for MSB- or LSB-justified or PCM modes. Desynchronization between master and slave devices may be due to noisy environment on the SCK communication clock or on the WS frame synchronization line. An error interrupt can be generated if the ERRIE bit is set. The desynchronization flag (FRE) is cleared by software when the status register is read. 29.6.9 I2S interrupts Table 177 provides the list of I2S interrupts. Table 177. I2S interrupt requests Interrupt event 29.6.10 Event flag Enable control bit Transmit buffer empty flag TXE TXEIE Receive buffer not empty flag RXNE RXNEIE Overrun error OVR Underrun error UDR Frame error flag FRE ERRIE DMA features In I2S mode, the DMA works in exactly the same way as it does in SPI mode. There is no difference except that the CRC feature is not available in I2S mode since there is no data transfer protection system. RM0430 Rev 8 975/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 SPI and I2S registers 29.7 The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). SPI_DR in addition by can be accessed by 8-bit access. Refer to Section 1.2 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by half-words (16 bits) or words (32 bits). SPI control register 1 (SPI_CR1) (not used in I2S mode) 29.7.1 Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 BIDI MODE BIDI OE CRC EN CRC NEXT DFF RX ONLY rw rw rw rw rw rw 9 8 7 6 SSM SSI LSB FIRST SPE rw rw rw rw 5 4 3 BR [2:0] rw rw rw 2 1 0 MSTR CPOL CPHA rw rw rw Bit 15 BIDIMODE: Bidirectional data mode enable This bit enables half-duplex communication using common single bidirectional data line. Keep RXONLY bit clear when bidirectional mode is active. 0: 2-line unidirectional data mode selected 1: 1-line bidirectional data mode selected Note: This bit is not used in I2S mode Bit 14 BIDIOE: Output enable in bidirectional mode This bit combined with the BIDIMODE bit selects the direction of transfer in bidirectional mode 0: Output disabled (receive-only mode) 1: Output enabled (transmit-only mode) Note: In master mode, the MOSI pin is used while the MISO pin is used in slave mode. This bit is not used in I2S mode. Bit 13 CRCEN: Hardware CRC calculation enable 0: CRC calculation disabled 1: CRC calculation enabled Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation. It is not used in I2S mode. Bit 12 CRCNEXT: CRC transfer next 0: Data phase (no CRC phase) 1: Next transfer is CRC (CRC phase) Note: When the SPI is configured in full-duplex or transmitter only modes, CRCNEXT must be written as soon as the last data is written to the SPI_DR register. When the SPI is configured in receiver only mode, CRCNEXT must be set after the second last data reception. This bit should be kept cleared when the transfers are managed by DMA. It is not used in I2S mode. 976/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) Bit 11 DFF: Data frame format 0: 8-bit data frame format is selected for transmission/reception 1: 16-bit data frame format is selected for transmission/reception Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation. It is not used in I2S mode. Bit 10 RXONLY: Receive only mode enable This bit enables simplex communication using a single unidirectional line to receive data exclusively. Keep BIDIMODE bit clear when receive only mode is active. This bit is also useful in a multislave system in which this particular slave is not accessed, the output from the accessed slave is not corrupted. 0: full-duplex (Transmit and receive) 1: Output disabled (Receive-only mode) Note: This bit is not used in I2S mode Bit 9 SSM: Software slave management When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit. 0: Software slave management disabled 1: Software slave management enabled Note: This bit is not used in I2S mode and SPI TI mode Bit 8 SSI: Internal slave select This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the NSS pin and the IO value of the NSS pin is ignored. Note: This bit is not used in I2S mode and SPI TI mode Bit 7 LSBFIRST: Frame format 0: MSB transmitted first 1: LSB transmitted first Note: This bit should not be changed when communication is ongoing. It is not used in I2S mode and SPI TI mode Bit 6 SPE: SPI enable 0: Peripheral disabled 1: Peripheral enabled Note: When disabling the SPI, follow the procedure described in Section 29.3.10: Procedure for disabling the SPI. This bit is not used in I2S mode. Bits 5:3 BR[2:0]: Baud rate control 000: fPCLK/2 001: fPCLK/4 010: fPCLK/8 011: fPCLK/16 100: fPCLK/32 101: fPCLK/64 110: fPCLK/128 111: fPCLK/256 Note: These bits should not be changed when communication is ongoing. They are not used in I2S mode. RM0430 Rev 8 977/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 Bit 2 MSTR: Master selection 0: Slave configuration 1: Master configuration Note: This bit should not be changed when communication is ongoing. It is not used in I2S mode. Bit1 CPOL: Clock polarity 0: CK to 0 when idle 1: CK to 1 when idle Note: This bit should not be changed when communication is ongoing. It is not used in I2S mode and SPI TI mode except the case when CRC is applied at TI mode. Bit 0 CPHA: Clock phase 0: The first clock transition is the first data capture edge 1: The second clock transition is the first data capture edge Note: This bit should not be changed when communication is ongoing. It is not used in I2S mode and SPI TI mode except the case when CRC is applied at TI mode. 29.7.2 SPI control register 2 (SPI_CR2) Address offset: 0x04 Reset value: 0x0000 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 TXEIE RXNEIE ERRIE rw rw rw 4 3 2 FRF Res. SSOE rw rw 1 0 TXDMAEN RXDMAEN rw rw Bits 15:8 Reserved, must be kept at reset value. Bit 7 TXEIE: Tx buffer empty interrupt enable 0: TXE interrupt masked 1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set. Bit 6 RXNEIE: RX buffer not empty interrupt enable 0: RXNE interrupt masked 1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is set. Bit 5 ERRIE: Error interrupt enable This bit controls the generation of an interrupt when an error condition occurs (OVR, CRCERR, MODF, FRE in SPI mode, and UDR, OVR, FRE in I2S mode). 0: Error interrupt is masked 1: Error interrupt is enabled Bit 4 FRF: Frame format 0: SPI Motorola mode 1 SPI TI mode Note: This bit is not used in I2S mode. Bit 3 Reserved. Forced to 0 by hardware. 978/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) Bit 2 SSOE: SS output enable 0: SS output is disabled in master mode and the cell can work in multimaster configuration 1: SS output is enabled in master mode and when the cell is enabled. The cell cannot work in a multimaster environment. Note: This bit is not used in I2S mode and SPI TI mode. Bit 1 TXDMAEN: Tx buffer DMA enable When this bit is set, the DMA request is made whenever the TXE flag is set. 0: Tx buffer DMA disabled 1: Tx buffer DMA enabled Bit 0 RXDMAEN: Rx buffer DMA enable When this bit is set, the DMA request is made whenever the RXNE flag is set. 0: Rx buffer DMA disabled 1: Rx buffer DMA enabled 29.7.3 SPI status register (SPI_SR) Address offset: 0x08 Reset value: 0x0002 15 Res. 14 13 Res. Res. 12 Res. 11 Res. 10 Res. 9 Res. 8 7 6 5 4 3 2 1 0 UDR CHSIDE TXE RXNE r r r r FRE BSY OVR MODF CRC ERR r r r r rc_w0 Bits 15:9 Reserved. Forced to 0 by hardware. Bit 8 FRE: Frame Error 0: No frame error 1: Frame error occurred. This bit is set by hardware and cleared by software when the SPI_SR register is read. This bit is used in SPI TI mode or in I2S mode whatever the audio protocol selected. It detects a change on NSS or WS line which takes place in slave mode at a non expected time, informing about a desynchronization between the external master device and the slave. Bit 7 BSY: Busy flag 0: SPI (or I2S) not busy 1: SPI (or I2S) is busy in communication or Tx buffer is not empty This flag is set and cleared by hardware. Note: BSY flag must be used with caution: refer to Section 29.3.12: SPI status flags and Section 29.3.10: Procedure for disabling the SPI. Bit 6 OVR: Overrun flag 0: No overrun occurred 1: Overrun occurred This flag is set by hardware and reset by a software sequence. Refer to Section 29.3.13: SPI error flags for the software sequence. RM0430 Rev 8 979/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 Bit 5 MODF: Mode fault 0: No mode fault occurred 1: Mode fault occurred This flag is set by hardware and reset by a software sequence. Refer to Section 29.4 on page 955 for the software sequence. Note: This bit is not used in I2S mode Bit 4 CRCERR: CRC error flag 0: CRC value received matches the SPI_RXCRCR value 1: CRC value received does not match the SPI_RXCRCR value This flag is set by hardware and cleared by software writing 0. Note: This bit is not used in I2S mode. Bit 3 UDR: Underrun flag 0: No underrun occurred 1: Underrun occurred This flag is set by hardware and reset by a software sequence. Refer to Section 29.6.8: I2S error flags for the software sequence. Note: This bit is not used in SPI mode. Bit 2 CHSIDE: Channel side 0: Channel Left has to be transmitted or has been received 1: Channel Right has to be transmitted or has been received Note: This bit is not used for SPI mode and is meaningless in PCM mode. Bit 1 TXE: Transmit buffer empty 0: Tx buffer not empty 1: Tx buffer empty Bit 0 RXNE: Receive buffer not empty 0: Rx buffer empty 1: Rx buffer not empty 980/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) 29.7.4 SPI data register (SPI_DR) Address offset: 0x0C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DR[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 DR[15:0]: Data register Data received or to be transmitted. The data register is split into 2 buffers - one for writing (Transmit Buffer) and another one for reading (Receive buffer). A write to the data register will write into the Tx buffer and a read from the data register will return the value held in the Rx buffer. Note: These notes apply to SPI mode: Depending on the data frame format selection bit (DFF in SPI_CR1 register), the data sent or received is either 8-bit or 16-bit. This selection has to be made before enabling the SPI to ensure correct operation. For an 8-bit data frame, the buffers are 8-bit and only the LSB of the register (SPI_DR[7:0]) is used for transmission/reception. When in reception mode, the MSB of the register (SPI_DR[15:8]) is forced to 0. For a 16-bit data frame, the buffers are 16-bit and the entire register, SPI_DR[15:0] is used for transmission/reception. SPI CRC polynomial register (SPI_CRCPR) (not used in I2S mode) 29.7.5 Address offset: 0x10 Reset value: 0x0007 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CRCPOLY[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CRCPOLY[15:0]: CRC polynomial register This register contains the polynomial for the CRC calculation. The CRC polynomial (0007h) is the reset value of this register. Another polynomial can be configured as required. Note: These bits are not used for the I2S mode. RM0430 Rev 8 981/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 SPI RX CRC register (SPI_RXCRCR) (not used in I2S mode) 29.7.6 Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 r r r r r r r 8 7 6 5 4 3 2 1 0 r r r r r r r RXCRC[15:0] r r Bits 15:0 RXCRC[15:0]: Rx CRC register When CRC calculation is enabled, the RxCRC[15:0] bits contain the computed CRC value of the subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1 register is written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit data frame format is selected (DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY Flag is set could return an incorrect value.These bits are not used for I2S mode. SPI TX CRC register (SPI_TXCRCR) (not used in I2S mode) 29.7.7 Address offset: 0x18 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r TXCRC[15:0] r r r r r r r r r Bits 15:0 TXCRC[15:0]: Tx CRC register When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1 is written to 1. The CRC is calculated serially using the polynomial programmed in the SPI_CRCPR register. Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit data frame format is selected (DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY flag is set could return an incorrect value. These bits are not used for I2S mode. 982/1324 RM0430 Rev 8 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) SPI_I2S configuration register (SPI_I2SCFGR) 29.7.8 Address offset: 0x1C Reset value: 0x0000 15 14 13 Res. Res. Res. 12 11 ASTRE I2SMOD N rw rw 10 I2SE rw 9 8 I2SCFG rw rw 7 6 PCMSY NC Res. rw 5 4 I2SSTD rw 3 CKPOL rw rw 2 1 DATLEN rw rw 0 CHLEN rw Bits 15:13 Reserved, must be kept at reset value. Bit 12 ASTREN: Asynchronous start enable. 0: The Asynchronous start is disabled. When the I2S is enabled in slave mode, the I2S slave starts the transfer when the I2S clock is received and an appropriate transition (depending on the protocol selected) is detected on the WS signal. 1: The Asynchronous start is enabled. When the I2S is enabled in slave mode, the I2S slave starts immediately the transfer when the I2S clock is received from the master without checking the expected transition of WS signal. Note: Note: The appropriate transition is a falling edge on WS signal when I2S Philips Standard is used, or a rising edge for other standards. Bit 11 I2SMOD: I2S mode selection 0: SPI mode is selected 1: I2S mode is selected Note: This bit should be configured when the SPI or I2S is disabled Bit 10 I2SE: I2S Enable 0: I2S peripheral is disabled 1: I2S peripheral is enabled Note: This bit is not used in SPI mode. Bits 9:8 I2SCFG: I2S configuration mode 00: Slave - transmit 01: Slave - receive 10: Master - transmit 11: Master - receive Note: This bit should be configured when the I2S is disabled. It is not used in SPI mode. Bit 7 PCMSYNC: PCM frame synchronization 0: Short frame synchronization 1: Long frame synchronization Note: This bit has a meaning only if I2SSTD = 11 (PCM standard is used) It is not used in SPI mode. Bit 6 Reserved: forced at 0 by hardware RM0430 Rev 8 983/1324 986 Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 Bits 5:4 I2SSTD: I2S standard selection 00: I2S Philips standard. 01: MSB justified standard (left justified) 10: LSB justified standard (right justified) 11: PCM standard For more details on I2S standards, refer to Section 29.6.3 on page 961. Not used in SPI mode. Note: For correct operation, these bits should be configured when the I2S is disabled. Bit 3 CKPOL: Steady state clock polarity 0: I2S clock steady state is low level 1: I2S clock steady state is high level Note: For correct operation, this bit should be configured when the I2S is disabled. This bit is not used in SPI mode Bits 2:1 DATLEN: Data length to be transferred 00: 16-bit data length 01: 24-bit data length 10: 32-bit data length 11: Not allowed Note: For correct operation, these bits should be configured when the I2S is disabled. This bit is not used in SPI mode. Bit 0 CHLEN: Channel length (number of bits per audio channel) 0: 16-bit wide 1: 32-bit wide The bit write operation has a meaning only if DATLEN = 00 otherwise the channel length is fixed to 32-bit by hardware whatever the value filled in. Not used in SPI mode. Note: For correct operation, this bit should be configured when the I2S is disabled. SPI_I2S prescaler register (SPI_I2SPR) 29.7.9 Address offset: 0x20 Reset value: 0000 0010 (0x0002) 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. MCKOE ODD I2SDIV rw rw rw Bits 15:10 Reserved, must be kept at reset value. 984/1324 RM0430 Rev 8 6 5 4 3 2 1 0 RM0430 Serial peripheral interface/ inter-IC sound (SPI/I2S) Bit 9 MCKOE: Master clock output enable 0: Master clock output is disabled 1: Master clock output is enabled Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master mode. This bit is not used in SPI mode. Bit 8 ODD: Odd factor for the prescaler 0: real divider value is = I2SDIV *2 1: real divider value is = (I2SDIV * 2)+1 Refer to Section 29.6.4 on page 967. Not used in SPI mode. Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master mode. Bits 7:0 I2SDIV: I2S Linear prescaler I2SDIV [7:0] = 0 or I2SDIV [7:0] = 1 are forbidden values. Refer to Section 29.6.4 on page 967. Not used in SPI mode. Note: These bits should be configured when the I2S is disabled. It is used only when the I2S is in master mode. RM0430 Rev 8 985/1324 986 0x1C SPI_DR SPI_CRCPR SPI_RXCRCR SPI_TXCRCR SPI_I2SCFGR 0x20 986/1324 SPI_I2SPR 0 0 0 0 Reset value Reset value Reset value Reset value Reset value 0 0 0 0 0 0 Reset value Refer to Section 2.2.2 on page 58 for the register boundary addresses. RM0430 Rev 8 CHLEN 0x10 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TXEIE RXNEIE ERRIE FRF Res. SSOE TXDMAEN RXDMAEN Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SPI_CR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BIDIMODE BIDIOE CRCEN CRCNEXT DFF RXONLY SSM SSI LSBFIRST SPE MSTR CPOL CPHA BR [2:0] DATLEN 0x0C CKPOL Reset value I2SSTD 0x18 SPI_SR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FRE BSY OVR MODF CRCERR UDR CHSIDE TXE RXNE Reset value PCMSYNC Res. 0x08 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value I2SCFG 0x14 SPI_CR2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x04 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x00 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Offset Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ASTREN I2SMOD I2SE 29.7.10 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MCKOE ODD Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0430 SPI register map The table provides shows the SPI register map and reset values. Table 178. SPI register map and reset values 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 DR[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CRCPOLY[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 RxCRC[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TxCRC[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I2SDIV 0 0 0 0 0 0 0 0 1 0 RM0430 Serial audio interface (SAI) 30 Serial audio interface (SAI) 30.1 Introduction The SAI interface (serial audio interface) offers a wide set of audio protocols due to its flexibility and wide range of configurations. Many stereo or mono audio applications may be targeted. I2S standards, LSB or MSB-justified, PCM/DSP, TDM, and AC’97 protocols may be addressed for example. To bring this level of flexibility and configurability, the SAI contains two audio sub-blocks that are fully independent of each other. Each audio sub-block is connected to up to 4 pins (SD, SCK, FS, MCLK). Some of these pins can be shared if the two sub-blocks are declared as synchronous to leave some free to be used as general purpose I/Os. The MCLK pin can be output, or not, depending on the application, the decoder requirement and whether the audio block is configured as the master. The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and can work synchronously or not (with respect to the other one). RM0430 Rev 8 987/1324 1025 Serial audio interface (SAI) 30.2 Main features • Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO. • 8-word integrated FIFOs for each audio sub-block. • Synchronous or asynchronous mode between the audio sub-blocks. • Master or slave configuration independent for both audio sub-blocks. • Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode. • Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit. • Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 • Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame. • Number of bits by frame may be configurable. • Frame synchronization active level configurable (offset, bit length, level). • First active bit position in the slot is configurable. • LSB first or MSB first for data transfer. • Mute mode. • Stereo/Mono audio frame capability. • Communication clock strobing edge configurable (SCK). • Error flags with associated interrupts if enabled respectively. • • 30.3 RM0430 – Overrun and underrun detection, – Anticipated frame synchronization signal detection in slave mode, – Late frame synchronization signal detection in slave mode, – Codec not ready for the AC’97 mode in reception. Interruption sources when enabled: – Errors, – FIFO requests. DMA interface with 2 dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block. Functional block diagram The block diagram of the SAI is shown in Figure 351. 988/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) Figure 351. Functional block diagram $3% 6HULDO$XGLR,QWHUIDFH 6$, $3%LQWHUIDFH 6$,B;&5 $XGLREORFN$ ),)2FWUO ),)2 &ORFNJHQHUDWRU $XGLREORFN$ &RQILJXUDWLRQ UHJLVWHUVDQG 6WDWXVUHJLVWHU )60 ELWVKLIWUHJLVWHU $XGLREORFN% 6$,B&.B% &ORFNJHQHUDWRU $XGLREORFN% ),)2FWUO ),)2 )60 6$,B;&5 &RQILJXUDWLRQ UHJLVWHUVDQG 6WDWXVUHJLVWHU ,2OLQH0DQDJHPHQW 6$,B&.B$ V\QFKUR FWUORXW LQWBVFN LQWB)6 )6B$ 6&.B$ 6'B$ 0&/.B$ )6B% 6&.B% 6'B% 0&/.B% ELWVKLIWUHJLVWHU $3%LQWHUIDFH $3% 069 The SAI is mainly composed of two audio sub-blocks with their own clock generator. Each audio block integrates a 32-bit shift register controlled by their own functional state machine. Data are stored or read from the dedicated FIFO. FIFO may be accessed by the CPU, or by DMA in order to leave the CPU free during the communication. Each audio block is independent. They can be synchronous with each other. An I/O line controller manages each dedicated pins for a given audio block in the SAI. If the two blocks are synchronized, this controller reduces the number of I/Os used, freeing up an FS pin, an SCK pin and eventually an MCLK pin, making them general purpose I/Os. The functional state machine can be configured to address a wide range of audio protocols. Some registers are present to set-up the desired protocols (audio frame waveform generator). The audio block can be a transmitter or receiver, in master or slave mode. The master mode means the bit clock SCK and the frame synchronization signal are generated from the SAI, whereas in slave mode, they come from another external or internal master. There is a particular case for which the FS signal direction is not directly linked to the master or slave mode definition. In AC’97 protocol, it will be an SAI output even if the SAI (link controller) is set-up to consume the SCK clock (and so to be in Slave mode). RM0430 Rev 8 989/1324 1025 Serial audio interface (SAI) 30.4 RM0430 Main SAI modes Each audio sub-block of the SAI can be configured to be master or slave via bit MODE[0] in the SAI_xCR1 register of the selected audio block. In master mode: • The bit clock is generated by the SAI using the clock generator on pin SCK_A or SCK_B (depending which audio block is declared as a master in the SAI). • The dedicated pin SCK_x is considered as an output. In slave mode: • The slave must be enabled before the master is enabled. • The slave audio block’s SCK clock I/O pin is considered input if it is configured in asynchronous mode. • If the audio block is declared synchronous with the second audio block in the SAI, its SCK I/O pin is released to leave it free to be used as a general purpose I/O and is connected internally to the SCK pin of the device with which it will be synchronized. Each audio sub-block can be independently defined as a transmitter or receiver by bit MODE[1] in the SAI_xCR1 register of the relevant audio block. The I/O pin SD will be defined respectively as an output or an input. It is possible to declare two master audio blocks in the same SAI with two different MCLK and SCK clock frequencies (they have to be declared asynchronous). Each of the audio blocks in the SAI are enabled by bit SAIxEN in the SAI_xCR1 register. As soon as this bit is active, the transmitter or the receiver is sensitive to the activity on the clock line, data line and synchronization line in slave mode. In master TX mode, enabling the audio block immediately generates the bit clock for the external slaves even if there is no data in the FIFO, However FS signal generation is conditioned by the presence of data in the FIFO. After the FIFO receives the first data to transmit, this data is output to external slaves. If there is no data to transmit in the FIFO, 0 values are then sent in the audio frame with an underrun flag generation. In slave mode, the audio frame starts when the audio block is enabled and when a start of frame is detected. In Slave TX mode, no underrun event is possible on the first frame after the audio block is enabled, because the mandatory operating sequence in this case is: 990/1324 1. Write into the SAI_xDR (by software or by DMA). 2. Wait until the FIFO threshold (FLH) flag is different from 000b (FIFO empty). 3. Enable the audio block in slave transmitter mode. RM0430 Rev 8 RM0430 30.5 Serial audio interface (SAI) SAI synchronization mode Internal synchronization An audio block can be declared synchronous with the second audio block. In this case, the bit clock and the frame synchronization signals are shared to reduce the number of external pins used for the communication. The audio block declared as synchronous with the other one will see its own SCK_x, FS_x, and MCLK_x pins released to bring them back as GPIOs. The one declared asynchronous is the one for which the I/O pins FS_x and SCK_x ad MCLK_x (if the audio block is considered as master) are considered. Typically, the audio block synchronous mode may be used to configure the SAI in full duplex mode. One of the two audio blocks can be configured as master and the other as slave, or both can be slaves; with one block declared as asynchronous (respective bit SYNCEN[1:0] = 00 in SAI_xCR1) and the other one declared as synchronous with the other audio block (respective bit SYNCEN[1:0] = 01 in the SAI_xCR1). Note: APB frequency PCLK must be greater or equal to twice the bit rate clock frequency (due to internal resynchronization stages). 30.6 Audio data size The audio frame can target different data sizes by configuring bit DS[2:0] in the SAI_xCR1 register. The data sizes may be 8-, 10-, 16-, 20-, 24- or 32-bit. During the transfer, either the MSB or the LSB of the data are sent first, depending on the configuration of bit LSBFIRST in the SAI_xCR1 register. 30.7 Frame synchronization The FS signal acts as the Frame synchronization signal in the audio frame (start of frame). The shape of this signal is completely configurable in order to target the different audio protocols with their own specificities concerning this Frame synchronization behavior. This configurability is done using register SAI_xFRCR. Figure 352 gives a view of this flexibility. Figure 352. Audio frame &S LENGTH BITS &S ACTIVE LENGTH BITS &S OFFSET &S SCK SD 3LOT 3LOT 3LOT 3LOT x x 3LOT N -36 RM0430 Rev 8 991/1324 1025 Serial audio interface (SAI) RM0430 In AC’97 mode (bit PRTCFG[1:0] = 10 in the SAI_xCR1 register), the frame synchronization shape is forced to be configured to target these protocols. The SAI_xFRCR register value is ignored. Each audio block is independent and so each requires a specific configuration. 30.7.1 Frame length • Master mode: The audio frame length can be configured up to 256 bit clock, setting bit FRL[7:0] in the SAI_xFRCR register. If the frame length is greater than the number of declared slots for the frame, the remaining bits to transmit will be extended to 0 or the SD line will be released to HI-z depending the state of bit TRIS in the SAI_xCR2 register (refer to Section 30.12.4). In reception mode, the remaining bit is ignored. • Slave mode: The audio frame length is mainly used in order to specify to the slave the number of bit clocks per audio frame sent by the external master. It is used mainly to detect from the master, any anticipated or late occurrence of the Frame synchronization signal during an on-going audio frame. An error will be generated in such case. For more details please refer to the Section 30.13. The number of bits in the frame is equal to FRL[7:0] + 1. The minimum number of bits to transfer in an audio frame is 8. This is the case when the data size is 8-bit and only one slot is defined in NBSLOT[3:0] in the SAI_xSLOTR register (NBSLOT[3:0] = 0000 for slot 0). In master mode: • If bit NODIV in the SAI_xCR1 register is cleared, the frame length should be aligned to a number equal to a power of 2, from 8 to 256. This is to ensure that an audio frame contains an integer number of MCLK pulses per bit clock, which ensures correct operation of the external DAC/ADC inside the decoders. If the value set in FRL[7:0] does not respect this rule, flag WCKCFG is set when the audio block is enabled and an interrupt is generated if bit WCKCFGIE is set in the SAI_xIM register. The SAI is automatically disabled. • If bit NODIV in the SAI_xCR1 register is set, the FRL[7:0] bit can take any of the values without constraint since the input clock of the audio block should be equal to the bit clock. There is no MCLK_x clock which can be output. MCLK_x output pad is automatically disabled. In slave mode, there are no constraints for the FRL[7:0] bit configuration in the SAI_xFRCR register. 30.7.2 Frame synchronization polarity Bit FSPOL in the SAI_xFRCR register sets the active polarity of the FS pin from which a frame is started. The start of frame is edge sensitive. In slave mode, the audio block waits for a valid frame to start to transmit or to receive. Start of frame is synchronized to this signal. It is effective only if the start of frame is not detected during an on-going communication and assimilated to an anticipated start of frame (refer to Section 30.13). In master mode, the frame synchronization is sent continuously each time an audio frame is complete until the SAIxEN bit in the SAI_xCR1 register is cleared. If no data is present in the FIFO at the end of the previous audio frame, an underrun condition will be managed as described in Section 30.13), but there will be no interruption in the audio communication 992/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) flow. 30.7.3 Frame synchronization active level length Bit FSALL[6:0] in the SAI_xFRCR register configures the length of the active level of the Frame synchronization signal. The length can be set from 1 to 128 bit clock SCK. The active length may be half of the frame length in I2S, LSB or MSB-justified modes for instance, or one-bit wide for PCM/DSP or TDM mode, or even 16-bit length in AC’97. 30.7.4 Frame synchronization offset Depending on the audio protocol targeted in the application, the Frame synchronization signal can be asserted when transmitting the last bit or the first bit of the audio frame (as for instance, respectively, in I2S standard protocol and in MSB-justified protocol). Bit FSOFF in the SAI_xFRCR register makes the choice. 30.7.5 FS signal role The FS signal may have a different meaning depending on the FS function. Bit FSDEF in the SAI_xFRCR register selects which meaning it will have. It may be either: • 0: a start of frame, like for instance the PCM/DSP, TDM, AC’97, audio protocols, • 1: a start of frame and a channel side identification within the audio frame like for the I2S, the MSB or LSB-justified protocols. When the FS signal is considered as a start of frame and channel side identification within the frame, the number of declared slots must be considered to be half of the number for the left channel and half of the number for the right channel. If the number of bit clock on half audio frame is greater than the number of slots dedicated to a channel side, if TRIS = 0, 0 is sent for transmission for the remaining bit clock in the SAI_xCR2 register, otherwise if TRIS = 1, the SD line is released to HI-Z. In reception, the remaining bit clock are not considered until the channel side changes. Figure 353. FS role is start of frame + channel side identification (FSDEF = TRIS = 1) 1XPEHURIVORWVQRWDOLJQHGZLWKWKHDXGLRIUDPH $XGLRIUDPH +DOIRIIUDPH )6 VFN VORW 3LOT /. 3LOT /. 3LOT /&& 3LOT /. 3LOT /&& 3LOT /. 1XPEHURIVORWVDOLJQHGZLWKWKHDXGLRIUDPH $XGLRIUDPH +DOIRIIUDPH )6 VFN VORW 3LOT 3LOT 3LOT 3LOT 3LOT 3LOT -36 RM0430 Rev 8 993/1324 1025 Serial audio interface (SAI) RM0430 1. The frame length should be even. If bit FSDEF in SAI_xFRCR is kept clear, so FS signal is equivalent to a start of frame, and if the number of slots defined in bit NBSLOT[3:0] in SAI_xSLOTR multiplied by the number of bits by slot configured in bit SLOTSZ[1:0] in SAI_xSLOTR is less than the frame size (bit FRL[7:0] in the SAI_xFRCR register), then, • if TRIS = 0 in the SAI_xCR2 register, the remaining bit after the last slot will be forced to 0 until the end of frame in case of transmission, • if TRIS = 1, the line will be released to HI-Z during the transfer of these remaining bits. In reception mode, these bits are discarded. Figure 354. FS role is start of frame (FSDEF = 0) $XGLRIUDPH VFN VORW 6ORW 6ORW 6ORW 6ORWQ 'DWD DIWHUVORWQLI75,6 6'RXWSXWUHOHDVHG +,= DIWHUVORWQLI75,6 069 30.8 Slot configuration The slot is the basic element in the audio frame. The number of slots in the audio frame is equal to the configured setting of bit NBSLOT[3:0] in the SAI_xSLOTR register +1. The maximum number of slots per audio frame is fixed at 16. For AC’97 protocol (when bit PRTCFG[1:0] = 10), the number of slots is automatically set to target the protocol specification, and the value of NBSLOT[3:0] is ignored. Each slot can be defined as a valid slot, or not, by setting bit SLOTEN[15:0] in the SAI_xSLOTR register. In an audio frame, during the transfer of a non-valid slot, 0 value will be forced on the data line or the SD data line will be released to HI-z (refer to Section 30.12.4) if the audio block is transmitter, or the received value from the end of this slot will be ignored. Consequently, there will be no FIFO access and so no request to read or write the FIFO linked to this inactive slot status. The slot size is also configurable as shown in the Figure 355. The size of the slots is selected by setting bit SLOTSZ[1:0] in the SAI_xSLOTR register. The size is applied identically for each slot in an audio frame. 994/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) Figure 355. Slot size configuration with FBOFF = 0 in SAI_xSLOTR $XGLREORFNLVUHFHLYHU $XGLREORFNLVWUDQVPLWWHU 6ORWVL]H GDWDVL]H 6ORWVL]H GDWDVL]H VORW[ GDWDVL]H GDWDVL]H VORW[ GDWDVL]H GDWDVL]H VORW[ GDWDVL]H VORW[ GDWDVL]H ELW VORW[ ;; ELW GDWDVL]H VORW[ GDWDVL]H ELW ;;;; ELW ;GRQ¶WFDUH 069 It is possible to choose the position of the first data bit to transfer within the slots, this offset is configured by bit FBOFF[5:0] in the SAI_xSLOTR register. 0 values will be injected in transmitter mode from the beginning of the slot until this offset position is reached. In reception, the bit in the offset phase is ignored. This feature targets the LSB justified protocol (if the offset is equal to the slot size minus the data size). Figure 356. First bit offset $XGLREORFNLVWUDQVPLWWHU $XGLREORFNLVUHFHLYHU 6ORWVL]H GDWDVL]H 6ORWVL]H GDWDVL]H VORW[ VORW[ GDWDVL]H GDWDVL]H GDWDVL]H GDWDVL]H )%2)) )%2)) VORW[ ;; GDWDVL]H VORW[ ELW GDWDVL]H ;; ELW )%2)) 6/276='6 )%2)) 6/276='6 VORW[ GDWDVL]H VORW[ ;;;; GDWDVL]H ELW ;GRQ¶WFDUH ELW 069 It is mandatory to respect the following conditions in order to avoid bad SAI behavior: FBOFF ≤(SLOTSZ - DS), DS ≤SLOTSZ, NBSLOT x SLOTSZ ≤FRL (frame length), The number of slots should be even when bit FSDEF in the SAI_xFRCR register is set. In AC’97 (bit PRTCFG[1:0] = 10), the slot size is automatically set as defined in Section 30.11. RM0430 Rev 8 995/1324 1025 Serial audio interface (SAI) 30.9 RM0430 SAI clock generator Each audio block has its own clock generator to make these two blocks completely independent. There is no difference in terms of functionality between these two clock generators. They are exactly the same. When the audio block is defined as Master, the clock generator generates the communication clock (the bit clock) and the master clock for external decoders. When the audio block is defined as slave, the clock generator is OFF. Figure 357 illustrates the architecture of the audio block clock generator. Figure 357. Audio block clock generator overview 12',9 0&/.B[ 0&.',9>@ 6$,B&.B[ 0DVWHUFORFN GLYLGHU 12',9 )5/>@ %LWFORFNGLYLGHU 12',9 6&.B[ 069 Note: If NoDiv is set to 1, the MCLK_x signal will be set at 0 level if this pin is configured as the SAI pin in GPIO peripherals. The clock source for the clock generator comes from the product clock controller. The SAI_CK_x clock is equivalent to the master clock which may be divided for the external decoders using bit MCKDIV[3:0]: MCLK_x = SAI_CK_x / (MCKDIV[3:0] * 2), if MCKDIV[3:0] is not equal to 0000. MCLK_x = SAI_CK_x, if MCKDIV[3:0] is equal to 0000. MCLK_x signal is used only in TDM. The division must be even in order to keep 50% on the Duty cycle on the MCLK output and on the SCK_x clock. If bit MCKDIV[3:0] = 0000, division by one is applied to have MCLK_x = SAI_CK_x. In the SAI, the single ratio MCLK/FS = 256 is considered. Mostly, three frequency ranges will be encountered as illustrated in the Table 179. 996/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) Table 179. Example of possible audio frequency sampling range Input SAI_CK_x clock frequency 192 kHz x 256 44.1 kHz x 256 SAI_CK_x = MCLK(1) Most usual audio frequency sampling achievable MCKDIV[3:0] 192 kHz MCKDIV[3:0] = 0000 96 kHz MCKDIV[3:0] = 0001 48 kHz MCKDIV[3:0] = 0010 16 kHz MCKDIV[3:0] = 0100 8 kHz MCKDIV[3:0] = 1000 44.1 kHz MCKDIV[3:0] = 0000 22.05 kHz MCKDIV[3:0] = 0001 11.025 kHz MCKDIV[3:0] = 0010 MCLK MCKDIV[3:0] = 0000 1. This may happen when the product clock controller selects an external clock source, instead of PLL clock. The master clock may be generated externally on an I/O pad for external decoders if the corresponding audio block is declared as master with bit NODIV = 0 in the SAI_xCR1 register. In slave, the value set in this last bit is ignored since the clock generator is OFF, and the MCLK_x I/O pin is released for use as a general purpose I/O. The bit clock is derived from the master clock. The bit clock divider sets the divider factor between the bit clock SCK_x and the master clock MCLK_x following the formula: SCK_x = MCLK x (FRL[7:0] +1) / 256 where: 256 is the fixed ratio between MCLK and the audio frequency sampling. FRL[7:0] is the number of bit clock - 1 in the audio frame, configured in the SAI_xFRCR register. It is mandatory in master mode that (FRL[7:0] +1) should be equal to a number with a power of 2 (refer to Section 30.7) in order to have an even integer number of MCLK_x pulses by bit clock. The 50% duty cycle is guaranteed on the bit clock SCK_x. The SAI_CK_x clock can be also equal to the bit clock frequency. In this case, bit NODIV in the SAI_xCR1 register should be set and the value inside the MCKDIV divider and the bit clock divider will be ignored. In this case, the number of bits per frame is fully configurable without the need to be equal to a power of two. The bit clock strobing edge on SCK can be configured by bit CKSTR in the SAI_xCR1 register. 30.10 Internal FIFOs Each audio block in the SAI has its own FIFO. Depending if the block is defined to be a transmitter or a receiver, the FIFO will be written or read, respectively. There is therefore only one FIFO request linked to FREQ bit in the SAI_xSR register. RM0430 Rev 8 997/1324 1025 Serial audio interface (SAI) RM0430 An interrupt is generated if FREQIE bit is enabled in the SAI_xIM register. This depends on: • FIFO threshold setting (FLTH bits in SAI_CR2) • Communication direction transmitter or receiver (see Section : Interrupt generation in transmitter mode and Section : Interrupt generation in reception mode) Interrupt generation in transmitter mode The interrupt generation depends on the FIFO configuration in transmitter mode: • When the FIFO threshold bits in SAI_XCR2 register are configured as FIFO empty (FTH[2:0] set to 000b), an interrupt is generated (FREQ bit set by hardware to 1 in SAI_XSR register) if no data are available in SAI_xDR register (FLTH[2:0] bits in SAI_xSR is less than 001b). This Interrupt (FREQ bit in SAI_XSR register) is cleared by hardware when the FIFO became not empty (FLTH[2:0] bits in SAI_xSR are different from 000b) i.e one or more data are stored in the FIFO. • When the FIFO threshold bits in SAI_XCR2 register are configured as FIFO quarter full (FTH[2:0] set to 001b), an interrupt is generated (FREQ bit set by hardware to 1 in SAI_XSR register) if less than a quarter of the FIFO contains data (FLTH[2:0] bits in SAI_xSR are less than 010b). This Interrupt (FREQ bit in SAI_XSR register) is cleared by hardware when at least a quarter of the FIFO contains data (FLTH[2:0] bits in SAI_xSR are higher or equal to 010b). • When the FIFO threshold bits in SAI_XCR2 register are configured as FIFO half full (FTH[2:0] set to 010b), an interrupt is generated (FREQ bit set by hardware to 1 in SAI_XSR register) if less than half of the FIFO contains data (FLTH[2:0] bits in SAI_xSR are less than 011b). This Interrupt (FREQ bit in SAI_XSR register) is cleared by hardware when at least half of the FIFO contains data (FLTH[2:0] bits in SAI_xSR are higher or equal to 011b). • When the FIFO threshold bits in SAI_XCR2 register are configured as FIFO three quarter (FTH[2:0] set to 011b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_XSR register) if less than three quarters of the FIFO contain data (FLTH[2:0] bits in SAI_xSR are less than 100b). This Interrupt (FREQ bit in SAI_XSR register) is cleared by hardware when at least three quarters of the FIFO contain data (FLTH[2:0] bits in SAI_xSR are higher or equal to 100b). • When the FIFO threshold bits in SAI_XCR2 register are configured as FIFO full (FTH[2:0] set to 100b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_XSR register) if the FIFO is not full (FLTH[2:0] bits in SAI_xSR is less than 101b). This Interrupt (FREQ bit in SAI_XSR register) is cleared by hardware when the FIFO is full (FLTH[2:0] bits in SAI_xSR is equal to 101b value). Interrupt generation in reception mode The interrupt generation depends on the FIFO configuration in reception mode: • When the FIFO threshold bits in SAI_XCR2 register are configured as FIFO empty (FTH[2:0] set to 000b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_XSR register) if at least one data is available in SAI_xDR register(FLTH[2:0] bits in SAI_xSR is higher or equal to 001b). This Interrupt (FREQ bit in SAI_XSR register) is cleared by hardware when the FIFO became empty (FLTH[2:0] bits in SAI_xSR is equal to 000b) i.e no data is stored in FIFO. • When the FIFO threshold bits in SAI_XCR2 register are configured as FIFO quarter fully (FTH[2:0] set to 001b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_XSR register) if at less one quarter of the FIFO data locations are available 998/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) (FLTH[2:0] bits in SAI_xSR is higher or equal to 010b). This Interrupt (FREQ bit in SAI_XSR register) is cleared by hardware when less than a quarter of the FIFO data locations become available (FLTH[2:0] bits in SAI_xSR is less than 010b). • When the FIFO threshold bits in SAI_XCR2 register are configured as FIFO half fully (FTH[2:0] set to 010b value), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_XSR register) if at least half of the FIFO data locations are available (FLTH[2:0] bits in SAI_xSR is higher or equal to 011b). This Interrupt (FREQ bit in SAI_XSR register) is cleared by hardware when less than half of the FIFO data locations become available (FLTH[2:0] bits in SAI_xSR is less than 011b). • When the FIFO threshold bits in SAI_XCR2 register are configured as FIFO three quarter full(FTH[2:0] set to 011b value), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_XSR register) if at least three quarters of the FIFO data locations are available (FLTH[2:0] bits in SAI_xSR is higher or equal to 100b). This Interrupt (FREQ bit in SAI_XSR register) is cleared by hardware when the FIFO has less than three quarters of the FIFO data locations avalable(FLTH[2:0] bits in SAI_xSR is less than 100b). • When the FIFO threshold bits in SAI_XCR2 register are configured as FIFO full(FTH[2:0] set to 100b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_XSR register) if the FIFO is full (FLTH[2:0] bits in SAI_xSR is equal to 101b). This Interrupt (FREQ bit in SAI_XSR register) is cleared by hardware when the FIFO is not full (FLTH[2:0] bits in SAI_xSR is less than 101b). Like interrupt generation, the SAI can use the DMA if DMAEN bit in the SAI_xCR1 register is set. The FREQ bit assertion mechanism is the same as the interruption generation mechanism described above for FREQIE. Each FIFO is an 8-word FIFO. Each read or write operation from/to the FIFO targets one word FIFO allocation whatever the access size. Each FIFO word contains one audio frame. FIFO pointers are incremented by one word after each access to the SAI_xDR register. Data should be right aligned when it is written in the SAI_xDR. Data received will be right aligned in the SAI_xDR. The FIFO pointers can be reinitialized when the SAI is disabled by setting bit FFLUSH in the SAI_xCR2 register. If FFLUSH is set when the SAI is enabled the data present in the FIFO will be lost automatically. RM0430 Rev 8 999/1324 1025 Serial audio interface (SAI) 30.11 RM0430 AC’97 link controller The SAI is able to work as an AC’97 link controller. In this protocol: • The slot number and the slot size are fixed. • The frame synchronization signal is perfectly defined and has a fixed shape. To select this protocol, set bit PRTCFG[1:0] in the SAI_xCR1 register to 10. When AC’97 mode is selected the data sizes that can be used are 16-bit or 20-bit only, else SAI behavior is not guaranteed. • Bits NBSLOT[3:0] and SLOTSZ[1:0] are consequently ignored. • The number of slots is fixed at 13 slots. The first one is 16 bits wide and all the others are 20 bits wide (data slots). • Bit FBOFF[5:0] in the SAI_xSLOTR register is ignored • The SAI_xFRCR register is ignored. The FS signal from the block defined as asynchronous is configured automatically as an output, since the AC’97 controller link drives the FS signal whatever the master or slave configuration. Figure 358 presents an AC’97 audio frame structure. Figure 358. AC’97 audio frame )6 6', 7DJ 6'2 7DJ &0' &0' 3&0 3&0 /,1( 3&0 3&0 3&0 $''5 '$7$ /)5217 5)5217 '$& &(17(5 /6855 56855 67$786 67$786 3&0 3&0 $''5 '$7$ /()7 5,*+7 /,1( $'& 3&0 0,& 565 9' 565 9' 3&0 /)( /,1( '$& +6(7 '$& ,2 &75/ 565 /9' /,1( $'& +6(7 ,2 67$786 069 Note: In AC’97 protocol, bit 2 of the tag is reserved (always 0), so whatever the value written in the SAI FIFO, bit 2 of the TAG is forced to 0 level. For more details about TAG representation, please refer to the AC’97 protocol standard. One SAI can be used to target an AC’97 point-to-point communication. In receiver mode, the SAI acting as an AC’97 link controller will require no FIFO request and so no data storage in the FIFO when the codec ready bit in the slot 0 is decoded low. If bit CNRDYIE is enabled in the SAI_xIM register, flag CNRDY will be set in the SAI_xSR register and an interrupt is generated. This flag is dedicated to the AC’97 protocol. 30.12 Specific features The SAI has some specific functions which can be useful depending on the audio protocol selected. These functions are accessible through specific bits in the SAI_xCR2 register. 1000/1324 RM0430 Rev 8 RM0430 30.12.1 Serial audio interface (SAI) Mute mode Mute mode may be used when the audio block is a transmitter or receiver. Transmitter In transmitter mode, Mute mode can be selected at anytime. Mute mode is active for entire audio frames. The bit MUTE in the SAI_xCR2 register requests Mute mode when it is set during an on-going frame. The mute mode bit is strobed only at the end of the frame. If set at this time, the mute mode is active at the beginning of the new audio frame, for a complete frame, until the next end of frame, it then strobes the bit to determine if the next frame will still be a mute frame. If the number of slots set in bit NBSLOT[3:0] in the SAI_xSLOTR register is lower than or equal to two, it is possible to specify if the value sent during the Mute mode is 0 or if it is the last value of each slot. The selection is done via bit MUTEVAL in the SAI_xCR2 register. If the number of slots set in bit NBSLOT[3:0] in the SAI_xSLOTR register is greater than two, MUTEVAL bit in the SAI_xCR2 has no meaning as 0 values are sent on each bit on each slot. During Mute mode, the FIFO pointers are still incremented, meaning that data which was present in the FIFO and for which the Mute mode is requested is discarded. Receiver In receiver mode, it is possible to detect a Mute mode sent from the external transmitter when all the declared and valid slots of the audio frame receive 0 for a given consecutive number of audio frames (bit MUTECNT[5:0] in the SAI_xCR2 register). When the number of MUTE frames is detected, flag MUTEDET in the SAI_xSR register is set and an interrupt can be generated if bit MUTEDETIE is set in the SAI_xCR2. The mute frame counter is cleared when the audio block is disabled or when a valid slot receives at least one data in an audio frame. The interrupt is generated just once, when the counter reaches the specified value in bit MUTECNT[5:0]. Then the interrupt event is rearmed when the counter is cleared. 30.12.2 MONO/STEREO function In transmission mode, it is possible to address the Mono mode without any data preprocessing in memory when the number of slot is equal to 2 (NBSLOT[3:0] = 0001 in the SAI_xSLOTR). In such a case, the access to and from the FIFO will be reduced by two since in transmission, the data for slot 0 is duplicated into data slot 1. To select the Mono feature, set bit MONO in the SAI_xCR1 register. In reception mode, bit MONO can be set and has a meaning only if the number of slots is equal to 2 like for the transmission mode. When it is set, only the data of slot 0 will be stored in the FIFO. The data belonging to slot 1 will be discarded since in this case, it is supposed to be the same as the previous slot. If the data flux in reception is a real stereo audio flow with a distinct and different left and right data, bit MONO has no meaning. The conversion from the output stereo file to the equivalent mono file is done by software. Note: To enable Mono mode, NBSLOT and SLOTEN must equal two and MONO bit set to 1. RM0430 Rev 8 1001/1324 1025 Serial audio interface (SAI) 30.12.3 RM0430 Companding mode Telecommunication applications may require to process the data to transmit or to receive with a data companding algorithm. Depending on the COMP[1:0] bit in the SAI_xCR2 register (used only when TDM mode is selected), the software may choose to process or not the data before sending it on SD serial output line (compression) or to expand the data after the reception on SD serial input line (expansion) as illustrated in Figure 359,.The two companding modes supported are the µLaw and the A-Law log which are a part of the CCITT G.711 recommendation. The companding standard employed in the United States and Japan is the µ-Law and allows 14 bits of dynamic range (COMP[1:0] = 10 in the SAI_xCR2 register). The European companding standard is A-Law and allows 13 bits of dynamic range (COMP[1:0] = 11 in the SAI_xCR2 register). Companding standard (µ-Law or A-Law) can be computed based on 1’s complement or 2’s complement representation depending on the CPL bit setting in the SAI_xCR2 register. The µ-Law and A-Law formats encode data into 8-bit code elements with MSB alignment. Companded data is always 8 bits wide. For this reason, bit DS[2:0] in the SAI_xCR1 register will be forced to 010 when the SAI audio block is enabled (bit SAIxEN = 1 in the SAI_xCR1 register) and when the COMP[1:0] bit selects one of these two companding modes. If no companding processing is required, COMP[1:0] bit in the SAI_xCR2 register should be kept cleared. Figure 359. Data companding hardware in an audio block in the SAI 5HFHLYHUPRGH ELW02'(>@ LQ6$,B[&5 &203>@ ),)2 6' H[SDQG ELWVKLIWUHJLVWHU 7UDQVPLWWHUPRGH ELW02'(>@ LQ6$,B[&5 ),)2 FRPSUHVV 6' ELWVKLIWUHJLVWHU &203>@ 069 Note: Not applicable when AC’97 selected. Expansion or compression mode is automatically selected by the SAI configuration. 1002/1324 • If the SAI audio block is configured to be a transmitter, and if the COMP[1] bit is set in the SAI_xCR2 register, the compression mode will be applied. • If the SAI audio block is declared as a receiver, the expansion algorithm will be applied. RM0430 Rev 8 RM0430 30.12.4 Serial audio interface (SAI) Output data line management on an inactive slot In transmitter mode, it is possible to choose the behavior of the SD line in output when an inactive slot is sent on the data line (via bit TRIS in the SAI_xCR2 register when the SAI is disabled). • Either the SAI forces 0 on the SD output line when an inactive slot is transmitted, or • The line is released in HI-z state at the end of the last bit of data transferred, to release the line for other transmitters connected to this node. It is important to note that the two transmitters do not attempt to drive the same SD output pin simultaneously, which could result in a short circuit. In order to ensure a gap between transmissions, if the data is lower than 32-bit, the data can be extended to 32-bit by setting bit SLOTSZ[1:0] = 10 in the SAI_xSLOTR register. Then, the SD output pin will be tristated at the end of the LSB of the active slot (during the padding to 0 phase to extend the data to 32-bit) if the following slot is declared inactive. In addition, if the number of slots multiplied by the slot size is lower than the frame length, the SD output line will be tristated when the padding to 0 is done to complete the audio frame. Figure 360 illustrates these behaviors. RM0430 Rev 8 1003/1324 1025 Serial audio interface (SAI) RM0430 Figure 360. Tristate strategy on SD output line on an inactive slot %LW75,6 LQWKH6$,B[&5DQGIUDPHOHQJWK QXPEHURIVORWV $XGLRIUDPH SCK 6ORWVL]H GDWDVL]H 3LOT /. VORW 6' RXWSXW 3LOT /&& 3LOT /&& $ATA 3LOT /. $ATA /. /. 3LOT N /. $ATA M 6ORWVL]H!GDWDVL]H VORW 3LOT /. 6' RXWSXW VORW 3LOT /&& 3LOT /&& $ATA $ATA 3LOT /. 3LOT /. 3LOT /&& 3LOT /&& 6' RXWSXW 3LOT /. $ATA /. /. /. /. 3LOT N /. $ATA M 3LOT N /. $ATA M %LW75,6 LQWKH6$,B[&5DQGIUDPHOHQJWK!QXPEHURIVORWV $XGLRIUDPH SCK 6ORWVL]H GDWDVL]H VORW 6' RXWSXW 3LOT /. 3LOT /&& 3LOT /&& $ATA /. 3LOT N /. $ATA M 6ORWVL]H!GDWDVL]H VORW 6' RXWSXW VORW 6' RXWSXW 3LOT /. 3LOT /&& 3LOT /&& $ATA 3LOT /. /. 3LOT /&& 3LOT /&& /. 3LOT N /. $ATA M /. $ATA M 069 When the selected audio protocol uses the FS signal as a start of frame and a channel side identification (bit FSDEF = 1 in the SAI_xFRCR register), the tristate mode is managed according to Figure 361 (where bit TRIS in the SAI_xCR1 register = 1, and FSDEF=1, and half frame length > number of slots/2, and NBSLOT=6). 1004/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) Figure 361. Tristate on output data line in a protocol like I2S SCK 6ORWVL]H GDWDVL]H VORW 6' RXWSXW 3LOT /. 3LOT /&& $ATA 3LOT /. 3LOT /. $ATA $ATA 3LOT /&& 3LOT /. $ATA 6ORWVL]H!GDWDVL]H VORW 6' RXWSXW VORW 6' RXWSXW 3LOT /. 3LOT /&& $ATA 3LOT /. $ATA 3LOT /. 3LOT /&& $ATA 3LOT /. 3LOT /&& $ATA 3LOT /. 3LOT /. $ATA 3LOT /. $ATA 3LOT /&& 3LOT /. $ATA M 069 If the TRIS bit in the SAI_xCR2 register is cleared, all the High impedance states on the SD output line on Figure 360 and Figure 361 are replaced by a drive with a value of 0. 30.13 Error flags The SAI embeds some error flags: 30.13.1 – FIFO overrun/underrun, – Anticipated frame synchronization detection, – Late frame synchronization detection, – Codec not ready (AC’97 exclusively), – Wrong clock configuration in master mode. FIFO overrun/underrun (OVRUDR) The FIFO Overrun/Underrun bit is called OVRUDR in the SAI_xSR register. The overrun or underrun errors occupy the same bit since an audio block can be either receiver or transmitter and each audio block in an SAI has its own SAI_xSR register. Overrun When the audio block is configured as receiver, an overrun condition may appear if data is received in an audio frame when the FIFO is full and is not able to store the received data. In this case, the received data is lost, the flag OVRUDR in the SAI_xSR register is set and an interrupt is generated if bit OVRUDRIE is set in the SAI_xIM register. The slot number from which the overrun occurs, is stored internally. No more data will be stored into the FIFO until it becomes free to store new data. When the FIFO has at least one data free, the SAI audio block receiver will store new data (from new audio frame) from the slot number which RM0430 Rev 8 1005/1324 1025 Serial audio interface (SAI) RM0430 was stored internally when the overrun condition was detected, and this, to avoid data slot de-alignment in the destination memory (refer to Figure 362). The OVRUDR flag is cleared when bit COVRUDR is set in the SAI_xCLRFR register. Figure 362. Overrun detection error ([DPSOH),)2RYHUUXQRQ6ORW $XGLRIUDPH $XGLRIUDPH VFN GDWD 6ORW21 6ORW21 3LOT /. 6ORW21 6ORW21 21 6ORWQ21 ),)2IXOO 5HFHLYHGGDWDGLVFDUGHG 'DWDVWRUHGDJDLQLQ),)2 2958'5 &2958'5 069 Underrun An underrun may occur when the audio block in the SAI is a transmitter and the FIFO is empty when data needs to be transmitted (the audio block configuration (Master or Slave) is not relevant). If an underrun is detected, the software must resynchronize data and slot. Proceed as follows: 1. Disable the SAI peripheral by resetting the SAIEN bit of the SAI_xCR1 register. Check that the SAI has been disabled by reading back the SAIEN bit (SAIEN should be equal to 0). 2. Flush the Tx FIFO through the FFLUS bit of the SAI_xCR2 register. 3. Re-assigned to the correct data to be transferred on the first active slot of the new frame. 4. Re-enabling the SAI peripheral (SAIEN bit set to 1). The underrun event sets the OVRUDR flag in the SAI_xSR register and an interrupt is generated if the OVRUDRIE bit is set in the SAI_xIM register. To clear this flag, set the COVRUDR bit in the SAI_xCLRFR register. 1006/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) Figure 363. FIFO underrun event ([DPSOH),)2XQGHUUXQRQ6ORW $XGLRIUDPH $XGLRIUDPH VFN 3LOT SIZE DATA SIZE GDWD 6' RXWSXW 6ORW21 087( 087( 087( 6ORW21 21 6ORW21 ),)2HPSW\ 29581' 29581' -36 30.13.2 Anticipated frame synchronisation detection (AFSDET) This flag AFSDET is used only in Slave mode. In master mode, it is never asserted. It informs about the detection of a frame synchronisation (FS) earlier than expected since the frame length, the frame polarity, the frame offset are defined and known. Early detection sets flag AFSDET in the SAI_xSR register. This detection has no effect on the current audio frame which is not sensitive to the anticipated FS. This means that “parasitic” events on signal FS are flagged without any perturbation of the current audio frame. If bit AFSDETIE is set in the SAI_xIM register, an interrupt is generated. To clear the flag AFSDET, bit CAFSDET in the SAI_xCLRFR register has to be set. To resynchronize with the master after Anticipated frame detection error, four steps should be respected: 1. SAI block should be disabled by resetting SAIEN bit in SAI_xCR1 register, to be sure that the SAI is disabled SAIEN bit is should be equal to 0 (reading back this bit). 2. FIFO should be flushed via FFLUS bit in SAI_xCR2 register. 3. Re-enabling the SAI peripheral (SAIEN bit set to 1) then the SAI. 4. SAI block will wait for the assertion on FS to restart the synchronization with master. Note: This flag is not asserted in AC’97 since the SAI audio block acts as a link controller and generates the FS signal even when declared as slave. 30.13.3 Late frame synchronization detection Flag LFSDET in the SAI_xSR register can be set only when the SAI audio block is defined as slave. The frame length, the frame polarity and the frame offset configuration are known in register SAI_xFRCR. If the external master does not send the FS signal at the expecting time (generating the signal too late), the flag LFSDET in the SAI_xSR register will be set and an interrupt is generated if bit LFSDETIE in the SAI_xIM register is set. The flag is cleared when bit CLFSDET is set in the SAI_xCLRFR register. RM0430 Rev 8 1007/1324 1025 Serial audio interface (SAI) RM0430 The late frame synchronisation detection flag is set when the error is detected, SAI needs to be resynchronized with the master (the four steps described above should be respected). This detection and flag assertion can detect glitches on the SCK clock in a noisy environment, detected by the state machine of the audio block. It could incorrectly shift the SAI audio block state machine from one state in the current audio frame, thus corrupting the frame. There is no corruption if the external master is not managing the audio data frame transfer in a continuous mode, which should not be the case for most application purposes. In this case, flag LFSDET will be set. Note: This flag is not asserted in AC’97 mode since the SAI audio block acts as a link controller and generates the FS signal even when declared as slave. 30.13.4 Codec not ready (CNRDY AC’97) The flag CNRDY in the SAI_xSR register is relevant only if the SAI audio block is configured to work in AC’97 mode (bit PRTCFG[1:0] = 10 in the SAI_xCR1 register). If bit CNRDYIE is set in the SAI_xIM register, an interrupt will be generated when the flag CNRDY is set. It is asserted when the codec is not ready to communicate during the reception of the TAG 0 (slot0) of the AC’97 audio frame. In this case, there will be no data automatically stored into the FIFO since the codec is not ready, until the TAG 0 indicates that the codec is ready. All the active slots defined in the SAI_xSLOTR register will be captured when the codec is ready. To clear the flag, bit CCNRDY in the SAI_xCLRFR register has to be set. 30.13.5 Wrong clock configuration in master mode (with NODIV = 0) When the audio block is master (MODE[1] = 0 in the SAI_xCR1 register) and if bit NODIV in the SAI_xCR1 is clear, the flag WCKCFG will be set if bit FRL[7:0] in the SAI_xFRCR is not set with a proper value when the SAIxEN bit in the SAI_xCR1 register is set, in order to respect this following rule: ( FRL[7,0] ) + 1 = 2 n where n is in the range from 3 to 8. If bit WCKCFGIE is set, an interrupt is generated when flag WCKCFG is set in the SAI_xSR register. To clear the flag, set bit CWCKCFG bit in the SAI_xCLRFR register. When bit WCKCFG is set, the audio block is automatically disabled, clearing bit SAIxEN in the SAI_xCR1 register via hardware. The above formula is intended to guarantee that the number of MCLK pulses by bit clock is an even integer in the audio frame with a 50% duty cycle bit clock generation to guarantee the good quality of the audio sounds or acquisitions. 30.14 Interrupt sources The SAI has 7 possible interrupt sources as illustrated by Table 180. 1008/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) Table 180. Interrupt sources Interrupt source Interru pt group Audio block mode Interrupt enable Interrupt clear Depend on: FREQ FREQ Master or Slave Receiver or transmitter FREQIE in SAI_xIM register - FIFO threshold setting (FLTH bits in SAI_CR2) - Communication direction transmitter or receiver for more details please refer to Internal FIFOs section OVRUDR ERROR Master or Slave Receiver or transmitter OVRUDRIE in SAI_xIM register COVRUDR = 1 in SAI_xCLRFR register AFSDET Slave ERROR (Not used in AC’97 mode) AFSDETIE in SAI_xIM register CAFSDET = 1 in SAI_xCLRFR register LFSDET Slave ERROR (Not used in AC’97 mode) LFSDETIE in SAI_xIM register CLFSDET = 1 in SAI_xCLRFR register CNRDY ERROR Slave (Only in AC’97 mode) CNRDYIE in SAI_xIM register CCNRDY = 1 in SAI_xCLRFR register Master or slave Receiver mode only MUTEDETIE in SAI_xIM register CMUTEDET = 1 in SAI_xCLRFR register WCKCFGIE in SAI_xIM register CWCKCFG = 1 in SAI_xCLRFR register MUTEDE MUTE T Master with NODIV = 0 WCKCFG ERROR in the SAI_xCR1 register Below are the SAI configuration steps to follow when an interrupt occurs: 30.15 1. Disable SAI interrupt. 2. Configure SAI. 3. Configure SAI interrupt source. 4. Enable SAI. Disabling the SAI The audio block in the SAI can be disabled at any moment by clearing bit SAIxEN in the SAI_xCR1 register. All the frames that have already started will be automatically completed before the total extinction of the SAI. Bit SAIxEN in the SAI_xCR1 register will stay high until the SAI is completely switched-off at the end of the current audio frame transfer. If there is an audio block in the SAI synchronous with the other one, the one which is the master must be disabled first. RM0430 Rev 8 1009/1324 1025 Serial audio interface (SAI) 30.16 RM0430 SAI DMA interface In order to free the CPU and to optimize the bus bandwidth, each SAI audio block has an independent DMA interface in order to read or to write into the SAI_xDR register (to hit the internal FIFO). There is one DMA channel per audio block following basic DMA request/acknowledge protocol. To configure the audio block to transfer through the DMA interface, set bit DMAEN in the SAI_xCR1 register. The DMA request is managed directly by the FIFO controller depend of FIFO threshold level (for more details please refer to Internal FIFOs section). DMA direction is linked to the SAI audio block configuration: • If the audio block is a transmitter, the audio block’s FIFO controller outputs a DMA request to load the FIFO with data written in the SAI_xDR register. • If the audio block is a receiver, the DMA request will concern read operations from the SAI_xDR register. Below are the SAI configuration steps followed when DMA is used: Note: 1010/1324 1. Configure SAI and FIFO Threshold level (in order to specify when the DMA request to be launched) 2. Configure SAI DMA channel 3. Enable DMA 4. Enable SAI Before configuring the SAI block, the SAI DMA channel must be disabled. RM0430 Rev 8 RM0430 Serial audio interface (SAI) 30.17 SAI registers 30.17.1 SAI xConfiguration register 1 (SAI_xCR1) where x is A or B Address offset: Block A: 0x004 Address offset: Block B: 0x024 Reset value: 0x0000 0040 31 30 29 28 27 26 25 24 23 22 14 Reserved 13 12 OutDri MONO v rw rw 11 10 SYNCEN[1:0] rw 20 MCKDIV[3:0] Reserved 15 21 9 8 CKSTR LSBFIR ST rw rw rw 19 NODIV rw rw rw rw rw 7 6 5 4 3 DS[2:0] rw rw Res. rw 18 Res. 2 17 16 DMAEN SAIxEN rw rw 1 0 PRTCFG[1:0] MODE[1:0] rw rw rw rw Bits 31:24 Reserved, always read as 0. Bit 23:20 MCKDIV[3:0]: Master clock divider. These bits are set and cleared by software. 0000: Divides by 1 the master clock input. Otherwise, The Master clock frequency is calculated accordingly to the following formula: MCLK_x = SAI_CK_x / (MCKDIV[3:0] * 2) These bits have no meaning when the audio block is slave. They have to be configured when the audio block is disabled. Bit 19 NODIV: No divider. This bit is set and cleared by software. 0: Master Clock divider is enabled 1: No divider used in the clock generator (in this case Master Clock Divider bit has no effect) Bit 18 Reserved, always read as 0. Bit 17 DMAEN: DMA enable. This bit is set and cleared by software. 0: DMA is disabled 1: DMA is enabled Note: In receiver mode, the bits MODE must be configured before setting bit DMAEN to avoid a DMA request since the audio block is transmitter after reset (default setting) Bit 16 SAIxEN: Audio block enable where x is A or B. This bit is set by software. It is cleared by hardware, after disabling it by software (writing the bit low), the audio is completely disabled (waiting for the end of the current frame). 0: Audio block is disabled 1: Audio block is enabled: this bit can be set only if it is at 0 during the write operation (means the SAI is completely disabled before being re-enabled). This bit allows to control the state of the audio block. If it is disabled somewhere in an audio frame, the on-going transfer will be completed and the cell will be totally disabled at the end of this audio frame transfer. Note: When SAIx block is configured as master mode, clock must be present on the input of the SAI before setting SAIxEN bit. Bits 15:14 Reserved, always read as 0. Bit 13 OUTDRIV: Output drive. This bit is set and cleared by software. 0: Audio block output driven when SAIEN is set 1: Audio block output driven immediately after the setting of this bit. Note: This bit has to be set before enabling the audio block but after the audio block configuration. RM0430 Rev 8 1011/1324 1025 Serial audio interface (SAI) RM0430 Bit 12 MONO: Mono mode. This bit is set and cleared by software. 0: Stereo mode 1: Mono mode. This bit has a meaning only when the number of slots is equal to 2. When the Mono mode is selected, the data of the slot 0 data is duplicated on the slot 1 when the audio block is a transmitter. In reception mode, the slot1 is discarded and only the data received from the slot 0 will be stored. Refer to Section 30.12.2 for more details. Bits 11:10 SYNCEN[1:0]: Synchronization enable. This bit is set and cleared by software. 00: audio block is asynchronous. 01: audio block is synchronous with the other internal audio block. In this case audio block should be configured in Slave mode 10: Reserved. 11: Not used These bits have to be configured when the audio block is disabled. Bit 9 CKSTR: Clock strobing edge. This bit is set and cleared by software. 0: data strobing edge is falling edge of SCK 1: data strobing edge is rising edge of SCK This bit has to be configured when the audio block is disabled. Bit 8 LSBFIRST: Least significant bit first. This bit is set and cleared by software. 0: data is transferred with the MSB of the data first 1: data is transferred with the LSB of the data first This bit has to be configured when the audio block is disabled. This bit has no meaning in AC’97 audio protocol since in AC’97 data is transferred with the MSB of the data first. Bits 7:5 DS[2:0]: Data size. These bits are set and cleared by software. 000: Not used 001: Not used 010: 8-bit 011: 10-bit 100: 16-bit 101: 20-bit 110: 24-bit 111: 32-bit When the companding mode is selected (bit COMP[1:0]), these DS[1:0] are ignored since the data size is fixed to 8-bit mode by the algorithm itself. These bits must be configured when the audio block is disabled. Note: When AC’97 mode is selected the data sizes that can be used are: 16-bit or 20-bit only, else SAI behavior is not guaranteed. 1012/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) Bit 4 Reserved, always read as 0. Bits 3:2 PRTCFG[1:0]: Protocol configuration. These bits are set and cleared by software. 00: Free protocol 01: Not used 10: AC’97 protocol 11: Not used Free protocol selection allows to use the powerful configuration of the audio block to address a specific audio protocol (like I2S, LSB/MSB justified, TDM, PCM/DSP...) setting most of the configuration register bits as well as frame configuration register. These bits have to be configured when the audio block is disabled. Bits 1:0 MODE[1:0]: Audio block mode. These bits are set and cleared by software. 00: Master transmitter 01: Master receiver 10: Slave transmitter 11: Slave receiver These bits have to be configured when the audio block is disabled. Note: In Master transmitter mode the audio block will start to generate the FS and clocks RM0430 Rev 8 1013/1324 1025 Serial audio interface (SAI) 30.17.2 RM0430 SAI xConfiguration register 2 (SAI_xCR2) where x is A or B Address offset: Block A: 0x008 Address offset: Block B: 0x028 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 2 1 0 Reserved 15 14 COMP[1:0] rw rw 13 12 11 CPL rw 10 9 8 7 MUTECNT[5:0] rw rw rw rw rw 6 5 4 3 MUTE VAL Mute TRIS FFLUS rw rw rw rw rw FTH rw rw rw Bits 31:16 Reserved, always read as 0 Bits 15:14 COMP[1:0]: Companding mode. These bits are set and cleared by software. 00: No companding algorithm 01: Reserved. 10: µ-Law algorithm 11: A-Law algorithm The µ-Law and the A-Law log are a part of the CCITT G.711 recommendation, the type of complement that will be used depends on ComPLement bit. The data expansion or data compression are determined by the state of bit MODE[0]. The data compression is applied if the audio block is configured as a transmitter. The data expansion is automatically applied when the audio block is configured as a receiver. Refer to Section 30.12.3 for more details. Note: Companding mode is applicable only when TDM is selected. Bit 13 CPL: Complement bit. This bit is set and cleared by software. It defines the type of complement to be used for companding mode 0: 1’s complement representation. 1: 2’s complement representation. Note: This bit has effect only when the companding mode is µ-Law algorithm or A-Law algorithm. Bits 12:7 MUTECNT[5:0]: Mute counter. These bits are set and cleared by software. These bits are used only in reception mode. The value set in these bits is compared to the number of consecutive mute frames detected in reception. When the number of mute frames is equal to this value, the flag MUTEDET will be set and an interrupt will be generated if bit MUTEDETIE is set. Refer to Section 30.12.1 for more details. 1014/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) Bit 6 MUTEVAL: Mute value. This bit is set and cleared by software.This bit has to be written before enabling the audio block: SAIxEN. 0: Bit value 0 is sent during the MUTE mode. 1: Last values are sent during the MUTE mode. This bit has a meaning only when the audio block is a transmitter and when the number of slots is lower or equal to 2 and if the MUTE bit is set. If more slots are declared, the bit value sent during the transmission in mute mode will be equal to 0, whatever the value of this MUTEVAL bit. if the number of slot is lower or equal to 2 and MUTEVAL = 1, the mute value transmitted for each slot will be the ones sent during the previous frame. Refer to Section 30.12.1 for more details. Bit 5 MUTE: Mute. This bit is set and cleared by software. 0: No Mute mode. 1: Mute mode enabled. This bit has a meaning only when the audio block is a transmitter. The MUTE value is linked to the MUTEVAL value if the number of slots is lower or equal to 2, or equal to 0 if it is greater than 2. Refer to Section 30.12.1 for more details. Bit 4 TRIS: Tristate management on data line. This bit is set and cleared by software. 0: SD output line is still driven by the SAI when a slot is inactive. 1: SD output line is released (HI-Z) at the end of the last data bit of the last active slot if the next one is inactive. This bit has a meaning only if the audio block is configured to be a transmitter. This bit should be configured when SAI is disabled. Refer to Section 30.12.4 for more details. Bit 3 FFLUSH: FIFO flush. This bit is set by software. It is always read low. 0: No FIFO flush. 1: FIFO flush. Writing 1 to the bit triggers the FIFO Flush. All the internal FIFO pointers (read and write) are cleared. Data still present in the FIFO will be lost in such case (no more transmission or received data lost). This bit should be configured when SAI is disabled. Before flushing SAI, DMA stream/interruption must be disabled Bits 2:0 FTH: FIFO threshold. This bit is set and cleared by software. 000: FIFO empty 001: ¼ FIFO 010: ½ FIFO 011: ¾ FIFO 100: FIFO full 101: Reserved 110: Reserved 111: Reserved RM0430 Rev 8 1015/1324 1025 Serial audio interface (SAI) 30.17.3 RM0430 SAI xFrame configuration register (SAI_XFRCR) where x is A or B Address offset: Block A: 0x00C Address offset: Block B: 0x02C Reset value: 0x0000 0007 Note: 31 This register has no meaning in AC’97 audio protocol 30 29 28 27 26 25 24 23 22 21 20 19 14 13 12 11 10 9 8 7 6 5 FSALL[6:0] Res. rw rw rw rw rw 17 16 FSOFF FSPOL FSDEF Reserved 15 18 4 rw rw r 3 2 1 0 rw rw rw rw FRL[7:0] rw rw rw rw rw rw Bits 31:19 Reserved, always read as 0. Bit 18 FSOFF: Frame synchronization offset. This bit is set and cleared by software. 0: FS is asserted on the first bit of the slot 0. 1: FS is asserted one bit before the first bit of the slot 0. This bit has no meaning and is not used in AC’97 audio block configuration. This bit must be configured when the audio block is disabled. Bit 17 FSPOL: Frame synchronization polarity. This bit is set and cleared by software 0: FS is active low (falling edge) 1: FS is active high (rising edge) This bit is used to configure the level of the start of frame on the FS signal. This bit has no meaning and is not used in AC’97 audio block configuration. This bit must be configured when the audio block is disabled. Bit 16 FSDEF: Frame synchronization definition. This bit is set and cleared by software. 0: FS signal is a start frame signal 1: FS signal is a start of frame signal + channel side identification When the bit is set, the number of slots defined in the SAI_ASLOTR register has to be even. It means that there will be half of this number of slots dedicated for the left channel and the other slots for the right channel (e.g: this bit has to be set for I2S or MSB/LSB-justified protocols...) This bit has no meaning and is not used in AC’97 audio block configuration. This bit must be configured when the audio block is disabled. 1016/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) Bit 15 Reserved, always read as 0. Bits 14:8 FSALL[6:0]: Frame synchronization active level length. These bits are set and cleared by software The value set in these bits specifies the length in number of bit clock (SCK) + 1 (FSALL[6:0] + 1) of the active level of the FS signal in the audio frame These bits have no meaning and are not used in AC’97 audio block configuration. These bits must be configured when the audio block is disabled. Bits 7:0 FRL[7:0]: Frame length. These bits are set and cleared by software. They define the length of the audio frame. More precisely, these bits define the number of SCK clocks for each audio frame. The number of bits in the frame is equal to FRL[7:0] + 1. The minimum number of bits to transfer in an audio frame has to be equal to 8 or else the audio block will have unexpected behavior. This is the case when the data size is 8-bit and only one slot 0 is defined in NBSLOT[4:0] in the SAI_ASLOTR register (NBSLOT[3:0] = 0000). In master mode, if the master clock MCLK_x pin is declared as an output, the frame length should be aligned to a number equal to a power of 2, from 8 to 256 in order to keep in an audio frame, an integer number of MCLK pulses by bit clock for correct operation for external DAC/ADC inside the decoders. The Frame length should be even. These bits have no meaning and are not used in AC’97 audio block configuration. RM0430 Rev 8 1017/1324 1025 Serial audio interface (SAI) 30.17.4 RM0430 SAI xSlot register (SAI_xSLOTR) where x is A or B Address offset: Block A: 0x010 Address offset: Block B: 0x030 Reset value: 0x0000 0000 Note: This register has no meaning in AC’97 audio protocol 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 SLOTEN[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw NBSLOT[3:0] Reserved rw rw rw SLOTSZ[1:0] rw rw rw FBOFF[4:0] Res rw rw rw Bits 31:16 SLOTEN[15:0]: Slot enable. These bits are set and cleared by software. Each bit of the SLOTEN bits identify a slot position from 0 to 15 (maximum 16 slots) 0: Inactive slot. 1: Active slot. These bits must be set when the audio block is disabled. They are ignored in AC’97 mode. Bits 15:12 Reserved, always read as 0. Bits 11:8 NBSLOT[3:0]: Number of slots in an audio frame. These bits are set and cleared by software. The value set in these bits register represents the number of slots + 1 in the audio frame (including the number of inactive slots). The maximum number of slots is 16. The number of slots should be even if bit FSDEF in the SAI_AFRCR register is set. If the size is greater than the data size, the remaining bits will be forced to 0 if bit TRIS in the SAI_xCR1 register is clear, otherwise they will be forced to 0 if the next slot is active or the SD line will be forced to HI-Z if the next slot is inactive and bit TRIS = 1. These bits must be set when the audio block is disabled. They are ignored in AC’97 omode. Bits 7:6 SLOTSZ[1:0]: Slot size This bits is set and cleared by software. 00: The slot size is equivalent to the data size (specified in DS[3:0] in the SAI_ACR1 register). 01: 16-bit 10: 32-bit 11: Reserved The slot size must be greater or equal to the data size. If this condition is not respected, the behavior of the SAI will be undetermined. These bits must be set when the audio block is disabled. They are ignored in AC’97 mode. Bit 1 Reserved, always read as 0. Bits 4:0 FBOFF[4:0]: First bit offset These bits are set and cleared by software. The value set in these bits represents the position of the first data transfer bit in the slot. It represents an offset value. During this offset phase 0 value are sent on the data line for transmission mode. For reception mode, the received bit are discarded during the offset phase. These bits must be set when the audio block is disabled. They are ignored in AC’97 mode. 1018/1324 RM0430 Rev 8 RM0430 30.17.5 Serial audio interface (SAI) SAI xInterrupt mask register2(SAI_xIM) where x is A or B Address offset: blockA: 0x014 Address offset: block B: 0x034 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 6 5 4 3 2 1 0 Reserved 15 14 13 12 11 10 Reserved 9 8 7 MUT LFSDETI AFSDET CNRDY FREQI WCKC OVRU EDET E IE IE E FGIE DRIE IE rw rw rw rw rw rw rw Bits 31:7 Reserved, always read as 0. Bit 6 LFSDETIE: Late frame synchronization detection interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt will be generated if the LFSDET bit is set in the SAI_ASR register. This bit has no meaning in AC’97 mode. It has no meaning also if the audio block is master. Bit 5 AFSDETIE: Anticipated frame synchronization detection interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt will be generated if the AFSDET bit in the SAI_ASR register is set. This bit has no meaning in AC’97 mode. It has no meaning also if the audio block is master. Bit 4 CNRDYIE: Codec not ready interrupt enable (ac’97). This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When the interrupt is enabled, the audio block will detect in the slot 0 (tag0) of the AC’97 frame if the codec connected on this line is ready or not. If not, the flag CNRDY in the SAI_ASR register will be set and an interruption will be generated. This bit has a meaning only if the AC97 mode is selected (bit PRTCFG[1:0]) and the audio block is a receiver. Bit 3 FREQIE: FIFO request interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt will be generated if the FREQ bit in the SAI_ASR register is set. In receiver mode, the bit MODE must be configured before setting bit FREQIE to avoid a parasitic interruption since the audio block is a transmitter (default setting). RM0430 Rev 8 1019/1324 1025 Serial audio interface (SAI) RM0430 Bit 2 WCKCFGIE: Wrong clock configuration interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled This bit is considered only if the audio block is configured as master (MODE[1] = 0 in the SAI_ACR1 register) and bit NODIV = 0 in the SAI_xCR1 register. It generates an interrupt if the flag WCKCFG in the SAI_ASR register is set. Note: This bit is used only in TDM mode and has no meaning for other modes. Bit 1 MUTEDETIE: Mute detection interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt will be generated if the MUTEDET bit in the SAI_ASR register is set. This bit has a meaning only if the audio block is configured in receiver mode. Bit 0 OVRUDRIE: Overrun/underrun interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt will be generated if the OVRUDR bit in the SAI_ASR register is set. 1020/1324 RM0430 Rev 8 RM0430 Serial audio interface (SAI) 30.17.6 SAI xStatus register (SAI_xSR) where x is A or B Address offset: block A: 0x018 Address offset: block B: 0x038 Reset value: 0x0000 0008 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 FLTH Reserved 15 14 13 12 11 10 9 Reserved 8 16 7 6 5 4 LFSDET AFSDET CNRDY r r r r r r 3 2 1 0 FREQ WCKCFG r r MUTED OVRUDR ET r r Bits 31:19 Reserved, always read as 0. Bits 18:16 FLTH: FIFO level threshold. This bit is read only. The FIFO level threshold flag is managed only by hardware and its setting depends on SAI block configuration (transmitter or receiver mode). If SAI block is configured as transmitter: 000: FIFO_empty 001: FIFO <= ¼ but not empty 010: ¼ < FIFO <= ½ 011: ½ < FIFO <= ¾ 100: ¾ < FIFO but not full 101: FIFO full If SAI block is configured as receiver: 000: FIFO_empty 001: FIFO < ¼ but not empty 010: ¼ <= FIFO < ½ 011: ½ =< FIFO < ¾ 100: ¾ =< FIFO but not full 101: FIFO full Bits 15:7 Reserved, always read as 0. Bit 6 LFSDET: Late frame synchronization detection. This bit is read only. 0: No error. 1: Frame synchronization signal is not present at the right time. This flag can be set only if the audio block is configured in Slave mode. It is not used in AC’97 mode. It may generate an interrupt if bit LFSDETIE in the SAI_xIM register is set. This flag is cleared when the software sets bit CLFSDET in the SAI_xCLRFR register Bit 5 AFSDET: Anticipated frame synchronization detection. This bit is read only. 0: No error. 1: Frame synchronization signal is detected earlier than expected. This flag can be set only if the audio block is configured in Slave mode. It is not used in AC’97. It may generate an interrupt if bit AFSDETIE in the SAI_xIM register is set. This flag is cleared when the software sets bit CAFSDET in the SAI_xCLRFR register RM0430 Rev 8 1021/1324 1025 Serial audio interface (SAI) RM0430 Bit 4 CNRDY: Codec not ready. This bit is read only. 0: The external AC’97 codec is ready 1: The external AC’97 codec is not ready This bit is used only when the AC’97 audio protocol is selected in the SAI_xCR1 register and is configured in receiver mode. It may generate an interrupt if bit CNRDYIE in the SAI_xIM register is set. This flag is cleared when the software sets bit CCNRDY in the SAI_xCLRFR register Bit 3 FREQ: FIFO request. This bit is read only. 0: No FIFO request. 1: FIFO request to read or to write the SAI_xDR. The request depends on the audio block configuration. If configured in transmission, the FIFO request concerns a write request operation in the SAI_xDR. If configured in reception, the FIFO request concerns a read request operation from the SAI_xDR. This flag can generate an interrupt if bit FREQIE in the SAI_xIM register is set. Bit 2 WCKCFG: Wrong clock configuration flag. This bit is read only. 0: The clock configuration is correct 1: The clock configuration does not respect the rule concerning the frame length specification defined in Section 30.7 (configuration of FRL[7:0] bit in the SAI_x FRCR register) This bit is used only when the audio block is master (MODE[1] = 0 in the SAI_xCR1 register) and when NODIV = 0 in the SAI_xCR1 register. It may generate an interrupt if bit WCKCFGIE in the SAI_xIM register is set. This flag is cleared when the software sets bit CWCKCFG in the SAI_xCLRFR register Bit 1 MUTEDET: Mute detection. This bit is read only. 0: No MUTE detection on the SD input line 1: MUTE value detected on the SD input line (0 value) for a specified number of consecutive audio frame This flag is set if consecutive 0 values are received in each slot of an audio frame and for a consecutive number of audio frames (set in the MUTECNT bit in the SAI_xCR2 register). It may generate an interrupt if bit MUTEDETIE in the SAI_xIM register is set. This flag is cleared when the software sets bit CMUTEDET in the SAI_xCLRFR register. Bit 0 OVRUDR: Overrun / underrun. This bit is read only. 0: No overrun/underrun error. 1: Overrun/underrun error detection. The overrun condition can occur only when the audio block is configured in reception. The underrun condition can occur only when the audio block is configured in transmission. It may generate an interrupt if bit OVRUDRIE in the SAI_xIM register is set. This flag is cleared when the software set bit COVRUDR bit in the SAI_xCLRFR register. 1022/1324 RM0430 Rev 8 RM0430 30.17.7 Serial audio interface (SAI) SAI xClear flag register (SAI_xCLRFR) where X is A or B Address offset: block A: 0x01C Address offset: block B: 0x03C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 5 4 3 2 1 0 Reserved 15 14 13 12 11 10 9 8 Reserved 7 6 CAFSDE CLFSDET T rw rw CCNRDY Reserved CMUTE COVRUD CWCKCFG DET R rw rw rw rw Bits 31:7 Reserved, always read as 0. Bit 6 CLFSDET: Clear late frame synchronization detection flag. This bit is write only. Writing 1 in this bit clears the flag LFSDET in the SAI_xSR register. It is not used in AC’97. Reading this bit always returns the value 0. Bit 5 .CAFSDET: Clear anticipated frame synchronization detection flag. This bit is write only. Writing 1 in this bit clears the flag AFSDET in the SAI_xSR register. It is not used in AC’97. Reading this bit always returns the value 0. Bit 4 CCNRDY: Clear codec not ready flag. This bit is write only. Writing 1 in this bit clears the flag CNRDY in the SAI_xSR register. This bit is used only when the AC’97 audio protocol is selected in the SAI_xCR1 register. Reading this bit always returns the value 0. Bit 3 Reserved, always read as 0. Bit 2 CWCKCFG: Clear wrong clock configuration flag. This bit is write only. Writing 1 in this bit clears the flag WCKCFG in the SAI_xSR register. This bit is used only when the audio block is set as master (MODE[1] = 0 in the SAI_ACR1 register) and bit NODIV = 0 in the SAI_xCR1 register. Reading this bit always returns the value 0. Bit 1 CMUTEDET: Mute detection flag. This bit is write only. Writing 1 in this bit clears the flag MUTEDET in the SAI_xSR register. Reading this bit always returns the value 0. Bit 0 COVRUDR: Clear overrun / underrun. This bit is write only. Writing 1 in this bit clears the flag OVRUDR in the SAI_xSR register. Reading this bit always returns the value 0. RM0430 Rev 8 1023/1324 1025 Serial audio interface (SAI) 30.17.8 RM0430 SAI xData register (SAI_xDR) where x is A or B Address offset: block A: 0x020 Address offset: block B: 0x040 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATA[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DATA[31:0]: Data A write into this register has the effect of loading the FIFO if the FIFO is not full. A read from this register has to effect of draining-up the FIFO if the FIFO is not empty. 30.17.9 SAI register map The following table summarizes the SAI registers. 0x0010 SAI_xSLOT or 0x003 0 R Reset value 1024/1324 Reset value E[1:0 1:0] ] 0 0 0 FTH Res. TRIS MUTE MUTE VAL MOD FFLUS CKSTR LSBFIRST Reserved. SAIxEN DMAEN NODIV Res. OutDri MONO CPL MUTECN[5:0] PRT CFG[ 0 0 0 0 FSALL[6:0] FRL[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 SLO SLOTEN[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 0 NBSLOT[3:0] TSZ[ 1:0} 0 0 0 0 0 0 Reserved SAI_xFRCR Reserved or 0x002 C FSPOL 0x000C 1:0] DS[2:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FSDEF Reserved Reset value P[1:0 ] SYN CEN[ 0 0 0 0 0 0 0 1 0 COM SAI_xCR2 FSOFF or 0x002 8 0 0 Reserved 0x0008 0 0 0 0 0 Reset value Reserved or 0x002 4 SAI_xCR1 MCKDIV[3:0] 0x0004 Reserved Register Offset and reset value 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 181. SAI register map and reset values FBOFF[4:0] 0 0 0 0 0 RM0430 Serial audio interface (SAI) Reset value 0x0020 SAI_xDR or 0x004 0 Reset value CNRDYIE FREQIE WCKCFG MUTEDET OVRUDRIE 0 WCKCFG MUTEDET OVRUDR 0 CNRDY FREQ LFSDET AFSDETIE 0 0 0 0 1 0 0 0 WCKCFG R 0 0 MUTEDET OVRUDR SAI_xCLRF 0 LFSDET Reserved 0 0 0 Reset value 0 CNRDY Res. 0x001 C or 0x003 C SAI_xSR Reserved or 0x003 8 Reserved 0x0018 FLVL[2:0] Reset value AFSDET SAI_xIM 0 0 0 0 0 0 0 LFSDET or 0x003 4 Reserved 0x0014 CAFSDET Register Offset and reset value 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 181. SAI register map and reset values (continued) 0 0 0 0 0 DATA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section: Memory map for the register boundary addresses. RM0430 Rev 8 1025/1324 1025 Secure digital input/output interface (SDIO) 31 Secure digital input/output interface (SDIO) 31.1 SDIO main features RM0430 The SD/SDIO MMC card host interface (SDIO) provides an interface between the APB2 peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards. The MultiMediaCard system specifications are available through the MultiMediaCard Association website, published by the MMCA technical committee. SD memory card and SD I/O card system specifications are available through the SD card Association website. The SDIO features include the following: Note: • Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit • Full compatibility with previous versions of MultiMediaCards (forward compatibility) • Full compliance with SD Memory Card Specifications Version 2.0 • Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit • Data transfer up to 50 MHz for the 8 bit mode • Data and command output enable signals to control external bidirectional drivers. 1 The SDIO does not have an SPI-compatible communication mode. 2 The SD memory card protocol is a superset of the MultiMediaCard protocol as defined in the MultiMediaCard system specification V2.11. Several commands required for SD memory devices are not supported by either SD I/O-only cards or the I/O portion of combo cards. Some of these commands have no use in SD I/O devices, such as erase commands, and thus are not supported in the SDIO protocol. In addition, several commands are different between SD memory cards and SD I/O cards and thus are not supported in the SDIO protocol. For details refer to SD I/O card Specification Version 1.0. The MultiMediaCard/SD bus connects cards to the controller. The current version of the SDIO supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. 31.2 SDIO bus topology Communication over the bus is based on command and data transfers. The basic transaction on the MultiMediaCard/SD/SD I/O bus is the command/response transaction. These types of bus transaction transfer their information directly within the command or response structure. In addition, some operations have a data token. Data transfers to/from SD/SDIO memory cards are done in data blocks. Data transfers to/from MMC are done data blocks or streams. 1026/1324 RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Figure 364. “No response” and “no data” operations )URPKRVWWRFDUG V 6',2B&0' )URPKRVWWRFDUG &RPPDQG &RPPDQG )URPFDUGWRKRVW 5HVSRQVH 6',2B' 2SHUDWLRQ QRUHVSRQVH 2SHUDWLRQ QRGDWD 06Y9 Figure 365. (Multiple) block read operation )URPKRVWWRFDUG )URPFDUGWRKRVW GDWDIURPFDUGWRKRVW 6',2B&0' &RPPDQG 6WRSFRPPDQG VWRSVGDWDWUDQVIHU 5HVSRQVH 6',2B' &RPPDQG 'DWDEORFN FUF 'DWDEORFN FUF 5HVSRQVH 'DWDEORFN FUF %ORFNUHDGRSHUDWLRQ 'DWDVWRSRSHUDWLRQ 0XOWLSOHEORFNUHDGRSHUDWLRQ 06Y9 Figure 366. (Multiple) block write operation )URPKRVWWRFDUG )URPFDUGWRKRVW GDWDIURPKRVWWRFDUG 6',2B&0' 6',2B' &RPPDQG 6WRSFRPPDQG VWRSVGDWDWUDQVIHU 5HVSRQVH &RPPDQG 'DWDEORFN FUF %XV\ %ORFNZULWHRSHUDWLRQ 'DWDEORFN FUF 5HVSRQVH %XV\ 'DWDVWRSRSHUDWLRQ 0XOWLSOHEORFNZULWHRSHUDWLRQ 06Y9 Note: The SDIO will not send any data as long as the Busy signal is asserted (SDIO_D0 pulled low). RM0430 Rev 8 1027/1324 1084 Secure digital input/output interface (SDIO) RM0430 Figure 367. Sequential read operation )URPKRVWWR FDUG V )URPFDUGWRKRVW 6WRSFRPPDQG VWRSVGDWDWUDQVIHU 'DWDIURPFDUGWRKRVW 6',2B&0' &RPPDQG 5HVSRQVH &RPPDQG 5HVSRQVH 'DWDVWUHDP 6',2B' 'DWDVWRSRSHUDWLRQ 'DWDWUDQVIHURSHUDWLRQ 06Y9 Figure 368. Sequential write operation )URPKRVWWR FDUG V )URPFDUGWRKRVW 6WRSFRPPDQG VWRSVGDWDWUDQVIHU 'DWDIURPKRVWWRFDUG 6',2B&0' &RPPDQG 5HVSRQVH &RPPDQG 5HVSRQVH 'DWDVWUHDP 6',2B' 'DWDVWRSRSHUDWLRQ 'DWDWUDQVIHURSHUDWLRQ 06Y9 31.3 SDIO functional description The SDIO consists of two parts: • The SDIO adapter block provides all functions specific to the MMC/SD/SD I/O card such as the clock generation unit, command and data transfer. • The APB2 interface accesses the SDIO adapter registers, and generates interrupt and DMA request signals. Figure 369. SDIO block diagram 6',2 6',2B&. ,QWHUUXSWVDQG '0$UHTXHVW 6',2B&0' $3% LQWHUIDFH 6',2 DGDSWHU 3&/. 6',2&/. 6',2B'>@ $3%EXV 1028/1324 RM0430 Rev 8 06Y9 RM0430 Secure digital input/output interface (SDIO) By default SDIO_D0 is used for data transfer. After initialization, the host can change the databus width. If a MultiMediaCard is connected to the bus, SDIO_D0, SDIO_D[3:0] or SDIO_D[7:0] can be used for data transfer. MMC V3.31 or previous, supports only 1 bit of data so only SDIO_D0 can be used. If an SD or SD I/O card is connected to the bus, data transfer can be configured by the host to use SDIO_D0 or SDIO_D[3:0]. All data lines are operating in push-pull mode. SDIO_CMD has two operational modes: • Open-drain for initialization (only for MMCV3.31 or previous) • Push-pull for command transfer (SD/SD I/O card MMC4.2 use push-pull drivers also for initialization) SDIO_CK is the clock to the card: one bit is transferred on both command and data lines with each clock cycle. The SDIO uses two clock signals: • SDIO adapter clock SDIOCLK = 50 MHz) • APB2 bus clock (PCLK2) PCLK2 and SDIO_CK clock frequencies must respect the following condition: Frequenc ( PCLK2 ) > ( ( 3xWidth ) ⁄ 32 ) × Frequency ( SDIO_CK ) The signals shown in Table 182 are used on the MultiMediaCard/SD/SD I/O card bus. Table 182. SDIO I/O definitions Pin Direction Description SDIO_CK Output MultiMediaCard/SD/SDIO card clock. This pin is the clock from host to card. SDIO_CMD Bidirectional MultiMediaCard/SD/SDIO card command. This pin is the bidirectional command/response signal. SDIO_D[7:0] Bidirectional MultiMediaCard/SD/SDIO card data. These pins are the bidirectional databus. RM0430 Rev 8 1029/1324 1084 Secure digital input/output interface (SDIO) 31.3.1 RM0430 SDIO adapter Figure 370 shows a simplified block diagram of an SDIO adapter. Figure 370. SDIO adapter 6',2DGDSWHU $GDSWHU UHJLVWHUV 7R$3% LQWHUIDFH 6',2B&. &RPPDQG SDWK 6',2B&0' 'DWDSDWK 6',2B'>@ ),)2 3&/. &DUGEXV &RQWUROXQLW 6',2&/. 06Y9 The SDIO adapter is a multimedia/secure digital memory card bus master that provides an interface to a multimedia card stack or to a secure digital memory card. It consists of five subunits: Note: • Adapter register block • Control unit • Command path • Data path • Data FIFO The adapter registers and FIFO use the APB2 bus clock domain (PCLK2). The control unit, command path and data path use the SDIO adapter clock domain (SDIOCLK). Adapter register block The adapter register block contains all system registers. This block also generates the signals that clear the static flags in the multimedia card. The clear signals are generated when 1 is written into the corresponding bit location in the SDIO Clear register. Control unit The control unit contains the power management functions and the clock divider for the memory card clock. There are three power phases: 1030/1324 • power-off • power-up • power-on RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Figure 371. Control unit &RQWUROXQLW 3RZHUPDQDJHPHQW $GDSWHU UHJLVWHUV &ORFNPDQDJHPHQW 6',2B&. 7RFRPPDQGDQGGDWDSDWK 06Y9 The control unit is illustrated in Figure 371. It consists of a power management subunit and a clock management subunit. The power management subunit disables the card bus output signals during the power-off and power-up phases. The clock management subunit generates and controls the SDIO_CK signal. The SDIO_CK output can use either the clock divide or the clock bypass mode. The clock output is inactive: • after reset • during the power-off or power-up phases • if the power saving mode is enabled and the card bus is in the Idle state (eight clock periods after both the command and data path subunits enter the Idle phase) The clock management subunit controls SDIO_CK dephasing. When not in bypass mode the SDIO command and data output are generated on the SDIOCLK falling edge succeeding the rising edge of SDIO_CK. (SDIO_CK rising edge occurs on SDIOCLK rising edge) when SDIO_CLKCR[13] bit is reset (NEGEDGE = 0). When SDIO_CLKCR[13] bit is set (NEGEDGE = 1) SDIO command and data changed on the SDIO_CK falling edge. When SDIO_CLKCR[10] is set (BYPASS = 1), SDIO_CK rising edge occurs on SDIOCLK rising edge. The data and the command change on SDIOCLK falling edge whatever NEGEDGE value. The data and command responses are latched using SDIO_CK rising edge. Figure 372. SDIO_CK clock dephasing (BYPASS = 0) 6',2&/. 6',2B&. &0''DWD RXWSXW 1(*('*( 1(*('*( RM0430 Rev 8 06Y9 1031/1324 1084 Secure digital input/output interface (SDIO) RM0430 Command path The command path unit sends commands to and receives responses from the cards. Figure 373. SDIO adapter command path 7RFRQWUROXQLW 6WDWXV IODJ &RQWURO ORJLF &RPPDQG WLPHU $GDSWHUUHJLVWHUV 6',2B&0'LQ &0' $UJXPHQW &5& &0' 7R$3%LQWHUIDFH 6',2B&0'RXW 6KLIW UHJLVWHU 5HVSRQVH UHJLVWHUV 06Y9 • Command path state machine (CPSM) – 1032/1324 When the command register is written to and the enable bit is set, command transfer starts. When the command has been sent, the command path state machine (CPSM) sets the status flags and enters the Idle state if a response is not required. If a response is required, it waits for the response (see Figure 374 on page 1033). When the response is received, the received CRC code and the internally generated code are compared, and the appropriate status flags are set. RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Figure 374. Command path state machine (SDIO) 2QUHVHW &360HQDEOHGDQG SHQGLQJFRPPDQG ,GOH &360GLVDEOHG 3HQG 5HVSRQVHUHFHLYHGRU GLVDEOHGRUFRPPDQG &5&IDLOHG (QDEOHGDQG FRPPDQGVWDUW &360GLVDEOHG RUQRUHVSRQVH /DVWGDWD &360GLVDEOHGRU FRPPDQGWLPHRXW 6HQG 5HFHLYH 5HVSRQVH VWDUWHG :DLWIRUUHVSRQVH :DLW 069 When the Wait state is entered, the command timer starts running. If the timeout is reached before the CPSM moves to the Receive state, the timeout flag is set and the Idle state is entered. Note: The command timeout has a fixed value of 64 SDIO_CK clock periods. If the interrupt bit is set in the command register, the timer is disabled and the CPSM waits for an interrupt request from one of the cards. If a pending bit is set in the command register, the CPSM enters the Pend state, and waits for a CmdPend signal from the data path subunit. When CmdPend is detected, the CPSM moves to the Send state. This enables the data counter to trigger the stop command transmission. Note: The CPSM remains in the Idle state for at least eight SDIO_CK periods to meet the NCC and NRC timing constraints. NCC is the minimum delay between two host commands, and NRC is the minimum delay between the host command and the card response. RM0430 Rev 8 1033/1324 1084 Secure digital input/output interface (SDIO) RM0430 Figure 375. SDIO command transfer DWOHDVW6',2B&.F\FOHV 6',2B&. &RPPDQG &RPPDQG 5HVSRQVH 6WDWH ,GOH 6HQG :DLW 5HFHLYH ,GOH 6HQG 6',2B&0' +L= &RQWUROOHUGULYHV +L= &DUGGULYHV +L= &RQWUROOHUGULYHV 06Y9 • Command format – Command: a command is a token that starts an operation. Command are sent from the host either to a single card (addressed command) or to all connected cards (broadcast command are available for MMC V3.31 or previous). Commands are transferred serially on the CMD line. All commands have a fixed length of 48 bits. The general format for a command token for MultiMediaCards, SD-Memory cards and SDIO-Cards is shown in Table 183. The command path operates in a half-duplex mode, so that commands and responses can either be sent or received. If the CPSM is not in the Send state, the SDIO_CMD output is in the Hi-Z state, as shown in Figure 375 on page 1034. Data on SDIO_CMD are synchronous with the rising edge of SDIO_CK. Table 183 shows the command format. Table 183. Command format Bit position Width Value Description 47 1 0 Start bit 46 1 1 Transmission bit [45:40] 6 - Command index [39:8] 32 - Argument [7:1] 7 - CRC7 0 1 1 End bit – Response: a response is a token that is sent from an addressed card (or synchronously from all connected cards for MMC V3.31 or previous), to the host as an answer to a previously received command. Responses are transferred serially on the CMD line. The SDIO supports two response types. Both use CRC error checking: Note: 1034/1324 • 48 bit short response • 136 bit long response If the response does not contain a CRC (CMD1 response), the device driver must ignore the CRC failed status. RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Table 184. Short response format Bit position Width Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 - Command index [39:8] 32 - Argument [7:1] 7 - CRC7(or 1111111) 0 1 1 End bit Table 185. Long response format Bit position Width Value Description 135 1 0 Start bit 134 1 0 Transmission bit [133:128] 6 111111 Reserved [127:1] 127 - CID or CSD (including internal CRC7) 0 1 1 End bit The command register contains the command index (six bits sent to a card) and the command type. These determine whether the command requires a response, and whether the response is 48 or 136 bits long (see Section 31.8.4 on page 1070). The command path implements the status flags shown in Table 186: Table 186. Command path status flags Flag Description CMDREND Set if response CRC is OK. CCRCFAIL Set if response CRC fails. CMDSENT Set when command (that does not require response) is sent CTIMEOUT Response timeout. CMDACT Command transfer in progress. The CRC generator calculates the CRC checksum for all bits before the CRC code. This includes the start bit, transmitter bit, command index, and command argument (or card status). The CRC checksum is calculated for the first 120 bits of CID or CSD for the long response format. Note that the start bit, transmitter bit and the six reserved bits are not used in the CRC calculation. The CRC checksum is a 7-bit value: CRC[6:0] = Remainder [(M(x) * x7) / G(x)] G(x) = x7 + x3 + 1 M(x) = (start bit) * x39 + ... + (last bit before CRC) * x0, or M(x) = (start bit) * x119 + ... + (last bit before CRC) * x0 RM0430 Rev 8 1035/1324 1084 Secure digital input/output interface (SDIO) RM0430 Data path The data path subunit transfers data to and from cards. Figure 376 shows a block diagram of the data path. Figure 376. Data path 'DWDSDWK 7RFRQWUROXQLW 6WDWXV IODJ &RQWURO ORJLF 'DWD WLPHU 'DWD),)2 6',2B'LQ>@ 7UDQVPLW &5& 6',2B'RXW>@ 6KLIW UHJLVWHU 5HFHLYH 06Y9 The card databus width can be programmed using the clock control register. If the 4-bit wide bus mode is enabled, data is transferred at four bits per clock cycle over all four data signals (SDIO_D[3:0]). If the 8-bit wide bus mode is enabled, data is transferred at eight bits per clock cycle over all eight data signals (SDIO_D[7:0]). If the wide bus mode is not enabled, only one bit per clock cycle is transferred over SDIO_D0. Depending on the transfer direction (send or receive), the data path state machine (DPSM) moves to the Wait_S or Wait_R state when it is enabled: • Send: the DPSM moves to the Wait_S state. If there is data in the transmit FIFO, the DPSM moves to the Send state, and the data path subunit starts sending data to a card. • Receive: the DPSM moves to the Wait_R state and waits for a start bit. When it receives a start bit, the DPSM moves to the Receive state, and the data path subunit starts receiving data from a card. Data path state machine (DPSM) The DPSM operates at SDIO_CK frequency. Data on the card bus signals is synchronous to the rising edge of SDIO_CK. The DPSM has six states, as shown in Figure 377: Data path state machine (DPSM). 1036/1324 RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Figure 377. Data path state machine (DPSM) /N RESET $03- DISABLED 2EAD 7AIT $03- ENABLED AND 2EAD 7AIT 3TARTED AND 3$ )/ MODE ENABLED $ISABLED OR &)&/ UNDERRUN OR END OF DATA OR #2# FAIL )DLE $ISABLED OR #2# FAIL OR TIMEOUT %NABLE AND NOT SEND 2EAD7AIT 3TOP $ISABLED OR END OF DATA $ISABLED OR 2X &)&/ EMPTY OR TIMEOUT OR START BIT ERROR "USY .OT BUSY %NABLE AND SEND 7AIT?2 $ATA RECEIVED AND 2EAD 7AIT 3TARTED AND 3$ )/ MODE ENABLED %ND OF PACKET 7AIT?3 %ND OF PACKET OR END OF DATA OR &)&/ OVERRUN $ISABLED OR #2# FAIL 3TART BIT $ATA READY 3END 2ECEIVE AIB • Idle: the data path is inactive, and the SDIO_D[7:0] outputs are in Hi-Z. When the data control register is written and the enable bit is set, the DPSM loads the data counter with a new value and, depending on the data direction bit, moves to either the Wait_S or the Wait_R state. • Wait_R: if the data counter equals zero, the DPSM moves to the Idle state when the receive FIFO is empty. If the data counter is not zero, the DPSM waits for a start bit on SDIO_D. The DPSM moves to the Receive state if it receives a start bit before a timeout, and loads the data block counter. If it reaches a timeout before it detects a start bit, it moves to the Idle state and sets the timeout status flag. • Receive: serial data received from a card is packed in bytes and written to the data FIFO. Depending on the transfer mode bit in the data control register, the data transfer mode can be either block or stream: – In block mode, when the data block counter reaches zero, the DPSM waits until it receives the CRC code. If the received code matches the internally generated CRC code, the DPSM moves to the Wait_R state. If not, the CRC fail status flag is set and the DPSM moves to the Idle state. – In stream mode, the DPSM receives data while the data counter is not zero. When the counter is zero, the remaining data in the shift register is written to the data FIFO, and the DPSM moves to the Wait_R state. If a FIFO overrun error occurs, the DPSM sets the FIFO error flag and moves to the Idle state: • Wait_S: the DPSM moves to the Idle state if the data counter is zero. If not, it waits until the data FIFO empty flag is deasserted, and moves to the Send state. RM0430 Rev 8 1037/1324 1084 Secure digital input/output interface (SDIO) Note: RM0430 The DPSM remains in the Wait_S state for at least two clock periods to meet the NWR timing requirements, where NWR is the number of clock cycles between the reception of the card response and the start of the data transfer from the host. • Send: the DPSM starts sending data to a card. Depending on the transfer mode bit in the data control register, the data transfer mode can be either block or stream: – In block mode, when the data block counter reaches zero, the DPSM sends an internally generated CRC code and end bit, and moves to the Busy state. – In stream mode, the DPSM sends data to a card while the enable bit is high and the data counter is not zero. It then moves to the Idle state. If a FIFO underrun error occurs, the DPSM sets the FIFO error flag and moves to the Idle state. • Busy: the DPSM waits for the CRC status flag: – If it does not receive a positive CRC status, it moves to the Idle state and sets the CRC fail status flag. – If it receives a positive CRC status, it moves to the Wait_S state if SDIO_D0 is not low (the card is not busy). If a timeout occurs while the DPSM is in the Busy state, it sets the data timeout flag and moves to the Idle state. The data timer is enabled when the DPSM is in the Wait_R or Busy state, and generates the data timeout error: • – When transmitting data, the timeout occurs if the DPSM stays in the Busy state for longer than the programmed timeout period – When receiving data, the timeout occurs if the end of the data is not true, and if the DPSM stays in the Wait_R state for longer than the programmed timeout period. Data: data can be transferred from the card to the host or vice versa. Data is transferred via the data lines. They are stored in a FIFO of 32 words, each word is 32 bits wide. Table 187. Data token format Description 1038/1324 Start bit Data CRC16 End bit Block Data 0 - yes 1 Stream Data 0 - no 1 RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) DPSM Flags The status of the data path subunit transfer is reported by several status flags Table 188. DPSM flags Flag Description DBCKEND Set to high when data block send/receive CRC check is passed. In SDIO multibyte transfer mode this flag is set at the end of the transfer (a multibyte transfer is considered as a single block transfer by the host). DATAEND Set to high when SDIO_DCOUNT register decrements and reaches 0. DATAEND indicates the end of a transfer on SDIO data line. DTIMEOUT Set to high when data timeout period is reached. When data timer reaches zero while DPSM is in Wait_R or Busy state, timeout is set. DTIMEOUT can be set after DATAEND if DPSM remains in busy state for longer than the programmed period. DCRCFAIL Set to high when data block send/receive CRC check fails. Data FIFO The data FIFO (first-in-first-out) subunit is a data buffer with a transmit and receive unit. The FIFO contains a 32-bit wide, 32-word deep data buffer, and transmit and receive logic. Because the data FIFO operates in the APB2 clock domain (PCLK2), all signals from the subunits in the SDIO clock domain (SDIOCLK) are resynchronized. Depending on the TXACT and RXACT flags, the FIFO can be disabled, transmit enabled, or receive enabled. TXACT and RXACT are driven by the data path subunit and are mutually exclusive: • – The transmit FIFO refers to the transmit logic and data buffer when TXACT is asserted – The receive FIFO refers to the receive logic and data buffer when RXACT is asserted Transmit FIFO: Data can be written to the transmit FIFO through the APB2 interface when the SDIO is enabled for transmission. The transmit FIFO is accessible via 32 sequential addresses. The transmit FIFO contains a data output register that holds the data word pointed to by the read pointer. When the data path subunit has loaded its shift register, it increments the read pointer and drives new data out. If the transmit FIFO is disabled, all status flags are deasserted. The data path subunit asserts TXACT when it transmits data. RM0430 Rev 8 1039/1324 1084 Secure digital input/output interface (SDIO) RM0430 Table 189. Transmit FIFO status flags Flag Description TXFIFOF Set to high when all 32 transmit FIFO words contain valid data. TXFIFOE Set to high when the transmit FIFO does not contain valid data. TXFIFOHE Set to high when 8 or more transmit FIFO words are empty. This flag can be used as a DMA request. TXDAVL Set to high when the transmit FIFO contains valid data. This flag is the inverse of the TXFIFOE flag. TXUNDERR Set to high when an underrun error occurs. This flag is cleared by writing to the SDIO Clear register. Note: In case of TXUNDERR, and DMA is used to fill SDIO FIFO, user software should disable DMA stream, and then write DMAEN bit in SDIO_DCTRL with ‘0’ (to disable DMA request generation). • Receive FIFO When the data path subunit receives a word of data, it drives the data on the write databus. The write pointer is incremented after the write operation completes. On the read side, the contents of the FIFO word pointed to by the current value of the read pointer is driven onto the read databus. If the receive FIFO is disabled, all status flags are deasserted, and the read and write pointers are reset. The data path subunit asserts RXACT when it receives data. Table 190 lists the receive FIFO status flags. The receive FIFO is accessible via 32 sequential addresses. Table 190. Receive FIFO status flags Flag 1040/1324 Description RXFIFOF Set to high when all 32 receive FIFO words contain valid data RXFIFOE Set to high when the receive FIFO does not contain valid data. RXFIFOHF Set to high when 8 or more receive FIFO words contain valid data. This flag can be used as a DMA request. RXDAVL Set to high when the receive FIFO is not empty. This flag is the inverse of the RXFIFOE flag. RXOVERR Set to high when an overrun error occurs. This flag is cleared by writing to the SDIO Clear register. Note: In case of RXOVERR, and DMA is used to read SDIO FIFO, user software should disable DMA stream, and then write DMAEN bit in SDIO_DCTRL with ‘0’ (to disable DMA request generation). RM0430 Rev 8 RM0430 31.3.2 Secure digital input/output interface (SDIO) SDIO APB2 interface The APB2 interface generates the interrupt and DMA requests, and accesses the SDIO adapter registers and the data FIFO. It consists of a data path, register decoder, and interrupt/DMA logic. SDIO interrupts The interrupt logic generates an interrupt request signal that is asserted when at least one of the selected status flags is high. A mask register is provided to allow selection of the conditions that will generate an interrupt. A status flag generates the interrupt request if a corresponding mask flag is set. SDIO/DMA interface SDIO APB interface controls all subunit to perform transfers between the host and card Example of read procedure using DMA Send CMD17 (READ_BLOCK) as follows: a) Note: Program the SDIO data length register (SDIO data timer register should be already programmed before the card identification process) b) Program DMA channel (refer to DMA configuration for SDIO controller) c) Program the SDIO data control register: DTEN with ‘1’ (SDIO card host enabled to send data); DTDIR with ‘1’ (from card to controller); DTMODE with ‘0’ (block data transfer); DMAEN with ‘1’ (DMA enabled); DBLOCKSIZE with 0x9 (512 bytes). Other fields are don’t care. d) Program the SDIO argument register with the address location of the card from where data is to be transferred e) Program the SDIO command register: CmdIndex with 17(READ_BLOCK); WaitResp with ‘1’ (SDIO card host waits for a response); CPSMEN with ‘1’ (SDIO card host enabled to send a command). Other fields are at their reset value. f) Wait for SDIO_STA[6] = CMDREND interrupt, (CMDREND is set if there is no error on command path). g) Wait for SDIO_STA[10] = DBCKEND, (DBCKEND is set in case of no errors until the CRC check is passed) h) Wait until the FIFO is empty, when FIFO is empty the SDIO_STA[5] = RXOVERR value has to be check to guarantee that read succeeded When FIFO overrun error occurs with last 1-4 bytes, it may happens that RXOVERR flag is set 2 APB clock cycles after DATAEND flag is set. To guarantee success of read operation RXOVERR must be cheked after FIFO is empty. RM0430 Rev 8 1041/1324 1084 Secure digital input/output interface (SDIO) RM0430 Example of write procedure using DMA Send CMD24 (WRITE_BLOCK) as follows: a) Program the SDIO data length register (SDIO data timer register should be already programmed before the card identification process) b) Program DMA channel (refer to DMA configuration for SDIO controller) c) Program the SDIO argument register with the address location of the card from where data is to be transferred d) Program the SDIO command register: CmdIndex with 24(WRITE_BLOCK); WaitResp with ‘1’ (SDIO card host waits for a response); CPSMEN with ‘1’ (SDIO card host enabled to send a command). Other fields are at their reset value. e) Wait for SDIO_STA[6] = CMDREND interrupt, then Program the SDIO data control register: DTEN with ‘1’ (SDIO card host enabled to send data); DTDIR with ‘0’ (from controller to card); DTMODE with ‘0’ (block data transfer); DMAEN with ‘1’ (DMA enabled); DBLOCKSIZE with 0x9 (512 bytes). Other fields are don’t care. f) Wait for SDIO_STA[10] = DBCKEND, (DBCKEND is set in case of no errors) DMA configuration for SDIO controller Note: a) Enable DMA2 controller and clear any pending interrupts. b) Program the DMA2_Stream3 (or DMA2_Stream6) Channel4 source address register with the memory location base address and DMA2_Stream3 (or DMA2_Stream6) Channel4 destination address register with the SDIO_FIFO register address. c) Program DMA2_Stream3 (or DMA2_Stream6) Channel4 control register (memory increment, not peripheral increment, peripheral and source width is word size). d) Program DMA2_Stream3 (or DMA2_Stream6) Channel4 to select the peripheral as flow controller (set PFCTRL bit in DMA_S3CR (or DMA_S6CR) configuration register). e) Configure the incremental burst transfer to 4 beats (at least from peripheral side) in DMA2_Stream3 (or DMA2_Stream6) Channel4. f) Enable DMA2_Stream3 (or DMA2_Stream6) Channel4 SDIO host allows only to use the DMA in peripheral flow controller mode. DMA stream used to serve SDIO must be configured in peripheral flow controller mode SDIO generates only DMA burst requests to DMA controller. DMA must be configured in incremental burst mode on peripheral side. 31.4 Card functional description 31.4.1 Card identification mode While in card identification mode the host resets all cards, validates the operation voltage range, identifies cards and sets a relative card address (RCA) for each card on the bus. All data communications in the card identification mode use the command line (CMD) only. 1042/1324 RM0430 Rev 8 RM0430 31.4.2 Secure digital input/output interface (SDIO) Card reset The GO_IDLE_STATE command (CMD0) is the software reset command and it puts the MultiMediaCard and SD memory in the Idle state. The IO_RW_DIRECT command (CMD52) resets the SD I/O card. After power-up or CMD0, all cards output bus drivers are in the highimpedance state and the cards are initialized with a default relative card address (RCA=0x0001) and with a default driver stage register setting (lowest speed, highest driving current capability). 31.4.3 Operating voltage range validation All cards can communicate with the SDIO card host using any operating voltage within the specification range. The supported minimum and maximum VDD values are defined in the operation conditions register (OCR) on the card. Cards that store the card identification number (CID) and card specific data (CSD) in the payload memory are able to communicate this information only under data-transfer VDD conditions. When the SDIO card host module and the card have incompatible VDD ranges, the card is not able to complete the identification cycle and cannot send CSD data. For this purpose, the special commands, SEND_OP_COND (CMD1), SD_APP_OP_COND (ACMD41 for SD Memory), and IO_SEND_OP_COND (CMD5 for SD I/O), are designed to provide a mechanism to identify and reject cards that do not match the VDD range desired by the SDIO card host. The SDIO card host sends the required VDD voltage window as the operand of these commands. Cards that cannot perform data transfer in the specified range disconnect from the bus and go to the inactive state. By using these commands without including the voltage range as the operand, the SDIO card host can query each card and determine the common voltage range before placing outof-range cards in the inactive state. This query is used when the SDIO card host is able to select a common voltage range or when the user requires notification that cards are not usable. 31.4.4 Card identification process The card identification process differs for MultiMediaCards and SD cards. For MultiMediaCard cards, the identification process starts at clock rate Fod. The SDIO_CMD line output drivers are open-drain and allow parallel card operation during this process. The registration process is accomplished as follows: 1. The bus is activated. 2. The SDIO card host broadcasts SEND_OP_COND (CMD1) to receive operation conditions. 3. The response is the wired AND operation of the operation condition registers from all cards. 4. Incompatible cards are placed in the inactive state. 5. The SDIO card host broadcasts ALL_SEND_CID (CMD2) to all active cards. 6. The active cards simultaneously send their CID numbers serially. Cards with outgoing CID bits that do not match the bits on the command line stop transmitting and must wait for the next identification cycle. One card successfully transmits a full CID to the SDIO card host and enters the Identification state. 7. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to that card. This new address is called the relative card address (RCA); it is shorter than the CID and RM0430 Rev 8 1043/1324 1084 Secure digital input/output interface (SDIO) RM0430 addresses the card. The assigned card changes to the Standby state, it does not react to further identification cycles, and its output switches from open-drain to push-pull. 8. The SDIO card host repeats steps 5 through 7 until it receives a timeout condition. For the SD card, the identification process starts at clock rate Fod, and the SDIO_CMD line output drives are push-pull drivers instead of open-drain. The registration process is accomplished as follows: 1. The bus is activated. 2. The SDIO card host broadcasts SD_APP_OP_COND (ACMD41). 3. The cards respond with the contents of their operation condition registers. 4. The incompatible cards are placed in the inactive state. 5. The SDIO card host broadcasts ALL_SEND_CID (CMD2) to all active cards. 6. The cards send back their unique card identification numbers (CIDs) and enter the Identification state. 7. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an address. This new address is called the relative card address (RCA); it is shorter than the CID and addresses the card. The assigned card changes to the Standby state. The SDIO card host can reissue this command to change the RCA. The RCA of the card is the last assigned value. 8. The SDIO card host repeats steps 5 through 7 with all active cards. For the SD I/O card, the registration process is accomplished as follows: 1. 31.4.5 The bus is activated. 2. The SDIO card host sends IO_SEND_OP_COND (CMD5). 3. The cards respond with the contents of their operation condition registers. 4. The incompatible cards are set to the inactive state. 5. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an address. This new address is called the relative card address (RCA); it is shorter than the CID and addresses the card. The assigned card changes to the Standby state. The SDIO card host can reissue this command to change the RCA. The RCA of the card is the last assigned value. Block write During block write (CMD24 - 27) one or more blocks of data are transferred from the host to the card with a CRC appended to the end of each block by the host. A card supporting block write is always able to accept a block of data defined by WRITE_BL_LEN. If the CRC fails, the card indicates the failure on the SDIO_D line and the transferred data are discarded and not written, and all further transmitted blocks (in multiple block write mode) are ignored. If the host uses partial blocks whose accumulated length is not block aligned and, block misalignment is not allowed (CSD parameter WRITE_BLK_MISALIGN is not set), the card will detect the block misalignment error before the beginning of the first misaligned block. (ADDRESS_ERROR error bit is set in the status register). The write operation will also be aborted if the host tries to write over a write-protected area. In this case, however, the card will set the WP_VIOLATION bit. Programming of the CID and CSD registers does not require a previous block length setting. The transferred data is also CRC protected. If a part of the CSD or CID register is stored in ROM, then this unchangeable part must match the corresponding part of the receive buffer. If this match fails, then the card reports an error and does not change any register contents. 1044/1324 RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Some cards may require long and unpredictable times to write a block of data. After receiving a block of data and completing the CRC check, the card begins writing and holds the SDIO_D line low if its write buffer is full and unable to accept new data from a new WRITE_BLOCK command. The host may poll the status of the card with a SEND_STATUS command (CMD13) at any time, and the card will respond with its status. The READY_FOR_DATA status bit indicates whether the card can accept new data or whether the write process is still in progress. The host may deselect the card by issuing CMD7 (to select a different card), which will place the card in the Disconnect state and release the SDIO_D line(s) without interrupting the write operation. When reselecting the card, it will reactivate busy indication by pulling SDIO_D to low if programming is still in progress and the write buffer is unavailable. 31.4.6 Block read In Block read mode the basic unit of data transfer is a block whose maximum size is defined in the CSD (READ_BL_LEN). If READ_BL_PARTIAL is set, smaller blocks whose start and end addresses are entirely contained within one physical block (as defined by READ_BL_LEN) may also be transmitted. A CRC is appended to the end of each block, ensuring data transfer integrity. CMD17 (READ_SINGLE_BLOCK) initiates a block read and after completing the transfer, the card returns to the Transfer state. CMD18 (READ_MULTIPLE_BLOCK) starts a transfer of several consecutive blocks. The host can abort reading at any time, within a multiple block operation, regardless of its type. Transaction abort is done by sending the stop transmission command. If the card detects an error (for example, out of range, address misalignment or internal error) during a multiple block read operation (both types) it stops the data transmission and remains in the data state. The host must than abort the operation by sending the stop transmission command. The read error is reported in the response to the stop transmission command. If the host sends a stop transmission command after the card transmits the last block of a multiple block operation with a predefined number of blocks, it is responded to as an illegal command, since the card is no longer in the data state. If the host uses partial blocks whose accumulated length is not block-aligned and block misalignment is not allowed, the card detects a block misalignment error condition at the beginning of the first misaligned block (ADDRESS_ERROR error bit is set in the status register). 31.4.7 Stream access, stream write and stream read (MultiMediaCard only) In stream mode, data is transferred in bytes and no CRC is appended at the end of each block. Stream write (MultiMediaCard only) WRITE_DAT_UNTIL_STOP (CMD20) starts the data transfer from the SDIO card host to the card, beginning at the specified address and continuing until the SDIO card host issues a stop command. When partial blocks are allowed (CSD parameter WRITE_BL_PARTIAL is set), the data stream can start and stop at any address within the card address space, otherwise it can only start and stop at block boundaries. Because the amount of data to be transferred is not determined in advance, a CRC cannot be used. When the end of the memory range is reached while sending data and no stop command is sent by the SDIO card host, any additional transferred data are discarded. RM0430 Rev 8 1045/1324 1084 Secure digital input/output interface (SDIO) RM0430 The maximum clock frequency for a stream write operation is given by the following equation fields of the card-specific data register: 8 × 2 writebllen ) ( – NSAC )) Maximumspeed = MIN (TRANSPEED,(------------------------------------------------------------------------TAAC × R2WFACTOR • Maximumspeed = maximum write frequency • TRANSPEED = maximum data transfer rate • writebllen = maximum write data block length • NSAC = data read access time 2 in CLK cycles • TAAC = data read access time 1 • R2WFACTOR = write speed factor If the host attempts to use a higher frequency, the card may not be able to process the data and stop programming, set the OVERRUN error bit in the status register, and while ignoring all further data transfer, wait (in the receive data state) for a stop command. The write operation is also aborted if the host tries to write over a write-protected area. In this case, however, the card sets the WP_VIOLATION bit. Stream read (MultiMediaCard only) READ_DAT_UNTIL_STOP (CMD11) controls a stream-oriented data transfer. This command instructs the card to send its data, starting at a specified address, until the SDIO card host sends STOP_TRANSMISSION (CMD12). The stop command has an execution delay due to the serial command transmission and the data transfer stops after the end bit of the stop command. When the end of the memory range is reached while sending data and no stop command is sent by the SDIO card host, any subsequent data sent are considered undefined. The maximum clock frequency for a stream read operation is given by the following equation and uses fields of the card specific data register. ( 8 × 2 readbllen ) ( – NSAC )) Maximumspeed = MIN (TRANSPEED,-----------------------------------------------------------------------TAAC × R2WFACTOR • Maximumspeed = maximum read frequency • TRANSPEED = maximum data transfer rate • readbllen = maximum read data block length • writebllen = maximum write data block length • NSAC = data read access time 2 in CLK cycles • TAAC = data read access time 1 • R2WFACTOR = write speed factor If the host attempts to use a higher frequency, the card is not able to sustain data transfer. If this happens, the card sets the UNDERRUN error bit in the status register, aborts the transmission and waits in the data state for a stop command. 1046/1324 RM0430 Rev 8 RM0430 31.4.8 Secure digital input/output interface (SDIO) Erase: group erase and sector erase The erasable unit of the MultiMediaCard is the erase group. The erase group is measured in write blocks, which are the basic writable units of the card. The size of the erase group is a card-specific parameter and defined in the CSD. The host can erase a contiguous range of Erase Groups. Starting the erase process is a three-step sequence. First the host defines the start address of the range using the ERASE_GROUP_START (CMD35) command, next it defines the last address of the range using the ERASE_GROUP_END (CMD36) command and, finally, it starts the erase process by issuing the ERASE (CMD38) command. The address field in the erase commands is an Erase Group address in byte units. The card ignores all LSBs below the Erase Group size, effectively rounding the address down to the Erase Group boundary. If an erase command is received out of sequence, the card sets the ERASE_SEQ_ERROR bit in the status register and resets the whole sequence. If an out-of-sequence (neither of the erase commands, except SEND_STATUS) command received, the card sets the ERASE_RESET status bit in the status register, resets the erase sequence and executes the last command. If the erase range includes write protected blocks, they are left intact and only nonprotected blocks are erased. The WP_ERASE_SKIP status bit in the status register is set. The card indicates that an erase is in progress by holding SDIO_D low. The actual erase time may be quite long, and the host may issue CMD7 to deselect the card. 31.4.9 Wide bus selection or deselection Wide bus (4-bit bus width) operation mode is selected or deselected using SET_BUS_WIDTH (ACMD6). The default bus width after power-up or GO_IDLE_STATE (CMD0) is 1 bit. SET_BUS_WIDTH (ACMD6) is only valid in a transfer state, which means that the bus width can be changed only after a card is selected by SELECT/DESELECT_CARD (CMD7). 31.4.10 Protection management Three write protection methods for the cards are supported in the SDIO card host module: 1. internal card write protection (card responsibility) 2. mechanical write protection switch (SDIO card host module responsibility only) 3. password-protected card lock operation Internal card write protection Card data can be protected against write and erase. By setting the permanent or temporary write-protect bits in the CSD, the entire card can be permanently write-protected by the manufacturer or content provider. For cards that support write protection of groups of sectors by setting the WP_GRP_ENABLE bit in the CSD, portions of the data can be protected, and the write protection can be changed by the application. The write protection is in units of WP_GRP_SIZE sectors as specified in the CSD. The SET_WRITE_PROT and CLR_WRITE_PROT commands control the protection of the addressed group. The SEND_WRITE_PROT command is similar to a single block read command. The card sends a data block containing 32 write protection bits (representing 32 write protect groups starting RM0430 Rev 8 1047/1324 1084 Secure digital input/output interface (SDIO) RM0430 at the specified address) followed by 16 CRC bits. The address field in the write protect commands is a group address in byte units. The card ignores all LSBs below the group size. Mechanical write protect switch A mechanical sliding tab on the side of the card allows the user to set or clear the write protection on a card. When the sliding tab is positioned with the window open, the card is write-protected, and when the window is closed, the card contents can be changed. A matched switch on the socket side indicates to the SDIO card host module that the card is write-protected. The SDIO card host module is responsible for protecting the card. The position of the write protect switch is unknown to the internal circuitry of the card. Password protect The password protection feature enables the SDIO card host module to lock and unlock a card with a password. The password is stored in the 128-bit PWD register and its size is set in the 8-bit PWD_LEN register. These registers are nonvolatile so that a power cycle does not erase them. Locked cards respond to and execute certain commands. This means that the SDIO card host module is allowed to reset, initialize, select, and query for status, however it is not allowed to access data on the card. When the password is set (as indicated by a nonzero value of PWD_LEN), the card is locked automatically after power-up. As with the CSD and CID register write commands, the lock/unlock commands are available in the transfer state only. In this state, the command does not include an address argument and the card must be selected before using it. The card lock/unlock commands have the structure and bus transaction types of a regular single-block write command. The transferred data block includes all of the required information for the command (the password setting mode, the PWD itself, and card lock/unlock). The command data block size is defined by the SDIO card host module before it sends the card lock/unlock command, and has the structure shown in Table 204. The bit settings are as follows: • ERASE: setting it forces an erase operation. All other bits must be zero, and only the command byte is sent • LOCK_UNLOCK: setting it locks the card. LOCK_UNLOCK can be set simultaneously with SET_PWD, however not with CLR_PWD • CLR_PWD: setting it clears the password data • SET_PWD: setting it saves the password data to memory • PWD_LEN: it defines the length of the password in bytes • PWD: the password (new or currently used, depending on the command) The following sections list the command sequences to set/reset a password, lock/unlock the card, and force an erase. Setting the password 1048/1324 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes of the new password. RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) When a password replacement is done, the block size must take into account that both the old and the new passwords are sent with the command. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (SET_PWD = 1), the length (PWD_LEN), and the password (PWD) itself. When a password replacement is done, the length value (PWD_LEN) includes the length of both passwords, the old and the new one, and the PWD field includes the old password (currently used) followed by the new password. 4. When the password is matched, the new password and its size are saved into the PWD and PWD_LEN fields, respectively. When the old password sent does not correspond (in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the password is not changed. The password length field (PWD_LEN) indicates whether a password is currently set. When this field is nonzero, there is a password set and the card locks itself after power-up. It is possible to lock the card immediately in the current power session by setting the LOCK_UNLOCK bit (while setting the password) or sending an additional command for card locking. Resetting the password 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes in the currently used password. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (CLR_PWD = 1), the length (PWD_LEN) and the password (PWD) itself. The LOCK_UNLOCK bit is ignored. 4. When the password is matched, the PWD field is cleared and PWD_LEN is set to 0. When the password sent does not correspond (in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the password is not changed. Locking a card 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card lock/unlock mode (byte 0 in Table 204), the 8-bit PWD_LEN, and the number of bytes of the current password. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 1), the length (PWD_LEN), and the password (PWD) itself. 4. When the password is matched, the card is locked and the CARD_IS_LOCKED status bit is set in the card status register. When the password sent does not correspond (in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the lock fails. It is possible to set the password and to lock the card in the same sequence. In this case, the SDIO card host module performs all the required steps for setting the password (see Setting the password on page 1048), however it is necessary to set the LOCK_UNLOCK bit in Step 3 when the new password command is sent. RM0430 Rev 8 1049/1324 1084 Secure digital input/output interface (SDIO) RM0430 When the password is previously set (PWD_LEN is not 0), the card is locked automatically after power on reset. An attempt to lock a locked card or to lock a card that does not have a password fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register. Unlocking the card 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit cardlock/unlock mode (byte 0 in Table 204), the 8-bit PWD_LEN, and the number of bytes of the current password. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 0), the length (PWD_LEN), and the password (PWD) itself. 4. When the password is matched, the card is unlocked and the CARD_IS_LOCKED status bit is cleared in the card status register. When the password sent is not correct in size and/or content and does not correspond to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the card remains locked. The unlocking function is only valid for the current power session. When the PWD field is not clear, the card is locked automatically on the next power-up. An attempt to unlock an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register. Forcing erase If the user has forgotten the password (PWD content), it is possible to access the card after clearing all the data on the card. This forced erase operation erases all card data and all password data. 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Set the block length (SET_BLOCKLEN, CMD16) to 1 byte. Only the 8-bit card lock/unlock byte (byte 0 in Table 204) is sent. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data byte on the data line including the 16-bit CRC. The data block indicates the mode (ERASE = 1). All other bits must be zero. 4. When the ERASE bit is the only bit set in the data field, all card contents are erased, including the PWD and PWD_LEN fields, and the card is no longer locked. When any other bits are set, the LOCK_UNLOCK_FAILED error bit is set in the card status register and the card retains all of its data, and remains locked. An attempt to use a force erase on an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register. 1050/1324 RM0430 Rev 8 RM0430 31.4.11 Secure digital input/output interface (SDIO) Card status register The response format R1 contains a 32-bit field named card status. This field is intended to transmit the card status information (which may be stored in a local status register) to the host. If not specified otherwise, the status entries are always related to the previously issued command. Table 191 defines the different entries of the status. The type and clear condition fields in the table are abbreviated as follows: Type: • E: error bit • S: status bit • R: detected and set for the actual command response • X: detected and set during command execution. The SDIO card host must poll the card by issuing the status command to read these bits. Clear condition: • A: according to the card current state • B: always related to the previous command. Reception of a valid command clears it (with a delay of one command) • C: clear by read Table 191. Card status Bits 31 30 29 Identifier ADDRESS_ OUT_OF_RANGE ADDRESS_MISALIGN BLOCK_LEN_ERROR Type ERX - - Value Description Clear condition ’0’= no error ’1’= error The command address argument was out of the allowed range for this card. A multiple block or stream read/write C operation is (although started in a valid address) attempting to read or write beyond the card capacity. ’0’= no error ’1’= error The commands address argument (in accordance with the currently set block length) positions the first data block misaligned to the card physical blocks. A multiple block read/write operation (although started with a valid address/block-length combination) is attempting to read or write a data block which is not aligned with the physical blocks of the card. ’0’= no error ’1’= error Either the argument of a SET_BLOCKLEN command exceeds the maximum value allowed for the card, or the previously defined block length is illegal for the current command (e.g. the C host issues a write command, the current block length is smaller than the maximum allowed value for the card and it is not allowed to write partial blocks) RM0430 Rev 8 C 1051/1324 1084 Secure digital input/output interface (SDIO) RM0430 Table 191. Card status (continued) Bits Identifier Type Value Description Clear condition - ’0’= no error ’1’= error An error in the sequence of erase commands occurred. C ERASE_PARAM EX ’0’= no error ’1’= error An invalid selection of erase groups for erase occurred. C 26 WP_VIOLATION EX ’0’= no error ’1’= error Attempt to program a write-protected block. 25 CARD_IS_LOCKED SR ‘0’ = card unlocked ‘1’ = card locked When set, signals that the card is locked by the host A 24 LOCK_UNLOCK_ FAILED EX ’0’= no error ’1’= error Set when a sequence or password error has been detected in lock/unlock card command C 23 COM_CRC_ERROR ER ’0’= no error ’1’= error The CRC check of the previous command B failed. 22 ILLEGAL_COMMAND ER ’0’= no error ’1’= error Command not legal for the card state B 21 CARD_ECC_FAILED EX ’0’= success ’1’= failure Card internal ECC was applied but failed to correct the data. C 20 CC_ERROR ER ’0’= no error ’1’= error (Undefined by the standard) A card error occurred, which is not related to the host command. C EX ’0’= no error ’1’= error (Undefined by the standard) A generic card error related to the (and detected during) execution of the last host command (e.g. read or write failures). C Can be either of the following errors: – The CID register has already been written and cannot be overwritten – The read-only section of the CSD does C not match the card contents – An attempt to reverse the copy (set as original) or permanent WP (unprotected) bits was made 28 ERASE_SEQ_ERROR 27 19 ERROR 18 Reserved 17 Reserved 16 CID/CSD_OVERWRITE EX ’0’= no error ‘1’= error 15 WP_ERASE_SKIP EX ’0’= not protected Set when only partial address space ’1’= protected was erased due to existing write 14 CARD_ECC_DISABLED S X 1052/1324 ’0’= enabled ’1’= disabled C C The command has been executed without A using the internal ECC. RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Table 191. Card status (continued) Bits 13 Identifier ERASE_RESET Type - Value Description Clear condition ’0’= cleared ’1’= set An erase sequence was cleared before executing because an out of erase sequence command was received (commands other than CMD35, CMD36, CMD38 or CMD13) The state of the card when receiving the command. If the command execution causes a state change, it will be visible to B the host in the response on the next command. The four bits are interpreted as a binary number between 0 and 15. C 12:9 CURRENT_STATE SR 0 = Idle 1 = Ready 2 = Ident 3 = Stby 4 = Tran 5 = Data 6 = Rcv 7 = Prg 8 = Dis 9 = Btst 10-15 = reserved 8 READY_FOR_DATA SR ’0’= not ready ‘1’ = ready Corresponds to buffer empty signalling on the bus 7 SWITCH_ERROR EX ’0’= no error ’1’= switch error If set, the card did not switch to the expected mode as requested by the SWITCH command B 6 Reserved 5 APP_CMD SR ‘0’ = Disabled ‘1’ = Enabled The card will expect ACMD, or an indication that the command has been interpreted as ACMD C 4 Reserved for SD I/O Card 3 AKE_SEQ_ERROR ER ’0’= no error ’1’= error Error in the sequence of the authentication process C 2 Reserved for application specific commands 1 0 Reserved for manufacturer test mode RM0430 Rev 8 1053/1324 1084 Secure digital input/output interface (SDIO) 31.4.12 RM0430 SD status register The SD status contains status bits that are related to the SD memory card proprietary features and may be used for future application-specific usage. The size of the SD Status is one data block of 512 bits. The contents of this register are transmitted to the SDIO card host if ACMD13 is sent (CMD55 followed with CMD13). ACMD13 can be sent to a card in transfer state only (card is selected). Table 192 defines the different entries of the SD status register. The type and clear condition fields in the table are abbreviated as follows: Type: • E: error bit • S: status bit • R: detected and set for the actual command response • X: detected and set during command execution. The SDIO card Host must poll the card by issuing the status command to read these bits Clear condition: • A: according to the card current state • B: always related to the previous command. Reception of a valid command clears it (with a delay of one command) • C: clear by read Table 192. SD status Bits Identifier Type Value Description Clear condition 511: 510 DAT_BUS_WIDTH S R ’00’= 1 (default) ‘01’= reserved ‘10’= 4 bit width ‘11’= reserved Shows the currently defined databus width that was defined by SET_BUS_WIDTH command A 509 ’0’= Not in the mode ’1’= In Secured Mode Card is in Secured Mode of operation (refer to the “SD Security Specification”). A ’00xxh’= SD Memory Cards as defined in Physical Spec Ver1.012.00 (’x’= don’t care). The following cards are currently defined: ’0000’= Regular SD RD/WR Card. ’0001’= SD ROM Card In the future, the 8 LSBs will be used to define different variations of an SD memory card (each bit will define different SD types). The 8 A MSBs will be used to define SD Cards that do not comply with current SD physical layer specification. Size of protected area (See below) (See below) A Speed Class of the card (See below) (See below) A SECURED_MODE S R 508: 496 Reserved 495: 480 SD_CARD_TYPE 479: 448 SIZE_OF_PROTE SR CT ED_AREA 447: 440 SPEED_CLASS 1054/1324 SR SR RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Table 192. SD status (continued) Bits Identifier Type Value Description Clear condition 439: 432 PERFORMANCE_ SR MOVE Performance of move indicated by 1 [MB/s] step. (See below) (See below) A 431:428 AU_SIZE SR Size of AU (See below) (See below) A 427:424 Reserved 423:408 ERASE_SIZE SR Number of AUs to be erased at a time (See below) A 407:402 ERASE_TIMEOUT S R Timeout value for erasing areas specified by UNIT_OF_ERASE_AU (See below) A 401:400 ERASE_OFFSET Fixed offset value added to erase (See below) time. A 399:312 Reserved 311:0 Reserved for Manufacturer SR SIZE_OF_PROTECTED_AREA Setting this field differs between standard- and high-capacity cards. In the case of a standard-capacity card, the capacity of protected area is calculated as follows: Protected area = SIZE_OF_PROTECTED_AREA_* MULT * BLOCK_LEN. SIZE_OF_PROTECTED_AREA is specified by the unit in MULT*BLOCK_LEN. In the case of a high-capacity card, the capacity of protected area is specified in this field: Protected area = SIZE_OF_PROTECTED_AREA SIZE_OF_PROTECTED_AREA is specified by the unit in bytes. SPEED_CLASS This 8-bit field indicates the speed class and the value can be calculated by PW/2 (where PW is the write performance). Table 193. Speed class code field SPEED_CLASS Value definition 00h Class 0 01h Class 2 02h Class 4 03h Class 6 04h – FFh Reserved RM0430 Rev 8 1055/1324 1084 Secure digital input/output interface (SDIO) RM0430 PERFORMANCE_MOVE This 8-bit field indicates Pm (performance move) and the value can be set by 1 [MB/sec] steps. If the card does not move used RUs (recording units), Pm should be considered as infinity. Setting the field to FFh means infinity. Table 194. Performance move field PERFORMANCE_MOVE Value definition 00h Not defined 01h 1 [MB/sec] 02h 02h 2 [MB/sec] --------- --------- FEh 254 [MB/sec] FFh Infinity AU_SIZE This 4-bit field indicates the AU size and the value can be selected in the power of 2 base from 16 KB. Table 195. AU_SIZE field AU_SIZE Value definition 00h Not defined 01h 16 KB 02h 32 KB 03h 64 KB 04h 128 KB 05h 256 KB 06h 512 KB 07h 1 MB 08h 2 MB 09h 4 MB Ah – Fh Reserved The maximum AU size, which depends on the card capacity, is defined in Table 196. The card can be set to any AU size between RU size and maximum AU size. Table 196. Maximum AU size 1056/1324 Capacity 16 MB-64 MB 128 MB-256 MB 512 MB 1 GB-32 GB Maximum AU Size 512 KB 1 MB 2 MB 4 MB RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) ERASE_SIZE This 16-bit field indicates NERASE. When NERASE numbers of AUs are erased, the timeout value is specified by ERASE_TIMEOUT (Refer to ERASE_TIMEOUT). The host should determine the proper number of AUs to be erased in one operation so that the host can show the progress of the erase operation. If this field is set to 0, the erase timeout calculation is not supported. Table 197. Erase size field ERASE_SIZE Value definition 0000h Erase timeout calculation is not supported. 0001h 1 AU 0002h 2 AU 0003h 3 AU --------- --------- FFFFh 65535 AU ERASE_TIMEOUT This 6-bit field indicates TERASE and the value indicates the erase timeout from offset when multiple AUs are being erased as specified by ERASE_SIZE. The range of ERASE_TIMEOUT can be defined as up to 63 seconds and the card manufacturer can choose any combination of ERASE_SIZE and ERASE_TIMEOUT depending on the implementation. Determining ERASE_TIMEOUT determines the ERASE_SIZE. Table 198. Erase timeout field ERASE_TIMEOUT Value definition 00 Erase timeout calculation is not supported. 01 1 [sec] 02 2 [sec] 03 3 [sec] --------- --------- 63 63 [sec] ERASE_OFFSET This 2-bit field indicates TOFFSET and one of four values can be selected. This field is meaningless if the ERASE_SIZE and ERASE_TIMEOUT fields are set to 0. Table 199. Erase offset field ERASE_OFFSET Value definition 0h 0 [sec] 1h 1 [sec] RM0430 Rev 8 1057/1324 1084 Secure digital input/output interface (SDIO) RM0430 Table 199. Erase offset field (continued) ERASE_OFFSET 31.4.13 Value definition 2h 2 [sec] 3h 3 [sec] SD I/O mode SD I/O interrupts To allow the SD I/O card to interrupt the MultiMediaCard/SD module, an interrupt function is available on a pin on the SD interface. Pin 8, used as SDIO_D1 when operating in the 4-bit SD mode, signals the cards interrupt to the MultiMediaCard/SD module. The use of the interrupt is optional for each card or function within a card. The SD I/O interrupt is levelsensitive, which means that the interrupt line must be held active (low) until it is either recognized and acted upon by the MultiMediaCard/SD module or deasserted due to the end of the interrupt period. After the MultiMediaCard/SD module has serviced the interrupt, the interrupt status bit is cleared via an I/O write to the appropriate bit in the SD I/O card’s internal registers. The interrupt output of all SD I/O cards is active low and the application must provide pull-up resistors externally on all data lines (SDIO_D[3:0]). The MultiMediaCard/SD module samples the level of pin 8 (SDIO_D/IRQ) into the interrupt detector only during the interrupt period. At all other times, the MultiMediaCard/SD module ignores this value. The interrupt period is applicable for both memory and I/O operations. The definition of the interrupt period for operations with single blocks is different from the definition for multipleblock data transfers. SD I/O suspend and resume Within a multifunction SD I/O or a card with both I/O and memory functions, there are multiple devices (I/O and memory) that share access to the MMC/SD bus. To share access to the MMC/SD module among multiple devices, SD I/O and combo cards optionally implement the concept of suspend/resume. When a card supports suspend/resume, the MMC/SD module can temporarily halt a data transfer operation to one function or memory (suspend) to free the bus for a higher-priority transfer to a different function or memory. After this higher-priority transfer is complete, the original transfer is resumed (restarted) where it left off. Support of suspend/resume is optional on a per-card basis. To perform the suspend/resume operation on the MMC/SD bus, the MMC/SD module performs the following steps: 1. Determines the function currently using the SDIO_D [3:0] line(s) 2. Requests the lower-priority or slower transaction to suspend 3. Waits for the transaction suspension to complete 4. Begins the higher-priority transaction 5. Waits for the completion of the higher priority transaction 6. Restores the suspended transaction SD I/O ReadWait The optional ReadWait (RW) operation is defined only for the SD 1-bit and 4-bit modes. The ReadWait operation allows the MMC/SD module to signal a card that it is reading multiple 1058/1324 RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) registers (IO_RW_EXTENDED, CMD53) to temporarily stall the data transfer while allowing the MMC/SD module to send commands to any function within the SD I/O device. To determine when a card supports the ReadWait protocol, the MMC/SD module must test capability bits in the internal card registers. The timing for ReadWait is based on the interrupt period. 31.4.14 Commands and responses Application-specific and general commands The SDIO card host module system is designed to provide a standard interface for a variety of applications types. In this environment, there is a need for specific customer/application features. To implement these features, two types of generic commands are defined in the standard: application-specific commands (ACMD) and general commands (GEN_CMD). When the card receives the APP_CMD (CMD55) command, the card expects the next command to be an application-specific command. ACMDs have the same structure as regular MultiMediaCard commands and can have the same CMD number. The card recognizes it as ACMD because it appears after APP_CMD (CMD55). When the command immediately following the APP_CMD (CMD55) is not a defined application-specific command, the standard command is used. For example, when the card has a definition for SD_STATUS (ACMD13), and receives CMD13 immediately following APP_CMD (CMD55), this is interpreted as SD_STATUS (ACMD13). However, when the card receives CMD7 immediately following APP_CMD (CMD55) and the card does not have a definition for ACMD7, this is interpreted as the standard (SELECT/DESELECT_CARD) CMD7. To use one of the manufacturer-specific ACMDs the SD card Host must perform the following steps: 1. Send APP_CMD (CMD55) The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit is set and an ACMD is now expected. 2. Send the required ACMD The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit is set and that the accepted command is interpreted as an ACMD. When a nonACMD is sent, it is handled by the card as a normal MultiMediaCard command and the APP_CMD bit in the card status register stays clear. When an invalid command is sent (neither ACMD nor CMD) it is handled as a standard MultiMediaCard illegal command error. The bus transaction for a GEN_CMD is the same as the single-block read or write commands (WRITE_BLOCK, CMD24 or READ_SINGLE_BLOCK,CMD17). In this case, the argument denotes the direction of the data transfer rather than the address, and the data block has vendor-specific format and meaning. The card must be selected (in transfer state) before sending GEN_CMD (CMD56). The data block size is defined by SET_BLOCKLEN (CMD16). The response to GEN_CMD (CMD56) is in R1b format. RM0430 Rev 8 1059/1324 1084 Secure digital input/output interface (SDIO) RM0430 Command types Both application-specific and general commands are divided into the four following types: • broadcast command (BC): sent to all cards; no responses returned. • broadcast command with response (BCR): sent to all cards; responses received from all cards simultaneously. • addressed (point-to-point) command (AC): sent to the card that is selected; does not include a data transfer on the SDIO_D line(s). • addressed (point-to-point) data transfer command (ADTC): sent to the card that is selected; includes a data transfer on the SDIO_D line(s). Command formats See Table 183 on page 1034 for command formats. Commands for the MultiMediaCard/SD module Table 200. Block-oriented write commands CMD index Type Argument Response format Abbreviation Description CMD23 ac [31:16] set to 0 [15:0] number R1 of blocks SET_BLOCK_COUNT Defines the number of blocks which are going to be transferred in the multiple-block read or write command that follows. CMD24 adtc [31:0] data address R1 WRITE_BLOCK Writes a block of the size selected by the SET_BLOCKLEN command. CMD25 adtc [31:0] data address R1 Continuously writes blocks of data until a STOP_TRANSMISSION WRITE_MULTIPLE_BLOCK follows or the requested number of blocks has been received. CMD26 adtc [31:0] stuff bits R1 PROGRAM_CID Programming of the card identification register. This command must be issued only once per card. The card contains hardware to prevent this operation after the first programming. Normally this command is reserved for manufacturer. CMD27 adtc [31:0] stuff bits R1 PROGRAM_CSD Programming of the programmable bits of the CSD. 1060/1324 RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Table 201. Block-oriented write protection commands CMD index Type Argument Response format Abbreviation Description CMD28 ac [31:0] data address R1b SET_WRITE_PROT If the card has write protection features, this command sets the write protection bit of the addressed group. The properties of write protection are coded in the cardspecific data (WP_GRP_SIZE). CMD29 ac [31:0] data address R1b CLR_WRITE_PROT If the card provides write protection features, this command clears the write protection bit of the addressed group. CMD30 adtc [31:0] write protect data address SEND_WRITE_PROT If the card provides write protection features, this command asks the card to send the status of the write protection bits. R1 CMD31 Reserved Table 202. Erase commands CMD index Type Argument Response format Abbreviation Description CMD32 Reserved. These command indexes cannot be used in order to maintain backward compatibility with older ... versions of the MultiMediaCard. CMD34 CMD35 ac [31:0] data address R1 Sets the address of the first erase ERASE_GROUP_START group within a range to be selected for erase. CMD36 ac [31:0] data address R1 ERASE_GROUP_END CMD37 Sets the address of the last erase group within a continuous range to be selected for erase. Reserved. This command index cannot be used in order to maintain backward compatibility with older versions of the MultiMediaCards CMD38 ac [31:0] stuff bits R1 Erases all previously selected write blocks. ERASE Table 203. I/O mode commands CMD index Type CMD39 ac Argument [31:16] RCA [15:15] register write flag [14:8] register address [7:0] register data Response format R4 Abbreviation FAST_IO RM0430 Rev 8 Description Used to write and read 8-bit (register) data fields. The command addresses a card and a register and provides the data for writing if the write flag is set. The R4 response contains data read from the addressed register. This command accesses application-dependent registers that are not defined in the MultiMediaCard standard. 1061/1324 1084 Secure digital input/output interface (SDIO) RM0430 Table 203. I/O mode commands (continued) CMD index Type CMD40 bcr Argument [31:0] stuff bits Response format R5 Abbreviation Description GO_IRQ_STATE Places the system in the interrupt mode. CMD41 Reserved Table 204. Lock card CMD index Type CMD42 adtc Response format Argument [31:0] stuff bits R1b Abbreviation LOCK_UNLOCK Description Sets/resets the password or locks/unlocks the card. The size of the data block is set by the SET_BLOCK_LEN command. CMD43 ... Reserved CMD54 Table 205. Application-specific commands CMD index CMD55 Type ac Argument [31:16] RCA [15:0] stuff bits Response format R1 [31:1] stuff bits [0]: RD/WR CMD56 adtc CMD57 ... CMD59 Reserved. CMD60 ... CMD63 Reserved for manufacturer. 31.5 Abbreviation APP_CMD - - Description Indicates to the card that the next command bits is an application specific command rather than a standard command Used either to transfer a data block to the card or to get a data block from the card for general purpose/application-specific commands. The size of the data block shall be set by the SET_BLOCK_LEN command. Response formats All responses are sent via the SDIO command line SDIO_CMD. The response transmission always starts with the left bit of the bit string corresponding to the response code word. The code length depends on the response type. A response always starts with a start bit (always 0), followed by the bit indicating the direction of transmission (card = 0). A value denoted by x in the tables below indicates a variable entry. All responses, except for the R3 response type, are protected by a CRC. Every command code word is terminated by the end bit (always 1). There are five types of responses. Their formats are defined as follows: 1062/1324 RM0430 Rev 8 RM0430 31.5.1 Secure digital input/output interface (SDIO) R1 (normal response command) Code length = 48 bits. The 45:40 bits indicate the index of the command to be responded to, this value being interpreted as a binary-coded number (between 0 and 63). The status of the card is coded in 32 bits. Table 206. R1 response Bit position 31.5.2 Width (bits Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 X Command index [39:8] 32 X Card status [7:1] 7 X CRC7 0 1 1 End bit R1b It is identical to R1 with an optional busy signal transmitted on the data line. The card may become busy after receiving these commands based on its state prior to the command reception. 31.5.3 R2 (CID, CSD register) Code length = 136 bits. The contents of the CID register are sent as a response to the CMD2 and CMD10 commands. The contents of the CSD register are sent as a response to CMD9. Only the bits [127...1] of the CID and CSD are transferred, the reserved bit [0] of these registers is replaced by the end bit of the response. The card indicates that an erase is in progress by holding SDIO_D0 low. The actual erase time may be quite long, and the host may issue CMD7 to deselect the card. Table 207. R2 response Bit position Width (bits Value Description 135 1 0 Start bit 134 1 0 Transmission bit [133:128] 6 ‘111111’ Command index [127:1] 127 X Card status 0 1 1 End bit RM0430 Rev 8 1063/1324 1084 Secure digital input/output interface (SDIO) 31.5.4 RM0430 R3 (OCR register) Code length: 48 bits. The contents of the OCR register are sent as a response to CMD1. The level coding is as follows: restricted voltage windows = low, card busy = low. Table 208. R3 response Bit position 31.5.5 Width (bits Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘111111’ Reserved [39:8] 32 X OCR register [7:1] 7 ‘1111111’ Reserved 0 1 1 End bit R4 (Fast I/O) Code length: 48 bits. The argument field contains the RCA of the addressed card, the register address to be read out or written to, and its content. Table 209. R4 response Bit position Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘100111’ CMD39 [31:16] 16 X RCA [15:8] 8 X register address [7:0] 8 X read register contents [7:1] 7 X CRC7 0 1 1 End bit [39:8] Argument field 31.5.6 Width (bits R4b For SD I/O only: an SDIO card receiving the CMD5 will respond with a unique SDIO response R4. The format is: Table 210. R4b response Bit position 1064/1324 Width (bits Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 X Reserved RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Table 210. R4b response (continued) Bit position Width (bits Value Description 39 16 X Card is ready [38:36] 3 X Number of I/O functions 35 1 X Present memory [34:32] 3 X Stuff bits [31:8] 24 X I/O ORC [7:1] 7 X Reserved 0 1 1 End bit [39:8] Argument field Once an SD I/O card has received a CMD5, the I/O portion of that card is enabled to respond normally to all further commands. This I/O enable of the function within the I/O card will remain set until a reset, power cycle or CMD52 with write to I/O reset is received by the card. Note that an SD memory-only card may respond to a CMD5. The proper response for a memory-only card would be Present memory = 1 and Number of I/O functions = 0. A memory-only card built to meet the SD Memory Card specification version 1.0 would detect the CMD5 as an illegal command and not respond. The I/O aware host will send CMD5. If the card responds with response R4, the host determines the card’s configuration based on the data contained within the R4 response. 31.5.7 R5 (interrupt request) Only for MultiMediaCard. Code length: 48 bits. If the response is generated by the host, the RCA field in the argument will be 0x0. Table 211. R5 response Bit position Width (bits Value 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘101000’ CMD40 [31:16] 16 X RCA [31:16] of winning card or of the host [15:0] 16 X Not defined. May be used for IRQ data [7:1] 7 X CRC7 0 1 1 End bit [39:8] Argument field 31.5.8 Description R6 Only for SD I/O. The normal response to CMD3 by a memory device. It is shown in Table 212. RM0430 Rev 8 1065/1324 1084 Secure digital input/output interface (SDIO) RM0430 Table 212. R6 response Bit position Width (bits) Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘101000’ CMD40 [31:16] 16 X RCA [31:16] of winning card or of the host [15:0] 16 X Not defined. May be used for IRQ data [7:1] 7 X CRC7 0 1 1 End bit [39:8] Argument field The card [23:8] status bits are changed when CMD3 is sent to an I/O-only card. In this case, the 16 bits of response are the SD I/O-only values: 31.6 • Bit [15] COM_CRC_ERROR • Bit [14] ILLEGAL_COMMAND • Bit [13] ERROR • Bits [12:0] Reserved SDIO I/O card-specific operations The following features are SD I/O-specific operations: • SDIO read wait operation by SDIO_D2 signalling • SDIO read wait operation by stopping the clock • SDIO suspend/resume operation (write and read suspend) • SDIO interrupts The SDIO supports these operations only if the SDIO_DCTRL[11] bit is set, except for read suspend that does not need specific hardware implementation. 31.6.1 SDIO I/O read wait operation by SDIO_D2 signalling It is possible to start the readwait interval before the first block is received: when the data path is enabled (SDIO_DCTRL[0] bit set), the SDIO-specific operation is enabled (SDIO_DCTRL[11] bit set), read wait starts (SDIO_DCTRL[10] =0 and SDIO_DCTRL[8] =1) and data direction is from card to SDIO (SDIO_DCTRL[1] = 1), the DPSM directly moves from Idle to Readwait. In Readwait the DPSM drives SDIO_D2 to 0 after 2 SDIO_CK clock cycles. In this state, when you set the RWSTOP bit (SDIO_DCTRL[9]), the DPSM remains in Wait for two more SDIO_CK clock cycles to drive SDIO_D2 to 1 for one clock cycle (in accordance with SDIO specification). The DPSM then starts waiting again until it receives data from the card. The DPSM will not start a readwait interval while receiving a block even if read wait start is set: the readwait interval will start after the CRC is received. The RWSTOP bit has to be cleared to start a new read wait operation. During the readwait interval, the SDIO can detect SDIO interrupts on SDIO_D1. 1066/1324 RM0430 Rev 8 RM0430 31.6.2 Secure digital input/output interface (SDIO) SDIO read wait operation by stopping SDIO_CK If the SDIO card does not support the previous read wait method, the SDIO can perform a read wait by stopping SDIO_CK (SDIO_DCTRL is set just like in the method presented in Section 31.6.1, but SDIO_DCTRL[10] =1): DSPM stops the clock two SDIO_CK cycles after the end bit of the current received block and starts the clock again after the read wait start bit is set. As SDIO_CK is stopped, any command can be issued to the card. During a read/wait interval, the SDIO can detect SDIO interrupts on SDIO_D1. 31.6.3 SDIO suspend/resume operation While sending data to the card, the SDIO can suspend the write operation. the SDIO_CMD[11] bit is set and indicates to the CPSM that the current command is a suspend command. The CPSM analyzes the response and when the ACK is received from the card (suspend accepted), it acknowledges the DPSM that goes Idle after receiving the CRC token of the current block. The hardware does not save the number of the remaining block to be sent to complete the suspended operation (resume). The write operation can be suspended by software, just by disabling the DPSM (SDIO_DCTRL[0] =0) when the ACK of the suspend command is received from the card. The DPSM enters then the Idle state. To suspend a read: the DPSM waits in the Wait_r state as the function to be suspended sends a complete packet just before stopping the data transaction. The application continues reading RxFIFO until the FIF0 is empty, and the DPSM goes Idle automatically. 31.6.4 SDIO interrupts SDIO interrupts are detected on the SDIO_D1 line once the SDIO_DCTRL[11] bit is set. When SDIO interrupt is detected, SDIO_STA[22] (SDIOIT) bit is set. This static bit can be cleared with clear bit SDIO_ICR[22] (SDIOITC). An interrupt can be generated when SDIOIT status bit is set. Separated interrupt enable SDIO_MASK[22] bit (SDIOITE) is available to enable and disable interrupt request. When SD card interrupt occurs (SDIO_STA[22] bit set), host software follows below steps to handle it. 1. Disable SDIOIT interrupt signaling by clearing SDIOITE bit (SDIO_MASK[22] = ‘0’), 2. Serve card interrupt request, and clear the source of interrupt on the SD card, 3. Clear SDIOIT bit by writing ‘1’ to SDIOITC bit (SDIO_ICR[22] = ‘1’), 4. Enable SDIOIT interrupt signaling by writing ‘1’ to SDIOITE bit (SDIO_MASK[22] = ‘1’). Steps 2 to 4 can be executed out of the SDIO interrupt service routine. 31.7 HW flow control The HW flow control functionality is used to avoid FIFO underrun (TX mode) and overrun (RX mode) errors. The behavior is to stop SDIO_CK and freeze SDIO state machines. The data transfer is stalled while the FIFO is unable to transmit or receive data. Only state machines clocked by RM0430 Rev 8 1067/1324 1084 Secure digital input/output interface (SDIO) RM0430 SDIOCLK are frozen, the APB2 interface is still alive. The FIFO can thus be filled or emptied even if flow control is activated. To enable HW flow control, the SDIO_CLKCR[14] register bit must be set to 1. After reset Flow Control is disabled. 31.8 SDIO registers The device communicates to the system via 32-bit-wide control registers accessible via APB2. 31.8.1 SDIO power control register (SDIO_POWER) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PWRCTRL rw rw Bits 31:2 Reserved, must be kept at reset value. [1:0] PWRCTRL: Power supply control bits. These bits are used to define the current functional state of the card clock: 00: Power-off: the clock to card is stopped. 01: Reserved 10: Reserved power-up 11: Power-on: the card is clocked. Note: At least seven PCLK2 clock periods are needed between two write accesses to this register. Note: After a data write, data cannot be written to this register for three SDIOCLK clock periods plus two PCLK2 clock periods. 31.8.2 SDIO clock control register (SDIO_CLKCR) Address offset: 0x04 Reset value: 0x0000 0000 The SDIO_CLKCR register controls the SDIO_CK output clock. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw 15 14 13 Res. HWFC _EN NEGE DGE rw rw 1068/1324 WID BUS rw BYPAS PWRS CLKEN S AV rw rw rw rw CLKDIV rw RM0430 Rev 8 rw rw rw rw RM0430 Secure digital input/output interface (SDIO) Bits 31:15 Reserved, must be kept at reset value. Bit 14 HWFC_EN: HW Flow Control enable 0b: HW Flow Control is disabled 1b: HW Flow Control is enabled When HW Flow Control is enabled, the meaning of the TXFIFOE and RXFIFOF interrupt signals, see SDIO Status register definition in Section 31.8.11. Bit 13 NEGEDGE: SDIO_CK dephasing selection bit 0b: Command and Data changed on the SDIOCLK falling edge succeeding the rising edge of SDIO_CK. (SDIO_CK rising edge occurs on SDIOCLK rising edge). 1b: Command and Data changed on the SDIO_CK falling edge. When BYPASS is active, the data and the command change on SDIOCLK falling edge whatever NEGEDGE value. Bits 12:11 WIDBUS: Wide bus mode enable bit 00: Default bus mode: SDIO_D0 used 01: 4-wide bus mode: SDIO_D[3:0] used 10: 8-wide bus mode: SDIO_D[7:0] used Bit 10 BYPASS: Clock divider bypass enable bit 0: Disable bypass: SDIOCLK is divided according to the CLKDIV value before driving the SDIO_CK output signal. 1: Enable bypass: SDIOCLK directly drives the SDIO_CK output signal. Bit 9 PWRSAV: Power saving configuration bit For power saving, the SDIO_CK clock output can be disabled when the bus is idle by setting PWRSAV: 0: SDIO_CK clock is always enabled 1: SDIO_CK is only enabled when the bus is active Bit 8 CLKEN: Clock enable bit 0: SDIO_CK is disabled 1: SDIO_CK is enabled Bits 7:0 CLKDIV: Clock divide factor This field defines the divide factor between the input clock (SDIOCLK) and the output clock (SDIO_CK): SDIO_CK frequency = SDIOCLK / [CLKDIV + 2]. Note: 1 While the SD/SDIO card or MultiMediaCard is in identification mode, the SDIO_CK frequency must be less than 400 kHz. 2 The clock frequency can be changed to the maximum card bus frequency when relative card addresses are assigned to all cards. 3 After a data write, data cannot be written to this register for three SDIOCLK clock periods plus two PCLK2 clock periods. SDIO_CK can also be stopped during the read wait interval for SD I/O cards: in this case the SDIO_CLKCR register does not control SDIO_CK. RM0430 Rev 8 1069/1324 1084 Secure digital input/output interface (SDIO) 31.8.3 RM0430 SDIO argument register (SDIO_ARG) Address offset: 0x08 Reset value: 0x0000 0000 The SDIO_ARG register contains a 32-bit command argument, which is sent to a card as part of a command message. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CMDARG[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CMDARG[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 CMDARG: Command argument Command argument sent to a card as part of a command message. If a command contains an argument, it must be loaded into this register before writing a command to the command register. 31.8.4 SDIO command register (SDIO_CMD) Address offset: 0x0C Reset value: 0x0000 0000 The SDIO_CMD register contains the command index and command type bits. The command index is sent to a card as part of a command message. The command type bits control the command path state machine (CPSM). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. SDIO Suspend CPSM EN WAIT PEND WAIT INT rw rw rw rw rw rw Res. Res. Res. WAITRESP rw rw CMDINDEX rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bit 11 SDIOSuspend: SD I/O suspend command If this bit is set, the command to be sent is a suspend command (to be used only with SDIO card). Bit 10 CPSMEN: Command path state machine (CPSM) Enable bit If this bit is set, the CPSM is enabled. Bit 9 WAITPEND: CPSM Waits for ends of data transfer (CmdPend internal signal). If this bit is set, the CPSM waits for the end of data transfer before it starts sending a command. This feature is available only with Stream data transfer mode SDIO_DCTRL[2] = 1. 1070/1324 RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Bit 8 WAITINT: CPSM waits for interrupt request If this bit is set, the CPSM disables command timeout and waits for an interrupt request. Bits 7:6 WAITRESP: Wait for response bits They are used to configure whether the CPSM is to wait for a response, and if yes, which kind of response. 00: No response, expect CMDSENT flag 01: Short response, expect CMDREND or CCRCFAIL flag 10: No response, expect CMDSENT flag 11: Long response, expect CMDREND or CCRCFAIL flag Bits 5:0 CMDINDEX: Command index The command index is sent to the card as part of a command message. Note: 1 After a data write, data cannot be written to this register for three SDIOCLK clock periods plus two PCLK2 clock periods. 2 MultiMediaCards can send two kinds of response: short responses, 48 bits long, or long responses,136 bits long. SD card and SD I/O card can send only short responses, the argument can vary according to the type of response: the software will distinguish the type of response according to the sent command. 31.8.5 SDIO command response register (SDIO_RESPCMD) Address offset: 0x10 Reset value: 0x0000 0000 The SDIO_RESPCMD register contains the command index field of the last command response received. If the command response transmission does not contain the command index field (long or OCR response), the RESPCMD field is unknown, although it must contain 111111b (the value of the reserved field from the response). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 5 4 3 2 1 0 r r 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RESPCMD r r r r Bits 31:6 Reserved, must be kept at reset value. Bits 5:0 RESPCMD: Response command index Read-only bit field. Contains the command index of the last command response received. 31.8.6 SDIO response 1..4 register (SDIO_RESPx) Address offset: (0x10 + (4 × x)); x = 1..4 Reset value: 0x0000 0000 The SDIO_RESP1/2/3/4 registers contain the status of a card, which is part of the received response. RM0430 Rev 8 1071/1324 1084 Secure digital input/output interface (SDIO) RM0430 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r CARDSTATUSx[31:16] CARDSTATUSx[15:0] r r r r r r r r r Bits 31:0 CARDSTATUSx: see Table 213. The Card Status size is 32 or 127 bits, depending on the response type. Table 213. Response type and SDIO_RESPx registers Register Short response Long response SDIO_RESP1 Card Status[31:0] Card Status [127:96] SDIO_RESP2 Unused Card Status [95:64] SDIO_RESP3 Unused Card Status [63:32] SDIO_RESP4 Unused Card Status [31:1]0b The most significant bit of the card status is received first. The SDIO_RESP4 register LSB is always 0b. 31.8.7 SDIO data timer register (SDIO_DTIMER) Address offset: 0x24 Reset value: 0x0000 0000 The SDIO_DTIMER register contains the data timeout period, in card bus clock periods. A counter loads the value from the SDIO_DTIMER register, and starts decrementing when the data path state machine (DPSM) enters the Wait_R or Busy state. If the timer reaches 0 while the DPSM is in either of these states, the timeout status flag is set. 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATATIME[31:16] DATATIME[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DATATIME: Data timeout period Data timeout period expressed in card bus clock periods. Note: 1072/1324 A data transfer must be written to the data timer register and the data length register before being written to the data control register. RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) 31.8.8 SDIO data length register (SDIO_DLEN) Address offset: 0x28 Reset value: 0x0000 0000 The SDIO_DLEN register contains the number of data bytes to be transferred. The value is loaded into the data counter when data transfer starts. 31 30 29 28 27 26 25 Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 rw rw rw rw rw rw rw 24 23 22 21 20 19 18 17 16 DATALENGTH[24:16] rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATALENGTH[15:0] rw rw Bits 31:25 Reserved, must be kept at reset value. Bits 24:0 DATALENGTH: Data length value Number of data bytes to be transferred. Note: For a block data transfer, the value in the data length register must be a multiple of the block size (see SDMMC_DCTRL). Before being written to the data control register a timeout must be written to the data timer register and the data length register. In case of IO_RW_EXTENDED (CMD53): - If the Stream or SDIO multibyte data transfer is selected the value in the data length register must be between 1 and 512. - If the Block data transfer is selected the value in the data length register must be between 1*Data block size and 512*Data block size. 31.8.9 SDIO data control register (SDIO_DCTRL) Address offset: 0x2C Reset value: 0x0000 0000 The SDIO_DCTRL register control the data path state machine (DPSM). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. SDIO EN RW MOD RW STOP RW START DMA EN DT MODE DTDIR DTEN rw rw rw rw rw rw rw rw DBLOCKSIZE rw RM0430 Rev 8 rw rw rw 1073/1324 1084 Secure digital input/output interface (SDIO) RM0430 Bits 31:12 Reserved, must be kept at reset value. Bit 11 SDIOEN: SD I/O enable functions If this bit is set, the DPSM performs an SD I/O-card-specific operation. Bit 10 RWMOD: Read wait mode 0: Read Wait control stopping SDIO_D2 1: Read Wait control using SDIO_CK Bit 9 RWSTOP: Read wait stop 0: Read wait in progress if RWSTART bit is set 1: Enable for read wait stop if RWSTART bit is set Bit 8 RWSTART: Read wait start If this bit is set, read wait operation starts. Bits 7:4 DBLOCKSIZE: Data block size Define the data block length when the block data transfer mode is selected: 0000: (0 decimal) lock length = 20 = 1 byte 0001: (1 decimal) lock length = 21 = 2 bytes 0010: (2 decimal) lock length = 22 = 4 bytes 0011: (3 decimal) lock length = 23 = 8 bytes 0100: (4 decimal) lock length = 24 = 16 bytes 0101: (5 decimal) lock length = 25 = 32 bytes 0110: (6 decimal) lock length = 26 = 64 bytes 0111: (7 decimal) lock length = 27 = 128 bytes 1000: (8 decimal) lock length = 28 = 256 bytes 1001: (9 decimal) lock length = 29 = 512 bytes 1010: (10 decimal) lock length = 210 = 1024 bytes 1011: (11 decimal) lock length = 211 = 2048 bytes 1100: (12 decimal) lock length = 212 = 4096 bytes 1101: (13 decimal) lock length = 213 = 8192 bytes 1110: (14 decimal) lock length = 214 = 16384 bytes 1111: (15 decimal) reserved Bit 3 DMAEN: DMA enable bit 0: DMA disabled. 1: DMA enabled. Bit 2 DTMODE: Data transfer mode selection 1: Stream or SDIO multibyte data transfer. 0: Block data transfer 1: Stream or SDIO multibyte data transfer Bit 1 DTDIR: Data transfer direction selection 0: From controller to card. 1: From card to controller. [0] DTEN: Data transfer enabled bit Data transfer starts if 1b is written to the DTEN bit. Depending on the direction bit, DTDIR, the DPSM moves to the Wait_S, Wait_R state or Readwait if RW Start is set immediately at the beginning of the transfer. It is not necessary to clear the enable bit after the end of a data transfer but the SDIO_DCTRL must be updated to enable a new data transfer 1074/1324 RM0430 Rev 8 RM0430 Note: Secure digital input/output interface (SDIO) After a data write, data cannot be written to this register for three SDIOCLK clock periods plus two PCLK2 clock periods. The meaning of the DTMODE bit changes according to the value of the SDIOEN bit. When SDIOEN=0 and DTMODE=1, the MultiMediaCard stream mode is enabled, and when SDIOEN=1 and DTMODE=1, the peripheral enables an SDIO multibyte transfer. RM0430 Rev 8 1075/1324 1084 Secure digital input/output interface (SDIO) 31.8.10 RM0430 SDIO data counter register (SDIO_DCOUNT) Address offset: 0x30 Reset value: 0x0000 0000 The SDIO_DCOUNT register loads the value from the data length register (see SDIO_DLEN) when the DPSM moves from the Idle state to the Wait_R or Wait_S state. As data is transferred, the counter decrements the value until it reaches 0. The DPSM then moves to the Idle state and the data status end flag, DATAEND, is set. 31 30 29 28 27 26 25 Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 r r r r r r r 24 23 22 21 20 19 18 17 16 DATACOUNT[24:16] r r r r r r r r r 8 7 6 5 4 3 2 1 0 r r r r r r r DATACOUNT[15:0] r r Bits 31:25 Reserved, must be kept at reset value. Bits 24:0 DATACOUNT: Data count value When this bit is read, the number of remaining data bytes to be transferred is returned. Write has no effect. Note: This register should be read only when the data transfer is complete. 31.8.11 SDIO status register (SDIO_STA) Address offset: 0x34 Reset value: 0x0000 0000 The SDIO_STA register is a read-only register. It contains two types of flag: • Static flags (bits [23:22,10:0]): these bits remain asserted until they are cleared by writing to the SDIO Interrupt Clear register (see SDIO_ICR) • Dynamic flags (bits [21:11]): these bits change state depending on the state of the underlying logic (for example, FIFO full and empty flags are asserted and deasserted as data while written to the FIFO) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIOIT RXD AVL TXD AVL RX FIFOE TX FIFOE RX FIFOF TX FIFOF r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RX FIFO HF TX FIFO HE CMD ACT DBCK END Res. DATA END CMDS ENT DCRC FAIL CCRC FAIL r r r r r r r r RXACT TXACT r r Bits 31:23 Reserved, must be kept at reset value. Bit 22 SDIOIT: SDIO interrupt received Bit 21 RXDAVL: Data available in receive FIFO 1076/1324 RM0430 Rev 8 CMDR RX TXUND DTIME CTIME END OVERR ERR OUT OUT r r r r r RM0430 Secure digital input/output interface (SDIO) Bit 20 TXDAVL: Data available in transmit FIFO Bit 19 RXFIFOE: Receive FIFO empty Bit 18 TXFIFOE: Transmit FIFO empty When HW Flow Control is enabled, TXFIFOE signals becomes activated when the FIFO contains 2 words. Bit 17 RXFIFOF: Receive FIFO full When HW Flow Control is enabled, RXFIFOF signals becomes activated 2 words before the FIFO is full. Bit 16 TXFIFOF: Transmit FIFO full Bit 15 RXFIFOHF: Receive FIFO half full: there are at least 8 words in the FIFO Bit 14 TXFIFOHE: Transmit FIFO half empty: at least 8 words can be written into the FIFO Bit 13 RXACT: Data receive in progress Bit 12 TXACT: Data transmit in progress Bit 11 CMDACT: Command transfer in progress Bit 10 DBCKEND: Data block sent/received (CRC check passed) Bit 9 Reserved, must be kept at reset value. Bit 8 DATAEND: Data end (data counter, SDIDCOUNT, is zero) Bit 7 CMDSENT: Command sent (no response required) Bit 6 CMDREND: Command response received (CRC check passed) Bit 5 RXOVERR: Received FIFO overrun error Note: If DMA is used to read SDIO FIFO (DMAEN bit is set in SDIO_DCTRL register), user software should disable DMA stream, and then write with ‘0’ (to disable DMA request generation). Bit 4 TXUNDERR: Transmit FIFO underrun error Note: If DMA is used to fill SDIO FIFO (DMAEN bit is set in SDIO_DCTRL register), user software should disable DMA stream, and then write DMAEN with ‘0’ (to disable DMA request generation). Bit 3 DTIMEOUT: Data timeout Bit 2 CTIMEOUT: Command response timeout The Command TimeOut period has a fixed value of 64 SDIO_CK clock periods. Bit 1 DCRCFAIL: Data block sent/received (CRC check failed) Bit 0 CCRCFAIL: Command response received (CRC check failed) 31.8.12 SDIO interrupt clear register (SDIO_ICR) Address offset: 0x38 Reset value: 0x0000 0000 The SDIO_ICR register is a write-only register. Writing a bit with 1b clears the corresponding bit in the SDIO_STA Status register. RM0430 Rev 8 1077/1324 1084 Secure digital input/output interface (SDIO) RM0430 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIO ITC Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 5 4 3 2 1 0 DCRC FAILC CCRC FAILC rw rw rw Res. Res. Res. Res. Res. DBCK ENDC rw Res. 6 CMD DATA CMD REND ENDC SENTC C rw rw rw Bits 31:23 Reserved, must be kept at reset value. Bit 22 SDIOITC: SDIOIT flag clear bit Set by software to clear the SDIOIT flag. 0: SDIOIT not cleared 1: SDIOIT cleared Bits 21:11 Reserved, must be kept at reset value. Bit 10 DBCKENDC: DBCKEND flag clear bit Set by software to clear the DBCKEND flag. 0: DBCKEND not cleared 1: DBCKEND cleared Bit 9 Reserved, must be kept at reset value. Bit 8 DATAENDC: DATAEND flag clear bit Set by software to clear the DATAEND flag. 0: DATAEND not cleared 1: DATAEND cleared Bit 7 CMDSENTC: CMDSENT flag clear bit Set by software to clear the CMDSENT flag. 0: CMDSENT not cleared 1: CMDSENT cleared Bit 6 CMDRENDC: CMDREND flag clear bit Set by software to clear the CMDREND flag. 0: CMDREND not cleared 1: CMDREND cleared Bit 5 RXOVERRC: RXOVERR flag clear bit Set by software to clear the RXOVERR flag. 0: RXOVERR not cleared 1: RXOVERR cleared Bit 4 TXUNDERRC: TXUNDERR flag clear bit Set by software to clear TXUNDERR flag. 0: TXUNDERR not cleared 1: TXUNDERR cleared Bit 3 DTIMEOUTC: DTIMEOUT flag clear bit Set by software to clear the DTIMEOUT flag. 0: DTIMEOUT not cleared 1: DTIMEOUT cleared 1078/1324 RM0430 Rev 8 RX TX DTIME CTIME OVERR UNDERR OUTC OUTC C C rw rw rw rw RM0430 Secure digital input/output interface (SDIO) Bit 2 CTIMEOUTC: CTIMEOUT flag clear bit Set by software to clear the CTIMEOUT flag. 0: CTIMEOUT not cleared 1: CTIMEOUT cleared Bit 1 DCRCFAILC: DCRCFAIL flag clear bit Set by software to clear the DCRCFAIL flag. 0: DCRCFAIL not cleared 1: DCRCFAIL cleared Bit 0 CCRCFAILC: CCRCFAIL flag clear bit Set by software to clear the CCRCFAIL flag. 0: CCRCFAIL not cleared 1: CCRCFAIL cleared 31.8.13 SDIO mask register (SDIO_MASK) Address offset: 0x3C Reset value: 0x0000 0000 The interrupt mask register determines which status flags generate an interrupt request by setting the corresponding bit to 1b. 31 30 29 28 27 26 25 24 23 22 20 19 18 17 16 TX FIFO EIE RX FIFO FIE TX FIFO FIE SDIO ITIE RXD AVLIE TXD AVLIE RX FIFO EIE rw rw rw rw rw rw rw 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 RX FIFO HFIE TX FIFO HEIE RX ACTIE TX ACTIE CMD ACTIE DBCK ENDIE DATA ENDIE CMD SENT IE CMD REND IE rw rw rw rw rw rw rw rw rw Res. 21 RX TX DTIME CTIME DCRC OVERR UNDERR OUTIE OUTIE FAILIE IE IE rw rw rw rw rw CCRC FAILIE rw Bits 31:23 Reserved, must be kept at reset value. Bit 22 SDIOITIE: SDIO mode interrupt received interrupt enable Set and cleared by software to enable/disable the interrupt generated when receiving the SDIO mode interrupt. 0: SDIO Mode Interrupt Received interrupt disabled 1: SDIO Mode Interrupt Received interrupt enabled Bit 21 RXDAVLIE: Data available in Rx FIFO interrupt enable Set and cleared by software to enable/disable the interrupt generated by the presence of data available in Rx FIFO. 0: Data available in Rx FIFO interrupt disabled 1: Data available in Rx FIFO interrupt enabled Bit 20 TXDAVLIE: Data available in Tx FIFO interrupt enable Set and cleared by software to enable/disable the interrupt generated by the presence of data available in Tx FIFO. 0: Data available in Tx FIFO interrupt disabled 1: Data available in Tx FIFO interrupt enabled RM0430 Rev 8 1079/1324 1084 Secure digital input/output interface (SDIO) RM0430 Bit 19 RXFIFOEIE: Rx FIFO empty interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO empty. 0: Rx FIFO empty interrupt disabled 1: Rx FIFO empty interrupt enabled Bit 18 TXFIFOEIE: Tx FIFO empty interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO empty. 0: Tx FIFO empty interrupt disabled 1: Tx FIFO empty interrupt enabled Bit 17 RXFIFOFIE: Rx FIFO full interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO full. 0: Rx FIFO full interrupt disabled 1: Rx FIFO full interrupt enabled Bit 16 TXFIFOFIE: Tx FIFO full interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO full. 0: Tx FIFO full interrupt disabled 1: Tx FIFO full interrupt enabled Bit 15 RXFIFOHFIE: Rx FIFO half full interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO half full. 0: Rx FIFO half full interrupt disabled 1: Rx FIFO half full interrupt enabled Bit 14 TXFIFOHEIE: Tx FIFO half empty interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO half empty. 0: Tx FIFO half empty interrupt disabled 1: Tx FIFO half empty interrupt enabled Bit 13 RXACTIE: Data receive acting interrupt enable Set and cleared by software to enable/disable interrupt caused by data being received (data receive acting). 0: Data receive acting interrupt disabled 1: Data receive acting interrupt enabled Bit 12 TXACTIE: Data transmit acting interrupt enable Set and cleared by software to enable/disable interrupt caused by data being transferred (data transmit acting). 0: Data transmit acting interrupt disabled 1: Data transmit acting interrupt enabled Bit 11 CMDACTIE: Command acting interrupt enable Set and cleared by software to enable/disable interrupt caused by a command being transferred (command acting). 0: Command acting interrupt disabled 1: Command acting interrupt enabled Bit 10 DBCKENDIE: Data block end interrupt enable Set and cleared by software to enable/disable interrupt caused by data block end. 0: Data block end interrupt disabled 1: Data block end interrupt enabled Bit 9 Reserved, must be kept at reset value. 1080/1324 RM0430 Rev 8 RM0430 Secure digital input/output interface (SDIO) Bit 8 DATAENDIE: Data end interrupt enable Set and cleared by software to enable/disable interrupt caused by data end. 0: Data end interrupt disabled 1: Data end interrupt enabled Bit 7 CMDSENTIE: Command sent interrupt enable Set and cleared by software to enable/disable interrupt caused by sending command. 0: Command sent interrupt disabled 1: Command sent interrupt enabled Bit 6 CMDRENDIE: Command response received interrupt enable Set and cleared by software to enable/disable interrupt caused by receiving command response. 0: Command response received interrupt disabled 1: command Response Received interrupt enabled Bit 5 RXOVERRIE: Rx FIFO overrun error interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO overrun error. 0: Rx FIFO overrun error interrupt disabled 1: Rx FIFO overrun error interrupt enabled Bit 4 TXUNDERRIE: Tx FIFO underrun error interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO underrun error. 0: Tx FIFO underrun error interrupt disabled 1: Tx FIFO underrun error interrupt enabled Bit 3 DTIMEOUTIE: Data timeout interrupt enable Set and cleared by software to enable/disable interrupt caused by data timeout. 0: Data timeout interrupt disabled 1: Data timeout interrupt enabled Bit 2 CTIMEOUTIE: Command timeout interrupt enable Set and cleared by software to enable/disable interrupt caused by command timeout. 0: Command timeout interrupt disabled 1: Command timeout interrupt enabled Bit 1 DCRCFAILIE: Data CRC fail interrupt enable Set and cleared by software to enable/disable interrupt caused by data CRC failure. 0: Data CRC fail interrupt disabled 1: Data CRC fail interrupt enabled Bit 0 CCRCFAILIE: Command CRC fail interrupt enable Set and cleared by software to enable/disable interrupt caused by command CRC failure. 0: Command CRC fail interrupt disabled 1: Command CRC fail interrupt enabled 31.8.14 SDIO FIFO counter register (SDIO_FIFOCNT) Address offset: 0x48 Reset value: 0x0000 0000 The SDIO_FIFOCNT register contains the remaining number of words to be written to or read from the FIFO. The FIFO counter loads the value from the data length register (see SDIO_DLEN) when the data transfer enable bit, DTEN, is set in the data control register (SDIO_DCTRL register) and the DPSM is at the Idle state. If the data length is not wordaligned (multiple of 4), the remaining 1 to 3 bytes are regarded as a word. RM0430 Rev 8 1081/1324 1084 Secure digital input/output interface (SDIO) RM0430 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 23 22 21 20 r r r r 7 6 5 r r 19 18 17 16 r r r r 4 3 2 1 0 r r r r r FIFOCOUNT[23:16] FIFOCOUNT[15:0] r r r r r r r r r Bits 31:24 Reserved, must be kept at reset value. Bits 23:0 FIFOCOUNT: Remaining number of words to be written to or read from the FIFO. 31.8.15 SDIO data FIFO register (SDIO_FIFO) Address offset: 0x80 Reset value: 0x0000 0000 The receive and transmit FIFOs can be read or written as 32-bit wide registers. The FIFOs contain 32 entries on 32 sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FIF0Data[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw FIF0Data[15:0] rw rw bits 31:0 FIFOData: Receive and transmit FIFO data The FIFO data occupies 32 entries of 32-bit words, from address: SDIO base + 0x080 to SDIO base + 0xFC. 1082/1324 RM0430 Rev 8 RM0430 31.8.16 Secure digital input/output interface (SDIO) SDIO register map The following table summarizes the SDIO registers. PWRSAV CLKEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SDIO_CMD Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIO_ RESPCMD Res. 0x10 Res. Reset value 0 0 0 0 0 WAITRESP CMDINDEX 0 Res. 0 Res. 0 WAITINT 0 Res. 0 WAITPEND 0 Res. 0 CPSMEN 0 Res. 0 SDIOSuspend 0 Res. 0 Res. CMDARG Reset value 0x0C CLKDIV BYPASS 0 WIDBUS 0 Res. SDIO_ARG 0 Res. 0x08 Reset value SDIO_ RESP1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DTEN 0 0 0 0 0 0 0 0 0 CARDSTATUS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CARDSTATUS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CARDSTATUS4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SDIO_ DTIMER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RWSTOP RWSTART DATALENGTH RWMOD Res. Res. 0 SDIOEN Res. Res. 0 Res. Res. Res. 0 Res. Res. 0 Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 SDIO_ DLEN Res. DATATIME Reset value SDIO_ DCTRL 0 DTDIR 0 Reset value 0x2C 0 DTMODE 0 Res. 0x28 0 SDIO_ RESP4 Reset value 0x24 0 Res. 0x20 0 SDIO_ RESP3 Reset value 0 DMAEN Reset value 0x1C 0 SDIO_ RESP2 Res. 0x18 0 0 0 0 0 Reset value RM0430 Rev 8 DBLOCKSIZE Reset value RESPCMD CARDSTATUS1 Res. 0x14 0 NEGEDGE Reset value 0 HWFC_EN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIO_ CLKCR Res. Reset value 0x04 PWRCTRL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIO_ POWER Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 214. SDIO register map 1083/1324 1084 0x80 0x48 SDIO_ FIFOCNT Reset value 1084/1324 0 0 0 0 0 0 0 Reset value 0 0 0 0 SDIO_FIFO FIF0Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0430 Rev 8 RXACTIE TXACTIE CMDACTIE DBCKENDIE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. DBCKENDC DATAENDC CMDSENTC CMDRENDC RXOVERRC TXUNDERRC DTIMEOUTC CTIMEOUTC DCRCFAILC CCRCFAILC 0 CCRCFAILIE 0 DCRCFAILIE 0 CTIMEOUTIE 0 DTIMEOUTIE 0 RXOVERRIE 0 TXUNDERRIE 0 CMDSENTIE DBCKEND 0 CMDRENDIE TXACT CMDACT 0 0 CCRCFAIL 0 DCRCFAIL 0 CTIMEOUT 0 DTIMEOUT 0 RXOVERR 0 TXUNDERR 0 CMDSENT 0 CMDREND 0 DATAEND 0 Res. RXACT 0 DATAENDIE TXFIFOHE 0 Res. TXFIFOF RXFIFOHF Res. 0 Res. 0 Res. 0 TXFIFOE 0 RXFIFOF 0 Res. 0 Res. 0 TXDAVL 0 RXFIFOE 0 Res. 0 RXDAVL 0 Res. 0 Res. 0 Res. TXFIFOHEIE 0 TXFIFOFIE 0 RXFIFOHFIE TXFIFOEIE 0 RXFIFOFIE RXFIFOEIE Reset value TXDAVLIE Reset value RXDAVLIE 0 SDIOIT Res. Res. Res. Res. Res. Res. Res. 0 SDIOITC Reset value SDIOITIE Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. SDIO_ MASK Res. 0x3C Res. SDIO_ICR Res. 0x38 Res. SDIO_STA Res. 0x34 Res. Res. Res. Res. Res. Res. Res. Res. SDIO_ DCOUNT Res. 0x30 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. Secure digital input/output interface (SDIO) RM0430 Table 214. SDIO register map (continued) DATACOUNT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIFOCOUNT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2: Memory map and register boundary addresses for the register boundary addresses. RM0430 Controller area network (bxCAN) 32 Controller area network (bxCAN) 32.1 Introduction The Basic Extended CAN peripheral, named bxCAN, interfaces the CAN network. It supports the CAN protocols version 2.0A and B. It has been designed to manage a high number of incoming messages efficiently with a minimum CPU load. It also meets the priority requirements for transmit messages. For safety-critical applications, the CAN controller provides all hardware functions for supporting the CAN Time Triggered Communication option. 32.2 bxCAN main features • Supports CAN protocol version 2.0 A, B Active • Bit rates up to 1 Mbit/s • Supports the Time Triggered Communication option Transmission • Three transmit mailboxes • Configurable transmit priority • Time Stamp on SOF transmission Reception • Two receive FIFOs with three stages • Scalable filter banks: – 28 filter banks shared between CAN1 and CAN2 for dual CAN – 14 filter banks for single CAN • Identifier list feature • Configurable FIFO overrun • Time Stamp on SOF reception Time-triggered communication option • Disable automatic retransmission mode • 16-bit free running timer • Time Stamp sent in last two data bytes Management • Maskable interrupts • Software-efficient mailbox mapping at a unique address space Dual CAN peripheral configuration • CAN1: Master bxCAN for managing the communication between a Slave bxCAN and the 512-byte SRAM memory • CAN2: Slave bxCAN, with no direct access to the SRAM memory. • The two bxCAN cells share the 512-byte SRAM memory (see Figure 379: Dual-CAN block diagram) RM0430 Rev 8 1085/1324 1130 Controller area network (bxCAN) RM0430 Single CAN peripheral configuration: • CAN3: Master bxCAN with dedicated Memory Access Controller unit and 512-byte SRAM memory See Table 215. Table 215. CAN implementation 32.3 CAN features CAN1 CAN2 CAN3 SRAM size 512-byte shared between the two bxCAN 512-byte Filter banks 26 filter banks shared between CAN1 and CAN2 14 fiter banks bxCAN general description In today CAN applications, the number of nodes in a network is increasing and often several networks are linked together via gateways. Typically the number of messages in the system (to be handled by each node) has significantly increased. In addition to the application messages, Network Management and Diagnostic messages have been introduced. • An enhanced filtering mechanism is required to handle each type of message. Furthermore, application tasks require more CPU time, therefore real-time constraints caused by message reception have to be reduced. • A receive FIFO scheme allows the CPU to be dedicated to application tasks for a long time period without losing messages. The standard HLP (Higher Layer Protocol) based on standard CAN drivers requires an efficient interface to the CAN controller. 0&8 $SSOLFDWLRQ &$1 &RQWUROOHU &$1 5[ &$1QRGHQ &$1QRGH &$1QRGH Figure 378. CAN network topology &$1 7[ &$1 7UDQVFHLYHU &$1 +LJK &$1 /RZ &$1%XV 069 32.3.1 CAN 2.0B active core The bxCAN module handles the transmission and the reception of CAN messages fully autonomously. Standard identifiers (11-bit) and extended identifiers (29-bit) are fully supported by hardware. 1086/1324 RM0430 Rev 8 RM0430 32.3.2 Controller area network (bxCAN) Control, status and configuration registers The application uses these registers to: 32.3.3 • Configure CAN parameters, e.g. baud rate • Request transmissions • Handle receptions • Manage interrupts • Get diagnostic information Tx mailboxes Three transmit mailboxes are provided to the software for setting up messages. The transmission Scheduler decides which mailbox has to be transmitted first. 32.3.4 Acceptance filters The bxCAN provides up to 28 scalable/configurable identifier filter banks in dual CAN configuration or up to 14 scalable/configurable identifier filter banks in single CAN configuration, for selecting the incoming messages, that the software needs and discarding the others. Receive FIFO Two receive FIFOs are used by hardware to store the incoming messages. Three complete messages can be stored in each FIFO. The FIFOs are managed completely by hardware. RM0430 Rev 8 1087/1324 1130 Controller area network (bxCAN) RM0430 Figure 379. Dual-CAN block diagram &$1 0DVWHU ZLWKE\WHV65$0 0DVWHU 7[0DLOER[HV 0DLOER[ 0DVWHU 5HFHLYH),)2 0DLOER[ 0DVWHU&RQWURO 0DVWHU 5HFHLYH),)2 0DLOER[ 0DVWHU6WDWXV 7[6WDWXV &RQWURO6WDWXV&RQILJXUDWLRQ 5[),)26WDWXV 7UDQVPLVVLRQ 6FKHGXOHU 5[),)26WDWXV $FFHSWDQFH)LOWHUV ,QWHUUXSW(QDEOH &$1%$FWLYH&RUH (UURU6WDWXV 0HPRU\ $FFHVV &RQWUROOHU %LW7LPLQJ )LOWHU 0DVWHU)LOWHUV WR )LOWHU0DVWHU 6ODYH)LOWHUV WR )LOWHU0RGH 7UDQVPLVVLRQ 6FKHGXOHU )LOWHU6FDOH 6ODYH 5HFHLYH),)2 6ODYH 7[0DLOER[HV )LOWHU),)2$VVLJQ )LOWHU$FWLYDWLRQ 0DLOER[ 6ODYH 5HFHLYH),)2 0DLOER[ 0DLOER[ &RQWURO6WDWXV&RQILJXUDWLRQ &$1 6ODYH 0DVWHU&RQWURO 0DVWHU6WDWXV 7[6WDWXV 5[),)26WDWXV 5[),)26WDWXV &$1%$FWLYH&RUH 1RWH&$1VWDUWILOWHUEDQNQXPEHUQLVFRQILJXUDEOHE\ZULWLQJ &$16%>@ELWVLQWKH&$1B)05UHJLVWHU ,QWHUUXSW(QDEOH (UURU6WDWXV %LW7LPLQJ DLE 1088/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) Figure 380. Single-CAN block diagram EϱϭϮďLJƚĞƐ^ZD DĂƐƚĞƌ ddž DĂŝůďŽ džĞƐ ŽŶ ƚƌŽů Ϯ ^ƚĂƚƵƐ DĂŝůďŽ dž Ϭ D Ă Ɛ ƚĞ ƌ ZĞ ĐĞŝǀĞ &/&K Ϭ D Ă Ɛ ƚĞ ƌ ZĞĐĞŝǀĞ &/&K ϭ Ϯ ϭ DĂŝůďŽ dž Ϭ Ϯ ϭ DĂŝůď Ždž Ϭ ϭ ddž ^ƚĂƚƵƐ ŽŶ ƚƌŽů ͬ^ƚĂƚƵƐ ͬ ŽŶ ĨŝŐƵƌĂ ƚŝŽ Ŷ Zdž &/&K Ϭ ^ƚĂƚƵƐ Zdž &/&K ϭ ^ƚĂƚƵƐ /ŶƚĞƌƌƵƉ ƚ ŶĂďů Ğ ƌƌŽƌ ^ƚĂƚƵƐ E Ϯ͘Ϭ ĐƚŝǀĞ Žƌ Ğ dƌĂŶƐŵŝƐƐŝŽŶ ƐĐŚĞĚƵůĞƌ ĐĐĞƉ ƚĂŶĐĞ &ŝůƚĞƌƐ ŝƚ dŝŵ ŝŶŐ DĞŵ ŽƌLJ ĐĐĞƐƐ ŽŶƚƌŽůůĞƌ &ŝůƚĞƌ DĂƐƚĞƌ &ŝůƚĞƌ DŽĚ Ğ &ŝůƚĞƌ Ϭ ϭ DĂƐƚĞƌ &ŝů ƚĞƌƐ ;Ϭ ƚŽ ϮϳͿ &ŝ ůƚĞƌ ^Đ ĂůĞ Ϯ ϯ ϭϯ ͘͘ ϭϮ ͘͘ ^ ůĂǀ Ğ &ŝůƚĞƌƐ ;Ϭ ƚŽ ϮϳͿ &ŝůƚĞƌ &/&K ƐƐŝŐ Ŷ &ŝ ůƚĞƌ Đ ƚŝǀĂƚŝŽŶ 06Y9 32.4 bxCAN operating modes bxCAN has three main operating modes: initialization, normal and Sleep. After a hardware reset, bxCAN is in Sleep mode to reduce power consumption and an internal pullup is active on CANTX. The software requests bxCAN to enter initialization or Sleep mode by setting the INRQ or SLEEP bits in the CAN_MCR register. Once the mode has been entered, bxCAN confirms it by setting the INAK or SLAK bits in the CAN_MSR register and the internal pull-up is disabled. When neither INAK nor SLAK are set, bxCAN is in normal mode. Before entering normal mode bxCAN always has to synchronize on the CAN bus. To synchronize, bxCAN waits until the CAN bus is idle, this means 11 consecutive recessive bits have been monitored on CANRX. 32.4.1 Initialization mode The software initialization can be done while the hardware is in Initialization mode. To enter this mode the software sets the INRQ bit in the CAN_MCR register and waits until the hardware has confirmed the request by setting the INAK bit in the CAN_MSR register. To leave Initialization mode, the software clears the INQR bit. bxCAN has left Initialization mode once the INAK bit has been cleared by hardware. While in Initialization Mode, all message transfers to and from the CAN bus are stopped and the status of the CAN bus output CANTX is recessive (high). Entering Initialization Mode does not change any of the configuration registers. To initialize the CAN Controller, software has to set up the Bit Timing (CAN_BTR) and CAN options (CAN_MCR) registers. To initialize the registers associated with the CAN filter banks (mode, scale, FIFO assignment, activation and filter values), software has to set the FINIT bit (CAN_FMR). Filter initialization also can be done outside the initialization mode. RM0430 Rev 8 1089/1324 1130 Controller area network (bxCAN) Note: RM0430 When FINIT=1, CAN reception is deactivated. The filter values also can be modified by deactivating the associated filter activation bits (in the CAN_FA1R register). If a filter bank is not used, it is recommended to leave it non active (leave the corresponding FACT bit cleared). 32.4.2 Normal mode Once the initialization is complete, the software must request the hardware to enter Normal mode to be able to synchronize on the CAN bus and start reception and transmission. The request to enter Normal mode is issued by clearing the INRQ bit in the CAN_MCR register. The bxCAN enters Normal mode and is ready to take part in bus activities when it has synchronized with the data transfer on the CAN bus. This is done by waiting for the occurrence of a sequence of 11 consecutive recessive bits (Bus Idle state). The switch to Normal mode is confirmed by the hardware by clearing the INAK bit in the CAN_MSR register. The initialization of the filter values is independent from Initialization Mode but must be done while the filter is not active (corresponding FACTx bit cleared). The filter scale and mode configuration must be configured before entering Normal Mode. 32.4.3 Sleep mode (low-power) To reduce power consumption, bxCAN has a low-power mode called Sleep mode. This mode is entered on software request by setting the SLEEP bit in the CAN_MCR register. In this mode, the bxCAN clock is stopped, however software can still access the bxCAN mailboxes. If software requests entry to initialization mode by setting the INRQ bit while bxCAN is in Sleep mode, it must also clear the SLEEP bit. bxCAN can be woken up (exit Sleep mode) either by software clearing the SLEEP bit or on detection of CAN bus activity. On CAN bus activity detection, hardware automatically performs the wakeup sequence by clearing the SLEEP bit if the AWUM bit in the CAN_MCR register is set. If the AWUM bit is cleared, software has to clear the SLEEP bit when a wakeup interrupt occurs, in order to exit from Sleep mode. Note: If the wakeup interrupt is enabled (WKUIE bit set in CAN_IER register) a wakeup interrupt will be generated on detection of CAN bus activity, even if the bxCAN automatically performs the wakeup sequence. After the SLEEP bit has been cleared, Sleep mode is exited once bxCAN has synchronized with the CAN bus, refer to Figure 381: bxCAN operating modes. The Sleep mode is exited once the SLAK bit has been cleared by hardware. 1090/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) Figure 381. bxCAN operating modes 5HVHW 6OHHS 6/$. ,1$. 6/ 4 (( 5 ,1 1 6< /( 6 1RUPDO (( . (3 3 ,1 6/ & 5 3 ,1 $& (3 & 4 $ ( 6/ 4 $ 5 . & ,154$&. 6/$. ,1$. ,1546<1&6/((3 . ,QLWLDOL]DWLRQ 6/$. ,1$. DL 1. ACK = The wait state during which hardware confirms a request by setting the INAK or SLAK bits in the CAN_MSR register 2. SYNC = The state during which bxCAN waits until the CAN bus is idle, meaning 11 consecutive recessive bits have been monitored on CANRX 32.5 Test mode Test mode can be selected by the SILM and LBKM bits in the CAN_BTR register. These bits must be configured while bxCAN is in Initialization mode. Once test mode has been selected, the INRQ bit in the CAN_MCR register must be reset to enter Normal mode. 32.5.1 Silent mode The bxCAN can be put in Silent mode by setting the SILM bit in the CAN_BTR register. In Silent mode, the bxCAN is able to receive valid data frames and valid remote frames, but it sends only recessive bits on the CAN bus and it cannot start a transmission. If the bxCAN has to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted internally so that the CAN Core monitors this dominant bit, although the CAN bus may remain in recessive state. Silent mode can be used to analyze the traffic on a CAN bus without affecting it by the transmission of dominant bits (Acknowledge Bits, Error Frames). RM0430 Rev 8 1091/1324 1130 Controller area network (bxCAN) RM0430 Figure 382. bxCAN in silent mode E[&$1 7[ 5[ &$17; &$15; 069 32.5.2 Loop back mode The bxCAN can be set in Loop Back Mode by setting the LBKM bit in the CAN_BTR register. In Loop Back Mode, the bxCAN treats its own transmitted messages as received messages and stores them (if they pass acceptance filtering) in a Receive mailbox. Figure 383. bxCAN in loop back mode E[&$1 7[ 5[ &$17; &$15; 069 This mode is provided for self-test functions. To be independent of external events, the CAN Core ignores acknowledge errors (no dominant bit sampled in the acknowledge slot of a data / remote frame) in Loop Back Mode. In this mode, the bxCAN performs an internal feedback from its Tx output to its Rx input. The actual value of the CANRX input pin is disregarded by the bxCAN. The transmitted messages can be monitored on the CANTX pin. 32.5.3 Loop back combined with silent mode It is also possible to combine Loop Back mode and Silent mode by setting the LBKM and SILM bits in the CAN_BTR register. This mode can be used for a “Hot Selftest”, meaning the bxCAN can be tested like in Loop Back mode but without affecting a running CAN system connected to the CANTX and CANRX pins. In this mode, the CANRX pin is disconnected from the bxCAN and the CANTX pin is held recessive. 1092/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) Figure 384. bxCAN in combined mode E[&$1 7[ 5[ &$17; &$15; 069 32.6 Behavior in debug mode When the microcontroller enters the debug mode (Cortex®-M4 with FPU core halted), the bxCAN continues to work normally or stops, depending on: • DBG_CAN1_STOP bit for CAN1, DBG_CAN2_STOP bit for CAN2 or DBG_CAN3_STOP bit for CAN3 in the DBGMCU_APB1_FZ register • the DBF bit in CAN_MCR. For more details, refer to Section 32.9.2: CAN control and status registers. 32.7 bxCAN functional description 32.7.1 Transmission handling In order to transmit a message, the application must select one empty transmit mailbox, set up the identifier, the data length code (DLC) and the data before requesting the transmission by setting the corresponding TXRQ bit in the CAN_TIxR register. Once the mailbox has left empty state, the software no longer has write access to the mailbox registers. Immediately after the TXRQ bit has been set, the mailbox enters pending state and waits to become the highest priority mailbox, see Transmit Priority. As soon as the mailbox has the highest priority it will be scheduled for transmission. The transmission of the message of the scheduled mailbox will start (enter transmit state) when the CAN bus becomes idle. Once the mailbox has been successfully transmitted, it will become empty again. The hardware indicates a successful transmission by setting the RQCP and TXOK bits in the CAN_TSR register. If the transmission fails, the cause is indicated by the ALST bit in the CAN_TSR register in case of an Arbitration Lost, and/or the TERR bit, in case of transmission error detection. Transmit priority By identifier When more than one transmit mailbox is pending, the transmission order is given by the identifier of the message stored in the mailbox. The message with the lowest identifier value has the highest priority according to the arbitration of the CAN protocol. If the identifier values are equal, the lower mailbox number will be scheduled first. RM0430 Rev 8 1093/1324 1130 Controller area network (bxCAN) RM0430 By transmit request order The transmit mailboxes can be configured as a transmit FIFO by setting the TXFP bit in the CAN_MCR register. In this mode the priority order is given by the transmit request order. This mode is very useful for segmented transmission. Abort A transmission request can be aborted by the user setting the ABRQ bit in the CAN_TSR register. In pending or scheduled state, the mailbox is aborted immediately. An abort request while the mailbox is in transmit state can have two results. If the mailbox is transmitted successfully the mailbox becomes empty with the TXOK bit set in the CAN_TSR register. If the transmission fails, the mailbox becomes scheduled, the transmission is aborted and becomes empty with TXOK cleared. In all cases the mailbox will become empty again at least at the end of the current transmission. Non automatic retransmission mode This mode has been implemented in order to fulfill the requirement of the Time Triggered Communication option of the CAN standard. To configure the hardware in this mode the NART bit in the CAN_MCR register must be set. In this mode, each transmission is started only once. If the first attempt fails, due to an arbitration loss or an error, the hardware will not automatically restart the message transmission. At the end of the first transmission attempt, the hardware considers the request as completed and sets the RQCP bit in the CAN_TSR register. The result of the transmission is indicated in the CAN_TSR register by the TXOK, ALST and TERR bits. Figure 385. Transmit mailbox states (037< 54&3 ; 7;2. ; 70( 7;54 3(1',1* $%54 54&3 7;2. 70( 0DLOER[GRHVQRW KDYHKLJKHVWSULRULW\ (037< $%54 54&3 7;2. 70( &$1%XV ,'/( 7UDQVPLWIDLOHG 1$57 (037< 54&3 7;2. 70( 0DLOER[KDV KLJKHVWSULRULW\ 75$160,7 54&3 7;2. 70( 6&+('8/(' 54&3 7;2. 70( 7UDQVPLWIDLOHG 1$57 7UDQVPLWVXFFHHGHG 069 1094/1324 RM0430 Rev 8 RM0430 32.7.2 Controller area network (bxCAN) Time triggered communication mode In this mode, the internal counter of the CAN hardware is activated and used to generate the Time Stamp value stored in the CAN_RDTxR/CAN_TDTxR registers, respectively (for Rx and Tx mailboxes). The internal counter is incremented each CAN bit time (refer to Section 32.7.7: Bit timing). The internal counter is captured on the sample point of the Start Of Frame bit in both reception and transmission. 32.7.3 Reception handling For the reception of CAN messages, three mailboxes organized as a FIFO are provided. In order to save CPU load, simplify the software and guarantee data consistency, the FIFO is managed completely by hardware. The application accesses the messages stored in the FIFO through the FIFO output mailbox. Valid message A received message is considered as valid when it has been received correctly according to the CAN protocol (no error until the last but one bit of the EOF field) and It passed through the identifier filtering successfully, see Section 32.7.4: Identifier filtering. Figure 386. Receive FIFO states %-049 &-0X &/62 6ALID -ESSAGE 2ECEIVED 2ELEASE -AILBOX 0%.$).'? &-0X &/62 2ELEASE -AILBOX 2&/- 6ALID -ESSAGE 2ECEIVED 0%.$).'? &-0X &/62 2ELEASE -AILBOX 2&/- 6ALID -ESSAGE 2ECEIVED 0%.$).'? &-0X &/62 6ALID -ESSAGE 2ECEIVED 2ELEASE -AILBOX 2&/- /6%225. &-0X &/62 6ALID -ESSAGE 2ECEIVED -36 RM0430 Rev 8 1095/1324 1130 Controller area network (bxCAN) RM0430 FIFO management Starting from the empty state, the first valid message received is stored in the FIFO which becomes pending_1. The hardware signals the event setting the FMP[1:0] bits in the CAN_RFR register to the value 01b. The message is available in the FIFO output mailbox. The software reads out the mailbox content and releases it by setting the RFOM bit in the CAN_RFR register. The FIFO becomes empty again. If a new valid message has been received in the meantime, the FIFO stays in pending_1 state and the new message is available in the output mailbox. If the application does not release the mailbox, the next valid message will be stored in the FIFO which enters pending_2 state (FMP[1:0] = 10b). The storage process is repeated for the next valid message putting the FIFO into pending_3 state (FMP[1:0] = 11b). At this point, the software must release the output mailbox by setting the RFOM bit, so that a mailbox is free to store the next valid message. Otherwise the next valid message received will cause a loss of message. Refer also to Section 32.7.5: Message storage Overrun Once the FIFO is in pending_3 state (i.e. the three mailboxes are full) the next valid message reception will lead to an overrun and a message will be lost. The hardware signals the overrun condition by setting the FOVR bit in the CAN_RFR register. Which message is lost depends on the configuration of the FIFO: • If the FIFO lock function is disabled (RFLM bit in the CAN_MCR register cleared) the last message stored in the FIFO will be overwritten by the new incoming message. In this case the latest messages will be always available to the application. • If the FIFO lock function is enabled (RFLM bit in the CAN_MCR register set) the most recent message will be discarded and the software will have the three oldest messages in the FIFO available. Reception related interrupts Once a message has been stored in the FIFO, the FMP[1:0] bits are updated and an interrupt request is generated if the FMPIE bit in the CAN_IER register is set. When the FIFO becomes full (i.e. a third message is stored) the FULL bit in the CAN_RFR register is set and an interrupt is generated if the FFIE bit in the CAN_IER register is set. On overrun condition, the FOVR bit is set and an interrupt is generated if the FOVIE bit in the CAN_IER register is set. 32.7.4 Identifier filtering In the CAN protocol the identifier of a message is not associated with the address of a node but related to the content of the message. Consequently a transmitter broadcasts its message to all receivers. On message reception a receiver node decides - depending on the identifier value - whether the software needs the message or not. If the message is needed, it is copied into the SRAM. If not, the message must be discarded without intervention by the software. To fulfill this requirement in dual CAN configuration, bxCAN Controller provides 28 configurable and scalable filter banks (27-0) to the application. In single CAN configuration bxCAN Controller provides 14 configurable and scalable filter banks (13-0) to the application in order to receive only the messages the software needs. 1096/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) This hardware filtering saves CPU resources which would be otherwise needed to perform filtering by software. Each filter bank x consists of two 32-bit registers, CAN_FxR0 and CAN_FxR1. Scalable width To optimize and adapt the filters to the application needs, each filter bank can be scaled independently. Depending on the filter scale a filter bank provides: • One 32-bit filter for the STDID[10:0], EXTID[17:0], IDE and RTR bits. • Two 16-bit filters for the STDID[10:0], RTR, IDE and EXTID[17:15] bits. Refer to Figure 387. Furthermore, the filters can be configured in mask mode or in identifier list mode. Mask mode In mask mode the identifier registers are associated with mask registers specifying which bits of the identifier are handled as “must match” or as “don’t care”. Identifier list mode In identifier list mode, the mask registers are used as identifier registers. Thus instead of defining an identifier and a mask, two identifiers are specified, doubling the number of single identifiers. All bits of the incoming identifier must match the bits specified in the filter registers. Filter bank scale and mode configuration The filter banks are configured by means of the corresponding CAN_FMR register. To configure a filter bank it must be deactivated by clearing the FACT bit in the CAN_FAR register. The filter scale is configured by means of the corresponding FSCx bit in the CAN_FS1R register, refer to Figure 387. The identifier list or identifier mask mode for the corresponding Mask/Identifier registers is configured by means of the FBMx bits in the CAN_FMR register. To filter a group of identifiers, configure the Mask/Identifier registers in mask mode. To select single identifiers, configure the Mask/Identifier registers in identifier list mode. Filters not used by the application should be left deactivated. Each filter within a filter bank is numbered (called the Filter Number) from 0 to a maximum dependent on the mode and the scale of each of the filter banks. Concerning the filter configuration, refer to Figure 387. RM0430 Rev 8 1097/1324 1130 Controller area network (bxCAN) RM0430 Figure 387. Filter bank scale configuration - register organization )LOWHU 1XP )%0[ ,' &$1B)[5>@ &$1B)[5>@ &$1B)[5>@ &$1B)[5>@ 0DVN &$1B)[5>@ &$1B)[5>@ &$1B)[5>@ &$1B)[5>@ 0DSSLQJ67',' 0DSSLQJ([W,' 67,'>@ (;7,'>@ Q 67,'>@ (;,'>@ (;,'>@ (;,'>@ ,'( 575 7ZR%LW)LOWHUV,GHQWLILHU/LVW )%0[ )6&[ 2QH%LW)LOWHU,GHQWLILHU0DVN ,' &$1B)[5>@ &$1B)[5>@ &$1B)[5>@ &$1B)[5>@ Q ,' &$1B)[5>@ &$1B)[5>@ &$1B)[5>@ &$1B)[5>@ Q 0DSSLQJ67',' 0DSSLQJ([W,' 67,'>@ (;7,'>@ 67,'>@ (;,'>@ (;,'>@ (;,'>@ ,'( 575 )%0[ 7ZR%LW)LOWHUV,GHQWLILHU0DVN ,' &$1B)[5>@ &$1B)[5>@ 0DVN &$1B)[5>@ &$1B)[5>@ ,' &$1B)[5>@ &$1B)[5>@ 0DVN &$1B)[5>@ &$1B)[5>@ )6&[ 0DSSLQJ 67,'>@ Q Q 67,'>@ 575 ,'( (;,'>@ )%0[ )RXU%LW)LOWHUV,GHQWLILHU/LVW ,' &$1B)[5>@ &$1B)[5>@ ,' &$1B)[5>@ &$1B)[5>@ Q Q ,' &$1B)[5>@ &$1B)[5>@ Q ,' &$1B)[5>@ &$1B)[5>@ Q 67,'>@ 67,'>@ 575 ,'( (;,'>@ [ ILOWHUEDQNQXPEHU ,' ,GHQWLILHU )LOWHU%DQN0RGH )LOWHU%DQN6FDOH &RQILJ%LWV 0DSSLQJ 7KHVHELWVDUHORFDWHGLQWKH&$1B)65UHJLVWHU 7KHVHELWVDUHORFDWHGLQWKH&$1B)05UHJLVWHU 06Y9 Filter match index Once a message has been received in the FIFO it is available to the application. Typically, application data is copied into SRAM locations. To copy the data to the right location the application has to identify the data by means of the identifier. To avoid this, and to ease the access to the SRAM locations, the CAN controller provides a Filter Match Index. This index is stored in the mailbox together with the message according to the filter priority rules. Thus each received message has its associated filter match index. The Filter Match index can be used in two ways: • Compare the Filter Match index with a list of expected values. • Use the Filter Match Index as an index on an array to access the data destination location. For non masked filters, the software no longer has to compare the identifier. If the filter is masked the software reduces the comparison to the masked bits only. The index value of the filter number does not take into account the activation state of the filter banks. In addition, two independent numbering schemes are used, one for each FIFO. 1098/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) Refer to Figure 388 for an example. Figure 388. Example of filter numbering )LOWHU %DQN ),)2 )LOWHU 1XP )LOWHU %DQN ),)2 )LOWHU 1XP ,'/LVW ELW ,'0DVN ELW ,'0DVN ELW ,'/LVW ELW ,'/LVW ELW 'HDFWLYDWHG ,'0DVN ELW 'HDFWLYDWHG ,'/LVW ELW ,'0DVN ELW ,'0DVN ELW 'HDFWLYDWHG ,'/LVW ELW ,'/LVW ELW ,'/LVW ELW ,'0DVN ELW ,'0DVN ELW ,' ,GHQWLILHU 069 Filter priority rules Depending on the filter combination it may occur that an identifier passes successfully through several filters. In this case the filter match value stored in the receive mailbox is chosen according to the following priority rules: • A 32-bit filter takes priority over a 16-bit filter. • For filters of equal scale, priority is given to the Identifier List mode over the Identifier Mask mode • For filters of equal scale and mode, priority is given by the filter number (the lower the number, the higher the priority). RM0430 Rev 8 1099/1324 1130 Controller area network (bxCAN) RM0430 Figure 389. Filtering mechanism - example ([DPSOHRIILOWHUEDQNVLQELWXQLGHQWLILHGPRGHDQG WKHUHPDLQLQJLQELWLGHQWLILHUPDVNPRGH 0HVVDJH5HFHLYHG ,GHQWLILHU &WUO 'DWD ,GHQWLILHU 0DVN ,GHQWLILHU/LVW )LOWHUEDQN 1XP ,GHQWLILHU ,GHQWLILHU ,GHQWLILHU ,GHQWLILHU ,GHQWLILHU 0DVN 5HFHLYH),)2 ,GHQWLILHU0DWFK ,GHQWLILHU 0DVN 1R0DWFK )RXQG 0HVVDJH 6WRUHG )0, )LOWHUQXPEHUVWRUHGLQWKH )LOWHU0DWFK,QGH[ILHOG ZLWKLQWKH&$1B5'7[5 UHJLVWHU 0HVVDJH'LVFDUGHG 069 The example above shows the filtering principle of the bxCAN. On reception of a message, the identifier is compared first with the filters configured in identifier list mode. If there is a match, the message is stored in the associated FIFO and the index of the matching filter is stored in the Filter Match Index. As shown in the example, the identifier matches with Identifier #2 thus the message content and FMI 2 is stored in the FIFO. If there is no match, the incoming identifier is then compared with the filters configured in mask mode. If the identifier does not match any of the identifiers configured in the filters, the message is discarded by hardware without disturbing the software. 32.7.5 Message storage The interface between the software and the hardware for the CAN messages is implemented by means of mailboxes. A mailbox contains all information related to a message; identifier, data, control, status and time stamp information. Transmit mailbox The software sets up the message to be transmitted in an empty transmit mailbox. The status of the transmission is indicated by hardware in the CAN_TSR register. 1100/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) Table 216. Transmit mailbox mapping Offset to transmit mailbox base address Register name 0 CAN_TIxR 4 CAN_TDTxR 8 CAN_TDLxR 12 CAN_TDHxR Receive mailbox When a message has been received, it is available to the software in the FIFO output mailbox. Once the software has handled the message (e.g. read it) the software must release the FIFO output mailbox by means of the RFOM bit in the CAN_RFR register to make the next incoming message available. The filter match index is stored in the MFMI field of the CAN_RDTxR register. The 16-bit time stamp value is stored in the TIME[15:0] field of CAN_RDTxR. Table 217. Receive mailbox mapping Offset to receive mailbox base address (bytes) Register name 0 CAN_RIxR 4 CAN_RDTxR 8 CAN_RDLxR 12 CAN_RDHxR Figure 390. CAN error state diagram :KHQ7(&RU5(&! (55253$66,9( (5525$&7,9( :KHQ7(&DQG5(& :KHQ UHFHVVLYHELWVRFFXU :KHQ7(&! %862)) DL RM0430 Rev 8 1101/1324 1130 Controller area network (bxCAN) 32.7.6 RM0430 Error management The error management as described in the CAN protocol is handled entirely by hardware using a Transmit Error Counter (TEC value, in CAN_ESR register) and a Receive Error Counter (REC value, in the CAN_ESR register), which get incremented or decremented according to the error condition. For detailed information about TEC and REC management, refer to the CAN standard. Both of them may be read by software to determine the stability of the network. Furthermore, the CAN hardware provides detailed information on the current error status in CAN_ESR register. By means of the CAN_IER register (ERRIE bit, etc.), the software can configure the interrupt generation on error detection in a very flexible way. Bus-Off recovery The Bus-Off state is reached when TEC is greater than 255, this state is indicated by BOFF bit in CAN_ESR register. In Bus-Off state, the bxCAN is no longer able to transmit and receive messages. Depending on the ABOM bit in the CAN_MCR register bxCAN will recover from Bus-Off (become error active again) either automatically or on software request. But in both cases the bxCAN has to wait at least for the recovery sequence specified in the CAN standard (128 occurrences of 11 consecutive recessive bits monitored on CANRX). If ABOM is set, the bxCAN will start the recovering sequence automatically after it has entered Bus-Off state. If ABOM is cleared, the software must initiate the recovering sequence by requesting bxCAN to enter and to leave initialization mode. Note: In initialization mode, bxCAN does not monitor the CANRX signal, therefore it cannot complete the recovery sequence. To recover, bxCAN must be in normal mode. 32.7.7 Bit timing The bit timing logic monitors the serial bus-line and performs sampling and adjustment of the sample point by synchronizing on the start-bit edge and resynchronizing on the following edges. Its operation may be explained simply by splitting nominal bit time into three segments as follows: • Synchronization segment (SYNC_SEG): a bit change is expected to occur within this time segment. It has a fixed length of one time quantum (1 x tq). • Bit segment 1 (BS1): defines the location of the sample point. It includes the PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is programmable between 1 and 16 time quanta but may be automatically lengthened to compensate for positive phase drifts due to differences in the frequency of the various nodes of the network. • Bit segment 2 (BS2): defines the location of the transmit point. It represents the PHASE_SEG2 of the CAN standard. Its duration is programmable between 1 and 8 time quanta but may also be automatically shortened to compensate for negative phase drifts. The resynchronization Jump Width (SJW) defines an upper bound to the amount of lengthening or shortening of the bit segments. It is programmable between 1 and 4 time quanta. 1102/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) A valid edge is defined as the first transition in a bit time from dominant to recessive bus level provided the controller itself does not send a recessive bit. If a valid edge is detected in BS1 instead of SYNC_SEG, BS1 is extended by up to SJW so that the sample point is delayed. Conversely, if a valid edge is detected in BS2 instead of SYNC_SEG, BS2 is shortened by up to SJW so that the transmit point is moved earlier. As a safeguard against programming errors, the configuration of the Bit Timing Register (CAN_BTR) is only possible while the device is in Standby mode. Note: For a detailed description of the CAN bit timing and resynchronization mechanism, refer to the ISO 11898 standard. Figure 391. Bit timing 120,1$/%,77,0( 6<1&B6(* %,76(*0(17 %6 W%6 [WT %DXG 5DWH %,76(*0(17 %6 1RPLQDO%LW7LPH 1RPLQDO%LW7LPH W%6 6$03/(32,17 75$160,732,17 ; W T W %6 W %6 ZLWK W%6 WT[ 76>@ W%6 WT[ 76>@ WT %53>@ [W3&/. ZKHUHWTUHIHUVWRWKH7LPHTXDQWXP W3&/. WLPHSHULRGRIWKH$3%FORFN %53>@76>@DQG76>@DUHGHILQHGLQWKH&$1B%755HJLVWHU 069 RM0430 Rev 8 1103/1324 1130 Controller area network (bxCAN) RM0430 Figure 392. CAN frames ,QWHU)UDPH6SDFH RU2YHUORDG)UDPH 'DWD)UDPH 6WDQGDUG,GHQWLILHU ,QWHU)UDPH6SDFH $UELWUDWLRQ)LHOG ,' '/& $&.)LHOG &5&)LHOG 1 $&. ,QWHU)UDPH6SDFH ,QWHU)UDPH6SDFH RU2YHUORDG)UDPH 'DWD)UDPH ([WHQGHG,GHQWLILHU 1 $UELWUDWLRQ)LHOG $UELWUDWLRQ)LHOG &WUO)LHOG 'DWD)LHOG 1 $UELWUDWLRQ)LHOG 5HPRWH)UDPH &5&)LHOG &WUO)LHOG '/& ,' )ODJ(FKR $&. $&.)LHOG &5& (QGRI)UDPHRU (UURU'HOLPLWHURU 2YHUORDG'HOLPLWHU (2) $&. 'DWD)UDPHRU 5HPRWH)UDPH %XV,GOH ,QWHU)UDPH6SDFH RU(UURU)UDPH 2YHUORDG)UDPH 2YHUORDG 2YHUORDG (FKR )ODJ (UURU 'HOLPLWHU ,QWHU)UDPH6SDFH 6XVSHQG ,QWHUPLVVLRQ 7UDQVPLVVLRQ (2) ,QWHU)UDPH6SDFH RU2YHUORDG)UDPH (UURU)UDPH (UURU )ODJ ,QWHU)UDPH6SDFH RU2YHUORDG)UDPH 575 ,'( U 62) &5& 575 U U 655 ,'( ,QWHU)UDPH6SDFH 'DWD)UDPHRU 5HPRWH)UDPH &5&)LHOG $&.)LHOG '/& 62) ,' $Q\)UDPH (2) &5& 575 ,'( U 62) 1 'DWD)LHOG &WUO)LHOG 2YHUORDG 'HOLPLWHU 1RWHV 1 62) 6WDUW2I)UDPH ,' ,GHQWLILHU 575 5HPRWH7UDQVPLVVLRQ5HTXHVW ,'( ,GHQWLILHU([WHQVLRQ%LW U 5HVHUYHG%LW '/& 'DWD/HQJWK&RGH &5& &\FOLF5HGXQGDQF\&RGH (UURUIODJGRPLQDQWELWVLIQRGHLVHUURU DFWLYHHOVHUHFHVVLYHELWV 6XVSHQGWUDQVPLVVLRQDSSOLHVWRHUURU SDVVLYHQRGHVRQO\ (2) (QGRI)UDPH $&. $FNQRZOHGJHELW &WUO &RQWURO DLE 1104/1324 RM0430 Rev 8 RM0430 32.8 Controller area network (bxCAN) bxCAN interrupts Four interrupt vectors are dedicated to bxCAN. Each interrupt source can be independently enabled or disabled by means of the CAN Interrupt Enable Register (CAN_IER). Figure 393. Event flags and interrupt generation &$1B,(5 &$1B765 54&3 54&3 54&3 75$160,7 ,17(55837 70(,( )03,( ),)2 )03 ,17(55837 )),( &$1B5)5 )8// )29,( )295 )03,( ),)2 )03 ,17(55837 )),( &$1B5)5 )8// )29,( )295 (55,( (:*,( (:*) (39,( &$1B(65 (39) %2),( (55, &$1B065 %2)) 67$786 &+$1*( (5525 ,17(55837 /(&,( /(& :.8,( :.8, &$1B065 6/.,( 6/$., 069 RM0430 Rev 8 1105/1324 1130 Controller area network (bxCAN) • • • • 32.9 RM0430 The transmit interrupt can be generated by the following events: – Transmit mailbox 0 becomes empty, RQCP0 bit in the CAN_TSR register set. – Transmit mailbox 1 becomes empty, RQCP1 bit in the CAN_TSR register set. – Transmit mailbox 2 becomes empty, RQCP2 bit in the CAN_TSR register set. The FIFO 0 interrupt can be generated by the following events: – Reception of a new message, FMP0 bits in the CAN_RF0R register are not ‘00’. – FIFO0 full condition, FULL0 bit in the CAN_RF0R register set. – FIFO0 overrun condition, FOVR0 bit in the CAN_RF0R register set. The FIFO 1 interrupt can be generated by the following events: – Reception of a new message, FMP1 bits in the CAN_RF1R register are not ‘00’. – FIFO1 full condition, FULL1 bit in the CAN_RF1R register set. – FIFO1 overrun condition, FOVR1 bit in the CAN_RF1R register set. The error and status change interrupt can be generated by the following events: – Error condition, for more details on error conditions refer to the CAN Error Status register (CAN_ESR). – Wakeup condition, SOF monitored on the CAN Rx signal. – Entry into Sleep mode. CAN registers The peripheral registers have to be accessed by words (32 bits). 32.9.1 Register access protection Erroneous access to certain configuration registers can cause the hardware to temporarily disturb the whole CAN network. Therefore the CAN_BTR register can be modified by software only while the CAN hardware is in initialization mode. Although the transmission of incorrect data will not cause problems at the CAN network level, it can severely disturb the application. A transmit mailbox can be only modified by software while it is in empty state, refer to Figure 385: Transmit mailbox states. The filter values can be modified either deactivating the associated filter banks or by setting the FINIT bit. Moreover, the modification of the filter configuration (scale, mode and FIFO assignment) in CAN_FMxR, CAN_FSxR and CAN_FFAR registers can only be done when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. 32.9.2 CAN control and status registers Refer to Section 1.2 for a list of abbreviations used in register descriptions. CAN master control register (CAN_MCR) Address offset: 0x00 Reset value: 0x0001 0002 1106/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DBF rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RESET Res. Res. Res. Res. Res. Res. Res. TTCM ABOM AWUM NART RFLM TXFP SLEEP INRQ rw rw rw rw rw rw rw rw rs Bits 31:17 Reserved, must be kept at reset value. Bit 16 DBF: Debug freeze 0: CAN working during debug 1: CAN reception/transmission frozen during debug. Reception FIFOs can still be accessed/controlled normally. Bit 15 RESET: bxCAN software master reset 0: Normal operation. 1: Force a master reset of the bxCAN -> Sleep mode activated after reset (FMP bits and CAN_MCR register are initialized to the reset values). This bit is automatically reset to 0. Bits 14:8 Reserved, must be kept at reset value. Bit 7 TTCM: Time triggered communication mode 0: Time Triggered Communication mode disabled. 1: Time Triggered Communication mode enabled Note: For more information on Time Triggered Communication mode, refer to Section 32.7.2: Time triggered communication mode. Bit 6 ABOM: Automatic bus-off management This bit controls the behavior of the CAN hardware on leaving the Bus-Off state. 0: The Bus-Off state is left on software request, once 128 occurrences of 11 recessive bits have been monitored and the software has first set and cleared the INRQ bit of the CAN_MCR register. 1: The Bus-Off state is left automatically by hardware once 128 occurrences of 11 recessive bits have been monitored. For detailed information on the Bus-Off state refer to Section 32.7.6: Error management. Bit 5 AWUM: Automatic wakeup mode This bit controls the behavior of the CAN hardware on message reception during Sleep mode. 0: The Sleep mode is left on software request by clearing the SLEEP bit of the CAN_MCR register. 1: The Sleep mode is left automatically by hardware on CAN message detection. The SLEEP bit of the CAN_MCR register and the SLAK bit of the CAN_MSR register are cleared by hardware. Bit 4 NART: No automatic retransmission 0: The CAN hardware will automatically retransmit the message until it has been successfully transmitted according to the CAN standard. 1: A message will be transmitted only once, independently of the transmission result (successful, error or arbitration lost). RM0430 Rev 8 1107/1324 1130 Controller area network (bxCAN) RM0430 Bit 3 RFLM: Receive FIFO locked mode 0: Receive FIFO not locked on overrun. Once a receive FIFO is full the next incoming message will overwrite the previous one. 1: Receive FIFO locked against overrun. Once a receive FIFO is full the next incoming message will be discarded. Bit 2 TXFP: Transmit FIFO priority This bit controls the transmission order when several mailboxes are pending at the same time. 0: Priority driven by the identifier of the message 1: Priority driven by the request order (chronologically) Bit 1 SLEEP: Sleep mode request This bit is set by software to request the CAN hardware to enter the Sleep mode. Sleep mode will be entered as soon as the current CAN activity (transmission or reception of a CAN frame) has been completed. This bit is cleared by software to exit Sleep mode. This bit is cleared by hardware when the AWUM bit is set and a SOF bit is detected on the CAN Rx signal. This bit is set after reset - CAN starts in Sleep mode. Bit 0 INRQ: Initialization request The software clears this bit to switch the hardware into normal mode. Once 11 consecutive recessive bits have been monitored on the Rx signal the CAN hardware is synchronized and ready for transmission and reception. Hardware signals this event by clearing the INAK bit in the CAN_MSR register. Software sets this bit to request the CAN hardware to enter initialization mode. Once software has set the INRQ bit, the CAN hardware waits until the current CAN activity (transmission or reception) is completed before entering the initialization mode. Hardware signals this event by setting the INAK bit in the CAN_MSR register. CAN master status register (CAN_MSR) Address offset: 0x04 Reset value: 0x0000 0C02 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. RX SAMP RXM TXM Res. Res. Res. SLAKI WKUI ERRI SLAK INAK r r r r rc_w1 rc_w1 rc_w1 r r Bits 31:12 Reserved, must be kept at reset value. Bit 11 RX: CAN Rx signal Monitors the actual value of the CAN_RX Pin. Bit 10 SAMP: Last sample point The value of RX on the last sample point (current received bit value). Bit 9 RXM: Receive mode The CAN hardware is currently receiver. 1108/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) Bit 8 TXM: Transmit mode The CAN hardware is currently transmitter. Bits 7:5 Reserved, must be kept at reset value. Bit 4 SLAKI: Sleep acknowledge interrupt When SLKIE=1, this bit is set by hardware to signal that the bxCAN has entered Sleep Mode. When set, this bit generates a status change interrupt if the SLKIE bit in the CAN_IER register is set. This bit is cleared by software or by hardware, when SLAK is cleared. Note: When SLKIE=0, no polling on SLAKI is possible. In this case the SLAK bit can be polled. Bit 3 WKUI: Wakeup interrupt This bit is set by hardware to signal that a SOF bit has been detected while the CAN hardware was in Sleep mode. Setting this bit generates a status change interrupt if the WKUIE bit in the CAN_IER register is set. This bit is cleared by software. Bit 2 ERRI: Error interrupt This bit is set by hardware when a bit of the CAN_ESR has been set on error detection and the corresponding interrupt in the CAN_IER is enabled. Setting this bit generates a status change interrupt if the ERRIE bit in the CAN_IER register is set. This bit is cleared by software. Bit 1 SLAK: Sleep acknowledge This bit is set by hardware and indicates to the software that the CAN hardware is now in Sleep mode. This bit acknowledges the Sleep mode request from the software (set SLEEP bit in CAN_MCR register). This bit is cleared by hardware when the CAN hardware has left Sleep mode (to be synchronized on the CAN bus). To be synchronized the hardware has to monitor a sequence of 11 consecutive recessive bits on the CAN RX signal. Note: The process of leaving Sleep mode is triggered when the SLEEP bit in the CAN_MCR register is cleared. Refer to the AWUM bit of the CAN_MCR register description for detailed information for clearing SLEEP bit Bit 0 INAK: Initialization acknowledge This bit is set by hardware and indicates to the software that the CAN hardware is now in initialization mode. This bit acknowledges the initialization request from the software (set INRQ bit in CAN_MCR register). This bit is cleared by hardware when the CAN hardware has left the initialization mode (to be synchronized on the CAN bus). To be synchronized the hardware has to monitor a sequence of 11 consecutive recessive bits on the CAN RX signal. CAN transmit status register (CAN_TSR) Address offset: 0x08 Reset value: 0x1C00 0000 31 30 29 28 27 26 LOW2 LOW1 LOW0 TME2 TME1 TME0 25 24 CODE[1:0] 23 22 21 20 19 18 17 16 ABRQ2 Res. Res. Res. TERR2 ALST2 TXOK2 RQCP2 rc_w1 rc_w1 rc_w1 rc_w1 6 5 4 3 2 1 0 Res. Res. Res. TERR0 ALST0 TXOK0 RQCP0 rc_w1 rc_w1 rc_w1 rc_w1 r r r r r r r r rs 15 14 13 12 11 10 9 8 7 ABRQ1 Res. Res. Res. TERR1 ALST1 TXOK1 rc_w1 rc_w1 rc_w1 rs RQCP1 ABRQ0 rc_w1 rs RM0430 Rev 8 1109/1324 1130 Controller area network (bxCAN) RM0430 Bit 31 LOW2: Lowest priority flag for mailbox 2 This bit is set by hardware when more than one mailbox are pending for transmission and mailbox 2 has the lowest priority. Bit 30 LOW1: Lowest priority flag for mailbox 1 This bit is set by hardware when more than one mailbox are pending for transmission and mailbox 1 has the lowest priority. Bit 29 LOW0: Lowest priority flag for mailbox 0 This bit is set by hardware when more than one mailbox are pending for transmission and mailbox 0 has the lowest priority. Note: The LOW[2:0] bits are set to zero when only one mailbox is pending. Bit 28 TME2: Transmit mailbox 2 empty This bit is set by hardware when no transmit request is pending for mailbox 2. Bit 27 TME1: Transmit mailbox 1 empty This bit is set by hardware when no transmit request is pending for mailbox 1. Bit 26 TME0: Transmit mailbox 0 empty This bit is set by hardware when no transmit request is pending for mailbox 0. Bits 25:24 CODE[1:0]: Mailbox code In case at least one transmit mailbox is free, the code value is equal to the number of the next transmit mailbox free. In case all transmit mailboxes are pending, the code value is equal to the number of the transmit mailbox with the lowest priority. Bit 23 ABRQ2: Abort request for mailbox 2 Set by software to abort the transmission request for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. Setting this bit has no effect when the mailbox is not pending for transmission. Bits 22:20 Reserved, must be kept at reset value. Bit 19 TERR2: Transmission error of mailbox 2 This bit is set when the previous TX failed due to an error. Bit 18 ALST2: Arbitration lost for mailbox 2 This bit is set when the previous TX failed due to an arbitration lost. Bit 17 TXOK2: Transmission OK of mailbox 2 The hardware updates this bit after each transmission attempt. 0: The previous transmission failed 1: The previous transmission was successful This bit is set by hardware when the transmission request on mailbox 2 has been completed successfully. Refer to Figure 385. Bit 16 RQCP2: Request completed mailbox2 Set by hardware when the last request (transmit or abort) has been performed. Cleared by software writing a “1” or by hardware on transmission request (TXRQ2 set in CAN_TMID2R register). Clearing this bit clears all the status bits (TXOK2, ALST2 and TERR2) for Mailbox 2. Bit 15 ABRQ1: Abort request for mailbox 1 Set by software to abort the transmission request for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. Setting this bit has no effect when the mailbox is not pending for transmission. Bits 14:12 Reserved, must be kept at reset value. 1110/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) Bit 11 TERR1: Transmission error of mailbox1 This bit is set when the previous TX failed due to an error. Bit 10 ALST1: Arbitration lost for mailbox1 This bit is set when the previous TX failed due to an arbitration lost. Bit 9 TXOK1: Transmission OK of mailbox1 The hardware updates this bit after each transmission attempt. 0: The previous transmission failed 1: The previous transmission was successful This bit is set by hardware when the transmission request on mailbox 1 has been completed successfully. Refer to Figure 385 Bit 8 RQCP1: Request completed mailbox1 Set by hardware when the last request (transmit or abort) has been performed. Cleared by software writing a “1” or by hardware on transmission request (TXRQ1 set in CAN_TI1R register). Clearing this bit clears all the status bits (TXOK1, ALST1 and TERR1) for Mailbox 1. Bit 7 ABRQ0: Abort request for mailbox0 Set by software to abort the transmission request for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. Setting this bit has no effect when the mailbox is not pending for transmission. Bits 6:4 Reserved, must be kept at reset value. Bit 3 TERR0: Transmission error of mailbox0 This bit is set when the previous TX failed due to an error. Bit 2 ALST0: Arbitration lost for mailbox0 This bit is set when the previous TX failed due to an arbitration lost. Bit 1 TXOK0: Transmission OK of mailbox0 The hardware updates this bit after each transmission attempt. 0: The previous transmission failed 1: The previous transmission was successful This bit is set by hardware when the transmission request on mailbox 1 has been completed successfully. Refer to Figure 385 Bit 0 RQCP0: Request completed mailbox0 Set by hardware when the last request (transmit or abort) has been performed. Cleared by software writing a “1” or by hardware on transmission request (TXRQ0 set in CAN_TI0R register). Clearing this bit clears all the status bits (TXOK0, ALST0 and TERR0) for Mailbox 0. CAN receive FIFO 0 register (CAN_RF0R) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FULL0 Res. RFOM0 FOVR0 rs RM0430 Rev 8 rc_w1 rc_w1 FMP0[1:0] r r 1111/1324 1130 Controller area network (bxCAN) RM0430 Bits 31:6 Reserved, must be kept at reset value. Bit 5 RFOM0: Release FIFO 0 output mailbox Set by software to release the output mailbox of the FIFO. The output mailbox can only be released when at least one message is pending in the FIFO. Setting this bit when the FIFO is empty has no effect. If at least two messages are pending in the FIFO, the software has to release the output mailbox to access the next message. Cleared by hardware when the output mailbox has been released. Bit 4 FOVR0: FIFO 0 overrun This bit is set by hardware when a new message has been received and passed the filter while the FIFO was full. This bit is cleared by software. Bit 3 FULL0: FIFO 0 full Set by hardware when three messages are stored in the FIFO. This bit is cleared by software. Bit 2 Reserved, must be kept at reset value. Bits 1:0 FMP0[1:0]: FIFO 0 message pending These bits indicate how many messages are pending in the receive FIFO. FMP is increased each time the hardware stores a new message in to the FIFO. FMP is decreased each time the software releases the output mailbox by setting the RFOM0 bit. CAN receive FIFO 1 register (CAN_RF1R) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FULL1 Res. RFOM1 FOVR1 rs rc_w1 rc_w1 FMP1[1:0] r r Bits 31:6 Reserved, must be kept at reset value. Bit 5 RFOM1: Release FIFO 1 output mailbox Set by software to release the output mailbox of the FIFO. The output mailbox can only be released when at least one message is pending in the FIFO. Setting this bit when the FIFO is empty has no effect. If at least two messages are pending in the FIFO, the software has to release the output mailbox to access the next message. Cleared by hardware when the output mailbox has been released. Bit 4 FOVR1: FIFO 1 overrun This bit is set by hardware when a new message has been received and passed the filter while the FIFO was full. This bit is cleared by software. 1112/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) Bit 3 FULL1: FIFO 1 full Set by hardware when three messages are stored in the FIFO. This bit is cleared by software. Bit 2 Reserved, must be kept at reset value. Bits 1:0 FMP1[1:0]: FIFO 1 message pending These bits indicate how many messages are pending in the receive FIFO1. FMP1 is increased each time the hardware stores a new message in to the FIFO1. FMP is decreased each time the software releases the output mailbox by setting the RFOM1 bit. CAN interrupt enable register (CAN_IER) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SLKIE WKUIE rw rw 15 ERRIE rw 14 Res. 13 Res. 12 11 10 9 8 Res. LEC IE BOF IE EPV IE EWG IE rw rw rw rw 7 6 5 4 3 2 1 0 Res. FOV IE1 FF IE1 FMP IE1 FOV IE0 FF IE0 FMP IE0 TME IE rw rw rw rw rw rw rw Bits 31:18 Reserved, must be kept at reset value. Bit 17 SLKIE: Sleep interrupt enable 0: No interrupt when SLAKI bit is set. 1: Interrupt generated when SLAKI bit is set. Bit 16 WKUIE: Wakeup interrupt enable 0: No interrupt when WKUI is set. 1: Interrupt generated when WKUI bit is set. Bit 15 ERRIE: Error interrupt enable 0: No interrupt will be generated when an error condition is pending in the CAN_ESR. 1: An interrupt will be generation when an error condition is pending in the CAN_ESR. Bits 14:12 Reserved, must be kept at reset value. Bit 11 LECIE: Last error code interrupt enable 0: ERRI bit will not be set when the error code in LEC[2:0] is set by hardware on error detection. 1: ERRI bit will be set when the error code in LEC[2:0] is set by hardware on error detection. Bit 10 BOFIE: Bus-off interrupt enable 0: ERRI bit will not be set when BOFF is set. 1: ERRI bit will be set when BOFF is set. Bit 9 EPVIE: Error passive interrupt enable 0: ERRI bit will not be set when EPVF is set. 1: ERRI bit will be set when EPVF is set. RM0430 Rev 8 1113/1324 1130 Controller area network (bxCAN) RM0430 Bit 8 EWGIE: Error warning interrupt enable 0: ERRI bit will not be set when EWGF is set. 1: ERRI bit will be set when EWGF is set. Bit 7 Reserved, must be kept at reset value. Bit 6 FOVIE1: FIFO overrun interrupt enable 0: No interrupt when FOVR is set. 1: Interrupt generation when FOVR is set. Bit 5 FFIE1: FIFO full interrupt enable 0: No interrupt when FULL bit is set. 1: Interrupt generated when FULL bit is set. Bit 4 FMPIE1: FIFO message pending interrupt enable 0: No interrupt generated when state of FMP[1:0] bits are not 00b. 1: Interrupt generated when state of FMP[1:0] bits are not 00b. Bit 3 FOVIE0: FIFO overrun interrupt enable 0: No interrupt when FOVR bit is set. 1: Interrupt generated when FOVR bit is set. Bit 2 FFIE0: FIFO full interrupt enable 0: No interrupt when FULL bit is set. 1: Interrupt generated when FULL bit is set. Bit 1 FMPIE0: FIFO message pending interrupt enable 0: No interrupt generated when state of FMP[1:0] bits are not 00b. 1: Interrupt generated when state of FMP[1:0] bits are not 00b. Bit 0 TMEIE: Transmit mailbox empty interrupt enable 0: No interrupt when RQCPx bit is set. 1: Interrupt generated when RQCPx bit is set. Note: Refer to Section 32.8: bxCAN interrupts. CAN error status register (CAN_ESR) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 REC[7:0] r r r r r 19 18 17 16 r r r TEC[7:0] r r r r r 6 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. RM0430 Rev 8 r r 5 4 LEC[2:0] rw 1114/1324 20 rw rw r 3 2 1 0 Res. BOFF EPVF EWGF r r r RM0430 Controller area network (bxCAN) Bits 31:24 REC[7:0]: Receive error counter The implementing part of the fault confinement mechanism of the CAN protocol. In case of an error during reception, this counter is incremented by 1 or by 8 depending on the error condition as defined by the CAN standard. After every successful reception the counter is decremented by 1 or reset to 120 if its value was higher than 128. When the counter value exceeds 127, the CAN controller enters the error passive state. Bits 23:16 TEC[7:0]: Least significant byte of the 9-bit transmit error counter The implementing part of the fault confinement mechanism of the CAN protocol. Bits 15:7 Reserved, must be kept at reset value. Bits 6:4 LEC[2:0]: Last error code This field is set by hardware and holds a code which indicates the error condition of the last error detected on the CAN bus. If a message has been transferred (reception or transmission) without error, this field will be cleared to ‘0’. The LEC[2:0] bits can be set to value 0b111 by software. They are updated by hardware to indicate the current communication status. 000: No Error 001: Stuff Error 010: Form Error 011: Acknowledgment Error 100: Bit recessive Error 101: Bit dominant Error 110: CRC Error 111: Set by software Bit 3 Reserved, must be kept at reset value. Bit 2 BOFF: Bus-off flag This bit is set by hardware when it enters the bus-off state. The bus-off state is entered on TEC overflow, greater than 255, refer to Section 32.7.6 on page 1102. Bit 1 EPVF: Error passive flag This bit is set by hardware when the Error Passive limit has been reached (Receive Error Counter or Transmit Error Counter>127). Bit 0 EWGF: Error warning flag This bit is set by hardware when the warning limit has been reached (Receive Error Counter or Transmit Error Counter≥96). CAN bit timing register (CAN_BTR) Address offset: 0x1C Reset value: 0x0123 0000 This register can only be accessed by the software when the CAN hardware is in initialization mode. 31 30 29 28 27 26 SILM LBKM Res. Res. Res. Res. rw rw 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 25 24 SJW[1:0] rw rw 9 8 23 22 Res. 7 21 20 19 18 TS2[2:0] 17 16 TS1[3:0] rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw BRP[9:0] rw rw rw RM0430 Rev 8 rw rw rw 1115/1324 1130 Controller area network (bxCAN) RM0430 Bit 31 SILM: Silent mode (debug) 0: Normal operation 1: Silent Mode Bit 30 LBKM: Loop back mode (debug) 0: Loop Back Mode disabled 1: Loop Back Mode enabled Bits 29:26 Reserved, must be kept at reset value. Bits 25:24 SJW[1:0]: Resynchronization jump width These bits define the maximum number of time quanta the CAN hardware is allowed to lengthen or shorten a bit to perform the resynchronization. tRJW = tq x (SJW[1:0] + 1) Bit 23 Reserved, must be kept at reset value. Bits 22:20 TS2[2:0]: Time segment 2 These bits define the number of time quanta in Time Segment 2. tBS2 = tq x (TS2[2:0] + 1) Bits 19:16 TS1[3:0]: Time segment 1 These bits define the number of time quanta in Time Segment 1 tBS1 = tq x (TS1[3:0] + 1) For more information on bit timing, refer to Section 32.7.7: Bit timing on page 1102. Bits 15:10 Reserved, must be kept at reset value. Bits 9:0 BRP[9:0]: Baud rate prescaler These bits define the length of a time quanta. tq = (BRP[9:0]+1) x tPCLK 32.9.3 CAN mailbox registers This chapter describes the registers of the transmit and receive mailboxes. Refer to Section 32.7.5: Message storage on page 1100 for detailed register mapping. Transmit and receive mailboxes have the same registers except: • The FMI field in the CAN_RDTxR register. • A receive mailbox is always write protected. • A transmit mailbox is write-enabled only while empty, corresponding TME bit in the CAN_TSR register set. There are 3 TX Mailboxes and 2 RX Mailboxes. Each RX Mailbox allows access to a 3 level depth FIFO, the access being offered only to the oldest received message in the FIFO. Each mailbox consist of 4 registers. 1116/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) Figure 394. CAN mailbox registers &$1B5,5 &$1B5,5 &$1B7,5 &$1B7,5 &$1B7,5 &$1B5'75 &$1B5'75 &$1B7'75 &$1B7'75 &$1B7'75 &$1B5/5 &$1B5/5 &$1B7'/5 &$1B7'/5 &$1B7'/5 &$1B5+5 &$1B5+5 &$1B7'+5 &$1B7'+5 &$1B7'+5 ),)2 ),)2 7KUHH7[0DLOER[HV 069 CAN TX mailbox identifier register (CAN_TIxR) (x = 0..2) Address offsets: 0x180, 0x190, 0x1A0 Reset value: 0xXXXX XXXX (except bit 0, TXRQ = 0) All TX registers are write protected when the mailbox is pending transmission (TMEx reset). This register also implements the TX request control (bit 0) - reset value 0. 31 30 29 28 27 26 rw rw rw rw rw rw 15 14 13 12 11 10 25 24 23 22 21 20 19 rw rw rw rw rw rw rw 9 8 7 6 5 4 3 STID[10:0]/EXID[28:18] rw rw rw rw rw rw 17 16 rw rw rw 2 1 0 IDE RTR TXRQ rw rw rw EXID[17:13] EXID[12:0] rw 18 rw rw rw rw rw rw Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier The standard identifier or the MSBs of the extended identifier (depending on the IDE bit value). Bit 20:3 EXID[17:0]: Extended identifier The LSBs of the extended identifier. Bit 2 IDE: Identifier extension This bit defines the identifier type of message in the mailbox. 0: Standard identifier. 1: Extended identifier. Bit 1 RTR: Remote transmission request 0: Data frame 1: Remote frame Bit 0 TXRQ: Transmit mailbox request Set by software to request the transmission for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. RM0430 Rev 8 1117/1324 1130 Controller area network (bxCAN) RM0430 CAN mailbox data length control and time stamp register (CAN_TDTxR) (x = 0..2) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x184, 0x194, 0x1A4 Reset value: 0xXXXX XXXX 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 TIME[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw DLC[3:0] rw rw Bits 31:16 TIME[15:0]: Message time stamp This field contains the 16-bit timer value captured at the SOF transmission. Bits 15:9 Reserved, must be kept at reset value. Bit 8 TGT: Transmit global time This bit is active only when the hardware is in the Time Trigger Communication mode, TTCM bit of the CAN_MCR register is set. 0: Time stamp TIME[15:0] is not sent. 1: Time stamp TIME[15:0] value is sent in the last two data bytes of the 8-byte message: TIME[7:0] in data byte 7 and TIME[15:8] in data byte 6, replacing the data written in CAN_TDHxR[31:16] register (DATA6[7:0] and DATA7[7:0]). DLC must be programmed as 8 in order these two bytes to be sent over the CAN bus. Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 DLC[3:0]: Data length code This field defines the number of data bytes a data frame contains or a remote frame request. A message can contain from 0 to 8 data bytes, depending on the value in the DLC field. 1118/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) CAN mailbox data low register (CAN_TDLxR) (x = 0..2) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x188, 0x198, 0x1A8 Reset value: 0xXXXX XXXX 31 30 29 28 27 26 25 24 23 22 21 DATA3[7:0] rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 DATA1[7:0] rw rw rw rw 19 18 17 16 DATA2[7:0] rw rw 20 rw rw rw rw rw 4 3 2 1 0 rw rw rw 18 17 16 DATA0[7:0] rw rw rw rw rw rw rw rw Bits 31:24 DATA3[7:0]: Data byte 3 Data byte 3 of the message. Bits 23:16 DATA2[7:0]: Data byte 2 Data byte 2 of the message. Bits 15:8 DATA1[7:0]: Data byte 1 Data byte 1 of the message. Bits 7:0 DATA0[7:0]: Data byte 0 Data byte 0 of the message. A message can contain from 0 to 8 data bytes and starts with byte 0. CAN mailbox data high register (CAN_TDHxR) (x = 0..2) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x18C, 0x19C, 0x1AC Reset value: 0xXXXX XXXX 31 30 29 28 27 26 25 24 23 22 21 DATA7[7:0] 20 19 DATA6[7:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw DATA5[7:0] rw DATA4[7:0] RM0430 Rev 8 rw 1119/1324 1130 Controller area network (bxCAN) RM0430 Bits 31:24 DATA7[7:0]: Data byte 7 Data byte 7 of the message. Note: If TGT of this message and TTCM are active, DATA7 and DATA6 will be replaced by the TIME stamp value. Bits 23:16 DATA6[7:0]: Data byte 6 Data byte 6 of the message. Bits 15:8 DATA5[7:0]: Data byte 5 Data byte 5 of the message. Bits 7:0 DATA4[7:0]: Data byte 4 Data byte 4 of the message. CAN receive FIFO mailbox identifier register (CAN_RIxR) (x = 0..1) Address offsets: 0x1B0, 0x1C0 Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 27 26 25 24 23 22 21 20 19 STID[10:0]/EXID[28:18] r r r r r r 15 14 13 12 11 10 r r r r r r r r r r r r 9 8 7 6 5 4 3 r 17 16 r r EXID[17:13] EXID[12:0] r 18 r r r r r r r 2 1 0 IDE RTR Res r r Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier The standard identifier or the MSBs of the extended identifier (depending on the IDE bit value). Bits 20:3 EXID[17:0]: Extended identifier The LSBs of the extended identifier. Bit 2 IDE: Identifier extension This bit defines the identifier type of message in the mailbox. 0: Standard identifier. 1: Extended identifier. Bit 1 RTR: Remote transmission request 0: Data frame 1: Remote frame Bit 0 Reserved, must be kept at reset value. 1120/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) CAN receive FIFO mailbox data length control and time stamp register (CAN_RDTxR) (x = 0..1) Address offsets: 0x1B4, 0x1C4 Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 TIME[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. r r r r r r r r r FMI[7:0] r DLC[3:0] r r Bits 31:16 TIME[15:0]: Message time stamp This field contains the 16-bit timer value captured at the SOF detection. Bits 15:8 FMI[7:0]: Filter match index This register contains the index of the filter the message stored in the mailbox passed through. For more details on identifier filtering refer to Section 32.7.4: Identifier filtering on page 1096 - Filter Match Index paragraph. Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 DLC[3:0]: Data length code This field defines the number of data bytes a data frame contains (0 to 8). It is 0 in the case of a remote frame request. RM0430 Rev 8 1121/1324 1130 Controller area network (bxCAN) RM0430 CAN receive FIFO mailbox data low register (CAN_RDLxR) (x = 0..1) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x1B8, 0x1C8 Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 27 26 25 24 23 22 21 DATA3[7:0] r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 DATA1[7:0] r r r r 19 18 17 16 DATA2[7:0] r r 20 r r r r r 4 3 2 1 0 r r r 18 17 16 DATA0[7:0] r r r r r r r r Bits 31:24 DATA3[7:0]: Data Byte 3 Data byte 3 of the message. Bits 23:16 DATA2[7:0]: Data Byte 2 Data byte 2 of the message. Bits 15:8 DATA1[7:0]: Data Byte 1 Data byte 1 of the message. Bits 7:0 DATA0[7:0]: Data Byte 0 Data byte 0 of the message. A message can contain from 0 to 8 data bytes and starts with byte 0. CAN receive FIFO mailbox data high register (CAN_RDHxR) (x = 0..1) Address offsets: 0x1BC, 0x1CC Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 27 26 25 24 23 22 21 DATA7[7:0] 20 19 DATA6[7:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r DATA5[7:0] r r DATA4[7:0] Bits 31:24 DATA7[7:0]: Data Byte 7 Data byte 3 of the message. 1122/1324 RM0430 Rev 8 r r RM0430 Controller area network (bxCAN) Bits 23:16 DATA6[7:0]: Data Byte 6 Data byte 2 of the message. Bits 15:8 DATA5[7:0]: Data Byte 5 Data byte 1 of the message. Bits 7:0 DATA4[7:0]: Data Byte 4 Data byte 0 of the message. 32.9.4 CAN filter registers CAN filter master register (CAN_FMR) Address offset: 0x200 Reset value: 0x2A1C 0E01 All bits of this register are set and cleared by software. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 Res. Res. CANSB[5:0] rw Bits 31:14 Bits 13:8 rw rw rw rw 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. FINIT rw rw Reserved, must be kept at reset value. CANSB[5:0]: CAN start bank These bits are set and cleared by software. When both CAN are used, they define the start bank of each CAN interface: 000001 = 1 filter assigned to CAN1 and 27 assigned to CAN2 011011 = 27 filters assigned to CAN1 and 1 filter assigned to CAN2 – to assign all filters to one CAN set CANSB value to zero and deactivate the non used CAN – to use CAN1 only: stop the clock on CAN2 and/or set the CAN_MCR.INRQ on CAN2 – to use CAN2 only: set the CAN_MCR.INRQ on CAN1 or deactivate the interupt register CAN_IER on CAN1 Note: Bits [13:8] are available only for dual CAN peripheral configuration and are reserved for single CAN peripheral configuration. Bits 7:1 Bit 0 Reserved, must be kept at reset value. FINIT: Filter initialization mode Initialization mode for filter banks 0: Active filters mode. 1: Initialization mode for the filters. CAN filter mode register (CAN_FM1R) Address offset: 0x204 Reset value: 0x0000 0000 This register can be written only when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. RM0430 Rev 8 1123/1324 1130 Controller area network (bxCAN) 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 27 26 rw Note: rw rw 25 24 23 22 21 20 19 18 17 16 FBM27 FBM26 FBM25 FBM24 FBM23 FBM22 FBM21 FBM20 FBM19 FBM18 FBM17 FBM16 rw rw rw rw rw rw rw rw rw rw rw 11 10 9 8 7 6 5 4 3 2 1 0 FBM9 FBM8 FBM7 FBM6 FBM5 FBM4 FBM3 FBM2 FBM1 FBM0 rw rw rw rw rw rw rw rw rw rw FBM15 FBM14 FBM13 FBM12 FBM11 FBM10 rw RM0430 rw rw rw Refer to Figure 387: Filter bank scale configuration - register organization on page 1098. Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FBMx: Filter mode Mode of the registers of Filter x. 0: Two 32-bit registers of filter bank x are in Identifier Mask mode. 1: Two 32-bit registers of filter bank x are in Identifier List mode. Note: Bits 27:14 are available for dual CAN configuration and are reserved for single CAN configuration. CAN filter scale register (CAN_FS1R) Address offset: 0x20C Reset value: 0x0000 0000 This register can be written only when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. FSC27 FSC26 FSC25 FSC24 FSC23 FSC22 FSC21 FSC20 FSC19 FSC18 FSC17 FSC16 rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FSC15 FSC14 FSC13 FSC12 FSC11 FSC10 FSC9 FSC8 FSC7 FSC6 FSC5 FSC4 FSC3 FSC2 FSC1 FSC0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FSCx: Filter scale configuration These bits define the scale configuration of Filters 27-0. 0: Dual 16-bit scale configuration 1: Single 32-bit scale configuration Note: Bits 27:14 are available for dual CAN configuration and are reserved for single CAN configuration. Note: Refer to Figure 387: Filter bank scale configuration - register organization on page 1098. CAN filter FIFO assignment register (CAN_FFA1R) Address offset: 0x214 Reset value: 0x0000 0000 This register can be written only when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. 1124/1324 RM0430 Rev 8 RM0430 Controller area network (bxCAN) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. FFA27 FFA26 FFA25 FFA24 FFA23 FFA22 FFA21 FFA20 FFA19 FFA18 FFA17 FFA16 rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FFA15 FFA14 FFA13 FFA12 FFA11 FFA10 FFA9 FFA8 FFA7 FFA6 FFA5 FFA4 FFA3 FFA2 FFA1 FFA0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FFAx: Filter FIFO assignment for filter x The message passing through this filter will be stored in the specified FIFO. 0: Filter assigned to FIFO 0 1: Filter assigned to FIFO 1 Note: Bits 27:14 are available for dual CAN configuration and are reserved for single CAN configuration. CAN filter activation register (CAN_FA1R) Address offset: 0x21C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FACT 27 FACT 26 FACT 25 FACT 24 FACT 23 FACT 22 FACT 21 FACT 20 FACT 19 FACT 18 FACT 17 FACT 16 Res. Res. Res. Res. rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FACT 15 FACT 14 FACT 13 FACT 12 FACT 11 FACT 10 FACT9 FACT8 FACT7 FACT6 FACT5 FACT4 FACT3 FACT2 FACT1 FACT0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FACTx: Filter active The software sets this bit to activate Filter x. To modify the Filter x registers (CAN_FxR[0:7]), the FACTx bit must be cleared or the FINIT bit of the CAN_FMR register must be set. 0: Filter x is not active 1: Filter x is active Note: Bits 27:14 are available for dual CAN configuration and are reserved for single CAN configuration. RM0430 Rev 8 1125/1324 1130 Controller area network (bxCAN) RM0430 Filter bank i register x (CAN_FiRx) (i = 0..27, x = 1, 2) Address offsets: 0x240 to 0x31C Reset value: 0xXXXX XXXX Depending on CAN peripheral configuration there are 28 filter banks, in dual CAN or 14 filter banks in single CAN configuration. Each filter bank i (i= 0 to 27 in dual CAN configuration and i= 0 to 13 in single CAN configuration) is composed of two 32-bit registers, CAN_FiR[2:1]. This register can only be modified when the FACTx bit of the CAN_FAxR register is cleared or when the FINIT bit of the CAN_FMR register is set. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FB31 FB30 FB29 FB28 FB27 FB26 FB25 FB24 FB23 FB22 FB21 FB20 FB19 FB18 FB17 FB16 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FB15 FB14 FB13 FB12 FB11 FB10 FB9 FB8 FB7 FB6 FB5 FB4 FB3 FB2 FB1 FB0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw In all configurations: Bits 31:0 FB[31:0]: Filter bits Identifier Each bit of the register specifies the level of the corresponding bit of the expected identifier. 0: Dominant bit is expected 1: Recessive bit is expected Mask Each bit of the register specifies whether the bit of the associated identifier register must match with the corresponding bit of the expected identifier or not. 0: Do not care, the bit is not used for the comparison 1: Must match, the bit of the incoming identifier must have the same level has specified in the corresponding identifier register of the filter. Note: Depending on the scale and mode configuration of the filter the function of each register can differ. For the filter mapping, functions description and mask registers association, refer to Section 32.7.4: Identifier filtering on page 1096. A Mask/Identifier register in mask mode has the same bit mapping as in identifier list mode. For the register mapping/addresses of the filter banks refer to Table 218 on page 1127. 1126/1324 RM0430 Rev 8 0x180 0 0 CAN_BTR Res. Reset value 0 0 - CAN_TI0R Reset value x x x x x x 0 Res. x x x 1 0 0 0 1 1 Res. Res. Res. x x x x x x RM0430 Rev 8 STID[10:0]/EXID[28:18] x x x x x x 0 TMEIE 0 0 0 0 EWGF 0 EPVF 0 BOFF FMP1[1:0] Res. RQCP0 INRQ INAK 0 0 0 0 0 FMP0[1:0] TXFP SLEEP ERRI 1 ALST0 SLAK NART RFLM WKUI 0 SLAKI 1 Res. 0 0 TXOK0 FULL0 ABOM AWUM 0 Res. Res. Res. 0 Res. TXM Res. 0 0 Res. FOVR0 Res. RXM Res. TTCM SAMP Res. Res. Res. 0 Res. RX Res. Res. Res. DBF RESET Res. 0 0 TERR0 RFOM0 0 Res. 0 FFIE0 FULL1 0 FMPIE0 FOVR1 0 FOVIE0 0 FMPIE1 0 Res. Res. Res. Res. Res. ABRQ0 Res. 0 0 0 0 x x x x x x x Res. 0 0 TXRQ 0 Res. Res. Reset value Res. 0 Res. Reset value RFOM1 RQCP1 0 FFIE1 TXOK1 0 FOVIE1 ALST1 0 LEC[2:0] Res. Res. TERR1 Res. Res. 0 Res. Res. Res. 0 Res. 0 Res. EWGIE 0 Res. Res. ABRQ1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 IDE 0 Res. EPVIE 0 Res. Res. RQCP2 Res. Res. TXOK2 Res. Res. ALST2 Res. Res. Res. Res. Res. Res. 0 Res. BOFIE 0 Res. Res. Res. Res. Res. TERR2 Res. Res. Res. Res. Res. Res. ABRQ2 Res. 1 Res. LECIE Res. 0 Res. Res. Res. Res. CODE[1:0] Res. Res. Res. Res. Res. 1 RTR 0 Res. x 0 Res. EXID[17:0] 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. Res. Reset value Res. TS1[3:0] Res. Res. Res. TME[2:0] 0 Res. ERRIE Res. TEC[7:0] WKUIE 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. 0 Res. 0 0 Res. TS2[2:0] 0 0 Res. 0 Res. 0x018 SLKIE Reset value 1 Res. 0 Res. Res. Res. Res. Reset value Res. 0 Res. REC[7:0] Res. CAN_RF0R Res. 0 Res. 0 Res. 0 Res. 1 Res. 1 Res. Res. 1 Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. 0 Res. CAN_ESR Res. CAN_IER SJW[1:0] 0 Res. 0x014 Res. CAN_RF1R Res. 0x010 Res. CAN_TSR LOW[2:0] 0x008 Res. 0 Res. 0x00C Reset value Res. CAN_MSR Res. 0x004 Res. CAN_MCR Res. 0x000 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. 0 Res. 0x0200x17F 0 Res. 0x01C 0 SILM Reset value LBKM Offset Res. 32.9.5 Res. RM0430 Controller area network (bxCAN) bxCAN register map Refer to Section 2.2.2 on page 58 for the register boundary addresses. The registers from offset 0x200 to 0x31C are present only in CAN1 and CAN3. Table 218. bxCAN register map and reset values 0 0 0 0 0 0 0 BRP[9:0] x x 0 1127/1324 1130 Controller area network (bxCAN) RM0430 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 0x1A8 x x x x x x x 0x1AC x x x x x x x x x x x x x x x x x x x x x DATA7[7:0] x x CAN_RI0R x x x x x x Res. Res. Res. Res. x x x x x - - - - - - - - - - - x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x - - - - - - - - - - - x x x x x x x x x x x x x STID[10:0]/EXID[28:18] x x x x 1128/1324 x x x x x x x x x x x x x x x x x x x x x x RM0430 Rev 8 x x x x x x x x x x x 0 x x x x x x x x x x 0 x x x x x x x x x x x - x DATA4[7:0] x x x x x x x x x x x x x x EXID[17:0] x x DLC[3:0] 0x1B0 Reset value x DATA0[7:0] DATA5[7:0] x x x DLC[3:0] x x x x DATA4[7:0] DATA1[7:0] x x DATA0[7:0] x DATA6[7:0] x Res. x DATA2[7:0] x Res. x EXID[17:0] DATA3[7:0] CAN_TDH2R Reset value x DATA5[7:0] TIME[15:0] CAN_TDL2R Reset value x DATA1[7:0] 0x1A4 Reset value x x Res. x x Res. CAN_TDT2R x x Res. x x Res. x x TGT x x Res. x x Res. x x x x STID[10:0]/EXID[28:18] x x x DATA6[7:0] x x x DATA2[7:0] x x Res. x DATA7[7:0] CAN_TI2R Reset value x x x DATA4[7:0] Res. 0x1A0 x x EXID[17:0] DATA3[7:0] CAN_TDH1R Reset value x x Res. 0x19C x Res. DATA5[7:0] TIME[15:0] x x Res. x x Res. x x Res. x x TGT x x Res. x x Res. x x Res. x x x DATA0[7:0] Res. x - - - - Res. x CAN_TDL1R Reset value x STID[10:0]/EXID[28:18] CAN_TDT1R 0x198 x DATA6[7:0] x x DATA1[7:0] 0x194 Reset value - - - - - - - DATA2[7:0] DATA7[7:0] x x TXRQ x x TXRQ x x Res. x x IDE x x RTR x IDE x RTR x TGT x Res. x IDE x CAN_TI1R Reset value x Res. 0x190 x DATA3[7:0] CAN_TDH0R Reset value x DLC[3:0] RTR CAN_TDL0R Reset value 0x18C x Res. 0x188 x Res. Reset value Res. TIME[15:0] Res. Res. CAN_TDT0R 0x184 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 218. bxCAN register map and reset values (continued) RM0430 Controller area network (bxCAN) x x x x x x x x x x x x CAN_RI1R x x x x x x x x x x DATA2[7:0] x x x x x DATA7[7:0] x x x x x x x x x x x x x x x x x - - - - DATA1[7:0] x x x x DATA6[7:0] x x x x x x x x x STID[10:0]/EXID[28:18] x x x x x x x x x x x x x x x x x x CAN_RDT1R x x x x x x x x x x x x TIME[15:0] x x x x x x x x x x x x x x x x x FMI[7:0] 0x1C4 x x x x x DATA2[7:0] x x x x x x x x x x x x x x x x Res. Res. FINIT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. DATA4[7:0] CANSB[5:0] 0 1 1 1 0 1 Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. 0 Res. Res. 0 Res. Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. FBM[27:0] Res. Res. Res. x DATA0[7:0] Res. Res. Res. x x Res. Res. Res. x x x Res. Res. Res. Res. Res. Res. Res. - x x x 0 Reset value 0x208 x x x Reset value CAN_FM1R - - - - x CAN_FMR 0x204 x x - 0x200 x x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x x DATA5[7:0] Res. x x Res. DATA6[7:0] Res. x x Res. x x Res. x x Res. x x x DATA1[7:0] Res. x x x Res. DATA7[7:0] x x Res. x x Res. x x Res. x x DLC[3:0] Res. x x - Res. x x x Res. x x x Res. x x Res. x Res. 0x1D00x1FF x DATA3[7:0] CAN_RDH1R Reset value x x Res. CAN_RDL1R Reset value 0x1CC x x Res. 0x1C8 x x Res. Reset value x DATA4[7:0] EXID[17:0] x x x 0x1C0 Reset value x DATA0[7:0] DATA5[7:0] x x Res. x IDE x Res. x DATA3[7:0] CAN_RDH0R Reset value x Res. CAN_RDL0R Reset value 0x1BC x Res. 0x1B8 x Res. Reset value DLC[3:0] RTR FMI[7:0] Res. TIME[15:0] Res. CAN_RDT0R 0x1B4 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 218. bxCAN register map and reset values (continued) - 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. - Res. 0x210 Res. Reset value FSC[27:0] Res. CAN_FS1R 0x20C RM0430 Rev 8 1129/1324 1130 Controller area network (bxCAN) RM0430 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 FACT[27:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1130/1324 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x FB[31:0] x x x x x x x x x x x x x x x x x FB[31:0] x x x x x x x x x x x x x x x x x FB[31:0] x x x x x x x x x x x x x x x x x . . . . CAN_F27R1 FB[31:0] x x x x x x x x x x x x x x x CAN_F27R2 Reset value Res. Res. 0x31C x . . . . Reset value Res. Res. Res. 0x318 Res. Res. Res. . . . . x CAN_F1R2 Reset value Res. Res. Res. 0x24C x CAN_F1R1 Reset value Res. Res. Res. 0x248 x FB[31:0] CAN_F0R2 Reset value Res. Res. Res. 0x244 Res. Res. Res. Reset value Res. Res. Res. CAN_F0R1 Res. Res. Res. 0x240 Res. Res. - 0 Res. Res. 0x2240x23F 0 Res. - 0 Res. 0x220 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. 0 Res. Res. Res. 0 Res. Res. 0 Res. Reset value 0 Res. Res. CAN_FA1R 0x21C 0 Res. - Res. 0x218 Res. Reset value FFA[27:0] Res. Res. CAN_FFA1R 0x214 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 218. bxCAN register map and reset values (continued) x x FB[31:0] x x x x x x x x x x x x x x x RM0430 Rev 8 x x RM0430 USB on-the-go full-speed (OTG_FS) 33 USB on-the-go full-speed (OTG_FS) 33.1 Introduction Portions Copyright (c) Synopsys, Inc. All rights reserved. Used with permission. This section presents the architecture and the programming model of the OTG_FS controller. The following acronyms are used throughout the section: FS Full-speed LS Low-speed MAC Media access controller OTG On-the-go PFC Packet FIFO controller PHY Physical layer USB Universal serial bus UTMI USB 2.0 Transceiver Macrocell interface (UTMI) LPM Link power management BCD Battery charging detector HNP Host negotiation protocol SRP Session request protocol References are made to the following documents: • USB On-The-Go Supplement, Revision 2.0 • Universal Serial Bus Revision 2.0 Specification • USB 2.0 Link Power Management Addendum Engineering Change Notice to the USB 2.0 specification, July 16, 2007 • Errata for USB 2.0 ECN: Link Power Management (LPM) - 7/2007 • Battery Charging Specification, Revision 1.2 The USB OTG is a dual-role device (DRD) controller that supports both device and host functions and is fully compliant with the On-The-Go Supplement to the USB 2.0 Specification. It can also be configured as a host-only or device-only controller, fully compliant with the USB 2.0 Specification. OTG_FS supports the speeds defined in the Table 219: OTG_FS speeds supported below. The USB OTG supports both HNP and SRP. The only external device required is a charge pump for VBUS in OTG mode. Table 219. OTG_FS speeds supported - HS (480 Mb/s) FS (12 Mb/s) LS (1.5 Mb/s) Host mode - X X Device mode - X - RM0430 Rev 8 1131/1324 1283 USB on-the-go full-speed (OTG_FS) 33.2 RM0430 OTG main features The main features can be divided into three categories: general, host-mode and devicemode features. 33.2.1 General features The OTG_FS interface general features are the following: • It is USB-IF certified to the Universal Serial Bus Specification Rev 2.0 • It includes full support (PHY) for the optional On-The-Go (OTG) protocol detailed in the On-The-Go Supplement Rev 2.0 specification • • 1132/1324 – Integrated support for A-B device identification (ID line) – Integrated support for host Negotiation protocol (HNP) and session request protocol (SRP) – It allows host to turn VBUS off to conserve battery power in OTG applications – It supports OTG monitoring of VBUS levels with internal comparators – It supports dynamic host-peripheral switch of role It is software-configurable to operate as: – SRP capable USB FS Peripheral (B-device) – SRP capable USB FS/LS host (A-device) – USB On-The-Go Full-Speed Dual Role device It supports FS SOF and LS Keep-alives with – SOF pulse PAD connectivity – SOF pulse internal connection to timer (TIMx) – Configurable framing period – Configurable end of frame interrupt • It includes power saving features such as system stop during USB suspend, switch-off of clock domains internal to the digital core, PHY and DFIFO power management. • It features a dedicated RAM of 1.25 Kbytes with advanced FIFO control: – Configurable partitioning of RAM space into different FIFOs for flexible and efficient use of RAM – Each FIFO can hold multiple packets – Dynamic memory allocation – Configurable FIFO sizes that are not powers of 2 to allow the use of contiguous memory locations • It guarantees max USB bandwidth for up to one frame (1 ms) without system intervention. • It supports charging port detection as described in Battery Charging Specification Revision 1.2 on the FS PHY transceiver only. RM0430 Rev 8 RM0430 33.2.2 USB on-the-go full-speed (OTG_FS) Host-mode features The OTG_FS interface main features and requirements in host-mode are the following: • External charge pump for VBUS voltage generation. • Up to 12 host channels (pipes): each channel is dynamically reconfigurable to allocate any type of USB transfer. • Built-in hardware scheduler holding: • 33.2.3 – Up to 12 interrupt plus isochronous transfer requests in the periodic hardware queue – Up to 12 control plus bulk transfer requests in the non-periodic hardware queue Management of a shared Rx FIFO, a periodic Tx FIFO and a nonperiodic Tx FIFO for efficient usage of the USB data RAM. Peripheral-mode features The OTG_FS interface main features in peripheral-mode are the following: 33.2.4 • 1 bidirectional control endpoint0 • 5 IN endpoints (EPs) configurable to support bulk, interrupt or isochronous transfers • 5 OUT endpoints configurable to support bulk, interrupt or isochronous transfers • Management of a shared Rx FIFO and a Tx-OUT FIFO for efficient usage of the USB data RAM • Management of up to 6 dedicated Tx-IN FIFOs (one for each active IN EP) to put less load on the application • Support for the soft disconnect feature. Split rail for USB In some package options it is possible to work with a split rail VDDUSB which has a more restrictive voltage specification than the VDD which can work at a lower range. When this is the case, and assuming that VDD is indeed below the minimum functional level for VDDUSB, please take the following precautions. For host only applications: • No special precautions are necessary. For VBUS powered USB2.0 peripheral device: • No special precautions are necessary. VBUS detection is not needed, as VBUS state is reflected directly in the presence of power supplies on the MCU. All other cases (VBUS detection is required): • Refer to the datasheet (Electrical Characteristics, and Appendix for application block diagrams). A different range of the VDD supply will apply this case. RM0430 Rev 8 1133/1324 1283 USB on-the-go full-speed (OTG_FS) 33.3 RM0430 OTG implementation Table 220. OTG implementation(1) USB features Device bidirectional endpoints (including EP0) 6 Host mode channels 12 Size of dedicated SRAM 1.2 KBytes USB 2.0 link power management (LPM) support X OTG revision supported 2.0 Attach detection protocol (ADP) support - Battery charging detection (BCD) support X 1. “X” = supported “-” = non supported 1134/1324 OTG_FS RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 33.4 OTG functional description 33.4.1 OTG block diagram Figure 395. OTG full-speed block diagram &RUWH[FRUH 27*B)6B'3 3RZHU DQG FORFN FRQWUROOHU 86%VXVSHQG 870,)6 6\VWHPFORFNGRPDLQ 27* )6 3+< 27*B)6B'0 27*B)6B,' 27*B)6B9%86 86%FORFN GRPDLQ 5$0EXV 86%FORFNDW0+] 86% 27*)6 FRUH 8QLYHUVDOVHULDOEXV 27*B)6B62) .E\WH 86%GDWD ),)2V 069 33.4.2 USB OTG pin and internal signals Table 221. OTG_FS input/output pins Signal name Signal type Description OTG_FS_DP Digital input/output USB OTG D+ line OTG_FS_DM Digital input/output USB OTG D- line OTG_FS_ID Digital input USB OTG ID OTG_FS_VBUS Analog input USB OTG VBUS OTG_FS_SOF Digital output USB OTG Start Of Frame (visibility) RM0430 Rev 8 1135/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Table 222. OTG_FS input/output signals Signal name 33.4.3 Signal type Description usb_sof Digital output USB OTG start-of-frame event for on chip peripherals usb_wkup Digital output USB OTG wakeup event output usb_gbl_it Digital output USB OTG global interrupt OTG core The USB OTG receives the 48 MHz clock from the reset and clock controller (RCC). The USB clock is used for driving the 48 MHz domain at full-speed (12 Mbit/s) and must be enabled prior to configuring the OTG core. The CPU reads and writes from/to the OTG core registers through the AHB peripheral bus. It is informed of USB events through the single USB OTG interrupt line described in Section 33.13: OTG_FS interrupts. The CPU submits data over the USB by writing 32-bit words to dedicated OTG locations (push registers). The data are then automatically stored into Tx-data FIFOs configured within the USB data RAM. There is one Tx FIFO push register for each in-endpoint (peripheral mode) or out-channel (host mode). The CPU receives the data from the USB by reading 32-bit words from dedicated OTG addresses (pop registers). The data are then automatically retrieved from a shared Rx FIFO configured within the 1.25-Kbyte USB data RAM. There is one Rx FIFO pop register for each out-endpoint or in-channel. The USB protocol layer is driven by the serial interface engine (SIE) and serialized over the USB by the transceiver module within the on-chip physical layer (PHY). 33.4.4 Full-speed OTG PHY The embedded full-speed OTG PHY is controlled by the OTG FS core and conveys USB control & data signals through the full-speed subset of the UTMI+ Bus (UTMIFS). It provides the physical support to USB connectivity. The full-speed OTG PHY includes the following components: 1136/1324 • FS/LS transceiver module used by both host and device. It directly drives transmission and reception on the single-ended USB lines. • Integrated ID pull-up resistor used to sample the ID line for A/B device identification. • DP/DM integrated pull-up and pull-down resistors controlled by the OTG_FS core depending on the current role of the device. As a peripheral, it enables the DP pull-up resistor to signal full-speed peripheral connections as soon as VBUS is sensed to be at a valid level (B-session valid). In host mode, pull-down resistors are enabled on both DP/DM. Pull-up and pull-down resistors are dynamically switched when the role of the device is changed via the host negotiation protocol (HNP). • Pull-up/pull-down resistor ECN circuit. The DP pull-up consists of two resistors controlled separately from the OTG_FS as per the resistor Engineering Change Notice applied to USB Rev2.0. The dynamic trimming of the DP pull-up strength allows for better noise rejection and Tx/Rx signal quality. • VBUS sensing comparators with hysteresis used to detect VBUS valid, A-B session valid and session-end voltage thresholds. They are used to drive the session request RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) protocol (SRP), detect valid startup and end-of-session conditions, and constantly monitor the VBUS supply during USB operations. • VBUS pulsing method circuit used to charge/discharge VBUS through resistors during the SRP (weak drive). Caution: To guarantee a correct operation for the USB OTG FS peripheral, the AHB frequency should be higher than 14.2 MHz. 33.5 OTG dual role device (DRD) Figure 396. OTG_FS A-B device connection 9'' 9WR9'' 9ROWDJH UHJXODWRU 9'' *3,2,54 (1 67036675 &XUUHQWOLPLWHG 93ZU 2YHUFXUUHQW SRZHUGLVWULEXWLRQ VZLWFK 9%86 '0 26&B,1 '3 ,' 26&B287 966 86%PLFUR$%FRQQHFWRU *3,2 06Y9 1. External voltage regulator only needed when building a VBUS powered device. 2. STMPS2141STR needed only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 33.5.1 ID line detection The host or peripheral (the default) role is assumed depending on the ID input pin. The ID line status is determined on plugging in the USB cable, depending on whether a MicroA or MicroB plug is connected to the micro-AB receptacle. • If the B-side of the USB cable is connected with a floating ID wire, the integrated pullup resistor detects a high ID level and the default peripheral role is confirmed. In this configuration the OTG_FS complies with the standard FSM described in section 4.2.4: ID pin of the On-the-Go specification Rev2.0, supplement to the USB2.0. • If the A-side of the USB cable is connected with a grounded ID, the OTG_FS issues an ID line status change interrupt (CIDSCHG bit in OTG_GINTSTS) for host software initialization, and automatically switches to the host role. In this configuration the OTG_FS complies with the standard FSM described by section 4.2.4: ID pin of the Onthe-Go specification Rev2.0, supplement to the USB2.0. RM0430 Rev 8 1137/1324 1283 USB on-the-go full-speed (OTG_FS) 33.5.2 RM0430 HNP dual role device The HNP capable bit in the Global USB configuration register (HNPCAP bit in OTG_ GUSBCFG) enables the OTG_FS core to dynamically change its role from A-host to Aperipheral and vice-versa, or from B-Peripheral to B-host and vice-versa according to the host negotiation protocol (HNP). The current device status can be read by the combined values of the connector ID status bit in the Global OTG control and status register (CIDSTS bit in OTG_GOTGCTL) and the current mode of operation bit in the global interrupt and status register (CMOD bit in OTG_GINTSTS). The HNP program model is described in detail in Section 33.16: OTG_FS programming model. 33.5.3 SRP dual role device The SRP capable bit in the global USB configuration register (SRPCAP bit in OTG_GUSBCFG) enables the OTG_FS core to switch off the generation of VBUS for the Adevice to save power. Note that the A-device is always in charge of driving VBUS regardless of the host or peripheral role of the OTG_FS. The SRP A/B-device program model is described in detail in Section 33.16: OTG_FS programming model. 33.6 USB peripheral This section gives the functional description of the OTG_FS in the USB peripheral mode. The OTG_FS works as an USB peripheral in the following circumstances: • OTG B-Peripheral – • – • 1138/1324 If the ID line is present, functional and connected to the B-side of the USB cable, and the HNP-capable bit in the Global USB Configuration register (HNPCAP bit in OTG_GUSBCFG) is cleared. Peripheral only (see Figure 397: USB_FS peripheral-only connection) – Note: OTG A-device state after the HNP switches the OTG_FS to its peripheral role B-device – • OTG B-device default state if B-side of USB cable is plugged in OTG A-Peripheral The force device mode bit (FDMOD) in the Section 33.15.4: OTG USB configuration register (OTG_GUSBCFG) is set to 1, forcing the OTG_FS core to work as an USB peripheral-only. In this case, the ID line is ignored even if it is present on the USB connector. To build a bus-powered device implementation in case of the B-device or peripheral-only configuration, an external regulator has to be added, that generates the necessary powersupply from VBUS. RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Figure 397. USB_FS peripheral-only connection 9'' 9WR9'' 9ROWDJH UHJXODWRU 9'' 'W/K 'W/Kн/ZY (1 67036675 &XUUHQWOLPLWHG 93ZU 2YHUFXUUHQW SRZHUGLVWULEXWLRQ VZLWFK '0 K^ͺ/E '3 K^ͺKhd 966 h^ŵŝĐƌŽĐŽŶŶĞĐƚŽƌ 9%86 06Y9 1. Use a regulator to build a bus-powered device. 33.6.1 SRP-capable peripheral The SRP capable bit in the Global USB configuration register (SRPCAP bit in OTG_GUSBCFG) enables the OTG_FS to support the session request protocol (SRP). In this way, it allows the remote A-device to save power by switching off VBUS while the USB session is suspended. The SRP peripheral mode program model is described in detail in the B-device session request protocol section. 33.6.2 Peripheral states Powered state The VBUS input detects the B-session valid voltage by which the USB peripheral is allowed to enter the powered state (see USB2.0 section 9.1). The OTG_FS then automatically connects the DP pull-up resistor to signal full-speed device connection to the host and generates the session request interrupt (SRQINT bit in OTG_GINTSTS) to notify the powered state. The VBUS input also ensures that valid VBUS levels are supplied by the host during USB operations. If a drop in VBUS below B-session valid happens to be detected (for instance because of a power disturbance or if the host port has been switched off), the OTG_FS automatically disconnects and the session end detected (SEDET bit in OTG_GOTGINT) interrupt is generated to notify that the OTG_FS has exited the powered state. In the powered state, the OTG_FS expects to receive some reset signaling from the host. No other USB operation is possible. When a reset signaling is received the reset detected interrupt (USBRST in OTG_GINTSTS) is generated. When the reset signaling is complete, the enumeration done interrupt (ENUMDNE bit in OTG_GINTSTS) is generated and the OTG_FS enters the Default state. RM0430 Rev 8 1139/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Soft disconnect The powered state can be exited by software with the soft disconnect feature. The DP pullup resistor is removed by setting the soft disconnect bit in the device control register (SDIS bit in OTG_DCTL), causing a device disconnect detection interrupt on the host side even though the USB cable was not really removed from the host port. Default state In the Default state the OTG_FS expects to receive a SET_ADDRESS command from the host. No other USB operation is possible. When a valid SET_ADDRESS command is decoded on the USB, the application writes the corresponding number into the device address field in the device configuration register (DAD bit in OTG_DCFG). The OTG_FS then enters the address state and is ready to answer host transactions at the configured USB address. Suspended state The OTG_FS peripheral constantly monitors the USB activity. After counting 3 ms of USB idleness, the early suspend interrupt (ESUSP bit in OTG_GINTSTS) is issued, and confirmed 3 ms later, if appropriate, by the suspend interrupt (USBSUSP bit in OTG_GINTSTS). The device suspend bit is then automatically set in the device status register (SUSPSTS bit in OTG_DSTS) and the OTG_FS enters the suspended state. The suspended state may optionally be exited by the device itself. In this case the application sets the remote wakeup signaling bit in the device control register (RWUSIG bit in OTG_DCTL) and clears it after 1 to 15 ms. When a resume signaling is detected from the host, the resume interrupt (WKUPINT bit in OTG_GINTSTS) is generated and the device suspend bit is automatically cleared. 33.6.3 Peripheral endpoints The OTG_FS core instantiates the following USB endpoints: • • 1140/1324 Control endpoint 0: – Bidirectional and handles control messages only – Separate set of registers to handle in and out transactions – Proper control (OTG_DIEPCTL0/OTG_DOEPCTL0), transfer configuration (OTG_DIEPTSIZ0/OTG_DOEPTSIZ0), and status-interrupt (OTG_DIEPINT0/)OTG_DOEPINT0) registers. The available set of bits inside the control and transfer size registers slightly differs from that of other endpoints 5 IN endpoints – Each of them can be configured to support the isochronous, bulk or interrupt transfer type – Each of them has proper control (OTG_DIEPCTLx), transfer configuration (OTG_DIEPTSIZx), and status-interrupt (OTG_DIEPINTx) registers – The device IN endpoints common interrupt mask register (OTG_DIEPMSK) is available to enable/disable a single kind of endpoint interrupt source on all of the IN endpoints (EP0 included) – Support for incomplete isochronous IN transfer interrupt (IISOIXFR bit in OTG_GINTSTS), asserted when there is at least one isochronous IN endpoint on RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) which the transfer is not completed in the current frame. This interrupt is asserted along with the end of periodic frame interrupt (OTG_GINTSTS/EOPF). • 5 OUT endpoints – Each of them can be configured to support the isochronous, bulk or interrupt transfer type – Each of them has a proper control (OTG_DOEPCTLx), transfer configuration (OTG_DOEPTSIZx) and status-interrupt (OTG_DOEPINTx) register – Device OUT endpoints common interrupt mask register (OTG_DOEPMSK) is available to enable/disable a single kind of endpoint interrupt source on all of the OUT endpoints (EP0 included) – Support for incomplete isochronous OUT transfer interrupt (INCOMPISOOUT bit in OTG_GINTSTS), asserted when there is at least one isochronous OUT endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the end of periodic frame interrupt (OTG_GINTSTS/EOPF). Endpoint control • The following endpoint controls are available to the application through the device endpoint-x IN/OUT control register (OTG_DIEPCTLx/OTG_DOEPCTLx): – Endpoint enable/disable – Endpoint activate in current configuration – Program USB transfer type (isochronous, bulk, interrupt) – Program supported packet size – Program Tx FIFO number associated with the IN endpoint – Program the expected or transmitted data0/data1 PID (bulk/interrupt only) – Program the even/odd frame during which the transaction is received or transmitted (isochronous only) – Optionally program the NAK bit to always negative-acknowledge the host regardless of the FIFO status – Optionally program the STALL bit to always stall host tokens to that endpoint – Optionally program the SNOOP mode for OUT endpoint not to check the CRC field of received data Endpoint transfer The device endpoint-x transfer size registers (OTG_DIEPTSIZx/OTG_DOEPTSIZx) allow the application to program the transfer size parameters and read the transfer status. Programming must be done before setting the endpoint enable bit in the endpoint control register. Once the endpoint is enabled, these fields are read-only as the OTG_FS core updates them with the current transfer status. The following transfer parameters can be programmed: • Transfer size in bytes • Number of packets that constitute the overall transfer size Endpoint status/interrupt The device endpoint-x interrupt registers (OTG_DIEPINTx/OTG_DOPEPINTx) indicate the status of an endpoint with respect to USB- and AHB-related events. The application must read these registers when the OUT endpoint interrupt bit or the IN endpoint interrupt bit in RM0430 Rev 8 1141/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 the core interrupt register (OEPINT bit in OTG_GINTSTS or IEPINT bit in OTG_GINTSTS, respectively) is set. Before the application can read these registers, it must first read the device all endpoints interrupt (OTG_DAINT) register to get the exact endpoint number for the device endpoint-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_DAINT and OTG_GINTSTS registers The peripheral core provides the following status checks and interrupt generation: 33.7 • Transfer completed interrupt, indicating that data transfer was completed on both the application (AHB) and USB sides • Setup stage has been done (control-out only) • Associated transmit FIFO is half or completely empty (in endpoints) • NAK acknowledge has been transmitted to the host (isochronous-in only) • IN token received when Tx FIFO was empty (bulk-in/interrupt-in only) • Out token received when endpoint was not yet enabled • Babble error condition has been detected • Endpoint disable by application is effective • Endpoint NAK by application is effective (isochronous-in only) • More than 3 back-to-back setup packets were received (control-out only) • Timeout condition detected (control-in only) • Isochronous out packet has been dropped, without generating an interrupt USB host This section gives the functional description of the OTG_FS in the USB host mode. The OTG_FS works as a USB host in the following circumstances: • OTG A-host – • OTG B-host • A-device – – • 1142/1324 OTG B-device after HNP switching to the host role If the ID line is present, functional and connected to the A-side of the USB cable, and the HNP-capable bit is cleared in the Global USB Configuration register (HNPCAP bit in OTG_GUSBCFG). Integrated pull-down resistors are automatically set on the DP/DM lines. Host only – Note: OTG A-device default state when the A-side of the USB cable is plugged in The force host mode bit (FHMOD) in the OTG USB configuration register (OTG_GUSBCFG) forces the OTG_FS core to work as a USB host-only. In this case, the ID line is ignored even if present on the USB connector. Integrated pulldown resistors are automatically set on the DP/DM lines. On-chip 5 V VBUS generation is not supported. For this reason, a charge pump or, if 5 V are available on the application board, a basic power switch must be added externally to drive the 5 V VBUS line. The external charge pump can be driven by any GPIO output. This is required for the OTG A-host, A-device and host-only configurations. RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Figure 398. USB_FS host-only connection 9'' 9 *3,2,54 (1 67036675 93ZU &XUUHQWOLPLWHG SRZHUGLVWULEXWLRQ 2YHUFXUUHQW VZLWFK 9%86 '0 26&B,1 '3 966 26&B287 86%6WG$FRQQHFWRU *3,2 06Y9 1. VDD range is between 2 V and 3.6 V. 33.7.1 SRP-capable host SRP support is available through the SRP capable bit in the global USB configuration register (SRPCAP bit in OTG_GUSBCFG). With the SRP feature enabled, the host can save power by switching off the VBUS power while the USB session is suspended. The SRP host mode program model is described in detail in the A-device session request protocol) section. 33.7.2 USB host states Host port power On-chip 5 V VBUS generation is not supported. For this reason, a charge pump or, if 5 V are available on the application board, a basic power switch, must be added externally to drive the 5 V VBUS line. The external charge pump can be driven by any GPIO output or via an I2C interface connected to an external PMIC (power management IC). When the application decides to power on VBUS, it must also set the port power bit in the host port control and status register (PPWR bit in OTG_HPRT). VBUS valid When HNP or SRP is enabled the VBUS sensing pin should be connected to VBUS. The VBUS input ensures that valid VBUS levels are supplied by the charge pump during USB operations. Any unforeseen VBUS voltage drop below the VBUS valid threshold (4.4 V) leads to an OTG interrupt triggered by the session end detected bit (SEDET bit in OTG_GOTGINT). The application is then required to remove the VBUS power and clear the port power bit. When HNP and SRP are both disabled, the VBUS sensing pin does not need to be connected to VBUS. The charge pump overcurrent flag can also be used to prevent electrical damage. Connect the overcurrent flag output from the charge pump to any GPIO input and configure it to generate a port interrupt on the active level. The overcurrent ISR must promptly disable the VBUS generation and clear the port power bit. RM0430 Rev 8 1143/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Host detection of a peripheral connection If SRP or HNP are enabled, even if USB peripherals or B-devices can be attached at any time, the OTG_FS will not detect any bus connection until VBUS is no longer sensed at a valid level (5 V). When VBUS is at a valid level and a remote B-device is attached, the OTG_FS core issues a host port interrupt triggered by the device connected bit in the host port control and status register (PCDET bit in OTG_HPRT). When HNP and SRP are both disabled, USB peripherals or B-device are detected as soon as they are connected. The OTG_FS core issues a host port interrupt triggered by the device connected bit in the host port control and status (PCDET bit in OTG_HPRT). Host detection of peripheral a disconnection The peripheral disconnection event triggers the disconnect detected interrupt (DISCINT bit in OTG_GINTSTS). Host enumeration After detecting a peripheral connection the host must start the enumeration process by sending USB reset and configuration commands to the new peripheral. Before starting to drive a USB reset, the application waits for the OTG interrupt triggered by the debounce done bit (DBCDNE bit in OTG_GOTGINT), which indicates that the bus is stable again after the electrical debounce caused by the attachment of a pull-up resistor on DP (FS) or DM (LS). The application drives a USB reset signaling (single-ended zero) over the USB by keeping the port reset bit set in the host port control and status register (PRST bit in OTG_HPRT) for a minimum of 10 ms and a maximum of 20 ms. The application takes care of the timing count and then of clearing the port reset bit. Once the USB reset sequence has completed, the host port interrupt is triggered by the port enable/disable change bit (PENCHNG bit in OTG_HPRT). This informs the application that the speed of the enumerated peripheral can be read from the port speed field in the host port control and status register (PSPD bit in OTG_HPRT) and that the host is starting to drive SOFs (FS) or Keep alives (LS). The host is now ready to complete the peripheral enumeration by sending peripheral configuration commands. Host suspend The application decides to suspend the USB activity by setting the port suspend bit in the host port control and status register (PSUSP bit in OTG_HPRT). The OTG_FS core stops sending SOFs and enters the suspended state. The suspended state can be optionally exited on the remote device’s initiative (remote wakeup). In this case the remote wakeup interrupt (WKUPINT bit in OTG_GINTSTS) is generated upon detection of a remote wakeup signaling, the port resume bit in the host port control and status register (PRES bit in OTG_HPRT) self-sets, and resume signaling is automatically driven over the USB. The application must time the resume window and then clear the port resume bit to exit the suspended state and restart the SOF. If the suspended state is exited on the host initiative, the application must set the port resume bit to start resume signaling on the host port, time the resume window and finally clear the port resume bit. 1144/1324 RM0430 Rev 8 RM0430 33.7.3 USB on-the-go full-speed (OTG_FS) Host channels The OTG_FS core instantiates 12 host channels. Each host channel supports an USB host transfer (USB pipe). The host is not able to support more than 12 transfer requests at the same time. If more than 12 transfer requests are pending from the application, the host controller driver (HCD) must re-allocate channels when they become available from previous duty, that is, after receiving the transfer completed and channel halted interrupts. Each host channel can be configured to support in/out and any type of periodic/nonperiodic transaction. Each host channel makes us of proper control (OTG_HCCHARx), transfer configuration (OTG_HCTSIZx) and status/interrupt (OTG_HCINTx) registers with associated mask (OTG_HCINTMSKx) registers. Host channel control • The following host channel controls are available to the application through the host channel-x characteristics register (OTG_HCCHARx): – Channel enable/disable – Program the FS/LS speed of target USB peripheral – Program the address of target USB peripheral – Program the endpoint number of target USB peripheral – Program the transfer IN/OUT direction – Program the USB transfer type (control, bulk, interrupt, isochronous) – Program the maximum packet size (MPS) – Program the periodic transfer to be executed during odd/even frames Host channel transfer The host channel transfer size registers (OTG_HCTSIZx) allow the application to program the transfer size parameters, and read the transfer status. Programming must be done before setting the channel enable bit in the host channel characteristics register. Once the endpoint is enabled the packet count field is read-only as the OTG_FS core updates it according to the current transfer status. • The following transfer parameters can be programmed: – transfer size in bytes – number of packets making up the overall transfer size – initial data PID Host channel status/interrupt The host channel-x interrupt register (OTG_HCINTx) indicates the status of an endpoint with respect to USB- and AHB-related events. The application must read these register when the host channels interrupt bit in the core interrupt register (HCINT bit in OTG_GINTSTS) is set. Before the application can read these registers, it must first read the host all channels interrupt (OTG_HAINT) register to get the exact channel number for the host channel-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_HAINT and OTG_GINTSTS registers. RM0430 Rev 8 1145/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 The mask bits for each interrupt source of each channel are also available in the OTG_HCINTMSKx register. • 33.7.4 The host core provides the following status checks and interrupt generation: – Transfer completed interrupt, indicating that the data transfer is complete on both the application (AHB) and USB sides – Channel has stopped due to transfer completed, USB transaction error or disable command from the application – Associated transmit FIFO is half or completely empty (IN endpoints) – ACK response received – NAK response received – STALL response received – USB transaction error due to CRC failure, timeout, bit stuff error, false EOP – Babble error – frame overrun – data toggle error Host scheduler The host core features a built-in hardware scheduler which is able to autonomously re-order and manage the USB transaction requests posted by the application. At the beginning of each frame the host executes the periodic (isochronous and interrupt) transactions first, followed by the nonperiodic (control and bulk) transactions to achieve the higher level of priority granted to the isochronous and interrupt transfer types by the USB specification. The host processes the USB transactions through request queues (one for periodic and one for nonperiodic). Each request queue can hold up to 8 entries. Each entry represents a pending transaction request from the application, and holds the IN or OUT channel number along with other information to perform a transaction on the USB. The order in which the requests are written to the queue determines the sequence of the transactions on the USB interface. At the beginning of each frame, the host processes the periodic request queue first, followed by the nonperiodic request queue. The host issues an incomplete periodic transfer interrupt (IPXFR bit in OTG_GINTSTS) if an isochronous or interrupt transaction scheduled for the current frame is still pending at the end of the current frame. The OTG_FS core is fully responsible for the management of the periodic and nonperiodic request queues.The periodic transmit FIFO and queue status register (OTG_HPTXSTS) and nonperiodic transmit FIFO and queue status register (OTG_HNPTXSTS) are read-only registers which can be used by the application to read the status of each request queue. They contain: • The number of free entries currently available in the periodic (nonperiodic) request queue (8 max) • Free space currently available in the periodic (nonperiodic) Tx FIFO (out-transactions) • IN/OUT token, host channel number and other status information. As request queues can hold a maximum of 8 entries each, the application can push to schedule host transactions in advance with respect to the moment they physically reach the SB for a maximum of 8 pending periodic transactions plus 8 pending non-periodic transactions. To post a transaction request to the host scheduler (queue) the application must check that there is at least 1 entry available in the periodic (nonperiodic) request queue by reading the 1146/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) PTXQSAV bits in the OTG_HNPTXSTS register or NPTQXSAV bits in the OTG_HNPTXSTS register. 33.8 SOF trigger Figure 399. SOF connectivity (SOF trigger output to TIM and ITR1 connection) 62)SXOVHRXWSXWWR H[WHUQDODXGLRFRQWURO 9%86 ,75 62)SXOVH ' ' 7,0 62)JHQ ,' 86%PLFUR$%FRQQHFWRU 670 966 06Y9 The OTG_FS core provides means to monitor, track and configure SOF framing in the host and peripheral, as well as an SOF pulse output connectivity feature. Such utilities are especially useful for adaptive audio clock generation techniques, where the audio peripheral needs to synchronize to the isochronous stream provided by the PC, or the host needs to trim its framing rate according to the requirements of the audio peripheral. 33.8.1 Host SOFs In host mode the number of PHY clocks occurring between the generation of two consecutive SOF (FS) or Keep-alive (LS) tokens is programmable in the host frame interval register (HFIR), thus providing application control over the SOF framing period. An interrupt is generated at any start of frame (SOF bit in OTG_GINTSTS). The current frame number and the time remaining until the next SOF are tracked in the host frame number register (HFNUM). A SOF pulse signal, is generated at any SOF starting token and with a width of 20 HCLK cycles. The SOF pulse is also internally connected to the input trigger of the timer, so that the input capture feature, the output compare feature and the timer can be triggered by the SOF pulse. 33.8.2 Peripheral SOFs In device mode, the start of frame interrupt is generated each time an SOF token is received on the USB (SOF bit in OTG_GINTSTS). The corresponding frame number can be read from the device status register (FNSOF bit in OTG_DSTS). A SOF pulse signal with a width of 20 HCLK cycles is also generated.The SOF pulse signal is also internally connected to the TIM input trigger, so that the input capture feature, the output compare feature and the timer can be triggered by the SOF pulse. RM0430 Rev 8 1147/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 The end of periodic frame interrupt (OTG_GINTSTS/EOPF) is used to notify the application when 80%, 85%, 90% or 95% of the time frame interval elapsed depending on the periodic frame interval field in the device configuration register (PFIVL bit in OTG_DCFG). This feature can be used to determine if all of the isochronous traffic for that frame is complete. 33.9 OTG low-power modes Table 223 below defines the STM32 low power modes and their compatibility with the OTG. Table 223. Compatibility of STM32 low power modes with the OTG Mode Description USB compatibility Run MCU fully active Required when USB not in suspend state. Sleep USB suspend exit causes the device to exit Sleep mode. Peripheral registers content is kept. Available while USB is in suspend state. Stop USB suspend exit causes the device to exit Stop mode. Peripheral registers content is kept(1). Available while USB is in suspend state. Standby Powered-down. The peripheral must be reinitialized after exiting Standby mode. Not compatible with USB applications. 1. Within Stop mode there are different possible settings. Some restrictions may also exist, please refer to Section 5: Power controller (PWR) to understand which (if any) restrictions apply when using OTG. The following bits and procedures reduce power consumption. The power consumption of the OTG PHY is controlled by two or three bits in the general core configuration register, depending on OTG revision supported. • PHY power down (OTG_GCCFG/PWRDWN) It switches on/off the full-speed transceiver module of the PHY. It must be preliminarily set to allow any USB operation • VBUS detection enable (OTG_GCCFG/VBDEN) It switches on/off the VBUS sensing comparators associated with OTG operations Power reduction techniques are available while in the USB suspended state, when the USB session is not yet valid or the device is disconnected. • Stop PHY clock (STPPCLK bit in OTG_PCGCCTL) When setting the stop PHY clock bit in the clock gating control register, most of the 48 MHz clock domain internal to the OTG full-speed core is switched off by clock gating. The dynamic power consumption due to the USB clock switching activity is cut even if the 48 MHz clock input is kept running by the application Most of the transceiver is also disabled, and only the part in charge of detecting the asynchronous resume or remote wakeup event is kept alive. • Gate HCLK (GATEHCLK bit in OTG_PCGCCTL) When setting the Gate HCLK bit in the clock gating control register, most of the system clock domain internal to the OTG_FS core is switched off by clock gating. Only the register read and write interface is kept alive. The dynamic power consumption due to 1148/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) the USB clock switching activity is cut even if the system clock is kept running by the application for other purposes. • USB system stop When the OTG_FS is in the USB suspended state, the application may decide to drastically reduce the overall power consumption by a complete shut down of all the clock sources in the system. USB System Stop is activated by first setting the Stop PHY clock bit and then configuring the system deep sleep mode in the power control system module (PWR). The OTG_FS core automatically reactivates both system and USB clocks by asynchronous detection of remote wakeup (as an host) or resume (as a device) signaling on the USB. To save dynamic power, the USB data FIFO is clocked only when accessed by the OTG_FS core. 33.10 Dynamic update of the OTG_HFIR register The USB core embeds a dynamic trimming capability of SOF framing period in host mode allowing to synchronize an external device with the SOF frames. When the OTG_HFIR register is changed within a current SOF frame, the SOF period correction is applied in the next frame as described in Figure 400. For a dynamic update, it is required to set RLDCTRL=0. Figure 400. Updating OTG_HFIR dynamically (RLDCTRL = 0) 62)UHORDG 27*B+),5ZULWH )UDPHWLPHU 27*B+),5YDOXH DLE 33.11 USB data FIFOs The USB system features 1.25 Kbytes of dedicated RAM with a sophisticated FIFO control mechanism. The packet FIFO controller module in the OTG_FS core organizes RAM space into Tx FIFOs into which the application pushes the data to be temporarily stored before the USB transmission, and into a single Rx FIFO where the data received from the USB are temporarily stored before retrieval (popped) by the application. The number of instructed FIFOs and how these are organized inside the RAM depends on the device’s role. In peripheral mode an additional Tx FIFO is instructed for each active IN endpoint. Any FIFO size is software configured to better meet the application requirements. RM0430 Rev 8 1149/1324 1283 USB on-the-go full-speed (OTG_FS) 33.11.1 RM0430 Peripheral FIFO architecture Figure 401. Device-mode FIFO address mapping and AHB FIFO access mapping 6LQJOHGDWD ),)2 ,1HQGSRLQW7[),)2[ '),)2SXVKDFFHVV IURP$+% 'HGLFDWHG7[ ),)2[FRQWURO RSWLRQDO 0$&SRS ,1HQGSRLQW7[),)2 '),)2SXVKDFFHVV IURP$+% 7[),)2[ SDFNHW 27*B',(37;)[>@ 27*B',(37;)[>@ 'HGLFDWHG7[ ),)2FRQWURO RSWLRQDO 7[),)2 SDFNHW 27*B',(37;)>@ 27*B',(37;)>@ 0$&SRS ,1HQGSRLQW7[),)2 '),)2SXVKDFFHVV IURP$+% 'HGLFDWHG7[ ),)2FRQWURO RSWLRQDO 7[),)2 SDFNHW 27*B',(37;)>@ 27*B',(37;)>@ 0$&SRS $Q\287HQGSRLQW '),)2SRSDFFHVV IURP$+% 'HGLFDWHG7[ ),)2FRQWURO RSWLRQDO 0$&SXVK 5[SDFNHWV 27*B*5;)6,=>@ $ 5[VWDUWDGGUHVVIL[HG WR 06Y9 Peripheral Rx FIFO The OTG peripheral uses a single receive FIFO that receives the data directed to all OUT endpoints. Received packets are stacked back-to-back until free space is available in the Rx FIFO. The status of the received packet (which contains the OUT endpoint destination number, the byte count, the data PID and the validity of the received data) is also stored by the core on top of the data payload. When no more space is available, host transactions are NACKed and an interrupt is received on the addressed endpoint. The size of the receive FIFO is configured in the receive FIFO size register (OTG_GRXFSIZ). The single receive FIFO architecture makes it more efficient for the USB peripheral to fill in the receive RAM buffer: • All OUT endpoints share the same RAM buffer (shared FIFO) • The OTG_FS core can fill in the receive FIFO up to the limit for any host sequence of OUT tokens The application keeps receiving the Rx FIFO non-empty interrupt (RXFLVL bit in OTG_GINTSTS) as long as there is at least one packet available for download. It reads the packet information from the receive status read and pop register (OTG_GRXSTSP) and finally pops data off the receive FIFO by reading from the endpoint-related pop address. 1150/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Peripheral Tx FIFOs The core has a dedicated FIFO for each IN endpoint. The application configures FIFO sizes by writing the endpoint 0 transmit FIFO size register (OTG_DIEPTXF0) for IN endpoint0 and the device IN endpoint transmit FIFOx registers (OTG_DIEPTXFx) for IN endpoint-x. 33.11.2 Host FIFO architecture Figure 402. Host-mode FIFO address mapping and AHB FIFO access mapping 6LQJOHGDWD ),)2 $Q\SHULRGLFFKDQQHO '),)2SXVKDFFHVV IURP$+% 3HULRGLF7[),)2 FRQWURO RSWLRQDO 3HULRGLF7[ SDFNHWV 27*B+37;)6,=>@ 27*B+37;)6,=>@ 0$&SRS $Q\QRQSHULRGLF FKDQQHO'),)2SXVK DFFHVVIURP$+% 1RQSHULRGLF7[ ),)2FRQWURO 1RQSHULRGLF 7[SDFNHWV 27*B+137;)6,=>@ 27*B+137;)6,=>@ 0$&SRS 5[SDFNHWV $Q\FKDQQHO'),)2SRS DFFHVVIURP$+% 27*B*5;)6,=>@ 5[),)2FRQWURO 5[VWDUWDGGUHVVIL[HGWR $ 0$&SXVK 06Y9 Host Rx FIFO The host uses one receiver FIFO for all periodic and nonperiodic transactions. The FIFO is used as a receive buffer to hold the received data (payload of the received packet) from the USB until it is transferred to the system memory. Packets received from any remote IN endpoint are stacked back-to-back until free space is available. The status of each received packet with the host channel destination, byte count, data PID and validity of the received data are also stored into the FIFO. The size of the receive FIFO is configured in the receive FIFO size register (OTG_GRXFSIZ). The single receive FIFO architecture makes it highly efficient for the USB host to fill in the receive data buffer: • All IN configured host channels share the same RAM buffer (shared FIFO) • The OTG_FS core can fill in the receive FIFO up to the limit for any sequence of IN tokens driven by the host software The application receives the Rx FIFO not-empty interrupt as long as there is at least one packet available for download. It reads the packet information from the receive status read and pop register and finally pops the data off the receive FIFO. RM0430 Rev 8 1151/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Host Tx FIFOs The host uses one transmit FIFO for all non-periodic (control and bulk) OUT transactions and one transmit FIFO for all periodic (isochronous and interrupt) OUT transactions. FIFOs are used as transmit buffers to hold the data (payload of the transmit packet) to be transmitted over the USB. The size of the periodic (nonperiodic) Tx FIFO is configured in the host periodic (nonperiodic) transmit FIFO size OTG_HPTXFSIZ / OTG_HNPTXFSIZ) register. The two Tx FIFO implementation derives from the higher priority granted to the periodic type of traffic over the USB frame. At the beginning of each frame, the built-in host scheduler processes the periodic request queue first, followed by the nonperiodic request queue. The two transmit FIFO architecture provides the USB host with separate optimization for periodic and nonperiodic transmit data buffer management: • All host channels configured to support periodic (nonperiodic) transactions in the OUT direction share the same RAM buffer (shared FIFOs) • The OTG_FS core can fill in the periodic (nonperiodic) transmit FIFO up to the limit for any sequence of OUT tokens driven by the host software The OTG_FS core issues the periodic Tx FIFO empty interrupt (PTXFE bit in OTG_GINTSTS) as long as the periodic Tx FIFO is half or completely empty, depending on the value of the periodic Tx FIFO empty level bit in the AHB configuration register (PTXFELVL bit in OTG_GAHBCFG). The application can push the transmission data in advance as long as free space is available in both the periodic Tx FIFO and the periodic request queue. The host periodic transmit FIFO and queue status register (OTG_HPTXSTS) can be read to know how much space is available in both. OTG_FS core issues the non periodic Tx FIFO empty interrupt (NPTXFE bit in OTG_GINTSTS) as long as the nonperiodic Tx FIFO is half or completely empty depending on the non periodic Tx FIFO empty level bit in the AHB configuration register (TXFELVL bit in OTG_GAHBCFG). The application can push the transmission data as long as free space is available in both the nonperiodic Tx FIFO and nonperiodic request queue. The host nonperiodic transmit FIFO and queue status register (OTG_HNPTXSTS) can be read to know how much space is available in both. 33.11.3 FIFO RAM allocation Device mode Receive FIFO RAM allocation: the application should allocate RAM for SETUP packets: 1152/1324 • 10 locations must be reserved in the receive FIFO to receive SETUP packets on control endpoint. The core does not use these locations, which are reserved for SETUP packets, to write any other data. • One location is to be allocated for Global OUT NAK. • Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (largest packet size / 4) + 1 must be allocated to receive packets. If multiple isochronous endpoints are enabled, then at least two (largest packet size / 4) + 1 spaces must be allocated to receive back-to-back packets. Typically, two (largest packet size / 4) + 1 spaces are recommended so that when the previous packet is being transferred to the CPU, the USB can receive the subsequent packet. • Along with the last packet for each endpoint, transfer complete status information is also pushed to the FIFO. One location for each OUT endpoint is recommended. RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Device RxFIFO = (5 * number of control endpoints + 8) + ((largest USB packet used / 4) + 1 for status information) + (2 * number of OUT endpoints) + 1 for Global NAK Example: The MPS is 1,024 bytes for a periodic USB packet and 512 bytes for a nonperiodic USB packet. There are three OUT endpoints, three IN endpoints, one control endpoint, and three host channels. Device RxFIFO = (5 * 1 + 8) + ((1,024 / 4) +1) + (2 * 4) + 1 = 279 Transmit FIFO RAM allocation: the minimum RAM space required for each IN endpoint Transmit FIFO is the maximum packet size for that particular IN endpoint. Note: More space allocated in the transmit IN endpoint FIFO results in better performance on the USB. Host mode Receive FIFO RAM allocation: Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (largest packet size / 4) + 1 must be allocated to receive packets. If multiple isochronous channels are enabled, then at least two (largest packet size / 4) + 1 spaces must be allocated to receive back-to-back packets. Typically, two (largest packet size / 4) + 1 spaces are recommended so that when the previous packet is being transferred to the CPU, the USB can receive the subsequent packet. Along with the last packet in the host channel, transfer complete status information is also pushed to the FIFO. So one location must be allocated for this. Host RxFIFO = (largest USB packet used / 4) + 1 for status information + 1 transfer complete Example: Host RxFIFO = ((1,024 / 4) + 1) + 1 = 258 Transmit FIFO RAM allocation: The minimum amount of RAM required for the host Non-periodic Transmit FIFO is the largest maximum packet size among all supported non-periodic OUT channels. Typically, two largest packet sizes worth of space is recommended, so that when the current packet is under transfer to the USB, the CPU can get the next packet. Non-Periodic TxFIFO = largest non-periodic USB packet used / 4 Example: Non-Periodic TxFIFO = (512 / 4) = 128 The minimum amount of RAM required for host periodic Transmit FIFO is the largest maximum packet size out of all the supported periodic OUT channels. If there is at least one isochronous OUT endpoint, then the space must be at least two times the maximum packet size of that channel. Host Periodic TxFIFO = largest periodic USB packet used / 4 Example: Host Periodic TxFIFO = (1,024 / 4) = 256 Note: More space allocated in the Transmit Non-periodic FIFO results in better performance on the USB. RM0430 Rev 8 1153/1324 1283 USB on-the-go full-speed (OTG_FS) 33.12 RM0430 OTG_FS system performance Best USB and system performance is achieved owing to the large RAM buffers, the highly configurable FIFO sizes, the quick 32-bit FIFO access through AHB push/pop registers and, especially, the advanced FIFO control mechanism. Indeed, this mechanism allows the OTG_FS to fill in the available RAM space at best regardless of the current USB sequence. With these features: • • The application gains good margins to calibrate its intervention in order to optimize the CPU bandwidth usage: – It can accumulate large amounts of transmission data in advance compared to when they are effectively sent over the USB – It benefits of a large time margin to download data from the single receive FIFO The USB core is able to maintain its full operating rate, that is to provide maximum fullspeed bandwidth with a great margin of autonomy versus application intervention: – It has a large reserve of transmission data at its disposal to autonomously manage the sending of data over the USB – It has a lot of empty space available in the receive buffer to autonomously fill it in with the data coming from the USB As the OTG_FS core is able to fill in the 1.25-Kbyte RAM buffer very efficiently, and as 1.25-Kbyte of transmit/receive data is more than enough to cover a full speed frame, the USB system is able to withstand the maximum full-speed data rate for up to one USB frame (1 ms) without any CPU intervention. 33.13 OTG_FS interrupts When the OTG_FS controller is operating in one mode, either device or host, the application must not access registers from the other mode. If an illegal access occurs, a mode mismatch interrupt is generated and reflected in the core interrupt register (MMIS bit in the OTG_GINTSTS register). When the core switches from one mode to the other, the registers in the new mode of operation must be reprogrammed as they would be after a power-on reset. Figure 403 shows the interrupt hierarchy. 1154/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Figure 403. Interrupt hierarchy :DNHXSLQWHUUXSW 27*B)6B:.83 $1' *OREDOLQWHUUXSW 27*B)6 25 $1' 27 2( *, 17 3,1 ,(3 3 ,1 7 +& ,1 7 +3 57 ,1 7 *OREDOLQWHUUXSWPDVN ELW 27*B$+%&)* $+%FRQILJXUDWLRQUHJLVWHU 27*B*,17676 &RUHUHJLVWHULQWHUUXSW 27*B*,1706. &RUHLQWHUUXSWPDVNUHJLVWHU 27*B*27*,17 27*LQWHUUXSWUHJLVWHU (3 287HQGSRLQWV (3 ,1HQGSRLQWV 27*B'$,1706. 'HYLFHDOOHQGSRLQWVLQWHUUXSWPDVN UHJLVWHU 27*B'$,17 'HYLFHDOOHQGSRLQWVLQWHUUXSWUHJLVWHU 27*B',(306. 27*B'2(306. 'HYLFH,1287HQGSRLQWVFRPPRQ LQWHUUXSWPDVNUHJLVWHU [ 27*B',(3,17[ 27*B'2(3,17[ 'HYLFH,1287HQGSRLQWLQWHUUXSW UHJLVWHUV [ +& 27*B+357 +RVWSRUWFRQWURODQGVWDWXVUHJLVWHU 27*B+$,1706. +RVWDOOFKDQQHOVLQWHUUXSWPDVNUHJLVWHU 27*B+$,17 +RVWDOOFKDQQHOVLQWHUUXSWUHJLVWHU [ 27*B+&7,1706.[ +RVWFKDQQHOVLQWHUUXSWPDVNUHJLVWHUV [ +& 27*B+&7,17[ +RVWFKDQQHOVLQWHUUXSWUHJLVWHUV 06Y9 1. OTG_FS_WKUP becomes active (high state) when resume condition occurs during L1 SLEEP or L2 SUSPEND states. RM0430 Rev 8 1155/1324 1283 USB on-the-go full-speed (OTG_FS) 33.14 RM0430 OTG_FS control and status registers By reading from and writing to the control and status registers (CSRs) through the AHB slave interface, the application controls the OTG_FS controller. These registers are 32 bits wide, and the addresses are 32-bit block aligned. The OTG_FS registers must be accessed by words (32 bits). CSRs are classified as follows: • Core global registers • Host-mode registers • Host global registers • Host port CSRs • Host channel-specific registers • Device-mode registers • Device global registers • Device endpoint-specific registers • Power and clock-gating registers • Data FIFO (DFIFO) access registers Only the core global, power and clock-gating, data FIFO access, and host port control and status registers can be accessed in both host and device modes. When the OTG_FS controller is operating in one mode, either device or host, the application must not access registers from the other mode. If an illegal access occurs, a mode mismatch interrupt is generated and reflected in the core interrupt register (MMIS bit in the OTG_GINTSTS register). When the core switches from one mode to the other, the registers in the new mode of operation must be reprogrammed as they would be after a power-on reset. 33.14.1 CSR memory map The host and device mode registers occupy different addresses. All registers are implemented in the AHB clock domain. Global CSR map These registers are available in both host and device modes. Table 224. Core global control and status registers (CSRs) Acronym Address offset Register name OTG_GOTGCTL 0x000 Section 33.15.1: OTG control and status register (OTG_GOTGCTL) OTG_GOTGINT 0x004 Section 33.15.2: OTG interrupt register (OTG_GOTGINT) OTG_GAHBCFG 0x008 Section 33.15.3: OTG AHB configuration register (OTG_GAHBCFG) OTG_GUSBCFG 0x00C Section 33.15.4: OTG USB configuration register (OTG_GUSBCFG) OTG_GRSTCTL 0x010 Section 33.15.5: OTG reset register (OTG_GRSTCTL) OTG_GINTSTS 0x014 Section 33.15.6: OTG core interrupt register (OTG_GINTSTS) OTG_GINTMSK 0x018 Section 33.15.7: OTG interrupt mask register (OTG_GINTMSK) 1156/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Table 224. Core global control and status registers (CSRs) (continued) Acronym Address offset Register name OTG_GRXSTSR 0x01C OTG_GRXSTSP 0x020 Section 33.15.8: OTG receive status debug read/OTG status read and pop registers (OTG_GRXSTSR/OTG_GRXSTSP) OTG_GRXFSIZ 0x024 Section 33.15.9: OTG receive FIFO size register (OTG_GRXFSIZ) OTG_HNPTXFSIZ/ OTG_DIEPTXF0(1) 0x028 Section 33.15.10: OTG host non-periodic transmit FIFO size register (OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size (OTG_DIEPTXF0) OTG_HNPTXSTS 0x02C Section 33.15.11: OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS) OTG_GCCFG 0x038 Section 33.15.12: OTG general core configuration register (OTG_GCCFG) OTG_CID 0x03C Section 33.15.13: OTG core ID register (OTG_CID) OTG_GLPMCFG 0x54 Section 33.15.14: OTG core LPM configuration register (OTG_GLPMCFG) OTG_HPTXFSIZ 0x100 Section 33.15.15: OTG host periodic transmit FIFO size register (OTG_HPTXFSIZ) OTG_DIEPTXFx 0x104 0x108 ... 0x114 Section 33.15.16: OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5, where x is the FIFO number) 1. The general rule is to use OTG_HNPTXFSIZ for host mode and OTG_DIEPTXF0 for device mode. Host-mode CSR map These registers must be programmed every time the core changes to host mode. Table 225. Host-mode control and status registers (CSRs) Acronym Offset address Register name OTG_HCFG 0x400 Section 33.15.18: OTG host configuration register (OTG_HCFG) OTG_HFIR 0x404 Section 33.15.19: OTG host frame interval register (OTG_HFIR) OTG_HFNUM 0x408 Section 33.15.20: OTG host frame number/frame time remaining register (OTG_HFNUM) OTG_HPTXSTS 0x410 Section 33.15.21: OTG_Host periodic transmit FIFO/queue status register (OTG_HPTXSTS) OTG_HAINT 0x414 Section 33.15.22: OTG host all channels interrupt register (OTG_HAINT) OTG_HAINTMSK 0x418 Section 33.15.23: OTG host all channels interrupt mask register (OTG_HAINTMSK) OTG_HPRT 0x440 Section 33.15.24: OTG host port control and status register (OTG_HPRT) RM0430 Rev 8 1157/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Table 225. Host-mode control and status registers (CSRs) (continued) Acronym Offset address Register name OTG_HCCHARx 0x500 0x520 ... 0x660 Section 33.15.25: OTG host channel x characteristics register (OTG_HCCHARx) (x = 0..11, where x = Channel number) OTG_HCINTx 0x508 0x528 .... 0x668 Section 33.15.26: OTG host channel x interrupt register (OTG_HCINTx) (x = 0..11, where x = Channel number) OTG_HCINTMSKx 0x50C 0x52C .... 0x66C Section 33.15.27: OTG host channel x interrupt mask register (OTG_HCINTMSKx) (x = 0..11, where x = Channel number) OTG_HCTSIZx 0x510 0x530 .... 0x670 Section 33.15.28: OTG host channel x transfer size register (OTG_HCTSIZx) (x = 0..11, where x = Channel number) Device-mode CSR map These registers must be programmed every time the core changes to device mode. Table 226. Device-mode control and status registers Acronym Offset address Register name OTG_DCFG 0x800 Section 33.15.30: OTG device configuration register (OTG_DCFG) OTG_DCTL 0x804 Section 33.15.31: OTG device control register (OTG_DCTL) OTG_DSTS 0x808 Section 33.15.32: OTG device status register (OTG_DSTS) OTG_DIEPMSK 0x810 Section 33.15.33: OTG device IN endpoint common interrupt mask register (OTG_DIEPMSK) OTG_DOEPMSK 0x814 Section 33.15.34: OTG device OUT endpoint common interrupt mask register (OTG_DOEPMSK) OTG_DAINT 0x818 Section 33.15.35: OTG device all endpoints interrupt register (OTG_DAINT) OTG_DAINTMSK 0x81C Section 33.15.36: OTG all endpoints interrupt mask register (OTG_DAINTMSK) OTG_DVBUSDIS 0x828 Section 33.15.37: OTG device VBUS discharge time register (OTG_DVBUSDIS) OTG_DVBUSPULSE 0x82C Section 33.15.38: OTG device VBUS pulsing time register (OTG_DVBUSPULSE) 1158/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Table 226. Device-mode control and status registers (continued) Acronym Offset address Register name OTG_DIEPEMPMSK 0x834 Section 33.15.39: OTG device IN endpoint FIFO empty interrupt mask register (OTG_DIEPEMPMSK) OTG_DIEPCTL0 0x900 Section 33.15.40: OTG device control IN endpoint 0 control register (OTG_DIEPCTL0) OTG_DIEPCTLx 0x920 0x940 ... 0x9A0 Section 33.15.41: OTG device IN endpoint x control register (OTG_DIEPCTLx) (x = 1..5 , where x = endpoint number) OTG_DIEPINTx 0x908 0x928 .... 0x988 Section 33.15.42: OTG device IN endpoint x interrupt register (OTG_DIEPINTx) (x = 0..5, where x = Endpoint number) OTG_DIEPTSIZ0 0x910 Section 33.15.43: OTG device IN endpoint 0 transfer size register (OTG_DIEPTSIZ0) OTG_DTXFSTSx 0x918 0x938 .... 0x998 Section 33.15.44: OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5, where x = endpoint number) OTG_DIEPTSIZx 0x930 0x950 ... 0x9B0 Section 33.15.45: OTG device IN endpoint x transfer size register (OTG_DIEPTSIZx) (x = 1..5, where x = endpoint number) OTG_DOEPCTL0 0xB00 Section 33.15.46: OTG device control OUT endpoint 0 control register (OTG_DOEPCTL0) OTG_DOEPINTx 0xB08 0xB28 ... 0xBA8 Section 33.15.47: OTG device OUT endpoint x interrupt register (OTG_DOEPINTx) (x = 0..5, where x = Endpoint number) OTG_DOEPTSIZ0 0xB10 Section 33.15.48: OTG device OUT endpoint 0 transfer size register (OTG_DOEPTSIZ0) OTG_DOEPCTLx 0xB20 0xB40 ... 0xBA0 Section 33.15.49: OTG device OUT endpoint x control register (OTG_DOEPCTLx) (x = 1..5, where x = endpoint number) OTG_DOEPTSIZx 0xB30 0xB50 ... 0xBB0 Section 33.15.50: OTG device OUT endpoint x transfer size register (OTG_DOEPTSIZx) (x = 1..5, where x = Endpoint number) RM0430 Rev 8 1159/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Data FIFO (DFIFO) access register map These registers, available in both host and device modes, are used to read or write the FIFO space for a specific endpoint or a channel, in a given direction. If a host channel is of type IN, the FIFO can only be read on the channel. Similarly, if a host channel is of type OUT, the FIFO can only be written on the channel. Table 227. Data FIFO (DFIFO) access register map FIFO access register section Offset address Access Device IN endpoint 0/Host OUT Channel 0: DFIFO write access Device OUT endpoint 0/Host IN Channel 0: DFIFO read access 0x1000–0x1FFC w r Device IN endpoint 1/Host OUT Channel 1: DFIFO write access Device OUT endpoint 1/Host IN Channel 1: DFIFO read access 0x2000–0x2FFC w r ... ... ... Device IN endpoint x(1)/Host OUT Channel x(1): DFIFO write access 0xX000–0xXFFC Device OUT endpoint x(1)/Host IN Channel x(1): DFIFO read access w r 1. Where x is 5 in device mode and 11 in host mode. Power and clock gating CSR map There is a single register for power and clock gating. It is available in both host and device modes. Table 228. Power and clock gating control and status registers Acronym OTG_PCGCCTL 33.15 Offset address 0xE00–0xE04 Register name Section 33.15.51: OTG power and clock gating control register (OTG_PCGCCTL) OTG_FS registers These registers are available in both host and device modes, and do not need to be reprogrammed when switching between these modes. Bit values in the register descriptions are expressed in binary unless otherwise specified. 1160/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 33.15.1 OTG control and status register (OTG_GOTGCTL) Address offset: 0x000 Reset value: 0x0001 0000 The OTG_GOTGCTL register controls the behavior and reflects the status of the OTG function of the core. 31 30 29 28 27 26 25 24 23 22 21 20 OTG VER 19 18 17 16 DBCT CID STS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CUR MOD r rw r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. EHEN HNP RQ HNG SCS SRQ SRQ SCS rw r rw r rw DHNP HSHNP EN EN rw rw BSVLD ASVLD BVALO BVALO AVALO AVALO VBVAL VBVAL VAL EN VAL EN OVAL OEN rw rw rw rw rw rw Bits 31:22 Reserved, must be kept at reset value. Bit 21 CURMOD: Current mode of operation Indicates the current mode (host or device). 0: Device mode 1: Host mode Bit 20 OTGVER: OTG version Selects the OTG revision. 0:OTG Version 1.3. OTG1.3 is obsolete for new product development. 1:OTG Version 2.0. In this version the core supports only data line pulsing for SRP. Bit 19 BSVLD: B-session valid Indicates the device mode transceiver status. 0: B-session is not valid. 1: B-session is valid. In OTG mode, the user can use this bit to determine if the device is connected or disconnected. Note: Only accessible in device mode. Bit 18 ASVLD: A-session valid Indicates the host mode transceiver status. 0: A-session is not valid 1: A-session is valid Note: Only accessible in host mode. Bit 17 DBCT: Long/short debounce time Indicates the debounce time of a detected connection. 0: Long debounce time, used for physical connections (100 ms + 2.5 µs) 1: Short debounce time, used for soft connections (2.5 µs) Note: Only accessible in host mode. Bit 16 CIDSTS: Connector ID status Indicates the connector ID status on a connect event. 0: The OTG_FS controller is in A-device mode 1: The OTG_FS controller is in B-device mode Note: Accessible in both device and host modes. RM0430 Rev 8 1161/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bits 15:13 Reserved, must be kept at reset value. Bit 12 EHEN: Embedded host enable It is used to select between OTG A device state machine and embedded host state machine. 0: OTG A device state machine is selected 1: Embedded host state machine is selected Bit 11 DHNPEN: Device HNP enabled The application sets this bit when it successfully receives a SetFeature.SetHNPEnable command from the connected USB host. 0: HNP is not enabled in the application 1: HNP is enabled in the application Note: Only accessible in device mode. Bit 10 HSHNPEN: host set HNP enable The application sets this bit when it has successfully enabled HNP (using the SetFeature.SetHNPEnable command) on the connected device. 0: Host Set HNP is not enabled 1: Host Set HNP is enabled Note: Only accessible in host mode. Bit 9 HNPRQ: HNP request The application sets this bit to initiate an HNP request to the connected USB host. The application can clear this bit by writing a 0 when the host negotiation success status change bit in the OTG_GOTGINT register (HNSSCHG bit in OTG_GOTGINT) is set. The core clears this bit when the HNSSCHG bit is cleared. 0: No HNP request 1: HNP request Note: Only accessible in device mode. Bit 8 HNGSCS: Host negotiation success The core sets this bit when host negotiation is successful. The core clears this bit when the HNP request (HNPRQ) bit in this register is set. 0: Host negotiation failure 1: Host negotiation success Note: Only accessible in device mode. Bit 7 BVALOVAL: B-peripheral session valid override value. This bit is used to set override value for Bvalid signal when BVALOEN bit is set. 0: Bvalid value is '0' when BVALOEN = 1 1: Bvalid value is '1' when BVALOEN = 1 Note: Only accessible in device mode. Bit 6 BVALOEN: B-peripheral session valid override enable. This bit is used to enable/disable the software to override the Bvalid signal using the BVALOVAL bit. 0:Override is disabled and Bvalid signal from the respective PHY selected is used internally by the core 1:Internally Bvalid received from the PHY is overridden with BVALOVAL bit value Note: Only accessible in device mode. Bit 5 AVALOVAL: A-peripheral session valid override value. This bit is used to set override value for Avalid signal when AVALOEN bit is set. 0: Avalid value is '0' when AVALOEN = 1 1: Avalid value is '1' when AVALOEN = 1 Note: Only accessible in host mode. 1162/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 4 AVALOEN: A-peripheral session valid override enable. This bit is used to enable/disable the software to override the Avalid signal using the AVALOVAL bit. 0:Override is disabled and Avalid signal from the respective PHY selected is used internally by the core 1:Internally Avalid received from the PHY is overridden with AVALOVAL bit value Note: Only accessible in host mode. Bit 3 VBVALOVAL: VBUS valid override value. This bit is used to set override value for vbusvalid signal when VBVALOEN bit is set. 0: vbusvalid value is '0' when VBVALOEN = 1 1: vbusvalid value is '1' when VBVALOEN = 1 Note: Only accessible in host mode. Bit 2 VBVALOEN: VBUS valid override enable. This bit is used to enable/disable the software to override the vbusvalid signal using the VBVALOVAL bit. 0: Override is disabled and vbusvalid signal from the respective PHY selected is used internally by the core 1: Internally vbusvalid received from the PHY is overridden with VBVALOVAL bit value Note: Only accessible in host mode. Bit 1 SRQ: Session request The application sets this bit to initiate a session request on the USB. The application can clear this bit by writing a 0 when the host negotiation success status change bit in the OTG_GOTGINT register (HNSSCHG bit in OTG_GOTGINT) is set. The core clears this bit when the HNSSCHG bit is cleared. If the user uses the USB 1.1 full-speed serial transceiver interface to initiate the session request, the application must wait until VBUS discharges to 0.2 V, after the B-session valid bit in this register (BSVLD bit in OTG_GOTGCTL) is cleared. 0: No session request 1: Session request Note: Only accessible in device mode. Bit 0 SRQSCS: Session request success The core sets this bit when a session request initiation is successful. 0: Session request failure 1: Session request success Note: Only accessible in device mode. RM0430 Rev 8 1163/1324 1283 USB on-the-go full-speed (OTG_FS) 33.15.2 RM0430 OTG interrupt register (OTG_GOTGINT) Address offset: 0x04 Reset value: 0x0000 0000 The application reads this register whenever there is an OTG interrupt and clears the bits in this register to clear the OTG interrupt. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ID CHNG DBC DNE ADTO CHG HNG DET Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rc_w1 rc_w1 rc_w1 rc_w1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. HNSS CHG SRSS CHG Res. Res. Res. Res. Res. SEDET Res. Res. rc_w1 rc_w1 rc_w1 Bits 31:21 Reserved, must be kept at reset value. Bit 20 IDCHNG: This bit when set indicates that there is a change in the value of the ID input pin. Bit 19 DBCDNE: Debounce done The core sets this bit when the debounce is completed after the device connect. The application can start driving USB reset after seeing this interrupt. This bit is only valid when the HNP Capable or SRP Capable bit is set in the OTG_GUSBCFG register (HNPCAP bit or SRPCAP bit in OTG_GUSBCFG, respectively). Note: Only accessible in host mode. Bit 18 ADTOCHG: A-device timeout change The core sets this bit to indicate that the A-device has timed out while waiting for the B-device to connect. Note: Accessible in both device and host modes. Bit 17 HNGDET: Host negotiation detected The core sets this bit when it detects a host negotiation request on the USB. Note: Accessible in both device and host modes. Bits 16:10 Reserved, must be kept at reset value. Bit 9 HNSSCHG: Host negotiation success status change The core sets this bit on the success or failure of a USB host negotiation request. The application must read the host negotiation success bit of the OTG_GOTGCTL register (HNGSCS bit in OTG_GOTGCTL) to check for success or failure. Note: Accessible in both device and host modes. Bits 7:3 Reserved, must be kept at reset value. 1164/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 8 SRSSCHG: Session request success status change The core sets this bit on the success or failure of a session request. The application must read the session request success bit in the OTG_GOTGCTL register (SRQSCS bit in OTG_GOTGCTL) to check for success or failure. Note: Accessible in both device and host modes. Bit 2 SEDET: Session end detected The core sets this bit to indicate that the level of the voltage on VBUS is no longer valid for a B-Peripheral session when VBUS < 0.8 V. Note: Accessible in both device and host modes. Bits 1:0 Reserved, must be kept at reset value. 33.15.3 OTG AHB configuration register (OTG_GAHBCFG) Address offset: 0x008 Reset value: 0x0000 0000 This register can be used to configure the core after power-on or a change in mode. This register mainly contains AHB system-related configuration parameters. Do not change this register after the initial programming. The application must program this register before starting any transactions on either the AHB or the USB. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. PTXFE LVL TXFE LVL Res. Res. Res. Res. Res. Res. GINT MSK rw rw RM0430 Rev 8 rw 1165/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bits 31:9 Reserved, must be kept at reset value. Bit 8 PTXFELVL: Periodic Tx FIFO empty level Indicates when the periodic Tx FIFO empty interrupt bit in the OTG_GINTSTS register (PTXFE bit in OTG_GINTSTS) is triggered. 0: PTXFE (in OTG_GINTSTS) interrupt indicates that the Periodic Tx FIFO is half empty 1: PTXFE (in OTG_GINTSTS) interrupt indicates that the Periodic Tx FIFO is completely empty Note: Only accessible in host mode. Bit 7 TXFELVL: Tx FIFO empty level In device mode, this bit indicates when IN endpoint Transmit FIFO empty interrupt (TXFE in OTG_DIEPINTx) is triggered: 0:The TXFE (in OTG_DIEPINTx) interrupt indicates that the IN endpoint Tx FIFO is half empty 1:The TXFE (in OTG_DIEPINTx) interrupt indicates that the IN endpoint Tx FIFO is completely empty In host mode, this bit indicates when the nonperiodic Tx FIFO empty interrupt (NPTXFE bit in OTG_GINTSTS) is triggered: 0:The NPTXFE (in OTG_GINTSTS) interrupt indicates that the nonperiodic Tx FIFO is half empty 1:The NPTXFE (in OTG_GINTSTS) interrupt indicates that the nonperiodic Tx FIFO is completely empty Bits 6:1 Reserved, must be kept at reset value. Bit 0 GINTMSK: Global interrupt mask The application uses this bit to mask or unmask the interrupt line assertion to itself. Irrespective of this bit’s setting, the interrupt status registers are updated by the core. 0: Mask the interrupt assertion to the application. 1: Unmask the interrupt assertion to the application. Note: Accessible in both device and host modes. 33.15.4 OTG USB configuration register (OTG_GUSBCFG) Address offset: 0x00C Reset value: 0x0000 1440 This register can be used to configure the core after power-on or a changing to host mode or device mode. It contains USB and USB-PHY related configuration parameters. The application must program this register before starting any transactions on either the AHB or the USB. Do not make changes to this register after the initial programming. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. FD MOD FH MOD Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw 14 13 12 11 10 7 6 5 4 3 2 1 0 Res. PHY SEL Res. Res. Res. 15 Res. Res. 1166/1324 9 8 TRDT HNP CAP SRP CAP rw rw rw RM0430 Rev 8 r TOCAL rw RM0430 USB on-the-go full-speed (OTG_FS) Bit 31 Reserved, must be kept at reset value. Bit 30 FDMOD: Force device mode Writing a 1 to this bit, forces the core to device mode irrespective of the OTG_ID input pin. 0: Normal mode 1: Force device mode After setting the force bit, the application must wait at least 25 ms before the change takes effect. Note: Accessible in both device and host modes. Bit 29 FHMOD: Force host mode Writing a 1 to this bit, forces the core to host mode irrespective of the OTG_ID input pin. 0: Normal mode 1: Force host mode After setting the force bit, the application must wait at least 25 ms before the change takes effect. Note: Accessible in both device and host modes. Bits 28:26 Reserved, must be kept at reset value. Bit 22 Reserved, must be kept at reset value. Bit 15 Reserved, must be kept at reset value. Bit 14 Reserved, must be kept at reset value. Bits 13:10 TRDT[3:0]: USB turnaround time These bits allows to set the turnaround time in PHY clocks. They must be configured according to Table 229: TRDT values (FS), depending on the application AHB frequency. Higher TRDT values allow stretching the USB response time to IN tokens in order to compensate for longer AHB read access latency to the data FIFO. Note: Only accessible in device mode. Bit 9 HNPCAP: HNP-capable The application uses this bit to control the OTG_FS controller’s HNP capabilities. 0: HNP capability is not enabled. 1: HNP capability is enabled. Note: Accessible in both device and host modes. Bit 8 SRPCAP: SRP-capable The application uses this bit to control the OTG_FS controller’s SRP capabilities. If the core operates as a non-SRP-capable B-device, it cannot request the connected A-device (host) to activate VBUS and start a session. 0: SRP capability is not enabled. 1: SRP capability is enabled. Note: Accessible in both device and host modes. Bit 7 Reserved, must be kept at reset value. Bit 6 PHYSEL: Full Speed serial transceiver select This bit is always 1 with read-only access. Bit 5 Reserved, must be kept at reset value. RM0430 Rev 8 1167/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 4 Reserved, must be kept at reset value. Bit 3 Reserved, must be kept at reset value. Bits 2:0 TOCAL[2:0]: FS timeout calibration The number of PHY clocks that the application programs in this field is added to the fullspeed interpacket timeout duration in the core to account for any additional delays introduced by the PHY. This can be required, because the delay introduced by the PHY in generating the line state condition can vary from one PHY to another. The USB standard timeout value for full-speed operation is 16 to 18 (inclusive) bit times. The application must program this field based on the speed of enumeration. The number of bit times added per PHY clock is 0.25 bit times. Table 229. TRDT values (FS) AHB frequency range (MHz) TRDT minimum value 33.15.5 Min Max 14.2 15 0xF 15 16 0xE 16 17.2 0xD 17.2 18.5 0xC 18.5 20 0xB 20 21.8 0xA 21.8 24 0x9 24 27.5 0x8 27.5 32 0x7 32 - 0x6 OTG reset register (OTG_GRSTCTL) Address offset: 0x10 Reset value: 0x8000 0000 The application uses this register to reset various hardware features inside the core. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 AHB IDL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. TXFNUM TXF FLSH RXF FLSH Res. rw rs rs r r 1168/1324 RM0430 Rev 8 FCRST PSRST CSRST rs rs r RM0430 USB on-the-go full-speed (OTG_FS) Bit 31 AHBIDL: AHB master idle Indicates that the AHB master state machine is in the Idle condition. Note: Accessible in both device and host modes. Bits 30:11 Reserved, must be kept at reset value. Bits 10:6 TXFNUM[4:0]: Tx FIFO number This is the FIFO number that must be flushed using the Tx FIFO Flush bit. This field must not be changed until the core clears the Tx FIFO Flush bit. 00000: – Non-periodic Tx FIFO flush in host mode – Tx FIFO 0 flush in device mode 00001: – Periodic Tx FIFO flush in host mode – Tx FIFO 1 flush in device mode 00010: Tx FIFO 2 flush in device mode ... 01111: Tx FIFO 15 flush in device mode 10000: Flush all the transmit FIFOs in device or host mode. Note: Accessible in both device and host modes. Bit 5 TXFFLSH: Tx FIFO flush This bit selectively flushes a single or all transmit FIFOs, but cannot do so if the core is in the midst of a transaction. The application must write this bit only after checking that the core is neither writing to the Tx FIFO nor reading from the Tx FIFO. Verify using these registers: Read—NAK Effective interrupt ensures the core is not reading from the FIFO Write—AHBIDL bit in OTG_GRSTCTL ensures the core is not writing anything to the FIFO. Flushing is normally recommended when FIFOs are reconfigured. FIFO flushing is also recommended during device endpoint disable. The application must wait until the core clears this bit before performing any operations. This bit takes eight clocks to clear, using the slower clock of phy_clk or hclk. Note: Accessible in both device and host modes. Bit 4 RXFFLSH: Rx FIFO flush The application can flush the entire Rx FIFO using this bit, but must first ensure that the core is not in the middle of a transaction. The application must only write to this bit after checking that the core is neither reading from the Rx FIFO nor writing to the Rx FIFO. The application must wait until the bit is cleared before performing any other operations. This bit requires 8 clocks (slowest of PHY or AHB clock) to clear. Note: Accessible in both device and host modes. Bit 3 Reserved, must be kept at reset value. RM0430 Rev 8 1169/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 2 FCRST: Host frame counter reset The application writes this bit to reset the frame number counter inside the core. When the frame counter is reset, the subsequent SOF sent out by the core has a frame number of 0. When application writes '1' to the bit, it might not be able to read back the value as it will get cleared by the core in a few clock cycles. Note: Only accessible in host mode. Bit 1 PSRST: Partial soft reset Resets the internal state machines but keeps the enumeration info. Could be used to recover some specific PHY errors. Note: Accessible in both device and host modes. Bit 0 CSRST: Core soft reset Resets the HCLK and PHY clock domains as follows: Clears the interrupts and all the CSR register bits except for the following bits: – GATEHCLK bit in OTG_PCGCCTL – STPPCLK bit in OTG_PCGCCTL – FSLSPCS bits in OTG_HCFG – DSPD bit in OTG_DCFG – SDIS bit in OTG_DCTL – OTG_GCCFG register All module state machines (except for the AHB slave unit) are reset to the Idle state, and all the transmit FIFOs and the receive FIFO are flushed. Any transactions on the AHB Master are terminated as soon as possible, after completing the last data phase of an AHB transfer. Any transactions on the USB are terminated immediately. The application can write to this bit any time it wants to reset the core. This is a self-clearing bit and the core clears this bit after all the necessary logic is reset in the core, which can take several clocks, depending on the current state of the core. Once this bit has been cleared, the software must wait at least 3 PHY clocks before accessing the PHY domain (synchronization delay). The software must also check that bit 31 in this register is set to 1 (AHB Master is Idle) before starting any operation. Typically, the software reset is used during software development and also when the user dynamically changes the PHY selection bits in the above listed USB configuration registers. When you change the PHY, the corresponding clock for the PHY is selected and used in the PHY domain. Once a new clock is selected, the PHY domain has to be reset for proper operation. Note: Accessible in both device and host modes. 1170/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 33.15.6 OTG core interrupt register (OTG_GINTSTS) Address offset: 0x014 Reset value: 0x1400 0020 This register interrupts the application for system-level events in the current mode (device mode or host mode). Some of the bits in this register are valid only in host mode, while others are valid in device mode only. This register also indicates the current mode. To clear the interrupt status bits of the rc_w1 type, the application must write 1 into the bit. The FIFO status interrupts are read-only; once software reads from or writes to the FIFO while servicing these interrupts, FIFO interrupt conditions are cleared automatically. The application must clear the OTG_GINTSTS register at initialization before unmasking the interrupt bit to avoid any interrupts generated prior to initialization. 31 30 29 28 27 26 25 WKUP INT SRQ INT DISC INT CIDS CHG LPM INT rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 r 15 14 13 12 11 10 EOPF ISOO DRP ENUM DNE USB RST USB SUSP ESUSP Res. rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 24 23 22 21 20 19 18 17 16 Res. IPXFR/ IN COMP ISO OUT IISOI XFR OEP INT IEPINT Res. Res. HPRT INT RST DET r r rc_w1 rc_w1 rc_w1 r r 9 8 7 6 5 4 3 2 1 0 Res. GO NAK EFF GI NAK EFF NPTXF E RXF LVL SOF OTG INT MMIS CMOD r r r r rc_w1 r rc_w1 r PTXFE HCINT Bit 31 WKUPINT: Resume/remote wakeup detected interrupt Wakeup interrupt during suspend(L2) or LPM(L1) state. – During suspend(L2): In device mode, this interrupt is asserted when a resume is detected on the USB. In host mode, this interrupt is asserted when a remote wakeup is detected on the USB. – During LPM(L1): This interrupt is asserted for either host initiated resume or device initiated remote wakeup on USB. Note: Accessible in both device and host modes. Bit 30 SRQINT: Session request/new session detected interrupt In host mode, this interrupt is asserted when a session request is detected from the device. In device mode, this interrupt is asserted when VBUS is in the valid range for a B-peripheral device. Accessible in both device and host modes. Bit 29 DISCINT: Disconnect detected interrupt Asserted when a device disconnect is detected. Note: Only accessible in host mode. Bit 28 CIDSCHG: Connector ID status change The core sets this bit when there is a change in connector ID status. Note: Accessible in both device and host modes. RM0430 Rev 8 1171/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 27 LPMINT: LPM interrupt In device mode, this interrupt is asserted when the device receives an LPM transaction and responds with a non-ERRORed response. In host mode, this interrupt is asserted when the device responds to an LPM transaction with a non-ERRORed response or when the host core has completed LPM transactions for the programmed number of times (RETRYCNT bit in OTG_GLPMCFG). This field is valid only if the LPMEN bit in OTG_GLPMCFG is set to 1. Bit 26 PTXFE: Periodic Tx FIFO empty Asserted when the periodic transmit FIFO is either half or completely empty and there is space for at least one entry to be written in the periodic request queue. The half or completely empty status is determined by the periodic Tx FIFO empty level bit in the OTG_GAHBCFG register (PTXFELVL bit in OTG_GAHBCFG). Note: Only accessible in host mode. Bit 25 HCINT: Host channels interrupt The core sets this bit to indicate that an interrupt is pending on one of the channels of the core (in host mode). The application must read the OTG_HAINT register to determine the exact number of the channel on which the interrupt occurred, and then read the corresponding OTG_HCINTx register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the OTG_HCINTx register to clear this bit. Note: Only accessible in host mode. Bit 24 HPRTINT: Host port interrupt The core sets this bit to indicate a change in port status of one of the OTG_FS controller ports in host mode. The application must read the OTG_HPRT register to determine the exact event that caused this interrupt. The application must clear the appropriate status bit in the OTG_HPRT register to clear this bit. Note: Only accessible in host mode. Bit 23 RSTDET: Reset detected interrupt In device mode, this interrupt is asserted when a reset is detected on the USB in partial power-down mode when the device is in suspend. Note: Only accessible in device mode. Bit 22 Reserved, must be kept at reset value . Bit 21 IPXFR: Incomplete periodic transfer In host mode, the core sets this interrupt bit when there are incomplete periodic transactions still pending, which are scheduled for the current frame. INCOMPISOOUT: Incomplete isochronous OUT transfer In device mode, the core sets this interrupt to indicate that there is at least one isochronous OUT endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the End of periodic frame interrupt (EOPF) bit in this register. Bit 20 IISOIXFR: Incomplete isochronous IN transfer The core sets this interrupt to indicate that there is at least one isochronous IN endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the End of periodic frame interrupt (EOPF) bit in this register. Note: Only accessible in device mode. 1172/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 19 OEPINT: OUT endpoint interrupt The core sets this bit to indicate that an interrupt is pending on one of the OUT endpoints of the core (in device mode). The application must read the OTG_DAINT register to determine the exact number of the OUT endpoint on which the interrupt occurred, and then read the corresponding OTG_DOEPINTx register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the corresponding OTG_DOEPINTx register to clear this bit. Note: Only accessible in device mode. Bit 18 IEPINT: IN endpoint interrupt The core sets this bit to indicate that an interrupt is pending on one of the IN endpoints of the core (in device mode). The application must read the OTG_DAINT register to determine the exact number of the IN endpoint on which the interrupt occurred, and then read the corresponding OTG_DIEPINTx register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the corresponding OTG_DIEPINTx register to clear this bit. Note: Only accessible in device mode. Bits 17:16 Reserved, must be kept at reset value. Bit 15 EOPF: End of periodic frame interrupt Indicates that the period specified in the periodic frame interval field of the OTG_DCFG register (PFIVL bit in OTG_DCFG) has been reached in the current frame. Note: Only accessible in device mode. Bit 14 ISOODRP: Isochronous OUT packet dropped interrupt The core sets this bit when it fails to write an isochronous OUT packet into the Rx FIFO because the Rx FIFO does not have enough space to accommodate a maximum size packet for the isochronous OUT endpoint. Note: Only accessible in device mode. Bit 13 ENUMDNE: Enumeration done The core sets this bit to indicate that speed enumeration is complete. The application must read the OTG_DSTS register to obtain the enumerated speed. Note: Only accessible in device mode. Bit 12 USBRST: USB reset The core sets this bit to indicate that a reset is detected on the USB. Note: Only accessible in device mode. Bit 11 USBSUSP: USB suspend The core sets this bit to indicate that a suspend was detected on the USB. The core enters the suspended state when there is no activity on the data lines for an extended period of time. Note: Only accessible in device mode. Bit 10 ESUSP: Early suspend The core sets this bit to indicate that an Idle state has been detected on the USB for 3 ms. Note: Only accessible in device mode. Bits 9:8 Reserved, must be kept at reset value. Bit 7 GONAKEFF: Global OUT NAK effective Indicates that the Set global OUT NAK bit in the OTG_DCTL register (SGONAK bit in OTG_DCTL), set by the application, has taken effect in the core. This bit can be cleared by writing the Clear global OUT NAK bit in the OTG_DCTL register (CGONAK bit in OTG_DCTL). Note: Only accessible in device mode. RM0430 Rev 8 1173/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 6 GINAKEFF: Global IN non-periodic NAK effective Indicates that the Set global non-periodic IN NAK bit in the OTG_DCTL register (SGINAK bit in OTG_DCTL), set by the application, has taken effect in the core. That is, the core has sampled the Global IN NAK bit set by the application. This bit can be cleared by clearing the Clear global non-periodic IN NAK bit in the OTG_DCTL register (CGINAK bit in OTG_DCTL). This interrupt does not necessarily mean that a NAK handshake is sent out on the USB. The STALL bit takes precedence over the NAK bit. Note: Only accessible in device mode. Bit 5 NPTXFE: Non-periodic Tx FIFO empty This interrupt is asserted when the non-periodic Tx FIFO is either half or completely empty, and there is space for at least one entry to be written to the non-periodic transmit request queue. The half or completely empty status is determined by the non-periodic Tx FIFO empty level bit in the OTG_GAHBCFG register (TXFELVL bit in OTG_GAHBCFG). Note: Accessible in host mode only. Bit 4 RXFLVL: Rx FIFO non-empty Indicates that there is at least one packet pending to be read from the Rx FIFO. Note: Accessible in both host and device modes. Bit 3 SOF: Start of frame In host mode, the core sets this bit to indicate that an SOF (FS), or Keep-Alive (LS) is transmitted on the USB. The application must write a 1 to this bit to clear the interrupt. In device mode, in the core sets this bit to indicate that an SOF token has been received on the USB. The application can read the OTG_DSTS register to get the current frame number. This interrupt is seen only when the core is operating in FS. Note: This register may return '1' if read immediately after power on reset. If the register bit reads '1' immediately after power on reset it does not indicate that an SOF has been sent (in case of host mode) or SOF has been received (in case of device mode). The read value of this interrupt is valid only after a valid connection between host and device is established. If the bit is set after power on reset the application can clear the bit. Note: Accessible in both host and device modes. Bit 2 OTGINT: OTG interrupt The core sets this bit to indicate an OTG protocol event. The application must read the OTG interrupt status (OTG_GOTGINT) register to determine the exact event that caused this interrupt. The application must clear the appropriate status bit in the OTG_GOTGINT register to clear this bit. Note: Accessible in both host and device modes. Bit 1 MMIS: Mode mismatch interrupt The core sets this bit when the application is trying to access: – A host mode register, when the core is operating in device mode – A device mode register, when the core is operating in host mode The register access is completed on the AHB with an OKAY response, but is ignored by the core internally and does not affect the operation of the core. Note: Accessible in both host and device modes. Bit 0 CMOD: Current mode of operation Indicates the current mode. 0: Device mode 1: Host mode Note: Accessible in both host and device modes. 1174/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 33.15.7 OTG interrupt mask register (OTG_GINTMSK) Address offset: 0x018 Reset value: 0x0000 0000 This register works with the core interrupt register to interrupt the application. When an interrupt bit is masked, the interrupt associated with that bit is not generated. However, the core interrupt (OTG_GINTSTS) register bit corresponding to that interrupt is still set. 31 WUIM 30 SRQIM 29 28 DISCIN CIDSC T HGM 27 26 LPMIN PTXFE TM M 25 24 23 HCIM PRTIM RSTDE TM rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 EOPF M ISOOD RPM Res. Res. rw rw ENUM USBRS USBSU ESUSP DNEM T SPM M rw rw rw rw 22 21 20 Res. IPXFR M/IISO OXFR M IISOIX FRM rw rw rw rw 5 4 3 2 6 GONA GINAK NPTXF RXFLV KEFFM EFFM EM LM rw rw rw rw 19 18 OEPIN IEPINT T SOFM rw 17 16 Res. Res. 1 0 OTGIN MMISM T rw Res. rw Bit 31 WUIM: Resume/remote wakeup detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 30 SRQIM: Session request/new session detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 29 DISCINT: Disconnect detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 28 CIDSCHGM: Connector ID status change mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 27 LPMINTM: LPM interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 26 PTXFEM: Periodic Tx FIFO empty mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 25 HCIM: Host channels interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. RM0430 Rev 8 1175/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 24 PRTIM: Host port interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 23 RSTDETM: Reset detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 22 Reserved, must be kept at reset value . Bit 21 IPXFRM: Incomplete periodic transfer mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. IISOOXFRM: Incomplete isochronous OUT transfer mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 20 IISOIXFRM: Incomplete isochronous IN transfer mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 19 OEPINT: OUT endpoints interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 18 IEPINT: IN endpoints interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bits 17:16 Reserved, must be kept at reset value. Bit 15 EOPFM: End of periodic frame interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 14 ISOODRPM: Isochronous OUT packet dropped interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 13 ENUMDNEM: Enumeration done mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. 1176/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 12 USBRST: USB reset mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 11 USBSUSPM: USB suspend mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 10 ESUSPM: Early suspend mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bits 9:8 Reserved, must be kept at reset value. Bit 7 GONAKEFFM: Global OUT NAK effective mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 6 GINAKEFFM: Global non-periodic IN NAK effective mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 5 NPTXFEM: Non-periodic Tx FIFO empty mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 4 RXFLVLM: Receive FIFO non-empty mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 3 SOFM: Start of frame mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 2 OTGINT: OTG interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 1 MMISM: Mode mismatch interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 0 Reserved, must be kept at reset value. RM0430 Rev 8 1177/1324 1283 USB on-the-go full-speed (OTG_FS) 33.15.8 RM0430 OTG receive status debug read/OTG status read and pop registers (OTG_GRXSTSR/OTG_GRXSTSP) Address offset for read: 0x01C Address offset for pop: 0x020 Reset value: 0x0000 0000 A read to the receive status debug read register returns the contents of the top of the receive FIFO. A read to the receive status read and pop register additionally pops the top data entry out of the Rx FIFO. The receive status contents must be interpreted differently in host and device modes. The core ignores the receive status pop/read when the receive FIFO is empty and returns a value of 0x0000 0000. The application must only pop the receive status FIFO when the receive FIFO non-empty bit of the core interrupt register (RXFLVL bit in OTG_GINTSTS) is asserted. Host mode: 31 30 29 28 27 26 25 24 23 22 21 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 DPID 9 8 7 6 5 20 19 r r r r r r 16 DPID r r r r r 4 3 2 1 0 CHNUM[3:0] r r r r r r r Bits 31:21 Reserved, must be kept at reset value. Bits 20:17 PKTSTS[3:0]: Packet status Indicates the status of the received packet 0010: IN data packet received 0011: IN transfer completed (triggers an interrupt) 0101: Data toggle error (triggers an interrupt) 0111: Channel halted (triggers an interrupt) Others: Reserved Bits 16:15 DPID: Data PID Indicates the data PID of the received packet 00: DATA0 10: DATA1 Bits 14:4 BCNT[10:0]: Byte count Indicates the byte count of the received IN data packet. Bits 3:0 CHNUM[3:0]: Channel number Indicates the channel number to which the current received packet belongs. 1178/1324 17 PKTSTS[3:0] BCNT[10:0] r 18 RM0430 Rev 8 r r RM0430 USB on-the-go full-speed (OTG_FS) Device mode: 31 30 29 28 27 26 25 Res. Res. 10 9 Res. Res. Res. Res. STSPH ST 15 14 13 12 11 24 r 22 21 20 FRMNUM[3:0] r DPID[0] 23 19 r r r r r 17 PKTSTS[3:0] 16 DPID[1] r r r r r r r r r 8 7 6 5 4 3 2 1 0 BCNT[10:0] r 18 EPNUM[3:0] r r r r r r r r r Bits 31:28 Reserved, must be kept at reset value. Bit 27 STSPHST: Status phase start Indicates the start of the status phase for a control write transfer. This bit is set along with the OUT transfer completed PKTSTS pattern. Bits 26:25 Reserved, must be kept at reset value. Bits 24:21 FRMNUM[3:0]: Frame number This is the least significant 4 bits of the frame number in which the packet is received on the USB. This field is supported only when isochronous OUT endpoints are supported. Bits 20:17 PKTSTS[3:0]: Packet status Indicates the status of the received packet 0001: Global OUT NAK (triggers an interrupt) 0010: OUT data packet received 0011: OUT transfer completed (triggers an interrupt) 0100: SETUP transaction completed (triggers an interrupt) 0110: SETUP data packet received Others: Reserved Bits 16:15 DPID[1:0]: Data PID Indicates the data PID of the received OUT data packet 00: DATA0 10: DATA1 Bits 14:4 BCNT[10:0]: Byte count Indicates the byte count of the received data packet. Bits 3:0 EPNUM[3:0]: Endpoint number Indicates the endpoint number to which the current received packet belongs. RM0430 Rev 8 1179/1324 1283 USB on-the-go full-speed (OTG_FS) 33.15.9 RM0430 OTG receive FIFO size register (OTG_GRXFSIZ) Address offset: 0x024 Reset value: 0x0000 0200 The application can program the RAM size that must be allocated to the Rx FIFO. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw RXFD[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 RXFD[15:0]: Rx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Programmed values must respect the available FIFO memory allocation and must not exceed the power-on value. 33.15.10 OTG host non-periodic transmit FIFO size register (OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size (OTG_DIEPTXF0) Address offset: 0x028 Reset value: 0x0200 0200 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 NPTXFD/TX0FD[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw NPTXFSA/TX0FSA[15:0] rw rw rw rw rw rw rw rw rw Host mode Bits 31:16 NPTXFD[15:0]: Non-periodic Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Programmed values must respect the available FIFO memory allocation and must not exceed the power-on value. Bits 15:0 NPTXFSA[15:0]: Non-periodic transmit RAM start address This field configures the memory start address for non-periodic transmit FIFO RAM. 1180/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Device mode Bits 31:16 TX0FD: Endpoint 0 Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Programmed values must respect the available FIFO memory allocation and must not exceed the power-on value. Bits 15:0 TX0FSA: Endpoint 0 transmit RAM start address This field configures the memory start address for the endpoint 0 transmit FIFO RAM. 33.15.11 OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS) Address offset: 0x02C Reset value: 0x0008 0200 Note: In device mode, this register is not valid. This read-only register contains the free space information for the non-periodic Tx FIFO and the non-periodic transmit request queue. 31 30 29 28 Res. 15 27 26 25 24 23 22 21 NPTXQTOP[6:0] 20 19 18 17 16 NPTQXSAV[7:0] r r r r r r r r r r r r r r r 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r NPTXFSAV[15:0] r r r r r r r r r RM0430 Rev 8 1181/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 31 Reserved, must be kept at reset value. Bits 30:24 NPTXQTOP[6:0]: Top of the non-periodic transmit request queue Entry in the non-periodic Tx request queue that is currently being processed by the MAC. Bits 30:27: Channel/endpoint number Bits 26:25: 00: IN/OUT token 01: Zero-length transmit packet (device IN/host OUT) 11: Channel halt command Bit 24: Terminate (last entry for selected channel/endpoint) Bits 23:16 NPTQXSAV[7:0]: Non-periodic transmit request queue space available Indicates the amount of free space available in the non-periodic transmit request queue. This queue holds both IN and OUT requests. 0: Non-periodic transmit request queue is full 1: 1 location available 2: locations available n: n locations available (0 ≤ n ≤ 8) Others: Reserved Bits 15:0 NPTXFSAV[15:0]: Non-periodic Tx FIFO space available Indicates the amount of free space available in the non-periodic Tx FIFO. Values are in terms of 32-bit words. 0: Non-periodic Tx FIFO is full 1: 1 word available 2: 2 words available n: n words available (where 0 ≤ n ≤ 512) Others: Reserved 33.15.12 OTG general core configuration register (OTG_GCCFG) Address offset: 0x038 Reset value: 0x0000 XXXX 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1182/1324 RM0430 Rev 8 21 20 19 18 17 16 BCDEN PWR DWN VBDEN SDEN PDEN DCD EN rw rw rw rw rw rw 5 4 3 2 1 0 Res. Res. PS2 DET SDET PDET DCDET r r r r RM0430 USB on-the-go full-speed (OTG_FS) Bits 31:22 Reserved, must be kept at reset value. Bit 21 VBDEN: USB VBUS detection enable Enables VBUS sensing comparators to detect VBUS valid levels on the VBUS PAD for USB host and device operation. If HNP and/or SRP support is enabled, VBUS comparators are automatically enabled independently of VBDEN value. 0 = VBUS detection disabled 1 = VBUS detection enabled Bit 20 SDEN: Secondary detection (SD) mode enable This bit is set by the software to put the BCD into SD mode. Only one detection mode (DCD, PD, SD or OFF) should be selected to work correctly Bit 19 PDEN: Primary detection (PD) mode enable This bit is set by the software to put the BCD into PD mode. Only one detection mode (DCD, PD, SD or OFF) should be selected to work correctly. Bit 18 DCDEN: Data contact detection (DCD) mode enable This bit is set by the software to put the BCD into DCD mode. Only one detection mode (DCD, PD, SD or OFF) should be selected to work correctly. Bit 17 BCDEN: Battery charging detector (BCD) enable This bit is set by the software to enable the BCD support within the USB device. When enabled, the USB PHY is fully controlled by BCD and cannot be used for normal communication. Once the BCD discovery is finished, the BCD should be placed in OFF mode by clearing this bit to ‘0’ in order to allow the normal USB operation. Bit 16 PWRDWN: Power down control Used to activate the transceiver in transmission/reception. When reset, the transceiver is kept in power-down. When set, the BCD function must be off (BCDEN=0). 0 = USB FS transceiver disabled 1 = USB FS transceiver enabled Bits 15:4 Reserved, must be kept at reset value. Bit 3 PS2DET: DM pull-up detection status This bit is active only during PD and gives the result of comparison between DM voltage level and VLGC threshold. In normal situation, the DM level should be below this threshold. If it is above, it means that the DM is externally pulled high. This can be caused by connection to a PS2 port (which pulls-up both DP and DM lines) or to some proprietary charger not following the BCD specification. 0: Normal port detected (connected to SDP, CDP or DCP) 1: PS2 port or proprietary charger detected Bit 2 SDET: Secondary detection (SD) status This bit gives the result of SD. 0: CDP detected 1: DCP detected Bit 1 PDET: Primary detection (PD) status This bit gives the result of PD. 0: no BCD support detected (connected to SDP or proprietary device). 1: BCD support detected (connected to CDP or DCP). Bit 0 DCDET: Data contact detection (DCD) status This bit gives the result of DCD. 0: data lines contact not detected 1: data lines contact detected RM0430 Rev 8 1183/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 33.15.13 OTG core ID register (OTG_CID) Address offset: 0x03C Reset value: 0x0000 2000 This is a register containing the Product ID as reset value. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PRODUCT_ID[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw 18 17 PRODUCT_ID[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 PRODUCT_ID[31:0]: Product ID field Application-programmable ID field. 33.15.14 OTG core LPM configuration register (OTG_GLPMCFG) Address offset: 0x54 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 21 20 19 16 Res. Res. Res. rw r r r rs rw rw rw rw rw rw rw r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 L1SS EN REM WAKE LPM ACK LPM EN rw rw/r rw rw SLP STS LPMRSP[1:0] r r r LPMRCNTSTS[2:0] L1DS EN rw SND LPM 22 EN BESL BESLTHRS[3:0] rw rw rw rw LPMRCNT[2:0] L1RSM OK LPMCHIDX[3:0] BESL[3:0] rw/r rw/r rw/r rw/r Bits 31:29 Reserved, must be kept at reset value. Bit 28 ENBESL: Enable best effort service latency This bit enables the BESL feature as defined in the LPM errata: 0:The core works as described in the following document: USB 2.0 Link Power Management Addendum Engineering Change Notice to the USB 2.0 specification, July 16, 2007 1:The core works as described in the LPM Errata: Errata for USB 2.0 ECN: Link Power Management (LPM) - 7/2007 Note: Only the updated behavior (described in LPM Errata) is considered in this document and so the ENBESL bit should be set to '1' by application SW. Bits 27:25 LPMRCNTSTS[2:0]: LPM retry count status Number of LPM host retries still remaining to be transmitted for the current LPM sequence. Note: Accessible only in host mode. 1184/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 24 SNDLPM: Send LPM transaction When the application software sets this bit, an LPM transaction containing two tokens, EXT and LPM is sent. The hardware clears this bit once a valid response (STALL, NYET, or ACK) is received from the device or the core has finished transmitting the programmed number of LPM retries. Note: This bit must be set only when the host is connected to a local port. Note: Accessible only in host mode. Bits 23:21 LPMRCNT:[2:0] LPM retry count When the device gives an ERROR response, this is the number of additional LPM retries that the host performs until a valid device response (STALL, NYET, or ACK) is received. Note: Accessible only in host mode. Bits 20:17 LPMCHIDX[3:0]: LPM Channel Index The channel number on which the LPM transaction has to be applied while sending an LPM transaction to the local device. Based on the LPM channel index, the core automatically inserts the device address and endpoint number programmed in the corresponding channel into the LPM transaction. Note: Accessible only in host mode. Bit 16 L1RSMOK: Sleep state resume OK Indicates that the device or host can start resume from Sleep state. This bit is valid in LPM sleep (L1) state. It is set in sleep mode after a delay of 50 μs (TL1Residency). This bit is reset when SLPSTS is 0. 1: The application or host can start resume from Sleep state 0: The application or host cannot start resume from Sleep state Bit 15 SLPSTS: Port sleep status Device mode: This bit is set as long as a Sleep condition is present on the USB bus. The core enters the Sleep state when an ACK response is sent to an LPM transaction and the TL1TokenRetry timer has expired. To stop the PHY clock, the application must set the STPPCLK bit in OTG_PCGCCTL, which asserts the PHY suspend input signal. The application must rely on SLPSTS and not ACK in LPMRSP to confirm transition into sleep. The core comes out of sleep: – When there is any activity on the USB linestate – When the application writes to the RWUSIG bit in OTG_DCTL or when the application resets or soft-disconnects the device. Host mode: The host transitions to Sleep (L1) state as a side-effect of a successful LPM transaction by the core to the local port with ACK response from the device. The read value of this bit reflects the current Sleep status of the port. The core clears this bit after: – The core detects a remote L1 wakeup signal, – The application sets the PRST bit or the PRES bit in the OTG_HPRT register, or – The application sets the L1Resume/ remote wakeup detected interrupt bit or disconnect detected interrupt bit in the core interrupt register (WKUPINT or DISCINT bit in OTG_GINTSTS, respectively). 0: Core not in L1 1: Core in L1 RM0430 Rev 8 1185/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bits 14:13 LPMRST[1:0]: LPM response Device mode: The response of the core to LPM transaction received is reflected in these two bits. Host mode: Handshake response received from local device for LPM transaction 11: ACK 10: NYET 01: STALL 00: ERROR (No handshake response) Bit 12 L1DSEN: L1 deep sleep enable Enables suspending the PHY in L1 Sleep mode. For maximum power saving during L1 Sleep mode, this bit should be set to '1' by application SW in all the cases. Bits11:8 BESLTHRS[3:0]: BESL threshold Device mode: The core puts the PHY into deep low power mode in L1 when BESL value is greater than or equal to the value defined in this field BESL_Thres[3:0]. Host mode: The core puts the PHY into deep low power mode in L1. BESLTHRS[3:0] specifies the time for which resume signaling is to be reflected by host (TL1HubDrvResume2) on the USB bus when it detects device initiated resume. BESLTHRS must not be programmed with a value greater than 1100b in host mode, because this exceeds maximum TL1HubDrvResume2. Thres[3:0] host mode resume signaling time (μs): 0000: 75 0001: 100 0010: 150 0011: 250 0100: 350 0101: 450 0110: 950 All other values: reserved Bit 7 L1SSEN: L1 Shallow Sleep enable Enables suspending the PHY in L1 Sleep mode. For maximum power saving during L1 Sleep mode, this bit should be set to '1' by application SW in all the cases. Bit 6 REMWAKE: bRemoteWake value Host mode: The value of remote wake up to be sent in the wIndex field of LPM transaction. Device mode (read-only): This field is updated with the received LPM token bRemoteWake bmAttribute when an ACK, NYET, or STALL response is sent to an LPM transaction. 1186/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bits 5:2 BESL[3:0]: Best effort service latency Host mode: The value of BESL to be sent in an LPM transaction. This value is also used to initiate resume for a duration TL1HubDrvResume1 for host initiated resume. Device mode (read-only): This field is updated with the received LPM token BESL bmAttribute when an ACK, NYET, or STALL response is sent to an LPM transaction. BESL[3:0]TBESL (μs) 0000: 125 0001: 150 0010: 200 0011: 300 0100: 400 0101: 500 0110: 1000 0111: 2000 1000: 3000 1001: 4000 1010: 5000 1011: 6000 1100: 7000 1101: 8000 1110: 9000 1111: 10000 Bit 1 LPMACK: LPM token acknowledge enable Handshake response to LPM token preprogrammed by device application software. 1: ACK Even though ACK is preprogrammed, the core device responds with ACK only on successful LPM transaction. The LPM transaction is successful if: – No PID/CRC5 errors in either EXT token or LPM token (else ERROR) – Valid bLinkState = 0001B (L1) received in LPM transaction (else STALL) – No data pending in transmit queue (else NYET). 0: NYET The preprogrammed software bit is over-ridden for response to LPM token when: – The received bLinkState is not L1 (STALL response), or – An error is detected in either of the LPM token packets because of corruption (ERROR response). Note: Accessible only in device mode. Bit 0 LPMEN: LPM support enable The application uses this bit to control the OTG_FS core LPM capabilities. If the core operates as a non-LPM-capable host, it cannot request the connected device or hub to activate LPM mode. If the core operates as a non-LPM-capable device, it cannot respond to any LPM transactions. 0: LPM capability is not enabled 1: LPM capability is enabled RM0430 Rev 8 1187/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 33.15.15 OTG host periodic transmit FIFO size register (OTG_HPTXFSIZ) Address offset: 0x100 Reset value: 0x0200 0400 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PTXFSIZ[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw PTXSA[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 PTXFSIZ[15:0]: Host periodic Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Bits 15:0 PTXSA[15:0]: Host periodic Tx FIFO start address This field configures the memory start address for periodic transmit FIFO RAM. 33.15.16 OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5, where x is the FIFO number) Address offset: 0x104 + (x – 1) * 0x04 Reset value: 0x0200 0200 + (x * 0x200) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 INEPTXFD[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw INEPTXSA[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 INEPTXFD[15:0]: IN endpoint Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Bits 15:0 INEPTXSA[15:0]: IN endpoint FIFOx transmit RAM start address This field contains the memory start address for IN endpoint transmit FIFOx. The address must be aligned with a 32-bit memory location. 1188/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 33.15.17 Host-mode registers Bit values in the register descriptions are expressed in binary unless otherwise specified. Host-mode registers affect the operation of the core in the host mode. Host mode registers must not be accessed in device mode, as the results are undefined. Host mode registers can be categorized as follows: 33.15.18 OTG host configuration register (OTG_HCFG) Address offset: 0x400 Reset value: 0x0000 0000 This register configures the core after power-on. Do not make changes to this register after initializing the host. 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 Res. Res. Res. Res. Res. Res. Res. 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. FSLSS Res. r FSLSPCS[1:0] rw rw Bits 31:3 Reserved, must be kept at reset value. Bit 2 FSLSS: FS- and LS-only support The application uses this bit to control the core’s enumeration speed. Using this bit, the application can make the core enumerate as an FS host, even if the connected device supports HS traffic. Do not make changes to this field after initial programming. 1: FS/LS-only, even if the connected device can support HS (read-only). Bits 1:0 FSLSPCS[1:0]: FS/LS PHY clock select When the core is in FS host mode 01: PHY clock is running at 48 MHz Others: Reserved When the core is in LS host mode 00: Reserved 01: Select 48 MHz PHY clock frequency 10: Select 6 MHz PHY clock frequency 11: Reserved Note: The FSLSPCS must be set on a connection event according to the speed of the connected device (after changing this bit, a software reset must be performed). RM0430 Rev 8 1189/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 33.15.19 OTG host frame interval register (OTG_HFIR) Address offset: 0x404 Reset value: 0x0000 EA60 This register stores the frame interval information for the current speed to which the OTG_FS controller has enumerated. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RLD CTRL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw FRIVL[15:0] rw rw rw rw rw rw rw rw rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 RLDCTRL: Reload control This bit allows dynamic reloading of the HFIR register during run time. 0: The HFIR can be dynamically reloaded during run time. 1: The HFIR cannot be reloaded dynamically This bit needs to be programmed during initial configuration and its value must not be changed during run time. Caution: RLDCTRL = 1 is not recommended. Bits 15:0 FRIVL[15:0]: Frame interval The value that the application programs to this field, specifies the interval between two consecutive SOFs (FS) or Keep-Alive tokens (LS). This field contains the number of PHY clocks that constitute the required frame interval. The application can write a value to this register only after the port enable bit of the host port control and status register (PENA bit in OTG_HPRT) has been set. If no value is programmed, the core calculates the value based on the PHY clock specified in the FS/LS PHY clock select field of the host configuration register (FSLSPCS in OTG_HCFG). Do not change the value of this field after the initial configuration, unless the RLDCTRL bit is set. In such case, the FRIVL is reloaded with each SOF event. – Frame interval = 1 ms × (FRIVL - 1) 1190/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 33.15.20 OTG host frame number/frame time remaining register (OTG_HFNUM) Address offset: 0x408 Reset value: 0x0000 3FFF This register indicates the current frame number. It also indicates the time remaining (in terms of the number of PHY clocks) in the current frame. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FTREM[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r FRNUM[15:0] r r r r r r r r r Bits 31:16 FTREM[15:0]: Frame time remaining Indicates the amount of time remaining in the current frame, in terms of PHY clocks. This field decrements on each PHY clock. When it reaches zero, this field is reloaded with the value in the Frame interval register and a new SOF is transmitted on the USB. Bits 15:0 FRNUM[15:0]: Frame number This field increments when a new SOF is transmitted on the USB, and is cleared to 0 when it reaches 0x3FFF. 33.15.21 OTG_Host periodic transmit FIFO/queue status register (OTG_HPTXSTS) Address offset: 0x410 Reset value: 0x0008 0100 This read-only register contains the free space information for the periodic Tx FIFO and the periodic transmit request queue. 31 30 29 28 27 26 25 24 23 22 21 PTXQTOP[7:0] 20 19 18 17 16 PTXQSAV[7:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r PTXFSAVL[15:0] r r r r r r r r r RM0430 Rev 8 1191/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bits 31:24 PTXQTOP[7:0]: Top of the periodic transmit request queue This indicates the entry in the periodic Tx request queue that is currently being processed by the MAC. This register is used for debugging. Bit 31: Odd/Even frame 0: send in even frame 1: send in odd frame Bits 30:27: Channel/endpoint number Bits 26:25: Type 00: IN/OUT 01: Zero-length packet 11: Disable channel command Bit 24: Terminate (last entry for the selected channel/endpoint) Bits 23:16 PTXQSAV[7:0]: Periodic transmit request queue space available Indicates the number of free locations available to be written in the periodic transmit request queue. This queue holds both IN and OUT requests. 00: Periodic transmit request queue is full 01: 1 location available 10: 2 locations available bxn: n locations available (0 ≤ n ≤ 8) Others: Reserved Bits 15:0 PTXFSAVL[15:0]: Periodic transmit data FIFO space available Indicates the number of free locations available to be written to in the periodic Tx FIFO. Values are in terms of 32-bit words 0000: Periodic Tx FIFO is full 0001: 1 word available 0010: 2 words available bxn: n words available (where 0 ≤ n ≤ PTXFD) Others: Reserved 33.15.22 OTG host all channels interrupt register (OTG_HAINT) Address offset: 0x414 Reset value: 0x0000 0000 When a significant event occurs on a channel, the host all channels interrupt register interrupts the application using the host channels interrupt bit of the core interrupt register (HCINT bit in OTG_GINTSTS). This is shown in Figure 403. There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in this register are set and cleared when the application sets and clears bits in the corresponding host channel-x interrupt register. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r HAINT[15:0] r 1192/1324 r r r r r r r r RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 HAINT[15:0]: Channel interrupts One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15 33.15.23 OTG host all channels interrupt mask register (OTG_HAINTMSK) Address offset: 0x418 Reset value: 0x0000 0000 The host all channel interrupt mask register works with the host all channel interrupt register to interrupt the application when an event occurs on a channel. There is one interrupt mask bit per channel, up to a maximum of 16 bits. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw HAINTM[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 HAINTM[15:0]: Channel interrupt mask 0: Masked interrupt 1: Unmasked interrupt One bit per channel: Bit 0 for channel 0, bit 15 for channel 15 RM0430 Rev 8 1193/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 33.15.24 OTG host port control and status register (OTG_HPRT) Address offset: 0x440 Reset value: 0x0000 0000 This register is available only in host mode. Currently, the OTG host supports only one port. A single register holds USB port-related information such as USB reset, enable, suspend, resume, connect status, and test mode for each port. It is shown in Figure 403. The rc_w1 bits in this register can trigger an interrupt to the application through the host port interrupt bit of the core interrupt register (HPRTINT bit in OTG_GINTSTS). On a port interrupt, the application must read this register and clear the bit that caused the interrupt. For the rc_w1 bits, the application must write a 1 to the bit to clear the interrupt. 31 Res. 15 30 29 Res. Res. 14 13 PTCTL[2:0] rw rw 28 Res. 12 PPWR rw rw 27 Res. 11 26 Res. 10 PLSTS[1:0] r r 25 Res. 9 Res. 24 Res. 23 Res. 8 7 22 Res. 21 Res. 20 Res. 19 Res. 18 PSPD[1:0] r rw 1 0 5 4 3 2 POCA PEN CHNG PENA r rc_w1 rc_w1 PRST PSUSP PRES rw rs rw rc_w1 16 PTCTL [3] r 6 POC CHNG 17 PCDET PCSTS rc_w1 r Bits 31:19 Reserved, must be kept at reset value. Bits 18:17 PSPD[1:0]: Port speed Indicates the speed of the device attached to this port. 01: Full speed 10: Low speed 11: Reserved Bits 16:13 PTCTL[3:0]: Port test control The application writes a nonzero value to this field to put the port into a Test mode, and the corresponding pattern is signaled on the port. 0000: Test mode disabled 0001: Test_J mode 0010: Test_K mode 0011: Test_SE0_NAK mode 0100: Test_Packet mode 0101: Test_Force_Enable Others: Reserved Bit 12 PPWR: Port power The application uses this field to control power to this port, and the core clears this bit on an overcurrent condition. 0: Power off 1: Power on Bits 11:10 PLSTS[1:0]: Port line status Indicates the current logic level USB data lines Bit 10: Logic level of OTG_DP Bit 11: Logic level of OTG_DM Bit 9 Reserved, must be kept at reset value. 1194/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 8 PRST: Port reset When the application sets this bit, a reset sequence is started on this port. The application must time the reset period and clear this bit after the reset sequence is complete. 0: Port not in reset 1: Port in reset The application must leave this bit set for a minimum duration of at least 10 ms to start a reset on the port. The application can leave it set for another 10 ms in addition to the required minimum duration, before clearing the bit, even though there is no maximum limit set by the USB standard. High speed: 50 ms Full speed/Low speed: 10 ms Bit 7 PSUSP: Port suspend The application sets this bit to put this port in suspend mode. The core only stops sending SOFs when this is set. To stop the PHY clock, the application must set the port clock stop bit, which asserts the suspend input pin of the PHY. The read value of this bit reflects the current suspend status of the port. This bit is cleared by the core after a remote wakeup signal is detected or the application sets the port reset bit or port resume bit in this register or the resume/remote wakeup detected interrupt bit or disconnect detected interrupt bit in the core interrupt register (WKUPINT or DISCINT in OTG_GINTSTS, respectively). 0: Port not in suspend mode 1: Port in suspend mode Bit 6 PRES: Port resume The application sets this bit to drive resume signaling on the port. The core continues to drive the resume signal until the application clears this bit. If the core detects a USB remote wakeup sequence, as indicated by the port resume/remote wakeup detected interrupt bit of the core interrupt register (WKUPINT bit in OTG_GINTSTS), the core starts driving resume signaling without application intervention and clears this bit when it detects a disconnect condition. The read value of this bit indicates whether the core is currently driving resume signaling. 0: No resume driven 1: Resume driven When LPM is enabled and the core is in L1 state, the behavior of this bit is as follow: 1. The application sets this bit to drive resume signaling on the port. 2. The core continues to drive the resume signal until a predetermined time specified in BESLTHRS[3:0] field of OTG_GLPMCFG register. 3. If the core detects a USB remote wakeup sequence, as indicated by the port L1Resume/Remote L1Wakeup detected interrupt bit of the core interrupt register (WKUPINT in OTG_GINTSTS), the core starts driving resume signaling without application intervention and clears this bit at the end of resume.This bit can be set or cleared by both the core and the application. This bit is cleared by the core even if there is no device connected to the host. Bit 5 POCCHNG: Port overcurrent change The core sets this bit when the status of the port overcurrent active bit (bit 4) in this register changes. Bit 4 POCA: Port overcurrent active Indicates the overcurrent condition of the port. 0: No overcurrent condition 1: Overcurrent condition Bit 3 PENCHNG: Port enable/disable change The core sets this bit when the status of the port enable bit 2 in this register changes. RM0430 Rev 8 1195/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 2 PENA: Port enable A port is enabled only by the core after a reset sequence, and is disabled by an overcurrent condition, a disconnect condition, or by the application clearing this bit. The application cannot set this bit by a register write. It can only clear it to disable the port. This bit does not trigger any interrupt to the application. 0: Port disabled 1: Port enabled Bit 1 PCDET: Port connect detected The core sets this bit when a device connection is detected to trigger an interrupt to the application using the host port interrupt bit in the core interrupt register (HPRTINT bit in OTG_GINTSTS). The application must write a 1 to this bit to clear the interrupt. Bit 0 PCSTS: Port connect status 0: No device is attached to the port 1: A device is attached to the port 33.15.25 OTG host channel x characteristics register (OTG_HCCHARx) (x = 0..11, where x = Channel number) Address offset: 0x500 + (x * 0x20) Reset value: 0x0000 0000 31 30 CHENA CHDIS 29 28 27 26 ODD FRM 25 24 23 22 DAD[6:0] 21 20 19 18 MCNT[1:0] EPTYP[1:0] 17 16 LSDEV Res. rs rs rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw EPDIR rw EPNUM[3:0] rw rw rw MPSIZ[10:0] rw rw rw rw rw rw rw Bit 31 CHENA: Channel enable This field is set by the application and cleared by the OTG host. 0: Channel disabled 1: Channel enabled Bit 30 CHDIS: Channel disable The application sets this bit to stop transmitting/receiving data on a channel, even before the transfer for that channel is complete. The application must wait for the Channel disabled interrupt before treating the channel as disabled. Bit 29 ODDFRM: Odd frame This field is set (reset) by the application to indicate that the OTG host must perform a transfer in an odd frame. This field is applicable for only periodic (isochronous and interrupt) transactions. 0: Even frame 1: Odd frame Bits 28:22 DAD[6:0]: Device address This field selects the specific device serving as the data source or sink. 1196/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bits 21:20 MCNT[1:0]: Multicount This field indicates to the host the number of transactions that must be executed per frame for this periodic endpoint. For non-periodic transfers, this field is not used 00: Reserved. This field yields undefined results 01: 1 transaction 10: 2 transactions per frame to be issued for this endpoint 11: 3 transactions per frame to be issued for this endpoint Note: This field must be set to at least 01. Bits 19:18 EPTYP[1:0]: Endpoint type Indicates the transfer type selected. 00: Control 01: Isochronous 10: Bulk 11: Interrupt Bit 17 LSDEV: Low-speed device This field is set by the application to indicate that this channel is communicating to a lowspeed device. Bit 16 Reserved, must be kept at reset value. Bit 15 EPDIR: Endpoint direction Indicates whether the transaction is IN or OUT. 0: OUT 1: IN Bits 14:11 EPNUM[3:0]: Endpoint number Indicates the endpoint number on the device serving as the data source or sink. Bits 10:0 MPSIZ[10:0]: Maximum packet size Indicates the maximum packet size of the associated endpoint. 33.15.26 OTG host channel x interrupt register (OTG_HCINTx) (x = 0..11, where x = Channel number) Address offset: 0x508 + (x * 0x20) Reset value: 0x0000 0000 This register indicates the status of a channel with respect to USB- and AHB-related events. It is shown in Figure 403. The application must read this register when the host channels interrupt bit in the core interrupt register (HCINT bit in OTG_GINTSTS) is set. Before the application can read this register, it must first read the host all channels interrupt (OTG_HAINT) register to get the exact channel number for the host channel-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_HAINT and OTG_GINTSTS registers. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. DTERR FRM OR Res. ACK NAK STALL Res. CHH XFRC rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 BBERR TXERR rc_w1 rc_w1 RM0430 Rev 8 1197/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bits 31:11 Reserved, must be kept at reset value. Bit 10 DTERR: Data toggle error. Bit 9 FRMOR: Frame overrun. Bit 8 BBERR: Babble error. Bit 7 TXERR: Transaction error. Indicates one of the following errors occurred on the USB. CRC check failure Timeout Bit stuff error False EOP Bit 6 Reserved, must be kept at reset value. Bit 5 ACK: ACK response received/transmitted interrupt. Bit 4 NAK: NAK response received interrupt. Bit 3 STALL: STALL response received interrupt. Bit 2 Reserved, must be kept at reset value. Bit 1 CHH: Channel halted. Indicates the transfer completed abnormally either because of any USB transaction error or in response to disable request by the application. Bit 0 XFRC: Transfer completed. Transfer completed normally without any errors. 33.15.27 OTG host channel x interrupt mask register (OTG_HCINTMSKx) (x = 0..11, where x = Channel number) Address offset: 0x50C + (x * 0x20) Reset value: 0x0000 0000 This register reflects the mask for each channel status described in the previous section. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. DTERR M FRM ORM ACKM NAKM STALL M CHHM XFRC M rw rw rw rw rw rw rw Res. Res. 1198/1324 Res. Res. BBERR TXERR M M rw rw RM0430 Rev 8 Res. Res. RM0430 USB on-the-go full-speed (OTG_FS) Bits 31:11 Reserved, must be kept at reset value. Bit 10 DTERRM: Data toggle error mask. 0: Masked interrupt 1: Unmasked interrupt Bit 9 FRMORM: Frame overrun mask. 0: Masked interrupt 1: Unmasked interrupt Bit 8 BBERRM: Babble error mask. 0: Masked interrupt 1: Unmasked interrupt Bit 7 TXERRM: Transaction error mask. 0: Masked interrupt 1: Unmasked interrupt Bit 6 Reserved, must be kept at reset value. Bit 5 ACKM: ACK response received/transmitted interrupt mask. 0: Masked interrupt 1: Unmasked interrupt Bit 4 NAKM: NAK response received interrupt mask. 0: Masked interrupt 1: Unmasked interrupt Bit 3 STALLM: STALL response received interrupt mask. 0: Masked interrupt 1: Unmasked interrupt Bit 2 Reserved, must be kept at reset value. Bit 1 CHHM: Channel halted mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed mask 0: Masked interrupt 1: Unmasked interrupt 33.15.28 OTG host channel x transfer size register (OTG_HCTSIZx) (x = 0..11, where x = Channel number) Address offset: 0x510 + (x * 0x20) Reset value: 0x0000 0000 31 Res. 15 30 29 28 27 26 25 DPID[1:0] 24 23 22 21 20 19 18 PKTCNT[9:0] 17 16 XFRSIZ[18:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw XFRSIZ[15:0] rw rw rw rw rw rw rw rw rw RM0430 Rev 8 1199/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 31 Reserved, must be kept at reset value. Bits 30:29 DPID[1:0]: Data PID The application programs this field with the type of PID to use for the initial transaction. The host maintains this field for the rest of the transfer. 00: DATA0 10: DATA1 11: SETUP (control) / reserved (non-control) Bits 28:19 PKTCNT[9:0]: Packet count This field is programmed by the application with the expected number of packets to be transmitted (OUT) or received (IN). The host decrements this count on every successful transmission or reception of an OUT/IN packet. Once this count reaches zero, the application is interrupted to indicate normal completion. Bits 18:0 XFRSIZ[18:0]: Transfer size For an OUT, this field is the number of data bytes the host sends during the transfer. For an IN, this field is the buffer size that the application has reserved for the transfer. The application is expected to program this field as an integer multiple of the maximum packet size for IN transactions (periodic and non-periodic). 33.15.29 Device-mode registers These registers must be programmed every time the core changes to device mode 33.15.30 OTG device configuration register (OTG_DCFG) Address offset: 0x800 Reset value: 0x0220 0000 This register configures the core in device mode after power-on or after certain control commands or enumeration. Do not make changes to this register after initial programming. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ERRAT IM Res. Res. Res. NZLSO HSK rw PFIVL[1:0] rw rw DAD[6:0] rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bit 15 ERRATIM: Erratic error interrupt mask 1: Mask early suspend interrupt on erratic error 0: Early suspend interrupt is generated on erratic error Bit 13 Reserved, must be kept at reset value. 1200/1324 RM0430 Rev 8 rw rw DSPD[1:0] rw rw RM0430 USB on-the-go full-speed (OTG_FS) Bits 12:11 PFIVL[1:0]: Periodic frame interval Indicates the time within a frame at which the application must be notified using the end of periodic frame interrupt. This can be used to determine if all the isochronous traffic for that frame is complete. 00: 80% of the frame interval 01: 85% of the frame interval 10: 90% of the frame interval 11: 95% of the frame interval Bits 10:4 DAD[6:0]: Device address The application must program this field after every SetAddress control command. Bit 3 Reserved, must be kept at reset value. Bit 2 NZLSOHSK: Non-zero-length status OUT handshake The application can use this field to select the handshake the core sends on receiving a nonzero-length data packet during the OUT transaction of a control transfer’s status stage. 1:Send a STALL handshake on a nonzero-length status OUT transaction and do not send the received OUT packet to the application. 0:Send the received OUT packet to the application (zero-length or nonzero-length) and send a handshake based on the NAK and STALL bits for the endpoint in the device endpoint control register. Bits 1:0 DSPD[1:0]: Device speed Indicates the speed at which the application requires the core to enumerate, or the maximum speed the application can support. However, the actual bus speed is determined only after the chirp sequence is completed, and is based on the speed of the USB host to which the core is connected. 00: Reserved 01: Reserved 10: Reserved 11: Full speed (USB 1.1 transceiver clock is 48 MHz) 33.15.31 OTG device control register (OTG_DCTL) Address offset: 0x804 Reset value: 0x0000 0002 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DS BESL RJCT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. PO PRG DNE CGO NAK SGO NAK CGI NAK SGI NAK GON STS GIN STS SDIS RWU SIG rw w w w w r r rw rw rw Res. Res. Res. RM0430 Rev 8 TCTL[2:0] rw rw rw 1201/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bits 31:19 Reserved, must be kept at reset value. Bit 18 DSBESLRJCT: Deep sleep BESL reject Core rejects LPM request with BESL value greater than BESL threshold programmed. NYET response is sent for LPM tokens with BESL value greater than BESL threshold. By default, the deep sleep BESL reject feature is disabled. Bits 17:12 Reserved, must be kept at reset value. Bit 11 POPRGDNE: Power-on programming done The application uses this bit to indicate that register programming is completed after a wakeup from power down mode. Bit 10 CGONAK: Clear global OUT NAK Writing 1 to this field clears the Global OUT NAK. Bit 9 SGONAK: Set global OUT NAK Writing 1 to this field sets the Global OUT NAK. The application uses this bit to send a NAK handshake on all OUT endpoints. The application must set the this bit only after making sure that the Global OUT NAK effective bit in the core interrupt register (GONAKEFF bit in OTG_GINTSTS) is cleared. Bit 8 CGINAK: Clear global IN NAK Writing 1 to this field clears the Global IN NAK. Bit 7 SGINAK: Set global IN NAK Writing 1 to this field sets the Global non-periodic IN NAK.The application uses this bit to send a NAK handshake on all non-periodic IN endpoints. The application must set this bit only after making sure that the Global IN NAK effective bit in the core interrupt register (GINAKEFF bit in OTG_GINTSTS) is cleared. Bits 6:4 TCTL[2:0]: Test control 000: Test mode disabled 001: Test_J mode 010: Test_K mode 011: Test_SE0_NAK mode 100: Test_Packet mode 101: Test_Force_Enable Others: Reserved Bit 3 GONSTS: Global OUT NAK status 0:A handshake is sent based on the FIFO status and the NAK and STALL bit settings. 1:No data is written to the Rx FIFO, irrespective of space availability. Sends a NAK handshake on all packets, except on SETUP transactions. All isochronous OUT packets are dropped. 1202/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 2 GINSTS: Global IN NAK status 0:A handshake is sent out based on the data availability in the transmit FIFO. 1:A NAK handshake is sent out on all non-periodic IN endpoints, irrespective of the data availability in the transmit FIFO. Bit 1 SDIS: Soft disconnect The application uses this bit to signal the USB OTG core to perform a soft disconnect. As long as this bit is set, the host does not see that the device is connected, and the device does not receive signals on the USB. The core stays in the disconnected state until the application clears this bit. 0:Normal operation. When this bit is cleared after a soft disconnect, the core generates a device connect event to the USB host. When the device is reconnected, the USB host restarts device enumeration. 1:The core generates a device disconnect event to the USB host. Bit 0 RWUSIG: Remote wakeup signaling When the application sets this bit, the core initiates remote signaling to wake up the USB host. The application must set this bit to instruct the core to exit the suspend state. As specified in the USB 2.0 specification, the application must clear this bit 1 ms to 15 ms after setting it. If LPM is enabled and the core is in the L1 (sleep) state, when the application sets this bit, the core initiates L1 remote signaling to wake up the USB host. The application must set this bit to instruct the core to exit the sleep state. As specified in the LPM specification, the hardware automatically clears this bit 50 µs (TL1DevDrvResume) after being set by the application. The application must not set this bit when bRemoteWake from the previous LPM transaction is zero (refer to REMWAKE bit in GLPMCFG register). Table 230 contains the minimum duration (according to device state) for which the Soft disconnect (SDIS) bit must be set for the USB host to detect a device disconnect. To accommodate clock jitter, it is recommended that the application add some extra delay to the specified minimum duration. Table 230. Minimum duration for soft disconnect Operating speed Device state Minimum duration Full speed Suspended 1 ms + 2.5 µs Full speed Idle 2.5 µs Full speed Not Idle or suspended (Performing transactions) 2.5 µs RM0430 Rev 8 1203/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 33.15.32 OTG device status register (OTG_DSTS) Address offset: 0x808 Reset value: 0x0000 0010 This register indicates the status of the core with respect to USB-related events. It must be read on interrupts from the device all interrupts (OTG_DAINT) register. 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 r r r r r 21 20 19 18 17 16 r FNSOF[13:8] r r r r r r r 7 6 5 4 3 2 1 Res. r 22 DEVLNSTS[1:0] 8 FNSOF[7:0] r 23 Res. r Res. Res. EERR r ENUMSPD[1:0] r 0 SUSP STS r r Bits 31:24 Reserved, must be kept at reset value. Bits 23:22 DEVLNSTS[1:0]: Device line status Indicates the current logic level USB data lines. Bit [23]: Logic level of D+ Bit [22]: Logic level of DBits 21:8 FNSOF[13:0]: Frame number of the received SOF Bits 7:4 Reserved, must be kept at reset value. Bit 3 EERR: Erratic error The core sets this bit to report any erratic errors. Due to erratic errors, the OTG_FS controller goes into suspended state and an interrupt is generated to the application with Early suspend bit of the OTG_GINTSTS register (ESUSP bit in OTG_GINTSTS). If the early suspend is asserted due to an erratic error, the application can only perform a soft disconnect recover. Bits 2:1 ENUMSPD[1:0]: Enumerated speed Indicates the speed at which the OTG_FS controller has come up after speed detection through a chirp sequence. 01: Reserved 10: Reserved 11: Full speed (PHY clock is running at 48 MHz) Others: reserved Bit 0 SUSPSTS: Suspend status In device mode, this bit is set as long as a suspend condition is detected on the USB. The core enters the suspended state when there is no activity on the USB data lines for a period of 3 ms. The core comes out of the suspend: – When there is an activity on the USB data lines – When the application writes to the remote wakeup signaling bit in the OTG_DCTL register (RWUSIG bit in OTG_DCTL). 1204/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 33.15.33 OTG device IN endpoint common interrupt mask register (OTG_DIEPMSK) Address offset: 0x810 Reset value: 0x0000 0000 This register works with each of the OTG_DIEPINTx registers for all endpoints to generate an interrupt per IN endpoint. The IN endpoint interrupt for a specific status in the OTG_DIEPINTx register can be masked by writing to the corresponding bit in this register. Status bits are masked by default. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. NAKM Res. Res. Res. Res. TXFU RM Res. INEPN EM TOM Res. EPDM XFRC M rw rw rw rw rw INEPN ITTXFE MM MSK rw rw rw Bits 31:14 Reserved, must be kept at reset value. Bit 13 NAKM: NAK interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bits 12:10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bit 8 TXFURM: FIFO underrun mask 0: Masked interrupt 1: Unmasked interrupt Bit 7 Reserved, must be kept at reset value. Bit 6 INEPNEM: IN endpoint NAK effective mask 0: Masked interrupt 1: Unmasked interrupt Bit 5 INEPNMM: IN token received with EP mismatch mask 0: Masked interrupt 1: Unmasked interrupt Bit 4 ITTXFEMSK: IN token received when Tx FIFO empty mask 0: Masked interrupt 1: Unmasked interrupt Bit 3 TOM: Timeout condition mask (Non-isochronous endpoints) 0: Masked interrupt 1: Unmasked interrupt RM0430 Rev 8 1205/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 2 Reserved, must be kept at reset value. Bit 1 EPDM: Endpoint disabled interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed interrupt mask 0: Masked interrupt 1: Unmasked interrupt 33.15.34 OTG device OUT endpoint common interrupt mask register (OTG_DOEPMSK) Address offset: 0x814 Reset value: 0x0000 0000 This register works with each of the OTG_DOEPINTx registers for all endpoints to generate an interrupt per OUT endpoint. The OUT endpoint interrupt for a specific status in the OTG_DOEPINTx register can be masked by writing into the corresponding bit in this register. Status bits are masked by default. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. OUT PKT ERRM Res. STS PHSR XM Res. EPDM XFRC M rw rw Res. NYET MSK NAK MSK BERR M rw rw rw Res. Res. Res. rw Bits 31:15 Reserved, must be kept at reset value. Bit 14 NYETMSK: NYET interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 13 NAKMSK: NAK interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 12 BERRM: Babble error interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bits 11:10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bit 8 OUTPKTERRM: Out packet error mask 0: Masked interrupt 1: Unmasked interrupt Bit 7 Reserved, must be kept at reset value. Bit 6 Reserved, must be kept at reset value. 1206/1324 RM0430 Rev 8 rw OTEPD STUPM M rw rw RM0430 USB on-the-go full-speed (OTG_FS) Bit 5 STSPHSRXM: Status phase received for control write mask 0: Masked interrupt 1: Unmasked interrupt Bit 4 OTEPDM: OUT token received when endpoint disabled mask. Applies to control OUT endpoints only. 0: Masked interrupt 1: Unmasked interrupt Bit 3 STUPM: STUPM: SETUP phase done mask. Applies to control endpoints only. 0: Masked interrupt 1: Unmasked interrupt Bit 2 Reserved, must be kept at reset value. Bit 1 EPDM: Endpoint disabled interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed interrupt mask 0: Masked interrupt 1: Unmasked interrupt 33.15.35 OTG device all endpoints interrupt register (OTG_DAINT) Address offset: 0x818 Reset value: 0x0000 0000 When a significant event occurs on an endpoint, a OTG_DAINT register interrupts the application using the device OUT endpoints interrupt bit or device IN endpoints interrupt bit of the OTG_GINTSTS register (OEPINT or IEPINT in OTG_GINTSTS, respectively). There is one interrupt bit per endpoint, up to a maximum of 16 bits for OUT endpoints and 16 bits for IN endpoints. For a bidirectional endpoint, the corresponding IN and OUT interrupt bits are used. Bits in this register are set and cleared when the application sets and clears bits in the corresponding device endpoint-x interrupt register (OTG_DIEPINTx/OTG_DOEPINTx). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 OEPINT[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r IEPINT[15:0] r r r r r r r r r Bits 31:16 OEPINT[15:0]: OUT endpoint interrupt bits One bit per OUT endpoint: Bit 16 for OUT endpoint 0, bit 19 for OUT endpoint 3. Bits 15:0 IEPINT[15:0]: IN endpoint interrupt bits One bit per IN endpoint: Bit 0 for IN endpoint 0, bit 3 for endpoint 3. RM0430 Rev 8 1207/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 33.15.36 OTG all endpoints interrupt mask register (OTG_DAINTMSK) Address offset: 0x81C Reset value: 0x0000 0000 The OTG_DAINTMSK register works with the device endpoint interrupt register to interrupt the application when an event occurs on a device endpoint. However, the OTG_DAINT register bit corresponding to that interrupt is still set. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 OEPM[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw IEPM[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 OEPM[15:0]: OUT EP interrupt mask bits One per OUT endpoint: Bit 16 for OUT EP 0, bit 19 for OUT EP 3 0: Masked interrupt 1: Unmasked interrupt Bits 15:0 IEPM[15:0]: IN EP interrupt mask bits One bit per IN endpoint: Bit 0 for IN EP 0, bit 3 for IN EP 3 0: Masked interrupt 1: Unmasked interrupt 33.15.37 OTG device VBUS discharge time register (OTG_DVBUSDIS) Address offset: 0x0828 Reset value: 0x0000 17D7 This register specifies the VBUS discharge time after VBUS pulsing during SRP. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw VBUSDT[15:0] rw rw 1208/1324 rw rw rw rw rw rw rw RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 VBUSDT[15:0]: Device VBUS discharge time Specifies the VBUS discharge time after VBUS pulsing during SRP. This value equals: VBUS discharge time in PHY clocks / 1 024 Depending on your VBUS load, this value may need adjusting. 33.15.38 OTG device VBUS pulsing time register (OTG_DVBUSPULSE) Address offset: 0x082C Reset value: 0x0000 05B8 This register specifies the VBUS pulsing time during SRP. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DVBUSP[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 DVBUSP[15:0]: Device VBUS pulsing time. This feature is only relevant to OTG1.3. Specifies the VBUS pulsing time during SRP. This value equals: VBUS pulsing time in PHY clocks / 1 024 33.15.39 OTG device IN endpoint FIFO empty interrupt mask register (OTG_DIEPEMPMSK) Address offset: 0x834 Reset value: 0x0000 0000 This register is used to control the IN endpoint FIFO empty interrupt generation (TXFE_OTG_DIEPINTx). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw INEPTXFEM[15:0] rw rw rw rw rw rw rw rw rw RM0430 Rev 8 1209/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 INEPTXFEM[15:0]: IN EP Tx FIFO empty interrupt mask bits These bits act as mask bits for OTG_DIEPINTx. TXFE interrupt one bit per IN endpoint: Bit 0 for IN endpoint 0, bit 3 for IN endpoint 3 0: Masked interrupt 1: Unmasked interrupt 33.15.40 OTG device control IN endpoint 0 control register (OTG_DIEPCTL0) Address offset: 0x900 Reset value: 0x0000 0000 This section describes the OTG_DIEPCTL0 register for USB_OTG FS. Nonzero control endpoints use registers for endpoints 1–3. 31 30 EPENA EPDIS 29 28 27 26 25 24 23 22 Res. Res. SNAK CNAK w w rw rw rw rw rs TXFNUM[3:0] 21 20 STALL Res. rs rs 15 14 13 12 11 10 9 8 7 6 5 USBA EP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 19 18 EPTYP 17 16 NAK STS Res. r r r 4 3 2 1 Res. Res. Res. r 0 MPSIZ[1:0] rw rw Bit 31 EPENA: Endpoint enable The application sets this bit to start transmitting data on the endpoint 0. The core clears this bit before setting any of the following interrupts on this endpoint: – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application sets this bit to stop transmitting data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the endpoint disabled interrupt. The application must set this bit only if endpoint enable is already set for this endpoint. Bits 29:28 Reserved, must be kept at reset value. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for an endpoint after a SETUP packet is received on that endpoint. Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 TXFNUM[3:0]: Tx FIFO number This value is set to the FIFO number that is assigned to IN endpoint 0. 1210/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 21 STALL: STALL handshake The application can only set this bit, and the core clears it when a SETUP token is received for this endpoint. If a NAK bit, a Global IN NAK or Global OUT NAK is set along with this bit, the STALL bit takes priority. Bit 20 Reserved, must be kept at reset value. Bits 19:18 EPTYP: Endpoint type Hardcoded to ‘00’ for control. Bit 17 NAKSTS: NAK status Indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status 1: The core is transmitting NAK handshakes on this endpoint. When this bit is set, either by the application or core, the core stops transmitting data, even if there are data available in the Tx FIFO. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 16 Reserved, must be kept at reset value. Bit 15 USBAEP: USB active endpoint This bit is always set to 1, indicating that control endpoint 0 is always active in all configurations and interfaces. Bits 14:2 Reserved, must be kept at reset value. Bits 1:0 MPSIZ[1:0]: Maximum packet size The application must program this field with the maximum packet size for the current logical endpoint. 00: 64 bytes 01: 32 bytes 10: 16 bytes 11: 8 bytes 33.15.41 OTG device IN endpoint x control register (OTG_DIEPCTLx) (x = 1..5 , where x = endpoint number) Address offset: 0x900 + (x * 0x20) Reset value: 0x0000 0000 The application uses this register to control the behavior of each logical endpoint other than endpoint 0. 31 30 EPENA EPDIS 29 28 27 26 SODD FRM SD0 PID/ SEVN FRM SNAK CNAK 25 24 23 22 TXFNUM[3:0] 21 20 STALL Res. rs rs w w w w rw rw rw rw rw/rs 15 14 13 12 11 10 9 8 7 6 5 USBA EP Res. Res. Res. Res. rw 19 18 EPTYP[1:0] 17 16 NAK STS EO NUM/ DPID rw rw r r 4 3 2 1 0 rw rw rw rw rw MPSIZ[10:0] rw rw rw rw RM0430 Rev 8 rw rw 1211/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 31 EPENA: Endpoint enable The application sets this bit to start transmitting data on an endpoint. The core clears this bit before setting any of the following interrupts on this endpoint: – SETUP phase done – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application sets this bit to stop transmitting/receiving data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the endpoint disabled interrupt. The application must set this bit only if endpoint enable is already set for this endpoint. Bit 29 SODDFRM: Set odd frame Applies to isochronous IN and OUT endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to odd frame. Bit 28 SD0PID: Set DATA0 PID Applies to interrupt/bulk IN endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA0. SEVNFRM: Set even frame Applies to isochronous IN endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to even frame. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for OUT endpoints on a transfer completed interrupt, or after a SETUP is received on the endpoint. Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 TXFNUM: Tx FIFO number These bits specify the FIFO number associated with this endpoint. Each active IN endpoint must be programmed to a separate FIFO number. This field is valid only for IN endpoints. Bit 21 STALL: STALL handshake Applies to non-control, non-isochronous IN endpoints only (access type is rw). The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Only the application can clear this bit, never the core. Applies to control endpoints only (access type is rs). The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 20 Reserved, must be kept at reset value. 1212/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bits 19:18 EPTYP[1:0]: Endpoint type This is the transfer type supported by this logical endpoint. 00: Control 01: Isochronous 10: Bulk 11: Interrupt Bit 17 NAKSTS: NAK status It indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status. 1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit: For non-isochronous IN endpoints: The core stops transmitting any data on an IN endpoint, even if there are data available in the Tx FIFO. For isochronous IN endpoints: The core sends out a zero-length data packet, even if there are data available in the Tx FIFO. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 16 EONUM: Even/odd frame Applies to isochronous IN endpoints only. Indicates the frame number in which the core transmits/receives isochronous data for this endpoint. The application must program the even/odd frame number in which it intends to transmit/receive isochronous data for this endpoint using the SEVNFRM and SODDFRM fields in this register. 0: Even frame 1: Odd frame DPID: Endpoint data PID Applies to interrupt/bulk IN endpoints only. Contains the PID of the packet to be received or transmitted on this endpoint. The application must program the PID of the first packet to be received or transmitted on this endpoint, after the endpoint is activated. The application uses the SD0PID register field to program either DATA0 or DATA1 PID. 0: DATA0 1: DATA1 Bit 15 USBAEP: USB active endpoint Indicates whether this endpoint is active in the current configuration and interface. The core clears this bit for all endpoints (other than EP 0) after detecting a USB reset. After receiving the SetConfiguration and SetInterface commands, the application must program endpoint registers accordingly and set this bit. Bits 14:11 Reserved, must be kept at reset value. Bits 10:0 MPSIZ[10:0]: Maximum packet size The application must program this field with the maximum packet size for the current logical endpoint. This value is in bytes. RM0430 Rev 8 1213/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 33.15.42 OTG device IN endpoint x interrupt register (OTG_DIEPINTx) (x = 0..5, where x = Endpoint number) Address offset: 0x908 + (x * 0x20) Reset value: 0x0000 0080 This register indicates the status of an endpoint with respect to USB- and AHB-related events. It is shown in Figure 403. The application must read this register when the IN endpoints interrupt bit of the core interrupt register (IEPINT in OTG_GINTSTS) is set. Before the application can read this register, it must first read the device all endpoints interrupt (OTG_DAINT) register to get the exact endpoint number for the device endpoint-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_DAINT and OTG_GINTSTS registers. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. NAK Res. PKTD RPSTS Res. Res. TXFIF OUD RN TXFE IN EPNE IN ITTXFE EPNM TOC Res. EP DISD XFRC rc_w1 r r rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Bits 31:14 Reserved, must be kept at reset value. Bit 13 NAK: NAK input The core generates this interrupt when a NAK is transmitted or received by the device. In case of isochronous IN endpoints the interrupt gets generated when a zero length packet is transmitted due to unavailability of data in the Tx FIFO. Bit 12 Reserved, must be kept at reset value. Bit 11 PKTDRPSTS: Packet dropped status This bit indicates to the application that an ISOC OUT packet has been dropped. This bit does not have an associated mask bit and does not generate an interrupt. Bit 10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bit 8 TXFIFOUDRN: Transmit Fifo Underrun (TxfifoUndrn) The core generates this interrupt when it detects a transmit FIFO underrun condition for this endpoint. Dependency: This interrupt is valid only when Thresholding is enabled Bit 7 TXFE: Transmit FIFO empty This interrupt is asserted when the Tx FIFO for this endpoint is either half or completely empty. The half or completely empty status is determined by the Tx FIFO Empty Level bit in the OTG_GAHBCFG register (TXFELVL bit in OTG_GAHBCFG). 1214/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 6 INEPNE: IN endpoint NAK effective This bit can be cleared when the application clears the IN endpoint NAK by writing to the CNAK bit in OTG_DIEPCTLx. This interrupt indicates that the core has sampled the NAK bit set (either by the application or by the core). The interrupt indicates that the IN endpoint NAK bit set by the application has taken effect in the core. This interrupt does not guarantee that a NAK handshake is sent on the USB. A STALL bit takes priority over a NAK bit. Bit 5 INEPNM: IN token received with EP mismatch Indicates that the data in the top of the non-periodic TxFIFO belongs to an endpoint other than the one for which the IN token was received. This interrupt is asserted on the endpoint for which the IN token was received. Bit 4 ITTXFE: IN token received when Tx FIFO is empty Indicates that an IN token was received when the associated Tx FIFO (periodic/nonperiodic) was empty. This interrupt is asserted on the endpoint for which the IN token was received. Bit 3 TOC: Timeout condition Indicates that the core has detected a timeout condition on the USB for the last IN token on this endpoint. Bit 2 Reserved, must be kept at reset value Bit 1 EPDISD: Endpoint disabled interrupt This bit indicates that the endpoint is disabled per the application’s request. Bit 0 XFRC: Transfer completed interrupt This field indicates that the programmed transfer is complete on the AHB as well as on the USB, for this endpoint. 33.15.43 OTG device IN endpoint 0 transfer size register (OTG_DIEPTSIZ0) Address offset: 0x910 Reset value: 0x0000 0000 The application must modify this register before enabling endpoint 0. Once endpoint 0 is enabled using the endpoint enable bit in the device control endpoint 0 control registers (EPENA in OTG_DIEPCTL0), the core modifies this register. The application can only read this register once the core has cleared the endpoint enable bit. Nonzero endpoints use the registers for endpoints 1–3. 31 30 29 28 27 26 25 24 23 22 21 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. Res. Res. Res. Res. 19 PKTCNT[1:0] rw rw 4 3 18 17 16 Res. Res. Res. 2 1 0 rw rw rw XFRSIZ[6:0] rw RM0430 Rev 8 20 rw rw rw 1215/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bits 31:21 Reserved, must be kept at reset value. Bits 20:19 PKTCNT[1:0]: Packet count Indicates the total number of USB packets that constitute the transfer size amount of data for endpoint 0. This field is decremented every time a packet (maximum size or short packet) is read from the Tx FIFO. Bits 18:7 Reserved, must be kept at reset value. Bits 6:0 XFRSIZ[6:0]: Transfer size Indicates the transfer size in bytes for endpoint 0. The core interrupts the application only after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet from the external memory is written to the Tx FIFO. 33.15.44 OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5, where x = endpoint number) Address offset for IN endpoints: 0x918 + (x * 0x20) This read-only register contains the free space information for the device IN endpoint Tx FIFO. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r INEPTFSAV[15:0] r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 INEPTFSAV[15:0]: IN endpoint Tx FIFO space available Indicates the amount of free space available in the endpoint Tx FIFO. Values are in terms of 32-bit words: 0x0: Endpoint Tx FIFO is full 0x1: 1 word available 0x2: 2 words available 0xn: n words available Others: Reserved 1216/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 33.15.45 OTG device IN endpoint x transfer size register (OTG_DIEPTSIZx) (x = 1..5, where x = endpoint number) Address offset: 0x910 + (x * 0x20) Reset value: 0x0000 0000 The application must modify this register before enabling the endpoint. Once the endpoint is enabled using the endpoint enable bit in the OTG_DIEPCTLx registers (EPENA bit in OTG_DIEPCTLx), the core modifies this register. The application can only read this register once the core has cleared the endpoint enable bit. 31 Res. 15 30 29 28 27 26 25 MCNT[1:0] 24 23 22 21 20 19 18 PKTCNT[9:0] 17 16 XFRSIZ[18:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw XFRSIZ[15:0] rw rw rw rw rw rw rw rw rw Bit 31 Reserved, must be kept at reset value. Bits 30:29 MCNT[1:0]: Multi count For periodic IN endpoints, this field indicates the number of packets that must be transmitted per frame on the USB. The core uses this field to calculate the data PID for isochronous IN endpoints. 01: 1 packet 10: 2 packets 11: 3 packets Bits 28:19 PKTCNT[9:0]: Packet count Indicates the total number of USB packets that constitute the transfer size amount of data for this endpoint. This field is decremented every time a packet (maximum size or short packet) is read from the Tx FIFO. Bits 18:0 XFRSIZ[18:0]: Transfer size This field contains the transfer size in bytes for the current endpoint. The core only interrupts the application after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet from the external memory is written to the Tx FIFO. RM0430 Rev 8 1217/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 33.15.46 OTG device control OUT endpoint 0 control register (OTG_DOEPCTL0) Address offset: 0xB00 Reset value: 0x0000 8000 This section describes the OTG_DOEPCTL0 register. Nonzero control endpoints use registers for endpoints 1–3. 31 30 EPENA EPDIS 29 Res. 28 Res. 27 26 SNAK CNAK w w 25 Res. 24 Res. 23 Res. 22 Res. 21 20 19 18 EPTYP[1:0] 17 16 NAK STS Res. STALL SNPM rs rw r r r 1 w r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 USBA EP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r 0 MPSIZ[1:0] r r Bit 31 EPENA: Endpoint enable The application sets this bit to start transmitting data on endpoint 0. The core clears this bit before setting any of the following interrupts on this endpoint: – SETUP phase done – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application cannot disable control OUT endpoint 0. Bits 29:28 Reserved, must be kept at reset value. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit on a transfer completed interrupt, or after a SETUP is received on the endpoint. Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 Reserved, must be kept at reset value. Bit 21 STALL: STALL handshake The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 20 SNPM: Snoop mode This bit configures the endpoint to Snoop mode. In Snoop mode, the core does not check the correctness of OUT packets before transferring them to application memory. Bits 19:18 EPTYP[1:0]: Endpoint type Hardcoded to 2’b00 for control. 1218/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 17 NAKSTS: NAK status Indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status. 1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit, the core stops receiving data, even if there is space in the Rx FIFO to accommodate the incoming packet. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 16 Reserved, must be kept at reset value. Bit 15 USBAEP: USB active endpoint This bit is always set to 1, indicating that a control endpoint 0 is always active in all configurations and interfaces. Bits 14:2 Reserved, must be kept at reset value. Bits 1:0 MPSIZ[1:0]: Maximum packet size The maximum packet size for control OUT endpoint 0 is the same as what is programmed in control IN endpoint 0. 00: 64 bytes 01: 32 bytes 10: 16 bytes 11: 8 bytes 33.15.47 OTG device OUT endpoint x interrupt register (OTG_DOEPINTx) (x = 0..5, where x = Endpoint number) Address offset: 0xB08 + (x * 0x20) Reset value: 0x0000 0080 This register indicates the status of an endpoint with respect to USB- and AHB-related events. It is shown in Figure 403. The application must read this register when the OUT endpoints interrupt bit of the OTG_GINTSTS register (OEPINT bit in OTG_GINTSTS) is set. Before the application can read this register, it must first read the OTG_DAINT register to get the exact endpoint number for the OTG_DOEPINTx register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_DAINT and OTG_GINTSTS registers. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. OUT PKT ERR Res. Res. STSPH SRX OTEP DIS STUP Res. EP DISD XFRC rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Res. NYET NAK BERR rc_w1 rc_w1 rc_w1 Res. Res. rc_w1 Bits 31:16 Reserved, must be kept at reset value. Bit 15 Reserved, must be kept at reset value. Bit 14 NYET: NYET interrupt This interrupt is generated when a NYET response is transmitted for a non isochronous OUT endpoint. RM0430 Rev 8 1219/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 13 NAK: NAK input The core generates this interrupt when a NAK is transmitted or received by the device. In case of isochronous IN endpoints the interrupt gets generated when a zero length packet is transmitted due to unavailability of data in the Tx FIFO. Bit 12 BERR: Babble error interrupt The core generates this interrupt when babble is received for the endpoint. Bits 11:10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bit 8 OUTPKTERR: OUT packet error This interrupt is asserted when the core detects an overflow or a CRC error for an OUT packet. This interrupt is valid only when thresholding is enabled. Bit 7 Reserved, must be kept at reset value. Bit 6 Reserved, must be kept at reset value. Bit 5 STSPHSRX: Status phase received for control write This interrupt is valid only for control OUT endpoints. This interrupt is generated only after OTG_FS has transferred all the data that the host has sent during the data phase of a control write transfer, to the system memory buffer. The interrupt indicates to the application that the host has switched from data phase to the status phase of a control write transfer. The application can use this interrupt to ACK or STALL the status phase, after it has decoded the data phase. Bit 4 OTEPDIS: OUT token received when endpoint disabled Applies only to control OUT endpoints. Indicates that an OUT token was received when the endpoint was not yet enabled. This interrupt is asserted on the endpoint for which the OUT token was received. Bit 3 STUP: SETUP phase done Applies to control OUT endpoint only. Indicates that the SETUP phase for the control endpoint is complete and no more back-toback SETUP packets were received for the current control transfer. On this interrupt, the application can decode the received SETUP data packet. Bit 2 Reserved, must be kept at reset value. Bit 1 EPDISD: Endpoint disabled interrupt This bit indicates that the endpoint is disabled per the application’s request. Bit 0 XFRC: Transfer completed interrupt This field indicates that the programmed transfer is complete on the AHB as well as on the USB, for this endpoint. 1220/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 33.15.48 OTG device OUT endpoint 0 transfer size register (OTG_DOEPTSIZ0) Address offset: 0xB10 Reset value: 0x0000 0000 The application must modify this register before enabling endpoint 0. Once endpoint 0 is enabled using the endpoint enable bit in the OTG_DOEPCTL0 registers (EPENA bit in OTG_DOEPCTL0), the core modifies this register. The application can only read this register once the core has cleared the endpoint enable bit. 31 Res. 30 29 STUPCNT[1:0] 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. PKTCNT Nonzero endpoints use the registers for endpoints 1–5. Res. Res. Res. 6 5 4 2 1 0 rw rw rw rw rw 15 14 13 12 11 10 9 8 7 rw Res. Res. Res. Res. Res. Res. Res. Res. Res. 3 XFRSIZ[6:0] rw rw rw rw Bit 31 Reserved, must be kept at reset value. Bits 30:29 STUPCNT[1:0]: SETUP packet count This field specifies the number of back-to-back SETUP data packets the endpoint can receive. 01: 1 packet 10: 2 packets 11: 3 packets Bits 28:20 Reserved, must be kept at reset value. Bit 19 PKTCNT: Packet count This field is decremented to zero after a packet is written into the Rx FIFO. Bits 18:7 Reserved, must be kept at reset value. Bits 6:0 XFRSIZ[6:0]: Transfer size Indicates the transfer size in bytes for endpoint 0. The core interrupts the application only after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet is read from the Rx FIFO and written to the external memory. RM0430 Rev 8 1221/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 33.15.49 OTG device OUT endpoint x control register (OTG_DOEPCTLx) (x = 1..5, where x = endpoint number) Address offset for OUT endpoints: 0xB00 + (x * 0x20) Reset value: 0x0000 0000 The application uses this register to control the behavior of each logical endpoint other than endpoint 0. 31 30 EPENA EPDIS 29 28 27 26 25 24 23 22 21 20 SD1 PID/ SODD FRM SD0 PID/ SEVN FRM SNAK CNAK Res. Res. Res. Res. STALL SNPM rw/rs rw rw 5 4 rw rs rs w w w w 15 14 13 12 11 10 USBA EP Res. Res. Res. Res. rw 9 8 7 6 19 18 17 16 NAK STS EO NUM/ DPID rw r r 3 2 1 0 rw rw rw rw EPTYP[1:0] MPSIZ[10:0] rw rw rw rw rw rw Bit 31 EPENA: Endpoint enable Applies to IN and OUT endpoints. The application sets this bit to start transmitting data on an endpoint. The core clears this bit before setting any of the following interrupts on this endpoint: – SETUP phase done – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application sets this bit to stop transmitting/receiving data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the endpoint disabled interrupt. The application must set this bit only if endpoint enable is already set for this endpoint. Bit 29 SD1PID: Set DATA1 PID Applies to interrupt/bulk IN and OUT endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA1. SODDFRM: Set odd frame Applies to isochronous IN and OUT endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to odd frame. Bit 28 SD0PID: Set DATA0 PID Applies to interrupt/bulk OUT endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA0. SEVNFRM: Set even frame Applies to isochronous OUT endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to even frame. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for OUT endpoints on a transfer completed interrupt, or after a SETUP is received on the endpoint. 1222/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 Reserved, must be kept at reset value. Bit 21 STALL: STALL handshake Applies to non-control, non-isochronous OUT endpoints only (access type is rw). The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Only the application can clear this bit, never the core. Applies to control endpoints only (access type is rs). The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 20 SNPM: Snoop mode This bit configures the endpoint to Snoop mode. In Snoop mode, the core does not check the correctness of OUT packets before transferring them to application memory. Bits 19:18 EPTYP[1:0]: Endpoint type This is the transfer type supported by this logical endpoint. 00: Control 01: Isochronous 10: Bulk 11: Interrupt Bit 17 NAKSTS: NAK status Indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status. 1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit: The core stops receiving any data on an OUT endpoint, even if there is space in the Rx FIFO to accommodate the incoming packet. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 16 EONUM: Even/odd frame Applies to isochronous IN and OUT endpoints only. Indicates the frame number in which the core transmits/receives isochronous data for this endpoint. The application must program the even/odd frame number in which it intends to transmit/receive isochronous data for this endpoint using the SEVNFRM and SODDFRM fields in this register. 0: Even frame 1: Odd frame DPID: Endpoint data PID Applies to interrupt/bulk OUT endpoints only. Contains the PID of the packet to be received or transmitted on this endpoint. The application must program the PID of the first packet to be received or transmitted on this endpoint, after the endpoint is activated. The application uses the SD0PID register field to program either DATA0 or DATA1 PID. 0: DATA0 1: DATA1 RM0430 Rev 8 1223/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bit 15 USBAEP: USB active endpoint Indicates whether this endpoint is active in the current configuration and interface. The core clears this bit for all endpoints (other than EP 0) after detecting a USB reset. After receiving the SetConfiguration and SetInterface commands, the application must program endpoint registers accordingly and set this bit. Bits 14:11 Reserved, must be kept at reset value. Bits 10:0 MPSIZ[10:0]: Maximum packet size The application must program this field with the maximum packet size for the current logical endpoint. This value is in bytes. 33.15.50 OTG device OUT endpoint x transfer size register (OTG_DOEPTSIZx) (x = 1..5, where x = Endpoint number) Address offset: 0xB10 + (x * 0x20) Reset value: 0x0000 0000 The application must modify this register before enabling the endpoint. Once the endpoint is enabled using endpoint enable bit of the OTG_DOEPCTLx registers (EPENA bit in OTG_DOEPCTLx), the core modifies this register. The application can only read this register once the core has cleared the endpoint enable bit. 31 Res. 15 30 29 28 27 26 25 RXDPID/ STUPCNT[1:0] 24 23 22 21 20 19 18 PKTCNT[9:0] 17 16 XFRSIZ r/rw r/rw rw rw rw rw rw rw rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw XFRSIZ rw rw rw rw rw rw rw rw rw Bit 31 Reserved, must be kept at reset value. Bits 30:29 RXDPID[1:0]: Received data PID Applies to isochronous OUT endpoints only. This is the data PID received in the last packet for this endpoint. 00: DATA0 10: DATA1 1224/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) STUPCNT[1:0]: SETUP packet count Applies to control OUT endpoints only. This field specifies the number of back-to-back SETUP data packets the endpoint can receive. 01: 1 packet 10: 2 packets 11: 3 packets Bits 28:19 PKTCNT[9:0]: Packet count Indicates the total number of USB packets that constitute the transfer size amount of data for this endpoint. This field is decremented every time a packet (maximum size or short packet) is written to the Rx FIFO. Bits 18:0 XFRSIZ: Transfer size This field contains the transfer size in bytes for the current endpoint. The core only interrupts the application after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet is read from the Rx FIFO and written to the external memory. 33.15.51 OTG power and clock gating control register (OTG_PCGCCTL) Address offset: 0xE00 Reset value: 0x200B 8000 This register is available in host and device modes. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SUSP PHY SLEEP ENL1 GTG PHY SUSP Res. GATE HCLK STPP CLK r r rw r rw rw Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:8 Reserved, must be kept at reset value. Bit 7 SUSP: Deep Sleep This bit indicates that the PHY is in Deep Sleep when in L1 state. Bit 6 PHYSLEEP: PHY in Sleep This bit indicates that the PHY is in the Sleep state. Bit 5 ENL1GTG: Enable sleep clock gating When this bit is set, core internal clock gating is enabled in Sleep state if the core cannot assert utmi_l1_suspend_n. When this bit is not set, the PHY clock is not gated in Sleep state. Bit 4 PHYSUSP: PHY suspended Indicates that the PHY has been suspended. This bit is updated once the PHY is suspended after the application has set the STPPCLK bit. RM0430 Rev 8 1225/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Bits 3:2 Reserved, must be kept at reset value. Bit 1 GATEHCLK: Gate HCLK The application sets this bit to gate HCLK to modules other than the AHB Slave and Master and wakeup logic when the USB is suspended or the session is not valid. The application clears this bit when the USB is resumed or a new session starts. Bit 0 STPPCLK: Stop PHY clock The application sets this bit to stop the PHY clock when the USB is suspended, the session is not valid, or the device is disconnected. The application clears this bit when the USB is resumed or a new session starts. 33.15.52 OTG_FS register map The table below gives the USB OTG register map and reset values. SRQ SRQSCS 0 Res. Res. Res. Res. Res. Res. SEDET 0 0 0 0 1226/1324 Res. CSRST 0 0 0 0 0 CMOD 1 0 PSRST RXFLVL 0 0 0 FCRST NPTXFE 0 0 0 MMIS 0 0 OTGINT 0 0 Res. Res. 0 0 0 0 0 Res. RXFFLSH 0 TOCAL SOF TXFFLSH 0 0 Res. Res. Res. Res. Res. Res. 0 GINAKEFF SRPCAP 0 GONAKEFF HNPCAP 1 Res. 0 Res. Res. 0 0 TXFNUM ESUSP Res. 1 USBSUSP Res. Res. Res. Res. Res. Res. Res. Res. RM0430 Rev 8 0 USBRST 0 1 ENUMDNE 0 0 EOPF 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 TRDT ISOODRP 0 Res. 0 Res. 0 IEPINT 1 OEPINT 0 IISOIXFR 1 IPXFR/INCOMPISOOUT 0 Res. Res. RSTDET Res. Res. HPRTINT Res. Res. HCINT Res. Res. Res. Res. 0 PTXFE 0 Res. Reset value LPMINT OTG_ GINTSTS Res. FHMOD 1 Res. Res. Reset value DISCINT OTG_ GRSTCTL AHBIDL 0x014 0 SRQINT 0x010 0 WKUPINT Reset value CIDSCHG Res. OTG_ GUSBCFG FDMOD 0x00C Res. Reset value 0 PHYSEL Res. - Res. VBVALOEN 0 GINTMSK AVALOEN VBVALOVAL 0 Res. BVALOEN AVALOVAL 0 Res. BVALOVAL 0 TXFELVL HNPRQ HNGSCS 0 SRSSCHG 0 HNSSCHG 0 Res. 0 PTXFELVL DHNPEN HSHNPEN 0 Res. 0 Res. Res. EHEN 0 Res. Res. Res. 0 Res. Res. Res. Res. 0 Res. 0 Res. 0 Res. DBCT CIDSTS Res. 0 Res. ASVLD HNGDET Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ GAHBCFG Res. 0x008 Res. Reset value Res. BSVLD 1 ADTOCHG 0 Res. OTGVER 0 IDCHNG 0 DBCDNE 0 Res. 0 Res. Res. CURMOD Res. Res. Res. Res. Res. Res. Res. Res. OTG_ GOTGINT Res. 0x004 Res. Reset value Res. Res. Res. Res. Res. Res. Res. OTG_ GOTGCTL Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x000 Register name Res. Offset Res. Table 231. OTG_FS register map and reset values RM0430 USB on-the-go full-speed (OTG_FS) Res. Res. 0 0 Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 MMISM BCNT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CHNUM 0 0 0 0 0 0 BCNT 0 0 EPNUM BCNT 0 Res. SOFM OTGINT 0 0 0 0 EPNUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RXFD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 PDET 0 DCDET 1 X X X X 0 0 0 0 LPMEN 0 LPMACK 0 SDET 0 PS2DET 0 PWRDWN 0 BCDEN 0 DCDEN 0 PDEN 0 SDEN 0 VBDEN 0 Res. NPTXFSAV Res. NPTQXSAV LPMR CNTSTS 0 0 0 0 0 LPM RCNT 0 0 0 0 0 0 LPMCHIDX 0 0 0 0 0 0 RM0430 Rev 8 0 1 0 LPM RSP 0 0 0 0 0 0 BESLTHRS REMWAKE 0 L1SSEN 0 0 0 L1DSEN Res. 0 0 SLPSTS 0 SNDLPM 0 ENBESL 0 L1RSMOK Reset value 0 CHNUM 0 Res. OTG_ GLPMCFG 0 0 0 PRODUCT_ID 0 Res. 0x054 0 OTG_CID Reset value 0 NPTXFSA/TX0FSA 0 NPTXQTOP 0 Res. Res. 0 0 Res. 0 OTG_ HNPTXSTS Reset value 0x03C 0 0 Res. Reset value OTG_ GCCFG 0 NPTXFD/TX0FD Reset value 0x038 0 0 Res. 0x02C 0 0 Res. 0x028 0 DPID Res. PKTSTS 0 Reset value OTG_ HNPTXFSIZ/ OTG_ DIEPTXF0 0 DPID Res. FRMNUM 0 0 0 BCNT DPID Res. Res. Res. Res. 0 0 Res. Res. STSPHST Res. Res. Res. Res. Res. OTG_ GRXFSIZ Res. 0x024 0 Res. Reset value 0 PKTSTS 0 Res. OTG_ GRXSTSP (Device mode) 0 0 RXFLVLM Res. 0 0 NPTXFEM Res. 0 0 DPID PKTSTS Reset value 0x020 0 0 GINAKEFFM Res. Res. Res. FRMNUM 0 0 Res. Res. Res. Res. Res. Res. Res. Res. OTG_ GRXSTSP (host mode) 0 Res. Reset value STSPHST Res. Res. Res. OTG_ GRXSTSR (Device mode) 0 Res. Reset value 0x01C PKTSTS 0 GONAKEFFM Res. 0 Res. Res. 0 ESUSPM Res. 0 USBRST OTG_ GRXSTSR (host mode) 0 USBSUSPM 0 ISOODRPM 0 ENUMDNEM 0 Res. 0 EOPFM RSTDETM 0 Res. HCIM PRTIM 0 IEPINT PTXFEM 0 OEPINT LPMINTM 0 IISOIXFRM DISCINT CIDSCHGM 0 Res. WUIM Reset value IPXFRM/IISOOXFRM 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OTG_ GINTMSK SRQIM 0x018 Register name Res. Offset Res. Table 231. OTG_FS register map and reset values (continued) 0 0 0 0 0 0 0 0 0 0 0 BESL 0 0 0 0 1227/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 OTG_ HPTXFSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 INEPTXSA 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 INEPTXSA 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 . . . . 0 0 1 1 0 0 0 0 Res. 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 PSP D 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EPNUM 0 0 0 0 0 MPSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CHH Res. RM0430 Rev 8 0 XFRC OTG_ HCINT0 0 Res. 0 0 STALL 0 0 NAK 0 0 ACK 0 0 Res. 0 0 TXERR 0 0 BBERR 0 0 FRMOR 0 1 DTERR 0 0 Res. 0 0 Res. 0 0 Res. 0 MCNT 1 Res. 0 Res. EPDIR 0 Res. Res. 0 DAD Res. ODDFRM Reset value EPTYP OTG_ HCCHAR0 Res. 0 CHDIS 0 CHENA 0 Res. 0 0 PTCTL LSDEV Res. Res. Res. Res. Res. Res. Res. Res. 0 HAINTM 0 Res. 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 HAINT 0 Res. 0 PTXFSAVL 0 Res. 0 PTXQSAV 0 Res. 1 PCSTS 0 0 Res. 1 PCDET 0 0 Res. 0 PENA 0 PTXQTOP Res. 0 PENCHNG 0 Reset value 1228/1324 1 POCCHNG 0 Res. 0x508 0 PRES 0 Reset value 0x500 1 PSUSP 0 Reset value 0x440 0 PRST 0 OTG_ HAINT OTG_ HPRT 1 Res. 0 Reset value 0x418 1 PLSTS 0 Reset value OTG_ HAINTMSK 1 PPWR 0 0 FRNUM Res. 0x414 0 0 FRIVL FTREM OTG_ HPTXSTS 0 POCA OTG_ HFNUM Reset value 0x410 0 FSL S PCS Res. 0x408 RLDCTRL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ HFIR Res. 0x404 Res. Reset value FSLSS 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 1 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 INEPTXSA Res. INEPTXFD Res. OTG_ HCFG 0 Res. Reset value 0 Res. OTG_ DIEPTXF5 0 Res. 0x114 0 Res. . . . . 0 INEPTXFD Res. Reset value 1 PTXSA INEPTXFD OTG_ DIEPTXF2 . . . . 0x400 0 Res. Reset value 0x108 0 Res. 0x104 0 OTG_ DIEPTXF1 Res. Reset value PTXFSIZ Res. 0x100 Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 231. OTG_FS register map and reset values (continued) 0 0 0 0 0 0 0 0 0 0x800 OTG_ DCFG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. ERRATIM XCVRDLY Res. 0 OTG_ HCINT11 RM0430 Rev 8 0 0 0 0 0 0 0 0 0 0 0 Reset value Reset value PKTCNT 0 Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 EPNUM 0 EPNUM 0 0 0 0 0 0 0 0 0 0 0 XFRSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MPSIZ 0 0 0 0 0 0 0 XFRSIZ 0 0 0 0 0 0 BBERRM TXERRM ACKM NAKM STALLM Res. FRMORM XFRCM 0 0 0 0 . . . . MPSIZ XFRCM XFRSIZ CHHM DTERRM Res. Res. Res. Res. Res. Res. 0 Res. EPDIR Res. 0 CHHM Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 Res. 0 STALLM 0 NAKM 0 ACKM 0 TXERRM XFRC 0 CHH 0 STALL 0 NAK 0 ACK 0 TXERR 0 BBERR 0 FRMOR 0 BBERRM 0 FRMORM 0 Res. LSDEV EPTYP MCNT Res. Res. Res. Res. Res. 0 0 XFRCM Res. Res. 0 Res. Res. Res. Res. Res. Res. 0 CHHM Res. Res. 0 0 0 0 0 0 0 0 0 Res. 0 NZLSOHSK 0 STALLM 0 Res. 0 0 NAKM 0 0 ACKM XFRC 0 CHH 0 STALL 0 NAK 0 ACK 0 Res. 0 TXERR 0 0 TXERRM PKTCNT BBERR Res. 0 DTERR Reset value FRMOR Res. 0 DTERRM Reset value BBERRM 0 0 FRMORM 0 0 DTERR Res. PKTCNT DTERRM . . . . 0 Res. Res. Reset value DSPD 0 0 Res. 0 Res. OTG_ HCINT1 Res. 0 Res. 0 0 Res. 0 0 Res. 0 Res. 0 0 Res. 0 0 Res. 0 Res. 0 Res. 0 EPDIR 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 LSDEV ODDFRM 0 0 Res. 0 Res. Res. CHDIS 0 Res. 0 EPTYP Res. Res. CHENA Reset value Res. 0 Res. 0 0 Res. 0 Res. 0 0 Res. 0 DAD MCNT 0 Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ HCCHAR1 DAD 0 DAD DPID 0 0 Res. 0 Res. 0 0 Res. 0 Res. 0 0 Res. 0 Res. DPID 0 Res. 0 Res. 0 0 Res. 0 Res. 0 0 Res. 0 Res. 0 0 Res. 0 Res. 0 0 Res. ODDFRM Reset value Res. Res. Res. 0 Res. OTG_ HCCHAR11 Res. Res. DPID PFIVL 0 Res. Reset value 0 Res. Reset value Res. OTG_ HCTSIZ11 Res. 0x670 Res. 0x66C OTG_ HCINTMSK11 0 Res. Reset value Res. 0x668 OTG_ HCTSIZ1 Res. 0x660 OTG_ HCINTMSK1 Res. . . . . CHDIS 0x530 CHENA 0x52C Res. 0x528 Res. Reset value Res. 0x520 OTG_ HCTSIZ0 Res. 0x510 OTG_ HCINTMSK0 Res. 0x50C 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Offset Res. RM0430 USB on-the-go full-speed (OTG_FS) Table 231. OTG_FS register map and reset values (continued) 0 0 0 0 0 0 1229/1324 1283 0x900 0x908 1230/1324 OTG_ DIEPCTL0 Reset value 0 0 OTG_ DIEPINT0 0 0 0 0 0 0 Res. Res. Res. Res. Res. 0 0 Reset value RM0430 Rev 8 0 0 0 0 0 0 0 0 0 0 1 1 0 OEPM 0 0 1 1 0 1 1 Res. Res. Res. Res. Res. Res. Res. NAKM Res. Res. Res. Res. TXFURM 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 EPDM XFRCM Res. 0 0 XFRCM 0 EPDM 0 Res. TOM 0 STUPM INEPNMM ITTXFEMSK 0 OTEPDM 0 Res. 0 INEPNEM Res. 0 Res. 0 Res. 0 MPSIZ 0 0 0 OUTPKTERRM 0 0 0 XFRC 0 Res. 0 0 0 Res. 0 EPDISD 0 Res. 0 1 0 Res. 0 Res. GINSTS SDIS RWUSIG 0 0 0 0 1 0 Res. Res. EERR SUSPSTS ENUMSPD GONSTS 0 TCTL SGINAK SGONAK 0 Res. CGONAK CGINAK POPRGDNE Res. Res. Res. Res. Res. Res. DSBESLRJCT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. FNSOF Res. 0 Res. 0 0 0 0 TOC 0 Res. OEPINT ITTXFE 0 Res. BERRM 0 INEPNM 0 Res. 0 0 0 0 INEPNE 0 Res. 0 0 0 TXFE 0 Res. 0 Res. NAKMSK 0 0 TXFIFOUDRN 0 Res. 0 0 Res. 0 0 Res. 0 Res. 0 NYETMSK 0 Res. Res. Res. Res. Res. Res. Res. 0 PKTDRPSTS 0 Res. Reset value 0 Res. Reset value Res. Reset value Res. Res. Res. Reset value NAK 0 Res. Reset value Res. 0 Res. 0 USBAEP 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. DEV LN STS Res. Res. Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. Res. 0 Res. 0 NAKSTS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. 0 Res. EPTYP Res. Res. 0 Res. Res. 0 Res. 0 Res. TXFNUM Res. 0 Res. 0 Res. Res. 0 STALL Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. OTG_ DAINTMSK Res. 0 Res. OTG_ DAINT Res. Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. Res. 0 Res. Res. Res. Reset value Res. CNAK 0 Res. Res. Res. Res. 0 SNAK Res. Res. 0 Res. OTG_DIE PEMPMSK 0 Res. OTG_DVB USPULSE 0 Res. 0 OTG_ DVBUSDIS Res. Reset value Res. 0x834 OTG_ DOEPMSK Res. 0x82C Reset value Res. 0x828 OTG_ DIEPMSK Res. 0x81C OTG_ DSTS Res. 0x818 OTG_ DCTL Res. 0x814 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. 0x810 EPDIS 0x808 EPENA 0x804 Res. Offset Res. USB on-the-go full-speed (OTG_FS) RM0430 Table 231. OTG_FS register map and reset values (continued) 0 0 0 0 IEPINT IEPM VBUSDT DVBUSP INEPTXFEM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0x9A0 . . . . OTG_ DIEPCTL5 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TXFNUM 0 0 0 . . . . 0 0 0 0 0 0 . . . . RM0430 Rev 8 0 0 0 0 0 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 Reset value 0 0 0 0 PKTCNT 0 0 0 0 0 0 0 0 0 0 0 0 XFRSIZ 0 INEPTFSAV 1 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 INEPTFSAV 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MPSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MPSIZ . . . . 0 0 0 MPSIZ 0 XFRC 0 0 EPDISD 0 0 0 Res. TOC 0 ITTXFE 0 INEPNM 0 INEPNE 1 TXFE Res. 0 TXFIFOUDRN 0 Res. 0 Res. PKTDRPSTS Res. NAK 0 Res. Res. 0 Res. USBAEP Res. 0 Res. EONUM/DPID Res. Res. NAKSTS 0 Res. EPTYP 0 Res. Res. STALL 0 Res. 0 0 Res. 0 Res. 0 Res. OTG_ DIEPINT1 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Reset value USBAEP 0 Res. 0 USBAEP 0 Res. 0 EONUM/DPID 0 Res. CNAK 0 0 EONUM/DPID 0 Res. SNAK 0 0 NAKSTS 0 Res. SD0PID/SEVNFRM 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PKT CNT NAKSTS 0 Res. SODDFRM/SD1PID 0 EPTYP 0 Res. EPDIS 0 EPTYP 0 Res. EPENA Reset value TXFNUM Res. 0 Res. OTG_ DIEPCTL1 Res. Reset value Res. 0 TXFNUM STALL 0 Res. Res. MCN T STALL 0 CNAK 0 SNAK Reset value SODDFRM OTG_ DIEPCTL2 CNAK . . . . OTG_ DTXFSTS1 SD0PID/SEVNFRM Reset value SNAK 0x940 OTG_ DIEPTSIZ1 SODDFRM 0x938 OTG_ DTXFSTS0 SD0PID/SEVNFRM 0x930 OTG_ DIEPTSIZ0 Res. 0x928 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. 0x920 EPDIS 0x918 EPENA 0x910 EPDIS Offset EPENA RM0430 USB on-the-go full-speed (OTG_FS) Table 231. OTG_FS register map and reset values (continued) XFRSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . 1231/1324 1283 CNAK 0 0 0 0 0 OTG_ DOEPINT1 Res. Res. 1232/1324 EONUM/DPID USBAEP 0 0 0 0 Res. Res. Res. Res. Reset value RM0430 Rev 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. STSPHSRX OTEPDIS STUP Res. EPDISD XFRC BERR Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Res. Res. Res. Res. Res. MPSIZ 0 Res. ITTXFE TOC EPDISD XFRC Res. INEPNM TXFE INEPNE Res. TXFIFOUDRN 0 XFRC 0 Res. Res. 0 EPDISD 0 Res. 0 Res. 0 Res. Res. PKTDRPSTS 0 STUP 0 Res. NAK 1 OTEPDIS 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 STSPHSRX Res. Res. 0 Res. 0 Res. 0 Res. 1 OUTPKTERR 0 USBAEP Res. Res. Res. Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. NAK 0 Res. NYET Res. 0 NAKSTS PKTCNT OUTPKTERR Res. 0 0 Res. Res. 0 Res. EP TYP 0 Res. Reset value 0 Res. Res. Res. 0 Res. 0 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. 0 Res. SNPM 0 EPTYP STALL 0 Res. Res. 0 Res. Res. . . . . Res. 0 0 Res. 0 Res. 0 PKTCNT 0 Res. 0 BERR NAKSTS 0 Res. Res. 0 Res. Res. Res. Res. Res. Reset value NAK SNPM 0 Res. Res. Res. Res. Res. 0 CNAK 0 Res. 0 SNAK 0 Res. Res. Res. Res. . . . . NYET STALL Res. 0 Res. Res. Res. 0 Res. STU P CNT Res. Reset value 0 0 Res. OTG_ DOEPTSIZ0 0 Res. OTG_ DOEPINT0 0 0 Res. 0 Res. 0 Res. Reset value Res. OTG_ DIEPTSIZ5 Res. 0x9B0 Res. . . . . Res. OTG_ DTXFSTS5 MCNT 0x9B8 Res. . . . . Res. OTG_ DIEPINT5 Res. EPDIS 0x9A8 Res. SNAK 0 Res. EPENA Reset value Res. 0xB08 OTG_ DOEPCTL0 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Offset Res. SODDFRM SD0PID/SEVNFRM Reset value Res. 0xB28 EPDIS 0xB20 OTG_ DOEPCTL1 EPENA 0xB10 Res. 0xB00 Res. USB on-the-go full-speed (OTG_FS) RM0430 Table 231. OTG_FS register map and reset values (continued) 0 0 . . . . INEPTFSAV . . . . XFRSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XFRSIZ 0 0 0 0 MPSIZ RM0430 USB on-the-go full-speed (OTG_FS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XFRC 0 EPDISD STUP 0 OTEPDIS 0 Res. Res. - 0 STSPHSRX Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SUSP PHYSLEEP ENL1GTG PHYSUSP Res. Res. GATEHCLK STPPCLK XFRSIZ Res. PKTCNT 0 OUTPKTERR Res. 0 Res. Res. 0 0 Res. Res. RXDPID/ STUPCNT 0 0 Res. OTG_ PCGCCTL Res. Reset value 0xE00 0 MPSIZ 0 Res. 0 BERR 0 NAK USBAEP 0 Res. NAKSTS EONUM/DPID 0 EPTYP SNPM Res. 0 Res. Res. 0 Res. Res. Res. Res. STALL OTG_ DOEPINT5 0 Res. 0 Res. 0 Res. 0 Res. SNAK CNAK 0 Res. SODDFRM SD0PID/SEVNFRM 0 Res. EPDIS 0 Res. EPENA Reset value Res. OTG_ DOEPCTL5 OTG_ DOEPTSIZ5 0 . . . . Reset value 0xBB0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0xBA8 0 . . . . Res. 0xBA0 0 XFRSIZ Res. Reset value . . . . PKTCNT NYET OTG_ DOEPTSIZ1 Res. 0xB30 Register name RXDPID/ STUPCNT Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 231. OTG_FS register map and reset values (continued) 0 0 0 0 0 0 Reset value Refer to Section 2.2.2 on page 58 for the register boundary addresses. RM0430 Rev 8 1233/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 33.16 OTG_FS programming model 33.16.1 Core initialization The application must perform the core initialization sequence. If the cable is connected during power-up, the current mode of operation bit in the OTG_GINTSTS (CMOD bit in OTG_GINTSTS) reflects the mode. The OTG_FS controller enters host mode when an “A” plug is connected or device mode when a “B” plug is connected. This section explains the initialization of the OTG_FS controller after power-on. The application must follow the initialization sequence irrespective of host or device mode operation. All core global registers are initialized according to the core’s configuration: 1. 2. 3. Program the following fields in the OTG_GAHBCFG register: – Global interrupt mask bit GINTMSK = 1 – Rx FIFO non-empty (RXFLVL bit in OTG_GINTSTS) – Periodic Tx FIFO empty level Program the following fields in the OTG_GUSBCFG register: – HNP capable bit – SRP capable bit – OTG_FS timeout calibration field – USB turnaround time field The software must unmask the following bits in the OTG_GINTMSK register: OTG interrupt mask Mode mismatch interrupt mask 4. 33.16.2 The software can read the CMOD bit in OTG_GINTSTS to determine whether the OTG_FS controller is operating in host or device mode. Host initialization To initialize the core as host, the application must perform the following steps: 1234/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 1. Program the HPRTINT in the OTG_GINTMSK register to unmask 2. Program the OTG_HCFG register to select full-speed host 3. Program the PPWR bit in OTG_HPRT to 1. This drives VBUS on the USB. 4. Wait for the PCDET interrupt in OTG_HPRT0. This indicates that a device is connecting to the port. 5. Program the PRST bit in OTG_HPRT to 1. This starts the reset process. 6. Wait at least 10 ms for the reset process to complete. 7. Program the PRST bit in OTG_HPRT to 0. 8. Wait for the PENCHNG interrupt in OTG_HPRT. 9. Read the PSPD bit in OTG_HPRT to get the enumerated speed. 10. Program the HFIR register with a value corresponding to the selected PHY clock 1 11. Program the FSLSPCS field in the OTG_HCFG register following the speed of the device detected in step 9. If FSLSPCS has been changed a port reset must be performed. 12. Program the OTG_GRXFSIZ register to select the size of the receive FIFO. 13. Program the OTG_HNPTXFSIZ register to select the size and the start address of the Non-periodic transmit FIFO for non-periodic transactions. 14. Program the OTG_HPTXFSIZ register to select the size and start address of the periodic transmit FIFO for periodic transactions. To communicate with devices, the system software must initialize and enable at least one channel. 33.16.3 Device initialization The application must perform the following steps to initialize the core as a device on powerup or after a mode change from host to device. 1. 2. 3. Program the following fields in the OTG_DCFG register: – Device speed – Non-zero-length status OUT handshake Program the OTG_GINTMSK register to unmask the following interrupts: – USB reset – Enumeration done – Early suspend – USB suspend – SOF Wait for the USBRST interrupt in OTG_GINTSTS. It indicates that a reset has been detected on the USB that lasts for about 10 ms on receiving this interrupt. Wait for the ENUMDNE interrupt in OTG_GINTSTS. This interrupt indicates the end of reset on the USB. On receiving this interrupt, the application must read the OTG_DSTS register to determine the enumeration speed and perform the steps listed in Endpoint initialization on enumeration completion on page 1258. At this point, the device is ready to accept SOF packets and perform control transfers on control endpoint 0. RM0430 Rev 8 1235/1324 1283 USB on-the-go full-speed (OTG_FS) 33.16.4 RM0430 Host programming model Channel initialization The application must initialize one or more channels before it can communicate with connected devices. To initialize and enable a channel, the application must perform the following steps: 1. Program the OTG_GINTMSK register to unmask the following: 2. Channel interrupt – Non-periodic transmit FIFO empty for OUT transactions (applicable when operating in pipelined transaction-level with the packet count field programmed with more than one). – Non-periodic transmit FIFO half-empty for OUT transactions (applicable when operating in pipelined transaction-level with the packet count field programmed with more than one). 3. Program the OTG_HAINTMSK register to unmask the selected channels’ interrupts. 4. Program the OTG_HCINTMSK register to unmask the transaction-related interrupts of interest given in the host channel interrupt register. 5. Program the selected channel’s OTG_HCTSIZx register with the total transfer size, in bytes, and the expected number of packets, including short packets. The application must program the PID field with the initial data PID (to be used on the first OUT transaction or to be expected from the first IN transaction). 6. Program the OTG_HCCHARx register of the selected channel with the device’s endpoint characteristics, such as type, speed, direction, and so forth. (The channel can be enabled by setting the channel enable bit to 1 only when the application is ready to transmit or receive any packet). Halting a channel The application can disable any channel by programming the OTG_HCCHARx register with the CHDIS and CHENA bits set to 1. This enables the OTG_FS host to flush the posted requests (if any) and generates a channel halted interrupt. The application must wait for the CHH interrupt in OTG_HCINTx before reallocating the channel for other transactions. The OTG_FS host does not interrupt the transaction that has already been started on the USB. Before disabling a channel, the application must ensure that there is at least one free space available in the non-periodic request queue (when disabling a non-periodic channel) or the periodic request queue (when disabling a periodic channel). The application can simply flush the posted requests when the request queue is full (before disabling the channel), by programming the OTG_HCCHARx register with the CHDIS bit set to 1, and the CHENA bit cleared to 0. The application is expected to disable a channel on any of the following conditions: 1236/1324 1. When an STALL, TXERR, BBERR or DTERR interrupt in OTG_HCINTx is received for an IN or OUT channel. The application must be able to receive other interrupts (DTERR, Nak, data, TXERR) for the same channel before receiving the halt. 2. When a DISCINT (disconnect device) interrupt in OTG_GINTSTS is received. (The application is expected to disable all enabled channels). 3. When the application aborts a transfer before normal completion. RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Operational model The application must initialize a channel before communicating to the connected device. This section explains the sequence of operation to be performed for different types of USB transactions. • Writing the transmit FIFO The OTG_FS host automatically writes an entry (OUT request) to the periodic/nonperiodic request queue, along with the last 32-bit word write of a packet. The application must ensure that at least one free space is available in the periodic/nonperiodic request queue before starting to write to the transmit FIFO. The application must always write to the transmit FIFO in 32-bit words. If the packet size is non-32-bit word aligned, the application must use padding. The OTG_FS host determines the actual packet size based on the programmed maximum packet size and transfer size. Figure 404. Transmit FIFO write task ^ƚĂƌƚ 5HDG27*B+37;67627*B+137;676 UHJLVWHUVIRUDYDLODEOH),)2DQGTXHXH VSDFHV :DLWIRU137;)(37;)(LQWHUUXSWLQ 27*B*,17676 1R ϭDW^ Žƌ>W^&/&KƐƉĂĐĞ ĂǀĂŝůĂďůĞ͍ PHP>± UHPBVXSFQW@ VHWXSBFPG>@ PHP>± UHPBVXSFQW@ )LQGVHWXSFPGW\SH FWUOBUGZUVWDJH 5HDG :ULWH VWDJH VHWXSBQSBLQBSNW 'DWD,1SKDVH VHWXSBQSBLQBSNW 6WDWXV,1SKDVH UFYBRXWBSNW 'DWD287SKDVH 06Y9 • Handling more than three back-to-back SETUP packets Per the USB 2.0 specification, normally, during a SETUP packet error, a host does not send more than three back-to-back SETUP packets to the same endpoint. However, the USB 2.0 specification does not limit the number of back-to-back SETUP packets a host can send to the same endpoint. When this condition occurs, the OTG_FS controller generates an interrupt (B2BSTUP in OTG_DOEPINTx). • Setting the global OUT NAK Internal data flow: 1. 1262/1324 When the application sets the Global OUT NAK (SGONAK bit in OTG_DCTL), the core stops writing data, except SETUP packets, to the receive FIFO. Irrespective of the RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) space availability in the receive FIFO, non-isochronous OUT tokens receive a NAK handshake response, and the core ignores isochronous OUT data packets 2. The core writes the Global OUT NAK pattern to the receive FIFO. The application must reserve enough receive FIFO space to write this data pattern. 3. When the application pops the Global OUT NAK pattern word from the receive FIFO, the core sets the GONAKEFF interrupt (OTG_GINTSTS). 4. Once the application detects this interrupt, it can assume that the core is in Global OUT NAK mode. The application can clear this interrupt by clearing the SGONAK bit in OTG_DCTL. Application programming sequence: 1. To stop receiving any kind of data in the receive FIFO, the application must set the Global OUT NAK bit by programming the following field: – SGONAK = 1 in OTG_DCTL 2. Wait for the assertion of the GONAKEFF interrupt in OTG_GINTSTS. When asserted, this interrupt indicates that the core has stopped receiving any type of data except SETUP packets. 3. The application can receive valid OUT packets after it has set SGONAK in OTG_DCTL and before the core asserts the GONAKEFF interrupt (OTG_GINTSTS). 4. The application can temporarily mask this interrupt by writing to the GONAKEFFM bit in the OTG_GINTMSK register. – 5. – 6. CGONAK = 1 in OTG_DCTL If the application has masked this interrupt earlier, it must be unmasked as follows: – • GONAKEFFM = 0 in the OTG_GINTMSK register Whenever the application is ready to exit the Global OUT NAK mode, it must clear the SGONAK bit in OTG_DCTL. This also clears the GONAKEFF interrupt (OTG_GINTSTS). GONAKEFFM = 1 in OTG_GINTMSK Disabling an OUT endpoint The application must use this sequence to disable an OUT endpoint that it has enabled. Application programming sequence: RM0430 Rev 8 1263/1324 1283 USB on-the-go full-speed (OTG_FS) 1. Before disabling any OUT endpoint, the application must enable Global OUT NAK mode in the core. – 2. 3. 4. 5. SGONAK = 1 in OTG_DCTL Wait for the GONAKEFF interrupt (OTG_GINTSTS) Disable the required OUT endpoint by programming the following fields: – EPDIS = 1 in OTG_DOEPCTLx – SNAK = 1 in OTG_DOEPCTLx Wait for the EPDISD interrupt (OTG_DOEPINTx), which indicates that the OUT endpoint is completely disabled. When the EPDISD interrupt is asserted, the core also clears the following bits: – EPDIS = 0 in OTG_DOEPCTLx – EPENA = 0 in OTG_DOEPCTLx The application must clear the Global OUT NAK bit to start receiving data from other non-disabled OUT endpoints. – • RM0430 SGONAK = 0 in OTG_DCTL Generic non-isochronous OUT data transfers This section describes a regular non-isochronous OUT data transfer (control, bulk, or interrupt). Application requirements: 1. Before setting up an OUT transfer, the application must allocate a buffer in the memory to accommodate all data to be received as part of the OUT transfer. 2. For OUT transfers, the transfer size field in the endpoint’s transfer size register must be a multiple of the maximum packet size of the endpoint, adjusted to the word boundary. 3. – transfer size[EPNUM] = n × (MPSIZ[EPNUM] + 4 – (MPSIZ[EPNUM] mod 4)) – packet count[EPNUM] = n – n>0 On any OUT endpoint interrupt, the application must read the endpoint’s transfer size register to calculate the size of the payload in the memory. The received payload size can be less than the programmed transfer size. – Payload size in memory = application programmed initial transfer size – core updated final transfer size – Number of USB packets in which this payload was received = application programmed initial packet count – core updated final packet count Internal data flow: 1264/1324 1. The application must set the transfer size and packet count fields in the endpointspecific registers, clear the NAK bit, and enable the endpoint to receive the data. 2. Once the NAK bit is cleared, the core starts receiving data and writes it to the receive FIFO, as long as there is space in the receive FIFO. For every data packet received on the USB, the data packet and its status are written to the receive FIFO. Every packet RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) (maximum packet size or short packet) written to the receive FIFO decrements the packet count field for that endpoint by 1. – OUT data packets received with bad data CRC are flushed from the receive FIFO automatically. – After sending an ACK for the packet on the USB, the core discards nonisochronous OUT data packets that the host, which cannot detect the ACK, resends. The application does not detect multiple back-to-back data OUT packets on the same endpoint with the same data PID. In this case the packet count is not decremented. – If there is no space in the receive FIFO, isochronous or non-isochronous data packets are ignored and not written to the receive FIFO. Additionally, nonisochronous OUT tokens receive a NAK handshake reply. – In all the above three cases, the packet count is not decremented because no data are written to the receive FIFO. 3. When the packet count becomes 0 or when a short packet is received on the endpoint, the NAK bit for that endpoint is set. Once the NAK bit is set, the isochronous or nonisochronous data packets are ignored and not written to the receive FIFO, and nonisochronous OUT tokens receive a NAK handshake reply. 4. After the data are written to the receive FIFO, the application reads the data from the receive FIFO and writes it to external memory, one packet at a time per endpoint. 5. At the end of every packet write on the AHB to external memory, the transfer size for the endpoint is decremented by the size of the written packet. 6. The OUT data transfer completed pattern for an OUT endpoint is written to the receive FIFO on one of the following conditions: 7. – The transfer size is 0 and the packet count is 0 – The last OUT data packet written to the receive FIFO is a short packet (0 ≤ packet size < maximum packet size) When either the application pops this entry (OUT data transfer completed), a transfer completed interrupt is generated for the endpoint and the endpoint enable is cleared. Application programming sequence: 1. Program the OTG_DOEPTSIZx register for the transfer size and the corresponding packet count. 2. Program the OTG_DOEPCTLx register with the endpoint characteristics, and set the EPENA and CNAK bits. – EPENA = 1 in OTG_DOEPCTLx – CNAK = 1 in OTG_DOEPCTLx 3. Wait for the RXFLVL interrupt (in OTG_GINTSTS) and empty the data packets from the receive FIFO. 4. Asserting the XFRC interrupt (OTG_DOEPINTx) marks a successful completion of the non-isochronous OUT data transfer. 5. Read the OTG_DOEPTSIZx register to determine the size of the received data payload. • Generic isochronous OUT data transfer – This step can be repeated many times, depending on the transfer size. This section describes a regular isochronous OUT data transfer. RM0430 Rev 8 1265/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Application requirements: 1. All the application requirements for non-isochronous OUT data transfers also apply to isochronous OUT data transfers. 2. For isochronous OUT data transfers, the transfer size and packet count fields must always be set to the number of maximum-packet-size packets that can be received in a single frame and no more. Isochronous OUT data transfers cannot span more than 1 frame. 3. The application must read all isochronous OUT data packets from the receive FIFO (data and status) before the end of the periodic frame (EOPF interrupt in OTG_GINTSTS). 4. To receive data in the following frame, an isochronous OUT endpoint must be enabled after the EOPF (OTG_GINTSTS) and before the SOF (OTG_GINTSTS). Internal data flow: 1. The internal data flow for isochronous OUT endpoints is the same as that for nonisochronous OUT endpoints, but for a few differences. 2. When an isochronous OUT endpoint is enabled by setting the endpoint enable and clearing the NAK bits, the Even/Odd frame bit must also be set appropriately. The core receives data on an isochronous OUT endpoint in a particular frame only if the following condition is met: – 3. EONUM (in OTG_DOEPCTLx) = FNSOF[0] (in OTG_DSTS) When the application completely reads an isochronous OUT data packet (data and status) from the receive FIFO, the core updates the RXDPID field in OTG_DOEPTSIZx with the data PID of the last isochronous OUT data packet read from the receive FIFO. Application programming sequence: 1266/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 1. Program the OTG_DOEPTSIZx register for the transfer size and the corresponding packet count 2. Program the OTG_DOEPCTLx register with the endpoint characteristics and set the endpoint enable, ClearNAK, and Even/Odd frame bits. 3. – EPENA = 1 – CNAK = 1 – EONUM = (0: Even/1: Odd) Wait for the RXFLVL interrupt (in OTG_GINTSTS) and empty the data packets from the receive FIFO – This step can be repeated many times, depending on the transfer size. 4. The assertion of the XFRC interrupt (in OTG_DOEPINTx) marks the completion of the isochronous OUT data transfer. This interrupt does not necessarily mean that the data in memory are good. 5. This interrupt cannot always be detected for isochronous OUT transfers. Instead, the application can detect the INCOMPISOOUT interrupt in OTG_GINTSTS. 6. Read the OTG_DOEPTSIZx register to determine the size of the received transfer and to determine the validity of the data received in the frame. The application must treat the data received in memory as valid only if one of the following conditions is met: – RXDPID = DATA0 (in OTG_DOEPTSIZx) and the number of USB packets in which this payload was received = 1 – RXDPID = DATA1 (in OTG_DOEPTSIZx) and the number of USB packets in which this payload was received = 2 The number of USB packets in which this payload was received = Application programmed initial packet count – core updated final packet count The application can discard invalid data packets. • Incomplete isochronous OUT data transfers This section describes the application programming sequence when isochronous OUT data packets are dropped inside the core. Internal data flow: 1. 2. For isochronous OUT endpoints, the XFRC interrupt (in OTG_DOEPINTx) may not always be asserted. If the core drops isochronous OUT data packets, the application could fail to detect the XFRC interrupt (OTG_DOEPINTx) under the following circumstances: – When the receive FIFO cannot accommodate the complete ISO OUT data packet, the core drops the received ISO OUT data – When the isochronous OUT data packet is received with CRC errors – When the isochronous OUT token received by the core is corrupted – When the application is very slow in reading the data from the receive FIFO When the core detects an end of periodic frame before transfer completion to all isochronous OUT endpoints, it asserts the incomplete isochronous OUT data interrupt (INCOMPISOOUT in OTG_GINTSTS), indicating that an XFRC interrupt (in OTG_DOEPINTx) is not asserted on at least one of the isochronous OUT endpoints. At this point, the endpoint with the incomplete transfer remains enabled, but no active transfers remain in progress on this endpoint on the USB. RM0430 Rev 8 1267/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Application programming sequence: 1. Asserting the INCOMPISOOUT interrupt (OTG_GINTSTS) indicates that in the current frame, at least one isochronous OUT endpoint has an incomplete transfer. 2. If this occurs because isochronous OUT data is not completely emptied from the endpoint, the application must ensure that the application empties all isochronous OUT data (data and status) from the receive FIFO before proceeding. – 3. When all data are emptied from the receive FIFO, the application can detect the XFRC interrupt (OTG_DOEPINTx). In this case, the application must re-enable the endpoint to receive isochronous OUT data in the next frame. When it receives an INCOMPISOOUT interrupt (in OTG_GINTSTS), the application must read the control registers of all isochronous OUT endpoints (OTG_DOEPCTLx) to determine which endpoints had an incomplete transfer in the current microframe. An endpoint transfer is incomplete if both the following conditions are met: – EONUM bit (in OTG_DOEPCTLx) = FNSOF[0] (in OTG_DSTS) – EPENA = 1 (in OTG_DOEPCTLx) 4. The previous step must be performed before the SOF interrupt (in OTG_GINTSTS) is detected, to ensure that the current frame number is not changed. 5. For isochronous OUT endpoints with incomplete transfers, the application must discard the data in the memory and disable the endpoint by setting the EPDIS bit in OTG_DOEPCTLx. 6. Wait for the EPDISD interrupt (in OTG_DOEPINTx) and enable the endpoint to receive new data in the next frame. – • Because the core can take some time to disable the endpoint, the application may not be able to receive the data in the next frame after receiving bad isochronous data. Stalling a non-isochronous OUT endpoint This section describes how the application can stall a non-isochronous endpoint. 1. Put the core in the Global OUT NAK mode. 2. Disable the required endpoint – When disabling the endpoint, instead of setting the SNAK bit in OTG_DOEPCTL, set STALL = 1 (in OTG_DOEPCTL). The STALL bit always takes precedence over the NAK bit. 3. When the application is ready to end the STALL handshake for the endpoint, the STALL bit (in OTG_DOEPCTLx) must be cleared. 4. If the application is setting or clearing a STALL for an endpoint due to a SetFeature.Endpoint Halt or ClearFeature.Endpoint Halt command, the STALL bit must be set or cleared before the application sets up the status stage transfer on the control endpoint. Examples This section describes and depicts some fundamental transfer types and scenarios. • Bulk OUT transaction Figure 414 depicts the reception of a single Bulk OUT data packet from the USB to the AHB and describes the events involved in the process. 1268/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Figure 414. Bulk OUT transaction +RVW 86% 'HYLFH $SSOLFDWLRQ LQLW BRXWBHS ;)56,= 3.7&17 E\WHV :UBUHJ 27*B'2(376,=[ 2 87 :UBUHJ 27*B'2(3&7/[ (3(1$ &1 $. E\WHV [DFWB $& . 5;)/9/ LLQWU 27*B'2 (3&7/[ 3.7&1 7 1$. ;)56,= U 28 7 1$ . LGOH XQWLO LQWU UFYBRXW BSNW ;) LQW U 5& 2Q QHZ [IHU RU 5[),)2 QRWHP SW\ LGOH XQWLO LQWU 069 After a SetConfiguration/SetInterface command, the application initializes all OUT endpoints by setting CNAK = 1 and EPENA = 1 (in OTG_DOEPCTLx), and setting a suitable XFRSIZ and PKTCNT in the OTG_DOEPTSIZx register. 1. host attempts to send data (OUT token) to an endpoint. 2. When the core receives the OUT token on the USB, it stores the packet in the Rx FIFO because space is available there. 3. After writing the complete packet in the Rx FIFO, the core then asserts the RXFLVL interrupt (in OTG_GINTSTS). 4. On receiving the PKTCNT number of USB packets, the core internally sets the NAK bit for this endpoint to prevent it from receiving any more packets. 5. The application processes the interrupt and reads the data from the Rx FIFO. 6. When the application has read all the data (equivalent to XFRSIZ), the core generates an XFRC interrupt (in OTG_DOEPINTx). 7. The application processes the interrupt and uses the setting of the XFRC interrupt bit (in OTG_DOEPINTx) to determine that the intended transfer is complete. IN data transfers • Packet write This section describes how the application writes data packets to the endpoint FIFO when dedicated transmit FIFOs are enabled. RM0430 Rev 8 1269/1324 1283 USB on-the-go full-speed (OTG_FS) 1. 2. RM0430 The application can either choose the polling or the interrupt mode. – In polling mode, the application monitors the status of the endpoint transmit data FIFO by reading the OTG_DTXFSTSx register, to determine if there is enough space in the data FIFO. – In interrupt mode, the application waits for the TXFE interrupt (in OTG_DIEPINTx) and then reads the OTG_DTXFSTSx register, to determine if there is enough space in the data FIFO. – To write a single non-zero length data packet, there must be space to write the entire packet in the data FIFO. – To write zero length packet, the application must not look at the FIFO space. Using one of the above mentioned methods, when the application determines that there is enough space to write a transmit packet, the application must first write into the endpoint control register, before writing the data into the data FIFO. Typically, the application, must do a read modify write on the OTG_DIEPCTLx register to avoid modifying the contents of the register, except for setting the endpoint enable bit. The application can write multiple packets for the same endpoint into the transmit FIFO, if space is available. For periodic IN endpoints, the application must write packets only for one microframe. It can write packets for the next periodic transaction only after getting transfer complete for the previous transaction. • Setting IN endpoint NAK Internal data flow: 1. When the application sets the IN NAK for a particular endpoint, the core stops transmitting data on the endpoint, irrespective of data availability in the endpoint’s transmit FIFO. 2. Non-isochronous IN tokens receive a NAK handshake reply – Isochronous IN tokens receive a zero-data-length packet reply 3. The core asserts the INEPNE (IN endpoint NAK effective) interrupt in OTG_DIEPINTx in response to the SNAK bit in OTG_DIEPCTLx. 4. Once this interrupt is seen by the application, the application can assume that the endpoint is in IN NAK mode. This interrupt can be cleared by the application by setting the CNAK bit in OTG_DIEPCTLx. Application programming sequence: 1. To stop transmitting any data on a particular IN endpoint, the application must set the IN NAK bit. To set this bit, the following field must be programmed. – 2. Wait for assertion of the INEPNE interrupt in OTG_DIEPINTx. This interrupt indicates that the core has stopped transmitting data on the endpoint. 3. The core can transmit valid IN data on the endpoint after the application has set the NAK bit, but before the assertion of the NAK Effective interrupt. 4. The application can mask this interrupt temporarily by writing to the INEPNEM bit in OTG_DIEPMSK. – 5. 1270/1324 SNAK = 1 in OTG_DIEPCTLx INEPNEM = 0 in OTG_DIEPMSK To exit endpoint NAK mode, the application must clear the NAK status bit (NAKSTS) in OTG_DIEPCTLx. This also clears the INEPNE interrupt (in OTG_DIEPINTx). RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) – 6. If the application masked this interrupt earlier, it must be unmasked as follows: – • CNAK = 1 in OTG_DIEPCTLx INEPNEM = 1 in OTG_DIEPMSK IN endpoint disable Use the following sequence to disable a specific IN endpoint that has been previously enabled. Application programming sequence: 1. 2. The application must stop writing data on the AHB for the IN endpoint to be disabled. The application must set the endpoint in NAK mode. – SNAK = 1 in OTG_DIEPCTLx 3. Wait for the INEPNE interrupt in OTG_DIEPINTx. 4. Set the following bits in the OTG_DIEPCTLx register for the endpoint that must be disabled. 5. – EPDIS = 1 in OTG_DIEPCTLx – SNAK = 1 in OTG_DIEPCTLx Assertion of the EPDISD interrupt in OTG_DIEPINTx indicates that the core has completely disabled the specified endpoint. Along with the assertion of the interrupt, the core also clears the following bits: – EPENA = 0 in OTG_DIEPCTLx – EPDIS = 0 in OTG_DIEPCTLx 6. The application must read the OTG_DIEPTSIZx register for the periodic IN EP, to calculate how much data on the endpoint were transmitted on the USB. 7. The application must flush the data in the endpoint transmit FIFO, by setting the following fields in the OTG_GRSTCTL register: – TXFNUM (in OTG_GRSTCTL) = Endpoint transmit FIFO number – TXFFLSH in (OTG_GRSTCTL) = 1 The application must poll the OTG_GRSTCTL register, until the TXFFLSH bit is cleared by the core, which indicates the end of flush operation. To transmit new data on this endpoint, the application can re-enable the endpoint at a later point. • Generic non-periodic IN data transfers Application requirements: 1. Before setting up an IN transfer, the application must ensure that all data to be transmitted as part of the IN transfer are part of a single buffer. 2. For IN transfers, the transfer size field in the endpoint transfer size register denotes a payload that constitutes multiple maximum-packet-size packets and a single short packet. This short packet is transmitted at the end of the transfer. – To transmit a few maximum-packet-size packets and a short packet at the end of the transfer: Transfer size[EPNUM] = x × MPSIZ[EPNUM] + sp If (sp > 0), then packet count[EPNUM] = x + 1. Otherwise, packet count[EPNUM] = x – To transmit a single zero-length data packet: RM0430 Rev 8 1271/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Transfer size[EPNUM] = 0 Packet count[EPNUM] = 1 – To transmit a few maximum-packet-size packets and a zero-length data packet at the end of the transfer, the application must split the transfer into two parts. The first sends maximum-packet-size data packets and the second sends the zerolength data packet alone. First transfer: transfer size[EPNUM] = x × MPSIZ[epnum]; packet count = n; Second transfer: transfer size[EPNUM] = 0; packet count = 1; 3. Once an endpoint is enabled for data transfers, the core updates the transfer size register. At the end of the IN transfer, the application must read the transfer size register to determine how much data posted in the transmit FIFO have already been sent on the USB. 4. Data fetched into transmit FIFO = Application-programmed initial transfer size – coreupdated final transfer size – Data transmitted on USB = (application-programmed initial packet count – core updated final packet count) × MPSIZ[EPNUM] – Data yet to be transmitted on USB = (Application-programmed initial transfer size – data transmitted on USB) Internal data flow: 1. The application must set the transfer size and packet count fields in the endpointspecific registers and enable the endpoint to transmit the data. 2. The application must also write the required data to the transmit FIFO for the endpoint. 3. Every time a packet is written into the transmit FIFO by the application, the transfer size for that endpoint is decremented by the packet size. The data is fetched from the memory by the application, until the transfer size for the endpoint becomes 0. After writing the data into the FIFO, the “number of packets in FIFO” count is incremented (this is a 3-bit count, internally maintained by the core for each IN endpoint transmit FIFO. The maximum number of packets maintained by the core at any time in an IN endpoint FIFO is eight). For zero-length packets, a separate flag is set for each FIFO, without any data in the FIFO. 4. Once the data are written to the transmit FIFO, the core reads them out upon receiving an IN token. For every non-isochronous IN data packet transmitted with an ACK handshake, the packet count for the endpoint is decremented by one, until the packet count is zero. The packet count is not decremented on a timeout. 5. For zero length packets (indicated by an internal zero length flag), the core sends out a zero-length packet for the IN token and decrements the packet count field. 6. If there are no data in the FIFO for a received IN token and the packet count field for that endpoint is zero, the core generates an “IN token received when Tx FIFO is empty” (ITTXFE) interrupt for the endpoint, provided that the endpoint NAK bit is not set. The core responds with a NAK handshake for non-isochronous endpoints on the USB. 7. The core internally rewinds the FIFO pointers and no timeout interrupt is generated. 8. When the transfer size is 0 and the packet count is 0, the transfer complete (XFRC) interrupt for the endpoint is generated and the endpoint enable is cleared. Application programming sequence: 1272/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) 1. Program the OTG_DIEPTSIZx register with the transfer size and corresponding packet count. 2. Program the OTG_DIEPCTLx register with the endpoint characteristics and set the CNAK and EPENA (endpoint enable) bits. 3. When transmitting non-zero length data packet, the application must poll the OTG_DTXFSTSx register (where x is the FIFO number associated with that endpoint) to determine whether there is enough space in the data FIFO. The application can optionally use TXFE (in OTG_DIEPINTx) before writing the data. • Generic periodic IN data transfers This section describes a typical periodic IN data transfer. Application requirements: 1. Application requirements 1, 2, 3, and 4 of Generic non-periodic IN data transfers on page 1271 also apply to periodic IN data transfers, except for a slight modification of requirement 2. – The application can only transmit multiples of maximum-packet-size data packets or multiples of maximum-packet-size packets, plus a short packet at the end. To transmit a few maximum-packet-size packets and a short packet at the end of the transfer, the following conditions must be met: transfer size[EPNUM] = x × MPSIZ[EPNUM] + sp (where x is an integer ≥ 0, and 0 ≤ sp < MPSIZ[EPNUM]) If (sp > 0), packet count[EPNUM] = x + 1 Otherwise, packet count[EPNUM] = x; MCNT[EPNUM] = packet count[EPNUM] – The application cannot transmit a zero-length data packet at the end of a transfer. It can transmit a single zero-length data packet by itself. To transmit a single zerolength data packet: – transfer size[EPNUM] = 0 packet count[EPNUM] = 1 MCNT[EPNUM] = packet count[EPNUM] 2. 3. The application can only schedule data transfers one frame at a time. – (MCNT – 1) × MPSIZ ≤ XFERSIZ ≤ MCNT × MPSIZ – PKTCNT = MCNT (in OTG_DIEPTSIZx) – If XFERSIZ < MCNT × MPSIZ, the last data packet of the transfer is a short packet. – Note that: MCNT is in OTG_DIEPTSIZx, MPSIZ is in OTG_DIEPCTLx, PKTCNT is in OTG_DIEPTSIZx and XFERSIZ is in OTG_DIEPTSIZx The complete data to be transmitted in the frame must be written into the transmit FIFO by the application, before the IN token is received. Even when 1 word of the data to be transmitted per frame is missing in the transmit FIFO when the IN token is received, the core behaves as when the FIFO is empty. When the transmit FIFO is empty: – A zero data length packet would be transmitted on the USB for isochronous IN endpoints – A NAK handshake would be transmitted on the USB for interrupt IN endpoints Internal data flow: RM0430 Rev 8 1273/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 1. The application must set the transfer size and packet count fields in the endpointspecific registers and enable the endpoint to transmit the data. 2. The application must also write the required data to the associated transmit FIFO for the endpoint. 3. Every time the application writes a packet to the transmit FIFO, the transfer size for that endpoint is decremented by the packet size. The data are fetched from application memory until the transfer size for the endpoint becomes 0. 4. When an IN token is received for a periodic endpoint, the core transmits the data in the FIFO, if available. If the complete data payload (complete packet, in dedicated FIFO mode) for the frame is not present in the FIFO, then the core generates an IN token received when Tx FIFO empty interrupt for the endpoint. 5. 6. – A zero-length data packet is transmitted on the USB for isochronous IN endpoints – A NAK handshake is transmitted on the USB for interrupt IN endpoints The packet count for the endpoint is decremented by 1 under the following conditions: – For isochronous endpoints, when a zero- or non-zero-length data packet is transmitted – For interrupt endpoints, when an ACK handshake is transmitted – When the transfer size and packet count are both 0, the transfer completed interrupt for the endpoint is generated and the endpoint enable is cleared. At the “Periodic frame Interval” (controlled by PFIVL in OTG_DCFG), when the core finds non-empty any of the isochronous IN endpoint FIFOs scheduled for the current frame non-empty, the core generates an IISOIXFR interrupt in OTG_GINTSTS. Application programming sequence: 1. Program the OTG_DIEPCTLx register with the endpoint characteristics and set the CNAK and EPENA bits. 2. Write the data to be transmitted in the next frame to the transmit FIFO. 3. Asserting the ITTXFE interrupt (in OTG_DIEPINTx) indicates that the application has not yet written all data to be transmitted to the transmit FIFO. 4. If the interrupt endpoint is already enabled when this interrupt is detected, ignore the interrupt. If it is not enabled, enable the endpoint so that the data can be transmitted on the next IN token attempt. 5. Asserting the XFRC interrupt (in OTG_DIEPINTx) with no ITTXFE interrupt in OTG_DIEPINTx indicates the successful completion of an isochronous IN transfer. A read to the OTG_DIEPTSIZx register must give transfer size = 0 and packet count = 0, indicating all data were transmitted on the USB. 6. Asserting the XFRC interrupt (in OTG_DIEPINTx), with or without the ITTXFE interrupt (in OTG_DIEPINTx), indicates the successful completion of an interrupt IN transfer. A read to the OTG_DIEPTSIZx register must give transfer size = 0 and packet count = 0, indicating all data were transmitted on the USB. 7. Asserting the incomplete isochronous IN transfer (IISOIXFR) interrupt in OTG_GINTSTS with none of the aforementioned interrupts indicates the core did not receive at least 1 periodic IN token in the current frame. • Incomplete isochronous IN data transfers This section describes what the application must do on an incomplete isochronous IN data transfer. 1274/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Internal data flow: 1. An isochronous IN transfer is treated as incomplete in one of the following conditions: a) The core receives a corrupted isochronous IN token on at least one isochronous IN endpoint. In this case, the application detects an incomplete isochronous IN transfer interrupt (IISOIXFR in OTG_GINTSTS). b) The application is slow to write the complete data payload to the transmit FIFO and an IN token is received before the complete data payload is written to the FIFO. In this case, the application detects an IN token received when Tx FIFO empty interrupt in OTG_DIEPINTx. The application can ignore this interrupt, as it eventually results in an incomplete isochronous IN transfer interrupt (IISOIXFR in OTG_GINTSTS) at the end of periodic frame. The core transmits a zero-length data packet on the USB in response to the received IN token. 2. The application must stop writing the data payload to the transmit FIFO as soon as possible. 3. The application must set the NAK bit and the disable bit for the endpoint. 4. The core disables the endpoint, clears the disable bit, and asserts the endpoint disable interrupt for the endpoint. Application programming sequence: 1. The application can ignore the IN token received when Tx FIFO empty interrupt in OTG_DIEPINTx on any isochronous IN endpoint, as it eventually results in an incomplete isochronous IN transfer interrupt (in OTG_GINTSTS). 2. Assertion of the incomplete isochronous IN transfer interrupt (in OTG_GINTSTS) indicates an incomplete isochronous IN transfer on at least one of the isochronous IN endpoints. 3. The application must read the endpoint control register for all isochronous IN endpoints to detect endpoints with incomplete IN data transfers. 4. The application must stop writing data to the Periodic Transmit FIFOs associated with these endpoints on the AHB. 5. Program the following fields in the OTG_DIEPCTLx register to disable the endpoint: 6. – SNAK = 1 in OTG_DIEPCTLx – EPDIS = 1 in OTG_DIEPCTLx The assertion of the endpoint disabled interrupt in OTG_DIEPINTx indicates that the core has disabled the endpoint. – • At this point, the application must flush the data in the associated transmit FIFO or overwrite the existing data in the FIFO by enabling the endpoint for a new transfer in the next microframe. To flush the data, the application must use the OTG_GRSTCTL register. Stalling non-isochronous IN endpoints This section describes how the application can stall a non-isochronous endpoint. Application programming sequence: RM0430 Rev 8 1275/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 1. Disable the IN endpoint to be stalled. Set the STALL bit as well. 2. EPDIS = 1 in OTG_DIEPCTLx, when the endpoint is already enabled – STALL = 1 in OTG_DIEPCTLx – The STALL bit always takes precedence over the NAK bit 3. Assertion of the endpoint disabled interrupt (in OTG_DIEPINTx) indicates to the application that the core has disabled the specified endpoint. 4. The application must flush the non-periodic or periodic transmit FIFO, depending on the endpoint type. In case of a non-periodic endpoint, the application must re-enable the other non-periodic endpoints that do not need to be stalled, to transmit data. 5. Whenever the application is ready to end the STALL handshake for the endpoint, the STALL bit must be cleared in OTG_DIEPCTLx. 6. If the application sets or clears a STALL bit for an endpoint due to a SetFeature.Endpoint Halt command or ClearFeature.Endpoint Halt command, the STALL bit must be set or cleared before the application sets up the status stage transfer on the control endpoint. Special case: stalling the control OUT endpoint The core must stall IN/OUT tokens if, during the data stage of a control transfer, the host sends more IN/OUT tokens than are specified in the SETUP packet. In this case, the application must enable the ITTXFE interrupt in OTG_DIEPINTx and the OTEPDIS interrupt in OTG_DOEPINTx during the data stage of the control transfer, after the core has transferred the amount of data specified in the SETUP packet. Then, when the application receives this interrupt, it must set the STALL bit in the corresponding endpoint control register, and clear this interrupt. 33.16.6 Worst case response time When the OTG_FS controller acts as a device, there is a worst case response time for any tokens that follow an isochronous OUT. This worst case response time depends on the AHB clock frequency. The core registers are in the AHB domain, and the core does not accept another token before updating these register values. The worst case is for any token following an isochronous OUT, because for an isochronous transaction, there is no handshake and the next token could come sooner. This worst case value is 7 PHY clocks when the AHB clock is the same as the PHY clock. When the AHB clock is faster, this value is smaller. If this worst case condition occurs, the core responds to bulk/interrupt tokens with a NAK and drops isochronous and SETUP tokens. The host interprets this as a timeout condition for SETUP and retries the SETUP packet. For isochronous transfers, the Incomplete isochronous IN transfer interrupt (IISOIXFR) and Incomplete isochronous OUT transfer interrupt (IISOOXFR) inform the application that isochronous IN/OUT packets were dropped. Choosing the value of TRDT in OTG_GUSBCFG The value in TRDT (OTG_GUSBCFG) is the time it takes for the MAC, in terms of PHY clocks after it has received an IN token, to get the FIFO status, and thus the first data from the PFC block. This time involves the synchronization delay between the PHY and AHB clocks. The worst case delay for this is when the AHB clock is the same as the PHY clock. In this case, the delay is 5 clocks. 1276/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) Once the MAC receives an IN token, this information (token received) is synchronized to the AHB clock by the PFC (the PFC runs on the AHB clock). The PFC then reads the data from the SPRAM and writes them into the dual clock source buffer. The MAC then reads the data out of the source buffer (4 deep). If the AHB is running at a higher frequency than the PHY, the application can use a smaller value for TRDT (in OTG_GUSBCFG). Figure 415 has the following signals: • tkn_rcvd: Token received information from MAC to PFC • dynced_tkn_rcvd: Doubled sync tkn_rcvd, from PCLK to HCLK domain • spr_read: Read to SPRAM • spr_addr: Address to SPRAM • spr_rdata: Read data from SPRAM • srcbuf_push: Push to the source buffer • srcbuf_rdata: Read data from the source buffer. Data seen by MAC To calculate the value of TRDT, refer to Table 229: TRDT values (FS) . Figure 415. TRDT max timing case RM0430 Rev 8 1277/1324 1283 USB on-the-go full-speed (OTG_FS) 33.16.7 RM0430 OTG programming model The OTG_FS controller is an OTG device supporting HNP and SRP. When the core is connected to an “A” plug, it is referred to as an A-device. When the core is connected to a “B” plug it is referred to as a B-device. In host mode, the OTG_FS controller turns off VBUS to conserve power. SRP is a method by which the B-device signals the A-device to turn on VBUS power. A device must perform both data-line pulsing and VBUS pulsing, but a host can detect either data-line pulsing or VBUS pulsing for SRP. HNP is a method by which the Bdevice negotiates and switches to host role. In Negotiated mode after HNP, the B-device suspends the bus and reverts to the device role. A-device session request protocol The application must set the SRP-capable bit in the core USB configuration register. This enables the OTG_FS controller to detect SRP as an A-device. Figure 416. A-device SRP 6XVSHQG '59B9%86 9%86B9$/,' 9%86SXOVLQJ $B9$/,' ' ' 'DWDOLQHSXOVLQJ &RQQHFW /RZ DLF 1. DRV_VBUS = VBUS drive signal to the PHY VBUS_VALID = VBUS valid signal from PHY A_VALID = A-peripheral VBUS level signal to PHY D+ = Data plus line D- = Data minus line The following points refer and describe the signal numeration shown in the Figure 416: 1278/1324 1. To save power, the application suspends and turns off port power when the bus is idle by writing the port suspend and port power bits in the host port control and status register. 2. PHY indicates port power off by deasserting the VBUS_VALID signal. 3. The device must detect SE0 for at least 2 ms to start SRP when VBUS power is off. 4. To initiate SRP, the device turns on its data line pull-up resistor for 5 to 10 ms. The OTG_FS controller detects data-line pulsing. 5. The device drives VBUS above the A-device session valid (2.0 V minimum) for VBUS pulsing. The OTG_FS controller interrupts the application on detecting SRP. The session RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) request detected bit is set in Global interrupt status register (SRQINT set in OTG_GINTSTS). 6. The application must service the session request detected interrupt and turn on the port power bit by writing the port power bit in the host port control and status register. The PHY indicates port power-on by asserting the VBUS_VALID signal. 7. When the USB is powered, the device connects, completing the SRP process. B-device session request protocol The application must set the SRP-capable bit in the core USB configuration register. This enables the OTG_FS controller to initiate SRP as a B-device. SRP is a means by which the OTG_FS controller can request a new session from the host. Figure 417. B-device SRP 6XVSHQG 9%86B9$/,' %B9$/,' ',6&+5*B9%86 6(66B(1' 'DWDOLQHSXOVLQJ &RQQHFW '3 '0 /RZ 9%86SXOVLQJ &+5*B9%86 DLF 1. VBUS_VALID = VBUS valid signal from PHY B_VALID = B-peripheral valid session to PHY DISCHRG_VBUS = discharge signal to PHY SESS_END = session end signal to PHY CHRG_VBUS = charge VBUS signal to PHY DP = Data plus line DM = Data minus line The following points refer and describe the signal numeration shown in the Figure 417: 1. To save power, the host suspends and turns off port power when the bus is idle. The OTG_FS controller sets the early suspend bit in the core interrupt register after 3 ms of bus idleness. Following this, the OTG_FS controller sets the USB suspend bit in the core interrupt register. The OTG_FS controller informs the PHY to discharge VBUS. 2. The PHY indicates the session’s end to the device. This is the initial condition for SRP. The OTG_FS controller requires 2 ms of SE0 before initiating SRP. For a USB 1.1 full-speed serial transceiver, the application must wait until VBUS discharges to 0.2 V after BSVLD (in OTG_GOTGCTL) is deasserted. This discharge RM0430 Rev 8 1279/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 time can be obtained from the transceiver vendor and varies from one transceiver to another. 3. The OTG_FS core informs the PHY to speed up VBUS discharge. 4. The application initiates SRP by writing the session request bit in the OTG control and status register. The OTG_FS controller perform data-line pulsing followed by VBUS pulsing. 5. The host detects SRP from either the data-line or VBUS pulsing, and turns on VBUS. The PHY indicates VBUS power-on to the device. 6. The OTG_FS controller performs VBUS pulsing. The host starts a new session by turning on VBUS, indicating SRP success. The OTG_FS controller interrupts the application by setting the session request success status change bit in the OTG interrupt status register. The application reads the session request success bit in the OTG control and status register. 7. When the USB is powered, the OTG_FS controller connects, completing the SRP process. A-device host negotiation protocol HNP switches the USB host role from the A-device to the B-device. The application must set the HNP-capable bit in the core USB configuration register to enable the OTG_FS controller to perform HNP as an A-device. Figure 418. A-device HNP 1. DPPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DP line inside the PHY. DMPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DM line inside the PHY. The following points refer and describe the signal numeration shown in the Figure 418: 1. 1280/1324 The OTG_FS controller sends the B-device a SetFeature b_hnp_enable descriptor to enable HNP support. The B-device’s ACK response indicates that the B-device supports HNP. The application must set host Set HNP enable bit in the OTG control RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) and status register to indicate to the OTG_FS controller that the B-device supports HNP. 2. When it has finished using the bus, the application suspends by writing the port suspend bit in the host port control and status register. 3. When the B-device observes a USB suspend, it disconnects, indicating the initial condition for HNP. The B-device initiates HNP only when it must switch to the host role; otherwise, the bus continues to be suspended. The OTG_FS controller sets the host negotiation detected interrupt in the OTG interrupt status register, indicating the start of HNP. The OTG_FS controller deasserts the DM pull down and DM pull down in the PHY to indicate a device role. The PHY enables the OTG_DP pull-up resistor to indicate a connect for B-device. The application must read the current mode bit in the OTG control and status register to determine device mode operation. 4. The B-device detects the connection, issues a USB reset, and enumerates the OTG_FS controller for data traffic. 5. The B-device continues the host role, initiating traffic, and suspends the bus when done. The OTG_FS controller sets the early suspend bit in the core interrupt register after 3 ms of bus idleness. Following this, the OTG_FS controller sets the USB suspend bit in the core interrupt register. 6. In Negotiated mode, the OTG_FS controller detects the suspend, disconnects, and switches back to the host role. The OTG_FS controller asserts the DM pull down and DM pull down in the PHY to indicate its assumption of the host role. 7. The OTG_FS controller sets the connector ID status change interrupt in the OTG interrupt status register. The application must read the connector ID status in the OTG control and status register to determine the OTG_FS controller operation as an Adevice. This indicates the completion of HNP to the application. The application must read the Current mode bit in the OTG control and status register to determine host mode operation. 8. The B-device connects, completing the HNP process. B-device host negotiation protocol HNP switches the USB host role from B-device to A-device. The application must set the HNP-capable bit in the core USB configuration register to enable the OTG_FS controller to perform HNP as a B-device. RM0430 Rev 8 1281/1324 1283 USB on-the-go full-speed (OTG_FS) RM0430 Figure 419. B-device HNP 1. DPPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DP line inside the PHY. DMPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DM line inside the PHY. The following points refer and describe the signal numeration shown in the Figure 419: 1. The A-device sends the SetFeature b_hnp_enable descriptor to enable HNP support. The OTG_FS controller’s ACK response indicates that it supports HNP. The application must set the device HNP enable bit in the OTG control and status register to indicate HNP support. The application sets the HNP request bit in the OTG control and status register to indicate to the OTG_FS controller to initiate HNP. 2. When it has finished using the bus, the A-device suspends by writing the port suspend bit in the host port control and status register. The OTG_FS controller sets the Early suspend bit in the core interrupt register after 3 ms of bus idleness. Following this, the OTG_FS controller sets the USB suspend bit in the core interrupt register. The OTG_FS controller disconnects and the A-device detects SE0 on the bus, indicating HNP. The OTG_FS controller asserts the DP pull down and DM pull down in the PHY to indicate its assumption of the host role. The A-device responds by activating its OTG_DP pull-up resistor within 3 ms of detecting SE0. The OTG_FS controller detects this as a connect. The OTG_FS controller sets the host negotiation success status change interrupt in the OTG interrupt status register, indicating the HNP status. The application must read the host negotiation success bit in the OTG control and status register to determine host 1282/1324 RM0430 Rev 8 RM0430 USB on-the-go full-speed (OTG_FS) negotiation success. The application must read the current Mode bit in the core interrupt register (OTG_GINTSTS) to determine host mode operation. 3. The application sets the reset bit (PRST in OTG_HPRT) and the OTG_FS controller issues a USB reset and enumerates the A-device for data traffic. 4. The OTG_FS controller continues the host role of initiating traffic, and when done, suspends the bus by writing the port suspend bit in the host port control and status register. 5. In Negotiated mode, when the A-device detects a suspend, it disconnects and switches back to the host role. The OTG_FS controller deasserts the DP pull down and DM pull down in the PHY to indicate the assumption of the device role. 6. The application must read the current mode bit in the core interrupt (OTG_GINTSTS) register to determine the host mode operation. 7. The OTG_FS controller connects, completing the HNP process. RM0430 Rev 8 1283/1324 1283 Debug support (DBG) RM0430 34 Debug support (DBG) 34.1 Overview The STM32F413/423 is built around a Cortex®-M4 with FPU core which contains hardware extensions for advanced debugging features. The debug extensions allow the core to be stopped either on a given instruction fetch (breakpoint) or data access (watchpoint). When stopped, the core’s internal state and the system’s external state may be examined. Once examination is complete, the core and the system may be restored and program execution resumed. The debug features are used by the debugger host when connecting to and debugging the STM32F413/423 MCUs. Two interfaces for debug are available: • Serial wire • JTAG debug port Figure 420. Block diagram of STM32 MCU and Cortex®-M4 with FPU-level debug support 34-&XX DEBUG SUPPORT #ORTEX - DEBUG SUPPORT *4-3 37$)/ *4$) .*4234 $#ODE INTERFACE 3YSTEM INTERFACE %XTERNAL PRIVATE PERIPHERAL BUS 00" "RIDGE 42!#%37/ 4RACE PORT 40)5 !(" !0 )NTERNAL PRIVATE PERIPHERAL BUS 00" 42!#%#+ 42!#%$;= .6)# $74 $"'-#5 &0" ES *4#+ 37#,+ 37* $0 TR IC *4$/ 42!#%37/ $ATA TE D #ORTEX - CORE $ I "US MATRIX )4- -36 Note: 1284/1324 The debug features embedded in the Cortex®-M4 with FPU core are a subset of the Arm® CoreSight Design Kit. RM0430 Rev 8 RM0430 Debug support (DBG) The Arm® Cortex®-M4 with FPU core provides integrated on-chip debug support. It is comprised of: • SWJ-DP: Serial wire / JTAG debug port • AHP-AP: AHB access port • ITM: Instrumentation trace macrocell • FPB: Flash patch breakpoint • DWT: Data watchpoint trigger • TPUI: Trace port unit interface (available on larger packages, where the corresponding pins are mapped) • ETM: Embedded Trace Macrocell (available on larger packages, where the corresponding pins are mapped) It also includes debug features dedicated to the STM32F413/423: • Flexible debug pinout assignment • MCU debug box (support for low-power modes, control over peripheral clocks, etc.) Note: For further information on debug functionality supported by the Arm® Cortex®-M4 with FPU core, refer to the Cortex®-M4 with FPU-r0p1 Technical Reference Manual and to the CoreSight Design Kit-r0p1 TRM (see Section 34.2: Reference Arm® documentation). 34.2 Reference Arm® documentation • Cortex®-M4 with FPU r0p1 Technical Reference Manual (TRM) (see Related documents on page 1) 34.3 • Arm® Debug Interface V5 • Arm® CoreSight Design Kit revision r0p1 Technical Reference Manual SWJ debug port (serial wire and JTAG) The STM32F413/423 core of the integrates the Serial Wire / JTAG Debug Port (SWJ-DP). It is an Arm® standard CoreSight debug port that combines a JTAG-DP (5-pin) interface and a SW-DP (2-pin) interface. • The JTAG Debug Port (JTAG-DP) provides a 5-pin standard JTAG interface to the AHP-AP port. • The Serial Wire Debug Port (SW-DP) provides a 2-pin (clock + data) interface to the AHP-AP port. In the SWJ-DP, the two JTAG pins of the SW-DP are multiplexed with some of the five JTAG pins of the JTAG-DP. RM0430 Rev 8 1285/1324 1314 Debug support (DBG) RM0430 Figure 421. SWJ debug port TRACESWO (asynchronous trace) SWJ-DP JTDO JTDI NJTRST TDO TDI TDO TDI nTRST nTRST JTAG-DP TCK TMS nPOTRST SWD/JTAG select nPOTRST DBGRESETn SWDITMS JTMS/SWDIO From power-on reset DBGDI SWDO DBGDO SW-DP SWDOEN JTCK/SWCLK SWCLKTCK DBGDOEN DBGCLK ai17139 Figure 421 shows that the asynchronous TRACE output (TRACESWO) is multiplexed with TDO. This means that the asynchronous trace can only be used with SW-DP, not JTAG-DP. 34.3.1 Mechanism to select the JTAG-DP or the SW-DP By default, the JTAG-Debug Port is active. If the debugger host wants to switch to the SW-DP, it must provide a dedicated JTAG sequence on TMS/TCK (respectively mapped to SWDIO and SWCLK) which disables the JTAG-DP and enables the SW-DP. This way it is possible to activate the SWDP using only the SWCLK and SWDIO pins. This sequence is: 34.4 1. Send more than 50 TCK cycles with TMS (SWDIO) =1 2. Send the 16-bit sequence on TMS (SWDIO) = 0111100111100111 (MSB transmitted first) 3. Send more than 50 TCK cycles with TMS (SWDIO) =1 Pinout and debug port pins The STM32F413/423 MCUs are available in various packages with different numbers of available pins. As a result, some functionality (ETM) related to pin availability may differ between packages. 1286/1324 RM0430 Rev 8 RM0430 34.4.1 Debug support (DBG) SWJ debug port pins Five pins are used as outputs from the STM32F413/423 for the SWJ-DP as alternate functions of general-purpose I/Os. These pins are available on all packages. Table 232. SWJ debug port pins JTAG debug port SW debug port SWJ-DP pin name Type 34.4.2 Description Type Debug assignment Pin assign ment JTMS/SWDIO I JTAG Test Mode Selection IO Serial Wire Data Input/Output PA13 JTCK/SWCLK I JTAG Test Clock I Serial Wire Clock PA14 JTDI I JTAG Test Data Input - - PA15 JTDO/TRACESWO O JTAG Test Data Output - TRACESWO if async trace is enabled PB3 NJTRST I JTAG Test nReset - - PB4 Flexible SWJ-DP pin assignment After RESET (SYSRESETn or PORESETn), all five pins used for the SWJ-DP are assigned as dedicated pins immediately usable by the debugger host (note that the trace outputs are not assigned except if explicitly programmed by the debugger host). However, the STM32F413/423 MCUs offers the possibility of disabling some or all of the SWJ-DP ports and so, of releasing the associated pins for general-purpose IO (GPIO) usage. For more details on how to disable SWJ-DP port pins, please refer to . . Table 233. Flexible SWJ-DP pin assignment SWJ IO pin assigned Available debug ports PB3 / JTDO PB4 / NJTRST X Full SWJ (JTAG-DP + SW-DP) - Reset State X X X X Full SWJ (JTAG-DP + SW-DP) but without NJTRST X X X X JTAG-DP Disabled and SW-DP Enabled X X JTAG-DP Disabled and SW-DP Disabled Note: PA13 / PA14 / PA15 / JTMS / JTCK / JTDI SWDIO SWCLK Released When the APB bridge write buffer is full, it takes one extra APB cycle when writing the GPIO_AFR register. This is because the deactivation of the JTAGSW pins is done in two cycles to guarantee a clean level on the nTRST and TCK input signals of the core. • Cycle 1: the JTAGSW input signals to the core are tied to 1 or 0 (to 1 for nTRST, TDI and TMS, to 0 for TCK) • Cycle 2: the GPIO controller takes the control signals of the SWJTAG IO pins (like controls of direction, pull-up/down, Schmitt trigger activation, etc.). RM0430 Rev 8 1287/1324 1314 Debug support (DBG) 34.4.3 RM0430 Internal pull-up and pull-down on JTAG pins It is necessary to ensure that the JTAG input pins are not floating since they are directly connected to flip-flops to control the debug mode features. Special care must be taken with the SWCLK/TCK pin which is directly connected to the clock of some of these flip-flops. To avoid any uncontrolled IO levels, the devices internal pull-ups and pull-downs on the JTAG input pins: • NJTRST: Internal pull-up • JTDI: Internal pull-up • JTMS/SWDIO: Internal pull-up • TCK/SWCLK: Internal pull-down Once a JTAG IO is released by the user software, the GPIO controller takes control again. The reset states of the GPIO control registers put the I/Os in the equivalent state: • NJTRST: AF input pull-up • JTDI: AF input pull-up • JTMS/SWDIO: AF input pull-up • JTCK/SWCLK: AF input pull-down • JTDO: AF output floating The software can then use these I/Os as standard GPIOs. Note: The JTAG IEEE standard recommends to add pull-ups on TDI, TMS and nTRST but there is no special recommendation for TCK. However, for TCK, the devices needs an integrated pull-down. Having embedded pull-ups and pull-downs removes the need to add external resistors. 1288/1324 RM0430 Rev 8 RM0430 34.4.4 Debug support (DBG) Using serial wire and releasing the unused debug pins as GPIOs To use the serial wire DP to release some GPIOs, the user software must change the GPIO (PA15, PB3 and PB4) configuration mode in the GPIO_MODER register. This releases PA15, PB3 and PB4 which now become available as GPIOs. When debugging, the host performs the following actions: Note: • Under system reset, all SWJ pins are assigned (JTAG-DP + SW-DP). • Under system reset, the debugger host sends the JTAG sequence to switch from the JTAG-DP to the SW-DP. • Still under system reset, the debugger sets a breakpoint on vector reset. • The system reset is released and the Core halts. • All the debug communications from this point are done using the SW-DP. The other JTAG pins can then be reassigned as GPIOs by the user software. For user software designs, note that: To release the debug pins, remember that they will be first configured either in input-pull-up (nTRST, TMS, TDI) or pull-down (TCK) or output tristate (TDO) for a certain duration after reset until the instant when the user software releases the pins. When debug pins (JTAG or SW or TRACE) are mapped, changing the corresponding IO pin configuration in the IOPORT controller has no effect. 34.5 JTAG TAP connection The MCUs integrate two serially connected JTAG TAPs, the boundary scan TAP (IR is 5-bit wide) and the Cortex®-M4 with FPU TAP (IR is 4-bit wide). To access the TAP of the Cortex®-M4 with FPU for debug purposes: Note: 1. First, it is necessary to shift the BYPASS instruction of the boundary scan TAP. 2. Then, for each IR shift, the scan chain contains 9 bits (=5+4) and the unused TAP instruction must be shifted in using the BYPASS instruction. 3. For each data shift, the unused TAP, which is in BYPASS mode, adds 1 extra data bit in the data scan chain. Important: Once Serial-Wire is selected using the dedicated Arm® JTAG sequence, the boundary scan TAP is automatically disabled (JTMS forced high). RM0430 Rev 8 1289/1324 1314 Debug support (DBG) RM0430 Figure 422. JTAG TAP connections 34-&XXX .*4234 *4-3 37 $0 3ELECTED 4-3 N4234 *4$) *4$/ 4$) 4$/ "OUNDARY SCAN 4!0 )2 IS BIT WIDE 4-3 N4234 4$) 4$/ #ORTEX - 4!0 )2 IS BIT WIDE -36 1290/1324 RM0430 Rev 8 RM0430 Debug support (DBG) 34.6 ID codes and locking mechanism There are several ID codes inside the MCUs. ST strongly recommends tools designers to lock their debuggers using the MCU DEVICE ID code located in the external PPB memory map at address 0xE0042000. 34.6.1 MCU device ID code The MCUs integrate an MCU ID code. This ID identifies the ST MCU part-number and the die revision. It is part of the DBG_MCU component and is mapped on the external PPB bus (see Section 34.16 on page 1303). This code is accessible using the JTAG debug port (4 to 5 pins) or the SW debug port (two pins) or by the user software. It is even accessible while the MCU is under system reset. Only the DEV_ID(11:0) should be used for identification by the debugger/programmer tools. DBGMCU_IDCODE Address: 0xE004 2000 Only 32-bits access supported. Read-only. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r 5 4 3 2 1 0 r r r r r REV_ID r r r r r r r r r r 11 10 9 8 7 6 15 14 13 12 Res. Res. Res. Res. DEV_ID r r r r r r r Bits 31:16 REV_ID(15:0) Revision identifier This field indicates the revision of the device: 0x1000 = Revision A Bits 15:12 Reserved, must be kept at reset value. Bits 11:0 DEV_ID(11:0): Device identifier The device ID is 0x463 34.6.2 Boundary scan TAP JTAG ID code The TAP of the BSC (boundary scan) integrates a JTAG ID code equal to: 0x0645 8041 34.6.3 Cortex®-M4 with FPU TAP The TAP of the Arm® Cortex®-M4 with FPU integrates a JTAG ID code. This ID code is the Arm® default one and has not been modified. This code is only accessible by the JTAG Debug Port. This code is 0x4BA0 0477 (corresponds to Cortex®-M4 with FPU r0p1, see Section 34.2: Reference Arm® documentation). RM0430 Rev 8 1291/1324 1314 Debug support (DBG) 34.6.4 RM0430 Cortex®-M4 with FPU JEDEC-106 ID code The Arm® Cortex®-M4 with FPU integrates a JEDEC-106 ID code. It is located in the 4KB ROM table mapped on the internal PPB bus at address 0xE00F FFD0_0xE00F FFE0. This code is accessible by the JTAG Debug Port (4 to 5 pins) or by the SW Debug Port (two pins) or by the user software. 34.7 JTAG debug port A standard JTAG state machine is implemented with a 4-bit instruction register (IR) and five data registers (for full details, refer to the Cortex®-M4 with FPUr0p1 Technical Reference Manual (TRM), for references, please see Section 34.2: Reference Arm® documentation). Table 234. JTAG debug port data registers IR(3:0) Data register 1111 BYPASS [1 bit] 1110 IDCODE [32 bits] ID CODE 0x4BA0 0477 (Arm® Cortex®-M4 with FPU r0p1 ID Code) DPACC [35 bits] Debug port access register This initiates a debug port and allows access to a debug port register. – When transferring data IN: Bits 34:3 = DATA[31:0] = 32-bit data to transfer for a write request Bits 2:1 = A[3:2] = 2-bit address of a debug port register. Bit 0 = RnW = Read request (1) or write request (0). – When transferring data OUT: Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read request Bits 2:0 = ACK[2:0] = 3-bit Acknowledge: 010 = OK/FAULT 001 = WAIT OTHER = reserved Refer to Table 235 for a description of the A[3:2] bits 1010 1292/1324 Details RM0430 Rev 8 RM0430 Debug support (DBG) Table 234. JTAG debug port data registers (continued) IR(3:0) Data register Details 1011 APACC [35 bits] Access port access register Initiates an access port and allows access to an access port register. – When transferring data IN: Bits 34:3 = DATA[31:0] = 32-bit data to shift in for a write request Bits 2:1 = A[3:2] = 2-bit address (sub-address AP registers). Bit 0 = RnW= Read request (1) or write request (0). – When transferring data OUT: Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read request Bits 2:0 = ACK[2:0] = 3-bit Acknowledge: 010 = OK/FAULT 001 = WAIT OTHER = reserved There are many AP Registers (see AHB-AP) addressed as the combination of: – The shifted value A[3:2] – The current value of the DP SELECT register 1000 ABORT [35 bits] Abort register – Bits 31:1 = Reserved – Bit 0 = DAPABORT: write 1 to generate a DAP abort. Table 235. 32-bit debug port registers addressed through the shifted value A[3:2] Address A[3:2] value 0x0 Description 00 Reserved, must be kept at reset value. 01 DP CTRL/STAT register. Used to: – Request a system or debug power-up – Configure the transfer operation for AP accesses – Control the pushed compare and pushed verify operations. – Read some status flags (overrun, power-up acknowledges) 0x8 10 DP SELECT register: Used to select the current access port and the active 4-words register window. – Bits 31:24: APSEL: select the current AP – Bits 23:8: reserved – Bits 7:4: APBANKSEL: select the active 4-words register window on the current AP – Bits 3:0: reserved 0xC 11 DP RDBUFF register: Used to allow the debugger to get the final result after a sequence of operations (without requesting new JTAG-DP operation) 0x4 RM0430 Rev 8 1293/1324 1314 Debug support (DBG) RM0430 34.8 SW debug port 34.8.1 SW protocol introduction This synchronous serial protocol uses two pins: • SWCLK: clock from host to target • SWDIO: bidirectional The protocol allows two banks of registers (DPACC registers and APACC registers) to be read and written to. Bits are transferred LSB-first on the wire. For SWDIO bidirectional management, the line must be pulled-up on the board (100 KΩ recommended by Arm®). Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted where the line is not driven by the host nor the target. By default, this turnaround time is one bit time, however this can be adjusted by configuring the SWCLK frequency. 34.8.2 SW protocol sequence Each sequence consist of three phases: 1. Packet request (8 bits) transmitted by the host 2. Acknowledge response (3 bits) transmitted by the target 3. Data transfer phase (33 bits) transmitted by the host or the target Table 236. Packet request (8-bits) Bit Name Description 0 Start Must be “1” 1 APnDP 0: DP Access 1: AP Access 2 RnW 0: Write Request 1: Read Request 4:3 A[3:2] Address field of the DP or AP registers (refer to Table 235) 5 Parity Single bit parity of preceding bits 6 Stop 0 7 Park Not driven by the host. Must be read as “1” by the target because of the pull-up Refer to the Cortex®-M4 with FPU r0p1 TRM for a detailed description of DPACC and APACC registers. The packet request is always followed by the turnaround time (default 1 bit) where neither the host nor target drive the line. 1294/1324 RM0430 Rev 8 RM0430 Debug support (DBG) Table 237. ACK response (3 bits) Bit 0..2 Name Description 001: FAULT 010: WAIT 100: OK ACK The ACK Response must be followed by a turnaround time only if it is a READ transaction or if a WAIT or FAULT acknowledge has been received. Table 238. DATA transfer (33 bits) Bit 0..31 32 Name Description WDATA or RDATA Write or Read data Parity Single parity of the 32 data bits The DATA transfer must be followed by a turnaround time only if it is a READ transaction. 34.8.3 SW-DP state machine (reset, idle states, ID code) The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It follows the JEP-106 standard. This ID code is the default Arm® one and is set to 0x2BA01477 (corresponding to Cortex®-M4 with FPU r0p1). Note: Note that the SW-DP state machine is inactive until the target reads this ID code. • The SW-DP state machine is in RESET STATE either after power-on reset, or after the DP has switched from JTAG to SWD or after the line is high for more than 50 cycles • The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles after RESET state. • After RESET state, it is mandatory to first enter into an IDLE state AND to perform a READ access of the DP-SW ID CODE register. Otherwise, the target will issue a FAULT acknowledge response on another transactions. Further details of the SW-DP state machine can be found in the Cortex®-M4 with FPU r0p1 TRM and the CoreSight Design Kit r0p1 TRM. 34.8.4 DP and AP read/write accesses • Read accesses to the DP are not posted: the target response can be immediate (if ACK=OK) or can be delayed (if ACK=WAIT). • Read accesses to the AP are posted. This means that the result of the access is returned on the next transfer. If the next access to be done is NOT an AP access, then the DP-RDBUFF register must be read to obtain the result. The READOK flag of the DP-CTRL/STAT register is updated on every AP read access or RDBUFF read request to know if the AP read access was successful. • The SW-DP implements a write buffer (for both DP or AP writes), that enables it to accept a write operation even when other transactions are still outstanding. If the write buffer is full, the target acknowledge response is “WAIT”. With the exception of RM0430 Rev 8 1295/1324 1314 Debug support (DBG) RM0430 IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write buffer is full. • 34.8.5 Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK cycles are needed after a write transaction (after the parity bit) to make the write effective internally. These cycles should be applied while driving the line low (IDLE state) This is particularly important when writing the CTRL/STAT for a power-up request. If the next transaction (requiring a power-up) occurs immediately, it will fail. SW-DP registers Access to these registers are initiated when APnDP=0 Table 239. SW-DP registers A[3:2] CTRLSEL bit of SELECT register Register 00 Read - IDCODE 00 Write - ABORT Notes The manufacturer code is not set to ST code. 0x2BA01477 (identifies the SW-DP) - 01 Read/Write 0 DPCTRL/STAT Purpose is to: – request a system or debug power-up – configure the transfer operation for AP accesses – control the pushed compare and pushed verify operations. – read some status flags (overrun, powerup acknowledges) 01 Read/Write 1 WIRE CONTROL Purpose is to configure the physical serial port protocol (like the duration of the turnaround time) 10 Read READ RESEND Enables recovery of the read data from a corrupted debugger transfer, without repeating the original AP transfer. 10 Write SELECT The purpose is to select the current access port and the active 4-words register window READ BUFFER This read buffer is useful because AP accesses are posted (the result of a read AP request is available on the next AP transaction). This read buffer captures data from the AP, presented as the result of a previous read, without initiating a new transaction 11 1296/1324 R/W Read/Write RM0430 Rev 8 RM0430 34.8.6 Debug support (DBG) SW-AP registers Access to these registers are initiated when APnDP=1 There are many AP Registers (see AHB-AP) addressed as the combination of: 34.9 • The shifted value A[3:2] • The current value of the DP SELECT register AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP Features: • System access is independent of the processor status. • Either SW-DP or JTAG-DP accesses AHB-AP. • The AHB-AP is an AHB master into the Bus Matrix. Consequently, it can access all the data buses (Dcode Bus, System Bus, internal and external PPB bus) but the ICode bus. • Bitband transactions are supported. • AHB-AP transactions bypass the FPB. The address of the 32-bits AHP-AP resisters are 6-bits wide (up to 64 words or 256 bytes) and consists of: c) Bits [7:4] = the bits [7:4] APBANKSEL of the DP SELECT register d) Bits [3:2] = the 2 address bits of A[3:2] of the 35-bit packet request for SW-DP. The AHB-AP of the Cortex®-M4 with FPU includes 9 x 32-bits registers: Table 240. Cortex®-M4 with FPU AHB-AP registers Address offset Register name Notes 0x00 AHB-AP Control and Status Word Configures and controls transfers through the AHB interface (size, hprot, status on current transfer, address increment type 0x04 AHB-AP Transfer Address - 0x0C AHB-AP Data Read/Write - 0x10 AHB-AP Banked Data 0 0x14 AHB-AP Banked Data 1 0x18 AHB-AP Banked Data 2 0x1C AHB-AP Banked Data 3 0xF8 AHB-AP Debug ROM Address Base Address of the debug interface 0xFC AHB-AP ID Register Directly maps the 4 aligned data words without rewriting the Transfer Address Register. - Refer to the Cortex®-M4 with FPU r0p1 TRM for further details. RM0430 Rev 8 1297/1324 1314 Debug support (DBG) 34.10 RM0430 Core debug Core debug is accessed through the core debug registers. Debug access to these registers is by means of the Advanced High-performance Bus (AHB-AP) port. The processor can access these registers directly over the internal Private Peripheral Bus (PPB). It consists of 4 registers: Table 241. Core debug registers Note: Register Description DHCSR The 32-bit Debug Halting Control and Status Register This provides status information about the state of the processor enable core debug halt and step the processor DCRSR The 17-bit Debug Core Register Selector Register: This selects the processor register to transfer data to or from. DCRDR The 32-bit Debug Core Register Data Register: This holds data for reading and writing registers to and from the processor selected by the DCRSR (Selector) register. DEMCR The 32-bit Debug Exception and Monitor Control Register: This provides Vector Catching and Debug Monitor Control. This register contains a bit named TRCENA which enable the use of a TRACE. Important: these registers are not reset by a system reset. They are only reset by a poweron reset. Refer to the Cortex®-M4 with FPU r0p1 TRM for further details. To Halt on reset, it is necessary to: 1298/1324 • enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control Register • enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status Register. RM0430 Rev 8 RM0430 34.11 Debug support (DBG) Capability of the debugger host to connect under system reset The reset system of the MCUs comprises the following reset sources: • POR (power-on reset) which asserts a RESET at each power-up. • Internal watchdog reset • Software reset • External reset The Cortex®-M4 with FPU differentiates the reset of the debug part (generally PORRESETn) and the other one (SYSRESETn) This way, it is possible for the debugger to connect under System Reset, programming the Core Debug Registers to halt the core when fetching the reset vector. Then the host can release the system reset and the core will immediately halt without having executed any instructions. In addition, it is possible to program any debug features under System Reset. Note: It is highly recommended for the debugger host to connect (set a breakpoint in the reset vector) under system reset. 34.12 FPB (Flash patch breakpoint) The FPB unit: • implements hardware breakpoints • patches code and data from code space to system space. This feature gives the possibility to correct software bugs located in the Code Memory Space. The use of a Software Patch or a Hardware Breakpoint is exclusive. The FPB consists of: • 2 literal comparators for matching against literal loads from Code Space and remapping to a corresponding area in the System Space. • 6 instruction comparators for matching against instruction fetches from Code Space. They can be used either to remap to a corresponding area in the System Space or to generate a Breakpoint Instruction to the core. RM0430 Rev 8 1299/1324 1314 Debug support (DBG) 34.13 RM0430 DWT (data watchpoint trigger) The DWT unit consists of four comparators. They are configurable as: • a hardware watchpoint or • a trigger to an ETM or • a PC sampler or • a data address sampler The DWT also provides some means to give some profiling informations. For this, some counters are accessible to give the number of: • Clock cycle • Folded instructions • Load store unit (LSU) operations • Sleep cycles • CPI (clock per instructions) • Interrupt overhead 34.14 ITM (instrumentation trace macrocell) 34.14.1 General description The ITM is an application-driven trace source that supports printf style debugging to trace Operating System (OS) and application events, and emits diagnostic system information. The ITM emits trace information as packets which can be generated as: • Software trace. Software can write directly to the ITM stimulus registers to emit packets. • Hardware trace. The DWT generates these packets, and the ITM emits them. • Time stamping. Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate the timestamp. The Cortex®-M4 with FPU clock or the bit clock rate of the Serial Wire Viewer (SWV) output clocks the counter. The packets emitted by the ITM are output to the TPIU (Trace Port Interface Unit). The formatter of the TPIU adds some extra packets (refer to TPIU) and then output the complete packets sequence to the debugger host. The bit TRCEN of the Debug Exception and Monitor Control Register must be enabled before you program or use the ITM. 34.14.2 Time stamp packets, synchronization and overflow packets Time stamp packets encode time stamp information, generic control and synchronization. It uses a 21-bit timestamp counter (with possible prescalers) which is reset at each time stamp packet emission. This counter can be either clocked by the CPU clock or the SWV clock. A synchronization packet consists of 6 bytes equal to 0x80_00_00_00_00_00 which is emitted to the TPIU as 00 00 00 00 00 80 (LSB emitted first). A synchronization packet is a timestamp packet control. It is emitted at each DWT trigger. 1300/1324 RM0430 Rev 8 RM0430 Debug support (DBG) For this, the DWT must be configured to trigger the ITM: the bit CYCCNTENA (bit0) of the DWT Control Register must be set. In addition, the bit2 (SYNCENA) of the ITM Trace Control Register must be set. Note: If the SYNENA bit is not set, the DWT generates Synchronization triggers to the TPIU which will send only TPIU synchronization packets and not ITM synchronization packets. An overflow packet consists is a special timestamp packets which indicates that data has been written but the FIFO was full. Table 242. Main ITM registers Address @E0000FB0 Register ITM lock access Details Write 0xC5ACCE55 to unlock Write Access to the other ITM registers Bits 31-24 = Always 0 Bits 23 = Busy Bits 22-16 = 7-bits ATB ID which identifies the source of the trace data. Bits 15-10 = Always 0 Bits 9:8 = TSPrescale = Time Stamp Prescaler Bits 7-5 = Reserved @E0000E80 ITM trace control Bit 4 = SWOENA = Enable SWV behavior (to clock the timestamp counter by the SWV clock). Bit 3 = DWTENA: Enable the DWT Stimulus Bit 2 = SYNCENA: this bit must be to 1 to enable the DWT to generate synchronization triggers so that the TPIU can then emit the synchronization packets. Bit 1 = TSENA (Timestamp Enable) Bit 0 = ITMENA: Global Enable Bit of the ITM Bit 3: mask to enable tracing ports31:24 @E0000E40 ITM trace privilege Bit 2: mask to enable tracing ports23:16 Bit 1: mask to enable tracing ports15:8 Bit 0: mask to enable tracing ports7:0 @E0000E00 ITM trace enable @E0000000- Stimulus port E000007C registers 0-31 Each bit enables the corresponding Stimulus port to generate trace. Write the 32-bits data on the selected Stimulus Port (32 available) to be traced out. RM0430 Rev 8 1301/1324 1314 Debug support (DBG) RM0430 Example of configuration To output a simple value to the TPIU: • Configure the TPIU and assign TRACE I/Os by configuring the DBGMCU_CR (refer to Section 34.17.2: TRACE pin assignment and Section 34.16.3: Debug MCU configuration register) • Write 0xC5ACCE55 to the ITM Lock Access Register to unlock the write access to the ITM registers • Write 0x00010005 to the ITM Trace Control Register to enable the ITM with Sync enabled and an ATB ID different from 0x00 • Write 0x1 to the ITM Trace Enable Register to enable the Stimulus Port 0 • Write 0x1 to the ITM Trace Privilege Register to unmask stimulus ports 7:0 • Write the value to output in the Stimulus Port Register 0: this can be done by software (using a printf function) 34.15 ETM (Embedded trace macrocell) 34.15.1 General description The ETM enables the reconstruction of program execution. Data are traced using the Data Watchpoint and Trace (DWT) component or the Instruction Trace Macrocell (ITM) whereas instructions are traced using the Embedded Trace Macrocell (ETM). The ETM transmits information as packets and is triggered by embedded resources. These resources must be programmed independently and the trigger source is selected using the Trigger Event Register (0xE0041008). An event could be a simple event (address match from an address comparator) or a logic equation between 2 events. The trigger source is one of the fourth comparators of the DWT module, The following events can be monitored: • Clock cycle matching • Data address matching For more informations on the trigger resources refer to Section 34.13: DWT (data watchpoint trigger). The packets transmitted by the ETM are output to the TPIU (Trace Port Interface Unit). The formatter of the TPIU adds some extra packets (refer to Section 34.17: TPIU (trace port interface unit)) and then outputs the complete packet sequence to the debugger host. 34.15.2 Signal protocol, packet types This part is described in the chapter 7 ETMv3 Signal Protocol of the Arm® IHI 0014N document. 34.15.3 Main ETM registers For more information on registers refer to the chapter 3 of the Arm® IHI 0014N specification. 1302/1324 RM0430 Rev 8 RM0430 Debug support (DBG) Table 243. Main ETM registers Address Details 0xE0041FB0 ETM Lock Access Write 0xC5ACCE55 to unlock the write access to the other ETM registers. 0xE0041000 ETM Control This register controls the general operation of the ETM, for instance how tracing is enabled. 0xE0041010 ETM Status This register provides information about the current status of the trace and trigger logic. 0xE0041008 ETM Trigger Event This register defines the event that will control trigger. 0xE004101C 34.15.4 Register ETM Trace Enable Control This register defines which comparator is selected. 0xE0041020 ETM Trace Enable Event This register defines the trace enabling event. 0xE0041024 ETM Trace Start/Stop This register defines the traces used by the trigger source to start and stop the trace, respectively. Configuration example To output a simple value to the TPIU: 34.16 1. Configure the TPIU and enable the I/IO_TRACEN to assign TRACE I/Os in the debug configuration register. 2. Write 0xC5ACCE55 to the ETM Lock Access Register to unlock the write access to the ITM registers 3. Write 0x00001D1E to the control register (configure the trace) 4. Write 0000406F to the Trigger Event register (define the trigger event) 5. Write 0000006F to the Trace Enable Event register (define an event to start/stop) 6. Write 00000001 to the Trace Start/stop register (enable the trace) 7. Write 0000191E to the ETM Control Register (end of configuration). MCU debug component (DBGMCU) The MCU debug component helps the debugger provide support for: 34.16.1 • Low-power modes • Clock control for timers, watchdog and I2C during a breakpoint • Control of the trace pins assignment Debug support for low-power modes To enter low-power mode, the instruction WFI or WFE must be executed. The MCU implements several low-power modes which can either deactivate the CPU clock or reduce the power of the CPU. The core does not allow FCLK or HCLK to be turned off during a debug session. As these are required for the debugger connection, during a debug, they must remain active. The MCU integrates special means to allow the user to debug software in low-power modes. RM0430 Rev 8 1303/1324 1314 Debug support (DBG) RM0430 For this, the debugger host must first set some debug configuration registers to change the low-power mode behavior: • In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by the debugger. This will feed HCLK with the same clock that is provided to FCLK (system clock previously configured by the software). • In Stop mode, the bit DBG_STOP must be previously set by the debugger. This will enable the internal RC oscillator clock to feed FCLK and HCLK in STOP mode. Debug support for timers, watchdog, bxCAN and I2C 34.16.2 During a breakpoint, it is necessary to choose how the counter of timers and watchdog should behave: • They can continue to count inside a breakpoint. This is usually required when a PWM is controlling a motor, for example. • They can stop to count inside a breakpoint. This is required for watchdog purposes. For the bxCAN, the user can choose to block the update of the receive register during a breakpoint. For the I2C, the user can choose to block the SMBUS timeout during a breakpoint. 34.16.3 Debug MCU configuration register This register allows the configuration of the MCU under DEBUG. This concerns: • Low-power mode support • Timer and watchdog counter support • Trace pin assignment This DBGMCU_CR is mapped on the External PPB bus at address 0xE0042004 It is asynchronously reset by the PORESET (and not the system reset). It can be written by the debugger under system reset. If the debugger host does not support these features, it is still possible for the user software to write to these registers. DBGMCU_CR register Address: 0xE004 2004 Only 32-bit access supported POR Reset: 0x0000 0000 (not reset by system reset) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. DBG_ STAND BY DBG_ STOP DBG_ SLEEP rw rw rw Res. Res. Res. Res. Res. Res. Res. Res. TRACE_ MODE [1:0] rw 1304/1324 rw RM0430 Rev 8 TRACE _IOEN rw Res. RM0430 Debug support (DBG) Bits 31:8 Reserved, must be kept at reset value. Bits 7:5 TRACE_MODE[1:0] and TRACE_IOEN: Trace pin assignment control – With TRACE_IOEN=0: TRACE_MODE=xx: TRACE pins not assigned (default state) – With TRACE_IOEN=1: – TRACE_MODE=00: TRACE pin assignment for Asynchronous Mode – TRACE_MODE=01: TRACE pin assignment for Synchronous Mode with a TRACEDATA size of 1 – TRACE_MODE=10: TRACE pin assignment for Synchronous Mode with a TRACEDATA size of 2 – TRACE_MODE=11: TRACE pin assignment for Synchronous Mode with a TRACEDATA size of 4 Bits 4:3 Reserved, must be kept at reset value. Bit 2 DBG_STANDBY: Debug Standby mode 0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered. From software point of view, exiting from Standby is identical than fetching reset vector (except a few status bit indicated that the MCU is resuming from Standby) 1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU generate a system reset during Standby mode so that exiting from Standby is identical than fetching from reset Bit 1 DBG_STOP: Debug Stop mode 0: (FCLK=Off, HCLK=Off) In STOP mode, the clock controller disables all clocks (including HCLK and FCLK). When exiting from STOP mode, the clock configuration is identical to the one after RESET (CPU clocked by the 8 MHz internal RC oscillator (HSI)). Consequently, the software must reprogram the clock controller to enable the PLL, the Xtal, etc. 1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are provided by the internal RC oscillator which remains active in STOP mode. When exiting STOP mode, the software must reprogram the clock controller to enable the PLL, the Xtal, etc. (in the same way it would do in case of DBG_STOP=0) Bit 0 DBG_SLEEP: Debug Sleep mode 0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is clocked by the system clock as previously configured by the software while HCLK is disabled. In Sleep mode, the clock controller configuration is not reset and remains in the previously programmed state. Consequently, when exiting from Sleep mode, the software does not need to reconfigure the clock controller. 1: (FCLK=On, HCLK=On) In this case, when entering Sleep mode, HCLK is fed by the same clock that is provided to FCLK (system clock as previously configured by the software). 34.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) The DBGMCU_APB1_FZ register is used to configure the MCU under Debug. It concerns APB1 peripherals. It is mapped on the external PPB bus at address 0xE004 2008. The register is asynchronously reset by the POR (and not the system reset). It can be written by the debugger under system reset. Address : 0xE004 2008 Only 32-bits access are supported. Power-on reset (POR): 0x0000 0000 (not reset by system reset) RM0430 Rev 8 1305/1324 1314 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. DBG_CAN2_STOP DBG_CAN1_STOP DBG_I2CFMP_SMBUS_TIMEOUT DBG_I2C3_SMBUS_TIMEOUT DBG_I2C2_SMBUS_TIMEOUT DBG_I2C1_SMBUS_TIMEOUT Res. Res. Res. Res. Res. rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. DBG_WWDG_STOP DBG_RTC_STOP Res. DBG_TIM14_STOP DBG_TI13_STOP DBG_TIM12_STOP DBG_TIM7_STOP DBG_TIM6_STOP DBG_TIM5_STOP DBG_TIM4_STOP DBG_TIM3_STOP DBG_TIM2_STOP RM0430 DBG_IWDG_STOP Debug support (DBG) rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:27 Reserved, must be kept at reset value. Bit 26 DBG_CAN2_STOP: Debug CAN2 stopped when core is halted 0: Same behavior as in normal mode 1: The CAN2 received registers are frozen Bit 25 DBG_CAN1_STOP: Debug CAN1 stopped when core is halted 0: Same behavior as in normal mode 1: The CAN1 received registers are frozen Bit 24 DBG_I2CFMP_SMBUS_TIMEOUT: FMPI2C SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bit 23 DBG_I2C3_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bit 22 DBG_I2C2_SMBUS_TIMEOUT: I2C2 SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bit 21 DBG_I2C1_SMBUS_TIMEOUT: I2C1 SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bits 20:13 Reserved, must be kept at reset value. Bit 12 DBG_IWDG_STOP: Debug independent watchdog stopped when core is halted 0: The independent watchdog counter clock continues even if the core is halted 1: The independent watchdog counter clock is stopped when the core is halted Bit 11 DBG_WWDG_STOP: Debug Window Watchdog stopped when Core is halted 0: The window watchdog counter clock continues even if the core is halted 1: The window watchdog counter clock is stopped when the core is halted 1306/1324 RM0430 Rev 8 RM0430 Debug support (DBG) Bit 10 DBG_RTC_STOP: RTC stopped when Core is halted 0: The RTC counter clock continues even if the core is halted 1: The RTC counter clock is stopped when the core is halted Bit 9 Reserved, must be kept at reset value. Bits 8:0 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=2..7, 12..14) 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped when the core is halted 34.16.5 Debug MCU APB2 Freeze register (DBGMCU_APB2_FZ) The DBGMCU_APB2_FZ register is used to configure the MCU under Debug. It concerns APB2 peripherals. This register is mapped on the external PPB bus at address 0xE004 200C It is asynchronously reset by the POR (and not the system reset). It can be written by the debugger under system reset. Address: 0xE004 200C Only 32-bit access is supported. POR: 0x0000 0000 (not reset by system reset) 31 Res. 30 29 Res. Res. 28 Res. 27 Res. 26 Res. 25 Res. 24 Res. 23 Res. 22 Res. 21 Res. 20 Res. 19 Res. 18 rw 15 Res. 14 13 Res. Res. 12 Res. 11 Res. 10 Res. 9 Res. 8 Res. 7 Res. 6 Res. 5 Res. 4 Res. 3 Res. 17 16 DBG_TIM11 DBG_TIM10 DBG_TIM9_ _STOP _STOP STOP 2 Res. rw rw 1 0 DBG_TIM8_ DBG_TIM1_ STOP STOP rw Bits 31:19 rw Reserved, must be kept at reset value. Bits 18:16 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=9..11) 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped when the core is halted Bits 15:2 Reserved, must be kept at reset value. Bits 1:0 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=1/8) 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped when the core is halted 34.17 TPIU (trace port interface unit) 34.17.1 Introduction The TPIU acts as a bridge between the on-chip trace data from the ITM and the ETM. The output data stream encapsulates the trace source ID, that is then captured by a trace port analyzer (TPA). RM0430 Rev 8 1307/1324 1314 Debug support (DBG) RM0430 The core s a simple TPIU, especially designed for low-cost debug (consisting of a special version of the CoreSight TPIU). Figure 423. TPIU block diagram TRACECLKIN domain CLK domain TPIU TRACECLKIN ETM Asynchronous FIFO TRACECK TPIU formatter ITM Asynchronous FIFO Trace out (serializer) TRACEDATA [3:0] TRACESWO External PPB bus ai17114 1308/1324 RM0430 Rev 8 RM0430 34.17.2 Debug support (DBG) TRACE pin assignment • Asynchronous mode The asynchronous mode requires 1 extra pin and is available on all packages. It is only available if using Serial Wire mode (not in JTAG mode). Table 244. Asynchronous TRACE pin assignment Trace synchronous mode TPUI pin name Pin assignment Type TRACESWO • O Description TRACE Async Data Output PB3 Synchronous mode The synchronous mode requires from 2 to 6 extra pins depending on the data trace size and is only available in the larger packages. In addition it is available in JTAG mode and in Serial Wire mode and provides better bandwidth output capabilities than asynchronous trace. Table 245. Synchronous TRACE pin assignment Trace synchronous mode TPUI pin name Pin assignment Type Description TRACECK O TRACE Clock PE2 TRACED[3:0] O TRACE Sync Data Outputs Can be 1, 2 or 4. PE[6:3], PF[7:6], PD3, PG[14:13] TPUI TRACE pin assignment By default, these pins are NOT assigned. They can be assigned by setting the TRACE_IOEN and TRACE_MODE bits in the MCU Debug component configuration register. This configuration has to be done by the debugger host. In addition, the number of pins to assign depends on the trace configuration (asynchronous or synchronous). • Asynchronous mode: 1 extra pin is needed • Synchronous mode: from 2 to 5 extra pins are needed depending on the size of the data trace port register (1, 2 or 4): – TRACECK – TRACED(0) if port size is configured to 1, 2 or 4 – TRACED(1) if port size is configured to 2 or 4 – TRACED(2) if port size is configured to 4 – TRACED(3) if port size is configured to 4 To assign the TRACE pin, the debugger host must program the bits TRACE_IOEN and TRACE_MODE[1:0] of the Debug MCU configuration Register (DBGMCU_CR). By default the TRACE pins are not assigned. This register is mapped on the external PPB and is reset by the PORESET (and not by the SYSTEM reset). It can be written by the debugger under SYSTEM reset. RM0430 Rev 8 1309/1324 1314 Debug support (DBG) RM0430 Table 246. Flexible TRACE pin assignment DBGMCU_CR register TRACE IO pin assigned(1) Pins TRACE assigned for: TRACE JTDO/ _MODE _IOEN TRACESWO [1:0] TRACE CK TRACE D[0] TRACE D[1] TRACE D[2] 0 XX No Trace (default state) 1 00 Asynchronous TRACESWO Trace 1 01 Synchronous Trace 1 bit TRACECK TRACED[0] 1 10 Synchronous Trace 2 bit Released (2) TRACECK TRACED[0] TRACED[1] 1 11 Synchronous Trace 4 bit Released (2) TRACE D[3] - Released (usable as GPIO) - - - - - TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3] 1. Refer to the datasheet alternate function mapping table. 2. When Serial Wire mode is used, it is released. But when JTAG is used, it is assigned to JTDO. Note: By default, the TRACECLKIN input clock of the TPIU is tied to GND. It is assigned to HCLK two clock cycles after the bit TRACE_IOEN has been set. The debugger must then program the Trace Mode by writing the PROTOCOL[1:0] bits in the SPP_R (Selected Pin Protocol) register of the TPIU. • PROTOCOL=00: Trace Port Mode (synchronous) • PROTOCOL=01 or 10: Serial Wire (Manchester or NRZ) Mode (asynchronous mode). Default state is 01 It then also configures the TRACE port size by writing the bits [3:0] in the CPSPS_R (Current Sync Port Size Register) of the TPIU: 34.17.3 • 0x1 for 1 pin (default state) • 0x2 for 2 pins • 0x8 for 4 pins TPUI formatter The formatter protocol outputs data in 16-byte frames: • seven bytes of data • eight bytes of mixed-use bytes consisting of: • 1310/1324 – 1 bit (LSB) to indicate it is a DATA byte (‘0) or an ID byte (‘1). – 7 bits (MSB) which can be data or change of source ID trace. one byte of auxiliary bits where each bit corresponds to one of the eight mixed-use bytes: – if the corresponding byte was a data, this bit gives bit0 of the data. – if the corresponding byte was an ID change, this bit indicates when that ID change takes effect. RM0430 Rev 8 RM0430 Debug support (DBG) Note: Refer to the Arm® CoreSight Architecture Specification v1.0 (Arm® IHI 0029B) for further information 34.17.4 TPUI frame synchronization packets The TPUI can generate two types of synchronization packets: • The Frame Synchronization packet (or Full Word Synchronization packet) It consists of the word: 0x7F_FF_FF_FF (LSB emitted first). This sequence can not occur at any other time provided that the ID source code 0x7F has not been used. It is output periodically between frames. In continuous mode, the TPA must discard all these frames once a synchronization frame has been found. • The Half-Word Synchronization packet It consists of the half word: 0x7F_FF (LSB emitted first). It is output periodically between or within frames. These packets are only generated in continuous mode and enable the TPA to detect that the TRACE port is in IDLE mode (no TRACE to be captured). When detected by the TPA, it must be discarded. 34.17.5 Transmission of the synchronization frame packet There is no Synchronization Counter register implemented in the TPIU of the core. Consequently, the synchronization trigger can only be generated by the DWT. Refer to the registers DWT Control Register (bits SYNCTAP[11:10]) and the DWT Current PC Sampler Cycle Count Register. The TPUI Frame synchronization packet (0x7F_FF_FF_FF) is emitted: 34.17.6 • after each TPIU reset release. This reset is synchronously released with the rising edge of the TRACECLKIN clock. This means that this packet is transmitted when the TRACE_IOEN bit in the DBGMCU_CFG register is set. In this case, the word 0x7F_FF_FF_FF is not followed by any formatted packet. • at each DWT trigger (assuming DWT has been previously configured). Two cases occur: – If the bit SYNENA of the ITM is reset, only the word 0x7F_FF_FF_FF is emitted without any formatted stream which follows. – If the bit SYNENA of the ITM is set, then the ITM synchronization packets will follow (0x80_00_00_00_00_00), formatted by the TPUI (trace source ID added). Synchronous mode The trace data output size can be configured to 4, 2 or 1 pin: TRACED(3:0) The output clock is output to the debugger (TRACECK) Here, TRACECLKIN is driven internally and is connected to HCLK only when TRACE is used. Note: In this synchronous mode, it is not required to provide a stable clock frequency. The TRACE I/Os (including TRACECK) are driven by the rising edge of TRACLKIN (equal to HCLK). Consequently, the output frequency of TRACECK is equal to HCLK/2. RM0430 Rev 8 1311/1324 1314 Debug support (DBG) 34.17.7 RM0430 Asynchronous mode This is a low cost alternative to output the trace using only 1 pin: this is the asynchronous output pin TRACESWO. Obviously there is a limited bandwidth. TRACESWO is multiplexed with JTDO when using the SW-DP pin. This way, this functionality is available in all packages. This asynchronous mode requires a constant frequency for TRACECLKIN. For the standard UART (NRZ) capture mechanism, 5% accuracy is needed. The Manchester encoded version is tolerant up to 10%. 34.17.8 TRACECLKIN connection The TRACECLKIN input is internally connected to HCLK. This means that when in asynchronous trace mode, the application is restricted to use to time frames where the CPU frequency is stable. Note: Important: when using asynchronous trace: it is important to be aware that: The default clock of the MCUs is the internal RC oscillator. Its frequency under reset is different from the one after reset release. This is because the RC calibration is the default one under system reset and is updated at each system reset release. Consequently, the trace port analyzer (TPA) should not enable the trace (with the TRACE_IOEN bit) under system reset, because a Synchronization Frame Packet will be issued with a different bit time than trace packets which will be transmitted after reset release. 34.17.9 TPIU registers The TPIU APB registers can be read and written only if the bit TRCENA of the Debug Exception and Monitor Control Register (DEMCR) is set. Otherwise, the registers are read as zero (the output of this bit enables the PCLK of the TPIU). Table 247. Important TPIU registers Address 0xE0040004 0xE00400F0 1312/1324 Register Description Current port size Allows the trace port size to be selected: Bit 0: Port size = 1 Bit 1: Port size = 2 Bit 2: Port size = 3, not supported Bit 3: Port Size = 4 Only 1 bit must be set. By default, the port size is one bit. (0x00000001) Selected pin protocol Allows the Trace Port Protocol to be selected: Bit1:0= 00: Sync Trace Port Mode 01: Serial Wire Output - manchester (default value) 10: Serial Wire Output - NRZ 11: reserved RM0430 Rev 8 RM0430 Debug support (DBG) Table 247. Important TPIU registers (continued) Address Register Description 0xE0040304 Formatter and flush control Bits 31-9 = always ‘0 Bit 8 = TrigIn = always ‘1 to indicate that triggers are indicated Bits 7-4 = always 0 Bits 3-2 = always 0 Bit 1 = EnFCont. In Sync Trace mode (Select_Pin_Protocol register bit1:0=00), this bit is forced to ‘1: the formatter is automatically enabled in continuous mode. In asynchronous mode (Select_Pin_Protocol register bit1:0 <> 00), this bit can be written to activate or not the formatter. Bit 0 = always 0 The resulting default value is 0x102 Note: In synchronous mode, because the TRACECTL pin is not mapped outside the chip, the formatter is always enabled in continuous mode -this way the formatter inserts some control packets to identify the source of the trace packets). 0xE0040300 Formatter and flush status Not used in Cortex®-M4 with FPU, always read as 0x00000008 34.17.10 Example of configuration • Set the bit TRCENA in the Debug Exception and Monitor Control Register (DEMCR) • Write the TPIU Current Port Size Register to the desired value (default is 0x1 for a 1-bit port size) • Write TPIU Formatter and Flush Control Register to 0x102 (default value) • Write the TPIU Select Pin Protocol to select the sync or async mode. Example: 0x2 for async NRZ mode (UART like) • Write the DBGMCU control register to 0x20 (bit IO_TRACEN) to assign TRACE I/Os for async mode. A TPIU Sync packet is emitted at this time (FF_FF_FF_7F) • Configure the ITM and write the ITM Stimulus register to output a value RM0430 Rev 8 1313/1324 1314 0xE004 200C 1314/1324 DBGMCU_ APB2_FZ Reset value 0 0 0 0 0 0 RM0430 Rev 8 DBG_TIM3_STOP DBG_TIM2_STOP 0 0 0 DBG_TIM1_STOP 0 DBG_TIM4_STOP 0 0 DBG_TIM8_STOP 0 DBG_TIM5_STOP X X X X X Reset value 0 0 0 0 0 0 0 0 X 1. The reset value is product dependent. For more information, refer to Section 34.6.1: MCU device ID code. TRACE_IOEN X X X 0 0 0 0 DBG_STOP X DBG_SLEEP X Res. Res. X TRACE_ MODE[1:0] X DBG_STANDBY 0 DBG_TIM6_STOP X DBG_TIM7_STOP X DBG_TI13_STOP X DBG_TIM12_STOP X DBG_TIM14_STOP X DBG_RTC_STOP X DBG_IWDG_STOP X DBG_WWDG_STOP X Res. Res. Res. Res. REV_ID Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. X Res. Res. Res. Res. Res. Res. Res. Res. X DBG_CAN2_STOP X DBG_TIM9_STOP Reset value X DBG_TIM11_STOP DBGMCU_ APB1_FZ X DBG_I2C2_SMBUS_TIMEOUT DBGMCU _IDCODE DBG_TIM10_STOP 0xE004 2008 X DBG_I2C3_SMBUS_TIMEOUT DBGMCU_CR X DBG_CAN1_STOP Reset value(1) DBG_I2CFMP_SMBUS_TIMEOUT 0xE004 2000 DBG_CAN2_STOP 0xE004 2004 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Addr. Res. Res. Res. Res. Res. 34.18 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Debug support (DBG) RM0430 DBG register map The following table summarizes the Debug registers. Table 248. DBG register map and reset values DEV_ID 0 0 0 RM0430 Device electronic signature 35 Device electronic signature The electronic signature is stored in the Flash memory area. It can be read using the JTAG/SWD or the CPU. It contains factory-programmed identification data that allow the user firmware or other external devices to automatically match its interface to the characteristics of the STM32F4xx microcontrollers. 35.1 Unique device ID register (96 bits) The unique device identifier is ideally suited: • for use as serial numbers • for use as security keys in order to increase the security of code in Flash memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal Flash memory • to activate secure boot processes, etc. The 96-bit unique device identifier provides a reference number which is unique for any device and in any context. These bits can never be altered by the user. The 96-bit unique device identifier can also be read in single bytes/half-words/words in different ways and then be concatenated using a custom algorithm. Base address: 0x1FFF 7A10 Address offset: 0x00 Read only = 0xXXXX XXXX where X is factory-programmed 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r U_ID[31:0] r r r r r r r r r r r r r r r r r r r r r r Bits 31:0 U_ID[31:0]: 31:0 unique ID bits Address offset: 0x04 Read only = 0xXXXX XXXX where X is factory-programmed 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 U_ID[63:48] r r r r r r r 15 14 13 12 11 10 9 r r r r r r r r r 8 7 6 5 4 3 2 1 0 r r r r r r r U_ID[47:32] r r r r r r r r r Bits 31:0 U_ID[63:32]: 63:32 unique ID bits RM0430 Rev 8 1315/1324 1317 Device electronic signature RM0430 Address offset: 0x08 Read only = 0xXXXX XXXX where X is factory-programmed 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r U_ID[95:80] U_ID[79:64] r r r r r r r r r Bits 31:0 U_ID[95:64]: 95:64 Unique ID bits. 35.2 Flash size Base address: 0x1FFF 7A22 Address offset: 0x00 Read only = 0xXXXX where X is factory-programmed 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r F_SIZE r r r r r r r r Bits 15:0 F_ID[15:0]: Flash memory size This bitfield indicates the size of the device Flash memory expressed in Kbytes. 35.3 Package data register Base address: 0x1FFF 7BF0 Address offset: 0x00 Read only = 0xXXXX where X is factory-programmed 15 14 13 12 11 Res. Res. Res. Res. Res. 10 r 1316/1324 9 8 PKG[2:0] r 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. r RM0430 Rev 8 RM0430 Device electronic signature Bits 15:11 Reserved, must be kept at reset value. Bits 10:8 PKG[2:0]: Package type 0x111: UFBGA144/LQFP144 0x110: reserved 0x101: reserved 0x100: LQFP100 0x011: UFBGA100/WLCSP81 0x010: reserved 0x001: LQFP64 0x000: UFQFPN48 Bits 7:0 Reserved, must be kept at reset value. RM0430 Rev 8 1317/1324 1317 Revision history 36 RM0430 Revision history Table 249. Document revision history Date Revision 03-Nov-2016 1 Initial release. 2 Updated: – Section 18: General-purpose timers (TIM2 to TIM5) – Section 19: General-purpose timers (TIM9 to TIM14) – Section 20: Basic timers (TIM6/7) 3 Updated: – Section 11.1: FSMC main features – Section 11.4: External device address mapping – Section 11.4.1: NOR/PSRAM address mapping Added: – Section 12.3.2: QUADSPI pins – Table 71: QUADSPI pins 4 Updated: – Section 13: Analog-to-digital converter (ADC) – Section 25: Real-time clock (RTC) – Section 29: Serial peripheral interface/ inter-IC sound (SPI/I2S) 12-Jun-2017 5 Updated: – Table 5: Flash module organization – Section 3.4.1: Relation between CPU clock frequency and Flash memory read time – Section 3.5.3: Erase – Section 3.6.4: Write protections – Section 3.8.5: Flash control register (FLASH_CR) – Table 40: Vector table for STM32F413/423 – Section 10.2.5: External interrupt/event line mapping – Section 10.3: EXTI registers – Table 41: External interrupt/event controller register map and reset values 22-Sep-2017 6 Updated: – Table 13: Flash register map and reset values – Section 32: Controller area network (bxCAN) 15-Dec-2016 09-Mar-2017 03-May-2017 1318/1324 Changes RM0430 Rev 8 RM0430 Revision history Table 249. Document revision history (continued) Date 18-Feb-2018 23-May-2018 Revision Changes 7 Updated: – Section 24: AES hardware accelerator (AES) – Section 33: USB on-the-go full-speed (OTG_FS) 8 Updated: – Figure 13: Clock tree – Section 6.3.27: RCC Dedicated Clocks Configuration Register (RCC_DCKCFGR) – Section 26.6: FMPI2C interrupts – Figure 32: FSMC memory banks Removed: – Figure 387: I2C interrupt mapping diagram. RM0430 Rev 8 1319/1324 1319 RM0430 Index Index A ADC_CCR . . . . . . . . . . . . . . . . . . . . . . . . . . .363 ADC_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . .352 ADC_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .354 ADC_CSR . . . . . . . . . . . . . . . . . . . . . . . . . . .362 ADC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 ADC_HTR . . . . . . . . . . . . . . . . . . . . . . . . . . .357 ADC_JDRx . . . . . . . . . . . . . . . . . . . . . . . . . . .361 ADC_JOFRx . . . . . . . . . . . . . . . . . . . . . . . . .357 ADC_JSQR . . . . . . . . . . . . . . . . . . . . . . . . . .361 ADC_LTR . . . . . . . . . . . . . . . . . . . . . . . . . . . .358 ADC_SMPR1 . . . . . . . . . . . . . . . . . . . . . . . . .356 ADC_SMPR2 . . . . . . . . . . . . . . . . . . . . . . . . .357 ADC_SQR1 . . . . . . . . . . . . . . . . . . . . . . . . . .358 ADC_SQR2 . . . . . . . . . . . . . . . . . . . . . . . . . .359 ADC_SQR3 . . . . . . . . . . . . . . . . . . . . . . . . . .360 ADC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351 AES_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .731 AES_DINR . . . . . . . . . . . . . . . . . . . . . . . . . . .735 AES_DOUTR . . . . . . . . . . . . . . . . . . . . . . . . .736 AES_IVR . . . . . . . . . . . . . . . . . . . . . . . . . . . .738 AES_KEYRx . . . . . . . . . . . . . . . . . . . . . . . . .736 AES_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .734 C CAN_BTR . . . . . . . . . . . . . . . . . . . . . . . . . .1115 CAN_ESR . . . . . . . . . . . . . . . . . . . . . . . . . .1114 CAN_FA1R . . . . . . . . . . . . . . . . . . . . . . . . .1125 CAN_FFA1R . . . . . . . . . . . . . . . . . . . . . . . .1124 CAN_FiRx . . . . . . . . . . . . . . . . . . . . . . . . . .1126 CAN_FM1R . . . . . . . . . . . . . . . . . . . . . . . . .1123 CAN_FMR . . . . . . . . . . . . . . . . . . . . . . . . . .1123 CAN_FS1R . . . . . . . . . . . . . . . . . . . . . . . . .1124 CAN_IER . . . . . . . . . . . . . . . . . . . . . . . . . . .1113 CAN_MCR . . . . . . . . . . . . . . . . . . . . . . . . . .1106 CAN_MSR . . . . . . . . . . . . . . . . . . . . . . . . . .1108 CAN_RDHxR . . . . . . . . . . . . . . . . . . . . . . . .1122 CAN_RDLxR . . . . . . . . . . . . . . . . . . . . . . . .1122 CAN_RDTxR . . . . . . . . . . . . . . . . . . . . . . . .1121 CAN_RF0R . . . . . . . . . . . . . . . . . . . . . . . . .1111 CAN_RF1R . . . . . . . . . . . . . . . . . . . . . . . . .1112 CAN_RIxR . . . . . . . . . . . . . . . . . . . . . . . . . .1120 CAN_TDHxR . . . . . . . . . . . . . . . . . . . . . . . .1119 CAN_TDLxR . . . . . . . . . . . . . . . . . . . . . . . .1119 CAN_TDTxR . . . . . . . . . . . . . . . . . . . . . . . .1118 CAN_TIxR . . . . . . . . . . . . . . . . . . . . . . . . . .1117 CAN_TSR . . . . . . . . . . . . . . . . . . . . . . . . . .1109 CKGATENR . . . . . . . . . . . . . . . . . . . . . . . . . 179 CRC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 CRC_IDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 D DAC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 DAC_DHR12L1 . . . . . . . . . . . . . . . . . . . . . . . 382 DAC_DHR12L2 . . . . . . . . . . . . . . . . . . . . . . . 383 DAC_DHR12LD . . . . . . . . . . . . . . . . . . . . . . 384 DAC_DHR12R1 . . . . . . . . . . . . . . . . . . . . . . 381 DAC_DHR12R2 . . . . . . . . . . . . . . . . . . . . . . 383 DAC_DHR12RD . . . . . . . . . . . . . . . . . . . . . . 384 DAC_DHR8R1 . . . . . . . . . . . . . . . . . . . . . . . 382 DAC_DHR8R2 . . . . . . . . . . . . . . . . . . . . . . . 383 DAC_DHR8RD . . . . . . . . . . . . . . . . . . . . . . . 385 DAC_DOR1 . . . . . . . . . . . . . . . . . . . . . . . . . . 385 DAC_DOR2 . . . . . . . . . . . . . . . . . . . . . . . . . . 385 DAC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 DAC_SWTRIGR . . . . . . . . . . . . . . . . . . . . . . 381 DBGMCU_APB1_FZ . . . . . . . . . . . . . . . . . . 1305 DBGMCU_APB2_FZ . . . . . . . . . . . . . . . . . . 1307 DBGMCU_CR . . . . . . . . . . . . . . . . . . . . . . . 1304 DBGMCU_IDCODE . . . . . . . . . . . . . . . . . . 1291 DFSDM_CHyAWSCDR . . . . . . . . . . . . . . . . . 423 DFSDM_CHyCFGR1 . . . . . . . . . . . . . . . . . . 420 DFSDM_CHyCFGR2 . . . . . . . . . . . . . . . . . . 423 DFSDM_CHyDATINR . . . . . . . . . . . . . . . . . . 425 DFSDM_CHyWDATR . . . . . . . . . . . . . . . . . . 424 DFSDM_FLTxAWCFR . . . . . . . . . . . . . . . . . 438 DFSDM_FLTxAWHTR . . . . . . . . . . . . . . . . . 436 DFSDM_FLTxAWLTR . . . . . . . . . . . . . . . . . . 436 DFSDM_FLTxAWSR . . . . . . . . . . . . . . . . . . . 437 DFSDM_FLTxCNVTIMR . . . . . . . . . . . . . . . . 439 DFSDM_FLTxCR1 . . . . . . . . . . . . . . . . . . . . 426 DFSDM_FLTxCR2 . . . . . . . . . . . . . . . . . . . . 429 DFSDM_FLTxEXMAX . . . . . . . . . . . . . . . . . . 438 DFSDM_FLTxEXMIN . . . . . . . . . . . . . . . . . . 439 DFSDM_FLTxFCR . . . . . . . . . . . . . . . . . . . . 433 DFSDM_FLTxICR . . . . . . . . . . . . . . . . . . . . . 432 DFSDM_FLTxISR . . . . . . . . . . . . . . . . . . . . . 430 DFSDM_FLTxJCHGR . . . . . . . . . . . . . . . . . . 433 DFSDM_FLTxJDATAR . . . . . . . . . . . . . . . . . 434 DFSDM_FLTxRDATAR . . . . . . . . . . . . . . . . . 435 DMA_HIFCR . . . . . . . . . . . . . . . . . . . . . . . . . 237 DMA_HISR . . . . . . . . . . . . . . . . . . . . . . . . . . 236 DMA_LIFCR . . . . . . . . . . . . . . . . . . . . . . . . . 237 DMA_LISR . . . . . . . . . . . . . . . . . . . . . . . . . . 235 DMA_SxCR . . . . . . . . . . . . . . . . . . . . . . . . . . 238 RM0430 Rev 8 1320/1324 Index RM0430 DMA_SxFCR . . . . . . . . . . . . . . . . . . . . . . . . .243 DMA_SxM0AR . . . . . . . . . . . . . . . . . . . . . . . .242 DMA_SxM1AR . . . . . . . . . . . . . . . . . . . . . . . .242 DMA_SxNDTR . . . . . . . . . . . . . . . . . . . . . . . .241 DMA_SxPAR . . . . . . . . . . . . . . . . . . . . . . . . .242 E EXTI_EMR . . . . . . . . . . . . . . . . . . . . . . . . . . .258 EXTI_FTSR . . . . . . . . . . . . . . . . . . . . . . . . . .260 EXTI_IMR . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 EXTI_PR . . . . . . . . . . . . . . . . . . . . . . . . . . . .262 EXTI_RTSR . . . . . . . . . . . . . . . . . . . . . . . . . .259 EXTI_SWIER . . . . . . . . . . . . . . . . . . . . . . . . .261 F FLASH_ACR . . . . . . . . . . . . . . . . . . . . . . . . . .82 FLASH_CR . . . . . . . . . . . . . . . . . . . . . . . . . . .85 FLASH_KEYR . . . . . . . . . . . . . . . . . . . . . . . . .83 FLASH_OPTCR . . . . . . . . . . . . . . . . . . . . . . . .86 FLASH_OPTKEYR . . . . . . . . . . . . . . . . . . . . .83 FLASH_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 FMPI2C_CR1 . . . . . . . . . . . . . . . . . . . . . . . . .831 FMPI2C_CR2 . . . . . . . . . . . . . . . . . . . . . . . . .834 FMPI2C_ICR . . . . . . . . . . . . . . . . . . . . . . . . .843 FMPI2C_ISR . . . . . . . . . . . . . . . . . . . . . . . . .841 FMPI2C_OAR1 . . . . . . . . . . . . . . . . . . . . . . .837 FMPI2C_OAR2 . . . . . . . . . . . . . . . . . . . . . . .838 FMPI2C_PECR . . . . . . . . . . . . . . . . . . . . . . .844 FMPI2C_RXDR . . . . . . . . . . . . . . . . . . . . . . .845 FMPI2C_TIMEOUTR . . . . . . . . . . . . . . . . . . .840 FMPI2C_TIMINGR . . . . . . . . . . . . . . . . . . . . .839 FMPI2C_TXDR . . . . . . . . . . . . . . . . . . . . . . .845 FSMC_BCRx . . . . . . . . . . . . . . . . . . . . . . . . .297 FSMC_BTRx . . . . . . . . . . . . . . . . . . . . . . . . .299 FSMC_BWTR1..4 . . . . . . . . . . . . . . . . . . . . .302 G GPIOx_AFRH . . . . . . . . . . . . . . . . . . . . . . . . .201 GPIOx_AFRL . . . . . . . . . . . . . . . . . . . . . . . . .200 GPIOx_BSRR . . . . . . . . . . . . . . . . . . . . . . . .198 GPIOx_IDR . . . . . . . . . . . . . . . . . . . . . . . . . .198 GPIOx_LCKR . . . . . . . . . . . . . . . . . . . . . . . . .199 GPIOx_MODER . . . . . . . . . . . . . . . . . . . . . . .196 GPIOx_ODR . . . . . . . . . . . . . . . . . . . . . . . . .198 GPIOx_OSPEEDR . . . . . . . . . . . . . . . . . . . . .197 GPIOx_OTYPER . . . . . . . . . . . . . . . . . . . . . .196 GPIOx_PUPDR . . . . . . . . . . . . . . . . . . . . . . .197 1321/1324 I I2C_CCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879 I2C_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869 I2C_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871 I2C_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 I2C_OAR1 . . . . . . . . . . . . . . . . . . . . . . . 837, 873 I2C_OAR2 . . . . . . . . . . . . . . . . . . . . . . . 838, 873 I2C_SR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 I2C_SR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878 I2C_TIMEOUTR . . . . . . . . . . . . . . . . . . . . . . 840 I2C_TIMINGR . . . . . . . . . . . . . . . . . . . . . . . . 839 I2C_TRISE . . . . . . . . . . . . . . . . . . . . . . . . . . 880 I2Cx_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 IWDG_KR . . . . . . . . . . . . . . . . . . . . . . . . . . . 680 IWDG_PR . . . . . . . . . . . . . . . . . . . . . . . . . . . 681 IWDG_RLR . . . . . . . . . . . . . . . . . . . . . . . . . . 682 IWDG_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . 682 L LPTIM_ARR . . . . . . . . . . . . . . . . . . . . . . . . . 674 LPTIM_CFGR . . . . . . . . . . . . . . . . . . . . . . . . 670 LPTIM_CMP . . . . . . . . . . . . . . . . . . . . . . . . . 673 LPTIM_CNT . . . . . . . . . . . . . . . . . . . . . . . . . 674 LPTIM_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 LPTIM_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . 667 LPTIM_IER . . . . . . . . . . . . . . . . . . . . . . . . . . 668 LPTIM_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . 666 LPTIM1_OR . . . . . . . . . . . . . . . . . . . . . . . . . 675 O OTG_CID . . . . . . . . . . . . . . . . . . . . . . . . . . 1184 OTG_DAINT . . . . . . . . . . . . . . . . . . . . . . . . 1207 OTG_DAINTMSK . . . . . . . . . . . . . . . . . . . . 1208 OTG_DCFG . . . . . . . . . . . . . . . . . . . . . . . . 1200 OTG_DCTL . . . . . . . . . . . . . . . . . . . . . . . . . 1201 OTG_DIEPCTL0 . . . . . . . . . . . . . . . . . . . . . 1210 OTG_DIEPCTLx . . . . . . . . . . . . . . . . . . . . . 1211 OTG_DIEPEMPMSK . . . . . . . . . . . . . . . . . . 1209 OTG_DIEPINTx . . . . . . . . . . . . . . . . . . . . . . 1214 OTG_DIEPMSK . . . . . . . . . . . . . . . . . . . . . 1205 OTG_DIEPTSIZ0 . . . . . . . . . . . . . . . . . . . . 1215 OTG_DIEPTSIZx . . . . . . . . . . . . . . . . . . . . . 1217 OTG_DIEPTXF0 . . . . . . . . . . . . . . . . . . . . . 1180 OTG_DIEPTXFx . . . . . . . . . . . . . . . . . . . . . 1188 OTG_DOEPCTL0 . . . . . . . . . . . . . . . . . . . . 1218 OTG_DOEPCTLx . . . . . . . . . . . . . . . . . . . . 1222 OTG_DOEPINTx . . . . . . . . . . . . . . . . . . . . . 1219 OTG_DOEPMSK . . . . . . . . . . . . . . . . . . . . . 1206 OTG_DOEPTSIZ0 . . . . . . . . . . . . . . . . . . . . 1221 OTG_DOEPTSIZx . . . . . . . . . . . . . . . . . . . . 1224 RM0430 Rev 8 RM0430 Index OTG_DSTS . . . . . . . . . . . . . . . . . . . . . . . . .1204 OTG_DTXFSTSx . . . . . . . . . . . . . . . . . . . . .1216 OTG_DVBUSDIS . . . . . . . . . . . . . . . . . . . . .1208 OTG_DVBUSPULSE . . . . . . . . . . . . . . . . . .1209 OTG_GAHBCFG . . . . . . . . . . . . . . . . . . . . .1165 OTG_GCCFG . . . . . . . . . . . . . . . . . . . . . . .1182 OTG_GINTMSK . . . . . . . . . . . . . . . . . . . . . .1175 OTG_GINTSTS . . . . . . . . . . . . . . . . . . . . . .1171 OTG_GLPMCFG . . . . . . . . . . . . . . . . . . . . .1184 OTG_GOTGCTL . . . . . . . . . . . . . . . . . . . . .1161 OTG_GOTGINT . . . . . . . . . . . . . . . . . . . . . .1164 OTG_GRSTCTL . . . . . . . . . . . . . . . . . . . . . .1168 OTG_GRXFSIZ . . . . . . . . . . . . . . . . . . . . . .1180 OTG_GRXSTSP . . . . . . . . . . . . . . . . . . . . .1178 OTG_GRXSTSR . . . . . . . . . . . . . . . . . . . . .1178 OTG_GUSBCFG . . . . . . . . . . . . . . . . . . . . .1166 OTG_HAINT . . . . . . . . . . . . . . . . . . . . . . . . .1192 OTG_HAINTMSK . . . . . . . . . . . . . . . . . . . . .1193 OTG_HCCHARx . . . . . . . . . . . . . . . . . . . . .1196 OTG_HCFG . . . . . . . . . . . . . . . . . . . . . . . . .1189 OTG_HCINTMSKx . . . . . . . . . . . . . . . . . . . .1198 OTG_HCINTx . . . . . . . . . . . . . . . . . . . . . . . .1197 OTG_HCTSIZx . . . . . . . . . . . . . . . . . . . . . . .1199 OTG_HFIR . . . . . . . . . . . . . . . . . . . . . . . . . .1190 OTG_HFNUM . . . . . . . . . . . . . . . . . . . . . . .1191 OTG_HNPTXFSIZ . . . . . . . . . . . . . . . . . . . .1180 OTG_HNPTXSTS . . . . . . . . . . . . . . . . . . . .1181 OTG_HPRT . . . . . . . . . . . . . . . . . . . . . . . . .1194 OTG_HPTXFSIZ . . . . . . . . . . . . . . . . . . . . .1188 OTG_HPTXSTS . . . . . . . . . . . . . . . . . . . . . .1191 OTG_PCGCCTL . . . . . . . . . . . . . . . . . . . . .1225 P PWR_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 PWR_CSR . . . . . . . . . . . . . . . . . . . . . . . . . . .114 Q QUADSPI _PIR . . . . . . . . . . . . . . . . . . . . . . .334 QUADSPI _PSMAR . . . . . . . . . . . . . . . . . . . .333 QUADSPI _PSMKR . . . . . . . . . . . . . . . . . . . .333 QUADSPI_ABR . . . . . . . . . . . . . . . . . . . . . . .332 QUADSPI_AR . . . . . . . . . . . . . . . . . . . . . . . .331 QUADSPI_CCR . . . . . . . . . . . . . . . . . . . . . . .329 QUADSPI_CR . . . . . . . . . . . . . . . . . . . . . . . .323 QUADSPI_DCR . . . . . . . . . . . . . . . . . . . . . . .326 QUADSPI_DLR . . . . . . . . . . . . . . . . . . . . . . .328 QUADSPI_DR . . . . . . . . . . . . . . . . . . . . . . . .332 QUADSPI_FCR . . . . . . . . . . . . . . . . . . . . . . .328 QUADSPI_LPTR . . . . . . . . . . . . . . . . . . . . . .334 QUADSPI_SR . . . . . . . . . . . . . . . . . . . . . . . .327 R RCC_AHB1ENR . . . . . . . . . . . . . . . . . . . . . . 149 RCC_AHB1LPENR . . . . . . . . . . . . . . . . . . . . 160 RCC_AHB1RSTR . . . . . . . . . . . . . . . . . . . . . 138 RCC_AHB2ENR . . . . . . . . . . . . . . . . . . 151-153 RCC_AHB2LPENR . . . . . . . . . . . . . . . . 162-163 RCC_AHB2RSTR . . . . . . . . . . . . . . . . . 140-142 RCC_APB1ENR . . . . . . . . . . . . . . . . . . . . . . 153 RCC_APB1LPENR . . . . . . . . . . . . . . . . . . . . 165 RCC_APB2ENR . . . . . . . . . . . . . . . . . . . . . . 157 RCC_APB2LPENR . . . . . . . . . . . . . . . . . . . . 168 RCC_BDCR . . . . . . . . . . . . . . . . . . . . . . . . . 171 RCC_CFGR . . . . . . . . . . . . . . . . . . . . . . . . . 133 RCC_CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 RCC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 RCC_CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 RCC_PLLCFGR . . . . . . . . . . . . . . . . . . 131, 175 RCC_SSCGR . . . . . . . . . . . . . . . . . . . . . . . . 174 RNG_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 RNG_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 RNG_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459 RTC_ALRMAR . . . . . . . . . . . . . . . . . . . . . . . 769 RTC_ALRMBR . . . . . . . . . . . . . . . . . . . . . . . 770 RTC_ALRMBSSR . . . . . . . . . . . . . . . . . . . . . 778 RTC_BKxR . . . . . . . . . . . . . . . . . . . . . . . . . . 779 RTC_CALIBR . . . . . . . . . . . . . . . . . . . . . . . . 767 RTC_CALR . . . . . . . . . . . . . . . . . . . . . . . . . . 774 RTC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 RTC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761 RTC_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 RTC_PRER . . . . . . . . . . . . . . . . . . . . . . . . . . 766 RTC_SHIFTR . . . . . . . . . . . . . . . . . . . . . . . . 772 RTC_SSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 RTC_TR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 RTC_TSDR . . . . . . . . . . . . . . . . . . . . . . . . . . 773 RTC_TSSSR . . . . . . . . . . . . . . . . . . . . . . . . . 774 RTC_TSTR . . . . . . . . . . . . . . . . . . . . . . . . . . 773 RTC_WPR . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 RTC_WUTR . . . . . . . . . . . . . . . . . . . . . . . . . 767 S SDIO_ARG . . . . . . . . . . . . . . . . . . . . . . . . . 1070 SDIO_CLKCR . . . . . . . . . . . . . . . . . . . . . . . 1068 SDIO_DCOUNT . . . . . . . . . . . . . . . . . . . . . 1076 SDIO_DCTRL . . . . . . . . . . . . . . . . . . . . . . . 1073 SDIO_DLEN . . . . . . . . . . . . . . . . . . . . . . . . 1073 SDIO_DTIMER . . . . . . . . . . . . . . . . . . . . . . 1072 SDIO_FIFO . . . . . . . . . . . . . . . . . . . . . . . . . 1082 SDIO_FIFOCNT . . . . . . . . . . . . . . . . . . . . . 1081 SDIO_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . 1077 SDIO_MASK . . . . . . . . . . . . . . . . . . . . . . . . 1079 RM0430 Rev 8 1322/1324 Index RM0430 SDIO_POWER . . . . . . . . . . . . . . . . . . . . . . .1068 SDIO_RESPCMD . . . . . . . . . . . . . . . . . . . .1071 SDIO_RESPx . . . . . . . . . . . . . . . . . . . . . . . .1071 SDIO_STA . . . . . . . . . . . . . . . . . . . . . . . . . .1076 SPI_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .976 SPI_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .978 SPI_CRCPR . . . . . . . . . . . . . . . . . . . . . . . . . .981 SPI_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .981 SPI_I2SCFGR . . . . . . . . . . . . . . . . . . . . . . . .983 SPI_I2SPR . . . . . . . . . . . . . . . . . . . . . . . . . . .984 SPI_RXCRCR . . . . . . . . . . . . . . . . . . . . . . . .982 SPI_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .979 SPI_TXCRCR . . . . . . . . . . . . . . . . . . . . . . . .982 SYSCFG_CFGR . . . . . . . . . . . . . . . . . . . . . .210 SYSCFG_CFGR2 . . . . . . . . . . . . . . . . . . . . .208 SYSCFG_CMPCR . . . . . . . . . . . . . . . . . . . . .209 SYSCFG_EXTICR1 . . . . . . . . . . . . . . . . . . . .206 SYSCFG_EXTICR2 . . . . . . . . . . . . . . . . . . . .206 SYSCFG_EXTICR3 . . . . . . . . . . . . . . . . . . . .207 SYSCFG_EXTICR4 . . . . . . . . . . . . . . . . . . . .208 SYSCFG_MCHDLYCR . . . . . . . . . . . . . . . . .210 SYSCFG_MEMRMP . . . . . . . . . . . . . . . . . . .204 USART_CR3 . . . . . . . . . . . . . . . . . . . . . . . . . 931 USART_DR . . . . . . . . . . . . . . . . . . . . . . . . . . 927 USART_GTPR . . . . . . . . . . . . . . . . . . . . . . . 933 USART_SR . . . . . . . . . . . . . . . . . . . . . . . . . . 924 W WWDG_CFR . . . . . . . . . . . . . . . . . . . . . . . . . 689 WWDG_CR . . . . . . . . . . . . . . . . . . . . . . . . . . 688 WWDG_SR . . . . . . . . . . . . . . . . . . . . . . . . . . 689 T TIM2_OR . . . . . . . . . . . . . . . . . . . . . . . . . . . .591 TIM5_OR . . . . . . . . . . . . . . . . . . . . . . . . . . . .592 TIMx_ARR . . . . . . . . . . . . . . 587, 627, 638, 653 TIMx_BDTR . . . . . . . . . . . . . . . . . . . . . . . . . .528 TIMx_CCER . . . . . . . . . . . . . 521, 585, 626, 637 TIMx_CCMR1 . . . . . . . . . . . 517, 581, 622, 634 TIMx_CCMR2 . . . . . . . . . . . . . . . . . . . .520, 584 TIMx_CCR1 . . . . . . . . . . . . . 526, 588, 628, 639 TIMx_CCR2 . . . . . . . . . . . . . . . . . 527, 588, 628 TIMx_CCR3 . . . . . . . . . . . . . . . . . . . . . .527, 589 TIMx_CCR4 . . . . . . . . . . . . . . . . . . . . . .528, 589 TIMx_CNT . . . . . . . . . . 525, 587, 627, 638, 652 TIMx_CR1 . . . . . . . . . . 507, 572, 616, 631, 650 TIMx_CR2 . . . . . . . . . . . . . . . . . . 508, 574, 651 TIMx_DCR . . . . . . . . . . . . . . . . . . . . . . .530, 590 TIMx_DIER . . . . . . . . . . 512, 577, 619, 632, 651 TIMx_DMAR . . . . . . . . . . . . . . . . . . . . . .531, 590 TIMx_EGR . . . . . . . . . . 515, 580, 622, 633, 652 TIMx_PSC . . . . . . . . . . 525, 587, 627, 638, 653 TIMx_RCR . . . . . . . . . . . . . . . . . . . . . . . . . . .526 TIMx_SMCR . . . . . . . . . . . . . . . . . 510, 575, 618 TIMx_SR . . . . . . . . . . . 514, 578, 620, 632, 652 U USART_BRR . . . . . . . . . . . . . . . . . . . . . . . . .927 USART_CR1 . . . . . . . . . . . . . . . . . . . . . . . . .928 USART_CR2 . . . . . . . . . . . . . . . . . . . . . . . . .930 1323/1324 RM0430 Rev 8 RM0430 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2018 STMicroelectronics – All rights reserved 1324/1324 RM0430 Rev 8
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No Page Layout : SinglePage Page Mode : UseNone Page Count : 1324 Creator : C2 v4.2.0220 build 670 - c2_rendition_config : Techlit_Active Producer : Acrobat Elements 10.0.0 (Windows); modified using iText 2.1.7 by 1T3XT Revision : 8 Title : STM32F413/423 advanced Arm®-based 32-bit MCUs - Reference manual Alternate Name : RM0430 Classification : Unclassified Doc ID : RM0430 Modify Date : 2018:05:25 13:49:14+02:00 Subject : This reference manual targets application developers. It provides complete information on how to use the memory and the peripherals of the STM32F413/423 microcontrollers. Document Type : Reference manual Author : STMICROELECTRONICS Create Date : 2018:05:23 08:51:53ZEXIF Metadata provided by EXIF.tools