STM32F75xxx And STM32F74xxx Advanced Arm® Based 32 Bit MCUs STM32F7[45]xxx Reference Manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 1709
Download | |
Open PDF In Browser | View PDF |
RM0385 Reference manual STM32F75xxx and STM32F74xxx advanced Arm®-based 32-bit MCUs Introduction This reference manual targets application developers. It provides complete information on how to use the STM32F75xxx and STM32F74xxx microcontroller memory and peripherals. The STM32F75xxx and STM32F74xxx is a family of microcontrollers with different memory sizes, packages and peripherals. For ordering information, mechanical and electrical device characteristics refer to the datasheets. For information on the Arm® Cortex®-M7 with FPU core, refer to the Cortex®-M7 with FPU technical reference manual. Related documents Available from STMicroelectronics web site www.st.com: • STM32F75xxx and STM32F74xxx datasheets • STM32F7 Series Cortex®-M7 processor programming manual (PM0253) March 2018 RM0385 Rev 7 1/1709 www.st.com 1 Contents RM0385 Contents 1 2 Documentation conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 1.1 List of abbreviations for registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 1.2 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 1.3 Peripheral availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 System and memory overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.1 2.2 3 2/1709 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.1.1 Multi AHB BusMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.1.2 AHB/APB bridges (APB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.1.3 CPU AXIM bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.1.4 ITCM bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.1.5 DTCM bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.1.6 CPU AHBS bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.1.7 AHB peripheral bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.1.8 DMA memory bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.1.9 DMA peripheral bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.1.10 Ethernet DMA bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.1.11 USB OTG HS DMA bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.1.12 LCD-TFT controller DMA bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.1.13 DMA2D bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.2.2 Memory map and register boundary addresses . . . . . . . . . . . . . . . . . . 69 2.3 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.4 Flash memory overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.5 Boot configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Embedded Flash memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2 Flash main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3 Flash functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3.1 Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3.2 Read access latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 RM0385 Rev 7 RM0385 Contents 3.4 3.5 4 3.3.3 Flash program and erase operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.4 Unlocking the Flash control register . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.3.5 Program/erase parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.3.6 Flash erase sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.7 Flash programming sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.8 Flash Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 FLASH Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.4.1 Option bytes description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.4.2 Option bytes programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 FLASH memory protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.5.1 Read protection (RDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.5.2 Write protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.6 One-time programmable bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.7 FLASH registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.7.1 Flash access control register (FLASH_ACR) . . . . . . . . . . . . . . . . . . . . 91 3.7.2 Flash key register (FLASH_KEYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.7.3 Flash option key register (FLASH_OPTKEYR) . . . . . . . . . . . . . . . . . . . 92 3.7.4 Flash status register (FLASH_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.7.5 Flash control register (FLASH_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.7.6 Flash option control register (FLASH_OPTCR) . . . . . . . . . . . . . . . . . . . 95 3.7.7 Flash option control register (FLASH_OPTCR1) . . . . . . . . . . . . . . . . . . 96 3.7.8 Flash interface register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Power controller (PWR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.1 4.2 4.3 Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.1.1 Independent A/D converter supply and reference voltage . . . . . . . . . . 100 4.1.2 Independent USB transceivers supply . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.3 Battery backup domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.4 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.1 Power-on reset (POR)/power-down reset (PDR) . . . . . . . . . . . . . . . . . 107 4.2.2 Brownout reset (BOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.2.3 Programmable voltage detector (PVD) . . . . . . . . . . . . . . . . . . . . . . . . 108 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3.1 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.3.2 Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 RM0385 Rev 7 3/1709 43 Contents RM0385 4.4 4.5 5 Low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.3.4 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.3.5 Stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3.6 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.3.7 Programming the RTC alternate functions to wake up the device from the Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Power control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.4.1 PWR power control register (PWR_CR1) . . . . . . . . . . . . . . . . . . . . . . 123 4.4.2 PWR power control/status register (PWR_CSR1) . . . . . . . . . . . . . . . . 125 4.4.3 PWR power control/status register 2 (PWR_CR2) . . . . . . . . . . . . . . . 127 4.4.4 PWR power control register 2 (PWR_CSR2) . . . . . . . . . . . . . . . . . . . 129 PWR register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Reset and clock control (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.1 5.2 5.3 4/1709 4.3.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.1.1 System reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.1.2 Power reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.1.3 Backup domain reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.2.1 HSE clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.2 HSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2.3 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.2.4 LSE clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2.5 LSI clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2.6 System clock (SYSCLK) selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2.7 Clock security system (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2.8 RTC/AWU clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.2.9 Watchdog clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.10 Clock-out capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.2.11 Internal/external clock measurement using TIM5/TIM11 . . . . . . . . . . . 141 5.2.12 Peripheral clock enable register (RCC_AHBxENR, RCC_APBxENRy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 RCC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.1 RCC clock control register (RCC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.2 RCC PLL configuration register (RCC_PLLCFGR) . . . . . . . . . . . . . . . 146 5.3.3 RCC clock configuration register (RCC_CFGR) . . . . . . . . . . . . . . . . . 148 5.3.4 RCC clock interrupt register (RCC_CIR) . . . . . . . . . . . . . . . . . . . . . . . 150 RM0385 Rev 7 RM0385 6 Contents 5.3.5 RCC AHB1 peripheral reset register (RCC_AHB1RSTR) . . . . . . . . . . 153 5.3.6 RCC AHB2 peripheral reset register (RCC_AHB2RSTR) . . . . . . . . . . 156 5.3.7 RCC AHB3 peripheral reset register (RCC_AHB3RSTR) . . . . . . . . . . 157 5.3.8 RCC APB1 peripheral reset register (RCC_APB1RSTR) . . . . . . . . . . 157 5.3.9 RCC APB2 peripheral reset register (RCC_APB2RSTR) . . . . . . . . . . 161 5.3.10 RCC AHB1 peripheral clock register (RCC_AHB1ENR) . . . . . . . . . . . 163 5.3.11 RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) . . . . . 165 5.3.12 RCC AHB3 peripheral clock enable register (RCC_AHB3ENR) . . . . . 166 5.3.13 RCC APB1 peripheral clock enable register (RCC_APB1ENR) . . . . . 166 5.3.14 RCC APB2 peripheral clock enable register (RCC_APB2ENR) . . . . . 170 5.3.15 RCC AHB1 peripheral clock enable in low-power mode register (RCC_AHB1LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.3.16 RCC AHB2 peripheral clock enable in low-power mode register (RCC_AHB2LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.3.17 RCC AHB3 peripheral clock enable in low-power mode register (RCC_AHB3LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 5.3.18 RCC APB1 peripheral clock enable in low-power mode register (RCC_APB1LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.3.19 RCC APB2 peripheral clock enabled in low-power mode register (RCC_APB2LPENR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 5.3.20 RCC backup domain control register (RCC_BDCR) . . . . . . . . . . . . . . 183 5.3.21 RCC clock control & status register (RCC_CSR) . . . . . . . . . . . . . . . . 184 5.3.22 RCC spread spectrum clock generation register (RCC_SSCGR) . . . . 186 5.3.23 RCC PLLI2S configuration register (RCC_PLLI2SCFGR) . . . . . . . . . 187 5.3.24 RCC PLLSAI configuration register (RCC_PLLSAICFGR) . . . . . . . . . 190 5.3.25 RCC dedicated clocks configuration register (RCC_DKCFGR1) . . . . 191 5.3.26 RCC dedicated clocks configuration register (DCKCFGR2) . . . . . . . . 193 5.3.27 RCC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 General-purpose I/Os (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.2 GPIO main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.3 GPIO functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.3.1 General-purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.3.2 I/O pin alternate function multiplexer and mapping . . . . . . . . . . . . . . . 202 6.3.3 I/O port control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.3.4 I/O port data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.3.5 I/O data bitwise handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 RM0385 Rev 7 5/1709 43 Contents RM0385 6.4 7 6/1709 6.3.6 GPIO locking mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.3.7 I/O alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.3.8 External interrupt/wakeup lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.3.9 Input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 6.3.10 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 6.3.11 Alternate function configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.3.12 Analog configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.3.13 Using the HSE or LSE oscillator pins as GPIOs . . . . . . . . . . . . . . . . . 207 6.3.14 Using the GPIO pins in the backup supply domain . . . . . . . . . . . . . . . 207 GPIO registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.4.1 GPIO port mode register (GPIOx_MODER) (x =A..K) . . . . . . . . . . . . . 208 6.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..K) . . . . . . . 208 6.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.4.5 GPIO port input data register (GPIOx_IDR) (x = A..K) . . . . . . . . . . . . . 210 6.4.6 GPIO port output data register (GPIOx_ODR) (x = A..K) . . . . . . . . . . . 210 6.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..K) . . . . . . . . . 210 6.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 6.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A..J) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 6.4.11 GPIO register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 System configuration controller (SYSCFG) . . . . . . . . . . . . . . . . . . . . 216 7.1 I/O compensation cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7.2 SYSCFG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7.2.1 SYSCFG memory remap register (SYSCFG_MEMRMP) . . . . . . . . . . 216 7.2.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC) . . 217 7.2.3 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 7.2.4 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 7.2.5 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 RM0385 Rev 7 RM0385 8 Contents 7.2.6 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 7.2.7 Compensation cell control register (SYSCFG_CMPCR) . . . . . . . . . . . 220 7.2.8 SYSCFG register maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . 222 8.1 DMA introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 8.2 DMA main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 8.3 DMA functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 8.3.1 DMA block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 8.3.2 DMA overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 8.3.3 DMA transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 8.3.4 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 8.3.5 Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 8.3.6 DMA streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 8.3.7 Source, destination and transfer modes . . . . . . . . . . . . . . . . . . . . . . . 227 8.3.8 Pointer incrementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 8.3.9 Circular mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 8.3.10 Double-buffer mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 8.3.11 Programmable data width, packing/unpacking, endianness . . . . . . . . 232 8.3.12 Single and burst transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 8.3.13 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 8.3.14 DMA transfer completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 8.3.15 DMA transfer suspension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 8.3.16 Flow controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 8.3.17 Summary of the possible DMA configurations . . . . . . . . . . . . . . . . . . . 239 8.3.18 Stream configuration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 8.3.19 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 8.4 DMA interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 8.5 DMA registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 8.5.1 DMA low interrupt status register (DMA_LISR) . . . . . . . . . . . . . . . . . . 243 8.5.2 DMA high interrupt status register (DMA_HISR) . . . . . . . . . . . . . . . . . 244 8.5.3 DMA low interrupt flag clear register (DMA_LIFCR) . . . . . . . . . . . . . . 245 8.5.4 DMA high interrupt flag clear register (DMA_HIFCR) . . . . . . . . . . . . . 245 8.5.5 DMA stream x configuration register (DMA_SxCR) . . . . . . . . . . . . . . . 246 8.5.6 DMA stream x number of data register (DMA_SxNDTR) . . . . . . . . . . 249 8.5.7 DMA stream x peripheral address register (DMA_SxPAR) . . . . . . . . . 250 RM0385 Rev 7 7/1709 43 Contents 9 8/1709 RM0385 8.5.8 DMA stream x memory 0 address register (DMA_SxM0AR) . . . . . . . . 250 8.5.9 DMA stream x memory 1 address register (DMA_SxM1AR) . . . . . . . . 250 8.5.10 DMA stream x FIFO control register (DMA_SxFCR) . . . . . . . . . . . . . . 251 8.5.11 DMA register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Chrom-ART Accelerator™ controller (DMA2D) . . . . . . . . . . . . . . . . . 257 9.1 DMA2D introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 9.2 DMA2D main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 9.3 DMA2D functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 9.3.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 9.3.2 DMA2D control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 9.3.3 DMA2D foreground and background FIFOs . . . . . . . . . . . . . . . . . . . . 259 9.3.4 DMA2D foreground and background pixel format converter (PFC) . . . 260 9.3.5 DMA2D foreground and background CLUT interface . . . . . . . . . . . . . 262 9.3.6 DMA2D blender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 9.3.7 DMA2D output PFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 9.3.8 DMA2D output FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 9.3.9 DMA2D AHB master port timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 9.3.10 DMA2D transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 9.3.11 DMA2D configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 9.3.12 DMA2D transfer control (start, suspend, abort and completion) . . . . . 268 9.3.13 Watermark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 9.3.14 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 9.3.15 AHB dead time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 9.4 DMA2D interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 9.5 DMA2D registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 9.5.1 DMA2D control register (DMA2D_CR) . . . . . . . . . . . . . . . . . . . . . . . . 270 9.5.2 DMA2D Interrupt Status Register (DMA2D_ISR) . . . . . . . . . . . . . . . . 272 9.5.3 DMA2D interrupt flag clear register (DMA2D_IFCR) . . . . . . . . . . . . . . 273 9.5.4 DMA2D foreground memory address register (DMA2D_FGMAR) . . . 274 9.5.5 DMA2D foreground offset register (DMA2D_FGOR) . . . . . . . . . . . . . . 274 9.5.6 DMA2D background memory address register (DMA2D_BGMAR) . . 274 9.5.7 DMA2D background offset register (DMA2D_BGOR) . . . . . . . . . . . . . 275 9.5.8 DMA2D foreground PFC control register (DMA2D_FGPFCCR) . . . . . 276 9.5.9 DMA2D foreground color register (DMA2D_FGCOLR) . . . . . . . . . . . . 278 9.5.10 DMA2D background PFC control register (DMA2D_BGPFCCR) . . . . 279 9.5.11 DMA2D background color register (DMA2D_BGCOLR) . . . . . . . . . . . 281 RM0385 Rev 7 RM0385 10 Contents 12 DMA2D foreground CLUT memory address register (DMA2D_FGCMAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 9.5.13 DMA2D background CLUT memory address register (DMA2D_BGCMAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 9.5.14 DMA2D output PFC control register (DMA2D_OPFCCR) . . . . . . . . . . 282 9.5.15 DMA2D output color register (DMA2D_OCOLR) . . . . . . . . . . . . . . . . . 283 9.5.16 DMA2D output memory address register (DMA2D_OMAR) . . . . . . . . 284 9.5.17 DMA2D output offset register (DMA2D_OOR) . . . . . . . . . . . . . . . . . . 285 9.5.18 DMA2D number of line register (DMA2D_NLR) . . . . . . . . . . . . . . . . . 285 9.5.19 DMA2D line watermark register (DMA2D_LWR) . . . . . . . . . . . . . . . . . 286 9.5.20 DMA2D AHB master timer configuration register (DMA2D_AMTCR) . 286 9.5.21 DMA2D register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . 289 10.1 11 9.5.12 NVIC features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 10.1.1 SysTick calibration value register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 10.1.2 Interrupt and exception vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Extended interrupts and events controller (EXTI) . . . . . . . . . . . . . . . 294 11.1 EXTI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 11.2 EXTI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 11.3 Wakeup event management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 11.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 11.5 Hardware interrupt selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 11.6 Hardware event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 11.7 Software interrupt/event selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 11.8 External interrupt/event line mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 11.9 EXTI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 11.9.1 Interrupt mask register (EXTI_IMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 11.9.2 Event mask register (EXTI_EMR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 11.9.3 Rising trigger selection register (EXTI_RTSR) . . . . . . . . . . . . . . . . . . 298 11.9.4 Falling trigger selection register (EXTI_FTSR) . . . . . . . . . . . . . . . . . . 298 11.9.5 Software interrupt event register (EXTI_SWIER) . . . . . . . . . . . . . . . . 299 11.9.6 Pending register (EXTI_PR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 11.9.7 EXTI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . 301 RM0385 Rev 7 9/1709 43 Contents RM0385 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 12.2 CRC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 12.3 CRC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 12.4 13 12.3.1 CRC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 12.3.2 CRC internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 12.3.3 CRC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 CRC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 12.4.1 Data register (CRC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 12.4.2 Independent data register (CRC_IDR) . . . . . . . . . . . . . . . . . . . . . . . . 304 12.4.3 Control register (CRC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 12.4.4 Initial CRC value (CRC_INIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 12.4.5 CRC polynomial (CRC_POL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 12.4.6 CRC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 13.1 FMC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 13.2 FMC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 13.3 AHB interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 13.3.1 13.4 13.5 13.6 10/1709 Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . 309 External device address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311 13.4.1 NOR/PSRAM address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 13.4.2 NAND Flash memory address mapping . . . . . . . . . . . . . . . . . . . . . . . 312 13.4.3 SDRAM address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 NOR Flash/PSRAM controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 13.5.1 External memory interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 13.5.2 Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . 319 13.5.3 General timing rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 13.5.4 NOR Flash/PSRAM controller asynchronous transactions . . . . . . . . . 321 13.5.5 Synchronous transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 13.5.6 NOR/PSRAM controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 NAND Flash controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 13.6.1 External memory interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 13.6.2 NAND Flash supported memories and transactions . . . . . . . . . . . . . . 354 13.6.3 Timing diagrams for NAND Flash memory . . . . . . . . . . . . . . . . . . . . . 354 13.6.4 NAND Flash operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 13.6.5 NAND Flash prewait functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 RM0385 Rev 7 RM0385 Contents 13.7 13.8 14 13.6.6 Computation of the error correction code (ECC) in NAND Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 13.6.7 NAND Flash controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 SDRAM controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 13.7.1 SDRAM controller main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 13.7.2 SDRAM External memory interface signals . . . . . . . . . . . . . . . . . . . . . 364 13.7.3 SDRAM controller functional description . . . . . . . . . . . . . . . . . . . . . . . 365 13.7.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 13.7.5 SDRAM controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 FMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 Quad-SPI interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 14.2 QUADSPI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 14.3 QUADSPI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 14.3.1 QUADSPI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384 14.3.2 QUADSPI pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 14.3.3 QUADSPI command sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 14.3.4 QUADSPI signal interface protocol modes . . . . . . . . . . . . . . . . . . . . . 388 14.3.5 QUADSPI indirect mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 14.3.6 QUADSPI status flag polling mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 14.3.7 QUADSPI memory-mapped mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 14.3.8 QUADSPI Flash memory configuration . . . . . . . . . . . . . . . . . . . . . . . . 393 14.3.9 QUADSPI delayed data sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 14.3.10 QUADSPI configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 14.3.11 QUADSPI usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 14.3.12 Sending the instruction only once . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 14.3.13 QUADSPI error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396 14.3.14 QUADSPI busy bit and abort functionality . . . . . . . . . . . . . . . . . . . . . . 397 14.3.15 nCS behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 14.4 QUADSPI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 14.5 QUADSPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 14.5.1 QUADSPI control register (QUADSPI_CR) . . . . . . . . . . . . . . . . . . . . . 400 14.5.2 QUADSPI device configuration register (QUADSPI_DCR) . . . . . . . . . 403 14.5.3 QUADSPI status register (QUADSPI_SR) . . . . . . . . . . . . . . . . . . . . . 404 14.5.4 QUADSPI flag clear register (QUADSPI_FCR) . . . . . . . . . . . . . . . . . . 405 14.5.5 QUADSPI data length register (QUADSPI_DLR) . . . . . . . . . . . . . . . . 405 RM0385 Rev 7 11/1709 43 Contents RM0385 14.5.6 QUADSPI communication configuration register (QUADSPI_CCR) . . 406 14.5.7 QUADSPI address register (QUADSPI_AR) . . . . . . . . . . . . . . . . . . . . 408 14.5.8 QUADSPI alternate bytes registers (QUADSPI_ABR) . . . . . . . . . . . . 409 14.5.9 QUADSPI data register (QUADSPI_DR) . . . . . . . . . . . . . . . . . . . . . . . 409 14.5.10 QUADSPI polling status mask register (QUADSPI _PSMKR) . . . . . . . 410 14.5.11 QUADSPI polling status match register (QUADSPI _PSMAR) . . . . . . 410 14.5.12 QUADSPI polling interval register (QUADSPI _PIR) . . . . . . . . . . . . . . 411 14.5.13 QUADSPI low-power timeout register (QUADSPI_LPTR) . . . . . . . . . . 411 14.5.14 QUADSPI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 15 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 15.1 ADC introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 15.2 ADC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 15.3 ADC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413 15.3.1 ADC on-off control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 15.3.2 ADC1/2 and ADC3 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 15.3.3 ADC clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 15.3.4 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 15.3.5 Single conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 15.3.6 Continuous conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 15.3.7 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 15.3.8 Analog watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 15.3.9 Scan mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 15.3.10 Injected channel management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422 15.3.11 Discontinuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 15.4 Data alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424 15.5 Channel-wise programmable sampling time . . . . . . . . . . . . . . . . . . . . . 425 15.6 Conversion on external trigger and trigger polarity . . . . . . . . . . . . . . . . 426 15.7 Fast conversion mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 15.8 Data management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 15.9 12/1709 15.8.1 Using the DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428 15.8.2 Managing a sequence of conversions without using the DMA . . . . . . 428 15.8.3 Conversions without DMA and without overrun detection . . . . . . . . . . 429 Multi ADC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 15.9.1 Injected simultaneous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 15.9.2 Regular simultaneous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 RM0385 Rev 7 RM0385 Contents 15.9.3 Interleaved mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 15.9.4 Alternate trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 15.9.5 Combined regular/injected simultaneous mode . . . . . . . . . . . . . . . . . . 438 15.9.6 Combined regular simultaneous + alternate trigger mode . . . . . . . . . . 438 15.10 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 15.11 Battery charge monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441 15.12 ADC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 15.13 ADC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 15.13.1 ADC status register (ADC_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 15.13.2 ADC control register 1 (ADC_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 15.13.3 ADC control register 2 (ADC_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 15.13.4 ADC sample time register 1 (ADC_SMPR1) . . . . . . . . . . . . . . . . . . . . 448 15.13.5 ADC sample time register 2 (ADC_SMPR2) . . . . . . . . . . . . . . . . . . . . 449 15.13.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4) . . 449 15.13.7 ADC watchdog higher threshold register (ADC_HTR) . . . . . . . . . . . . . 449 15.13.8 ADC watchdog lower threshold register (ADC_LTR) . . . . . . . . . . . . . . 450 15.13.9 ADC regular sequence register 1 (ADC_SQR1) . . . . . . . . . . . . . . . . . 450 15.13.10 ADC regular sequence register 2 (ADC_SQR2) . . . . . . . . . . . . . . . . . 451 15.13.11 ADC regular sequence register 3 (ADC_SQR3) . . . . . . . . . . . . . . . . . 452 15.13.12 ADC injected sequence register (ADC_JSQR) . . . . . . . . . . . . . . . . . . 453 15.13.13 ADC injected data register x (ADC_JDRx) (x= 1..4) . . . . . . . . . . . . . . 453 15.13.14 ADC regular data register (ADC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . 454 15.13.15 ADC Common status register (ADC_CSR) . . . . . . . . . . . . . . . . . . . . . 454 15.13.16 ADC common control register (ADC_CCR) . . . . . . . . . . . . . . . . . . . . . 455 15.13.17 ADC common regular data register for dual and triple modes (ADC_CDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 15.13.18 ADC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 16 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 16.1 DAC introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 16.2 DAC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 16.3 DAC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 16.3.1 DAC channel enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 16.3.2 DAC output buffer enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 16.3.3 DAC data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 16.3.4 DAC conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 16.3.5 DAC output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 RM0385 Rev 7 13/1709 43 Contents RM0385 16.4 16.3.6 DAC trigger selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 16.3.7 DMA request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 16.3.8 Noise generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 16.3.9 Triangle-wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 Dual DAC channel conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 16.4.1 Independent trigger without wave generation . . . . . . . . . . . . . . . . . . . 469 16.4.2 Independent trigger with single LFSR generation . . . . . . . . . . . . . . . . 469 16.4.3 Independent trigger with different LFSR generation . . . . . . . . . . . . . . 469 16.4.4 Independent trigger with single triangle generation . . . . . . . . . . . . . . . 470 16.4.5 Independent trigger with different triangle generation . . . . . . . . . . . . . 470 16.4.6 Simultaneous software start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 16.4.7 Simultaneous trigger without wave generation . . . . . . . . . . . . . . . . . . 471 16.4.8 Simultaneous trigger with single LFSR generation . . . . . . . . . . . . . . . 471 16.4.9 Simultaneous trigger with different LFSR generation . . . . . . . . . . . . . 471 16.4.10 Simultaneous trigger with single triangle generation . . . . . . . . . . . . . . 472 16.4.11 Simultaneous trigger with different triangle generation . . . . . . . . . . . . 472 16.5 DAC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 16.5.1 DAC control register (DAC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 16.5.2 DAC software trigger register (DAC_SWTRIGR) . . . . . . . . . . . . . . . . 476 16.5.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476 16.5.4 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 16.5.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 16.5.6 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 16.5.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 16.5.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478 16.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 16.5.10 DUAL DAC 12-bit left aligned data holding register (DAC_DHR12LD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479 16.5.11 DUAL DAC 8-bit right aligned data holding register (DAC_DHR8RD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480 16.5.12 DAC channel1 data output register (DAC_DOR1) . . . . . . . . . . . . . . . . 480 16.5.13 DAC channel2 data output register (DAC_DOR2) . . . . . . . . . . . . . . . . 480 14/1709 RM0385 Rev 7 RM0385 Contents 16.5.14 DAC status register (DAC_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 16.5.15 DAC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 17 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 17.1 DCMI introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 17.2 DCMI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 17.3 DCMI clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 17.4 DCMI functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 17.5 17.4.1 DCMI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 17.4.2 DMA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 17.4.3 DCMI physical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 17.4.4 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 17.4.5 Capture modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 17.4.6 Crop feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490 17.4.7 JPEG format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 17.4.8 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Data format description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 17.5.1 Data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 17.5.2 Monochrome format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 17.5.3 RGB format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 17.5.4 YCbCr format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 17.5.5 YCbCr format - Y only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 17.5.6 Half resolution image extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 17.6 DCMI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 17.7 DCMI register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 17.7.1 DCMI control register (DCMI_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 17.7.2 DCMI status register (DCMI_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498 17.7.3 DCMI raw interrupt status register (DCMI_RIS) . . . . . . . . . . . . . . . . . 499 17.7.4 DCMI interrupt enable register (DCMI_IER) . . . . . . . . . . . . . . . . . . . . 500 17.7.5 DCMI masked interrupt status register (DCMI_MIS) . . . . . . . . . . . . . . 501 17.7.6 DCMI interrupt clear register (DCMI_ICR) . . . . . . . . . . . . . . . . . . . . . . 502 17.7.7 DCMI embedded synchronization code register (DCMI_ESCR) . . . . . 503 17.7.8 DCMI embedded synchronization unmask register (DCMI_ESUR) . . 504 17.7.9 DCMI crop window start (DCMI_CWSTRT) . . . . . . . . . . . . . . . . . . . . . 505 17.7.10 DCMI crop window size (DCMI_CWSIZE) . . . . . . . . . . . . . . . . . . . . . . 505 17.7.11 DCMI data register (DCMI_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506 RM0385 Rev 7 15/1709 43 Contents RM0385 17.7.12 DCMI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 18 LCD-TFT display controller (LTDC) . . . . . . . . . . . . . . . . . . . . . . . . . . 508 18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 18.2 LTDC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508 18.3 LTDC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 18.4 18.3.1 LTDC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 18.3.2 LTDC pins and external signal interface . . . . . . . . . . . . . . . . . . . . . . . 509 18.3.3 LTDC reset and clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510 LTDC programmable parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .511 18.4.1 LTDC global configuration parameters . . . . . . . . . . . . . . . . . . . . . . . . 511 18.4.2 Layer programmable parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514 18.5 LTDC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 18.6 LTDC programming procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 18.7 LTDC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 18.7.1 LTDC synchronization size configuration register (LTDC_SSCR) . . . . 521 18.7.2 LTDC back porch configuration register (LTDC_BPCR) . . . . . . . . . . . 521 18.7.3 LTDC active width configuration register (LTDC_AWCR) . . . . . . . . . . 522 18.7.4 LTDC total width configuration register (LTDC_TWCR) . . . . . . . . . . . . 523 18.7.5 LTDC global control register (LTDC_GCR) . . . . . . . . . . . . . . . . . . . . . 523 18.7.6 LTDC shadow reload configuration register (LTDC_SRCR) . . . . . . . . 525 18.7.7 LTDC background color configuration register (LTDC_BCCR) . . . . . . 525 18.7.8 LTDC interrupt enable register (LTDC_IER) . . . . . . . . . . . . . . . . . . . . 526 18.7.9 LTDC interrupt status register (LTDC_ISR) . . . . . . . . . . . . . . . . . . . . . 527 18.7.10 LTDC Interrupt Clear Register (LTDC_ICR) . . . . . . . . . . . . . . . . . . . . . 527 18.7.11 LTDC line interrupt position configuration register (LTDC_LIPCR) . . . 528 18.7.12 LTDC current position status register (LTDC_CPSR) . . . . . . . . . . . . . 528 18.7.13 LTDC current display status register (LTDC_CDSR) . . . . . . . . . . . . . . 529 18.7.14 LTDC layer x control register (LTDC_LxCR) . . . . . . . . . . . . . . . . . . . . 530 18.7.15 LTDC layer x window horizontal position configuration register (LTDC_LxWHPCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531 18.7.16 LTDC layer x window vertical position configuration register (LTDC_LxWVPCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 18.7.17 LTDC layer x color keying configuration register (LTDC_LxCKCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 18.7.18 LTDC layer x pixel format configuration register (LTDC_LxPFCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 16/1709 RM0385 Rev 7 RM0385 Contents 18.7.19 LTDC layer x constant alpha configuration register (LTDC_LxCACR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 18.7.20 LTDC layer x default color configuration register (LTDC_LxDCCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 18.7.21 LTDC layer x blending factors configuration register (LTDC_LxBFCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 18.7.22 LTDC layer x color frame buffer address register (LTDC_LxCFBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 18.7.23 LTDC layer x color frame buffer length register (LTDC_LxCFBLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537 18.7.24 LTDC layer x color frame buffer line number register (LTDC_LxCFBLNR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538 18.7.25 LTDC layer x CLUT write register (LTDC_LxCLUTWR) . . . . . . . . . . . 539 18.7.26 LTDC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540 19 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . 543 19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 19.2 RNG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 19.3 RNG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 19.3.1 RNG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 19.3.2 RNG internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 19.3.3 Random number generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 19.3.4 RNG initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 19.3.5 RNG operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547 19.3.6 RNG clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 19.3.7 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548 19.4 RNG low-power usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 19.5 RNG interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 19.6 RNG processing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 19.7 Entropy source validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 19.8 19.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 19.7.2 Validation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 19.7.3 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550 RNG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 19.8.1 RNG control register (RNG_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 19.8.2 RNG status register (RNG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 19.8.3 RNG data register (RNG_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 19.8.4 RNG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 RM0385 Rev 7 17/1709 43 Contents 20 RM0385 Cryptographic processor (CRYP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 20.2 CRYP main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 20.3 CRYP functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 20.3.1 CRYP block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 20.3.2 CRYP internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 20.3.3 CRYP DES/TDES cryptographic core . . . . . . . . . . . . . . . . . . . . . . . . . 558 20.3.4 CRYP AES cryptographic core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 20.3.5 CRYP procedure to perform a cipher operation . . . . . . . . . . . . . . . . . . 565 20.3.6 CRYP busy state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568 20.3.7 Preparing the CRYP AES key for decryption . . . . . . . . . . . . . . . . . . . . 569 20.3.8 CRYP stealing and data padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569 20.3.9 CRYP suspend/resume operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 571 20.3.10 CRYP DES/TDES basic chaining modes (ECB, CBC) . . . . . . . . . . . . 572 20.3.11 CRYP AES basic chaining modes (ECB, CBC) . . . . . . . . . . . . . . . . . . 577 20.3.12 CRYP AES counter mode (AES-CTR) . . . . . . . . . . . . . . . . . . . . . . . . . 582 20.3.13 CRYP AES Galois/counter mode (GCM) . . . . . . . . . . . . . . . . . . . . . . . 586 20.3.14 CRYP AES Galois message authentication code (GMAC) . . . . . . . . . 591 20.3.15 CRYP AES Counter with CBC-MAC (CCM) . . . . . . . . . . . . . . . . . . . . 592 20.3.16 CRYP data registers and data swapping . . . . . . . . . . . . . . . . . . . . . . . 598 20.3.17 CRYP key registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 20.3.18 CRYP initialization vector registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 603 20.3.19 CRYP DMA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604 20.3.20 CRYP error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 18/1709 20.4 CRYP interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 20.5 CRYP processing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608 20.6 CRYP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609 20.6.1 CRYP control register (CRYP_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 609 20.6.2 CRYP status register (CRYP_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 20.6.3 CRYP data input register (CRYP_DIN) . . . . . . . . . . . . . . . . . . . . . . . . 611 20.6.4 CRYP data output register (CRYP_DOUT) . . . . . . . . . . . . . . . . . . . . . 612 20.6.5 CRYP DMA control register (CRYP_DMACR) . . . . . . . . . . . . . . . . . . . 613 20.6.6 CRYP interrupt mask set/clear register (CRYP_IMSCR) . . . . . . . . . . . 613 20.6.7 CRYP raw interrupt status register (CRYP_RISR) . . . . . . . . . . . . . . . 614 20.6.8 CRYP masked interrupt status register (CRYP_MISR) . . . . . . . . . . . . 614 20.6.9 CRYP key register 0L (CRYP_K0LR) . . . . . . . . . . . . . . . . . . . . . . . . . 615 RM0385 Rev 7 RM0385 Contents 20.6.10 CRYP key register 0R (CRYP_K0RR) . . . . . . . . . . . . . . . . . . . . . . . . . 616 20.6.11 CRYP key register 1L (CRYP_K1LR) . . . . . . . . . . . . . . . . . . . . . . . . . 616 20.6.12 CRYP key register 1R (CRYP_K1RR) . . . . . . . . . . . . . . . . . . . . . . . . . 616 20.6.13 CRYP key register 2L (CRYP_K2LR) . . . . . . . . . . . . . . . . . . . . . . . . . 617 20.6.14 CRYP key register 2R (CRYP_K2RR) . . . . . . . . . . . . . . . . . . . . . . . . . 617 20.6.15 CRYP key register 3L (CRYP_K3LR) . . . . . . . . . . . . . . . . . . . . . . . . . 618 20.6.16 CRYP key register 3R (CRYP_K3RR) . . . . . . . . . . . . . . . . . . . . . . . . . 618 20.6.17 CRYP initialization vector register 0L (CRYP_IV0LR) . . . . . . . . . . . . . 618 20.6.18 CRYP initialization vector register 0R (CRYP_IV0RR) . . . . . . . . . . . . 619 20.6.19 CRYP initialization vector register 1L (CRYP_IV1LR) . . . . . . . . . . . . . 619 20.6.20 CRYP initialization vector register 1R (CRYP_IV1RR) . . . . . . . . . . . . 619 20.6.21 CRYP register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 21 Hash processor (HASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 21.2 HASH main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623 21.3 HASH functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 21.3.1 HASH block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 21.3.2 HASH internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 21.3.3 About secure hash algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 21.3.4 Message data feeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 21.3.5 Message digest computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627 21.3.6 Message padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628 21.3.7 HMAC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629 21.3.8 Context swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631 21.3.9 HASH DMA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 21.3.10 HASH error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 21.4 HASH interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 21.5 HASH processing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 21.6 HASH registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635 21.6.1 HASH control register (HASH_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 635 21.6.2 HASH data input register (HASH_DIN) . . . . . . . . . . . . . . . . . . . . . . . . 638 21.6.3 HASH start register (HASH_STR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639 21.6.4 HASH digest registers (HASH_HR0..7) . . . . . . . . . . . . . . . . . . . . . . . . 640 21.6.5 HASH interrupt enable register (HASH_IMR) . . . . . . . . . . . . . . . . . . . 642 21.6.6 HASH status register (HASH_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 RM0385 Rev 7 19/1709 43 Contents 22 RM0385 21.6.7 HASH context swap registers (HASH_CSRx) . . . . . . . . . . . . . . . . . . . 644 21.6.8 HASH register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Advanced-control timers (TIM1/TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 646 22.1 TIM1/TIM8 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 22.2 TIM1/TIM8 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646 22.3 TIM1/TIM8 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 22.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648 22.3.2 Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650 22.3.3 Repetition counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661 22.3.4 External trigger input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 22.3.5 Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664 22.3.6 Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668 22.3.7 Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670 22.3.8 PWM input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671 22.3.9 Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 22.3.10 Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673 22.3.11 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 22.3.12 Asymmetric PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677 22.3.13 Combined PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678 22.3.14 Combined 3-phase PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679 22.3.15 Complementary outputs and dead-time insertion . . . . . . . . . . . . . . . . 680 22.3.16 Using the break function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682 22.3.17 Clearing the OCxREF signal on an external event . . . . . . . . . . . . . . . 688 22.3.18 6-step PWM generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690 22.3.19 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 22.3.20 Retriggerable one pulse mode (OPM) . . . . . . . . . . . . . . . . . . . . . . . . . 692 22.3.21 Encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 22.3.22 UIF bit remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695 22.3.23 Timer input XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 22.3.24 Interfacing with Hall sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 22.3.25 Timer synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699 22.3.26 ADC synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 22.3.27 DMA burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703 22.3.28 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704 22.4 TIM1/TIM8 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705 22.4.1 20/1709 TIM1/TIM8 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . . 705 RM0385 Rev 7 RM0385 Contents 22.4.2 TIM1/TIM8 control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . . 706 22.4.3 TIM1/TIM8 slave mode control register (TIMx_SMCR) . . . . . . . . . . . . 709 22.4.4 TIM1/TIM8 DMA/interrupt enable register (TIMx_DIER) . . . . . . . . . . . 711 22.4.5 TIM1/TIM8 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . 713 22.4.6 TIM1/TIM8 event generation register (TIMx_EGR) . . . . . . . . . . . . . . . 715 22.4.7 TIM1/TIM8 capture/compare mode register 1 (TIMx_CCMR1) . . . . . . 716 22.4.8 TIM1/TIM8 capture/compare mode register 2 (TIMx_CCMR2) . . . . . . 720 22.4.9 TIM1/TIM8 capture/compare enable register (TIMx_CCER) . . . . . . . . 722 22.4.10 TIM1/TIM8 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726 22.4.11 TIM1/TIM8 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726 22.4.12 TIM1/TIM8 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . 726 22.4.13 TIM1/TIM8 repetition counter register (TIMx_RCR) . . . . . . . . . . . . . . 727 22.4.14 TIM1/TIM8 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . 727 22.4.15 TIM1/TIM8 capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . . 728 22.4.16 TIM1/TIM8 capture/compare register 3 (TIMx_CCR3) . . . . . . . . . . . . 728 22.4.17 TIM1/TIM8 capture/compare register 4 (TIMx_CCR4) . . . . . . . . . . . . 729 22.4.18 TIM1/TIM8 break and dead-time register (TIMx_BDTR) . . . . . . . . . . . 729 22.4.19 TIM1/TIM8 DMA control register (TIMx_DCR) . . . . . . . . . . . . . . . . . . . 732 22.4.20 TIM1/TIM8 DMA address for full transfer (TIMx_DMAR) . . . . . . . . . . . 733 22.4.21 TIM1/TIM8 capture/compare mode register 3 (TIMx_CCMR3) . . . . . . 734 22.4.22 TIM1/TIM8 capture/compare register 5 (TIMx_CCR5) . . . . . . . . . . . . 735 22.4.23 TIM1/TIM8 capture/compare register 6 (TIMx_CCR6) . . . . . . . . . . . . 736 22.4.24 TIM1 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 22.4.25 TIM8 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739 23 General-purpose timers (TIM2/TIM3/TIM4/TIM5) . . . . . . . . . . . . . . . . . 741 23.1 TIM2/TIM3/TIM4/TIM5 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 23.2 TIM2/TIM3/TIM4/TIM5 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . 741 23.3 TIM2/TIM3/TIM4/TIM5 functional description . . . . . . . . . . . . . . . . . . . . . 743 23.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743 23.3.2 Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 23.3.3 Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755 23.3.4 Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 23.3.5 Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761 23.3.6 PWM input mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 762 23.3.7 Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763 23.3.8 Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764 RM0385 Rev 7 21/1709 43 Contents RM0385 23.3.9 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 23.3.10 Asymmetric PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768 23.3.11 Combined PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769 23.3.12 Clearing the OCxREF signal on an external event . . . . . . . . . . . . . . . 770 23.3.13 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772 23.3.14 Retriggerable one pulse mode (OPM) . . . . . . . . . . . . . . . . . . . . . . . . . 773 23.3.15 Encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 23.3.16 UIF bit remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 23.3.17 Timer input XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776 23.3.18 Timers and external trigger synchronization . . . . . . . . . . . . . . . . . . . . 777 23.3.19 Timer synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780 23.3.20 DMA burst mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 23.3.21 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785 23.4 TIM2/TIM3/TIM4/TIM5 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 786 23.4.1 TIMx control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . 786 23.4.2 TIMx control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . 787 23.4.3 TIMx slave mode control register (TIMx_SMCR) . . . . . . . . . . . . . . . . . 789 23.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER) . . . . . . . . . . . . . . . . 792 23.4.5 TIMx status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793 23.4.6 TIMx event generation register (TIMx_EGR) . . . . . . . . . . . . . . . . . . . . 794 23.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) . . . . . . . . . . . 795 23.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2) . . . . . . . . . . . 799 23.4.9 TIMx capture/compare enable register (TIMx_CCER) . . . . . . . . . . . . 801 23.4.10 TIMx counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802 23.4.11 TIMx prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803 23.4.12 TIMx auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . . . . . . 803 23.4.13 TIMx capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . . . . . . 803 23.4.14 TIMx capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . . . . . . . 804 23.4.15 TIMx capture/compare register 3 (TIMx_CCR3) . . . . . . . . . . . . . . . . . 804 23.4.16 TIMx capture/compare register 4 (TIMx_CCR4) . . . . . . . . . . . . . . . . . 805 23.4.17 TIMx DMA control register (TIMx_DCR) . . . . . . . . . . . . . . . . . . . . . . . 806 23.4.18 TIMx DMA address for full transfer (TIMx_DMAR) . . . . . . . . . . . . . . . 806 23.4.19 TIM2 option register (TIM2_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 23.4.20 TIM5 option register (TIM5_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 23.4.21 TIMx register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 808 24 22/1709 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) . . 811 RM0385 Rev 7 RM0385 Contents 24.1 TIM9/TIM10/TIM11/TIM12/TIM13/TIM14 introduction . . . . . . . . . . . . . . .811 24.2 TIM9/TIM10/TIM11/TIM12/TIM13/TIM14 main features . . . . . . . . . . . . . .811 24.3 24.2.1 TIM9/TIM12 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 811 24.2.2 TIM10/TIM11/TIM13/TIM14 main features . . . . . . . . . . . . . . . . . . . . . . 812 TIM9/TIM10/TIM11/TIM12/TIM13/TIM14 functional description . . . . . . . 814 24.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814 24.3.2 Counter modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816 24.3.3 Clock selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819 24.3.4 Capture/compare channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821 24.3.5 Input capture mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823 24.3.6 PWM input mode (only for TIM9/TIM12) . . . . . . . . . . . . . . . . . . . . . . . 824 24.3.7 Forced output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 24.3.8 Output compare mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 24.3.9 PWM mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826 24.3.10 Combined PWM mode (TIM9/TIM12 only) . . . . . . . . . . . . . . . . . . . . . 827 24.3.11 One-pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829 24.3.12 Retriggerable one pulse mode (OPM) (TIM12 only) . . . . . . . . . . . . . . 830 24.3.13 UIF bit remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 24.3.14 Timer input XOR function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 24.3.15 TIM9/TIM12 external trigger synchronization . . . . . . . . . . . . . . . . . . . 832 24.3.16 Slave mode – combined reset + trigger mode . . . . . . . . . . . . . . . . . . . 834 24.3.17 Timer synchronization (TIM9/TIM12) . . . . . . . . . . . . . . . . . . . . . . . . . . 835 24.3.18 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 24.4 TIM9/TIM12 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835 24.4.1 TIM9/TIM12 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . 835 24.4.2 TIM9/TIM12 slave mode control register (TIMx_SMCR) . . . . . . . . . . . 836 24.4.3 TIM9/TIM12 Interrupt enable register (TIMx_DIER) . . . . . . . . . . . . . . 838 24.4.4 TIM9/TIM12 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . 838 24.4.5 TIM9/TIM12 event generation register (TIMx_EGR) . . . . . . . . . . . . . . 839 24.4.6 TIM9/TIM12 capture/compare mode register 1 (TIMx_CCMR1) . . . . . 840 24.4.7 TIM9/TIM12 capture/compare enable register (TIMx_CCER) . . . . . . . 844 24.4.8 TIM9/TIM12 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 24.4.9 TIM9/TIM12 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 24.4.10 TIM9/TIM12 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . 846 24.4.11 TIM9/TIM12 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . 846 24.4.12 TIM9/TIM12 capture/compare register 2 (TIMx_CCR2) . . . . . . . . . . . 846 24.4.13 TIM9/TIM12 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848 RM0385 Rev 7 23/1709 43 Contents RM0385 24.5 TIM10/TIM11/TIM13/TIM14 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 850 24.5.1 TIM10/TIM11/TIM13/TIM14 control register 1 (TIMx_CR1) . . . . . . . . . 850 24.5.2 TIM10/TIM11/TIM13/TIM14 Interrupt enable register (TIMx_DIER) . . 851 24.5.3 TIM10/TIM11/TIM13/TIM14 status register (TIMx_SR) . . . . . . . . . . . . 851 24.5.4 TIM10/TIM11/TIM13/TIM14 event generation register (TIMx_EGR) . . 852 24.5.5 TIM10/TIM11/TIM13/TIM14 capture/compare mode register 1 (TIMx_CCMR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853 24.5.6 TIM10/TIM11/TIM13/TIM14 capture/compare enable register (TIMx_CCER) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855 24.5.7 TIM10/TIM11/TIM13/TIM14 counter (TIMx_CNT) . . . . . . . . . . . . . . . . 856 24.5.8 TIM10/TIM11/TIM13/TIM14 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . 857 24.5.9 TIM10/TIM11/TIM13/TIM14 auto-reload register (TIMx_ARR) . . . . . . 857 24.5.10 TIM10/TIM11/TIM13/TIM14 capture/compare register 1 (TIMx_CCR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857 24.5.11 TIM11 option register 1 (TIM11_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . 858 24.5.12 TIM10/TIM11/TIM13/TIM14 register map . . . . . . . . . . . . . . . . . . . . . . 858 25 Basic timers (TIM6/TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 25.1 TIM6/TIM7 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 25.2 TIM6/TIM7 main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 25.3 TIM6/TIM7 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861 25.4 26 24/1709 25.3.1 Time-base unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861 25.3.2 Counting mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 25.3.3 UIF bit remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866 25.3.4 Clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866 25.3.5 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867 TIM6/TIM7 registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867 25.4.1 TIM6/TIM7 control register 1 (TIMx_CR1) . . . . . . . . . . . . . . . . . . . . . . 867 25.4.2 TIM6/TIM7 control register 2 (TIMx_CR2) . . . . . . . . . . . . . . . . . . . . . . 869 25.4.3 TIM6/TIM7 DMA/Interrupt enable register (TIMx_DIER) . . . . . . . . . . . 869 25.4.4 TIM6/TIM7 status register (TIMx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . 870 25.4.5 TIM6/TIM7 event generation register (TIMx_EGR) . . . . . . . . . . . . . . . 870 25.4.6 TIM6/TIM7 counter (TIMx_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 870 25.4.7 TIM6/TIM7 prescaler (TIMx_PSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871 25.4.8 TIM6/TIM7 auto-reload register (TIMx_ARR) . . . . . . . . . . . . . . . . . . . 871 25.4.9 TIM6/TIM7 register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872 Low-power timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873 RM0385 Rev 7 RM0385 Contents 26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873 26.2 LPTIM main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873 26.3 LPTIM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873 26.4 LPTIM functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 26.4.1 LPTIM block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 26.4.2 LPTIM trigger mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 26.4.3 LPTIM reset and clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 26.4.4 Glitch filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 26.4.5 Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876 26.4.6 Trigger multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876 26.4.7 Operating mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877 26.4.8 Timeout function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879 26.4.9 Waveform generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879 26.4.10 Register update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880 26.4.11 Counter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881 26.4.12 Timer enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881 26.4.13 Encoder mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882 27 26.5 LPTIM interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883 26.6 LPTIM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884 26.6.1 LPTIM interrupt and status register (LPTIM_ISR) . . . . . . . . . . . . . . . . 884 26.6.2 LPTIM interrupt clear register (LPTIM_ICR) . . . . . . . . . . . . . . . . . . . . 885 26.6.3 LPTIM interrupt enable register (LPTIM_IER) . . . . . . . . . . . . . . . . . . . 886 26.6.4 LPTIM configuration register (LPTIM_CFGR) . . . . . . . . . . . . . . . . . . . 887 26.6.5 LPTIM control register (LPTIM_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . 889 26.6.6 LPTIM compare register (LPTIM_CMP) . . . . . . . . . . . . . . . . . . . . . . . 890 26.6.7 LPTIM autoreload register (LPTIM_ARR) . . . . . . . . . . . . . . . . . . . . . . 891 26.6.8 LPTIM counter register (LPTIM_CNT) . . . . . . . . . . . . . . . . . . . . . . . . . 891 26.6.9 LPTIM register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893 27.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893 27.2 IWDG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893 27.3 IWDG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893 27.3.1 IWDG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893 27.3.2 Window option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894 27.3.3 Hardware watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895 RM0385 Rev 7 25/1709 43 Contents RM0385 27.4 28 26/1709 Low-power freeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895 27.3.5 Behavior in Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . 895 27.3.6 Register access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895 27.3.7 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895 IWDG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896 27.4.1 Key register (IWDG_KR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896 27.4.2 Prescaler register (IWDG_PR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897 27.4.3 Reload register (IWDG_RLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898 27.4.4 Status register (IWDG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899 27.4.5 Window register (IWDG_WINR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900 27.4.6 IWDG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . 902 28.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902 28.2 WWDG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902 28.3 WWDG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 902 28.4 29 27.3.4 28.3.1 Enabling the watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903 28.3.2 Controlling the downcounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903 28.3.3 Advanced watchdog interrupt feature . . . . . . . . . . . . . . . . . . . . . . . . . 903 28.3.4 How to program the watchdog timeout . . . . . . . . . . . . . . . . . . . . . . . . 904 28.3.5 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 905 WWDG registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906 28.4.1 Control register (WWDG_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906 28.4.2 Configuration register (WWDG_CFR) . . . . . . . . . . . . . . . . . . . . . . . . . 906 28.4.3 Status register (WWDG_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907 28.4.4 WWDG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909 29.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909 29.2 RTC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910 29.3 RTC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .911 29.3.1 RTC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911 29.3.2 GPIOs controlled by the RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912 29.3.3 Clock and prescalers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 29.3.4 Real-time clock and calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915 29.3.5 Programmable alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915 RM0385 Rev 7 RM0385 Contents 29.3.6 Periodic auto-wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916 29.3.7 RTC initialization and configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 917 29.3.8 Reading the calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918 29.3.9 Resetting the RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919 29.3.10 RTC synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920 29.3.11 RTC reference clock detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 920 29.3.12 RTC smooth digital calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921 29.3.13 Time-stamp function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 29.3.14 Tamper detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924 29.3.15 Calibration clock output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926 29.3.16 Alarm output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926 29.4 RTC low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927 29.5 RTC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927 29.6 RTC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 29.6.1 RTC time register (RTC_TR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 29.6.2 RTC date register (RTC_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929 29.6.3 RTC control register (RTC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930 29.6.4 RTC initialization and status register (RTC_ISR) . . . . . . . . . . . . . . . . . 933 29.6.5 RTC prescaler register (RTC_PRER) . . . . . . . . . . . . . . . . . . . . . . . . . 936 29.6.6 RTC wakeup timer register (RTC_WUTR) . . . . . . . . . . . . . . . . . . . . . . 937 29.6.7 RTC alarm A register (RTC_ALRMAR) . . . . . . . . . . . . . . . . . . . . . . . . 938 29.6.8 RTC alarm B register (RTC_ALRMBR) . . . . . . . . . . . . . . . . . . . . . . . . 939 29.6.9 RTC write protection register (RTC_WPR) . . . . . . . . . . . . . . . . . . . . . 940 29.6.10 RTC sub second register (RTC_SSR) . . . . . . . . . . . . . . . . . . . . . . . . . 940 29.6.11 RTC shift control register (RTC_SHIFTR) . . . . . . . . . . . . . . . . . . . . . . 941 29.6.12 RTC timestamp time register (RTC_TSTR) . . . . . . . . . . . . . . . . . . . . . 942 29.6.13 RTC timestamp date register (RTC_TSDR) . . . . . . . . . . . . . . . . . . . . 943 29.6.14 RTC time-stamp sub second register (RTC_TSSSR) . . . . . . . . . . . . . 944 29.6.15 RTC calibration register (RTC_CALR) . . . . . . . . . . . . . . . . . . . . . . . . . 945 29.6.16 RTC tamper configuration register (RTC_TAMPCR) . . . . . . . . . . . . . . 946 29.6.17 RTC alarm A sub second register (RTC_ALRMASSR) . . . . . . . . . . . . 949 29.6.18 RTC alarm B sub second register (RTC_ALRMBSSR) . . . . . . . . . . . . 950 29.6.19 RTC option register (RTC_OR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951 29.6.20 RTC backup registers (RTC_BKPxR) . . . . . . . . . . . . . . . . . . . . . . . . . 951 29.6.21 RTC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952 30 Inter-integrated circuit (I2C) interface . . . . . . . . . . . . . . . . . . . . . . . . . 954 RM0385 Rev 7 27/1709 43 Contents RM0385 30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954 30.2 I2C main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954 30.3 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955 30.4 I2C functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 955 30.4.1 I2C block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956 30.4.2 I2C clock requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957 30.4.3 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957 30.4.4 I2C initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958 30.4.5 Software reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962 30.4.6 Data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963 30.4.7 I2C slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965 30.4.8 I2C master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974 30.4.9 I2C_TIMINGR register configuration examples . . . . . . . . . . . . . . . . . . 986 30.4.10 SMBus specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987 30.4.11 SMBus initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 990 30.4.12 SMBus: I2C_TIMEOUTR register configuration examples . . . . . . . . . 992 30.4.13 SMBus slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 30.4.14 Error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999 30.4.15 DMA requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001 30.4.16 Debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002 30.5 I2C low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002 30.6 I2C interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003 30.7 I2C registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004 30.7.1 Control register 1 (I2C_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1004 30.7.2 Control register 2 (I2C_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007 30.7.3 Own address 1 register (I2C_OAR1) . . . . . . . . . . . . . . . . . . . . . . . . . 1010 30.7.4 Own address 2 register (I2C_OAR2) . . . . . . . . . . . . . . . . . . . . . . . . . 1011 30.7.5 Timing register (I2C_TIMINGR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012 30.7.6 Timeout register (I2C_TIMEOUTR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1013 30.7.7 Interrupt and status register (I2C_ISR) . . . . . . . . . . . . . . . . . . . . . . . 1014 30.7.8 Interrupt clear register (I2C_ICR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1016 30.7.9 PEC register (I2C_PECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 30.7.10 Receive data register (I2C_RXDR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1018 30.7.11 Transmit data register (I2C_TXDR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1018 30.7.12 I2C register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 28/1709 RM0385 Rev 7 RM0385 31 Contents Universal synchronous asynchronous receiver transmitter (USART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021 31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021 31.2 USART main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021 31.3 USART extended features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 31.4 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 31.5 USART functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 31.5.1 USART character description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026 31.5.2 USART transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1028 31.5.3 USART receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 31.5.4 USART baud rate generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036 31.5.5 Tolerance of the USART receiver to clock deviation . . . . . . . . . . . . . 1039 31.5.6 USART auto baud rate detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040 31.5.7 Multiprocessor communication using USART . . . . . . . . . . . . . . . . . . 1041 31.5.8 Modbus communication using USART . . . . . . . . . . . . . . . . . . . . . . . 1043 31.5.9 USART parity control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044 31.5.10 USART LIN (local interconnection network) mode . . . . . . . . . . . . . . 1045 31.5.11 USART synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047 31.5.12 USART Single-wire Half-duplex communication . . . . . . . . . . . . . . . . 1050 31.5.13 USART Smartcard mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050 31.5.14 USART IrDA SIR ENDEC block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1055 31.5.15 USART continuous communication in DMA mode . . . . . . . . . . . . . . . 1057 31.5.16 RS232 hardware flow control and RS485 driver enable using USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059 31.6 USART low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 31.7 USART interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 31.8 USART registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 31.8.1 Control register 1 (USART_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064 31.8.2 Control register 2 (USART_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067 31.8.3 Control register 3 (USART_CR3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070 31.8.4 Baud rate register (USART_BRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1073 31.8.5 Guard time and prescaler register (USART_GTPR) . . . . . . . . . . . . . 1074 31.8.6 Receiver timeout register (USART_RTOR) . . . . . . . . . . . . . . . . . . . . 1075 31.8.7 Request register (USART_RQR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1076 31.8.8 Interrupt and status register (USART_ISR) . . . . . . . . . . . . . . . . . . . . 1077 31.8.9 Interrupt flag clear register (USART_ICR) . . . . . . . . . . . . . . . . . . . . . 1081 RM0385 Rev 7 29/1709 43 Contents RM0385 31.8.10 Receive data register (USART_RDR) . . . . . . . . . . . . . . . . . . . . . . . . 1082 31.8.11 Transmit data register (USART_TDR) . . . . . . . . . . . . . . . . . . . . . . . . 1083 31.8.12 USART register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083 32 Serial peripheral interface / inter-IC sound (SPI/I2S) . . . . . . . . . . . . 1085 32.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 32.2 SPI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1085 32.3 I2S main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 32.4 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086 32.5 SPI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087 32.5.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087 32.5.2 Communications between one master and one slave . . . . . . . . . . . . 1088 32.5.3 Standard multi-slave communication . . . . . . . . . . . . . . . . . . . . . . . . . 1090 32.5.4 Multi-master communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091 32.5.5 Slave select (NSS) pin management . . . . . . . . . . . . . . . . . . . . . . . . . 1092 32.5.6 Communication formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093 32.5.7 Configuration of SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095 32.5.8 Procedure for enabling SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096 32.5.9 Data transmission and reception procedures . . . . . . . . . . . . . . . . . . 1096 32.5.10 SPI status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106 32.5.11 SPI error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107 32.5.12 NSS pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108 32.5.13 TI mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108 32.5.14 CRC calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109 32.6 SPI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111 32.7 I2S functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112 32.7.1 I2S general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112 32.7.2 I2S full duplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113 32.7.3 Supported audio protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114 32.7.4 Start-up description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121 32.7.5 Clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123 32.7.6 I2S master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126 32.7.7 I2S slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1128 32.7.8 I2S status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1129 32.7.9 I2S error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130 32.7.10 DMA features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131 30/1709 RM0385 Rev 7 RM0385 Contents 32.8 I2S interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1131 32.9 SPI and I2S registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1132 32.9.1 SPI control register 1 (SPIx_CR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1132 32.9.2 SPI control register 2 (SPIx_CR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134 32.9.3 SPI status register (SPIx_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137 32.9.4 SPI data register (SPIx_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138 32.9.5 SPI CRC polynomial register (SPIx_CRCPR) . . . . . . . . . . . . . . . . . . 1138 32.9.6 SPI Rx CRC register (SPIx_RXCRCR) . . . . . . . . . . . . . . . . . . . . . . . 1140 32.9.7 SPI Tx CRC register (SPIx_TXCRCR) . . . . . . . . . . . . . . . . . . . . . . . 1140 32.9.8 SPIx_I2S configuration register (SPIx_I2SCFGR) . . . . . . . . . . . . . . . 1141 32.9.9 SPIx_I2S prescaler register (SPIx_I2SPR) . . . . . . . . . . . . . . . . . . . . 1143 32.9.10 SPI/I2S register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144 33 Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145 33.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1145 33.2 SAI main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1146 33.3 SAI functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1147 33.3.1 SAI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147 33.3.2 SAI pins and internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148 33.3.3 Main SAI modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148 33.3.4 SAI synchronization mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149 33.3.5 Audio data size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150 33.3.6 Frame synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151 33.3.7 Slot configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154 33.3.8 SAI clock generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156 33.3.9 Internal FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1158 33.3.10 AC’97 link controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160 33.3.11 SPDIF output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162 33.3.12 Specific features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165 33.3.13 Error flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169 33.3.14 Disabling the SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172 33.3.15 SAI DMA interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1172 33.4 SAI interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1173 33.5 SAI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1174 33.5.1 Global configuration register (SAI_GCR) . . . . . . . . . . . . . . . . . . . . . . 1174 33.5.2 Configuration register 1 (SAI_ACR1 / SAI_BCR1) . . . . . . . . . . . . . . 1174 RM0385 Rev 7 31/1709 43 Contents RM0385 33.5.3 Configuration register 2 (SAI_ACR2 / SAI_BCR2) . . . . . . . . . . . . . . 1177 33.5.4 Frame configuration register (SAI_AFRCR / SAI_BFRCR) . . . . . . . . 1179 33.5.5 Slot register (SAI_ASLOTR / SAI_BSLOTR) . . . . . . . . . . . . . . . . . . . 1181 33.5.6 Interrupt mask register 2 (SAI_AIM / SAI_BIM) . . . . . . . . . . . . . . . . . 1182 33.5.7 Status register (SAI_ASR / SAI_BSR) . . . . . . . . . . . . . . . . . . . . . . . . 1183 33.5.8 Clear flag register (SAI_ACLRFR / SAI_BCLRFR) . . . . . . . . . . . . . . 1185 33.5.9 Data register (SAI_ADR / SAI_BDR) . . . . . . . . . . . . . . . . . . . . . . . . . 1186 33.5.10 SAI register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188 34 SPDIF receiver interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . . 1189 34.1 SPDIFRX interface introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1189 34.2 SPDIFRX main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1189 34.3 SPDIFRX functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1189 34.3.1 S/PDIF protocol (IEC-60958) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190 34.3.2 SPDIFRX decoder (SPDIFRX_DC) . . . . . . . . . . . . . . . . . . . . . . . . . . 1192 34.3.3 SPDIFRX tolerance to clock deviation . . . . . . . . . . . . . . . . . . . . . . . . 1196 34.3.4 SPDIFRX synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1196 34.3.5 SPDIFRX handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198 34.3.6 Data reception management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200 34.3.7 Dedicated control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202 34.3.8 Reception errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202 34.3.9 Clocking strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205 34.3.10 DMA Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205 34.3.11 Interrupt Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206 34.3.12 Register protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207 34.4 34.5 32/1709 Programming procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207 34.4.1 Initialization phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208 34.4.2 Handling of interrupts coming from SPDIFRX . . . . . . . . . . . . . . . . . . 1209 34.4.3 Handling of interrupts coming from DMA . . . . . . . . . . . . . . . . . . . . . . 1209 SPDIFRX interface registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210 34.5.1 Control register (SPDIFRX_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210 34.5.2 Interrupt mask register (SPDIFRX_IMR) . . . . . . . . . . . . . . . . . . . . . . 1212 34.5.3 Status register (SPDIFRX_SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213 34.5.4 Interrupt flag clear register (SPDIFRX_IFCR) . . . . . . . . . . . . . . . . . . 1215 34.5.5 Data input register (SPDIFRX_DR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1216 34.5.6 Data input register (SPDIFRX_FMT1_DR) . . . . . . . . . . . . . . . . . . . . 1217 34.5.7 Data input register (SPDIFRX_FMT2_DR) . . . . . . . . . . . . . . . . . . . . 1218 RM0385 Rev 7 RM0385 Contents 34.5.8 Channel status register (SPDIFRX_CSR) . . . . . . . . . . . . . . . . . . . . . 1219 34.5.9 Debug information register (SPDIFRX_DIR) . . . . . . . . . . . . . . . . . . . 1219 34.5.10 SPDIFRX interface register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221 35 SD/SDIO/MMC card host interface (SDMMC) . . . . . . . . . . . . . . . . . . 1222 35.1 SDMMC main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222 35.2 SDMMC bus topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222 35.3 SDMMC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224 35.4 35.3.1 SDMMC adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226 35.3.2 SDMMC APB2 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1237 Card functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238 35.4.1 Card identification mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238 35.4.2 Card reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239 35.4.3 Operating voltage range validation . . . . . . . . . . . . . . . . . . . . . . . . . . 1239 35.4.4 Card identification process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239 35.4.5 Block write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1240 35.4.6 Block read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241 35.4.7 Stream access, stream write and stream read (MultiMediaCard only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241 35.4.8 Erase: group erase and sector erase . . . . . . . . . . . . . . . . . . . . . . . . 1243 35.4.9 Wide bus selection or deselection . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243 35.4.10 Protection management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243 35.4.11 Card status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1247 35.4.12 SD status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250 35.4.13 SD I/O mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254 35.4.14 Commands and responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255 35.5 35.6 Response formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258 35.5.1 R1 (normal response command) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259 35.5.2 R1b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259 35.5.3 R2 (CID, CSD register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259 35.5.4 R3 (OCR register) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260 35.5.5 R4 (Fast I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260 35.5.6 R4b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260 35.5.7 R5 (interrupt request) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261 35.5.8 R6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261 SDIO I/O card-specific operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262 35.6.1 SDIO I/O read wait operation by SDMMC_D2 signalling . . . . . . . . . . 1262 RM0385 Rev 7 33/1709 43 Contents RM0385 35.6.2 SDIO read wait operation by stopping SDMMC_CK . . . . . . . . . . . . . 1263 35.6.3 SDIO suspend/resume operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263 35.6.4 SDIO interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263 35.7 HW flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263 35.8 SDMMC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264 35.8.1 SDMMC power control register (SDMMC_POWER) . . . . . . . . . . . . . 1264 35.8.2 SDMMC clock control register (SDMMC_CLKCR) . . . . . . . . . . . . . . 1264 35.8.3 SDMMC argument register (SDMMC_ARG) . . . . . . . . . . . . . . . . . . . 1266 35.8.4 SDMMC command register (SDMMC_CMD) . . . . . . . . . . . . . . . . . . 1266 35.8.5 SDMMC command response register (SDMMC_RESPCMD) . . . . . . 1267 35.8.6 SDMMC response 1..4 register (SDMMC_RESPx) . . . . . . . . . . . . . . 1267 35.8.7 SDMMC data timer register (SDMMC_DTIMER) . . . . . . . . . . . . . . . 1268 35.8.8 SDMMC data length register (SDMMC_DLEN) . . . . . . . . . . . . . . . . . 1269 35.8.9 SDMMC data control register (SDMMC_DCTRL) . . . . . . . . . . . . . . . 1269 35.8.10 SDMMC data counter register (SDMMC_DCOUNT) . . . . . . . . . . . . . 1272 35.8.11 SDMMC status register (SDMMC_STA) . . . . . . . . . . . . . . . . . . . . . . 1272 35.8.12 SDMMC interrupt clear register (SDMMC_ICR) . . . . . . . . . . . . . . . . 1273 35.8.13 SDMMC mask register (SDMMC_MASK) . . . . . . . . . . . . . . . . . . . . . 1275 35.8.14 SDMMC FIFO counter register (SDMMC_FIFOCNT) . . . . . . . . . . . . 1277 35.8.15 SDMMC data FIFO register (SDMMC_FIFO) . . . . . . . . . . . . . . . . . . 1278 35.8.16 SDMMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279 36 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281 36.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281 36.2 bxCAN main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1281 36.3 bxCAN general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1282 36.4 36.5 36.3.1 CAN 2.0B active core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1282 36.3.2 Control, status and configuration registers . . . . . . . . . . . . . . . . . . . . 1282 36.3.3 Tx mailboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1282 36.3.4 Acceptance filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1283 bxCAN operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284 36.4.1 Initialization mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284 36.4.2 Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1284 36.4.3 Sleep mode (low-power) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285 Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 36.5.1 34/1709 Silent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 RM0385 Rev 7 RM0385 37 Contents 36.5.2 Loop back mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 36.5.3 Loop back combined with silent mode . . . . . . . . . . . . . . . . . . . . . . . . 1287 36.6 Behavior in debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 36.7 bxCAN functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 36.7.1 Transmission handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 36.7.2 Time triggered communication mode . . . . . . . . . . . . . . . . . . . . . . . . . 1289 36.7.3 Reception handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289 36.7.4 Identifier filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291 36.7.5 Message storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295 36.7.6 Error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297 36.7.7 Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1297 36.8 bxCAN interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300 36.9 CAN registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301 36.9.1 Register access protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301 36.9.2 CAN control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301 36.9.3 CAN mailbox registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1311 36.9.4 CAN filter registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1318 36.9.5 bxCAN register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) . . . . . . . 1326 37.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326 37.2 OTG main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327 37.2.1 General features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328 37.2.2 Host-mode features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1329 37.2.3 Peripheral-mode features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1329 37.3 OTG implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1330 37.4 OTG functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331 37.5 37.4.1 OTG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331 37.4.2 USB OTG pin and internal signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332 37.4.3 OTG core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333 37.4.4 Full-speed OTG PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333 37.4.5 Embedded full speed OTG PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1334 37.4.6 High-speed OTG PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335 OTG dual role device (DRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335 37.5.1 ID line detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335 37.5.2 HNP dual role device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336 RM0385 Rev 7 35/1709 43 Contents RM0385 37.5.3 37.6 37.7 37.8 37.9 SRP dual role device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336 USB peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336 37.6.1 SRP-capable peripheral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337 37.6.2 Peripheral states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337 37.6.3 Peripheral endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338 USB host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1340 37.7.1 SRP-capable host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1341 37.7.2 USB host states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1341 37.7.3 Host channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343 37.7.4 Host scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1344 SOF trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345 37.8.1 Host SOFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345 37.8.2 Peripheral SOFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345 OTG low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346 37.10 Dynamic update of the OTG_HFIR register . . . . . . . . . . . . . . . . . . . . . 1347 37.11 USB data FIFOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347 37.11.1 Peripheral FIFO architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1348 37.11.2 Host FIFO architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1349 37.11.3 FIFO RAM allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1350 37.12 OTG_FS system performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1352 37.13 OTG_FS/OTG_HS interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1352 37.14 OTG_FS/OTG_HS control and status registers . . . . . . . . . . . . . . . . . . 1354 37.14.1 CSR memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1354 37.15 OTG_FS/OTG_HS registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1360 37.15.1 OTG control and status register (OTG_GOTGCTL) . . . . . . . . . . . . . 1360 37.15.2 OTG interrupt register (OTG_GOTGINT) . . . . . . . . . . . . . . . . . . . . . 1363 37.15.3 OTG AHB configuration register (OTG_GAHBCFG) . . . . . . . . . . . . . 1365 37.15.4 OTG USB configuration register (OTG_GUSBCFG) . . . . . . . . . . . . . 1367 37.15.5 OTG reset register (OTG_GRSTCTL) . . . . . . . . . . . . . . . . . . . . . . . . 1370 37.15.6 OTG core interrupt register (OTG_GINTSTS) . . . . . . . . . . . . . . . . . . 1373 37.15.7 OTG interrupt mask register (OTG_GINTMSK) . . . . . . . . . . . . . . . . . 1378 37.15.8 OTG receive status debug read/OTG status read and pop registers (OTG_GRXSTSR/OTG_GRXSTSP) . . . . . . . . . . . . . . 1381 37.15.9 OTG receive FIFO size register (OTG_GRXFSIZ) . . . . . . . . . . . . . . 1384 37.15.10 OTG host non-periodic transmit FIFO size register (OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size (OTG_DIEPTXF0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1384 36/1709 RM0385 Rev 7 RM0385 Contents 37.15.11 OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385 37.15.12 OTG general core configuration register (OTG_GCCFG) . . . . . . . . . 1386 37.15.13 OTG core ID register (OTG_CID) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1387 37.15.14 OTG core LPM configuration register (OTG_GLPMCFG) . . . . . . . . . 1387 37.15.15 OTG host periodic transmit FIFO size register (OTG_HPTXFSIZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1392 37.15.16 OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5[FS] /8[HS], where x is the FIFO number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1392 37.15.17 Host-mode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1393 37.15.18 OTG host configuration register (OTG_HCFG) . . . . . . . . . . . . . . . . . 1393 37.15.19 OTG host frame interval register (OTG_HFIR) . . . . . . . . . . . . . . . . . 1394 37.15.20 OTG host frame number/frame time remaining register (OTG_HFNUM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395 37.15.21 OTG_Host periodic transmit FIFO/queue status register (OTG_HPTXSTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1395 37.15.22 OTG host all channels interrupt register (OTG_HAINT) . . . . . . . . . . 1396 37.15.23 OTG host all channels interrupt mask register (OTG_HAINTMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1397 37.15.24 OTG host port control and status register (OTG_HPRT) . . . . . . . . . . 1398 37.15.25 OTG host channel x characteristics register (OTG_HCCHARx) (x = 0..15[HS] / 11[FS], where x = Channel number) . . . . . . . . . . . . . 1400 37.15.26 OTG host channel x split control register (OTG_HCSPLTx) (x = 0..15, where x = Channel number) . . . . . . . . . . . . . . . . . . . . . . . 1401 37.15.27 OTG host channel x interrupt register (OTG_HCINTx) (x = 0..15[HS] / 11[FS], where x = Channel number) . . . . . . . . . . . . . 1402 37.15.28 OTG host channel x interrupt mask register (OTG_HCINTMSKx) (x = 0..15[HS] / 11[FS], where x = Channel number) . . . . . . . . . . . . . 1404 37.15.29 OTG host channel x transfer size register (OTG_HCTSIZx) (x = 0..15[HS] / 11[FS], where x = Channel number) . . . . . . . . . . . . . 1405 37.15.30 OTG host channel x DMA address register (OTG_HCDMAx) (x = 0..15, where x = Channel number) . . . . . . . . . . . . . . . . . . . . . . . 1406 37.15.31 Device-mode registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1406 37.15.32 OTG device configuration register (OTG_DCFG) . . . . . . . . . . . . . . . 1407 37.15.33 OTG device control register (OTG_DCTL) . . . . . . . . . . . . . . . . . . . . 1409 37.15.34 OTG device status register (OTG_DSTS) . . . . . . . . . . . . . . . . . . . . . 1411 37.15.35 OTG device IN endpoint common interrupt mask register (OTG_DIEPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1412 37.15.36 OTG device OUT endpoint common interrupt mask register (OTG_DOEPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1413 RM0385 Rev 7 37/1709 43 Contents RM0385 37.15.37 OTG device all endpoints interrupt register (OTG_DAINT) . . . . . . . . 1415 37.15.38 OTG all endpoints interrupt mask register (OTG_DAINTMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1415 37.15.39 OTG device VBUS discharge time register (OTG_DVBUSDIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1416 37.15.40 OTG device VBUS pulsing time register (OTG_DVBUSPULSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1416 37.15.41 OTG device threshold control register (OTG_DTHRCTL) . . . . . . . . . 1417 37.15.42 OTG device IN endpoint FIFO empty interrupt mask register (OTG_DIEPEMPMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1418 37.15.43 OTG device each endpoint interrupt register (OTG_DEACHINT) . . . 1419 37.15.44 OTG device each endpoint interrupt mask register (OTG_DEACHINTMSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419 37.15.45 OTG device each IN endpoint-1 interrupt mask register (OTG_HS_DIEPEACHMSK1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1420 37.15.46 OTG device each OUT endpoint-1 interrupt mask register (OTG_HS_DOEPEACHMSK1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1421 37.15.47 OTG device control IN endpoint 0 control register (OTG_DIEPCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1422 37.15.48 OTG device IN endpoint x control register (OTG_DIEPCTLx) (x = 1..5[FS] / 0..8[HS], where x = endpoint number) . . . . . . . . . . . . 1424 37.15.49 OTG device IN endpoint x interrupt register (OTG_DIEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint number) . . . . . . . . . . . . . . . 1426 37.15.50 OTG device IN endpoint 0 transfer size register (OTG_DIEPTSIZ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428 37.15.51 OTG device IN endpoint x DMA address register (OTG_DIEPDMAx) (x = 0..8, where x = endpoint number) . . . . . . . . . . . . . . . . . . . . . . . . 1429 37.15.52 OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5[FS] /8[HS], where x = endpoint number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429 37.15.53 OTG device IN endpoint x transfer size register (OTG_DIEPTSIZx) (x = 1..5[FS] /8[HS], where x = endpoint number) . . . . . . . . . . . . . . . 1430 37.15.54 OTG device control OUT endpoint 0 control register (OTG_DOEPCTL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1431 37.15.55 OTG device OUT endpoint x interrupt register (OTG_DOEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint number) . . . . . . . . . . . . . . . 1432 37.15.56 OTG device OUT endpoint 0 transfer size register (OTG_DOEPTSIZ0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1434 37.15.57 OTG device OUT endpoint x DMA address register (OTG_DOEPDMAx) (x = 0..8, where x = endpoint number) . . . . . . . . . . . . . . . . . . . . . . . . 1435 37.15.58 OTG device OUT endpoint x control register (OTG_DOEPCTLx) (x = 1..5[FS] /8[HS], where x = endpoint number) . . . . . . . . . . . . . . . 1436 38/1709 RM0385 Rev 7 RM0385 Contents 37.15.59 OTG device OUT endpoint x transfer size register (OTG_DOEPTSIZx) (x = 1..5[FS] /8[HS], where x = Endpoint number) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1438 37.15.60 OTG power and clock gating control register (OTG_PCGCCTL) . . . 1439 37.15.61 OTG_FS/OTG_HS register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1440 37.16 OTG_FS/OTG_HS programming model . . . . . . . . . . . . . . . . . . . . . . . 1453 37.16.1 Core initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1453 37.16.2 Host initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1453 37.16.3 Device initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1454 37.16.4 DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1455 37.16.5 Host programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1455 37.16.6 Device programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1488 37.16.7 Worst case response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1506 37.16.8 OTG programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1508 38 Ethernet (ETH): media access control (MAC) with DMA controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515 38.1 Ethernet introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515 38.2 Ethernet main features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515 38.2.1 MAC core features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516 38.2.2 DMA features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517 38.2.3 PTP features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517 38.3 Ethernet pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518 38.4 Ethernet functional description: SMI, MII and RMII . . . . . . . . . . . . . . . 1519 38.5 38.4.1 Station management interface: SMI . . . . . . . . . . . . . . . . . . . . . . . . . 1519 38.4.2 Media-independent interface: MII . . . . . . . . . . . . . . . . . . . . . . . . . . . 1523 38.4.3 Reduced media-independent interface: RMII . . . . . . . . . . . . . . . . . . 1525 38.4.4 MII/RMII selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1526 Ethernet functional description: MAC 802.3 . . . . . . . . . . . . . . . . . . . . . 1527 38.5.1 MAC 802.3 frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1527 38.5.2 MAC frame transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1531 38.5.3 MAC frame reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538 38.5.4 MAC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544 38.5.5 MAC filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544 38.5.6 MAC loopback mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1547 38.5.7 MAC management counters: MMC . . . . . . . . . . . . . . . . . . . . . . . . . . 1547 38.5.8 Power management: PMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548 RM0385 Rev 7 39/1709 43 Contents RM0385 38.5.9 38.6 39 Ethernet functional description: DMA controller operation . . . . . . . . . . 1557 38.6.1 Initialization of a transfer using DMA . . . . . . . . . . . . . . . . . . . . . . . . . 1558 38.6.2 Host bus burst access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1558 38.6.3 Host data buffer alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559 38.6.4 Buffer size calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559 38.6.5 DMA arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1560 38.6.6 Error response to DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1560 38.6.7 Tx DMA configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1560 38.6.8 Rx DMA configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1572 38.6.9 DMA interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1583 38.7 Ethernet interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1584 38.8 Ethernet register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1585 38.8.1 MAC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1585 38.8.2 MMC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1605 38.8.3 IEEE 1588 time stamp registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1610 38.8.4 DMA register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1618 38.8.5 Ethernet register maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1632 HDMI-CEC controller (HDMI-CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636 39.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636 39.2 HDMI-CEC controller main features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636 39.3 HDMI-CEC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637 39.4 39.3.1 HDMI-CEC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637 39.3.2 HDMI-CEC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637 39.3.3 Message description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637 39.3.4 Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638 Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639 39.4.1 39.5 40/1709 Precision time protocol (IEEE1588 PTP) . . . . . . . . . . . . . . . . . . . . . . 1551 SFT option bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641 39.5.1 Bit error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641 39.5.2 Message error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641 39.5.3 Bit Rising Error (BRE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641 39.5.4 Short Bit Period Error (SBPE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1642 39.5.5 Long Bit Period Error (LBPE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1642 39.5.6 Transmission Error Detection (TXERR) . . . . . . . . . . . . . . . . . . . . . . . 1644 RM0385 Rev 7 RM0385 40 Contents 39.6 HDMI-CEC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1645 39.7 HDMI-CEC registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1646 39.7.1 CEC control register (CEC_CR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1646 39.7.2 CEC configuration register (CEC_CFGR) . . . . . . . . . . . . . . . . . . . . . 1647 39.7.3 CEC Tx data register (CEC_TXDR) . . . . . . . . . . . . . . . . . . . . . . . . . . 1650 39.7.4 CEC Rx data register (CEC_RXDR) . . . . . . . . . . . . . . . . . . . . . . . . . 1650 39.7.5 CEC Interrupt and Status Register (CEC_ISR) . . . . . . . . . . . . . . . . . 1650 39.7.6 CEC interrupt enable register (CEC_IER) . . . . . . . . . . . . . . . . . . . . . 1652 39.7.7 HDMI-CEC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1654 Debug support (DBG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1655 40.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1655 40.2 Reference Arm® documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1656 40.3 SWJ debug port (serial wire and JTAG) . . . . . . . . . . . . . . . . . . . . . . . . 1656 40.3.1 40.4 Mechanism to select the JTAG-DP or the SW-DP . . . . . . . . . . . . . . . 1657 Pinout and debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657 40.4.1 SWJ debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1658 40.4.2 Flexible SWJ-DP pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1658 40.4.3 Internal pull-up and pull-down on JTAG pins . . . . . . . . . . . . . . . . . . . 1659 40.4.4 Using serial wire and releasing the unused debug pins as GPIOs . . 1660 40.5 STM32F75xxx and STM32F74xxx JTAG Debug Port connection . . . . 1660 40.6 ID codes and locking mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1662 40.6.1 MCU device ID code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1662 40.6.2 Boundary scan Debug Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1662 40.6.3 Cortex®-M7 with FPU Debug Port . . . . . . . . . . . . . . . . . . . . . . . . . . . 1662 40.6.4 Cortex®-M7 with FPU JEDEC-106 ID code . . . . . . . . . . . . . . . . . . . . 1663 40.7 JTAG debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1663 40.8 SW debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1665 40.9 40.8.1 SW protocol introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1665 40.8.2 SW protocol sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1665 40.8.3 SW-DP state machine (reset, idle states, ID code) . . . . . . . . . . . . . . 1666 40.8.4 DP and AP read/write accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1667 40.8.5 SW-DP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1667 40.8.6 SW-AP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1668 AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1669 RM0385 Rev 7 41/1709 43 Contents RM0385 40.10 Core debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1670 40.11 Capability of the debugger host to connect under system reset . . . . . 1671 40.12 FPB (Flash patch breakpoint) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1671 40.13 DWT (data watchpoint trigger) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1672 40.14 ITM (instrumentation trace macrocell) . . . . . . . . . . . . . . . . . . . . . . . . . 1672 40.14.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1672 40.14.2 Time stamp packets, synchronization and overflow packets . . . . . . . 1672 40.15 ETM (Embedded trace macrocell) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1674 40.15.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1674 40.15.2 Signal protocol, packet types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1674 40.15.3 Main ETM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1675 40.15.4 Configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1675 40.16 MCU debug component (DBGMCU) . . . . . . . . . . . . . . . . . . . . . . . . . . 1675 40.16.1 Debug support for low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . 1675 40.16.2 Debug support for timers, watchdog, bxCAN and I2C . . . . . . . . . . . . 1676 40.16.3 Debug MCU configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . 1676 40.16.4 DBGMCU_CR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1677 40.16.5 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) . . . . . . . . 1678 40.16.6 Debug MCU APB2 Freeze register (DBGMCU_APB2_FZ) . . . . . . . . 1680 40.17 Pelican TPIU (trace port interface unit) . . . . . . . . . . . . . . . . . . . . . . . . 1681 40.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1681 40.17.2 TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1682 40.17.3 TPIU formatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1684 40.17.4 TPIU frame synchronization packets . . . . . . . . . . . . . . . . . . . . . . . . . 1684 40.17.5 Transmission of the synchronization frame packet . . . . . . . . . . . . . . 1684 40.17.6 Synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1685 40.17.7 Asynchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1685 40.17.8 TRACECLKIN connection inside the STM32F75xxx and STM32F74xxx . . . . . . . . . . . . . . . . . . . . . . . . . . 1685 40.17.9 TPIU registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1686 40.17.10 Example of configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1686 40.18 DBG register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1687 41 42/1709 Device electronic signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688 41.1 Unique device ID register (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688 41.2 Flash size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1689 RM0385 Rev 7 RM0385 Contents 41.3 42 Package data register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1690 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1691 RM0385 Rev 7 43/1709 43 List of tables RM0385 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. 44/1709 STM32F75xxx and STM32F74xxx register boundary addresses . . . . . . . . . . . . . . . . . . . . 70 Boot modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Flash memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Number of wait states according to CPU clock (HCLK) frequency . . . . . . . . . . . . . . . . . . . 78 Program/erase parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Flash interrupt request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Option byte organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Access versus read protection level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 OTP area organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Flash register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . 105 Low-power mode summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Features over all modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Sleep-now entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Sleep-on-exit entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Stop operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Stop mode entry and exit (STM32F75xxx and STM32F74xxx) . . . . . . . . . . . . . . . . . . . . 118 Standby mode entry and exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 PWR - register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 RCC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Port bit configuration table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 GPIO register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 SYSCFG register map and reset values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 DMA1 request mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 DMA2 request mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Source and destination address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Source and destination address registers in double-buffer mode (DBM = 1) . . . . . . . . . . 232 Packing/unpacking and endian behavior (bit PINC = MINC = 1) . . . . . . . . . . . . . . . . . . . 233 Restriction on NDT versus PSIZE and MSIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 FIFO threshold configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Possible DMA configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 DMA interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 DMA register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Supported color mode in input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 Data order in memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 Alpha mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 Supported CLUT color mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 CLUT data order in system memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 Supported color mode in output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Data order in memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 DMA2D interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 DMA2D register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 STM32F75xxx and STM32F74xxx vector table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 External interrupt/event controller register map and reset values. . . . . . . . . . . . . . . . . . . 300 CRC internal input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 CRC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 NOR/PSRAM bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 NOR/PSRAM External memory address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 RM0385 Rev 7 RM0385 Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. List of tables NAND memory mapping and timing registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 NAND bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 SDRAM bank selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 SDRAM address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 SDRAM address mapping with 8-bit data bus width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 SDRAM address mapping with 16-bit data bus width. . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 SDRAM address mapping with 32-bit data bus width. . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 Programmable NOR/PSRAM access parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 Non-multiplexed I/O NOR Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 16-bit multiplexed I/O NOR Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 Non-multiplexed I/Os PSRAM/SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 16-Bit multiplexed I/O PSRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 NOR Flash/PSRAM: example of supported memories and transactions . . . . . . . . . . . . . 320 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 FMC_BWTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 FMC_BCRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 FMC_BTRx bit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 Programmable NAND Flash access parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 8-bit NAND Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 16-bit NAND Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Supported memories and transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 ECC result relevant bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 SDRAM signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364 FMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382 QUADSPI pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 QUADSPI interrupt requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399 QUADSPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 ADC pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 Analog watchdog channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 Configuring the trigger polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 External trigger for regular channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426 External trigger for injected channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 ADC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 ADC global register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 ADC register map and reset values for each ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458 ADC register map and reset values (common ADC registers) . . . . . . . . . . . . . . . . . . . . . 460 RM0385 Rev 7 45/1709 50 List of tables Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. Table 124. Table 125. Table 126. Table 127. Table 128. Table 129. Table 130. Table 131. Table 132. Table 133. Table 134. Table 135. Table 136. Table 137. Table 138. Table 139. Table 140. Table 141. Table 142. Table 143. Table 144. Table 145. Table 146. Table 147. Table 148. Table 149. 46/1709 RM0385 DAC pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 External triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 DAC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482 DCMI external signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 Positioning of captured data bytes in 32-bit words (8-bit width) . . . . . . . . . . . . . . . . . . . . 486 Positioning of captured data bytes in 32-bit words (10-bit width) . . . . . . . . . . . . . . . . . . . 486 Positioning of captured data bytes in 32-bit words (12-bit width) . . . . . . . . . . . . . . . . . . . 486 Positioning of captured data bytes in 32-bit words (14-bit width) . . . . . . . . . . . . . . . . . . . 487 Data storage in monochrome progressive video format . . . . . . . . . . . . . . . . . . . . . . . . . . 492 Data storage in RGB progressive video format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 Data storage in YCbCr progressive video format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493 Data storage in YCbCr progressive video format - Y extraction mode . . . . . . . . . . . . . . . 494 DCMI interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 DCMI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507 LTDC pins and signal interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 Clock domain for each register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510 Pixel data mapping versus color format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 LTDC interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 LTDC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540 RNG internal input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 RNG interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549 RNG register map and reset map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554 CRYP internal input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 Counter mode initialization vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584 GCM last block definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 GCM mode IV registers initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587 CCM mode IV registers initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 DES/TDES data swapping feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 AES data swapping feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 Key registers CRYP_KxR/LR endianness (TDES K1/2/3 and AES 128/192/256-bit keys) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602 Initialization vector registers CRYP_IVxR endianness . . . . . . . . . . . . . . . . . . . . . . . . . . . 603 Cryptographic processor configuration for memory-to-peripheral DMA transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604 Cryptographic processor configuration for peripheral to memory DMA transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 CRYP interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607 Processing time (in clock cycle) for ECB, CBC and CTR per 128-bit block . . . . . . . . . . . 608 Processing time (in clock cycle) for GCM and CCM per 128-bit block . . . . . . . . . . . . . . . 608 CRYP register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621 HASH internal input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625 Hash processor outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628 HASH interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 Processing time (in clock cycle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 HASH register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645 Behavior of timer outputs versus BRK/BRK2 inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687 Counting direction versus encoder signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694 TIMx internal trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711 Output control bits for complementary OCx and OCxN channels with break feature . . . . 725 TIM1 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737 TIM8 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739 Counting direction versus encoder signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775 RM0385 Rev 7 RM0385 Table 150. Table 151. Table 152. Table 153. Table 154. Table 155. Table 156. Table 157. Table 158. Table 159. Table 160. Table 161. Table 162. Table 163. Table 164. Table 165. Table 166. Table 167. Table 168. Table 169. Table 170. Table 171. Table 172. Table 173. Table 174. Table 175. Table 176. Table 177. Table 178. Table 179. Table 180. Table 181. Table 182. Table 183. Table 184. Table 185. Table 186. Table 187. Table 188. Table 189. Table 190. Table 191. Table 192. Table 193. Table 194. Table 195. Table 196. Table 197. List of tables TIMx internal trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792 Output control bit for standard OCx channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802 TIM2/TIM3/TIM4/TIM5 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . 808 TIMx internal trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837 Output control bit for standard OCx channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845 TIM9/TIM12 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 848 Output control bit for standard OCx channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856 TIM10/TIM11/TIM13/TIM14 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . 858 TIM6/TIM7 register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872 STM32F75xxx and STM32F74xxx LPTIM features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873 LPTIM1 external trigger connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 Prescaler division ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876 Encoder counting scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 882 Interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883 LPTIM register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892 IWDG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901 WWDG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908 RTC pin PC13 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912 RTC pin PI8 configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913 RTC pin PC2 configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 RTC functions over modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914 Effect of low-power modes on RTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927 Interrupt control bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 RTC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952 STM32F75xxx and STM32F74xxx I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 955 Comparison of analog vs. digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958 I2C-SMBUS specification data setup and hold times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961 I2C configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965 I2C-SMBUS specification clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976 Examples of timing settings for fI2CCLK = 8 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986 Examples of timings settings for fI2CCLK = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986 Examples of timings settings for fI2CCLK = 48 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987 SMBus timeout specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989 SMBUS with PEC configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 Examples of TIMEOUTA settings for various I2CCLK frequencies (max tTIMEOUT = 25 ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 Examples of TIMEOUTB settings for various I2CCLK frequencies . . . . . . . . . . . . . . . . . 992 Examples of TIMEOUTA settings for various I2CCLK frequencies (max tIDLE = 50 µs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002 I2C Interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003 I2C register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019 STM32F75xxx and STM32F74xxx USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023 Noise detection from sampled data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 Error calculation for programmed baud rates at fCK = 216 MHz in both cases of oversampling by 8 (OVER8 = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 Error calculation for programmed baud rates at fCK = 216 MHz in both cases of oversampling by 16 (OVER8 = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038 Tolerance of the USART receiver when BRR [3:0] = 0000. . . . . . . . . . . . . . . . . . . . . . . 1039 Tolerance of the USART receiver when BRR [3:0] is different from 0000 . . . . . . . . . . . 1039 Frame formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044 Effect of low-power modes on the USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 RM0385 Rev 7 47/1709 50 List of tables Table 198. Table 199. Table 200. Table 201. Table 202. Table 203. Table 204. Table 205. Table 206. Table 207. Table 208. Table 209. Table 210. Table 211. Table 212. Table 213. Table 214. Table 215. Table 216. Table 217. Table 218. Table 219. Table 220. Table 221. Table 222. Table 223. Table 224. Table 225. Table 226. Table 227. Table 228. Table 229. Table 230. Table 231. Table 232. Table 233. Table 234. Table 235. Table 236. Table 237. Table 238. Table 239. Table 240. Table 241. Table 242. Table 243. Table 244. Table 245. Table 246. Table 247. Table 248. Table 249. 48/1709 RM0385 USART interrupt requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1062 USART register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083 STM32F75xxx and STM32F74xxx SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . 1086 SPI interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111 Audio-frequency precision using standard 8 MHz HSE . . . . . . . . . . . . . . . . . . . . . . . . . 1125 I2S interrupt requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131 SPI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144 SAI internal input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148 SAI input/output pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1148 External synchronization selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1150 Example of possible audio frequency sampling range . . . . . . . . . . . . . . . . . . . . . . . . . . 1157 SOPD pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163 Parity bit calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163 Audio sampling frequency versus symbol rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164 SAI interrupt sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173 SAI register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188 Transition sequence for preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195 Minimum SPDIFRX_CLK frequency versus audio sampling rate . . . . . . . . . . . . . . . . . . 1205 Bit field property versus SPDIFRX state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207 SPDIFRX interface register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221 SDMMC I/O definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225 Command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230 Short response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231 Long response format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231 Command path status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1231 Data token format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234 DPSM flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1235 Transmit FIFO status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236 Receive FIFO status flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236 Card status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1247 SD status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1250 Speed class code field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251 Performance move field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252 AU_SIZE field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252 Maximum AU size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252 Erase size field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253 Erase timeout field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253 Erase offset field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1253 Block-oriented write commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1256 Block-oriented write protection commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257 Erase commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257 I/O mode commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257 Lock card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258 Application-specific commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1258 R1 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259 R2 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259 R3 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260 R4 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260 R4b response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260 R5 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261 R6 response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262 Response type and SDMMC_RESPx registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268 RM0385 Rev 7 RM0385 Table 250. Table 251. Table 252. Table 253. Table 254. Table 255. Table 256. Table 257. Table 258. Table 259. Table 260. Table 261. Table 262. Table 263. Table 264. Table 265. Table 266. Table 267. Table 268. Table 269. Table 270. Table 271. Table 272. Table 273. Table 274. Table 275. Table 276. Table 277. Table 278. Table 279. Table 280. Table 281. Table 282. Table 283. Table 284. Table 285. Table 286. Table 287. Table 288. Table 289. Table 290. Table 291. Table 292. Table 293. Table 294. Table 295. Table 296. Table 297. Table 298. Table 299. Table 300. List of tables SDMMC register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279 Transmit mailbox mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296 Receive mailbox mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296 bxCAN register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322 OTG_HS speeds supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327 OTG_FS speeds supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327 OTG implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1330 OTG_FS input/output pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332 OTG_HS input/output pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332 OTG_FS/OTG_HS input/output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1333 Compatibility of STM32 low power modes with the OTG . . . . . . . . . . . . . . . . . . . . . . . . 1346 Core global control and status registers (CSRs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1354 Host-mode control and status registers (CSRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1355 Device-mode control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1357 Data FIFO (DFIFO) access register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1359 Power and clock gating control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1360 TRDT values (FS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1370 TRDT values (HS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1370 Minimum duration for soft disconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1410 OTG_FS/OTG_HS register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1440 Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518 Management frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1520 Clock range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1522 TX interface signal encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1524 RX interface signal encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1524 Frame statuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1540 Destination address filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1546 Source address filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1547 Receive descriptor 0 - encoding for bits 7, 5 and 0 (normal descriptor format only, EDFE=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1578 Time stamp snapshot dependency on registers bits . . . . . . . . . . . . . . . . . . . . . . . . . . . 1612 Ethernet register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1632 HDMI pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637 Error handling timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1643 TXERR timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1644 HDMI-CEC interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1645 HDMI-CEC register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1654 SWJ debug port pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1658 Flexible SWJ-DP pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1658 JTAG debug port data registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1663 32-bit debug port registers addressed through the shifted value A[3:2] . . . . . . . . . . . . . 1665 Packet request (8-bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1666 ACK response (3 bits). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1666 DATA transfer (33 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1666 SW-DP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1667 Cortex®-M7 with FPU AHB-AP registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1669 Core debug registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1670 Main ITM registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1673 Asynchronous TRACE pin assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1682 Synchronous TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1682 Flexible TRACE pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1683 Important TPIU registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1686 RM0385 Rev 7 49/1709 50 List of tables RM0385 Table 301. DBG register map and reset values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1687 Table 302. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1691 50/1709 RM0385 Rev 7 RM0385 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. System architecture for STM32F75xxx and STM32F74xxx devices . . . . . . . . . . . . . . . . . 64 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Flash memory interface connection inside system architecture (STM32F75xxx and STM32F74xxx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 RDP levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 VDDUSB connected to VDD power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 VDDUSB connected to external independent power supply . . . . . . . . . . . . . . . . . . . . . . 102 Backup domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Power-on reset/power-down reset waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 PVD thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Simplified diagram of the reset circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 HSE/ LSE clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Frequency measurement with TIM5 in Input capture mode . . . . . . . . . . . . . . . . . . . . . . . 142 Frequency measurement with TIM11 in Input capture mode . . . . . . . . . . . . . . . . . . . . . . 143 Basic structure of an I/O port bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Basic structure of a 5-Volt tolerant I/O port bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Input floating/pull up/pull down configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Alternate function configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 High impedance-analog configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 DMA block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Channel selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Peripheral-to-memory mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 Memory-to-peripheral mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Memory-to-memory mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 FIFO structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 DMA2D block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 External interrupt/event controller block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 External interrupt/event GPIO mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 CRC calculation unit block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 FMC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 FMC memory banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Mode1 read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 Mode1 write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 ModeA read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 ModeA write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 Mode2 and mode B read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 Mode2 write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 ModeB write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 ModeC read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 ModeC write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 ModeD read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 ModeD write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 Muxed read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 Muxed write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 RM0385 Rev 7 51/1709 61 List of figures Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. Figure 89. Figure 90. Figure 91. Figure 92. Figure 93. Figure 94. Figure 95. Figure 96. Figure 97. Figure 98. Figure 99. 52/1709 RM0385 Asynchronous wait during a read access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 Asynchronous wait during a write access waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 Wait configuration waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 Synchronous multiplexed read mode waveforms - NOR, PSRAM (CRAM) . . . . . . . . . . . 341 Synchronous multiplexed write mode waveforms - PSRAM (CRAM). . . . . . . . . . . . . . . . 343 NAND Flash controller waveforms for common memory access . . . . . . . . . . . . . . . . . . . 355 Access to non ‘CE don’t care’ NAND-Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 Burst write SDRAM access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366 Burst read SDRAM access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 Logic diagram of Read access with RBURST bit set (CAS=1, RPIPE=0) . . . . . . . . . . . . 368 Read access crossing row boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Write access crossing row boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 Self-refresh mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 Power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 QUADSPI block diagram when dual-flash mode is disabled . . . . . . . . . . . . . . . . . . . . . . 384 QUADSPI block diagram when dual-flash mode is enabled . . . . . . . . . . . . . . . . . . . . . . 385 An example of a read command in quad mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 An example of a DDR command in quad mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 nCS when CKMODE = 0 (T = CLK period). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 nCS when CKMODE = 1 in SDR mode (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . 397 nCS when CKMODE = 1 in DDR mode (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . 398 nCS when CKMODE = 1 with an abort (T = CLK period) . . . . . . . . . . . . . . . . . . . . . . . . . 398 Single ADC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 ADC1 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 ADC2 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417 ADC3 connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 Analog watchdog’s guarded area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 Injected conversion latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 Right alignment of 12-bit data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 Left alignment of 12-bit data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 Left alignment of 6-bit data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 Multi ADC block diagram(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 Injected simultaneous mode on 4 channels: dual ADC mode . . . . . . . . . . . . . . . . . . . . . 433 Injected simultaneous mode on 4 channels: triple ADC mode . . . . . . . . . . . . . . . . . . . . . 433 Regular simultaneous mode on 16 channels: dual ADC mode . . . . . . . . . . . . . . . . . . . . 434 Regular simultaneous mode on 16 channels: triple ADC mode . . . . . . . . . . . . . . . . . . . . 434 Interleaved mode on 1 channel in continuous conversion mode: dual ADC mode. . . . . . 435 Interleaved mode on 1 channel in continuous conversion mode: triple ADC mode . . . . . 436 Alternate trigger: injected group of each ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 Alternate trigger: 4 injected channels (each ADC) in discontinuous mode . . . . . . . . . . . . 437 Alternate trigger: injected group of each ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 Alternate + regular simultaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 Case of trigger occurring during injected conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 Temperature sensor and VREFINT channel block diagram . . . . . . . . . . . . . . . . . . . . . . 440 DAC channel block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 DAC output buffer connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463 Data registers in single DAC channel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 Data registers in dual DAC channel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 Timing diagram for conversion with trigger disabled TEN = 0 . . . . . . . . . . . . . . . . . . . . . 465 DAC LFSR register calculation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467 DAC conversion (SW trigger enabled) with LFSR wave generation. . . . . . . . . . . . . . . . . 467 RM0385 Rev 7 RM0385 Figure 100. Figure 101. Figure 102. Figure 103. Figure 104. Figure 105. Figure 106. Figure 107. Figure 108. Figure 109. Figure 110. Figure 111. Figure 112. Figure 113. Figure 114. Figure 115. Figure 116. Figure 117. Figure 118. Figure 119. Figure 120. Figure 121. Figure 122. Figure 123. Figure 124. Figure 125. Figure 126. Figure 127. Figure 128. Figure 129. Figure 130. Figure 131. Figure 132. Figure 133. Figure 134. Figure 135. Figure 136. Figure 137. Figure 138. Figure 139. Figure 140. Figure 141. Figure 142. Figure 143. Figure 144. Figure 145. Figure 146. Figure 147. Figure 148. Figure 149. Figure 150. Figure 151. List of figures DAC triangle wave generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 DAC conversion (SW trigger enabled) with triangle wave generation . . . . . . . . . . . . . . . 468 DCMI block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 Top-level block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484 DCMI signal waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 Frame capture waveforms in snapshot mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489 Frame capture waveforms in continuous grab mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490 Coordinates and size of the window after cropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490 Data capture waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 Pixel raster scan order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 LTDC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509 LCD-TFT synchronous timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 Layer window programmable parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515 Blending two layers with background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 Interrupt events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519 RNG block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 Entropy source model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 CRYP block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557 AES-ECB mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560 AES-CBC mode overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561 AES-CTR mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562 AES-GCM mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 AES-GMAC mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 AES-CCM mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564 STM32 cryptolib DES/TDES flowcharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 STM32 cryptolib AES flowchart examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566 Example of suspend mode management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571 DES/TDES-ECB mode encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572 DES/TDES-ECB mode decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 DES/TDES-CBC mode encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574 DES/TDES-CBC mode decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 AES-ECB mode encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577 AES-ECB mode decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578 AES-CBC mode encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579 AES-CBC mode decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580 Message construction for the Counter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582 AES-CTR mode encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583 AES-CTR mode decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584 Message construction for the Galois/counter mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 Message construction for the Galois Message Authentication Code mode . . . . . . . . . . . 591 Message construction for the Counter with CBC-MAC mode. . . . . . . . . . . . . . . . . . . . . . 592 64-bit block construction according to the data type (IN FIFO). . . . . . . . . . . . . . . . . . . . . 599 128-bit block construction according to the data type. . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 CRYP interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 HASH block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624 Message data swapping feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626 HASH save/restore mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631 HASH interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633 Advanced-control timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 649 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 649 RM0385 Rev 7 53/1709 61 List of figures Figure 152. Figure 153. Figure 154. Figure 155. Figure 156. Figure 157. Figure 158. Figure 159. Figure 160. Figure 161. Figure 162. Figure 163. Figure 164. Figure 165. Figure 166. Figure 167. Figure 168. Figure 169. Figure 170. Figure 171. Figure 172. Figure 173. Figure 174. Figure 175. Figure 176. Figure 177. Figure 178. Figure 179. Figure 180. Figure 181. Figure 182. Figure 183. Figure 184. Figure 185. Figure 186. Figure 187. Figure 188. Figure 189. Figure 190. Figure 191. Figure 192. Figure 193. Figure 194. Figure 195. Figure 196. Figure 197. Figure 198. Figure 199. Figure 200. Figure 201. Figure 202. Figure 203. 54/1709 RM0385 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652 Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) . . . . . 653 Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) . . . . . . . . 653 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656 Counter timing diagram, update event when repetition counter is not used . . . . . . . . . . . 657 Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 . . . . . . . . . . . . . . 658 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659 Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 . . . . . . . . . . . . . . 659 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660 Counter timing diagram, update event with ARPE=1 (counter underflow) . . . . . . . . . . . . 660 Counter timing diagram, Update event with ARPE=1 (counter overflow) . . . . . . . . . . . . . 661 Update rate examples depending on mode and TIMx_RCR register settings . . . . . . . . . 662 External trigger input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 664 TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665 Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 External trigger input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 Control circuit in external clock mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667 Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 668 Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669 Output stage of capture/compare channel (channel 1, idem ch. 2 and 3) . . . . . . . . . . . . 669 Output stage of capture/compare channel (channel 4). . . . . . . . . . . . . . . . . . . . . . . . . . . 670 Output stage of capture/compare channel (channel 5, idem ch. 6) . . . . . . . . . . . . . . . . . 670 PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672 Output compare mode, toggle on OC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674 Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675 Center-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676 Generation of 2 phase-shifted PWM signals with 50% duty cycle . . . . . . . . . . . . . . . . . . 678 Combined PWM mode on channel 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679 3-phase combined PWM signals with multiple trigger pulses per period . . . . . . . . . . . . . 680 Complementary output with dead-time insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681 Dead-time waveforms with delay greater than the negative pulse . . . . . . . . . . . . . . . . . . 681 Dead-time waveforms with delay greater than the positive pulse. . . . . . . . . . . . . . . . . . . 682 Break and Break2 circuitry overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 Various output behavior in response to a break event on BRK (OSSI = 1) . . . . . . . . . . . 686 PWM output state following BRK and BRK2 pins assertion (OSSI=1) . . . . . . . . . . . . . . . 687 PWM output state following BRK assertion (OSSI=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . 688 Clearing TIMx OCxREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689 6-step generation, COM example (OSSR=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690 Example of one pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691 Retriggerable one pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693 Example of counter operation in encoder interface mode. . . . . . . . . . . . . . . . . . . . . . . . . 694 Example of encoder interface mode with TI1FP1 polarity inverted. . . . . . . . . . . . . . . . . . 695 Measuring time interval between edges on 3 signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696 Example of Hall sensor interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698 Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699 RM0385 Rev 7 RM0385 Figure 204. Figure 205. Figure 206. Figure 207. Figure 208. Figure 209. Figure 210. Figure 211. Figure 212. Figure 213. Figure 214. Figure 215. Figure 216. Figure 217. Figure 218. Figure 219. Figure 220. Figure 221. Figure 222. Figure 223. Figure 224. Figure 225. Figure 226. Figure 227. Figure 228. Figure 229. Figure 230. Figure 231. Figure 232. Figure 233. Figure 234. Figure 235. Figure 236. Figure 237. Figure 238. Figure 239. Figure 240. Figure 241. Figure 242. Figure 243. Figure 244. Figure 245. Figure 246. Figure 247. Figure 248. Figure 249. Figure 250. Figure 251. Figure 252. Figure 253. Figure 254. List of figures Control circuit in Gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700 Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701 Control circuit in external clock mode 2 + trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . 702 General-purpose timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 744 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 744 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747 Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded). . . . . 747 Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded). . . . . . . . 748 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750 Counter timing diagram, Update event when repetition counter is not used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751 Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 . . . . . . . . . . . . . . . 752 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753 Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 . . . . . . . . . . . . . . 753 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754 Counter timing diagram, Update event with ARPE=1 (counter underflow). . . . . . . . . . . . 754 Counter timing diagram, Update event with ARPE=1 (counter overflow) . . . . . . . . . . . . . 755 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 756 TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756 Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757 External trigger input block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758 Control circuit in external clock mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 Capture/compare channel (example: channel 1 input stage) . . . . . . . . . . . . . . . . . . . . . . 760 Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 760 Output stage of capture/compare channel (channel 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 761 PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763 Output compare mode, toggle on OC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765 Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766 Center-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767 Generation of 2 phase-shifted PWM signals with 50% duty cycle . . . . . . . . . . . . . . . . . . 768 Combined PWM mode on channels 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 770 Clearing TIMx OCxREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771 Example of one-pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772 Retriggerable one pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 Example of counter operation in encoder interface mode . . . . . . . . . . . . . . . . . . . . . . . . 775 Example of encoder interface mode with TI1FP1 polarity inverted . . . . . . . . . . . . . . . . . 776 Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777 Control circuit in gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778 Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779 Control circuit in external clock mode 2 + trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . 780 Master/Slave timer example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780 Gating TIM with OC1REF of TIM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781 Gating TIM with Enable of TIM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782 Triggering TIM with update of TIM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 Triggering TIM with Enable of TIM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783 RM0385 Rev 7 55/1709 61 List of figures Figure 255. Figure 256. Figure 257. Figure 258. Figure 259. Figure 260. Figure 261. Figure 262. Figure 263. Figure 264. Figure 265. Figure 266. Figure 267. Figure 268. Figure 269. Figure 270. Figure 271. Figure 272. Figure 273. Figure 274. Figure 275. Figure 276. Figure 277. Figure 278. Figure 279. Figure 280. Figure 281. Figure 282. Figure 283. Figure 284. Figure 285. Figure 286. Figure 287. Figure 288. Figure 289. Figure 290. Figure 291. Figure 292. Figure 293. Figure 294. Figure 295. Figure 296. Figure 297. Figure 298. Figure 299. Figure 300. Figure 301. 56/1709 RM0385 Triggering TIM3 and TIM2 with TIM3 TI1 input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784 General-purpose timer block diagram (TIM9/TIM12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 812 General-purpose timer block diagram (TIM10/TIM11/TIM13/TIM14) . . . . . . . . . . . . . . . . 813 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 815 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 815 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818 Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 820 TI2 external clock connection example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820 Control circuit in external clock mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 821 Capture/compare channel (example: channel 1 input stage . . . . . . . . . . . . . . . . . . . . . . 822 Capture/compare channel 1 main circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822 Output stage of capture/compare channel (channel 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 823 PWM input mode timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825 Output compare mode, toggle on OC1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826 Edge-aligned PWM waveforms (ARR=8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827 Combined PWM mode on channel 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828 Example of one pulse mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829 Retriggerable one pulse mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 Measuring time interval between edges on 2 signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831 Control circuit in reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832 Control circuit in gated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833 Control circuit in trigger mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834 Basic timer block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860 Counter timing diagram with prescaler division change from 1 to 2 . . . . . . . . . . . . . . . . . 862 Counter timing diagram with prescaler division change from 1 to 4 . . . . . . . . . . . . . . . . . 862 Counter timing diagram, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 Counter timing diagram, internal clock divided by 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864 Counter timing diagram, internal clock divided by 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864 Counter timing diagram, internal clock divided by N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865 Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not preloaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865 Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866 Control circuit in normal mode, internal clock divided by 1 . . . . . . . . . . . . . . . . . . . . . . . . 867 Low-power timer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 Glitch filter timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 876 LPTIM output waveform, single counting mode configuration . . . . . . . . . . . . . . . . . . . . . 877 LPTIM output waveform, Single counting mode configuration and Set-once mode activated (WAVE bit is set) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878 LPTIM output waveform, Continuous counting mode configuration . . . . . . . . . . . . . . . . . 878 Waveform generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880 Encoder mode counting sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883 Independent watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 893 Watchdog block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 903 Window watchdog timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 904 RM0385 Rev 7 RM0385 Figure 302. Figure 303. Figure 304. Figure 305. Figure 306. Figure 307. Figure 308. Figure 309. Figure 310. Figure 311. Figure 312. Figure 313. Figure 314. Figure 315. Figure 316. Figure 317. Figure 318. Figure 319. Figure 320. Figure 321. Figure 322. Figure 323. Figure 324. Figure 325. Figure 326. Figure 327. Figure 328. Figure 329. Figure 330. Figure 331. Figure 332. Figure 333. Figure 334. Figure 335. Figure 336. Figure 337. Figure 338. Figure 339. Figure 340. Figure 341. Figure 342. Figure 343. Figure 344. Figure 345. Figure 346. Figure 347. Figure 348. Figure 349. Figure 350. Figure 351. Figure 352. Figure 353. List of figures RTC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911 I2C block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956 I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958 Setup and hold timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959 I2C initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962 Data reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963 Data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 964 Slave initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967 Transfer sequence flowchart for I2C slave transmitter, NOSTRETCH=0. . . . . . . . . . . . . 969 Transfer sequence flowchart for I2C slave transmitter, NOSTRETCH=1. . . . . . . . . . . . . 970 Transfer bus diagrams for I2C slave transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971 Transfer sequence flowchart for slave receiver with NOSTRETCH=0 . . . . . . . . . . . . . . 972 Transfer sequence flowchart for slave receiver with NOSTRETCH=1 . . . . . . . . . . . . . . 973 Transfer bus diagrams for I2C slave receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973 Master clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 Master initialization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977 10-bit address read access with HEAD10R=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977 10-bit address read access with HEAD10R=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978 Transfer sequence flowchart for I2C master transmitter for N≤255 bytes . . . . . . . . . . . . 979 Transfer sequence flowchart for I2C master transmitter for N>255 bytes . . . . . . . . . . . . 980 Transfer bus diagrams for I2C master transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981 Transfer sequence flowchart for I2C master receiver for N≤255 bytes. . . . . . . . . . . . . . . 983 Transfer sequence flowchart for I2C master receiver for N >255 bytes . . . . . . . . . . . . . . 984 Transfer bus diagrams for I2C master receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985 Timeout intervals for tLOW:SEXT, tLOW:MEXT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989 Transfer sequence flowchart for SMBus slave transmitter N bytes + PEC. . . . . . . . . . . . 993 Transfer bus diagrams for SMBus slave transmitter (SBC=1) . . . . . . . . . . . . . . . . . . . . . 994 Transfer sequence flowchart for SMBus slave receiver N Bytes + PEC . . . . . . . . . . . . . 995 Bus transfer diagrams for SMBus slave receiver (SBC=1). . . . . . . . . . . . . . . . . . . . . . . . 996 Bus transfer diagrams for SMBus master transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997 Bus transfer diagrams for SMBus master receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999 I2C interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1003 USART block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025 Word length programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027 Configurable stop bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029 TC/TXE behavior when transmitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030 Start bit detection when oversampling by 16 or 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031 Data sampling when oversampling by 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034 Data sampling when oversampling by 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035 Mute mode using Idle line detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042 Mute mode using address mark detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043 Break detection in LIN mode (11-bit break length - LBDL bit is set) . . . . . . . . . . . . . . . . 1046 Break detection in LIN mode vs. Framing error detection. . . . . . . . . . . . . . . . . . . . . . . . 1047 USART example of synchronous transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048 USART data clock timing diagram (M bits = 00). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1048 USART data clock timing diagram (M bits = 01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049 RX data setup/hold time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049 ISO 7816-3 asynchronous protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051 Parity error detection using the 1.5 stop bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052 IrDA SIR ENDEC- block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 IrDA data modulation (3/16) -Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057 Transmission using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058 RM0385 Rev 7 57/1709 61 List of figures Figure 354. Figure 355. Figure 356. Figure 357. Figure 358. Figure 359. Figure 360. Figure 361. Figure 362. Figure 363. Figure 364. Figure 365. Figure 366. Figure 367. Figure 368. Figure 369. Figure 370. Figure 371. Figure 372. Figure 373. Figure 374. Figure 375. Figure 376. Figure 377. Figure 378. Figure 379. Figure 380. Figure 381. Figure 382. Figure 383. Figure 384. Figure 385. Figure 386. Figure 387. Figure 388. Figure 389. Figure 390. Figure 391. Figure 392. Figure 393. Figure 394. Figure 395. Figure 396. Figure 397. Figure 398. Figure 399. Figure 400. Figure 401. Figure 402. Figure 403. Figure 404. 58/1709 RM0385 Reception using DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059 Hardware flow control between 2 USARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059 RS232 RTS flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060 RS232 CTS flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1061 USART interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1063 SPI block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1087 Full-duplex single master/ single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1088 Half-duplex single master/ single slave application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1089 Simplex single master/single slave application (master in transmit-only/ slave in receive-only mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090 Master and three independent slaves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1091 Multi-master application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1092 Hardware/software slave select management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093 Data clock timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094 Data alignment when data length is not equal to 8-bit or 16-bit . . . . . . . . . . . . . . . . . . . 1095 Packing data in FIFO for transmission and reception . . . . . . . . . . . . . . . . . . . . . . . . . . 1099 Master full-duplex communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102 Slave full-duplex communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103 Master full-duplex communication with CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104 Master full-duplex communication in packed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105 NSSP pulse generation in Motorola SPI master mode . . . . . . . . . . . . . . . . . . . . . . . . . . 1108 TI mode transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109 I2S block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112 Full-duplex communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1114 I2S Philips protocol waveforms (16/32-bit full accuracy). . . . . . . . . . . . . . . . . . . . . . . . . 1115 I2S Philips standard waveforms (24-bit frame) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115 Transmitting 0x8EAA33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116 Receiving 0x8EAA33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116 I2S Philips standard (16-bit extended to 32-bit packet frame) . . . . . . . . . . . . . . . . . . . . 1116 Example of 16-bit data frame extended to 32-bit channel frame . . . . . . . . . . . . . . . . . . 1116 MSB Justified 16-bit or 32-bit full-accuracy length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117 MSB justified 24-bit frame length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1117 MSB justified 16-bit extended to 32-bit packet frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118 LSB justified 16-bit or 32-bit full-accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118 LSB justified 24-bit frame length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118 Operations required to transmit 0x3478AE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119 Operations required to receive 0x3478AE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119 LSB justified 16-bit extended to 32-bit packet frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 1119 Example of 16-bit data frame extended to 32-bit channel frame . . . . . . . . . . . . . . . . . . 1120 PCM standard waveforms (16-bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1120 PCM standard waveforms (16-bit extended to 32-bit packet frame). . . . . . . . . . . . . . . . 1121 Start sequence in master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122 Audio sampling frequency definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123 I2S clock generator architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123 SAI functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147 Audio frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1151 FS role is start of frame + channel side identification (FSDEF = TRIS = 1) . . . . . . . . . . 1153 FS role is start of frame (FSDEF = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1154 Slot size configuration with FBOFF = 0 in SAI_xSLOTR . . . . . . . . . . . . . . . . . . . . . . . . 1155 First bit offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155 Audio block clock generator overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156 AC’97 audio frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1160 RM0385 Rev 7 RM0385 List of figures Figure 405. Example of typical AC’97 configuration on devices featuring at least 2 embedded SAIs (three external AC’97 decoders) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1161 Figure 406. SPDIF format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1162 Figure 407. SAI_xDR register ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1163 Figure 408. Data companding hardware in an audio block in the SAI . . . . . . . . . . . . . . . . . . . . . . . . 1166 Figure 409. Tristate strategy on SD output line on an inactive slot . . . . . . . . . . . . . . . . . . . . . . . . . . 1168 Figure 410. Tristate on output data line in a protocol like I2S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169 Figure 411. Overrun detection error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170 Figure 412. FIFO underrun event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170 Figure 413. SPDIFRX block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190 Figure 414. S/PDIF Sub-Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190 Figure 415. S/PDIF block format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191 Figure 416. S/PDIF Preambles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191 Figure 417. Channel coding example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192 Figure 418. SPDIFRX decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193 Figure 419. Noise filtering and edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193 Figure 420. Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195 Figure 421. Synchronization flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197 Figure 422. Synchronization process scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198 Figure 423. SPDIFRX States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1199 Figure 424. SPDIFRX_DR register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201 Figure 425. Channel/user data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202 Figure 426. S/PDIF overrun error when RXSTEO = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1204 Figure 427. S/PDIF overrun error when RXSTEO = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1205 Figure 428. SPDIFRX interface interrupt mapping diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206 Figure 429. “No response” and “no data” operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223 Figure 430. (Multiple) block read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223 Figure 431. (Multiple) block write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223 Figure 432. Sequential read operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224 Figure 433. Sequential write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224 Figure 434. SDMMC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1224 Figure 435. SDMMC adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226 Figure 436. Control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227 Figure 437. SDMMC_CK clock dephasing (BYPASS = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228 Figure 438. SDMMC adapter command path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228 Figure 439. Command path state machine (SDMMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1229 Figure 440. SDMMC command transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230 Figure 441. Data path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232 Figure 442. Data path state machine (DPSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233 Figure 443. CAN network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1282 Figure 444. Dual-CAN block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1283 Figure 445. bxCAN operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1285 Figure 446. bxCAN in silent mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 Figure 447. bxCAN in loop back mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1286 Figure 448. bxCAN in combined mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287 Figure 449. Transmit mailbox states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1289 Figure 450. Receive FIFO states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290 Figure 451. Filter bank scale configuration - register organization . . . . . . . . . . . . . . . . . . . . . . . . . . 1293 Figure 452. Example of filter numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294 Figure 453. Filtering mechanism - example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1295 Figure 454. CAN error state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296 Figure 455. Bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298 RM0385 Rev 7 59/1709 61 List of figures Figure 456. Figure 457. Figure 458. Figure 459. Figure 460. Figure 461. Figure 462. Figure 463. Figure 464. Figure 465. Figure 466. Figure 467. Figure 468. Figure 469. Figure 470. Figure 471. Figure 472. Figure 473. Figure 474. Figure 475. Figure 476. Figure 477. Figure 478. Figure 479. Figure 480. Figure 481. Figure 482. Figure 483. Figure 484. Figure 485. Figure 486. Figure 487. Figure 488. Figure 489. Figure 490. Figure 491. Figure 492. Figure 493. Figure 494. Figure 495. Figure 496. Figure 497. Figure 498. Figure 499. Figure 500. Figure 501. Figure 502. Figure 503. Figure 504. Figure 505. Figure 506. Figure 507. 60/1709 RM0385 CAN frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299 Event flags and interrupt generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300 CAN mailbox registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1312 OTG full-speed block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331 OTG high-speed block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1332 OTG_FS A-B device connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335 USB_FS peripheral-only connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337 USB_FS host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1341 SOF connectivity (SOF trigger output to TIM and ITR1 connection) . . . . . . . . . . . . . . . 1345 Updating OTG_HFIR dynamically (RLDCTRL = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1347 Device-mode FIFO address mapping and AHB FIFO access mapping . . . . . . . . . . . . . 1348 Host-mode FIFO address mapping and AHB FIFO access mapping . . . . . . . . . . . . . . . 1349 Interrupt hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1353 Transmit FIFO write task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457 Receive FIFO read task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458 Normal bulk/control OUT/SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1460 Bulk/control IN transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1464 Normal interrupt OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467 Normal interrupt IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1472 Isochronous OUT transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1474 Isochronous IN transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1477 Normal bulk/control OUT/SETUP transactions - DMA . . . . . . . . . . . . . . . . . . . . . . . . . . 1479 Normal bulk/control IN transaction - DMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1481 Normal interrupt OUT transactions - DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1482 Normal interrupt IN transactions - DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1483 Normal isochronous OUT transaction - DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1484 Normal isochronous IN transactions - DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1485 Receive FIFO packet read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1491 Processing a SETUP packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1493 Bulk OUT transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1499 TRDT max timing case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1508 A-device SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509 B-device SRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1510 A-device HNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1511 B-device HNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1513 ETH block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519 SMI interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1520 MDIO timing and frame structure - Write cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1521 MDIO timing and frame structure - Read cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1522 Media independent interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1523 MII clock sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1525 Reduced media-independent interface signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1525 RMII clock sources- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1526 Clock scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1526 Address field format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1528 MAC frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1530 Tagged MAC frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1530 Transmission bit order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1537 Transmission with no collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1537 Transmission with collision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538 Frame transmission in MMI and RMII modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1538 Receive bit order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1542 RM0385 Rev 7 RM0385 List of figures Figure 508. Figure 509. Figure 510. Figure 511. Figure 512. Figure 513. Figure 514. Figure 515. Figure 516. Figure 517. Figure 518. Figure 519. Figure 520. Figure 521. Figure 522. Figure 523. Figure 524. Figure 525. Figure 526. Figure 527. Figure 528. Figure 529. Figure 530. Figure 531. Figure 532. Figure 533. Figure 534. Figure 535. Figure 536. Figure 537. Reception with no error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1543 Reception with errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1543 Reception with false carrier indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1543 MAC core interrupt masking scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1544 Wakeup frame filter register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549 Networked time synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552 System time update using the Fine correction method. . . . . . . . . . . . . . . . . . . . . . . . . . 1554 PTP trigger output to TIM2 ITR1 connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556 PPS output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557 Descriptor ring and chain structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1558 TxDMA operation in default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1562 TxDMA operation in OSF mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1564 Normal transmit descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1565 Enhanced transmit descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1571 Receive DMA operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1573 Normal Rx DMA descriptor structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1575 Enhanced receive descriptor field format with IEEE1588 time stamp enabled. . . . . . . . 1581 Interrupt scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1584 Ethernet MAC remote wakeup frame filter register (ETH_MACRWUFFR). . . . . . . . . . . 1595 HDMI-CEC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637 Message structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1638 Bit timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639 Signal free time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639 Arbitration phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640 SFT of three nominal bit periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1640 Error bit timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1642 TXERR detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1644 Block diagram of STM32 MCU and Cortex®-M7 with FPU -level debug support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1655 Figure 538. SWJ debug port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657 Figure 539. JTAG Debug Port connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1661 Figure 540. TPIU block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1681 RM0385 Rev 7 61/1709 61 Documentation conventions RM0385 1 Documentation conventions 1.1 List of abbreviations for registers The following abbreviations(a) are used in register descriptions: read/write (rw) Software can read and write to this bit. read-only (r) Software can only read this bit. write-only (w) Software can only write to this bit. Reading this bit returns the reset value. read/clear write0 (rc_w0) Software can read as well as clear this bit by writing 0. Writing 1 has no effect on the bit value. read/clear write1 (rc_w1) Software can read as well as clear this bit by writing 1. Writing 0 has no effect on the bit value. read/clear write (rc_w) Software can read as well as clear this bit by writing to the register. The value written to this bit is not important. read/clear by read (rc_r) Software can read this bit. Reading this bit automatically clears it to 0. Writing this bit has no effect on the bit value. read/set by read (rs_r) Software can read this bit. Reading this bit automatically sets it to 1. Writing this bit has no effect on the bit value. read/set (rs) Software can read as well as set this bit. Writing 0 has no effect on the bit value. read/write once (rwo) Software can only write once to this bit and can also read it at any time. Only a reset can return the bit to its reset value. toggle (t) The software can toggle this bit by writing 1. Writing 0 has no effect. read-only write trigger (rt_w1) Software can read this bit. Writing 1 triggers an event but has no effect on the bit value. Reserved (Res.) Reserved bit, must be kept at reset value. a. This is an exhaustive list of all abbreviations applicable to STM microcontrollers, some of them may not be used in the current document. 62/1709 RM0385 Rev 7 RM0385 1.2 Documentation conventions Glossary This section gives a brief definition of acronyms and abbreviations used in this document: • The CPU core integrates two debug ports: – JTAG debug port (JTAG-DP) provides a 5-pin standard interface based on the Joint Test Action Group (JTAG) protocol. – SWD debug port (SWD-DP) provides a 2-pin (clock and data) interface based on the Serial Wire Debug (SWD) protocol. For both the JTAG and SWD protocols, refer to the Cortex®-M7 Technical Reference Manual. 1.3 • Word: data of 32-bit length. • Half-word: data of 16-bit length. • Byte: data of 8-bit length. • Double word: data of 64-bit length. • IAP (in-application programming): IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running. • ICP (in-circuit programming): ICP is the ability to program the Flash memory of a microcontroller using the JTAG protocol, the SWD protocol or the bootloader while the device is mounted on the user application board. • Option bytes: product configuration bits stored in the Flash memory. • AHB: advanced high-performance bus. • AHBS: AHB Slave bus. • AXIM: AXI master bus. • ITCM: Instruction Tighly Coupled Memory. • DTCM: Data Tighly Coupled Memory. • CPU: refers to the Cortex®-M7 core. Peripheral availability For peripheral availability and number across all sales types, refer to the particular device datasheet. RM0385 Rev 7 63/1709 63 System and memory overview RM0385 2 System and memory overview 2.1 System architecture The main system architecture is based on 2 sub-systems: • • An AXI to multi AHB bridge converting AXI4 protocol to AHB-Lite protocol: – 1x AXI to 64-bit AHB bridge connected to the embedded flash – 3x AXI to 32bit AHB bridge connected to AHB bus matrix A multi-AHB Bus-Matrix AHBS Chrom-ART Accelerator (DMA2D) DMA2D LCD-TFT_M USB_HS_M DMA_P2 ETHERNET_M AHBP AXIM 4KB I/D Cache GP MAC USB OTG LCD-TFT DMA2 Ethernet HS DMA_MEM2 DMA_PI ARM Cortex-M7 GP DMA1 DMA_MEM1 ITCM DTCM Figure 1. System architecture for STM32F75xxx and STM32F74xxx devices DTCM RAM 64KB ITCM RAM 16KB AXI to multi-AHB ART ITCM 64-bit AHB FLASH 1MB 64-bit BuS Matrix SRAM1 240KB SRAM2 16KB AHB Periph1 AHB periph2 FMC external MemCtl APB1 APB2 Quad-SPI 32-bit Bus Matrix - S MS34163V1 64/1709 RM0385 Rev 7 RM0385 System and memory overview The multi-AHB Bus-Matrix interconnects all the masters and slaves and it consists on: – 32-bit multi-AHB Bus-Matrix – 64-bit multi-AHB Bus-Matrix: It interconnects the 64-bit AHB bus from CPU through the AXI to AHB bridge and the 32-bit AHB bus from GP DMAs and peripheral DMAs upsized to 64-bit to the internal flash. The multi AHB bus matrix interconnects: • • 2.1.1 12 bus masters: – 3x32-bit AHB bus Cortex®-M7 AXI Master bus 64-bits, splitted 4 masters through the AXI to AHB bridge. – 1x64-bit AHB bus connected to the embedded flash – Cortex® -M7 AHB Peripherals bus – DMA1 memory bus – DMA2 memory bus – DMA2 peripheral bus – Ethernet DMA bus – USB OTG HS DMA bus – LCD Controller DMA-bus – Chrom-Art Accelerator™ (DMA2D) memory bus Eight bus slaves: – the embedded Flash on AHB bus (for Flash read/write access, for code execution and data access) – Cortex®-M7 AHBS slave interface for DMAs data transfer on DTCM RAM only. – Main internal SRAM1 (240 KB) – Auxiliary internal SRAM2 (16 KB) – AHB1peripherals including AHB to APB bridges and APB peripherals – AHB2 peripherals including AHB to APB bridges and APB peripherals – FMC – Quad SPI Multi AHB BusMatrix The multi AHB BusMatrix manages the access arbitration between masters. The arbitration uses a round-robin algorithm. It provides access from a master to a slave, enabling concurrent access and efficient operation even when several high-speed peripherals work simultaneously. The DTCM and ITCM RAMs (tightly coupled memories) are not part of the bus matrix. The Data TCM RAM is accessible by the GP-DMAs and peripherals DMAs through specific AHB slave bus of the CPU. The instruction TCM RAM is reserved only for CPU. it is accessed at CPU clock speed with 0 wait states. The architecture is shown in Figure 1. 2.1.2 AHB/APB bridges (APB) The two AHB/APB bridges, APB1 and APB2, provide full synchronous connections between the AHB and the two APB buses, allowing flexible selection of the peripheral frequency. RM0385 Rev 7 65/1709 67 System and memory overview RM0385 Refer to the device datasheets for more details on APB1 and APB2 maximum frequencies, and to Table 1 for the address mapping of AHB and APB peripherals. After each device reset, all peripheral clocks are disabled (except for the SRAM, DTCM, ITCM RAM and Flash memory interface). Before using a peripheral its clock has to be enabled in the RCC_AHBxENR or RCC_APBxENR register. Note: When a 16- or an 8-bit access is performed on an APB register, the access is transformed into a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector. 2.1.3 CPU AXIM bus This bus connects the Instruction and data bus of the Cortex®-M7 with FPU core to the multi-AHB Bus-Matrix through AXI to AHB bridge. There are 4 AXI bus accesses: 2.1.4 – CPU AXI bus access 1: The target of this AXI bus is the external memory FMC containing code or data. For the NAND Bank mapped at address 0x8000 0000 to 0x8FFF FFFF, the MPU memory attribute for this space must be reconfigured by software to Device. – CPU AXI bus access 2: The target of this AXI bus is the external memory Quad SPI containing code or data. – CPU AXI bus access 3: The target of this AXI bus is the internal SRAMs (SRAM1 and SRAM2) containing code or data. – CPU AXI bus access 4: The target of this AXI bus is the embedded Flash mapped on AXI interface containing code or data. ITCM bus This bus is used by the Cortex®-M7 for instruction fetches and data access on the embedded flash mapped on ITCM interface and instruction fetches only on ITCM RAM. 2.1.5 DTCM bus This bus is used by the Cortex®-M7 for data access on the DTCM RAM. It can be also used for instruction fetches. 2.1.6 CPU AHBS bus This bus connects the AHB Slave bus of the Cortex®-M7 to the BusMatrix. This bus is used by DMAs and Peripherals DMAs for Data transfer on DTCM RAM only. The ITCM bus is not accessible on AHBS. So the DMA data transfer to/from ITCM RAM is not supported. For DMA transfer to/from Flash on ITCM interface, all the transfers are forced through AHB bus 2.1.7 AHB peripheral bus This bus connects the AHB Peripheral bus of the Cortex®-M7 to the BusMatrix. This bus is used by the core to perform all data accesses to peripherals. The target of this bus is the AHB1 peripherals including the APB peripherals and the AHB2 peripherals. 66/1709 RM0385 Rev 7 RM0385 2.1.8 System and memory overview DMA memory bus This bus connects the DMA memory bus master interface to the BusMatrix. It is used by the DMA to perform transfer to/from memories. The targets of this bus are data memories: internal SRAM1, SRAM2 and DTCM (through the AHBS bus of Cortex®-M7) internal Flash memory and external memories through the FMC or Quad SPI. 2.1.9 DMA peripheral bus This bus connects the DMA peripheral master bus interface to the BusMatrix. This bus is used by the DMA to access AHB peripherals or to perform memory-to-memory transfers. The targets of this bus are the AHB and APB peripherals plus data memories: internal SRAM1, SRAM2 and DTCM (through the AHBS bus of Cortex®-M7) internal Flash memory and external memories through the FMC or Quad SPI. 2.1.10 Ethernet DMA bus This bus connects the Ethernet DMA master interface to the BusMatrix. This bus is used by the Ethernet DMA to load/store data to a memory. The targets of this bus are data memories: internal SRAM1, SRAM2 and DTCM (through the AHBS bus of Cortex®-M7) internal Flash memory, and external memories through the FMC or Quad SPI. 2.1.11 USB OTG HS DMA bus This bus connects the USB OTG HS DMA master interface to the BusMatrix. This bus is used by the USB OTG DMA to load/store data to a memory. The targets of this bus are data memories: internal SRAM1, SRAM2 and DTCM (through the AHBS bus of Cortex®-M7), internal Flash memory, and external memories through the FMC or Quad SPI. 2.1.12 LCD-TFT controller DMA bus This bus connects the LCD controller DMA master interface to the BusMatrix. It is used by the LCD-TFT DMA to load data from a memory. The targets of this bus are data memories: internal SRAM1, SRAM2 and DTCM (through the AHBS bus of Cortex®-M7), external memories through FMC or Quad SPI, and internal Flash memory. 2.1.13 DMA2D bus This bus connect the DMA2D master interface to the BusMatrix. This bus is used by the DMA2D graphic Accelerator to load/store data to a memory. The targets of this bus are data memories: internal SRAM1, SRAM2 and DTCM (through the AHBS bus of Cortex®-M7), external memories through FMC or Quad SPI, and internal Flash memory. RM0385 Rev 7 67/1709 67 RM0385 2.2 Memory organization 2.2.1 Introduction Program memory, data memory, registers and I/O ports are organized within the same linear 4-Gbyte address space. The bytes are coded in memory in Little Endian format. The lowest numbered byte in a word is considered the word’s least significant byte and the highest numbered byte the most significant. The addressable memory space is divided into 8 main blocks, of 512 Mbytes each. 68/1709 RM0385 Rev 7 RM0385 2.2.2 Memory map and register boundary addresses Figure 2. Memory map Reserved 0xE010 0000 - 0xFFFF FFFF Cortex-M7 internal peripherals 0xE000 0000 - 0xE00F FFFF AHB3 0x6000 0000 - 0xDFFF FFFF Reserved 0x5006 0C00 - 0x5FFF FFFF 0x5006 0BFF AHB2 0xFFFF FFFF 512-Mbyte Block 7 Cortex-M7 Internal peripherals Reserved 0x5000 0000 0x4008 0000 - 0x4FFF FFFF 0x4007 FFFF 0xE000 0000 0xDFFF FFFF 512-Mbyte Block 6 FMC 0xD000 0000 0xCFFF FFFF AHB1 512-Mbyte Block 5 FMC 0xC000 0000 0x9FFF FFFF 0x8000 0000 0x7FFF FFFF 512-Mbyte Block 4 Quad SPI and FMC bank 3 0x4002 0000 Reserved 0x4001 6C00 - 0x4001 FFFF 0x4001 6BFF 512-Mbyte Block 3 FMC bank 1 to bank 2 0x6000 0000 0x5FFF FFFF APB2 512-Mbyte Block 2 Peripherals 0x4000 0000 0x3FFF FFFF 512-Mbyte Block 1 SRAM 0x2000 0000 0x1FFF FFFF 512-Mbyte Block 0 0x0000 0000 Reserved 0x2005 0000 - 0x3FFF FFFF SRAM2 (16 KB) 0x2004 C000 - 0x2004 FFFF SRAM1 (240 KB) 0x2001 0000 - 0x2004 BFFF DTCM (64 KB) 0x2000 0000 - 0x2000 FFFF Reserved 0x1FFF 0020 - 0x1FFF FFFF Option Bytes 0x1FFF 0000 - 0x1FFF 001F Reserved 0x0820 0000 - 0x1FFE FFFF Reserved 0x4001 0000 0x4000 8000 - 0x4000 FFFF 0x4000 7FFF APB1 Flash memory on AXIM interface 0x0800 0000 - 0x080F FFFF Reserved 0x0030 0000 - 0x07FF FFFF Flash memory on ITCM interface 0x0020 0000 - 0x002F FFFF Reserved 0x0011 0000 - 0x001F FFFF System memory 0x0010 0000 - 0x0010 EDBF Reserved 0x0000 4000 - 0x000F FFFF ITCM RAM 0x0000 0000 - 0x0000 3FFF 0x4000 0000 MS34165V2 RM0385 Rev 7 69/1709 75 RM0385 All the memory map areas that are not allocated to on-chip memories and peripherals are considered “Reserved”. For the detailed mapping of available memory and register areas, refer to the following table. The following table gives the boundary addresses of the peripherals available in the devices. Table 1. STM32F75xxx and STM32F74xxx register boundary addresses Boundary address Peripheral Bus Register map 0xA000 1000 - 0xA0001FFF QuadSPI Control Register AHB3 0xA000 0000 - 0xA000 0FFF FMC control register 0x5006 0800 - 0x5006 0BFF RNG Section 19.8.4: RNG register map on page 554 0x5006 0400 - 0x5006 07FF HASH Section 21.6.8: HASH register map on page 645 0x5006 0000 - 0x5006 03FF CRYP 0x5005 0000 - 0x5005 03FF DCMI Section 17.7.12: DCMI register map on page 507 0x5000 0000 - 0x5003 FFFF USB OTG FS Section 37.15.61: OTG_FS/OTG_HS register map on page 1440 0x4004 0000 - 0x4007 FFFF USB OTG HS Section 37.15.61: OTG_FS/OTG_HS register map on page 1440 Section 14.5.14: QUADSPI register map on page 412 Section 13.8: FMC register map on page 382 AHB2 Section 20.6.21: CRYP register map on page 621 0x4002 B000 - 0x4002 BBFF Chrom-ART (DMA2D) Section 9.5.21: DMA2D register map on page 287 0x4002 8000 - 0x4002 93FF ETHERNET MAC Section 38.8.5: Ethernet register maps on page 1632 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0x4002 4000 - 0x4002 4FFF BKPSRAM 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC 0x4002 3000 - 0x4002 33FF CRC 0x4002 2800 - 0x4002 2BFF GPIOK 0x4002 2400 - 0x4002 27FF GPIOJ 0x4002 2000 - 0x4002 23FF GPIOI 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1800 - 0x4002 1BFF GPIOG 0x4002 1400 - 0x4002 17FF GPIOF 0x4002 1000 - 0x4002 13FF GPIOE 0x4002 0C00 - 0x4002 0FFF GPIOD 0x4002 0800 - 0x4002 0BFF GPIOC 0x4002 0400 - 0x4002 07FF GPIOB 0x4002 0000 - 0x4002 03FF GPIOA 70/1709 Section 8.5.11: DMA register map on page 253 Section 5.3.27: RCC register map on page 196 Section 3.7.8: Flash interface register map Section 5.3.27: RCC register map on page 196 AHB1 Section 12.4.6: CRC register map on page 306 Section : on page 213 Section : on page 213 RM0385 Rev 7 RM0385 Table 1. STM32F75xxx and STM32F74xxx register boundary addresses (continued) Boundary address Peripheral Bus Register map 0x4001 6800 - 0x4001 6BFF LCD-TFT Section 18.7.26: LTDC register map on page 540 0x4001 5C00 - 0x4001 5FFF SAI2 Section 33.5.10: SAI register map on page 1188 0x4001 5800 - 0x4001 5BFF SAI1 Section 33.5.10: SAI register map on page 1188 0x4001 5400 - 0x4001 57FF SPI6 0x4001 5000 - 0x4001 53FF SPI5 Section 32.9.10: SPI/I2S register map on page 1144 0x4001 4800 - 0x4001 4BFF TIM11 0x4001 4400 - 0x4001 47FF TIM10 0x4001 4000 - 0x4001 43FF TIM9 Section 24.4.13: TIM9/TIM12 register map on page 848 0x4001 3C00 - 0x4001 3FFF EXTI Section 11.9.7: EXTI register map on page 300 0x4001 3800 - 0x4001 3BFF SYSCFG 0x4001 3400 - 0x4001 37FF SPI4 Section 32.9.10: SPI/I2S register map on page 1144 0x4001 3000 - 0x4001 33FF SPI1 Section 32.9.10: SPI/I2S register map on page 1144 0x4001 2C00 - 0x4001 2FFF SDMMC1 Section 35.8.16: SDMMC register map on page 1279 0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3 0x4001 1400 - 0x4001 17FF USART6 0x4001 1000 - 0x4001 13FF USART1 0x4001 0400 - 0x4001 07FF TIM8 0x4001 0000 - 0x4001 03FF TIM1 Section 24.5.12: TIM10/TIM11/TIM13/TIM14 register map on page 858 APB2 Section 7.2.8: SYSCFG register maps on page 221 Section 15.13.18: ADC register map on page 458 Section 31.8.12: USART register map on page 1083 Section 22.4.24: TIM1 register map on page 737 RM0385 Rev 7 71/1709 75 RM0385 Table 1. STM32F75xxx and STM32F74xxx register boundary addresses (continued) Boundary address Peripheral Bus Register map 0x4000 7C00 - 0x4000 7FFF UART8 0x4000 7800 - 0x4000 7BFF UART7 0x4000 7400 - 0x4000 77FF DAC Section 16.5.15: DAC register map on page 482 0x4000 7000 - 0x4000 73FF PWR Section 4.4.4: PWR power control register 2 (PWR_CSR2) on page 129 0x4000 6C00 - 0x4000 6FFF HDMI-CEC Section 39.7.7: HDMI-CEC register map on page 1654 0x4000 6800 - 0x4000 6BFF CAN2 0x4000 6400 - 0x4000 67FF CAN1 0x4000 6000 - 0x4000 63FF I2C4 0x4000 5C00 - 0x4000 5FFF I2C3 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 0x4000 5000 - 0x4000 53FF UART5 0x4000 4C00 - 0x4000 4FFF UART4 0x4000 4800 - 0x4000 4BFF USART3 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF SPDIFRX 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3000 - 0x4000 33FF IWDG 0x4000 2C00 - 0x4000 2FFF WWDG Section 31.8.12: USART register map on page 1083 Section 36.9.5: bxCAN register map on page 1322 Section 30.7.12: I2C register map on page 1019 Section 30.7.12: I2C register map on page 1019 Section 31.8.12: USART register map on page 1083 APB1 Section 34.5.10: SPDIFRX interface register map on page 1221 Section 32.9.10: SPI/I2S register map on page 1144 Section 27.4.6: IWDG register map on page 901 Section 28.4.4: WWDG register map on page 908 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers Section 29.6.21: RTC register map on page 952 0x4000 2400 - 0x4000 27FF LPTIM1 Section 26.6.9: LPTIM register map on page 892 0x4000 2000 - 0x4000 23FF TIM14 0x4000 1C00 - 0x4000 1FFF TIM13 0x4000 1800 - 0x4000 1BFF TIM12 0x4000 1400 - 0x4000 17FF TIM7 0x4000 1000 - 0x4000 13FF TIM6 0x4000 0C00 - 0x4000 0FFF TIM5 0x4000 0800 - 0x4000 0BFF TIM4 0x4000 0400 - 0x4000 07FF TIM3 0x4000 0000 - 0x4000 03FF TIM2 72/1709 Section 24.5.12: TIM10/TIM11/TIM13/TIM14 register map on page 858 Section 24.4.13: TIM9/TIM12 register map on page 848 Section 25.4.9: TIM6/TIM7 register map on page 872 Section 23.4.21: TIMx register map on page 808 RM0385 Rev 7 RM0385 2.3 Embedded SRAM The STM32F75xxx and STM32F74xxx feature: • System SRAM up to 320 Kbytes including Data TCM RAM 64 Kbytes • Instruction RAM (ITCM-RAM) 16 Kbytes. • 4 Kbytes of backup SRAM (see section 5.1.2: Battery backup domain) The embedded SRAM is divided into up to four blocks: • • System SRAM: – SRAM1 mapped at address 0x2001 0000 and accessible by all AHB masters from AHB bus Matrix. – SRAM2 mapped at address 0x2004 C000 and accessible by all AHB masters from AHB bus Matrix. – DTCM-RAM on TCM interface (Tightly Coupled Memory interface) mapped at address 0x2000 0000 and accessible by all AHB masters from AHB bus Matrix but through a specific AHB slave bus of the CPU. Instruction SRAM: – Instruction RAM (ITCM-RAM) mapped at address 0x0000 0000 and accessible only by CPU. The SRAM1 and SRAM2 can be accessed as bytes, half-words (16 bits) or full words (32 bits). While DTCM and ITCM RAMs can be accessed as bytes, half-words (16 bits), full words (32 bits) or double words (64 bits). These memories can be addressed at maximum system clock frequency without wait state. The AHB masters support concurrent SRAM accesses (from the Ethernet or the USB OTG HS): for instance, the Ethernet MAC can read/write from/to SRAM2 while the CPU is reading/writing from/to SRAM1. 2.4 Flash memory overview The Flash memory interface manages CPU AXI and TCM accesses to the Flash memory. It implements the erase and program Flash memory operations and the read and write protection mechanisms. It accelerates code execution with ART on TCM interface or L1Cache on AXIM interface. The Flash memory is organized as follows: • A main memory block divided into sectors. • An information block: – System memory from which the device boots in System memory boot mode – 1024 OTP (one-time programmable) bytes for user data. – Option bytes to configure read and write protection, BOR level, software/hardware watchdog, boot memory base address and reset when the device is in Standby or Stop mode. Refer to Section 3: Embedded Flash memory (FLASH) for more details. RM0385 Rev 7 73/1709 75 RM0385 2.5 Boot configuration In the STM32F75xxx and STM32F74xxx, two different boot areas can be selected through the BOOT pin and the boot base address programmed in the BOOT_ADD0 and BOOT_ADD1 option bytes as shown in the Table 2. Table 2. Boot modes Boot mode selection Boot area BOOT Boot address option bytes 0 BOOT_ADD0[15:0] Boot address defined by user option byte BOOT_ADD0[15:0] ST programmed value: Flash on ITCM at 0x0020 0000 1 BOOT_ADD1[15:0] Boot address defined by user option byte BOOT_ADD1[15:0] ST programmed value: System bootloader at 0x0010 0000 The values on the BOOT pin are latched on the 4th rising edge of SYSCLK after reset release. It is up to the user to set the BOOT pin after reset. The BOOT pin is also resampled when the device exits the Standby mode. Consequently, they must be kept in the required Boot mode configuration when the device is in the Standby mode. After startup delay, the selection of the boot area is done before releasing the processor reset. The BOOT_ADD0 and BOOT_ADD1 address option bytes allows to program any boot memory address from 0x0000 0000 to 0x3FFF FFFF which includes: • All Flash address space mapped on ITCM or AXIM interface • All RAM address space: ITCM, DTCM RAMs and SRAMs mapped on AXIM interface • The System memory bootloader The BOOT_ADD0 / BOOT_ADD1 option bytes can be modified after reset in order to boot from any other boot address after next reset. If the programmed boot memory address is out of the memory mapped area or a reserved area, the default boot fetch address is programmed as follows: – Boot address 0: ITCM-FLASH at 0x0020 0000 – Boot address 1: ITCM-RAM at 0x0000 0000 When flash level 2 protection is enabled, only boot from Flash (on ITCM or AXIM interface) or system bootloader will be available. If the already programmed boot address in the BOOT_ADD0 and/or BOOT_ADD1 option bytes is out of the memory range or RAM address (on ITCM or AXIM) the default fetch will be forced from Flash on ITCM interface at address 0x00200000. Embedded bootloader The embedded bootloader code is located in the system memory. It is programmed by ST during production. For full information, refer to the application note (AN2606) STM32 microcontroller system memory boot mode. 74/1709 RM0385 Rev 7 RM0385 By default, when the boot from system bootloader is selected, the code is executed from TCM interface. It could be executed from AXIM interface by reprogramming the BOOT_ADDx address option bytes to 0x1FF0 0000. RM0385 Rev 7 75/1709 75 Embedded Flash memory (FLASH) RM0385 3 Embedded Flash memory (FLASH) 3.1 Introduction The Flash memory interface manages Cortex®-M7 AXI and TCM accesses to the Flash memory. It implements the erase and program Flash memory operations and the read and write protection mechanisms. The Flash memory interface accelerates code execution with a system of instruction prefetch and cache lines on ITCM interface (ART Accelerator™). 3.2 Flash main features • Flash memory read operations • Flash memory program/erase operations • Read / write protections • 64 cache lines of 256 bits on ITCM interface (ART Accelerator™) • Prefetch on TCM instruction code Figure 3 shows the Flash memory interface connection inside the system architecture. ITCM Figure 3. Flash memory interface connection inside system architecture (STM32F75xxx and STM32F74xxx) Chrom-ART Accelerator (DMA2D) DMA2D LCD-TFT_M USB_HS_M ETHERNET_M DMA_P2 GP MAC USB OTG LCD-TFT DMA2 Ethernet HS DMA_MEM2 DMA_PI AHBP 4KB I/D Cache AXIM GP DMA1 DMA_MEM1 ARM Cortex-M7 AXI to multi-AHB ITCM Bus (64bits) ART Flash interface AHB 64-bit data bus Flash bus 256 bits Flash memory Flash register On AHB1 Bus Matrix - S MSv35952V1 76/1709 RM0385 Rev 7 RM0385 Embedded Flash memory (FLASH) 3.3 Flash functional description 3.3.1 Flash memory organization The Flash memory has the following main features: • Capacity up to 1 Mbyte • 256 bits wide data read • Byte, half-word, word and double word write • Sector and mass erase The Flash memory is organized as follows: • A main memory block divided into 4 sectors of 32 Kbytes, 1 sector of 128 Kbytes, and 3 sectors of 256 Kbytes • Information blocks containing: – System memory from which the device boots in System memory boot mode – 1024 OTP (one-time programmable) for user data – The OTP area contains 16 additional bytes used to lock the corresponding OTP data block. – Option bytes to configure read and write protection, BOR level, software/hardware watchdog, boot memory base address and reset when the device is in Standby or Stop mode. The embedded flash has three main interfaces: • • • 64-bits ITCM interface: – It is connected to the ITCM bus of Cortex-M7 and used for instruction execution and data read access. – Write accesses are not supported on ITCM interface – Supports a unified 64 cache lines of 256 bits (ART accelerator) 64-bits AHB interface: – It is connected to the AXI bus of Cortex-M7 through the AHB bus matrix and used for code execution, read and write accesses. – DMAs and peripherals DMAs data transfer on Flash are done through the AHB interface whatever the addressed flash interface TCM or AHB. 32-bits AHB register interface: – It is used for control and status register accesses. The main memory and information block organization are shown in Table 3. RM0385 Rev 7 77/1709 98 Embedded Flash memory (FLASH) RM0385 Table 3. Flash memory organization Block Main memory block Name Bloc base address on AXIM interface Block base address on ICTM interface Sector size Sector 0 0x0800 0000 - 0x0800 7FFF 0x0020 0000 - 0x0020 7FFF 32 KB Sector 1 0x0800 8000 - 0x0800 FFFF 0x0020 8000 - 0x0020 FFFF 32 KB Sector 2 0x0801 0000 - 0x0801 7FFF 0x0021 0000 - 0x0021 7FFF 32 KB Sector 3 0x0801 8000 - 0x0801 FFFF 0x0021 8000 - 0x0021 FFFF 32 KB Sector 4 0x0802 0000 - 0x0803 FFFF 0x0022 0000 - 0x0023 FFFF 128 KB Sector 5 0x0804 0000 - 0x0807 FFFF 0x0024 0000 - 0x0027 FFFF 256 KB Sector 6 0x0808 0000 - 0x080B FFFF 0x0028 0000 - 0x002B FFFF 256 KB Sector 7 0x080C 0000 - 0x080F FFFF 256 KB System memory Information block 3.3.2 0x002C 0000 - 0x02F FFFF 0x1FF0 0000 - 0x1FF0 EDBF 0x0010 0000 - 0x0010 EDBF 60 Kbytes OTP 0x1FF0 F000 - 0x1FF0 F41F Option bytes 0x1FFF 0000 - 0x1FFF 001F 0x0010 F000 - 0x0010 F41F 1024 bytes - 32 bytes Read access latency To correctly read data from Flash memory, the number of wait states (LATENCY) must be correctly programmed in the Flash access control register (FLASH_ACR) according to the frequency of the CPU clock (HCLK) and the supply voltage of the device. The correspondence between wait states and CPU clock frequency is given in Table 13 and Table 4. Note: - when VOS[1:0] = '0x01', the maximum value of fHCLK is 144 MHz. - when VOS[1:0] = '0x10', the maximum value of fHCLK is 168 MHz. It can be extended to 180 MHz by activating the over-drive mode. - when VOS[1:0] = '0x11, the maximum value of fHCLK is 180 MHz. It can be extended to 216 MHz by activating the over-drive mode. - The over-drive mode is not available when VDD ranges from 1.8 to 2.1 V. Refer to Section 4.1.4: Voltage regulator for details on how to activate the over-drive mode. Table 4. Number of wait states according to CPU clock (HCLK) frequency HCLK (MHz) Wait states (WS) Voltage range Voltage range Voltage range Voltage range 2.7 V - 3.6 V 2.4 V - 2.7 V 2.1 V - 2.4 V 1.8 V - 2.1 V 0 WS (1 CPU cycle) 0 < HCLK ≤ 30 0 < HCLK ≤ 24 0 < HCLK ≤ 22 0 < HCLK ≤ 20 1 WS (2 CPU cycles) 30 < HCLK ≤ 60 24 < HCLK ≤ 48 221, 1->2, 0->2) there is no mass erase. • Level 2: debug/chip read disabled The read protection Level 2 is activated by writing 0xCC to the RDP option byte. When the read protection Level 2 is set: – All protections provided by Level 1 are active. – Booting from RAM is no more allowed. – Booting system memory bootloader is possible and all the commands are not accessible except Get, GetID and GetVersion. Refer to AN2606. – JTAG, SWV (serial-wire viewer), ETM, and boundary scan are disabled. – User option bytes can no longer be changed. – When booting from Flash memory, accesses (read, erase and program) to Flash memory and backup SRAM from user code are allowed. Memory read protection Level 2 is an irreversible operation. When Level 2 is activated, the level of protection cannot be decreased to Level 0 or Level 1. 88/1709 RM0385 Rev 7 RM0385 Embedded Flash memory (FLASH) Note: The JTAG port is permanently disabled when Level 2 is active (acting as a JTAG fuse). As a consequence, boundary scan cannot be performed. STMicroelectronics is not able to perform analysis on defective parts on which the Level 2 protection has been set. Note: If the read protection is set while the debugger is still connected through JTAG/SWD, apply a POR (power-on reset). Table 8. Access versus read protection level Memory area Protection Level Debug features, Boot from RAM or from System memory bootloader Read Main Flash Memory and Backup SRAM Option Bytes OTP Level 1 Write Erase Booting from Flash memory Read Write NO(1) NO Erase YES Level 2 NO YES Level 1 YES YES Level 2 NO NO Level 1 NO NA YES NA Level 2 NO NA YES NA 1. The main Flash memory and backup SRAM are only erased when the RDP changes from level 1 to 0. The OTP area remains unchanged. Figure 4 shows how to go from one RDP level to another. Figure 4. RDP levels RDP /= AAh & /= CCh Others options modified Level 1 RDP /= AAh RDP /= CCh default Write options including RDP = CCh Write optionsincluding RDP /= CCh & /= AAh L ev e l 2 RDP = CCh Write options including RDP = AAh L ev e l 0 Write options including RDP = CCh Options write (RDP level increase) includes - Options erase - New options program Options write (RDP level decrease) includes - Mass erase - Options erase - New options program RDP = AA h RDP = AAh Others option(s) modified Options write (RDP level identical) includes - Options erase - New options program ai16045 RM0385 Rev 7 89/1709 98 Embedded Flash memory (FLASH) 3.5.2 RM0385 Write protections Up to 8 user sectors in Flash memory can be protected against unwanted write operations due to loss of program counter contexts. When the non-write protection nWRPi bit (0 ≤ i ≤ 7) in the FLASH_OPTCR or FLASH_OPTCR1 registers is low, the corresponding sector cannot be erased or programmed. Consequently, a mass erase cannot be performed if one of the sectors is write-protected. If an erase/program operation to a write-protected part of the Flash memory is attempted (sector protected by write protection bit, OTP part locked or part of the Flash memory that can never be written like the ICP), the write protection error flag (WRPERR) is set in the FLASH_SR register. Note: When the memory read protection level is selected (RDP level = 1), it is not possible to program or erase Flash memory sector i if the CPU debug features are connected (JTAG or single wire) or boot code is being executed from RAM, even if nWRPi = 1. Write protection error flag If an erase/program operation to a write protected area of the Flash memory is performed, the Write Protection Error flag (WRPERR) is set in the FLASH_SR register. If an erase operation is requested, the WRPERR bit is set when: • A sector erase is requested and the Sector Number SNB field is not valid • A mass erase is requested while at least one of the user sector is write protected by option bit (MER and nWRi = 0 with 0 ≤ i ≤ 7 bits in the FLASH_OPTCR register • A sector erase is requested on a write protected sector. (SER = 1, SNB = i and nWRPi = 0 with 0 ≤ i ≤ 7 bits in the FLASH_OPTCR register) • The Flash memory is readout protected and an intrusion is detected. If a program operation is requested, the WRPERR bit is set when: 3.6 • A write operation is performed on system memory or on the reserved part of the user specific sector. • A write operation is performed to the information block • A write operation is performed on a sector write protected by option bit. • A write operation is requested on an OTP area which is already locked • The Flash memory is read protected and an intrusion is detected. One-time programmable bytes Table 9 shows the organization of the one-time programmable (OTP) part of the OTP area. Table 9. OTP area organization OTP [255:224] [223:193] [192:161] [160:128] Block 0 1 90/1709 [127:96] [95:64] [63:32] [31:0] Address byte 0 OTP0 OTP0 OTP0 OTP0 OTP0 OTP0 OTP0 OTP0 0x1FF0 F000 OTP0 OTP0 OTP0 OTP0 OTP0 OTP0 OTP0 OTP0 0x1FF0 F020 OTP1 OTP1 OTP1 OTP1 OTP1 OTP1 OTP1 OTP1 0x1FF0 F040 OTP1 OTP1 OTP1 OTP1 OTP1 OTP1 OTP1 OTP1 0x1FF0 F060 RM0385 Rev 7 RM0385 Embedded Flash memory (FLASH) Table 9. OTP area organization (continued) OTP [255:224] [223:193] [192:161] [160:128] Block 14 15 Lock block [127:96] [95:64] [63:32] [31:0] Address byte 0 - - - - - - - - - OPT14 OPT14 OPT14 OPT14 OPT14 OPT14 OPT14 OPT14 0x1FF0 F380 OPT14 OPT14 OPT14 OPT14 OPT14 OPT14 OPT14 OPT14 0x1FF0 F3A0 OPT15 OPT15 OPT15 OPT15 OPT15 OPT15 OPT15 OPT15 0x1FF0 F3C0 OPT15 OPT15 OPT15 OPT15 OPT15 OPT15 OPT15 OPT15 0x1FF0 F3E0 reserved reserved reserved reserved LOCK15... LOCK11... LOCK7... LOCK3... 0x1FF0 F400 LOCKB12 LOCKB8 LOCKB4 LOCKB0 The OTP area is divided into 16 OTP data blocks of 64 bytes and one lock OTP block of 16 bytes. The OTP data and lock blocks cannot be erased. The lock block contains 16 bytes LOCKBi (0 ≤ i ≤ 15) to lock the corresponding OTP data block (blocks 0 to 15). Each OTP data block can be programmed until the value 0x00 is programmed in the corresponding OTP lock byte. The lock bytes must only contain 0x00 and 0xFF values, otherwise the OTP bytes might not be taken into account correctly. 3.7 FLASH registers 3.7.1 Flash access control register (FLASH_ACR) The Flash access control register is used to enable/disable the acceleration features and control the Flash memory access time according to CPU frequency. Address offset: 0x00 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 9 8 3 2 1 0 15 14 13 12 11 10 Res. Res. Res. Res. ARTRST Res. rw ARTEN PRFTEN rw 7 6 5 4 Res. Res. Res. Res. rw LATENCY[3:0] rw rw rw rw Bits 31:12 Reserved, must be kept cleared. Bit 11 ARTRST: ART Accelerator reset 0: ART Accelerator is not reset 1: ART Accelerator is reset Bit 10 Reserved, must be kept cleared. RM0385 Rev 7 91/1709 98 Embedded Flash memory (FLASH) RM0385 Bit 9 ARTEN: ART Accelerator Enable 0: ART Accelerator is disabled 1: ART Accelerator is enabled Bit 8 PRFTEN: Prefetch enable 0: Prefetch is disabled 1: Prefetch is enabled Bits 7:4 Reserved, must be kept cleared. Bits 3:0 LATENCY[3:0]: Latency These bits represent the ratio of the CPU clock period to the Flash memory access time. 0000: Zero wait state 0001: One wait state 0010: Two wait states 1110: Fourteen wait states 1111: Fifteen wait states 3.7.2 Flash key register (FLASH_KEYR) The Flash key register is used to allow access to the Flash control register and so, to allow program and erase operations. Address offset: 0x04 Reset value: 0x0000 0000 Access: no wait state, word access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 KEY[31:16] w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 w w w w w w w KEY[15:0] w w w w w w w w w Bits 31:0 FKEYR[31:0]: FPEC key The following values must be programmed consecutively to unlock the FLASH_CR register and allow programming/erasing it: a) KEY1 = 0x45670123 b) KEY2 = 0xCDEF89AB 3.7.3 Flash option key register (FLASH_OPTKEYR) The Flash option key register is used to allow program and erase operations in the information block. Address offset: 0x08 Reset value: 0x0000 0000 Access: no wait state, word access 92/1709 RM0385 Rev 7 RM0385 Embedded Flash memory (FLASH) 31 30 29 28 27 26 25 24 w w w w w w w w 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 w w w w w w w w 7 6 5 4 3 2 1 0 w w w w w w w OPTKEYR[31:16] OPTKEYR[15:0] w w w w w w w w w Bits 31:0 OPTKEYR[31:0]: Option byte key The following values must be programmed consecutively to unlock the FLASH_OPTCR register and allow programming it: a) OPTKEY1 = 0x08192A3B b) OPTKEY2 = 0x4C5D6E7F 3.7.4 Flash status register (FLASH_SR) The Flash status register gives information on ongoing program and erase operations. Address offset: 0x0C Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BSY 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OPERR EOP rc_w1 rc_w1 r ERSERR PGPERR PGAERR WRPERR rc_w1 rc_w1 rc_w1 rc_w1 Bits 31:17 Reserved, must be kept cleared. Bit 16 BSY: Busy This bit indicates that a Flash memory operation is in progress. It is set at the beginning of a Flash memory operation and cleared when the operation finishes or an error occurs. 0: no Flash memory operation ongoing 1: Flash memory operation ongoing Bits 15:8 Reserved, must be kept cleared. Bit 7 ERSERR: Erase Sequence Error Set by hardware when a write access to the Flash memory is performed by the code while the control register has not been correctly configured. Cleared by writing 1. Bit 6 PGPERR: Programming parallelism error Set by hardware when the size of the access (byte, half-word, word, double word) during the program sequence does not correspond to the parallelism configuration PSIZE (x8, x16, x32, x64). Cleared by writing 1. Bit 5 PGAERR: Programming alignment error Set by hardware when the data to program cannot be contained in the same 128-bit Flash memory row. Cleared by writing 1. RM0385 Rev 7 93/1709 98 Embedded Flash memory (FLASH) RM0385 Bit 4 WRPERR: Write protection error Set by hardware when an address to be erased/programmed belongs to a write-protected part of the Flash memory. Cleared by writing 1. Bits 3:2 Reserved, must be kept cleared. Bit 1 OPERR: Operation error Set by hardware when a flash operation (programming / erase /read) request is detected and can not be run because of parallelism, alignment, or write protection error. This bit is set only if error interrupts are enabled (ERRIE = 1). Bit 0 EOP: End of operation Set by hardware when one or more Flash memory operations (program/erase) has/have completed successfully. It is set only if the end of operation interrupts are enabled (EOPIE = 1). Cleared by writing a 1. 3.7.5 Flash control register (FLASH_CR) The Flash control register is used to configure and start Flash memory operations. Address offset: 0x10 Reset value: 0x8000 0000 Access: no wait state when no Flash memory operation is ongoing, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 LOCK Res. Res. Res. Res. Res. ERRIE EOPIE Res. Res. Res. Res. Res. Res. Res. STRT rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. MER SER PG rw rw rw rw rw rs PSIZE[1:0] rw rs Res. rw SNB[3:0] rw rw Bit 31 LOCK: Lock Write to 1 only. When it is set, this bit indicates that the FLASH_CR register is locked. It is cleared by hardware after detecting the unlock sequence. In the event of an unsuccessful unlock operation, this bit remains set until the next reset. Bits 30:26 Reserved, must be kept cleared. Bit 25 ERRIE: Error interrupt enable This bit enables the interrupt generation when the OPERR bit in the FLASH_SR register is set to 1. 0: Error interrupt generation disabled 1: Error interrupt generation enabled Bit 24 EOPIE: End of operation interrupt enable This bit enables the interrupt generation when the EOP bit in the FLASH_SR register goes to 1. 0: Interrupt generation disabled 1: Interrupt generation enabled Bits 23:17 Reserved, must be kept cleared. 94/1709 RM0385 Rev 7 RM0385 Embedded Flash memory (FLASH) Bit 16 STRT: Start This bit triggers an erase operation when set. It is set only by software and cleared when the BSY bit is cleared. Bits 15:10 Reserved, must be kept cleared. Bits 9:8 PSIZE: Program size These bits select the program parallelism. 00 program x8 01 program x16 10 program x32 11 program x64 Bit 7 Reserved, must be kept cleared. Bits 6:3 SNB[3:0]: Sector number These bits select the sector to erase. 0000 sector 0 0001 sector 1 ... 0111 sector 7 Others not allowed Bit 2 MER: Mass Erase Erase activated for all user sectors. Bit 1 SER: Sector Erase Sector Erase activated. Bit 0 PG: Programming Flash programming activated. 3.7.6 Flash option control register (FLASH_OPTCR) The FLASH_OPTCR register is used to modify the user option bytes. Address offset: 0x14 Reset value: 0xC0FFAAFD. The option bytes are loaded with values from Flash memory at reset release. Access: no wait state when no Flash memory operation is ongoing, word, half-word and byte access. 31 30 IWDG_ IWDG_ STOP STDBY rw rw 15 14 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. 13 12 11 10 9 8 rw rw rw rw 22 rw rw rw 21 20 19 18 17 16 nWRP[7:0] rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 nRST_ nRST_ STDBY STOP RDP[7:0] rw 23 rw RM0385 Rev 7 rw IWDG_ WWDG SW _SW rw rw BOR_LEV[1:0] rw rw OPTST OPTLO RT CK rs rs 95/1709 98 Embedded Flash memory (FLASH) RM0385 Bit 31 IWDG_STOP: Independent watchdog counter freeze in Stop mode 0: Freeze IWDG counter in STOP mode. 1: IWDG counter active in STOP mode. Bit 30 IWDG_STDBY: Independent watchdog counter freeze in standby mode 0: Freeze IWDG counter in standby mode. 1: IWDG counter active in standby mode. Bits 29:24 Reserved, must be kept cleared. Bits 23:16 nWRP[7:0]: Not write protect These bits contain the value of the write-protection option bytes for sectors 0 to 7 after reset. They can be written to program a new write-protect into Flash memory. 0: Write protection active on sector i 1: Write protection not active on sector i Bits 15:8 RDP[7:0]: Read protect These bits contain the value of the read-protection option level after reset. They can be written to program a new read protection value into Flash memory. 0xAA: Level 0, read protection not active 0xCC: Level 2, chip read protection active Others: Level 1, read protection of memories active Bits 7:4 USER: User option bytes These bits contain the value of the user option byte after reset. They can be written to program a new user option byte value into Flash memory. Bit 7: nRST_STDBY Bit 6: nRST_STOP Bit 5: IWDG_SW Bit 4: WWDG_SW Bits 3:2 BOR_LEV[1:0]: BOR reset Level These bits contain the supply level threshold that activates/releases the reset. They can be written to program a new BOR level. By default, BOR is off. When the supply voltage (VDD) drops below the selected BOR level, a device reset is generated. 00: BOR Level 3 (VBOR3), brownout threshold level 3 01: BOR Level 2 (VBOR2), brownout threshold level 2 10: BOR Level 1 (VBOR1), brownout threshold level 1 11: BOR off, POR/PDR reset threshold level is applied Note: For full details on BOR characteristics, refer to the “Electrical characteristics” section of the product datasheet. Bit 1 OPTSTRT: Option start This bit triggers a user option operation when set. It is set only by software and cleared when the BSY bit is cleared. Bit 0 OPTLOCK: Option lock Write to 1 only. When this bit is set, it indicates that the FLASH_OPTCR register is locked. This bit is cleared by hardware after detecting the unlock sequence. In the event of an unsuccessful unlock operation, this bit remains set until the next reset. Note: When modifying the IWDG_SW, IWDG_STOP or IWDG_STDBY option byte, a system reset is required to make the change effective. 3.7.7 Flash option control register (FLASH_OPTCR1) The FLASH_OPTCR1 register is used to modify the user option bytes. 96/1709 RM0385 Rev 7 RM0385 Embedded Flash memory (FLASH) Address offset: 0x18 Reset value: 0x0040 0080 (ITCM-FLASH). The option bytes are loaded with values from Flash memory at reset release. Access: no wait state when no Flash memory operation is ongoing, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 6 5 4 3 2 1 0 BOOT_ADD1[15:0] rw 15 14 13 12 11 10 9 8 7 BOOT_ADD0[15:0] rw Bits 31:16 BOOT_ADD1[15:0]: Boot base address when Boot pin =1 BOOT_ADD1[15:0] correspond to address [29:14], The boot memory address can be programmed to any address in the range 0x0000 0000 to 0x2004 FFFF with a granularity of 16KB. Example: BOOT_ADD1 = 0x0000: Boot from ITCM RAM (0x0000 0000) BOOT_ADD1 = 0x0040: Boot from System memory bootloader (0x0010 0000) BOOT_ADD1 = 0x0080: Boot from Flash on ITCM interface (0x0020 0000) BOOT_ADD1 = 0x2000: Boot from Flash on AXIM interface (0x0800 0000) BOOT_ADD1 = 0x8000: Boot from DTCM RAM (0x2000 0000) BOOT_ADD1 = 0x8004: Boot from SRAM1 (0x2001 0000) BOOT_ADD1 = 0x8013: Boot from SRAM2 (0x2004 C000) Bits 15:0 BOOT_ADD0[15:0]: Boot base address when Boot pin =0 BOOT_ADD0[15:0] correspond to address [29:14], The boot base address can be programmed to any address in the range 0x0000 0000 to 0x2004 FFFF with a granularity of 16KB. Example: BOOT_ADD0 = 0x0000: Boot from ITCM RAM (0x0000 0000) BOOT_ADD0 = 0x0040: Boot from System memory bootloader (0x0010 0000) BOOT_ADD0 = 0x0080: Boot from Flash on ITCM interface (0x0020 0000) BOOT_ADD0 = 0x2000: Boot from Flash on AXIM interface (0x0800 0000) BOOT_ADD0 = 0x8000: Boot from DTCM RAM (0x2000 0000) BOOT_ADD0 = 0x8004: Boot from SRAM1 (0x2001 0000) BOOT_ADD0 = 0x8013: Boot from SRAM2 (0x2004 C000) RM0385 Rev 7 97/1709 98 Embedded Flash memory (FLASH) 3.7.8 RM0385 Flash interface register map 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FLASH_SR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BSY Res. Res. Res. Res. Res. Res. Res. nWRP[7:0] 0 0 0 0 0 0 0 0 Res. Res. Res. 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 0 RDP[7:0] 1 1 1 0 1 0 1 0 BOOT_ADD1[15:0] 0 0 0 PSIZE[1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EOPIE Res. Res. ERRIE Res. Res. 0 1 FLASH_ OPTCR1 Reset value Res. Res. Res. Res. Res. Res. Res. Res. LOCK IWDG_STOP IWDG_STDBY 1 0 0 0 1 0 SNB[3:0] 0 0 0 1 1 EOP 0 Reset value 0 0 0 PG 0 FLASH_OPTCR 0 0 0 0 0 OPTLOCK 0 0 0 OPERR 0 0 0 SER 0 1 0 MER 0 Reset value 0 OPTSTRT 0 0x14 0 OPTKEYR[15:0] 0 FLASH_CR Res. PRFTEN 0 OPTKEYR[31:16] Reset value 98/1709 0 Reset value 0x10 0 Res. 0 BOR_LEV[1:0] 0 Res. 0 WRPERR 0 WWDG_SW 0 KEY[15:0] PGAERR 0 0 IWDG_SW 0 0 PGPERR 0 0 nRST_STOP 0 0 Res. 0 LATENCY[3:0] ERSERR 0 FLASH_ OPTKEYR 0x0C 0x18 Res. KEY[31:16] Res. 0x08 0 Res. Reset value 0 nRST_STDBY FLASH_KEYR STRT 0x04 0 ARTEN Res. Reset value ARTRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FLASH_ACR 0x00 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 10. Flash register map and reset values 1 1 1 1 0 1 0 0 0 0 0 BOOT_ADD0[15:0] 0 0 0 0 RM0385 Rev 7 0 0 0 0 0 0 0 0 0 1 0 0 RM0385 Power controller (PWR) 4 Power controller (PWR) 4.1 Power supplies The device requires a 1.8 to 3.6 V operating voltage supply (VDD). An embedded linear voltage regulator is used to supply the internal 1.2 V digital power. The real-time clock (RTC), the RTC backup registers, and the backup SRAM (BKP SRAM) can be powered from the VBAT voltage when the main VDD supply is powered off. Note: Depending on the operating power supply range, some peripheral may be used with limited functionality and performance. For more details refer to section "General operating conditions" in STM32F75xxx and STM32F74xxx datasheets. RM0385 Rev 7 99/1709 131 Power controller (PWR) RM0385 Figure 5. Power supply overview VBAT Backup circuitry (OSC32K,RTC, Wakeup logic Backup registers, backup RAM) OUT GP I/Os IN 2 × 2.2 μF VDD IO Logic Kernel logic (CPU, digital & RAM) VCAP_1 VCAP_2 VDD 1/2/...14/20 19 × 100 nF + 1 × 4.7 μF Level shifter Power switch VBAT = 1.65 to 3.6V Voltage regulator VSS 1/2/...14/20 Flash memory BYPASS_REG VDDUSB VDDUSB 100 nF + 1 μF PDR_ON VDD Reset controller VDDA VREF 100 nF + 1 μF OTG FS PHY 100 nF + 1 μF VREF+ VREF- ADC Analog: RCs, PLL, ... VSSA MSv35942V1 1. VDDA and VSSA must be connected to VDD and VSS, respectively. 4.1.1 Independent A/D converter supply and reference voltage To improve conversion accuracy, the ADC has an independent power supply which can be separately filtered and shielded from noise on the PCB. • The ADC voltage supply input is available on a separate VDDA pin. • An isolated supply ground connection is provided on pin VSSA. To ensure a better accuracy of low voltage inputs, the user can connect a separate external reference voltage ADC input on VREF. The voltage on VREF ranges from 1.8 V to VDDA. 100/1709 RM0385 Rev 7 RM0385 4.1.2 Power controller (PWR) Independent USB transceivers supply The VDDUSB is an independent USB power supply for full speed transceivers (USB OTG FS and USB OTG HS in FS mode). It can be connected either to VDD or an external independent power supply (3.0 to 3.6V) for USB transceivers (refer Figure 6 and Figure 7). For example, when the device is powered at 1.8V, an independent power supply 3.3V can be connected to VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent from VDD or VDDA but it must be the last supply to be provided and the first to disappear. The following conditions VDDUSB must be respected: • During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD • During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD • VDDUSB rising and falling time rate specifications must be respected • In operating mode phase, VDDUSB could be lower or higher than VDD: – If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX. – The VDDUSB supplies both USB transceiver (USB OTG_HS and USB OTG_FS). If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied at by VDDUSB. – If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by VDDUSB are operating between VDD_MIN and VDD_MAX. Figure 6. VDDUSB connected to VDD power supply VDD VDD_MAX VDD= VDDA = VDDUSB VDD_MIN Power-on Operating mode Power-down time MS37591V1 RM0385 Rev 7 101/1709 131 Power controller (PWR) RM0385 Figure 7. VDDUSB connected to external independent power supply VDDUSB_MAX USB functional area VDDUSB VDDUSB_MIN USB non functional area VDD = VDDA Power-on Operating mode USB non functional area VDD_MIN time Power-down MS37590V1 4.1.3 Battery backup domain Backup domain description To retain the content of the RTC backup registers, backup SRAM, and supply the RTC when VDD is turned off, VBAT pin can be connected to an optional standby voltage supplied by a battery or by another source. To allow the RTC to operate even when the main digital supply (VDD) is turned off, the VBAT pin powers the following blocks: • The RTC • The LSE oscillator • The backup SRAM when the low-power backup regulator is enabled • PC13 to PC15 I/Os, plus PI8 I/O (when available) The switch to the VBAT supply is controlled by the power-down reset embedded in the Reset block. Warning: 102/1709 During tRSTTEMPO (temporization at VDD startup) or after a PDR is detected, the power switch between VBAT and VDD remains connected to VBAT. During the startup phase, if VDD is established in less than tRSTTEMPO (Refer to the datasheet for the value of tRSTTEMPO) and VDD > VBAT + 0.6 V, a current may be injected into VBAT through an internal diode connected between VDD and the power switch (VBAT). If the power supply/battery connected to the VBAT pin cannot support this current injection, it is strongly recommended to RM0385 Rev 7 RM0385 Power controller (PWR) connect an external low-drop diode between this power supply and the VBAT pin. If no external battery is used in the application, it is recommended to connect the VBAT pin to VDD with a 100 nF external decoupling ceramic capacitor in parallel. When the backup domain is supplied by VDD (analog switch connected to VDD), the following functions are available: Note: • PC14 and PC15 can be used as either GPIO or LSE pins • PC13 and PI8 can be used as a GPIO pin (refer to Table 147: RTC pin PC13 configuration and Table 148: RTC pin PI8 configuration for more details about these pins configuration) Due to the fact that the switch only sinks a limited amount of current (3 mA), the use of GPIOs PI8 and PC13 to PC15 are restricted: the speed has to be limited to 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED). When the backup domain is supplied by VBAT (analog switch connected to VBAT because VDD is not present), the following functions are available: • PC14 and PC15 can be used as LSE pins only • PC13 can be used as tamper pin (TAMP1) • PI8 can be used as tamper pin (TAMP2) Backup domain access After reset, the backup domain (RTC registers, RTC backup register and backup SRAM) is protected against possible unwanted write accesses. To enable access to the backup domain, proceed as follows: • Access to the RTC and RTC backup registers 1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR register (see Section 5.3.13) 2. Set the DBP bit in the PWR power control register (PWR_CR1) to enable access to the backup domain 3. Select the RTC clock source: see Section 5.2.8: RTC/AWU clock 4. Enable the RTC clock by programming the RTCEN [15] bit in the RCC backup domain control register (RCC_BDCR) • Access to the backup SRAM 1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR register (see Section 5.3.13) 2. Set the DBP bit in the PWR power control register (PWR_CR1) to enable access to the backup domain 3. Enable the backup SRAM clock by setting BKPSRAMEN bit in the RCC AHB1 peripheral clock register (RCC_AHB1ENR). RTC and RTC backup registers The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a timeof-day clock/calendar, two programmable alarm interrupts, and a periodic programmable wakeup flag with interrupt capability. The RTC contains 32 backup data registers (128 bytes) RM0385 Rev 7 103/1709 131 Power controller (PWR) RM0385 which are reset when a tamper detection event occurs. For more details refer to Section 29: Real-time clock (RTC). Backup SRAM The backup domain includes 4 Kbytes of backup SRAM addressed in 32-bit, 16-bit or 8-bit mode. Its content is retained even in Standby or VBAT mode when the low-power backup regulator is enabled. It can be considered as an internal EEPROM when VBAT is always present. When the backup domain is supplied by VDD (analog switch connected to VDD), the backup SRAM is powered from VDD which replaces the VBAT power supply to save battery life. When the backup domain is supplied by VBAT (analog switch connected to VBAT because VDD is not present), the backup SRAM is powered by a dedicated low-power regulator. This regulator can be ON or OFF depending whether the application needs the backup SRAM function in Standby and VBAT modes or not. The power-down of this regulator is controlled by a dedicated bit, the BRE control bit of the PWR_CSR1 register (see Section 4.4.2: PWR power control/status register (PWR_CSR1)). The backup SRAM is not mass erased by an tamper event. It is read protected to prevent confidential data, such as cryptographic private key, from being accessed. The backup SRAM can be erased only through the Flash interface when a protection level change from level 1 to level 0 is requested. Refer to the description of Read protection (RDP) option byte. Figure 8. Backup domain Power switch Voltage regulator 3.3 -> 1.2 V LP voltage regulator 3.3 -> 1.2 V 1.2 V domain Backup SRAM interface Backup SRAM 1.2 V RTC LSE 32.768 Hz Backup domain MS30430V1 4.1.4 Voltage regulator An embedded linear voltage regulator supplies all the digital circuitries except for the backup domain and the Standby circuitry. The regulator output voltage is around 1.2 V. This voltage regulator requires two external capacitors to be connected to two dedicated pins, VCAP_1 and VCAP_2 available in all packages. Specific pins must be connected either to VSS or VDD to activate or deactivate the voltage regulator. These pins depend on the package. 104/1709 RM0385 Rev 7 RM0385 Power controller (PWR) When activated by software, the voltage regulator is always enabled after Reset. It works in three different modes depending on the application modes (Run, Stop, or Standby mode). • In Run mode, the main regulator supplies full power to the 1.2 V domain (core, memories and digital peripherals). In this mode, the regulator output voltage (around 1.2 V) can be scaled by software to different voltage values (scale 1, scale 2, and scale 3 can be configured through VOS[1:0] bits of the PWR_CR1 register). The scale can be modified only when the PLL is OFF and the HSI or HSE clock source is selected as system clock source. The new value programmed is active only when the PLL is ON. When the PLL is OFF, the voltage scale 3 is automatically selected. The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency. After exit from Stop mode, the voltage scale 3 is automatically selected.(see Section 4.4.1: PWR power control register (PWR_CR1). 2 operating modes are available: • – Normal mode: The CPU and core logic operate at maximum frequency at a given voltage scaling (scale 1, scale 2 or scale 3) – Over-drive mode: This mode allows the CPU and the core logic to operate at a higher frequency than the normal mode for the voltage scaling scale 1 and scale 2. In Stop mode: the main regulator or low-power regulator supplies a low-power voltage to the 1.2V domain, thus preserving the content of registers and internal SRAM. The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured by software as follows: – – • Note: Normal mode: the 1.2 V domain is preserved in nominal leakage mode. It is the default mode when the main regulator (MR) or the low-power regulator (LPR) is enabled. Under-drive mode: the 1.2 V domain is preserved in reduced leakage mode. This mode is only available with the main regulator or the low-power regulator mode (see Table 11). In Standby mode: the regulator is powered down. The content of the registers and SRAM are lost except for the Standby circuitry and the backup domain. Over-drive and under-drive mode are not available when the regulator is bypassed. For more details, refer to the voltage regulator section in the datasheets. Table 11. Voltage regulator configuration mode versus device operating mode(1) Voltage regulator configuration Run mode Sleep mode Stop mode Standby mode Normal mode MR MR MR or LPR - MR MR - - Under-drive mode - - MR or LPR - Power-down mode - - - Yes Over-drive mode(2) 1. ‘-’ means that the corresponding configuration is not available. 2. The over-drive mode is not available when VDD = 1.8 to 2.1 V. RM0385 Rev 7 105/1709 131 Power controller (PWR) RM0385 Entering Over-drive mode It is recommended to enter Over-drive mode when the application is not running critical tasks and when the system clock source is either HSI or HSE. To optimize the configuration time, enable the Over-drive mode during the PLL lock phase. To enter Over-drive mode, follow the sequence below: Note: 1. Select HSI or HSE as system clock. 2. Configure RCC_PLLCFGR register and set PLLON bit of RCC_CR register. 3. Set ODEN bit of PWR_CR1 register to enable the Over-drive mode and wait for the ODRDY flag to be set in the PWR_CSR1 register. 4. Set the ODSW bit in the PWR_CR1 register to switch the voltage regulator from Normal mode to Over-drive mode. The System will be stalled during the switch but the PLL clock system will be still running during locking phase. 5. Wait for the ODSWRDY flag in the PWR_CSR1 to be set. 6. Select the required Flash latency as well as AHB and APB prescalers. 7. Wait for PLL lock. 8. Switch the system clock to the PLL. 9. Enable the peripherals that are not generated by the System PLL (I2S clock, LCD-TFT clock, SAI1 clock, USB_48MHz clock....). The PLLI2S and PLLSAI can be configured at the same time as the system PLL. During the Over-drive switch activation, no peripheral clocks should be enabled. The peripheral clocks must be enabled once the Over-drive mode is activated. Entering Stop mode disables the Over-drive mode, as well as the PLL. The application software has to configure again the Over-drive mode and the PLL after exiting from Stop mode. Exiting from Over-drive mode It is recommended to exit from Over-drive mode when the application is not running critical tasks and when the system clock source is either HSI or HSE.There are two sequences that allow exiting from over-drive mode: • By resetting simultaneously the ODEN and ODSW bits bit in the PWR_CR1 register (sequence 1) • By resetting first the ODSW bit to switch the voltage regulator to Normal mode and then resetting the ODEN bit to disable the Over-drive mode (sequence 2). Example of sequence 1: 106/1709 1. Select HSI or HSE as system clock source. 2. Disable the peripheral clocks that are not generated by the System PLL (I2S clock, LCD-TFT clock, SAI1 clock, USB_48MHz clock,....) 3. Reset simultaneously the ODEN and the ODSW bits in the PWR_CR1 register to switch back the voltage regulator to Normal mode and disable the Over-drive mode. 4. Wait for the ODWRDY flag of PWR_CSR1 to be reset. RM0385 Rev 7 RM0385 Power controller (PWR) Example of sequence 2: 1. Select HSI or HSE as system clock source. 2. Disable the peripheral clocks that are not generated by the System PLL (I2S clock, LCD-TFT clock, SAI1 clock, USB_48MHz clock,....). 3. Reset the ODSW bit in the PWR_CR1 register to switch back the voltage regulator to Normal mode. The system clock is stalled during voltage switching. 4. Wait for the ODWRDY flag of PWR_CSR1 to be reset. 5. Reset the ODEN bit in the PWR_CR1 register to disable the Over-drive mode. Note: During step 3, the ODEN bit remains set and the Over-drive mode is still enabled but not active (ODSW bit is reset). If the ODEN bit is reset instead, the Over-drive mode is disabled and the voltage regulator is switched back to the initial voltage. 4.2 Power supply supervisor 4.2.1 Power-on reset (POR)/power-down reset (PDR) The device has an integrated POR/PDR circuitry that allows proper operation starting from 1.8 V. The device remains in Reset mode when VDD/VDDA is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. For more details concerning the power on/power-down reset threshold, refer to the electrical characteristics of the datasheet. Figure 9. Power-on reset/power-down reset waveform VDD/VDDA PDR 40 mV hysteresis PDR Temporization tRSTTEMPO Reset MS30431V1 RM0385 Rev 7 107/1709 131 Power controller (PWR) 4.2.2 RM0385 Brownout reset (BOR) During power on, the Brownout reset (BOR) keeps the device under reset until the supply voltage reaches the specified VBOR threshold. VBOR is configured through device option bytes. By default, BOR is off. 3 programmable VBOR threshold levels can be selected: Note: • BOR Level 3 (VBOR3). Brownout threshold level 3. • BOR Level 2 (VBOR2). Brownout threshold level 2. • BOR Level 1 (VBOR1). Brownout threshold level 1. For full details about BOR characteristics, refer to the "Electrical characteristics" section in the device datasheet. When the supply voltage (VDD) drops below the selected VBOR threshold, a device reset is generated. The BOR can be disabled by programming the device option bytes. In this case, the power-on and power-down is then monitored by the POR/ PDR (see Section 4.2.1: Poweron reset (POR)/power-down reset (PDR)). The BOR threshold hysteresis is ~100 mV (between the rising and the falling edge of the supply voltage). Figure 10. BOR thresholds VDD/VDDA BOR threshold 100 mV hysteresis Reset MS30433V1 4.2.3 Programmable voltage detector (PVD) The user can use the PVD to monitor the VDD power supply by comparing it to a threshold selected by the PLS[2:0] bits in the PWR power control register (PWR_CR1). The PVD is enabled by setting the PVDE bit. A PVDO flag is available, in the PWR power control/status register (PWR_CSR1), to indicate if VDD is higher or lower than the PVD threshold. This event is internally connected 108/1709 RM0385 Rev 7 RM0385 Power controller (PWR) to the EXTI line16 and can generate an interrupt if enabled through the EXTI registers. The PVD output interrupt can be generated when VDD drops below the PVD threshold and/or when VDD rises above the PVD threshold depending on EXTI line16 rising/falling edge configuration. As an example the service routine could perform emergency shutdown tasks. Figure 11. PVD thresholds VDD PVD threshold 100 mV hysteresis PVD output MS30432V2 4.3 Low-power modes By default, the microcontroller is in Run mode after a system or a power-on reset. In Run mode the CPU is clocked by HCLK and the program code is executed. Several low-power modes are available to save power when the CPU does not need to be kept running, for example when waiting for an external event. It is up to the user to select the mode that gives the best compromise between low-power consumption, short startup time and available wakeup sources. The devices feature three low-power modes: • Sleep mode (Cortex®-M7 core stopped, peripherals kept running) • Stop mode (all clocks are stopped) • Standby mode (1.2 V domain powered off) In addition, the power consumption in Run mode can be reduce by one of the following means: • Slowing down the system clocks • Gating the clocks to the APBx and AHBx peripherals when they are unused. Entering low-power mode Low-power modes are entered by the MCU by executing the WFI (Wait For Interrupt), or WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit in the Cortex®-M7 System Control register is set on Return from ISR. RM0385 Rev 7 109/1709 131 Power controller (PWR) RM0385 Entering Low-power mode through WFI or WFE will be executed only if no interrupt is pending or no event is pending. Exiting low-power mode The MCU exits from Sleep and Stop modes low-power mode depending on the way the lowpower mode was entered: • If the WFI instruction or Return from ISR was used to enter the low-power mode, any peripheral interrupt acknowledged by the NVIC can wake up the device. • If the WFE instruction is used to enter the low-power mode, the MCU exits the lowpower mode as soon as an event occurs. The wakeup event can be generated either by: – NVIC IRQ interrupt: When SEVONPEND = 0 in the Cortex®-M7 System Control register: by enabling an interrupt in the peripheral control register and in the NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. Only NVIC interrupts with sufficient priority will wakeup and interrupt the MCU. When SEVONPEND = 1 in the Cortex®-M7 System Control register: by enabling an interrupt in the peripheral control register and optionally in the NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and when enabled the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. All NVIC interrupts will wakeup the MCU, even the disabled ones.Only enabled NVIC interrupts with sufficient priority will wakeup and interrupt the MCU. – Event This is done by configuring a EXTI line in event mode. When the CPU resumes from WFE, it is not necessary to clear the EXTI peripheral interrupt pending bit or the NVIC IRQ channel pending bit as the pending bits corresponding to the event line is not set. It may be necessary to clear the interrupt flag in the peripheral. The MCU exits from Standby low-power mode through an external reset (NRST pin), an IWDG reset, a rising edge on one of the enabled WKUPx pins or a RTC event occurs (see Figure 284: RTC block diagram). After waking up from Standby mode, program execution restarts in the same way as after a Reset (boot pin sampling, option bytes loading, reset vector is fetched, etc.). Only enabled NVIC interrupts with sufficient priority will wakeup and interrupt the MCU. Table 12. Low-power mode summary Mode name Entry Wakeup Sleep (Sleep now or Sleep-onexit) WFI Any interrupt WFE Wakeup event 110/1709 Effect on 1.2 V domain clocks Effect on VDD domain clocks Voltage regulator CPU CLK OFF no effect on other clocks or analog clock sources None ON RM0385 Rev 7 RM0385 Power controller (PWR) Table 12. Low-power mode summary (continued) Mode name Any EXTI line (configured in the EXTI registers, internal and external lines) WKUP pin rising or falling edge, RTC alarm (Alarm A PDDS bit + or Alarm B), RTC Wakeup SLEEPDEEP bit event, RTC tamper events, + WFI or WFE RTC time stamp event, external reset in NRST pin, IWDG reset HSI and HSE oscillators OFF All 1.2 V domain clocks OFF Voltage regulator Main regulator or Low-power regulator (depends on PWR power control register (PWR_CR1)) OFF Table 13. Features over all modes (1) Standby CPU Y - - - - - - Flash access Y Y - - - - - DTCM RAM Y Y Y - - - - ITCM RAM Y Y Y - - - - SRAM1 Y Y Y - - - - SRAM2 Y Y Y - - - - FMC O O - - - - - QUADSPI O O - - - - - Backup Registers Y Y Y - Y - Y Backup RAM Y Y Y - Y - Y Brown-out reset (BOR) Y Y Y Y Y Y - Programmable Voltage Detector (PVD) O O O O - - - High Speed Internal (HSI) O O (2) - - - - High Speed External (HSE) O O - - - - - Low Speed Internal (LSI) O O O - O - - Low Speed External (LSE) O O O - O - O RTC O O O O O O O RM0385 Rev 7 VBAT - Peripheral Wakeup - Wakeup Stop Sleep Standby SLEEPDEEP bit + WFI or WFE Wakeup Run Stop Entry Effect on VDD domain clocks Effect on 1.2 V domain clocks 111/1709 131 Power controller (PWR) RM0385 Table 13. Features over all modes (continued)(1) Number of RTC tamper pins 3 3 3 3 3 3 2 CRC calculation unit O O - - - - - GPIOs Y Y Y Y - 6 pins 2 tamper DMA O O - - - - - Chrom-Art Accelerator (DMA2D) O O - - - - - LCD-TFT O O - - - - - DCMI O O - - - - - USARTx (x=1..8) O O - - - - - I2Cx (x=1,2,3,4) O O - - - - - SPIx (x=1..6) O O - - - - - SAIx (x=1,2) O O - - - - - SPDIFRX O O - - - - - ADCx (x=1,2,3) O O - - - - - DACx (x=1,2) O O - - - - - Temperature sensor O O - - - - - Timers (TIMx) O O - - - - - Low-power timer 1 (LPTIM1) O O O O - - - Independent watchdog (IWDG) O O O O O O - Window watchdog (WWDG) O O - - - - - Systick timer O O - - - - - Random number generator (RNG) O O - - - - - Cryptographic processor (CRYP) O O - - - - - Hash processor (HASH) O O - - - - - SDMMC O O - - - - - CANx ( x=1,2) O O - - - - - USB OTG FS O O - O - - - USB OTG HS O O - O - - - Ethernet O O - O - - - HDMI-CEC O O - - - - - RM0385 Rev 7 VBAT Wakeup - Wakeup Sleep - Peripheral 112/1709 Standby Run Stop RM0385 Power controller (PWR) 1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available. Wakeup highlighted in gray. 2. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore. 4.3.1 Debug mode By default, the debug connection is lost when the devices enters in Stop or Standby mode while the debug features are used. This is due to the fact that the Cortex®-M7 core is no longer clocked. However, by setting some configuration bits in the DBGMCU_CR register, the software can be debugged even when using the low-power modes extensively. For more details, refer to Section 40.16.1: Debug support for low-power modes. 4.3.2 Run mode Slowing down system clocks In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK1, PCLK2) can be reduced by programming the prescaler registers. These prescalers can also be used to slow down peripherals before entering Sleep mode. For more details refer to Section 5.3.3: RCC clock configuration register (RCC_CFGR). Peripheral clock gating In Run mode, the HCLKx and PCLKx for individual peripherals and memories can be stopped at any time to reduce power consumption. To further reduce power consumption in Sleep mode the peripheral clocks can be disabled prior to executing the WFI or WFE instructions. Peripheral clock gating is controlled by the AHB1 peripheral clock enable register (RCC_AHB1ENR), AHB2 peripheral clock enable register (RCC_AHB2ENR), AHB3 peripheral clock enable register (RCC_AHB3ENR) (see Section 5.3.10: RCC AHB1 peripheral clock register (RCC_AHB1ENR), Section 5.3.11: RCC AHB2 peripheral clock enable register (RCC_AHB2ENR), and Section 5.3.12: RCC AHB3 peripheral clock enable register (RCC_AHB3ENR). Disabling the peripherals clocks in Sleep mode can be performed automatically by resetting the corresponding bit in RCC_AHBxLPENR and RCC_APBxLPENR registers. 4.3.3 Low-power mode Entering low-power mode Low-power modes are entered by the MCU executing the WFI (Wait For Interrupt), or WFE (Wait For Event) instructions, or when the SLEEPONEXIT bit in the Cortex®-M7 System Control register is set on Return from ISR. RM0385 Rev 7 113/1709 131 Power controller (PWR) RM0385 Exiting low-power mode From Sleep and Stop modes the MCU exits low-power mode depending on the way the mode was entered: • If the WFI instruction or Return from ISR was used to enter the low-power mode, any peripheral interrupt acknowledged by the NVIC can wake up the device • If the WFE instruction was used to enter the low-power mode, the MCU exits the mode as soon as an event occurs. The wakeup event can by generated either by: – NVIC IRQ interrupt - When SEVEONPEND=0 in the Cortex®-M7 System Control register. By enabling an interrupt in the peripheral control register and in the NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. Only NVIC interrupts with sufficient priority will wakeup and interrupt the MCU. - When SEVEONPEND=1 in the Cortex®-M7 System Control register. By enabling an interrupt in the peripheral control register and optionally in the NVIC. When the MCU resumes from WFE, the peripheral interrupt pending bit and (when enabled) the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. All NVIC interrupts will wakeup the MCU, even the disabled ones. Only enabled NVIC interrupts with sufficient priority will wakeup and interrupt the MCU. - Event Configuring a EXTI line in event mode. When the CPU resumes from WFE, it is not necessary to clear the EXTI peripheral interrupt pending bit or the NVIC IRQ channel pending bit as the pending bits corresponding to the event line is not set. It may be necessary to clear the interrupt flag in the peripheral. From Standby mode the MCU exits Low-power mode through an external reset (NRST pin), an IWDG reset, a rising edge on one of the enabled WKUPx pins or a RTC event (see Figure 284: RTC block diagram). 4.3.4 Sleep mode I/O states in Sleep mode In Sleep mode, all I/O pins keep the same state as in Run mode. Entering Sleep mode The Sleep mode is entered by executing the WFI (Wait For Interrupt) or WFE (Wait for Event) instructions. Two options are available to select the Sleep mode entry mechanism, depending on the SLEEPONEXIT bit in the Cortex®-M7 System Control register: • Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon as WFI or WFE instruction is executed. • Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as it exits the lowest priority ISR. Refer to Table 14 and Table 15 for details on how to enter Sleep mode. 114/1709 RM0385 Rev 7 RM0385 Power controller (PWR) Exiting Sleep mode If the WFI instruction is used to enter Sleep mode, any peripheral interrupt acknowledged by the nested vectored interrupt controller (NVIC) can wake up the device from Sleep mode. If the WFE instruction is used to enter Sleep mode, the MCU exits Sleep mode as soon as an event occurs. The wakeup event can be generated either by: • Enabling an interrupt in the peripheral control register but not in the NVIC, and enabling the SEVONPEND bit in the Cortex®-M7 System Control register. When the MCU resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. • Or configuring an external or internal EXTI line in event mode. When the CPU resumes from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC IRQ channel pending bit as the pending bit corresponding to the event line is not set. This mode offers the lowest wakeup time as no time is wasted in interrupt entry/exit. Refer to Table 14 and Table 15 for more details on how to exit Sleep mode. Table 14. Sleep-now entry and exit Sleep-now mode Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – SLEEPDEEP = 0, and – No interrupt (for WFI) or event (for WFE) is pending. Refer to the Cortex®-M7 System Control register. Mode entry On Return from ISR while: – SLEEPDEEP = 0 and – SLEEPONEXIT = 1, – No interrupt is pending. Refer to the Cortex®-M7 System Control register. Mode exit If WFI or Return from ISR was used for entry: Interrupt: Refer to Table 43: STM32F75xxx and STM32F74xxx vector table If WFE was used for entry and SEVONPEND = 0 Wakeup event: Refer to Section 11.3: Wakeup event management If WFE was used for entry and SEVONPEND = 1 Interrupt even when disabled in NVIC: refer to Table 43: STM32F75xxx and STM32F74xxx vector table and Wakeup event (see Section 11.3: Wakeup event management). Wakeup latency None RM0385 Rev 7 115/1709 131 Power controller (PWR) RM0385 Table 15. Sleep-on-exit entry and exit Sleep-on-exit Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – SLEEPDEEP = 0, and – No interrupt (for WFI) or event (for WFE) is pending. Refer to the Cortex®-M7 System Control register. 4.3.5 Mode entry On Return from ISR while: – SLEEPDEEP = 0, and – SLEEPONEXIT = 1, and – No interrupt is pending. Refer to the Cortex®-M7 System Control register. Mode exit Interrupt: refer to Table 43: STM32F75xxx and STM32F74xxx vector table Wakeup latency None Stop mode The Stop mode is based on the Cortex®-M7 deepsleep mode combined with peripheral clock gating. The voltage regulator can be configured either in normal or low-power mode. In Stop mode, all clocks in the 1.2 V domain are stopped, the PLLs, the HSI and the HSE RC oscillators are disabled. Internal SRAM and register contents are preserved. In Stop mode, the power consumption can be further reduced by using additional settings in the PWR_CR1 register. However this will induce an additional startup delay when waking up from Stop mode (see Table 16). Table 16. Stop operating modes UDEN[1:0] bits MRUDS bit LPUDS bit STOP MR (Main Regulator) - 0 - 0 0 HSI RC startup time STOP MR- FPD - 0 - 0 1 HSI RC startup time + Flash wakeup time from powerdown mode STOP LP - 0 0 1 0 HSI RC startup time + regulator wakeup time from LP mode 1 HSI RC startup time + Flash wakeup time from powerdown mode + regulator wakeup time from LP mode Voltage Regulator Mode Normal mode STOP LP-FPD 116/1709 - - 0 RM0385 Rev 7 LPDS FPDS bit bit 1 Wakeup latency RM0385 Power controller (PWR) Table 16. Stop operating modes (continued) Voltage Regulator Mode STOP UMRFPD UDEN[1:0] bits 3 MRUDS bit 1 LPUDS bit - LPDS FPDS bit bit 0 - HSI RC startup time + Flash wakeup time from powerdown mode + Main regulator wakeup time from under-drive mode + Core logic to nominal mode - HSI RC startup time + Flash wakeup time from powerdown mode + regulator wakeup time from LP under-drive mode + Core logic to nominal mode Underdrive Mode STOP ULP-FPD 3 - 1 1 Wakeup latency I/O states in Stop mode In stop mode, all I/Os pins keep the same state as in the run mode Entering Stop mode The Stop mode is entered according to Entering low-power mode, when the SLEEPDEEP bit in Cortex®-M7 System Control register is set. Refer to Table 17 for details on how to enter the Stop mode. When the microcontroller enters in Stop mode, the voltage scale 3 is automatically selected. To further reduce power consumption in Stop mode, the internal voltage regulator can be put in low-power or low voltage mode. This is configured by the LPDS, MRUDS, LPUDS and UDEN bits of the PWR power control register (PWR_CR1). If Flash memory programming is ongoing, the Stop mode entry is delayed until the memory access is finished. If an access to the APB domain is ongoing, The Stop mode entry is delayed until the APB access is finished. If the Over-drive mode was enabled before entering Stop mode, it is automatically disabled during when the Stop mode is activated. In Stop mode, the following features can be selected by programming individual control bits: • Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by hardware option. Once started it cannot be stopped except by a Reset. See Section 27.3 in Section 27: Independent watchdog (IWDG). • Real-time clock (RTC): this is configured by the RTCEN bit in the RCC backup domain control register (RCC_BDCR) • Internal RC oscillator (LSI RC): this is configured by the LSION bit in the RCC clock control & status register (RCC_CSR). • External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the RCC backup domain control register (RCC_BDCR). RM0385 Rev 7 117/1709 131 Power controller (PWR) RM0385 The ADC or DAC can also consume power during the Stop mode, unless they are disabled before entering it. To disable them, the ADON bit in the ADC_CR2 register and the ENx bit in the DAC_CR register must both be written to 0. Note: Before entering Stop mode, it is recommended to enable the clock security system (CSS) feature to prevent external oscillator (HSE) failure from impacting the internal MCU behavior. Exiting Stop mode Refer to Table 17 for more details on how to exit Stop mode. When exiting Stop mode by issuing an interrupt or a wakeup event, the HSI RC oscillator is selected as system clock. If the Under-drive mode was enabled, it is automatically disabled after exiting Stop mode. When the voltage regulator operates in low-power mode, an additional startup delay is incurred when waking up from Stop mode. By keeping the internal regulator ON during Stop mode, the consumption is higher although the startup time is reduced. When the voltage regulator operates in Under-drive mode, an additional startup delay is induced when waking up from Stop mode. Table 17. Stop mode entry and exit (STM32F75xxx and STM32F74xxx) Stop mode Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – No interrupt (for WFI) or event (for WFE) is pending. – SLEEPDEEP bit is set in Cortex®-M7 System Control register, – PDDS bit is cleared in Power Control register (PWR_CR1), – Select the voltage regulator mode by configuring LPDS, MRUDS, LPUDS and UDEN bits in PWR_CR (see Table 16: Stop operating modes). Mode entry On Return from ISR while: – No interrupt is pending, – SLEEPDEEP bit is set in Cortex®-M7 System Control register, and – SLEEPONEXIT = 1, and – PDDS is cleared in Power Control register (PWR_CR1). Note: To enter Stop mode, all EXTI Line pending bits (in Pending register (EXTI_PR)), all peripheral interrupts pending bits, the RTC Alarm (Alarm A and Alarm B), RTC wakeup, RTC tamper, and RTC time stamp flags, must be reset. Otherwise, the Stop mode entry procedure is ignored and program execution continues. 118/1709 RM0385 Rev 7 RM0385 Power controller (PWR) Table 17. Stop mode entry and exit (STM32F75xxx and STM32F74xxx) (continued) Stop mode 4.3.6 Description Mode exit If WFI or Return from ISR was used for entry: All EXTI lines configured in Interrupt mode (the corresponding EXTI Interrupt vector must be enabled in the NVIC). The interrupt source can be external interrupts or peripherals with wakeup capability. Refer to Table 43: STM32F75xxx and STM32F74xxx vector table on page 289. If WFE was used for entry and SEVONPEND = 0: All EXTI Lines configured in event mode. Refer to Section 11.3: Wakeup event management on page 295 If WFE was used for entry and SEVONPEND = 1: – Any EXTI lines configured in Interrupt mode (even if the corresponding EXTI Interrupt vector is disabled in the NVIC). The interrupt source can be external interrupts or peripherals with wakeup capability. Refer to Table 43: STM32F75xxx and STM32F74xxx vector table on page 289. – Wakeup event: refer to Section 11.3: Wakeup event management on page 295. Wakeup latency Refer to Table 16: Stop operating modes Standby mode The Standby mode allows to achieve the lowest power consumption. It is based on the Cortex®-M7 deepsleep mode, with the voltage regulator disabled. The 1.2 V domain is consequently powered off. The PLLs, the HSI oscillator and the HSE oscillator are also switched off. SRAM and register contents are lost except for registers in the backup domain (RTC registers, RTC backup register and backup SRAM), and Standby circuitry (see Figure 5). Entering Standby mode The Standby mode is entered according to Entering low-power mode, when the SLEEPDEEP bit in the Cortex®-M7 System Control register is set. Refer to Table 18 for more details on how to enter Standby mode. In Standby mode, the following features can be selected by programming individual control bits: • Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by hardware option. Once started it cannot be stopped except by a reset. See Section 27.3 in Section 27: Independent watchdog (IWDG). • Real-time clock (RTC): this is configured by the RTCEN bit in the backup domain control register (RCC_BDCR) • Internal RC oscillator (LSI RC): this is configured by the LSION bit in the Control/status register (RCC_CSR). • External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the backup domain control register (RCC_BDCR) Exiting Standby mode The microcontroller exits Standby mode when an external Reset (NRST pin), an IWDG Reset, a rising or falling edge on WKUP pin, an RTC alarm, a tamper event, or a time stamp RM0385 Rev 7 119/1709 131 Power controller (PWR) RM0385 event is detected. All registers are reset after wakeup from Standby except for PWR power control/status register (PWR_CSR1). After waking up from Standby mode, program execution restarts in the same way as after a Reset (boot pin sampling, vector reset is fetched, etc.). The SBF status flag in the PWR power control/status register (PWR_CSR1) indicates that the MCU was in Standby mode. Refer to Table 18 for more details on how to exit Standby mode. Table 18. Standby mode entry and exit Standby mode Mode entry Description WFI (Wait for Interrupt) or WFE (Wait for Event) while: – SLEEPDEEP is set in Cortex®-M7 System Control register, – PDDS bit is set in Power Control register (PWR_CR1), – No interrupt (for WFI) or event (for WFE) is pending, – WUIF bit is cleared in Power Control and Status register (PWR_CSR1), – the RTC flag corresponding to the chosen wakeup source (RTC Alarm A, RTC Alarm B, RTC wakeup, Tamper or Timestamp flags) is cleared. – EIWUP bit is set in Power Control register (PWR_CSR1). On return from ISR while: – SLEEPDEEP bit is set in Cortex®-M7 System Control register, and – SLEEPONEXIT = 1, and – PDDS bit is set in Power Control register (PWR_CR1), and – No interrupt is pending, – WUIF bit is cleared in Power Control and Status register (PWR_CSR1), – The RTC flag corresponding to the chosen wakeup source (RTC Alarm A, RTC Alarm B, RTC wakeup, Tamper or Timestamp flags) is cleared. Mode exit WKUP pin rising or falling edge, RTC alarm (Alarm A and Alarm B), RTC wakeup, tamper event, time stamp event, external reset in NRST pin, IWDG reset. Wakeup latency Reset phase. I/O states in Standby mode In Standby mode, all I/O pins are high impedance except for: 4.3.7 • Reset pad (still available) • PC13 if configured for tamper, time stamp, RTC Alarm out, or RTC clock calibration out • WKUP pins (PA0/PA2/PC1/PC13/PI8/PI11), if enabled Programming the RTC alternate functions to wake up the device from the Stop and Standby modes The MCU can be woken up from a low-power mode by an RTC alternate function. The RTC alternate functions are the RTC alarms (Alarm A and Alarm B), RTC wakeup, RTC tamper event detection and RTC time stamp event detection. These RTC alternate functions can wake up the system from the Stop and Standby lowpower modes. 120/1709 RM0385 Rev 7 RM0385 Power controller (PWR) The system can also wake up from low-power modes without depending on an external interrupt (Auto-wakeup mode), by using the RTC alarm or the RTC wakeup events. The RTC provides a programmable time base for waking up from the Stop or Standby mode at regular intervals. For this purpose, two of the three alternate RTC clock sources can be selected by programming the RTCSEL[1:0] bits in the RCC backup domain control register (RCC_BDCR): • Low-power 32.768 kHz external crystal oscillator (LSE OSC) This clock source provides a precise time base with a very low-power consumption (additional consumption of less than 1 µA under typical conditions) • Low-power internal RC oscillator (LSI RC) This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This internal RC oscillator is designed to use minimum power. RTC alternate functions to wake up the device from the Stop mode • • • To wake up the device from the Stop mode with an RTC alarm event, it is necessary to: a) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt or Event modes) b) Enable the RTC Alarm Interrupt in the RTC_CR register c) Configure the RTC to generate the RTC alarm To wake up the device from the Stop mode with an RTC tamper or time stamp event, it is necessary to: a) Configure the EXTI Line 21 to be sensitive to rising edges (Interrupt or Event modes) b) Enable the RTC time stamp Interrupt in the RTC_CR register or the RTC tamper interrupt in the RTC_TAFCR register c) Configure the RTC to detect the tamper or time stamp event To wake up the device from the Stop mode with an RTC wakeup event, it is necessary to: a) Configure the EXTI Line 22 to be sensitive to rising edges (Interrupt or Event modes) b) Enable the RTC wakeup interrupt in the RTC_CR register c) Configure the RTC to generate the RTC Wakeup event RM0385 Rev 7 121/1709 131 Power controller (PWR) RM0385 RTC alternate functions to wake up the device from the Standby mode • • • To wake up the device from the Standby mode with an RTC alarm event, it is necessary to: a) Enable the RTC alarm interrupt in the RTC_CR register b) Configure the RTC to generate the RTC alarm c) Enable the RTC internal wakeup event from standby by setting the EIWUP bit in the PWR_CSR1 register To wake up the device from the Standby mode with an RTC tamper or time stamp event, it is necessary to: a) Enable the RTC time stamp interrupt in the RTC_CR register or the RTC tamper interrupt in the RTC_TAFCR register b) Configure the RTC to detect the tamper or time stamp event c) Enable the RTC internal wakeup event from standby by setting the EIWUP bit in the PWR_CSR1 register To wake up the device from the Standby mode with an RTC wakeup event, it is necessary to: a) Enable the RTC wakeup interrupt in the RTC_CR register b) Configure the RTC to generate the RTC wakeup event c) Enable the RTC internal wakeup event from standby by setting the EIWUP bit in the PWR_CSR1 register Safe RTC alternate function wakeup flag clearing sequence To avoid bouncing on the pins onto which the RTC alternate functions are mapped, and exit correctly from the Stop and Standby modes, it is recommended to follow the sequence below before entering the Standby mode: • • • • 122/1709 When using RTC alarm to wake up the device from the low-power modes: a) Disable the RTC alarm interrupt (ALRAIE or ALRBIE bits in the RTC_CR register) b) Clear the RTC alarm (ALRAF/ALRBF) flag c) Enable the RTC alarm interrupt d) Re-enter the low-power mode When using RTC wakeup to wake up the device from the low-power modes: a) Disable the RTC Wakeup interrupt (WUTIE bit in the RTC_CR register) b) Enable the RTC Wakeup interrupt c) Re-enter the low-power mode When using RTC tamper to wake up the device from the low-power modes: a) Disable the RTC tamper interrupt (TAMPIE bit in the RTC_TAFCR register) b) Clear the Tamper (TAMP1F/TSF) flag c) Enable the RTC tamper interrupt d) Re-enter the low-power mode When using RTC time stamp to wake up the device from the low-power modes: a) Disable the RTC time stamp interrupt (TSIE bit in RTC_CR) b) Clear the RTC time stamp (TSF) flag c) Enable the RTC TimeStamp interrupt d) Re-enter the low-power mode RM0385 Rev 7 RM0385 Power controller (PWR) 4.4 Power control registers 4.4.1 PWR power control register (PWR_CR1) Address offset: 0x00 Reset value: 0x0000 C000 (reset by wakeup from Standby mode) 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 Res. 25 24 Res. Res. 23 Res. 22 Res. 21 Res. 20 Res. 19 UDEN[1:0] rw 15 14 VOS[1:0] rw rw 13 12 ADCDC1 Res. rw 11 10 9 8 MRUDS LPUDS FPDS DBP rw rw rw rw 7 6 5 PLS[2:0] rw rw rw 18 rw 17 16 ODSWE ODEN N rw rw 4 3 2 1 0 PVDE CSBF Res. PDDS LPDS rw rc_w1 rw rw Bits 31:20 Reserved, must be kept at reset value. Bits 19:18 UDEN[1:0]: Under-drive enable in stop mode These bits are set by software. They allow to achieve a lower power consumption in Stop mode but with a longer wakeup time. When set, the digital area has less leakage consumption when the device enters Stop mode. 00: Under-drive disable 01: Reserved 10: Reserved 11:Under-drive enable Bit 17 ODSWEN: Over-drive switching enabled. This bit is set by software. It is cleared automatically by hardware after exiting from Stop mode or when the ODEN bit is reset. When set, It is used to switch to Over-drive mode. To set or reset the ODSWEN bit, the HSI or HSE must be selected as system clock. The ODSWEN bit must only be set when the ODRDY flag is set to switch to Over-drive mode. 0: Over-drive switching disabled 1: Over-drive switching enabled Note: On any over-drive switch (enabled or disabled), the system clock will be stalled during the internal voltage set up. Bit 16 ODEN: Over-drive enable This bit is set by software. It is cleared automatically by hardware after exiting from Stop mode. It is used to enabled the Over-drive mode in order to reach a higher frequency. To set or reset the ODEN bit, the HSI or HSE must be selected as system clock. When the ODEN bit is set, the application must first wait for the Over-drive ready flag (ODRDY) to be set before setting the ODSWEN bit. 0: Over-drive disabled 1: Over-drive enabled RM0385 Rev 7 123/1709 131 Power controller (PWR) RM0385 Bits 15:14 VOS[1:0]: Regulator voltage scaling output selection These bits control the main internal voltage regulator output voltage to achieve a trade-off between performance and power consumption when the device does not operate at the maximum frequency (refer to the STM32F75xxx and STM32F74xxx datasheets for more details). These bits can be modified only when the PLL is OFF. The new value programmed is active only when the PLL is ON. When the PLL is OFF, the voltage scale 3 is automatically selected. 00: Reserved (Scale 3 mode selected) 01: Scale 3 mode 10: Scale 2 mode 11: Scale 1 mode (reset value) Bit 13 ADCDC1: 0: No effect. 1: Refer to AN4073 for details on how to use this bit. Note: This bit can only be set when operating at supply voltage range 2.7 to 3.6V. Bit 12 Reserved, must be kept at reset value. Bit 11 MRUDS: Main regulator in deepsleep under-drive mode This bit is set and cleared by software. 0: Main regulator ON when the device is in Stop mode 1: Main Regulator in under-drive mode and Flash memory in power-down when the device is in Stop under-drive mode. Bit 10 LPUDS: Low-power regulator in deepsleep under-drive mode This bit is set and cleared by software. 0: Low-power regulator ON if LPDS bit is set when the device is in Stop mode 1: Low-power regulator in under-drive mode if LPDS bit is set and Flash memory in powerdown when the device is in Stop under-drive mode. Bit 9 FPDS: Flash power-down in Stop mode When set, the Flash memory enters power-down mode when the device enters Stop mode. This allows to achieve a lower consumption in stop mode but a longer restart time. 0: Flash memory not in power-down when the device is in Stop mode 1: Flash memory in power-down when the device is in Stop mode Bit 8 DBP: Disable backup domain write protection In reset state, the RCC_BDCR register, the RTC registers (including the backup registers), and the BRE bit of the PWR_CSR1 register, are protected against parasitic write access. This bit must be set to enable write access to these registers. 0: Access to RTC and RTC Backup registers and backup SRAM disabled 1: Access to RTC and RTC Backup registers and backup SRAM enabled 124/1709 RM0385 Rev 7 RM0385 Power controller (PWR) Bits 7:5 PLS[2:0]: PVD level selection These bits are written by software to select the voltage threshold detected by the Power Voltage Detector 000: 2.0 V 001: 2.1 V 010: 2.3 V 011: 2.5 V 100: 2.6 V 101: 2.7 V 110: 2.8 V 111: 2.9 V Note: Refer to the electrical characteristics of the datasheet for more details. Bit 4 PVDE: Power voltage detector enable This bit is set and cleared by software. 0: PVD disabled 1: PVD enabled Bit 3 CSBF: Clear standby flag This bit is always read as 0. 0: No effect 1: Clear the SDF Standby Flag (write) Bit 2 Reserved, must be kept at reset value Bit 1 PDDS: Power-down deepsleep This bit is set and cleared by software. It works together with the LPDS bit. 0: Enter Stop mode when the CPU enters deepsleep. The regulator status depends on the LPDS bit. 1: Enter Standby mode when the CPU enters deepsleep. Bit 0 LPDS: Low-power deepsleep This bit is set and cleared by software. It works together with the PDDS bit. 0:Main voltage regulator ON during Stop mode 1: Low-power voltage regulator ON during Stop mode 4.4.2 PWR power control/status register (PWR_CSR1) Address offset: 0x04 Reset value: 0x0000 0000 (not reset by wakeup from Standby mode) Additional APB cycles are needed to read this register versus a standard APB read. 31 30 29 28 27 26 25 24 23 22 21 20 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rc_w1 rc_w1 r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. VOS RDY Res. Res. Res. Res. BRE EIWUP Res. Res. Res. Res. BRR PVDO SBF WUIF rw rw r r r r r RM0385 Rev 7 19 18 UDRDY[1:0] 17 16 ODSWRDY ODRDY 125/1709 131 Power controller (PWR) RM0385 Bits 31:20 Reserved, must be kept at reset value. Bits 19:18 UDRDY[1:0]: Under-drive ready flag These bits are set by hardware when MCU enters stop Under-drive mode and exits. When the Under-drive mode is enabled, these bits are not set as long as the MCU has not entered stop mode yet. they are cleared by programming them to 1. 00: Under-drive is disabled 01: Reserved 10: Reserved 11:Under-drive mode is activated in Stop mode. Bit 17 ODSWRDY: Over-drive mode switching ready 0: Over-drive mode is not active. 1: Over-drive mode is active on digital area on 1.2 V domain Bit 16 ODRDY: Over-drive mode ready 0: Over-drive mode not ready. 1: Over-drive mode ready Bit 14 VOSRDY: Regulator voltage scaling output selection ready bit 0: Not ready 1: Ready Bits 13:10 Reserved, must be kept at reset value. Bit 9 BRE: Backup regulator enable When set, the Backup regulator (used to maintain backup SRAM content in Standby and VBAT modes) is enabled. If BRE is reset, the backup regulator is switched off. The backup SRAM can still be used but its content will be lost in the Standby and VBAT modes. Once set, the application must wait that the Backup Regulator Ready flag (BRR) is set to indicate that the data written into the RAM will be maintained in the Standby and VBAT modes. 0: Backup regulator disabled 1: Backup regulator enabled Note: This bit is not reset when the device wakes up from Standby mode, by a system reset, or by a power reset. Bit 8 EIWUP: Enable internal wakeup This bit must be set when RTC events (Alarm A or Alarm B, RTC Tamper, RTC TimeStamp or RTC Wakeup time) are used to wake up the system from Standby mode. This bit is always read as 0. 0: Disable internal wakeup sources (RTC events) during Standby mode 1: Enable internal wakeup sources (RTC events) during Standby mode Bits 7:4 Reserved, must be kept at reset value. Bit 3 BRR: Backup regulator ready Set by hardware to indicate that the Backup Regulator is ready. 0: Backup Regulator not ready 1: Backup Regulator ready Note: This bit is not reset when the device wakes up from Standby mode or by a system reset or power reset. 126/1709 RM0385 Rev 7 RM0385 Power controller (PWR) Bit 2 PVDO: PVD output This bit is set and cleared by hardware. It is valid only if PVD is enabled by the PVDE bit. 0: VDD is higher than the PVD threshold selected with the PLS[2:0] bits. 1: VDD is lower than the PVD threshold selected with the PLS[2:0] bits. Note: The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after Standby or reset until the PVDE bit is set. Bit 1 SBF: Standby flag This bit is set by hardware and cleared only by a POR/PDR (power-on reset/power-down reset) or by setting the CSBF bit in the PWR power control register (PWR_CR1) 0: Device has not been in Standby mode 1: Device has been in Standby mode Bit 0 WUIF: Wakeup internal flag This bit is set when a wakeup is detected on the internal wakeup line in standby mode. It is cleared when all internal wakeup sources are cleared. 0: No wakeup internal event occurred 1: A wakeup event was detected from the RTC alarm (Alarm A or Alarm B), RTC Tamper event, RTC TimeStamp event or RTC Wakeup 4.4.3 PWR power control/status register 2 (PWR_CR2) Address offset: 0x08 Reset value: 0x0000 0000 (not reset by wakeup from Standby mode) 31 30 Res. Res. 15 14 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. 13 12 11 10 9 8 23 22 Res. Res. 7 6 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. 5 4 3 2 1 0 Res. Res. WUPP6 WUPP5 WUPP4 WUPP3 WUPP2 WUPP1 Res. Res. CWUPF6 CWUPF5 CWUPF4 CWUPF3 CWUPF2 CWUPF1 rw rw rw rw rw rw r r r r r r Bits 31:14 Reserved, always read as 0. Bit 13 WUPP6: Wakeup pin polarity bit for PI11 These bits define the polarity used for event detection on external wake-up pin PI11. 0: Detection on rising edge 1: Detection on falling edge Bit 12 WUPP5: Wakeup pin polarity bit for PI8 These bits define the polarity used for event detection on external wake-up pin PI8. 0: Detection on rising edge 1: Detection on falling edge Bit 11 WUPP4: Wakeup pin polarity bit for PC13 These bits define the polarity used for event detection on external wake-up pin PC13. 0: Detection on rising edge 1: Detection on falling edge Bit 10 WUPP3: Wakeup pin polarity bit for PC1 These bits define the polarity used for event detection on external wake-up pin PC1. 0: Detection on rising edge 1: Detection on falling edge RM0385 Rev 7 127/1709 131 Power controller (PWR) RM0385 Bit 9 WUPP2: Wakeup pin polarity bit for PA2 These bits define the polarity used for event detection on external wake-up pin PA2. 0: Detection on rising edge 1: Detection on falling edge Bit 8 WUPP1: Wakeup pin polarity bit for PA0 These bits define the polarity used for event detection on external wake-up pin PA0. 0: Detection on rising edge 1: Detection on falling edge Bits 7:6 Reserved, always read as 0 Bit 5 CWUPF6: Clear Wakeup Pin flag for PI11 These bits are always read as 0 0: No effect 1: Clear the WUPF Wakeup Pin flag after 2 System clock cycles. Bit 4 CWUPF5: Clear Wakeup Pin flag for PI8 These bits are always read as 0 0: No effect 1: Clear the WUPF Wakeup Pin flag after 2 System clock cycles. Bit 3 CWUPF4: Clear Wakeup Pin flag for PC13 These bits are always read as 0 0: No effect 1: Clear the WUPF Wakeup Pin flag after 2 System clock cycles. Bit 2 CWUPF3: Clear Wakeup Pin flag for PC1 These bits are always read as 0 0: No effect 1: Clear the WUPF Wakeup Pin flag after 2 System clock cycles. Bit 1 CWUPF2: Clear Wakeup Pin flag for PA2 These bits are always read as 0 0: No effect 1: Clear the WUPF Wakeup Pin flag after 2 System clock cycles. Bit 0 CWUPF1: Clear Wakeup Pin flag for PA0 These bits are always read as 0 0: No effect 1: Clear the WUPF Wakeup Pin flag after 2 System clock cycles. 128/1709 RM0385 Rev 7 RM0385 Power controller (PWR) 4.4.4 PWR power control register 2 (PWR_CSR2) Address offset: 0x0C Reset value: 0x0000 0000 (reset by wakeup from Standby mode, except wakeup flags which are reset by RESET pin) Additional APB cycles are needed to read this register versus a standard APB read. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. WUPF2 WUPF1 r r EWUP6 EWUP5 EWUP4 EWUP3 EWUP2 EWUP1 rw rw rw rw rw Res. rw Res. WUPF6 WUPF5 WUPF4 WUPF3 r r r r Bits 31:14 Reserved, always read as 0. Bit 13 EWUP6: Enable Wakeup pin for PI11 This bit is set and cleared by software. 0: An event on WKUP pin PI11 does not wake-up the device from Standby mode. 1: A rising or falling edge on WKUP pin PI11 wakes-up the system from Standby mode. Bit 12 EWUP5: Enable Wakeup pin for PI8 This bit is set and cleared by software. 0: An event on WKUP pin PI8 does not wake-up the device from Standby mode. 1: A rising or falling edge on WKUP pin PI8 wakes-up the system from Standby mode. Bit 11 EWUP4: Enable Wakeup pin for PC13 This bit is set and cleared by software. 0: An event on WKUP pin PC13 does not wake-up the device from Standby mode. 1: A rising or falling edge on WKUP pin PC13 wakes-up the system from Standby mode. Bit 10 EWUP3: Enable Wakeup pin for PC1 This bit is set and cleared by software. 0: An event on WKUP pin PC1 does not wake-up the device from Standby mode. 1: A rising or falling edge on WKUP pin PC1 wakes-up the system from Standby mode. Bit 9 EWUP2: Enable Wakeup pin for PA2 This bit is set and cleared by software. 0: An event on WKUP pin PA2 does not wake-up the device from Standby mode. 1: A rising or falling edge on WKUP pin PA2 wakes-up the system from Standby mode. Bit 8 EWUP1: Enable Wakeup pin for PA0 This bit is set and cleared by software. 0: An event on WKUP pin PA0 does not wake-up the device from Standby mode. 1: A rising or falling edge on WKUP pin PA0 wakes-up the system from Standby mode. Bits 7:6 Reserved, always read as 0 RM0385 Rev 7 129/1709 131 Power controller (PWR) RM0385 Bit 5 WUPF6: Wakeup Pin flag for PI11 This bit is set by hardware and cleared only by a Reset pin or by setting the CWUPF6 bit in the PWR power control register 2 (PWR_CR2). 0: No Wakeup event occured 1: A wakeup event is detected on WKUP PI11 Note: An additional wakeup event is detected if WKUP pin is enabled (by setting the EWUP6 bit) when WKUP pin PI11 level is already high. Bit 4 WUPF5: Wakeup Pin flag for PI8 This bit is set by hardware and cleared only by a Reset pin or by setting the CWUPF5 bit in the PWR power control register 2 (PWR_CR2). 0: No Wakeup event occured 1: A wakeup event is detected on WKUP PI8 Note: An additional wakeup event is detected if WKUP pin is enabled (by setting the EWUP5 bit) when WKUP pin PI8 level is already high. Bit 3 WUPF4: Wakeup Pin flag for PC13 This bit is set by hardware and cleared only by a Reset pin or by setting the CWUPF4 bit in the PWR power control register 2 (PWR_CR2). 0: No Wakeup event occured 1: A wakeup event is detected on WKUP PC13 Note: An additional wakeup event is detected if WKUP pin is enabled (by setting the EWUP4 bit) when WKUP pin PC13 level is already high. Bit 2 WUPF3: Wakeup Pin flag for PC1 This bit is set by hardware and cleared only by a Reset pin or by setting the CWUPF3 bit in the PWR power control register 2 (PWR_CR2). 0: No Wakeup event occured 1: A wakeup event is detected on WKUP PC1 Note: An additional wakeup event is detected if WKUP pin is enabled (by setting the EWUP3 bit) when WKUP pin PC1 level is already high. Bit 1 WUPF2: Wakeup Pin flag for PA2 This bit is set by hardware and cleared only by a Reset pin or by setting the CWUPF2 bit in the PWR power control register 2 (PWR_CR2). 0: No Wakeup event occured 1: A wakeup event is detected on WKUP PA2 Note: An additional wakeup event is detected if WKUP pin is enabled (by setting the EWUP2 bit) when WKUP pin PA2 level is already high. Bit 0 WUPF1: Wakeup Pin flag for PA0 This bit is set by hardware and cleared only by a Reset pin or by setting the CWUPF1 bit in the PWR power control register 2 (PWR_CR2). 0: No Wakeup event occured 1: A wakeup event is detected on WKUP PA0 Note: An additional wakeup event is detected if WKUP pin is enabled (by setting the EWUP1 bit) when WKUP pin PA0 level is already high. 130/1709 RM0385 Rev 7 0x00C PWR_CSR2 RM0385 Rev 7 WUPP4 WUPP3 WUPP2 WUPP1 0 0 0 0 0 EWUP4 EWUP3 EWUP2 EWUP1 0 0 0 0 0 0 CWUPF5 CWUPF4 CWUPF3 CWUPF2 CWUPF1 0 0 0 0 0 0 WUPF5 WUPF4 WUPF3 WUPF2 WUPF1 Res. LPUDS FPDS DBP 0 0 0 Res. Res. Res. Res. SBF WUIF PDDS LPDS Res. CSBF 0 PVDO 0 BRR PVDE PLS[2:0] Res. EIWUP MRUDS 0 Res. Res. ADCDC1 0 0 CWUPF6 Res. 1 0 Res. VOSRDY 1 BRE 0 WUPF6 0 Res. 1 VOS[1:0] ODEN 1 Res. UDEN[1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 Res. WUPP5 Res. 1 Res. WUPP6 Res. 0 EWUP5 Res. Reset value EWUP6 Reset value Res. 0 Res. ODRDY 0 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PWR_CR1 Res. Register ODSWEN ODSWRDY 0 Res. 1 Res. UDRDY[1:0] 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. PWR_CR2 Res. 0x008 PWR_CSR1 Res. 0x004 Res. 0x000 Res. Offset Res. 4.5 Res. RM0385 Power controller (PWR) PWR register map The following table summarizes the PWR registers. Table 19. PWR - register map and reset values 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. 131/1709 131 Reset and clock control (RCC) RM0385 5 Reset and clock control (RCC) 5.1 Reset There are three types of reset, defined as system Reset, power Reset and backup domain Reset. 5.1.1 System reset A system reset sets all registers to their reset values except the reset flags in the clock controller CSR register and the registers in the Backup domain (see Figure 12). A system reset is generated when one of the following events occurs: 1. A low level on the NRST pin (external reset) 2. Window watchdog end of count condition (WWDG reset) 3. Independent watchdog end of count condition (IWDG reset) 4. A software reset (SW reset) (see Software reset) 5. Low-power management reset (see Low-power management reset) Software reset The reset source can be identified by checking the reset flags in the RCC clock control & status register (RCC_CSR). The SYSRESETREQ bit in Cortex®-M7 Application Interrupt and Reset Control Register must be set to force a software reset on the device. Refer to the Cortex®-M7 technical reference manual for more details. Low-power management reset There are two ways of generating a low-power management reset: 1. Reset generated when entering the Standby mode: This type of reset is enabled by resetting the nRST_STDBY bit in the user option bytes. In this case, whenever a Standby mode entry sequence is successfully executed, the device is reset instead of entering the Standby mode. 2. Reset when entering the Stop mode: This type of reset is enabled by resetting the nRST_STOP bit in the user option bytes. In this case, whenever a Stop mode entry sequence is successfully executed, the device is reset instead of entering the Stop mode. 5.1.2 Power reset A power reset is generated when one of the following events occurs: 1. Power-on/power-down reset (POR/PDR reset) or brownout (BOR) reset 2. When exiting the Standby mode A power reset sets all registers to their reset values except the Backup domain (see Figure 12) These sources act on the NRST pin and it is always kept low during the delay phase. The RESET service routine vector is fixed at address 0x0000_0004 in the memory map. 132/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) The system reset signal provided to the device is output on the NRST pin. The pulse generator guarantees a minimum reset pulse duration of 20 µs for each internal reset source. In case of an external reset, the reset pulse is generated while the NRST pin is asserted low. Figure 12. Simplified diagram of the reset circuit VDD/VDDA RPU External reset System reset Filter NRST Pulse generator (min 20 μs) WWDG reset IWDG reset Power reset Software reset Low-power management reset ai16095c The Backup domain has two specific resets that affect only the Backup domain (see Figure 12). 5.1.3 Backup domain reset The backup domain reset sets all RTC registers and the RCC_BDCR register to their reset values. The BKPSRAM is not affected by this reset. The only way of resetting the BKPSRAM is through the Flash interface by requesting a protection level change from 1 to 0. A backup domain reset is generated when one of the following events occurs: 5.2 1. Software reset, triggered by setting the BDRST bit in the RCC backup domain control register (RCC_BDCR). 2. VDD or VBAT power on, if both supplies have previously been powered off. Clocks Three different clock sources can be used to drive the system clock (SYSCLK): • HSI oscillator clock • HSE oscillator clock • Main PLL (PLL) clock The devices have the two following secondary clock sources: • 32 kHz low-speed internal RC (LSI RC) which drives the independent watchdog and, optionally, the RTC used for Auto-wakeup from the Stop/Standby mode. • 32.768 kHz low-speed external crystal (LSE crystal) which optionally drives the RTC clock (RTCCLK) Each clock source can be switched on or off independently when it is not used, to optimize power consumption. RM0385 Rev 7 133/1709 198 Reset and clock control (RCC) RM0385 Figure 13. Clock tree Peripheral clock enable LSI LPTimer clock Peripheral clock enable LSE HSI SYSCLK PCLKx USART clocks Peripheral clock enable I2C clocks LSI LSI RC 32 kHz OSC32_IN OSC32_OUT MCO2 RTCSEL[1:0] LSE OSC 32.768 kHz RTCCLK PLL48CLK SYSCLK PLLI2S HSE_RTC Peripheral clock enable Clock enable 216 MHz max. HSI /8 SW HSI HSE SYSCLK 216 MHz max HSE 4-26 MHz HSE OSC HCLK to AHB bus, core, memory and DMA to Cortex System timer FCLK Cortex free-running clock AHB PRESC /1,2,..512 PLLCLK OSC_IN HDMI-CEC clock Ethernet PTP clock /488 OSC_OUT To RTC SDMMC clock Peripheral clock enable /1 to 5 16 MHz HSI RC IWDGCLK To Independent watchdog LSE /2 to 31 LSE MCO1 RTC enable LSE /1 to 5 Watchdog enable Peripheral clock enable APBx PRESC /1,2,4,8,16 APBx peripheral clocks Peripheral clock enable if (APBx presc = 1x1 else x2 APBx timer clocks /M VCO xN PLL VCO xN PLLI2S Peripheral clock enable /P PLLQ /Q PLL48CLK Peripheral clock enable SPDIF-Rx Clock /P I2SSRC /Q SAI1 clock DIV Peripheral clock enable PLLSAIP SAI2 clock /P PLLSAIQ xN I2S Clock Peripheral clock enable Ext. clock PLLI2SQ PLLSAI /Q /R PLLLSAIR DIV DIV LTDC Clock LCD-TFT clock MACTXCLK MII_RMII_SEL in SYSCFG_PMC to Ethernet MAC /2,20 Peripheral clock enable ETH_MII_RX_CLK_MII USB2.0 PHY 24 to 60 MHz Peripheral clock enable Peripheral clock enable ETH_MII_TX_CLK_MII PHY Ethernet 25 to 50 MHz Peripheral clock enable PLLI2SR /R I2S_CKIN VCO USB & RNG Clock /R Peripheral clock enable Peripheral clock enable OTG_HS_ULPI_CK MACRXCLK MACRMIICLK USBHS ULPI clock MSv35914V2 1. For full details about the internal and external clock source characteristics, refer to the Electrical characteristics section in the device datasheet. 2. When TIMPRE bit of the RCC_DKCFGR1 register is reset, if APBx prescaler is 1, then TIMxCLK = PCLKx, otherwise TIMxCLK = 2x PCLKx. 3. When TIMPRE bit in the RCC_DCKCFGR1 register is set, if APBx prescaler is 1,2 or 4, then TIMxCLK = HCLK, otherwise TIMxCLK = 4x PCLKx. 134/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) The clock controller provides a high degree of flexibility to the application in the choice of the external crystal or the oscillator to run the core and peripherals at the highest frequency All peripheral clocks are derived from their bus clock (HCLK,PLCK1, PCLK2) except for: • • • • The 48MHz clock, used for USB OTG FS, SDMMC and RNG. This clock is derived from one of the following sources: – main PLL VCO (PLLQ Clock) – PLLSAI VCO (PLLSAI clock) The U(S)ARTs clocks which are derived from one of the following sources: – System clock (SYSCLK) – HSI clock – LSE clock – APB1 or APB2 clock (PCLK1 or PCLK2 depending on which APB is mapped the U(S)ART) The I2Cs clocks which are derived from one of the following sources: – System clock (SYSCLK) – HSI clock – APB1 clock (PCLK1) I2S clock To achieve high-quality audio performance, the I2S clock can be derived either from a specific PLL (PLLI2S) or from an external clock mapped on the I2S_CKIN pin. For more information about I2S clock frequency and precision, refer to Section 32.7.5: Clock generator. • • The SAI1 and SAI2 clocks which are derived from one of the following sources: – PLLSAI VCO (PLLSAIQ) – PLLI2S VCO ( PLLI2SQ) – External clock mapped on the I2S_CKIN pin. LTDC clock The LTDC clock is generated from a specific PLL (PLLSAI). • The low-power timer (LPTIM1) clock which is derived from one of the following sources: – LSI clock – LSE clock – HSI clock – APB1 clock (PCLK1) – External clock mapped on LPTIM1_IN1 • The USB OTG HS (60 MHz) clock which is provided from the external PHY • The Ethernet MAC clocks (TX, RX and RMII) which are provided from the external PHY. For further information on the Ethernet configuration, refer to Section 38.4.4: MII/RMII selection in the Ethernet peripheral description. When the Ethernet is used, the AHB clock frequency must be at least 25 MHz. • SPDIFRX clock: which is generated from PLLI2SP VCO. • The HDMI-CEC clock which is derived from one of the following sources: – LSE clock – HSI clock divided by 488 RM0385 Rev 7 135/1709 198 Reset and clock control (RCC) • RM0385 The RTC clock which is derived from one of the following sources: – LSE clock – LSI clock – HSE clock divided by 32 • The IWDG clock which is always the LSI clock. • The timer clock frequencies are automatically set by hardware. There are two cases depending on the value of TIMPRE bit in RCC_CFGR register: – If TIMPRE bit in RCC_DKCFGR1 register is reset: If the APB prescaler is configured to a division factor of 1, the timer clock frequencies (TIMxCLK) are set to PCLKx. Otherwise, the timer clock frequencies are twice the frequency of the APB domain to which the timers are connected: TIMxCLK = 2xPCLKx. – If TIMPRE bit in RCC_DKCFGR1 register is set: If the APB prescaler is configured to a division factor of 1, 2 or 4, the timer clock frequencies (TIMxCLK) are set to HCLK. Otherwise, the timer clock frequencies is four times the frequency of the APB domain to which the timers are connected: TIMxCLK = 4xPCLKx. The RCC feeds the external clock of the Cortex System Timer (SysTick) with the AHB clock (HCLK) divided by 8. The SysTick can work either with this clock or with the Cortex clock (HCLK), configurable in the SysTick control and status register. FCLK acts as Cortex®-M7 free-running clock. For more details, refer to the Cortex®-M7 technical reference manual. 5.2.1 HSE clock The high speed external clock signal (HSE) can be generated from two possible clock sources: • HSE external crystal/ceramic resonator • HSE external user clock The resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. The loading capacitance values must be adjusted according to the selected oscillator. 136/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Figure 14. HSE/ LSE clock sources - Hardware configuration OSC_OUT External clock (HI-Z) External clock source MSv42094V1 OSC_IN OSC_OUT Crystal/ceramic resonators CL1 Load capacitors CL2 MSv42081V1 External source (HSE bypass) In this mode, an external clock source must be provided. This mode is selected by setting the HSEBYP and HSEON bits in the RCC clock control register (RCC_CR). The external clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC_IN pin while the OSC_OUT pin should be left HI-Z. See Figure 14. External crystal/ceramic resonator (HSE crystal) The HSE has the advantage of producing a very accurate rate on the main clock. The associated hardware configuration is shown in Figure 14. Refer to the electrical characteristics section of the datasheet for more details. The HSERDY flag in the RCC clock control register (RCC_CR) indicates if the high-speed external oscillator is stable or not. At startup, the clock is not released until this bit is set by hardware. An interrupt can be generated if enabled in the RCC clock interrupt register (RCC_CIR). The HSE Crystal can be switched on and off using the HSEON bit in the RCC clock control register (RCC_CR). 5.2.2 HSI clock The HSI clock signal is generated from an internal 16 MHz RC oscillator and can be used directly as a system clock, or used as PLL input. The HSI RC oscillator has the advantage of providing a clock source at low cost (no external components). It also has a faster startup time than the HSE crystal oscillator however, even RM0385 Rev 7 137/1709 198 Reset and clock control (RCC) RM0385 with calibration the frequency is less accurate than an external crystal oscillator or ceramic resonator. Calibration RC oscillator frequencies can vary from one chip to another due to manufacturing process variations, this is why each device is factory calibrated by ST for 1% accuracy at TA= 25 °C. After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the RCC clock control register (RCC_CR). If the application is subject to voltage or temperature variations this may affect the RC oscillator speed. The HSI frequency can be trimmed in the application using the HSITRIM[4:0] bits in the RCC clock control register (RCC_CR). The HSIRDY flag in the RCC clock control register (RCC_CR) indicates if the HSI RC is stable or not. At startup, the HSI RC output clock is not released until this bit is set by hardware. The HSI RC can be switched on and off using the HSION bit in the RCC clock control register (RCC_CR). The HSI signal can also be used as a backup source (Auxiliary clock) if the HSE crystal oscillator fails. Refer to Section 5.2.7: Clock security system (CSS) on page 139. 5.2.3 PLL The devices feature three PLLs: • A main PLL (PLL) clocked by the HSE or HSI oscillator and featuring two different output clocks: – The first output is used to generate the high speed system clock (up to 216 MHz) – The second output is used to generate 48MHz clock for the USB OTG FS, SDMMC and RNG. • PLLI2S is used to generate an accurate clock to achieve high-quality audio performance on the I2S, SAIs and SPDIFRX interfaces. • PLLSAI is used to generate clock for SAIs intefraces, LCD-TFT clock and the 48MHz (PLLSAI48CLK) that can be seleced for the USB OTG FS, SDMMC and RNG. Since the main-PLL configuration parameters cannot be changed once PLL is enabled, it is recommended to configure PLL before enabling it (selection of the HSI or HSE oscillator as PLL clock source, and configuration of division factors M, N, P, and Q). The PLLI2S and PLLSAI use the same input clock as PLL (PLLM[5:0] and PLLSRC bits are common to both PLLs). However, the PLLI2S and PLLSAI have dedicated enable/disable and division factors (N and R) configuration bits. Once the PLLI2S and PLLSAI are enabled, the configuration parameters cannot be changed. The three PLLs are disabled by hardware when entering Stop and Standby modes, or when an HSE failure occurs when HSE or PLL (clocked by HSE) are used as system clock. RCC PLL configuration register (RCC_PLLCFGR),RCC clock configuration register (RCC_CFGR), and RCC dedicated clocks configuration register (RCC_DKCFGR1) can be used to configure PLL, PLLI2S, and PLLSAI. 138/1709 RM0385 Rev 7 RM0385 5.2.4 Reset and clock control (RCC) LSE clock The LSE clock is generated from a 32.768 kHz low-speed external crystal or ceramic resonator. It has the advantage providing a low-power but highly accurate clock source to the real-time clock peripheral (RTC) for clock/calendar or other timing functions. The LSE oscillator is switched on and off using the LSEON bit in RCC backup domain control register (RCC_BDCR). The LSERDY flag in the RCC backup domain control register (RCC_BDCR) indicates if the LSE crystal is stable or not. At startup, the LSE crystal output clock signal is not released until this bit is set by hardware. An interrupt can be generated if enabled in the RCC clock interrupt register (RCC_CIR). External source (LSE bypass) In this mode, an external clock source must be provided. It must have a frequency up to 1 MHz. This mode is selected by setting the LSEBYP and LSEON bits in the RCC backup domain control register (RCC_BDCR). The external clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC32_IN pin while the OSC32_OUT pin should be left HI-Z. See Figure 14. 5.2.5 LSI clock The LSI RC acts as an low-power clock source that can be kept running in Stop and Standby mode for the independent watchdog (IWDG) and Auto-wakeup unit (AWU). The clock frequency is around 32 kHz. For more details, refer to the electrical characteristics section of the datasheets. The LSI RC can be switched on and off using the LSION bit in the RCC clock control & status register (RCC_CSR). The LSIRDY flag in the RCC clock control & status register (RCC_CSR) indicates if the lowspeed internal oscillator is stable or not. At startup, the clock is not released until this bit is set by hardware. An interrupt can be generated if enabled in the RCC clock interrupt register (RCC_CIR). 5.2.6 System clock (SYSCLK) selection After a system reset, the HSI oscillator is selected as the system clock. When a clock source is used directly or through PLL as the system clock, it is not possible to stop it. A switch from one clock source to another occurs only if the target clock source is ready (clock stable after startup delay or PLL locked). If a clock source that is not yet ready is selected, the switch occurs when the clock source is ready. Status bits in the RCC clock control register (RCC_CR) indicate which clock(s) is (are) ready and which clock is currently used as the system clock. 5.2.7 Clock security system (CSS) The clock security system can be activated by software. In this case, the clock detector is enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped. If a failure is detected on the HSE clock, this oscillator is automatically disabled, a clock failure event is sent to the break inputs of advanced-control timers TIM1 and TIM8, and an interrupt is generated to inform the software about the failure (clock security system RM0385 Rev 7 139/1709 198 Reset and clock control (RCC) RM0385 interrupt CSSI), allowing the MCU to perform rescue operations. The CSSI is linked to the Cortex®-M7 NMI (non-maskable interrupt) exception vector. Note: When the CSS is enabled, if the HSE clock happens to fail, the CSS generates an interrupt, which causes the automatic generation of an NMI. The NMI is executed indefinitely unless the CSS interrupt pending bit is cleared. As a consequence, the application has to clear the CSS interrupt in the NMI ISR by setting the CSSC bit in the Clock interrupt register (RCC_CIR). If the HSE oscillator is used directly or indirectly as the system clock (indirectly meaning that it is directly used as PLL input clock, and that PLL clock is the system clock) and a failure is detected, then the system clock switches to the HSI oscillator and the HSE oscillator is disabled. If the HSE oscillator clock was the clock source of PLL used as the system clock when the failure occurred, PLL is also disabled. In this case, if the PLLI2S or PLLSAI was enabled, it is also disabled when the HSE fails. 5.2.8 RTC/AWU clock Once the RTCCLK clock source has been selected, the only possible way of modifying the selection is to reset the power domain. The RTCCLK clock source can be either the HSE 1 MHz (HSE divided by a programmable prescaler), the LSE or the LSI clock. This is selected by programming the RTCSEL[1:0] bits in the RCC backup domain control register (RCC_BDCR) and the RTCPRE[4:0] bits in RCC clock configuration register (RCC_CFGR). This selection cannot be modified without resetting the Backup domain. If the LSE is selected as the RTC clock, the RTC will work normally if the backup or the system supply disappears. If the LSI is selected as the AWU clock, the AWU state is not guaranteed if the system supply disappears. If the HSE oscillator divided by a value between 2 and 31 is used as the RTC clock, the RTC state is not guaranteed if the backup or the system supply disappears. The LSE clock is in the Backup domain, whereas the HSE and LSI clocks are not. As a consequence: • • If LSE is selected as the RTC clock: – The RTC continues to work even if the VDD supply is switched off, provided the VBAT supply is maintained. – The RTC remains clocked and functional under system reset. If LSI is selected as the Auto-wakeup unit (AWU) clock: – • If the HSE clock is used as the RTC clock: – Note: 140/1709 The AWU state is not guaranteed if the VDD supply is powered off. Refer to Section 5.2.5: LSI clock on page 139 for more details on LSI calibration. The RTC state is not guaranteed if the VDD supply is powered off or if the internal voltage regulator is powered off (removing power from the 1.2 V domain) and also when entering in Stop mode To read the RTC calendar register when the APB1 clock frequency is less than seven times the RTC clock frequency (fAPB1 < 7xfRTCLCK), the software must read the calendar time and date registers twice. The data are correct if the second read access to RTC_TR gives the same result than the first one. Otherwise a third read access must be performed. RM0385 Rev 7 RM0385 5.2.9 Reset and clock control (RCC) Watchdog clock If the independent watchdog (IWDG) is started by either hardware option or software access, the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator temporization, the clock is provided to the IWDG. 5.2.10 Clock-out capability Two microcontroller clock output (MCO) pins are available: • MCO1 The user can output four different clock sources onto the MCO1 pin (PA8) using the configurable prescaler (from 1 to 5): – HSI clock – LSE clock – HSE clock – PLL clock The desired clock source is selected using the MCO1PRE[2:0] and MCO1[1:0] bits in the RCC clock configuration register (RCC_CFGR). • MCO2 The user can output four different clock sources onto the MCO2 pin (PC9) using the configurable prescaler (from 1 to 5): – HSE clock – PLL clock – System clock (SYSCLK) – PLLI2S clock The desired clock source is selected using the MCO2PRE[2:0] and MCO2 bits in the RCC clock configuration register (RCC_CFGR). For the different MCO pins, the corresponding GPIO port has to be programmed in alternate function mode. 5.2.11 Internal/external clock measurement using TIM5/TIM11 It is possible to indirectly measure the frequencies of all on-board clock source generators by means of the input capture of TIM5 channel4 and TIM11 channel1 as shown in Figure 15 and Figure 15. Internal/external clock measurement using TIM5 channel4 TIM5 has an input multiplexer which allows choosing whether the input capture is triggered by the I/O or by an internal clock. This selection is performed through the TI4_RMP [1:0] bits in the TIM5_OR register. The primary purpose of having the LSE connected to the channel4 input capture is to be able to precisely measure the HSI (this requires to have the HSI used as the system clock source). The number of HSI clock counts between consecutive edges of the LSE signal provides a measurement of the internal clock period. Taking advantage of the high precision of LSE crystals (typically a few tens of ppm) we can determine the internal clock frequency with the same resolution, and trim the source to compensate for manufacturing-process and/or temperature- and voltage-related frequency deviations. RM0385 Rev 7 141/1709 198 Reset and clock control (RCC) RM0385 The HSI oscillator has dedicated, user-accessible calibration bits for this purpose. The basic concept consists in providing a relative measurement (e.g. HSI/LSE ratio): the precision is therefore tightly linked to the ratio between the two clock sources. The greater the ratio, the better the measurement. It is also possible to measure the LSI frequency: this is useful for applications that do not have a crystal. The ultra-low-power LSI oscillator has a large manufacturing process deviation: by measuring it versus the HSI clock source, it is possible to determine its frequency with the precision of the HSI. The measured value can be used to have more accurate RTC time base timeouts (when LSI is used as the RTC clock source) and/or an IWDG timeout with an acceptable accuracy. Use the following procedure to measure the LSI frequency: 1. Enable the TIM5 timer and configure channel4 in Input capture mode. 2. This bit is set the TI4_RMP bits in the TIM5_OR register to 0x01 to connect the LSI clock internally to TIM5 channel4 input capture for calibration purposes. 3. Measure the LSI clock frequency using the TIM5 capture/compare 4 event or interrupt. 4. Use the measured LSI frequency to update the prescaler of the RTC depending on the desired time base and/or to compute the IWDG timeout. Figure 15. Frequency measurement with TIM5 in Input capture mode TIM5 TI4_RMP[1:0] GPIO RTC_WakeUp_IT LSE LSI TI4 ai17741V2 Internal/external clock measurement using TIM11 channel1 TIM11 has an input multiplexer which allows choosing whether the input capture is triggered by the I/O or by an internal clock. This selection is performed through TI1_RMP [1:0] bits in the TIM11_OR register. The HSE_RTC clock (HSE divided by a programmable prescaler) is connected to channel 1 input capture to have a rough indication of the external crystal frequency. This requires that the HSI is the system clock source. This can be useful for instance to ensure compliance with the IEC 60730/IEC 61335 standards which require to be able to determine harmonic or subharmonic frequencies (–50/+100% deviations). 142/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Figure 16. Frequency measurement with TIM11 in Input capture mode TIM11 TI1_RMP[1:0] GPIO TI1 HSE_RTC(1 MHz) MS40454V1 5.2.12 Peripheral clock enable register (RCC_AHBxENR, RCC_APBxENRy) Each peripheral clock can be enabled by the xxxxEN bit of the RCC_AHBxENR or RCC_APBxENRy registers. When the peripheral clock is not active, the peripheral registers read or write accesses are not supported.The peripheral enable bit has a synchronization mechanism to create a glitch free clock for the peripheral. After the enable bit is set, there is a 2 peripheral clock cycles delay before the clock being active. Caution: Just after enabling the clock for a peripheral, software must wait for a 2 peripheral clock cycles delay before accessing the peripheral registers. 5.3 RCC registers Refer to Section 1.1: List of abbreviations for registers for a list of abbreviations used in register descriptions. 5.3.1 RCC clock control register (RCC_CR) Address offset: 0x00 Reset value: 0x0000 XX83 where X is undefined. Access: no wait state, word, half-word and byte access 31 30 Res. Res. 15 14 29 28 27 26 25 PLLSAI PLLSAI PLLI2S PLLI2S PLLRD RDY ON RDY ON Y 24 23 22 21 20 19 18 17 16 PLLON Res. Res. Res. Res. CSS ON HSE BYP HSE RDY HSE ON rw rw r rw 3 2 1 0 Res. HSI RDY HSION r rw r rw r rw r rw 13 12 11 10 9 8 7 6 HSICAL[7:0] r r r r r 5 4 HSITRIM[4:0] r r r rw RM0385 Rev 7 rw rw rw rw 143/1709 198 Reset and clock control (RCC) RM0385 Bits 31:28 Reserved, must be kept at reset value. Bit 29 PLLSAIRDY: PLLSAI clock ready flag Set by hardware to indicate that the PLLSAI is locked. 0: PLLSAI unlocked 1: PLLSAI locked Bit 28 PLLSAION: PLLSAI enable Set and cleared by software to enable PLLSAI. Cleared by hardware when entering Stop or Standby mode. 0: PLLSAI OFF 1: PLLSAI ON Bit 27 PLLI2SRDY: PLLI2S clock ready flag Set by hardware to indicate that the PLLI2S is locked. 0: PLLI2S unlocked 1: PLLI2S locked Bit 26 PLLI2SON: PLLI2S enable Set and cleared by software to enable PLLI2S. Cleared by hardware when entering Stop or Standby mode. 0: PLLI2S OFF 1: PLLI2S ON Bit 25 PLLRDY: Main PLL (PLL) clock ready flag Set by hardware to indicate that PLL is locked. 0: PLL unlocked 1: PLL locked Bit 24 PLLON: Main PLL (PLL) enable Set and cleared by software to enable PLL. Cleared by hardware when entering Stop or Standby mode. This bit cannot be reset if PLL clock is used as the system clock. 0: PLL OFF 1: PLL ON Bits 23:20 Reserved, must be kept at reset value. Bit 19 CSSON: Clock security system enable Set and cleared by software to enable the clock security system. When CSSON is set, the clock detector is enabled by hardware when the HSE oscillator is ready, and disabled by hardware if an oscillator failure is detected. 0: Clock security system OFF (Clock detector OFF) 1: Clock security system ON (Clock detector ON if HSE oscillator is stable, OFF if not) Bit 18 HSEBYP: HSE clock bypass Set and cleared by software to bypass the oscillator with an external clock. The external clock must be enabled with the HSEON bit, to be used by the device. The HSEBYP bit can be written only if the HSE oscillator is disabled. 0: HSE oscillator not bypassed 1: HSE oscillator bypassed with an external clock Bit 17 HSERDY: HSE clock ready flag Set by hardware to indicate that the HSE oscillator is stable. After the HSEON bit is cleared, HSERDY goes low after 6 HSE oscillator clock cycles. 0: HSE oscillator not ready 1: HSE oscillator ready 144/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bit 16 HSEON: HSE clock enable Set and cleared by software. Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock. 0: HSE oscillator OFF 1: HSE oscillator ON Bits 15:8 HSICAL[7:0]: Internal high-speed clock calibration These bits are initialized automatically at startup. Bits 7:3 HSITRIM[4:0]: Internal high-speed clock trimming These bits provide an additional user-programmable trimming value that is added to the HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature that influence the frequency of the internal HSI RC. Bit 2 Reserved, must be kept at reset value. Bit 1 HSIRDY: Internal high-speed clock ready flag Set by hardware to indicate that the HSI oscillator is stable. After the HSION bit is cleared, HSIRDY goes low after 6 HSI clock cycles. 0: HSI oscillator not ready 1: HSI oscillator ready Bit 0 HSION: Internal high-speed clock enable Set and cleared by software. Set by hardware to force the HSI oscillator ON when leaving the Stop or Standby mode or in case of a failure of the HSE oscillator used directly or indirectly as the system clock. This bit cannot be cleared if the HSI is used directly or indirectly as the system clock. 0: HSI oscillator OFF 1: HSI oscillator ON RM0385 Rev 7 145/1709 198 Reset and clock control (RCC) 5.3.2 RM0385 RCC PLL configuration register (RCC_PLLCFGR) Address offset: 0x04 Reset value: 0x2400 3010 Access: no wait state, word, half-word and byte access. This register is used to configure the PLL clock outputs according to the formulas: 31 Res. 30 Res. • f(VCO clock) = f(PLL clock input) × (PLLN / PLLM) • f(PLL general clock output) = f(VCO clock) / PLLP • f(USB OTG FS, SDMMC, RNG clock output) = f(VCO clock) / PLLQ 29 Res. 28 27 Res. 14 13 12 25 24 PLLQ[3:0] rw 15 26 11 Res. rw rw rw 10 9 8 23 22 21 20 19 18 Res. PLLSR C Res. Res. Res. Res. rw 7 6 5 4 PLLN[8:0] rw rw rw rw rw 3 2 17 16 PLLP[1:0] rw rw 1 0 rw rw PLLM[5:0] rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:24 PLLQ[3:0]: Main PLL (PLL) division factor for USB OTG FS, SDMMC and random number generator clocks Set and cleared by software to control the frequency of USB OTG FS clock, the random number generator clock and the SDMMC clock. These bits should be written only if PLL is disabled. Caution: The USB OTG FS requires a 48 MHz clock to work correctly. The SDMMC and the random number generator need a frequency lower than or equal to 48 MHz to work correctly. USB OTG FS clock frequency = VCO frequency / PLLQ with 2 ≤ PLLQ ≤ 15 0000: PLLQ = 0, wrong configuration 0001: PLLQ = 1, wrong configuration 0010: PLLQ = 2 0011: PLLQ = 3 0100: PLLQ = 4 ... 1111: PLLQ = 15 Bit 23 Reserved, must be kept at reset value. Bit 22 PLLSRC: Main PLL(PLL) and audio PLL (PLLI2S) entry clock source Set and cleared by software to select PLL and PLLI2S clock source. This bit can be written only when PLL and PLLI2S are disabled. 0: HSI clock selected as PLL and PLLI2S clock entry 1: HSE oscillator clock selected as PLL and PLLI2S clock entry Bits 21:18 Reserved, must be kept at reset value. 146/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bits 17:16 PLLP[1:0]: Main PLL (PLL) division factor for main system clock Set and cleared by software to control the frequency of the general PLL output clock. These bits can be written only if PLL is disabled. Caution: The software has to set these bits correctly not to exceed 216 MHz on this domain. PLL output clock frequency = VCO frequency / PLLP with PLLP = 2, 4, 6, or 8 00: PLLP = 2 01: PLLP = 4 10: PLLP = 6 11: PLLP = 8 Bits 14:6 PLLN[8:0]: Main PLL (PLL) multiplication factor for VCO Set and cleared by software to control the multiplication factor of the VCO. These bits can be written only when PLL is disabled. Only half-word and word accesses are allowed to write these bits. Caution: The software has to set these bits correctly to ensure that the VCO output frequency is between 100 and 432 MHz. VCO output frequency = VCO input frequency × PLLN with 50 ≤ PLLN ≤ 432 000000000: PLLN = 0, wrong configuration 000000001: PLLN = 1, wrong configuration ... 000110010: PLLN = 50 ... 001100011: PLLN = 99 001100100: PLLN = 100 ... 110110000: PLLN = 432 110110001: PLLN = 433, wrong configuration ... 111111111: PLLN = 511, wrong configuration Note: Between 50 and 99, multiplication factors are possible for VCO input frequency higher than 1 MHz. However care must be taken to fulfill the minimum VCO output frequency as specified above. Bits 5:0 PLLM[5:0]: Division factor for the main PLLs (PLL, PLLI2S and PLLSAI) input clock Set and cleared by software to divide the PLL and PLLI2S input clock before the VCO. These bits can be written only when the PLL and PLLI2S are disabled. Caution: The software has to set these bits correctly to ensure that the VCO input frequency ranges from 1 to 2 MHz. It is recommended to select a frequency of 2 MHz to limit PLL jitter. VCO input frequency = PLL input clock frequency / PLLM with 2 ≤ PLLM ≤ 63 000000: PLLM = 0, wrong configuration 000001: PLLM = 1, wrong configuration 000010: PLLM = 2 000011: PLLM = 3 000100: PLLM = 4 ... 111110: PLLM = 62 111111: PLLM = 63 RM0385 Rev 7 147/1709 198 Reset and clock control (RCC) 5.3.3 RM0385 RCC clock configuration register (RCC_CFGR) Address offset: 0x08 Reset value: 0x0000 0000 Access: 0 ≤ wait state ≤ 2, word, half-word and byte access 1 or 2 wait states inserted only if the access occurs during a clock source switch. 31 30 29 MCO2 14 26 rw 25 24 23 22 I2SSC R MCO1 PRE[2:0] rw rw rw rw rw rw rw rw 12 11 10 9 8 7 6 Res. Res. rw rw rw rw PPRE1[2:0] rw rw 21 20 19 MCO1 13 PPRE2[2:0] rw 27 MCO2 PRE[2:0] rw 15 28 18 17 16 RTCPRE[4:0] 5 rw rw rw rw rw 4 3 2 1 0 SWS1 SWS0 SW1 SW0 r r rw rw HPRE[3:0] rw rw Bits 31:30 MCO2[1:0]: Microcontroller clock output 2 Set and cleared by software. Clock source selection may generate glitches on MCO2. It is highly recommended to configure these bits only after reset before enabling the external oscillators and the PLLs. 00: System clock (SYSCLK) selected 01: PLLI2S clock selected 10: HSE oscillator clock selected 11: PLL clock selected Bits 27:29 MCO2PRE: MCO2 prescaler Set and cleared by software to configure the prescaler of the MCO2. Modification of this prescaler may generate glitches on MCO2. It is highly recommended to change this prescaler only after reset before enabling the external oscillators and the PLLs. 0xx: no division 100: division by 2 101: division by 3 110: division by 4 111: division by 5 Bits 24:26 MCO1PRE: MCO1 prescaler Set and cleared by software to configure the prescaler of the MCO1. Modification of this prescaler may generate glitches on MCO1. It is highly recommended to change this prescaler only after reset before enabling the external oscillators and the PLL. 0xx: no division 100: division by 2 101: division by 3 110: division by 4 111: division by 5 Bit 23 I2SSRC: I2S clock selection Set and cleared by software. This bit allows to select the I2S clock source between the PLLI2S clock and the external clock. It is highly recommended to change this bit only after reset and before enabling the I2S module. 0: PLLI2S clock used as I2S clock source 1: External clock mapped on the I2S_CKIN pin used as I2S clock source 148/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bits 22:21 MCO1: Microcontroller clock output 1 Set and cleared by software. Clock source selection may generate glitches on MCO1. It is highly recommended to configure these bits only after reset before enabling the external oscillators and PLL. 00: HSI clock selected 01: LSE oscillator selected 10: HSE oscillator clock selected 11: PLL clock selected Bits 20:16 RTCPRE: HSE division factor for RTC clock Set and cleared by software to divide the HSE clock input clock to generate a 1 MHz clock for RTC. Caution: The software has to set these bits correctly to ensure that the clock supplied to the RTC is 1 MHz. These bits must be configured if needed before selecting the RTC clock source. 00000: no clock 00001: no clock 00010: HSE/2 00011: HSE/3 00100: HSE/4 ... 11110: HSE/30 11111: HSE/31 Bits 15:13 PPRE2: APB high-speed prescaler (APB2) Set and cleared by software to control APB high-speed clock division factor. Caution: The software has to set these bits correctly not to exceed 108 MHz on this domain. The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after PPRE2 write. 0xx: AHB clock not divided 100: AHB clock divided by 2 101: AHB clock divided by 4 110: AHB clock divided by 8 111: AHB clock divided by 16 Bits 12:10 PPRE1: APB Low-speed prescaler (APB1) Set and cleared by software to control APB low-speed clock division factor. Caution: The software has to set these bits correctly not to exceed 54 MHz on this domain. The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after PPRE1 write. 0xx: AHB clock not divided 100: AHB clock divided by 2 101: AHB clock divided by 4 110: AHB clock divided by 8 111: AHB clock divided by 16 Bits 9:8 Reserved, must be kept at reset value. RM0385 Rev 7 149/1709 198 Reset and clock control (RCC) RM0385 Bits 7:4 HPRE: AHB prescaler Set and cleared by software to control AHB clock division factor. Caution: The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after HPRE write. Caution: The AHB clock frequency must be at least 25 MHz when the Ethernet is used. 0xxx: system clock not divided 1000: system clock divided by 2 1001: system clock divided by 4 1010: system clock divided by 8 1011: system clock divided by 16 1100: system clock divided by 64 1101: system clock divided by 128 1110: system clock divided by 256 1111: system clock divided by 512 Bits 3:2 SWS: System clock switch status Set and cleared by hardware to indicate which clock source is used as the system clock. 00: HSI oscillator used as the system clock 01: HSE oscillator used as the system clock 10: PLL used as the system clock 11: not applicable Bits 1:0 SW: System clock switch Set and cleared by software to select the system clock source. Set by hardware to force the HSI selection when leaving the Stop or Standby mode or in case of failure of the HSE oscillator used directly or indirectly as the system clock. 00: HSI oscillator selected as system clock 01: HSE oscillator selected as system clock 10: PLL selected as system clock 11: not allowed 5.3.4 RCC clock interrupt register (RCC_CIR) Address offset: 0x0C Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 Res. 25 Res. 24 Res. 23 w 15 14 13 Res. PLLSAI RDYIE PLLI2S RDYIE rw rw 150/1709 12 11 10 PLL HSE HSI RDYIE RDYIE RDYIE rw rw rw 22 21 PLLSAI PLLI2S CSSC RDYC RDYC 9 8 LSE RDYIE LSI RDYIE 7 CSSF rw rw r RM0385 Rev 7 w w 6 5 PLLSAI PLLI2S RDYF RDYF r r 20 19 18 17 16 PLL RDYC HSE RDYC HSI RDYC LSE RDYC LSI RDYC w w w w w 4 3 2 1 0 PLL RDYF HSE RDYF HSI RDYF LSE RDYF LSI RDYF r r r r r RM0385 Reset and clock control (RCC) Bits 31:24 Reserved, must be kept at reset value. Bit 23 CSSC: Clock security system interrupt clear This bit is set by software to clear the CSSF flag. 0: No effect 1: Clear CSSF flag Bit 22 PLLSAIRDYC: PLLSAI Ready Interrupt Clear This bit is set by software to clear PLLSAIRDYF flag. It is reset by hardware when the PLLSAIRDYF is cleared. 0: PLLSAIRDYF not cleared 1: PLLSAIRDYF cleared Bit 21 PLLI2SRDYC: PLLI2S ready interrupt clear This bit is set by software to clear the PLLI2SRDYF flag. 0: No effect 1: PLLI2SRDYF cleared Bit 20 PLLRDYC: Main PLL(PLL) ready interrupt clear This bit is set by software to clear the PLLRDYF flag. 0: No effect 1: PLLRDYF cleared Bit 19 HSERDYC: HSE ready interrupt clear This bit is set by software to clear the HSERDYF flag. 0: No effect 1: HSERDYF cleared Bit 18 HSIRDYC: HSI ready interrupt clear This bit is set software to clear the HSIRDYF flag. 0: No effect 1: HSIRDYF cleared Bit 17 LSERDYC: LSE ready interrupt clear This bit is set by software to clear the LSERDYF flag. 0: No effect 1: LSERDYF cleared Bit 16 LSIRDYC: LSI ready interrupt clear This bit is set by software to clear the LSIRDYF flag. 0: No effect 1: LSIRDYF cleared Bit 15 Reserved, must be kept at reset value. Bit 14 PLLSAIRDYIE: PLLSAI Ready Interrupt Enable This bit is set and reset by software to enable/disable interrupt caused by PLLSAI lock. 0: PLLSAI lock interrupt disabled 1: PLLSAI lock interrupt enabled Bit 13 PLLI2SRDYIE: PLLI2S ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by PLLI2S lock. 0: PLLI2S lock interrupt disabled 1: PLLI2S lock interrupt enabled RM0385 Rev 7 151/1709 198 Reset and clock control (RCC) RM0385 Bit 12 PLLRDYIE: Main PLL (PLL) ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by PLL lock. 0: PLL lock interrupt disabled 1: PLL lock interrupt enabled Bit 11 HSERDYIE: HSE ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by the HSE oscillator stabilization. 0: HSE ready interrupt disabled 1: HSE ready interrupt enabled Bit 10 HSIRDYIE: HSI ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by the HSI oscillator stabilization. 0: HSI ready interrupt disabled 1: HSI ready interrupt enabled Bit 9 LSERDYIE: LSE ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by the LSE oscillator stabilization. 0: LSE ready interrupt disabled 1: LSE ready interrupt enabled Bit 8 LSIRDYIE: LSI ready interrupt enable This bit is set and cleared by software to enable/disable interrupt caused by LSI oscillator stabilization. 0: LSI ready interrupt disabled 1: LSI ready interrupt enabled Bit 7 CSSF: Clock security system interrupt flag This bit is set by hardware when a failure is detected in the HSE oscillator. It is cleared by software by setting the CSSC bit. 0: No clock security interrupt caused by HSE clock failure 1: Clock security interrupt caused by HSE clock failure Bit 6 PLLSAIRDYF: PLLSAI Ready Interrupt flag This bit is set by hardware when the PLLSAI is locked and PLLSAIRDYDIE is set. It is cleared by software by setting the PLLSAIRDYC bit. 0: No clock ready interrupt caused by PLLSAI lock 1: Clock ready interrupt caused by PLLSAI lock Bit 5 PLLI2SRDYF: PLLI2S ready interrupt flag This bit is set by hardware when the PLLI2S is locked and PLLI2SRDYDIE is set. It is cleared by software by setting the PLLRI2SDYC bit. 0: No clock ready interrupt caused by PLLI2S lock 1: Clock ready interrupt caused by PLLI2S lock Bit 4 PLLRDYF: Main PLL (PLL) ready interrupt flag This bit is set by hardware when PLL is locked and PLLRDYDIE is set. It is cleared by software setting the PLLRDYC bit. 0: No clock ready interrupt caused by PLL lock 1: Clock ready interrupt caused by PLL lock 152/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bit 3 HSERDYF: HSE ready interrupt flag This bit is set by hardware when External High Speed clock becomes stable and HSERDYDIE is set. It is cleared by software by setting the HSERDYC bit. 0: No clock ready interrupt caused by the HSE oscillator 1: Clock ready interrupt caused by the HSE oscillator Bit 2 HSIRDYF: HSI ready interrupt flag This bit is set by hardware when the Internal High Speed clock becomes stable and HSIRDYDIE is set. It is cleared by software by setting the HSIRDYC bit. 0: No clock ready interrupt caused by the HSI oscillator 1: Clock ready interrupt caused by the HSI oscillator Bit 1 LSERDYF: LSE ready interrupt flag This bit is set by hardware when the External low-speed clock becomes stable and LSERDYDIE is set. It is cleared by software by setting the LSERDYC bit. 0: No clock ready interrupt caused by the LSE oscillator 1: Clock ready interrupt caused by the LSE oscillator Bit 0 LSIRDYF: LSI ready interrupt flag This bit is set by hardware when the internal low-speed clock becomes stable and LSIRDYDIE is set. It is cleared by software by setting the LSIRDYC bit. 0: No clock ready interrupt caused by the LSI oscillator 1: Clock ready interrupt caused by the LSI oscillator 5.3.5 RCC AHB1 peripheral reset register (RCC_AHB1RSTR) Address offset: 0x10 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 Res. 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. OTGH S RST Res. Res. Res. ETHMAC RST Res. DMA2D RST DMA2 RST DMA1 RST Res. Res. Res. Res. Res. rw rw rw 7 6 5 4 3 2 1 rw 15 Res. 14 Res. rw 13 12 Res. CRCR ST rw 11 10 9 8 Res. GPIOK RST GPIOJ RST GPIOI RST rw rw rw 0 GPIOH GPIOGG GPIOF GPIOE GPIOD GPIOC GPIOB RST RST RST RST RST RST RST rw rw rw rw rw rw rw GPIOA RST rw Bits 31:30 Reserved, must be kept at reset value. Bit 29 OTGHSRST: USB OTG HS module reset This bit is set and cleared by software. 0: does not reset the USB OTG HS module 1: resets the USB OTG HS module Bits 28:26 Reserved, must be kept at reset value. RM0385 Rev 7 153/1709 198 Reset and clock control (RCC) RM0385 Bit 25 ETHMACRST: Ethernet MAC reset This bit is set and cleared by software. 0: does not reset Ethernet MAC 1: resets Ethernet MAC Bit 24 Reserved, must be kept at reset value. Bit 23 DMA2DRST: DMA2D reset This bit is set and reset by software. 0: does not reset DMA2D 1: resets DMA2D Bit 22 DMA2RST: DMA2 reset This bit is set and cleared by software. 0: does not reset DMA2 1: resets DMA2 Bit 21 DMA1RST: DMA2 reset This bit is set and cleared by software. 0: does not reset DMA2 1: resets DMA2 Bits 20:13 Reserved, must be kept at reset value. Bit 12 CRCRST: CRC reset This bit is set and cleared by software. 0: does not reset CRC 1: resets CRC Bit 11 Reserved, must be kept at reset value. Bit 10 GPIOKRST: IO port K reset This bit is set and cleared by software. 0: does not reset IO port K 1: resets IO port K Bit 9 GPIOJRST: IO port J reset This bit is set and cleared by software. 0: does not reset IO port J 1: resets IO port J Bit 8 GPIOIRST: IO port I reset This bit is set and cleared by software. 0: does not reset IO port I 1: resets IO port I Bit 7 GPIOHRST: IO port H reset This bit is set and cleared by software. 0: does not reset IO port H 1: resets IO port H Bit 6 GPIOGRST: IO port G reset This bit is set and cleared by software. 0: does not reset IO port G 1: resets IO port G 154/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bit 5 GPIOFRST: IO port F reset This bit is set and cleared by software. 0: does not reset IO port F 1: resets IO port F Bit 4 GPIOERST: IO port E reset This bit is set and cleared by software. 0: does not reset IO port E 1: resets IO port E Bit 3 GPIODRST: IO port D reset This bit is set and cleared by software. 0: does not reset IO port D 1: resets IO port D Bit 2 GPIOCRST: IO port C reset This bit is set and cleared by software. 0: does not reset IO port C 1: resets IO port C Bit 1 GPIOBRST: IO port B reset This bit is set and cleared by software. 0: does not reset IO port B 1:resets IO port B Bit 0 GPIOARST: IO port A reset This bit is set and cleared by software. 0: does not reset IO port A 1: resets IO port A RM0385 Rev 7 155/1709 198 Reset and clock control (RCC) 5.3.6 RM0385 RCC AHB2 peripheral reset register (RCC_AHB2RSTR) Address offset: 0x14 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. OTGFS RST RNG RST HASH RST CRYP RST Res. DCMI RST rw rw rw rw Res. Res. Res. Res. Res. Res. Res. Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSRST: USB OTG FS module reset Set and cleared by software. 0: does not reset the USB OTG FS module 1: resets the USB OTG FS module Bit 6 RNGRST: Random number generator module reset Set and cleared by software. 0: does not reset the random number generator module 1: resets the random number generator module Bit 5 HASHRST: Hash module reset Set and cleared by software. 0: does not reset the HASH module 1: resets the HASH module Bit 4 CRYPRST: Cryptographic module reset Set and cleared by software. 0: does not reset the cryptographic module 1: resets the cryptographic module Bits 3:1 Reserved, must be kept at reset value. Bit 0 DCMIRST: Camera interface reset Set and cleared by software. 0: does not reset the Camera interface 1: resets the Camera interface 156/1709 RM0385 Rev 7 Res. Res. rw RM0385 Reset and clock control (RCC) 5.3.7 RCC AHB3 peripheral reset register (RCC_AHB3RSTR) Address offset: 0x18 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. QSPIRST FMCRST rw rw Bits 31:2 Reserved, must be kept at reset value. Bit 1 QSPIRST: Quad SPI memory controller reset Set and cleared by software. 0: does not reset the QUADSPI memory controller 1: resets the QUADSPI memory controller Bit 0 FMCRST: Flexible memory controller module reset Set and cleared by software. 0: does not reset the FMC module 1: resets the FMC module 5.3.8 RCC APB1 peripheral reset register (RCC_APB1RSTR) Address offset: 0x20 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 UART8R UART7R PWR CAN2 DACRST CECRST ST ST RST RST rw rw rw rw 15 14 13 12 11 10 SPI3 RST SPI2 RST Res. Res. WWDG RST Res. rw rw rw 25 24 CAN1 I2C4RST RST 23 22 21 I2C3 RST I2C2 RST I2C1 RST 20 19 18 17 16 UART5 UART4 UART3 UART2 SPDIFR RST RST RST RST XRST rw rw rw rw rw rw rw rw rw 9 8 7 6 5 4 3 2 1 0 TIM13 RST TIM12 RST TIM7 RST TIM6 RST TIM5 RST TIM4 RST TIM3 RST TIM2 RST rw rw rw rw rw rw rw rw LPTIM1 TIM14 RST RST rw rw RM0385 Rev 7 157/1709 198 Reset and clock control (RCC) RM0385 Bit 31 UART8RST: UART8 reset Set and cleared by software. 0: does not reset UART8 1: resets UART8 Bit 30 UART7RST: UART7 reset Set and cleared by software. 0: does not reset UART7 1: resets UART7 Bit 29 DACRST: DAC reset Set and cleared by software. 0: does not reset the DAC interface 1: resets the DAC interface Bit 28 PWRRST: Power interface reset Set and cleared by software. 0: does not reset the power interface 1: resets the power interface Bit 27 CECRST: HDMI-CEC reset Set and cleared by software. 0: does not reset HDMI-CEC 1: resets HDMI-CEC Bit 26 CAN2RST: CAN2 reset Set and cleared by software. 0: does not reset CAN2 1: resets CAN2 Bit 25 CAN1RST: CAN1 reset Set and cleared by software. 0: does not reset CAN1 1: resets CAN1 Bit 24 I2C4RST: I2C4 reset Set and cleared by software. 0: does not reset I2C4 1: resets I2C4 Bit 23 I2C3RST: I2C3 reset Set and cleared by software. 0: does not reset I2C3 1: resets I2C3 Bit 22 I2C2RST: I2C2 reset Set and cleared by software. 0: does not reset I2C2 1: resets I2C2 Bit 21 I2C1RST: I2C1 reset Set and cleared by software. 0: does not reset I2C1 1: resets I2C1 158/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bit 20 UART5RST: UART5 reset Set and cleared by software. 0: does not reset UART5 1: resets UART5 Bit 19 UART4RST: USART4 reset Set and cleared by software. 0: does not reset UART4 1: resets UART4 Bit 18 USART3RST: USART3 reset Set and cleared by software. 0: does not reset USART3 1: resets USART3 Bit 17 USART2RST: USART2 reset Set and cleared by software. 0: does not reset USART2 1: resets USART2 Bit 16 SPDIFRXRST: SPDIFRX reset Set and cleared by software. 0: does not reset SPDIFRX 1: resets SPDIFRX Bit 15 SPI3RST: SPI3 reset Set and cleared by software. 0: does not reset SPI3 1: resets SPI3 Bit 14 SPI2RST: SPI2 reset Set and cleared by software. 0: does not reset SPI2 1: resets SPI2 Bits 13:12 Reserved, must be kept at reset value. Bit 11 WWDGRST: Window watchdog reset Set and cleared by software. 0: does not reset the window watchdog 1: resets the window watchdog Bit 10 Reserved, must be kept at reset value. Bit 9 LPTIM1RST: Low-power timer 1 reset Set and cleared by software. 0: does not reset LPTMI1 1: resets LPTMI1 Bit 8 TIM14RST: TIM14 reset Set and cleared by software. 0: does not reset TIM14 1: resets TIM14 Bit 7 TIM13RST: TIM13 reset Set and cleared by software. 0: does not reset TIM13 1: resets TIM13 RM0385 Rev 7 159/1709 198 Reset and clock control (RCC) RM0385 Bit 6 TIM12RST: TIM12 reset Set and cleared by software. 0: does not reset TIM12 1: resets TIM12 Bit 5 TIM7RST: TIM7 reset Set and cleared by software. 0: does not reset TIM7 1: resets TIM7 Bit 4 TIM6RST: TIM6 reset Set and cleared by software. 0: does not reset TIM6 1: resets TIM6 Bit 3 TIM5RST: TIM5 reset Set and cleared by software. 0: does not reset TIM5 1: resets TIM5 Bit 2 TIM4RST: TIM4 reset Set and cleared by software. 0: does not reset TIM4 1: resets TIM4 Bit 1 TIM3RST: TIM3 reset Set and cleared by software. 0: does not reset TIM3 1: resets TIM3 Bit 0 TIM2RST: TIM2 reset Set and cleared by software. 0: does not reset TIM2 1: resets TIM2 160/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) 5.3.9 RCC APB2 peripheral reset register (RCC_APB2RSTR) Address offset: 0x24 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 Res. Res. Res. Res. Res. LTDC RST 15 14 13 12 11 10 Res. SYSCFG RST SPI4 RST SPI1 RST SDMMC1 RST rw rw rw rw 25 24 23 22 21 20 Res. Res. SAI2 RST SAI1 RST SPI6 RST SPI5 RST rw rw rw rw 9 8 7 6 5 4 Res. ADC RST rw Res. Res. rw Res. USART6 USART1 RST RST rw rw 19 18 17 16 Res. TIM11 RST TIM10 RST TIM9 RST rw rw rw 2 1 0 Res. TIM8 RST TIM1 RST rw rw 3 Res. Bits 31:27 Reserved, must be kept at reset value. Bit 26 LTDCRST: LTDC reset This bit is set and reset by software. 0: does not reset LCD-TFT 1: resets LCD-TFT Bits 27:24 Reserved, must be kept at reset value. Bit 23 SAI2RST: SAI2 reset This bit is set and cleared by software. 0: does not reset SAI2 1: resets SAI2 Bit 22 SAI1RST: SAI1 reset This bit is set and reset by software. 0: does not reset SAI1 1: resets SAI1 Bit 21 SPI6RST: SPI6 reset This bit is set and cleared by software. 0: does not reset SPI6 1: resets SPI6 Bit 20 SPI5RST: SPI5 reset This bit is set and cleared by software. 0: does not reset SPI5 1: resets SPI5 Bit 19 Reserved, must be kept at reset value. Bit 18 TIM11RST: TIM11 reset This bit is set and cleared by software. 0: does not reset TIM11 1: resets TIM14 Bit 17 TIM10RST: TIM10 reset This bit is set and cleared by software. 0: does not reset TIM10 1: resets TIM10 RM0385 Rev 7 161/1709 198 Reset and clock control (RCC) RM0385 Bit 16 TIM9RST: TIM9 reset This bit is set and cleared by software. 0: does not reset TIM9 1: resets TIM9 Bit 15 Reserved, must be kept at reset value. Bit 14 SYSCFGRST: System configuration controller reset This bit is set and cleared by software. 0: does not reset the System configuration controller 1: resets the System configuration controller Bit 13 SPI4RST: SPI4 reset This bit is set and cleared by software. 0: does not reset SPI4 1: resets SPI4 Bit 12 SPI1RST: SPI1 reset This bit is set and cleared by software. 0: does not reset SPI1 1: resets SPI1 Bit 11 SDMMC1RST: SDMMC1 reset This bit is set and cleared by software. 0: does not reset the SDMMC1 module 1: resets the SDMMC1 module Bits 10:9 Reserved, must be kept at reset value. Bit 8 ADCRST: ADC interface reset (common to all ADCs) This bit is set and cleared by software. 0: does not reset the ADC interface 1: resets the ADC interface Bits 7:6 Reserved, must be kept at reset value. Bit 5 USART6RST: USART6 reset This bit is set and cleared by software. 0: does not reset USART6 1: resets USART6 Bit 4 USART1RST: USART1 reset This bit is set and cleared by software. 0: does not reset USART1 1: resets USART1 Bits 3:2 Reserved, must be kept at reset value. Bit 1 TIM8RST: TIM8 reset This bit is set and cleared by software. 0: does not reset TIM8 1: resets TIM8 Bit 0 TIM1RST: TIM1 reset This bit is set and cleared by software. 0: does not reset TIM1 1: resets TIM1 162/1709 RM0385 Rev 7 RM0385 5.3.10 Reset and clock control (RCC) RCC AHB1 peripheral clock register (RCC_AHB1ENR) Address offset: 0x30 Reset value: 0x0010 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 ETHM ETHM OTGHS OTGHS Res. ACPTP ACRX ULPIEN EN EN EN 15 Res. 26 25 24 23 22 21 20 19 18 17 16 ETHM ACTX EN ETHMA CEN Res. DMA2D EN DMA2 EN DMA1 EN DTCMRA MEN Res. BKPSR AMEN Res. Res. 1 0 rw rw rw rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 Res. CRC EN Res. GPIOK EN GPIOJ EN GPIOI EN GPIOH EN GPIOG EN GPIOF EN GPIOE EN rw rw rw rw rw rw rw Res. rw rw 3 2 GPIOD GPIOC GPIO GPIO EN EN BEN AEN rw rw rw rw Bit 31 Reserved, must be kept at reset value. Bit 30 OTGHSULPIEN: USB OTG HSULPI clock enable This bit is set and cleared by software. 0: USB OTG HS ULPI clock disabled 1: USB OTG HS ULPI clock enabled Bit 29 OTGHSEN: USB OTG HS clock enable This bit is set and cleared by software. 0: USB OTG HS clock disabled 1: USB OTG HS clock enabled Bit 28 ETHMACPTPEN: Ethernet PTP clock enable This bit is set and cleared by software. 0: Ethernet PTP clock disabled 1: Ethernet PTP clock enabled Bit 27 ETHMACRXEN: Ethernet Reception clock enable This bit is set and cleared by software. 0: Ethernet Reception clock disabled 1: Ethernet Reception clock enabled Bit 26 ETHMACTXEN: Ethernet Transmission clock enable This bit is set and cleared by software. 0: Ethernet Transmission clock disabled 1: Ethernet Transmission clock enabled Bit 25 ETHMACEN: Ethernet MAC clock enable This bit is set and cleared by software. 0: Ethernet MAC clock disabled 1: Ethernet MAC clock enabled Bit 24 Reserved, must be kept at reset value. Bit 23 DMA2DEN: DMA2D clock enable This bit is set and cleared by software. 0: DMA2D clock disabled 1: DMA2D clock enabled RM0385 Rev 7 163/1709 198 Reset and clock control (RCC) RM0385 Bit 22 DMA2EN: DMA2 clock enable This bit is set and cleared by software. 0: DMA2 clock disabled 1: DMA2 clock enabled Bit 21 DMA1EN: DMA1 clock enable This bit is set and cleared by software. 0: DMA1 clock disabled 1: DMA1 clock enabled Bit 20 DTCMRAMEN: DTCM data RAM clock enable This bit is set and cleared by software. 0: DTCM RAM clock disabled 1: DTCM RAM clock enabled Bit 19 Reserved, must be kept at reset value. Bit 18 BKPSRAMEN: Backup SRAM interface clock enable This bit is set and cleared by software. 0: Backup SRAM interface clock disabled 1: Backup SRAM interface clock enabled Bits 17:13 Reserved, must be kept at reset value. Bit 12 CRCEN: CRC clock enable This bit is set and cleared by software. 0: CRC clock disabled 1: CRC clock enabled Bit 11 Reserved, must be kept at reset value. Bit 10 GPIOKEN: IO port K clock enable This bit is set and cleared by software. 0: IO port K clock disabled 1: IO port K clock enabled Bit 9 GPIOJEN: IO port J clock enable This bit is set and cleared by software. 0: IO port J clock disabled 1: IO port J clock enabled Bit 8 GPIOIEN: IO port I clock enable This bit is set and cleared by software. 0: IO port I clock disabled 1: IO port I clock enabled Bit 7 GPIOHEN: IO port H clock enable This bit is set and cleared by software. 0: IO port H clock disabled 1: IO port H clock enabled Bit 6 GPIOGEN: IO port G clock enable This bit is set and cleared by software. 0: IO port G clock disabled 1: IO port G clock enabled 164/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bit 5 GPIOFEN: IO port F clock enable This bit is set and cleared by software. 0: IO port F clock disabled 1: IO port F clock enabled Bit 4 GPIOEEN: IO port E clock enable This bit is set and cleared by software. 0: IO port E clock disabled 1: IO port E clock enabled Bit 3 GPIODEN: IO port D clock enable This bit is set and cleared by software. 0: IO port D clock disabled 1: IO port D clock enabled Bit 2 GPIOCEN: IO port C clock enable This bit is set and cleared by software. 0: IO port C clock disabled 1: IO port C clock enabled Bit 1 GPIOBEN: IO port B clock enable This bit is set and cleared by software. 0: IO port B clock disabled 1: IO port B clock enabled Bit 0 GPIOAEN: IO port A clock enable This bit is set and cleared by software. 0: IO port A clock disabled 1: IO port A clock enabled 5.3.11 RCC AHB2 peripheral clock enable register (RCC_AHB2ENR) Address offset: 0x34 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. OTGFS EN RNG EN HASH EN CRYP EN Res. DCMI EN rw rw rw rw Res. Res. Res. Res. Res. Res. Res. Res. Res. rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSEN: USB OTG FS clock enable This bit is set and cleared by software. 0: USB OTG FS clock disabled 1: USB OTG FS clock enabled Bit 6 RNGEN: Random number generator clock enable This bit is set and cleared by software. 0: Random number generator clock disabled 1: Random number generator clock enabled RM0385 Rev 7 165/1709 198 Reset and clock control (RCC) RM0385 Bit 5 HASHEN: Hash modules clock enable This bit is set and cleared by software. 0: Hash modules clock disabled 1: Hash modules clock enabled Bit 4 CRYPEN: Cryptographic modules clock enable This bit is set and cleared by software. 0: cryptographic module clock disabled 1: cryptographic module clock enabled Bits 3:1 Reserved, must be kept at reset value. Bit 0 DCMIEN: Camera interface enable This bit is set and cleared by software. 0: Camera interface clock disabled 1: Camera interface clock enabled 5.3.12 RCC AHB3 peripheral clock enable register (RCC_AHB3ENR) Address offset: 0x38 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. QSPIEN FMCEN rw rw 17 16 Bits 31:2 Reserved, must be kept at reset value. Bit 1 QSPIEN: Quad SPI memory controller clock enable This bit is set and cleared by software. 0: QUASPI controller clock disabled 1: QUASPI controller clock enabled Bit 0 FMCEN: Flexible memory controller clock enable This bit is set and cleared by software. 0: FMC clock disabled 1: FMC clock enabled 5.3.13 RCC APB1 peripheral clock enable register (RCC_APB1ENR) Address offset: 0x40 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 UART8 UART7 EN EN rw 166/1709 rw 29 28 27 26 25 DAC EN PWR EN CEC EN CAN2 EN CAN1 EN rw rw rw rw rw 24 I2C4 EN 23 22 21 I2C3 EN I2C2 EN I2C1 EN rw rw rw RM0385 Rev 7 20 19 18 USART USART UART5 UART4 SPDIFRX 3 2 EN EN EN EN EN rw rw rw rw rw RM0385 Reset and clock control (RCC) 15 14 13 12 11 10 SPI3 EN SPI2 EN Res. Res. WWDG EN Res. rw rw rw 9 8 LPTIM1 TIM14 EN EN rw rw 7 6 5 4 3 2 1 0 TIM13 EN TIM12 EN TIM7 EN TIM6 EN TIM5 EN TIM4 EN TIM3 EN TIM2 EN rw rw rw rw rw rw rw rw Bit 31 UART8EN: UART8 clock enable This bit is set and cleared by software. 0: UART8 clock disabled 1: UART8 clock enabled Bit 30 UART7EN: UART7 clock enable This bit is set and cleared by software. 0: UART7 clock disabled 1: UART7 clock enabled Bit 29 DACEN: DAC interface clock enable This bit is set and cleared by software. 0: DAC interface clock disabled 1: DAC interface clock enable Bit 28 PWREN: Power interface clock enable This bit is set and cleared by software. 0: Power interface clock disabled 1: Power interface clock enable Bit 27 CECEN: HDMI-CEC clock enable This bit is set and cleared by software. 0: HDMI-CEC clock disabled 1: HDMI-CEC clock enabled Bit 26 CAN2EN: CAN 2 clock enable This bit is set and cleared by software. 0: CAN 2 clock disabled 1: CAN 2 clock enabled Bit 25 CAN1EN: CAN 1 clock enable This bit is set and cleared by software. 0: CAN 1 clock disabled 1: CAN 1 clock enabled Bit 24 I2C4: I2C4 clock enable This bit is set and cleared by software. 0: I2C4 clock disabled 1: I2C4 clock enabled Bit 23 I2C3EN: I2C3 clock enable This bit is set and cleared by software. 0: I2C3 clock disabled 1: I2C3 clock enabled Bit 22 I2C2EN: I2C2 clock enable This bit is set and cleared by software. 0: I2C2 clock disabled 1: I2C2 clock enabled RM0385 Rev 7 167/1709 198 Reset and clock control (RCC) RM0385 Bit 21 I2C1EN: I2C1 clock enable This bit is set and cleared by software. 0: I2C1 clock disabled 1: I2C1 clock enabled Bit 20 UART5EN: UART5 clock enable This bit is set and cleared by software. 0: UART5 clock disabled 1: UART5 clock enabled Bit 19 UART4EN: UART4 clock enable This bit is set and cleared by software. 0: UART4 clock disabled 1: UART4 clock enabled Bit 18 USART3EN: USART3 clock enable This bit is set and cleared by software. 0: USART3 clock disabled 1: USART3 clock enabled Bit 17 USART2EN: USART2 clock enable This bit is set and cleared by software. 0: USART2 clock disabled 1: USART2 clock enabled Bit 16 SPDIFRXEN: SPDIFRX clock enable This bit is set and cleared by software. 0: SPDIFRX clock disabled 1: SPDIFRX clock enable Bit 15 SPI3EN: SPI3 clock enable This bit is set and cleared by software. 0: SPI3 clock disabled 1: SPI3 clock enabled Bit 14 SPI2EN: SPI2 clock enable This bit is set and cleared by software. 0: SPI2 clock disabled 1: SPI2 clock enabled Bits 13:12 Reserved, must be kept at reset value. Bit 11 WWDGEN: Window watchdog clock enable This bit is set and cleared by software. 0: Window watchdog clock disabled 1: Window watchdog clock enabled Bit 10 Reserved, must be kept at reset value. Bit 9 LPTMI1EN: Low-power timer 1 clock enable This bit is set and cleared by software. 0: LPTIM1 clock disabled 1: LPTIM1 clock enabled Bit 8 TIM14EN: TIM14 clock enable This bit is set and cleared by software. 0: TIM14 clock disabled 1: TIM14 clock enabled 168/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bit 7 TIM13EN: TIM13 clock enable This bit is set and cleared by software. 0: TIM13 clock disabled 1: TIM13 clock enabled Bit 6 TIM12EN: TIM12 clock enable This bit is set and cleared by software. 0: TIM12 clock disabled 1: TIM12 clock enabled Bit 5 TIM7EN: TIM7 clock enable This bit is set and cleared by software. 0: TIM7 clock disabled 1: TIM7 clock enabled Bit 4 TIM6EN: TIM6 clock enable This bit is set and cleared by software. 0: TIM6 clock disabled 1: TIM6 clock enabled Bit 3 TIM5EN: TIM5 clock enable This bit is set and cleared by software. 0: TIM5 clock disabled 1: TIM5 clock enabled Bit 2 TIM4EN: TIM4 clock enable This bit is set and cleared by software. 0: TIM4 clock disabled 1: TIM4 clock enabled Bit 1 TIM3EN: TIM3 clock enable This bit is set and cleared by software. 0: TIM3 clock disabled 1: TIM3 clock enabled Bit 0 TIM2EN: TIM2 clock enable This bit is set and cleared by software. 0: TIM2 clock disabled 1: TIM2 clock enabled RM0385 Rev 7 169/1709 198 Reset and clock control (RCC) 5.3.14 RM0385 RCC APB2 peripheral clock enable register (RCC_APB2ENR) Address offset: 0x44 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 Res. Res. Res. Res. Res. LTDC EN 15 14 13 12 11 25 24 Res. Res. 10 9 8 ADC3 EN ADC2 EN ADC1 EN rw rw rw rw Res. SYSCFG SPI4 EN EN rw rw SPI1 SDMMC1 EN EN rw rw 23 21 20 SAI2EN SAI1EN SPI6EN SPI5EN rw rw rw rw 7 6 5 4 Res. Bits 31:27 Reserved, must be kept at reset value. Bit 26 LTDCEN: LTDC clock enable This bit is set and cleared by software. 0: LTDC clock disabled 1: LTDC clock enabled Bits 27: 24 Reserved, must be kept at reset value. Bit 23 SAI2EN: SAI2 clock enable This bit is set and cleared by software. 0: SAI2 clock disabled 1: SAI2 clock enabled Bit 22 SAI1EN: SAI1 clock enable This bit is set and cleared by software. 0: SAI1 clock disabled 1: SAI1 clock enabled Bit 21 SPI6EN: SPI6 clock enable This bit is set and cleared by software. 0: SPI6 clock disabled 1: SPI6 clock enabled Bit 20 SPI5EN: SPI5 clock enable This bit is set and cleared by software. 0: SPI5 clock disabled 1: SPI5 clock enabled Bit 18 TIM11EN: TIM11 clock enable This bit is set and cleared by software. 0: TIM11 clock disabled 1: TIM11 clock enabled Bit 17 TIM10EN: TIM10 clock enable This bit is set and cleared by software. 0: TIM10 clock disabled 1: TIM10 clock enabled 170/1709 22 RM0385 Rev 7 Res. USART6 USART1 EN EN rw rw 19 18 17 16 Res. TIM11 EN TIM10 EN TIM9 EN rw rw rw 2 1 0 Res. TIM8 EN TIM1 EN rw rw 3 Res. RM0385 Reset and clock control (RCC) Bit 16 TIM9EN: TIM9 clock enable This bit is set and cleared by software. 0: TIM9 clock disabled 1: TIM9 clock enabled Bit 15 Reserved, must be kept at reset value. Bit 14 SYSCFGEN: System configuration controller clock enable This bit is set and cleared by software. 0: System configuration controller clock disabled 1: System configuration controller clock enabled Bit 13 SPI4EN: SPI4 clock enable This bit is set and cleared by software. 0: SPI4 clock disabled 1: SPI4 clock enabled Bit 12 SPI1EN: SPI1 clock enable This bit is set and cleared by software. 0: SPI1 clock disabled 1: SPI1 clock enabled Bit 11 SDMMC1EN: SDMMC1 clock enable This bit is set and cleared by software. 0: SDMMC1 module clock disabled 1: SDMMC1 module clock enabled Bit 10 ADC3EN: ADC3 clock enable This bit is set and cleared by software. 0: ADC3 clock disabled 1: ADC3 clock enabled Bit 9 ADC2EN: ADC2 clock enable This bit is set and cleared by software. 0: ADC2 clock disabled 1: ADC2 clock enabled Bit 8 ADC1EN: ADC1 clock enable This bit is set and cleared by software. 0: ADC1 clock disabled 1: ADC1 clock enabled Bits 7:6 Reserved, must be kept at reset value. Bit 5 USART6EN: USART6 clock enable This bit is set and cleared by software. 0: USART6 clock disabled 1: USART6 clock enabled Bit 4 USART1EN: USART1 clock enable This bit is set and cleared by software. 0: USART1 clock disabled 1: USART1 clock enabled RM0385 Rev 7 171/1709 198 Reset and clock control (RCC) RM0385 Bits 3:2 Reserved, must be kept at reset value. Bit 1 TIM8EN: TIM8 clock enable This bit is set and cleared by software. 0: TIM8 clock disabled 1: TIM8 clock enabled Bit 0 TIM1EN: TIM1 clock enable This bit is set and cleared by software. 0: TIM1 clock disabled 1: TIM1 clock enabled 172/1709 RM0385 Rev 7 RM0385 5.3.15 Reset and clock control (RCC) RCC AHB1 peripheral clock enable in low-power mode register (RCC_AHB1LPENR) Address offset: 0x50 Reset value: 0x7EF7 B7FFh Access: no wait state, word, half-word and byte access. 31 Res. 30 rw 15 FLITF LPEN rw 29 28 27 26 25 24 OTGHS ETHMA OTGHS ETHPTP ETHRX ETHTX C ULPI LPEN LPEN LPEN LPEN LPEN LPEN rw rw rw 11 10 9 Res. GPIOK LPEN GPIOIJ LPEN rw rw 14 13 12 Res. AXI LPEN CRC LPEN rw rw rw Res. 23 22 21 20 DMA2D LPEN DMA2 LPEN rw rw rw rw 7 6 5 4 rw 8 DMA1 DTCM LPEN LPEN 19 Res. 18 17 16 BKPS SRAM2 SRAM1 RAM LPEN LPEN LPEN 3 rw rw rw 2 1 0 GPIOI GPIOH GPIOGG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA LPEN LPEN LPEN LPEN LPEN LPEN LPEN LPEN LPEN rw rw rw rw rw rw rw rw rw Bit 31 Reserved, must be kept at reset value. Bit 30 OTGHSULPILPEN: USB OTG HS ULPI clock enable during Sleep mode This bit is set and cleared by software. 0: USB OTG HS ULPI clock disabled during Sleep mode 1: USB OTG HS ULPI clock enabled during Sleep mode Bit 29 OTGHSLPEN: USB OTG HS clock enable during Sleep mode This bit is set and cleared by software. 0: USB OTG HS clock disabled during Sleep mode 1: USB OTG HS clock enabled during Sleep mode Bit 28 ETHMACPTPLPEN: Ethernet PTP clock enable during Sleep mode This bit is set and cleared by software. 0: Ethernet PTP clock disabled during Sleep mode 1: Ethernet PTP clock enabled during Sleep mode Bit 27 ETHMACRXLPEN: Ethernet reception clock enable during Sleep mode This bit is set and cleared by software. 0: Ethernet reception clock disabled during Sleep mode 1: Ethernet reception clock enabled during Sleep mode Bit 26 ETHMACTXLPEN: Ethernet transmission clock enable during Sleep mode This bit is set and cleared by software. 0: Ethernet transmission clock disabled during sleep mode 1: Ethernet transmission clock enabled during sleep mode Bit 25 ETHMACLPEN: Ethernet MAC clock enable during Sleep mode This bit is set and cleared by software. 0: Ethernet MAC clock disabled during Sleep mode 1: Ethernet MAC clock enabled during Sleep mode Bit 24 Reserved, must be kept at reset value. Bit 23 DMA2DLPEN: DMA2D clock enable during Sleep mode This bit is set and cleared by software. 0: DMA2D clock disabled during Sleep mode 1: DMA2D clock enabled during Sleep mode RM0385 Rev 7 173/1709 198 Reset and clock control (RCC) RM0385 Bit 22 DMA2LPEN: DMA2 clock enable during Sleep mode This bit is set and cleared by software. 0: DMA2 clock disabled during Sleep mode 1: DMA2 clock enabled during Sleep mode Bit 21 DMA1LPEN: DMA1 clock enable during Sleep mode This bit is set and cleared by software. 0: DMA1 clock disabled during Sleep mode 1: DMA1 clock enabled during Sleep mode Bit 20 DTCMLPEN: DTCM RAM interface clock enable during Sleep mode This bit is set and cleared by software. 0: DTCM RAM interface clock disabled during Sleep mode 1: DTCM RAM interface clock enabled during Sleep mode Bit 19 Reserved, must be kept at reset value. Bit 18 BKPSRAMLPEN: Backup SRAM interface clock enable during Sleep mode This bit is set and cleared by software. 0: Backup SRAM interface clock disabled during Sleep mode 1: Backup SRAM interface clock enabled during Sleep mode Bit 17 SRAM2LPEN: SRAM2 interface clock enable during Sleep mode This bit is set and cleared by software. 0: SRAM2 interface clock disabled during Sleep mode 1: SRAM2 interface clock enabled during Sleep mode Bit 16 SRAM1LPEN: SRAM1 interface clock enable during Sleep mode This bit is set and cleared by software. 0: SRAM1 interface clock disabled during Sleep mode 1: SRAM1 interface clock enabled during Sleep mode Bit 15 FLITFLPEN: Flash interface clock enable during Sleep mode This bit is set and cleared by software. 0: Flash interface clock disabled during Sleep mode 1: Flash interface clock enabled during Sleep mode Bit 14 Reserved, must be kept at reset value. Bit 13 AXILPEN: AXI to AHB bridge clock enable during Sleep mode This bit is set and cleared by software. 0: AXI to AHB bridge clock disabled during Sleep mode 1: AXI to AHB bridge clock enabled during Sleep mode Bit 12 CRCLPEN: CRC clock enable during Sleep mode This bit is set and cleared by software. 0: CRC clock disabled during Sleep mode 1: CRC clock enabled during Sleep mode Bit 11 Reserved, must be kept at reset value. Bit 10 GPIOKLPEN: IO port K clock enable during Sleep mode This bit is set and cleared by software. 0: IO port K clock disabled during Sleep mode 1: IO port K clock enabled during Sleep mode 174/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bit 9 GPIOJLPEN: IO port J clock enable during Sleep mode This bit is set and cleared by software. 0: IO port J clock disabled during Sleep mode 1: IO port J clock enabled during Sleep mode Bit 8 GPIOILPEN: IO port I clock enable during Sleep mode This bit is set and cleared by software. 0: IO port I clock disabled during Sleep mode 1: IO port I clock enabled during Sleep mode Bit 7 GPIOHLPEN: IO port H clock enable during Sleep mode This bit is set and cleared by software. 0: IO port H clock disabled during Sleep mode 1: IO port H clock enabled during Sleep mode Bit 6 GPIOGLPEN: IO port G clock enable during Sleep mode This bit is set and cleared by software. 0: IO port G clock disabled during Sleep mode 1: IO port G clock enabled during Sleep mode Bit 5 GPIOFLPEN: IO port F clock enable during Sleep mode This bit is set and cleared by software. 0: IO port F clock disabled during Sleep mode 1: IO port F clock enabled during Sleep mode Bit 4 GPIOELPEN: IO port E clock enable during Sleep mode Set and cleared by software. 0: IO port E clock disabled during Sleep mode 1: IO port E clock enabled during Sleep mode Bit 3 GPIODLPEN: IO port D clock enable during Sleep mode This bit is set and cleared by software. 0: IO port D clock disabled during Sleep mode 1: IO port D clock enabled during Sleep mode Bit 2 GPIOCLPEN: IO port C clock enable during Sleep mode This bit is set and cleared by software. 0: IO port C clock disabled during Sleep mode 1: IO port C clock enabled during Sleep mode Bit 1 GPIOBLPEN: IO port B clock enable during Sleep mode This bit is set and cleared by software. 0: IO port B clock disabled during Sleep mode 1: IO port B clock enabled during Sleep mode Bit 0 GPIOALPEN: IO port A clock enable during sleep mode This bit is set and cleared by software. 0: IO port A clock disabled during Sleep mode 1: IO port A clock enabled during Sleep mode 5.3.16 RCC AHB2 peripheral clock enable in low-power mode register (RCC_AHB2LPENR) Address offset: 0x54 Reset value: 0x0000 00F1 Access: no wait state, word, half-word and byte access. RM0385 Rev 7 175/1709 198 Reset and clock control (RCC) RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 HASH LPEN CRYP LPEN Res. DCMI LPEN rw rw Res. Res. Res. Res. Res. Res. Res. Res. OTGFS RNG LPEN LPEN rw rw Res. Res. rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 OTGFSLPEN: USB OTG FS clock enable during Sleep mode This bit is set and cleared by software. 0: USB OTG FS clock disabled during Sleep mode 1: USB OTG FS clock enabled during Sleep mode Bit 6 RNGLPEN: Random number generator clock enable during Sleep mode This bit is set and cleared by software. 0: Random number generator clock disabled during Sleep mode 1: Random number generator clock enabled during Sleep mode Bit 5 HASHLPEN: Hash modules clock enable during Sleep mode This bit is set and cleared by software. 0: Hash modules clock disabled during Sleep mode 1: Hash modules clock enabled during Sleep mode Bit 4 CRYPLPEN: Cryptography modules clock enable during Sleep mode This bit is set and cleared by software. 0: cryptography modules clock disabled during Sleep mode 1: cryptography modules clock enabled during Sleep mode Bits 3:1 Reserved, must be kept at reset value. Bit 0 DCMILPEN: Camera interface enable during Sleep mode This bit is set and cleared by software. 0: Camera interface clock disabled during Sleep mode 1: Camera interface clock enabled during Sleep mode 5.3.17 RCC AHB3 peripheral clock enable in low-power mode register (RCC_AHB3LPENR) Address offset: 0x58 Reset value: 0x0000 0003 Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. QSPI LPEN FMC LPEN rw 176/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bits 31:2Reserved, must be kept at reset value. Bit 1 QSPILPEN: QUADSPI memory controller clock enable during Sleep mode This bit is set and cleared by software. 0: QUADSPI controller clock disabled during Sleep mode 1: QUADSPI controller clock enabled during Sleep mode Bit 0 FMCLPEN: Flexible memory controller module clock enable during Sleep mode This bit is set and cleared by software. 0: FMC module clock disabled during Sleep mode 1: FMC module clock enabled during Sleep mode 5.3.18 RCC APB1 peripheral clock enable in low-power mode register (RCC_APB1LPENR) Address offset: 0x60 Reset value: 0xFFFF CBFFh Access: no wait state, word, half-word and byte access. 31 30 29 28 27 26 25 24 23 22 21 DAC LPEN PWR LPEN CEC LPEN CAN2 LPEN CAN1 LPEN I2C4 LPEN I2C3 LPEN I2C2 LPEN I2C1 LPEN rw rw rw rw rw rw rw rw 13 12 11 7 6 Res. WWDG LPEN UART8 UART7 LPEN LPEN rw 15 14 SPI3 LPEN SPI2 LPEN rw rw Res. rw 10 Res. 9 8 LPTMI1 TIM14 LPEN LPEN rw TIM13 TIM12 LPEN LPEN rw rw 20 19 18 17 16 UART5 UART4 USART3 USART2 SPDIFRX LPEN LPEN LPEN LPEN LPEN rw rw rw rw rw 5 4 3 2 1 0 TIM7 LPEN TIM6 LPEN TIM5 LPEN TIM4 LPEN TIM3 LPEN TIM2 LPEN rw rw rw rw rw rw Bit 31 UART8LPEN: UART8 clock enable during Sleep mode This bit is set and cleared by software. 0: UART8 clock disabled during Sleep mode 1: UART8 clock enabled during Sleep mode Bit 30 UART7LPEN: UART7 clock enable during Sleep mode This bit is set and cleared by software. 0: UART7 clock disabled during Sleep mode 1: UART7 clock enabled during Sleep mode Bit 29 DACLPEN: DAC interface clock enable during Sleep mode This bit is set and cleared by software. 0: DAC interface clock disabled during Sleep mode 1: DAC interface clock enabled during Sleep mode Bit 28 PWRLPEN: Power interface clock enable during Sleep mode This bit is set and cleared by software. 0: Power interface clock disabled during Sleep mode 1: Power interface clock enabled during Sleep mode Bit 27 CECLPEN: HDMI-CEC clock enable during Sleep mode This bit is set and cleared by software. 0: HDMI-CEC clock disabled during Sleep mode 1: HDMI-CEC clock enabled during Sleep mode RM0385 Rev 7 177/1709 198 Reset and clock control (RCC) RM0385 Bit 26 CAN2LPEN: CAN 2 clock enable during Sleep mode This bit is set and cleared by software. 0: CAN 2 clock disabled during sleep mode 1: CAN 2 clock enabled during sleep mode Bit 25 CAN1LPEN: CAN 1 clock enable during Sleep mode This bit is set and cleared by software. 0: CAN 1 clock disabled during Sleep mode 1: CAN 1 clock enabled during Sleep mode Bit 24 I2C4LPEN: I2C4 clock enable during Sleep mode This bit is set and cleared by software. 0: I2C4 clock disabled during Sleep mode 1: I2C4 clock enabled during Sleep mode Bit 23 I2C3LPEN: I2C3 clock enable during Sleep mode This bit is set and cleared by software. 0: I2C3 clock disabled during Sleep mode 1: I2C3 clock enabled during Sleep mode Bit 22 I2C2LPEN: I2C2 clock enable during Sleep mode This bit is set and cleared by software. 0: I2C2 clock disabled during Sleep mode 1: I2C2 clock enabled during Sleep mode Bit 21 I2C1LPEN: I2C1 clock enable during Sleep mode This bit is set and cleared by software. 0: I2C1 clock disabled during Sleep mode 1: I2C1 clock enabled during Sleep mode Bit 20 UART5LPEN: UART5 clock enable during Sleep mode This bit is set and cleared by software. 0: UART5 clock disabled during Sleep mode 1: UART5 clock enabled during Sleep mode Bit 19 UART4LPEN: UART4 clock enable during Sleep mode This bit is set and cleared by software. 0: UART4 clock disabled during Sleep mode 1: UART4 clock enabled during Sleep mode Bit 18 USART3LPEN: USART3 clock enable during Sleep mode This bit is set and cleared by software. 0: USART3 clock disabled during Sleep mode 1: USART3 clock enabled during Sleep mode Bit 17 USART2LPEN: USART2 clock enable during Sleep mode This bit is set and cleared by software. 0: USART2 clock disabled during Sleep mode 1: USART2 clock enabled during Sleep mode Bit 16 SPDIFRXLPEN: SPDIFRX clock enable during Sleep mode This bit is set and cleared by software. 0: SPDIFRX clock disabled during Sleep mode 1: SPDIFRX clock enabled during Sleep mode 178/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bit 15 SPI3LPEN: SPI3 clock enable during Sleep mode This bit is set and cleared by software. 0: SPI3 clock disabled during Sleep mode 1: SPI3 clock enabled during Sleep mode Bit 14 SPI2LPEN: SPI2 clock enable during Sleep mode This bit is set and cleared by software. 0: SPI2 clock disabled during Sleep mode 1: SPI2 clock enabled during Sleep mode Bits 13:12 Reserved, must be kept at reset value. Bit 11 WWDGLPEN: Window watchdog clock enable during Sleep mode This bit is set and cleared by software. 0: Window watchdog clock disabled during sleep mode 1: Window watchdog clock enabled during sleep mode Bit 10 Reserved, must be kept at reset value. Bit 9 LPTIM1LPEN: low-power timer 1 clock enable during Sleep mode This bit is set and cleared by software. 0: LPTIM1 clock disabled during Sleep mode 1: LPTIM1 clock enabled during Sleep mode Bit 8 TIM14LPEN: TIM14 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM14 clock disabled during Sleep mode 1: TIM14 clock enabled during Sleep mode Bit 7 TIM13LPEN: TIM13 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM13 clock disabled during Sleep mode 1: TIM13 clock enabled during Sleep mode Bit 6 TIM12LPEN: TIM12 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM12 clock disabled during Sleep mode 1: TIM12 clock enabled during Sleep mode Bit 5 TIM7LPEN: TIM7 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM7 clock disabled during Sleep mode 1: TIM7 clock enabled during Sleep mode Bit 4 TIM6LPEN: TIM6 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM6 clock disabled during Sleep mode 1: TIM6 clock enabled during Sleep mode Bit 3 TIM5LPEN: TIM5 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM5 clock disabled during Sleep mode 1: TIM5 clock enabled during Sleep mode RM0385 Rev 7 179/1709 198 Reset and clock control (RCC) RM0385 Bit 2 TIM4LPEN: TIM4 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM4 clock disabled during Sleep mode 1: TIM4 clock enabled during Sleep mode Bit 1 TIM3LPEN: TIM3 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM3 clock disabled during Sleep mode 1: TIM3 clock enabled during Sleep mode Bit 0 TIM2LPEN: TIM2 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM2 clock disabled during Sleep mode 1: TIM2 clock enabled during Sleep mode 180/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) 5.3.19 RCC APB2 peripheral clock enabled in low-power mode register (RCC_APB2LPENR) Address offset: 0x64 Reset value: 0x04F7 7F33h Access: no wait state, word, half-word and byte access. 31 Res. 30 Res. 29 Res. 28 Res. 27 26 Res. LTDC LPEN 25 Res. 24 23 22 21 20 Res. SAI2 LPEN SAI1 LPEN SPI6 LPEN SPI5 LPEN rw rw rw rw 7 6 5 4 rw 15 14 13 12 11 10 9 8 Res. SYSCFG LPEN SPI4 LPEN SPI1 LPEN SDMMC1 LPEN ADC3 LPEN ADC2 LPEN ADC1 LPEN rw rw rw rw rw rw rw Res. Res. USART6 USART1 LPEN LPEN rw rw 19 18 17 16 Res. TIM11 LPEN TIM10 LPEN TIM9 LPEN rw rw rw 3 Res. 2 1 0 Res. TIM8 LPEN TIM1 LPEN rw rw Bits 31:27 Reserved, must be kept at reset value. Bit 26 LTDCLPEN: LTDC clock enable during Sleep mode This bit is set and cleared by software. 0: LTDC clock disabled during Sleep mode 1: LTDC clock enabled during Sleep mode Bits 25:24 Reserved, must be kept at reset value. Bit 23 SAI2LPEN: SAI2 clock enable during Sleep mode This bit is set and cleared by software. 0: SAI2 clock disabled during Sleep mode 1: SAI2 clock enabled during Sleep mode Bit 22 SAI1LPEN: SAI1 clock enable during Sleep mode This bit is set and cleared by software. 0: SAI1 clock disabled during Sleep mode 1: SAI1 clock enabled during Sleep mode Bit 21 SPI6LPEN: SPI6 clock enable during Sleep mode This bit is set and cleared by software. 0: SPI6 clock disabled during Sleep mode 1: SPI6 clock enabled during Sleep mode Bit 20 SPI5LPEN: SPI5 clock enable during Sleep mode This bit is set and cleared by software. 0: SPI5 clock disabled during Sleep mode 1: SPI5 clock enabled during Sleep mode Bit 19 Reserved, must be kept at reset value. Bit 18 TIM11LPEN: TIM11 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM11 clock disabled during Sleep mode 1: TIM11 clock enabled during Sleep mode Bit 17 TIM10LPEN: TIM10 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM10 clock disabled during Sleep mode 1: TIM10 clock enabled during Sleep mode RM0385 Rev 7 181/1709 198 Reset and clock control (RCC) RM0385 Bit 16 TIM9LPEN: TIM9 clock enable during sleep mode This bit is set and cleared by software. 0: TIM9 clock disabled during Sleep mode 1: TIM9 clock enabled during Sleep mode Bit 15 Reserved, must be kept at reset value. Bit 14 SYSCFGLPEN: System configuration controller clock enable during Sleep mode This bit is set and cleared by software. 0: System configuration controller clock disabled during Sleep mode 1: System configuration controller clock enabled during Sleep mode Bit 13 SPI4LPEN: SPI4 clock enable during Sleep mode This bit is set and cleared by software. 0: SPI4 clock disabled during Sleep mode 1: SPI4 clock enabled during Sleep mode Bit 12 SPI1LPEN: SPI1 clock enable during Sleep mode This bit is set and cleared by software. 0: SPI1 clock disabled during Sleep mode 1: SPI1 clock enabled during Sleep mode Bit 11 SDMMC1LPEN: SDMMC1 clock enable during Sleep mode This bit is set and cleared by software. 0: SDMMC1 module clock disabled during Sleep mode 1: SDMMC1 module clock enabled during Sleep mode Bit 10 ADC3LPEN: ADC 3 clock enable during Sleep mode This bit is set and cleared by software. 0: ADC 3 clock disabled during Sleep mode 1: ADC 3 clock enabled during Sleep mode Bit 9 ADC2LPEN: ADC2 clock enable during Sleep mode This bit is set and cleared by software. 0: ADC2 clock disabled during Sleep mode 1: ADC2 clock enabled during Sleep mode Bit 8 ADC1LPEN: ADC1 clock enable during Sleep mode This bit is set and cleared by software. 0: ADC1 clock disabled during Sleep mode 1: ADC1 clock enabled during Sleep mode Bits 7:6 Reserved, must be kept at reset value. Bit 5 USART6LPEN: USART6 clock enable during Sleep mode This bit is set and cleared by software. 0: USART6 clock disabled during Sleep mode 1: USART6 clock enabled during Sleep mode Bit 4 USART1LPEN: USART1 clock enable during Sleep mode This bit is set and cleared by software. 0: USART1 clock disabled during Sleep mode 1: USART1 clock enabled during Sleep mode 182/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bits 3:2 Reserved, must be kept at reset value. Bit 1 TIM8LPEN: TIM8 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM8 clock disabled during Sleep mode 1: TIM8 clock enabled during Sleep mode Bit 0 TIM1LPEN: TIM1 clock enable during Sleep mode This bit is set and cleared by software. 0: TIM1 clock disabled during Sleep mode 1: TIM1 clock enabled during Sleep mode 5.3.20 RCC backup domain control register (RCC_BDCR) Address offset: 0x70 Reset value: 0x0000 0000, reset by Backup domain reset. Access: 0 ≤ wait state ≤ 3, word, half-word and byte access Wait states are inserted in case of successive accesses to this register. The LSEON, LSEBYP, LSEDRV[1:0], RTCSEL and RTCEN bits in the RCC backup domain control register (RCC_BDCR) are in the Backup domain. As a result, after Reset, these bits are write-protected and the DBP bit in the PWR power control register (PWR_CR1) has to be set before these can be modified. Refer to Section 5.1.1: System reset on page 132 for further information. These bits are only reset after a Backup domain Reset (see Section 5.1.3: Backup domain reset). Any internal or external Reset will not have any effect on these bits. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BDRST 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 RTCEN Res. Res. Res. Res. Res. Res. Res. Res. rw rw RTCSEL[1:0] rw rw LSEDRV[1:0] rw rw 0 LSEBYP LSERDY LSEON rw r rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 BDRST: Backup domain software reset This bit is set and cleared by software. 0: Reset not activated 1: Resets the entire Backup domain Note: The BKPSRAM is not affected by this reset, the only way of resetting the BKPSRAM is through the Flash interface when a protection level change from level 1 to level 0 is requested. Bit 15 RTCEN: RTC clock enable This bit is set and cleared by software. 0: RTC clock disabled 1: RTC clock enabled Bits 14:10 Reserved, must be kept at reset value. RM0385 Rev 7 183/1709 198 Reset and clock control (RCC) RM0385 Bits 9:8 RTCSEL[1:0]: RTC clock source selection These bits are set by software to select the clock source for the RTC. Once the RTC clock source has been selected, it cannot be changed anymore unless the Backup domain is reset. The BDRST bit can be used to reset them. 00: No clock 01: LSE oscillator clock used as the RTC clock 10: LSI oscillator clock used as the RTC clock 11: HSE oscillator clock divided by a programmable prescaler (selection through the RTCPRE[4:0] bits in the RCC clock configuration register (RCC_CFGR)) used as the RTC clock Bits 7:5 Reserved, must be kept at reset value. Bits 4:3 LSEDRV[1:0]: LSE oscillator drive capability Set by software to modulate the LSE oscillator’s drive capability. 00: Low driving capability 01: Medium high driving capability 10: Medium low driving capability 11: High driving capability Bit 2 LSEBYP: External low-speed oscillator bypass This bit is set and cleared by software to bypass the oscillator. This bit can be written only when the LSE clock is disabled. 0: LSE oscillator not bypassed 1: LSE oscillator bypassed Bit 1 LSERDY: External low-speed oscillator ready This bit is set and cleared by hardware to indicate when the external 32 kHz oscillator is stable. After the LSEON bit is cleared, LSERDY goes low after 6 external low-speed oscillator clock cycles. 0: LSE clock not ready 1: LSE clock ready Bit 0 LSEON: External low-speed oscillator enable This bit is set and cleared by software. 0: LSE clock OFF 1: LSE clock ON 5.3.21 RCC clock control & status register (RCC_CSR) Address offset: 0x74 Reset value: 0x0E00 0000, reset by system reset, except reset flags by power reset only. Access: 0 ≤ wait state ≤ 3, word, half-word and byte access Wait states are inserted in case of successive accesses to this register. 31 30 LPWR WWDG RSTF RSTF r r 29 28 27 26 25 24 23 22 21 20 19 18 17 16 IWDG RSTF SFT RSTF POR RSTF PIN RSTF BOR RSTF RMVF Res. Res. Res. Res. Res. Res. Res. Res. r r r r r rw 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LSIRDY LSION r 184/1709 RM0385 Rev 7 rw RM0385 Reset and clock control (RCC) Bit 31 LPWRRSTF: Low-power reset flag This bit is set by hardware when a Low-power management reset occurs. Cleared by writing to the RMVF bit. 0: No Low-power management reset occurred 1: Low-power management reset occurred For further information on Low-power management reset, refer to Low-power management reset. Bit 30 WWDGRSTF: Window watchdog reset flag This bit is set by hardware when a window watchdog reset occurs. Cleared by writing to the RMVF bit. 0: No window watchdog reset occurred 1: Window watchdog reset occurred Bit 29 IWDGRSTF: Independent watchdog reset flag This bit is set by hardware when an independent watchdog reset from VDD domain occurs. Cleared by writing to the RMVF bit. 0: No watchdog reset occurred 1: Watchdog reset occurred Bit 28 SFTRSTF: Software reset flag This bit is set by hardware when a software reset occurs. Cleared by writing to the RMVF bit. 0: No software reset occurred 1: Software reset occurred Bit 27 PORRSTF: POR/PDR reset flag This bit is set by hardware when a POR/PDR reset occurs. Cleared by writing to the RMVF bit. 0: No POR/PDR reset occurred 1: POR/PDR reset occurred Bit 26 PINRSTF: PIN reset flag This bit is set by hardware when a reset from the NRST pin occurs. Cleared by writing to the RMVF bit. 0: No reset from NRST pin occurred 1: Reset from NRST pin occurred Bit 25 BORRSTF: BOR reset flag Cleared by software by writing the RMVF bit. This bit is set by hardware when a POR/PDR or BOR reset occurs. 0: No POR/PDR or BOR reset occurred 1: POR/PDR or BOR reset occurred Bit 24 RMVF: Remove reset flag This bit is set by software to clear the reset flags. 0: No effect 1: Clear the reset flags RM0385 Rev 7 185/1709 198 Reset and clock control (RCC) RM0385 Bits 23:2 Reserved, must be kept at reset value. Bit 1 LSIRDY: Internal low-speed oscillator ready This bit is set and cleared by hardware to indicate when the internal RC 40 kHz oscillator is stable. After the LSION bit is cleared, LSIRDY goes low after 3 LSI clock cycles. 0: LSI RC oscillator not ready 1: LSI RC oscillator ready Bit 0 LSION: Internal low-speed oscillator enable This bit is set and cleared by software. 0: LSI RC oscillator OFF 1: LSI RC oscillator ON 5.3.22 RCC spread spectrum clock generation register (RCC_SSCGR) Address offset: 0x80 Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. The spread spectrum clock generation is available only for the main PLL. The RCC_SSCGR register must be written either before the main PLL is enabled or after the main PLL disabled. Note: For full details about PLL spread spectrum clock generation (SSCG) characteristics, refer to the “Electrical characteristics” section in your device datasheet. 31 30 29 28 SSCG EN SPR EAD SEL Res. Res. 13 12 rw rw 15 14 27 26 25 24 23 rw 21 20 19 18 17 16 INCSTEP rw rw rw 11 10 9 8 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw INCSTEP rw 22 MODPER rw rw rw rw rw rw rw rw Bit 31 SSCGEN: Spread spectrum modulation enable This bit is set and cleared by software. 0: Spread spectrum modulation DISABLE. (To write after clearing CR[24]=PLLON bit) 1: Spread spectrum modulation ENABLE. (To write before setting CR[24]=PLLON bit) Bit 30 SPREADSEL: Spread Select This bit is set and cleared by software. To write before to set CR[24]=PLLON bit. 0: Center spread 1: Down spread 186/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bits 29:28 Reserved, must be kept at reset value. Bits 27:13 INCSTEP: Incrementation step These bits are set and cleared by software. To write before setting CR[24]=PLLON bit. Configuration input for modulation profile amplitude. Bits 12:0 MODPER: Modulation period These bits are set and cleared by software. To write before setting CR[24]=PLLON bit. Configuration input for modulation profile period. 5.3.23 RCC PLLI2S configuration register (RCC_PLLI2SCFGR) Address offset: 0x84 Reset value: 0x2400 3000 Access: no wait state, word, half-word and byte access. This register is used to configure the PLLI2S clock outputs according to the formulas: f(VCO clock) = f(PLLI2S clock input) × (PLLI2SN / PLLM) f(PLLI2S_P) = f(VCO clock) / PLLI2SP f(PLLI2S_Q) = f(VCO clock) / PLLI2SQ f(PLLI2S_R) = f(VCO clock) / PLLI2SR 31 30 Res. 15 29 28 27 PLLI2SR[2:0] 26 25 24 PLLI2SQ[0:3] rw rw rw rw 14 13 12 11 Res. rw rw rw 10 9 8 23 22 21 20 19 18 Res. Res. Res. Res. Res. Res. rw 7 6 PLLI2SN[8:0] rw rw rw rw rw rw rw RM0385 Rev 7 17 rw 16 PLLI2SP[1:0] rw 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. rw 187/1709 198 Reset and clock control (RCC) RM0385 Bit 31 Reserved, must be kept at reset value. Bits 30:28 PLLI2SR[2:0]: PLLI2S division factor for I2S clocks These bits are set and cleared by software to control the I2S clock frequency. These bits should be written only if the PLLI2S is disabled. The factor must be chosen in accordance with the prescaler values inside the I2S peripherals, to reach 0.3% error when using standard crystals and 0% error with audio crystals. For more information about I2S clock frequency and precision, refer to Section 32.7.4: Start-up description in the I2S chapter. Caution: The I2Ss requires a frequency lower than or equal to 192 MHz to work correctly. I2S clock frequency = VCO frequency / PLLR with 2 ≤ PLLR ≤ 7 000: PLLR = 0, wrong configuration 001: PLLR = 1, wrong configuration 010: PLLR = 2 ... 111: PLLR = 7 Bits 27:24 PLLI2SQ[3:0]: PLLI2S division factor for SAIs clock These bits are set and cleared by software to control the SAIs clock frequency. They should be written when the PLLI2S is disabled. SAI clock frequency = VCO frequency / PLLI2SQ with 2 <= PLLI2SIQ <= 15 0000: PLLI2SQ = 0, wrong configuration 0001: PLLI2SQ = 1, wrong configuration 0010: PLLI2SQ = 2 0011: PLLI2SQ = 3 0100: PLLI2SQ = 4 0101: PLLI2SQ = 5 ... 1111: PLLI2SQ = 15 Bits 23:18 Reserved, must be kept at reset value. Bits 17:16 PLLI2SP[1:0]: PLLI2S division factor for SPDIFRX clock These bits are set and cleared by software to control the SPDIFRX clock. These bits can be written only if the PLLI2S is disabled. The factor must be chosen in accordance with the prescaler values inside the SPDIF to reach an audio clock close to 44 kHz or 48 kHz according to the SPDIF mode SPDIF clock frequency = VCO frequency / PLLI2SP with PLLI2S P = 2, 4, 6, or 8 00: PLLI2SP = 2 01: PLLI2SP = 4 10: PLLI2SP = 6 11: PLLI2SP = 8 188/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bit 15 Reserved, must be kept at reset value. Bits 14:6 PLLI2SN[8:0]: PLLI2S multiplication factor for VCO These bits are set and cleared by software to control the multiplication factor of the VCO. These bits can be written only when the PLLI2S is disabled. Only half-word and word accesses are allowed to write these bits. Caution: The software has to set these bits correctly to ensure that the VCO output frequency is between 100 and 432 MHz. VCO output frequency = VCO input frequency × PLLI2SN with 50 ≤ PLLI2SN ≤ 432 000000000: PLLI2SN = 0, wrong configuration 000000001: PLLI2SN = 1, wrong configuration ... 001100010: PLLI2SN = 50 ... 001100011: PLLI2SN = 99 001100100: PLLI2SN = 100 001100101: PLLI2SN = 101 001100110: PLLI2SN = 102 ... 110110000: PLLI2SN = 432 110110000: PLLI2SN = 433, wrong configuration ... 111111111: PLLI2SN = 511, wrong configuration Note: Between 50 and 99, multiplication factors are possible for VCO input frequency higher than 1 MHz. However care must be taken to fulfill the minimum VCO output frequency as specified above. Bits 5:0 Reserved, must be kept at reset value. RM0385 Rev 7 189/1709 198 Reset and clock control (RCC) 5.3.24 RM0385 RCC PLLSAI configuration register (RCC_PLLSAICFGR) Address offset: 0x88 Reset value: 0x2400 3000 Access: no wait state, word, half-word and byte access. This register is used to configure the PLLSAI clock outputs according to the formulas: 31 30 Res. 15 • f(VCO clock) = f(PLLSAI clock input) × (PLLSAIN / PLLM) • f(PLLISAI_P) = f(VCO clock) / PLLSAIP • f(PLLISAI_Q) = f(VCO clock) / PLLSAIQ • f(PLLISAI_R) = f(VCO clock) / PLLSAIR 29 28 27 PLLSAIR[2:0] 26 25 24 PLLSAIQ[4:0] 23 22 21 20 19 18 Res. Res. Res. Res. Res. Res. 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 rw rw rw rw rw rw rw rw Res. PLLSAIN[8:0] rw Bit 31 Reserved, must be kept at reset value. Bits 30:28 PLLSAIR[2:0]: PLLSAI division factor for LCD clock Set and reset by software to control the LCD clock frequency. These bits should be written when the PLLSAI is disabled. LCD clock frequency = VCO frequency / PLLSAIR with 2 ≤ PLLSAIR ≤ 7 000: PLLSAIR = 0, wrong configuration 001: PLLSAIR = 1, wrong configuration 010: PLLSAIR = 2 ... 111: PLLSAIR = 7 Bits 27:24 PLLSAIQ[3:0]: PLLSAI division factor for SAI clock Set and reset by software to control the frequency of SAI clock. These bits should be written when the PLLSAI is disabled. SAI1 clock frequency = VCO frequency / PLLSAIQ with 2 ≤ PLLSAIQ ≤ 15 0000: PLLSAIQ = 0, wrong configuration 0001: PLLSAIQ = 1, wrong configuration ... 0010: PLLSAIQ = 2 0011: PLLSAIQ = 3 0100: PLLSAIQ = 4 0101: PLLSAIQ = 5 ... 1111: PLLSAIQ = 15 Bits 23:18 Reserved, must be kept at reset value. 190/1709 RM0385 Rev 7 17 16 PLLSAIP[1:0] RM0385 Reset and clock control (RCC) Bits 17:16 PLLSAIP[1:0]: PLLSAI division factor for 48MHz clock Set and reset by software to control the frequency of the PLLSAI output clock (PLLSAI48CLK). This output can be selected for USB, RNG, SDMMC (48 MHz clock). These bits should be written only if the PLLSAI is disabled. Only half-word and word accesses are allowed to write these bits. PLLSAI48 output clock frequency = VCO frequency / PLLSAIP with PLLSAI P = 2, 4, 6, or 8 00: PLLSAIP = 2 01: PLLSAIP = 4 10: PLLSAIP = 6 11: PLLSAIP = 8 Bit 15 Reserved, must be kept at reset value. Bits 14:6 PLLSAIN[8:0]: PLLSAI division factor for VCO Set and reset by software to control the multiplication factor of the VCO. These bits should be written when the PLLSAI is disabled. Only half-word and word accesses are allowed to write these bits. Caution: The software has to set these bits correctly to ensure that the VCO output frequency is between 100 and 432 MHz. VCO output frequency = VCO input frequency x PLLSAIN with 50 ≤ PLLSAIN ≤ 432 000000000: PLLSAIN = 0, wrong configuration 000000001: PLLSAIN = 1, wrong configuration ...... 001100010: PLLISAIN = 50 ... 001100011: PLLISAIN = 99 001100100: PLLISAIN = 100 001100101: PLLISAIN = 101 001100110: PLLISAIN = 102 ... 110110000: PLLSAIN = 432 110110000: PLLSAIN = 433, wrong configuration ... 111111111: PLLSAIN = 511, wrong configuration Note: Between 50 and 99, multiplication factors are possible for VCO input frequency higher than 1 MHz. However care must be taken to fulfill the minimum VCO output frequency as specified above. Bits 5:0 Reserved, must be kept at reset value 5.3.25 RCC dedicated clocks configuration register (RCC_DKCFGR1) Address offset: 0x8C Reset value: 0x0000 0000 Access: no wait state, word, half-word and byte access. This register allows to configure the timer clock prescalers and the PLLSAI and PLLI2S output clock dividers for SAIs and LTDC peripherals according to the following formula: f(PLLSAIDIVQ clock output) = f(PLLSAI_Q) / PLLSAIDIVQ f(PLLSAIDIVR clock output) = f(PLLSAI_R) / PLLSAIDIVR f(PLLI2SDIVQ clock output) = f(PLLI2S_Q) / PLLI2SDIVQ RM0385 Rev 7 191/1709 198 Reset and clock control (RCC) RM0385 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. TIMPRE 15 14 13 Res. Res. Res. 12 11 10 9 rw rw rw 22 SAI2SEL[1:0] 21 20 SAI1SEL[1:0] rw rw rw rw rw 8 7 6 5 4 Res. Res. Res. PLLSAIDIVQ[4:0] rw 23 rw 19 18 Res. Res. 3 2 17 16 PLLSAIDIVR[1:0] rw rw 1 0 rw rw PLLI2SDIVQ[4:0] rw rw rw Bits 31:25 Reserved, must be kept at reset value. Bit 24 TIMPRE: Timers clocks prescalers selection This bit is set and reset by software to control the clock frequency of all the timers connected to APB1 and APB2 domain. 0: If the APB prescaler (PPRE1, PPRE2 in the RCC_CFGR register) is configured to a division factor of 1, TIMxCLK = PCLKx. Otherwise, the timer clock frequencies are set to twice to the frequency of the APB domain to which the timers are connected: TIMxCLK = 2xPCLKx. 1:If the APB prescaler (PPRE1, PPRE2 in the RCC_CFGR register) is configured to a division factor of 1, 2 or 4, TIMxCLK = HCLK. Otherwise, the timer clock frequencies are set to four times to the frequency of the APB domain to which the timers are connected: TIMxCLK = 4xPCLKx. Bits 23:22 SAI2SEL[1:0]: SAI2 clock source selection: These bits are set and cleared by software to control the SAI2 clock frequency. They should be written when the PLLSAI and PLLI2S are disabled. 00: SAI2 clock frequency = f(PLLSAI_Q) / PLLSAIDIVQ 01: SAI2 clock frequency = f(PLLI2S_Q) / PLLI2SDIVQ 10: SAI2 clock frequency = Alternate function input frequency 11: wrong configuration Bits 21:20 SAI1SEL[1:0]: SAI1 clock source selection These bits are set and cleared by software to control the SAI1 clock frequency. They should be written when the PLLSAI and PLLI2S are disabled. 00: SAI1 clock frequency = f(PLLSAI_Q) / PLLSAIDIVQ 01: SAI1 clock frequency = f(PLLI2S_Q) / PLLI2SDIVQ 10: SAI1 clock frequency = Alternate function input frequency 11: wrong configuration Bits 19: 18 Reserved, must be kept at reset value. Bits 17:16 PLLSAIDIVR[1:0]: division factor for LCD_CLK These bits are set and cleared by software to control the frequency of LCD_CLK. They should be written only if PLLSAI is disabled. LCD_CLK frequency = f(PLLSAI_R) / PLLSAIDIVR with 2 ≤ PLLSAIDIVR ≤ 16 00: PLLSAIDIVR = /2 01: PLLSAIDIVR = /4 10: PLLSAIDIVR = /8 11: PLLSAIDIVR = /16 Bits 15: 13 Reserved, must be kept at reset value. 192/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bits 12:8 PLLSAIDIVQ[4:0]: PLLSAI division factor for SAI1 clock These bits are set and reset by software to control the SAI1 clock frequency. They should be written only if PLLSAI is disabled. SAI1 clock frequency = f(PLLSAI_Q) / PLLSAIDIVQ with 1 ≤ PLLSAIDIVQ ≤ 31 00000: PLLSAIDIVQ = /1 00001: PLLSAIDIVQ = /2 00010: PLLSAIDIVQ = /3 00011: PLLSAIDIVQ = /4 00100: PLLSAIDIVQ = /5 ... 11111: PLLSAIDIVQ = /32 Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 PLLI2SDIV[4:0]: PLLI2S division factor for SAI1 clock These bits are set and reset by software to control the SAI1 clock frequency. They should be written only if PLLI2S is disabled. SAI1 clock frequency = f(PLLI2S_Q) / PLLI2SDIVQ with 1 <= PLLI2SDIVQ <= 31 00000: PLLI2SDIVQ = /1 00001: PLLI2SDIVQ = /2 00010: PLLI2SDIVQ = /3 00011: PLLI2SDIVQ = /4 00100: PLLI2SDIVQ = /5 ... 11111: PLLI2SDIVQ = /32 5.3.26 RCC dedicated clocks configuration register (DCKCFGR2) Address: 0x90h Reset value: 0x0000 0000h Access: no wait state, word, half-word and byte access This register allows to select the source clock for the 48MHz, SDMMC, HDMI-CEC, LPTIM1, UARTs, USARTs and I2Cs clocks. 31 30 29 Res. Res. Res. 15 14 13 28 26 SDMM CK48M CECSE C1SEL SEL L 25 24 LPTIM1SEL 23 22 I2C4SEL 21 20 I2C3SEL 19 18 I2C2SEL 17 16 I2C1SEL rw rw rw rw rw rw rw rw rw rw rw rw rw 12 11 10 9 8 7 6 5 4 3 2 1 0 UART8SEL UART7SEL rw rw rw 27 rw USART6SEL rw rw UART5SEL UART4SEL UART3SEL UART2SEL UART1SEL rw rw rw rw rw rw RM0385 Rev 7 rw rw rw rw 193/1709 198 Reset and clock control (RCC) RM0385 Bits 31:29 Reserved, must be kept at reset value. Bit 28 SDMMCSEL: SDMMC clock source selection Set and reset by software. 0: 48 MHz clock is selected as SDMMC clock 1: System clock is selected as SDMMC clock Bit 27 CK48MSEL: 48MHz clock source selection Set and reset by software. 0: 48MHz clock from PLL is selected 1: 48MHz clock from PLLSAI is selected. Bit 26 CECSEL: HDMI-CEC clock source selection Set and reset by software. 0: LSE clock is selected as HDMI-CEC clock 1: HSI divided by 488 clock is selected as HDMI-CEC clock Bits 25:24 LPTIM1SEL: Low-power timer 1 clock source selection Set and reset by software. 00: APB1 clock (PCLK1) selected as LPTILM1 clock 01: LSI clock is selected as LPTILM1 clock 10: HSI clock is selected as LPTILM1 clock 11: LSE clock is selected as LPTILM1 clock Bits 23:22 I2C4SEL: I2C4 clock source selection Set and reset by software. 00: APB1 clock ( PCLK1) is selected as I2C4 clock 01: System clock is selected as I2C4 clock 10: HSI clock is selected as I2C4 clock 11: reserved Bits 21:20 I2C3SEL: I2C3 clock source selection Set and reset by software. 00: APB clock is selected as I2C3 clock 01: System clock is selected as I2C3 clock 10: HSI clock is selected as I2C3 clock 11: reserved Bits 19:18 I2C2SEL: I2C2 clock source selection Set and reset by software. 00: APB1 clock (PCLK1) is selected as I2C2 clock 01: System clock is selected as I2C2 clock 10: HSI clock is selected as I2C2 clock 11: reserved Bits 17:16 I2C1SEL: I2C1 clock source selection Set and reset by software. 00: APB clock (PCLK1) is selected as I2C1 clock 01: System clock is selected as I2C1 clock 10: HSI clock is selected as I2C1 clock 11: reserved 194/1709 RM0385 Rev 7 RM0385 Reset and clock control (RCC) Bits 15:14 UART8SEL[1:0]: UART 8 clock source selection Set and reset by software. 00: APB1 clock (PCLK1) is selected as UART 8 clock 01: System clock is selected as UART 8 clock 10: HSI clock is selected as UART 8 clock 11: LSE clock is selected as UART 8 clock Bits 13:12 UART7SEL[1:0]: UART 7 clock source selection Set and reset by software. 00: APB1 clock (PCLK1) is selected as UART 7 clock 01: System clock is selected as UART 7 clock 10: HSI clock is selected as UART 7 clock 11: LSE clock is selected as UART 7 clock Bits 11:10 USART6SEL[1:0]: USART 6 clock source selection Set and reset by software. 00: APB2 clock(PCLK2) is selected as USART 6 clock 01: System clock is selected as USART 6 clock 10: HSI clock is selected as USART 6 clock 11: LSE clock is selected as USART 6 clock Bits 9:8 UART5SEL[1:0]: UART 5 clock source selection Set and reset by software. 00: APB1 clock(PCLK1) is selected as UART 5 clock 01: System clock is selected as UART 5 clock 10: HSI clock is selected as UART 5 clock 11: LSE clock is selected as UART 5 clock Bits7:6 UART4SEL[1:0]: UART 4 clock source selection Set and reset by software. 00: APB1 clock (PLCLK1) is selected as UART 4 clock 01: System clock is selected as UART 4 clock 10: HSI clock is selected as UART 4 clock 11: LSE clock is selected as UART 4 clock Bits5:4 USART3SEL[1:0]: USART 3 clock source selection Set and reset by software. 00: APB1 clock (PCLK1) is selected as USART 3 clock 01: System clock is selected as USART 3 clock 10: HSI clock is selected as USART 3 clock 11: LSE clock is selected as USART 3 clock Bits 3:2 USART2SEL[1:0]: USART 2 clock source selection Set and reset by software. 00: APB1 clock (PCLK1) is selected as USART 2 clock 01: System clock is selected as USART 2 clock 10: HSI clock is selected as USART 2 clock 11: LSE clock is selected as USART 2 clock Bits 1:0 USART1SEL[1:0]: USART 1 clock source selection Set and reset by software. 00: APB2 clock (PCLK2) is selected as USART 1 clock 01: System clock is selected as USART 1 clock 10: HSI clock is selected as USART 1 clock 11: LSE clock is selected as USART 1 clock RM0385 Rev 7 195/1709 198 Reserved 0x30 RCC_ AHB1ENR 0x34 RCC_ AHB2ENR 196/1709 DMA2DEN DMA2EN DMA1EN Res. Res. Res. RM0385 Rev 7 GPIOAEN GPIOFEN DCMIEN GPIOGEN RNGEN HASHEN GPIOBEN GPIOHEN OTGFSEN Res. GPIOIEN Res. GPIOCEN GPIOJEN Res. Res. GPIOKEN Res. GPIOEEN Res. Res. GPIODEN CRCEN Res. Res. Res. Res. Res. Res. CRYPEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIM5RST TIM4RST TIM3RST TIM2RST Res. Res. TIM8RST TIM1RST TIM6RST Res. Res. Res. Res. USART1RST TIM12RST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. GPIOJRST GPIOKRST Res. CRCRST Res. Res. Res. Res. Res. Res. Res. Res. DMA1RST GPIOGRST PLLSAIRDYF CSSF LSIRDYIE LSERDYIE HSIRDYIE HSERDYIE PLLRDYIE PLLI2SRDYIE Res. Res. Res. GPIOARST GPIOBRST GPIOCRST GPIODRST CRYPRST GPIOERST PLLRDYF LSIRDYF LSERDYF HSIRDYF HSERDYF Res. Res. Res. PLL SAION PLL SAIRDY Res. Res. Res. Res. Res. Res. PPRE2 2 SW 0 SW 1 SWS 0 SWS 1 HPRE 0 HPRE 1 HPRE 2 HPRE 3 Res. Res. HSICAL 0 HSICAL 1 HSICAL 2 HSICAL 3 HSICAL 4 HSICAL 5 HSICAL 6 HSICAL 7 HSEON HSERDY HSEBYP CSSON Res. Res. Res. Res. PLL ON PLL RDY PLLM 0 PLLM 1 PLLM 2 HSION HSIRDY Reserved PLLM 3 HSITRIM 0 PLLM 4 HSITRIM 1 PLLM 5 HSITRIM 2 PLLN 0 HSITRIM 3 PLLN 1 HSITRIM 4 PLLN 2 PLLN 3 PPRE1 2 PLLN 6 PPRE1 1 PLLN 5 PPRE1 0 PLLN 4 PPRE2 0 PLLN 7 PLLN 8 Res. RTCPRE 0 PLLP 0 RTCPRE 1 PLLP 1 RTCPRE 2 RTCPRE 3 MCO1 0 RTCPRE 4 MCO1 1 PLLSRC I2SSRC MCO1PRE1 PLLQ 1 MCO1PRE0 PLLQ 0 MCO1PRE2 PLLQ 2 PLL I2SON MCO2PRE0 PLLQ 3 PLL I2SRDY MCO2PRE1 MCO2PRE2 MCO2 0 PLLSAIRDYIE PPRE2 1 Res. LSIRDYC LSERDYC HSIRDYC HSERDYC PLLRDYC PLLI2SRDYC HASHRST GPIOFRST PLLI2SRDYF RNGRST Res. Res. Res. Res. Res. Res. Res. CSSC DMA2RST PLLSAIRDYC DMA2DRST Res. ETHMACRST Res. Res. Res. OTGHSRST Res. Res. GPIOIRST OTGFSRS GPIOHRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FMCRST DCMIRST Res. QSPIRST Res. Res. Res. Res. TIM13RST Res. Res. TIM7RST TIM14RST Res. ADCRST Res. LPTIM1RST Res. Res. Res. Res. Res. Res. USART6RST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SDMMC1RST WWDGRST Res. Res. SPI1RST Res. Res. Res. Res. SPI2RST SP45RST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SYSCFGRST Res. Res. Res. Res. Res. SPI3RST SPDIFRXRST Res. TIM9RST Res. Res. Res. UART2RST Res. Res. Res. UART3RST Res. Res. Res. TIM10RST Res. UART4RST Res. Res. BKPSRAMEN Res. Res. TIM11RST Res. Res. Res. Res. Res. Res. UART5RST Res. I2C1RST I2C2RST I2C3RST I2C4RST CAN1RST Res. Res. Reserved Res. Res. Res. CAN2RST Res. CECRST PWRRST DACRST UART7RST Res. SPI5RST SPI6RST SAI1RST Res. SAI2RST Res. LTDCRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DTCMRAMEN Res. Res. Res. Res. Res. ETHMACEN RCC_APB2RS TR ETHMACTXEN Res. Res. 0x24 Res. RCC_APB1RS TR Res. 0x20 ETHMACRXEN Res. Res. Reserved Res. 0x1C Res. Res. RCC_AHB3RS TR OTGHSEN 0x18 ETHMACPTPEN Res. Res. RCC_AHB2RS TR Res. 0x14 Res. RCC_AHB1RS TR 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x10 Res. RCC_CIR Res. 0x0C MCO2 1 RCC_CFGR Res. 0x08 Res. RCC_PLLCFG R Res. 0x04 Res. RCC_CR UART8RST Res. 0x00 Res. Register name Res. Res. Reserved Res. Addr. offset OTGHSULPIEN Res. Res. 5.3.27 Res. 0x28 0x2C Res. Reset and clock control (RCC) RM0385 RCC register map Table 20 gives the register map and reset values. Table 20. RCC register map and reset values 0x68 Reserved 0x6C Reserved 0x70 RCC_BDCR 0x74 RCC_CSR 0x78 Reserved 0x7C Reserved RM0385 Rev 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LSION Res. Res. Res. Res. Res. Res. Res. Res. LSIRDY Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RMVF Res. Res. Res. SPI5LPEN SPI6LPEN SAI1LPEN SAI2LPEN Res. Res. Res. TIM9LPEN SPI1LPEN SPI4LPEN Res. Res. ADC3LPEN Res. Res. Res. Res. Res. Res. Res. Res. LSERDY LSEON Res. Res. TIM1LPEN TIM8LPEN Res. Res. Res. Res. USART1LPEN Res. Res. USART6LPEN Res. Res. LSEBYP LSEDRV[1:0] Res. Res. Res. Res. RTCSEL 0 Res. Res. ADC1LPEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SPI2LPEN SPI3LPEN Res. Res. Res. Res. SPDIFRXLPEN Res. USART2LPEN Res. USART3LPEN Res. UART4LPEN Res. UART5LPEN Res. I2C1LPEN I2C2LPEN I2C3LPEN I2C4LPEN CAN1LPEN Res. CAN2LPEN Res. CECLPEN PWRLPEN DACLPEN UART7LPEN Res. Res. TIM2LPEN TIM3LPEN TIM4LPEN TIM5LPEN TIM6LPEN TIM7LPEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CRYPLPEN HASHLPEN RNGLPEN OTGFSLPEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FMCLPEN DCMILPEN Res. QSPILPEN Res. Res. Res. Res. TIM12LPEN Res. TIM13LPEN Res. TIM14LPEN Res. LPTIM1LPEN Res. Res. Res. Res. SDMMC1LPEN WWDGLPEN Res. Res. Res. Res. Res. Res. Res. SYSCFGLPEN Res. Res. Res. Res. Res. Res. TIM10LPEN Res. Res. TIM11LPEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LTDCLPEN Res. Res. Res. Res. RTCSEL 1 Res. Res. ADC2LPEN Res. Res. Res. Res. Res. RTCEN BDRST Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BORRSTF Res. RCC_APB2LP ENR Res. Res. PINRSTF 0x64 Res. Res. RCC_APB1LP ENR Res. 0x60 Res. Res. PORRSTF Reserved Res. Res. 0x5C Res. Res. RCC_AHB3LP ENR Res. 0x58 Res. RCC_AHB2LP ENR Res. Res. SFTRSTF 0x54 Res. Res. WDGRSTF RCC_AHB1LP ENR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SPI5EN SPI6EN SAI1EN SAI2EN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. UART4EN Res. Res. UART5EN Res. Res. I2C1EN I2C2EN I2C3EN I2C4EN CAN1EN Res. Res. CAN2EN Res. Res. CECEN PWREN DACEN SPI7EN GPIOALPEN GPIOBLPEN GPIOCLPEN GPIODLPEN GPIOELPEN GPIOFLPEN GPIOGLPEN GPIOHLPEN GPIOILPEN GPIOJLPEN GPIOKLPEN Res. CRCLPEN AXILPEN Res. FLITFLPEN SRAM1LPEN SRAM2LPEN Res. TIM9EN SPI1EN SPI4EN Res. Res. SPI2EN SPI3EN Res. Res. Res. Res. Res. Res. Res. Res. SPDIFRXEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIM1EN TIM8EN Res. Res. Res. Res. USART1EN Res. Res. USART6EN Res. Res. Res. Res. Res. Res. ADC1EN Res. Res. ADC2EN Res. Res. ADC3EN Res. Res. TIM2EN TIM3EN TIM4EN TIM5EN TIM6EN TIM7EN Res. FMCEN Res. QSPIEN Res. Res. Res. Res. Res. Res. Res. Res. TIM12EN Res. Res. TIM13EN Res. Res. TIM14EN Res. Res. LPTIM1EN Res. Res. Res. Res. Res. SDMMC1EN WWDGEN Res. Res. Res. Res. Res. Res. Res. Res. SYSCFGEN Res. Res. Res. Res. Res. Res. TIM10EN USART2EN Res. Res. BKPSRAMLPEN Res. Res. TIM11EN USART3EN Res. Res. Res. DTCMLPEN DMA1LPEN DMA2LPEN DMA2DLPEN Res. ETHMACLPEN ETHMACTXLPEN Res. Res. LTDCEN ETHMACRXLPEN Res. Res. ETHMACPTPLPEN Res. Res. OTGHSLPEN OTGHSULPILPEN Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x50 Res. Res. Reserved SPI8EN 0x4C Res. Reserved Res. Res. 0x48 Res. RCC_ APB2ENR Res. 0x44 Res. RCC_ APB1ENR UART8LPEN Res. 0x40 Res. Reserved Res. Res. 0x3C Res. Res. RCC_ AHB3ENR Res. 0x38 Res. Register name Res. Res. WWDGRSTF Addr. offset Res. Res. LPWRRSTF RM0385 Reset and clock control (RCC) Table 20. RCC register map and reset values (continued) 197/1709 198 198/1709 RM0385 Rev 7 Refer to Section 2.2.2 on page 69 for the register boundary addresses. UART1SEL Res. Res. Res. PLLSAIDIVQ[4:0] UART2SEL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PLLSAIN[8:0] Res. PLLI2SN[8:0] UART3SEL Res. Res. PLLSAIDIVR[1:0] PLLSAIP[1:0] PLLI2SP[1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SAI1SEL[1:0] Res. Res. PLLSAIQ[4:0] INCSTEP UART4SEL UART5SEL UART6SEL UART7SEL UART8SEL I2C1SEL I2C2SEL I2C3SEL SAI2SEL[1:0] TIMPRE Res. Res. Res. PLLI2SR[2: PLLI2SQ[3:0] 0] I2C4SEL LPTIM1SEL Res. Res. CECSEL Res. RCC_DCKCF GR2 Res. Res. 0x90 CK48MSEL RCC_DCKCF GR1 PLLSAIR[2:0] Res. 0x8C Res. RCC_PLLSAI CFGR Res. 0x88 Res. RCC_PLLI2SC FGR SDMMC1SEL 0x84 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RCC_SSCGR SSCGEN 0x80 SPREADSEL Register name Res. Addr. offset Res. Reset and clock control (RCC) RM0385 Table 20. RCC register map and reset values (continued) MODPER PLLI2SDIVQ[4:0] RM0385 General-purpose I/Os (GPIO) 6 General-purpose I/Os (GPIO) 6.1 Introduction Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers (GPIOx_IDR and GPIOx_ODR) and a 32-bit set/reset register (GPIOx_BSRR). In addition all GPIOs have a 32-bit locking register (GPIOx_LCKR) and two 32-bit alternate function selection registers (GPIOx_AFRH and GPIOx_AFRL). 6.2 6.3 GPIO main features • Output states: push-pull or open drain + pull-up/down • Output data from output data register (GPIOx_ODR) or peripheral (alternate function output) • Speed selection for each I/O • Input states: floating, pull-up/down, analog • Input data to input data register (GPIOx_IDR) or peripheral (alternate function input) • Bit set and reset register (GPIOx_ BSRR) for bitwise write access to GPIOx_ODR • Locking mechanism (GPIOx_LCKR) provided to freeze the I/O port configurations • Analog function • Alternate function selection registers • Fast toggle capable of changing every two clock cycles • Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several peripheral functions GPIO functional description Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in several modes: • Input floating • Input pull-up • Input-pull-down • Analog • Output open-drain with pull-up or pull-down capability • Output push-pull with pull-up or pull-down capability • Alternate function push-pull with pull-up or pull-down capability • Alternate function open-drain with pull-up or pull-down capability Each I/O port bit is freely programmable, however the I/O port registers have to be accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR and GPIOx_BRR registers is to allow atomic read/modify accesses to any of the GPIOx_ODR registers. In this way, there is no risk of an IRQ occurring between the read and the modify access. RM0385 Rev 7 199/1709 215 General-purpose I/Os (GPIO) RM0385 Figure 17 and Figure 18 shows the basic structures of a standard and a 5-Volt tolerant I/O port bit, respectively. Table 21 gives the possible port bit configurations. Figure 17. Basic structure of an I/O port bit Analog To on-chip peripheral Alternate function input Input data register trigger on/off Protection diode Pull up Input driver I/O pin Output driver VDD on/off Protection diode Pull down P-MOS VSS Output control VSS N-MOS Read/write VSS From on-chip peripheral VDD VDD Output data register Bit set/reset registers Read Write on/off Push-pull, open-drain or disabled Alternate function output Analog ai15938 Figure 18. Basic structure of a 5-Volt tolerant I/O port bit Analog To on-chip peripheral Input data register Alternate function input Read/write From on-chip peripheral Output data register Write Bit set/reset registers Read on/off VDD TTL Schmitt trigger on/off Pull up VDD_FT (1) Protection diode Input driver I/O pin Output driver VDD on/off P-MOS Output control Pull down VSS Protection diode VSS N-MOS VSS Alternate function output Push-pull, open-drain or disabled Analog ai15939b 1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD. 200/1709 RM0385 Rev 7 RM0385 General-purpose I/Os (GPIO) Table 21. Port bit configuration table(1) MODE(i) [1:0] 01 10 00 11 OTYPER(i) OSPEED(i) [1:0] PUPD(i) [1:0] I/O configuration 0 0 0 GP output PP 0 0 1 GP output PP + PU 0 1 0 GP output PP + PD 1 1 Reserved 0 0 GP output OD 1 0 1 GP output OD + PU 1 1 0 GP output OD + PD 1 1 1 Reserved (GP output OD) 0 0 0 AF PP 0 0 1 AF PP + PU 0 1 0 AF PP + PD 1 1 Reserved 0 0 AF OD 1 0 1 AF OD + PU 1 1 0 AF OD + PD 1 1 1 Reserved 0 SPEED [1:0] 1 0 SPEED [1:0] 1 x x x 0 0 Input Floating x x x 0 1 Input PU x x x 1 0 Input PD x x x 1 1 Reserved (input floating) x x x 0 0 Input/output x x x 0 1 x x x 1 0 x x x 1 1 Analog Reserved 1. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate function. RM0385 Rev 7 201/1709 215 General-purpose I/Os (GPIO) 6.3.1 RM0385 General-purpose I/O (GPIO) During and just after reset, the alternate functions are not active and most of the I/O ports are configured in input floating mode. The debug pins are in AF pull-up/pull-down after reset: • PA15: JTDI in pull-up • PA14: JTCK/SWCLK in pull-down • PA13: JTMS/SWDAT in pull-up • PB4: NJTRST in pull-up • PB3: JTDO in floating state When the pin is configured as output, the value written to the output data register (GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull mode or open-drain mode (only the low level is driven, high level is HI-Z). The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB clock cycle. All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or not depending on the value in the GPIOx_PUPDR register. 6.3.2 I/O pin alternate function multiplexer and mapping The device I/O pins are connected to on-board peripherals/modules through a multiplexer that allows only one peripheral alternate function (AF) connected to an I/O pin at a time. In this way, there can be no conflict between peripherals available on the same I/O pin. Each I/O pin has a multiplexer with up to sixteen alternate function inputs (AF0 to AF15) that can be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to 15) registers: • After reset the multiplexer selection is alternate function 0 (AF0). The I/Os are configured in alternate function mode through GPIOx_MODER register. • The specific alternate function assignments for each pin are detailed in the device datasheet. • Cortex-M7 with FPU EVENTOUT is mapped on AF15 In addition to this flexible I/O multiplexing architecture, each peripheral has alternate functions mapped onto different I/O pins to optimize the number of peripherals available in smaller packages. To use an I/O in a given configuration, the user has to proceed as follows: 202/1709 • Debug function: after each device reset these pins are assigned as alternate function pins immediately usable by the debugger host • System function: MCOx pins have to be configured in alternate function mode. • GPIO: configure the desired I/O as output, input or analog in the GPIOx_MODER register. • Peripheral alternate function: – Connect the I/O to the desired AFx in one of the GPIOx_AFRL or GPIOx_AFRH register. – Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER, GPIOx_PUPDR and GPIOx_OSPEEDER registers, respectively. RM0385 Rev 7 RM0385 General-purpose I/Os (GPIO) – • • Configure the desired I/O as an alternate function in the GPIOx_MODER register. Additional functions: – For the ADC and DAC, configure the desired I/O in analog mode in the GPIOx_MODER register and configure the required function in the ADC and DAC registers. – For the additional functions like RTC_OUT, RTC_TS, RTC_TAMPx, WKUPx and oscillators, configure the required function in the related RTC, PWR and RCC registers. These functions have priority over the configuration in the standard GPIO registers. For details about I/O control by the RTC, refer to Section 29.3: RTC functional description on page 911. EVENTOUT – Configure the I/O pin used to output the core EVENTOUT signal by connecting it to AF15. Refer to the “Alternate function mapping” table in the device datasheet for the detailed mapping of the alternate function I/O pins. 6.3.3 I/O port control registers Each of the GPIO ports has four 32-bit memory-mapped control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os. The GPIOx_MODER register is used to select the I/O mode (input, output, AF, analog). The GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type (pushpull or open-drain) and speed. The GPIOx_PUPDR register is used to select the pullup/pull-down whatever the I/O direction. 6.3.4 I/O port data registers Each GPIO has two 16-bit memory-mapped data registers: input and output data registers (GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write accessible. The data input through the I/O are stored into the input data register (GPIOx_IDR), a read-only register. See Section 6.4.5: GPIO port input data register (GPIOx_IDR) (x = A..K) and Section 6.4.6: GPIO port output data register (GPIOx_ODR) (x = A..K) for the register descriptions. 6.3.5 I/O data bitwise handling The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset register has twice the size of GPIOx_ODR. To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BS(i) and BR(i). When written to 1, bit BS(i) sets the corresponding ODR(i) bit. When written to 1, bit BR(i) resets the ODR(i) corresponding bit. Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set action takes priority. Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a “one-shot” effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always be accessed directly. The GPIOx_BSRR register provides a way of performing atomic bitwise handling. RM0385 Rev 7 203/1709 215 General-purpose I/Os (GPIO) RM0385 There is no need for the software to disable interrupts when programming the GPIOx_ODR at bit level: it is possible to modify one or more bits in a single atomic AHB write access. 6.3.6 GPIO locking mechanism It is possible to freeze the GPIO control registers by applying a specific write sequence to the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must be the same). When the LOCK sequence has been applied to a port bit, the value of the port bit can no longer be modified until the next MCU reset or peripheral reset. Each GPIOx_LCKR bit freezes the corresponding bit in the control registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH. The LOCK sequence (refer to Section 6.4.8: GPIO port configuration lock register (GPIOx_LCKR) (x = A..K)) can only be performed using a word (32-bit long) access to the GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the same time as the [15:0] bits. For more details refer to LCKR register description in Section 6.4.8: GPIO port configuration lock register (GPIOx_LCKR) (x = A..K). 6.3.7 I/O alternate function input/output Two registers are provided to select one of the alternate function inputs/outputs available for each I/O. With these registers, the user can connect an alternate function to some other pin as required by the application. This means that a number of possible peripheral functions are multiplexed on each GPIO using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can thus select any one of the possible functions for each I/O. The AF selection signal being common to the alternate function input and alternate function output, a single channel is selected for the alternate function input/output of a given I/O. To know which functions are multiplexed on each GPIO pin, refer to the device datasheet. 6.3.8 External interrupt/wakeup lines All ports have external interrupt capability. To use external interrupt lines, the port must be configured in input mode. Refer to Section 11: Extended interrupts and events controller (EXTI) and to Section 11.3: Wakeup event management. 204/1709 RM0385 Rev 7 RM0385 6.3.9 General-purpose I/Os (GPIO) Input configuration When the I/O port is programmed as input: • The output buffer is disabled • The Schmitt trigger input is activated • The pull-up and pull-down resistors are activated depending on the value in the GPIOx_PUPDR register • The data present on the I/O pin are sampled into the input data register every AHB clock cycle • A read access to the input data register provides the I/O state Figure 19 shows the input configuration of the I/O port bit. Input data register Figure 19. Input floating/pull up/pull down configurations Read/write Output data register Write Bit set/reset registers Read on TTL Schmitt trigger VDD VDD on/off protection diode pull up input driver I/O pin on/off output driver pull down VSS protection diode VSS ai15940b 6.3.10 Output configuration When the I/O port is programmed as output: • The output buffer is enabled: – Open drain mode: A “0” in the Output register activates the N-MOS whereas a “1” in the Output register leaves the port in Hi-Z (the P-MOS is never activated) – Push-pull mode: A “0” in the Output register activates the N-MOS whereas a “1” in the Output register activates the P-MOS • The Schmitt trigger input is activated • The pull-up and pull-down resistors are activated depending on the value in the GPIOx_PUPDR register • The data present on the I/O pin are sampled into the input data register every AHB clock cycle • A read access to the input data register gets the I/O state • A read access to the output data register gets the last written value Figure 20 shows the output configuration of the I/O port bit. RM0385 Rev 7 205/1709 215 General-purpose I/Os (GPIO) RM0385 Input data register Figure 20. Output configuration Write Read/write on VDD VDD TTL Schmitt trigger on/off Input driver Output data register Bit set/reset registers Read protection diode pull up Output driver I/O pin VDD on/off P-MOS Output control protection diode pull down VSS VSS N-MOS Push-pull or VSS Open-drain ai15941b 6.3.11 Alternate function configuration When the I/O port is programmed as alternate function: • The output buffer can be configured in open-drain or push-pull mode • The output buffer is driven by the signals coming from the peripheral (transmitter enable and data) • The Schmitt trigger input is activated • The weak pull-up and pull-down resistors are activated or not depending on the value in the GPIOx_PUPDR register • The data present on the I/O pin are sampled into the input data register every AHB clock cycle • A read access to the input data register gets the I/O state Figure 21 shows the Alternate function configuration of the I/O port bit. Figure 21. Alternate function configuration Input data register Alternate function input To on-chip peripheral Read/write VDD VDD TTL Schmitt trigger on/off I/O pin Output driver on/off VDD P-MOS Output control protection diode Pull down VSS VSS N-MOS VSS From on-chip peripheral protection diode Pull up Input driver Output data register Write Bit set/reset registers Read on push-pull or open-drain Alternate function output ai15942b 206/1709 RM0385 Rev 7 RM0385 6.3.12 General-purpose I/Os (GPIO) Analog configuration When the I/O port is programmed as analog configuration: • The output buffer is disabled • The Schmitt trigger input is deactivated, providing zero consumption for every analog value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0). • The weak pull-up and pull-down resistors are disabled by hardware • Read access to the input data register gets the value “0” Figure 22 shows the high-impedance, analog-input configuration of the I/O port bits. Figure 22. High impedance-analog configuration Input data register Analog To on-chip peripheral Read/write From on-chip peripheral 6.3.13 Output data register Write Bit set/reset registers Read off 0 VDD TTL Schmitt trigger protection diode Input driver I/O pin protection diode VSS Analog ai15943 Using the HSE or LSE oscillator pins as GPIOs When the HSE or LSE oscillator is switched OFF (default state after reset), the related oscillator pins can be used as normal GPIOs. When the HSE or LSE oscillator is switched ON (by setting the HSEON or LSEON bit in the RCC_CSR register) the oscillator takes control of its associated pins and the GPIO configuration of these pins has no effect. When the oscillator is configured in a user external clock mode, only the OSC_IN or OSC32_IN pin is reserved for clock input and the OSC_OUT or OSC32_OUT pin can still be used as normal GPIO. 6.3.14 Using the GPIO pins in the backup supply domain The PC13/PC14/PC15/PI8 GPIO functionality is lost when the core supply domain is powered off (when the device enters Standby mode). In this case, if their GPIO configuration is not bypassed by the RTC configuration, these pins are set in an analog input mode. RM0385 Rev 7 207/1709 215 General-purpose I/Os (GPIO) 6.4 RM0385 GPIO registers This section gives a detailed description of the GPIO registers. For a summary of register bits, register address offsets and reset values, refer to Table 22. The peripheral registers can be written in word, half word or byte mode. 6.4.1 GPIO port mode register (GPIOx_MODER) (x =A..K) Address offset:0x00 Reset values: 31 30 • 0xA800 0000 for port A • 0x0000 0280 for port B • 0x0000 0000 for other ports 29 MODER15[1:0] 28 MODER14[1:0] 27 26 MODER13[1:0] 25 24 MODER12[1:0] 23 22 MODER11[1:0] 21 20 MODER10[1:0] 19 18 MODER9[1:0] 17 16 MODER8[1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MODER7[1:0] rw rw MODER6[1:0] rw rw MODER5[1:0] rw rw MODER4[1:0] rw rw MODER3[1:0] rw rw MODER2[1:0] rw rw MODER1[1:0] rw rw MODER0[1:0] rw rw Bits 2y+1:2y MODERy[1:0]: Port x configuration bits (y = 0..15) These bits are written by software to configure the I/O mode. 00: Input mode (reset state) 01: General purpose output mode 10: Alternate function mode 11: Analog mode 6.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..K) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OT15 OT14 OT13 OT12 OT11 OT10 OT9 OT8 OT7 OT6 OT5 OT4 OT3 OT2 OT1 OT0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 OTy: Port x configuration bits (y = 0..15) These bits are written by software to configure the I/O output type. 0: Output push-pull (reset state) 1: Output open-drain 208/1709 RM0385 Rev 7 RM0385 General-purpose I/Os (GPIO) 6.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..K) Address offset: 0x08 Reset value: 31 • 0x0C00 0000 for port A • 0x0000 00C0 for port B • 0x0000 0000 for other ports 30 29 OSPEEDR15 [1:0] 28 27 OSPEEDR14 [1:0] 26 25 OSPEEDR13 [1:0] 24 OSPEEDR12 [1:0] 23 22 OSPEEDR11 [1:0] 21 20 OSPEEDR10 [1:0] 19 18 17 16 OSPEEDR9 [1:0] OSPEEDR8 [1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OSPEEDR7 [1:0] OSPEEDR6 [1:0] OSPEEDR5 [1:0] OSPEEDR4 [1:0] OSPEEDR3 [1:0] OSPEEDR2 [1:0] OSPEEDR1 [1:0] OSPEEDR0 [1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 2y+1:2y OSPEEDRy[1:0]: Port x configuration bits (y = 0..15) These bits are written by software to configure the I/O output speed. 00: Low speed 01: Medium speed 10: High speed 11: Very high speed Note: Refer to the product datasheets for the values of OSPEEDRy bits versus VDD range and external load. 6.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..K) Address offset: 0x0C Reset values: 31 30 PUPDR15[1:0] • 0x6400 0000 for port A • 0x0000 0100 for port B • 0x0000 0000 for other ports 29 28 PUPDR14[1:0] 27 26 PUPDR13[1:0] 25 24 PUPDR12[1:0] 23 22 PUPDR11[1:0] 21 20 PUPDR10[1:0] 19 18 PUPDR9[1:0] 17 16 PUPDR8[1:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PUPDR7[1:0] rw rw PUPDR6[1:0] rw rw PUPDR5[1:0] rw rw PUPDR4[1:0] rw rw PUPDR3[1:0] rw RM0385 Rev 7 rw PUPDR2[1:0] rw rw PUPDR1[1:0] rw rw PUPDR0[1:0] rw rw 209/1709 215 General-purpose I/Os (GPIO) RM0385 Bits 2y+1:2y PUPDRy[1:0]: Port x configuration bits (y = 0..15) These bits are written by software to configure the I/O pull-up or pull-down 00: No pull-up, pull-down 01: Pull-up 10: Pull-down 11: Reserved 6.4.5 GPIO port input data register (GPIOx_IDR) (x = A..K) Address offset: 0x10 Reset value: 0x0000 XXXX 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0 r r r r r r r r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 IDRy: Port input data bit (y = 0..15) These bits are read-only. They contain the input value of the corresponding I/O port. 6.4.6 GPIO port output data register (GPIOx_ODR) (x = A..K) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 ODR15 ODR14 ODR13 ODR12 ODR11 ODR10 rw rw rw rw rw rw 9 8 7 6 5 4 3 2 1 0 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0 rw rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 ODRy: Port output data bit (y = 0..15) These bits can be read and written by software. Note: For atomic bit set/reset, the ODR bits can be individually set and/or reset by writing to the GPIOx_BSRR or GPIOx_BRR registers (x = A..F). 6.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..K) Address offset: 0x18 Reset value: 0x0000 0000 210/1709 RM0385 Rev 7 RM0385 General-purpose I/Os (GPIO) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BS15 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0 w w w w w w w w w w w w w w w w Bits 31:16 BRy: Port x reset bit y (y = 0..15) These bits are write-only. A read to these bits returns the value 0x0000. 0: No action on the corresponding ODRx bit 1: Resets the corresponding ODRx bit Note: If both BSx and BRx are set, BSx has priority. Bits 15:0 BSy: Port x set bit y (y= 0..15) These bits are write-only. A read to these bits returns the value 0x0000. 0: No action on the corresponding ODRx bit 1: Sets the corresponding ODRx bit 6.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..K) This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit, the value of this port bit can no longer be modified until the next MCU reset or peripheral reset. Note: A specific write sequence is used to write to the GPIOx_LCKR register. Only word access (32-bit long) is allowed during this locking sequence. Each lock bit freezes a specific configuration register (control and alternate function registers). Address offset: 0x1C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LCKK 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 LCK15 LCK14 LCK13 LCK12 LCK11 LCK10 LCK9 LCK8 LCK7 LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw RM0385 Rev 7 211/1709 215 General-purpose I/Os (GPIO) RM0385 Bits 31:17 Reserved, must be kept at reset value. Bit 16 LCKK: Lock key This bit can be read any time. It can only be modified using the lock key write sequence. 0: Port configuration lock key not active 1: Port configuration lock key active. The GPIOx_LCKR register is locked until the next MCU reset or peripheral reset. LOCK key write sequence: WR LCKR[16] = ‘1’ + LCKR[15:0] WR LCKR[16] = ‘0’ + LCKR[15:0] WR LCKR[16] = ‘1’ + LCKR[15:0] RD LCKR RD LCKR[16] = ‘1’ (this read operation is optional but it confirms that the lock is active) Note: During the LOCK key write sequence, the value of LCK[15:0] must not change. Any error in the lock sequence aborts the lock. After the first lock sequence on any bit of the port, any read access on the LCKK bit will return ‘1’ until the next MCU reset or peripheral reset. Bits 15:0 LCKy: Port x lock bit y (y= 0..15) These bits are read/write but can only be written when the LCKK bit is ‘0. 0: Port configuration not locked 1: Port configuration locked 6.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..K) Address offset: 0x20 Reset value: 0x0000 0000 31 30 rw rw 15 14 29 28 27 26 rw rw rw rw 13 12 11 10 AFR7[3:0] rw rw 24 23 22 rw rw rw rw 9 8 7 6 AFR6[3:0] AFR3[3:0] rw 25 rw rw rw 20 19 18 rw rw rw rw rw rw 5 4 3 2 1 0 AFR5[3:0] AFR2[3:0] rw 21 rw rw rw AFR0[3:0] rw rw Bits 31:0 AFRy[3:0]: Alternate function selection for port x pin y (y = 0..7) These bits are written by software to configure alternate function I/Os AFSELy selection: 0000: AF0 0001: AF1 0010: AF2 0011: AF3 0100: AF4 0101: AF5 0110: AF6 0111: AF7 212/1709 1000: AF8 1001: AF9 1010: AF10 1011: AF11 1100: AF12 1101: AF13 1110: AF14 1111: AF15 RM0385 Rev 7 16 AFR4[3:0] AFR1[3:0] rw 17 rw rw rw RM0385 General-purpose I/Os (GPIO) 6.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A..J) Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 AFR15[3:0] 26 25 24 23 AFR14[3:0] 22 21 20 19 AFR13[3:0] 18 17 16 AFR12[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AFR11[3:0] rw rw rw AFR10[3:0] rw rw rw rw AFR9[3:0] rw rw rw rw AFR8[3:0] rw rw rw rw rw Bits 31:0 AFRy[3:0]: Alternate function selection for port x pin y (y = 8..15) These bits are written by software to configure alternate function I/Os AFSELy selection: 0000: AF0 0001: AF1 0010: AF2 0011: AF3 0100: AF4 0101: AF5 0110: AF6 0111: AF7 1000: AF8 1001: AF9 1010: AF10 1011: AF11 1100: AF12 1101: AF13 1110: AF14 1111: AF15 RM0385 Rev 7 213/1709 215 0x08 Reset value GPIOB_OSPEEDR Reset value GPIOx_OSPEEDR (where x = C..K) Reset value 0x0C 214/1709 GPIOA_PUPDR Reset value 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GPIOx_OTYPER (where x = A..K) Reset value 0 0 0 0 0 0 0 0 RM0385 Rev 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OT1 OT0 MODER0[1:0] MODER0[1:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 OSPEEDR0[1:0] MODER1[1:0] 0 OSPEEDR0[1:0] MODER1[1:0] 0 OSPEEDR0[1:0] OT2 0 PUPDR0[1:0] OT3 0 OSPEEDR1[1:0] MODER2[1:0] 0 OSPEEDR1[1:0] MODER2[1:0] 0 OSPEEDR1[1:0] OT4 0 PUPDR1[1:0] OT5 1 OSPEEDR2[1:0] MODER3[1:0] 0 OSPEEDR2[1:0] MODER3[1:0] 0 OSPEEDR2[1:0] OT6 0 PUPDR2[1:0] OT7 1 OSPEEDR3[1:0] MODER4[1:0] 0 OSPEEDR3[1:0] MODER4[1:0] 0 OSPEEDR3[1:0] OT8 0 PUPDR3[1:0] OT9 0 OSPEEDR4[1:0] 0 OSPEEDR4[1:0] MODER5[1:0] 0 OSPEEDR4[1:0] MODER5[1:0] 0 PUPDR4[1:0] OT11 OT10 0 OSPEEDR5[1:0] MODER6[1:0] 0 OSPEEDR5[1:0] MODER6[1:0] 0 OSPEEDR5[1:0] OT12 0 PUPDR5[1:0] OT13 0 OSPEEDR6[1:0] 0 OSPEEDR6[1:0] MODER7[1:0] 0 OSPEEDR6[1:0] MODER7[1:0] 0 PUPDR6[1:0] OT14 0 OT15 0 OSPEEDR7[1:0] MODER8[1:0] 0 OSPEEDR7[1:0] MODER8[1:0] 0 OSPEEDR7[1:0] 0 Res. 0 PUPDR7[1:0] 0 Res. 0 OSPEEDR8[1:0] MODER9[1:0] 0 OSPEEDR8[1:0] MODER9[1:0] 0 OSPEEDR8[1:0] 0 Res. 0 PUPDR8[1:0] 0 Res. 0 OSPEEDR9[1:0] MODER10[1:0] 0 OSPEEDR9[1:0] MODER10[1:0] 0 OSPEEDR9[1:0] 0 Res. 0 PUPDR9[1:0] 0 Res. 0 OSPEEDR10[1:0] MODER11[1:0] 0 OSPEEDR10[1:0] MODER11[1:0] 0 OSPEEDR10[1:0] 0 Res. 0 PUPDR10[1:0] 0 Res. 0 OSPEEDR11[1:0] MODER12[1:0] 0 OSPEEDR11[1:0] MODER12[1:0] 0 OSPEEDR11[1:0] 0 Res. 0 PUPDR11[1:0] 0 Res. 0 OSPEEDR12[1:0] MODER13[1:0] 0 OSPEEDR12[1:0] MODER13[1:0] 1 OSPEEDR12[1:0] 0 Res. 0 PUPDR12[1:0] 0 Res. MODER14[1:0] 0 OSPEEDR13[1:0] MODER14[1:0] 0 OSPEEDR13[1:0] 0 Res. MODER15[1:0] 1 OSPEEDR13[1:0] GPIOA_OSPEEDR 0 PUPDR13[1:0] 0 Res. GPIOx_MODER (where x = C..K) OSPEEDR14[1:0] 0x00 0 OSPEEDR14[1:0] Reset value 1 OSPEEDR14[1:0] 0x08 GPIOB_MODER MODER15[1:0] Reset value PUPDR14[1:0] 0x08 0 Res. 0x04 Reset value Res. 0x00 MODER0[1:0] MODER1[1:0] MODER2[1:0] MODER3[1:0] MODER4[1:0] MODER5[1:0] MODER6[1:0] MODER7[1:0] MODER8[1:0] MODER9[1:0] MODER10[1:0] MODER11[1:0] MODER12[1:0] MODER13[1:0] MODER14[1:0] MODER15[1:0] GPIOA_MODER OSPEEDR15[1:0] 0x00 OSPEEDR15[1:0] 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset Register name OSPEEDR15[1:0] 6.4.11 PUPDR15[1:0] General-purpose I/Os (GPIO) RM0385 GPIO register map The following table gives the GPIO register map and reset values. Table 22. GPIO register map and reset values 0 0 0 0 0 0 0 0 0 0 RM0385 General-purpose I/Os (GPIO) 0 0 0 0 0x10 Res. Res. PUPDR0[1:0] 0 0x14 GPIOx_ODR (where x = A..K) 0 0 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0 BS0 ODR7 BS1 ODR8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LCK0 ODR9 0 LCK1 ODR11 ODR10 BS2 ODR12 BS3 ODR13 0 LCK2 ODR14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AFR4[3:0] 0 0 LCK3 Res. 0 0 BS4 Res. 0 0 BS5 Res. 0 0 LCK4 Res. 0 0 LCK5 Res. 0 0 BS6 Res. 0 0 BS7 Res. 0 0 LCK6 Res. 0 0 LCK7 Res. 0 0 BS8 Res. Reset value 0 0 BS9 Res. Reset value AFR5[3:0] 0 LCK8 Res. 0x24 GPIOx_AFRH (where x = A..J) AFR6[3:0] 0 0 Reset value AFR7[3:0] 0 LCK9 Res. 0x20 GPIOx_AFRL (where x = A..K) 0 BS11 0x1C 0 BS10 0 x LCK11 0 x LCK10 BR3 0 x BS12 BR4 0 x BS13 BR5 0 x LCK12 BR6 0 x LCK13 BR7 0 x BS14 BR8 0 x BS15 BR9 0 x LCK14 BR11 BR10 0 x LCK15 BR12 0 x BR0 BR13 0 x BR1 BR14 0 x Res. BR15 Reset value GPIOx_LCKR (where x = A..K) x LCKK GPIOx_BSRR (where x = A..I/J/K) x BR2 0x18 Res. Reset value x ODR15 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value IDR0 0 IDR1 0 Res. PUPDR1[1:0] 0 IDR2 1 IDR3 0 Res. PUPDR2[1:0] 0 IDR4 0 IDR5 0 Res. PUPDR3[1:0] 0 IDR6 0 IDR7 0 Res. PUPDR4[1:0] 0 IDR8 0 IDR9 0 Res. PUPDR5[1:0] 0 IDR11 0 IDR10 0 Res. PUPDR6[1:0] 0 IDR12 0 IDR13 0 Res. PUPDR7[1:0] 0 IDR14 0 IDR15 0 Res. PUPDR8[1:0] 0 Res. PUPDR9[1:0] PUPDR10[1:0] 0 Res. PUPDR11[1:0] PUPDR12[1:0] 0 Res. PUPDR13[1:0] 0 Res. PUPDR14[1:0] Reset value GPIOx_IDR (where x = A..I/J/K) Res. GPIOB_PUPDR Res. 0x0C PUPDR15[1:0] Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 22. GPIO register map and reset values (continued) 0 0 0 AFR3[3:0] 0 0 0 0 AFR2[3:0] 0 0 0 0 AFR15[3:0] AFR14[3:0] AFR13[3:0] AFR12[3:0] AFR11[3:0] AFR10[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 AFR1[3:0] 0 0 0 0 AFR9[3:0] 0 0 0 0 AFR0[3:0] 0 0 0 0 AFR8[3:0] 0 0 0 0 Refer to Section 2.2 for the register boundary addresses. RM0385 Rev 7 215/1709 215 System configuration controller (SYSCFG) 7 RM0385 System configuration controller (SYSCFG) The system configuration controller is mainly used to: 7.1 • Remap the memory areas • Select the Ethernet PHY interface • Manage the external interrupt line connection to the GPIOs. I/O compensation cell By default the I/O compensation cell is not used. However when the I/O output buffer speed is configured in 50 MHz or 100 MHz mode, it is recommended to use the compensation cell for slew rate control on I/O tf(IO)out)/tr(IO)out commutation to reduce the I/O noise on power supply. When the compensation cell is enabled, a READY flag is set to indicate that the compensation cell is ready and can be used. The I/O compensation cell can be used only when the supply voltage ranges from 2.4 to 3.6 V. 7.2 SYSCFG registers 7.2.1 SYSCFG memory remap register (SYSCFG_MEMRMP) This register is used for specific configurations on memory mapping: • 1bit is used to indicate which option bytes BOOT_ADD0 or BOOT_ADD1 defines the boot memory base address. • Other bits are used to swap FMC SDRAM Banks with FMC NOR/PSRAM bank Address offset: 0x00 Reset value: 0x0000 0000 ) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MEM_ BOOT SWP_FMC[1:0] rw rw r Bits 31:12 Reserved, must be kept at reset value. 216/1709 RM0385 Rev 7 RM0385 System configuration controller (SYSCFG) Bits 11:10 SWP_FMC[1:0]: FMC memory mapping swap Set and cleared by software. These bits are used to swap the FMC SDRAM banks and FMC NOR/PSRAM in order to enable the code execution from SDRAM Banks without modifying the default MPU attribute 00: No FMC memory mapping swapping SDRAM bank1 and Bank2 are mapped at 0xC000 0000 and 0xD000 0000 respectively (default mapping) NOR/RAM is accessible @ 0x60000000 (default mapping) 01: NOR/RAM and SDRAM memory mapping swapped, SDRAM bank1 and bank2 are mapped at 0x6000 0000 and 0x7000 0000, respectively NOR/PSRAM bank is mapped at 0xC000 0000 10: Reserved 11: Reserved Bits 9:1 Reserved, must be kept at reset value. Bit 0 MEM_BOOT: Memory boot mapping This bit indicates which option bytes BOOT_ADD0 or BOOT_ADD1 defines the boot memory base address. 0: Boot memory base address is defined by BOOT_ADD0 option byte (Factory Reset value: TCM-FLASH mapped at 0x00200000). 1: Boot memory base address is defined by BOOT_ADD1 option byte (Factory Reset value: System memory mapped at 0x001 0000). Note: Refer to section 2.3: Memory map for details about the boot memory base address selection. 7.2.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 MII_RMII _SEL Res. Res. Res. Res. 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. ADCxDC2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw Bits 31:24 Reserved, must be kept at reset value. Bit 23 MII_RMII_SEL: Ethernet PHY interface selection Set and Cleared by software.These bits control the PHY interface for the Ethernet MAC. 0: MII interface is selected 1: RMII PHY interface is selected Note: This configuration must be done while the MAC is under reset and before enabling the MAC clocks. Bits 22:19 Reserved, must be kept at reset value. RM0385 Rev 7 217/1709 221 System configuration controller (SYSCFG) RM0385 Bits 18:16 ADCxDC2: 0: No effect. 1: Refer to AN4073 on how to use this bit. Note: These bits can be set only if the following conditions are met: - ADC clock higher or equal to 30 MHz. - Only one ADCxDC2 bit must be selected if ADC conversions do not start at the same time and the sampling times differ. - These bits must not be set when the ADCDC1 bit is set in PWR_CR register. Bits 15:0 Reserved, must be kept at reset value. 7.2.3 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EXTI3[3:0] rw rw rw EXTI2[3:0] rw rw rw rw EXTI1[3:0] rw rw rw rw EXTI0[3:0] rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 0 to 3) These bits are written by software to select the source input for the EXTIx external interrupt. 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin 0111: PH[x] pin 1000: PI[x] pin 1001:PJ[x] pin 1010:PK[x] pin 7.2.4 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2) Address offset: 0x0C Reset value: 0x0000 0000 218/1709 RM0385 Rev 7 rw RM0385 System configuration controller (SYSCFG) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EXTI7[3:0] rw rw rw EXTI6[3:0] rw rw rw rw EXTI5[3:0] rw rw rw rw EXTI4[3:0] rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 4 to 7) These bits are written by software to select the source input for the EXTIx external interrupt. 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin 0111: PH[x] pin 1000: PI[x] pin 1001:PJ[x] pin 1010:PK[x] pin 7.2.5 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EXTI11[3:0] rw rw rw EXTI10[3:0] rw rw rw rw EXTI9[3:0] rw rw rw rw EXTI8[3:0] rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 8 to 11) These bits are written by software to select the source input for the EXTIx external interrupt. 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin 0111: PH[x] pin 1000: PI[x] pin 1001:PJ[x] pin 1010:PK[x] pin Note: PK[11:8] are not used RM0385 Rev 7 219/1709 221 System configuration controller (SYSCFG) 7.2.6 RM0385 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 EXTI15[3:0] rw rw EXTI14[3:0] rw rw rw rw rw EXTI13[3:0] rw rw rw rw EXTI12[3:0] rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 12 to 15) These bits are written by software to select the source input for the EXTIx external interrupt. 0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin 0111: PH[x] pin 1001:PJ[x] pin 1010:PK[x] pin Note: PK[15:12] are not used 7.2.7 Compensation cell control register (SYSCFG_CMPCR) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. READY Res. Res. Res. Res. Res. Res. Res. CMP_PD r Bits 31:9 Reserved, must be kept at reset value. Bit 8 READY: Compensation cell ready flag 0: I/O compensation cell not ready 1: O compensation cell ready Bits 7:2 Reserved, must be kept at reset value. Bit 0 CMP_PD: Compensation cell power-down 0: I/O compensation cell power-down mode 1: I/O compensation cell enabled 220/1709 RM0385 Rev 7 rw RM0385 7.2.8 System configuration controller (SYSCFG) SYSCFG register maps The following table gives the SYSCFG register map and the reset values. 0 0 EXTI2[3:0] 0 0 0 0 EXTI6[3:0] 0 0 0 0 EXTI11[3:0] EXTI10[3:0] 0 0 Res. MEM_BOOT Res. Res. Res. Res. Res. 0 0 0 EXTI9[3:0] 0 Res. Res. Res. 0 0 0 EXTI8[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CMP_PD 0 EXTI12[3:0] Res. 0 EXTI13[3:0] Res. 0 EXTI14[3:0] Res. 0 EXTI15[3:0] Res. 0 EXTI4[3:0] Res. 0 0 Res. 0 0 READY 0 Res. Res. Res. Res. Res. 0 0 Res. 0 EXTI5[3:0] EXTI0[3:0] 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 EXTI1[3:0] 0 Res. 0 Res. Res. Res. Res. Res. SWP_FMC[1:0] Res. 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SYSCFG_CMPCR Res. 0x20 Res. Reset value 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x14 Res. Reset value SYSCFG_EXTICR4 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x10 0 EXTI7[3:0] 0 Res. Reset value SYSCFG_EXTICR3 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SYSCFG_EXTICR2 Res. 0x0C EXTI3[3:0] 0 Res. Reset value Res. ADC1DC2 0 Res. ADC2DC2 0 Res. ADC3DC2 Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SYSCFG_EXTICR1 Res. 0x08 0 Res. Reset value MII_RMII_SEL Res. Res. Res. Res. Res. Res. SYSCFG_PMC Res. 0x04 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SYSCFG_ MEMRMP Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 Res. Register Res. Offset Res. Table 23. SYSCFG register map and reset values Reset value 0 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. RM0385 Rev 7 221/1709 221 Direct memory access controller (DMA) RM0385 8 Direct memory access controller (DMA) 8.1 DMA introduction Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory and between memory and memory. Data can be quickly moved by DMA without any CPU action. This keeps CPU resources free for other operations. The DMA controller combines a powerful dual AHB master bus architecture with independent FIFO to optimize the bandwidth of the system, based on a complex bus matrix architecture. The two DMA controllers (DMA1 and DMA2) have 16 streams in total (8 for each controller), each dedicated to managing memory access requests from one or more peripherals. Each stream can have up to 8 channels (requests) in total. Each DMA controller has an arbiter for handling the priority between DMA requests. 8.2 DMA main features The main DMA features are: • Dual AHB master bus architecture, one dedicated to memory accesses and one dedicated to peripheral accesses • AHB slave programming interface supporting only 32-bit accesses • 8 streams for each DMA controller, up to 8 channels (requests) per stream • Four-word depth 32 first-in, first-out memory buffers (FIFOs) per stream, that can be used in FIFO mode or direct mode: • 222/1709 – FIFO mode: with threshold level software selectable between 1/4, 1/2 or 3/4 of the FIFO size – Direct mode: each DMA request immediately initiates a transfer from/to the memory. When it is configured in direct mode (FIFO disabled), to transfer data in memory-to-peripheral mode, the DMA preloads only one data from the memory to the internal FIFO to ensure an immediate data transfer as soon as a DMA request is triggered by a peripheral. Each stream can be configured to be: – a regular channel that supports peripheral-to-memory, memory-to-peripheral and memory-to-memory transfers – a double buffer channel that also supports double buffering on the memory side • Priorities between DMA stream requests are software-programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (for example, request 0 has priority over request 1) • Each stream also supports software trigger for memory-to-memory transfers (only available for the DMA2 controller) • Each stream request can be selected among up to 8 possible channel requests. This selection is software-configurable and allows several peripherals to initiate DMA requests • The number of data items to be transferred can be managed either by the DMA controller or by the peripheral: RM0385 Rev 7 RM0385 Direct memory access controller (DMA) – DMA flow controller: the number of data items to be transferred is softwareprogrammable from 1 to 65535 – Peripheral flow controller: the number of data items to be transferred is unknown and controlled by the source or the destination peripheral that signals the end of the transfer by hardware • Independent source and destination transfer width (byte, half-word, word): when the data widths of the source and destination are not equal, the DMA automatically packs/unpacks the necessary transfers to optimize the bandwidth. This feature is only available in FIFO mode • Incrementing or non-incrementing addressing for source and destination • Supports incremental burst transfers of 4, 8 or 16 beats. The size of the burst is software-configurable, usually equal to half the FIFO size of the peripheral • Each stream supports circular buffer management • 5 event flags (DMA half transfer, DMA transfer complete, DMA transfer error, DMA FIFO error, direct mode error) logically ORed together in a single interrupt request for each stream RM0385 Rev 7 223/1709 256 Direct memory access controller (DMA) RM0385 8.3 DMA functional description 8.3.1 DMA block diagram Figure 23 shows the block diagram of a DMA. Figure 23. DMA block diagram STREAM 7 Peripheral port FIFO FIFO Memory port STREAM 7 STREAM 6 STREAM 5 FIFO STREAM 5 STREAM 6 STREAM 4 FIFO STREAM 3 FIFO STREAM 3 STREAM 4 STREAM 2 STREAM 1 FIFO FIFO STREAM 2 REQ_STR7_CH0 REQ_STR7_CH1 FIFO Arbiter STREAM 1 REQ_STR1_CH7 REQ_STREAM0 REQ_STREAM1 REQ_STREAM2 REQ_STREAM3 REQ_STREAM4 REQ_STREAM5 REQ_STREAM6 REQ_STREAM7 STREAM 0 REQ_STR1_CH0 REQ_STR1_CH1 STREAM 0 REQ_STR0_CH7 AHB master REQ_STR0_CH0 REQ_STR0_CH1 AHB master DMA controller REQ_STR7_CH7 Channel selection AHB slave programming interface Programming port ai15945b 8.3.2 DMA overview The DMA controller performs direct memory transfer: as an AHB master, it can take the control of the AHB bus matrix to initiate AHB transactions. It carries out the following transactions: • peripheral-to-memory • memory-to-peripheral • memory-to-memory The DMA controller provides two AHB master ports: the AHB memory port, intended to be connected to memories and the AHB peripheral port, intended to be connected to peripherals. However, to allow memory-to-memory transfers, the AHB peripheral port must also have access to the memories. The AHB slave port is used to program the DMA controller (it supports only 32-bit accesses). 224/1709 RM0385 Rev 7 RM0385 Note: Direct memory access controller (DMA) The DMA1 controller AHB peripheral port is not connected to the bus matrix like in the case of the DMA2 controller, thus only DMA2 streams are able to perform memory-to-memory transfers. See Figure 1 for the implementation of the system of two DMA controllers. 8.3.3 DMA transactions A DMA transaction consists of a sequence of a given number of data transfers. The number of data items to be transferred and their width (8-bit, 16-bit or 32-bit) are softwareprogrammable. Each DMA transfer consists of three operations: • a loading from the peripheral data register or a location in memory, addressed through the DMA_SxPAR or DMA_SxM0AR register • a storage of the data loaded to the peripheral data register or a location in memory addressed through the DMA_SxPAR or DMA_SxM0AR register • a post-decrement of the DMA_SxNDTR register, containing the number of transactions that still have to be performed After an event, the peripheral sends a request signal to the DMA controller. The DMA controller serves the request depending on the channel priorities. As soon as the DMA controller accesses the peripheral, an Acknowledge signal is sent to the peripheral by the DMA controller. The peripheral releases its request as soon as it gets the Acknowledge signal from the DMA controller. Once the request has been deasserted by the peripheral, the DMA controller releases the Acknowledge signal. If there are more requests, the peripheral can initiate the next transaction. 8.3.4 Channel selection Each stream is associated with a DMA request that can be selected out of 816 possible channel requests. The selection is controlled by the CHSEL[23:0] bits in the DMA_SxCR register. Figure 24. Channel selection REQ_STRx_CH7 REQ_STRx_CH6 REQ_STRx_CH5 REQ_STREAMx REQ_STRx_CH4 REQ_STRx_CH3 REQ_STRx_CH2 REQ_STRx_CH1 REQ_STRx_CH0 31 DMA_SxCR 27 25 0 CHSEL[2:0] ai15947b RM0385 Rev 7 225/1709 256 Direct memory access controller (DMA) RM0385 The 8 requests from the peripherals (such as TIM, ADC, SPI, I2C) are independently connected to each channel and their connection depends on the product implementation. Table 24 and Table 25 give examples of DMA request mappings. Table 24. DMA1 request mapping Peripheral requests Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7 Channel 0 SPI3_RX SPDIFRX_DT SPI3_RX SPI2_RX SPI2_TX SPI3_TX SPDIFRX_CS SPI3_TX Channel 1 I2C1_RX I2C3_RX TIM7_UP - TIM7_UP I2C1_RX I2C1_TX I2C1_TX Channel 2 TIM4_CH1 - I2C4_RX TIM4_CH2 - I2C4_RX TIM4_UP TIM4_CH3 Channel 3 - TIM2_UP TIM2_CH3 I2C3_RX - I2C3_TX TIM2_CH1 TIM2_CH2 TIM2_CH4 TIM2_UP TIM2_CH4 Channel 4 UART5_RX USART3_RX UART4_RX USART3_TX UART4_TX USART2_RX USART2_TX UART5_TX UART7_RX TIM3_CH1 TIM3_TRIG TIM3_CH2 UART8_RX TIM3_CH3 Channel 5 UART8_TX UART7_TX TIM3_CH4 TIM3_UP Channel 6 TIM5_CH3 TIM5_UP TIM5_CH4 TIM5_TRIG TIM5_CH1 TIM5_CH4 TIM5_TRIG TIM5_CH2 - TIM5_UP - TIM6_UP I2C2_RX I2C2_RX USART3_TX DAC1 DAC2 I2C2_TX Channel 7 Table 25. DMA2 request mapping Peripheral requests Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7 Channel 0 ADC1 SAI1_A TIM8_CH1 TIM8_CH2 TIM8_CH3 SAI1_A ADC1 SAI1_B TIM1_CH1 TIM1_CH2 TIM1_CH3 SAI2_B Channel 1 - DCMI ADC2 ADC2 SAI1_B SPI6_TX SPI6_RX DCMI Channel 2 ADC3 ADC3 - SPI5_RX SPI5_TX CRYP_OUT CRYP_IN HASH_IN Channel 3 SPI1_RX - SPI1_RX SPI1_TX SAI2_A SPI1_TX SAI2_B QUADSPI Channel 4 SPI4_RX SPI4_TX USART1_RX SDMMC1 - USART1_RX SDMMC1 USART1_TX Channel 5 - USART6_RX USART6_RX SPI4_RX SPI4_TX - USART6_TX USART6_TX TIM1_UP TIM1_CH3 - SPI5_RX SPI5_TX TIM8_CH4 TIM8_TRIG TIM8_COM Channel 6 TIM1_TRIG TIM1_CH1 TIM1_CH2 TIM1_CH1 TIM1_CH4 TIM1_TRIG TIM1_COM Channel 7 - TIM8_UP TIM8_CH1 TIM8_CH2 TIM8_CH3 226/1709 RM0385 Rev 7 RM0385 8.3.5 Direct memory access controller (DMA) Arbiter An arbiter manages the 8 DMA stream requests based on their priority for each of the two AHB master ports (memory and peripheral ports) and launches the peripheral/memory access sequences. Priorities are managed in two stages: • • 8.3.6 Software: each stream priority can be configured in the DMA_SxCR register. There are four levels: – Very high priority – High priority – Medium priority – Low priority Hardware: If two requests have the same software priority level, the stream with the lower number takes priority over the stream with the higher number. For example, stream 2 takes priority over stream 4. DMA streams Each of the 8 DMA controller streams provides a unidirectional transfer link between a source and a destination. Each stream can be configured to perform: • Regular type transactions: memory-to-peripherals, peripherals-to-memory or memoryto-memory transfers • Double-buffer type transactions: double buffer transfers using two memory pointers for the memory (while the DMA is reading/writing from/to a buffer, the application can write/read to/from the other buffer). The amount of data to be transferred (up to 65535) is programmable and related to the source width of the peripheral that requests the DMA transfer connected to the peripheral AHB port. The register that contains the amount of data items to be transferred is decremented after each transaction. 8.3.7 Source, destination and transfer modes Both source and destination transfers can address peripherals and memories in the entire 4 Gbytes area, at addresses comprised between 0x0000 0000 and 0xFFFF FFFF. The direction is configured using the DIR[1:0] bits in the DMA_SxCR register and offers three possibilities: memory-to-peripheral, peripheral-to-memory or memory-to-memory transfers. Table 26 describes the corresponding source and destination addresses. Table 26. Source and destination address Bits DIR[1:0] of the DMA_SxCR register Direction Source address Destination address 00 Peripheral-to-memory DMA_SxPAR DMA_SxM0AR 01 Memory-to-peripheral DMA_SxM0AR DMA_SxPAR 10 Memory-to-memory DMA_SxPAR DMA_SxM0AR 11 Reserved - - RM0385 Rev 7 227/1709 256 Direct memory access controller (DMA) RM0385 When the data width (programmed in the PSIZE or MSIZE bits in the DMA_SxCR register) is a half-word or a word, respectively, the peripheral or memory address written into the DMA_SxPAR or DMA_SxM0AR/M1AR registers has to be aligned on a word or half-word address boundary, respectively. Peripheral-to-memory mode Figure 25 describes this mode. When this mode is enabled (by setting the bit EN in the DMA_SxCR register), each time a peripheral request occurs, the stream initiates a transfer from the source to fill the FIFO. When the threshold level of the FIFO is reached, the contents of the FIFO are drained and stored into the destination. The transfer stops once the DMA_SxNDTR register reaches zero, when the peripheral requests the end of transfers (in case of a peripheral flow controller) or when the EN bit in the DMA_SxCR register is cleared by software. In direct mode (when the DMDIS value in the DMA_SxFCR register is ‘0’), the threshold level of the FIFO is not used: after each single data transfer from the peripheral to the FIFO, the corresponding data are immediately drained and stored into the destination. The stream has access to the AHB source or destination port only if the arbitration of the corresponding stream is won. This arbitration is performed using the priority defined for each stream using the PL[1:0] bits in the DMA_SxCR register. Figure 25. Peripheral-to-memory mode DMA_SxM0AR DMA controller DMA_SxM1AR(1) AHB memory port Memory bus Memory destination REQ_STREAMx FIFO level Arbiter FIFO AHB peripheral port Peripheral bus peripheral source DMA_SxPAR Peripheral DMA request ai15948 1. For double-buffer mode. Memory-to-peripheral mode Figure 26 describes this mode. When this mode is enabled (by setting the EN bit in the DMA_SxCR register), the stream immediately initiates transfers from the source to entirely fill the FIFO. 228/1709 RM0385 Rev 7 RM0385 Direct memory access controller (DMA) Each time a peripheral request occurs, the contents of the FIFO are drained and stored into the destination. When the level of the FIFO is lower than or equal to the predefined threshold level, the FIFO is fully reloaded with data from the memory. The transfer stops once the DMA_SxNDTR register reaches zero, when the peripheral requests the end of transfers (in case of a peripheral flow controller) or when the EN bit in the DMA_SxCR register is cleared by software. In direct mode (when the DMDIS value in the DMA_SxFCR register is '0'), the threshold level of the FIFO is not used. Once the stream is enabled, the DMA preloads the first data to transfer into an internal FIFO. As soon as the peripheral requests a data transfer, the DMA transfers the preloaded value into the configured destination. It then reloads again the empty internal FIFO with the next data to be transfer. The preloaded data size corresponds to the value of the PSIZE bitfield in the DMA_SxCR register. The stream has access to the AHB source or destination port only if the arbitration of the corresponding stream is won. This arbitration is performed using the priority defined for each stream using the PL[1:0] bits in the DMA_SxCR register. Figure 26. Memory-to-peripheral mode DMA_SxM0AR DMA controller DMA_SxM1AR(1) AHB memory port Memory bus Memory source REQ_STREAMx Arbiter FIFO level FIFO AHB peripheral port DMA_SxPAR Peripheral bus Peripheral destination Peripheral DMA request ai15949 1. For double-buffer mode. Memory-to-memory mode The DMA channels can also work without being triggered by a request from a peripheral. This is the memory-to-memory mode, described in Figure 27. When the stream is enabled by setting the Enable bit (EN) in the DMA_SxCR register, the stream immediately starts to fill the FIFO up to the threshold level. When the threshold level is reached, the FIFO contents are drained and stored into the destination. The transfer stops once the DMA_SxNDTR register reaches zero or when the EN bit in the DMA_SxCR register is cleared by software. RM0385 Rev 7 229/1709 256 Direct memory access controller (DMA) RM0385 The stream has access to the AHB source or destination port only if the arbitration of the corresponding stream is won. This arbitration is performed using the priority defined for each stream using the PL[1:0] bits in the DMA_SxCR register. Note: When memory-to-memory mode is used, the circular and direct modes are not allowed. Only the DMA2 controller is able to perform memory-to-memory transfers. Figure 27. Memory-to-memory mode DMA_SxM0AR DMA controller DMA_SxM1AR(1) AHB memory port Memory bus Memory 2 destination Arbiter Stream enable FIFO level FIFO AHB peripheral port DMA_SxPAR Peripheral bus Memory 1 source ai15950 1. For double-buffer mode. 8.3.8 Pointer incrementation Peripheral and memory pointers can optionally be automatically post-incremented or kept constant after each transfer depending on the PINC and MINC bits in the DMA_SxCR register. Disabling the increment mode is useful when the peripheral source or destination data is accessed through a single register. If the increment mode is enabled, the address of the next transfer is the address of the previous one incremented by 1 (for bytes), 2 (for half-words) or 4 (for words) depending on the data width programmed in the PSIZE or MSIZE bits in the DMA_SxCR register. In order to optimize the packing operation, it is possible to fix the increment offset size for the peripheral address whatever the size of the data transferred on the AHB peripheral port. The PINCOS bit in the DMA_SxCR register is used to align the increment offset size with the data size on the peripheral AHB port, or on a 32-bit address (the address is then incremented by 4). The PINCOS bit has an impact on the AHB peripheral port only. If the PINCOS bit is set, the address of the following transfer is the address of the previous one incremented by 4 (automatically aligned on a 32-bit address), whatever the PSIZE value. The AHB memory port, however, is not impacted by this operation. 230/1709 RM0385 Rev 7 RM0385 8.3.9 Direct memory access controller (DMA) Circular mode The circular mode is available to handle circular buffers and continuous data flows (e.g. ADC scan mode). This feature can be enabled using the CIRC bit in the DMA_SxCR register. When the circular mode is activated, the number of data items to be transferred is automatically reloaded with the initial value programmed during the stream configuration phase, and the DMA requests continue to be served. Note: In the circular mode, it is mandatory to respect the following rule in case of a burst mode configured for memory: DMA_SxNDTR = Multiple of ((Mburst beat) × (Msize)/(Psize)), where: – (Mburst beat) = 4, 8 or 16 (depending on the MBURST bits in the DMA_SxCR register) – ((Msize)/(Psize)) = 1, 2, 4, 1/2 or 1/4 (Msize and Psize represent the MSIZE and PSIZE bits in the DMA_SxCR register. They are byte dependent) – DMA_SxNDTR = Number of data items to transfer on the AHB peripheral port For example: Mburst beat = 8 (INCR8), MSIZE = ‘00’ (byte) and PSIZE = ‘01’ (half-word), in this case: DMA_SxNDTR must be a multiple of (8 × 1/2 = 4). If this formula is not respected, the DMA behavior and data integrity are not guaranteed. NDTR must also be a multiple of the Peripheral burst size multiplied by the peripheral data size, otherwise this could result in a bad DMA behavior. 8.3.10 Double-buffer mode This mode is available for all the DMA1 and DMA2 streams. The double-buffer mode is enabled by setting the DBM bit in the DMA_SxCR register. A double-buffer stream works as a regular (single buffer) stream with the difference that it has two memory pointers. When the double-buffer mode is enabled, the circular mode is automatically enabled (CIRC bit in DMA_SxCR is not relevant) and at each end of transaction, the memory pointers are swapped. In this mode, the DMA controller swaps from one memory target to another at each end of transaction. This allows the software to process one memory area while the second memory area is being filled/used by the DMA transfer. The double-buffer stream can work in both directions (the memory can be either the source or the destination) as described in Table 27: Source and destination address registers in double-buffer mode (DBM = 1). Note: In double-buffer mode, it is possible to update the base address for the AHB memory port on-the-fly (DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled, by respecting the following conditions: • When the CT bit is ‘0’ in the DMA_SxCR register, the DMA_SxM1AR register can be written. Attempting to write to this register while CT = '1' sets an error flag (TEIF) and the stream is automatically disabled. • When the CT bit is ‘1’ in the DMA_SxCR register, the DMA_SxM0AR register can be written. Attempting to write to this register while CT = '0', sets an error flag (TEIF) and the stream is automatically disabled. To avoid any error condition, it is advised to change the base address as soon as the TCIF flag is asserted because, at this point, the targeted memory must have changed from RM0385 Rev 7 231/1709 256 Direct memory access controller (DMA) RM0385 memory 0 to 1 (or from 1 to 0) depending on the value of CT in the DMA_SxCR register in accordance with one of the two above conditions. For all the other modes (except the double-buffer mode), the memory address registers are write-protected as soon as the stream is enabled. Table 27. Source and destination address registers in double-buffer mode (DBM = 1) Bits DIR[1:0] of the DMA_SxCR register Direction Source address Destination address 00 Peripheral-to-memory DMA_SxPAR DMA_SxM0AR / DMA_SxM1AR 01 Memory-to-peripheral DMA_SxM0AR / DMA_SxM1AR DMA_SxPAR Not allowed(1) 10 11 Reserved - - 1. When the double-buffer mode is enabled, the circular mode is automatically enabled. Since the memory-to-memory mode is not compatible with the circular mode, when the double-buffer mode is enabled, it is not allowed to configure the memory-to-memory mode. 8.3.11 Programmable data width, packing/unpacking, endianness The number of data items to be transferred has to be programmed into DMA_SxNDTR (number of data items to transfer bit, NDT) before enabling the stream (except when the flow controller is the peripheral, PFCTRL bit in DMA_SxCR is set). When using the internal FIFO, the data widths of the source and destination data are programmable through the PSIZE and MSIZE bits in the DMA_SxCR register (can be 8-, 16- or 32-bit). When PSIZE and MSIZE are not equal: • The data width of the number of data items to transfer, configured in the DMA_SxNDTR register is equal to the width of the peripheral bus (configured by the PSIZE bits in the DMA_SxCR register). For instance, in case of peripheral-to-memory, memory-toperipheral or memory-to-memory transfers and if the PSIZE[1:0] bits are configured for half-word, the number of bytes to be transferred is equal to 2 × NDT. • The DMA controller only copes with little-endian addressing for both source and destination. This is described in Table 28: Packing/unpacking and endian behavior (bit PINC = MINC = 1). This packing/unpacking procedure may present a risk of data corruption when the operation is interrupted before the data are completely packed/unpacked. So, to ensure data coherence, the stream may be configured to generate burst transfers: in this case, each group of transfers belonging to a burst are indivisible (refer to Section 8.3.12: Single and burst transfers). In direct mode (DMDIS = 0 in the DMA_SxFCR register), the packing/unpacking of data is not possible. In this case, it is not allowed to have different source and destination transfer data widths: both are equal and defined by the PSIZE bits in the DMA_SxCR register. MSIZE bits are not relevant. 232/1709 RM0385 Rev 7 RM0385 Direct memory access controller (DMA) Table 28. Packing/unpacking and endian behavior (bit PINC = MINC = 1) Number AHB AHB of data Memory memory peripheral items to transfer port port transfer - number width width (NDT) 8 8 4 1 2 -3 4 8 16 2 -3 Peripheral port address / byte lane Memory port address / byte lane Peripheral transfer number PINCOS = 1 PINCOS = 0 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 2 3 4 0x0 / B0[7:0] 0x4 / B1[7:0] 0x8 / B2[7:0] 0xC / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 2 1 0x0 / B1|B0[15:0] 0x0 / B1|B0[15:0] 2 0x4 / B3|B2[15:0] 0x2 / B3|B2[15:0] 4 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 0x0 / B3|B2|B1|B0[31:0] 0x0 / B3|B2|B1|B0[31:0] 1 2 3 4 0x0 / B0[7:0] 0x4 / B1[7:0] 0x8 / B2[7:0] 0xC / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 8 32 1 1 2 -3 4 1 0x0 / B1|B0[15:0] 16 8 4 -2 0x2 / B3|B2[15:0] 0x0 / B1|B0[15:0] 1 0x0 / B1|B0[15:0] 0x0 / B1|B0[15:0] 16 2 - 1 16 2 0x2 / B1|B0[15:0] 2 0x4 / B3|B2[15:0] 0x2 / B3|B2[15:0] 1 0x0 / B1|B0[15:0] 0x2 / B3|B2[15:0] 1 0x0 / B3|B2|B1|B0[31:0] 0x0 / B3|B2|B1|B0[31:0] 1 0x0 / B3|B2|B1|B0[31:0] 1 2 3 4 0x0 / B0[7:0] 0x4 / B1[7:0] 0x8 / B2[7:0] 0xC / B3[7:0] 0x0 / B0[7:0] 0x1 / B1[7:0] 0x2 / B2[7:0] 0x3 / B3[7:0] 1 0x0 /B3|B2|B1|B0[31:0] 1 2 0x0 / B1|B0[15:0] 0x4 / B3|B2[15:0] 0x0 / B1|B0[15:0] 0x2 / B3|B2[15:0] 0x0 /B3|B2|B1|B0 [31:0] 1 0x0 /B3|B2|B1|B0 [31:0] 0x0 / B3|B2|B1|B0[31:0] 16 32 1 -2 32 8 4 - 32 16 2 - 32 32 1 -1 Note: Peripheral port may be the source or the destination (it could also be the memory source in the case of memory-to-memory transfer). PSIZE, MSIZE and NDT[15:0] have to be configured so as to ensure that the last transfer will not be incomplete. This can occur when the data width of the peripheral port (PSIZE bits) is lower than the data width of the memory port (MSIZE bits). This constraint is summarized in Table 29. Table 29. Restriction on NDT versus PSIZE and MSIZE PSIZE[1:0] of DMA_SxCR MSIZE[1:0] of DMA_SxCR NDT[15:0] of DMA_SxNDTR 00 (8-bit) 01 (16-bit) must be a multiple of 2 00 (8-bit) 10 (32-bit) must be a multiple of 4 01 (16-bit) 10 (32-bit) must be a multiple of 2 RM0385 Rev 7 233/1709 256 Direct memory access controller (DMA) 8.3.12 RM0385 Single and burst transfers The DMA controller can generate single transfers or incremental burst transfers of 4, 8 or 16 beats. The size of the burst is configured by software independently for the two AHB ports by using the MBURST[1:0] and PBURST[1:0] bits in the DMA_SxCR register. The burst size indicates the number of beats in the burst, not the number of bytes transferred. To ensure data coherence, each group of transfers that form a burst are indivisible: AHB transfers are locked and the arbiter of the AHB bus matrix does not degrant the DMA master during the sequence of the burst transfer. Depending on the single or burst configuration, each DMA request initiates a different number of transfers on the AHB peripheral port: • When the AHB peripheral port is configured for single transfers, each DMA request generates a data transfer of a byte, half-word or word depending on the PSIZE[1:0] bits in the DMA_SxCR register • When the AHB peripheral port is configured for burst transfers, each DMA request generates 4,8 or 16 beats of byte, half word or word transfers depending on the PBURST[1:0] and PSIZE[1:0] bits in the DMA_SxCR register. The same as above has to be considered for the AHB memory port considering the MBURST and MSIZE bits. In direct mode, the stream can only generate single transfers and the MBURST[1:0] and PBURST[1:0] bits are forced by hardware. The address pointers (DMA_SxPAR or DMA_SxM0AR registers) must be chosen so as to ensure that all transfers within a burst block are aligned on the address boundary equal to the size of the transfer. The burst configuration has to be selected in order to respect the AHB protocol, where bursts must not cross the 1 Kbyte address boundary because the minimum address space that can be allocated to a single slave is 1 Kbyte. This means that the 1 Kbyte address boundary must not be crossed by a burst block transfer, otherwise an AHB error is generated, that is not reported by the DMA registers. 8.3.13 FIFO FIFO structure The FIFO is used to temporarily store data coming from the source before transmitting them to the destination. Each stream has an independent 4-word FIFO and the threshold level is softwareconfigurable between 1/4, 1/2, 3/4 or full. To enable the use of the FIFO threshold level, the direct mode must be disabled by setting the DMDIS bit in the DMA_SxFCR register. The structure of the FIFO differs depending on the source and destination data widths, and is described in Figure 28: FIFO structure. 234/1709 RM0385 Rev 7 RM0385 Direct memory access controller (DMA) Figure 28. FIFO structure 4 words Empty Source: byte B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 1/4 1/2 3/4 Full byte lane 3 B15 B 11 B7 B3 byte lane 2 B14 B10 B6 B2 byte lane 1 B13 B9 B5 B1 byte lane 0 W3 B12 W2 B8 W1 B4 W0 B0 Destination: word W3, W2, W1, W0 4 words Empty byte lane 3 Source: byte B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 1/4 1/2 3/4 B15 B 11 B7 byte lane 2 H7 B14 H5 B10 H3 B6 B13 B9 B5 byte lane 0 H6 B12 H4 B8 H2 B4 byte lane 1 Full B3 H1 Destination: half-word B2 H7, H6, H5, H4, H3, H2, H1, H0 B1 H0 B0 4 words Empty Source: half-word 1/4 1/2 3/4 Full byte lane 3 H7 H5 H3 H1 H6 H4 H2 H0 Destination: word byte lane 2 H7 H6 H5 H4 H3 H2 H1 H0 W3, W2, W1, W0 byte lane 1 byte lane 0 W3 W2 W1 W0 4-words Empty Source: half-word H7 H6 H5 H4 H3 H2 H1 H0 byte lane 3 1/4 1/2 3/4 B15 B 11 B7 byte lane 2 H7 B14 H5 B10 H3 B6 B13 B9 B5 byte lane 0 H6 B12 H4 B8 H2 B4 byte lane 1 Full B3 H1 Destination: byte B2 B1 H0 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 B0 ai15951 FIFO threshold and burst configuration Caution is required when choosing the FIFO threshold (bits FTH[1:0] of the DMA_SxFCR register) and the size of the memory burst (MBURST[1:0] of the DMA_SxCR register): The content pointed by the FIFO threshold must exactly match an integer number of memory burst transfers. If this is not in the case, a FIFO error (flag FEIFx of the DMA_HISR or DMA_LISR register) is generated when the stream is enabled, then the stream is automatically disabled. The allowed and forbidden configurations are described in Table 30. The forbidden configurations are highlighted in gray in the table. Table 30. FIFO threshold configurations MSIZE Byte FIFO level MBURST = INCR4 MBURST = INCR8 1/4 1 burst of 4 beats Forbidden 1/2 2 bursts of 4 beats 1 burst of 8 beats 3/4 3 bursts of 4 beats Forbidden Full 4 bursts of 4 beats 2 bursts of 8 beats RM0385 Rev 7 MBURST = INCR16 Forbidden 1 burst of 16 beats 235/1709 256 Direct memory access controller (DMA) RM0385 Table 30. FIFO threshold configurations (continued) MSIZE Half-word FIFO level MBURST = INCR4 1/4 Forbidden 1/2 1 burst of 4 beats 3/4 Forbidden Full 2 bursts of 4 beats MBURST = INCR8 Forbidden 1 burst of 8 beats 1/4 Word 1/2 Forbidden 3/4 Full MBURST = INCR16 Forbidden Forbidden 1 burst of 4 beats In all cases, the burst size multiplied by the data size must not exceed the FIFO size (data size can be: 1 (byte), 2 (half-word) or 4 (word)). Incomplete burst transfer at the end of a DMA transfer may happen if one of the following conditions occurs: • For the AHB peripheral port configuration: the total number of data items (set in the DMA_SxNDTR register) is not a multiple of the burst size multiplied by the data size. • For the AHB memory port configuration: the number of remaining data items in the FIFO to be transferred to the memory is not a multiple of the burst size multiplied by the data size. In such cases, the remaining data to be transferred is managed in single mode by the DMA, even if a burst transaction is requested during the DMA stream configuration. Note: When burst transfers are requested on the peripheral AHB port and the FIFO is used (DMDIS = 1 in the DMA_SxCR register), it is mandatory to respect the following rule to avoid permanent underrun or overrun conditions, depending on the DMA stream direction: If (PBURST × PSIZE) = FIFO_SIZE (4 words), FIFO_Threshold = 3/4 is forbidden with PSIZE = 1, 2 or 4 and PBURST = 4, 8 or 16. This rule ensures that enough FIFO space at a time is free to serve the request from the peripheral. FIFO flush The FIFO can be flushed when the stream is disabled by resetting the EN bit in the DMA_SxCR register and when the stream is configured to manage peripheral-to-memory or memory-to-memory transfers. If some data are still present in the FIFO when the stream is disabled, the DMA controller continues transferring the remaining data to the destination (even though stream is effectively disabled). When this flush is completed, the transfer complete status bit (TCIFx) in the DMA_LISR or DMA_HISR register is set. The remaining data counter DMA_SxNDTR keeps the value in this case to indicate how many data items are currently available in the destination memory. Note that during the FIFO flush operation, if the number of remaining data items in the FIFO to be transferred to memory (in bytes) is less than the memory data width (for example 2 bytes in FIFO while MSIZE is configured to word), data is sent with the data width set in the MSIZE bit in the DMA_SxCR register. This means that memory is written with an undesired 236/1709 RM0385 Rev 7 RM0385 Direct memory access controller (DMA) value. The software may read the DMA_SxNDTR register to determine the memory area that contains the good data (start address and last address). If the number of remaining data items in the FIFO is lower than a burst size (if the MBURST bits in DMA_SxCR register are set to configure the stream to manage burst on the AHB memory port), single transactions are generated to complete the FIFO flush. Direct mode By default, the FIFO operates in direct mode (DMDIS bit in the DMA_SxFCR is reset) and the FIFO threshold level is not used. This mode is useful when the system requires an immediate and single transfer to or from the memory after each DMA request. When the DMA is configured in direct mode (FIFO disabled), to transfer data in memory-toperipheral mode, the DMA preloads one data from the memory to the internal FIFO to ensure an immediate data transfer as soon as a DMA request is triggered by a peripheral. To avoid saturating the FIFO, it is recommended to configure the corresponding stream with a high priority. This mode is restricted to transfers where: • the source and destination transfer widths are equal and both defined by the PSIZE[1:0] bits in DMA_SxCR (MSIZE[1:0] bits are not relevant) • burst transfers are not possible (PBURST[1:0] and MBURST[1:0] bits in DMA_SxCR are don’t care) Direct mode must not be used when implementing memory-to-memory transfers. 8.3.14 DMA transfer completion Different events can generate an end of transfer by setting the TCIFx bit in the DMA_LISR or DMA_HISR status register: • • Note: In DMA flow controller mode: – The DMA_SxNDTR counter has reached zero in the memory-to-peripheral mode. – The stream is disabled before the end of transfer (by clearing the EN bit in the DMA_SxCR register) and (when transfers are peripheral-to-memory or memoryto-memory) all the remaining data have been flushed from the FIFO into the memory. In Peripheral flow controller mode: – The last external burst or single request has been generated from the peripheral and (when the DMA is operating in peripheral-to-memory mode) the remaining data have been transferred from the FIFO into the memory – The stream is disabled by software, and (when the DMA is operating in peripheralto-memory mode) the remaining data have been transferred from the FIFO into the memory The transfer completion is dependent on the remaining data in FIFO to be transferred into memory only in the case of peripheral-to-memory mode. This condition is not applicable in memory-to-peripheral mode. If the stream is configured in noncircular mode, after the end of the transfer (that is when the number of data to be transferred reaches zero), the DMA is stopped (EN bit in DMA_SxCR register is cleared by Hardware) and no DMA request is served unless the software reprograms the stream and re-enables it (by setting the EN bit in the DMA_SxCR register). RM0385 Rev 7 237/1709 256 Direct memory access controller (DMA) 8.3.15 RM0385 DMA transfer suspension At any time, a DMA transfer can be suspended to be restarted later on or to be definitively disabled before the end of the DMA transfer. There are two cases: • The stream disables the transfer with no later-on restart from the point where it was stopped. There is no particular action to do, except to clear the EN bit in the DMA_SxCR register to disable the stream. The stream may take time to be disabled (ongoing transfer is completed first). The transfer complete interrupt flag (TCIF in the DMA_LISR or DMA_HISR register) is set in order to indicate the end of transfer. The value of the EN bit in DMA_SxCR is now ‘0’ to confirm the stream interruption. The DMA_SxNDTR register contains the number of remaining data items at the moment when the stream was stopped so that the software can determine how many data items have been transferred before the stream was interrupted. • The stream suspends the transfer before the number of remaining data items to be transferred in the DMA_SxNDTR register reaches 0. The aim is to restart the transfer later by re-enabling the stream. In order to restart from the point where the transfer was stopped, the software has to read the DMA_SxNDTR register after disabling the stream by writing the EN bit in DMA_SxCR register (and then checking that it is at ‘0’) to know the number of data items already collected. Then: – The peripheral and/or memory addresses have to be updated in order to adjust the address pointers – The SxNDTR register has to be updated with the remaining number of data items to be transferred (the value read when the stream was disabled) – The stream may then be re-enabled to restart the transfer from the point it was stopped Note: A transfer complete interrupt flag (TCIF in DMA_LISR or DMA_HISR) is set to indicate the end of transfer due to the stream interruption. 8.3.16 Flow controller The entity that controls the number of data to be transferred is known as the flow controller. This flow controller is configured independently for each stream using the PFCTRL bit in the DMA_SxCR register. The flow controller can be: • The DMA controller: in this case, the number of data items to be transferred is programmed by software into the DMA_SxNDTR register before the DMA stream is enabled. • The peripheral source or destination: this is the case when the number of data items to be transferred is unknown. The peripheral indicates by hardware to the DMA controller when the last data are being transferred. This feature is only supported for peripherals that are able to signal the end of the transfer, that is: SDMMC1. When the peripheral flow controller is used for a given stream, the value written into the DMA_SxNDTR has no effect on the DMA transfer. Actually, whatever the value written, it will be forced by hardware to 0xFFFF as soon as the stream is enabled, to respect the following schemes: • 238/1709 Anticipated stream interruption: EN bit in DMA_SxCR register is reset to 0 by the software to stop the stream before the last data hardware signal (single or burst) is sent by the peripheral. In such a case, the stream is switched off and the FIFO flush is RM0385 Rev 7 RM0385 Direct memory access controller (DMA) triggered in the case of a peripheral-to-memory DMA transfer. The TCIFx flag of the corresponding stream is set in the status register to indicate the DMA completion. To know the number of data items transferred during the DMA transfer, read the DMA_SxNDTR register and apply the following formula: – Note: Number_of_data_transferred = 0xFFFF – DMA_SxNDTR • Normal stream interruption due to the reception of a last data hardware signal: the stream is automatically interrupted when the peripheral requests the last transfer (single or burst) and when this transfer is complete. the TCIFx flag of the corresponding stream is set in the status register to indicate the DMA transfer completion. To know the number of data items transferred, read the DMA_SxNDTR register and apply the same formula as above. • The DMA_SxNDTR register reaches 0: the TCIFx flag of the corresponding stream is set in the status register to indicate the forced DMA transfer completion. The stream is automatically switched off even though the last data hardware signal (single or burst) has not been yet asserted. The already transferred data is not lost. This means that a maximum of 65535 data items can be managed by the DMA in a single transaction, even in peripheral flow control mode. When configured in memory-to-memory mode, the DMA is always the flow controller and the PFCTRL bit is forced to 0 by hardware. The circular mode is forbidden in the peripheral flow controller mode. 8.3.17 Summary of the possible DMA configurations Table 31 summarizes the different possible DMA configurations. The forbidden configurations are highlighted in gray in the table. Table 31. Possible DMA configurations DMA transfer mode Peripheral-tomemory Memory-toperipheral Memory-tomemory Source Destination Flow controller Circular mode DMA Possible Peripheral Forbidden DMA Possible Peripheral Forbidden DMA only Forbidden AHB AHB peripheral port memory port AHB memory port AHB peripheral port AHB AHB peripheral port memory port RM0385 Rev 7 Transfer type Direct mode single Possible burst Forbidden single Possible burst Forbidden single Possible burst Forbidden single Possible burst Forbidden single burst Doublebuffer mode Possible Forbidden Possible Forbidden Forbidden Forbidden 239/1709 256 Direct memory access controller (DMA) 8.3.18 RM0385 Stream configuration procedure The following sequence must be followed to configure a DMA stream x (where x is the stream number): 1. If the stream is enabled, disable it by resetting the EN bit in the DMA_SxCR register, then read this bit in order to confirm that there is no ongoing stream operation. Writing this bit to 0 is not immediately effective since it is actually written to 0 once all the current transfers are finished. When the EN bit is read as 0, this means that the stream is ready to be configured. It is therefore necessary to wait for the EN bit to be cleared before starting any stream configuration. All the stream dedicated bits set in the status register (DMA_LISR and DMA_HISR) from the previous data block DMA transfer must be cleared before the stream can be re-enabled. 2. Set the peripheral port register address in the DMA_SxPAR register. The data is moved from/ to this address to/ from the peripheral port after the peripheral event. 3. Set the memory address in the DMA_SxMA0R register (and in the DMA_SxMA1R register in the case of a double-buffer mode). The data is written to or read from this memory after the peripheral event. 4. Configure the total number of data items to be transferred in the DMA_SxNDTR register. After each peripheral event or each beat of the burst, this value is decremented. 5. Select the DMA channel (request) using CHSEL[2:0] in the DMA_SxCR register. 6. If the peripheral is intended to be the flow controller and if it supports this feature, set the PFCTRL bit in the DMA_SxCR register. 7. Configure the stream priority using the PL[1:0] bits in the DMA_SxCR register. 8. Configure the FIFO usage (enable or disable, threshold in transmission and reception) 9. Configure the data transfer direction, peripheral and memory incremented/fixed mode, single or burst transactions, peripheral and memory data widths, circular mode, double-buffer mode and interrupts after half and/or full transfer, and/or errors in the DMA_SxCR register. 10. Activate the stream by setting the EN bit in the DMA_SxCR register. As soon as the stream is enabled, it can serve any DMA request from the peripheral connected to the stream. Once half the data have been transferred on the AHB destination port, the half-transfer flag (HTIF) is set and an interrupt is generated if the half-transfer interrupt enable bit (HTIE) is set. At the end of the transfer, the transfer complete flag (TCIF) is set and an interrupt is generated if the transfer complete interrupt enable bit (TCIE) is set. Warning: 240/1709 To switch off a peripheral connected to a DMA stream request, it is mandatory to, first, switch off the DMA stream to which the peripheral is connected, then to wait for EN bit = 0. Only then can the peripheral be safely disabled. RM0385 Rev 7 RM0385 8.3.19 Direct memory access controller (DMA) Error management The DMA controller can detect the following errors: • • • Transfer error: the transfer error interrupt flag (TEIFx) is set when: – a bus error occurs during a DMA read or a write access – a write access is requested by software on a memory address register in double-buffer mode whereas the stream is enabled and the current target memory is the one impacted by the write into the memory address register (refer to Section 8.3.10: Double-buffer mode) FIFO error: the FIFO error interrupt flag (FEIFx) is set if: – a FIFO underrun condition is detected – a FIFO overrun condition is detected (no detection in memory-to-memory mode because requests and transfers are internally managed by the DMA) – the stream is enabled while the FIFO threshold level is not compatible with the size of the memory burst (refer to Table 30: FIFO threshold configurations) Direct mode error: the direct mode error interrupt flag (DMEIFx) can only be set in the peripheral-to-memory mode while operating in direct mode and when the MINC bit in the DMA_SxCR register is cleared. This flag is set when a DMA request occurs while the previous data have not yet been fully transferred into the memory (because the memory bus was not granted). In this case, the flag indicates that 2 data items were be transferred successively to the same destination address, which could be an issue if the destination is not able to manage this situation In direct mode, the FIFO error flag can also be set under the following conditions: • In the peripheral-to-memory mode, the FIFO can be saturated (overrun) if the memory bus is not granted for several peripheral requests. • In the memory-to-peripheral mode, an underrun condition may occur if the memory bus has not been granted before a peripheral request occurs. If the TEIFx or the FEIFx flag is set due to incompatibility between burst size and FIFO threshold level, the faulty stream is automatically disabled through a hardware clear of its EN bit in the corresponding stream configuration register (DMA_SxCR). If the DMEIFx or the FEIFx flag is set due to an overrun or underrun condition, the faulty stream is not automatically disabled and it is up to the software to disable or not the stream by resetting the EN bit in the DMA_SxCR register. This is because there is no data loss when this kind of errors occur. When the stream's error interrupt flag (TEIF, FEIF, DMEIF) in the DMA_LISR or DMA_HISR register is set, an interrupt is generated if the corresponding interrupt enable bit (TEIE, FEIE, DMIE) in the DMA_SxCR or DMA_SxFCR register is set. Note: When a FIFO overrun or underrun condition occurs, the data is not lost because the peripheral request is not acknowledged by the stream until the overrun or underrun condition is cleared. If this acknowledge takes too much time, the peripheral itself may detect an overrun or underrun condition of its internal buffer and data might be lost. RM0385 Rev 7 241/1709 256 Direct memory access controller (DMA) 8.4 RM0385 DMA interrupts For each DMA stream, an interrupt can be produced on the following events: • Half-transfer reached • Transfer complete • Transfer error • FIFO error (overrun, underrun or FIFO level error) • Direct mode error Separate interrupt enable control bits are available for flexibility as shown in Table 32. Table 32. DMA interrupt requests Interrupt event Event flag Enable control bit Half-transfer HTIF HTIE Transfer complete TCIF TCIE Transfer error TEIF TEIE FIFO overrun/underrun FEIF FEIE DMEIF DMEIE Direct mode error Note: 242/1709 Before setting an enable control bit EN = 1, the corresponding event flag must be cleared, otherwise an interrupt is immediately generated. RM0385 Rev 7 RM0385 Direct memory access controller (DMA) 8.5 DMA registers The DMA registers have to be accessed by words (32 bits). 8.5.1 DMA low interrupt status register (DMA_LISR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. TCIF3 HTIF3 TEIF3 DMEIF3 Res. FEIF3 TCIF2 HTIF2 TEIF2 DMEIF2 Res. FEIF2 r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. TCIF1 HTIF1 TEIF1 DMEIF1 Res. FEIF1 TCIF0 HTIF0 TEIF0 DMEIF0 Res. FEIF0 r r r r r r r r r r Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 TCIF[3:0]: stream x transfer complete interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: no transfer complete event on stream x 1: a transfer complete event occurred on stream x Bits 26, 20, 10, 4 HTIF[3:0]: stream x half transfer interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: no half transfer event on stream x 1: a half transfer event occurred on stream x Bits 25, 19, 9, 3 TEIF[3:0]: stream x transfer error interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: no transfer error on stream x 1: a transfer error occurred on stream x Bits 24, 18, 8, 2 DMEIF[3:0]: stream x direct mode error interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: No direct mode error on stream x 1: a direct mode error occurred on stream x Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 FEIF[3:0]: stream x FIFO error interrupt flag (x = 3..0) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register. 0: no FIFO error event on stream x 1: a FIFO error event occurred on stream x RM0385 Rev 7 243/1709 256 Direct memory access controller (DMA) 8.5.2 RM0385 DMA high interrupt status register (DMA_HISR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. TCIF7 HTIF7 TEIF7 DMEIF7 Res. FEIF7 TCIF6 HTIF6 TEIF6 DMEIF6 Res. FEIF6 r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. TCIF5 HTIF5 TEIF5 DMEIF5 Res. FEIF5 TCIF4 HTIF4 TEIF4 DMEIF4 Res. FEIF4 r r r r r r r r r r r Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 TCIF[7:4]: stream x transfer complete interrupt flag (x = 7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: no transfer complete event on stream x 1: atransfer complete event occurred on stream x Bits 26, 20, 10, 4 HTIF[7:4]: stream x half transfer interrupt flag (x = 7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: no half transfer event on stream x 1: a half transfer event occurred on stream x Bits 25, 19, 9, 3 TEIF[7:4]: stream x transfer error interrupt flag (x = 7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: no transfer error on stream x 1: a transfer error occurred on stream x Bits 24, 18, 8, 2 DMEIF[7:4]: stream x direct mode error interrupt flag (x = 7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: no direct mode error on stream x 1: a direct mode error occurred on stream x Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 FEIF[7:4]: stream x FIFO error interrupt flag (x = 7..4) This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_HIFCR register. 0: no FIFO error event on stream x 1: a FIFO error event occurred on stream x 244/1709 RM0385 Rev 7 RM0385 Direct memory access controller (DMA) 8.5.3 DMA low interrupt flag clear register (DMA_LIFCR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 Res. Res. Res. Res. 27 15 14 13 12 Res. Res. Res. Res. 26 25 24 CTCIF3 CHTIF3 CTEIF3 CDMEIF3 w w w w 11 10 9 8 CTCIF1 CHTIF1 CTEIF1 CDMEIF1 w w w 23 22 21 Res. CFEIF3 CTCIF2 20 19 18 CHTIF2 CTEIF2 CDMEIF2 w w w w w 7 6 5 4 3 2 Res. CFEIF1 CTCIF0 w w w CHTIF0 CTEIF0 CDMEIF0 w w 17 16 Res. CFEIF2 w 1 0 Res. CFEIF0 w w Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 CTCIF[3:0]: stream x clear transfer complete interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_LISR register. Bits 26, 20, 10, 4 CHTIF[3:0]: stream x clear half transfer interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding HTIFx flag in the DMA_LISR register Bits 25, 19, 9, 3 CTEIF[3:0]: Stream x clear transfer error interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding TEIFx flag in the DMA_LISR register. Bits 24, 18, 8, 2 CDMEIF[3:0]: stream x clear direct mode error interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding DMEIFx flag in the DMA_LISR register. Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 CFEIF[3:0]: stream x clear FIFO error interrupt flag (x = 3..0) Writing 1 to this bit clears the corresponding CFEIFx flag in the DMA_LISR register. 8.5.4 DMA high interrupt flag clear register (DMA_HIFCR) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. CTCIF7 CHTIF7 CTEIF7 CDMEIF7 15 14 13 12 w w w w 11 10 9 8 Res. Res. Res. Res. CTCIF5 CHTIF5 CTEIF5 CDMEIF5 w w w 23 22 21 20 Res. CFEIF7 CTCIF6 CHTIF6 w w w 7 6 5 4 Res. CFEIF5 CTCIF4 CHTIF4 w w w w 19 18 CTEIF6 CDMEIF6 w w 3 2 CTEIF4 CDMEIF4 w 17 16 Res. CFEIF6 w 1 0 Res. CFEIF4 w w Bits 31:28, 15:12 Reserved, must be kept at reset value. Bits 27, 21, 11, 5 CTCIF[7:4]: stream x clear transfer complete interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_HISR register. Bits 26, 20, 10, 4 CHTIF[7:4]: stream x clear half transfer interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding HTIFx flag in the DMA_HISR register. Bits 25, 19, 9, 3 CTEIF[7:4]: stream x clear transfer error interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding TEIFx flag in the DMA_HISR register. RM0385 Rev 7 245/1709 256 Direct memory access controller (DMA) RM0385 Bits 24, 18, 8, 2 CDMEIF[7:4]: stream x clear direct mode error interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding DMEIFx flag in the DMA_HISR register. Bits 23, 17, 7, 1 Reserved, must be kept at reset value. Bits 22, 16, 6, 0 CFEIF[7:4]: stream x clear FIFO error interrupt flag (x = 7..4) Writing 1 to this bit clears the corresponding CFEIFx flag in the DMA_HISR register. 8.5.5 DMA stream x configuration register (DMA_SxCR) This register is used to configure the concerned stream. Address offset: 0x10 + 0x18 * x, (x = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 Res. Res. Res. Res. 27 rw 15 PINCOS rw 14 13 12 11 MSIZE[1:0] PSIZE[1:0] rw rw rw 26 25 CHSEL[2:0] rw rw 24 23 MBURST [1:0] rw 22 rw rw rw 7 6 10 9 8 MINC PINC CIRC rw rw rw DIR[1:0] rw 21 PBURST[1:0] rw 20 19 18 Res. CT DBM rw rw rw 17 rw 5 4 3 2 1 0 TCIE HTIE TEIE DMEIE EN rw rw rw rw rw rw Bits 27:25 CHSEL[2:0]: channel selection These bits are set and cleared by software. 000: channel 0 selected 001: channel 1 selected 010: channel 2 selected 011: channel 3 selected 100: channel 4 selected 101: channel 5 selected 110: channel 6 selected 111: channel 7 selected These bits are protected and can be written only if EN is ‘0’. Bits 24:23 MBURST[1:0]: memory burst transfer configuration These bits are set and cleared by software. 00: single transfer 01: INCR4 (incremental burst of 4 beats) 10: INCR8 (incremental burst of 8 beats) 11: INCR16 (incremental burst of 16 beats) These bits are protected and can be written only if EN is ‘0’. In direct mode, these bits are forced to 0x0 by hardware as soon as bit EN= '1'. Bits 22:21 PBURST[1:0]: peripheral burst transfer configuration These bits are set and cleared by software. 00: single transfer 01: INCR4 (incremental burst of 4 beats) 10: INCR8 (incremental burst of 8 beats) 11: INCR16 (incremental burst of 16 beats) These bits are protected and can be written only if EN is ‘0’. In direct mode, these bits are forced to 0x0 by hardware. 246/1709 RM0385 Rev 7 rw PFCTRL Bits 31:28 Reserved, must be kept at reset value. Bit 20 Reserved, must be kept at reset value. 16 PL[1:0] RM0385 Direct memory access controller (DMA) Bit 19 CT: current target (only in double-buffer mode) This bit is set and cleared by hardware. It can also be written by software. 0: current target memory is Memory 0 (addressed by the DMA_SxM0AR pointer) 1: current target memory is Memory 1 (addressed by the DMA_SxM1AR pointer) This bit can be written only if EN is ‘0’ to indicate the target memory area of the first transfer. Once the stream is enabled, this bit operates as a status flag indicating which memory area is the current target. Bit 18 DBM: double-buffer mode This bit is set and cleared by software. 0: no buffer switching at the end of transfer 1: memory target switched at the end of the DMA transfer This bit is protected and can be written only if EN is ‘0’. Bits 17:16 PL[1:0]: priority level These bits are set and cleared by software. 00: low 01: medium 10: high 11: very high These bits are protected and can be written only if EN is ‘0’. Bit 15 PINCOS: peripheral increment offset size This bit is set and cleared by software 0: The offset size for the peripheral address calculation is linked to the PSIZE 1: The offset size for the peripheral address calculation is fixed to 4 (32-bit alignment). This bit has no meaning if bit PINC = '0'. This bit is protected and can be written only if EN = '0'. This bit is forced low by hardware when the stream is enabled (bit EN = '1') if the direct mode is selected or if PBURST are different from “00”. Bits 14:13 MSIZE[1:0]: memory data size These bits are set and cleared by software. 00: byte (8-bit) 01: half-word (16-bit) 10: word (32-bit) 11: reserved These bits are protected and can be written only if EN is ‘0’. In direct mode, MSIZE is forced by hardware to the same value as PSIZE as soon as bit EN = '1'. Bits 12:11 PSIZE[1:0]: peripheral data size These bits are set and cleared by software. 00: byte (8-bit) 01: half-word (16-bit) 10: word (32-bit) 11: reserved These bits are protected and can be written only if EN is ‘0’. Bit 10 MINC: memory increment mode This bit is set and cleared by software. 0: memory address pointer is fixed 1: memory address pointer is incremented after each data transfer (increment is done according to MSIZE) This bit is protected and can be written only if EN is ‘0’. RM0385 Rev 7 247/1709 256 Direct memory access controller (DMA) RM0385 Bit 9 PINC: peripheral increment mode This bit is set and cleared by software. 0: peripheral address pointer is fixed 1: peripheral address pointer is incremented after each data transfer (increment is done according to PSIZE) This bit is protected and can be written only if EN is ‘0’. Bit 8 CIRC: circular mode This bit is set and cleared by software and can be cleared by hardware. 0: circular mode disabled 1: circular mode enabled When the peripheral is the flow controller (bit PFCTRL = 1) and the stream is enabled (bit EN = 1), then this bit is automatically forced by hardware to 0. It is automatically forced by hardware to 1 if the DBM bit is set, as soon as the stream is enabled (bit EN ='1'). Bits 7:6 DIR[1:0]: data transfer direction These bits are set and cleared by software. 00: peripheral-to-memory 01: memory-to-peripheral 10: memory-to-memory 11: reserved These bits are protected and can be written only if EN is ‘0’. Bit 5 PFCTRL: peripheral flow controller This bit is set and cleared by software. 0: DMA is the flow controller 1: The peripheral is the flow controller This bit is protected and can be written only if EN is ‘0’. When the memory-to-memory mode is selected (bits DIR[1:0]=10), then this bit is automatically forced to 0 by hardware. Bit 4 TCIE: transfer complete interrupt enable This bit is set and cleared by software. 0: TC interrupt disabled 1: TC interrupt enabled Bit 3 HTIE: half transfer interrupt enable This bit is set and cleared by software. 0: HT interrupt disabled 1: HT interrupt enabled Bit 2 TEIE: transfer error interrupt enable This bit is set and cleared by software. 0: TE interrupt disabled 1: TE interrupt enabled Bit 1 DMEIE: direct mode error interrupt enable This bit is set and cleared by software. 0: DME interrupt disabled 1: DME interrupt enabled 248/1709 RM0385 Rev 7 RM0385 Direct memory access controller (DMA) Bit 0 EN: stream enable / flag stream ready when read low This bit is set and cleared by software. 0: stream disabled 1: stream enabled This bit may be cleared by hardware: – on a DMA end of transfer (stream ready to be configured) – if a transfer error occurs on the AHB master buses – when the FIFO threshold on memory AHB port is not compatible with the size of the burst When this bit is read as 0, the software is allowed to program the configuration and FIFO bits registers. It is forbidden to write these registers when the EN bit is read as 1. Note: Before setting EN bit to '1' to start a new transfer, the event flags corresponding to the stream in DMA_LISR or DMA_HISR register must be cleared. 8.5.6 DMA stream x number of data register (DMA_SxNDTR) Address offset: 0x14 + 0x18 * x, (x = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw NDT[15:0] rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 NDT[15:0]: number of data items to transfer (0 up to 65535) This register can be written only when the stream is disabled. When the stream is enabled, this register is read-only, indicating the remaining data items to be transmitted. This register decrements after each DMA transfer. Once the transfer is completed, this register can either stay at zero (when the stream is in normal mode) or be reloaded automatically with the previously programmed value in the following cases: – when the stream is configured in circular mode. – when the stream is enabled again by setting EN bit to '1'. If the value of this register is zero, no transaction can be served even if the stream is enabled. RM0385 Rev 7 249/1709 256 Direct memory access controller (DMA) 8.5.7 RM0385 DMA stream x peripheral address register (DMA_SxPAR) Address offset: 0x18 + 0x18 * x, (x = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PAR[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw PAR[15:0] rw Bits 31:0 PAR[31:0]: peripheral address Base address of the peripheral data register from/to which the data is read/written. These bits are write-protected and can be written only when bit EN = '0' in the DMA_SxCR register. 8.5.8 DMA stream x memory 0 address register (DMA_SxM0AR) Address offset: 0x1C + 0x18 * x, (x = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 M0A[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw M0A[15:0] rw Bits 31:0 M0A[31:0]: memory 0 address Base address of memory area 0 from/to which the data is read/written. These bits are write-protected. They can be written only if: – the stream is disabled (bit EN= '0' in the DMA_SxCR register) or – the stream is enabled (EN=’1’ in DMA_SxCR register) and bit CT = '1' in the DMA_SxCR register (in double-buffer mode). 8.5.9 DMA stream x memory 1 address register (DMA_SxM1AR) Address offset: 0x20 + 0x18 * x, (x = 0 to 7) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 M1A[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw M1A[15:0] rw 250/1709 rw rw rw rw rw rw rw rw RM0385 Rev 7 RM0385 Direct memory access controller (DMA) Bits 31:0 M1A[31:0]: memory 1 address (used in case of double-buffer mode) Base address of memory area 1 from/to which the data is read/written. This register is used only for the double-buffer mode. These bits are write-protected. They can be written only if: – the stream is disabled (bit EN= '0' in the DMA_SxCR register) or – the stream is enabled (EN=’1’ in DMA_SxCR register) and bit CT = '0' in the DMA_SxCR register. 8.5.10 DMA stream x FIFO control register (DMA_SxFCR) Address offset: 0x24 + 0x24 * x, (x = 0 to 7) Reset value: 0x0000 0021 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. Res. Res. Res. FEIE Res. rw FS[2:0] r r DMDIS r rw FTH[1:0] rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 FEIE: FIFO error interrupt enable This bit is set and cleared by software. 0: FE interrupt disabled 1: FE interrupt enabled Bit 6 Reserved, must be kept at reset value. Bits 5:3 FS[2:0]: FIFO status These bits are read-only. 000: 0 < fifo_level < 1/4 001: 1/4 ≤ fifo_level < 1/2 010: 1/2 ≤ fifo_level < 3/4 011: 3/4 ≤ fifo_level < full 100: FIFO is empty 101: FIFO is full others: no meaning These bits are not relevant in the direct mode (DMDIS bit is zero). Bit 2 DMDIS: direct mode disable This bit is set and cleared by software. It can be set by hardware. 0: direct mode enabled 1: direct mode disabled This bit is protected and can be written only if EN is ‘0’. This bit is set by hardware if the memory-to-memory mode is selected (DIR bit in DMA_SxCR are “10”) and the EN bit in the DMA_SxCR register is ‘1’ because the direct mode is not allowed in the memory-to-memory configuration. RM0385 Rev 7 251/1709 256 Direct memory access controller (DMA) RM0385 Bits 1:0 FTH[1:0]: FIFO threshold selection These bits are set and cleared by software. 00: 1/4 full FIFO 01: 1/2 full FIFO 10: 3/4 full FIFO 11: full FIFO These bits are not used in the direct mode when the DMIS value is zero. These bits are protected and can be written only if EN is ‘0’. 252/1709 RM0385 Rev 7 0x0028 0x002C DMA_S1CR DMA_S1NDTR Res. CT DBM 0 0 0 0 0 0 0 - 0 0 0 0 Res Res Res Res Res Res Reset value Res 0 0 0 0 0 0 DMA_S0FCR Res FEIE Res 0 0 0 0 0 DMA_S0M0AR 0 DMA_S0M1AR 0 DMA_S0PAR 0 0 Reset value RM0385 Rev 7 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMEIE EN 0 TEIE 0 0 0 0 CFEIF4 0 0 0 0 0 FS[2:0] Res 0 0 0 0 0 0 0 0 FEIF4 0 0 0 0 0 0 0 0 Res TEIF0 DMEIF0 0 CFEIF0 0 CDMEIF4 HTIF0 DMEIF4 CDMEIF0 0 CTEIF4 TCIF0 TEIF4 CTEIF0 0 HTIE 0 CHTIF4 HTIF4 0 CTCIF4 TCIF4 CHTIF0 0 TCIE CTCIF0 0 PFCTRL 0 Res FEIF0 Res. Res. FEIF1 0 Res FEIF5 0 CFEIF5 0 Res CFEIF1 0 Res 0 DIR[1:0] TEIF1 DMEIF1 DMEIF5 CDMEIF1 CDMEIF5 0 CIRC TEIF5 Res. Res. Res. Res. HTIF1 HTIF5 CTEIF1 CTEIF5 CHTIF1 CHTIF5 Res. FEIF2 TCIF1 Res Res Res Res Res TCIF5 Res Res Res Res CTCIF1 0 PINC 0 0 MINC 0 CTCIF5 PSIZE[1:0] Res Res Res Res 0 Res FEIF6 0 MSIZE[1:0] PINCOS Res 0 CFEIF2 CFEIF6 0 FTH[1:0] 0 0 0 PL[1:0] 0 DMDIS 0 0 Res 0 NDT[15:0] EN 0 Res 0 0 Res TEIF2 DMEIF2 DMEIF6 CDMEIF2 CDMEIF6 0 DBM 0 DMEIE 0 Res 0 0 Res HTIF2 0 TEIE 0 Res 0 CTEIF6 0 HTIE 0 Res 0 0 CT 0 TCIE 0 Res 0 0 0 Res TCIF2 TEIF6 CTEIF2 0 CHTIF6 HTIF6 CHTIF2 0 CTCIF6 TCIF6 CTCIF2 0 Res 0 PFCTRL 0 Res 0 0 PBURST[1:0] 0 DIR[1:0] 0 Res Res 0 Res. FEIF3 0 Res FEIF7 0 Res 0 Res CFEIF3 0 CFEIF7 0 CIRC 0 Res 0 Res 0 PINC 0 Res 0 0 MBURST[1:0] 0 MINC 0 Res 0 Res TEIF3 DMEIF3 DMEIF7 CDMEIF3 0 CDMEIF7 HTIF3 TEIF7 TEIF3 HTIF7 CHTIF3 0 CTEIF7 0 CHTIF7 0 PSIZE[1:0] 0 Res 0 Res 0 Res CHSEL[2:0] 0 MSIZE[1:0] 0 Res 0 Res 0 0 PINCOS 0 Res 0 Res Res. Res. Res. Res. TCIF3 Res Res Res Res TCIF7 CTCIF3 Res Res 0 CTCIF7 Res Res 0 0 PL[1:0] 0 Res 0 Res Res Res Res Res 0 0 PBURST[1:0] 0 Res 0 0 MBURST[1:] 0 Res 0 0 Res 0 Res 0 0 Res Reset value Res 0 Res 0 Res Reset value CHSEL[2:0] 0 Res Res Reset value Res 0 Res Reset value Res 0 Res Reset value Res Reset value Res 0 Res 0x0024 Reset value Res Reset value Res. 0x0020 DMA_S0NDTR Res. 0x001C DMA_S0CR Res 0x0018 DMA_HIFCR Res 0x0014 DMA_LIFCR Res 0x0010 DMA_HISR Res 0x000C Res 0x0008 Res 0x0004 DMA_LISR Res. 0x0000 Res. 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20 Offset Register name Res 8.5.11 Res RM0385 Direct memory access controller (DMA) DMA register map Table 33 summarizes the DMA registers. Table 33. DMA register map and reset values 0 0 0 0 0 0 0 NDT[15:0] PA[31:0] M0A[31:0] M1A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 253/1709 256 Direct memory access controller (DMA) RM0385 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S1FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S2FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res 0 0 0 0 CIRC 0 PSIZE[1:0] MSIZE[1:0] PINCOS PL[1:0] 0 PINC Res 0 MINC Res 0 Res Res 0 Res Res DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res Res Res 0 Res Res Res Res Res 0 0 0 0 0 0 FS[2:0] FTH[1:0] 0 1 0 0 0 0 1 EN 0 DMEIE 0 DMDIS 0 TEIE 0 HTIE 0 TCIE 0 0 0 0 0 0 0 NDT[15:0] 0 DMA_S3PAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S3M0AR 254/1709 0 0 0 Reset value 0 0 0 Reset value 0x0064 0 0 0 Reset value 0 0 0 DMA_S3NDTR 0 0 Reset value DMA_S3CR 0x0060 0 1 M1A[31:0] Reset value 0x005C 0 0 0 Reset value 0x0058 DIR [1:0] PSIZE[1:0] 0 0 M0A[31:0] DMA_S2M1AR 0x0054 0 Res 0x0050 0 0 PA[31:0] DMA_S2M0AR Reset value 0 DIR[1:0] 0x004C 0 0 PFCTRL Reset value 0 1 NDT[15:0] 0 DMA_S2PAR 0x0048 MSIZE[1:0] PINCOS PL[1:0] Reset value 0 CIRC Res 0 PINC Res 0 MINC Res 0 Res Res 0 Res 0 DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res DMA_S2NDTR Res 0x0044 Res Reset value Res Res Res Res DMA_S2CR 0x0040 0 Res Reset value FS[2:0] FTH[1:0] 0 EN 0 DMDIS 0 TEIE 0 DMEIE 0 HTIE 0 TCIE 0 PFCTRL Reset value Res M1A[31:0] Res DMA_S1M1AR 0x003C 0 Res 0 DMA_S1M0AR Reset value 0x0038 0 Res Reset value PA[31:0] FEIE DMA_S1PAR 0x0030 0x0034 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 Table 33. DMA register map and reset values (continued) 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 Rev 7 0 0 0 RM0385 Direct memory access controller (DMA) 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S3FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S4FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res 0 PSIZE[1:0] 0 0 0 CIRC 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 NDT[15:0] 0 DMA_S5PAR MSIZE[1:0] PINCOS PL[1:0] 0 PINC Res 0 MINC Res 0 Res Res 0 Res Res DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res Res Res 0 Res Res Res Res Res 0 FS[2:0] FTH[1:0] 0 EN 0 DMEIE 0 DMDIS 0 TEIE 0 HTIE 0 Res M1A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S5M0AR 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S5FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res Reset value 0 RM0385 Rev 7 FS[2:0] 1 0 0 0 FTH[1:0] Reset value Res M1A[31:0] Res DMA_S5M1AR 0 Res 0x009C 0 0 Res 0x0098 0 0 0 Reset value 1 DMDIS 0x0094 0 0 0 Reset value 0 0 0 DMA_S5NDTR 0 0 Reset value DMA_S5CR 0 0 Res DMA_S4M1AR 0 Reset value 0x0090 0 1 M0A[31:0] Reset value 0x008C 0 0 0 Reset value 0x0088 DIR [1:0] PSIZE[1:0] 0 Res 0x0084 0 Res 0x0080 0 FS[2:0] 0 PA[31:0] DMA_S4M0AR Reset value 0 0 TCIE 0x007C 0 0 PFCTRL Reset value 0 0 NDT[15:0] 0 DMA_S4PAR 0 DIR[1:0] 0x0078 MSIZE[1:0] PINCOS PL[1:0] Reset value 0 CIRC Res 0 PINC Res 0 MINC Res 0 Res Res 0 Res 0 DBM 0 Res 0 CT 0 Res 0 Res 0 Res Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res DMA_S4NDTR Res 0x0074 Res Reset value Res Res Res DMA_S4CR Res 0x0070 0 Res Reset value 0 FTH[1:0] 0 EN 0 DMDIS 0 TEIE 0 DMEIE 0 HTIE 0 TCIE 0 Res 0 PFCTRL 0 Res 0 FEIE Reset value Res M1A[31:0] Res 0x006C DMA_S3M1AR Res 0x0068 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 Table 33. DMA register map and reset values (continued) 0 1 255/1709 256 Direct memory access controller (DMA) RM0385 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S6FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res 0 0 0 0 0 0 DIR[1:0] CIRC 0 PSIZE[1:0] MSIZE[1:0] PINCOS PL[1:0] 0 PINC Res 0 MINC Res 0 Res Res 0 Res Res DBM 0 Res 0 CT 0 Res Res 0 Res 0 Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res Res Res 0 Res Res Res Res Res 0 0 0 FS[2:0] FTH[1:0] 0 1 0 0 0 0 1 EN 0 DMEIE 0 DMDIS 0 TEIE 0 HTIE 0 0 0 0 0 0 0 NDT[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S7M0AR 0 0 0 M0A[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA_S7FCR Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res Res FEIE Res Reset value 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. RM0385 Rev 7 FS[2:0] 1 0 0 0 FTH[1:0] Reset value Res M1A[31:0] Res DMA_S7M1AR 256/1709 EN 0 0 DMA_S7PAR 0x00CC TEIE 0 Res 0x00C8 DMEIE 0 0 Reset value HTIE 0 DMDIS 0x00C4 0 0 0 Reset value 0 0 0 Reset value 0x00C0 0 0 0 DMA_S7NDTR 0 M1A[31:0] Reset value 0x00BC 0 0 Reset value DMA_S7CR 0 0 Reset value 0x00B8 0 TCIE 0 PFCTRL 0 DIR[1:0] PSIZE[1:0] PINCOS PL[1:0] 0 M0A[31:0] DMA_S6M1AR 0x00B4 0 Res 0x00B0 0 PA[31:0] DMA_S6M0AR Reset value 0 TCIE 0x00AC 0 PFCTRL Reset value 0 NDT[15:0] 0 DMA_S6PAR 0x00A8 MSIZE[1:0] 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Reset value 0 PINC Res 0 CIRC Res 0 MINC Res 0 Res Res 0 Res 0 CT 0 DBM 0 Res 0 Res Res 0 Res 0 Res PBURST[1:0] MBURST[1:0] CHSEL[2:0] 0 Res Res Res Res DMA_S6NDTR Res 0x00A4 Res Reset value Res Res Res DMA_S6CR 0x00A0 Res Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 Table 33. DMA register map and reset values (continued) 0 1 RM0385 Chrom-ART Accelerator™ controller (DMA2D) 9 Chrom-ART Accelerator™ controller (DMA2D) 9.1 DMA2D introduction The Chrom-ART Accelerator™ (DMA2D) is a specialized DMA dedicated to image manipulation. It can perform the following operations: • Filling a part or the whole of a destination image with a specific color • Copying a part or the whole of a source image into a part or the whole of a destination image • Copying a part or the whole of a source image into a part or the whole of a destination image with a pixel format conversion • Blending a part and/or two complete source images with different pixel format and copy the result into a part or the whole of a destination image with a different color format. All the classical color coding schemes are supported from 4-bit up to 32-bit per pixel with indexed or direct color mode. The DMA2D has its own dedicated memories for CLUTs (color look-up tables). 9.2 DMA2D main features The main DMA2D features are: • Single AHB master bus architecture. • AHB slave programming interface supporting 8/16/32-bit accesses (except for CLUT accesses which are 32-bit). • User programmable working area size • User programmable offset for sources and destination areas • User programmable sources and destination addresses on the whole memory space • Up to 2 sources with blending operation • Alpha value can be modified (source value, fixed value or modulated value) • User programmable source and destination color format • Up to 11 color formats supported from 4-bit up to 32-bit per pixel with indirect or direct color coding • 2 internal memories for CLUT storage in indirect color mode • Automatic CLUT loading or CLUT programming via the CPU • User programmable CLUT size • Internal timer to control AHB bandwidth • 4 operating modes: register-to-memory, memory-to-memory, memory-to-memory with pixel format conversion, and memory-to-memory with pixel format conversion and blending RM0385 Rev 7 257/1709 288 Chrom-ART Accelerator™ controller (DMA2D) • Area filling with a fixed color • Copy from an area to another • Copy with pixel format conversion between source and destination images • Copy from two sources with independent color format and blending • Abort and suspend of DMA2D operations • Watermark interrupt on a user programmable destination line • Interrupt generation on bus error or access conflict • Interrupt generation on process completion 9.3 DMA2D functional description 9.3.1 General description RM0385 The DMA2D controller performs direct memory transfer. As an AHB master, it can take the control of the AHB bus matrix to initiate AHB transactions. The DMA2D can operate in the following modes: • Register-to-memory • Memory-to-memory • Memory-to-memory with Pixel Format Conversion • Memory-to-memory with Pixel Format Conversion and Blending The AHB slave port is used to program the DMA2D controller. The block diagram of the DMA2D is shown in Figure 29: DMA2D block diagram. 258/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) Figure 29. DMA2D block diagram AHB MASTER FG PFC A mode 8-bit A Color mode FG FIFO 32 A 8 32 RGB Expander X A 32 32 CLUT itf 256x32-bit RAM 32 Color mode A Red Green 32 Converter 32/24/16 Color OUT FIFO Blue BG PFC A mode Color mode BG FIFO OUT PFC BLENDER 8-bit A 32 A 8 32 RGB Expander X A 32 CLUT itf 256x32-bit RAM AHB SLAVE MS30439V1 9.3.2 DMA2D control The DMA2D controller is configured through the DMA2D Control Register (DMA2D_CR) which allows selecting: The user application can perform the following operations: 9.3.3 • Select the operating mode • Enable/disable the DMA2D interrupt • Start/suspend/abort ongoing data transfers DMA2D foreground and background FIFOs The DMA2D foreground (FG) FG FIFO and background (BG) FIFO fetch the input data to be copied and/or processed. The FIFOs fetch the pixels according to the color format defined in their respective pixel format converter (PFC). RM0385 Rev 7 259/1709 288 Chrom-ART Accelerator™ controller (DMA2D) RM0385 They are programmed through a set of control registers: • DMA2D foreground memory address register (DMA2D_FGMAR) • DMA2D foreground offset register (DMA2D_FGOR) • DMA2D background memory address register (DMA2D_BGMAR) • DMA2D background offset register (DMA2D_BGBOR) • DMA2D number of lines register (number of lines and pixel per lines) (DMA2D_NLR) When the DMA2D operates in register-to-memory mode, none of the FIFOs is activated. When the DMA2D operates in memory-to-memory mode (no pixel format conversion nor blending operation), only the FG FIFO is activated and acts as a buffer. When the DMA2D operates in memory-to-memory operation with pixel format conversion (no blending operation), the BG FIFO is not activated. 9.3.4 DMA2D foreground and background pixel format converter (PFC) DMA2D foreground pixel format converter (PFC) and background pixel format converter perform the pixel format conversion to generate a 32-bit per pixel value. The PFC can also modify the alpha channel. The first stage of the converter converts the color format. The original color format of the foreground pixel and background pixels are configured through the CM[3:0] bits of the DMA2D_FGPFCCR and DMA2D_BGPFCCR, respectively. The supported input formats are given in Table 34: Supported color mode in input. Table 34. Supported color mode in input CM[3:0] 260/1709 Color mode 0000 ARGB8888 0001 RGB888 0010 RGB565 0011 ARGB1555 0100 ARGB4444 0101 L8 0110 AL44 0111 AL88 1000 L4 1001 A8 1010 A4 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) The color format are coded as follows: • Alpha value field: transparency 0xFF value corresponds to an opaque pixel and 0x00 to a transparent one. • R field for Red • G field for Green • B field for Blue • L field: luminance This field is the index to a CLUT to retrieve the three/four RGB/ARGB components. If the original format was direct color mode (ARGB/RGB), then the extension to 8-bit per channel is performed by copying the MSBs into the LSBs. This ensures a perfect linearity of the conversion. If the original format is indirect color mode (L/AL), a CLUT is required and each pixel format converter is associated with a 256 entry 32-bit CLUT. If the original format does not include an alpha channel, the alpha value is automatically set to 0xFF (opaque). For the specific alpha mode A4 and A8, no color information is stored nor indexed. The color to be used for the image generation is fixed and is defined in the DMA2D_FGCOLR for foreground pixels and in the DMA2D_BGCOLR register for background pixels. The order of the fields in the system memory is defined in Table 35: Data order in memory. Table 35. Data order in memory Color Mode @+3 @+2 @+1 @+0 ARGB8888 A0[7:0] R0[7:0] G0[7:0] B0[7:0] B1[7:0] R0[7:0] G0[7:0] B0[7:0] G2[7:0] B2[7:0] R1[7:0] G1[7:0] R3[7:0] G3[7:0] B3[7:0] R2[7:0] RGB565 R1[4:0]G1[5:3] G1[2:0]B1[4:0] R0[4:0]G0[5:3] G0[2:0]B0[4:0] ARGB1555 A1[0]R1[4:0]G1[4:3] G1[2:0]B1[4:0] A0[0]R0[4:0]G0[4:3] G0[2:0]B0[4:0] ARGB4444 A1[3:0]R1[3:0] G1[3:0]B1[3:0] A0[3:0]R0[3:0] G0[3:0]B0[3:0] L8 L3[7:0] L2[7:0] L1[7:0] L0[7:0] AL44 A3[3:0]L3[3:0] A2[3:0]L2[3:0] A1[3:0]L1[3:0] A0[3:0]L0[3:0] AL88 A1[7:0] L1[7:0] A0[7:0] L0[7:0] L4 L7[3:0]L6[3:0] L5[3:0]L4[3:0] L3[3:0]L2[3:0] L1[3:0]L0[3:0] A8 A3[7:0] A2[7:0] A1[7:0] A0[7:0] A4 A7[3:0]A6[3:0] A5[3:0]A4[3:0] A3[3:0]A2[3:0] A1[3:0]A0[3:0] RGB888 The 24-bit RGB888 aligned on 32-bit is supported through the ARGB8888 mode. Once the 32-bit value is generated, the alpha channel can be modified according to the AM[1:0] field of the DMA2D_FGPFCCR/DMA2D_BGPFCCR registers as shown in Table 36: Alpha mode configuration. RM0385 Rev 7 261/1709 288 Chrom-ART Accelerator™ controller (DMA2D) RM0385 The alpha channel can be: • kept as it is (no modification), • replaced by the ALPHA[7:0] value of DMA2D_FGPFCCR/DMA2D_BGPFCCR, • or replaced by the original alpha value multiplied by the ALPHA[7:0] value of DMA2D_FGPFCCR/DMA2D_BGPFCCR divided by 255. Table 36. Alpha mode configuration 9.3.5 AM[1:0] Alpha mode 00 No modification 01 Replaced by value in DMA2D_xxPFCCR 10 Replaced by original value multiplied by the value in DMA2D_xxPFCCR / 255 11 Reserved DMA2D foreground and background CLUT interface The CLUT interface manages the CLUT memory access and the automatic loading of the CLUT. Three kinds of accesses are possible: • CLUT read by the PFC during pixel format conversion operation • CLUT accessed through the AHB slave port when the CPU is reading or writing data into the CLUT • CLUT written through the AHB master port when an automatic loading of the CLUT is performed The CLUT memory loading can be done in two different ways: • Automatic loading The following sequence should be followed to load the CLUT: a) Program the CLUT address into the DMA2D_FGCMAR register (foreground CLUT) or DMA2D_BGCMAR register (background CLUT) b) Program the CLUT size in the CS[7:0] field of the DMA2D_FGPFCCR register (foreground CLUT) or DMA2D_BGPFCCR register (background CLUT). c) Set the START bit of the DMA2D_FGPFCCR register (foreground CLUT) or DMA2D_BGPFCCR register (background CLUT) to start the transfer. During this automatic loading process, the CLUT is not accessible by the CPU. If a conflict occurs, a CLUT access error interrupt is raised assuming CAEIE is set to ‘1’ in DMA2D_CR. • Manual loading The application has to program the CLUT manually through the DMA2D AHB slave port to which the local CLUT memory is mapped.The foreground CLUT is located at address offset 0x0400 and the background CLUT at address offset 0x0800. The CLUT format can be 24 or 32 bits. It is configured through the CCM bit of the DMA2D_FGPFCCR register (foreground CLUT) or DMA2D_BGPFCCR register (background CLUT) as shown in Table 37: Supported CLUT color mode. 262/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) Table 37. Supported CLUT color mode CCM CLUT color mode 0 32-bit ARGB8888 1 24-bit RGB888 The way the CLUT data are organized in the system memory is specified in Table 38: CLUT data order in system memory. Table 38. CLUT data order in system memory CLUT Color Mode ARGB8888 RGB888 9.3.6 @+3 @+2 @+1 @+0 A0[7:0] R0[7:0] G0[7:0] B0[7:0] B1[7:0] R0[7:0] G0[7:0] B0[7:0] G2[7:0] B2[7:0] R1[7:0] G1[7:0] R3[7:0] G3[7:0] B3[7:0] R2[7:0] DMA2D blender The DMA2D blender blends the source pixels by pair to compute the resulting pixel. The blending is performed according to the following equation: with αMult = αFG . αBG 255 αOUT = αFG + αBG - αMult COUT = CFG.αFG + CBG.αBG - CBG.αMult αOUT with C = R or G or B Division is rounded to the nearest lower integer No configuration register is required by the blender. The blender usage depends on the DMA2D operating mode defined in MODE[1:0] field of the DMA2D_CR register. 9.3.7 DMA2D output PFC The output PFC performs the pixel format conversion from 32 bits to the output format defined in the CM[2:0] field of the DMA2D output pixel format converter configuration register (DMA2D_OPFCCR). The supported output formats are given in Table 39: Supported color mode in output RM0385 Rev 7 263/1709 288 Chrom-ART Accelerator™ controller (DMA2D) RM0385 Table 39. Supported color mode in output CM[2:0] 9.3.8 Color mode 000 ARGB8888 001 RGB888 010 RGB565 011 ARGB1555 100 ARGB4444 DMA2D output FIFO The output FIFO programs the pixels according to the color format defined in the output PFC. The destination area is defined through a set of control registers: • DMA2D output memory address register (DMA2D_OMAR) • DMA2D output offset register (DMA2D_OOR) • DMA2D number of lines register (number of lines and pixel per lines) (DMA2D_NLR) If the DMA2D operates in register-to-memory mode, the configured output rectangle is filled by the color specified in the DMA2D output color register (DMA2D_OCOLR) which contains a fixed 32-bit, 24-bit or 16-bit value. The format is selected by the CM[2:0] field of the DMA2D_OPFCCR register. The data are stored into the memory in the order defined in Table 40: Data order in memory Table 40. Data order in memory Color Mode @+3 @+2 @+1 @+0 ARGB8888 A0[7:0] R0[7:0] G0[7:0] B0[7:0] B1[7:0] R0[7:0] G0[7:0] B0[7:0] G2[7:0] B2[7:0] R1[7:0] G1[7:0] R3[7:0] G3[7:0] B3[7:0] R2[7:0] RGB565 R1[4:0]G1[5:3] G1[2:0]B1[4:0] R0[4:0]G0[5:3] G0[2:0]B0[4:0] ARGB1555 A1[0]R1[4:0]G1[4:3] G1[2:0]B1[4:0] A0[0]R0[4:0]G0[4:3] G0[2:0]B0[4:0] ARGB4444 A1[3:0]R1[3:0] G1[3:0]B1[3:0] A0[3:0]R0[3:0] G0[3:0]B0[3:0] RGB888 The RGB888 aligned on 32-bit is supported through the ARGB8888 mode. 9.3.9 DMA2D AHB master port timer An 8-bit timer is embedded into the AHB master port to provide an optional limitation of the bandwidth on the crossbar. This timer is clocked by the AHB clock and counts a dead time between two consecutive accesses. This limits the bandwidth usage. 264/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) The timer enabling and the dead time value are configured through the AHB master port timer configuration register (DMA2D_AMPTCR). 9.3.10 DMA2D transactions DMA2D transactions consist of a sequence of a given number of data transfers. The number of data and the width can be programmed by software. Each DMA2D data transfer is composed of up to 4 steps: 9.3.11 1. Data loading from the memory location pointed by the DMA2D_FGMAR register and pixel format conversion as defined in DMA2D_FGCR. 2. Data loading from a memory location pointed by the DMA2D_BGMAR register and pixel format conversion as defined in DMA2D_BGCR. 3. Blending of all retrieved pixels according to the alpha channels resulting of the PFC operation on alpha values. 4. Pixel format conversion of the resulting pixels according to the DMA2D_OCR register and programming of the data to the memory location addressed through the DMA2D_OMAR register. DMA2D configuration Both source and destination data transfers can target peripherals and memories in the whole 4 Gbyte memory area, at addresses ranging between 0x0000 0000 and 0xFFFF FFFF. The DMA2D can operate in any of the four following modes selected through MODE[1:0] bits of the DMA2D_CR register: • Register-to-memory • Memory-to-memory • Memory-to-memory with PFC • Memory-to-memory with PFC and blending Register-to-memory The register-to-memory mode is used to fill a user defined area with a predefined color. The color format is set in the DMA2D_OPFCCR. The DMA2D does not perform any data fetching from any source. It just writes the color defined in the DMA2D_OCOLR register to the area located at the address pointed by the DMA2D_OMAR and defined in the DMA2D_NLR and DMA2D_OOR. Memory-to-memory In memory-to-memory mode, the DMA2D does not perform any graphical data transformation. The foreground input FIFO acts as a buffer and the data are transferred from the source memory location defined in DMA2D_FGMAR to the destination memory location pointed by DMA2D_OMAR. The color mode programmed in the CM[3:0] bits of the DMA2D_FGPFCCR register defines the number of bits per pixel for both input and output. RM0385 Rev 7 265/1709 288 Chrom-ART Accelerator™ controller (DMA2D) RM0385 The size of the area to be transferred is defined by the DMA2D_NLR and DMA2D_FGOR registers for the source, and by DMA2D_NLR and DMA2D_OOR registers for the destination. Memory-to-memory with PFC In this mode, the DMA2D performs a pixel format conversion of the source data and stores them in the destination memory location. The size of the areas to be transferred are defined by the DMA2D_NLR and DMA2D_FGOR registers for the source, and by DMA2D_NLR and DMA2D_OOR registers for the destination. Data are fetched from the location defined in the DMA2D_FGMAR register and processed by the foreground PFC. The original pixel format is configured through the DMA2D_FGPFCCR register. If the original pixel format is direct color mode, then the color channels are all expanded to 8 bits. If the pixel format is indirect color mode, the associated CLUT has to be loaded into the CLUT memory. The CLUT loading can be done automatically by following the sequence below: 1. Set the CLUT address into the DMA2D_FGCMAR. 2. Set the CLUT size in the CS[7:0] bits of the DMA2D_FGPFCCR register. 3. Set the CLUT format (24 or 32 bits) in the CCM bit of the DMA2D_FGPFCCR register. 4. Start the CLUT loading by setting the START bit of the DMA2D_FGPFCCR register. Once the CLUT loading is complete, the CTCIF flag of the DMA2D_IFR register is raised, and an interrupt is generated if the CTCIE bit is set in DMA2D_CR. The automatic CLUT loading process can not work in parallel with classical DMA2D transfers. The CLUT can also be filled by the CPU or by any other master through the APB port. The access to the CLUT is not possible when a DMA2D transfer is ongoing and uses the CLUT (indirect color format). In parallel to the color conversion process, the alpha value can be added or changed depending on the value programmed in the DMA2D_FGPFCCR register. If the original image does not have an alpha channel, a default alpha value of 0xFF is automatically added to obtain a fully opaque pixel. The alpha value can be modified according to the AM[1:0] bits of the DMA2D_FGPFCCR register: • It can be unchanged. • It can be replaced by the value defined in the ALPHA[7:0] value of the DMA2D_FGPFCCR register. • It can be replaced by the original value multiplied by the ALPHA[7:0] value of the DMA2D_FGPFCCR register divided by 255. The resulting 32-bit data are encoded by the OUT PFC into the format specified by the CM[2:0] field of the DMA2D_OPFCCR register. The output pixel format cannot be the indirect mode since no CLUT generation process is supported. The processed data are written into the destination memory location pointed by DMA2D_OMAR. 266/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) Memory-to-memory with PFC and blending In this mode, 2 sources are fetched in the foreground FIFO and background FIFO from the memory locations defined by DMA2D_FGMAR and DMA2D_BGMAR. The two pixel format converters have to be configured as described in the memory-tomemory mode. Their configurations can be different as each pixel format converter are independent and have their own CLUT memory. Once each pixel has been converted into 32 bits by their respective PFCs, they are blended according to the equation below: with αMult = αFG . αBG 255 αOUT = αFG + αBG - αMult COUT = CFG.αFG + CBG.αBG - CBG.αMult αOUT with C = R or G or B Division are rounded to the nearest lower integer The resulting 32-bit pixel value is encoded by the output PFC according to the specified output format, and the data are written into the destination memory location pointed by DMA2D_OMAR. Configuration error detection The DMA2D checks that the configuration is correct before any transfer. The configuration error interrupt flag is set by hardware when a wrong configuration is detected when a new transfer/automatic loading starts. An interrupt is then generated if the CEIE bit of the DMA2D_CR is set. The wrong configurations that can be detected are listed below: • Foreground CLUT automatic loading: MA bits of DMA2D_FGCMAR are not aligned with CCM of DMA2D_FGPFCCR. • Background CLUT automatic loading: MA bits of DMA2D_BGCMAR are not aligned with CCM of DMA2D_BGPFCCR • Memory transfer (except in register-to-memory mode): MA bits of DMA2D_FGMAR are not aligned with CM of DMA2D_FGPFCCR • Memory transfer (except in register-to-memory mode): CM bits of DMA2D_FGPFCCR are invalid • Memory transfer (except in register-to-memory mode): PL bits of DMA2D_NLR are odd while CM of DMA2D_FGPFCCR is A4 or L4 • Memory transfer (except in register-to-memory mode): LO bits of DMA2D_FGOR are odd while CM of DMA2D_FGPFCCR is A4 or L4 • Memory transfer (only in blending mode): MA bits of DMA2D_BGMAR are not aligned with the CM of DMA2D_BGPFCCR • Memory transfer: (only in blending mode) CM bits of DMA2D_BGPFCCR are invalid • Memory transfer (only in blending mode): PL bits of DMA2D_NLR odd while CM of DMA2D_BGPFCCR is A4 or L4 RM0385 Rev 7 267/1709 288 Chrom-ART Accelerator™ controller (DMA2D) 9.3.12 RM0385 • Memory transfer (only in blending mode): LO bits of DMA2D_BGOR are odd while CM of DMA2D_BGPFCCR is A4 or L4 • Memory transfer (except in memory to memory mode): MA bits of DMA2D_OMAR are not aligned with CM bits of DMA2D_OPFCCR. • Memory transfer (except in memory to memory mode): CM bits of DMA2D_OPFCCR are invalid • Memory transfer: NL bits of DMA2D_NLR = 0 • Memory transfer: PL bits of DMA2D_NLR = 0 DMA2D transfer control (start, suspend, abort and completion) Once the DMA2D is configured, the transfer can be launched by setting the START bit of the DMA2D_CR register. Once the transfer is completed, the START bit is automatically reset and the TCIF flag of the DMA2D_ISR register is raised. An interrupt can be generated if the TCIE bit of the DMA2D_CR is set. The user application can suspend the DMA2D at any time by setting the SUSP bit of the DMA2D_CR register. The transaction can then be aborted by setting the ABORT bit of the DMA2D_CR register or can be restarted by resetting the SUSP bit of the DMA2D_CR register. The user application can abort at any time an ongoing transaction by setting the ABORT bit of the DMA2D_CR register. In this case, the TCIF flag is not raised. Automatic CLUT transfers can also be aborted or suspended by using the ABORT or the SUSP bit of the DMA2D_CR register. 9.3.13 Watermark A watermark can be programmed to generate an interrupt when the last pixel of a given line has been written to the destination memory area. The line number is defined in the LW[15:0] field of the DMA2D_LWR register. When the last pixel of this line has been transferred, the TWIF flag of the DMA2D_ISR register is raised and an interrupt is generated if the TWIE bit of the DMA2D_CR is set. 9.3.14 Error management Two kind of errors can be triggered: • AHB master port errors signaled by the TEIF flag of the DMA2D_ISR register. • Conflicts caused by CLUT access (CPU trying to access the CLUT while a CLUT loading or a DMA2D transfer is ongoing) signalled by the CAEIF flag of the DMA2D_ISR register. Both flags are associated to their own interrupt enable flag in the DMA2D_CR register to generate an interrupt if need be (TEIE and CAEIE). 9.3.15 AHB dead time To limit the AHB bandwidth usage, a dead time between two consecutive AHB accesses can be programmed. This feature can be enabled by setting the EN bit in the DMA2D_AMTCR register. 268/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) The dead time value is stored in the DT[7:0] field of the DMA2D_AMTCR register. This value represents the guaranteed minimum number of cycles between two consecutive transactions on the AHB bus. The update of the dead time value while the DMA2D is running will be taken into account for the next AHB transfer. 9.4 DMA2D interrupts An interrupt can be generated on the following events: • Configuration error • CLUT transfer complete • CLUT access error • Transfer watermark reached • Transfer complete • Transfer error Separate interrupt enable bits are available for flexibility. Table 41. DMA2D interrupt requests Interrupt event Event flag Enable control bit CEIF CEIE CLUT transfer complete CTCIF CTCIE CLUT access error CAEIF CAEIE Transfer watermark TWF TWIE Transfer complete TCIF TCIE Transfer error TEIF TEIE Configuration error RM0385 Rev 7 269/1709 288 Chrom-ART Accelerator™ controller (DMA2D) RM0385 9.5 DMA2D registers 9.5.1 DMA2D control register (DMA2D_CR) Address offset: 0x0000 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. CEIE CTCIE CAEIE TWIE TCIE TEIE Res. Res. Res. Res. Res. ABORT SUSP START rw rw rw rw rw rw rs rw rs MODE[1:0] Bits 31:18 Reserved, must be kept at reset value Bits 17:16 MODE[1:0]: DMA2D mode These bits are set and cleared by software. They cannot be modified while a transfer is ongoing. 00: Memory-to-memory (FG fetch only) 01: Memory-to-memory with PFC (FG fetch only with FG PFC active) 10: Memory-to-memory with blending (FG and BG fetch with PFC and blending) 11: Register-to-memory (no FG nor BG, only output stage active) Bits 15:14 Reserved, must be kept at reset value Bit 13 CEIE: Configuration Error Interrupt Enable This bit is set and cleared by software. 0: CE interrupt disable 1: CE interrupt enable Bit 12 CTCIE: CLUT transfer complete interrupt enable This bit is set and cleared by software. 0: CTC interrupt disable 1: CTC interrupt enable Bit 11 CAEIE: CLUT access error interrupt enable This bit is set and cleared by software. 0: CAE interrupt disable 1: CAE interrupt enable Bit 10 TWIE: Transfer watermark interrupt enable This bit is set and cleared by software. 0: TW interrupt disable 1: TW interrupt enable Bit 9 TCIE: Transfer complete interrupt enable This bit is set and cleared by software. 0: TC interrupt disable 1: TC interrupt enable 270/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) Bit 8 TEIE: Transfer error interrupt enable This bit is set and cleared by software. 0: TE interrupt disable 1: TE interrupt enable Bits 7:3 Reserved, must be kept at reset value Bit 2 ABORT: Abort This bit can be used to abort the current transfer. This bit is set by software and is automatically reset by hardware when the START bit is reset. 0: No transfer abort requested 1: Transfer abort requested Bit 1 SUSP: Suspend This bit can be used to suspend the current transfer. This bit is set and reset by software. It is automatically reset by hardware when the START bit is reset. 0: Transfer not suspended 1: Transfer suspended Bit 0 START: Start This bit can be used to launch the DMA2D according to the parameters loaded in the various configuration registers. This bit is automatically reset by the following events: – At the end of the transfer – When the data transfer is aborted by the user application by setting the ABORT bit in DMA2D_CR – When a data transfer error occurs – When the data transfer has not started due to a configuration error or another transfer operation already ongoing (automatic CLUT loading). RM0385 Rev 7 271/1709 288 Chrom-ART Accelerator™ controller (DMA2D) 9.5.2 RM0385 DMA2D Interrupt Status Register (DMA2D_ISR) Address offset: 0x0004 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CEIF CTCIF CAEIF TWIF TCIF TEIF r r r r r r Bits 31:6 Reserved, must be kept at reset value Bit 5 CEIF: Configuration error interrupt flag This bit is set when the START bit of DMA2D_CR, DMA2DFGPFCCR or DMA2D_BGPFCCR is set and a wrong configuration has been programmed. Bit 4 CTCIF: CLUT transfer complete interrupt flag This bit is set when the CLUT copy from a system memory area to the internal DMA2D memory is complete. Bit 3 CAEIF: CLUT access error interrupt flag This bit is set when the CPU accesses the CLUT while the CLUT is being automatically copied from a system memory to the internal DMA2D. Bit 2 TWIF: Transfer watermark interrupt flag This bit is set when the last pixel of the watermarked line has been transferred. Bit 1 TCIF: Transfer complete interrupt flag This bit is set when a DMA2D transfer operation is complete (data transfer only). Bit 0 TEIF: Transfer error interrupt flag This bit is set when an error occurs during a DMA transfer (data transfer or automatic CLUT loading). 272/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) 9.5.3 DMA2D interrupt flag clear register (DMA2D_IFCR) Address offset: 0x0008 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CCEIF CCTCIF CAECIF CTWIF CTCIF CTEIF rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Bits 31:6 Reserved, must be kept at reset value Bit 5 CCEIF: Clear configuration error interrupt flag Programming this bit to 1 clears the CEIF flag in the DMA2D_ISR register Bit 4 CCTCIF: Clear CLUT transfer complete interrupt flag Programming this bit to 1 clears the CTCIF flag in the DMA2D_ISR register Bit 3 CAECIF: Clear CLUT access error interrupt flag Programming this bit to 1 clears the CAEIF flag in the DMA2D_ISR register Bit 2 CTWIF: Clear transfer watermark interrupt flag Programming this bit to 1 clears the TWIF flag in the DMA2D_ISR register Bit 1 CTCIF: Clear transfer complete interrupt flag Programming this bit to 1 clears the TCIF flag in the DMA2D_ISR register Bit 0 CTEIF: Clear Transfer error interrupt flag Programming this bit to 1 clears the TEIF flag in the DMA2D_ISR register RM0385 Rev 7 273/1709 288 Chrom-ART Accelerator™ controller (DMA2D) 9.5.4 RM0385 DMA2D foreground memory address register (DMA2D_FGMAR) Address offset: 0x000C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MA[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 MA[31: 0]: Memory address Address of the data used for the foreground image. This register can only be written when data transfers are disabled. Once the data transfer has started, this register is read-only. The address alignment must match the image format selected e.g. a 32-bit per pixel format must be 32-bit aligned, a 16-bit per pixel format must be 16-bit aligned and a 4bit per pixel format must be 8-bit aligned. 9.5.5 DMA2D foreground offset register (DMA2D_FGOR) Address offset: 0x0010 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. rw rw rw rw rw rw LO[13:0] rw rw rw rw rw rw rw rw Bits 31:14 Reserved, must be kept at reset value Bits 13:0 LO[13: 0]: Line offset Line offset used for the foreground expressed in pixel. This value is used to generate the address. It is added at the end of each line to determine the starting address of the next line. These bits can only be written when data transfers are disabled. Once a data transfer has started, they become read-only. If the image format is 4-bit per pixel, the line offset must be even. 9.5.6 DMA2D background memory address register (DMA2D_BGMAR) Address offset: 0x0014 Reset value: 0x0000 0000 274/1709 RM0385 Rev 7 RM0385 31 Chrom-ART Accelerator™ controller (DMA2D) 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MA[15:0] rw rw rw rw rw rw rw rw rw Bits 31: 0 MA[31: 0]: Memory address Address of the data used for the background image. This register can only be written when data transfers are disabled. Once a data transfer has started, this register is readonly. The address alignment must match the image format selected e.g. a 32-bit per pixel format must be 32-bit aligned, a 16-bit per pixel format must be 16-bit aligned and a 4bit per pixel format must be 8-bit aligned. 9.5.7 DMA2D background offset register (DMA2D_BGOR) Address offset: 0x0018 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. rw rw rw rw rw rw LO[13:0] rw rw rw rw rw rw rw rw Bits 31:14 Reserved, must be kept at reset value Bits 13:0 LO[13: 0]: Line offset Line offset used for the background image (expressed in pixel). This value is used for the address generation. It is added at the end of each line to determine the starting address of the next line. These bits can only be written when data transfers are disabled. Once data transfer has started, they become read-only. If the image format is 4-bit per pixel, the line offset must be even. RM0385 Rev 7 275/1709 288 Chrom-ART Accelerator™ controller (DMA2D) 9.5.8 RM0385 DMA2D foreground PFC control register (DMA2D_FGPFCCR) Address offset: 0x001C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 ALPHA[7:0] rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 CS[7:0] rw rw rw rw rw rw rw 23 22 21 20 19 18 Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 Res. Res. START CCM rs rw rw 17 16 AM[1:0] rw rw 1 0 rw rw CM[3:0] rw rw Bits 31:24 ALPHA[7: 0]: Alpha value These bits define a fixed alpha channel value which can replace the original alpha value or be multiplied by the original alpha value according to the alpha mode selected through the AM[1:0] bits. These bits can only be written when data transfers are disabled. Once a transfer has started, they become read-only. Bits 23:18 Reserved, must be kept at reset value Bits 17:16 AM[1: 0]: Alpha mode These bits select the alpha channel value to be used for the foreground image. They can only be written data the transfer are disabled. Once the transfer has started, they become read-only. 00: No modification of the foreground image alpha channel value 01: Replace original foreground image alpha channel value by ALPHA[7: 0] 10: Replace original foreground image alpha channel value by ALPHA[7:0] multiplied with original alpha channel value other configurations are meaningless Bits 15:8 CS[7: 0]: CLUT size These bits define the size of the CLUT used for the foreground image. Once the CLUT transfer has started, this field is read-only. The number of CLUT entries is equal to CS[7:0] + 1. Bits 7:6 Reserved, must be kept at reset value 276/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) Bit 5 START: Start This bit can be set to start the automatic loading of the CLUT. It is automatically reset: – at the end of the transfer – when the transfer is aborted by the user application by setting the ABORT bit in DMA2D_CR – when a transfer error occurs – when the transfer has not started due to a configuration error or another transfer operation already ongoing (data transfer or automatic background CLUT transfer). Bit 4 CCM: CLUT color mode This bit defines the color format of the CLUT. It can only be written when the transfer is disabled. Once the CLUT transfer has started, this bit is read-only. 0: ARGB8888 1: RGB888 others: meaningless Bits 3:0 CM[3: 0]: Color mode These bits defines the color format of the foreground image. They can only be written when data transfers are disabled. Once the transfer has started, they are read-only. 0000: ARGB8888 0001: RGB888 0010: RGB565 0011: ARGB1555 0100: ARGB4444 0101: L8 0110: AL44 0111: AL88 1000: L4 1001: A8 1010: A4 others: meaningless RM0385 Rev 7 277/1709 288 Chrom-ART Accelerator™ controller (DMA2D) 9.5.9 RM0385 DMA2D foreground color register (DMA2D_FGCOLR) Address offset: 0x0020 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 23 22 21 rw rw rw rw 19 18 17 16 RED[7:0] rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw GREEN[7:0] rw 20 BLUE[7:0] rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value Bits 23:16 RED[7: 0]: Red Value These bits defines the red value for the A4 or A8 mode of the foreground image. They can only be written when data transfers are disabled. Once the transfer has started, they are read-only. Bits 15:8 GREEN[7: 0]: Green Value These bits defines the green value for the A4 or A8 mode of the foreground image. They can only be written when data transfers are disabled. Once the transfer has started, They are read-only. Bits 7:0 BLUE[7: 0]: Blue Value These bits defines the blue value for the A4 or A8 mode of the foreground image. They can only be written when data transfers are disabled. Once the transfer has started, They are read-only. 278/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) 9.5.10 DMA2D background PFC control register (DMA2D_BGPFCCR) Address offset: 0x0024 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 ALPHA[7:0] rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 CS[7:0] rw rw rw rw rw rw rw 23 22 21 20 19 18 Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 Res. Res. START CCM rs rw rw 17 16 AM[1:0] rw rw 1 0 rw rw CM[3:0] rw rw Bits 31:24 ALPHA[7: 0]: Alpha value These bits define a fixed alpha channel value which can replace the original alpha value or be multiplied with the original alpha value according to the alpha mode selected with bits AM[1: 0]. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. Bits 23:18 Reserved, must be kept at reset value Bits 17:16 AM[1: 0]: Alpha mode These bits define which alpha channel value to be used for the background image. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. 00: No modification of the foreground image alpha channel value 01: Replace original background image alpha channel value by ALPHA[7: 0] 10: Replace original background image alpha channel value by ALPHA[7:0] multiplied with original alpha channel value others: meaningless Bits 15:8 CS[7: 0]: CLUT size These bits define the size of the CLUT used for the BG. Once the CLUT transfer has started, this field is read-only. The number of CLUT entries is equal to CS[7:0] + 1. Bits 7:6 Reserved, must be kept at reset value RM0385 Rev 7 279/1709 288 Chrom-ART Accelerator™ controller (DMA2D) RM0385 Bit 5 START: Start This bit is set to start the automatic loading of the CLUT. This bit is automatically reset: – at the end of the transfer – when the transfer is aborted by the user application by setting the ABORT bit in the DMA2D_CR – when a transfer error occurs – when the transfer has not started due to a configuration error or another transfer operation already on going (data transfer or automatic foreground CLUT transfer). Bit 4 CCM: CLUT Color mode These bits define the color format of the CLUT. This register can only be written when the transfer is disabled. Once the CLUT transfer has started, this bit is read-only. 0: ARGB8888 1: RGB888 others: meaningless Bits 3:0 CM[3: 0]: Color mode These bits define the color format of the foreground image. These bits can only be written when data transfers are disabled. Once the transfer has started, they are readonly. 0000: ARGB8888 0001: RGB888 0010: RGB565 0011: ARGB1555 0100: ARGB4444 0101: L8 0110: AL44 0111: AL88 1000: L4 1001: A8 1010: A4 others: meaningless 280/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) 9.5.11 DMA2D background color register (DMA2D_BGCOLR) Address offset: 0x0028 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 23 22 21 rw rw rw rw 19 18 17 16 RED[7:0] rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw GREEN[7:0] rw 20 BLUE[7:0] rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value Bits 23:16 RED[7: 0]: Red Value These bits define the red value for the A4 or A8 mode of the background. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. Bits 15:8 GREEN[7: 0]: Green Value These bits define the green value for the A4 or A8 mode of the background. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. Bits 7:0 BLUE[7: 0]: Blue Value These bits define the blue value for the A4 or A8 mode of the background. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. 9.5.12 DMA2D foreground CLUT memory address register (DMA2D_FGCMAR) Address offset: 0x002C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MA[15:0] rw rw rw rw rw rw rw rw rw RM0385 Rev 7 281/1709 288 Chrom-ART Accelerator™ controller (DMA2D) RM0385 Bits 31: 0 MA[31: 0]: Memory Address Address of the data used for the CLUT address dedicated to the foreground image. This register can only be written when no transfer is ongoing. Once the CLUT transfer has started, this register is read-only. If the foreground CLUT format is 32-bit, the address must be 32-bit aligned. 9.5.13 DMA2D background CLUT memory address register (DMA2D_BGCMAR) Address offset: 0x0030 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MA[15:0] rw rw rw rw rw rw rw rw rw Bits 31: 0 MA[31: 0]: Memory address Address of the data used for the CLUT address dedicated to the background image. This register can only be written when no transfer is on going. Once the CLUT transfer has started, this register is read-only. If the background CLUT format is 32-bit, the address must be 32-bit aligned. 9.5.14 DMA2D output PFC control register (DMA2D_OPFCCR) Address offset: 0x0034 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CM[2:0] rw 282/1709 RM0385 Rev 7 rw rw RM0385 Chrom-ART Accelerator™ controller (DMA2D) Bits 31: 3 Reserved, must be kept at reset value Bits 19:3 Reserved, must be kept at reset value Bits 2:0 CM[2: 0]: Color mode These bits define the color format of the output image. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. 000: ARGB8888 001: RGB888 010: RGB565 011: ARGB1555 100: ARGB4444 others: meaningless 9.5.15 DMA2D output color register (DMA2D_OCOLR) Address offset: 0x0038 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 ALPHA[7:0] 19 18 17 16 RED[7:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 GREEN[7:0] BLUE[7:0] RED[4:0] A GREEN[5:0] RED[4:0] GREEN[4:0] ALPHA[3:0] rw rw rw RED[3:0] rw BLUE[4:0] rw rw rw BLUE[4:0] GREEN[3:0] rw rw rw rw BLUE[3:0] rw rw rw rw rw Bits 31:24 ALPHA[7: 0]: Alpha Channel Value These bits define the alpha channel of the output color. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. Bits 23:16 RED[7: 0]: Red Value These bits define the red value of the output image. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. Bits 15:8 GREEN[7: 0]: Green Value These bits define the green value of the output image. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. Bits 7:0 BLUE[7: 0]: Blue Value These bits define the blue value of the output image. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. RM0385 Rev 7 283/1709 288 Chrom-ART Accelerator™ controller (DMA2D) 9.5.16 RM0385 DMA2D output memory address register (DMA2D_OMAR) Address offset: 0x003C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MA[15:0] rw rw rw rw rw rw rw rw rw Bits 31: 0 MA[31: 0]: Memory Address Address of the data used for the output FIFO. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. The address alignment must match the image format selected e.g. a 32-bit per pixel format must be 32-bit aligned and a 16-bit per pixel format must be 16-bit aligned. 284/1709 RM0385 Rev 7 RM0385 Chrom-ART Accelerator™ controller (DMA2D) 9.5.17 DMA2D output offset register (DMA2D_OOR) Address offset: 0x0040 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. rw rw rw rw rw rw LO[13:0] rw rw rw rw rw rw rw rw Bits 31:14 Reserved, must be kept at reset value Bits 13:0 LO[13: 0]: Line Offset Line offset used for the output (expressed in pixels). This value is used for the address generation. It is added at the end of each line to determine the starting address of the next line. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. 9.5.18 DMA2D number of line register (DMA2D_NLR) Address offset: 0x0044 Reset value: 0x0000 0000 31 30 Res. Res. 15 14 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PL[13:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw NL[15:0] rw rw rw rw rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value Bits 29:16 PL[13: 0]: Pixel per lines Number of pixels per lines of the area to be transferred. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. If any of the input image format is 4-bit per pixel, pixel per lines must be even. Bits 15:0 NL[15: 0]: Number of lines Number of lines of the area to be transferred. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. RM0385 Rev 7 285/1709 288 Chrom-ART Accelerator™ controller (DMA2D) 9.5.19 RM0385 DMA2D line watermark register (DMA2D_LWR) Address offset: 0x0048 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw LW[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value Bits 15:0 LW[15:0]: Line watermark These bits allow to configure the line watermark for interrupt generation. An interrupt is raised when the last pixel of the watermarked line has been transferred. These bits can only be written when data transfers are disabled. Once the transfer has started, they are read-only. 9.5.20 DMA2D AHB master timer configuration register (DMA2D_AMTCR) Address offset: 0x004C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. EN DT[7:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved Bits 15:8 DT[7: 0]: Dead Time Dead time value in the AHB clock cycle inserted between two consecutive accesses on the AHB master port. These bits represent the minimum guaranteed number of cycles between two consecutive AHB accesses. Bits 7:1 Reserved Bit 0 EN: Enable Enables the dead time functionality. 286/1709 RM0385 Rev 7 RM0385 9.5.21 Chrom-ART Accelerator™ controller (DMA2D) DMA2D register map The following table summarizes the DMA2D registers. Refer to Section 2.2.2 on page 69 for the DMA2D register base address. CCEIF CCTCIF CAECIF CTWIF CTCIF CTEIF Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA2D_FGOR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 0 0 0 0 0 0 0 0 0 0 0 LO[13:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 0 0 0 0 0 0 0 DMA2D_BGCOLR Res. Res. Res. Res. Res. ALPHA[7:0] Res. DMA2D_BGPFCCR Reset value AM[1:0] Res. Res. Res. Res. 0 0 0 0 0 0 0 0 RED[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 GREEN[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CS[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 RED[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA2D_FGCMAR 0 0 0 0 0 0 0 0 0 0 CM[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GREEN[7:0] 0 CM[3:0] BLUE[7:0] CCM Res. Reset value 0 START DMA2D_FGCOLR 0 0 Res. 0 0 Res. 0 0 CS[7:0] AM[1:0] 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Reset value Res. ALPHA[7:0] Res. DMA2D_FGPFCCR Res. 0 Res. Reset value LO[13:0] CCM 0 START 0 Res. 0 Res. Reset value DMA2D_BGOR Reset value 0 MA[31:0] Res. DMA2D_BGMAR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BLUE[7:0] MA[31:0] 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA2D_OPFCCR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MA[31:0] Res. DMA2D_BGCMAR Res. 0x0034 0 Res. 0x0030 0 Res. 0x002C 0 Res. 0x0028 SUSP TEIF 0 Res. 0x0024 0 Res. 0x0020 0 Res. 0x001C Reset value Res. 0x0018 START TCIF 0 MA[31:0] Res. 0x0014 Res. 0 Res. 0x0010 ABORT TWIF 0 Res. 0x000C Res. Res. 0 Reset value DMA2D_FGMAR 0 CAEIF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DMA2D_IFCR 0 0 Reset value 0x0008 0 CTCIF Res. Res. TEIE 0 CEIF TCIE 0 Res. TWIE 0 Res. CAEIE 0 Res. CTCIE 0 Res. Res. CEIE 0 Res. Res. Res. 0 Res. MODE[1:0] 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DMA2D_ISR Res. 0x0004 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DMA2D_CR Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x0000 Register Res. Offset Res. Table 42. DMA2D register map and reset values Reset value CM[2:0] 0 RM0385 Rev 7 0 0 287/1709 288 Chrom-ART Accelerator™ controller (DMA2D) RM0385 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMA2D_OOR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 288/1709 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 Res. RED[7:0][255:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LW[15:0] 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. DT[7:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ALPHA[7:0][255:0] 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 GREEN[7:0][255:0] 0 Res. 0 BLUE[7:0][255:0] Res. Res. Res. X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Res. DMA2D_BGCLUT 0 Res. 0 Res. 0x08000x0BFF Reset value 0 Res. 0 Res. DMA2D_FGCLUT Res. 0x04000x07FC Res. Reserved 0 Res. 0 Reset value 0x0050Ox03FC 0 Res. 0 Res. Res. Res. DMA2D_AMTCR 0 NL[15:0] 0 Reset value 0x004C 0 LO[13:0] PL[13:0] 0 Res. Res. DMA2D_LWR Res. Reset value 0x0048 0 Res. Res. DMA2D_NLR Res. Reset value 0x0044 BLUE[3:0] 0 MA[31:0] Res. 0x0040 GREEN[3:0] 0 Res. 0x003C RED[3:0] 0 Res. DMA2D_OMAR ALPHA[3:0] EN Res. Res. Res. 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. 0 BLUE[4:0] Res. Res. Res. Res. 0 GREEN[4:0] Res. Res. Res. Res. 0 RED[4:0] BLUE[4:0] Res. Res. Res. Res. 0 BLUE[7:0] GREEN[5:0] Res. Res. Res. Res. A RED[4:0] Res. Res. Res. Res. Reset value Res. Res. Res. 0x0038 GREEN[7:0] Res. Res. Res. DMA2D_OCOLR RED[7:0] Res. Res. Res. ALPHA[7:0] Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 42. DMA2D register map and reset values (continued) RED[7:0][255:0] GREEN[7:0][255:0] BLUE[7:0][255:0] X X X X X X X X X X X X X X X X X X X X X X X X RM0385 Rev 7 RM0385 Nested vectored interrupt controller (NVIC) 10 Nested vectored interrupt controller (NVIC) 10.1 NVIC features The nested vector interrupt controller NVIC includes the following features: • up to 98 maskable interrupt channels for STM32F75xxx and STM32F74xxx (not including the 16 interrupt lines of Cortex®-M7 with FPU) • 16 programmable priority levels (4 bits of interrupt priority are used) • low-latency exception and interrupt handling • power management control • implementation of system control registers The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. All interrupts including the core exceptions are managed by the NVIC. For more information on exceptions and NVIC programming, refer to programming manual PMxxxx. 10.1.1 SysTick calibration value register The SysTick calibration value is fixed to 18750, which gives a reference time base of 1 ms with the SysTick clock set to 18.75 MHz (HCLK/8, with HCLK set to 150 MHz). 10.1.2 Interrupt and exception vectors See Table 43, for the vector table for the STM32F75xxx and STM32F74xxx devices. Position Priority Table 43. STM32F75xxx and STM32F74xxx vector table Type of priority - - - - -3 - Acronym Description Address - Reserved 0x0000 0000 fixed Reset Reset 0x0000 0004 -2 fixed NMI Non maskable interrupt. The RCC Clock Security System (CSS) is linked to the NMI vector. 0x0000 0008 - -1 fixed HardFault All class of fault 0x0000 000C - 0 settable MemManage Memory management 0x0000 0010 - 1 settable BusFault Pre-fetch fault, memory access fault 0x0000 0014 - 2 settable UsageFault Undefined instruction or illegal state 0x0000 0018 - - - - Reserved RM0385 Rev 7 0x0000 001C - 0x0000 002B 289/1709 300 Nested vectored interrupt controller (NVIC) RM0385 Position Priority Table 43. STM32F75xxx and STM32F74xxx vector table (continued) Type of priority - 3 settable SVCall System service call via SWI instruction 0x0000 002C - 4 settable Debug Monitor Debug Monitor 0x0000 0030 - - - - Reserved 0x0000 0034 - 5 settable PendSV Pendable request for system service 0x0000 0038 - 6 settable SysTick System tick timer 0x0000 003C 0 7 settable WWDG Window Watchdog interrupt 0x0000 0040 1 8 settable PVD PVD through EXTI line detection interrupt 0x0000 0044 2 9 settable TAMP_STAMP Tamper and TimeStamp interrupts through the EXTI line 0x0000 0048 3 10 settable RTC_WKUP RTC Wakeup interrupt through the EXTI line 0x0000 004C 4 11 settable FLASH Flash global interrupt 0x0000 0050 5 12 settable RCC RCC global interrupt 0x0000 0054 6 13 settable EXTI0 EXTI Line0 interrupt 0x0000 0058 7 14 settable EXTI1 EXTI Line1 interrupt 0x0000 005C 8 15 settable EXTI2 EXTI Line2 interrupt 0x0000 0060 9 16 settable EXTI3 EXTI Line3 interrupt 0x0000 0064 10 17 settable EXTI4 EXTI Line4 interrupt 0x0000 0068 11 18 settable DMA1_Stream0 DMA1 Stream0 global interrupt 0x0000 006C 12 19 settable DMA1_Stream1 DMA1 Stream1 global interrupt 0x0000 0070 13 20 settable DMA1_Stream2 DMA1 Stream2 global interrupt 0x0000 0074 14 21 settable DMA1_Stream3 DMA1 Stream3 global interrupt 0x0000 0078 15 22 settable DMA1_Stream4 DMA1 Stream4 global interrupt 0x0000 007C 16 23 settable DMA1_Stream5 DMA1 Stream5 global interrupt 0x0000 0080 17 24 settable DMA1_Stream6 DMA1 Stream6 global interrupt 0x0000 0084 18 25 settable ADC ADC1, ADC2 and ADC3 global interrupts 0x0000 0088 19 26 settable CAN1_TX CAN1 TX interrupts 0x0000 008C 20 27 settable CAN1_RX0 CAN1 RX0 interrupts 0x0000 0090 21 28 settable CAN1_RX1 CAN1 RX1 interrupt 0x0000 0094 290/1709 Acronym Description RM0385 Rev 7 Address RM0385 Nested vectored interrupt controller (NVIC) Position Priority Table 43. STM32F75xxx and STM32F74xxx vector table (continued) Type of priority 22 29 settable CAN1_SCE CAN1 SCE interrupt 0x0000 0098 23 30 settable EXTI9_5 EXTI Line[9:5] interrupts 0x0000 009C 24 31 settable TIM1_BRK_TIM9 TIM1 Break interrupt and TIM9 global interrupt 0x0000 00A0 25 32 settable TIM1_UP_TIM10 TIM1 Update interrupt and TIM10 global interrupt 0x0000 00A4 26 33 settable TIM1_TRG_COM_TIM11 TIM1 Trigger and Commutation interrupts and TIM11 global interrupt 0x0000 00A8 27 34 settable TIM1_CC TIM1 Capture Compare interrupt 0x0000 00AC 28 35 settable TIM2 TIM2 global interrupt 0x0000 00B0 29 36 settable TIM3 TIM3 global interrupt 0x0000 00B4 30 37 settable TIM4 TIM4 global interrupt 0x0000 00B8 Acronym Description 2C1 event interrupt 31 38 settable I2C1_EV I 32 39 settable I2C1_ER I2C1 error interrupt 33 40 settable Address 0x0000 00BC 0x0000 00C0 I2C2_EV I 2C2 event interrupt 0x0000 00C4 error interrupt 0x0000 00C8 34 41 settable I2C2_ER I2C2 35 42 settable SPI1 SPI1 global interrupt 0x0000 00CC 36 43 settable SPI2 SPI2 global interrupt 0x0000 00D0 37 44 settable USART1 USART1 global interrupt 0x0000 00D4 38 45 settable USART2 USART2 global interrupt 0x0000 00D8 39 46 settable USART3 USART3 global interrupt 0x0000 00DC 40 47 settable EXTI15_10 EXTI Line[15:10] interrupts 0x0000 00E0 41 48 settable RTC_Alarm RTC Alarms (A and B) through EXTI line interrupt 0x0000 00E4 42 49 settable OTG_FS_WKUP USB On-The-Go FS Wakeup through EXTI line interrupt 0x0000 00E8 43 50 settable TIM8_BRK_TIM12 TIM8 Break interrupt and TIM12 global interrupt 0x0000 00EC 44 51 settable TIM8_UP_TIM13 TIM8 Update interrupt and TIM13 global interrupt 0x0000 00F0 45 52 settable TIM8_TRG_COM_TIM14 TIM8 Trigger and Commutation interrupts and TIM14 global interrupt 0x0000 00F4 46 53 settable TIM8_CC TIM8 Capture Compare interrupt 0x0000 00F8 RM0385 Rev 7 291/1709 300 Nested vectored interrupt controller (NVIC) RM0385 Position Priority Table 43. STM32F75xxx and STM32F74xxx vector table (continued) Type of priority 47 54 settable DMA1_Stream7 DMA1 Stream7 global interrupt 0x0000 00FC 48 55 settable FSMC FSMC global interrupt 0x0000 0100 49 56 settable SDMMC1 SDMMC1 global interrupt 0x0000 0104 50 57 settable TIM5 TIM5 global interrupt 0x0000 0108 51 58 settable SPI3 SPI3 global interrupt 0x0000 010C 52 59 settable UART4 UART4 global interrupt 0x0000 0110 53 60 settable UART5 UART5 global interrupt 0x0000 0114 54 61 settable TIM6_DAC TIM6 global interrupt, DAC1 and DAC2 underrun error interrupts 0x0000 0118 55 62 settable TIM7 TIM7 global interrupt 0x0000 011C 56 63 settable DMA2_Stream0 DMA2 Stream0 global interrupt 0x0000 0120 57 64 settable DMA2_Stream1 DMA2 Stream1 global interrupt 0x0000 0124 58 65 settable DMA2_Stream2 DMA2 Stream2 global interrupt 0x0000 0128 59 66 settable DMA2_Stream3 DMA2 Stream3 global interrupt 0x0000 012C 60 67 settable DMA2_Stream4 DMA2 Stream4 global interrupt 0x0000 0130 61 68 settable ETH Ethernet global interrupt 0x0000 0134 62 69 settable ETH_WKUP Ethernet Wakeup through EXTI line interrupt 0x0000 0138 63 70 settable CAN2_TX CAN2 TX interrupts 0x0000 013C 64 71 settable CAN2_RX0 CAN2 RX0 interrupts 0x0000 0140 65 72 settable CAN2_RX1 CAN2 RX1 interrupt 0x0000 0144 66 73 settable CAN2_SCE CAN2 SCE interrupt 0x0000 0148 67 74 settable OTG_FS USB On The Go FS global interrupt 0x0000 014C 68 75 settable DMA2_Stream5 DMA2 Stream5 global interrupt 0x0000 0150 69 76 settable DMA2_Stream6 DMA2 Stream6 global interrupt 0x0000 0154 70 77 settable DMA2_Stream7 DMA2 Stream7 global interrupt 0x0000 0158 71 78 settable USART6 USART6 global interrupt 0x0000 015C Acronym Description 2C3 event interrupt Address 0x0000 0160 72 79 settable I2C3_EV I 73 80 settable I2C3_ER I2C3 error interrupt 0x0000 0164 74 81 settable OTG_HS_EP1_OUT USB On The Go HS End Point 1 Out global interrupt 0x0000 0168 292/1709 RM0385 Rev 7 RM0385 Nested vectored interrupt controller (NVIC) Position Priority Table 43. STM32F75xxx and STM32F74xxx vector table (continued) Type of priority 75 82 settable OTG_HS_EP1_IN USB On The Go HS End Point 1 In global interrupt 0x0000 016C 76 83 settable OTG_HS_WKUP USB On The Go HS Wakeup through EXTI interrupt 0x0000 0170 77 84 settable OTG_HS USB On The Go HS global interrupt 0x0000 0174 78 85 settable DCMI DCMI global interrupt 0x0000 0178 79 86 settable CRYP CRYP crypto global interrupt 0x0000 017C 80 87 settable HASH_RNG Hash and Rng global interrupt 0x0000 0180 81 88 settable FPU FPU global interrupt 0x0000 0184 82 89 settable UART7 UART7 global interrupt 0x0000 0188 83 90 settable UART8 UART8 global interrupt 0x0000 018C 84 91 settable SPI4 SPI4 global interrupt 0x0000 0190 85 92 settable SPI5 SPI5 global interrupt 0x0000 0194 86 93 settable SPI6 SPI6 global interrupt 0x0000 0198 87 94 settable SAI1 SAI1 global interrupt 0x0000 019C 88 95 settable LCD-TFT LCD-TFT global interrupt 0x0000 01A0 89 96 settable LCD-TFT LCD-TFT global Error interrupt 0x0000 01A4 90 97 settable DMA2D DMA2D global interrupt 0x0000 01A8 91 98 settable SAI2 SAI2 global interrupt 0x0000 01AC 92 99 settable QuadSPI QuadSPI global interrupt 0x0000 01B0 93 100 settable LP Timer1 LP Timer1 global interrupt 0x0000 01B4 94 101 settable HDMI-CEC HDMI-CEC global interrupt 0x0000 01B8 95 102 settable I2C4_EV I2C4 event interrupt 0x0000 01BC 96 103 settable I2C4_ER I2C4 Error interrupt 0x0000 01C0 97 104 settable SPDIFRX SPDIFRX global interrupt 0x0000 01C4 Acronym Description RM0385 Rev 7 Address 293/1709 300 Extended interrupts and events controller (EXTI) 11 RM0385 Extended interrupts and events controller (EXTI) The external interrupt/event controller consists of up to 24 edge detectors for generating event/interrupt requests. Each input line can be independently configured to select the type (interrupt or event) and the corresponding trigger event (rising or falling or both). Each line can also masked independently. A pending register maintains the status line of the interrupt requests. 11.1 EXTI main features The main features of the EXTI controller are the following: 11.2 • independent trigger and mask on each interrupt/event line • dedicated status bit for each interrupt line • generation of up to 24 software event/interrupt requests • detection of external signals with a pulse width lower than the APB2 clock period. Refer to the electrical characteristics section of the STM32F75xxx and STM32F74xxx datasheets for details on this parameter. EXTI block diagram Figure 30 shows the block diagram. Figure 30. External interrupt/event controller block diagram AMBA APB bus PCLK2 Peripheral interface Pending request register Interrupt mask register Software interrupt event register Rising trigger selection register Falling trigger selection register To NVIC interrupt controller Edge detect circuit Pulse generator Input line Event mask register MSv34192V1 294/1709 RM0385 Rev 7 RM0385 11.3 Extended interrupts and events controller (EXTI) Wakeup event management The STM32F75xxx and STM32F74xxx devices are able to handle external or internal events in order to wake up the core (WFE). The wakeup event can be generated either by: • enabling an interrupt in the peripheral control register but not in the NVIC, and enabling the SEVONPEND bit in the Cortex®-M7 System Control register. When the MCU resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be cleared. • or configuring an external or internal EXTI line in event mode. When the CPU resumes from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC IRQ channel pending bit as the pending bit corresponding to the event line is not set. To use an external line as a wakeup event, refer to Section 11.4: Functional description. 11.4 Functional description To generate the interrupt, the interrupt line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the interrupt request by writing a ‘1’ to the corresponding bit in the interrupt mask register. When the selected edge occurs on the external interrupt line, an interrupt request is generated. The pending bit corresponding to the interrupt line is also set. This request is reset by writing a ‘1’ in the pending register. To generate the event, the event line should be configured and enabled. This is done by programming the two trigger registers with the desired edge detection and by enabling the event request by writing a ‘1’ to the corresponding bit in the event mask register. When the selected edge occurs on the event line, an event pulse is generated. The pending bit corresponding to the event line is not set. An interrupt/event request can also be generated by software by writing a ‘1’ in the software interrupt/event register. 11.5 Hardware interrupt selection To configure a line as interrupt sources, use the following procedure: 11.6 1. Configure the corresponding mask bit (EXTI_IMR) 2. Configure the Trigger selection bits of the interrupt lines (EXTI_RTSR and EXTI_FTSR) 3. Configure the enable and mask bits that control the NVIC IRQ channel mapped to the external interrupt controller (EXTI) so that an interrupt coming from one of the 24 lines can be correctly acknowledged. Hardware event selection To configure a line as event sources, use the following procedure: 1. Configure the corresponding mask bit (EXTI_EMR) 2. Configure the Trigger selection bits of the event line (EXTI_RTSR and EXTI_FTSR) RM0385 Rev 7 295/1709 300 Extended interrupts and events controller (EXTI) 11.7 RM0385 Software interrupt/event selection The line can be configured as software interrupt/event line. The following is the procedure to generate a software interrupt. 11.8 1. Configure the corresponding mask bit (EXTI_IMR, EXTI_EMR) 2. Set the required bit in the software interrupt register (EXTI_SWIER) External interrupt/event line mapping Up to 168 GPIOs are connected to the 16 external interrupt/event lines in the following manner: Figure 31. External interrupt/event GPIO mapping EXTI0[3:0] bits in the SYSCFG_EXTICR1 register PA0 PB0 PC0 PD0 PE0 PF0 PG0 PH0 PI0 PJ0 PK0 EXTI0 EXTI1[3:0] bits in the SYSCFG_EXTICR1 register PA1 PB1 PC1 PD1 PE1 PF1 PG1 PH1 PI1 PJ1 PK1 EXTI1 EXTI15[3:0] bits in the SYSCFG_EXTICR4 register PA15 PB15 PC15 PD15 PE15 PF15 PG15 PH15 PJ15 EXTI15 MS30440V1 296/1709 RM0385 Rev 7 RM0385 Extended interrupts and events controller (EXTI) The eight other EXTI lines are connected as follows: 11.9 • EXTI line 16 is connected to the PVD output • EXTI line 17 is connected to the RTC Alarm event • EXTI line 18 is connected to the USB OTG FS Wakeup event • EXTI line 19 is connected to the Ethernet Wakeup event • EXTI line 20 is connected to the USB OTG HS (configured in FS) Wakeup event • EXTI line 21 is connected to the RTC Tamper and TimeStamp events • EXTI line 22 is connected to the RTC Wakeup event • EXTI line 23 is connected to the LPTIM1 asynchronous event EXTI registers Refer to Section 1.1 on page 62 for a list of abbreviations used in register descriptions. 11.9.1 Interrupt mask register (EXTI_IMR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. IM23 IM22 IM21 IM20 IM19 IM18 IM17 IM16 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IM15 IM14 IM13 IM12 IM11 IM10 IM9 IM8 IM7 IM6 IM5 IM4 IM3 IM2 IM1 IM0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:0 IMx: Interrupt mask on line x 0: Interrupt request from line x is masked 1: Interrupt request from line x is not masked 11.9.2 Event mask register (EXTI_EMR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. EM23 EM22 EM21 EM20 EM19 EM18 EM17 EM16 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EM15 EM14 EM13 EM12 EM11 EM10 EM9 EM8 EM7 EM6 EM5 EM4 EM3 EM2 EM1 EM0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw RM0385 Rev 7 297/1709 300 Extended interrupts and events controller (EXTI) RM0385 Bits 31:24 Reserved, must be kept at reset value. Bits 23:0 EMx: Event mask on line x 0: Event request from line x is masked 1: Event request from line x is not masked 11.9.3 Rising trigger selection register (EXTI_RTSR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. TR23 TR22 TR21 TR20 TR19 TR18 TR17 TR16 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:0 TRx: Rising trigger event configuration bit of line x 0: Rising trigger disabled (for Event and Interrupt) for input line 1: Rising trigger enabled (for Event and Interrupt) for input line Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines. If a rising edge occurs on the external interrupt line while writing to the EXTI_RTSR register, the pending bit is be set. Rising and falling edge triggers can be set for the same interrupt line. In this configuration, both generate a trigger condition. 11.9.4 Falling trigger selection register (EXTI_FTSR) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. TR23 TR22 TR21 TR20 TR19 TR18 TR17 TR16 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:0 TRx: Falling trigger event configuration bit of line x 0: Falling trigger disabled (for Event and Interrupt) for input line 1: Falling trigger enabled (for Event and Interrupt) for input line. 298/1709 RM0385 Rev 7 RM0385 Extended interrupts and events controller (EXTI) Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines. If a falling edge occurs on the external interrupt line while writing to the EXTI_FTSR register, the pending bit is not set. Rising and falling edge triggers can be set for the same interrupt line. In this configuration, both generate a trigger condition. 11.9.5 Software interrupt event register (EXTI_SWIER) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 SWIER SWIER SWIER SWIER SWIER SWIER SWIER 15 14 13 12 11 10 9 rw rw rw rw rw rw rw 23 22 21 20 19 18 17 16 SWIER SWIER SWIER SWIER SWIER SWIER SWIER SWIER 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 SWIER SWIER SWIER SWIER SWIER SWIER SWIER SWIER SWIER 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:0 SWIERx: Software Interrupt on line x If interrupt are enabled on line x in the EXTI_IMR register, writing '1' to SWIERx bit when it is set at '0' sets the corresponding pending bit in the EXTI_PR register, thus resulting in an interrupt request generation. This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a 1 to the bit). 11.9.6 Pending register (EXTI_PR) Address offset: 0x14 Reset value: undefined 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. PR23 PR22 PR21 PR20 PR19 PR18 PR17 PR16 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PR15 PR14 PR13 PR12 PR11 PR10 PR9 PR8 PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Bits 31:24 Reserved, must be kept at reset value. Bits 23:0 PRx: Pending bit 0: No trigger request occurred 1: selected trigger request occurred This bit is set when the selected edge event arrives on the external interrupt line. This bit is cleared by programming it to ‘1’. RM0385 Rev 7 299/1709 300 Extended interrupts and events controller (EXTI) 11.9.7 RM0385 EXTI register map Table 44 gives the EXTI register map and the reset values. Res. Res. Res. Res. Res. EXTI_IMR Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x00 Register Res. Offset Res. Table 44. External interrupt/event controller register map and reset values Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. EXTI_PR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SWIER[23:0] 0 Res. Reset value 0x14 0 Res. Res. Res. Res. Res. Res. Res. EXTI_SWIER 0 TR[23:0] 0 Res. Reset value 0x10 0 Res. Res. Res. Res. Res. Res. Res. EXTI_FTSR 0 TR[23:0] 0 Res. Reset value 0x0C 0 Res. Res. Res. Res. Res. Res. Res. EXTI_RTSR 0 EM[23:0] 0 Res. Reset value 0x08 0 Res. Res. Res. Res. Res. Res. Res. EXTI_EMR 0x04 0 Res. Reset value IM[23:0] 0 0 PR[23:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 69for the register boundary addresses. 300/1709 RM0385 Rev 7 RM0385 Cyclic redundancy check calculation unit (CRC) 12 Cyclic redundancy check calculation unit (CRC) 12.1 Introduction The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from 8-, 16or 32-bit data word and a generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the functional safety standards, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link time and stored at a given memory location. 12.2 CRC main features • Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X +1 • Alternatively, uses fully programmable polynomial with programmable size (7, 8, 16, 32 bits) • Handles 8-,16-, 32-bit data size • Programmable CRC initial value • Single input/output 32-bit data register • Input buffer to avoid bus stall during calculation • CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size • General-purpose 8-bit register (can be used for temporary storage) • Reversibility option on I/O data RM0385 Rev 7 301/1709 306 Cyclic redundancy check calculation unit (CRC) RM0385 12.3 CRC functional description 12.3.1 CRC block diagram Figure 32. CRC calculation unit block diagram 32-bit AHB bus 32-bit (read access) Data register (output) crc_hclk CRC computation 32-bit (write access) Data register (input) MS19882V2 12.3.2 CRC internal signals Table 45. CRC internal input/output signals 12.3.3 Signal name Signal type crc_hclk Digital input Description AHB clock CRC operation The CRC calculation unit has a single 32-bit read/write data register (CRC_DR). It is used to input new data (write access), and holds the result of the previous CRC calculation (read access). Each write operation to the data register creates a combination of the previous CRC value (stored in CRC_DR) and the new one. CRC computation is done on the whole 32-bit data word or byte by byte depending on the format of the data being written. The CRC_DR register can be accessed by word, right-aligned half-word and right-aligned byte. For the other registers only 32-bit access is allowed. The duration of the computation depends on data width: • 4 AHB clock cycles for 32-bit • 2 AHB clock cycles for 16-bit • 1 AHB clock cycles for 8-bit An input buffer allows to immediately write a second data without waiting for any wait states due to the previous CRC calculation. The data size can be dynamically adjusted to minimize the number of write accesses for a given number of bytes. For instance, a CRC for 5 bytes can be computed with a word write followed by a byte write. 302/1709 RM0385 Rev 7 RM0385 Cyclic redundancy check calculation unit (CRC) The input data can be reversed, to manage the various endianness schemes. The reversing operation can be performed on 8 bits, 16 bits and 32 bits depending on the REV_IN[1:0] bits in the CRC_CR register. For example: input data 0x1A2B3C4D is used for CRC calculation as: 0x58D43CB2 with bit-reversal done by byte 0xD458B23C with bit-reversal done by half-word 0xB23CD458 with bit-reversal done on the full word The output data can also be reversed by setting the REV_OUT bit in the CRC_CR register. The operation is done at bit level: for example, output data 0x11223344 is converted into 0x22CC4488. The CRC calculator can be initialized to a programmable value using the RESET control bit in the CRC_CR register (the default value is 0xFFFFFFFF). The initial CRC value can be programmed with the CRC_INIT register. The CRC_DR register is automatically initialized upon CRC_INIT register write access. The CRC_IDR register can be used to hold a temporary value related to CRC calculation. It is not affected by the RESET bit in the CRC_CR register. Polynomial programmability The polynomial coefficients are fully programmable through the CRC_POL register, and the polynomial size can be configured to be 7, 8, 16 or 32 bits by programming the POLYSIZE[1:0] bits in the CRC_CR register. Even polynomials are not supported. If the CRC data is less than 32-bit, its value can be read from the least significant bits of the CRC_DR register. To obtain a reliable CRC calculation, the change on-fly of the polynomial value or size can not be performed during a CRC calculation. As a result, if a CRC calculation is ongoing, the application must either reset it or perform a CRC_DR read before changing the polynomial. The default polynomial value is the CRC-32 (Ethernet) polynomial: 0x4C11DB7. RM0385 Rev 7 303/1709 306 Cyclic redundancy check calculation unit (CRC) 12.4 CRC registers 12.4.1 Data register (CRC_DR) RM0385 Address offset: 0x00 Reset value: 0xFFFF FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DR[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DR[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DR[31:0]: Data register bits This register is used to write new data to the CRC calculator. It holds the previous CRC calculation result when it is read. If the data size is less than 32 bits, the least significant bits are used to write/read the correct value. 12.4.2 Independent data register (CRC_IDR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. IDR[7:0] rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 IDR[7:0]: General-purpose 8-bit data register bits These bits can be used as a temporary storage location for one byte. This register is not affected by CRC resets generated by the RESET bit in the CRC_CR register 304/1709 RM0385 Rev 7 RM0385 Cyclic redundancy check calculation unit (CRC) 12.4.3 Control register (CRC_CR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. REV_ OUT Res. Res. RESET Res. Res. Res. Res. Res. Res. Res. rw REV_IN[1:0] rw rw POLYSIZE[1:0] rw rw rs Bits 31:8 Reserved, must be kept at reset value. Bit 7 REV_OUT: Reverse output data This bit controls the reversal of the bit order of the output data. 0: Bit order not affected 1: Bit-reversed output format Bits 6:5 REV_IN[1:0]: Reverse input data These bits control the reversal of the bit order of the input data 00: Bit order not affected 01: Bit reversal done by byte 10: Bit reversal done by half-word 11: Bit reversal done by word Bits 4:3 POLYSIZE[1:0]: Polynomial size These bits control the size of the polynomial. 00: 32 bit polynomial 01: 16 bit polynomial 10: 8 bit polynomial 11: 7 bit polynomial Bits 2:1 Reserved, must be kept at reset value. Bit 0 RESET: RESET bit This bit is set by software to reset the CRC calculation unit and set the data register to the value stored in the CRC_INIT register. This bit can only be set, it is automatically cleared by hardware 12.4.4 Initial CRC value (CRC_INIT) Address offset: 0x10 Reset value: 0xFFFF FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CRC_INIT[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CRC_INIT[15:0] rw rw rw rw rw rw rw rw rw RM0385 Rev 7 305/1709 306 Cyclic redundancy check calculation unit (CRC) RM0385 Bits 31:0 CRC_INIT[31:0]: Programmable initial CRC value This register is used to write the CRC initial value. 12.4.5 CRC polynomial (CRC_POL) Address offset: 0x14 Reset value: 0x04C1 1DB7 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 POL[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw POL[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 POL[31:0]: Programmable polynomial This register is used to write the coefficients of the polynomial to be used for CRC calculation. If the polynomial size is less than 32 bits, the least significant bits have to be used to program the correct value. 12.4.6 CRC register map Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 46. CRC register map and reset values CRC_DR DR[31:0] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CRC_IDR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. CRC_CR 0x08 Reset value 0x10 CRC_INIT Reset value 0x14 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 CRC_INIT[31:0] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CRC_POL Polynomial coefficients Reset value 0x04C11DB7 1 1 1 1 1 Refer to Section 2.2.2 on page 69 for the register boundary addresses. 306/1709 1 IDR[7:0] REV_OUT 0x04 1 Res. 1 RESET 1 Res. 1 POLYSIZE[1:0] 1 REV_IN[1:0] Reset value Res. 0x00 RM0385 Rev 7 1 1 1 RM0385 13 Flexible memory controller (FMC) Flexible memory controller (FMC) The Flexible memory controller (FMC) includes three memory controllers: 13.1 • The NOR/PSRAM memory controller • The NAND memory controller • The Synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) controller FMC main features The FMC functional block makes the interface with: synchronous and asynchronous static memories, SDRAM memories, and NAND Flash memory. Its main purposes are: • to translate AHB transactions into the appropriate external device protocol • to meet the access time requirements of the external memory devices All external memories share the addresses, data and control signals with the controller. Each external device is accessed by means of a unique Chip Select. The FMC performs only one access at a time to an external device. The main features of the FMC controller are the following: • Interface with static-memory mapped devices including: – Static random access memory (SRAM) – NOR Flash memory/OneNAND Flash memory – PSRAM (4 memory banks) – NAND Flash memory with ECC hardware to check up to 8 Kbytes of data • Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM) memories • Interface with parallel LCD modules, supporting Intel 8080 and Motorola 6800 modes. • Burst mode support for faster access to synchronous devices such as NOR Flash memory, PSRAM and SDRAM) • Programmable continuous clock output for asynchronous and synchronous accesses • 8-,16- or 32-bit wide data bus • Independent Chip Select control for each memory bank • Independent configuration for each memory bank • Write enable and byte lane select outputs for use with PSRAM, SRAM and SDRAM devices • External asynchronous wait control • Write FIFO with 16 x32-bit depth • Cacheable Read FIFO with 6 x32-bit depth (6 x14-bit address tag) for SDRAM controller. The Write FIFO is common to all memory controllers and consists of: • a Write Data FIFO which stores the AHB data to be written to the memory (up to 32 bits) plus one bit for the AHB transfer (burst or not sequential mode) • a Write Address FIFO which stores the AHB address (up to 28 bits) plus the AHB data size (up to 2 bits). When operating in burst mode, only the start address is stored except when crossing a page boundary (for PSRAM and SDRAM). In this case, the AHB burst is broken into two FIFO entries. RM0385 Rev 7 307/1709 383 Flexible memory controller (FMC) RM0385 The Write FIFO can be disabled by setting the WFDIS bit in the FMC_BCR1 register. At startup the FMC pins must be configured by the user application. The FMC I/O pins which are not used by the application can be used for other purposes. The FMC registers that define the external device type and associated characteristics are usually set at boot time and do not change until the next reset or power-up. However, the settings can be changed at any time. 13.2 FMC block diagram The FMC consists of the following main blocks: • The AHB interface (including the FMC configuration registers) • The NOR Flash/PSRAM/SRAM controller • The SDRAM controller • The NAND Flash controller The block diagram is shown in the figure below. Figure 33. FMC block diagram FMC interrupts to NVIC FMC_NL (or NADV) FMC_CLK From clock controller HCLK NOR/PSRAM memory controller Configuration registers NAND memory controller SDRAM controller NOR/PSRAM signals FMC_NBL[3:0] NOR / PSRAM / SRAM shared signals FMC_A[25:0] FMC_D[31:0] Shared signals FMC_NE[4:1] FMC_NOE FMC_NWE FMC_NWAIT NOR / PSRAM / SRAM shared signals FMC_NCE FMC_INT NAND signals FMC_SDCLK FMC_SDNWE FMC_SDCKE[1:0] FMC_SDNE[1:0] FMC_NRAS FMC_NCAS SDRAM signals MS30443V7 308/1709 RM0385 Rev 7 RM0385 13.3 Flexible memory controller (FMC) AHB interface The AHB slave interface allows internal CPUs and other bus master peripherals to access the external memories. AHB transactions are translated into the external device protocol. In particular, if the selected external memory is 16- or 8-bit wide, 32-bit wide transactions on the AHB are split into consecutive 16- or 8-bit accesses. The FMC Chip Select (FMC_NEx) does not toggle between the consecutive accesses except in case of access mode D when the extended mode is enabled. The FMC generates an AHB error in the following conditions: • When reading or writing to an FMC bank (Bank 1 to 4) which is not enabled. • When reading or writing to the NOR Flash bank while the FACCEN bit is reset in the FMC_BCRx register. • When writing to a write protected SDRAM bank (WP bit set in the SDRAM_SDCRx register). • When the SDRAM address range is violated (access to reserved address range) The effect of an AHB error depends on the AHB master which has attempted the R/W access: • If the access has been attempted by the Cortex®-M7 CPU, a hard fault interrupt is generated. • If the access has been performed by a DMA controller, a DMA transfer error is generated and the corresponding DMA channel is automatically disabled. The AHB clock (HCLK) is the reference clock for the FMC. 13.3.1 Supported memories and transactions General transaction rules The requested AHB transaction data size can be 8-, 16- or 32-bit wide whereas the accessed external device has a fixed data width. This may lead to inconsistent transfers. RM0385 Rev 7 309/1709 383 Flexible memory controller (FMC) RM0385 Therefore, some simple transaction rules must be followed: • AHB transaction size and memory data size are equal There is no issue in this case. • AHB transaction size is greater than the memory size: In this case, the FMC splits the AHB transaction into smaller consecutive memory accesses to meet the external data width. The FMC Chip Select (FMC_NEx) does not toggle between the consecutive accesses. • AHB transaction size is smaller than the memory size: The transfer may or not be consistent depending on the type of external device: – Accesses to devices that have the byte select feature (SRAM, ROM, PSRAM, SDRAM) In this case, the FMC allows read/write transactions and accesses the right data through its byte lanes NBL[3:0]. Bytes to be written are addressed by NBL[3:0]. All memory bytes are read (NBL[3:0] are driven low during read transaction) and the useless ones are discarded. – Accesses to devices that do not have the byte select feature (NOR and NAND Flash memories) This situation occurs when a byte access is requested to a 16-bit wide Flash memory. Since the device cannot be accessed in byte mode (only 16-bit words can be read/written from/to the Flash memory), Write transactions and Read transactions are allowed (the controller reads the entire 16-bit memory word and uses only the required byte). Wrap support for NOR Flash/PSRAM and SDRAM The synchronous memories must be configured in linear burst mode of undefined length as not all masters can issue a wrap transactions. If a master generates an AHB wrap transaction: • The read is splited into two linear burst transactions. • The write is splited into two linear burst transactions if the write fifo is enabled and into several linear burst transactions if the write fifo is disabled. Configuration registers The FMC can be configured through a set of registers. Refer to Section 13.5.6, for a detailed description of the NOR Flash/PSRAM controller registers. Refer to Section 13.6.7, for a detailed description of the NAND Flash registers and to Section 13.7.5 for a detailed description of the SDRAM controller registers. 310/1709 RM0385 Rev 7 RM0385 13.4 Flexible memory controller (FMC) External device address mapping From the FMC point of view, the external memory is divided into fixed-size banks of 256 Mbytes each (see Figure 34): • Bank 1 used to address up to 4 NOR Flash memory or PSRAM devices. This bank is split into 4 NOR/PSRAM subbanks with 4 dedicated Chip Selects, as follows: – Bank 1 - NOR/PSRAM 1 – Bank 1 - NOR/PSRAM 2 – Bank 1 - NOR/PSRAM 3 – Bank 1 - NOR/PSRAM 4 • Bank 3 used to address NAND Flash memory devices.The MPU memory attribute for this space must be reconfigured by software to Device. • Bank 4 and 5 used to address SDRAM devices (1 device per bank). For each bank the type of memory to be used can be configured by the user application through the Configuration register. Figure 34. FMC memory banks Address Bank Supported memory type 0x6000 0000 Bank 1 4 x 64 MB NOR/PSRAM/SRAM 0x6FFF FFFF 0x7000 0000 Bank 2 Reserved 0x7FFF FFFF 0x8000 0000 Bank 3 4 x 64 MB NAND Flash memory 0x8FFF FFFF 0x9000 0000 Bank 4 Reserved 0x9FFF FFFF 0xC000 0000 SDRAM Bank 1 4 x 64 MB SDRAM 0xCFFF FFFF 0xD000 0000 SDRAM Bank 2 4 x 64 MB 0xDFFF FFFF MS30444V3 RM0385 Rev 7 311/1709 383 Flexible memory controller (FMC) 13.4.1 RM0385 NOR/PSRAM address mapping HADDR[27:26] bits are used to select one of the four memory banks as shown in Table 47. Table 47. NOR/PSRAM bank selection HADDR[27:26](1) Selected bank 00 Bank 1 - NOR/PSRAM 1 01 Bank 1 - NOR/PSRAM 2 10 Bank 1 - NOR/PSRAM 3 11 Bank 1 - NOR/PSRAM 4 1. HADDR are internal AHB address lines that are translated to external memory. The HADDR[25:0] bits contain the external memory address. Since HADDR is a byte address whereas the memory is addressed at word level, the address actually issued to the memory varies according to the memory data width, as shown in the following table. Table 48. NOR/PSRAM External memory address Memory width(1) Data address issued to the memory Maximum memory capacity (bits) 8-bit HADDR[25:0] 64 Mbytes x 8 = 512 Mbit 16-bit HADDR[25:1] >> 1 64 Mbytes/2 x 16 = 512 Mbit 32-bit HADDR[25:2] >> 2 64 Mbytes/4 x 32 = 512 Mbit 1. In case of a 16-bit external memory width, the FMC will internally use HADDR[25:1] to generate the address for external memory FMC_A[24:0]. In case of a 32-bit memory width, the FMC will internally use HADDR[25:2] to generate the external address. Whatever the external memory width, FMC_A[0] should be connected to external memory address A[0]. 13.4.2 NAND Flash memory address mapping The NAND bank is divided into memory areas as indicated in Table 49. Table 49. NAND memory mapping and timing registers Start address End address 0x8800 0000 0x8BFF FFFF 0x8000 0000 0x83FF FFFF FMC bank Bank 3 - NAND Flash Memory space Timing register Attribute FMC_PATT (0x8C) Common FMC_PMEM (0x88) For NAND Flash memory, the common and attribute memory spaces are subdivided into three sections (see in Table 50 below) located in the lower 256 Kbytes: 312/1709 • Data section (first 64 Kbytes in the common/attribute memory space) • Command section (second 64 Kbytes in the common / attribute memory space) • Address section (next 128 Kbytes in the common / attribute memory space) RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Table 50. NAND bank selection Section name HADDR[17:16] Address range Address section 1X 0x020000-0x03FFFF Command section 01 0x010000-0x01FFFF Data section 00 0x000000-0x0FFFF The application software uses the 3 sections to access the NAND Flash memory: • To sending a command to NAND Flash memory, the software must write the command value to any memory location in the command section. • To specify the NAND Flash address that must be read or written, the software must write the address value to any memory location in the address section. Since an address can be 4 or 5 bytes long (depending on the actual memory size), several consecutive write operations to the address section are required to specify the full address. • To read or write data, the software reads or writes the data from/to any memory location in the data section. Since the NAND Flash memory automatically increments addresses, there is no need to increment the address of the data section to access consecutive memory locations. 13.4.3 SDRAM address mapping The HADDR[28] bit (internal AHB address line 28) is used to select one of the two memory banks as indicated in Table 51. Table 51. SDRAM bank selection HADDR[28] Selected bank Control register Timing register 0 SDRAM Bank1 FMC_SDCR1 FMC_SDTR1 1 SDRAM Bank2 FMC_SDCR2 FMC_SDTR2 The following table shows SDRAM mapping for a 13-bit row, a 11-bit column and a 4 internal bank configuration. Table 52. SDRAM address mapping Memory width(1) Internal bank Row address Column address(2) Maximum memory capacity (Mbytes) 8-bit HADDR[25:24] HADDR[23:11] HADDR[10:0] 64 Mbytes: 4 x 8K x 2K 16-bit HADDR[26:25] HADDR[24:12] HADDR[11:1] 128 Mbytes: 4 x 8K x 2K x 2 32-bit HADDR[27:26] HADDR[25:13] HADDR[12:2] 256 Mbytes: 4 x 8K x 2K x 4 1. When interfacing with a 16-bit memory, the FMC internally uses the HADDR[11:1] internal AHB address lines to generate the external address. Whatever the memory width, FMC_A[0] has to be connected to the external memory address A[0]. RM0385 Rev 7 313/1709 383 Flexible memory controller (FMC) RM0385 2. The AutoPrecharge is not supported. FMC_A[10] must be connected to the external memory address A[10] but it will be always driven ‘low’. The HADDR[27:0] bits are translated to external SDRAM address depending on the SDRAM controller configuration: • Data size:8, 16 or 32 bits • Row size:11, 12 or 13 bits • Column size: 8, 9, 10 or 11 bits • Number of internal banks: two or four internal banks The following tables show the SDRAM address mapping versus the SDRAM controller configuration. Table 53. SDRAM address mapping with 8-bit data bus width(1)(2) Row size configuration HADDR(AHB Internal Address Lines) 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bank [1:0] Res. Bank [1:0] Res. 11-bit row size configuration Bank [1:0] Bank [1:0] Res. Bank [1:0] Res. Row[11:0] Row[11:0] Row[11:0] Row[11:0] Bank [1:0] Bank [1:0] Res. Res. Row[10:0] Bank [1:0] Res. Res. 13-bit row size configuration Row[10:0] Bank [1:0] Res. Res. Row[10:0] Bank [1:0] Res. Res. 12-bit row size configuration Row[10:0] Bank [1:0] Bank [1:0] Row[12:0] Row[12:0] Row[12:0] Row[12:0] Column[7:0] Column[8:0] Column[9:0] Column[10:0] Column[7:0] Column[8:0] Column[9:0] Column[10:0] Column[7:0] Column[8:0] Column[9:0] Column[10:0] 1. BANK[1:0] are the Bank Address BA[1:0]. When only 2 internal banks are used, BA1 must always be set to ‘0’. 2. Access to Reserved (Res.) address range generates an AHB error. 314/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Table 54. SDRAM address mapping with 16-bit data bus width(1)(2) Bank Row[10:0] [1:0] Bank Res. Row[10:0] 11-bit row size [1:0] Bank configuration Res. Row[10:0] [1:0] Bank Res. Row[10:0] [1:0] Bank Res. Row[11:0] [1:0] Bank Res. Row[11:0] 12-bit row size [1:0] Bank configuration Res. Row[11:0] [1:0] Bank Res. Row[11:0] [1:0] Bank Res. Row[12:0] [1:0] Bank Res. Row[12:0] 13-bit row size [1:0] Bank configuration Res. Row[12:0] [1:0] Re Bank Row[12:0] s. [1:0] Res. 0 10 9 8 7 6 5 4 3 2 1 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Row size Configuration 27 HADDR(AHB address Lines) BM0(3) Column[7:0] Column[8:0] BM0 Column[9:0] BM0 Column[10:0] BM0 Column[7:0] BM0 Column[8:0] BM0 Column[9:0] BM0 Column[10:0] BM0 Column[7:0] BM0 Column[8:0] BM0 Column[9:0] BM0 Column[10:0] BM0 1. BANK[1:0] are the Bank Address BA[1:0]. When only 2 internal banks are used, BA1 must always be set to ‘0’. 2. Access to Reserved space (Res.) generates an AHB error. 3. BM0: is the byte mask for 16-bit access. Table 55. SDRAM address mapping with 32-bit data bus width(1)(2) Bank [1:0] Bank Res. [1:0] Bank Res. [1:0] Bank Res. [1:0] Res. 11-bit row size configuration Row[10:0] Row[10:0] Row[10:0] Row[10:0] RM0385 Rev 7 Column[7:0] Column[8:0] Column[9:0] Column[10:0] 0 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 21 22 23 24 25 26 Row size configuration 27 HADDR(AHB address Lines) BM[1:0](3) BM[1:0] BM[1:0] BM[1:0] 315/1709 383 Flexible memory controller (FMC) RM0385 Table 55. SDRAM address mapping with 32-bit data bus width(1)(2) (continued) Bank [1:0] Bank Res. 12-bit row size [1:0] Bank configuration Res. [1:0] Bank Res. [1:0] Bank Res. [1:0] Bank Res. 13-bit row size [1:0] configuration Res. Bank [1:0] Bank [1:0] Res. Row[11:0] Row[11:0] Row[11:0] Row[11:0] Row[12:0] Row[12:0] Row[12:0] Row[12:0] Column[7:0] Column[8:0] Column[9:0] Column[10:0] Column[7:0] Column[8:0] Column[9:0] Column[10:0] 0 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 21 22 23 24 25 26 Row size configuration 27 HADDR(AHB address Lines) BM[1:0] BM[1:0] BM[1:0] BM[1:0] BM[1:0 BM[1:0 BM[1:0 BM[1:0 1. BANK[1:0] are the Bank Address BA[1:0]. When only 2 internal banks are used, BA1 must always be set to ‘0’. 2. Access to Reserved space (Res.) generates an AHB error. 3. BM[1:0]: is the byte mask for 32-bit access. 13.5 NOR Flash/PSRAM controller The FMC generates the appropriate signal timings to drive the following types of memories: • • • Asynchronous SRAM and ROM – 8 bits – 16 bits – 32 bits PSRAM (CellularRAM™) – Asynchronous mode – Burst mode for synchronous accesses – Multiplexed or non-multiplexed NOR Flash memory – Asynchronous mode – Burst mode for synchronous accesses – Multiplexed or non-multiplexed The FMC outputs a unique Chip Select signal, NE[4:1], per bank. All the other signals (addresses, data and control) are shared. 316/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) The FMC supports a wide range of devices through a programmable timings among which: • Programmable wait states (up to 15) • Programmable bus turnaround cycles (up to 15) • Programmable output enable and write enable delays (up to 15) • Independent read and write timings and protocol to support the widest variety of memories and timings • Programmable continuous clock (FMC_CLK) output. The FMC Clock (FMC_CLK) is a submultiple of the HCLK clock. It can be delivered to the selected external device either during synchronous accesses only or during asynchronous and synchronous accesses depending on the CCKEN bit configuration in the FMC_BCR1 register: • If the CCLKEN bit is reset, the FMC generates the clock (CLK) only during synchronous accesses (Read/write transactions). • If the CCLKEN bit is set, the FMC generates a continuous clock during asynchronous and synchronous accesses. To generate the FMC_CLK continuous clock, Bank 1 must be configured in synchronous mode (see Section 13.5.6: NOR/PSRAM controller registers). Since the same clock is used for all synchronous memories, when a continuous output clock is generated and synchronous accesses are performed, the AHB data size has to be the same as the memory data width (MWID) otherwise the FMC_CLK frequency will be changed depending on AHB data transaction (refer to Section 13.5.5: Synchronous transactions for FMC_CLK divider ratio formula). The size of each bank is fixed and equal to 64 Mbytes. Each bank is configured through dedicated registers (see Section 13.5.6: NOR/PSRAM controller registers). The programmable memory parameters include access times (see Table 56) and support for wait management (for PSRAM and NOR Flash accessed in burst mode). Table 56. Programmable NOR/PSRAM access parameters Parameter Function Access mode Unit Min. Max. Address setup Duration of the address setup phase Asynchronous AHB clock cycle (HCLK) 0 15 Address hold Duration of the address hold phase Asynchronous, muxed I/Os AHB clock cycle (HCLK) 1 15 Data setup Duration of the data setup phase Asynchronous AHB clock cycle (HCLK) 1 256 Bust turn Duration of the bus turnaround phase Asynchronous and AHB clock cycle synchronous read (HCLK) / write 0 15 Clock divide ratio Number of AHB clock cycles (HCLK) to build one memory clock cycle (CLK) Synchronous AHB clock cycle (HCLK) 2 16 Data latency Number of clock cycles to issue to the memory before the first data of the burst Synchronous Memory clock cycle (CLK) 2 17 RM0385 Rev 7 317/1709 383 Flexible memory controller (FMC) 13.5.1 RM0385 External memory interface signals Table 57, Table 58 and Table 59 list the signals that are typically used to interface with NOR Flash memory, SRAM and PSRAM. Note: The prefix “N” identifies the signals that are active low. NOR Flash memory, non-multiplexed I/Os Table 57. Non-multiplexed I/O NOR Flash memory FMC signal name I/O Function CLK O Clock (for synchronous access) A[25:0] O Address bus D[31:0] I/O Bidirectional data bus NE[x] O Chip Select, x = 1..4 NOE O Output enable NWE O Write enable NL(=NADV) O Latch enable (this signal is called address valid, NADV, by some NOR Flash devices) NWAIT I NOR Flash wait input signal to the FMC The maximum capacity is 512 Mbits (26 address lines). NOR Flash memory, 16-bit multiplexed I/Os Table 58. 16-bit multiplexed I/O NOR Flash memory FMC signal name I/O Function CLK O Clock (for synchronous access) A[25:16] O Address bus AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus (the 16-bit address A[15:0] and data D[15:0] are multiplexed on the databus) NE[x] O Chip Select, x = 1..4 NOE O Output enable NWE O Write enable NL(=NADV) O Latch enable (this signal is called address valid, NADV, by some NOR Flash devices) NWAIT I NOR Flash wait input signal to the FMC The maximum capacity is 512 Mbits. 318/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) PSRAM/SRAM, non-multiplexed I/Os Table 59. Non-multiplexed I/Os PSRAM/SRAM FMC signal name I/O Function CLK O Clock (only for PSRAM synchronous access) A[25:0] O Address bus D[31:0] I/O Data bidirectional bus NE[x] O Chip Select, x = 1..4 (called NCE by PSRAM (CellularRAM™ i.e. CRAM)) NOE O Output enable NWE O Write enable NL(= NADV) O Address valid only for PSRAM input (memory signal name: NADV) NWAIT I PSRAM wait input signal to the FMC NBL[3:0] O Byte lane output. Byte 0 to Byte 3 control (Upper and lower byte enable) The maximum capacity is 512 Mbits. PSRAM, 16-bit multiplexed I/Os Table 60. 16-Bit multiplexed I/O PSRAM FMC signal name I/O Function CLK O Clock (for synchronous access) A[25:16] O Address bus AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus (the 16-bit address A[15:0] and data D[15:0] are multiplexed on the databus) NE[x] O Chip Select, x = 1..4 (called NCE by PSRAM (CellularRAM™ i.e. CRAM)) NOE O Output enable NWE O Write enable NL(= NADV) O Address valid PSRAM input (memory signal name: NADV) NWAIT I PSRAM wait input signal to the FMC NBL[1:0] O Byte lane output. Byte 0 and Byte 1 control (upper and lower byte enable) The maximum capacity is 512 Mbits (26 address lines). 13.5.2 Supported memories and transactions Table 61 below shows an example of the supported devices, access modes and transactions when the memory data bus is 16-bit wide for NOR Flash memory, PSRAM and SRAM. The transactions not allowed (or not supported) by the FMC are shown in gray in this example. RM0385 Rev 7 319/1709 383 Flexible memory controller (FMC) RM0385 Table 61. NOR Flash/PSRAM: example of supported memories and transactions Device NOR Flash (muxed I/Os and nonmuxed I/Os) PSRAM (multiplexed I/Os and nonmultiplexed I/Os) SRAM and ROM 320/1709 Mode R/W AHB data size Memory data size Allowed/ not allowed Comments Asynchronous R 8 16 Y - Asynchronous W 8 16 N - Asynchronous R 16 16 Y - Asynchronous W 16 16 Y - Asynchronous R 32 16 Y Split into 2 FMC accesses Asynchronous W 32 16 Y Split into 2 FMC accesses Asynchronous page R - 16 N Mode is not supported Synchronous R 8 16 N - Synchronous R 16 16 Y - Synchronous R 32 16 Y - Asynchronous R 8 16 Y - Asynchronous W 8 16 Y Use of byte lanes NBL[1:0] Asynchronous R 16 16 Y - Asynchronous W 16 16 Y - Asynchronous R 32 16 Y Split into 2 FMC accesses Asynchronous W 32 16 Y Split into 2 FMC accesses Asynchronous page R - 16 N Mode is not supported Synchronous R 8 16 N - Synchronous R 16 16 Y - Synchronous R 32 16 Y - Synchronous W 8 16 Y Use of byte lanes NBL[1:0] Synchronous W 16/32 16 Y - Asynchronous R 8 / 16 16 Y - Asynchronous W 8 / 16 16 Y Use of byte lanes NBL[1:0] Asynchronous R 32 16 Y Split into 2 FMC accesses Asynchronous W 32 16 Y Split into 2 FMC accesses Use of byte lanes NBL[1:0] RM0385 Rev 7 RM0385 13.5.3 Flexible memory controller (FMC) General timing rules Signals synchronization 13.5.4 • All controller output signals change on the rising edge of the internal clock (HCLK) • In synchronous mode (read or write), all output signals change on the rising edge of HCLK. Whatever the CLKDIV value, all outputs change as follows: – NOEL/NWEL/ NEL/NADVL/ NADVH /NBLL/ Address valid outputs change on the falling edge of FMC_CLK clock. – NOEH/ NWEH / NEH/ NOEH/NBLH/ Address invalid outputs change on the rising edge of FMC_CLK clock. NOR Flash/PSRAM controller asynchronous transactions Asynchronous static memories (NOR Flash, PSRAM, SRAM) • Signals are synchronized by the internal clock HCLK. This clock is not issued to the memory • The FMC always samples the data before de-asserting the NOE signal. This guarantees that the memory data hold timing constraint is met (minimum Chip Enable high to data transition is usually 0 ns) • If the extended mode is enabled (EXTMOD bit is set in the FMC_BCRx register), up to four extended modes (A, B, C and D) are available. It is possible to mix A, B, C and D modes for read and write operations. For example, read operation can be performed in mode A and write in mode B. • If the extended mode is disabled (EXTMOD bit is reset in the FMC_BCRx register), the FMC can operate in Mode1 or Mode2 as follows: – Mode 1 is the default mode when SRAM/PSRAM memory type is selected (MTYP = 0x0 or 0x01 in the FMC_BCRx register) – Mode 2 is the default mode when NOR memory type is selected (MTYP = 0x10 in the FMC_BCRx register). RM0385 Rev 7 321/1709 383 Flexible memory controller (FMC) RM0385 Mode 1 - SRAM/PSRAM (CRAM) The next figures show the read and write transactions for the supported modes followed by the required configuration of FMC_BCRx, and FMC_BTRx/FMC_BWTRx registers. Figure 35. Mode1 read access waveforms Memory transaction A[25:0] NBL[3:0] NEx NOE NWE High data driven by memory D[31:0] ADDSET HCLK cycles DATAST HCLK cycles MS30452V1 Figure 36. Mode1 write access waveforms Memory transaction A[25:0] NBL[3:0] NEx NOE 1HCLK NWE D[31:0] data driven by FMC ADDSET HCLK cycles (DATAST + 1) HCLK cycles MS38299V1 322/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) The one HCLK cycle at the end of the write transaction helps guarantee the address and data hold time after the NWE rising edge. Due to the presence of this HCLK cycle, the DATAST value must be greater than zero (DATAST > 0). Table 62. FMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x0 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN Don’t care 5:4 MWID As needed 3:2 MTYP As needed, exclude 0x2 (NOR Flash memory) 1 MUXE 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. Table 63. FMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD Don’t care 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST+1 HCLK cycles for write accesses, DATAST HCLK cycles for read accesses). 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles). Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). RM0385 Rev 7 323/1709 383 Flexible memory controller (FMC) RM0385 Mode A - SRAM/PSRAM (CRAM) OE toggling Figure 37. ModeA read access waveforms Memory transaction A[25:0] NBL[3:0] NEx NOE NWE High data driven by memory D[31:0] ADDSET HCLK cycles DATAST HCLK cycles MS30454V1 1. NBL[3:0] are driven low during the read access Figure 38. ModeA write access waveforms Memory transaction A[25:0] NBL[3:0] NEx NOE 1HCLK NWE D[31:0] data driven by FMC ADDSET (DATAST + 1) HCLK cycles HCLK cycles MS39900V1 324/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) The differences compared with Mode1 are the toggling of NOE and the independent read and write timings. Table 64. FMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN Don’t care 5:4 MWID As needed 3:2 MTYP As needed, exclude 0x2 (NOR Flash memory) 1 MUXEN 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. Table 65. FMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). RM0385 Rev 7 325/1709 383 Flexible memory controller (FMC) RM0385 Table 66. FMC_BWTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for write accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). Mode 2/B - NOR Flash Figure 39. Mode2 and mode B read access waveforms Memory transaction A[25:0] NADV NEx NOE NWE High data driven by memory D[31:0] ADDSET HCLK cycles DATAST HCLK cycles MS30456V1 326/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Figure 40. Mode2 write access waveforms Memory transaction A[25:0] NADV NEx NOE 1HCLK NWE D[31:0] data driven by FMC ADDSET HCLK cycles (DATAST + 1) HCLK cycles MS39901V1 Figure 41. ModeB write access waveforms Memory transaction A[25:0] NADV NEx NOE 1HCLK NWE D[31:0] data driven by FMC ADDSET HCLK cycles (DATAST + 1) HCLK cycles MS39902V1 The differences with Mode1 are the toggling of NWE and the independent read and write timings when extended mode is set (Mode B). RM0385 Rev 7 327/1709 383 Flexible memory controller (FMC) RM0385 Table 67. FMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 for mode B, 0x0 for mode 2 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN 0x1 5:4 MWID As needed 3:2 MTYP 0x2 (NOR Flash memory) 1 MUXEN 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. Table 68. FMC_BTRx bit fields 328/1709 Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x1 if extended mode is set 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the access second phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the access first phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Table 69. FMC_BWTRx bit fields Note: Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x1 if extended mode is set 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the access second phase (DATAST HCLK cycles) for write accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the access first phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). The FMC_BWTRx register is valid only if the extended mode is set (mode B), otherwise its content is don’t care. Mode C - NOR Flash - OE toggling Figure 42. ModeC read access waveforms Memory transaction A[25:0] NADV NEx NOE NWE High data driven by memory D[31:0] ADDSET HCLK cycles DATAST HCLK cycles MS30459V1 RM0385 Rev 7 329/1709 383 Flexible memory controller (FMC) RM0385 Figure 43. ModeC write access waveforms Memory transaction A[25:0] NADV NEx NOE 1HCLK NWE D[31:0] data driven by FMC ADDSET (DATAST + 1) HCLK cycles HCLK cycles MS39903V1 The differences compared with Mode1 are the toggling of NOE and the independent read and write timings. Table 70. FMC_BCRx bit fields 330/1709 Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN 0x1 5:4 MWID 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. As needed RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Table 70. FMC_BCRx bit fields (continued) Bit number Bit name Value to set 3:2 MTYP 1 MUXEN 0x0 0 MBKEN 0x1 0x02 (NOR Flash memory) Table 71. FMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x2 27:24 DATLAT 0x0 23:20 CLKDIV 0x0 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). Table 72. FMC_BWTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x2 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for write accesses. 7:4 ADDHLD Don’t care 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 0. Time between NEx high to NEx low (BUSTURN HCLK). RM0385 Rev 7 331/1709 383 Flexible memory controller (FMC) RM0385 Mode D - asynchronous access with extended address Figure 44. ModeD read access waveforms Memory transaction A[25:0] NADV NEx NOE NWE High data driven by memory D[31:0] ADDSET HCLK cycles ADDHLD HCLK cycles DATAST HCLK cycles MS30461V1 Figure 45. ModeD write access waveforms Memory transaction A[25:0] NADV NEx NOE 1HCLK NWE D[31:0] data driven by FMC ADDSET ADDHLD (DATAST + 1) HCLK cycles HCLK cycles HCLK cycles MS39904V1 The differences with Mode1 are the toggling of NOE that goes on toggling after NADV changes and the independent read and write timings. 332/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Table 73. FMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x1 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN Set according to memory support 5:4 MWID As needed 3:2 MTYP As needed 1 MUXEN 0x0 0 MBKEN 0x1 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. Table 74. FMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x3 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles) for read accesses. 7:4 ADDHLD Duration of the middle phase of the read access (ADDHLD HCLK cycles) 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for read accesses. Minimum value for ADDSET is 1. Time between NEx high to NEx low (BUSTURN HCLK). RM0385 Rev 7 333/1709 383 Flexible memory controller (FMC) RM0385 Table 75. FMC_BWTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x3 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST + 1 HCLK cycles) for write accesses. 7:4 ADDHLD Duration of the middle phase of the write access (ADDHLD HCLK cycles) 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles) for write accesses. Minimum value for ADDSET is 1. Time between NEx high to NEx low (BUSTURN HCLK). Muxed mode - multiplexed asynchronous access to NOR Flash memory Figure 46. Muxed read access waveforms 334/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Figure 47. Muxed write access waveforms Memory transaction A[25:16] NADV NEx NOE 1HCLK NWE Lower address AD[15:0] data driven by FMC ADDSET ADDHLD (DATAST + 1) HCLK cycles HCLK cycles HCLK cycles MS39905V2 The difference with ModeD is the drive of the lower address byte(s) on the data bus. Table 76. FMC_BCRx bit fields Bit number Bit name Value to set 31:22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 0x0 (no effect in asynchronous mode) 18:16 CPSIZE 0x0 (no effect in asynchronous mode) 15 ASYNCWAIT 14 EXTMOD 0x0 13 WAITEN 0x0 (no effect in asynchronous mode) 12 WREN As needed 11 WAITCFG Don’t care 10 Reserved 0x0 9 WAITPOL Meaningful only if bit 15 is 1 8 BURSTEN 0x0 7 Reserved 0x1 6 FACCEN 0x1 5:4 MWID 0x000 Set to 1 if the memory supports this feature. Otherwise keep at 0. As needed RM0385 Rev 7 335/1709 383 Flexible memory controller (FMC) RM0385 Table 76. FMC_BCRx bit fields (continued) Bit number Bit name Value to set 3:2 MTYP 1 MUXEN 0x1 0 MBKEN 0x1 0x2 (NOR Flash memory) or 0x1(PSRAM) Table 77. FMC_BTRx bit fields Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27:24 DATLAT Don’t care 23:20 CLKDIV Don’t care 19:16 BUSTURN 15:8 DATAST Duration of the second access phase (DATAST HCLK cycles for read accesses and DATAST+1 HCLK cycles for write accesses). 7:4 ADDHLD Duration of the middle phase of the access (ADDHLD HCLK cycles). 3:0 ADDSET Duration of the first access phase (ADDSET HCLK cycles). Minimum value for ADDSET is 1. Time between NEx high to NEx low (BUSTURN HCLK). WAIT management in asynchronous accesses If the asynchronous memory asserts the WAIT signal to indicate that it is not yet ready to accept or to provide data, the ASYNCWAIT bit has to be set in FMC_BCRx register. If the WAIT signal is active (high or low depending on the WAITPOL bit), the second access phase (Data setup phase), programmed by the DATAST bits, is extended until WAIT becomes inactive. Unlike the data setup phase, the first access phases (Address setup and Address hold phases), programmed by the ADDSET and ADDHLD bits, are not WAIT sensitive and so they are not prolonged. The data setup phase must be programmed so that WAIT can be detected 4 HCLK cycles before the end of the memory transaction. The following cases must be considered: 336/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) 1. The memory asserts the WAIT signal aligned to NOE/NWE which toggles: DATAST ≥ ( 4 × HCLK ) + max_wait_assertion_time 2. The memory asserts the WAIT signal aligned to NEx (or NOE/NWE not toggling): if max_wait_assertion_time > address_phase + hold_phase then: DATAST ≥ ( 4 × HCLK ) + ( max_wait_assertion_time – address_phase – hold_phase ) otherwise DATAST ≥ 4 × HCLK where max_wait_assertion_time is the maximum time taken by the memory to assert the WAIT signal once NEx/NOE/NWE is low. Figure 48 and Figure 49 show the number of HCLK clock cycles that are added to the memory access phase after WAIT is released by the asynchronous memory (independently of the above cases). Figure 48. Asynchronous wait during a read access waveforms Memory transaction A[25:0] address phase data setup phase NEx NWAIT don’t care don’t care NOE data driven by memory D[15:0] 4HCLK MS30463V2 1. NWAIT polarity depends on WAITPOL bit setting in FMC_BCRx register. RM0385 Rev 7 337/1709 383 Flexible memory controller (FMC) RM0385 Figure 49. Asynchronous wait during a write access waveforms Memory transaction A[25:0] address phase data setup phase NEx NWAIT don’t care don’t care 1HCLK NWE D[15:0] data driven by FMC 3HCLK MSv40168V1 1. NWAIT polarity depends on WAITPOL bit setting in FMC_BCRx register. 13.5.5 Synchronous transactions The memory clock, FMC_CLK, is a submultiple of HCLK. It depends on the value of CLKDIV and the MWID/ AHB data size, following the formula given below: FMC_CLK divider ratio = max (CLKDIV + 1,MWID ( AHB data size )) If MWID is 16 or 8-bit, the FMC_CLK divider ratio is always defined by the programmed CLKDIV value. If MWID is 32-bit, the FMC_CLK divider ratio depends also on AHB data size. Example: • If CLKDIV=1, MWID = 32 bits, AHB data size=8 bits, FMC_CLK=HCLK/4. • If CLKDIV=1, MWID = 16 bits, AHB data size=8 bits, FMC_CLK=HCLK/2. NOR Flash memories specify a minimum time from NADV assertion to CLK high. To meet this constraint, the FMC does not issue the clock to the memory during the first internal clock cycle of the synchronous access (before NADV assertion). This guarantees that the rising edge of the memory clock occurs in the middle of the NADV low pulse. Data latency versus NOR memory latency The data latency is the number of cycles to wait before sampling the data. The DATLAT value must be consistent with the latency value specified in the NOR Flash configuration register. The FMC does not include the clock cycle when NADV is low in the data latency count. 338/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Caution: Some NOR Flash memories include the NADV Low cycle in the data latency count, so that the exact relation between the NOR Flash latency and the FMC DATLAT parameter can be either: • NOR Flash latency = (DATLAT + 2) CLK clock cycles • or NOR Flash latency = (DATLAT + 3) CLK clock cycles Some recent memories assert NWAIT during the latency phase. In such cases DATLAT can be set to its minimum value. As a result, the FMC samples the data and waits long enough to evaluate if the data are valid. Thus the FMC detects when the memory exits latency and real data are processed. Other memories do not assert NWAIT during latency. In this case the latency must be set correctly for both the FMC and the memory, otherwise invalid data are mistaken for good data, or valid data are lost in the initial phase of the memory access. Single-burst transfer When the selected bank is configured in burst mode for synchronous accesses, if for example an AHB single-burst transaction is requested on 16-bit memories, the FMC performs a burst transaction of length 1 (if the AHB transfer is 16 bits), or length 2 (if the AHB transfer is 32 bits) and de-assert the Chip Select signal when the last data is strobed. Such transfers are not the most efficient in terms of cycles compared to asynchronous read operations. Nevertheless, a random asynchronous access would first require to re-program the memory access mode, which would altogether last longer. Cross boundary page for CellularRAM™ 1.5 CellularRAM™ 1.5 does not allow burst access to cross the page boundary. The FMC controller allows to split automatically the burst access when the memory page size is reached by configuring the CPSIZE bits in the FMC_BCR1 register following the memory page size. Wait management For synchronous NOR Flash memories, NWAIT is evaluated after the programmed latency period, which corresponds to (DATLAT+2) CLK clock cycles. If NWAIT is active (low level when WAITPOL = 0, high level when WAITPOL = 1), wait states are inserted until NWAIT is inactive (high level when WAITPOL = 0, low level when WAITPOL = 1). When NWAIT is inactive, the data is considered valid either immediately (bit WAITCFG = 1) or on the next clock edge (bit WAITCFG = 0). During wait-state insertion via the NWAIT signal, the controller continues to send clock pulses to the memory, keeping the Chip Select and output enable signals valid. It does not consider the data as valid. In burst mode, there are two timing configurations for the NOR Flash NWAIT signal: • The Flash memory asserts the NWAIT signal one data cycle before the wait state (default after reset). • The Flash memory asserts the NWAIT signal during the wait state The FMC supports both NOR Flash wait state configurations, for each Chip Select, thanks to the WAITCFG bit in the FMC_BCRx registers (x = 0..3). RM0385 Rev 7 339/1709 383 Flexible memory controller (FMC) RM0385 Figure 50. Wait configuration waveforms Memory transaction = burst of 4 half words HCLK CLK A[25:16] addr[25:16] NADV NWAIT (WAITCFG = 0) NWAIT (WAITCFG = 1) inserted wait state A/D[15:0] addr[15:0] data data data ai15798c 340/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Figure 51. Synchronous multiplexed read mode waveforms - NOR, PSRAM (CRAM) Memory transaction = burst of 4 half words HCLK CLK A[25:16] addr[25:16] NEx NOE NWE High NADV NWAIT (WAITCFG= 0) (DATLAT + 2) CLK cycles A/D[15:0] Addr[15:0] inserted wait state data 1 clock 1 clock cycle cycle data data data Data strobes Data strobes ai17723f 1. Byte lane outputs (NBL are not shown; for NOR access, they are held high, and, for PSRAM (CRAM) access, they are held low. Table 78. FMC_BCRx bit fields Bit number Bit name Value to set 31-22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 CBURSTRW 18:16 CPSIZE 15 ASYNCWAIT 0x0 14 EXTMOD 0x0 13 WAITEN To be set to 1 if the memory supports this feature, to be kept at 0 otherwise 12 WREN No effect on synchronous read 11 WAITCFG To be set according to memory 10 Reserved 0x0 0x000 No effect on synchronous read 0x0 (no effect in asynchronous mode) RM0385 Rev 7 341/1709 383 Flexible memory controller (FMC) RM0385 Table 78. FMC_BCRx bit fields (continued) Bit number Bit name Value to set 9 WAITPOL To be set according to memory 8 BURSTEN 0x1 7 Reserved 0x1 6 FACCEN Set according to memory support (NOR Flash memory) 5-4 MWID As needed 3-2 MTYP 0x1 or 0x2 1 MUXEN As needed 0 MBKEN 0x1 Table 79. FMC_BTRx bit fields 342/1709 Bit number Bit name Value to set 31:30 Reserved 0x0 29:28 ACCMOD 0x0 27-24 DATLAT Data latency 27-24 DATLAT Data latency 23-20 CLKDIV 0x0 to get CLK = HCLK (Not supported) 0x1 to get CLK = 2 × HCLK .. 19-16 BUSTURN 15-8 DATAST Don’t care 7-4 ADDHLD Don’t care 3-0 ADDSET Don’t care Time between NEx high to NEx low (BUSTURN HCLK). RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Figure 52. Synchronous multiplexed write mode waveforms - PSRAM (CRAM) Memory transaction = burst of 2 half words HCLK CLK A[25:16] addr[25:16] NEx Hi-Z NOE NWE NADV NWAIT (WAITCFG = 0) (DATLAT + 2) CLK cycles A/D[15:0] Addr[15:0] inserted wait state data data 1 clock 1 clock ai14731f 1. The memory must issue NWAIT signal one cycle in advance, accordingly WAITCFG must be programmed to 0. 2. Byte Lane (NBL) outputs are not shown, they are held low while NEx is active. Table 80. FMC_BCRx bit fields Bit number Bit name 31-22 Reserved 21 WFDIS As needed 20 CCLKEN As needed 19 18:16 15 Value to set 0x000 CBURSTRW 0x1 CPSIZE As needed (0x1 for CRAM 1.5) ASYNCWAIT 0x0 14 EXTMOD 0x0 13 WAITEN To be set to 1 if the memory supports this feature, to be kept at 0 otherwise. RM0385 Rev 7 343/1709 383 Flexible memory controller (FMC) RM0385 Table 80. FMC_BCRx bit fields (continued) Bit number Bit name Value to set 12 WREN 0x1 11 WAITCFG 0x0 10 Reserved 0x0 9 WAITPOL to be set according to memory 8 BURSTEN no effect on synchronous write 7 Reserved 0x1 6 FACCEN Set according to memory support 5-4 MWID As needed 3-2 MTYP 0x1 1 MUXEN As needed 0 MBKEN 0x1 Table 81. FMC_BTRx bit fields 344/1709 Bit number Bit name Value to set 31-30 Reserved 0x0 29:28 ACCMOD 0x0 27-24 DATLAT Data latency 23-20 CLKDIV 0x0 to get CLK = HCLK (not supported) 0x1 to get CLK = 2 × HCLK 19-16 BUSTURN 15-8 DATAST Don’t care 7-4 ADDHLD Don’t care 3-0 ADDSET Don’t care Time between NEx high to NEx low (BUSTURN HCLK). RM0385 Rev 7 RM0385 Flexible memory controller (FMC) 13.5.6 NOR/PSRAM controller registers SRAM/NOR-Flash chip-select control registers 1..4 (FMC_BCR1..4) Address offset: 8 * (x – 1), x = 1...4 Reset value: 0x0000 30DB for Bank1 and 0x0000 30D2 for Bank 2 to 4 This register contains the control information of each memory bank, used for SRAMs, PSRAM and NOR Flash memories. 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 ASYNC WAIT EXT MOD WAIT EN WREN WAIT CFG Res. WAIT POL BURST EN Res. FACC EN rw rw rw rw rw rw rw rw 21 20 19 WFDIS CCLK EN CBURST RW 18 rw rw rw rw rw 5 4 3 2 1 0 MUX EN MBK EN 16 rw rw CPSIZE[2:0] MWID[1:0] MTYP[1:0] rw rw rw 17 rw rw Bits 31:22 Reserved, must be kept at reset value. Bit 21 WFDIS: Write FIFO Disable This bit disables the Write FIFO used by the FMC controller. 0: Write FIFO enabled (Default after reset) 1: Write FIFO disabled Note: The WFDIS bit of the FMC_BCR2..4 registers is don’t care. It is only enabled through the FMC_BCR1 register. Bit 20 CCLKEN: Continuous Clock Enable. This bit enables the FMC_CLK clock output to external memory devices. 0: The FMC_CLK is only generated during the synchronous memory access (read/write transaction). The FMC_CLK clock ratio is specified by the programmed CLKDIV value in the FMC_BCRx register (default after reset). 1: The FMC_CLK is generated continuously during asynchronous and synchronous access. The FMC_CLK clock is activated when the CCLKEN is set. Note: The CCLKEN bit of the FMC_BCR2..4 registers is don’t care. It is only enabled through the FMC_BCR1 register. Bank 1 must be configured in synchronous mode to generate the FMC_CLK continuous clock. Note: If CCLKEN bit is set, the FMC_CLK clock ratio is specified by CLKDIV value in the FMC_BTR1 register. CLKDIV in FMC_BWTR1 is don’t care. Note: If the synchronous mode is used and CCLKEN bit is set, the synchronous memories connected to other banks than Bank 1 are clocked by the same clock (the CLKDIV value in the FMC_BTR2..4 and FMC_BWTR2..4 registers for other banks has no effect.) Bit 19 CBURSTRW: Write burst enable. For PSRAM (CRAM) operating in burst mode, the bit enables synchronous accesses during write operations. The enable bit for synchronous read accesses is the BURSTEN bit in the FMC_BCRx register. 0: Write operations are always performed in asynchronous mode 1: Write operations are performed in synchronous mode. RM0385 Rev 7 345/1709 383 Flexible memory controller (FMC) RM0385 Bits 18:16 CPSIZE[2:0]: CRAM page size. These are used for CellularRAM™ 1.5 which does not allow burst access to cross the address boundaries between pages. When these bits are configured, the FMC controller splits automatically the burst access when the memory page size is reached (refer to memory datasheet for page size). 000: No burst split when crossing page boundary (default after reset) 001: 128 bytes 010: 256 bytes 011: 512 bytes 100: 1024 bytes Others: reserved Bit 15 ASYNCWAIT: Wait signal during asynchronous transfers This bit enables/disables the FMC to use the wait signal even during an asynchronous protocol. 0: NWAIT signal is not taken in to account when running an asynchronous protocol (default after reset) 1: NWAIT signal is taken in to account when running an asynchronous protocol Bit 14 EXTMOD: Extended mode enable. This bit enables the FMC to program the write timings for non multiplexed asynchronous accesses inside the FMC_BWTR register, thus resulting in different timings for read and write operations. 0: values inside FMC_BWTR register are not taken into account (default after reset) 1: values inside FMC_BWTR register are taken into account Note: When the extended mode is disabled, the FMC can operate in Mode1 or Mode2 as follows: – Mode 1 is the default mode when the SRAM/PSRAM memory type is selected (MTYP =0x0 or 0x01) – Mode 2 is the default mode when the NOR memory type is selected (MTYP = 0x10). Bit 13 WAITEN: Wait enable bit. This bit enables/disables wait-state insertion via the NWAIT signal when accessing the memory in synchronous mode. 0: NWAIT signal is disabled (its level not taken into account, no wait state inserted after the programmed Flash latency period) 1: NWAIT signal is enabled (its level is taken into account after the programmed latency period to insert wait states if asserted) (default after reset) Bit 12 WREN: Write enable bit. This bit indicates whether write operations are enabled/disabled in the bank by the FMC: 0: Write operations are disabled in the bank by the FMC, an AHB error is reported, 1: Write operations are enabled for the bank by the FMC (default after reset). Bit 11 WAITCFG: Wait timing configuration. The NWAIT signal indicates whether the data from the memory are valid or if a wait state must be inserted when accessing the memory in synchronous mode. This configuration bit determines if NWAIT is asserted by the memory one clock cycle before the wait state or during the wait state: 0: NWAIT signal is active one data cycle before wait state (default after reset), 1: NWAIT signal is active during wait state (not used for PSRAM). Bit 10 Reserved, must be kept at reset value. Bit 9 WAITPOL: Wait signal polarity bit. Defines the polarity of the wait signal from memory used for either in synchronous or asynchronous mode: 0: NWAIT active low (default after reset), 1: NWAIT active high. 346/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Bit 8 BURSTEN: Burst enable bit. This bit enables/disables synchronous accesses during read operations. It is valid only for synchronous memories operating in burst mode: 0: Burst mode disabled (default after reset). Read accesses are performed in asynchronous mode. 1: Burst mode enable. Read accesses are performed in synchronous mode. Bit 7 Reserved, must be kept at reset value. Bit 6 FACCEN: Flash access enable Enables NOR Flash memory access operations. 0: Corresponding NOR Flash memory access is disabled 1: Corresponding NOR Flash memory access is enabled (default after reset) Bits 5:4 MWID[1:0]: Memory data bus width. Defines the external memory device width, valid for all type of memories. 00: 8 bits 01: 16 bits (default after reset) 10: 32 bits 11: reserved Bits 3:2 MTYP[1:0]: Memory type. Defines the type of external memory attached to the corresponding memory bank: 00: SRAM (default after reset for Bank 2...4) 01: PSRAM (CRAM) 10: NOR Flash/OneNAND Flash (default after reset for Bank 1) 11: reserved Bit 1 MUXEN: Address/data multiplexing enable bit. When this bit is set, the address and data values are multiplexed on the data bus, valid only with NOR and PSRAM memories: 0: Address/Data non multiplexed 1: Address/Data multiplexed on databus (default after reset) Bit 0 MBKEN: Memory bank enable bit. Enables the memory bank. After reset Bank1 is enabled, all others are disabled. Accessing a disabled bank causes an ERROR on AHB bus. 0: Corresponding memory bank is disabled 1: Corresponding memory bank is enabled SRAM/NOR-Flash chip-select timing registers 1..4 (FMC_BTR1..4) Address offset: 0x04 + 8 * (x – 1), x = 1..4 Reset value: 0x0FFF FFFF This register contains the control information of each memory bank, used for SRAMs, PSRAM and NOR Flash memories.If the EXTMOD bit is set in the FMC_BCRx register, then this register is partitioned for write and read access, that is, 2 registers are available: one to configure read accesses (this register) and one to configure write accesses (FMC_BWTRx registers). RM0385 Rev 7 347/1709 383 Flexible memory controller (FMC) 31 30 Res. Res. 29 14 27 ACCMOD[1:0] rw 15 28 13 26 RM0385 25 24 23 DATLAT[3:0] rw rw rw rw rw rw rw 12 11 10 9 8 7 rw rw 21 20 19 CLKDIV[3:0] rw DATAST[7:0] rw 22 rw rw rw rw rw rw 6 5 4 3 rw rw 17 16 BUSTURN[3:0] rw ADDHLD[3:0] rw 18 rw rw rw 2 1 0 ADDSET[3:0] rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:28 ACCMOD[1:0]: Access mode Specifies the asynchronous access modes as shown in the timing diagrams. These bits are taken into account only when the EXTMOD bit in the FMC_BCRx register is 1. 00: access mode A 01: access mode B 10: access mode C 11: access mode D Bits 27:24 DATLAT[3:0]: (see note below bit descriptions): Data latency for synchronous memory For synchronous access with read/write burst mode enabled (BURSTEN / CBURSTRW bits set), defines the number of memory clock cycles (+2) to issue to the memory before reading/writing the first data: This timing parameter is not expressed in HCLK periods, but in FMC_CLK periods. For asynchronous access, this value is don't care. 0000: Data latency of 2 CLK clock cycles for first burst access 1111: Data latency of 17 CLK clock cycles for first burst access (default value after reset) Bits 23:20 CLKDIV[3:0]: Clock divide ratio (for FMC_CLK signal) Defines the period of FMC_CLK clock output signal, expressed in number of HCLK cycles: 0000: Reserved 0001: FMC_CLK period = 2 × HCLK periods 0010: FMC_CLK period = 3 × HCLK periods 1111: FMC_CLK period = 16 × HCLK periods (default value after reset) In asynchronous NOR Flash, SRAM or PSRAM accesses, this value is don’t care. Note: Refer to Section 13.5.5: Synchronous transactions for FMC_CLK divider ratio formula) 348/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration These bits are written by software to add a delay at the end of a write-to-read (and read-towrite) transaction. This delay allows to match the minimum time between consecutive transactions (tEHEL from NEx high to NEx low) and the maximum time needed by the memory to free the data bus after a read access (tEHQZ). The programmed bus turnaround delay is inserted between an asynchronous read (muxed or mode D) or write transaction and any other asynchronous /synchronous read or write to or from a static bank. The bank can be the same or different in case of read, in case of write the bank can be different except for muxed or mode D. In some cases, whatever the programmed BUSTURN values, the bus turnaround delay is fixed as follows: • The bus turnaround delay is not inserted between two consecutive asynchronous write transfers to the same static memory bank except for modes muxed and D. • There is a bus turnaround delay of 1 HCLK clock cycle between: –Two consecutive asynchronous read transfers to the same static memory bank except for modes muxed and D. –An asynchronous read to an asynchronous or synchronous write to any static bank or dynamic bank except for modes muxed and D. –An asynchronous (modes 1, 2, A, B or C) read and a read from another static bank. • There is a bus turnaround delay of 2 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to the same bank. –A synchronous write (burst or single) access and an asynchronous write or read transfer to or from static memory bank (the bank can be the same or different for the case of read. –Two consecutive synchronous reads (burst or single) followed by any synchronous/asynchronous read or write from/to another static memory bank. • There is a bus turnaround delay of 3 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to different static bank. –A synchronous write (burst or single) access and a synchronous read from the same or a different bank. 0000: BUSTURN phase duration = 0 HCLK clock cycle added ... 1111: BUSTURN phase duration = 15 x HCLK clock cycles added (default value after reset) Bits 15:8 DATAST[7:0]: Data-phase duration These bits are written by software to define the duration of the data phase (refer to Figure 35 to Figure 47), used in asynchronous accesses: 0000 0000: Reserved 0000 0001: DATAST phase duration = 1 × HCLK clock cycles 0000 0010: DATAST phase duration = 2 × HCLK clock cycles ... 1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset) For each memory type and access mode data-phase duration, refer to the respective figure (Figure 35 to Figure 47). Example: Mode1, write access, DATAST=1: Data-phase duration= DATAST+1 = 2 HCLK clock cycles. Note: In synchronous accesses, this value is don’t care. RM0385 Rev 7 349/1709 383 Flexible memory controller (FMC) RM0385 Bits 7:4 ADDHLD[3:0]: Address-hold phase duration These bits are written by software to define the duration of the address hold phase (refer to Figure 35 to Figure 47), used in mode D or multiplexed accesses: 0000: Reserved 0001: ADDHLD phase duration =1 × HCLK clock cycle 0010: ADDHLD phase duration = 2 × HCLK clock cycle ... 1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset) For each access mode address-hold phase duration, refer to the respective figure (Figure 35 to Figure 47). Note: In synchronous accesses, this value is not used, the address hold phase is always 1 memory clock period duration. Bits 3:0 ADDSET[3:0]: Address setup phase duration These bits are written by software to define the duration of the address setup phase (refer to Figure 35 to Figure 47), used in SRAMs, ROMs, asynchronous NOR Flash and PSRAM: 0000: ADDSET phase duration = 0 × HCLK clock cycle ... 1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset) For each access mode address setup phase duration, refer to the respective figure (Figure 35 to Figure 47). Note: In synchronous accesses, this value is don’t care. In Muxed mode or Mode D, the minimum value for ADDSET is 1. Note: PSRAMs (CRAMs) have a variable latency due to internal refresh. Therefore these memories issue the NWAIT signal during the whole latency phase to prolong the latency as needed. With PSRAMs (CRAMs) the filled DATLAT must be set to 0, so that the FMC exits its latency phase soon and starts sampling NWAIT from memory, then starts to read or write when the memory is ready. This method can be used also with the latest generation of synchronous Flash memories that issue the NWAIT signal, unlike older Flash memories (check the datasheet of the specific Flash memory being used). SRAM/NOR-Flash write timing registers 1..4 (FMC_BWTR1..4) Address offset: 0x104 + 8 * (x – 1), x = 1...4 Reset value: 0x0FFF FFFF This register contains the control information of each memory bank. It is used for SRAMs, PSRAMs and NOR Flash memories. When the EXTMOD bit is set in the FMC_BCRx register, then this register is active for write access. 31 30 Res. Res. 15 14 29 28 ACCMOD[1:0] rw rw 13 12 27 26 25 24 23 22 21 20 Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 DATAST[7:0] rw rw rw rw rw rw rw rw rw RM0385 Rev 7 rw rw 18 17 16 BUSTURN[3:0] rw rw rw rw 3 2 1 0 ADDHLD[3:0] Bits 31:30 Reserved, must be kept at reset value. 350/1709 19 ADDSET[3:0] rw rw rw rw rw RM0385 Flexible memory controller (FMC) Bits 29:28 ACCMOD[1:0]: Access mode. Specifies the asynchronous access modes as shown in the next timing diagrams.These bits are taken into account only when the EXTMOD bit in the FMC_BCRx register is 1. 00: access mode A 01: access mode B 10: access mode C 11: access mode D Bits 27:20 Reserved, must be kept at reset value. Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration The programmed bus turnaround delay is inserted between an asynchronous write transfer and any other asynchronous /synchronous read or write transfer to or from a static bank. The bank can be the same or different in case of read, in case of write the bank can be different expect for muxed or mode D. In some cases, whatever the programmed BUSTURN values, the bus turnaround delay is fixed as follows: • The bus turnaround delay is not inserted between two consecutive asynchronous write transfers to the same static memory bank except for modes muxed and D. • There is a bus turnaround delay of 2 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to the same bank. –A synchronous write (burst or single) transfer and an asynchronous write or read transfer to or from static memory bank. • There is a bus turnaround delay of 3 HCLK clock cycle between: –Two consecutive synchronous writes (burst or single) to different static bank. –A synchronous write (burst or single) transfer and a synchronous read from the same or a different bank. 0000: BUSTURN phase duration = 0 HCLK clock cycle added ... 1111: BUSTURN phase duration = 15 HCLK clock cycles added (default value after reset) Bits 15:8 DATAST[7:0]: Data-phase duration. These bits are written by software to define the duration of the data phase (refer to Figure 35 to Figure 47), used in asynchronous SRAM, PSRAM and NOR Flash memory accesses: 0000 0000: Reserved 0000 0001: DATAST phase duration = 1 × HCLK clock cycles 0000 0010: DATAST phase duration = 2 × HCLK clock cycles ... 1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset) Bits 7:4 ADDHLD[3:0]: Address-hold phase duration. These bits are written by software to define the duration of the address hold phase (refer to Figure 44 to Figure 47), used in asynchronous multiplexed accesses: 0000: Reserved 0001: ADDHLD phase duration = 1 × HCLK clock cycle 0010: ADDHLD phase duration = 2 × HCLK clock cycle ... 1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset) Note: In synchronous NOR Flash accesses, this value is not used, the address hold phase is always 1 Flash clock period duration. RM0385 Rev 7 351/1709 383 Flexible memory controller (FMC) RM0385 Bits 3:0 ADDSET[3:0]: Address setup phase duration. These bits are written by software to define the duration of the address setup phase in HCLK cycles (refer to Figure 35 to Figure 47), used in asynchronous accesses: 0000: ADDSET phase duration = 0 × HCLK clock cycle ... 1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset) Note: In synchronous accesses, this value is not used, the address setup phase is always 1 Flash clock period duration. In muxed mode, the minimum ADDSET value is 1. 13.6 NAND Flash controller The FMC generates the appropriate signal timings to drive the following types of device: • 8- and 16-bit NAND Flash memories The NAND bank is configured through dedicated registers (Section 13.6.7). The programmable memory parameters include access timings (shown in Table 82) and ECC configuration. Table 82. Programmable NAND Flash access parameters 13.6.1 Parameter Function Access mode Unit Min. Max. Memory setup time Number of clock cycles (HCLK) required to set up the address before the command assertion Read/Write AHB clock cycle (HCLK) 1 255 Memory wait Minimum duration (in HCLK clock cycles) of the command assertion Read/Write AHB clock cycle (HCLK) 2 255 Memory hold Number of clock cycles (HCLK) during which the address must be held (as well as the data if a write access is performed) after the command de-assertion Read/Write AHB clock cycle (HCLK) 1 254 Memory databus high-Z Number of clock cycles (HCLK) during which the data bus is kept in high-Z state after a write access has started Write AHB clock cycle (HCLK) 1 255 External memory interface signals The following tables list the signals that are typically used to interface NAND Flash memory. Note: The prefix “N” identifies the signals which are active low. 8-bit NAND Flash memory Table 83. 8-bit NAND Flash 352/1709 FMC signal name I/O Function A[17] O NAND Flash address latch enable (ALE) signal A[16] O NAND Flash command latch enable (CLE) signal RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Table 83. 8-bit NAND Flash (continued) FMC signal name I/O Function D[7:0] I/O 8-bit multiplexed, bidirectional address/data bus NCE O Chip Select NOE(= NRE) O Output enable (memory signal name: read enable, NRE) NWE O Write enable NWAIT/INT I NAND Flash ready/busy input signal to the FMC Theoretically, there is no capacity limitation as the FMC can manage as many address cycles as needed. 16-bit NAND Flash memory Table 84. 16-bit NAND Flash FMC signal name I/O Function A[17] O NAND Flash address latch enable (ALE) signal A[16] O NAND Flash command latch enable (CLE) signal D[15:0] I/O 16-bit multiplexed, bidirectional address/data bus NCE O Chip Select NOE(= NRE) O Output enable (memory signal name: read enable, NRE) NWE O Write enable NWAIT/INT I NAND Flash ready/busy input signal to the FMC Theoretically, there is no capacity limitation as the FMC can manage as many address cycles as needed. RM0385 Rev 7 353/1709 383 Flexible memory controller (FMC) 13.6.2 RM0385 NAND Flash supported memories and transactions Table 85 shows the supported devices, access modes and transactions. Transactions not allowed (or not supported) by the NAND Flash controller are shown in gray. Table 85. Supported memories and transactions Device NAND 8-bit NAND 16-bit 13.6.3 AHB Memory Allowed/ data size data size not allowed Mode R/W Comments Asynchronous R 8 8 Y - Asynchronous W 8 8 Y - Asynchronous R 16 8 Y Split into 2 FMC accesses Asynchronous W 16 8 Y Split into 2 FMC accesses Asynchronous R 32 8 Y Split into 4 FMC accesses Asynchronous W 32 8 Y Split into 4 FMC accesses Asynchronous R 8 16 Y - Asynchronous W 8 16 N - Asynchronous R 16 16 Y - Asynchronous W 16 16 Y - Asynchronous R 32 16 Y Split into 2 FMC accesses Asynchronous W 32 16 Y Split into 2 FMC accesses Timing diagrams for NAND Flash memory The NAND Flash memory bank is managed through a set of registers: • Control register: FMC_PCR • Interrupt status register: FMC_SR • ECC register: FMC_ECCR • Timing register for Common memory space: FMC_PMEM • Timing register for Attribute memory space: FMC_PATT Each timing configuration register contains three parameters used to define number of HCLK cycles for the three phases of any NAND Flash access, plus one parameter that defines the timing for starting driving the data bus when a write access is performed. Figure 53 shows the timing parameter definitions for common memory accesses, knowing that Attribute memory space access timings are similar. 354/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Figure 53. NAND Flash controller waveforms for common memory access HCLK A[25:0] NCEx High NREG, NIOW, NIOR NWE, NOE MEMxSET +1 MEMxWAIT + 1 MEMxHOLD (1) MEMxHIZ + 1 write_data read_data Valid MS33733V3 1. NOE remains high (inactive) during write accesses. NWE remains high (inactive) during read accesses. 2. For write access, the hold phase delay is (MEMHOLD) HCLK cycles and for read access is (MEMHOLD + 2) HCLK cycles. 13.6.4 NAND Flash operations The command latch enable (CLE) and address latch enable (ALE) signals of the NAND Flash memory device are driven by address signals from the FMC controller. This means that to send a command or an address to the NAND Flash memory, the CPU has to perform a write to a specific address in its memory space. A typical page read operation from the NAND Flash device requires the following steps: 1. Program and enable the corresponding memory bank by configuring the FMC_PCR and FMC_PMEM (and for some devices, FMC_PATT, see Section 13.6.5: NAND Flash prewait functionality) registers according to the characteristics of the NAND Flash memory (PWID bits for the data bus width of the NAND Flash, PTYP = 1, PWAITEN = 0 or 1 as needed, see Section 13.4.2: NAND Flash memory address mapping for timing configuration). 2. The CPU performs a byte write to the common memory space, with data byte equal to one Flash command byte (for example 0x00 for Samsung NAND Flash devices). The LE input of the NAND Flash memory is active during the write strobe (low pulse on NWE), thus the written byte is interpreted as a command by the NAND Flash memory. Once the command is latched by the memory device, it does not need to be written again for the following page read operations. 3. The CPU can send the start address (STARTAD) for a read operation by writing four bytes (or three for smaller capacity devices), STARTAD[7:0], STARTAD[16:9], STARTAD[24:17] and finally STARTAD[25] (for 64 Mb x 8 bit NAND Flash memories) in the common memory or attribute space. The ALE input of the NAND Flash device is active during the write strobe (low pulse on NWE), thus the written bytes are interpreted as the start address for read operations. Using the attribute memory space makes it possible to use a different timing configuration of the FMC, which can be used RM0385 Rev 7 355/1709 383 Flexible memory controller (FMC) RM0385 to implement the prewait functionality needed by some NAND Flash memories (see details in Section 13.6.5: NAND Flash prewait functionality). 13.6.5 4. The controller waits for the NAND Flash memory to be ready (R/NB signal high), before starting a new access to the same or another memory bank. While waiting, the controller holds the NCE signal active (low). 5. The CPU can then perform byte read operations from the common memory space to read the NAND Flash page (data field + Spare field) byte by byte. 6. The next NAND Flash page can be read without any CPU command or address write operation. This can be done in three different ways: – by simply performing the operation described in step 5 – a new random address can be accessed by restarting the operation at step 3 – a new command can be sent to the NAND Flash device by restarting at step 2 NAND Flash prewait functionality Some NAND Flash devices require that, after writing the last part of the address, the controller waits for the R/NB signal to go low. (see Figure 54). Figure 54. Access to non ‘CE don’t care’ NAND-Flash 1. CPU wrote byte 0x00 at address 0x7001 0000. 2. CPU wrote byte A7~A0 at address 0x7002 0000. 3. CPU wrote byte A16~A9 at address 0x7002 0000. 4. CPU wrote byte A24~A17 at address 0x7002 0000. 5. CPU wrote byte A25 at address 0x7802 0000: FMC performs a write access using FMC_PATT timing definition, where ATTHOLD ≥ 7 (providing that (7+1) × HCLK = 112 ns > tWB max). This guarantees that NCE remains low until R/NB goes low and high again (only requested for NAND Flash memories where NCE is not don’t care). 356/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) When this functionality is required, it can be ensured by programming the MEMHOLD value to meet the tWB timing. However any CPU read access to the NAND Flash memory has a hold delay of (MEMHOLD + 2) HCLK cycles and CPU write access has a hold delay of (MEMHOLD) HCLK cycles inserted between the rising edge of the NWE signal and the next access. To cope with this timing constraint, the attribute memory space can be used by programming its timing register with an ATTHOLD value that meets the tWB timing, and by keeping the MEMHOLD value at its minimum value. The CPU must then use the common memory space for all NAND Flash read and write accesses, except when writing the last address byte to the NAND Flash device, where the CPU must write to the attribute memory space. 13.6.6 Computation of the error correction code (ECC) in NAND Flash memory The FMC NAND Card controller includes two error correction code computation hardware blocks, one per memory bank. They reduce the host CPU workload when processing the ECC by software. These two ECC blocks are identical and associated with Bank 2 and Bank 3. As a consequence, no hardware ECC computation is available for memories connected to Bank 4. The ECC algorithm implemented in the FMC can perform 1-bit error correction and 2-bit error detection per 256, 512, 1 024, 2 048, 4 096 or 8 192 bytes read or written from/to the NAND Flash memory. It is based on the Hamming coding algorithm and consists in calculating the row and column parity. The ECC modules monitor the NAND Flash data bus and read/write signals (NCE and NWE) each time the NAND Flash memory bank is active. The ECC operates as follows: • When accessing NAND Flash memory bank 2 or bank 3, the data present on the D[15:0] bus is latched and used for ECC computation. • When accessing any other address in NAND Flash memory, the ECC logic is idle, and does not perform any operation. As a result, write operations to define commands or addresses to the NAND Flash memory are not taken into account for ECC computation. Once the desired number of bytes has been read/written from/to the NAND Flash memory by the host CPU, the FMC_ECCR registers must be read to retrieve the computed value. Once read, they should be cleared by resetting the ECCEN bit to ‘0’. To compute a new data block, the ECCEN bit must be set to one in the FMC_PCR registers. RM0385 Rev 7 357/1709 383 Flexible memory controller (FMC) RM0385 To perform an ECC computation: 13.6.7 1. Enable the ECCEN bit in the FMC_PCR register. 2. Write data to the NAND Flash memory page. While the NAND page is written, the ECC block computes the ECC value. 3. Read the ECC value available in the FMC_ECCR register and store it in a variable. 4. Clear the ECCEN bit and then enable it in the FMC_PCR register before reading back the written data from the NAND page. While the NAND page is read, the ECC block computes the ECC value. 5. Read the new ECC value available in the FMC_ECCR register. 6. If the two ECC values are the same, no correction is required, otherwise there is an ECC error and the software correction routine returns information on whether the error can be corrected or not. NAND Flash controller registers NAND Flash control registers (FMC_PCR) Address offset: 0x80 Reset value: 0x0000 0018 31 30 29 28 27 26 25 24 23 22 21 20 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 TAR[2:0] rw rw 11 10 9 TCLR[3:0] rw rw rw rw 8 7 6 Res. Res. ECCEN rw rw 5 4 PWID[1:0] rw rw 19 18 17 ECCPS[2:0] TAR3 rw rw rw 3 2 1 PTYP PBKEN PWAITEN rw rw rw Bits 31:20 Reserved, must be kept at reset value. Bits 19:17 ECCPS[2:0]: ECC page size. Defines the page size for the extended ECC: 000: 256 bytes 001: 512 bytes 010: 1024 bytes 011: 2048 bytes 100: 4096 bytes 101: 8192 bytes Bits 16:13 TAR[3:0]: ALE to RE delay. Sets time from ALE low to RE low in number of AHB clock cycles (HCLK). Time is: t_ar = (TAR + SET + 2) × THCLK where THCLK is the HCLK clock period 0000: 1 HCLK cycle (default) 1111: 16 HCLK cycles Note: SET is MEMSET or ATTSET according to the addressed space. 358/1709 RM0385 Rev 7 16 rw 0 Res. RM0385 Flexible memory controller (FMC) Bits 12:9 TCLR[3:0]: CLE to RE delay. Sets time from CLE low to RE low in number of AHB clock cycles (HCLK). Time is t_clr = (TCLR + SET + 2) × THCLK where THCLK is the HCLK clock period 0000: 1 HCLK cycle (default) 1111: 16 HCLK cycles Note: SET is MEMSET or ATTSET according to the addressed space. Bits 8:7 Reserved, must be kept at reset value. Bit 6 ECCEN: ECC computation logic enable bit 0: ECC logic is disabled and reset (default after reset), 1: ECC logic is enabled. Bits 5:4 PWID[1:0]: Data bus width. Defines the external memory device width. 00: 8 bits 01: 16 bits (default after reset). 10: reserved. 11: reserved. Bit 3 PTYP: Memory type. Defines the type of device attached to the corresponding memory bank: 0: Reserved, must be kept at reset value 1: NAND Flash (default after reset) Bit 2 PBKEN: NAND Flash memory bank enable bit. Enables the memory bank. Accessing a disabled memory bank causes an ERROR on AHB bus 0: Corresponding memory bank is disabled (default after reset) 1: Corresponding memory bank is enabled Bit 1 PWAITEN: Wait feature enable bit. Enables the Wait feature for the NAND Flash memory bank: 0: disabled 1: enabled Bit 0 Reserved, must be kept at reset value. FIFO status and interrupt register (FMC_SR) Address offset: 0x84 Reset value: 0x0000 0040 This register contains information about the FIFO status and interrupt. The FMC features a FIFO that is used when writing to memories to transfer up to 16 words of data from the AHB. This is used to quickly write to the FIFO and free the AHB for transactions to peripherals other than the FMC, while the FMC is draining its FIFO into the memory. One of these register bits indicates the status of the FIFO, for ECC purposes. The ECC is calculated while the data are written to the memory. To read the correct ECC, the software must consequently wait until the FIFO is empty. RM0385 Rev 7 359/1709 383 Flexible memory controller (FMC) RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. FEMPT IFEN ILEN IREN IFS ILS IRS r rw rw rw rw rw rw Bits 31:7 Reserved, must be kept at reset value. Bit 6 FEMPT: FIFO empty. Read-only bit that provides the status of the FIFO 0: FIFO not empty 1: FIFO empty Bit 5 IFEN: Interrupt falling edge detection enable bit 0: Interrupt falling edge detection request disabled 1: Interrupt falling edge detection request enabled Bit 4 ILEN: Interrupt high-level detection enable bit 0: Interrupt high-level detection request disabled 1: Interrupt high-level detection request enabled Bit 3 IREN: Interrupt rising edge detection enable bit 0: Interrupt rising edge detection request disabled 1: Interrupt rising edge detection request enabled Bit 2 IFS: Interrupt falling edge status The flag is set by hardware and reset by software. 0: No interrupt falling edge occurred 1: Interrupt falling edge occurred Note: If this bit is written by software to 1 it will be set. Bit 1 ILS: Interrupt high-level status The flag is set by hardware and reset by software. 0: No Interrupt high-level occurred 1: Interrupt high-level occurred Bit 0 IRS: Interrupt rising edge status The flag is set by hardware and reset by software. 0: No interrupt rising edge occurred 1: Interrupt rising edge occurred Note: If this bit is written by software to 1 it will be set. Common memory space timing register 2..4 (FMC_PMEM) Address offset: Address: 0x88 Reset value: 0xFCFC FCFC The FMC_PMEM read/write register contains the timing information for NAND Flash memory bank. This information is used to access either the common memory space of the NAND Flash for command, address write access and data read/write access. 360/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) 31 30 29 28 rw rw rw rw 15 14 13 12 27 26 25 24 23 22 21 rw rw rw rw rw rw rw rw 11 10 9 8 7 6 5 4 MEMHIZ[7:0] rw rw rw rw 19 18 17 16 rw rw rw rw 3 2 1 0 rw rw rw MEMHOLD[7:0] MEMWAIT[7:0] rw 20 MEMSET[7:0] rw rw rw rw rw rw rw rw Bits 31:24 MEMHIZ[7:0]: Common memory x data bus Hi-Z time Defines the number of HCLK clock cycles during which the data bus is kept Hi-Z after the start of a NAND Flash write access to common memory space on socket. This is only valid for write transactions: 0000 0000: 1 HCLK cycle 1111 1110: 255 HCLK cycles 1111 1111: reserved. Bits 23:16 MEMHOLD[7:0]: Common memory hold time Defines the number of HCLK clock cycles for write access and HCLK (+2) clock cycles for read access during which the address is held (and data for write accesses) after the command is deasserted (NWE, NOE), for NAND Flash read or write access to common memory space on socket x: 0000 0000: reserved. 0000 0001: 1 HCLK cycle for write access / 3 HCLK cycles for read access 1111 1110: 254 HCLK cycles for write access / 256 HCLK cycles for read access 1111 1111: reserved. Bits 15:8 MEMWAIT[7:0]: Common memory wait time Defines the minimum number of HCLK (+1) clock cycles to assert the command (NWE, NOE), for NAND Flash read or write access to common memory space on socket. The duration of command assertion is extended if the wait signal (NWAIT) is active (low) at the end of the programmed value of HCLK: 0000 0000: reserved 0000 0001: 2HCLK cycles (+ wait cycle introduced by deasserting NWAIT) 1111 1110: 255 HCLK cycles (+ wait cycle introduced by deasserting NWAIT) 1111 1111: reserved. Bits 7:0 MEMSET[7:0]: Common memory x setup time Defines the number of HCLK (+1) clock cycles to set up the address before the command assertion (NWE, NOE), for NAND Flash read or write access to common memory space on socket x: 0000 0000: 1 HCLK cycle 1111 1110: 255 HCLK cycles 1111 1111: reserved Attribute memory space timing registers (FMC_PATT) Address offset: 0x8C Reset value: 0xFCFC FCFC The FMC_PATT read/write register contains the timing information for NAND Flash memory bank. It is used for 8-bit accesses to the attribute memory space of the NAND Flash for the last address write access if the timing must differ from that of previous accesses (for Ready/Busy management, refer to Section 13.6.5: NAND Flash prewait functionality). RM0385 Rev 7 361/1709 383 Flexible memory controller (FMC) 31 30 29 28 rw rw rw rw 15 14 13 12 27 RM0385 26 25 24 23 22 21 rw rw rw rw rw rw rw rw 11 10 9 8 7 6 5 4 ATTHIZ[7:0] rw rw rw rw 19 18 17 16 rw rw rw rw 3 2 1 0 rw rw rw ATTHOLD[7:0] ATTWAIT[7:0] rw 20 ATTSET[7:0] rw rw rw rw rw rw rw rw Bits 31:24 ATTHIZ[7:0]: Attribute memory data bus Hi-Z time Defines the number of HCLK clock cycles during which the data bus is kept in Hi-Z after the start of a NAND Flash write access to attribute memory space on socket. Only valid for writ transaction: 0000 0000: 0 HCLK cycle 1111 1110: 255 HCLK cycles 1111 1111: reserved. Bits 23:16 ATTHOLD[7:0]: Attribute memory hold time Defines the number of HCLK clock cycles for write access and HCLK (+2) clock cycles for read access during which the address is held (and data for write access) after the command deassertion (NWE, NOE), for NAND Flash read or write access to attribute memory space on socket: 0000 0000: reserved 0000 0001: 1 HCLK cycle for write access / 3 HCLK cycles for read access 1111 1110: 254 HCLK cycles for write access / 256 HCLK cycles for read access 1111 1111: reserved. Bits 15:8 ATTWAIT[7:0]: Attribute memory wait time Defines the minimum number of HCLK (+1) clock cycles to assert the command (NWE, NOE), for NAND Flash read or write access to attribute memory space on socket x. The duration for command assertion is extended if the wait signal (NWAIT) is active (low) at the end of the programmed value of HCLK: 0000 0000: reserved 0000 0001: 2 HCLK cycles (+ wait cycle introduced by deassertion of NWAIT) 1111 1110: 255 HCLK cycles (+ wait cycle introduced by deasserting NWAIT) 1111 1111: reserved. Bits 7:0 ATTSET[7:0]: Attribute memory setup time Defines the number of HCLK (+1) clock cycles to set up address before the command assertion (NWE, NOE), for NAND Flash read or write access to attribute memory space on socket: 0000 0000: 1 HCLK cycle 1111 1110: 255 HCLK cycles 1111 1111: reserved. 362/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) ECC result registers (FMC_ECCR) Address offset: 0x94 Reset value: 0x0000 0000 This register contain the current error correction code value computed by the ECC computation modules of the FMC NAND controller. When the CPU reads the data from a NAND Flash memory page at the correct address (refer to Section 13.6.6: Computation of the error correction code (ECC) in NAND Flash memory), the data read/written from/to the NAND Flash memory are processed automatically by the ECC computation module. When X bytes have been read (according to the ECCPS field in the FMC_PCR registers), the CPU must read the computed ECC value from the FMC_ECC registers. It then verifies if these computed parity data are the same as the parity value recorded in the spare area, to determine whether a page is valid, and, to correct it otherwise. The FMC_ECCR register should be cleared after being read by setting the ECCEN bit to ‘0’. To compute a new data block, the ECCEN bit must be set to ’1’. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ECC[31:16] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r ECC[15:0] r r r r r r r r r Bits 31:0 ECC[31:0]: ECC result This field contains the value computed by the ECC computation logic. Table 86 describes the contents of these bit fields. Table 86. ECC result relevant bits ECCPS[2:0] Page size in bytes ECC bits 000 256 ECC[21:0] 001 512 ECC[23:0] 010 1024 ECC[25:0] 011 2048 ECC[27:0] 100 4096 ECC[29:0] 101 8192 ECC[31:0] RM0385 Rev 7 363/1709 383 Flexible memory controller (FMC) RM0385 13.7 SDRAM controller 13.7.1 SDRAM controller main features The main features of the SDRAM controller are the following: 13.7.2 • Two SDRAM banks with independent configuration • 8-bit, 16-bit, 32-bit data bus width • 13-bits Address Row, 11-bits Address Column, 4 internal banks: 4x16Mx32bit (256 MB), 4x16Mx16bit (128 MB), 4x16Mx8bit (64 MB) • Word, half-word, byte access • SDRAM clock can be HCLK/2 or HCLK/3 • Automatic row and bank boundary management • Multibank ping-pong access • Programmable timing parameters • Automatic Refresh operation with programmable Refresh rate • Self-refresh mode • Power-down mode • SDRAM power-up initialization by software • CAS latency of 1,2,3 • Cacheable Read FIFO with depth of 6 lines x32-bit (6 x14-bit address tag) SDRAM External memory interface signals At startup, the SDRAM I/O pins used to interface the FMC SDRAM controller with the external SDRAM devices must configured by the user application. The SDRAM controller I/O pins which are not used by the application, can be used for other purposes. Table 87. SDRAM signals 364/1709 SDRAM signal I/O type Description Alternate function SDCLK O SDRAM clock - SDCKE[1:0] O SDCKE0: SDRAM Bank 1 Clock Enable SDCKE1: SDRAM Bank 2 Clock Enable - SDNE[1:0] O SDNE0: SDRAM Bank 1 Chip Enable SDNE1: SDRAM Bank 2 Chip Enable - A[12:0] O Address FMC_A[12:0] D[31:0] I/O Bidirectional data bus FMC_D[31:0] BA[1:0] O Bank Address FMC_A[15:14] NRAS O Row Address Strobe - NCAS O Column Address Strobe - SDNWE O Write Enable - NBL[3:0] O Output Byte Mask for write accesses (memory signal name: DQM[3:0] FMC_NBL[3:0] RM0385 Rev 7 RM0385 13.7.3 Flexible memory controller (FMC) SDRAM controller functional description All SDRAM controller outputs (signals, address and data) change on the falling edge of the memory clock (FMC_SDCLK). SDRAM initialization The initialization sequence is managed by software. If the two banks are used, the initialization sequence must be generated simultaneously to Bank 1and Bank 2 by setting the Target Bank bits CTB1 and CTB2 in the FMC_SDCMR register: 1. Program the memory device features into the FMC_SDCRx register. The SDRAM clock frequency, RBURST and RPIPE must be programmed in the FMC_SDCR1 register. 2. Program the memory device timing into the FMC_SDTRx register. The TRP and TRC timings must be programmed in the FMC_SDTR1 register. 3. Set MODE bits to ‘001’ and configure the Target Bank bits (CTB1 and/or CTB2) in the FMC_SDCMR register to start delivering the clock to the memory (SDCKE is driven high). 4. Wait during the prescribed delay period. Typical delay is around 100 μs (refer to the SDRAM datasheet for the required delay after power-up). 5. Set MODE bits to ‘010’ and configure the Target Bank bits (CTB1 and/or CTB2) in the FMC_SDCMR register to issue a “Precharge All” command. 6. Set MODE bits to ‘011’, and configure the Target Bank bits (CTB1 and/or CTB2) as well as the number of consecutive Auto-refresh commands (NRFS) in the FMC_SDCMR register. Refer to the SDRAM datasheet for the number of Auto-refresh commands that should be issued. Typical number is 8. 7. Configure the MRD field according to the SDRAM device, set the MODE bits to '100', and configure the Target Bank bits (CTB1 and/or CTB2) in the FMC_SDCMR register to issue a "Load Mode Register" command in order to program the SDRAM device. In particular: a) the CAS latency must be selected following configured value in FMC_SDCR1/2 registers b) the Burst Length (BL) of 1 must be selected by configuring the M[2:0] bits to 000 in the mode register. Refer to SDRAM device datasheet. If the Mode Register is not the same for both SDRAM banks, this step has to be repeated twice, once for each bank, and the Target Bank bits set accordingly. 8. Program the refresh rate in the FMC_SDRTR register The refresh rate corresponds to the delay between refresh cycles. Its value must be adapted to SDRAM devices. 9. For mobile SDRAM devices, to program the extended mode register it should be done once the SDRAM device is initialized: First, a dummy read access should be performed while BA1=1 and BA=0 (refer to SDRAM address mapping section for BA[1:0] address mapping) in order to select the extended mode register instead of the load mode register and then program the needed value. At this stage the SDRAM device is ready to accept commands. If a system reset occurs during an ongoing SDRAM access, the data bus might still be driven by the SDRAM device. Therefor the SDRAM device must be first reinitialized after reset before issuing any new access by the NOR Flash/PSRAM/SRAM or NAND Flash controller. RM0385 Rev 7 365/1709 383 Flexible memory controller (FMC) Note: RM0385 If two SDRAM devices are connected to the FMC, all the accesses performed at the same time to both devices by the Command Mode register (Load Mode Register command) are issued using the timing parameters configured for SDRAM Bank 1 (TMRD andTRAS timings) in the FMC_SDTR1 register. SDRAM controller write cycle The SDRAM controller accepts single and burst write requests and translates them into single memory accesses. In both cases, the SDRAM controller keeps track of the active row for each bank to be able to perform consecutive write accesses to different banks (Multibank ping-pong access). Before performing any write access, the SDRAM bank write protection must be disabled by clearing the WP bit in the FMC_SDCRx register. Figure 55. Burst write SDRAM access waveforms TRCD = 3 SDNE SDCLK A[12:0] Row n Cola Colb Colc Cold Cole Colf Cog Colh Coli Colj Colk Coll NRAS NCAS SDNWE DATA[31:0] Dna Dnb Dnc Dnd Dne Dnf Dng Dnh Dni Dnj Dnk Dnl MS30448V3 The SDRAM controller always checks the next access. • If the next access is in the same row or in another active row, the write operation is carried out, • if the next access targets another row (not active), the SDRAM controller generates a precharge command, activates the new row and initiates a write command. SDRAM controller read cycle The SDRAM controller accepts single and burst read requests and translates them into single memory accesses. In both cases, the SDRAM controller keeps track of the active row in each bank to be able to perform consecutive read accesses in different banks (Multibank ping-pong access). 366/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Figure 56. Burst read SDRAM access TRCD = 3 CAS latency = 2 SDNE SDCLK A[12:0] Row n Cola Colb Colc Cold Cole Colf NRAS NCAS NWE Dna DATA[31:0] Dnb Dnc Dnd Dne Dnf MS30449V3 The FMC SDRAM controller features a Cacheable read FIFO (6 lines x 32 bits). It is used to store data read in advance during the CAS latency period and the RPIPE delay following the below formula. The RBURST bit must be set in the FMC_SDCR1 register to anticipate the next read access. Number for anticipated data = CAS latency + 1 + (RPIPE delay)/2 Examples: • CAS latency = 3, RPIPE delay = 0: Four data (not committed) are stored in the FIFO. • CAS latency = 3, RPIPE delay = 2: Five data (not committed) are stored in the FIFO. The read FIFO features a 14-bit address tag to each line to identify its content: 11 bits for the column address, 2 bits to select the internal bank and the active row, and 1 bit to select the SDRAM device When the end of the row is reached in advance during an AHB burst read, the data read in advance (not committed) are not stored in the read FIFO. For single read access, data are correctly stored in the FIFO. Each time a read request occurs, the SDRAM controller checks: • If the address matches one of the address tags, data are directly read from the FIFO and the corresponding address tag/ line content is cleared and the remaining data in the FIFO are compacted to avoid empty lines. • Otherwise, a new read command is issued to the memory and the FIFO is updated with new data. If the FIFO is full, the older data are lost. RM0385 Rev 7 367/1709 383 Flexible memory controller (FMC) RM0385 Figure 57. Logic diagram of Read access with RBURST bit set (CAS=1, RPIPE=0) 1st Read access: Requested data is not in the FIFO FMC SDRAM Controller AXI Master read request@0x00 Data 1 SDRAM Device (CAS = 1) 6 lines FIFO @0x04 Data 2 @0x08 Data 3 ... ... Add. Tag read FIFO Data stored in FIFO in advance during the CAS latency period 2nd Read access : Requested data was previously stored in the FIFO Address matches with one of the address tags AXI Master FMC SDRAM Controller read request@0x04 Data 2 SDRAM Device (CAS = 1) 6 lines FIFO @0x04 Data 2 @0x08 Data 3 ... ... Add. Tag read FIFO Data read from FIFO MS30445V2 During a write access or a Precharge command, the read FIFO is flushed and ready to be filled with new data. After the first read request, if the current access was not performed to a row boundary, the SDRAM controller anticipates the next read access during the CAS latency period and the RPIPE delay (if configured). This is done by incrementing the memory address. The following condition must be met: • 368/1709 RBURST control bit should be set to ‘1’ in the FMC_SDCR1 register. RM0385 Rev 7 RM0385 Flexible memory controller (FMC) The address management depends on the next AHB request: • Next AHB request is sequential (AHB Burst) In this case, the SDRAM controller increments the address. • Next AHB request is not sequential – If the new read request targets the same row or another active row, the new address is passed to the memory and the master is stalled for the CAS latency period, waiting for the new data from memory. – If the new read request does not target an active row, the SDRAM controller generates a Precharge command, activates the new row, and initiates a read command. If the RURST is reset, the read FIFO is not used. Row and bank boundary management When a read or write access crosses a row boundary, if the next read or write access is sequential and the current access was performed to a row boundary, the SDRAM controller executes the following operations: 1. Precharge of the active row, 2. Activation of the new row 3. Start of a read/write command. At a row boundary, the automatic activation of the next row is supported for all columns and data bus width configurations. If necessary, the SDRAM controller inserts additional clock cycles between the following commands: • Between Precharge and Active commands to match TRP parameter (only if the next access is in a different row in the same bank), • Between Active and Read commands to match the TRCD parameter. These parameters are defined into the FMC_SDTRx register. Refer to Figure 55 and Figure 56 for read and burst write access crossing a row boundary. RM0385 Rev 7 369/1709 383 Flexible memory controller (FMC) RM0385 Figure 58. Read access crossing row boundary TRP = 3 TRCD = 3 CAS latency = 2 SDNE SDCLK Row n A[12:0] Col a Row n +1 Col a Col b NRAS NCAS NWE Data[31:0] Dna Dn+1 a Precharge Activate Row Read Command MS30446V2 Figure 59. Write access crossing row boundary TRP = 3 TRCD = 3 SDNE SDCLK A[12:0] Cna Colb Row n+1 Cola Colb NRAS NCAS NWE Data[31:0] Dna Dn+1a Dnb Precharge Activate Row Dn+1b Write command MS30447V2 370/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) If the next access is sequential and the current access crosses a bank boundary, the SDRAM controller activates the first row in the next bank and initiates a new read/write command. Two cases are possible: • If the current bank is not the last one, the active row in the new bank must be precharged.At a bank boundary, the automatic activation of the next row is supported for all rows/columns and data bus width configuration. • If the current bank is the last one, the automatic activation of the next row is supported only when addressing 13-bit rows, 11-bit columns, 4 internal banks and 32-bit data bus SDRAM devices. Otherwise, the SDRAM address range is violated and an AHB error is generated. • In case of 13-bit row address, 11-bit column address, 4 internal banks and bus width 32-bit SDRAM memories, at boundary bank, the SDRAM controller continues to read/write from the second SDRAM device (assuming it has been initialized): a) The SDRAM controller activates the first row (after precharging the active row, if there is already an active row in the first internal bank, and initiates a new read/write command. b) If the first row is already activated, the SDRAM controller just initiates a read/write command. SDRAM controller refresh cycle The Auto-refresh command is used to refresh the SDRAM device content. The SDRAM controller periodically issues auto-refresh commands. An internal counter is loaded with the COUNT value in the register FMC_SDRTR. This value defines the number of memory clock cycles between the refresh cycles (refresh rate). When this counter reaches zero, an internal pulse is generated. If a memory access is ongoing, the auto-refresh request is delayed. However, if the memory access and the auto-refresh requests are generated simultaneously, the auto-refresh request takes precedence. If the memory access occurs during an auto-refresh operation, the request is buffered and processed when the auto-refresh is complete. If a new auto-refresh request occurs while the previous one was not served, the RE (Refresh Error) bit is set in the Status register. An Interrupt is generated if it has been enabled (REIE = ‘1’). If SDRAM lines are not in idle state (not all row are closed), the SDRAM controller generates a PALL (Precharge ALL) command before the auto-refresh. If the Auto-refresh command is generated by the FMC_SDCMR Command Mode register (Mode bits = ‘011’), a PALL command (Mode bits =’ 010’) must be issued first. 13.7.4 Low-power modes Two low-power modes are available: • Self-refresh mode The auto-refresh cycles are performed by the SDRAM device itself to retain data without external clocking. • Power-down mode The auto-refresh cycles are performed by the SDRAM controller. RM0385 Rev 7 371/1709 383 Flexible memory controller (FMC) RM0385 Self-refresh mode This mode is selected by setting the MODE bits to ‘101’ and by configuring the Target Bank bits (CTB1 and/or CTB2) in the FMC_SDCMR register. The SDRAM clock stops running after a TRAS delay and the internal refresh timer stops counting only if one of the following conditions is met: • A Self-refresh command is issued to both devices • One of the devices is not activated (SDRAM bank is not initialized). Before entering Self-Refresh mode, the SDRAM controller automatically issues a PALL command. If the Write data FIFO is not empty, all data are sent to the memory before activating the Self-refresh mode and the BUSY status flag remains set. In Self-refresh mode, all SDRAM device inputs become don’t care except for SDCKE which remains low. The SDRAM device must remain in Self-refresh mode for a minimum period of time of TRAS and can remain in Self-refresh mode for an indefinite period beyond that. To guarantee this minimum period, the BUSY status flag remains high after the Self-refresh activation during a TRAS delay. As soon as an SDRAM device is selected, the SDRAM controller generates a sequence of commands to exit from Self-refresh mode. After the memory access, the selected device remains in Normal mode. To exit from Self-refresh, the MODE bits must be set to ‘000’ (Normal mode) and the Target Bank bits (CTB1 and/or CTB2) must be configured in the FMC_SDCMR register. 372/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Figure 60. Self-refresh mode T0 T1 T2 Tn+1 T0+1 T0+2 SDCLK tRAS(min) SDCKE COMMAND PRECHARGE AUTO REFRESH NOP NOP or COMMAND INHERIT AUTO REFRESH DOM/ DOML/DOMU A0- A9 A11, A12 ALL BANKS A10 Data[31:0] Hi-Z tRP Precharge all active banks tXSR Exit Self-refresh mode (restart refresh timebase) CLK stable prior to existing Self-refresh mode Enter Self-refresh mode MS30450V1 Power-down mode This mode is selected by setting the MODE bits to ‘110’ and by configuring the Target Bank bits (CTB1 and/or CTB2) in the FMC_SDCMR register. RM0385 Rev 7 373/1709 383 Flexible memory controller (FMC) RM0385 Figure 61. Power-down mode SDCLK SDCKE COMMAND NOP NOP ACTIVE tRCD All banks idle Input buffers gated off tRAS Enter Power-down Exit Power-down tRC MS30451V1 If the Write data FIFO is not empty, all data are sent to the memory before activating the Power-down mode. As soon as an SDRAM device is selected, the SDRAM controller exits from the Power-down mode. After the memory access, the selected SDRAM device remains in Normal mode. During Power-down mode, all SDRAM device input and output buffers are deactivated except for the SDCKE which remains low. The SDRAM device cannot remain in Power-down mode longer than the refresh period and cannot perform the Auto-refresh cycles by itself. Therefore, the SDRAM controller carries out the refresh operation by executing the operations below: 1. Exit from Power-down mode and drive the SDCKE high 2. Generate the PALL command only if a row was active during Power-down mode 3. Generate the auto-refresh command 4. Drive SDCKE low again to return to Power-down mode. To exit from Power-down mode, the MODE bits must be set to ‘000’ (Normal mode) and the Target Bank bits (CTB1 and/or CTB2) must be configured in the FMC_SDCMR register. 13.7.5 SDRAM controller registers SDRAM Control registers 1,2 (FMC_SDCR1,2) Address offset: 0x140+ 4* (x – 1), x = 1,2 Reset value: 0x0000 02D0 This register contains the control parameters for each SDRAM memory bank 374/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 6 5 4 3 2 1 Res. RPIPE[1:0] rw rw RBURST rw SDCLK rw rw WP rw 7 CAS rw NB rw rw MWID rw NR rw rw 0 NC rw rw rw Bits 31:15 Reserved, must be kept at reset value. Bits 14:13 RPIPE[1:0]: Read pipe These bits define the delay, in HCLK clock cycles, for reading data after CAS latency. 00: No HCLK clock cycle delay 01: One HCLK clock cycle delay 10: Two HCLK clock cycle delay 11: reserved. Note: The corresponding bits in the FMC_SDCR2 register is read only. Bit 12 RBURST: Burst read This bit enables burst read mode. The SDRAM controller anticipates the next read commands during the CAS latency and stores data in the Read FIFO. 0: single read requests are not managed as bursts 1: single read requests are always managed as bursts Note: The corresponding bit in the FMC_SDCR2 register is don’t care. Bits 11:10 SDCLK[1:0]: SDRAM clock configuration These bits define the SDRAM clock period for both SDRAM banks and allow disabling the clock before changing the frequency. In this case the SDRAM must be re-initialized. 00: SDCLK clock disabled 01: reserved 10: SDCLK period = 2 x HCLK periods 11: SDCLK period = 3 x HCLK periods Note: The corresponding bits in the FMC_SDCR2 register are don’t care. Bit 9 WP: Write protection This bit enables write mode access to the SDRAM bank. 0: Write accesses allowed 1: Write accesses ignored Bits 8:7 CAS[1:0]: CAS Latency This bits sets the SDRAM CAS latency in number of memory clock cycles 00: reserved. 01: 1 cycle 10: 2 cycles 11: 3 cycles Bit 6 NB: Number of internal banks This bit sets the number of internal banks. 0: Two internal Banks 1: Four internal Banks RM0385 Rev 7 375/1709 383 Flexible memory controller (FMC) RM0385 Bits 5:4 MWID[1:0]: Memory data bus width. These bits define the memory device width. 00: 8 bits 01: 16 bits 10: 32 bits 11: reserved. Bits 3:2 NR[1:0]: Number of row address bits These bits define the number of bits of a row address. 00: 11 bit 01: 12 bits 10: 13 bits 11: reserved. Bits 1:0 NC[1:0]: Number of column address bits These bits define the number of bits of a column address. 00: 8 bits 01: 9 bits 10: 10 bits 11: 11 bits. Note: Before modifying the RBURST or RPIPE settings or disabling the SDCLK clock, the user must first send a PALL command to make sure ongoing operations are complete. SDRAM Timing registers 1,2 (FMC_SDTR1,2) Address offset: 0x148 + 4 * (x – 1), x = 1,2 Reset value: 0x0FFF FFFF This register contains the timing parameters of each SDRAM bank 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 27 26 rw rw 11 10 rw 24 23 22 rw rw rw rw 9 8 7 6 TRCD TRC rw 25 rw rw rw 20 19 18 rw rw rw rw 5 4 3 2 TRP TRAS rw 21 rw rw rw 16 rw rw 1 0 rw rw TWR TXSR rw 17 TMRD rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:24 TRCD[3:0]: Row to column delay These bits define the delay between the Activate command and a Read/Write command in number of memory clock cycles. 0000: 1 cycle. 0001: 2 cycles .... 1111: 16 cycles 376/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Bits 23:20 TRP[3:0]: Row precharge delay These bits define the delay between a Precharge command and another command in number of memory clock cycles. The TRP timing is only configured in the FMC_SDTR1 register. If two SDRAM devices are used, the TRP must be programmed with the timing of the slowest device. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Note: The corresponding bits in the FMC_SDTR2 register are don’t care. Bits 19:16 TWR[3:0]: Recovery delay These bits define the delay between a Write and a Precharge command in number of memory clock cycles. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Note: TWR must be programmed to match the write recovery time (tWR) defined in the SDRAM datasheet, and to guarantee that: TWR ≥ TRAS - TRCD and TWR ≥TRC - TRCD - TRP Example: TRAS= 4 cycles, TRCD= 2 cycles. So, TWR >= 2 cycles. TWR must be programmed to 0x1. If two SDRAM devices are used, the FMC_SDTR1 and FMC_SDTR2 must be programmed with the same TWR timing corresponding to the slowest SDRAM device. Bits 15:12 TRC[3:0]: Row cycle delay These bits define the delay between the Refresh command and the Activate command, as well as the delay between two consecutive Refresh commands. It is expressed in number of memory clock cycles. The TRC timing is only configured in the FMC_SDTR1 register. If two SDRAM devices are used, the TRC must be programmed with the timings of the slowest device. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Note: TRC must match the TRC and TRFC (Auto Refresh period) timings defined in the SDRAM device datasheet. Note: The corresponding bits in the FMC_SDTR2 register are don’t care. Bits 11:8 TRAS[3:0]: Self refresh time These bits define the minimum Self-refresh period in number of memory clock cycles. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Bits 7:4 TXSR[3:0]: Exit Self-refresh delay These bits define the delay from releasing the Self-refresh command to issuing the Activate command in number of memory clock cycles. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Note: If two SDRAM devices are used, the FMC_SDTR1 and FMC_SDTR2 must be programmed with the same TXSR timing corresponding to the slowest SDRAM device. RM0385 Rev 7 377/1709 383 Flexible memory controller (FMC) RM0385 Bits 3:0 TMRD[3:0]: Load Mode Register to Active These bits define the delay between a Load Mode Register command and an Active or Refresh command in number of memory clock cycles. 0000: 1 cycle 0001: 2 cycles .... 1111: 16 cycles Note: If two SDRAM devices are connected, all the accesses performed simultaneously to both devices by the Command Mode register (Load Mode Register command) are issued using the timing parameters configured for Bank 1 (TMRD and TRAS timings) in the FMC_SDTR1 register. The TRP and TRC timings are only configured in the FMC_SDTR1 register. If two SDRAM devices are used, the TRP and TRC timings must be programmed with the timings of the slowest device. SDRAM Command Mode register (FMC_SDCMR) Address offset: 0x150 Reset value: 0x0000 0000 This register contains the command issued when the SDRAM device is accessed. This register is used to initialize the SDRAM device, and to activate the Self-refresh and the Power-down modes. As soon as the MODE field is written, the command will be issued only to one or to both SDRAM banks according to CTB1 and CTB2 command bits. This register is the same for both SDRAM banks. 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw 15 14 13 12 11 10 9 8 7 6 5 4 CTB1 CTB2 rw rw rw rw rw rw rw rw rw rw rw rw MRD rw 21 20 19 18 17 16 rw rw rw rw 3 2 1 0 MRD NRFS MODE rw rw rw Bits 31:22 Reserved, must be kept at reset value. Bits 21:9 MRD[12:0]: Mode Register definition This 13-bit field defines the SDRAM Mode Register content. The Mode Register is programmed using the Load Mode Register command. Bits 8:5 NRFS[3:0]: Number of Auto-refresh These bits define the number of consecutive Auto-refresh commands issued when MODE = ‘011’. 0000: 1 Auto-refresh cycle 0001: 2 Auto-refresh cycles .... 1110: 15 Auto-refresh cycles 1111: 16 Auto-refresh cycles Bit 4 CTB1: Command Target Bank 1 This bit indicates whether the command will be issued to SDRAM Bank 1 or not. 0: Command not issued to SDRAM Bank 1 1: Command issued to SDRAM Bank 1 378/1709 RM0385 Rev 7 RM0385 Flexible memory controller (FMC) Bit 3 CTB2: Command Target Bank 2 This bit indicates whether the command will be issued to SDRAM Bank 2 or not. 0: Command not issued to SDRAM Bank 2 1: Command issued to SDRAM Bank 2 Bits 2:0 MODE[2:0]: Command mode These bits define the command issued to the SDRAM device. 000: Normal Mode 001: Clock Configuration Enable 010: PALL (“All Bank Precharge”) command 011: Auto-refresh command 100: Load Mode Register 101: Self-refresh command 110: Power-down command 111: Reserved Note: When a command is issued, at least one Command Target Bank bit ( CTB1 or CTB2) must be set otherwise the command will be ignored. Note: If two SDRAM banks are used, the Auto-refresh and PALL command must be issued simultaneously to the two devices with CTB1 and CTB2 bits set otherwise the command will be ignored. Note: If only one SDRAM bank is used and a command is issued with it’s associated CTB bit set, the other CTB bit of the the unused bank must be kept to 0. SDRAM Refresh Timer register (FMC_SDRTR) Address offset:0x154 Reset value: 0x0000 0000 This register sets the refresh rate in number of SDCLK clock cycles between the refresh cycles by configuring the Refresh Timer Count value. Refresh rate = ( COUNT + 1 ) × SDRAM clock frequency COUNT = ( SDRAM refresh period ⁄ Number of rows ) – 20 Example Refresh rate = 64 ms ⁄ ( 8196rows ) = 7.81μs where 64 ms is the SDRAM refresh period. 7.81μs × 60MHz = 468.6 The refresh rate must be increased by 20 SDRAM clock cycles (as in the above example) to obtain a safe margin if an internal refresh request occurs when a read request has been accepted. It corresponds to a COUNT value of ‘0000111000000’ (448). This 13-bit field is loaded into a timer which is decremented using the SDRAM clock. This timer generates a refresh pulse when zero is reached. The COUNT value must be set at least to 41 SDRAM clock cycles. RM0385 Rev 7 379/1709 383 Flexible memory controller (FMC) RM0385 As soon as the FMC_SDRTR register is programmed, the timer starts counting. If the value programmed in the register is ’0’, no refresh is carried out. This register must not be reprogrammed after the initialization procedure to avoid modifying the refresh rate. Each time a refresh pulse is generated, this 13-bit COUNT field is reloaded into the counter. If a memory access is in progress, the Auto-refresh request is delayed. However, if the memory access and Auto-refresh requests are generated simultaneously, the Auto-refresh takes precedence. If the memory access occurs during a refresh operation, the request is buffered to be processed when the refresh is complete. This register is common to SDRAM bank 1 and bank 2. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Res. REIE rw COUNT rw rw rw rw rw rw rw 0 CRE rw rw rw rw rw rw w Bits 31: 15 Reserved, must be kept at reset value. Bit 14 REIE: RES Interrupt Enable 0: Interrupt is disabled 1: An Interrupt is generated if RE = 1 Bits 13:1 COUNT[12:0]: Refresh Timer Count This 13-bit field defines the refresh rate of the SDRAM device. It is expressed in number of memory clock cycles. It must be set at least to 41 SDRAM clock cycles (0x29). Refresh rate = (COUNT + 1) x SDRAM frequency clock COUNT = (SDRAM refresh period / Number of rows) - 20 Bit 0 CRE: Clear Refresh error flag This bit is used to clear the Refresh Error Flag (RE) in the Status Register. 0: no effect 1: Refresh Error flag is cleared Note: The programmed COUNT value must not be equal to the sum of the following timings: TWR+TRP+TRC+TRCD+4 memory clock cycles . SDRAM Status register (FMC_SDSR) Address offset: 0x158 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 4 3 2 1 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BUSY r Bits 31:5 Reserved, must be kept at reset value. 380/1709 RM0385 Rev 7 MODES2 MODES1 r r r r 0 RE r RM0385 Flexible memory controller (FMC) Bit 5 BUSY: Busy status This bit defines the status of the SDRAM controller after a Command Mode request 0: SDRAM Controller is ready to accept a new request 1; SDRAM Controller is not ready to accept a new request Bits 4:3 MODES2[1:0]: Status Mode for Bank 2 This bit defines the Status Mode of SDRAM Bank 2. 00: Normal Mode 01: Self-refresh mode 10: Power-down mode Bits 2:1 MODES1[1:0]: Status Mode for Bank 1 This bit defines the Status Mode of SDRAM Bank 1. 00: Normal Mode 01: Self-refresh mode 10: Power-down mode Bit 0 RE: Refresh error flag 0: No refresh error has been detected 1: A refresh error has been detected An interrupt is generated if REIE = 1 and RE = 1 RM0385 Rev 7 381/1709 383 Flexible memory controller (FMC) 13.8 RM0385 FMC register map Reset value 382/1709 0 1 CPSIZE [2:0] FACCEN WAITEN WREN WAITCFG WAITPOL BURSTEN 0 1 1 0 0 0 1 CPSIZE [2:0] WAITEN WREN WAITCFG WAITPOL BURSTEN FACCEN 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 DATLAT[3:0] CLKDIV[3:0] BUSTURN[3:0] 1 1 1 1 1 1 1 1 1 1 1 1 DATLAT[3:0] CLKDIV[3:0] BUSTURN[3:0] 1 1 1 1 1 DATLAT[3:0] CLKDIV[3:0] BUSTURN[3:0] 1 1 1 1 1 1 1 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 1 Res. Res. Res. Res. Res. Res. 1 1 1 1 1 1 1 1 1 1 1 RM0385 Rev 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MWID MTYP [1:0] [1:0] 0 1 0 MWID MTYP [1:0] [1:0] 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 1 1 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 DATAST[7:0] 1 0 0 ADDHLD[3:0] ADDSET[3:0] DATAST[7:0] 1 1 1 ADDHLD[3:0] ADDSET[3:0] DATAST[7:0] 1 Res. Res. 1 DATAST[7:0] BUSTURN[3:0] 1 1 1 0 0 ADDHLD[3:0] ADDSET[3:0] DATAST[7:0] BUSTURN[3:0] 1 Res. 1 DATAST[7:0] Res. EXTMOD 0 0 Res. ASYNCWAIT 0 0 MBKEN BURSTEN 0 MUXEN WAITPOL 0 MBKEN WAITCFG 1 MWID MTYP [1:0] [1:0] MUXEN WREN 1 1 1 MBKEN FACCEN WAITEN 0 Res. EXTMOD 0 0 Res. ASYNCWAIT 0 0 1 1 MUXEN BURSTEN CPSIZE [2:0] 0 0 MBKEN WAITPOL 1 MWID MTYP [1:0] [1:0] MUXEN WREN WAITCFG 0 Res. WAITEN 0 FACCEN EXTMOD 0 Res. ASYNCWAIT 1 CLKDIV[3:0] BUSTURN[3:0] 0 0 1 Res. ACCMOD[1:0] 0 0 0 DATLAT[3:0] Res. FMC_BWTR2 Res. 0x10C 0 Res. Reset value 0 ACCMOD[1:0] FMC_BWTR1 Res. 0x104 0 Res. Reset value 0 ACCMOD[1:0] Res. FMC_BTR4 0x1C 0 Res. Reset value 0 ACCMOD[1:0] Res. FMC_BTR3 0x14 0 Res. Reset value 0 ACCMOD[1:0] Res. FMC_BTR2 0x0C 0 Res. Reset value ACCMOD[1:0] Res. FMC_BTR1 0x04 0 Res. Reset value 0 0 EXTMOD Res. Res. CBURSTRW Res. Res. Res. Res. Res. Res. Res. Res. FMC_BCR4 Res. 0 Res. Reset value CBURSTRW Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FMC_BCR3 0 CPSIZE [2:0] ASYNCWAIT CCLKEN CBURSTRW 0 CBURSTRW Res. WFDIS Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. 0x18 0 Reset value Res. 0x10 Res. FMC_BCR2 0x08 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. FMC_BCR1 0x00 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 88. FMC register map 1 1 1 1 1 1 1 1 ADDHLD[3:0] ADDSET[3:0] 1 1 1 1 1 1 1 1 1 1 RM0385 Flexible memory controller (FMC) 1 Res. Res. 0 0 0 0 1 1 1 1 MEMHOLDx[7:0] 0 0 1 1 ATTHIZ[7:0] 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 1 ATTSET[7:0] 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0 0 Res. Res. Res. Res. Res. Res. 0 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 MODE[2:0] COUNT[12:0] Reset value 0 TMRD[3:0] 0 NRFS[3:0] 0 0 TMRD[3:0] TXSR[3:0] Res. 0 1 Res. 0 1 Res. 0 0 TXSR[3:0] Res. 0 0 Res. 0 1 TRAS[3:0] 1 1 SDCLK CAS MWID WP NB NR[1:0] NC [1:0] [1:0] [1:0] MRD[12:0] Res. Res. Res. Res. Res. Res. 1 0 0 CRE 1 0 0 0 0 Res. 1 1 MODES1[1:0] 1 1 0 Res. Res. Res. 1 1 1 TRAS[3:0] TRC[3:0] REIE Res. Res. 1 Res. Res. 1 Res. Res. 1 1 Res. 1 1 TWR[3:0] Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 TRC[3:0] 1 MODES2[1:0] Res. Res. Res. 0 MWID CAS SDCLK NR[1:0] NC NB WP [1:0] [1:0] [1:0] CTB2 RPIPE[ 1:0] CTB1 0 Res. 1 TWR[3:0] TRP[3:0] 1 Res. Res. Res. Res. Res. FMC_SDSR 0 BUSY 0 Reset value 0x158 0 MEMSETx[7:0] Res. 1 1 Res. Res. Res. Res. Res. FMC_SDRTR 0 Res. 0 Res. 1 Res. Res. 1 TRCD[3:0] Res. Res. Res. Res. Res. 1 TRP[3:0] Reset value 0x154 0 0 RBURST 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x150 Reset value FMC_SDCMR TRCD[3:0] 1 Res. 0x14C 1 1 0 Reset value FMC_SDTR2 1 1 RBURST 0 0 Res. 0x148 0 1 Reset value FMC_SDTR1 PWID [1:0] 1 1 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. FMC_SDCR2 1 ATTWAIT[7:0] Reset value 0x144 1 ECCx[31:0] Res. FMC_SDCR1 0 ATTHOLD[7:0] FMC_ECCR Reset value MEMWAITx[7:0] Res. Reset value 1 Res. 0x140 1 FMC_PATT Res. 0x94 MEMHIZx[7:0] Res. 0x8C 1 1 FMC_PMEM Reset value 1 0 Reset value 0x88 1 Res. 1 PWAITEN Res. 0 1 ILS 0 1 IRS 0 TCLR[3:0] 1 PTYP 0 1 PBKEN 0 1 Res. 0 1 ADDHLD[3:0] ADDSET[3:0] Res. 0 Res. TAR[3:0] 1 1 IFS 1 1 ILEN 1 1 IREN 1 1 IFEN 1 1 Res. DATAST[7:0] 1 ECCEN ECCPS [2:0] 1 Res. 1 1 Res. 1 1 Res. 1 1 FEMPT 1 Res. 1 Res. Res. Res. Res. Res. Res. 1 Res. Res. Res. Res. Res. Res. Res. Res. 1 ADDHLD[3:0] ADDSET[3:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 BUSTURN[3:0] 1 Res. Res. Res. Res. Res. FMC_SR 1 DATAST[7:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. ACCMOD[1:0] ACCMOD[1:0] 0 Reset value 0x84 BUSTURN[3:0] 1 Res. FMC_PCR Res. 0x80 0 Res. Reset value 0 Res. FMC_BWTR4 Res. 0x11C 0 Res. Reset value Res. FMC_BWTR3 Res. 0x114 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 88. FMC register map (continued) 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. RM0385 Rev 7 383/1709 383 Quad-SPI interface (QUADSPI) RM0385 14 Quad-SPI interface (QUADSPI) 14.1 Introduction The QUADSPI is a specialized communication interface targeting single, dual or quad SPI Flash memories. It can operate in any of the three following modes: • indirect mode: all the operations are performed using the QUADSPI registers • status polling mode: the external Flash memory status register is periodically read and an interrupt can be generated in case of flag setting • memory-mapped mode: the external Flash memory is mapped to the microcontroller address space and is seen by the system as if it was an internal memory Both throughput and capacity can be increased two-fold using dual-flash mode, where two Quad-SPI Flash memories are accessed simultaneously. 14.2 QUADSPI main features • Three functional modes: indirect, status-polling, and memory-mapped • Dual-flash mode, where 8 bits can be sent/received simultaneously by accessing two Flash memories in parallel. • SDR and DDR support • Fully programmable opcode for both indirect and memory mapped mode • Fully programmable frame format for both indirect and memory mapped mode • Integrated FIFO for reception and transmission • 8, 16, and 32-bit data accesses are allowed • DMA channel for indirect mode operations • Interrupt generation on FIFO threshold, timeout, operation complete, and access error 14.3 QUADSPI functional description 14.3.1 QUADSPI block diagram Figure 62. QUADSPI block diagram when dual-flash mode is disabled QUADSPI Registers / control Clock management AHB FIFO Shift register SPI FLASH CLK BK1_IO0/SO BK1_IO1/SI BK1_IO2 BK1_IO3 BK1_nCS CLK Q0/SI Q1/SO Q2/WP Q3/HOLD CS MS35315V1 384/1709 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) Figure 63. QUADSPI block diagram when dual-flash mode is enabled QUADSPI Registers / control Clock management SPI FLASH 1 CLK BK1_IO0/SO BK1_IO1/SI BK1_IO2 BK1_IO3 BK1_nCS AHB FIFO CLK Q0/SI Q1/SO Q2/WP Q3/HOLD CS SPI FLASH 2 Shift register CLK Q0/SI Q1/SO Q2/WP Q3/HOLD CS BK2_IO0/SO BK2_IO1/SI BK2_IO2 BK2_IO3 BK2_nCS MS35316V1 14.3.2 QUADSPI pins Table 89 lists the QUADSPI pins, six for interfacing with a single Flash memory, or 10 to 11 for interfacing with two Flash memories (FLASH 1 and FLASH 2) in dual-flash mode. Table 89. QUADSPI pins Signal name Signal type Description CLK Digital output Clock to FLASH 1 and FLASH 2 BK1_IO0/SO Digital input/output Bidirectional IO in dual/quad modes or serial output in single mode, for FLASH 1 BK1_IO1/SI Digital input/output Bidirectional IO in dual/quad modes or serial input in single mode, for FLASH 1 BK1_IO2 Digital input/output Bidirectional IO in quad mode, for FLASH 1 BK1_IO3 Digital input/output Bidirectional IO in quad mode, for FLASH 1 BK2_IO0/SO Digital input/output Bidirectional IO in dual/quad modes or serial output in single mode, for FLASH 2 BK2_IO1/SI Digital input/output Bidirectional IO in dual/quad modes or serial input in single mode, for FLASH 2 BK2_IO2 Digital input/output Bidirectional IO in quad mode, for FLASH 2 BK2_IO3 Digital input/output Bidirectional IO in quad mode, for FLASH 2 BK1_nCS Digital output Chip select (active low) for FLASH 1. Can also be used for FLASH 2 if QUADSPI is always used in dual-flash mode. BK2_nCS Digital output Chip select (active low) for FLASH 2. Can also be used for FLASH 1 if QUADSPI is always used in dual-flash mode. RM0385 Rev 7 385/1709 412 Quad-SPI interface (QUADSPI) 14.3.3 RM0385 QUADSPI command sequence The QUADSPI communicates with the Flash memory using commands. Each command can include 5 phases: instruction, address, alternate byte, dummy, data. Any of these phases can be configured to be skipped, but at least one of the instruction, address, alternate byte, or data phase must be present. nCS falls before the start of each command and rises again after each command finishes. Figure 64. An example of a read command in quad mode Instruction Address Alt. Dummy Data nCS SCLK IO0 7 6 5 4 0 4 0 4 0 4 0 4 0 4 0 IO1 5 1 5 1 5 1 5 1 5 1 5 1 IO2 6 2 6 2 6 2 6 2 6 2 6 2 7 3 7 3 7 3 7 3 7 3 7 3 IO3 4 3 2 1 0 A23-16 A15-8 A7-0 M7-0 Byte 1 IO switch from output to input Byte 2 MS35317V1 Instruction phase During this phase, an 8-bit instruction, configured in INSTRUCTION field of QUADSPI_CCR[7:0] register, is sent to the Flash memory, specifying the type of operation to be performed. Though most Flash memories can receive instructions only one bit at a time from the IO0/SO signal (single SPI mode), the instruction phase can optionally send 2 bits at a time (over IO0/IO1 in dual SPI mode) or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI mode). This can be configured using the IMODE[1:0] field of QUADSPI_CCR[9:8] register. When IMODE = 00, the instruction phase is skipped, and the command sequence starts with the address phase, if present. Address phase In the address phase, 1-4 bytes are sent to the Flash memory to indicate the address of the operation. The number of address bytes to be sent is configured in the ADSIZE[1:0] field of QUADSPI_CCR[13:12] register. In indirect and automatic-polling modes, the address bytes to be sent are specified in the ADDRESS[31:0] field of QUADSPI_AR register, while in memory-mapped mode the address is given directly via the AHB (from the Cortex® or from a DMA). The address phase can send 1 bit at a time (over SO in single SPI mode), 2 bits at a time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI mode). This can be configured using the ADMODE[1:0] field of QUADSPI_CCR[11:10] register. When ADMODE = 00, the address phase is skipped, and the command sequence proceeds directly to the next phase, if any. 386/1709 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) Alternate-bytes phase In the alternate-bytes phase, 1-4 bytes are sent to the Flash memory, generally to control the mode of operation. The number of alternate bytes to be sent is configured in the ABSIZE[1:0] field of QUADSPI_CCR[17:16] register. The bytes to be sent are specified in the QUADSPI_ABR register. The alternate-bytes phase can send 1 bit at a time (over SO in single SPI mode), 2 bits at a time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI mode). This can be configured using the ABMODE[1:0] field of QUADSPI_CCR[15:14] register. When ABMODE = 00, the alternate-bytes phase is skipped, and the command sequence proceeds directly to the next phase, if any. There may be times when only a single nibble needs to be sent during the alternate-byte phase rather than a full byte, such as when dual-mode is used and only two cycles are used for the alternate bytes. In this case, firmware can use quad-mode (ABMODE = 11) and send a byte with bits 7 and 3 of ALTERNATE set to ‘1’ (keeping the IO3 line high), and bits 6 and 2 set to ‘0’ (keeping the IO2 line low). In this case the upper two bits of the nibble to be sent are placed in bits 4:3 of ALTERNATE while the lower two bits are placed in bits 1 and 0. For example, if the nibble 2 (0010) is to be sent over IO0/IO1, then ALTERNATE should be set to 0x8A (1000_1010). Dummy-cycles phase In the dummy-cycles phase, 1-31 cycles are given without any data being sent or received, in order to allow the Flash memory the time to prepare for the data phase when higher clock frequencies are used. The number of cycles given during this phase is specified in the DCYC[4:0] field of QUADSPI_CCR[22:18] register. In both SDR and DDR modes, the duration is specified as a number of full CLK cycles. When DCYC is zero, the dummy-cycles phase is skipped, and the command sequence proceeds directly to the data phase, if present. The operating mode of the dummy-cycles phase is determined by DMODE. In order to assure enough “turn-around” time for changing the data signals from output mode to input mode, there must be at least one dummy cycle when using dual or quad mode to receive data from the Flash memory. Data phase During the data phase, any number of bytes can be sent to, or received from the Flash memory. In indirect and automatic-polling modes, the number of bytes to be sent/received is specified in the QUADSPI_DLR register. In indirect write mode the data to be sent to the Flash memory must be written to the QUADSPI_DR register, while in indirect read mode the data received from the Flash memory is obtained by reading from the QUADSPI_DR register. In memory-mapped mode, the data which is read is sent back directly over the AHB to the Cortex or to a DMA. The data phase can send/receive 1 bit at a time (over SO/SI in single SPI mode), 2 bits at a time (over IO0/IO1 in dual SPI mode), or 4 bits at a time (over IO0/IO1/IO2/IO3 in quad SPI RM0385 Rev 7 387/1709 412 Quad-SPI interface (QUADSPI) RM0385 mode). This can be configured using the ABMODE[1:0] field of QUADSPI_CCR[15:14] register. When DMODE = 00, the data phase is skipped, and the command sequence finishes immediately by raising nCS. This configuration must only be used in only indirect write mode. 14.3.4 QUADSPI signal interface protocol modes Single SPI mode Legacy SPI mode allows just a single bit to be sent/received serially. In this mode, data is sent to the Flash memory over the SO signal (whose I/O shared with IO0). Data received from the Flash memory arrives via SI (whose I/O shared with IO1). The different phases can each be configured separately to use this single bit mode by setting the IMODE/ADMODE/ABMODE/DMODE fields (in QUADSPI_CCR) to 01. In each phase which is configured in single mode: • IO0 (SO) is in output mode • IO1 (SI) is in input mode (high impedance) • IO2 is in output mode and forced to ‘0’ (to deactivate the “write protect” function) • IO3 is in output mode and forced to ‘1’ (to deactivate the “hold” function) This is the case even for the dummy phase if DMODE = 01. Dual SPI mode In dual SPI mode, two bits are sent/received simultaneously over the IO0/IO1 signals. The different phases can each be configured separately to use dual SPI mode by setting the IMODE/ADMODE/ABMODE/DMODE fields of QUADSPI_CCR register to 10. In each phase which is configured in dual mode: • IO0/IO1 are at high-impedance (input) during the data phase for read operations, and outputs in all other cases • IO2 is in output mode and forced to ‘0’ • IO3 is in output mode and forced to ‘1’ In the dummy phase when DMODE = 01, IO0/IO1 are always high-impedance. Quad SPI mode In quad SPI mode, four bits are sent/received simultaneously over the IO0/IO1/IO2/IO3 signals. The different phases can each be configured separately to use quad SPI mode by setting the IMODE/ADMODE/ABMODE/DMODE fields of QUADSPI_CCR register to 11. In each phase which is configured in quad mode, IO0/IO1/IO2/IO3 are all are at highimpedance (input) during the data phase for read operations, and outputs in all other cases. In the dummy phase when DMODE = 11, IO0/IO1/IO2/IO3 are all high-impedance. IO2 and IO3 are used only in Quad SPI mode. If none of the phases are configured to use Quad SPI mode, then the pins corresponding to IO2 and IO3 can be used for other functions even while QUADSPI is active. 388/1709 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) SDR mode By default, the DDRM bit (QUADSPI_CCR[31]) is 0 and the QUADSPI operates in single data rate (SDR) mode. In SDR mode, when the QUADSPI is driving the IO0/SO, IO1, IO2, IO3 signals, these signals transition only with the falling edge of CLK. When receiving data in SDR mode, the QUADSPI assumes that the Flash memories also send the data using CLK’s falling edge. By default (when SSHIFT = 0), the signals are sampled using the following (rising) edge of CLK. DDR mode When the DDRM bit (QUADSPI_CCR[31]) is set to 1, the QUADSPI operates in double data rate (DDR) mode. In DDR mode, when the QUADSPI is driving the IO0/SO, IO1, IO2, IO3 signals in the address/alternate-byte/data phases, a bit is sent on each of the falling and rising edges of CLK. The instruction phase is not affected by DDRM. The instruction is always sent using CLK’s falling edge. When receiving data in DDR mode, the QUADSPI assumes that the Flash memories also send the data using both rising and falling CLK edges. When DDRM = 1, firmware must clear SSHIFT bit (bit 4 of QUADSPI_CR). Thus, the signals are sampled one half of a CLK cycle later (on the following, opposite edge). Figure 65. An example of a DDR command in quad mode Instruction Address Alt. Dummy Data nCS SCLK IO0 4 0 4 0 4 0 4 0 4 0 4 0 IO1 5 4 5 4 5 4 5 4 5 4 5 4 IO2 6 2 6 2 6 2 6 2 6 2 6 2 7 6 5 4 3 2 1 IO3 0 7 3 7 3 7 3 7 3 A23-16A15-8 A7-0 M7-0 IO switch from output to input 7 3 7 3 Byte1Byte2 MS35318V1 Dual-flash mode When the DFM bit (bit 6 of QUADSPI_CR) is 1, the QUADSPI is in dual-flash mode, where two external quad SPI Flash memories (FLASH 1 and FLASH 2) are used in order to send/receive 8 bits (or 16 bits in DDR mode) every cycle, effectively doubling the throughput as well as the capacity. Each of the Flash memories use the same CLK and optionally the same nCS signals, but each have separate IO0, IO1, IO2, and IO3 signals. Dual-flash mode can be used in conjunction with single-bit, dual-bit, and quad-bit modes, as well as with either SDR or DDR mode. RM0385 Rev 7 389/1709 412 Quad-SPI interface (QUADSPI) RM0385 The Flash memory size, as specified in FSIZE[4:0] (QUADSPI_DCR[20:16]), should reflect the total Flash memory capacity, which is double the size of one individual component. If address X is even, then the byte which the QUADSPI gives for address X is the byte at the address X/2 of FLASH 1, and the byte which the QUADSPI gives for address X+1 is the byte at the address X/2 of FLASH 2. In other words, bytes at even addresses are all stored in FLASH 1 and bytes at odd addresses are all stored in FLASH 2. When reading the Flash memories status registers in dual-flash mode, twice as many bytes should be read compared to doing the same read in single-flash mode. This means that if each Flash memory gives 8 valid bits after the instruction for fetching the status register, then the QUADSPI must be configured with a data length of 2 bytes (16 bits), and the QUADSPI will receive one byte from each Flash memory. If each Flash memory gives a status of 16 bits, then the QUADSPI must be configured to read 4 bytes to get all the status bits of both Flash memories in dual-flash mode. The least-significant byte of the result (in the data register) is the least-significant byte of FLASH 1 status register, while the next byte is the least-significant byte of FLASH 2 status register. Then, the third byte of the data register is FLASH 1 second byte, while the forth byte is FLASH 2 second byte (in the case that the Flash memories have 16-bit status registers). An even number of bytes must always be accessed in dual-flash mode. For this reason, bit 0 of the data length field (QUADSPI_DLR[0]) is stuck at 1 when DRM = 1. In dual-flash mode, the behavior of FLASH 1 interface signals are basically the same as in normal mode. FLASH 2 interface signals have exactly the same waveforms as FLASH 1 during the instruction, address, alternate-byte, and dummy-cycles phases. In other words, each Flash memory always receives the same instruction and the same address. Then, during the data phase, the BK1_IOx and BK2_IOx buses are both transferring data in parallel, but the data that are sent to (or received from) FLASH 1 are distinct from those of FLASH 2. 14.3.5 QUADSPI indirect mode When in indirect mode, commands are started by writing to QUADSPI registers and data is transferred by writing or reading the data register, in the same way as for other communication peripherals. When FMODE = 00 (QUADSPI_CCR[27:26]), the QUADSPI is in indirect write mode, where bytes are sent to the Flash memory during the data phase. Data are provided by writing to the data register (QUADSPI_DR). When FMODE = 01, the QUADSPI is in indirect read mode, where bytes are received from the Flash memory during the data phase. Data are recovered by reading QUADSPI_DR. The number of bytes to be read/written is specified in the data length register (QUADSPI_DLR). If QUADSPI_DLR = 0xFFFF_FFFF (all 1’s), then the data length is considered undefined and the QUADSPI simply continues to transfer data until the end of Flash memory (as defined by FSIZE) is reached. If no bytes are to be transferred, DMODE (QUADSPI_CCR[25:24]) should be set to 00. If QUADSPI_DLR = 0xFFFF_FFFF and FSIZE = 0x1F (max value indicating a 4GB Flash memory), then in this special case the transfers continue indefinitely, stopping only after an abort request or after the QUADSPI is disabled. After the last memory address is read (at address 0xFFFF_FFFF), reading continues with address = 0x0000_0000. When the programmed number of bytes to be transmitted or received is reached, TCF is set and an interrupt is generated if TCIE = 1. In the case of undefined number of data, the TCF 390/1709 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) is set when the limit of the external SPI memory is reached according to the Flash memory size defined in the QUADSPI_CR. Triggering the start of a command Essentially, a command starts as soon as firmware gives the last information that is necessary for this command. Depending on the QUADSPI configuration, there are three different ways to trigger the start of a command in indirect mode. The commands starts immediately after: 1. a write is performed to INSTRUCTION[7:0] (QUADSPI_CCR), if no address is necessary (when ADMODE = 00) and if no data needs to be provided by the firmware (when FMODE = 01 or DMODE = 00) 2. a write is performed to ADDRESS[31:0] (QUADSPI_AR), if an address is necessary (when ADMODE != 00) and if no data needs to be provided by the firmware (when FMODE = 01 or DMODE = 00) 3. a write is performed to DATA[31:0] (QUADSPI_DR), if an address is necessary (when ADMODE != 00) and if data needs to be provided by the firmware (when FMODE = 00 and DMODE != 00) Writes to the alternate byte register (QUADSPI_ABR) never trigger the communication start. If alternate bytes are required, they must be programmed before. As soon as a command is started, the BUSY bit (bit 5 of QUADSPI_SR) is automatically set. FIFO and data management In indirect mode, data go through a 32-byte FIFO which is internal to the QUADSPI. FLEVEL[5:0] (QUADSPI_SR[13:8]) indicates how many bytes are currently being held in the FIFO. In indirect write mode (FMODE = 00), firmware adds data to the FIFO when it writes QUADSPI_DR. Word writes add 4 bytes to the FIFO, halfword writes add 2 bytes, and byte writes add only 1 byte. If firmware adds too many bytes to the FIFO (more than is indicated by DL[31:0]), the extra bytes are flushed from the FIFO at the end of the write operation (when TCF is set). Byte/halfword accesses to QUADSPI_DR must be done only to the least significant byte/halfword of the 32-bit register. FTHRES[3:0] is used to define a FIFO threshold. When the threshold is reached, the FTF (FIFO threshold flag) is set. In indirect read mode, FTF is set when the number of valid bytes to be read from the FIFO is above the threshold. FTF is also set if there are data in the FIFO after the last byte is read from the Flash memory, regardless of the FTHRES setting. In indirect write mode, FTF is set when the number of empty bytes in the FIFO is above the threshold. If FTIE = 1, there is an interrupt when FTF is set. If DMAEN = 1, a DMA transfer is initiated when FTF is set. FTF is cleared by HW as soon as the threshold condition is no longer true (after enough data has been transferred by the CPU or DMA). In indirect read mode, when the FIFO becomes full, the QUADSPI temporarily stops reading bytes from the Flash memory to avoid an overrun. Note that the reading of the Flash memory does not restart until 4 bytes become vacant in the FIFO (when FLEVEL ≤ 28). Thus, when FTHRES ≥ 29, the application must take care to read enough bytes to assure that the QUADSPI starts retrieving data from the Flash memory again. Otherwise, the FTF flag stays at '0' as long as 28 < FLEVEL < FTHRES. RM0385 Rev 7 391/1709 412 Quad-SPI interface (QUADSPI) 14.3.6 RM0385 QUADSPI status flag polling mode In automatic-polling mode, the QUADSPI periodically starts a command to read a defined number of status bytes (up to 4). The received bytes can be masked to isolate some status bits and an interrupt can be generated when the selected bits have a defined value. The accesses to the Flash memory begin in the same way as in indirect read mode: if no address is required (AMODE = 00), accesses begin as soon as the QUADSPI_CCR is written. Otherwise, if an address is required, the first access begins when QUADSPI_AR is written. BUSY goes high at this point and stays high even between the periodic accesses. The contents of MASK[31:0] (QUADSPI_PSMAR) are used to mask the data from the Flash memory in automatic-polling mode. If the MASK[n] = 0, then bit n of the result is masked and not considered. If MASK[n] = 1, and the content of bit[n] is the same as MATCH[n] (QUADSPI_PSMAR), then there is a match for bit n. If the polling match mode bit (PMM, bit 23 of QUADSPI_CR) is 0, then “AND” match mode is activated. This means status match flag (SMF) is set only when there is a match on all of the unmasked bits. If PMM = 1, then “OR” match mode is activated. This means SMF is set if there is a match on any of the unmasked bits. An interrupt is called when SMF is set if SMIE = 1. If the automatic-polling-mode-stop (APMS) bit is set, operation stops and BUSY goes to 0 as soon as a match is detected. Otherwise, BUSY stays at ‘1’ and the periodic accesses continue until there is an abort or the QUADSPI is disabled (EN = 0). The data register (QUADSPI_DR) contains the latest received status bytes (the FIFO is deactivated). The content of the data register is not affected by the masking used in the matching logic. The FTF status bit is set as soon as a new reading of the status is complete, and FTF is cleared as soon as the data is read. 14.3.7 QUADSPI memory-mapped mode When configured in memory-mapped mode, the external SPI device is seen as an internal memory. It is forbidden to access QUADSPI Flash bank area before having properly configured and enabled the QUADSPI peripheral. No more than 256MB can addressed even if the Flash memory capacity is larger. If an access is made to an address outside of the range defined by FSIZE but still within the 256MB range, then a bus error is given. The effect of this error depends on the bus master that attempted the access: • If it is the Cortex® CPU, bus fault exception is generated when enabled (or a hard fault exception when bus fault is disabled) • If it is a DMA, a DMA transfer error is generated and the corresponding DMA channel is automatically disabled. Byte, halfword, and word access types are all supported. Support for execute in place (XIP) operation is implemented, where the QUADSPI anticipates the next microcontroller access and load in advance the byte at the following address. If the subsequent access is indeed made at a continuous address, the access will be completed faster since the value is already prefetched. 392/1709 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) By default, the QUADSPI never stops its prefetch operation, keeping the previous read operation active with nCS maintained low, even if no access to the Flash memory occurs for a long time. Since Flash memories tend to consume more when nCS is held low, the application might want to activate the timeout counter (TCEN = 1, bit 3 of QUADSPI_CR) so that nCS is released after a period of TIMEOUT[15:0] (QUADSPI_LPTR) cycles have elapsed without any access since when the FIFO becomes full with prefetch data. BUSY goes high as soon as the first memory-mapped access occurs. Because of the prefetch operations, BUSY does not fall until there is a timeout, there is an abort, or the peripheral is disabled. 14.3.8 QUADSPI Flash memory configuration The device configuration register (QUADSPI_DCR) can be used to specify the characteristics of the external SPI Flash memory. The FSIZE[4:0] field defines the size of external memory using the following formula: Number of bytes in Flash memory = 2[FSIZE+1] FSIZE+1 is effectively the number of address bits required to address the Flash memory. The Flash memory capacity can be up to 4GB (addressed using 32 bits) in indirect mode, but the addressable space in memory-mapped mode is limited to 256MB. If DFM = 1, FSIZE indicates the total capacity of the two Flash memories together. When the QUADSPI executes two commands, one immediately after the other, it raises the chip select signal (nCS) high between the two commands for only one CLK cycle by default. If the Flash memory requires more time between commands, the chip select high time (CSHT) field can be used to specify the minimum number of CLK cycles (up to 8) that nCS must remain high. The clock mode (CKMODE) bit indicates the CLK signal logic level in between commands (when nCS = 1). 14.3.9 QUADSPI delayed data sampling By default, the QUADSPI samples the data driven by the Flash memory one half of a CLK cycle after the Flash memory drives the signal. In case of external signal delays, it may be beneficial to sample the data later. Using the SSHIFT bit (bit 4 of QUADSPI_CR), the sampling of the data can be shifted by half of a CLK cycle. Clock shifting is not supported in DDR mode: the SSHIFT bit must be clear when DDRM bit is set. 14.3.10 QUADSPI configuration The QUADSPI configuration is done in two phases: • QUADSPI IP configuration • QUADSPI Flash memory configuration Once configured and enabled, the QUADSPI can be used in one of its three operating modes: indirect mode, status-polling mode, or memory-mapped mode. QUADSPI IP configuration RM0385 Rev 7 393/1709 412 Quad-SPI interface (QUADSPI) RM0385 The QUADSPI IP is configured using the QUADSPI_CR. The user shall configure the clock prescaler division factor and the sample shifting settings for the incoming data. DDR mode can be set through the DDRM bit. Once enabled, the address and the alternate bytes are sent on both clock edges and the data are sent/received on both clock edges. Regardless of the DDRM bit setting, instructions are always sent in SDR mode. The DMA requests are enabled setting the DMAEN bit. In case of interrupt usage, their respective enable bit can be also set during this phase. FIFO level for either DMA request generation or interrupt generation is programmed in the FTHRES bits. If timeout counter is needed, the TCEN bit can be set and the timeout value programmed in the QUADSPI_LPTR register. Dual-flash mode can be activated by setting DFM to 1. QUADSPI Flash memory configuration The parameters related to the targeted external Flash memory are configured through the QUADSPI_DCR register.The user shall program the Flash memory size in the FSIZE bits, the Chip Select minimum high time in the CSHT bits, and the functional mode (Mode 0 or Mode 3) in the MODE bit. 14.3.11 QUADSPI usage The operating mode is selected using FMODE[1:0] (QUADSPI_CCR[27:26]). Indirect mode procedure When FMODE is programmed to 00, indirect write mode is selected and data can be sent to the Flash memory. With FMODE = 01, indirect read mode is selected where data can be read from the Flash memory. When the QUADSPI is used in indirect mode, the frames are constructed in the following way: 1. 394/1709 Specify a number of data bytes to read or write in the QUADSPI_DLR. 2. Specify the frame format, mode and instruction code in the QUADSPI_CCR. 3. Specify optional alternate byte to be sent right after the address phase in the QUADSPI_ABR. 4. Specify the operating mode in the QUADSPI_CR. If FMODE = 00 (indirect write mode) and DMAEN = 1, then QUADSPI_AR should be specified before QUADSPI_CR, because otherwise QUADSPI_DR might be written by the DMA before QUADSPI_AR is updated (if the DMA controller has already been enabled) 5. Specify the targeted address in the QUADSPI_AR. 6. Read/Write the data from/to the FIFO through the QUADSPI_DR. RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) When writing the control register (QUADSPI_CR) the user specifies the following settings: • The enable bit (EN) set to ‘1’ • The DMA enable bit (DMAEN) for transferring data to/from RAM • Timeout counter enable bit (TCEN) • Sample shift setting (SSHIFT) • FIFO threshold level (FTRHES) to indicate when the FTF flag should be set • Interrupt enables • Automatic polling mode parameters: match mode and stop mode (valid when FMODE = 11) • Clock prescaler When writing the communication configuration register (QUADSPI_CCR) the user specifies the following parameters: • The instruction byte through the INSTRUCTION bits • The way the instruction has to be sent through the IMODE bits (1/2/4 lines) • The way the address has to be sent through the ADMODE bits (None/1/2/4 lines) • The address size (8/16/24/32-bit) through the ADSIZE bits • The way the alternate bytes have to be sent through the ABMODE (None/1/2/4 lines) • The alternate bytes number (1/2/3/4) through the ABSIZE bits • The presence or not of dummy bytes through the DBMODE bit • The number of dummy bytes through the DCYC bits • The way the data have to be sent/received (None/1/2/4 lines) through the DMODE bits If neither the address register (QUADSPI_AR) nor the data register (QUADSPI_DR) need to be updated for a particular command, then the command sequence starts as soon as QUADSPI_CCR is written. This is the case when both ADMODE and DMODE are 00, or if just ADMODE = 00 when in indirect read mode (FMODE = 01). When an address is required (ADMODE is not 00) and the data register does not need to be written (when FMODE = 01 or DMODE = 00), the command sequence starts as soon as the address is updated with a write to QUADSPI_AR. In case of data transmission (FMODE = 00 and DMODE! = 00), the communication start is triggered by a write in the FIFO through QUADSPI_DR. Status flag polling mode The status flag polling mode is enabled setting the FMODE field (QUADSPI_CCR[27:26]) to 10. In this mode, the programmed frame will be sent and the data retrieved periodically. The maximum amount of data read in each frame is 4 bytes. If more data is requested in QUADSPI_DLR, it will be ignored and only 4 bytes will be read. The periodicity is specified in the QUADSPI_PISR register. Once the status data has been retrieved, it can internally be processed i order to: • set the status match flag and generate an interrupt if enabled • stop automatically the periodic retrieving of the status bytes The received value can be masked with the value stored in the QUADSPI_PSMKR and ORed or ANDed with the value stored in the QUADSPI_PSMAR. RM0385 Rev 7 395/1709 412 Quad-SPI interface (QUADSPI) RM0385 In case of match, the status match flag is set and an interrupt is generated if enabled, and the QUADSPI can be automatically stopped if the AMPS bit is set. In any case, the latest retrieved value is available in the QUADSPI_DR. Memory-mapped mode In memory-mapped mode, the external Flash memory is seen as internal memory but with some latency during accesses. Only read operations are allowed to the external Flash memory in this mode. Memory-mapped mode is entered by setting the FMODE to 11 in the QUADSPI_CCR register. The programmed instruction and frame is sent when a master is accessing the memory mapped space. The FIFO is used as a prefetch buffer to anticipate linear reads. Any access to QUADSPI_DR in this mode returns zero. The data length register (QUADSPI_DLR) has no meaning in memory-mapped mode. 14.3.12 Sending the instruction only once Some Flash memories (e.g. Winbound) might provide a mode where an instruction must be sent only with the first command sequence, while subsequent commands start directly with the address. One can take advantage of such a feature using the SIOO bit (QUADSPI_CCR[28]). SIOO is valid for all functional modes (indirect, automatic polling, and memory-mapped). If the SIOO bit is set, the instruction is sent only for the first command following a write to QUADSPI_CCR. Subsequent command sequences skip the instruction phase, until there is a write to QUADSPI_CCR. SIOO has no effect when IMODE = 00 (no instruction). 14.3.13 QUADSPI error management An error can be generated in the following case: 396/1709 • In indirect mode or status flag polling mode when a wrong address has been programmed in the QUADSPI_AR (according to the Flash memory size defined by FSIZE[4:0] in the QUADSPI_DCR): this will set the TEF and an interrupt is generated if enabled. • Also in indirect mode, if the address plus the data length exceeds the Flash memory size, TEF will be set as soon as the access is triggered. • In memory-mapped mode, when an out of range access is done by a master or when the QUADSPI is disabled: this will generate a bus error as a response to the faulty bus master request. • When a master is accessing the memory mapped space while the memory mapped mode is disabled: this will generate a bus error as a response to the faulty bus master request. RM0385 Rev 7 RM0385 14.3.14 Quad-SPI interface (QUADSPI) QUADSPI busy bit and abort functionality Once the QUADSPI starts an operation with the Flash memory, the BUSY bit is automatically set in the QUADSPI_SR. In indirect mode, the BUSY bit is reset once the QUADSPI has completed the requested command sequence and the FIFO is empty. In automatic-polling mode, BUSY goes low only after the last periodic access is complete, due to a match when APMS = 1, or due to an abort. After the first access in memory-mapped mode, BUSY goes low only on a timeout event or on an abort. Any operation can be aborted by setting the ABORT bit in the QUADSPI_CR. Once the abort is completed, the BUSY bit and the ABORT bit are automatically reset, and the FIFO is flushed. Note: Some Flash memories might misbehave if a write operation to a status registers is aborted. 14.3.15 nCS behavior By default, nCS is high, deselecting the external Flash memory. nCS falls before an operation begins and rises as soon as it finishes. When CKMODE = 0 (“mode0”, where CLK stays low when no operation is in progress) nCS falls one CLK cycle before an operation first rising CLK edge, and nCS rises one CLK cycle after the operation final rising CLK edge, as shown in Figure 66. Figure 66. nCS when CKMODE = 0 (T = CLK period) T T nCS SCLK MS35319V1 When CKMODE=1 (“mode3”, where CLK goes high when no operation is in progress) and DDRM=0 (SDR mode), nCS still falls one CLK cycle before an operation first rising CLK edge, and nCS rises one CLK cycle after the operation final rising CLK edge, as shown in Figure 67. Figure 67. nCS when CKMODE = 1 in SDR mode (T = CLK period) T T nCS SCLK MS35320V1 RM0385 Rev 7 397/1709 412 Quad-SPI interface (QUADSPI) RM0385 When CKMODE = 1 (“mode3”) and DDRM = 1 (DDR mode), nCS falls one CLK cycle before an operation first rising CLK edge, and nCS rises one CLK cycle after the operation final active rising CLK edge, as shown in Figure 68. Because DDR operations must finish with a falling edge, CLK is low when nCS rises, and CLK rises back up one half of a CLK cycle afterwards. Figure 68. nCS when CKMODE = 1 in DDR mode (T = CLK period) T T T/2 nCS SCLK MS35321V1 When the FIFO stays full in a read operation or if the FIFO stays empty in a write operation, the operation stalls and CLK stays low until firmware services the FIFO. If an abort occurs when an operation is stalled, nCS rises just after the abort is requested and then CLK rises one half of a CLK cycle later, as shown in Figure 69. Figure 69. nCS when CKMODE = 1 with an abort (T = CLK period) T Clock stalled T/2 nCS SCLK Abort MS35322V1 When not in dual-flash mode (DFM = 0), only FLASH 1 is accessed and thus the BK2_nCS stays high. In dual-flash mode, BK2_nCS behaves exactly the same as BK1_nCS. Thus, if there is a FLASH 2 and if the application always stays in dual-flash mode, then FLASH 2 may use BK1_nCS and the pin outputting BK2_nCS can be used for other functions. 398/1709 RM0385 Rev 7 RM0385 14.4 Quad-SPI interface (QUADSPI) QUADSPI interrupts An interrupt can be produced on the following events: • Timeout • Status match • FIFO threshold • Transfer complete • Transfer error Separate interrupt enable bits are available for flexibility. Table 90. QUADSPI interrupt requests Interrupt event Event flag Enable control bit Timeout TOF TOIE Status match SMF SMIE FIFO threshold FTF FTIE Transfer complete TCF TCIE Transfer error TEF TEIE RM0385 Rev 7 399/1709 412 Quad-SPI interface (QUADSPI) RM0385 14.5 QUADSPI registers 14.5.1 QUADSPI control register (QUADSPI_CR) Address offset: 0x0000 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 PRESCALER[7:0] 23 22 21 20 19 18 17 16 PMM APMS Res. TOIE SMIE FTIE TCIE TEIE rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. FSEL DFM Res. SSHIFT TCEN rw rw rw rw FTHRES[4:0] rw rw rw rw rw DMAEN ABORT rw rw EN rw Bits 31:24 PRESCALER[7:0]: Clock prescaler This field defines the scaler factor for generating CLK based on the AHB clock (value+1). 0: FCLK = FAHB, AHB clock used directly as QUADSPI CLK (prescaler bypassed) 1: FCLK = FAHB/2 2: FCLK = FAHB/3 ... 255: FCLK = FAHB/256 For odd clock division factors, CLK’s duty cycle is not 50%. The clock signal remains low one cycle longer than it stays high. This field can be modified only when BUSY = 0. Bit 23 PMM: Polling match mode This bit indicates which method should be used for determining a “match” during automatic polling mode. 0: AND match mode. SMF is set if all the unmasked bits received from the Flash memory match the corresponding bits in the match register. 1: OR match mode. SMF is set if any one of the unmasked bits received from the Flash memory matches its corresponding bit in the match register. This bit can be modified only when BUSY = 0. Bit 22 APMS: Automatic poll mode stop This bit determines if automatic polling is stopped after a match. 0: Automatic polling mode is stopped only by abort or by disabling the QUADSPI. 1: Automatic polling mode stops as soon as there is a match. This bit can be modified only when BUSY = 0. Bit 21 Reserved, must be kept at reset value. Bit 20 TOIE: TimeOut interrupt enable This bit enables the TimeOut interrupt. 0: Interrupt disable 1: Interrupt enabled Bit 19 SMIE: Status match interrupt enable This bit enables the status match interrupt. 0: Interrupt disable 1: Interrupt enabled 400/1709 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) Bit 18 FTIE: FIFO threshold interrupt enable This bit enables the FIFO threshold interrupt. 0: Interrupt disabled 1: Interrupt enabled Bit 17 TCIE: Transfer complete interrupt enable This bit enables the transfer complete interrupt. 0: Interrupt disabled 1: Interrupt enabled Bit 16 TEIE: Transfer error interrupt enable This bit enables the transfer error interrupt. 0: Interrupt disable 1: Interrupt enabled Bits 15:13 Reserved, must be kept at reset value. Bits 12:8 FTHRES[4:0] FIFO threshold level Defines, in indirect mode, the threshold number of bytes in the FIFO that will cause the FIFO threshold flag (FTF, QUADSPI_SR[2]) to be set. In indirect write mode (FMODE = 00): 0: FTF is set if there are 1 or more free bytes available to be written to in the FIFO 1: FTF is set if there are 2 or more free bytes available to be written to in the FIFO ... 31: FTF is set if there are 32 free bytes available to be written to in the FIFO In indirect read mode (FMODE = 01): 0: FTF is set if there are 1 or more valid bytes that can be read from the FIFO 1: FTF is set if there are 2 or more valid bytes that can be read from the FIFO ... 31: FTF is set if there are 32 valid bytes that can be read from the FIFO If DMAEN = 1, then the DMA controller for the corresponding channel must be disabled before changing the FTHRES value. Bit 7 FSEL: Flash memory selection This bit selects the Flash memory to be addressed in single flash mode (when DFM = 0). 0: FLASH 1 selected 1: FLASH 2 selected This bit can be modified only when BUSY = 0. This bit is ignored when DFM = 1. Bit 6 DFM: Dual-flash mode This bit activates dual-flash mode, where two external Flash memories are used simultaneously to double throughput and capacity. 0: Dual-flash mode disabled 1: Dual-flash mode enabled This bit can be modified only when BUSY = 0. Bit 5 Reserved, must be kept at reset value. RM0385 Rev 7 401/1709 412 Quad-SPI interface (QUADSPI) RM0385 Bit 4 SSHIFT: Sample shift By default, the QUADSPI samples data 1/2 of a CLK cycle after the data is driven by the Flash memory. This bit allows the data is to be sampled later in order to account for external signal delays. 0: No shift 1: 1/2 cycle shift Firmware must assure that SSHIFT = 0 when in DDR mode (when DDRM = 1). This field can be modified only when BUSY = 0. Bit 3 TCEN: Timeout counter enable This bit is valid only when memory-mapped mode (FMODE = 11) is selected. Activating this bit causes the chip select (nCS) to be released (and thus reduces consumption) if there has not been an access after a certain amount of time, where this time is defined by TIMEOUT[15:0] (QUADSPI_LPTR). Enable the timeout counter. By default, the QUADSPI never stops its prefetch operation, keeping the previous read operation active with nCS maintained low, even if no access to the Flash memory occurs for a long time. Since Flash memories tend to consume more when nCS is held low, the application might want to activate the timeout counter (TCEN = 1, bit 3 of QUADSPI_CR) so that nCS is released after a period of TIMEOUT[15:0] (QUADSPI_LPTR) cycles have elapsed without an access since when the FIFO becomes full with prefetch data. 0: Timeout counter is disabled, and thus the chip select (nCS) remains active indefinitely after an access in memory-mapped mode. 1: Timeout counter is enabled, and thus the chip select is released in memory-mapped mode after TIMEOUT[15:0] cycles of Flash memory inactivity. This bit can be modified only when BUSY = 0. Bit 2 DMAEN: DMA enable In indirect mode, DMA can be used to input or output data via the QUADSPI_DR register. DMA transfers are initiated when the FIFO threshold flag, FTF, is set. 0: DMA is disabled for indirect mode 1: DMA is enabled for indirect mode Bit 1 ABORT: Abort request This bit aborts the on-going command sequence. It is automatically reset once the abort is complete. This bit stops the current transfer. In polling mode or memory-mapped mode, this bit also reset the APM bit or the DM bit. 0: No abort requested 1: Abort requested Bit 0 EN: Enable Enable the QUADSPI. 0: QUADSPI is disabled 1: QUADSPI is enabled 402/1709 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) 14.5.2 QUADSPI device configuration register (QUADSPI_DCR) Address offset: 0x0004 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. CSHT[2:0] rw rw Res. Res. rw Res. 20 19 18 17 16 rw FSIZE[4:0] rw rw rw rw 4 3 2 1 0 Res. CK MODE Res. Res. Res. rw Bits 31:21 Reserved, must be kept at reset value. Bits 20:16 FSIZE[4:0]: Flash memory size This field defines the size of external memory using the following formula: Number of bytes in Flash memory = 2[FSIZE+1] FSIZE+1 is effectively the number of address bits required to address the Flash memory. The Flash memory capacity can be up to 4GB (addressed using 32 bits) in indirect mode, but the addressable space in memory-mapped mode is limited to 256MB. If DFM = 1, FSIZE indicates the total capacity of the two Flash memories together. This field can be modified only when BUSY = 0. Bits 15:11 Reserved, must be kept at reset value. Bits 10:8 CSHT[2:0]: Chip select high time CSHT+1 defines the minimum number of CLK cycles which the chip select (nCS) must remain high between commands issued to the Flash memory. 0: nCS stays high for at least 1 cycle between Flash memory commands 1: nCS stays high for at least 2 cycles between Flash memory commands ... 7: nCS stays high for at least 8 cycles between Flash memory commands This field can be modified only when BUSY = 0. Bits 7:1 Reserved, must be kept at reset value. Bit 0 CKMODE: Mode 0 / mode 3 This bit indicates the level that CLK takes between commands (when nCS = 1). 0: CLK must stay low while nCS is high (chip select released). This is referred to as mode 0. 1: CLK must stay high while nCS is high (chip select released). This is referred to as mode 3. This field can be modified only when BUSY = 0. RM0385 Rev 7 403/1709 412 Quad-SPI interface (QUADSPI) 14.5.3 RM0385 QUADSPI status register (QUADSPI_SR) Address offset: 0x0008 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. BUSY TOF SMF FTF TCF TEF r r r r r r FLEVEL[5:0] r r r r r r Bits 31:14 Reserved, must be kept at reset value. Bits 13:8 FLEVEL[5:0]: FIFO level This field gives the number of valid bytes which are being held in the FIFO. FLEVEL = 0 when the FIFO is empty, and 32 when it is full. In memory-mapped mode and in automatic status polling mode, FLEVEL is zero. Bits 7:6 Reserved, must be kept at reset value. Bit 5 BUSY: Busy This bit is set when an operation is on going. This bit clears automatically when the operation with the Flash memory is finished and the FIFO is empty. Bit 4 TOF: Timeout flag This bit is set when timeout occurs. It is cleared by writing 1 to CTOF. Bit 3 SMF: Status match flag This bit is set in automatic polling mode when the unmasked received data matches the corresponding bits in the match register (QUADSPI_PSMAR). It is cleared by writing 1 to CSMF. Bit 2 FTF: FIFO threshold flag In indirect mode, this bit is set when the FIFO threshold has been reached, or if there is any data left in the FIFO after reads from the Flash memory are complete. It is cleared automatically as soon as threshold condition is no longer true. In automatic polling mode this bit is set every time the status register is read, and the bit is cleared when the data register is read. Bit 1 TCF: Transfer complete flag This bit is set in indirect mode when the programmed number of data has been transferred or in any mode when the transfer has been aborted.It is cleared by writing 1 to CTCF. Bit 0 TEF: Transfer error flag This bit is set in indirect mode when an invalid address is being accessed in indirect mode. It is cleared by writing 1 to CTEF. 404/1709 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) 14.5.4 QUADSPI flag clear register (QUADSPI_FCR) Address offset: 0x000C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CTOF CSMF Res. CTCF CTEF w w w w Bits 31:5 Reserved, must be kept at reset value. Bit 4 CTOF: Clear timeout flag Writing 1 clears the TOF flag in the QUADSPI_SR register Bit 3 CSMF: Clear status match flag Writing 1 clears the SMF flag in the QUADSPI_SR register Bit 2 Reserved, must be kept at reset value. Bit 1 CTCF: Clear transfer complete flag Writing 1 clears the TCF flag in the QUADSPI_SR register Bit 0 CTEF: Clear transfer error flag Writing 1 clears the TEF flag in the QUADSPI_SR register 14.5.5 QUADSPI data length register (QUADSPI_DLR) Address offset: 0x0010 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DL[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DL[15:0] rw rw rw rw rw rw rw rw rw RM0385 Rev 7 405/1709 412 Quad-SPI interface (QUADSPI) RM0385 Bits 31:0 DL[31:0]: Data length Number of data to be retrieved (value+1) in indirect and status-polling modes. A value no greater than 3 (indicating 4 bytes) should be used for status-polling mode. All 1s in indirect mode means undefined length, where QUADSPI will continue until the end of memory, as defined by FSIZE. 0x0000_0000: 1 byte is to be transferred 0x0000_0001: 2 bytes are to be transferred 0x0000_0002: 3 bytes are to be transferred 0x0000_0003: 4 bytes are to be transferred ... 0xFFFF_FFFD: 4,294,967,294 (4G-2) bytes are to be transferred 0xFFFF_FFFE: 4,294,967,295 (4G-1) bytes are to be transferred 0xFFFF_FFFF: undefined length -- all bytes until the end of Flash memory (as defined by FSIZE) are to be transferred. Continue reading indefinitely if FSIZE = 0x1F. DL[0] is stuck at ‘1’ in dual-flash mode (DFM = 1) even when ‘0’ is written to this bit, thus assuring that each access transfers an even number of bytes. This field has no effect when in memory-mapped mode (FMODE = 10). This field can be written only when BUSY = 0. 14.5.6 QUADSPI communication configuration register (QUADSPI_CCR) Address offset: 0x0014 Reset value: 0x0000 0000 31 30 29 28 DDRM DHHC Res. SIOO 13 rw rw 15 14 ABMODE[1:0] rw rw 26 25 24 FMODE[1:0] DMODE[1:0] rw rw rw rw rw 12 11 10 9 8 ADSIZE[1:0] rw 27 rw ADMODE[1:0] rw rw 23 22 21 Res. 7 rw 19 18 DCYC[4:0] 17 ABSIZE[1:0] rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw INSTRUCTION[7:0] rw rw rw rw rw Bit 31 DDRM: Double data rate mode This bit sets the DDR mode for the address, alternate byte and data phase: 0: DDR Mode disabled 1: DDR Mode enabled This field can be written only when BUSY = 0. Bit 30 DHHC: DDR hold Delay the data output by 1/4 of the QUADSPI output clock cycle in DDR mode: 0: Delay the data output using analog delay 1: Delay the data output by 1/4 of a QUADSPI output clock cycle. This feature is only active in DDR mode. This field can be written only when BUSY = 0. Bit 29 Reserved, must be kept at reset value. 406/1709 16 rw IMODE[1:0] rw 20 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) Bit 28 SIOO: Send instruction only once mode See Section 14.3.12: Sending the instruction only once on page 396. This bit has no effect when IMODE = 00. 0: Send instruction on every transaction 1: Send instruction only for the first command This field can be written only when BUSY = 0. Bits 27:26 FMODE[1:0]: Functional mode This field defines the QUADSPI functional mode of operation. 00: Indirect write mode 01: Indirect read mode 10: Automatic polling mode 11: Memory-mapped mode If DMAEN = 1 already, then the DMA controller for the corresponding channel must be disabled before changing the FMODE value. This field can be written only when BUSY = 0. Bits 25:24 DMODE[1:0]: Data mode This field defines the data phase’s mode of operation: 00: No data 01: Data on a single line 10: Data on two lines 11: Data on four lines This field also determines the dummy phase mode of operation. This field can be written only when BUSY = 0. Bit 23 Reserved, must be kept at reset value. Bits 22:18 DCYC[4:0]: Number of dummy cycles This field defines the duration of the dummy phase. In both SDR and DDR modes, it specifies a number of CLK cycles (0-31). This field can be written only when BUSY = 0. Bits 17:16 ABSIZE[1:0]: Alternate bytes size This bit defines alternate bytes size: 00: 8-bit alternate byte 01: 16-bit alternate bytes 10: 24-bit alternate bytes 11: 32-bit alternate bytes This field can be written only when BUSY = 0. Bits 15:14 ABMODE[1:0]: Alternate bytes mode This field defines the alternate-bytes phase mode of operation: 00: No alternate bytes 01: Alternate bytes on a single line 10: Alternate bytes on two lines 11: Alternate bytes on four lines This field can be written only when BUSY = 0. RM0385 Rev 7 407/1709 412 Quad-SPI interface (QUADSPI) RM0385 Bits 13:12 ADSIZE[1:0]: Address size This bit defines address size: 00: 8-bit address 01: 16-bit address 10: 24-bit address 11: 32-bit address This field can be written only when BUSY = 0. Bits 11:10 ADMODE[1:0]: Address mode This field defines the address phase mode of operation: 00: No address 01: Address on a single line 10: Address on two lines 11: Address on four lines This field can be written only when BUSY = 0. Bits 9:8 IMODE[1:0]: Instruction mode This field defines the instruction phase mode of operation: 00: No instruction 01: Instruction on a single line 10: Instruction on two lines 11: Instruction on four lines This field can be written only when BUSY = 0. Bits 7:0 INSTRUCTION[7:0]: Instruction Instruction to be send to the external SPI device. This field can be written only when BUSY = 0. 14.5.7 QUADSPI address register (QUADSPI_AR) Address offset: 0x0018 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ADDRESS[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ADDRESS[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 ADDRESS[31:0]: Address Address to be send to the external Flash memory Writes to this field are ignored when BUSY = 0 or when FMODE = 11 (memory-mapped mode). In dual flash mode, ADDRESS[0] is automatically stuck to ‘0’ as the address should always be even 408/1709 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) 14.5.8 QUADSPI alternate bytes registers (QUADSPI_ABR) Address offset: 0x001C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ALTERNATE[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ALTERNATE[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 ALTERNATE[31:0]: Alternate Bytes Optional data to be send to the external SPI device right after the address. This field can be written only when BUSY = 0. 14.5.9 QUADSPI data register (QUADSPI_DR) Address offset: 0x0020 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATA[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DATA[31:0]: Data Data to be sent/received to/from the external SPI device. In indirect write mode, data written to this register is stored on the FIFO before it is sent to the Flash memory during the data phase. If the FIFO is too full, a write operation is stalled until the FIFO has enough space to accept the amount of data being written. In indirect read mode, reading this register gives (via the FIFO) the data which was received from the Flash memory. If the FIFO does not have as many bytes as requested by the read operation and if BUSY=1, the read operation is stalled until enough data is present or until the transfer is complete, whichever happens first. In automatic polling mode, this register contains the last data read from the Flash memory (without masking). Word, halfword, and byte accesses to this register are supported. In indirect write mode, a byte write adds 1 byte to the FIFO, a halfword write 2, and a word write 4. Similarly, in indirect read mode, a byte read removes 1 byte from the FIFO, a halfword read 2, and a word read 4. Accesses in indirect mode must be aligned to the bottom of this register: a byte read must read DATA[7:0] and a halfword read must read DATA[15:0]. RM0385 Rev 7 409/1709 412 Quad-SPI interface (QUADSPI) 14.5.10 RM0385 QUADSPI polling status mask register (QUADSPI _PSMKR) Address offset: 0x0024 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MASK[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MASK[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 MASK[31:0]: Status mask Mask to be applied to the status bytes received in polling mode. For bit n: 0: Bit n of the data received in automatic polling mode is masked and its value is not considered in the matching logic 1: Bit n of the data received in automatic polling mode is unmasked and its value is considered in the matching logic This field can be written only when BUSY = 0. 14.5.11 QUADSPI polling status match register (QUADSPI _PSMAR) Address offset: 0x0028 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MATCH[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MATCH[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 MATCH[31:0]: Status match Value to be compared with the masked status register to get a match. This field can be written only when BUSY = 0. 410/1709 RM0385 Rev 7 RM0385 Quad-SPI interface (QUADSPI) 14.5.12 QUADSPI polling interval register (QUADSPI _PIR) Address offset: 0x002C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw INTERVAL[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 INTERVAL[15:0]: Polling interval Number of CLK cycles between to read during automatic polling phases. This field can be written only when BUSY = 0. 14.5.13 QUADSPI low-power timeout register (QUADSPI_LPTR) Address offset: 0x0030 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw TIMEOUT[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 TIMEOUT[15:0]: Timeout period After each access in memory-mapped mode, the QUADSPI prefetches the subsequent bytes and holds these bytes in the FIFO. This field indicates how many CLK cycles the QUADSPI waits after the FIFO becomes full until it raises nCS, putting the Flash memory in a lower-consumption state. This field can be written only when BUSY = 0. RM0385 Rev 7 411/1709 412 Quad-SPI interface (QUADSPI) 14.5.14 RM0385 QUADSPI register map 0 0 0 0 Reset value 0x0020 0 0x0024 DCYC[4:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ABORT EN Res. TEF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 INSTRUCTION[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 QUADSPI_PIR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MATCH[31:0] 0 0 0 0 0 0 0 0 0 TIMEOUT[15:0] 0 0 0 0 Refer to Section 2.2.2 for the register boundary addresses. RM0385 Rev 7 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 INTERVAL[15:0] 0 Reset value 412/1709 0 MASK[31:0] Reset value 0x0030 0 DATA[31:0] Reset value QUADSPI_ LPTR CKMODE TCF 0 ALTERNATE[31:0] QUADSPI_ PSMAR 0x002C TCEN 0 ADDRESS[31:0] QUADSPI_ PSMKR Reset value 0x0028 0 QUADSPI_DR Reset value DMAEN 0 CTEF 0 QUADSPI_ABR Reset value Res. FTF 0 CTCF 0 IMODE[1:0] 0 ADMODE[1:0] 0 ADSIZE[1:0] 0 ABMODE[1:0] 0 QUADSPI_AR 0x0018 0x001C 0 0 ABSIZE[1:0] 0 0 Res. 0 0 DMODE[1:0] DHHC Reset value 0 FMODE[1:0] QUADSPI_CCR 0 Res. 0 SIOO 0 0x0014 Res. DFM Res. Res. 0 DL[31:0] Reset value DDRM QUADSPI_DLR SSHIFT 0 Reset value 0x0010 Res. FSEL Res. Res. SMF 0 Res. 0 CSMF 0 TOF 0 0 CTOF 0 0 BUS 0 0 Res. 0 Res. FLEVEL[6:0] 0 0 0 Res. Res. Res. 0 Res. 0 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. QUADSPI_FCR CSHT 0 Reset value 0x000C 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. Res. 0 Res. Res. Res. 0 Res. Res. Res. FSIZE[4:0] 0 Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. 0 FTHRES [4:0] Res. Res. Res. TEIE Res. Res. Res. 0 Res. Res. Res. QUADSPI_SR Res. Reset value 0x0008 0 Res. QUADSPI_DCR 0x0004 0 Res. 0 FTIE 0 TCIE 0 Res. 0 SMIE 0 Res. 0 Res. 0 Res. 0 TOIE 0 PRESCALER[7:0] Res. 0 QUADSPI_CR 0x0000 Res. PMM APMS Reset value Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 91. QUADSPI register map and reset values Register name 0 0 0 0 0 0 RM0385 Analog-to-digital converter (ADC) 15 Analog-to-digital converter (ADC) 15.1 ADC introduction The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 19 multiplexed channels allowing it to measure signals from 16 external sources, two internal sources, and the VBAT channel. The A/D conversion of the channels can be performed in single, continuous, scan or discontinuous mode. The result of the ADC is stored into a leftor right-aligned 16-bit data register. The analog watchdog feature allows the application to detect if the input voltage goes beyond the user-defined, higher or lower thresholds. 15.2 ADC main features • 12-bit, 10-bit, 8-bit or 6-bit configurable resolution • Interrupt generation at the end of conversion, end of injected conversion, and in case of analog watchdog or overrun events • Single and continuous conversion modes • Scan mode for automatic conversion of channel 0 to channel ‘n’ • Data alignment with in-built data coherency • Channel-wise programmable sampling time • External trigger option with configurable polarity for both regular and injected conversions • Discontinuous mode • Dual/Triple mode (on devices with 2 ADCs or more) • Configurable DMA data storage in Dual/Triple ADC mode • Configurable delay between conversions in Dual/Triple interleaved mode • ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at slower speed • ADC input range: VREF– ≤ VIN ≤ VREF+ • DMA request generation during regular channel conversion Figure 70 shows the block diagram of the ADC. Note: VREF–, if available (depending on package), must be tied to VSSA. 15.3 ADC functional description Figure 70 shows a single ADC block diagram and Table 92 gives the ADC pin description. RM0385 Rev 7 413/1709 460 Analog-to-digital converter (ADC) RM0385 Figure 70. Single ADC block diagram Interrupt enable bits Flags DMA overrun End of conversion End of injected conversion Analog watchdog event OVR OVRIE EOC EOCIE JEOC JEOCIE AWD AWDIE ADC Interrupt to NVIC Analog watchdog Compare result Higher threshold (12 bits) Injected data registers (4 x 16 bits) V REF+ V REF- Regular data register (16 bits) V DDA V SSA Analog mux Address/data bus Lower threshold (12 bits) DMA request ADCx_IN0 ADCx_IN1 GPIO ports up to 4 up to 16 ADCx_IN15 ADCCLK Injected channels Analog to digital Regular channels converter Temp. sensor V REFINT V BAT From ADC prescaler EXTSEL[3:0] bits JEXTSEL[3:0] bits TIM1_TRGO TIM1_CH4 TIM2_TRGO TIM2_CH1 TIM3_CH4 TIM4_TRGO TIM8_CH4 TIM1_TRGO(2) TIM8_TRGO TIM8_TRGO(2) TIM3_CH3 TIM5_TRGO TIM3_CH1 TIM6_TRGO EXTEN [1:0] bits JEXTEN [1:0] bits Start trigger (injected group) Start trigger (regular group) TIM1_CH1 TIM1_CH2 TIM1_CH3 TIM2_CH2 TIM5_TRGO TIM4_CH4 TIM3_CH4 TIM8_TRGO TIM8_TRGO(2) TIM1_TRGO TIM1_TRGO(2) TIM2_TRGO TIM4_TRGO TIM6_TRGO EXTI_11 MS35935V2 414/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) Table 92. ADC pins Name 15.3.1 Signal type Remarks VREF+ Input, analog reference positive The higher/positive reference voltage for the ADC, 1.8 V ≤ VREF+ ≤ VDDA VDDA Input, analog supply Analog power supply equal to VDD and 2.4 V ≤VDDA ≤VDD (3.6 V) for full speed 1.8 V ≤VDDA ≤VDD (3.6 V) for reduced speed VREF– Input, analog reference negative The lower/negative reference voltage for the ADC, VREF– = VSSA VSSA Input, analog supply ground Ground for analog power supply equal to VSS ADCx_IN[15:0] Analog input signals 16 analog input channels ADC on-off control The ADC is powered on by setting the ADON bit in the ADC_CR2 register. When the ADON bit is set for the first time, it wakes up the ADC from the Power-down mode. The conversion starts when either the SWSTART or the JSWSTART bit is set. The user can stop conversion and put the ADC in power down mode by clearing the ADON bit. In this mode the ADC consumes almost no power (only a few µA). RM0385 Rev 7 415/1709 460 Analog-to-digital converter (ADC) 15.3.2 RM0385 ADC1/2 and ADC3 connectivity ADC1, ADC2 and ADC3 are tightly coupled and share some external channels as described in Figure 71, Figure 72 and Figure 73. Figure 71. ADC1 connectivity ADC1 Channel selection VIN[0] ADC123_IN0 VIN[1] ADC123_IN1 VIN[2] ADC123_IN2 VIN[3] ADC123_IN3 VIN[4] ADC12_IN4 VIN[5] ADC12_IN5 VIN[6] ADC12_IN6 VREF+ VIN[7] ADC12_IN7 VIN[8] ADC12_IN8 VIN SAR ADC1 VIN[9] ADC12_IN9 VIN[10] ADC123_IN10 VREF- VIN[11] ADC123_IN11 VIN[12] ADC123_IN12 VIN[13] ADC123_IN13 VIN[14] ADC12_IN14 VIN[15] ADC12_IN15 N.C. VREFINT VBAT/4 or VSENSE VIN[16] VIN[17] VIN[18] MSv35937V1 416/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) Figure 72. ADC2 connectivity ADC2 Channel selection VIN[0] ADC123_IN0 VIN[1] ADC123_IN1 VIN[2] ADC123_IN2 VIN[3] ADC123_IN3 VIN[4] ADC12_IN4 VIN[5] ADC12_IN5 VIN[6] ADC12_IN6 VREF+ VIN[7] ADC12_IN7 VIN[8] ADC12_IN8 VIN SAR ADC2 VIN[9] ADC12_IN9 VIN[10] ADC123_IN10 VREF- VIN[11] ADC123_IN11 VIN[12] ADC123_IN12 VIN[13] ADC123_IN13 VIN[14] ADC12_IN14 VIN[15] ADC12_IN15 N.C. N.C. N.C. VIN[16] VIN[17] VIN[18] MSv35938V1 RM0385 Rev 7 417/1709 460 Analog-to-digital converter (ADC) RM0385 Figure 73. ADC3 connectivity ADC3 Channel selection VIN[0] ADC123_IN0 VIN[1] ADC123_IN1 VIN[2] ADC123_IN2 VIN[3] ADC123_IN3 VIN[4] ADC3_IN4 VIN[5] ADC3_IN5 VIN[6] ADC3_IN6 VREF+ VIN[7] ADC3_IN7 VIN[8] ADC3_IN8 VIN SAR ADC3 VIN[9] ADC3_IN9 VIN[10] ADC123_IN10 VREF- VIN[11] ADC123_IN11 VIN[12] ADC123_IN12 VIN[13] ADC123_IN13 VIN[14] ADC3_IN14 VIN[15] ADC3_IN15 N.C. N.C. N.C. VIN[16] VIN[17] VIN[18] MSv35939V1 418/1709 RM0385 Rev 7 RM0385 15.3.3 Analog-to-digital converter (ADC) ADC clock The ADC features two clock schemes: • Clock for the analog circuitry: ADCCLK, common to all ADCs This clock is generated from the APB2 clock divided by a programmable prescaler that allows the ADC to work at fPCLK2/2, /4, /6 or /8. Refer to the datasheets for the maximum value of ADCCLK. • Clock for the digital interface (used for registers read/write access) This clock is equal to the APB2 clock. The digital interface clock can be enabled/disabled individually for each ADC through the RCC APB2 peripheral clock enable register (RCC_APB2ENR). 15.3.4 Channel selection There are 16 multiplexed channels. It is possible to organize the conversions in two groups: regular and injected. A group consists of a sequence of conversions that can be done on any channel and in any order. For instance, it is possible to implement the conversion sequence in the following order: ADC_IN3, ADC_IN8, ADC_IN2, ADC_IN2, ADC_IN0, ADC_IN2, ADC_IN2, ADC_IN15. • A regular group is composed of up to 16 conversions. The regular channels and their order in the conversion sequence must be selected in the ADC_SQRx registers. The total number of conversions in the regular group must be written in the L[3:0] bits in the ADC_SQR1 register. • An injected group is composed of up to 4 conversions. The injected channels and their order in the conversion sequence must be selected in the ADC_JSQR register. The total number of conversions in the injected group must be written in the L[1:0] bits in the ADC_JSQR register. If the ADC_SQRx or ADC_JSQR registers are modified during a conversion, the current conversion is reset and a new start pulse is sent to the ADC to convert the newly chosen group. Temperature sensor, VREFINT and VBAT internal channels • The temperature sensor is internally connected to ADC1_IN18 channel which is shared with VBAT. Only one conversion, temperature sensor or VBAT, must be selected at a time. When the temperature sensor and VBAT conversion are set simultaneously, only the VBAT conversion is performed. The internal reference voltage VREFINT is connected to ADC1_IN17. The VBAT channel is connected to ADC1_IN18 channel. It can also be converted as an injected or regular channel. Note: The temperature sensor, VREFINT and the VBAT channel are available only on the master ADC1 peripheral. RM0385 Rev 7 419/1709 460 Analog-to-digital converter (ADC) 15.3.5 RM0385 Single conversion mode In Single conversion mode the ADC does one conversion. This mode is started with the CONT bit at 0 by either: • setting the SWSTART bit in the ADC_CR2 register (for a regular channel only) • setting the JSWSTART bit (for an injected channel) • external trigger (for a regular or injected channel) Once the conversion of the selected channel is complete: • • If a regular channel was converted: – The converted data are stored into the 16-bit ADC_DR register – The EOC (end of conversion) flag is set – An interrupt is generated if the EOCIE bit is set If an injected channel was converted: – The converted data are stored into the 16-bit ADC_JDR1 register – The JEOC (end of conversion injected) flag is set – An interrupt is generated if the JEOCIE bit is set Then the ADC stops. 15.3.6 Continuous conversion mode In continuous conversion mode, the ADC starts a new conversion as soon as it finishes one. This mode is started with the CONT bit at 1 either by external trigger or by setting the SWSTRT bit in the ADC_CR2 register (for regular channels only). After each conversion: • If a regular group of channels was converted: – The last converted data are stored into the 16-bit ADC_DR register – The EOC (end of conversion) flag is set – An interrupt is generated if the EOCIE bit is set Note: Injected channels cannot be converted continuously. The only exception is when an injected channel is configured to be converted automatically after regular channels in continuous mode (using JAUTO bit), refer to Auto-injection section). 15.3.7 Timing diagram As shown in Figure 74, the ADC needs a stabilization time of tSTAB before it starts converting accurately. After the start of the ADC conversion and after 15 clock cycles, the EOC flag is set and the 16-bit ADC data register contains the result of the conversion. 420/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) Figure 74. Timing diagram ADC_CLK ADON SWSTART/ JSWSTART Start 1st conversion Start next conversion ADC conversion ADC Next ADC conversion Conversion time tSTAB (total conv. time) EOC Software clears the EOC bit ai16047b 15.3.8 Analog watchdog The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is below a lower threshold or above a higher threshold. These thresholds are programmed in the 12 least significant bits of the ADC_HTR and ADC_LTR 16-bit registers. An interrupt can be enabled by using the AWDIE bit in the ADC_CR1 register. The threshold value is independent of the alignment selected by the ALIGN bit in the ADC_CR2 register. The analog voltage is compared to the lower and higher thresholds before alignment. Table 93 shows how the ADC_CR1 register should be configured to enable the analog watchdog on one or more channels. Figure 75. Analog watchdog’s guarded area Analog voltage Higher threshold HTR Guarded area Lower threshold LTR ai16048 Table 93. Analog watchdog channel selection Channels guarded by the analog watchdog ADC_CR1 register control bits (x = don’t care) AWDSGL bit AWDEN bit JAWDEN bit None x 0 0 All injected channels 0 0 1 RM0385 Rev 7 421/1709 460 Analog-to-digital converter (ADC) RM0385 Table 93. Analog watchdog channel selection (continued) Channels guarded by the analog watchdog ADC_CR1 register control bits (x = don’t care) AWDSGL bit AWDEN bit JAWDEN bit All regular channels 0 1 0 All regular and injected channels 0 1 1 Single(1) injected channel 1 0 1 regular channel 1 1 0 1 1 1 (1) Single Single (1) regular or injected channel 1. Selected by the AWDCH[4:0] bits 15.3.9 Scan mode This mode is used to scan a group of analog channels. The Scan mode is selected by setting the SCAN bit in the ADC_CR1 register. Once this bit has been set, the ADC scans all the channels selected in the ADC_SQRx registers (for regular channels) or in the ADC_JSQR register (for injected channels). A single conversion is performed for each channel of the group. After each end of conversion, the next channel in the group is converted automatically. If the CONT bit is set, regular channel conversion does not stop at the last selected channel in the group but continues again from the first selected channel. If the DMA bit is set, the direct memory access (DMA) controller is used to transfer the data converted from the regular group of channels (stored in the ADC_DR register) to SRAM after each regular channel conversion. The EOC bit is set in the ADC_SR register: • At the end of each regular group sequence if the EOCS bit is cleared to 0 • At the end of each regular channel conversion if the EOCS bit is set to 1 The data converted from an injected channel are always stored into the ADC_JDRx registers. 15.3.10 Injected channel management Triggered injection To use triggered injection, the JAUTO bit must be cleared in the ADC_CR1 register. 422/1709 1. Start the conversion of a group of regular channels either by external trigger or by setting the SWSTART bit in the ADC_CR2 register. 2. If an external injected trigger occurs or if the JSWSTART bit is set during the conversion of a regular group of channels, the current conversion is reset and the injected channel sequence switches to Scan-once mode. 3. Then, the regular conversion of the regular group of channels is resumed from the last interrupted regular conversion. If a regular event occurs during an injected conversion, the injected conversion is not interrupted but the regular sequence is executed at the end of the injected sequence. Figure 76 shows the corresponding timing diagram. RM0385 Rev 7 RM0385 Note: Analog-to-digital converter (ADC) When using triggered injection, one must ensure that the interval between trigger events is longer than the injection sequence. For instance, if the sequence length is 30 ADC clock cycles (that is two conversions with a sampling time of 3 clock periods), the minimum interval between triggers must be 31 ADC clock cycles. Auto-injection If the JAUTO bit is set, then the channels in the injected group are automatically converted after the regular group of channels. This can be used to convert a sequence of up to 20 conversions programmed in the ADC_SQRx and ADC_JSQR registers. In this mode, external trigger on injected channels must be disabled. If the CONT bit is also set in addition to the JAUTO bit, regular channels followed by injected channels are continuously converted. Note: It is not possible to use both the auto-injected and discontinuous modes simultaneously. Figure 76. Injected conversion latency ADCCLK Injection event Reset ADC SOC max latency (1) ai16049 1. The maximum latency value can be found in the electrical characteristics of the STM32F75xxx and STM32F74xxx datasheets. 15.3.11 Discontinuous mode Regular group This mode is enabled by setting the DISCEN bit in the ADC_CR1 register. It can be used to convert a short sequence of n conversions (n ≤ 8) that is part of the sequence of conversions selected in the ADC_SQRx registers. The value of n is specified by writing to the DISCNUM[2:0] bits in the ADC_CR1 register. When an external trigger occurs, it starts the next n conversions selected in the ADC_SQRx registers until all the conversions in the sequence are done. The total sequence length is defined by the L[3:0] bits in the ADC_SQR1 register. RM0385 Rev 7 423/1709 460 Analog-to-digital converter (ADC) RM0385 Example: Note: • n = 3, channels to be converted = 0, 1, 2, 3, 6, 7, 9, 10 • 1st trigger: sequence converted 0, 1, 2. An EOC event is generated at each conversion. • 2nd trigger: sequence converted 3, 6, 7. An EOC event is generated at each conversion • 3rd trigger: sequence converted 9, 10.An EOC event is generated at each conversion • 4th trigger: sequence converted 0, 1, 2. An EOC event is generated at each conversion When a regular group is converted in discontinuous mode, no rollover occurs. When all subgroups are converted, the next trigger starts the conversion of the first subgroup. In the example above, the 4th trigger reconverts the channels 0, 1 and 2 in the 1st subgroup. Injected group This mode is enabled by setting the JDISCEN bit in the ADC_CR1 register. It can be used to convert the sequence selected in the ADC_JSQR register, channel by channel, after an external trigger event. When an external trigger occurs, it starts the next channel conversions selected in the ADC_JSQR registers until all the conversions in the sequence are done. The total sequence length is defined by the JL[1:0] bits in the ADC_JSQR register. Example: n = 1, channels to be converted = 1, 2, 3 1st trigger: channel 1 converted 2nd trigger: channel 2 converted 3rd trigger: channel 3 converted and JEOC event generated 4th trigger: channel 1 Note: When all injected channels are converted, the next trigger starts the conversion of the first injected channel. In the example above, the 4th trigger reconverts the 1st injected channel 1. It is not possible to use both the auto-injected and discontinuous modes simultaneously. Discontinuous mode must not be set for regular and injected groups at the same time. Discontinuous mode must be enabled only for the conversion of one group. 15.4 Data alignment The ALIGN bit in the ADC_CR2 register selects the alignment of the data stored after conversion. Data can be right- or left-aligned as shown in Figure 77 and Figure 78. The converted data value from the injected group of channels is decreased by the userdefined offset written in the ADC_JOFRx registers so the result can be a negative value. The SEXT bit represents the extended sign value. For channels in a regular group, no offset is subtracted so only twelve bits are significant. 424/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) Figure 77. Right alignment of 12-bit data Injected group SEXT SEXT SEXT SEXT D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Regular group 0 0 0 0 ai16050 Figure 78. Left alignment of 12-bit data Injected group SEXT D11 D10 D9 D8 D8 D7 D7 D6 D5 D4 D3 D2 D5 D4 D3 D2 D1 D1 D0 0 0 0 0 0 0 0 Regular group D11 D10 D9 D6 D0 ai16051 Special case: when left-aligned, the data are aligned on a half-word basis except when the resolution is set to 6-bit. in that case, the data are aligned on a byte basis as shown in Figure 79. Figure 79. Left alignment of 6-bit data Injected group SEXT SEXT SEXT SEXT SEXT SEXT SEXT SEXT SEXT D5 D4 D3 D3 D2 D2 D1 D0 0 D0 0 0 Regular group 0 0 0 0 0 0 0 0 D5 D4 D1 ai16052 15.5 Channel-wise programmable sampling time The ADC samples the input voltage for a number of ADCCLK cycles that can be modified using the SMP[2:0] bits in the ADC_SMPR1 and ADC_SMPR2 registers. Each channel can be sampled with a different sampling time. The total conversion time is calculated as follows: Tconv = Sampling time + 12 cycles Example: With ADCCLK = 30 MHz and sampling time = 3 cycles: Tconv = 3 + 12 = 15 cycles = 0.5 µs with APB2 at 60 MHz RM0385 Rev 7 425/1709 460 Analog-to-digital converter (ADC) 15.6 RM0385 Conversion on external trigger and trigger polarity Conversion can be triggered by an external event (e.g. timer capture, EXTI line). If the EXTEN[1:0] control bits (for a regular conversion) or JEXTEN[1:0] bits (for an injected conversion) are different from “0b00”, then external events are able to trigger a conversion with the selected polarity. Table 94 provides the correspondence between the EXTEN[1:0] and JEXTEN[1:0] values and the trigger polarity. Table 94. Configuring the trigger polarity Source Note: EXTEN[1:0] / JEXTEN[1:0] Trigger detection disabled 00 Detection on the rising edge 01 Detection on the falling edge 10 Detection on both the rising and falling edges 11 The polarity of the external trigger can be changed on the fly. The EXTSEL[3:0] and JEXTSEL[3:0] control bits are used to select which out of 16 possible events can trigger conversion for the regular and injected groups. Table 95 gives the possible external trigger for regular conversion. Table 95. External trigger for regular channels Source EXTSEL[3:0] TIM1_CH1 0000 TIM1_CH2 0001 TIM1_CH3 0010 TIM2_CH2 0011 TIM5_TRGO 0100 TIM4_CH4 0101 TIM3_CH4 TIM8_TRGO Internal signal from on-chip timers 0110 0111 TIM8_TRGO(2) 1000 TIM1_TRGO 1001 TIM1_TRGO(2) 1010 TIM2_TRGO 1011 TIM4_TRGO 1100 TIM6_TRGO 1101 EXTI line11 426/1709 Type External pin RM0385 Rev 7 1111 RM0385 Analog-to-digital converter (ADC) Table 96 gives the possible external trigger for injected conversion. Table 96. External trigger for injected channels Source Connection type JEXTSEL[3:0] TIM1_TRGO 0000 TIM1_CH4 0001 TIM2_TRGO TIM2_CH1 Internal signal from on-chip timers 0010 0011 TIM3_CH4 0100 TIM4_TRGO 0101 TIM8_CH4 0111 TIM1_TRGO(2) 1000 TIM8_TRGO 1001 TIM8_TRGO(2) TIM3_CH3 Internal signal from on-chip timers 1010 1011 TIM5_TRGO 1100 TIM3_CH1 1101 TIM6_TRGO 1110 Software source trigger events can be generated by setting SWSTART (for regular conversion) or JSWSTART (for injected conversion) in ADC_CR2. A regular group conversion can be interrupted by an injected trigger. Note: The trigger selection can be changed on the fly. However, when the selection changes, there is a time frame of 1 APB clock cycle during which the trigger detection is disabled. This is to avoid spurious detection during transitions. 15.7 Fast conversion mode It is possible to perform faster conversion by reducing the ADC resolution. The RES bits are used to select the number of bits available in the data register. The minimum conversion time for each resolution is then as follows: • 12 bits: 3 + 12 = 15 ADCCLK cycles • 10 bits: 3 + 10 = 13 ADCCLK cycles • 8 bits: 3 + 8 = 11 ADCCLK cycles • 6 bits: 3 + 6 = 9 ADCCLK cycles RM0385 Rev 7 427/1709 460 Analog-to-digital converter (ADC) 15.8 Data management 15.8.1 Using the DMA RM0385 Since converted regular channel values are stored into a unique data register, it is useful to use DMA for conversion of more than one regular channel. This avoids the loss of the data already stored in the ADC_DR register. When the DMA mode is enabled (DMA bit set to 1 in the ADC_CR2 register), after each conversion of a regular channel, a DMA request is generated. This allows the transfer of the converted data from the ADC_DR register to the destination location selected by the software. Despite this, if data are lost (overrun), the OVR bit in the ADC_SR register is set and an interrupt is generated (if the OVRIE enable bit is set). DMA transfers are then disabled and DMA requests are no longer accepted. In this case, if a DMA request is made, the regular conversion in progress is aborted and further regular triggers are ignored. It is then necessary to clear the OVR flag and the DMAEN bit in the used DMA stream, and to reinitialize both the DMA and the ADC to have the wanted converted channel data transferred to the right memory location. Only then can the conversion be resumed and the data transfer, enabled again. Injected channel conversions are not impacted by overrun errors. When OVR = 1 in DMA mode, the DMA requests are blocked after the last valid data have been transferred, which means that all the data transferred to the RAM can be considered as valid. At the end of the last DMA transfer (number of transfers configured in the DMA controller’s DMA_SxNTR register): • No new DMA request is issued to the DMA controller if the DDS bit is cleared to 0 in the ADC_CR2 register (this avoids generating an overrun error). However the DMA bit is not cleared by hardware. It must be written to 0, then to 1 to start a new transfer. • Requests can continue to be generated if the DDS bit is set to 1. This allows configuring the DMA in double-buffer circular mode. To recover the ADC from OVR state when the DMA is used, follow the steps below: 15.8.2 1. Reinitialize the DMA (adjust destination address and NDTR counter) 2. Clear the ADC OVR bit in ADC_SR register 3. Trigger the ADC to start the conversion. Managing a sequence of conversions without using the DMA If the conversions are slow enough, the conversion sequence can be handled by the software. In this case the EOCS bit must be set in the ADC_CR2 register for the EOC status bit to be set at the end of each conversion, and not only at the end of the sequence. When EOCS = 1, overrun detection is automatically enabled. Thus, each time a conversion is complete, EOC is set and the ADC_DR register can be read. The overrun management is the same as when the DMA is used. To recover the ADC from OVR state when the EOCS is set, follow the steps below: 428/1709 1. Clear the ADC OVR bit in ADC_SR register 2. Trigger the ADC to start the conversion. RM0385 Rev 7 RM0385 15.8.3 Analog-to-digital converter (ADC) Conversions without DMA and without overrun detection It may be useful to let the ADC convert one or more channels without reading the data each time (if there is an analog watchdog for instance). For that, the DMA must be disabled (DMA = 0) and the EOC bit must be set at the end of a sequence only (EOCS = 0). In this configuration, overrun detection is disabled. 15.9 Multi ADC mode In devices with two ADCs or more, the Dual (with two ADCs) and Triple (with three ADCs) ADC modes can be used (see Figure 80). In multi ADC mode, the start of conversion is triggered alternately or simultaneously by the ADC1 master to the ADC2 and ADC3 slaves, depending on the mode selected by the MULTI[4:0] bits in the ADC_CCR register. Note: In multi ADC mode, when configuring conversion trigger by an external event, the application must set trigger by the master only and disable trigger by slaves to prevent spurious triggers that would start unwanted slave conversions. The four possible modes below are implemented: • Injected simultaneous mode • Regular simultaneous mode • Interleaved mode • Alternate trigger mode It is also possible to use the previous modes combined in the following ways: Note: • Injected simultaneous mode + Regular simultaneous mode • Regular simultaneous mode + Alternate trigger mode In multi ADC mode, the converted data can be read on the multi-mode data register (ADC_CDR). The status bits can be read in the multi-mode status register (ADC_CSR). RM0385 Rev 7 429/1709 460 Analog-to-digital converter (ADC) RM0385 Figure 80. Multi ADC block diagram(1) Regular data register (12bits) bits) (16 Injected data registers (4 x 16 bits) Regular channels ADC3(2) (Slave) Injected channels Regular data register (12 (16bits) bits) Injected data registers (4 x 16 bits) Regular channels internal triggers Common regular data register (32 bits)(3) Dual/Triple mode control Address/data bus ADC2 (Slave) Injected channels Common part Regular data register (16 bits) Injected data registers (4 x 16 bits) ADCx_IN0 ADCx_IN1 GPIO Ports Regular channels ADCx_IN15 Injected channels Temp. sensor VREFINT VBAT EXTI_11 ADC1 (Master) Start trigger mux (regular group) Start trigger mux (injected group) MS36623V1 1. Although external triggers are present on ADC2 and ADC3 they are not shown in this diagram. 2. In the Dual ADC mode, the ADC3 slave part is not present. 3. In Triple ADC mode, the ADC common data register (ADC_CDR) contains the ADC1, ADC2 and ADC3’s regular converted data. All 32 register bits are used according to a selected storage order. In Dual ADC mode, the ADC common data register (ADC_CDR) contains both the ADC1 and ADC2’s regular converted data. All 32 register bits are used. 430/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) • DMA requests in Multi ADC mode: In Multi ADC mode the DMA may be configured to transfer converted data in three different modes. In all cases, the DMA streams to use are those connected to the ADC: – DMA mode 1: On each DMA request (one data item is available), a half-word representing an ADC-converted data item is transferred. In Dual ADC mode, ADC1 data are transferred on the first request, ADC2 data are transferred on the second request and so on. In Triple ADC mode, ADC1 data are transferred on the first request, ADC2 data are transferred on the second request and ADC3 data are transferred on the third request; the sequence is repeated. So the DMA first transfers ADC1 data followed by ADC2 data followed by ADC3 data and so on. DMA mode 1 is used in regular simultaneous triple mode. Example: Regular simultaneous triple mode: 3 consecutive DMA requests are generated (one for each converted data item) 1st request: ADC_CDR[31:0] = ADC1_DR[15:0] 2nd request: ADC_CDR[31:0] = ADC2_DR[15:0] 3rd request: ADC_CDR[31:0] = ADC3_DR[15:0] 4th request: ADC_CDR[31:0] = ADC1_DR[15:0] – DMA mode 2: On each DMA request (two data items are available) two halfwords representing two ADC-converted data items are transferred as a word. In Dual ADC mode, both ADC2 and ADC1 data are transferred on the first request (ADC2 data take the upper half-word and ADC1 data take the lower half-word) and so on. In Triple ADC mode, three DMA requests are generated. On the first request, both ADC2 and ADC1 data are transferred (ADC2 data take the upper half-word and ADC1 data take the lower half-word). On the second request, both ADC1 and ADC3 data are transferred (ADC1 data take the upper half-word and ADC3 data take the lower half-word).On the third request, both ADC3 and ADC2 data are transferred (ADC3 data take the upper half-word and ADC2 data take the lower half-word) and so on. DMA mode 2 is used in interleaved mode and in regular simultaneous mode (for Dual ADC mode only). Example: a) Interleaved dual mode: a DMA request is generated each time 2 data items are available: 1st request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0] 2nd request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0] b) Interleaved triple mode: a DMA request is generated each time 2 data items are available 1st request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0] 2nd request: ADC_CDR[31:0] = ADC1_DR[15:0] | ADC3_DR[15:0] 3rd request: ADC_CDR[31:0] = ADC3_DR[15:0] | ADC2_DR[15:0] 4th request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0] RM0385 Rev 7 431/1709 460 Analog-to-digital converter (ADC) – RM0385 DMA mode 3: This mode is similar to the DMA mode 2. The only differences are that the on each DMA request (two data items are available) two bytes representing two ADC converted data items are transferred as a half-word. The data transfer order is similar to that of the DMA mode 2. DMA mode 3 is used in interleaved mode in 6-bit and 8-bit resolutions. Example: a) Interleaved dual mode: a DMA request is generated each time 2 data items are available 1st request: ADC_CDR[15:0] = ADC2_DR[7:0] | ADC1_DR[7:0] 2nd request: ADC_CDR[15:0] = ADC2_DR[7:0] | ADC1_DR[7:0] b) Interleaved triple mode: a DMA request is generated each time 2 data items are available 1st request: ADC_CDR[15:0] = ADC2_DR[7:0] | ADC1_DR[7:0] 2nd request: ADC_CDR[15:0] = ADC1_DR[7:0] | ADC3_DR[15:0] 3rd request: ADC_CDR[15:0] = ADC3_DR[7:0] | ADC2_DR[7:0] 4th request: ADC_CDR[15:0] = ADC2_DR[7:0] | ADC1_DR[7:0] Overrun detection: If an overrun is detected on one of the concerned ADCs (ADC1 and ADC2 in dual and triple modes, ADC3 in triple mode only), the DMA requests are no longer issued to ensure that all the data transferred to the RAM are valid. It may happen that the EOC bit corresponding to one ADC remains set because the data register of this ADC contains valid data. 15.9.1 Injected simultaneous mode This mode converts an injected group of channels. The external trigger source comes from the injected group multiplexer of ADC1 (selected by the JEXTSEL[3:0] bits in the ADC1_CR2 register). A simultaneous trigger is provided to ADC2 and ADC3. Note: Do not convert the same channel on the two/three ADCs (no overlapping sampling times for the two/three ADCs when converting the same channel). In simultaneous mode, one must convert sequences with the same length or ensure that the interval between triggers is longer than the longer of the 2 sequences (Dual ADC mode) /3 sequences (Triple ADC mode). Otherwise, the ADC with the shortest sequence may restart while the ADC with the longest sequence is completing the previous conversions. Regular conversions can be performed on one or all ADCs. In that case, they are independent of each other and are interrupted when an injected event occurs. They are resumed at the end of the injected conversion group. 432/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) Dual ADC mode At the end of conversion event on ADC1 or ADC2: • The converted data are stored into the ADC_JDRx registers of each ADC interface. • A JEOC interrupt is generated (if enabled on one of the two ADC interfaces) when the ADC1/ADC2’s injected channels have all been converted. Figure 81. Injected simultaneous mode on 4 channels: dual ADC mode ADC1 ADC2 CH0 CH15 CH1 CH14 ... CH2 CH3 CH13 CH12 ... CH15 CH0 End of conversion on ADC1 and ADC2 Trigger Sampling Conversion ai16054 Triple ADC mode At the end of conversion event on ADC1, ADC2 or ADC3: • The converted data are stored into the ADC_JDRx registers of each ADC interface. • A JEOC interrupt is generated (if enabled on one of the three ADC interfaces) when the ADC1/ADC2/ADC3’s injected channels have all been converted. Figure 82. Injected simultaneous mode on 4 channels: triple ADC mode ... ADC1 CH0 CH1 CH2 CH3 ADC2 CH15 CH14 CH13 ADC3 CH10 CH12 CH8 CH12 ... CH5 ... CH15 CH0 CH2 End of conversion on ADC1, ADC2 and ADC3 Trigger Sampling Conversion 15.9.2 ai16055 Regular simultaneous mode This mode is performed on a regular group of channels. The external trigger source comes from the regular group multiplexer of ADC1 (selected by the EXTSEL[3:0] bits in the ADC1_CR2 register). A simultaneous trigger is provided to ADC2 and ADC3. Note: Do not convert the same channel on the two/three ADCs (no overlapping sampling times for the two/three ADCs when converting the same channel). In regular simultaneous mode, one must convert sequences with the same length or ensure that the interval between triggers is longer than the long conversion time of the 2 sequences (Dual ADC mode) /3 sequences (Triple ADC mode). Otherwise, the ADC with the shortest sequence may restart while the ADC with the longest sequence is completing the previous conversions. Injected conversions must be disabled. RM0385 Rev 7 433/1709 460 Analog-to-digital converter (ADC) RM0385 Dual ADC mode At the end of conversion event on ADC1 or ADC2: • A 32-bit DMA transfer request is generated (if DMA[1:0] bits in the ADC_CCR register are equal to 0b10). This request transfers the ADC2 converted data stored in the upper half-word of the ADC_CDR 32-bit register to the SRAM and then the ADC1 converted data stored in the lower half-word of ADC_CCR to the SRAM. • An EOC interrupt is generated (if enabled on one of the two ADC interfaces) when the ADC1/ADC2’s regular channels have all been converted. Figure 83. Regular simultaneous mode on 16 channels: dual ADC mode ADC1 ADC2 CH0 CH15 CH1 CH14 ... CH2 CH3 CH13 CH12 ... CH15 CH0 End of conversion on ADC1 and ADC2 Trigger Sampling Conversion ai16054 Triple ADC mode At the end of conversion event on ADC1, ADC2 or ADC3: • Three 32-bit DMA transfer requests are generated (if DMA[1:0] bits in the ADC_CCR register are equal to 0b01). Three transfers then take place from the ADC_CDR 32-bit register to SRAM: first the ADC1 converted data, then the ADC2 converted data and finally the ADC3 converted data. The process is repeated for each new three conversions. • An EOC interrupt is generated (if enabled on one of the three ADC interfaces) when the ADC1/ADC2/ADC3’s regular channels are have all been converted. Figure 84. Regular simultaneous mode on 16 channels: triple ADC mode ADC1 CH0 CH1 ... CH2 CH3 CH12 ... CH5 ... ADC2 CH15 CH14 CH13 ADC3 CH10 CH12 CH8 CH15 CH0 CH2 End of conversion on ADC1, ADC2 and ADC3 Trigger Sampling Conversion 15.9.3 ai16055 Interleaved mode This mode can be started only on a regular group (usually one channel). The external trigger source comes from the regular channel multiplexer of ADC1. Dual ADC mode After an external trigger occurs: 434/1709 • ADC1 starts immediately • ADC2 starts after a delay of several ADC clock cycles RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) The minimum delay which separates 2 conversions in interleaved mode is configured in the DELAY bits in the ADC_CCR register. However, an ADC cannot start a conversion if the complementary ADC is still sampling its input (only one ADC can sample the input signal at a given time). In this case, the delay becomes the sampling time + 2 ADC clock cycles. For instance, if DELAY = 5 clock cycles and the sampling takes 15 clock cycles on both ADCs, then 17 clock cycles will separate conversions on ADC1 and ADC2). If the CONT bit is set on both ADC1 and ADC2, the selected regular channels of both ADCs are continuously converted. Note: If the conversion sequence is interrupted (for instance when DMA end of transfer occurs), the multi-ADC sequencer must be reset by configuring it in independent mode first (bits DUAL[4:0] = 00000) before reprogramming the interleaved mode. After an EOC interrupt is generated by ADC2 (if enabled through the EOCIE bit) a 32-bit DMA transfer request is generated (if the DMA[1:0] bits in ADC_CCR are equal to 0b10). This request first transfers the ADC2 converted data stored in the upper half-word of the ADC_CDR 32-bit register into SRAM, then the ADC1 converted data stored in the register’s lower half-word into SRAM. Figure 85. Interleaved mode on 1 channel in continuous conversion mode: dual ADC mode End of conversion on ADC1 ... CH0 ADC1 ADC2 Trigger Conversion CH0 ... CH0 Sampling CH0 End of conversion on ADC2 8 ADCCLK cycles ai16056 Triple ADC mode After an external trigger occurs: • ADC1 starts immediately and • ADC2 starts after a delay of several ADC clock cycles • ADC3 starts after a delay of several ADC clock cycles referred to the ADC2 conversion The minimum delay which separates 2 conversions in interleaved mode is configured in the DELAY bits in the ADC_CCR register. However, an ADC cannot start a conversion if the complementary ADC is still sampling its input (only one ADC can sample the input signal at a given time). In this case, the delay becomes the sampling time + 2 ADC clock cycles. For instance, if DELAY = 5 clock cycles and the sampling takes 15 clock cycles on the three ADCs, then 17 clock cycles will separate the conversions on ADC1, ADC2 and ADC3). If the CONT bit is set on ADC1, ADC2 and ADC3, the selected regular channels of all ADCs are continuously converted. Note: If the conversion sequence is interrupted (for instance when DMA end of transfer occurs), the multi-ADC sequencer must be reset by configuring it in independent mode first (bits DUAL[4:0] = 00000) before reprogramming the interleaved mode. In this mode a DMA request is generated each time 2 data items are available, (if the DMA[1:0] bits in the ADC_CCR register are equal to 0b10). The request first transfers the RM0385 Rev 7 435/1709 460 Analog-to-digital converter (ADC) RM0385 first converted data stored in the lower half-word of the ADC_CDR 32-bit register to SRAM, then it transfers the second converted data stored in ADC_CDR’s upper half-word to SRAM. The sequence is the following: • 1st request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0] • 2nd request: ADC_CDR[31:0] = ADC1_DR[15:0] | ADC3_DR[15:0] • 3rd request: ADC_CDR[31:0] = ADC3_DR[15:0] | ADC2_DR[15:0] • 4th request: ADC_CDR[31:0] = ADC2_DR[15:0] | ADC1_DR[15:0], ... Figure 86. Interleaved mode on 1 channel in continuous conversion mode: triple ADC mode End of conversion on ADC1 DMA request every 2 conversions ADC1 CH0 ADC2 ADC3 ... CH0 CH0 CH0 CH0 CH0 CH0 ... CH0 ... CH0 Sampling Conversion End of conversion on ADC3 Trigger End of conversion on ADC2 6 ADCCLK cycles 15.9.4 ai16058 Alternate trigger mode This mode can be started only on an injected group. The source of external trigger comes from the injected group multiplexer of ADC1. Note: Regular conversions can be enabled on one or all ADCs. In this case the regular conversions are independent of each other. A regular conversion is interrupted when the ADC has to perform an injected conversion. It is resumed when the injected conversion is finished. If the conversion sequence is interrupted (for instance when DMA end of transfer occurs), the multi-ADC sequencer must be reset by configuring it in independent mode first (bits DUAL[4:0] = 00000) before reprogramming the interleaved mode. The time interval between 2 trigger events must be greater than or equal to 1 ADC clock period. The minimum time interval between 2 trigger events that start conversions on the same ADC is the same as in the single ADC mode. Dual ADC mode • When the 1st trigger occurs, all injected ADC1 channels in the group are converted • When the 2nd trigger occurs, all injected ADC2 channels in the group are converted • and so on A JEOC interrupt, if enabled, is generated after all injected ADC1 channels in the group have been converted. 436/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) A JEOC interrupt, if enabled, is generated after all injected ADC2 channels in the group have been converted. If another external trigger occurs after all injected channels in the group have been converted then the alternate trigger process restarts by converting the injected ADC1 channels in the group. Figure 87. Alternate trigger: injected group of each ADC 1st trigger EOC, JEOC on ADC1 3rd trigger (n)th trigger EOC, JEOC on ADC1 ADC1 ... ADC2 2nd trigger EOC, JEOC on ADC2 4th trigger EOC, JEOC on ADC2 Sampling (n+1)th trigger Conversion ai16059 If the injected discontinuous mode is enabled for both ADC1 and ADC2: • When the 1st trigger occurs, the first injected ADC1 channel is converted. • When the 2nd trigger occurs, the first injected ADC2 channel are converted • and so on A JEOC interrupt, if enabled, is generated after all injected ADC1 channels in the group have been converted. A JEOC interrupt, if enabled, is generated after all injected ADC2 channels in the group have been converted. If another external trigger occurs after all injected channels in the group have been converted then the alternate trigger process restarts. Figure 88. Alternate trigger: 4 injected channels (each ADC) in discontinuous mode 1st trigger 3rd trigger 5th trigger 7th trigger JEOC on ADC1 Sampling Conversion ADC1 ADC2 JEOC on ADC2 2nd trigger 4th trigger 6th trigger 8th trigger ai16060 Triple ADC mode • When the 1st trigger occurs, all injected ADC1 channels in the group are converted. • When the 2nd trigger occurs, all injected ADC2 channels in the group are converted. • When the 3rd trigger occurs, all injected ADC3 channels in the group are converted. • and so on RM0385 Rev 7 437/1709 460 Analog-to-digital converter (ADC) RM0385 A JEOC interrupt, if enabled, is generated after all injected ADC1 channels in the group have been converted. A JEOC interrupt, if enabled, is generated after all injected ADC2 channels in the group have been converted. A JEOC interrupt, if enabled, is generated after all injected ADC3 channels in the group have been converted. If another external trigger occurs after all injected channels in the group have been converted then the alternate trigger process restarts by converting the injected ADC1 channels in the group. Figure 89. Alternate trigger: injected group of each ADC 1st trigger 4th trigger EOC, JEOC on ADC1 EOC, JEOC on ADC1 ADC1 (n)th trigger Sampling Conversion ... ADC2 2nd trigger (n+1)th trigger 3rd trigger (n+2)th trigger 5th trigger EOC, JEOC on ADC2 EOC, JEOC on ADC3 ai16061 15.9.5 Combined regular/injected simultaneous mode It is possible to interrupt the simultaneous conversion of a regular group to start the simultaneous conversion of an injected group. Note: In combined regular/injected simultaneous mode, one must convert sequences with the same length or ensure that the interval between triggers is longer than the long conversion time of the 2 sequences (Dual ADC mode) /3 sequences (Triple ADC mode). Otherwise, the ADC with the shortest sequence may restart while the ADC with the longest sequence is completing the previous conversions. 15.9.6 Combined regular simultaneous + alternate trigger mode It is possible to interrupt the simultaneous conversion of a regular group to start the alternate trigger conversion of an injected group. Figure 90 shows the behavior of an alternate trigger interrupting a simultaneous regular conversion. The injected alternate conversion is immediately started after the injected event. If regular conversion is already running, in order to ensure synchronization after the injected conversion, the regular conversion of all (master/slave) ADCs is stopped and resumed synchronously at the end of the injected conversion. Note: 438/1709 In combined regular simultaneous + alternate trigger mode, one must convert sequences with the same length or ensure that the interval between triggers is longer than the long conversion time of the 2 sequences (Dual ADC mode) /3 sequences (Triple ADC mode). RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) Otherwise, the ADC with the shortest sequence may restart while the ADC with the longest sequence is completing the previous conversions. If the conversion sequence is interrupted (for instance when DMA end of transfer occurs), the multi-ADC sequencer must be reset by configuring it in independent mode first (bits DUAL[4:0] = 00000) before reprogramming the interleaved mode. Figure 90. Alternate + regular simultaneous 1st trigger CH0 ADC1 reg CH1 CH2 CH2 CH3 CH3 CH4 CH6 CH7 CH7 CH8 CH0 ADC1 inj CH3 ADC2 reg CH5 CH6 CH0 ADC2 inj synchro not lost 2nd trigger ai16062 If a trigger occurs during an injected conversion that has interrupted a regular conversion, it is ignored. Figure 91 shows the behavior in this case (2nd trigger is ignored). Figure 91. Case of trigger occurring during injected conversion 1st trigger CH0 ADC1 reg CH1 3rd trigger CH2 CH2 CH3 CH3 CH0 ADC1 inj CH3 ADC2 reg CH5 CH6 CH4 CH0 CH6 CH7 CH7 CH8 CH0 ADC2 inj 2nd trigger 2nd trigger ai16063 15.10 Temperature sensor The temperature sensor can be used to measure the ambient temperature (TA) of the device. • On STM32F75xxx and STM32F74xxx devices, the temperature sensor is internally connected to the same input channel, ADC1_IN18, as VBAT: ADC1_IN18 is used to convert the sensor output voltage or VBAT into a digital value. Only one conversion, temperature sensor or VBAT, must be selected at a time. When the temperature sensor and the VBAT conversion are set simultaneously, only the VBAT conversion is performed. RM0385 Rev 7 439/1709 460 Analog-to-digital converter (ADC) RM0385 Figure 92 shows the block diagram of the temperature sensor. When not in use, the sensor can be put in power down mode. Note: The TSVREFE bit must be set to enable the conversion of both internal channels: the ADC1_IN18 (temperature sensor) and the ADC1_IN17 (VREFINT). Main features • Supported temperature range: –40 to 125 °C • Precision: ±1.5 °C Figure 92. Temperature sensor and VREFINT channel block diagram TSVREFE control bit V SENSE ADC1_IN18 converted data ADC1 Internal power block VREFINT Address/data bus Temperature sensor ADC1_IN17 MS35936V1 1. VSENSE is input to ADC1_IN18. 440/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) Reading the temperature To use the sensor: 3. Select ADC1_IN18 input channel. 4. Select a sampling time greater than the minimum sampling time specified in the datasheet. 5. Set the TSVREFE bit in the ADC_CCR register to wake up the temperature sensor from power down mode 6. Start the ADC conversion by setting the SWSTART bit (or by external trigger) 7. Read the resulting VSENSE data in the ADC data register 8. Calculate the temperature using the following formula: Temperature (in °C) = {(VSENSE – V25) / Avg_Slope} + 25 Where: – V25 = VSENSE value for 25° C – Avg_Slope = average slope of the temperature vs. VSENSE curve (given in mV/°C or µV/°C) Refer to the datasheet electrical characteristics section for the actual values of V25 and Avg_Slope. Note: The sensor has a startup time after waking from power down mode before it can output VSENSE at the correct level. The ADC also has a startup time after power-on, so to minimize the delay, the ADON and TSVREFE bits should be set at the same time. The temperature sensor output voltage changes linearly with temperature. The offset of this linear function depends on each chip due to process variation (up to 45 °C from one chip to another). The internal temperature sensor is more suited for applications that detect temperature variations instead of absolute temperatures. If accurate temperature reading is required, an external temperature sensor should be used. 15.11 Battery charge monitoring The VBATE bit in the ADC_CCR register is used to switch to the battery voltage. As the VBAT voltage could be higher than VDDA, to ensure the correct operation of the ADC, the VBAT pin is internally connected to a bridge divider. When the VBATE is set, the bridge is automatically enabled to connect: • Note: VBAT/4 to the ADC1_IN18 input channel The VBAT and temperature sensor are connected to the same ADC internal channel (ADC1_IN18). Only one conversion, either temperature sensor or VBAT, must be selected at a time. When both conversion are enabled simultaneously, only the VBAT conversion is performed. RM0385 Rev 7 441/1709 460 Analog-to-digital converter (ADC) 15.12 RM0385 ADC interrupts An interrupt can be produced on the end of conversion for regular and injected groups, when the analog watchdog status bit is set and when the overrun status bit is set. Separate interrupt enable bits are available for flexibility. Two other flags are present in the ADC_SR register, but there is no interrupt associated with them: • JSTRT (Start of conversion for channels of an injected group) • STRT (Start of conversion for channels of a regular group) Table 97. ADC interrupts Interrupt event 442/1709 Event flag Enable control bit End of conversion of a regular group EOC EOCIE End of conversion of an injected group JEOC JEOCIE Analog watchdog status bit is set AWD AWDIE Overrun OVR OVRIE RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) 15.13 ADC registers Refer to Section 1.1 on page 62 for a list of abbreviations used in register descriptions. The peripheral registers must be written at word level (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 15.13.1 ADC status register (ADC_SR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OVR STRT JSTRT JEOC EOC AWD rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Bits 31:6 Reserved, must be kept at reset value. Bit 5 OVR: Overrun This bit is set by hardware when data are lost (either in single mode or in dual/triple mode). It is cleared by software. Overrun detection is enabled only when DMA = 1 or EOCS = 1. 0: No overrun occurred 1: Overrun has occurred Bit 4 STRT: Regular channel start flag This bit is set by hardware when regular channel conversion starts. It is cleared by software. 0: No regular channel conversion started 1: Regular channel conversion has started Bit 3 JSTRT: Injected channel start flag This bit is set by hardware when injected group conversion starts. It is cleared by software. 0: No injected group conversion started 1: Injected group conversion has started Bit 2 JEOC: Injected channel end of conversion This bit is set by hardware at the end of the conversion of all injected channels in the group. It is cleared by software. 0: Conversion is not complete 1: Conversion complete Bit 1 EOC: Regular channel end of conversion This bit is set by hardware at the end of the conversion of a regular group of channels. It is cleared by software or by reading the ADC_DR register. 0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1) 1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1) Bit 0 AWD: Analog watchdog flag This bit is set by hardware when the converted voltage crosses the values programmed in the ADC_LTR and ADC_HTR registers. It is cleared by software. 0: No analog watchdog event occurred 1: Analog watchdog event occurred RM0385 Rev 7 443/1709 460 Analog-to-digital converter (ADC) 15.13.2 RM0385 ADC control register 1 (ADC_CR1) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 Res. Res. Res. Res. Res. OVRIE rw rw rw rw rw 15 14 13 12 11 10 9 8 7 SCAN rw DISCNUM[2:0] rw rw rw 25 24 RES JDISCEN DISCEN JAUTO AWDSGL rw rw rw rw 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. 6 5 4 3 2 1 0 JEOCIE AWDIE EOCIE rw rw rw rw rw rw rw AWDEN JAWDEN AWDCH[4:0] rw Bits 31:27 Reserved, must be kept at reset value. Bit 26 OVRIE: Overrun interrupt enable This bit is set and cleared by software to enable/disable the Overrun interrupt. 0: Overrun interrupt disabled 1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set. Bits 25:24 RES[1:0]: Resolution These bits are written by software to select the resolution of the conversion. 00: 12-bit (minimum 15 ADCCLK cycles) 01: 10-bit (minimum 13 ADCCLK cycles) 10: 8-bit (minimum 11 ADCCLK cycles) 11: 6-bit (minimum 9 ADCCLK cycles) Bit 23 AWDEN: Analog watchdog enable on regular channels This bit is set and cleared by software. 0: Analog watchdog disabled on regular channels 1: Analog watchdog enabled on regular channels Bit 22 JAWDEN: Analog watchdog enable on injected channels This bit is set and cleared by software. 0: Analog watchdog disabled on injected channels 1: Analog watchdog enabled on injected channels Bits 21:16 Reserved, must be kept at reset value. Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count These bits are written by software to define the number of regular channels to be converted in discontinuous mode, after receiving an external trigger. 000: 1 channel 001: 2 channels ... 111: 8 channels Bit 12 JDISCEN: Discontinuous mode on injected channels This bit is set and cleared by software to enable/disable discontinuous mode on the injected channels of a group. 0: Discontinuous mode on injected channels disabled 1: Discontinuous mode on injected channels enabled 444/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) Bit 11 DISCEN: Discontinuous mode on regular channels This bit is set and cleared by software to enable/disable Discontinuous mode on regular channels. 0: Discontinuous mode on regular channels disabled 1: Discontinuous mode on regular channels enabled Bit 10 JAUTO: Automatic injected group conversion This bit is set and cleared by software to enable/disable automatic injected group conversion after regular group conversion. 0: Automatic injected group conversion disabled 1: Automatic injected group conversion enabled Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode This bit is set and cleared by software to enable/disable the analog watchdog on the channel identified by the AWDCH[4:0] bits. 0: Analog watchdog enabled on all channels 1: Analog watchdog enabled on a single channel Bit 8 SCAN: Scan mode This bit is set and cleared by software to enable/disable the Scan mode. In Scan mode, the inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted. 0: Scan mode disabled 1: Scan mode enabled Note: An EOC interrupt is generated if the EOCIE bit is set: – At the end of each regular group sequence if the EOCS bit is cleared to 0 – At the end of each regular channel conversion if the EOCS bit is set to 1 Note: A JEOC interrupt is generated only on the end of conversion of the last channel if the JEOCIE bit is set. Bit 7 JEOCIE: Interrupt enable for injected channels This bit is set and cleared by software to enable/disable the end of conversion interrupt for injected channels. 0: JEOC interrupt disabled 1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set. Bit 6 AWDIE: Analog watchdog interrupt enable This bit is set and cleared by software to enable/disable the analog watchdog interrupt. 0: Analog watchdog interrupt disabled 1: Analog watchdog interrupt enabled Bit 5 EOCIE: Interrupt enable for EOC This bit is set and cleared by software to enable/disable the end of conversion interrupt. 0: EOC interrupt disabled 1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set. Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits These bits are set and cleared by software. They select the input channel to be guarded by the analog watchdog. Note: 00000: ADC analog input Channel0 00001: ADC analog input Channel1 ... 01111: ADC analog input Channel15 10000: ADC analog input Channel16 10001: ADC analog input Channel17 10010: ADC analog input Channel18 Other values reserved RM0385 Rev 7 445/1709 460 Analog-to-digital converter (ADC) 15.13.3 RM0385 ADC control register 2 (ADC_CR2) Address offset: 0x08 Reset value: 0x0000 0000 31 30 Res. SWSTART 29 28 27 rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. DDS DMA Res. Res. Res. Res. Res. Res. CONT ADON rw rw rw rw EXTEN 26 25 24 EXTSEL[3:0] ALIGN EOCS rw rw 23 22 Res. JSWSTART 21 20 19 JEXTEN 18 17 16 JEXTSEL[3:0] Bit 31 Reserved, must be kept at reset value. Bit 30 SWSTART: Start conversion of regular channels This bit is set by software to start conversion and cleared by hardware as soon as the conversion starts. 0: Reset state 1: Starts conversion of regular channels Note: This bit can be set only when ADON = 1 otherwise no conversion is launched. Bits 29:28 EXTEN: External trigger enable for regular channels These bits are set and cleared by software to select the external trigger polarity and enable the trigger of a regular group. 00: Trigger detection disabled 01: Trigger detection on the rising edge 10: Trigger detection on the falling edge 11: Trigger detection on both the rising and falling edges Bits 27:24 EXTSEL[3:0]: External event select for regular group These bits select the external event used to trigger the start of conversion of a regular group: 0000: Timer 1 CH1 0001: Timer 1 CH2 0010: Timer 1 CH3 0011: Timer 2 CH2 0100: Timer 5 TRGO 0101: Timer 4 CH4 0110: Timer 3 CH4 0111: Timer 8 TRGO 1000: Timer 8 TRGO(2) 1001: Timer 1 TRGO 1010: Timer 1 TRGO(2) 1011: Timer 2 TRGO 1100: Timer 4 TRGO 1101: Timer 6 TRGO 1110: Reserved 1111: EXTI line11 Bit 23 Reserved, must be kept at reset value. 446/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) Bit 22 JSWSTART: Start conversion of injected channels This bit is set by software and cleared by hardware as soon as the conversion starts. 0: Reset state 1: Starts conversion of injected channels This bit can be set only when ADON = 1 otherwise no conversion is launched. Bits 21:20 JEXTEN: External trigger enable for injected channels These bits are set and cleared by software to select the external trigger polarity and enable the trigger of an injected group. 00: Trigger detection disabled 01: Trigger detection on the rising edge 10: Trigger detection on the falling edge 11: Trigger detection on both the rising and falling edges Bits 19:16 JEXTSEL[3:0]: External event select for injected group These bits select the external event used to trigger the start of conversion of an injected group. 0000: Timer 1 TRGO 0001: Timer 1 CH4 0010: Timer 2 TRGO 0011: Timer 2 CH1 0100: Timer 3 CH4 0101: Timer4 TRGO 0110: Reserved 0111: Timer 8 CH4 1000: Timer 1 TRGO(2) 1001: Timer 8 TRGO 1010: Timer 8 TRGO(2) 1011: Timer 3 CH3 1100: Timer 5 TRGO 1101: Timer 3 CH1 1110: Timer 6 TRGO 1111: Reserved Bits 15:12 Reserved, must be kept at reset value. Bit 11 ALIGN: Data alignment This bit is set and cleared by software. Refer to Figure 77 and Figure 78. 0: Right alignment 1: Left alignment Bit 10 EOCS: End of conversion selection This bit is set and cleared by software. 0: The EOC bit is set at the end of each sequence of regular conversions. Overrun detection is enabled only if DMA=1. 1: The EOC bit is set at the end of each regular conversion. Overrun detection is enabled. Bit 9 DDS: DMA disable selection (for single ADC mode) This bit is set and cleared by software. 0: No new DMA request is issued after the last transfer (as configured in the DMA controller) 1: DMA requests are issued as long as data are converted and DMA=1 RM0385 Rev 7 447/1709 460 Analog-to-digital converter (ADC) RM0385 Bit 8 DMA: Direct memory access mode (for single ADC mode) This bit is set and cleared by software. Refer to the DMA controller chapter for more details. 0: DMA mode disabled 1: DMA mode enabled Bits 7:2 Reserved, must be kept at reset value. Bit 1 CONT: Continuous conversion This bit is set and cleared by software. If it is set, conversion takes place continuously until it is cleared. 0: Single conversion mode 1: Continuous conversion mode Bit 0 ADON: A/D Converter ON / OFF This bit is set and cleared by software. 0: Disable ADC conversion and go to power down mode 1: Enable ADC 15.13.4 ADC sample time register 1 (ADC_SMPR1) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 Res. Res. Res. Res. Res. 15 14 13 12 11 rw rw SMP15_0 SMP14[2:0] rw rw rw 26 25 24 23 SMP18[2:0] 22 21 20 SMP17[2:0] 19 18 SMP16[2:0] 17 16 SMP15[2:1] rw rw rw rw rw rw rw rw rw rw rw 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw SMP13[2:0] rw SMP12[2:0] rw SMP11[2:0] rw SMP10[2:0] rw rw Bits 31: 27 Reserved, must be kept at reset value. Bits 26:0 SMPx[2:0]: Channel x sampling time selection These bits are written by software to select the sampling time individually for each channel. During sampling cycles, the channel selection bits must remain unchanged. Note: 000: 3 cycles 001: 15 cycles 010: 28 cycles 011: 56 cycles 100: 84 cycles 101: 112 cycles 110: 144 cycles 111: 480 cycles 448/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) 15.13.5 ADC sample time register 2 (ADC_SMPR2) Address offset: 0x10 Reset value: 0x0000 0000 31 30 Res. Res. 15 14 SMP5_0 29 28 27 26 SMP9[2:0] rw 24 23 22 21 20 SMP7[2:0] 19 18 SMP6[2:0] 17 16 SMP5[2:1] rw rw rw rw rw rw rw rw rw rw rw rw rw rw 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw SMP4[2:0] rw 25 SMP8[2:0] rw SMP3[2:0] rw SMP2[2:0] SMP1[2:0] rw SMP0[2:0] rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:0 SMPx[2:0]: Channel x sampling time selection These bits are written by software to select the sampling time individually for each channel. During sample cycles, the channel selection bits must remain unchanged. Note: 000: 3 cycles 001: 15 cycles 010: 28 cycles 011: 56 cycles 100: 84 cycles 101: 112 cycles 110: 144 cycles 111: 480 cycles 15.13.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4) Address offset: 0x14-0x20 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw 15 14 13 12 Res. Res. Res. Res. JOFFSETx[11:0] rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 JOFFSETx[11:0]: Data offset for injected channel x These bits are written by software to define the offset to be subtracted from the raw converted data when converting injected channels. The conversion result can be read from in the ADC_JDRx registers. 15.13.7 ADC watchdog higher threshold register (ADC_HTR) Address offset: 0x24 Reset value: 0x0000 0FFF RM0385 Rev 7 449/1709 460 Analog-to-digital converter (ADC) RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw 15 14 13 12 Res. Res. Res. Res. HT[11:0] rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 HT[11:0]: Analog watchdog higher threshold These bits are written by software to define the higher threshold for the analog watchdog. Note: The software can write to these registers when an ADC conversion is ongoing. The programmed value will be effective when the next conversion is complete. Writing to this register is performed with a write delay that can create uncertainty on the effective time at which the new value is programmed. 15.13.8 ADC watchdog lower threshold register (ADC_LTR) Address offset: 0x28 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw 15 14 13 12 Res. Res. Res. Res. LT[11:0] rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 LT[11:0]: Analog watchdog lower threshold These bits are written by software to define the lower threshold for the analog watchdog. Note: The software can write to these registers when an ADC conversion is ongoing. The programmed value will be effective when the next conversion is complete. Writing to this register is performed with a write delay that can create uncertainty on the effective time at which the new value is programmed. 15.13.9 ADC regular sequence register 1 (ADC_SQR1) Address offset: 0x2C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 SQ16_0 rw 450/1709 12 11 10 9 8 SQ15[4:0] rw rw rw 23 22 21 20 19 18 rw rw rw rw rw rw 7 rw rw 6 5 4 3 2 1 0 rw rw L[3:0] rw rw rw rw RM0385 Rev 7 16 SQ16[4:1] SQ14[4:0] rw 17 SQ13[4:0] rw rw rw rw rw RM0385 Analog-to-digital converter (ADC) Bits 31:24 Reserved, must be kept at reset value. Bits 23:20 L[3:0]: Regular channel sequence length These bits are written by software to define the total number of conversions in the regular channel conversion sequence. 0000: 1 conversion 0001: 2 conversions ... 1111: 16 conversions Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence These bits are written by software with the channel number (0..18) assigned as the 16th in the conversion sequence. Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence 15.13.10 ADC regular sequence register 2 (ADC_SQR2) Address offset: 0x30 Reset value: 0x0000 0000 31 30 Res. Res. 15 14 29 28 rw rw 13 12 26 25 24 23 rw rw rw rw rw 11 10 9 8 7 SQ12[4:0] SQ10_0 rw 27 rw rw 21 20 19 18 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw SQ11[4:0] SQ9[4:0] rw 22 rw rw rw rw 16 SQ10[4:1] SQ8[4:0] rw 17 SQ7[4:0] rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence These bits are written by software with the channel number (0..18) assigned as the 12th in the sequence to be converted. Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence Bits 9:5 SQ8[4:0]: 8th conversion in regular sequence Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence RM0385 Rev 7 451/1709 460 Analog-to-digital converter (ADC) RM0385 15.13.11 ADC regular sequence register 3 (ADC_SQR3) Address offset: 0x34 Reset value: 0x0000 0000 31 30 Res. Res. 29 rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 27 26 25 24 23 rw rw rw rw rw rw rw rw rw rw rw rw SQ6[4:0] SQ4_0 rw 28 SQ3[4:0] rw 22 21 20 19 SQ5[4:0] 17 16 SQ4[4:1] SQ2[4:0] rw 18 SQ1[4:0] rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence These bits are written by software with the channel number (0..18) assigned as the 6th in the sequence to be converted. Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence Bits 19:15 SQ4[4:0]: 4th conversion in regular sequence Bits 14:10 SQ3[4:0]: 3rd conversion in regular sequence Bits 9:5 SQ2[4:0]: 2nd conversion in regular sequence Bits 4:0 SQ1[4:0]: 1st conversion in regular sequence 452/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) 15.13.12 ADC injected sequence register (ADC_JSQR) Address offset: 0x38 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw JSQ4[0] rw JSQ3[4:0] rw 21 20 19 JL[1:0] 17 16 JSQ4[4:1] JSQ2[4:0] rw 18 JSQ1[4:0] rw Bits 31:22 Reserved, must be kept at reset value. Bits 21:20 JL[1:0]: Injected sequence length These bits are written by software to define the total number of conversions in the injected channel conversion sequence. 00: 1 conversion 01: 2 conversions 10: 3 conversions 11: 4 conversions Bits 19:15 JSQ4[4:0]: 4th conversion in injected sequence (when JL[1:0]=3, see note below) These bits are written by software with the channel number (0..18) assigned as the 4th in the sequence to be converted. Bits 14:10 JSQ3[4:0]: 3rd conversion in injected sequence (when JL[1:0]=3, see note below) Bits 9:5 JSQ2[4:0]: 2nd conversion in injected sequence (when JL[1:0]=3, see note below) Bits 4:0 JSQ1[4:0]: 1st conversion in injected sequence (when JL[1:0]=3, see note below) Note: When JL[1:0]=3 (4 injected conversions in the sequencer), the ADC converts the channels in the following order: JSQ1[4:0], JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0]. When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in the following order: JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0]. When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in starting from JSQ3[4:0], and then JSQ4[4:0]. When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0] channel. 15.13.13 ADC injected data register x (ADC_JDRx) (x= 1..4) Address offset: 0x3C - 0x48 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r r JDATA[15:0] r RM0385 Rev 7 453/1709 460 Analog-to-digital converter (ADC) RM0385 Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 JDATA[15:0]: Injected data These bits are read-only. They contain the conversion result from injected channel x. The data are left -or right-aligned as shown in Figure 77 and Figure 78. 15.13.14 ADC regular data register (ADC_DR) Address offset: 0x4C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r DATA[15:0] r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 DATA[15:0]: Regular data These bits are read-only. They contain the conversion result from the regular channels. The data are left- or right-aligned as shown in Figure 77 and Figure 78. 15.13.15 ADC Common status register (ADC_CSR) Address offset: 0x00 (this offset address is relative to ADC1 base address + 0x300) Reset value: 0x0000 0000 This register provides an image of the status bits of the different ADCs. Nevertheless it is read-only and does not allow to clear the different status bits. Instead each status bit must be cleared by writing it to 0 in the corresponding ADC_SR register. 31 Res. 30 Res. 15 14 Res. Res. 29 Res. 13 28 Res. 12 OVR2 STRT2 27 26 Res. 11 Res. 10 JSTRT JEOC2 2 25 Res. 24 Res. 9 8 EOC2 AWD2 r r 23 Res. 22 Res. 7 6 Res. Res. 21 OVR3 20 19 r r 16 AWD3 ADC3 r r r r r 5 4 3 2 1 0 EOC1 AWD1 r r OVR1 STRT1 JSTRT1 JEOC 1 ADC1 r r Bits 31:22 Reserved, must be kept at reset value. Bit 21 OVR3: Overrun flag of ADC3 This bit is a copy of the OVR bit in the ADC3_SR register. Bit 20 STRT3: Regular channel Start flag of ADC3 This bit is a copy of the STRT bit in the ADC3_SR register. 454/1709 17 EOC3 r ADC2 r 18 STRT3 JSTRT3 JEOC 3 RM0385 Rev 7 r r r RM0385 Analog-to-digital converter (ADC) Bit 19 JSTRT3: Injected channel Start flag of ADC3 This bit is a copy of the JSTRT bit in the ADC3_SR register. Bit 18 JEOC3: Injected channel end of conversion of ADC3 This bit is a copy of the JEOC bit in the ADC3_SR register. Bit 17 EOC3: End of conversion of ADC3 This bit is a copy of the EOC bit in the ADC3_SR register. Bit 16 AWD3: Analog watchdog flag of ADC3 This bit is a copy of the AWD bit in the ADC3_SR register. Bits 15:14 Reserved, must be kept at reset value. Bit 13 OVR2: Overrun flag of ADC2 This bit is a copy of the OVR bit in the ADC2_SR register. Bit 12 STRT2: Regular channel Start flag of ADC2 This bit is a copy of the STRT bit in the ADC2_SR register. Bit 11 JSTRT2: Injected channel Start flag of ADC2 This bit is a copy of the JSTRT bit in the ADC2_SR register. Bit 10 JEOC2: Injected channel end of conversion of ADC2 This bit is a copy of the JEOC bit in the ADC2_SR register. Bit 9 EOC2: End of conversion of ADC2 This bit is a copy of the EOC bit in the ADC2_SR register. Bit 8 AWD2: Analog watchdog flag of ADC2 This bit is a copy of the AWD bit in the ADC2_SR register. Bits 7:6 Reserved, must be kept at reset value. Bit 5 OVR1: Overrun flag of ADC1 This bit is a copy of the OVR bit in the ADC1_SR register. Bit 4 STRT1: Regular channel Start flag of ADC1 This bit is a copy of the STRT bit in the ADC1_SR register. Bit 3 JSTRT1: Injected channel Start flag of ADC1 This bit is a copy of the JSTRT bit in the ADC1_SR register. Bit 2 JEOC1: Injected channel end of conversion of ADC1 This bit is a copy of the JEOC bit in the ADC1_SR register. Bit 1 EOC1: End of conversion of ADC1 This bit is a copy of the EOC bit in the ADC1_SR register. Bit 0 AWD1: Analog watchdog flag of ADC1 This bit is a copy of the AWD bit in the ADC1_SR register. 15.13.16 ADC common control register (ADC_CCR) Address offset: 0x04 (this offset address is relative to ADC1 base address + 0x300) Reset value: 0x0000 0000 RM0385 Rev 7 455/1709 460 Analog-to-digital converter (ADC) RM0385 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 DMA[1:0] rw rw 13 12 DDS Res. rw 11 10 9 8 DELAY[3:0] rw rw rw 23 22 TSVREFE VBATE 21 20 19 18 Res. Res. Res. Res. rw rw 7 6 5 Res. Res. Res. rw 4 3 2 17 16 ADCPRE rw rw 1 0 rw rw MULTI[4:0] rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bit 23 TSVREFE: Temperature sensor and VREFINT enable This bit is set and cleared by software to enable/disable the temperature sensor and the VREFINT channel. 0: Temperature sensor and VREFINT channel disabled 1: Temperature sensor and VREFINT channel enabled Note: VBATE must be disabled when TSVREFE is set. If both bits are set, only the VBAT conversion is performed. Bit 22 VBATE: VBAT enable This bit is set and cleared by software to enable/disable the VBAT channel. 0: VBAT channel disabled 1: VBAT channel enabled Bits 21:18 Reserved, must be kept at reset value. Bits 17:16 ADCPRE: ADC prescaler Set and cleared by software to select the frequency of the clock to the ADC. The clock is common for all the ADCs. Note: 00: PCLK2 divided by 2 01: PCLK2 divided by 4 10: PCLK2 divided by 6 11: PCLK2 divided by 8 Bits 15:14 DMA: Direct memory access mode for multi ADC mode This bit-field is set and cleared by software. Refer to the DMA controller section for more details. 00: DMA mode disabled 01: DMA mode 1 enabled (2 / 3 half-words one by one - 1 then 2 then 3) 10: DMA mode 2 enabled (2 / 3 half-words by pairs - 2&1 then 1&3 then 3&2) 11: DMA mode 3 enabled (2 / 3 bytes by pairs - 2&1 then 1&3 then 3&2) Bit 13 DDS: DMA disable selection (for multi-ADC mode) This bit is set and cleared by software. 0: No new DMA request is issued after the last transfer (as configured in the DMA controller). DMA bits are not cleared by hardware, however they must have been cleared and set to the wanted mode by software before new DMA requests can be generated. 1: DMA requests are issued as long as data are converted and DMA = 01, 10 or 11. Bit 12 Reserved, must be kept at reset value. 456/1709 RM0385 Rev 7 RM0385 Analog-to-digital converter (ADC) Bits 11:8 DELAY: Delay between 2 sampling phases Set and cleared by software. These bits are used in dual or triple interleaved modes. 0000: 5 * TADCCLK 0001: 6 * TADCCLK 0010: 7 * TADCCLK ... 1111: 20 * TADCCLK Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 MULTI[4:0]: Multi ADC mode selection These bits are written by software to select the operating mode. – All the ADCs independent: 00000: Independent mode – 00001 to 01001: Dual mode, ADC1 and ADC2 working together, ADC3 is independent 00001: Combined regular simultaneous + injected simultaneous mode 00010: Combined regular simultaneous + alternate trigger mode 00011: Reserved 00101: Injected simultaneous mode only 00110: Regular simultaneous mode only 00111: interleaved mode only 01001: Alternate trigger mode only – 10001 to 11001: Triple mode: ADC1, 2 and 3 working together 10001: Combined regular simultaneous + injected simultaneous mode 10010: Combined regular simultaneous + alternate trigger mode 10011: Reserved 10101: Injected simultaneous mode only 10110: Regular simultaneous mode only 10111: interleaved mode only 11001: Alternate trigger mode only All other combinations are reserved and must not be programmed Note: In multi mode, a change of channel configuration generates an abort that can cause a loss of synchronization. It is recommended to disable the multi ADC mode before any configuration change. RM0385 Rev 7 457/1709 460 Analog-to-digital converter (ADC) RM0385 15.13.17 ADC common regular data register for dual and triple modes (ADC_CDR) Address offset: 0x08 (this offset address is relative to ADC1 base address + 0x300) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATA2[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r r DATA1[15:0] r Bits 31:16 DATA2[15:0]: 2nd data item of a pair of regular conversions – In dual mode, these bits contain the regular data of ADC2. Refer to Dual ADC mode. – In triple mode, these bits contain alternatively the regular data of ADC2, ADC1 and ADC3. Refer to Triple ADC mode. Bits 15:0 DATA1[15:0]: 1st data item of a pair of regular conversions – In dual mode, these bits contain the regular data of ADC1. Refer to Dual ADC mode – In triple mode, these bits contain alternatively the regular data of ADC1, ADC3 and ADC2. Refer to Triple ADC mode. 15.13.18 ADC register map The following table summarizes the ADC registers. Table 98. ADC global register map Offset Register 0x000 - 0x04C ADC1 0x050 - 0x0FC Reserved 0x100 - 0x14C ADC2 0x118 - 0x1FC Reserved 0x200 - 0x24C ADC3 0x250 - 0x2FC Reserved 0x300 - 0x308 Common registers 458/1709 RM0385 Rev 7 AWDIE EOCIE 0 0 0 0 0 0 0 0 STRT JSTRT JEOC EOC AWD Res. JEOCIE 0 SCAN 0 AWD SGL 0 JAUTO Res. Res. Res. Res. Res. 0 Res. 0 DISCEN 0 DISC NUM [2:0] 0 JDISCEN 0 JAWDEN RES[1:0] Res. Res. OVRIE 0 AWDEN Reset value Res. ADC_CR1 Res. 0x04 Res. Reset value OVR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_SR Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 99. ADC register map and reset values for each ADC 0 0 0 0 0 AWDCH[4:0] 0 0 0 0 0 RM0385 Analog-to-digital converter (ADC) 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ADC_JOFR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 Res. 0 Res. 0 Res. Res. Res. Res. DDS 0 0 0 0 0 0 0 JOFFSET2[11:0] 0 0 0 0 0 0 0 JOFFSET3[11:0] 0 0 0 0 0 0 0 JOFFSET4[11:0] 0 0 0 0 0 0 HT[11:0] 1 1 1 1 1 1 LT[11:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JDATA[15:0] 0 0 0 0 0 0 0 0 0 JDATA[15:0] 0 0 0 0 0 0 0 0 0 JDATA[15:0] 0 0 0 0 0 0 0 0 0 Regular DATA[15:0] 0 RM0385 Rev 7 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_DR 0 JDATA[15:0] 0 Res. Reset value 0x4C 0 JOFFSET1[11:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x48 0 0 Res. Reset value ADC_JDR4 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_JDR3 0 0 Res. Reset value 0x44 0 0 Res. 0x40 0 0 Injected channel sequence JSQx_x bits Reset value ADC_JDR2 0 JL[1:0] Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. ADC_JDR1 0 0 Regular channel sequence SQx_x bits Reset value 0x3C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. 0x38 Res. Reset value ADC_JSQR 0 Res. ADC_SQR3 0 0 Regular channel sequence SQx_x bits 0 Res. Reset value 0x34 0 0 Regular channel sequence SQx_x bits Res. 0x30 L[3:0] 0 Res. Reset value ADC_SQR2 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_SQR1 0 0 Res. Reset value 0x2C 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x28 0 1 Res. Reset value ADC_LTR 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ADC_HTR 0 0 Res. Reset value 0x24 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x20 0 0 Res. Reset value ADC_JOFR4 0 0 Res. ADC_JOFR3 0 0 Reset value 0x1C 0 0 0 Sample time bits SMPx_x Reset value 0x18 0 Sample time bits SMPx_x ADC_SMPR2 ADC_JOFR2 0 DMA Res. Res. Res. Res. JEXTEN[1:0] JSWSTART Res. 0 ADON 0 CONT 0 EOCS 0 Res. 0x14 0 ADC_SMPR1 Res. 0x10 0 JEXTSEL [3:0] Res. 0x0C 0 EXTSEL [3:0] ALIGN Reset value EXTEN[1:0] ADC_CR2 Res. 0x08 Register SWSTART Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 99. ADC register map and reset values for each ADC (continued) 0 0 0 0 0 0 0 0 0 0 459/1709 460 Analog-to-digital converter (ADC) RM0385 ADC_CDR Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 JEOC EOC AWD STRT 0 0 0 0 Res. 0 MULTI [4:0] 0 0 0 0 0 0 0 0 0 0 Regular DATA1[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. 460/1709 0 ADC1 Res. Res. Res. DDS 0 DELAY [3:0] Regular DATA2[15:0] 0 - JSTRT 0 Res. 0 OVR 0 Res. EOC 0 ADC2 DMA[1:0] 0 AWD 0 JEOC 0 ADCPRE[1:0] Res. Res. Res. VBATE 0 Res. TSVREFE Res. 0 STRT 0 JSTRT 0 Res. 0 OVR EOC AWD 0 Res. JEOC STRT JSTRT Res. OVR 0 ADC3 Res. Res. Res. Res. Res. Res. ADC_CCR 0 - Reset value 0x08 Res. Res. Res. Reset value - 0x04 Res. Res. Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADC_CSR Res. 0x00 Register Res. Offset Res. Table 100. ADC register map and reset values (common ADC registers) RM0385 Rev 7 0 0 0 RM0385 Digital-to-analog converter (DAC) 16 Digital-to-analog converter (DAC) 16.1 DAC introduction The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In 12-bit mode, the data could be left- or right-aligned. The DAC has two output channels, each with its own converter. In dual DAC channel mode, conversions could be done independently or simultaneously when both channels are grouped together for synchronous update operations. An input reference pin, VREF+ (shared with ADC) is available for better resolution. 16.2 DAC main features • Two DAC converters: one output channel each • Left or right data alignment in 12-bit mode • Synchronized update capability • Noise-wave generation • Triangular-wave generation • Dual DAC channel for independent or simultaneous conversions • DMA capability for each channel • DMA underrun error detection • External triggers for conversion • Input voltage reference, VREF+ Figure 93 shows the block diagram of a DAC channel and Table 101 gives the pin description. RM0385 Rev 7 461/1709 482 Digital-to-analog converter (DAC) RM0385 Figure 93. DAC channel block diagram DAC control register TSELx[2:0] bits Trigger selectorx SWTR IGx TIM2_T RGO TIM4_T RGO TIM5_TRGO TIM6_T RGO TIM7_T RGO TIM8_TRGO DMAENx EXTI_9 DM A req ue stx DHRx Control logicx 12-bit LFSRx trianglex TENx MAMPx[3:0] bits WAVENx[1:0] bits 12-bit DORx 12-bit VDDA DAC1_ OU T1/2 Digital-to-analog converterx VSSA VR EF+ ai14708d Table 101. DAC pins Name Signal type Remarks VREF+ Input, analog reference positive The higher/positive reference voltage for the DAC, 1.8 V ≤ VREF+ ≤ VDDA VDDA Input, analog supply Analog power supply VSSA Input, analog supply ground Ground for analog power supply DAC_OUTx Analog output signal DAC channelx analog output Note: Once the DAC channelx is enabled, the corresponding GPIO pin (PA4 or PA5) is automatically connected to the analog converter output (DAC_OUTx). In order to avoid parasitic consumption, the PA4 or PA5 pin should first be configured to analog (AIN). 16.3 DAC functional description 16.3.1 DAC channel enable Each DAC channel can be powered on by setting its corresponding ENx bit in the DAC_CR register. The DAC channel is then enabled after a startup time tWAKEUP. 462/1709 RM0385 Rev 7 RM0385 Digital-to-analog converter (DAC) Note: The ENx bit enables the analog DAC Channelx macrocell only. The DAC Channelx digital interface is enabled even if the ENx bit is reset. 16.3.2 DAC output buffer enable The DAC integrates two output buffers that can be used to reduce the output impedance, and to drive external loads directly without having to add an external operational amplifier. Each DAC channel output buffer can be enabled and disabled using the corresponding BOFFx bit in the DAC_CR register. Figure 94. DAC output buffer connection DAC_CR.BOFF1 VREF+ TSEL1[2:0] Bypass, when off 12 8 DAC CH1 TSEL2[2:0] DAC1 8 Buffer PA4 VREF+ 12 CH2 DAC Buffer Bypass, when off PA5 DAC_CR.BOFF2 MSv35941V1 16.3.3 DAC data format Depending on the selected configuration mode, the data have to be written into the specified register as described below: • Single DAC channelx, there are three possibilities: – 8-bit right alignment: the software has to load data into the DAC_DHR8Rx [7:0] bits (stored into the DHRx[11:4] bits) – 12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4] bits (stored into the DHRx[11:0] bits) – 12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0] bits (stored into the DHRx[11:0] bits) Depending on the loaded DAC_DHRyyyx register, the data written by the user is shifted and stored into the corresponding DHRx (data holding registerx, which are internal non-memorymapped registers). The DHRx register is then loaded into the DORx register either automatically, by software trigger or by an external event trigger. RM0385 Rev 7 463/1709 482 Digital-to-analog converter (DAC) RM0385 Figure 95. Data registers in single DAC channel mode 31 24 15 7 0 8-bit right aligned 12-bit left aligned 12-bit right aligned ai14710b • Dual DAC channels, there are three possibilities: – 8-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR8RD [7:0] bits (stored into the DHR1[11:4] bits) and data for DAC channel2 to be loaded into the DAC_DHR8RD [15:8] bits (stored into the DHR2[11:4] bits) – 12-bit left alignment: data for DAC channel1 to be loaded into the DAC_DHR12LD [15:4] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be loaded into the DAC_DHR12LD [31:20] bits (stored into the DHR2[11:0] bits) – 12-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR12RD [11:0] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be loaded into the DAC_DHR12LD [27:16] bits (stored into the DHR2[11:0] bits) Depending on the loaded DAC_DHRyyyD register, the data written by the user is shifted and stored into DHR1 and DHR2 (data holding registers, which are internal non-memorymapped registers). The DHR1 and DHR2 registers are then loaded into the DOR1 and DOR2 registers, respectively, either automatically, by software trigger or by an external event trigger. Figure 96. Data registers in dual DAC channel mode 31 24 15 7 0 8-bit right aligned 12-bit left aligned 12-bit right aligned ai14709b 16.3.4 DAC conversion The DAC_DORx cannot be written directly and any data transfer to the DAC channelx must be performed by loading the DAC_DHRx register (write to DAC_DHR8Rx, DAC_DHR12Lx, DAC_DHR12Rx, DAC_DHR8RD, DAC_DHR12LD or DAC_DHR12RD). Data stored in the DAC_DHRx register are automatically transferred to the DAC_DORx register after one APB1 clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR register is set) and a trigger occurs, the transfer is performed three APB1 clock cycles later. 464/1709 RM0385 Rev 7 RM0385 Digital-to-analog converter (DAC) When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage becomes available after a time tSETTLING that depends on the power supply voltage and the analog output load. Figure 97. Timing diagram for conversion with trigger disabled TEN = 0 APB1_CLK DHR DOR 0x1AC 0x1AC Output voltage available on DAC_OUT pin tSETTLING 16.3.5 ai14711b DAC output voltage Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+. The analog output voltages on each DAC channel pin are determined by the following equation: DOR DACoutput = V REF × -------------4096 16.3.6 DAC trigger selection If the TENx control bit is set, conversion can then be triggered by an external event (timer counter, external interrupt line). The TSELx[2:0] control bits determine which out of 8 possible events will trigger conversion as shown in Table 102. Table 102. External triggers Source Type TSEL[2:0] Timer 6 TRGO event 000 Timer 8 TRGO event 001 Timer 7 TRGO event Timer 5 TRGO event Internal signal from on-chip timers 010 011 Timer 2 TRGO event 100 Timer 4 TRGO event 101 EXTI line9 External pin 110 SWTRIG Software control bit 111 Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on the selected external interrupt line 9, the last data stored into the DAC_DHRx register are transferred into the DAC_DORx register. The DAC_DORx register is updated three APB1 cycles after the trigger occurs. RM0385 Rev 7 465/1709 482 Digital-to-analog converter (DAC) RM0385 If the software trigger is selected, the conversion starts once the SWTRIG bit is set. SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the DAC_DHRx register contents. Note: TSELx[2:0] bit cannot be changed when the ENx bit is set. When software trigger is selected, the transfer from the DAC_DHRx register to the DAC_DORx register takes only one APB1 clock cycle. 16.3.7 DMA request Each DAC channel has a DMA capability. Two DMA channels are used to service DAC channel DMA requests. A DAC DMA request is generated when an external trigger (but not a software trigger) occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred into the DAC_DORx register. In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one DMA request is needed, you should set only the corresponding DMAENx bit. In this way, the application can manage both DAC channels in dual mode by using one DMA request and a unique DMA channel. DMA underrun The DAC DMA request is not queued so that if a second external trigger arrives before the acknowledgement for the first external trigger is received (first request), then no new request is issued and the DMA channelx underrun flag DMAUDRx in the DAC_SR register is set, reporting the error condition. DMA data transfers are then disabled and no further DMA request is treated. The DAC channelx continues to convert old data. The software should clear the DMAUDRx flag by writing “1”, clear the DMAEN bit of the used DMA stream and re-initialize both DMA and DAC channelx to restart the transfer correctly. The software should modify the DAC trigger conversion frequency or lighten the DMA workload to avoid a new DMA underrun. Finally, the DAC conversion could be resumed by enabling both DMA data transfer and conversion trigger. For each DAC channelx, an interrupt is also generated if its corresponding DMAUDRIEx bit in the DAC_CR register is enabled. 16.3.8 Noise generation In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift register) is available. DAC noise generation is selected by setting WAVEx[1:0] to “01”. The preloaded value in LFSR is 0xAAA. This register is updated three APB1 clock cycles after each trigger event, following a specific calculation algorithm. 466/1709 RM0385 Rev 7 RM0385 Digital-to-analog converter (DAC) Figure 98. DAC LFSR register calculation algorithm XOR X6 X 12 11 10 9 8 7 6 X4 5 4 X0 X 3 2 1 0 12 NOR ai14713c The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this value is then stored into the DAC_DORx register. If LFSR is 0x0000, a ‘1 is injected into it (antilock-up mechanism). It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits. Figure 99. DAC conversion (SW trigger enabled) with LFSR wave generation APB1_CLK DHR 0x00 0xAAA DOR 0xD55 SWTRIG ai14714b Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the DAC_CR register. 16.3.9 Triangle-wave generation It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal. DAC triangle-wave generation is selected by setting WAVEx[1:0] to “10”. The amplitude is configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter is incremented three APB1 clock cycles after each trigger event. The value of this counter is then added to the DAC_DHRx register without overflow and the sum is stored into the DAC_DORx register. The triangle counter is incremented as long as it is less than the maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is reached, the counter is decremented down to 0, then incremented again and so on. RM0385 Rev 7 467/1709 482 Digital-to-analog converter (DAC) RM0385 It is possible to reset triangle wave generation by resetting the WAVEx[1:0] bits. Figure 100. DAC triangle wave generation n tio en cr em en em cr ta De MAMPx[3:0] max amplitude + DAC_DHRx base value In n tio ta DAC_DHRx base value 0 ai14715c Figure 101. DAC conversion (SW trigger enabled) with triangle wave generation APB1_CLK DHR DOR 0x00 0xAAA 0xD55 SWTRIG ai14714b Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the DAC_CR register. The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot be changed. 16.4 Dual DAC channel conversion To efficiently use the bus bandwidth in applications that require the two DAC channels at the same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A unique register access is then required to drive both DAC channels at the same time. Eleven possible conversion modes are possible using the two DAC channels and these dual registers. All the conversion modes can nevertheless be obtained using separate DHRx registers if needed. All modes are described in the paragraphs below. 468/1709 RM0385 Rev 7 RM0385 16.4.1 Digital-to-analog converter (DAC) Independent trigger without wave generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1 (three APB1 clock cycles later). When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_DOR2 (three APB1 clock cycles later). 16.4.2 Independent trigger with single LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask value in the MAMPx[3:0] bits • Load the dual DAC channel data into the desired DHR register (DHR12RD, DHR12LD or DHR8RD) When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). Then the LFSR1 counter is updated. When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). Then the LFSR2 counter is updated. 16.4.3 Independent trigger with different LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR masks values in the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). Then the LFSR1 counter is updated. When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). Then the LFSR2 counter is updated. RM0385 Rev 7 469/1709 482 Digital-to-analog converter (DAC) 16.4.4 RM0385 Independent trigger with single triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum amplitude value in the MAMPx[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with the same triangle amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then updated. When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with the same triangle amplitude, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then updated. 16.4.5 Independent trigger with different triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure different trigger sources by setting different values in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then updated. When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then updated. 16.4.6 Simultaneous software start To configure the DAC in this conversion mode, the following sequence is required: • Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) In this configuration, one APB1 clock cycle later, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and DAC_DOR2, respectively. 470/1709 RM0385 Rev 7 RM0385 16.4.7 Digital-to-analog converter (DAC) Simultaneous trigger without wave generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and DAC_DOR2, respectively (after three APB1 clock cycles). 16.4.8 Simultaneous trigger with single LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask value in the MAMPx[3:0] bits • Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or DHR8RD) When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The LFSR2 counter is then updated. 16.4.9 Simultaneous trigger with different LFSR generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR mask values using the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The LFSR2 counter is then updated. RM0385 Rev 7 471/1709 482 Digital-to-analog converter (DAC) 16.4.10 RM0385 Simultaneous trigger with single triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum amplitude value using the MAMPx[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the DAC channel1 triangle counter, with the same triangle amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then updated. At the same time, the DAC channel2 triangle counter, with the same triangle amplitude, is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then updated. 16.4.11 Simultaneous trigger with different triangle generation To configure the DAC in this conversion mode, the following sequence is required: • Set the two DAC channel trigger enable bits TEN1 and TEN2 • Configure the same trigger source for both DAC channels by setting the same value in the TSEL1[2:0] and TSEL2[2:0] bits • Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits • Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD, DAC_DHR12LD or DAC_DHR8RD) When a trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). Then the DAC channel1 triangle counter is updated. At the same time, the DAC channel2 triangle counter, with a triangle amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated. 472/1709 RM0385 Rev 7 RM0385 Digital-to-analog converter (DAC) 16.5 DAC registers Refer to Section 1 on page 62 for a list of abbreviations used in register descriptions. The peripheral registers have to be accessed by words (32 bits). 16.5.1 DAC control register (DAC_CR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 Res. Res. DMAU DRIE2 DMA EN2 rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 Res. DMAU DRIE1 DMA EN1 rw rw Res. 27 26 25 24 MAMP2[3:0] rw rw 22 21 WAVE2[1:0] MAMP1[3:0] rw 23 rw rw 19 18 17 16 TEN2 BOFF2 EN2 rw rw rw rw 3 2 1 0 TEN1 BOFF1 EN1 rw rw rw TSEL2[2:0] WAVE1[1:0] rw 20 TSEL1[2:0] rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bit 29 DMAUDRIE2: DAC channel2 DMA underrun interrupt enable This bit is set and cleared by software. 0: DAC channel2 DMA underrun interrupt disabled 1: DAC channel2 DMA underrun interrupt enabled Bit 28 DMAEN2: DAC channel2 DMA enable This bit is set and cleared by software. 0: DAC channel2 DMA mode disabled 1: DAC channel2 DMA mode enabled Bits 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector These bits are written by software to select mask in wave generation mode or amplitude in triangle generation mode. 0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1 0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3 0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7 0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15 0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31 0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63 0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127 0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255 1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511 1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023 1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047 ≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095 Bits 23:22 WAVE2[1:0]: DAC channel2 noise/triangle wave generation enable These bits are set/reset by software. 00: wave generation disabled 01: Noise wave generation enabled 1x: Triangle wave generation enabled Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled) RM0385 Rev 7 473/1709 482 Digital-to-analog converter (DAC) RM0385 Bits 21:19 TSEL2[2:0]: DAC channel2 trigger selection These bits select the external event used to trigger DAC channel2 000: Timer 6 TRGO event 001: Timer 8 TRGO event 010: Timer 7 TRGO event 011: Timer 5 TRGO event 100: Timer 2 TRGO event 101: Timer 4 TRGO event 110: External line9 111: Software trigger Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled). Bit 18 TEN2: DAC channel2 trigger enable This bit is set and cleared by software to enable/disable DAC channel2 trigger 0: DAC channel2 trigger disabled and data written into the DAC_DHRx register are transferred one APB1 clock cycle later to the DAC_DOR2 register 1: DAC channel2 trigger enabled and data from the DAC_DHRx register are transferred three APB1 clock cycles later to the DAC_DOR2 register Note: When software trigger is selected, the transfer from the DAC_DHRx register to the DAC_DOR2 register takes only one APB1 clock cycle. Bit 17 BOFF2: DAC channel2 output buffer disable This bit is set and cleared by software to enable/disable DAC channel2 output buffer. 0: DAC channel2 output buffer enabled 1: DAC channel2 output buffer disabled Bit 16 EN2: DAC channel2 enable This bit is set and cleared by software to enable/disable DAC channel2. 0: DAC channel2 disabled 1: DAC channel2 enabled Bits 15:14 Reserved, must be kept at reset value. Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable This bit is set and cleared by software. 0: DAC channel1 DMA Underrun Interrupt disabled 1: DAC channel1 DMA Underrun Interrupt enabled Bit 12 DMAEN1: DAC channel1 DMA enable This bit is set and cleared by software. 0: DAC channel1 DMA mode disabled 1: DAC channel1 DMA mode enabled 474/1709 RM0385 Rev 7 RM0385 Digital-to-analog converter (DAC) Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector These bits are written by software to select mask in wave generation mode or amplitude in triangle generation mode. 0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1 0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3 0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7 0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15 0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31 0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63 0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127 0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255 1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511 1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023 1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047 ≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095 Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable These bits are set and cleared by software. 00: wave generation disabled 01: Noise wave generation enabled 1x: Triangle wave generation enabled Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled). Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection These bits select the external event used to trigger DAC channel1. 000: Timer 6 TRGO event 001: Timer 8 TRGO event 010: Timer 7 TRGO event 011: Timer 5 TRGO event 100: Timer 2 TRGO event 101: Timer 4 TRGO event 110: External line9 111: Software trigger Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled). Bit 2 TEN1: DAC channel1 trigger enable This bit is set and cleared by software to enable/disable DAC channel1 trigger. 0: DAC channel1 trigger disabled and data written into the DAC_DHRx register are transferred one APB1 clock cycle later to the DAC_DOR1 register 1: DAC channel1 trigger enabled and data from the DAC_DHRx register are transferred three APB1 clock cycles later to the DAC_DOR1 register Note: When software trigger is selected, the transfer from the DAC_DHRx register to the DAC_DOR1 register takes only one APB1 clock cycle. Bit 1 BOFF1: DAC channel1 output buffer disable This bit is set and cleared by software to enable/disable DAC channel1 output buffer. 0: DAC channel1 output buffer enabled 1: DAC channel1 output buffer disabled Bit 0 EN1: DAC channel1 enable This bit is set and cleared by software to enable/disable DAC channel1. 0: DAC channel1 disabled 1: DAC channel1 enabled RM0385 Rev 7 475/1709 482 Digital-to-analog converter (DAC) 16.5.2 RM0385 DAC software trigger register (DAC_SWTRIGR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SWTRIG2 SWTRIG1 w w Bits 31:2 Reserved, must be kept at reset value. Bit 1 SWTRIG2: DAC channel2 software trigger This bit is set and cleared by software to enable/disable the software trigger. 0: Software trigger disabled 1: Software trigger enabled Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR2 register value has been loaded into the DAC_DOR2 register. Bit 0 SWTRIG1: DAC channel1 software trigger This bit is set and cleared by software to enable/disable the software trigger. 0: Software trigger disabled 1: Software trigger enabled Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR1 register value has been loaded into the DAC_DOR1 register. 16.5.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. rw rw rw rw rw rw rw rw rw rw DACC1DHR[11:0] rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. 476/1709 RM0385 Rev 7 RM0385 Digital-to-analog converter (DAC) 16.5.4 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 DACC1DHR[11:0] rw rw rw rw rw rw rw rw rw rw rw 3 2 1 0 Res. Res. Res. Res. rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. Bits 3:0 Reserved, must be kept at reset value. 16.5.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. DACC1DHR[7:0] rw rw rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel1. RM0385 Rev 7 477/1709 482 Digital-to-analog converter (DAC) 16.5.6 RM0385 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw 15 14 13 12 Res. Res. Res. Res. DACC2DHR[11:0] rw rw rw rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. 16.5.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 DACC2DHR[11:0] rw rw rw rw rw rw rw rw rw rw rw 3 2 1 0 Res. Res. Res. Res. rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data These bits are written by software which specify 12-bit data for DAC channel2. Bits 3:0 Reserved, must be kept at reset value. 16.5.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2) Address offset: 0x1C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. DACC2DHR[7:0] rw 478/1709 RM0385 Rev 7 rw rw rw rw RM0385 Digital-to-analog converter (DAC) Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel2. 16.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 Res. Res. Res. Res. 27 26 25 24 23 22 rw rw rw rw rw rw 11 10 9 8 7 6 21 20 19 18 17 16 rw rw rw rw rw rw 5 4 3 2 1 0 rw rw rw rw rw DACC2DHR[11:0] DACC1DHR[11:0] rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. Bits 15:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. 16.5.10 DUAL DAC 12-bit left aligned data holding register (DAC_DHR12LD) Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 DACC2DHR[11:0] rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 rw rw rw rw rw rw rw rw rw rw DACC1DHR[11:0] rw rw 19 18 17 16 Res. Res. Res. Res. 3 2 1 0 Res. Res. Res. Res. Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel2. Bits 19:16 Reserved, must be kept at reset value. Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data These bits are written by software which specifies 12-bit data for DAC channel1. Bits 3:0 Reserved, must be kept at reset value. RM0385 Rev 7 479/1709 482 Digital-to-analog converter (DAC) 16.5.11 RM0385 DUAL DAC 8-bit right aligned data holding register (DAC_DHR8RD) Address offset: 0x28 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw DACC2DHR[7:0] rw rw rw rw DACC1DHR[7:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel2. Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data These bits are written by software which specifies 8-bit data for DAC channel1. 16.5.12 DAC channel1 data output register (DAC_DOR1) Address offset: 0x2C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r 15 14 13 12 Res. Res. Res. Res. DACC1DOR[11:0] r r r r r r r Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC1DOR[11:0]: DAC channel1 data output These bits are read-only, they contain data output for DAC channel1. 16.5.13 DAC channel2 data output register (DAC_DOR2) Address offset: 0x30 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r 15 14 13 12 Res. Res. Res. Res. DACC2DOR[11:0] r 480/1709 r r r r RM0385 Rev 7 r r RM0385 Digital-to-analog converter (DAC) Bits 31:12 Reserved, must be kept at reset value. Bits 11:0 DACC2DOR[11:0]: DAC channel2 data output These bits are read-only, they contain data output for DAC channel2. 16.5.14 DAC status register (DAC_SR) Address offset: 0x34 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. DMAUDR2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rc_w1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. DMAUDR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rc_w1 Bits 31:30 Reserved, must be kept at reset value. Bit 29 DMAUDR2: DAC channel2 DMA underrun flag This bit is set by hardware and cleared by software (by writing it to 1). 0: No DMA underrun error condition occurred for DAC channel2 1: DMA underrun error condition occurred for DAC channel2 (the currently selected trigger is driving DAC channel2 conversion at a frequency higher than the DMA service capability rate) Bits 28:14 Reserved, must be kept at reset value. Bit 13 DMAUDR1: DAC channel1 DMA underrun flag This bit is set by hardware and cleared by software (by writing it to 1). 0: No DMA underrun error condition occurred for DAC channel1 1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is driving DAC channel1 conversion at a frequency higher than the DMA service capability rate) Bits 12:0 Reserved, must be kept at reset value. RM0385 Rev 7 481/1709 482 0x34 DAC_SR Reset value 482/1709 0 RM0385 Rev 7 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Reset value Res. Reset value Res. 0 Res. 0 Res. 0 Res. 0 0 Res. Reserved Res. 0 Res. 0 Res. Res. 0 0 0 0 0 0 Res. Res. Res. Res. Res. Reset value Res. Res. 0 Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. 0 DACC1DHR[11:0] Reset value 0 Reset value 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. 0 DACC2DHR[7:0] DACC1DHR[7:0] 0 0 0 0 0 0 0 0 0 DACC2DHR[11:0] DACC2DHR[7:0] 0 0 0 0 0 0 0 0 0 0 0 DACC1DHR[11:0] Reserved 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 Res. 0 Res. 0 Res. 0 0 DACC2DHR[11:0] 0 0 0 0 0 0 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Reset value Res. Reset value 0 0 Res. 0 0 Res. Reset value Res. Reset value Res. Res. Res. Res. 0 Res. 0 Res. EN2 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BOFF1 EN1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SWTRIG1 Reset value SWTRIG2 Res. DMAEN1 0 TEN1 TSEL1[2:0] WAVE1[2:0] DMAUDRIE1 Res. Res. TSEL2[2:0] MAMP1[3:0] Res. Res. Res. 0 Res. Res. TEN2 BOFF2 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. DMAEN2 0 WAVE2[2:0] DMAUDRIE2 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. DACC2DHR[11:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 DMAUDR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. MAMP2[3:0] Res. Res. Res. DAC_ DHR8RD Res. 0 Res. 0 Res. 0 0 Res. 0 Res. DACC2DHR[11:0] 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. 0 Res. 0 Res. 0x30 DAC_ DOR2 0 Res. DAC_ DOR1 0 Res. 0x2C Res. 0x24 DAC_ DHR12LD Res. 0 Res. Reset value Res. 0 Res. DAC_ DHR12RD Res. 0x20 Res. DAC_ DHR8R2 Res. 0x1C Res. 0x18 DAC_ DHR12L2 Res. 0x14 DAC_ DHR12R2 Res. DAC_ DHR8R1 Res. 0x10 Res. DAC_ DHR12L1 Res. 0x0C Res. 0x08 DAC_ DHR12R1 Res. DAC_ SWTRIGR Res. Reset value DMAUDR2 0 Res. 0x28 Reset value Res. 0x04 Res. DAC_CR Res. 0x00 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Offset Res. 16.5.15 Res. Digital-to-analog converter (DAC) RM0385 DAC register map Table 103 summarizes the DAC registers. Table 103. DAC register map 0 0 DACC1DHR[11:0] DACC1DHR[7:0] DACC1DHR[11:0] 0 0 0 0 0 0 0 0 DACC1DOR[11:0] 0 0 0 0 0 0 DACC2DOR[11:0] RM0385 Digital camera interface (DCMI) 17 Digital camera interface (DCMI) 17.1 DCMI introduction The digital camera is a synchronous parallel interface able to receive a high-speed data flow from an external 8-, 10-, 12- or 14-bit CMOS camera module. It supports different data formats: YCbCr4:2:2/RGB565 progressive video and compressed data (JPEG). This interface is for use with black & white cameras, X24 and X5 cameras, and it is assumed that all preprocessing like resizing is performed in the camera module. 17.2 17.3 DCMI main features • 8-, 10-, 12- or 14-bit parallel interface • Embedded/external line and frame synchronization • Continuous or snapshot mode • Crop feature • Supports the following data formats: – 8/10/12/14- bit progressive video: either monochrome or raw bayer – YCbCr 4:2:2 progressive video – RGB 565 progressive video – Compressed data: JPEG DCMI clocks The digital camera interface uses two clock domains, DCMI_PIXCLK and HCLK. The signals generated with DCMI_PIXCLK are sampled on the rising edge of HCLK once they are stable. An enable signal is generated in the HCLK domain, to indicate that data coming from the camera are stable and can be sampled. The maximum DCMI_PIXCLK period must be higher than 2.5 HCLK periods. 17.4 DCMI functional overview The digital camera interface is a synchronous parallel interface that can receive high-speed (up to 54 Mbytes/s) data flows. It consists of up to 14 data lines (D13-D0) and a pixel clock line (DCMI_PIXCLK). The pixel clock has a programmable polarity, so that data can be captured on either the rising or the falling edge of the pixel clock. The data are packed into a 32-bit data register (DCMI_DR) and then transferred through a general-purpose DMA channel. The image buffer is managed by the DMA, not by the camera interface. The data received from the camera can be organized in lines/frames (raw YUB/RGB/Bayer modes) or can be a sequence of JPEG images. To enable JPEG image reception, the JPEG bit (bit 3 of DCMI_CR register) must be set. RM0385 Rev 7 483/1709 507 Digital camera interface (DCMI) RM0385 The data flow is synchronized either by hardware using the optional DCMI_HSYNC (horizontal synchronization) and DCMI_VSYNC (vertical synchronization) signals or by synchronization codes embedded in the data flow. 17.4.1 DCMI block diagram Figure 102 shows the DCMI block diagram. Figure 102. DCMI block diagram DMA interface Control/Status register AHB interface FIFO/ Data formatter Data extraction Synchronizer DCMI_PIXCLK DCMI_D[0:13], DCMI_HSYNC, DCMI_VSYNC ai15604b Figure 103. Top-level block diagram DCMI_D[0:13] DCMI_PIXCLK HCLK DCMI_HSYNC External interface DCMI_VSYNC DCMI Interrupt controller DCMI_IT DMA_REQ ai15603b 17.4.2 DMA interface The DMA interface is active when the CAPTURE bit in the DCMI_CR register is set. A DMA request is generated each time the camera interface receives a complete 32-bit data block in its register. 17.4.3 DCMI physical interface The interface is composed of 11/13/15/17 inputs. Only the Slave mode is supported. 484/1709 RM0385 Rev 7 RM0385 Digital camera interface (DCMI) The camera interface can capture 8-bit, 10-bit, 12-bit or 14-bit data depending on the EDM[1:0] bits in the DCMI_CR register. If less than 14 bits are used, the unused input pins must be connected to ground. Table 104 shows the DCMI pins. Table 104. DCMI external signals Signal name 8 bits 10 bits 12 bits 14 bits DCMI_D[0..7] DCMI_D[0..9] DCMI_D[0..11] DCMI_D[0..13] Signal type Signal description Digital inputs DCMI data DCMI_PIXCLK Digital input Pixel clock DCMI_HSYNC Digital input Horizontal synchronization / Data valid DCMI_VSYNC Digital input Vertical synchronization The data are synchronous with DCMI_PIXCLK and change on the rising/falling edge of the pixel clock depending on the polarity. The DCMI_HSYNC signal indicates the start/end of a line. The DCMI_VSYNC signal indicates the start/end of a frame Figure 104. DCMI signal waveforms DCMI_PIXCLK DCMI_DR[0:13] DCMI_HSYNC DCMI_VSYNC ai15606b 1. The capture edge of DCMI_PIXCLK is the falling edge, the active state of DCMI_HSYNC and DCMI_VSYNC is 1. 2. DCMI_HSYNC and DCMI_VSYNC can change states at the same time. 8-bit data When EDM[1:0] in DCMI_CR are programmed to “00” the interface captures 8 LSBs at its input (DCMI_D[0:7]) and stores them as 8-bit data. The DCMI_D[13:8] inputs are ignored. In this case, to capture a 32-bit word, the camera interface takes four pixel clock cycles. The first captured data byte is placed in the LSB position in the 32-bit word and the 4th captured data byte is placed in the MSB position in the 32-bit word. Table 105 gives an example of the positioning of captured data bytes in two 32-bit words. RM0385 Rev 7 485/1709 507 Digital camera interface (DCMI) RM0385 Table 105. Positioning of captured data bytes in 32-bit words (8-bit width) Byte address 31:24 23:16 15:8 7:0 0 Dn+3[7:0] Dn+2[7:0] Dn+1[7:0] Dn[7:0] 4 Dn+7[7:0] Dn+6[7:0] Dn+5[7:0] Dn+4[7:0] 10-bit data When EDM[1:0] in DCMI_CR are programmed to “01”, the camera interface captures 10-bit data at its input DCMI_D[0..9] and stores them as the 10 least significant bits of a 16-bit word. The remaining most significant bits in the DCMI_DR register (bits 11 to 15) are cleared to zero. So, in this case, a 32-bit data word is made up every two pixel clock cycles. The first captured data are placed in the LSB position in the 32-bit word and the 2nd captured data are placed in the MSB position in the 32-bit word as shown in Table 106. Table 106. Positioning of captured data bytes in 32-bit words (10-bit width) Byte address 31:26 25:16 15:10 9:0 0 0 Dn+1[9:0] 0 Dn[9:0] 4 0 Dn+3[9:0] 0 Dn+2[9:0] 12-bit data When EDM[1:0] in DCMI_CR are programmed to “10”, the camera interface captures the 12-bit data at its input DCMI_D[0..11] and stores them as the 12 least significant bits of a 16bit word. The remaining most significant bits are cleared to zero. So, in this case a 32-bit data word is made up every two pixel clock cycles. The first captured data are placed in the LSB position in the 32-bit word and the 2nd captured data are placed in the MSB position in the 32-bit word as shown in Table 107. Table 107. Positioning of captured data bytes in 32-bit words (12-bit width) Byte address 31:28 27:16 15:12 11:0 0 0 Dn+1[11:0] 0 Dn[11:0] 4 0 Dn+3[11:0] 0 Dn+2[11:0] 14-bit data When EDM[1:0] in DCMI_CR are programmed to “11”, the camera interface captures the 14-bit data at its input DCMI_D[0..13] and stores them as the 14 least significant bits of a 16bit word. The remaining most significant bits are cleared to zero. So, in this case a 32-bit data word is made up every two pixel clock cycles. The first captured data are placed in the LSB position in the 32-bit word and the 2nd captured data are placed in the MSB position in the 32-bit word as shown in Table 108. 486/1709 RM0385 Rev 7 RM0385 Digital camera interface (DCMI) Table 108. Positioning of captured data bytes in 32-bit words (14-bit width) 17.4.4 Byte address 31:30 29:16 15:14 13:0 0 0 Dn+1[13:0] 0 Dn[13:0] 4 0 Dn+3[13:0] 0 Dn+2[13:0] Synchronization The digital camera interface supports embedded or hardware (DCMI_HSYNC and DCMI_VSYNC) synchronization. When embedded synchronization is used, it is up to the digital camera module to make sure that the 0x00 and 0xFF values are used ONLY for synchronization (not in data). Embedded synchronization codes are supported only for the 8-bit parallel data interface width (that is, in the DCMI_CR register, the EDM[1:0] bits should be cleared to “00”). For compressed data, the DCMI supports only the hardware synchronization mode. In this case, DCMI_VSYNC is used as a start/end of the image, and DCMI_HSYNC is used as a Data Valid signal. Figure 105 shows the corresponding timing diagram. Figure 105. Timing diagram Padding data at the end of the JPEG stream Beginning of JPEG stream Programmable JPEG packet size JPEG data End of JPEG stream DCMI_HSYNC DCMI_VSYNC Packet dispatching depends on the image content. This results in a variable blanking duration. JPEG packet data ai15944b Hardware synchronization mode In hardware synchronization mode, the two synchronization signals (DCMI_HSYNC/DCMI_VSYNC) are used. Depending on the camera module/mode, data may be transmitted during horizontal/vertical synchronization periods. The DCMI_HSYNC/DCMI_VSYNC signals act like blanking signals since all the data received during DCMI_HSYNC/DCMI_VSYNC active periods are ignored. In order to correctly transfer images into the DMA/RAM buffer, data transfer is synchronized with the DCMI_VSYNC signal. When the hardware synchronization mode is selected, and RM0385 Rev 7 487/1709 507 Digital camera interface (DCMI) RM0385 capture is enabled (CAPTURE bit set in DCMI_CR), data transfer is synchronized with the deactivation of the DCMI_VSYNC signal (next start of frame). Transfer can then be continuous, with successive frames transferred by DMA to successive buffers or the same/circular buffer. To allow the DMA management of successive frames, a VSIF (Vertical synchronization interrupt flag) is activated at the end of each frame. Embedded data synchronization mode In this synchronization mode, the data flow is synchronized using 32-bit codes embedded in the data flow. These codes use the 0x00/0xFF values that are not used in data anymore. There are 4 types of codes, all with a 0xFF0000XY format. The embedded synchronization codes are supported only in 8-bit parallel data width capture (in the DCMI_CR register, the EDM[1:0] bits should be programmed to “00”). For other data widths, this mode generates unpredictable results and must not be used. Note: Camera modules can have 8 such codes (in interleaved mode). For this reason, the interleaved mode is not supported by the camera interface (otherwise, every other half-frame would be discarded). • Mode 2 Four embedded codes signal the following events – Frame start (FS) – Frame end (FE) – Line start (LS) – Line end (LE) The XY values in the 0xFF0000XY format of the four codes are programmable (see Section 17.7.7: DCMI embedded synchronization code register (DCMI_ESCR)). A 0xFF value programmed as a “frame end” means that all the unused codes are interpreted as valid frame end codes. In this mode, once the camera interface has been enabled, the frame capture starts after the first occurrence of the frame end (FE) code followed by a frame start (FS) code. • Mode 1 An alternative coding is the camera mode 1. This mode is ITU656 compatible. The codes signal another set of events: – SAV (active line) - line start – EAV (active line) - line end – SAV (blanking) - end of line during interframe blanking period – EAV (blanking) - end of line during interframe blanking period This mode can be supported by programming the following codes: • FS ≤ 0xFF • FE ≤ 0xFF • LS ≤ SAV (active) • LE ≤ EAV (active) An embedded unmask code is also implemented for frame/line start and frame/line end codes. Using it, it is possible to compare only the selected unmasked bits with the programmed code. You can therefore select a bit to compare in the embedded code and 488/1709 RM0385 Rev 7 RM0385 Digital camera interface (DCMI) detect a frame/line start or frame/line end. This means that there can be different codes for the frame/line start and frame/line end with the unmasked bit position remaining the same. Example FS = 0xA5 Unmask code for FS = 0x10 In this case the frame start code is embedded in the bit 4 of the frame start code. 17.4.5 Capture modes This interface supports two types of capture: snapshot (single frame) and continuous grab. Snapshot mode (single frame) In this mode, a single frame is captured (CM = ‘1’ in the DCMI_CR register). After the CAPTURE bit is set in DCMI_CR, the interface waits for the detection of a start of frame before sampling the data. The camera interface is automatically disabled (CAPTURE bit cleared in DCMI_CR) after receiving the first complete frame. An interrupt is generated (IT_FRAME) if it is enabled. In case of an overrun, the frame is lost and the CAPTURE bit is cleared. Figure 106. Frame capture waveforms in snapshot mode DCMI_HSYNC DCMI_VSYNC Frame 1 captured Frame 2 not captured ai15832b 1. Here, the active state of DCMI_HSYNC and DCMI_VSYNC is 1. 2. DCMI_HSYNC and DCMI_VSYNC can change states at the same time. Continuous grab mode In this mode (CM bit = ‘0’ in DCMI_CR), once the CAPTURE bit has been set in DCMI_CR, the grabbing process starts on the next DCMI_VSYNC or embedded frame start depending on the mode. The process continues until the CAPTURE bit is cleared in DCMI_CR. Once the CAPTURE bit has been cleared, the grabbing process continues until the end of the current frame. RM0385 Rev 7 489/1709 507 Digital camera interface (DCMI) RM0385 Figure 107. Frame capture waveforms in continuous grab mode DCMI_HSYNC DCMI_VSYNC Frame 1 captured Frame 2 captured ai15833b 1. Here, the active state of DCMI_HSYNC and DCMI_VSYNC is 1. 2. DCMI_HSYNC and DCMI_VSYNC can change states at the same time. In continuous grab mode, you can configure the FCRC bits in DCMI_CR to grab all pictures, every second picture or one out of four pictures to decrease the frame capture rate. Note: In the hardware synchronization mode (ESS = ‘0’ in DCMI_CR), the IT_VSYNC interrupt is generated (if enabled) even when CAPTURE = ‘0’ in DCMI_CR so, to reduce the frame capture rate even further, the IT_VSYNC interrupt can be used to count the number of frames between 2 captures in conjunction with the Snapshot mode. This is not allowed by embedded data synchronization mode. 17.4.6 Crop feature With the crop feature, the camera interface can select a rectangular window from the received image. The start (upper left corner) coordinates and size (horizontal dimension in number of pixel clocks and vertical dimension in number of lines) are specified using two 32bit registers (DCMI_CWSTRT and DCMI_CWSIZE). The size of the window is specified in number of pixel clocks (horizontal dimension) and in number of lines (vertical dimension). Figure 108. Coordinates and size of the window after cropping VST bit in DCMI_CSTRT VLINE bit in DCMI_CSIZE HOFFCNT bit in DCMI_CSTRT CAPCNT bit in DCMI_CSIZE MS35933V2 These registers specify the coordinates of the starting point of the capture window as a line number (in the frame, starting from 0) and a number of pixel clocks (on the line, starting from 0), and the size of the window as a line number and a number of pixel clocks. The CAPCNT value can only be a multiple of 4 (two least significant bits are forced to 0) to allow the correct transfer of data through the DMA. 490/1709 RM0385 Rev 7 RM0385 Digital camera interface (DCMI) If the DCMI_VSYNC signal goes active before the number of lines is specified in the DCMI_CWSIZE register, then the capture stops and an IT_FRAME interrupt is generated when enabled. Figure 109. Data capture waveforms DCMI_HSYNC DCMI_VSYNC HOFFCNT CAPCNT Data not captured in this phase Data captured in this phase MS35934V2 1. Here, the active state of DCMI_HSYNC and DCMI_VSYNC is 1. 2. DCMI_HSYNC and DCMI_VSYNC can change states at the same time. 17.4.7 JPEG format To allow JPEG image reception, it is necessary to set the JPEG bit in the DCMI_CR register. JPEG images are not stored as lines and frames, so the DCMI_VSYNC signal is used to start the capture while DCMI_HSYNC serves as a data enable signal. The number of bytes in a line may not be a multiple of 4, you should therefore be careful when handling this case since a DMA request is generated each time a complete 32-bit word has been constructed from the captured data. When an end of frame is detected and the 32-bit word to be transferred has not been completely received, the remaining data are padded with ‘0s’ and a DMA request is generated. The crop feature and embedded synchronization codes cannot be used in the JPEG format. 17.4.8 FIFO Input mode A four-word FIFO is implemented to manage data rate transfers on the AHB. The DCMI features a simple FIFO controller with a read pointer incremented each time the camera interface reads from the AHB, and a write pointer incremented each time the camera interface writes to the FIFO. There is no overrun protection to prevent the data from being overwritten if the AHB interface does not sustain the data transfer rate. In case of overrun or errors in the synchronization signals, the FIFO is reset and the DCMI interface waits for a new start of frame. RM0385 Rev 7 491/1709 507 Digital camera interface (DCMI) RM0385 17.5 Data format description 17.5.1 Data formats Three types of data are supported: • 8-bit progressive video: either monochrome or raw Bayer format • YCbCr 4:2:2 progressive video • RGB565 progressive video. A pixel coded in 16 bits (5 bits for blue, 5 bits for red, 6 bits for green) takes two clock cycles to be transferred. Compressed data: JPEG For B&W, YCbCr or RGB data, the maximum input size is 2048 × 2048 pixels. No limit in JPEG compressed mode. For monochrome, RGB & YCbCr, the frame buffer is stored in raster mode. 32-bit words are used. Only the little endian format is supported. Figure 110. Pixel raster scan order 17.5.2 Monochrome format Characteristics: • Raster format • 8 bits per pixel Table 109 shows how the data are stored. Table 109. Data storage in monochrome progressive video format 492/1709 Byte address 31:24 23:16 15:8 7:0 0 n+3 n+2 n+1 n 4 n+7 n+6 n+5 n+4 RM0385 Rev 7 RM0385 17.5.3 Digital camera interface (DCMI) RGB format Characteristics: • Raster format • RGB • Interleaved: one buffer: R, G & B interleaved: BRGBRGBRG, etc. • Optimized for display output The RGB planar format is compatible with standard OS frame buffer display formats. Only 16 BPP (bits per pixel): RGB565 (2 pixels per 32-bit word) is supported. The 24 BPP (palletized format) and grayscale formats are not supported. Pixels are stored in a raster scan order, that is from top to bottom for pixel rows, and from left to right within a pixel row. Pixel components are R (red), G (green) and B (blue). All components have the same spatial resolution (4:4:4 format). A frame is stored in a single part, with the components interleaved on a pixel basis. Table 110 shows how the data are stored. Table 110. Data storage in RGB progressive video format 17.5.4 Byte address 31:27 26:21 20:16 15:11 10:5 4:0 0 Red n + 1 Green n + 1 Blue n + 1 Red n Green n Blue n 4 Red n + 4 Green n + 3 Blue n + 3 Red n + 2 Green n + 2 Blue n + 2 YCbCr format Characteristics: • Raster format • YCbCr 4:2:2 • Interleaved: one Buffer: Y, Cb & Cr interleaved: CbYCrYCbYCr, etc. Pixel components are Y (luminance or “luma”), Cb and Cr (chrominance or “chroma” blue and red). Each component is encoded in 8 bits. Luma and chroma are stored together (interleaved) as shown in Table 111. Table 111. Data storage in YCbCr progressive video format 17.5.5 Byte address 31:24 23:16 15:8 7:0 0 Yn+1 Cr n Yn Cb n 4 Yn+3 Cr n + 2 Yn+2 Cb n + 2 YCbCr format - Y only Characteristics: • Raster format • YCbCr 4:2:2 • The buffer only contains Y information - monochrome image Pixel components are Y (luminance or “luma”), Cb and Cr (chrominance or “chroma” blue and red). In this mode, the chroma information is dropped. Only Luma component of each RM0385 Rev 7 493/1709 507 Digital camera interface (DCMI) RM0385 pixel , encoded in 8 bits, is stored as shown in Table 112. The result is a monochrome image having the same resolution as the original YCbCr data. Table 112. Data storage in YCbCr progressive video format - Y extraction mode 17.5.6 Byte address 31:24 23:16 15:8 7:0 0 Yn+3 Yn+2 Yn+1 Yn 4 Yn+7 Yn+6 Yn+5 Yn+4 Half resolution image extraction This is a modification of the previous reception modes, being applicable to monochrome, RGB or Y extraction modes. This mode allows to only store a half resolution image. It is selected through OELS and LSM control bits. 17.6 DCMI interrupts Five interrupts are generated. All interrupts are maskable by software. The global interrupt (IT_DCMI) is the OR of all the individual interrupts. Table 113 gives the list of all interrupts. Table 113. DCMI interrupts Interrupt name 17.7 Interrupt event IT_LINE Indicates the end of line IT_FRAME Indicates the end of frame capture IT_OVR indicates the overrun of data reception IT_VSYNC Indicates the synchronization frame IT_ERR Indicates the detection of an error in the embedded synchronization frame detection IT_DCMI Logic OR of the previous interrupts DCMI register description All DCMI registers have to be accessed as 32-bit words, otherwise a bus error occurs. 17.7.1 DCMI control register (DCMI_CR) Address offset: 0x00 Reset value: 0x0000 0000 494/1709 RM0385 Rev 7 RM0385 Digital camera interface (DCMI) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OELS LSM OEBS rw rw rw rw 4 3 2 1 0 ESS JPEG CROP CM CAPTURE rw rw rw rw rw 15 14 13 12 Res. ENABLE Res. Res. rw 11 10 9 8 EDM[1:0] FCRC[1:0] rw rw rw rw 7 6 5 VSPOL HSPOL PCKPOL rw rw rw 17 16 BSM[1:0] rw Bits 31:21 Reserved, must be kept at reset value. Bit 20 OELS: Odd/Even Line Select (Line Select Start) This bit works in conjunction with LSM field (LSM = 1) 0: Interface captures first line after the frame start, second one being dropped 1: Interface captures second line from the frame start, first one being dropped Bit 19 LSM: Line Select mode 0: Interface captures all received lines 1: Interface captures one line out of two. Bit 18 OEBS: Odd/Even Byte Select (Byte Select Start) This bit works in conjunction with BSM field (BSM <> 00) 0: Interface captures first data (byte or double byte) from the frame/line start, second one being dropped 1: Interface captures second data (byte or double byte) from the frame/line start, first one being dropped Bits 17:16 BSM[1:0]: Byte Select mode 00: Interface captures all received data 01: Interface captures every other byte from the received data 10: Interface captures one byte out of four 11: Interface captures two bytes out of four Note: This mode only work for EDM[1:0]=00. For all other EDM values, this bit field must be programmed to the reset value. Bit 15 Reserved, must be kept at reset value. Bit 14 ENABLE: DCMI enable 0: DCMI disabled 1: DCMI enabled Note: The DCMI configuration registers should be programmed correctly before enabling this Bit Bits 13:12 Reserved, must be kept at reset value. Bits 11:10 EDM[1:0]: Extended data mode 00: Interface captures 8-bit data on every pixel clock 01: Interface captures 10-bit data on every pixel clock 10: Interface captures 12-bit data on every pixel clock 11: Interface captures 14-bit data on every pixel clock Bits 9:8 FCRC[1:0]: Frame capture rate control These bits define the frequency of frame capture. They are meaningful only in Continuous grab mode. They are ignored in snapshot mode. 00: All frames are captured 01: Every alternate frame captured (50% bandwidth reduction) 10: One frame in 4 frames captured (75% bandwidth reduction) 11: reserved RM0385 Rev 7 495/1709 507 Digital camera interface (DCMI) RM0385 Bit 7 VSPOL: Vertical synchronization polarity This bit indicates the level on the DCMI_VSYNC pin when the data are not valid on the parallel interface. 0: DCMI_VSYNC active low 1: DCMI_VSYNC active high Bit 6 HSPOL: Horizontal synchronization polarity This bit indicates the level on the DCMI_HSYNC pin when the data are not valid on the parallel interface. 0: DCMI_HSYNC active low 1: DCMI_HSYNC active high Bit 5 PCKPOL: Pixel clock polarity This bit configures the capture edge of the pixel clock 0: Falling edge active. 1: Rising edge active. Bit 4 ESS: Embedded synchronization select 0: Hardware synchronization data capture (frame/line start/stop) is synchronized with the DCMI_HSYNC/DCMI_VSYNC signals. 1: Embedded synchronization data capture is synchronized with synchronization codes embedded in the data flow. Note: Valid only for 8-bit parallel data. HSPOL/VSPOL are ignored when the ESS bit is set. This bit is disabled in JPEG mode. Bit 3 JPEG: JPEG format 0: Uncompressed video format 1: This bit is used for JPEG data transfers. The DCMI_HSYNC signal is used as data enable. The crop and embedded synchronization features (ESS bit) cannot be used in this mode. Bit 2 CROP: Crop feature 0: The full image is captured. In this case the total number of bytes in an image frame should be a multiple of 4 1: Only the data inside the window specified by the crop register will be captured. If the size of the crop window exceeds the picture size, then only the picture size is captured. Bit 1 CM: Capture mode 0: Continuous grab mode - The received data are transferred into the destination memory through the DMA. The buffer location and mode (linear or circular buffer) is controlled through the system DMA. 1: Snapshot mode (single frame) - Once activated, the interface waits for the start of frame and then transfers a single frame through the DMA. At the end of the frame, the CAPTURE bit is automatically reset. 496/1709 RM0385 Rev 7 RM0385 Digital camera interface (DCMI) Bit 0 CAPTURE: Capture enable 0: Capture disabled. 1: Capture enabled. The camera interface waits for the first start of frame, then a DMA request is generated to transfer the received data into the destination memory. In snapshot mode, the CAPTURE bit is automatically cleared at the end of the 1st frame received. In continuous grab mode, if the software clears this bit while a capture is ongoing, the bit will be effectively cleared after the frame end. Note: The DMA controller and all DCMI configuration registers should be programmed correctly before enabling this bit. RM0385 Rev 7 497/1709 507 Digital camera interface (DCMI) 17.7.2 RM0385 DCMI status register (DCMI_SR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FNE r VSYNC HSYNC r r Bits 31:3 Reserved, must be kept at reset value. Bit 2 FNE: FIFO not empty This bit gives the status of the FIFO 1: FIFO contains valid data 0: FIFO empty Bit 1 VSYNC: This bit gives the state of the DCMI_VSYNC pin with the correct programmed polarity. When embedded synchronization codes are used, the meaning of this bit is the following: 0: active frame 1: synchronization between frames In case of embedded synchronization, this bit is meaningful only if the CAPTURE bit in DCMI_CR is set. Bit 0 HSYNC: This bit gives the state of the DCMI_HSYNC pin with the correct programmed polarity. When embedded synchronization codes are used, the meaning of this bit is the following: 0: active line 1: synchronization between lines In case of embedded synchronization, this bit is meaningful only if the CAPTURE bit in DCMI_CR is set. 498/1709 RM0385 Rev 7 RM0385 Digital camera interface (DCMI) 17.7.3 DCMI raw interrupt status register (DCMI_RIS) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LINE _RIS VSYNC _RIS ERR _RIS OVR _RIS FRAME _RIS r r r r r DCMI_RIS gives the raw interrupt status and is accessible in read only. When read, this register returns the status of the corresponding interrupt before masking with the DCMI_IER register value. Bits 31:5 Reserved, must be kept at reset value. Bit 4 LINE_RIS: Line raw interrupt status This bit gets set when the DCMI_HSYNC signal changes from the inactive state to the active state. It goes high even if the line is not valid. In the case of embedded synchronization, this bit is set only if the CAPTURE bit in DCMI_CR is set. It is cleared by writing a ‘1’ to the LINE_ISC bit in DCMI_ICR. Bit 3 VSYNC_RIS: DCMI_VSYNC raw interrupt status This bit is set when the DCMI_VSYNC signal changes from the inactive state to the active state. In the case of embedded synchronization, this bit is set only if the CAPTURE bit is set in DCMI_CR. It is cleared by writing a ‘1’ to the VSYNC_ISC bit in DCMI_ICR. Bit 2 ERR_RIS: Synchronization error raw interrupt status 0: No synchronization error detected 1: Embedded synchronization characters are not received in the correct order. This bit is valid only in the embedded synchronization mode. It is cleared by writing a ‘1’ to the ERR_ISC bit in DCMI_ICR. Note: This bit is available only in embedded synchronization mode. Bit 1 OVR_RIS:Overrun raw interrupt status 0: No data buffer overrun occurred 1: A data buffer overrun occurred and the data FIFO is corrupted. This bit is cleared by writing a ‘1’ to the OVR_ISC bit in DCMI_ICR. Bit 0 FRAME_RIS: Capture complete raw interrupt status 0: No new capture 1: A frame has been captured. This bit is set when a frame or window has been captured. In case of a cropped window, this bit is set at the end of line of the last line in the crop. It is set even if the captured frame is empty (e.g. window cropped outside the frame). This bit is cleared by writing a ‘1’ to the FRAME_ISC bit in DCMI_ICR. RM0385 Rev 7 499/1709 507 Digital camera interface (DCMI) 17.7.4 RM0385 DCMI interrupt enable register (DCMI_IER) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LINE _IE VSYNC _IE ERR _IE OVR _IE FRAME _IE rw rw rw rw rw The DCMI_IER register is used to enable interrupts. When one of the DCMI_IER bits is set, the corresponding interrupt is enabled. This register is accessible in both read and write. Bits 31:5 Reserved, must be kept at reset value. Bit 4 LINE_IE: Line interrupt enable 0: No interrupt generation when the line is received 1: An Interrupt is generated when a line has been completely received Bit 3 VSYNC_IE: DCMI_VSYNC interrupt enable 0: No interrupt generation 1: An interrupt is generated on each DCMI_VSYNC transition from the inactive to the active state The active state of the DCMI_VSYNC signal is defined by the VSPOL bit. Bit 2 ERR_IE: Synchronization error interrupt enable 0: No interrupt generation 1: An interrupt is generated if the embedded synchronization codes are not received in the correct order. Note: This bit is available only in embedded synchronization mode. Bit 1 OVR_IE: Overrun interrupt enable 0: No interrupt generation 1: An interrupt is generated if the DMA was not able to transfer the last data before new data (32-bit) are received. Bit 0 FRAME_IE: Capture complete interrupt enable 0: No interrupt generation 1: An interrupt is generated at the end of each received frame/crop window (in crop mode). 500/1709 RM0385 Rev 7 RM0385 Digital camera interface (DCMI) 17.7.5 DCMI masked interrupt status register (DCMI_MIS) This DCMI_MIS register is a read-only register. When read, it returns the current masked status value (depending on the value in DCMI_IER) of the corresponding interrupt. A bit in this register is set if the corresponding enable bit in DCMI_IER is set and the corresponding bit in DCMI_RIS is set. Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. LINE _MIS VSYNC _MIS ERR _MIS OVR _MIS FRAME _MIS r r r r r Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:5 Reserved, must be kept at reset value. Bit 4 LINE_MIS: Line masked interrupt status This bit gives the status of the masked line interrupt 0: No interrupt generation when the line is received 1: An Interrupt is generated when a line has been completely received and the LINE_IE bit is set in DCMI_IER. Bit 3 VSYNC_MIS: VSYNC masked interrupt status This bit gives the status of the masked VSYNC interrupt 0: No interrupt is generated on DCMI_VSYNC transitions 1: An interrupt is generated on each DCMI_VSYNC transition from the inactive to the active state and the VSYNC_IE bit is set in DCMI_IER. The active state of the DCMI_VSYNC signal is defined by the VSPOL bit. Bit 2 ERR_MIS: Synchronization error masked interrupt status This bit gives the status of the masked synchronization error interrupt 0: No interrupt is generated on a synchronization error 1: An interrupt is generated if the embedded synchronization codes are not received in the correct order and the ERR_IE bit in DCMI_IER is set. Note: This bit is available only in embedded synchronization mode. Bit 1 OVR_MIS: Overrun masked interrupt status This bit gives the status of the masked overflow interrupt 0: No interrupt is generated on overrun 1: An interrupt is generated if the DMA was not able to transfer the last data before new data (32-bit) are received and the OVR_IE bit is set in DCMI_IER. Bit 0 FRAME_MIS: Capture complete masked interrupt status This bit gives the status of the masked capture complete interrupt 0: No interrupt is generated after a complete capture 1: An interrupt is generated at the end of each received frame/crop window (in crop mode) and the FRAME_IE bit is set in DCMI_IER. RM0385 Rev 7 501/1709 507 Digital camera interface (DCMI) 17.7.6 RM0385 DCMI interrupt clear register (DCMI_ICR) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LINE _ISC VSYNC _ISC ERR _ISC OVR _ISC FRAME _ISC w w w w w The DCMI_ICR register is write-only. Writing a ‘1’ into a bit of this register clears the corresponding bit in the DCMI_RIS and DCMI_MIS registers. Writing a ‘0’ has no effect. Bits 31:5 Reserved, must be kept at reset value. Bit 4 LINE_ISC: line interrupt status clear Writing a ‘1’ into this bit clears LINE_RIS in the DCMI_RIS register Bit 3 VSYNC_ISC: Vertical Synchronization interrupt status clear Writing a ‘1’ into this bit clears the VSYNC_RIS bit in DCMI_RIS Bit 2 ERR_ISC: Synchronization error interrupt status clear Writing a ‘1’ into this bit clears the ERR_RIS bit in DCMI_RIS Note: This bit is available only in embedded synchronization mode. Bit 1 OVR_ISC: Overrun interrupt status clear Writing a ‘1’ into this bit clears the OVR_RIS bit in DCMI_RIS Bit 0 FRAME_ISC: Capture complete interrupt status clear Writing a ‘1’ into this bit clears the FRAME_RIS bit in DCMI_RIS 502/1709 RM0385 Rev 7 RM0385 Digital camera interface (DCMI) 17.7.7 DCMI embedded synchronization code register (DCMI_ESCR) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 FEC[7:0]] 20 19 18 17 16 LEC[7:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw LSC[7:0] rw FSC[7:0] rw Bits 31:24 FEC[7:0]: Frame end delimiter code This byte specifies the code of the frame end delimiter. The code consists of 4 bytes in the form of 0xFF, 0x00, 0x00, FEC. If FEC is programmed to 0xFF, all the unused codes (0xFF0000XY) are interpreted as frame end delimiters. Bits 23:16 LEC[7:0]: Line end delimiter code This byte specifies the code of the line end delimiter. The code consists of 4 bytes in the form of 0xFF, 0x00, 0x00, LEC. Bits 15:8 LSC[7:0]: Line start delimiter code This byte specifies the code of the line start delimiter. The code consists of 4 bytes in the form of 0xFF, 0x00, 0x00, LSC. Bits 7:0 FSC[7:0]: Frame start delimiter code This byte specifies the code of the frame start delimiter. The code consists of 4 bytes in the form of 0xFF, 0x00, 0x00, FSC. If FSC is programmed to 0xFF, no frame start delimiter is detected. But, the 1st occurrence of LSC after an FEC code will be interpreted as a start of frame delimiter. RM0385 Rev 7 503/1709 507 Digital camera interface (DCMI) 17.7.8 RM0385 DCMI embedded synchronization unmask register (DCMI_ESUR) Address offset: 0x1C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 FEU[7:0] 20 19 18 17 16 LEU[7:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw LSU[7:0] rw FSU[7:0] rw Bits 31:24 FEU[7:0]: Frame end delimiter unmask This byte specifies the mask to be applied to the code of the frame end delimiter. 0: The corresponding bit in the FEC byte in DCMI_ESCR is masked while comparing the frame end delimiter with the received data. 1: The corresponding bit in the FEC byte in DCMI_ESCR is compared while comparing the frame end delimiter with the received data Bits 23:16 LEU[7:0]: Line end delimiter unmask This byte specifies the mask to be applied to the code of the line end delimiter. 0: The corresponding bit in the LEC byte in DCMI_ESCR is masked while comparing the line end delimiter with the received data 1: The corresponding bit in the LEC byte in DCMI_ESCR is compared while comparing the line end delimiter with the received data Bits 15:8 LSU[7:0]: Line start delimiter unmask This byte specifies the mask to be applied to the code of the line start delimiter. 0: The corresponding bit in the LSC byte in DCMI_ESCR is masked while comparing the line start delimiter with the received data 1: The corresponding bit in the LSC byte in DCMI_ESCR is compared while comparing the line start delimiter with the received data Bits 7:0 FSU[7:0]: Frame start delimiter unmask This byte specifies the mask to be applied to the code of the frame start delimiter. 0: The corresponding bit in the FSC byte in DCMI_ESCR is masked while comparing the frame start delimiter with the received data 1: The corresponding bit in the FSC byte in DCMI_ESCR is compared while comparing the frame start delimiter with the received data 504/1709 RM0385 Rev 7 RM0385 17.7.9 Digital camera interface (DCMI) DCMI crop window start (DCMI_CWSTRT) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 Res. Res. Res. 28 27 26 25 24 23 rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 Res. Res. rw rw rw rw rw rw 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw VST[12:0] HOFFCNT[13:0] rw rw Bits 31:29 Reserved, must be kept at reset value. Bits 28:16 VST[12:0]: Vertical start line count The image capture starts with this line number. Previous line data are ignored. 0x0000 => line 1 0x0001 => line 2 0x0002 => line 3 .... Bits 15:14 Reserved, must be kept at reset value. Bits 13:0 HOFFCNT[13:0]: Horizontal offset count This value gives the number of pixel clocks to count before starting a capture. 17.7.10 DCMI crop window size (DCMI_CWSIZE) Address offset: 0x24 Reset value: 0x0000 0000 31 30 Res. Res. 15 14 Res. Res. 29 28 27 26 25 24 23 rw rw rw rw rw rw rw 13 12 11 10 9 8 7 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw VLINE[13:0] CAPCNT[13:0] rw rw rw rw rw rw rw rw Bits 31:30 Reserved, must be kept at reset value. Bits 29:16 VLINE[13:0]: Vertical line count This value gives the number of lines to be captured from the starting point. 0x0000 => 1 line 0x0001 => 2 lines 0x0002 => 3 lines .... RM0385 Rev 7 505/1709 507 Digital camera interface (DCMI) RM0385 Bits 15:14 Reserved, must be kept at reset value. Bits 13:0 CAPCNT[13:0]: Capture count This value gives the number of pixel clocks to be captured from the starting point on the same line. It value should corresponds to word-aligned data for different widths of parallel interfaces. 0x0000 => 1 pixel 0x0001 => 2 pixels 0x0002 => 3 pixels .... 17.7.11 DCMI data register (DCMI_DR) Address offset: 0x28 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 Byte3[7:0] 20 19 18 17 16 Byte2[7:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r Byte1[7:0] r r r r r Byte0[7:0] r r r r r r r r Bits 31:24 Byte3[7:0]: Data byte 3 Bits 23:16 Byte2[7:0]: Data byte 2 Bits 15:8 Byte1[7:0]: Data byte 1 Bits 7:0 Byte0[7:0]: Data byte 0 The digital camera Interface packages all the received data in 32-bit format before requesting a DMA transfer. A 4-word deep FIFO is available to leave enough time for DMA transfers and avoid DMA overrun conditions. 506/1709 RM0385 Rev 7 0x20 0x24 0x28 DCMI_ESCR Reset value DCMI_CWSIZE Reset value FEC 0 0 0 Reset value 0 0 DCMI_ESUR Reset value 0 0 0 DCMI_CWSTRT Reset value 0 DCMI_DR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FEU 0 0 0 Byte3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 Rev 7 0 0 VST[12:0 VLINE13:0] 0 0 0 0 0 0 0 0 0 LEC 0 LEU 0 0 0 Byte2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Byte1 0 FRAME_MIS 0 0 0 0 LSC FSC 0 LSU 0 0 0 FRAME_ISC ERR_MIS 0 ERR_ISC 0 OVR_ISC VSYNC_IE ERR_IE OVR_IE FRAME_IE Reset value LINE_IE Res. Res. Res. Res. Res. Res. VSYNC_RIS ERR_RIS OVR_RIS FRAME_RIS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LINE_RIS Reset value VSYNC_ISC OVR_MIS Res. Res. VSYNC_MIS Reset value LINE_MIS Reset value LINE_ISC Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LSM OEBS Res. Res. Res. Res. Res. CROP CM CAPTURE 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 HOFFCNT[13:0] CAPCNT[13:0] Byte0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. HSYNC ESS JPEG 0 FNE PCKPOL 0 VSYNC VSPOL HSPOL 0 Res. Res. Res. ENABLE 0 Res. Res. Res. Res. Res. OELS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EDM FCRC Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. DCMI_ICR Res. DCMI_MIS 0 Res. 0x1C DCMI_IER 0 BSM Res. 0x18 DCMI_RIS Res. Reset value Res. 0x14 Res. 0x10 DCMI_SR Res. 0x0C DCMI_CR Res. 0x08 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. 0x04 Res. 0x00 Res. Offset Res. 17.7.12 Res. RM0385 Digital camera interface (DCMI) DCMI register map Table 114 summarizes the DCMI registers. Table 114. DCMI register map and reset values 0 0 0 0 0 0 0 0 0 0 0 0 0 FSU Refer to Section 2.2.2 on page 69 for the register boundary addresses. 507/1709 507 LCD-TFT display controller (LTDC) 18 RM0385 LCD-TFT display controller (LTDC) This section applies to the whole STM32F756xx and STM32F746xx devices, unless otherwise specified. 18.1 Introduction The LCD-TFT (liquid crystal display - thin film transistor) display controller provides a parallel digital RGB (red, green, blue) and signals for horizontal, vertical synchronization, pixel clock and data enable as output to interface directly to a variety of LCD and TFT panels. 18.2 LTDC main features • 24-bit RGB parallel pixel output; 8 bits-per-pixel (RGB888) • 2 display layers with dedicated FIFO (64x32-bit) • Color look-up table (CLUT) up to 256 color (256x24-bit) per layer • Programmable timings for different display panels • Programmable background color • Programmable polarity for HSYNC, VSYNC and data enable • Up to 8 input color formats selectable per layer • – ARGB8888 – RGB888 – RGB565 – ARGB1555 – ARGB4444 – L8 (8-bit luminance or CLUT) – AL44 (4-bit alpha + 4-bit luminance) – AL88 (8-bit alpha + 8-bit luminance) Pseudo-random dithering output for low bits per channel – 508/1709 Dither width 2-bits for red, green, blue • Flexible blending between two layers using alpha value (per pixel or constant) • Color keying (transparency color) • Programmable window position and size • Supports thin film transistor (TFT) color displays • AHB master interface with burst of 16 words • Up to 4 programmable interrupt events RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) 18.3 LTDC functional description 18.3.1 LTDC block diagram The block diagram of the LTDC is shown in Figure 111: LTDC block diagram. Figure 111. LTDC block diagram APB2 clock domain AHB clock domain Pixel clock domain Layer1 FIFO PFC AHB interface LCD_HSYNC Blending unit Layer1 FIFO Dithering unit LCD_VSYNC LCD_DE LCD_CLK PFC LCD_R[7:0] LCD-TFT panel LCD_G[7:0] Configuration and status registers LCD_B[7:0] Timing generator Interrupts MSv19675V1 Layer FIFO: One FIFO 64x32-bit per layer. PFC: pixel format converter, performing the pixel format conversion from the selected input pixel format of a layer to words. AHB interface: for data transfer from memories to the FIFO. Blending, dithering unit and timings generator: Refer to Section 18.4.1 and Section 18.4.2. 18.3.2 LTDC pins and external signal interface Table 115 summarizes the LTDC signal interface. Table 115. LTDC pins and signal interface LCD-TFT signals I/O LCD_CLK O Clock output LCD_HSYNC O Horizontal synchronization LCD_VSYNC O Vertical synchronization LCD_DE O Not data enable LCD_R[7:0] O Data: 8-bit red data Description RM0385 Rev 7 509/1709 542 LCD-TFT display controller (LTDC) RM0385 Table 115. LTDC pins and signal interface (continued) LCD-TFT signals I/O LCD_G[7:0] O Data: 8-bit green data LCD_B[7:0] O Data: 8-bit blue data Description The LTDC-TFT controller pins must be configured by the user application. The unused pins can be used for other purposes. For LTDC outputs up to 24-bit (RGB888), if less than 8 bpp are used to output for example RGB565 or RGB666 to interface on 16- or 18-bit displays, the RGB display data lines must be connected to the MSB of the LCD-TFT controller RGB data lines. As an example, in the case of an LCD-TFT controller interfacing with a RGB565 16-bit display, the LCD display R[4:0], G[5:0] and B[4:0] data lines pins must be connected to LCD-TFT controller LCD_R[7:3], LCD_G[7:2] and LCD_B[7:3]. 18.3.3 LTDC reset and clocks The LCD-TFT controller peripheral uses 3 clock domains: • AHB clock domain (HCLK) This domain contains the LCD-TFT AHB master interface for data transfer from the memories to the Layer FIFO and the frame buffer configuration register • APB2 clock domain (PCLK2): This domain contains the global configuration registers and the interrupt register. • Pixel clock domain (LCD_CLK) This domain contains the pixel data generation, the layer configuration register as well as the LCD-TFT interface signal generator. The LCD_CLK output should be configured following the panel requirements. The LCD_CLK is generated from a specific PLL output (refer to the reset and clock control section). Table 116 summarizes the clock domain for each register. Table 116. Clock domain for each register LTDC register Clock domain LTDC_LxCR LTDC_LxCFBAR LTDC_LxCFBLR HCLK LTDC_LxCFBLNR LTDC_SRCR LTDC_IER LTDC_ISR PCLK2 LTDC_ICR 510/1709 RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) Table 116. Clock domain for each register (continued) LTDC register Clock domain LTDC_SSCR LTDC_BPCR LTDC_AWCR LTDC_TWCR LTDC_GCR LTDC_BCCR LTDC_LIPCR LTDC_CPSR Pixel clock (LCD_CLK) LTDC_CDSR LTDC_LxWHPCR LTDC_LxWVPCR LTDC_LxCKCR LTDC_LxPFCR LTDC_LxCACR LTDC_LxDCCR LTDC_LxBFCR LTDC_LxCLUTWR Care must be taken while accessing the LTDC registers, the APB2 bus is stalled during: • 6 PCKL2 periods + 5 LCD_CLK periods (5 HCLK periods for register on AHB clock domain) for register write access and update; • 7 PCKL2 periods + 5 LCD_CLK periods (5 HCLK periods for register on AHB clock domain) for register read access. For registers on PCLK2 clock domain, APB2 bus is stalled for 6 PCKL2 periods during the register write accesses, and for 7 PCKL2 periods during Read accesses. The LCD controller can be reset by setting the corresponding bit in the RCC_APB2RSTR register. It resets the three clock domains. 18.4 LTDC programmable parameters The LCD-TFT controller provides flexible configurable parameters. It can be enabled or disabled through the LTDC_GCR register. 18.4.1 LTDC global configuration parameters Synchronous timings Figure 112 presents the configurable timing parameters generated by the synchronous timings generator block presented in the block diagram Figure 111. It generates the RM0385 Rev 7 511/1709 542 LCD-TFT display controller (LTDC) RM0385 horizontal and vertical synchronization timings panel signals, the pixel clock and the data enable signals. Figure 112. LCD-TFT synchronous timings Total width HFP HSYNC width HBP Active width VSYNC width VBP Total height Data1, Line1 Active display area Active height Data(n), Line(n) VFP MSv19674V1 Note: The HBP and HFP are respectively the horizontal back porch and front porch period. The VBP and the VFP are respectively the vertical back porch and front porch period. The LCD-TFT programmable synchronous timings are: 512/1709 • HSYNC and VSYNC width: horizontal and vertical synchronization width, configured by programming a value of HSYNC width - 1 and VSYNC width - 1 in the LTDC_SSCR register • HBP and VBP: horizontal and vertical synchronization back porch width, configured by programming the accumulated value HSYNC width + HBP - 1 and the accumulated value VSYNC width + VBP - 1 in the LTDC_BPCR register. • Active width and active height: the active width and active height are configured by programming the accumulated value HSYNC width + HBP + active width - 1 and the accumulated value VSYNC width + VBP + active height - 1 in the LTDC_AWCR register (only up to 1024x768 is supported). • Total width: the total width is configured by programming the accumulated value HSYNC width + HBP + active width + HFP - 1 in the LTDC_TWCR register. The HFP is the horizontal front porch period. • Total height: the total height is configured by programming the accumulated value VSYNC height + VBP + active height + VFP - 1 in the LTDC_TWCR register. The VFP is the vertical front porch period. RM0385 Rev 7 RM0385 Note: LCD-TFT display controller (LTDC) When the LTDC is enabled, the timings generated start with X/Y=0/0 position as the first horizontal synchronization pixel in the vertical synchronization area and following the back porch, active data display area and the front porch. When the LTDC is disabled, the timing generator block is reset to X = total width - 1, Y = total height - 1 and held the last pixel before the vertical synchronization phase and the FIFO are flushed. Therefore only blanking data is output continuously. Example of synchronous timings configuration TFT-LCD timings (must be extracted from panel datasheet): • horizontal and vertical synchronization width: 0xA pixels and 0x2 lines • horizontal and vertical back porch: 0x14 pixels and 0x2 lines • active width and active height: 0x140 pixels, 0xF0 lines (320x240) • horizontal front porch: 0xA pixels • vertical front porch: 0x4 lines The programmed values in the LTDC timings registers are: • LTDC_SSCR register: to be programmed to 0x00070003. (HSW[11:0] is 0x7 and VSH[10:0] is 0x3) • LTDC_BPCR register: to be programmed to 0x001D0003 (AHBP[11:0] is 0x1D(0xA+ 0x13) and AVBP[10:0]A is 0x3(0x2 + 0x1)). • LTDC_AWCR register: to be programmed to 0x015D00F3 (AAW[11:0] is 0x15D(0xA +0x14 +0x13F) and AAH[10:0] is 0xF3(0x2 +0x2 + 0xEF). • LTDC_TWCR register: to be programmed to 0x00000167 (TOTALW[11:0] is 0x167(0xA +0x14 +0x140 + 0x9). • LTDC_THCR register: to be programmed to 0x000000F7 (TOTALH[10:0]is 0xF7(0x2 +0x2 + 0xF0 + 3) Programmable polarity The horizontal and vertical synchronization, data enable and pixel clock output signals polarity can be programmed to active high or active low through the LTDC_GCR register. Background color A constant background color (RGB888) can programmed through the LTDC_BCCR register. It is used for blending with the bottom layer. Dithering The dithering pseudo-random technique using an LFSR is used to add a small random value (threshold) to each pixel color channel (R, G or B) value, thus rounding up the MSB in some cases when displaying a 24-bit data on 18-bit display. Thus the Dithering technique is used to round data which is different from one frame to the other. The dithering pseudo-random technique is the same as comparing LSBs against a threshold value and adding a 1 to the MSB part only, if the LSB part is >= the threshold. The LSBs are typically dropped once dithering was applied. The width of the added pseudo-random value is 2 bits for each color channel: 2 bits for red, 2 bits for green and 2 bits for blue. RM0385 Rev 7 513/1709 542 LCD-TFT display controller (LTDC) RM0385 Once the LCD-TFT controller is enabled, the LFSR starts running with the first active pixel and it is kept running even during blanking periods and when dithering is switched off. If the LTDC is disabled, the LFSR is reset. The dithering can be switched On and Off on the fly through the LTDC_GCR register. Reload shadow registers Some configuration registers are shadowed. The shadow registers values can be reloaded immediately to the active registers when writing to these registers or at the beginning of the vertical blanking period following the configuration in the LTDC_SRCR register. If the immediate reload configuration is selected, the reload should be only activated when all new registers have been written. The shadow registers should not be modified again before the reload has been done. Reading from the shadow registers returns the actual active value. The new written value can only be read after the reload has taken place. A register reload interrupt can be generated if enabled in the LTDC_IER register. The shadowed registers are all the layer1 and layer2 registers except the LTDC_LxCLUTWR register. Interrupt generation event Refer to Section 18.5: LTDC interrupts for interrupt configuration. 18.4.2 Layer programmable parameters Up to two layers can be enabled, disabled and configured separately. The layer display order is fixed and it is bottom up. If two layers are enabled, the layer2 is the top displayed window. Windowing Every layer can be positioned and resized and it must be inside the active display area. The window position and size are configured through the top-left and bottom-right X/Y positions and the internal timing generator that includes the synchronous, back porch size and the active data area. Refer to LTDC_LxWHPCR and LTDC_WVPCR registers. The programmable layer position and size defines the first/last visible pixel of a line and the first/last visible line in the window. It allows to display either the full image frame or only a part of the image frame. Refer to Figure 113. • The first and the last visible pixel in the layer are set by configuring the WHSTPOS[11:0] and WHSPPOS[11:0] in the LTDC_LxWHPCR register. • The first and the last visible lines in the layer are set by configuring the WVSTPOS[10:0] and WVSPPOS[10:0] in the LTDC_LxWVPCR register. 514/1709 RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) Figure 113. Layer window programmable parameters Active data area WVSTPOS bits in LTDC_LxWVPCR WHSTPOS bits in LTDC_LxWHPCR WVSPPOS bits in LTDC_LxWVPCR Window WHSPPOS bits in LTDC_LxWHPCR MSv19676V3 Pixel input format The programmable pixel format is used for the data stored in the frame buffer of a layer. Up to 8 input pixel formats can be configured for every layer through the LTDC_LxPFCR register The pixel data is read from the frame buffer and then transformed to the internal 8888 (ARGB) format as follows: components having a width of less than 8 bits get expanded to 8 bits by bit replication. The selected bit range is concatenated multiple times until it is longer than 8 bits. Of the resulting vector, the 8 MSB bits are chosen. Example: 5 bits of an RGB565 red channel become (bit positions): 43210432 (the 3 LSBs are filled with the 3 MSBs of the 5 bits) Table 117 describes the pixel data mapping depending on the selected format. Table 117. Pixel data mapping versus color format ARGB8888 @+3 Ax[7:0] @+2 Rx[7:0] @+1 Gx[7:0] @ Bx[7:0] @+7 Ax+1[7:0] @+6 Rx+1[7:0] @+5 Gx+1[7:0] @+4 Bx+1[7:0] RGB888 @+3 Bx+1[7:0] @+2 Rx[7:0] @+1 Gx[7:0] @ Bx[7:0] @+7 Gx+2[7:0] @+6 Bx+2[7:0] @+5 Rx+1[7:0] @+4 Gx+1[7:0] RGB565 @+3 Rx+1[4:0] Gx+1[5:3] @+2 Gx+1[2:0] Bx+1[4:0] @+1 Rx[4:0] Gx[5:3] @ Gx[2:0] Bx[4:0] @+7 Rx+3[4:0] Gx+3[5:3] @+6 Gx+3[2:0] Bx+3[4:0] @+5 Rx+2[4:0] Gx+2[5:3] @+4 Gx+2[2:0] Bx+2[4:0] ARGB1555 RM0385 Rev 7 515/1709 542 LCD-TFT display controller (LTDC) RM0385 Table 117. Pixel data mapping versus color format (continued) @+3 Ax+1[0]Rx+1[4:0] Gx+1[4:3] @+2 Gx+1[2:0] Bx+1[4:0] @+1 Ax[0] Rx[4:0] Gx[4:3] @ Gx[2:0] Bx[4:0] @+7 Ax+3[0]Rx+3[4:0] Gx+3[4:3] @+6 Gx+3[2:0] Bx+3[4:0] @+5 Ax+2[0]Rx+2[4:0]Gx+2[4: 3] @+4 Gx+2[2:0] Bx+2[4:0] ARGB4444 @+3 Ax+1[3:0]Rx+1[3:0] @+2 Gx+1[3:0] Bx+1[3:0] @+1 Ax[3:0] Rx[3:0] @ Gx[3:0] Bx[3:0] @+7 Ax+3[3:0]Rx+3[3:0] @+6 Gx+3[3:0] Bx+3[3:0] @+5 Ax+2[3:0]Rx+2[3:0] @+4 Gx+2[3:0] Bx+2[3:0] L8 @+3 Lx+3[7:0] @+2 Lx+2[7:0] @+1 Lx+1[7:0] @ Lx[7:0] @+7 Lx+7[7:0] @+6 Lx+6[7:0] @+5 Lx+5[7:0] @+4 Lx+4[7:0] AL44 @+3 Ax+3[3:0] Lx+3[3:0] @+2 Ax+2[3:0] Lx+2[3:0] @+1 Ax+1[3:0] Lx+1[3:0] @ Ax[3:0] Lx[3:0] @+7 Ax+7[3:0] Lx+7[3:0] @+6 Ax+6[3:0] Lx+6[3:0] @+5 Ax+5[3:0] Lx+5[3:0] @+4 Ax+4[3:0] Lx+4[3:0] AL88 @+3 Ax+1[7:0] @+2 Lx+1[7:0] @+1 Ax[7:0] @ Lx[7:0] @+7 Ax+3[7:0] @+6 Lx+3[7:0] @+5 Ax+2[7:0] @+4 Lx+2[7:0] Color look-up table (CLUT) The CLUT can be enabled at run-time for every layer through the LTDC_LxCR register and it is only useful in case of indexed color when using the L8, AL44 and AL88 input pixel format. First, the CLUT has to be loaded with the R, G and B values that replace the original R, G, B values of that pixel (indexed color). Each color (RGB value) has its own address which is the position within the CLUT. The R, G and B values and their own respective address are programmed through the LTDC_LxCLUTWR register. • In case of L8 and AL88 input pixel format, the CLUT has to be loaded by 256 colors. The address of each color is configured in the CLUTADD bits in the LTDC_LxCLUTWR register. • In case of AL44 input pixel format, the CLUT has to be only loaded by 16 colors. The address of each color must be filled by replicating the 4-bit L channel to 8-bit as follows: 516/1709 RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) – – – – – L0 (indexed color 0), at address 0x00 L1, at address 0x11 L2, at address 0x22 ..... L15, at address 0xFF Color frame buffer address Every layer has a start address for the color frame buffer configured through the LTDC_LxCFBAR register. When a layer is enabled, the data is fetched from the color frame buffer. Color frame buffer length Every layer has a total line length setting for the color frame buffer in bytes and a number of lines in the frame buffer configurable in the LTDC_LxCFBLR and LTDC_LxCFBLNR register respectively. The line length and the number of lines settings are used to stop the prefetching of data to the layer FIFO at the end of the frame buffer. • If it is set to less bytes than required, a FIFO underrun interrupt is generated if it has been previously enabled. • If it is set to more bytes than actually required, the useless data read from the FIFO is discarded. The useless data is not displayed. Color frame buffer pitch Every layer has a configurable pitch for the color frame buffer, which is the distance between the start of one line and the beginning of the next line in bytes. It is configured through the LTDC_LxCFBLR register. Layer blending The blending is always active and the two layers can be blended following the blending factors configured through the LTDC_LxBFCR register. The blending order is fixed and it is bottom up. If two layers are enabled, first the Layer1 is blended with the Background color, then the layer2 is blended with the result of blended color of layer1 and the background. Refer to Figure 114. Figure 114. Blending two layers with background Layer2 Layer1 Layer2 BG Layer1 + BG Layer2 + Layer1 + BG MSv48123V1 RM0385 Rev 7 517/1709 542 LCD-TFT display controller (LTDC) RM0385 Default color Every layer can have a default color in the format ARGB which is used outside the defined layer window or when a layer is disabled. The default color is configured through the LTDC_LxDCCR register. The blending is always performed between the two layers even when a layer is disabled. To avoid displaying the default color when a layer is disabled, keep the blending factors of this layer in the LTDC_LxBFCR register to their reset value. Color keying A color key (RGB) can be configured to be representative for a transparent pixel. If the color keying is enabled, the current pixels (after format conversion and before CLUT respectively blending) are compared to the color key. If they match for the programmed RGB value, all channels (ARGB) of that pixel are set to 0. The color key value can be configured and used at run-time to replace the pixel RGB value. The color keying is enabled through the LTDC_LxCKCR register. The color keying is configured through the LTDC_LxCKCR register. The programmed value depends on the pixel format as it is compared to current pixel after pixel format conversion to ARGB888. Example: if the a mid-yellow color (50% red + 50% green) is used as the transparent color key: 18.5 • In RGB565, the mid-yellow color is 0x8400. Set the LTDC_LxCKCR to 0x848200. • In ARGB8888, the mid-yellow color is 0x808000, set LTDC_LxCKCR to 0x808000. • In all CLUT-based color modes (L8, AL88, AL44), set one of the palette entry to the mid-yellow color 0x808000 and set the LTDC_LxCKCR to 0x808000. LTDC interrupts The LTDC provides four maskable interrupts logically ORed to two interrupt vectors. The interrupt sources can be enabled or disabled separately through the LTDC_IER register. Setting the appropriate mask bit to 1 enables the corresponding interrupt. The two interrupts are generated on the following events: • Line interrupt: generated when a programmed line is reached. The line interrupt position is programmed in the LTDC_LIPCR register • Register reload interrupt: generated when the shadow registers reload was performed during the vertical blanking period • FIFO underrun interrupt: generated when a pixel is requested from an empty layer FIFO • Transfer error interrupt: generated when an AHB bus error occurs during data transfer Those interrupts events are connected to the NVIC controller as described in Figure 115. 518/1709 RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) Figure 115. Interrupt events Line LTDC global interrupt Register reload FIFO underrun LTDC global error interrupt Transfer error MS19678V1 Table 118. LTDC interrupt requests Interrupt event Event flag Enable control bit LIF LIE Register reload RRIF RRIEN FIFO underrun FUDERRIF FUDERRIE Transfer error TERRIF TERRIE Line RM0385 Rev 7 519/1709 542 LCD-TFT display controller (LTDC) 18.6 Note: 520/1709 RM0385 LTDC programming procedure • Enable the LTDC clock in the RCC register. • Configure the required pixel clock following the panel datasheet. • Configure the synchronous timings: VSYNC, HSYNC, vertical and horizontal back porch, active data area and the front porch timings following the panel datasheet as described in the Section 18.4.1: LTDC global configuration parameters. • Configure the synchronous signals and clock polarity in the LTDC_GCR register. • If needed, configure the background color in the LTDC_BCCR register. • Configure the needed interrupts in the LTDC_IER and LTDC_LIPCR register. • Configure the layer1/2 parameters by: – programming the layer window horizontal and vertical position in the LTDC_LxWHPCR and LTDC_WVPCR registers. The layer window must be in the active data area. – programming the pixel input format in the LTDC_LxPFCR register – programming the color frame buffer start address in the LTDC_LxCFBAR register – programming the line length and pitch of the color frame buffer in the LTDC_LxCFBLR register – programming the number of lines of the color frame buffer in the LTDC_LxCFBLNR register – if needed, loading the CLUT with the RGB values and its address in the LTDC_LxCLUTWR register – If needed, configuring the default color and the blending factors respectively in the LTDC_LxDCCR and LTDC_LxBFCR registers • Enable layer1/2 and if needed the CLUT in the LTDC_LxCR register. • If needed, enable dithering and color keying respectively in the LTDC_GCR and LTDC_LxCKCR registers. They can be also enabled on the fly. • Reload the shadow registers to active register through the LTDC_SRCR register. • Enable the LCD-TFT controller in the LTDC_GCR register. • All layer parameters can be modified on the fly except the CLUT. The new configuration has to be either reloaded immediately or during vertical blanking period by configuring the LTDC_SRCR register. All layer’s registers are shadowed. Once a register is written, it must not be modified again before the reload has been done. Thus, a new write to the same register overrides the previous configuration if not yet reloaded. RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) 18.7 LTDC registers 18.7.1 LTDC synchronization size configuration register (LTDC_SSCR) This register defines the number of horizontal synchronization pixels minus 1 and the number of vertical synchronization lines minus 1. Refer to Figure 112 and Section 18.4: LTDC programmable parameters for an example of configuration. Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. 21 20 19 18 17 16 rw rw rw rw rw rw 5 4 3 2 1 0 rw rw rw rw rw HSW[11:0] VSH[10:0] rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 HSW[11:0]: horizontal synchronization width (in units of pixel clock period) These bits define the number of Horizontal Synchronization pixel minus 1. Bits 15:11 Reserved, must be kept at reset value. Bits 10:0 VSH[10:0]: vertical synchronization height (in units of horizontal scan line) These bits define the vertical Synchronization height minus 1. It represents the number of horizontal synchronization lines. 18.7.2 LTDC back porch configuration register (LTDC_BPCR) This register defines the accumulated number of horizontal synchronization and back porch pixels minus 1 (HSYNC width + HBP - 1) and the accumulated number of vertical synchronization and back porch lines minus 1 (VSYNC height + VBP - 1). Refer to Figure 112 and Section 18.4: LTDC programmable parameters for an example of configuration. Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. 21 20 19 18 17 16 rw rw rw rw rw rw 5 4 3 2 1 0 rw rw rw rw rw AHBP[11:0] AVBP[10:0] rw rw rw rw RM0385 Rev 7 rw rw 521/1709 542 LCD-TFT display controller (LTDC) RM0385 Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 AHBP[11:0]: accumulated horizontal back porch (in units of pixel clock period) These bits define the accumulated horizontal back porch width that includes the horizontal synchronization and horizontal back porch pixels minus 1. The horizontal back porch is the period between horizontal synchronization going inactive and the start of the active display part of the next scan line. Bits 15:11 Reserved, must be kept at reset value. Bits 10:0 AVBP[10:0]: accumulated Vertical back porch (in units of horizontal scan line) These bits define the accumulated vertical back porch width that includes the vertical synchronization and vertical back porch lines minus 1. The vertical back porch is the number of horizontal scan lines at a start of frame to the start of the first active scan line of the next frame. 18.7.3 LTDC active width configuration register (LTDC_AWCR) This register defines the accumulated number of horizontal synchronization, back porch and active pixels minus 1 (HSYNC width + HBP + active width - 1) and the accumulated number of vertical synchronization, back porch lines and active lines minus 1 (VSYNC height + BVBP + active height - 1). Refer to Figure 112 and Section 18.4: LTDC programmable parameters for an example of configuration. Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. 21 20 19 18 17 16 rw rw rw rw rw rw 5 4 3 2 1 0 rw rw rw rw rw AAW[11:0] AAH[10:0] rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 AAW[11:0]: accumulated active width (in units of pixel clock period) These bits define the accumulated active width which includes the horizontal synchronization, horizontal back porch and active pixels minus 1. The active width is the number of pixels in active display area of the panel scan line. Refer to device datasheet for maximum active width supported following maximum pixel clock. Bits 15:11 Reserved, must be kept at reset value. Bits 10:0 AAH[10:0]: accumulated active height (in units of horizontal scan line) These bits define the accumulated height which includes the vertical synchronization, vertical back porch and the active height lines minus 1. The active height is the number of active lines in the panel. Refer to device datasheet for maximum active height supported following maximum pixel clock. 522/1709 RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) 18.7.4 LTDC total width configuration register (LTDC_TWCR) This register defines the accumulated number of horizontal synchronization, back porch, active and front porch pixels minus 1 (HSYNC width + HBP + active width + HFP - 1) and the accumulated number of vertical synchronization, back porch lines, active and front lines minus 1 (VSYNC height + BVBP + active height + VFP - 1). Refer to Figure 112 and Section 18.4: LTDC programmable parameters for an example of configuration. Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. 21 20 19 18 17 16 rw rw rw rw rw rw 5 4 3 2 1 0 rw rw rw rw rw TOTALW[11:0] TOTALH[10:0] rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 TOTALW[11:0]: total width (in units of pixel clock period) These bits defines the accumulated total width which includes the horizontal synchronization, horizontal back porch, active width and horizontal front porch pixels minus 1. Bits 15:11 Reserved, must be kept at reset value. Bits 10:0 TOTALH[10:0]: total height (in units of horizontal scan line) These bits defines the accumulated height which includes the vertical synchronization, vertical back porch, the active height and vertical front porch height lines minus 1. 18.7.5 LTDC global control register (LTDC_GCR) This register defines the global configuration of the LCD-TFT controller. Address offset: 0x18 Reset value: 0x0000 2220 31 30 29 28 HSPOL VSPOL DEPOL PCPOL rw rw rw rw 15 14 13 12 Res. DRW[2:0] r r 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DEN 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. LTDCEN rw Res. r DGW[2:0] r r Res. r RM0385 Rev 7 DBW[2:0] r r r rw 523/1709 542 LCD-TFT display controller (LTDC) RM0385 Bit 31 HSPOL: horizontal synchronization polarity This bit is set and cleared by software. 0: horizontal synchronization polarity is active low. 1: horizontal synchronization polarity is active high. Bit 30 VSPOL: vertical synchronization polarity This bit is set and cleared by software. 0: vertical synchronization is active low. 1: vertical synchronization is active high. Bit 29 DEPOL: not data enable polarity This bit is set and cleared by software. 0: not data enable polarity is active low. 1: not data enable polarity is active high. Bit 28 PCPOL: pixel clock polarity This bit is set and cleared by software. 0: pixel clock polarity is active low. 1: pixel clock is active high. Bits 27:17 Reserved, must be kept at reset value. Bit 16 DEN: dither enable This bit is set and cleared by software. 0: dither disable 1: dither enable Bit 15 Reserved, must be kept at reset value. Bits 14:12 DRW[2:0]: dither red width These bits return the Dither Red Bits. Bit 11 Reserved, must be kept at reset value. Bits 10:8 DGW[2:0]: dither green width These bits return the dither green bits. Bit 7 Reserved, must be kept at reset value. Bits 6:4 DBW[2:0]: dither blue width These bits return the dither blue bits. Bits 3:1 Reserved, must be kept at reset value. Bit 0 LTDCEN: LCD-TFT controller enable This bit is set and cleared by software. 0: LTDC disable 1: LTDC enable 524/1709 RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) 18.7.6 LTDC shadow reload configuration register (LTDC_SRCR) This register allows to reload either immediately or during the vertical blanking period, the shadow registers values to the active registers. The shadow registers are all Layer1 and Layer2 registers except the LTDC_L1CLUTWR and the LTDC_L2CLUTWR. Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. VBR IMR rw rw Bits 31:2 Reserved, must be kept at reset value. Bit 1 VBR: vertical blanking reload This bit is set by software and cleared only by hardware after reload (it cannot be cleared through register write once it is set). 0: no effect 1: The shadow registers are reloaded during the vertical blanking period (at the beginning of the first line after the active display area). Bit 0 IMR: immediate reload This bit is set by software and cleared only by hardware after reload. 0: no effect 1: The shadow registers are reloaded immediately. Note: The shadow registers read back the active values. Until the reload has been done, the 'old' value is read. 18.7.7 LTDC background color configuration register (LTDC_BCCR) This register defines the background color (RGB888). Address offset: 0x2C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 23 22 21 rw rw rw rw 19 18 17 16 BCRED[7:0] rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw BCGREEN[7:0] rw 20 BCBLUE[7:0] rw rw rw rw RM0385 Rev 7 rw rw rw rw 525/1709 542 LCD-TFT display controller (LTDC) RM0385 Bits 31:24 Reserved, must be kept at reset value. Bits 23:16 BCRED[7:0]: background color red value These bits configure the background red value. Bits 15:8 BCGREEN[7:0]: background color green value These bits configure the background green value. Bits 7:0 BCBLUE[7:0]: background color blue value These bits configure the background blue value. 18.7.8 LTDC interrupt enable register (LTDC_IER) This register determines which status flags generate an interrupt request by setting the corresponding bit to 1. Address offset: 0x34 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RRIE TERRIE FUIE LIE rw rw rw rw Bits 31:4 Reserved, must be kept at reset value. Bit 3 RRIE: register reload interrupt enable This bit is set and cleared by software. 0: register reload interrupt disable 1: register reload interrupt enable Bit 2 TERRIE: transfer error interrupt enable This bit is set and cleared by software. 0: transfer error interrupt disable 1: transfer error interrupt enable Bit 1 FUIE: FIFO underrun interrupt enable This bit is set and cleared by software. 0: FIFO underrun interrupt disable 1: FIFO underrun Interrupt enable Bit 0 LIE: line interrupt enable This bit is set and cleared by software. 0: line interrupt disable 1: line interrupt enable 526/1709 RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) 18.7.9 LTDC interrupt status register (LTDC_ISR) This register returns the interrupt status flag. Address offset: 0x38 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RRIF TERRIF FUIF LIF r r r r Bits 31:4 Reserved, must be kept at reset value. Bit 3 RRIF: register reload interrupt flag 0: no register reload interrupt generated 1: register reload interrupt generated when a vertical blanking reload occurs (and the first line after the active area is reached) Bit 2 TERRIF: transfer error interrupt flag 0: no transfer error interrupt generated 1: transfer error interrupt generated when a bus error occurs Bit 1 FUIF: FIFO underrun interrupt flag 0: no FIFO underrun interrupt generated. 1: FIFO underrun interrupt generated, if one of the layer FIFOs is empty and pixel data is read from the FIFO Bit 0 LIF: line interrupt flag 0: no line interrupt generated 1: line interrupt generated when a programmed line is reached 18.7.10 LTDC Interrupt Clear Register (LTDC_ICR) Address offset: 0x3C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CFUIF CLIF w w CRRIF CTERRIF w RM0385 Rev 7 w 527/1709 542 LCD-TFT display controller (LTDC) RM0385 Bits 31:4 Reserved, must be kept at reset value. Bit 3 CRRIF: clears register reload interrupt flag 0: no effect 1: clears the RRIF flag in the LTDC_ISR register Bit 2 CTERRIF: clears the transfer error interrupt flag 0: no effect 1: clears the TERRIF flag in the LTDC_ISR register. Bit 1 CFUIF: clears the FIFO underrun interrupt flag 0: no effect 1: clears the FUDERRIF flag in the LTDC_ISR register. Bit 0 CLIF: clears the line interrupt flag 0: no effect 1: clears the LIF flag in the LTDC_ISR register. 18.7.11 LTDC line interrupt position configuration register (LTDC_LIPCR) This register defines the position of the line interrupt. The line value to be programmed depends on the timings parameters. Refer to Figure 112. Address offset: 0x40 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. rw rw rw rw rw LIPOS[10:0] rw rw rw rw rw rw Bits 31:11 Reserved, must be kept at reset value. Bits 10:0 LIPOS[10:0]: line interrupt position These bits configure the line interrupt position. 18.7.12 LTDC current position status register (LTDC_CPSR) Address offset: 0x44 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CXPOS[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r CYPOS[15:0] r 528/1709 r r r r r r r r RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) Bits 31:16 CXPOS[15:0]: current X position These bits return the current X position. Bits 15:0 CYPOS[15:0]: current Y position These bits return the current Y position. 18.7.13 LTDC current display status register (LTDC_CDSR) This register returns the status of the current display phase which is controlled by the HSYNC, VSYNC, and horizontal/vertical DE signals. Example: if the current display phase is the vertical synchronization, the VSYNCS bit is set (active high). If the current display phase is the horizontal synchronization, the HSYNCS bit is active high. Address offset: 0x48 Reset value: 0x0000 000F 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. HDES VDES r r HSYNCS VSYNCS r r Bits 31:4 Reserved, must be kept at reset value. Bit 3 HSYNCS: horizontal synchronization display status 0: active low 1: active high Bit 2 VSYNCS: vertical synchronization display status 0: active low 1: active high Bit 1 HDES: horizontal data enable display status 0: active low 1: active high Bit 0 VDES: vertical data enable display status 0: active low 1: active high Note: The returned status does not depend on the configured polarity in the LTDC_GCR register, instead it returns the current active display phase. RM0385 Rev 7 529/1709 542 LCD-TFT display controller (LTDC) 18.7.14 RM0385 LTDC layer x control register (LTDC_LxCR) Address offset: 0x84 + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CLUTEN Res. Res. COLKEN LEN rw rw rw Bits 31:5 Reserved, must be kept at reset value. Bit 4 CLUTEN: color look-up table enable This bit is set and cleared by software. 0: color look-up table disable 1: color look-up table enable The CLUT is only meaningful for L8, AL44 and AL88 pixel format. Refer to Color look-up table (CLUT) Bits 3:2 Reserved, must be kept at reset value. Bit 1 COLKEN: color keying enable This bit is set and cleared by software. 0: color keying disable 1: color keying enable Bit 0 LEN: layer enable This bit is set and cleared by software. 0: layer disable 1: layer enable 530/1709 RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) 18.7.15 LTDC layer x window horizontal position configuration register (LTDC_LxWHPCR) This register defines the horizontal position (first and last pixel) of the layer 1 or 2 window. The first visible pixel of a line is the programmed value of AHBP[11:0] bits + 1 in the LTDC_BPCR register. The last visible pixel of a line is the programmed value of AAW[10:0] bits in the LTDC_AWCR register. Address offset: 0x88 + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0000 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 Res. Res. Res. Res. 27 26 25 24 23 22 21 20 19 18 17 16 WHSPPOS[11:0] rw rw rw rw rw rw rw rw rw rw rw rw 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw WHSTPOS[11:0] rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:16 WHSPPOS[11:0]: window horizontal stop position These bits configure the last visible pixel of a line of the layer window. WHSPPOS[11:0] must be ≥ AHBP[11:0] bits + 1 (programmed in LTDC_BPCR register). Bits 15:12 Reserved, must be kept at reset value. Bits 11:0 WHSTPOS[11:0]: window horizontal start position These bits configure the first visible pixel of a line of the layer window. WHSTPOS[11:0] must be ≤ AAW[11:0] bits (programmed in LTDC_AWCR register). Example: The LTDC_BPCR register is configured to 0x000E0005 (AHBP[11:0] is 0xE) and the LTDC_AWCR register is configured to 0x028E01E5 (AAW[11:0] is 0x28E). To configure the horizontal position of a window size of 630x460, with horizontal start offset of 5 pixels in the active data area: 1. layer window first pixel, WHSTPOS[11:0], must be programmed to 0x14 (0xE+1+0x5) 2. layer window last pixel, WHSPPOS[11:0], must be programmed to 0x28A. RM0385 Rev 7 531/1709 542 LCD-TFT display controller (LTDC) 18.7.16 RM0385 LTDC layer x window vertical position configuration register (LTDC_LxWVPCR) This register defines the vertical position (first and last line) of the layer1 or 2 window. The first visible line of a frame is the programmed value of AVBP[10:0] bits + 1 in the register LTDC_BPCR register. The last visible line of a frame is the programmed value of AAH[10:0] bits in the LTDC_AWCR register. Address offset: 0x8C + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0000 31 30 29 28 27 Res. Res. Res. Res. Res. 15 14 13 12 11 Res. Res. Res. Res. Res. 26 25 24 23 22 21 20 19 18 17 16 WVSPPOS[10:0] rw rw rw rw rw rw rw rw rw rw rw 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw WVSTPOS[10:0] rw rw rw rw rw rw Bits 31:27 Reserved, must be kept at reset value. Bits 26:16 WVSPPOS[10:0]: window vertical stop position These bits configure the last visible line of the layer window. WVSPPOS[10:0] must be ≥ AVBP[10:0] bits + 1 (programmed in LTDC_BPCR register). Bits 15:11 Reserved, must be kept at reset value. Bits 10:0 WVSTPOS[10:0]: window vertical start position These bits configure the first visible line of the layer window. WVSTPOS[10:0] must be ≤ AAH[10:0] bits (programmed in LTDC_AWCR register). Example: The LTDC_BPCR register is configured to 0x000E0005 (AVBP[10:0] is 0x5) and the LTDC_AWCR register is configured to 0x028E01E5 (AAH[10:0] is 0x1E5). To configure the vertical position of a window size of 630x460, with vertical start offset of 8 lines in the active data area: 532/1709 1. layer window first line: WVSTPOS[10:0] must be programmed to 0xE (0x5 + 1 + 0x8). 2. layer window last line: WVSTPOS[10:0] must be programmed to 0x1DA. RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) 18.7.17 LTDC layer x color keying configuration register (LTDC_LxCKCR) This register defines the color key value (RGB), that is used by the color keying. Address offset: 0x90 + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 23 22 21 rw rw rw rw 19 18 17 16 CKRED[7:0] rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw CKGREEN[7:0] rw 20 CKBLUE[7:0] rw rw rw rw rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bits 23:16 CKRED[7:0]: color key red value Bits 15:8 CKGREEN[7:0]: color key green value Bits 7:0 CKBLUE[7:0]: color key blue value 18.7.18 LTDC layer x pixel format configuration register (LTDC_LxPFCR) This register defines the pixel format that is used for the stored data in the frame buffer of a layer. The pixel data is read from the frame buffer and then transformed to the internal format 8888 (ARGB). Address offset: 0x94 + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PF[2:0] rw RM0385 Rev 7 rw rw 533/1709 542 LCD-TFT display controller (LTDC) RM0385 Bits 31:3 Reserved, must be kept at reset value. Bits 2:0 PF[2:0]: pixel format These bits configure the pixel format 000: ARGB8888 001: RGB888 010: RGB565 011: ARGB1555 100: ARGB4444 101: L8 (8-bit luminance) 110: AL44 (4-bit alpha, 4-bit luminance) 111: AL88 (8-bit alpha, 8-bit luminance) 18.7.19 LTDC layer x constant alpha configuration register (LTDC_LxCACR) This register defines the constant alpha value (divided by 255 by hardware), that is used in the alpha blending. Refer to LTDC_LxBFCR register. Address offset: 0x98 + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 00FF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw CONSTA[7:0] rw rw rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 CONSTA[7:0]: constant alpha These bits configure the constant alpha used for blending. The constant alpha is divided by 255 by hardware. Example: if the programmed constant alpha is 0xFF, the constant alpha value is 255 / 255 = 1. 534/1709 RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) 18.7.20 LTDC layer x default color configuration register (LTDC_LxDCCR) This register defines the default color of a layer in the format ARGB. The default color is used outside the defined layer window or when a layer is disabled. The reset value of 0x00000000 defines a transparent black color. Address offset: 0x9C + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 DCALPHA[7:0] 20 19 18 17 16 DCRED[7:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw DCGREEN[7:0] rw rw rw rw rw DCBLUE[7:0] rw rw rw rw rw rw rw rw Bits 31:24 DCALPHA[7:0]: default color alpha These bits configure the default alpha value. Bits 23:16 DCRED[7:0]: default color red These bits configure the default red value. Bits 15:8 DCGREEN[7:0]: default color green These bits configure the default green value. Bits 7:0 DCBLUE[7:0]: default color blue These bits configure the default blue value. RM0385 Rev 7 535/1709 542 LCD-TFT display controller (LTDC) 18.7.21 RM0385 LTDC layer x blending factors configuration register (LTDC_LxBFCR) This register defines the blending factors F1 and F2. The general blending formula is: BC = BF1 x C + BF2 x Cs • BC = blended color • BF1 = blend factor 1 • C = current layer color • BF2 = blend factor 2 • Cs = subjacent layers blended color Address offset: 0xA0 + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0607 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BF1[2:0] rw rw rw Bits 31:11 Reserved, must be kept at reset value. Bits 10:8 BF1[2:0]: blending factor 1 These bits select the blending factor F1. 000: reserved 001: reserved 010: reserved 011: reserved 100: constant alpha 101: reserved 110: pixel alpha x constant alpha 111: reserved Bits 7:3 Reserved, must be kept at reset value. Bits 2:0 BF2[2:0]: blending factor 2 These bits select the blending factor F2 000: reserved 001: reserved 010: reserved 011: reserved 100: reserved 101: 1 - constant alpha 110: reserved 111: 1 - (pixel alpha x constant alpha) 536/1709 RM0385 Rev 7 BF2[2:0] rw rw rw RM0385 LCD-TFT display controller (LTDC) Note: The constant alpha value, is the programmed value in the LxCACR register divided by 255 by hardware. Example: Only layer1 is enabled, BF1 configured to constant alpha. BF2 configured to 1 - constant alpha. The constant alpha programmed in the LxCACR register is 240 (0xF0). Thus, the constant alpha value is 240/255 = 0.94. C: current layer color is 128. Cs: background color is 48. Layer1 is blended with the background color. BC = constant alpha x C + (1 - Constant Alpha) x Cs = 0.94 x 128 + (1- 0.94) x 48 = 123. 18.7.22 LTDC layer x color frame buffer address register (LTDC_LxCFBAR) This register defines the color frame buffer start address which has to point to the address where the pixel data of the top left pixel of a layer is stored in the frame buffer. Address offset: 0xAC + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CFBADD[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CFBADD[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 CFBADD[31:0]: color frame buffer start address These bits define the color frame buffer start address. 18.7.23 LTDC layer x color frame buffer length register (LTDC_LxCFBLR) This register defines the color frame buffer line length and pitch. Address offset: 0xB0 + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0000 31 30 29 Res. Res. Res. 15 14 13 Res. Res. Res. 28 27 26 25 24 23 22 21 20 19 18 17 16 CFBP[12:0] rw rw rw rw rw rw rw rw rw rw rw rw rw 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw CFBLL[12:0] rw rw rw rw rw rw rw Bits 31:29 Reserved, must be kept at reset value. Bits 28:16 CFBP[12:0]: color frame buffer pitch in bytes These bits define the pitch that is the increment from the start of one line of pixels to the start of the next line in bytes. Bits 15:13 Reserved, must be kept at reset value. RM0385 Rev 7 537/1709 542 LCD-TFT display controller (LTDC) RM0385 Bits 12:0 CFBLL[12:0]: color frame buffer line length These bits define the length of one line of pixels in bytes + 3. The line length is computed as follows: active high width * number of bytes per pixel + 3. Example: 18.7.24 • A frame buffer having the format RGB565 (2 bytes per pixel) and a width of 256 pixels (total number of bytes per line is 256 * 2 = 512), where pitch = line length requires a value of 0x02000203 to be written into this register. • A frame buffer having the format RGB888 (3 bytes per pixel) and a width of 320 pixels (total number of bytes per line is 320 * 3 = 960), where pitch = line length requires a value of 0x03C003C3 to be written into this register. LTDC layer x color frame buffer line number register (LTDC_LxCFBLNR) This register defines the number of lines in the color frame buffer. Address offset: 0xB4 + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. rw rw rw rw rw CFBLNBR[10:0] rw rw rw rw rw rw Bits 31:11 Reserved, must be kept at reset value. Bits 10:0 CFBLNBR[10:0]: frame buffer line number These bits define the number of lines in the frame buffer that corresponds to the active high width. Note: The number of lines and line length settings define how much data is fetched per frame for every layer. If it is configured to less bytes than required, a FIFO underrun interrupt will be generated if enabled. The start address and pitch settings on the other hand define the correct start of every line in memory. 538/1709 RM0385 Rev 7 RM0385 LCD-TFT display controller (LTDC) 18.7.25 LTDC layer x CLUT write register (LTDC_LxCLUTWR) This register defines the CLUT address and the RGB value. Address offset: 0xC4 + 0x80 * (x - 1), (x = 1 to 2) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 CLUTADD[7:0] 19 18 17 16 RED[7:0] w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 w w w GREEN[7:0] w w w w w BLUE[7:0] w w w w w w w w Bits 31:24 CLUTADD[7:0]: CLUT address These bits configure the CLUT address (color position within the CLUT) of each RGB value. Bits 23:16 RED[7:0]: red value These bits configure the red value. Bits 15:8 GREEN[7:0]: green value These bits configure the green value. Bits 7:0 BLUE[7:0]: blue value These bits configure the blue value. Note: The CLUT write register should only be configured during blanking period or if the layer is disabled. The CLUT can be enabled or disabled in the LTDC_LxCR register. The CLUT is only meaningful for L8, AL44 and AL88 pixel format. RM0385 Rev 7 539/1709 542 LCD-TFT display controller (LTDC) 18.7.26 RM0385 LTDC register map The following table summarizes the LTDC registers. Refer to the register boundary addresses table for the LTDC register base address. 0 Res. Res. Res. Res. Res. Res. Res. Res. DEN 3 2 1 0 4 5 6 11 7 12 Res. Res. Res. Res. 0 8 13 Res. Res. Res. 1 9 14 Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTALH[10:0] 0 0 Res. 10 15 0 DRW[2:0] 0 0 0 0 DGW[2:0] 0 1 0 0 0 0 0 0 DBW[2:0] LTDCEN 0 0 0 0 0 1 0 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LTDC_LIPCR Res. 0x0040 Res. Reset value 0x0044 Reset value 540/1709 CXPOS[15:0] 0 0 0 0 0 0 0 0 0 0 TERRIF FUIF LIF 0 0 0 0 CLIF RRIF 0 0 0 0 0 LIPOS10:0] 0 LTDC_CPSR 0 CFUIF Reset value 0 CTERRIF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LTDC_ICR Res. 0x003C Res. Reset value 0 CRRIF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LTDC_ISR Res. 0x0038 Res. Reset value LIE 0 FUIE 0 TERRIE 0 RRIE 0 Res. BCBLUE[7:0] Res. BCGREEN[7:0] 0 Res. Res. Res. Res. Res. Res. Res. LTDC_IER Res. 0x0034 Res. Reset value BCRED[7:0] 0 Res. Res. Res. Res. Res. Res. LTDC_BCCR Res. 0x002C Res. Reset value IMR 0 0 Res. 0 0 VBR 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 Res. Res. 0 Res. 0 0 Res. 0 0 AAH[10:0] Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 Res. 0 Res. 0 0 AVBP[10:0] 0 Res. 0 Res. 16 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 VSH[10:0] 0 Res. 0 Res. 0 Res. 18 19 20 21 22 17 0 Res. Res. 0 Res. 0 Res. Res. 0 Res. LTDC_SRCR 0 Res. 0 Res. 0 23 24 28 PCPOL 0 0 Res. DEPOL 0 0 TOTALW[11:0] Res. VSPOL 0 0 Res. 29 Res. Res. HSPOL Reset value Res. 0x0024 LTDC_GCR Res. Reset value 0x0018 0 Res. Res. Res. LTDC_TWCR 0 AAW[11:0] 0 Res. Reset value 0x0014 0 Res. Res. Res. LTDC_AWCR 0 AHBP[11:0] 0 Res. Reset value 0x0010 25 30 Res. Res. LTDC_BPCR Res. 0x000C HSW[11:0] 0 Res. Reset value 26 31 LTDC_SSCR 0x0008 27 Register name Res. Offset Res. Table 119. LTDC register map and reset values 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CYPOS[15:0] 0 0 0 0 0 RM0385 Rev 7 0 0 0 0 0 0 0 0 0 0 0 RM0385 LCD-TFT display controller (LTDC) 3 2 1 0 VSYNCS 0 0 0 0 0 0 HDES VDES CLUTEN Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LTDC_L1BFCR 0 0 PF[2:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 1 1 0 0 DCBLUE[7:0] 0 0 0 0 0 0 0 BF1[2:0] 1 1 0 0 0 0 0 BF2[2:0] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. CFBP[12:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LTDC_L2CR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CLUTEN Res. Res. COLKEN LEN BLUE[7:0] Res. GREEN[7:0] 0 Res. RED[7:0] 0 Res. CLUTADD[7:0] 0 CFBLNBR[10:0] 0 LTDC_L1CLUTWR 0 CFBLL[12:0] Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. 0 Res. Res. Res. Res. 0 Res. LTDC_L1CFBLR 0 Res. 0 Res. 0 Res. 0 Res. Reset value Res. 0x0104 0 CFBADD[31:0] Reset value 0x00C4 0 1 Res. 0 1 Res. 0 1 Res. 0 1 Res. 0 LTDC_L1CFBLNR 0 0 Res. Reset value LTDC_L1CFBAR 1 DCGREEN[7:0] Res. DCRED[7:0] Res. DCALPHA[7:0] Res. LTDC_L1DCCR Reset value 0x00B4 0 CONSTA[7:0] 1 Res. 0x00B0 0 CKBLUE[7:0] Res. CKGREEN[7:0] Reset value 0x00AC 0 WVSTPOS[10:0] 0 CKRED[7:0] 0 Res. Res. Res. 0 0 Res. Res. Res. 0 0 Res. 0 0 Res. 0 Res. 0 Res. 0x00A0 LEN 0 Res. 0 Res. 0 Res. 0 Reset value 0x009C 0 0 Res. LTDC_L1CACR 0 WHSTPOS[11:0] Reset value 0x0098 COLKEN 12 Res. Res. Res. Res. 1 Res. 0 Res. Res. Res. Res. Res. Res. LTDC_L1PFCR 0 WVSPPOS[10:0] Reset value 0x0094 0 Res. 0 Res. 0 Res. Res. Res. Res. Res. LTDC_L1CKCR Res. Reset value 0x0090 0 Res. Res. Res. LTDC_L1WVPCR Res. 0x008C WHSPPOS[11:0] 0 Res. Reset value Res. Res. Res. LTDC_L1WHPCR Res. 0x0088 1 0 Res. Reset value 1 Res. 13 Res. 4 14 Res. HSYNCS 15 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LTDC_L1CR Res. Reset value 0x0084 1 Res. 16 Res. 5 17 Res. Res. 18 Res. 6 19 Res. Res. 20 Res. 7 21 Res. Res. 22 Res. 8 23 Res. Res. 24 Res. 9 25 Res. Res. 26 Res. Res. 27 Res. 11 28 Res. 10 29 Res. Res. 30 LTDC_CDSR Res. 31 0x0048 Register name Res. Offset Res. Table 119. LTDC register map and reset values (continued) 0 0 Reset value 0 RM0385 Rev 7 541/1709 542 LCD-TFT display controller (LTDC) RM0385 0 0 0 4 5 6 7 8 12 9 13 Res. 11 14 Res. 10 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WVSTPOS[10:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CKBLUE[7:0] Res. CKGREEN[7:0] 0 Res. CKRED[7:0] 0 0 1 0 2 0 0 Res. Res. Res. Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 Res. 16 0 3 0 WHSTPOS[11:0] Res. 0 Res. 0 Res. 0 Res. 0 Res. 17 18 19 20 21 22 0 WVSPPOS[10:0] Res. Res. Res. Res. Res. Res. Res. LTDC_L2PFCR 0 Res. 0 Res. 0 Reset value 0x0114 23 24 25 26 28 Res. Res. Res. Res. Res. LTDC_L2CKCR Res. Reset value 0x0110 0 Res. 29 Res. Res. LTDC_L2WVPCR Res. 0x010C WHSPPOS[11:0] 0 Res. Reset value 27 30 LTDC_L2WHPCR Res. 31 0x0108 Register name Res. Offset Res. Table 119. LTDC register map and reset values (continued) Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LTDC_L2CACR Res. 0x0118 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LTDC_L2BFCR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. CFBP[12:0] 0 0 0 0 0 0 0 Reset value 0x0144 CLUTADD[7:0] 0 0 0 0 0 0 RED[7:0] 0 0 0 0 0 BF1[2:0] 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 BF2[2:0] 1 1 1 0 0 0 0 0 0 RM0385 Rev 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CFBLNBR[10:0] 0 0 0 0 GREEN[7:0] Refer to Section 2.2.2 for the register boundary addresses. 542/1709 0 0 LTDC_L2CLUTWR Reset value 1 CFBLL[12:0] Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. 0 Res. Res. Res. Res. LTDC_L2CFBLNR 0 Res. LTDC_L2CFBLR 0 Res. 0 Res. 0 Res. 0 Res. Reset value Reset value 0x0134 0 1 CFBADD[31:0] Res. 0x0130 LTDC_L2CFBAR 0 Res. 0 0 DCBLUE[7:0] Res. 0 1 Res. 0 1 Res. 0 1 Res. Reset value Reset value 0x012C 1 DCGREEN[7:0] Res. DCRED[7:0] Res. DCALPHA[7:0] Res. 0x0120 LTDC_L2DCCR 0 CONSTA[7:0] 1 Res. 0x011C PF[2:0] 0 Res. Reset value 0 0 0 0 0 BLUE[7:0] 0 0 0 0 0 0 0 0 RM0385 True random number generator (RNG) 19 True random number generator (RNG) 19.1 Introduction The RNG is a true random number generator that continuously provides 32-bit entropy samples, based on an analog noise source. It can be used by the application as a live entropy source to build a NIST compliant Deterministic Random Bit Generator (DRBG). The RNG true random number generator has been validated according to the German AIS-31 standard. 19.2 RNG main features • The RNG delivers 32-bit true random numbers, produced by an analog entropy source post-processed with linear-feedback shift registers (LFSR). • It is validated according to the AIS-31 pre-defined class PTG.2 evaluation methodology, which is part of the German Common Criteria (CC) scheme. • It produces one 32-bit random samples every 42 RNG clock cycles (dedicated clock). • It allows embedded continuous basic health tests with associated error management – Includes too low sampling clock detection and repetition count tests. • It can be disabled to reduce power consumption. • It has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (else an AHB bus error is generated). Warning! any write not equal to 32 bits might corrupt the register content. RM0385 Rev 7 543/1709 554 True random number generator (RNG) RM0385 19.3 RNG functional description 19.3.1 RNG block diagram Figure 116 shows the RNG block diagram. 32-bit AHB Bus Figure 116. RNG block diagram T-RNGv1 Banked Registers control AHB interface rng_hclk data RNG_DR status RNG_SR AHB clock domain Alarms rng_it RNG_CR Fault detection Clock checker 16-bit Data shift reg Post-processing logic 16-bit 8-bit LFSR (x2) rng_clk 2-bit Sampling & Normalization (x 2) RNG clock domain en_osc Analog Analog noise noise source 1 source 2 Analog noise source MSv42096V1 19.3.2 RNG internal signals Table 120 describes a list of useful-to-know internal signals available at the RNG level, not at the STM32 product level (on pads). Table 120. RNG internal input/output signals 544/1709 Signal name Signal type Description rng_it Digital output RNG global interrupt request rng_hclk Digital input AHB clock rng_clk Digital input RNG dedicated clock, asynchronous to rng_hclk RM0385 Rev 7 RM0385 19.3.3 True random number generator (RNG) Random number generation The true random number generator (RNG) delivers truly random data through its AHB interface at deterministic intervals. The RNG implements the entropy source model pictured on Figure 117, and provides three main functions to the application: • Collects the bitstring output of the entropy source box • Obtains samples of the noise source for validation purpose • Collects error messages from continuous health tests Figure 117. Entropy source model Error message Heath tests Output Conditioning (optional) Raw data Post-processing (optional) Digitization Noise Source Output (raw data or digitized noise source) Entropy source MSv42095V1 The main components of the RNG are: • A source of physical randomness (analog noise source) • A digitization stage for this analog noise source • A stage delivering post-processed noise source (raw data) • An output buffer for the raw data. If further cryptographic conditioning is required by the application it will need to be performed by software. • An optional output for the digitized noise source (unbuffered, on digital pads) • Basic health tests on the digitized noise source All those components are detailed below. RM0385 Rev 7 545/1709 554 True random number generator (RNG) RM0385 Noise source The noise source is the component that contains the non-deterministic, entropy-providing activity that is ultimately responsible for the uncertainty associated with the bitstring output by the entropy source. It is composed of: • Two analog noise sources, each based on three XORed free-running ring oscillator outputs. It is possible to disable those analog oscillators to save power, as described in Section 19.4: RNG low-power usage. • A sampling stage of these outputs clocked by a dedicated clock input (rng_clk), delivering a 2-bit raw data output. This noise source sampling is independent to the AHB interface clock frequency (rng_hclk). Note: In Section 19.7: Entropy source validation recommended RNG clock frequencies are given. Post processing The sample values obtained from a true random noise source consist of 2-bit bitstrings. Because this noise source output is biased, the RNG implements a post-processing component that reduces that bias to a tolerable level. The RNG post-processing consists of two stages, applied to each noise source bits: • The RNG takes half of the bits from the sampled noise source, and half of the bits from inverted sampled noise source. Thus, if the source generates more ‘1’ than ‘0’ (or the opposite), it is filtered • A linear feedback shift register (LFSR) performs a whitening process, producing 8-bit strings. This component is clocked by the RNG clock. The times required between two random number generations, and between the RNG initialization and availability of first sample are described in Section 19.6: RNG processing time. Output buffer The RNG_DR data output register can store up to two 16-bit words which have been output from the post-processing component (LFSR). In order to read back 32-bit random samples it is required to wait 42 RNG clock cycles. Whenever a random number is available through the RNG_DR register the DRDY flag transitions from “0” to “1”. This flag remains high until output buffer becomes empty after reading one word from the RNG_DR register. Note: 546/1709 When interrupts are enabled an interrupt is generated when this data ready flag transitions from “0” to “1”. Interrupt is then cleared automatically by the RNG as explained above. RM0385 Rev 7 RM0385 True random number generator (RNG) Health checks This component ensures that the entire entropy source (with its noise source) starts then operates as expected, obtaining assurance that failures are caught quickly and with a high probability and reliability. The RNG implements the following health check features: 1. 2. Behavior tests, applied to the entropy source at run-time – Repetition count test, flagging an error when: a) One of the noise source has provided more than 64 consecutive bits at a constant value (“0” or “1”) b) One of the noise sources has delivered more than 32 consecutive occurrence of two bits patterns (“01” or “10”) Vendor specific continuous test – Real-time “too slow” sampling clock detector, flagging an error when one RNG clock cycle is smaller than AHB clock cycle divided by 16. The CECS and SECS status bits in the RNG_SR register indicate when an error condition is detected, as detailed in Section 19.3.7: Error management. Note: An interrupt can be generated when an error is detected. 19.3.4 RNG initialization When a hardware reset occurs the following chain of events occurs: 1. The analog noise source is enabled, and logic starts sampling the analog output after four RNG clock cycles, filling LFSR shift register and associated 16-bit post-processing shift register. 2. The output buffer is refilled automatically according to the RNG usage. The associated initialization time can be found in Section 19.6: RNG processing time. 19.3.5 RNG operation Normal operations To run the RNG using interrupts the following steps are recommended: 1. Enable the interrupts by setting the IE bit in the RNG_CR register. At the same time enable the RNG by setting the bit RNGEN=1. 2. An interrupt is now generated when a random number is ready or when an error occurs. Therefore at each interrupt, check that: – No error occurred. The SEIS and CEIS bits should be set to ‘0’ in the RNG_SR register. – A random number is ready. The DRDY bit must be set to ‘1’ in the RNG_SR register. – If above two conditions are true the content of the RNG_DR register can be read. RM0385 Rev 7 547/1709 554 True random number generator (RNG) RM0385 To run the RNG in polling mode following steps are recommended: 1. Enable the random number generation by setting the RNGEN bit to “1” in the RNG_CR register. 2. Read the RNG_SR register and check that: 3. Note: – No error occurred (the SEIS and CEIS bits should be set to ‘0’) – A random number is ready (the DRDY bit should be set to ‘1’) If above conditions are true read the content of the RNG_DR register. When data is not ready (DRDY=”0”) RNG_DR returns zero. Low-power operations If the power consumption is a concern to the application, low-power strategies can be used, as described in Section 19.4: RNG low-power usage on page 549. Software post-processing If a NIST approved DRBG with 128 bits of security strength is required an approved random generator software must be built around the RNG true random number generator. 19.3.6 RNG clocking The RNG runs on two different clocks: the AHB bus clock and a dedicated RNG clock. The AHB clock is used to clock the AHB banked registers and the post-processing component. The RNG clock is used for noise source sampling. Recommended clock configurations are detailed in Section 19.7: Entropy source validation. Caution: When the CED bit in the RNG_CR register is set to “0”, the RNG clock frequency must be higher than AHB clock frequency divided by 16, otherwise the clock checker will flag a clock error (CECS or CEIS in the RNG_SR register) and the RNG will stop producing random numbers. See Section 19.3.1: RNG block diagram for details (AHB and RNG clock domains). 19.3.7 Error management In parallel to random number generation an health check block verifies the correct noise source behavior and the frequency of the RNG source clock as detailed in this section. Associated error state is also described. Clock error detection When the clock error detection is enabled (CED = 0) and if the RNG clock frequency is too low, the RNG stops generating random numbers and sets to “1” both the CEIS and CECS bits to indicate that a clock error occurred. In this case, the application should check that the RNG clock is configured correctly (see Section 19.3.6: RNG clocking) and then it must clear the CEIS bit interrupt flag. As soon as the RNG clock operates correctly, the CECS bit will be automatically cleared. The RNG operates only when the CECS flag is set to “0”. However note that the clock error has no impact on the previously generated random numbers, and the RNG_DR register contents can still be used. 548/1709 RM0385 Rev 7 RM0385 True random number generator (RNG) Noise source error detection When a noise source (or seed) error occurs, the RNG stops generating random numbers and sets to “1” both SEIS and SECS bits to indicate that a seed error occurred. If a value is available in the RNG_DR register, it must not be used as it may not have enough entropy. In order to fully recover from a seed error application must clear the SEIS bit by writing it to “0”, then clear and set the RNGEN bit to reinitialize and restart the RNG. 19.4 RNG low-power usage If power consumption is a concern, the RNG can be disabled as soon as the DRDY bit is set to “1” by setting the RNGEN bit to “0” in the RNG_CR register. The 32-bit random value stored in the RNG_DR register will be still be available. If a new random is needed the application will need to re-enable the RNG and wait for 42+4 RNG clock cycles. When disabling the RNG the user deactivates all the analog seed generators, whose power consumption is given in the datasheet electrical characteristics section. 19.5 RNG interrupts In the RNG an interrupt can be produced on the following events: • Data ready flag • Seed error, see Section 19.3.7: Error management • Clock error, see Section 19.3.7: Error management Dedicated interrupt enable control bits are available as shown in Table 121 Table 121. RNG interrupt requests Interrupt event Event flag Enable control bit Data ready flag DRDY IE Seed error flag SEIS IE Clock error flag CEIS IE The user can enable or disable the above interrupt sources individually by changing the mask bits or the general interrupt control bit IE in the RNG_CR register. The status of the individual interrupt sources can be read from the RNG_SR register. Note: Interrupts are generated only when RNG is enabled. 19.6 RNG processing time The RNG can produce one 32-bit random numbers every 42 RNG clock cycles. After enabling or re-enabling the RNG using the RNGEN bit it takes 46 RNG clock cycles before random data are available. RM0385 Rev 7 549/1709 554 True random number generator (RNG) RM0385 19.7 Entropy source validation 19.7.1 Introduction In order to assess the amount of entropy available from the RNG, STMicroelectronics has tested the peripheral against AIS-31 PTG.2 set of tests. The results can be provided on demand or the customer can reproduce the measurements using the AIS reference software. The customer could also test the RNG against an older NIST SP800-22 set of tests. 19.7.2 Validation conditions STMicroelectronics has validated the RNG true random number generator in the following conditions: 19.7.3 • RNG clock rng_clk= 48 MHz (CED bit = ‘0’ in RNG_CR register) and rng_clk= 400kHz (CED bit=”1” in RNG_CR) • AHB clock rng_hclk= 60 MHz Data collection If raw data needs to be read instead of pre-processed data the developer is invited to contact STMicroelectronics to receive the correct procedure to follow. 550/1709 RM0385 Rev 7 RM0385 True random number generator (RNG) 19.8 RNG registers The RNG is associated with a control register, a data register and a status register. 19.8.1 RNG control register (RNG_CR) Address offset: 0x000 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CED Res. IE RNGEN Res. Res. rw rw rw Bits 31:6 Reserved, must be kept at reset value Bit 5 CED: Clock error detection 0: Clock error detection is enable 1: Clock error detection is disable The clock error detection cannot be enabled nor disabled on-the-fly when the RNG is enabled, i.e. to enable or disable CED the RNG must be disabled. Bit 4 Reserved, must be kept at reset value. Bit 3 IE: Interrupt Enable 0: RNG Interrupt is disabled 1: RNG Interrupt is enabled. An interrupt is pending as soon as DRDY=’1’, SEIS=’1’ or CEIS=’1’ in the RNG_SR register. Bit 2 RNGEN: True random number generator enable 0: True random number generator is disabled. Analog noise sources are powered off and logic clocked by the RNG clock is gated. 1: True random number generator is enabled. Bits 1:0 Reserved, must be kept at reset value. RM0385 Rev 7 551/1709 554 True random number generator (RNG) 19.8.2 RM0385 RNG status register (RNG_SR) Address offset: 0x004 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. SEIS CEIS Res. Res. SECS CECS DRDY rc_w0 rc_w0 r r r Bits 31:7 Reserved, must be kept at reset value. Bit 6 SEIS: Seed error interrupt status This bit is set at the same time as SECS. It is cleared by writing it to ‘0’. 0: No faulty sequence detected 1: At least one faulty sequence has been detected. See SECS bit description for details. An interrupt is pending if IE = ‘1’ in the RNG_CR register. Bit 5 CEIS: Clock error interrupt status This bit is set at the same time as CECS. It is cleared by writing it to ‘0’. 0: The RNG clock is correct (fRNGCLK > fHCLK/16) 1: The RNG clock has been detected too slow (fRNGCLK < fHCLK/16) An interrupt is pending if IE = ‘1’ in the RNG_CR register. Bits 4:3 Reserved, must be kept at reset value. Bit 2 SECS: Seed error current status 0: No faulty sequence has currently been detected. If the SEIS bit is set, this means that a faulty sequence was detected and the situation has been recovered. 1: One of the noise source has provided more than 64 consecutive bits at a constant value (“0” or “1”), or more than 32 consecutive occurrence of two bits patterns (“01” or “10”) Bit 1 CECS: Clock error current status 0: The RNG clock is correct (fRNGCLK> fHCLK/16). If the CEIS bit is set, this means that a slow clock was detected and the situation has been recovered. 1: The RNG clock is too slow (fRNGCLK< fHCLK/16). Note: CECS bit is valid only if the CED bit in the RNG_CR register is set to “0”. Bit 0 DRDY: Data Ready 0: The RNG_DR register is not yet valid, no random data is available. 1: The RNG_DR register contains valid random data. Once the RNG_DR register has been read, this bit returns to ‘0’ until a new random value is generated. If IE=’1’ in the RNG_CR register, an interrupt is generated when DRDY=’1’. 552/1709 RM0385 Rev 7 RM0385 True random number generator (RNG) 19.8.3 RNG data register (RNG_DR) Address offset: 0x008 Reset value: 0x0000 0000 The RNG_DR register is a read-only register that delivers a 32-bit random value when read. After being read this register delivers a new random value after 42 periods of RNG clock if the output FIFO is empty. The content of this register is valid when DRDY=’1’, even if RNGEN=’0’. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RNDATA[31:16] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r RNDATA[15:0] r r Bits 31:0 RNDATA[31:0]: Random data 32-bit random data which are valid when DRDY=’1’. When DRDY=’0’ RNDATA value is zero. RM0385 Rev 7 553/1709 554 True random number generator (RNG) 19.8.4 RM0385 RNG register map Table 122 gives the RNG register map and reset values. 0x000 RNG_CR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CED Res. IE RNGEN Res. Res. Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 122. RNG register map and reset map 0x004 0x008 554/1709 0 0 0 RNG_SR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SEIS CEIS Res. Res. SECS CECS DRDY Reset value Reset value RNG_DR Reset value 0 0 0 0 0 RNDATA[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) 20 Cryptographic processor (CRYP) 20.1 Introduction The cryptographic processor (CRYP) can be used both to encrypt and decrypt data using the DES, Triple-DES or AES algorithms. It is a fully compliant implementation of the following standards: • The data encryption standard (DES) and Triple-DES (TDES) as defined by Federal Information Processing Standards Publication (FIPS PUB 46-3, Oct 1999), and the American National Standards Institute (ANSI X9.52) • The advanced encryption standard (AES) as defined by Federal Information Processing Standards Publication (FIPS PUB 197, Nov 2001) Multiple key sizes and chaining modes are supported: • DES/TDES chaining modes ECB and CBC, supporting standard 56-bit keys with 8-bit parity per key • AES chaining modes ECB, CBC, CTR, GCM, GMAC, CCM for key sizes of 128, 192 or 256 bits The CRYP is a 32-bit AHB peripheral. It supports DMA transfers for incoming and outgoing data (two DMA channels are required). The peripheral also includes input and output FIFOs (each 8 words deep) for better performance. The CRYP peripheral provides hardware acceleration to AES and DES cryptographic algorithms packaged in STM32 cryptographic library. 20.2 CRYP main features • • • Compliant implementation of the following standards: – NIST FIPS publication 46-3, Data Encryption Standard (DES) – ANSI X9.52, Triple Data Encryption Algorithm Modes of Operation – NIST FIPS publication 197, Advanced Encryption Standard (AES) AES symmetric block cipher implementation – 128-bit data block processing – Support for 128-, 192- and 256-bit cipher key lengths – Encryption and decryption with multiple chaining modes: Electronic Code Book (ECB), Cipher Block Chaining (CBC), Counter mode (CTR), Galois Counter Mode (GCM), Galois Message Authentication Code mode (GMAC) and Counter with CBC-MAC (CCM). – 14 (respectively 18) clock cycles for processing one 128-bit block of data with a 128-bit (respectively 256-bit) key in AES-ECB mode – Integrated key scheduler with its key derivation stage (ECB or CBC decryption only) DES/TDES encryption/decryption implementation – 64-bit data block processing – Support for 64-, 128- and 192-bit cipher key lengths (including parity) – Encryption and decryption with support of ECB and CBC chaining modes RM0385 Rev 7 555/1709 622 Cryptographic processor (CRYP) • 556/1709 RM0385 – Direct implementation of simple DES algorithms (a single key K1 is used) – 16 (respectively 64) clock cycles for processing one 64-bit block of data in DES (respectively TDES) ECB mode – Software implementation of ciphertext stealing Features common to DES/TDES and AES – AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (otherwise an AHB bus error is generated, and write accesses are ignored) – 256-bit register for storing the cryptographic key (8x 32-bit registers) – 128-bit registers for storing initialization vectors (4× 32-bit) – 1x32-bit INPUT buffer associated with an internal IN FIFO of eight 32- bit words, corresponding to four incoming DES blocks or two AES blocks – 1x32-bit OUTPUT buffer associated with an internal OUT FIFO of eight 32-bit words, corresponding to four processed DES blocks or two AES blocks – Automatic data flow control supporting direct memory access (DMA) using two channels (one for incoming data, one for processed data). Single and burst transfers are supported. – Data swapping logic to support 1-, 8-, 16- or 32-bit data – Possibility for software to suspend a message if the cryptographic processor needs to process another message with higher priority (suspend/resume operation) RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) 20.3 CRYP functional description 20.3.1 CRYP block diagram Figure 118 shows the block diagram of the cryptographic processor. Figure 118. CRYP block diagram AHB interface CRYP_SR swapping status control CRYP_DOUT swapping data out CRYP_DIN 8x32-bit IN FIFO 32-bit AHB2 bus data in 8x32-bit OUT FIFO Banked Registers (main) CRYP_CR key CRYP_Kx Key iv CRYP_IVx IV AES Core (AEA) + DES/ TDES Core (DEA) Banked Registers (IRQ & DMA) CRYP_IMSCR cryp_hclk CRYP_RIS CRYP_MIS CRYP_DMACR cryp_in_dma cryp_out_dma DMA interface cryp_it Control Logic IRQ interface MSv41968V2 20.3.2 CRYP internal signals Table 123 provides a list of useful-to-know internal signals available at cryptographic processor level and not at STM32 product level (on pads). Table 123. CRYP internal input/output signals Signal name Signal type Description cryp_hclk digital input AHB bus clock cryp_it digital output Cryptographic processor global interrupt request cryp_in_dma digital input/output IN FIFO DMA burst request/ acknowledge cryp_out_dma digital input/output OUT FIFO DMA burst request/ acknowledge (with single request for DES) RM0385 Rev 7 557/1709 622 Cryptographic processor (CRYP) 20.3.3 RM0385 CRYP DES/TDES cryptographic core Overview The DES/Triple-DES cryptographic core consists of three components: • The DES Algorithm (DEA core) • Multiple keys (one for the DES algorithm, one to three for the TDES algorithm) • The initialization vector, which is used only in CBC mode The DES/Triple-DES cryptographic core provides two operating modes: • ALGODIR=0: Plaintext encryption using the key stored in the CRYP_Kx registers. • ALGODIR=1: Ciphertext decryption using the key stored in the CRYP_Kx registers. The operating mode is selected by programming the ALGODIR bit in the CRYP_CR register. Typical data processing Typical usage of the cryptographic processor in DES modes can be found inSection 20.3.10: CRYP DES/TDES basic chaining modes (ECB, CBC). Note: The outputs of the intermediate DEA stages are never revealed outside the cryptographic boundary, with the exclusion of the IV registers in CBC mode. DES keying and chaining modes The TDES allows three different keying options: • Three independent keys The first option specifies that all the keys are independent, that is, K1, K2 and K3 are independent. FIPS PUB 46-3 – 1999 (and ANSI X9.52 – 1998) refers to this option as the Keying Option 1 and, to the TDES as 3-key TDES. • Two independent keys The second option specifies that K1 and K2 are independent and K3 is equal to K1, that is, K1 and K2 are independent, K3 = K1. FIPS PUB 46-3 – 1999 (and ANSI X9.52 – 1998) refers to this second option as the Keying Option 2 and, to the TDES as 2-key TDES. • Three equal keys The third option specifies that K1, K2 and K3 are equal, that is: K1 = K2 = K3 FIPS PUB 46-3 – 1999 (and ANSI X9.52 – 1998) refers to the third option as the Keying Option 3. This “1-key” TDES is equivalent to single DES. The following chaining algorithms are supported by the DES hardware and can be selected through the ALGOMODE bits in the CRYP_CR register: • Electronic Code Book (ECB) • Cipher Block Chaining (CBC) These modes are described in details in Section 20.3.10: CRYP DES/TDES basic chaining modes (ECB, CBC). 558/1709 RM0385 Rev 7 RM0385 20.3.4 Cryptographic processor (CRYP) CRYP AES cryptographic core Overview The AES cryptographic core consists of the following components: • The AES Algorithm (AEA core) • The Multiplier over a binary Galois field (GF2mul) • The key information • The initialization vector (IV) or Nonce information • Chaining algorithms logic (XOR, feedback/counter, mask) The AES core works on 128-bit data blocks of (four words) with 128-, 192- or 256-bit key lengths. Depending on the chaining mode, the peripheral requires zero or one 128-bit initialization vector (IV). The cryptographic peripheral features two operating modes: • ALGODIR=0: Plaintext encryption using the key stored in the CRYP_Kx registers. • ALGODIR=1: Ciphertext decryption using the key stored in the CRYP_Kx registers. When ECB and CBC chaining modes are selected, an initial key derivation process is automatically performed by the cryptographic peripheral. The operating mode is selected by programming the ALGODIR bit in the CRYP_CR register. Typical data processing A description of cryptographic processor typical usage in AES mode can be found in Section 20.3.11: CRYP AES basic chaining modes (ECB, CBC). Note: The outputs of the intermediate AEA stages is never revealed outside the cryptographic boundary, with the exclusion of the IV registers. AES chaining modes The following chaining algorithms are supported by the cryptographic processor and can be selected through the ALGOMODE bits in the CRYP_CR register: • Electronic Code Book (ECB) • Cipher Block Chaining (CBC) • Counter Mode (CTR) • Galois/Counter Mode (GCM) • Galois Message Authentication Code mode (GMAC) • Counter with CBC-MAC (CCM) A quick introduction on these chaining modes can be found in the following subsections. For detailed instructions, refer to Section 20.3.11: CRYP AES basic chaining modes (ECB, CBC) and onward. RM0385 Rev 7 559/1709 622 Cryptographic processor (CRYP) RM0385 AES Electronic CodeBook (ECB) Figure 119. AES-ECB mode overview ECB is the simplest operating mode. There are no chaining operations, and no special initialization stage. The message is divided into blocks and each block is encrypted or decrypted separately. Note: 560/1709 For decryption, a special key scheduling is required before processing the first block. RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) AES Cipher block chaining (CBC) Figure 120. AES-CBC mode overview CBC operating mode chains the output of each block with the input of the following block. To make each message unique, an initialization vector is used during the first block processing. Note: For decryption,a special key scheduling is required before processing the first block. RM0385 Rev 7 561/1709 622 Cryptographic processor (CRYP) RM0385 AES Counter mode (CTR) Figure 121. AES-CTR mode overview The CTR mode uses the AES core to generate a key stream; these keys are then XORed with the plaintext to obtain the ciphertext as specified in NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation. Note: 562/1709 Unlike ECB and CBC modes, no key scheduling is required for the CTR decryption, since in this chaining scheme the AES core is always used in encryption mode for producing the counter blocks. RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) AES Galois/Counter mode (GCM) Figure 122. AES-GCM mode overview In Galois/Counter mode (GCM), the plaintext message is encrypted, while a message authentication code (MAC) is computed in parallel, thus generating the corresponding ciphertext and its MAC (also known as authentication tag). It is defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation Galois/Counter Mode (GCM) and GMAC. GCM mode is based on AES in counter mode for confidentiality. It uses a multiplier over a fixed finite field for computing the message authentication code. It requires an initial value and a particular 128-bit block at the end of the message. AES Galois Message Authentication Code (GMAC) Figure 123. AES-GMAC mode overview RM0385 Rev 7 563/1709 622 Cryptographic processor (CRYP) RM0385 Galois Message Authentication Code (GMAC) allows authenticating a message and generating the corresponding message authentication code (MAC). It is defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation Galois/Counter Mode (GCM) and GMAC. GMAC is similar to Galois/Counter mode (GCM), except that it is applied on a message composed only by clear-text authenticated data (i.e. only header, no payload). AES Counter with CBC-MAC (CCM) Figure 124. AES-CCM mode overview In Counter with Cipher Block Chaining-Message Authentication Code (CCM), the plaintext message is encrypted while a message authentication code (MAC) is computed in parallel, thus generating the corresponding ciphertext and the corresponding MAC (also known as tag). It is described by NIST in Special Publication 800-38C, Recommendation for Block Cipher Modes of Operation - The CCM Mode for Authentication and Confidentiality. CCM mode is based on AES in counter mode for confidentiality and it uses CBC for computing the message authentication code. It requires an initial value. Like GCM CCM chaining mode, AES-CCM mode can be applied on a message composed only by cleartext authenticated data (i.e. only header, no payload). Note that this way of using CCM is not called CMAC (it is not similar to GCM/GMAC), and its usage is not recommended by NIST. 564/1709 RM0385 Rev 7 RM0385 20.3.5 Cryptographic processor (CRYP) CRYP procedure to perform a cipher operation Introduction To understand how the cryptographic peripheral operates, a typical cipher operation is described below. For the detailed peripheral usage according to the cipher mode, refer to the specific section, e.g. Section 20.3.11: CRYP AES basic chaining modes (ECB, CBC). The flowcharts shown in Figure 125 and Figure 126 describe the way STM32 cryptographic library implements DES (respectively AES) algorithm. The cryptographic processor accelerates the execution of the following cryptographic algorithms: Note: • AES-128, AES-192, AES-256 bit in the following modes: ECB, CBC, CTR, CCM, GCM • DES, TripleDES in the following modes: ECB, CBC For more details on the cryptographic library, refer to use manual UM1924 “STM32 crypto library” available from www.st.com. Figure 125. STM32 cryptolib DES/TDES flowcharts Encryption Decryption Begin Begin DES_x encrypt init DES_x decrypt init Error status Error status success success DES_x encrypt append AES_x decrypt append data to append Error status data to append Error status success success DES_x encrypt finish DES_x decrypt finish Error status Error status success success End End MSv43713V1 RM0385 Rev 7 565/1709 622 Cryptographic processor (CRYP) RM0385 Figure 126. STM32 cryptolib AES flowchart examples Encryption Authenticated Decryption Begin Begin AES_x encrypt init AES_x decrypt init Error status Error status success success AES_x encrypt append AES_x header append data to append Error status data to append Error status success AES_x decrypt append data to append Error status success success AES_x encrypt finish/final AES_x decrypt finish/final Error status Error status success success End MAC/Tag comparison End MSv43714V1 CRYP initialization 1. 566/1709 Initialize the cryptographic processor. The order of operations is not important except for AES-ECB and AES-CBC decryption, where the key preparation requires a specific sequence. a) Disable the cryptographic processor by setting to 0 the CRYPEN bit in the CRYP_CR register. b) Configure the key size (128-, 192- or 256-bit, in the AES only) with the KEYSIZE bits in the CRYP_CR register. c) Write the symmetric key into the CRYP_KxL/R registers (2 to 8 registers to be written depending on the algorithm). d) Configure the data type (1-, 8-, 16- or 32-bit), with the DATATYPE bits in the CRYP_CR register. e) In case of decryption in AES-ECB or AES-CBC mode, prepare the key that has been written. First configure the key preparation mode by setting the ALGOMODE bits to 0b111 in the CRYP_CR register. Then write the CRYPEN bit to 1: the BUSY RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) bit is set automatically. Wait until BUSY returns to 0 (CRYPEN is automatically cleared as well): the key is prepared for decryption. 2. f) Configure the algorithm and chaining with the ALGOMODE bits in the CRYP_CR register. g) Configure the direction (encryption/decryption) through the ALGODIR bit in the CRYP_CR register. h) When it is required (e.g. CBC or CTR chaining modes), write the initialization vectors into the CRYP_IVxL/R register. Flush the IN and OUT FIFOs by writing the FFLUSH bit to 1 in the CRYP_CR register. Preliminary warning for all cases If the ECB or CBC mode is selected and data are not a multiple of 64 bits (for DES) or 128 bits (for AES), the second and the last block management is more complex than the sequences below. Refer to Section 20.3.8: CRYP stealing and data padding for more details. Appending data using the CPU in polling mode 1. Enable the cryptographic processor by setting to 1 the CRYPEN bit in the CRYP_CR register. 2. Write data in the IN FIFO (one block or until the FIFO is full). 3. Repeat the following sequence until the second last block of data has been processed: a) Wait until the not-empty-flag OFNE is set to 1, then read the OUT FIFO (one block or until the FIFO is empty). b) Wait until the not-full-flag IFNF is set to 1, then write the IN FIFO (one block or until the FIFO is full) except if it is the last block. 4. The BUSY bit is set automatically by the cryptographic processor. At the end of the processing, the BUSY bit returns to 0 and both FIFOs are empty (IN FIFO empty flag IFEM=1 and OUT FIFO not empty flag OFNE=0). 5. If the next processing block is the last block, the CPU must pad (when applicable) the data with zeroes to obtain a complete block 6. When the operation is complete, the cryptographic processor can be disabled by clearing the CRYPEN bit in CRYP_CR register. Appending data using the CPU in interrupt mode 1. Enable the interrupts by setting the INIM and OUTIM bits in the CRYP_IMSCR register. 2. Enable the cryptographic processor by setting to 1 the CRYPEN bit in the CRYP_CR register. 3. 4. In the interrupt service routine that manages the input data: a) If the last block is being loaded, the CPU must pad (when applicable) the data with zeroes to have a complete block. Then load the block into the IN FIFO. b) If it is not the last block, load the data into the IN FIFO. You can load only one block (2 words for DES, 4 words for AES), or load data until the FIFO is full. c) In all cases, after the last word of data has been written, disable the interrupt by clearing the INIM interrupt mask. In the interrupt service routine that manages the input data: RM0385 Rev 7 567/1709 622 Cryptographic processor (CRYP) RM0385 a) Read the output data from the OUT FIFO. You can read only one block (2 words for DES, 4 words for AES), or read data until the FIFO is empty. b) When the last word has been read, INIM and BUSY bits are set to 0 and both FIFOs are empty (IFEM=1 and OFNE=0). You can disable the interrupt by clearing the OUTIM bit, and disable the peripheral by clearing the CRYPEN bit. c) If you read the last block of cleartext data (i.e. decryption), optionally discard the data that is not part of message/payload. Appending data using the DMA 1. Prepare the last block of data by optionally padding it with zeroes to have a complete block. 2. Configure the DMA controller to transfer the input data from the memory and transfer the output data from the peripheral to the memory, as described in Section 20.3.19: CRYP DMA interface. The DMA should be configured to set an interrupt on transfer completion to indicate that the processing is complete. 3. Enable the cryptographic processor by setting to 1 the CRYPEN bit in CRYP_CR register, then enable the DMA IN and OUT requests by setting to 1 the DIEN and DOEN bits in the CRYP_DMACR register. 4. All the transfers and processing are managed by the DMA and the cryptographic processor. The DMA interrupt indicates that the processing is complete. Both FIFOs are normally empty and BUSY flag is set 0. Caution: It is important that DMA controller empties the cryptographic processor output FIFO before filling up the cryptographic processor input FIFO. To achieve this, the DMA controller should be configured so that the transfer from the cryptographic peripheral to the memory has a higher priority than the transfer from the memory to the cryptographic peripheral. 20.3.6 CRYP busy state The cryptographic processor is busy and processing data (BUSY set to 1 in CRYP_SR register) when all the conditions below are met: • CRYPEN = 1 in CRYP_CR register. • There are enough data in the input FIFO (at least two words for the DES or TDES algorithm mode, four words for the AES algorithm mode). • There is enough free-space in the output FIFO (at least two word locations for DES, four for AES). Write operations to the CRYP_Kx(L/R)R key registers, to the CRYP_IVx(L/R)R initialization registers, or to bits [9:2] of the CRYP_CR register, are ignored when cryptographic processor is busy (i.e. the registers are not modified). It is thus not possible to modify the configuration of the cryptographic processor while it is processing a data block. It is possible to clear the CRYPEN bit while BUSY bit is set to 1. In this case the ongoing DES/TDES or AES processing first completes (i.e. the word results are written to the output FIFO) before the BUSY bit is cleared by hardware. Note: If the application needs to suspend a message to process another one with a higher priority, refer to Section 20.3.9: CRYP suspend/resume operations When a block is being processed in DES or TDES mode, if the output FIFO becomes full and the input FIFO contains at least one new block, then the new block is popped off the 568/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) input FIFO and the BUSY bit remains high until there is enough space to store this new block into the output FIFO. 20.3.7 Preparing the CRYP AES key for decryption When performing an AES ECB or CBC decryption, the AES key has to be prepared, i.e. a complete key schedule of encryption is required before performing the decryption. In other words, the key in the last round of encryption must be used as the first round key for decryption. This preparation is not required in any other AES modes than AES ECB or CBC decryption. If the application software stores somehow the initial key prepared for decryption, the key scheduling operation can be performed only once for all the data to be decrypted with a given cipher key. Note: The latency of the key preparation operation is 14, 16 or 18 clock cycles depending on the key size (128-, 192- or 256-bit). The CRYP key preparation process is performed as follow: 1. Write the encryption key to K0...K3 key registers. 2. Program ALGOMODE bits to 0b111 in CRYP_CR. Writing this value when CRYPEN is et to 1 immediately starts an AES round for key preparation. The BUSY bit in the CRYP_SR register is set to 1. 3. When the key processing is complete, the resulting key is copied back into the K0...K3 key registers, and the BUSY bit is cleared. Note: As the CRYPEN bitfield is reset by hardware at the end of the key preparation, the application software must set it again for the next operation. 20.3.8 CRYP stealing and data padding When using DES or AES algorithm in ECB or CBC modes to manage messages that are not multiple of the block size (64 bits for DES, 128 bits for AES), use ciphertext stealing techniques such as those described in NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation: Three Variants of Ciphertext Stealing for CBC Mode. Since the cryptographic processor does not implement such techniques, the last two blocks must be handled in a special way by the application. Note: Ciphertext stealing techniques are not documented in this reference manual. Similarly, when the AES algorithm is used in other modes than ECB or CBC, incomplete input data blocks (i.e. block shorter than 128 bits) have to be padded with zeroes by the application prior to encryption (i.e. extra bits should be appended to the trailing end of the data string). After decryption, the extra bits have to be discarded. The cryptographic processor does not implement automatic data padding operation to the last block, so the application should follow the recommendation given in Section 20.3.5: CRYP procedure to perform a cipher operation to manage messages that are not multiple of 128 bits. Note: Padding data are swapped in a similar way as normal data, according to the DATATYPE field in CRYP_CR register (see Section 20.3.16: CRYP data registers and data swapping for details). RM0385 Rev 7 569/1709 622 Cryptographic processor (CRYP) RM0385 With this version of cryptographic processor, a special workaround is required in order to properly compute authentication tags while doing a GCM encryption or a CCM decryption with the last block of payload size inferior to 128 bits. This workaround is described below: • • 570/1709 During GCM encryption payload phase and before inserting a last plaintext block smaller than 128 bits, the application has to follow the below sequence: a) Disable the peripheral by setting the CRYPEN bit to 0 in CRYP_CR. b) Load CRYP_IV1R register content in a temporary variable. Decrement the value by 1 and reinsert the result in CRYP_IV1R register. c) Change the AES mode to CTR mode by writing the ALGOMODE bitfield to 0b0110 in the CRYP_CR register. a) Set the CRYPEN bit to 1 in CRYP_CR to enable again the peripheral. b) Pad the last block (smaller than 128 bits) with zeros to have a complete block of 128 bits, then write it into CRYP_DIN register. c) Upon encryption completion, read the 128-bit generated ciphertext from the CRYP_DOUT register and store it as intermediate data. d) Change again the AES mode to GCM mode by writing the ALGOMODE bitfield to 0b1000 in the CRYP_CR register. e) Select Final phase by writing the GCM_CCMPH bitfield to 0b11 in the CRYP_CR register. f) In the intermediate data, set to 0 the bits corresponding to the padded bits of the last payload block then insert the resulting data to CRYP_DIN register. g) When the operation is complete, read data from CRYP_DOUT. These data have to be discarded. h) Apply the normal Final phase as described in Section 20.3.13: CRYP AES Galois/counter mode (GCM). During CCM decryption payload phase and before inserting a last ciphertext block smaller than 128 bits, the application has to follow the below sequence: a) To disable the peripheral, set the CRYPEN bit to 0 in CRYP_CR. b) Load CRYP_IV1R in a temporary variable (named here IV1temp). c) Load CRYP_CSGCMCCM0R, CRYP_CSGCMCCM1R, CRYP_CSGCMCCM2R, and CRYP_CSGCMCCM3R registers content from LSB to MSB in 128-bit temporary variable (named here temp1). d) Load in CRYP_IV1R the content previously stored in IV1temp. e) Change the AES mode to CTR mode by writing the ALGOMODE bitfield to 0b0110 in the CRYP_CR register. a) Set the CRYPEN bit to 1 in CRYP_CR to enable again the peripheral. b) Pad the last block (smaller than 128 bits) with zeros to have a complete block of 128 bits, then write it to CRYP_DIN register. c) Upon decryption completion, read the 128-bit generated data from DOUT register, and store them as intermediate data (here named intdata_o). d) Save again CRYP_CSGCMCCM0R, CRYP_CSGCMCCM1R, CRYP_CSGCMCCM2R, and CRYP_CSGCMCCM3R registers content, from LSB to MSB, in a new 128-bit temporary variable (named here temp2). e) Change again the AES mode to CCM mode by writing the ALGOMODE bitfield to 0b1001 in the CRYP_CR register. RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) f) Select the header phase by writing the GCM_CCMPH bitfield to 0b01 in the CRYP_CR register. g) In the intermediate data (intdata_o which was generated with CTR), set to 0 the bits corresponding to the padded bits of the last payload block, XOR with temp1, XOR with temp2, and insert the resulting data into CRYP_DIN register. In other words: CRYP_DIN=(intdata_o AND mask) XOR temp1 XOR temp2. 20.3.9 h) Wait for operation completion. i) Apply the normal Final phase as described in Section 20.3.15: CRYP AES Counter with CBC-MAC (CCM). CRYP suspend/resume operations A message can be suspended if another message with a higher priority has to be processed. When this highest priority message has been sent, the suspended message can be resumed in both encryption or decryption mode. Suspend/resume operations do not break the chaining operation and the message processing can be resumed as soon as cryptographic processor is enabled again to receive the next data block. Figure 127 gives an example of suspend.resume operation: message 1 is suspended in order to send a higher priority message (message 2), which is shorter than message 1 (AES algorithm). Figure 127. Example of suspend mode management Message 2 Message 1 128-bit block 1 128-bit block 2 New higher priority message 2 to be processed 128-bit block 3 CRYP suspend sequence 128-bit block 1 128-bit block 2 128-bit block 4 128-bit block 5 CRYP resume sequence 128-bit block 6 ... MSv43715V1 A detailed description of suspend/resume operations can be found in each AES mode section. RM0385 Rev 7 571/1709 622 Cryptographic processor (CRYP) 20.3.10 RM0385 CRYP DES/TDES basic chaining modes (ECB, CBC) Overview FIPS PUB 46-3 – 1999 (and ANSI X9.52-1998) provides a thorough explanation of the processing involved in the four operation modes supplied by the DES computing core: TDES-ECB encryption, TDES-ECB decryption, TDES-CBC encryption and TDES-CBC decryption. This section only gives a brief explanation of each mode. DES/TDES-ECB encryption Figure 128 illustrates the encryption in DES and TDES Electronic CodeBook (DES/TDESECB) mode. This mode is selected by writing in ALGOMODE to 0b000 and ALGODIR to 0 in CRYP_CR. Figure 128. DES/TDES-ECB mode encryption IN FIFO plaintext P P, 64 bits DATATYPE swapping 64 DEA, encrypt K1 64 DEA, decrypt K2 64 K3 DEA, encrypt O, 64 bits DATATYPE swapping C, 64 bits OUT FIFO ciphertext C ai16069b 1. K: key; C: cipher text; I: input block; O: output block; P: plain text. A 64-bit plaintext data block (P) is used after bit/byte/half-word as the input block (I). The input block is processed through the DEA in the encrypt state using K1. The output of this process is fed back directly to the input of the DEA where the DES is performed in the decrypt state using K2. The output of this process is fed back directly to the input of the DEA where the DES is performed in the encrypt state using K3. The resultant 64-bit output block (O) is used, after bit/byte/half-word swapping, as ciphertext (C) and it is pushed into the OUT FIFO. Note: For more information on data swapping, refer to Section 20.3.16: CRYP data registers and data swapping. Detailed DES/TDES encryption sequence can be found in Section 20.3.5: CRYP procedure to perform a cipher operation. 572/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) DES/TDES-ECB mode decryption Figure 129 illustrates the decryption in DES and TDES Electronic CodeBook (DES/TDESECB) mode. This mode is selected by writing ALGOMODE to 0b000 and ALGODIR to 1 in CRYP_CR. Figure 129. DES/TDES-ECB mode decryption IN FIFO ciphertext C C, 64 bits DATATYPE swapping I, 64 bits 64 DEA, decrypt K3 64 DEA, encrypt K2 64 K1 DEA, decrypt O, 64 bits DATATYPE swapping P, 64 bits OUT FIFO plaintext P MS19021V1 1. K: key; C: cipher text; I: input block; O: output block; P: plain text. A 64-bit ciphertext block (C) is used, after bit/byte/half-word swapping, as the input block (I). The keying sequence is reversed compared to that used in the encryption process. The input block is processed through the DEA in the decrypt state using K3. The output of this process is fed back directly to the input of the DEA where the DES is performed in the encrypt state using K2. The new result is directly fed to the input of the DEA where the DES is performed in the decrypt state using K1. The resultant 64-bit output block (O), after bit/byte/half-word swapping, produces the plaintext (P). Note: For more information on data swapping refer to Section 20.3.16: CRYP data registers and data swapping. Detailed DES/TDES encryption sequence can be found in Section 20.3.5: CRYP procedure to perform a cipher operation. RM0385 Rev 7 573/1709 622 Cryptographic processor (CRYP) RM0385 DES/TDES-CBC encryption Figure 130 illustrates the encryption in DES and TDES Cipher Block Chaining (DES/TDESECB) mode. This mode is selected by writing in ALGOMODE to 0b001 and ALGODIR to 0 in CRYP_CR. Figure 130. DES/TDES-CBC mode encryption IN FIFO plaintext P P, 64 bits DATATYPE AHB2 data write (before CRYP is enabled) swapping + I, 64 bits 64 DEA, encrypt K1 O is written back into IV at the same time as it is pushed into the OUT FIFO Ps, 64 bits 64 IV0(L/R) 64 DEA, decrypt K2 64 K3 DEA, encrypt O, 64 bits DATATYPE swapping C, 64 bits OUT FIFO ciphertext C ai16070b K: key; C: cipher text; I: input block; O: output block; Ps: plain text before swapping (when decoding) or after swapping (when encoding); P: plain text; IV: initialization vectors. This mode begins by dividing a plaintext message into 64-bit data blocks. In TCBC encryption, the first input block (I1), obtained after bit/byte/half-word swapping, is formed by exclusive-ORing the first plaintext data block (P1) with a 64-bit initialization vector IV (I1 = IV ⊕ P1). The input block is processed through the DEA in the encrypt state using K1. The output of this process is fed back directly to the input of the DEA, which performs the DES in the decrypt state using K2. The output of this process is fed directly to the input of the DEA, which performs the DES in the encrypt state using K3. The resultant 64-bit output block (O1) is used directly as the ciphertext (C1), that is, C1 = O1. This first ciphertext block is then exclusive-ORed with the second plaintext data block to produce the second input block, (I2) = (C1 ⊕ P2). Note that I2 and P2 now refer to the second block. The second input block is processed through the TDEA to produce the second ciphertext block. This encryption process continues to “chain” successive cipher and plaintext blocks together until the last plaintext block in the message is encrypted. If the message does not consist of an integral number of data blocks, then the final partial data block should be encrypted in a manner specified for the application. 574/1709 RM0385 Rev 7 RM0385 Note: Cryptographic processor (CRYP) For more information on data swapping refer to Section 20.3.16: CRYP data registers and data swapping. Detailed DES/TDES encryption sequence can be found in Section 20.3.5: CRYP procedure to perform a cipher operation. DES/TDES-CBC decryption Figure 130 illustrates the decryption in DES and TDES Cipher Block Chaining (DES/TDESECB) mode. This mode is selected by writing ALGOMODE to 0b001 and ALGODIR to 1 in CRYP_CR. Figure 131. DES/TDES-CBC mode decryption IN FIFO ciphertext C C, 64 bits DATATYPE swapping I, 64 bits 64 I is written back into IV at the same time as P is pushed into the OUT FIFO DEA, decrypt K3 64 DEA, encrypt K2 64 K1 AHB2 data write (before CRYP is enabled) DEA, decrypt O, 64 bits 64 IV0(L/R) + Ps, 64 bits DATATYPE swapping P, 64 bits OUT FIFO plaintext P MS19022V1 1. K: key; C: cipher text; I: input block; O: output block; Ps: plain text before swapping (when decoding) or after swapping (when encoding); P: plain text; IV: initialization vectors. In this mode the first ciphertext block (C1) is used directly as the input block (I1). The keying sequence is reversed compared to that used for the encrypt process. The input block is processed through the DEA in the decrypt state using K3. The output of this process is fed directly to the input of the DEA where the DES is processed in the encrypt state using K2. This resulting value is directly fed to the input of the DEA where the DES is processed in the decrypt state using K1. The resulting output block is exclusive-ORed with the IV (which must be the same as that used during encryption) to produce the first plaintext block (P1 = O1 ⊕ IV). The second ciphertext block is then used as the next input block and is processed through the TDEA. The resulting output block is exclusive-ORed with the first ciphertext block to produce the second plaintext data block (P2 = O2 ⊕ C1). Note that P2 and O2 refer to the second block of data. RM0385 Rev 7 575/1709 622 Cryptographic processor (CRYP) RM0385 The DES/TDES-CBC decryption process continues in this manner until the last complete ciphertext block has been decrypted. Ciphertext representing a partial data block must be decrypted in a manner specified for the application. Note: For more information on data swapping refer to Section 20.3.16: CRYP data registers and data swapping. Detailed DES/TDES encryption sequence can be found in Section 20.3.5: CRYP procedure to perform a cipher operation. DES/TDES suspend/resume operations in ECB/CBC modes Before interrupting the current message, the user application must respect the following steps: Note: 1. If DMA is used, stop the DMA transfers to the IN FIFO by clearing to 0 the DIEN bit in the CRYP_DMACR register. 2. Wait until both the IN and the OUT FIFOs are empty (IFEM=1 and OFNE=0 in the CRYP_SR) and the BUSY bit is cleared. Alternatively, as the input FIFO can contain up to four unprocessed DES blocks, the application could decide for real-time reason to interrupt the cryptographic processing without waiting for the IN FIFO to be empty. In this case, the alternative is: a) Wait until OUT FIFO is empty (OFNE=0). b) Read back the data loaded in the IN FIFO that have not been processed and save them in the memory until the IN FIFO is empty. 3. If DMA is used stop the DMA transfers from the OUT FIFO by clearing to 0 the DOEN bit in the CRYP_DMACR register. 4. Disable the cryptographic processor by setting the CRYPEN bit to 0 in CRYP_CR, then save the current configuration (bits [9:2] in the CRYP_CR register). If CBC mode is selected, save the initialization vector registers, since CRYP_IVx registers have changed from initial values during the data processing. Key registers do not need to be saved as the original key value is known by the application. 5. If DMA is used, save the DMA controller status (such as the pointers to IN and OUT data transfers, number of remaining bytes). To resume message processing, the user application must respect the following sequence: 576/1709 1. If DMA is used, reconfigure the DMA controller to complete the rest of the FIFO IN and FIFO OUT transfers. 2. Make sure the cryptographic processor is disabled by reading the CRYPEN bit in CRYP_CR (it must be 0). 3. Configure again the cryptographic processor with the initial setting in CRYP_CR, as well as the key registers using the saved configuration. 4. If the CBC mode is selected, restore CRYP_IVx registers using the saved configuration. 5. Optionally, write the data that were saved during context saving into the IN FIFO. 6. Enable the cryptographic processor by setting the CRYPEN bit to 1. 7. If DMA is used, enable again DMA requests for the cryptographic processor, by setting to 1 the DIEN and DOEN bits in the CRYP_DMACR register. RM0385 Rev 7 RM0385 20.3.11 Cryptographic processor (CRYP) CRYP AES basic chaining modes (ECB, CBC) Overview FIPS PUB 197 (November 26, 2001) provides a thorough explanation of the processing involved in the four basic operation modes supplied by the AES computing core: AES-ECB encryption, AES-ECB decryption, AES-CBC encryption and AES-CBC decryption. This section only gives a brief explanation of each mode. AES ECB encryption Figure 132 illustrates the AES Electronic codebook (AES-ECB) mode encryption. This mode is selected by writing ALGOMODE to 0b100 and ALGODIR to 0 in CRYP_CR. Figure 132. AES-ECB mode encryption IN FIFO plaintext P P, 128 bits DATATYPE swapping K 0...3(1) I, 128 bits 128/192 or 256 AEA, encrypt DATATYPE swapping C, 128 bits OUT FIFO ciphertext C ai16071b 1. K: key; C: cipher text; I: input block; O: output block; P: plain text. 2. If Key size = 128: Key = [K3 K2]. If Key size = 192: Key = [K3 K2 K1] If Key size = 256: Key = [K3 K2 K1 K0]. In this mode a 128- bit plaintext data block (P) is used after bit/byte/half-word swapping as the input block (I). The input block is processed through the AEA in the encrypt state using the 128, 192 or 256-bit key. The resultant 128-bit output block (O) is used after bit/byte/halfword swapping as ciphertext (C). It is then pushed into the OUT FIFO. For more information on data swapping refer to Section 20.3.16: CRYP data registers and data swapping. RM0385 Rev 7 577/1709 622 Cryptographic processor (CRYP) RM0385 AES ECB decryption Figure 133 illustrates the AES Electronic codebook (AES-ECB) mode decryption. This mode is selected by writing in ALGOMODE to 0b100 and ALGODIR to 1 in CRYP_CR. Figure 133. AES-ECB mode decryption IN FIFO ciphertext C C, 128 bits DATATYPE swapping K 0...3(1) 128/192 or 256 I, 128 bits AEA, decrypt O, 128 bits DATATYPE swapping P, 128 bits OUT FIFO plaintext P MS19023V1 1. K: key; C: cipher text; I: input block; O: output block; P: plain text. 2. If Key size = 128 => Key = [K3 K2]. If Key size = 192 => Key = [K3 K2 K1] If Key size = 256 => Key = [K3 K2 K1 K0]. To perform an AES decryption in ECB mode, the secret key has to be prepared (it is necessary to execute the complete key schedule for encryption) by collecting the last round key, and using it as the first round key for the decryption of the ciphertext. This preparation phase is computed by the AES core. Refer to Section 20.3.7: Preparing the CRYP AES key for decryption for more details on how to prepare the key. When the key preparation is complete, the decryption proceed as follow: a 128-bit ciphertext block (C) is used after bit/byte/half-word swapping as the input block (I). The keying sequence is reversed compared to that of the encryption process. The resultant 128-bit output block (O), after bit/byte or half-word swapping, produces the plaintext (P). The AESCBC decryption process continues in this manner until the last complete ciphertext block has been decrypted. For more information on data swapping refer to Section 20.3.16: CRYP data registers and data swapping. 578/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) AES CBC encryption Figure 134 illustrates the AES Cipher block chaining (AES-CBC) mode encryption. This mode is selected by writing ALGOMODE to 0b101 and ALGODIR to 0 in CRYP_CR. Figure 134. AES-CBC mode encryption IN FIFO plaintext P P, 128 bits DATATYPE AHB2 data write (before CRYP is enabled) IV=[IV1 IV0](2) 128, 192 or 256 K 0...3(3) swapping 128 Ps, 128 bits + I, 128 bits AEA, encrypt O is written back into IV at the same time as it is pushed into the OUT FIFO O, 128 bits DATATYPE swapping C, 128 bits OUT FIFO ciphertext C ai16072b 1. K: key; C: cipher text; I: input block; O: output block; Ps: plain text before swapping (when decoding) or after swapping (when encoding); P: plain text; IV: Initialization vectors. 2. IVx=[IVxR IVxL], R=right, L=left. 3. If Key size = 128 => Key = [K3 K2]. If Key size = 192 => Key = [K3 K2 K1] If Key size = 256 => Key = [K3 K2 K1 K0]. In this mode the first input block (I1) obtained after bit/byte/half-word swapping is formed by exclusive-ORing the first plaintext data block (P1) with a 128-bit initialization vector IV (I1 = IV ⊕ P1). The input block is processed through the AEA in the encrypt state using the 128-, 192- or 256-bit key (K0...K3). The resultant 128-bit output block (O1) is used directly as ciphertext (C1), that is, C1 = O1. This first ciphertext block is then exclusive-ORed with the second plaintext data block to produce the second input block, (I2) = (C1 ⊕ P2). Note that I2 and P2 now refer to the second block. The second input block is processed through the AEA to produce the second ciphertext block. This encryption process continues to “chain” successive cipher and plaintext blocks together until the last plaintext block in the message is encrypted. If the message does not consist of an integral number of data blocks, then the final partial data block should be encrypted in a manner specified for the application, as explained in Section 20.3.8: CRYP stealing and data padding. For more information on data swapping, refer to Section 20.3.16: CRYP data registers and data swapping. RM0385 Rev 7 579/1709 622 Cryptographic processor (CRYP) RM0385 AES CBC decryption Figure 135 illustrates the AES Cipher block chaining (AES-CBC) mode decryption. This mode is selected by writing ALGOMODE to 0b101 and ALGODIR to 1 in CRYP_CR. Figure 135. AES-CBC mode decryption IN FIFO ciphertext C C, 128 bits DATATYPE swapping I, 128 bits 128, 192 or 256 K 0...3(3) AEA, decrypt I is written back into IV at the same time as P is pushed into the OUT FIFO AHB2 data write (before CRYP is enabled) 128 IV=[IV1 IV0](2) DATATYPE O, 128 bits + Ps, 128 bits swapping P, 128 bits OUT FIFO plaintext P MS19024V1 1. K: key; C: cipher text; I: input block; O: output block; Ps: plain text before swapping (when decoding) or after swapping (when encoding); P: plain text; IV: Initialization vectors. 2. IVx=[IVxR IVxL], R=right, L=left. 3. If Key size = 128 => Key = [K3 K2]. If Key size = 192 => Key = [K3 K2 K1] If Key size = 256 => Key = [K3 K2 K1 K0]. In CBC mode, like in ECB mode, the secret key must be prepared to perform an AES decryption. Refer to Section 20.3.7: Preparing the CRYP AES key for decryption for more details on how to prepare the key. When the key preparation process is complete, the decryption proceeds as follow: the first 128-bit ciphertext block (C1) is used directly as the input block (I1). The input block is processed through the AEA in the decrypt state using the 128-, 192- or 256-bit key. The resulting output block is exclusive-ORed with the 128-bit initialization vector IV (which must be the same as that used during encryption) to produce the first plaintext block (P1 = O1 ⊕ IV). The second ciphertext block is then used as the next input block and is processed through the AEA. The resulting output block is exclusive-ORed with the first ciphertext block to produce the second plaintext data block (P2 = O2 ⊕ C1). Note that P2 and O2 refer to the second block of data. The AES-CBC decryption process continues in this manner until the last complete ciphertext block has been decrypted. 580/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) Ciphertext representing a partial data block must be decrypted in a manner specified for the application, as explained in Section 20.3.8: CRYP stealing and data padding. For more information on data swapping, refer to Section 20.3.16: CRYP data registers and data swapping. AES suspend/resume operations in ECB/CBC modes Before interrupting the current message, the user application must respect the following sequence: Note: 1. If DMA is used, stop the DMA transfers to the IN FIFO by clearing to 0 the DIEN bit in the CRYP_DMACR register. 2. Wait until both the IN and the OUT FIFOs are empty (IFEM=1 and OFNE=0 in the CRYP_SR) and the BUSY bit is cleared. 3. If DMA is used, stop the DMA transfers from the OUT FIFO by clearing to 0 the DOEN bit in the CRYP_DMACR register. 4. Disable the CRYP by setting the CRYPEN bit to 0 in CRYP_CR, then save the current configuration (bits [9:2] in the CRYP_CR register). If ECB mode is not selected, save the initialization vector registers, because CRYP_IVx registers have changed from initial values during the data processing. Key registers do not need to be saved as the original key value is known by the application. 5. If DMA is used, save the DMA controller status (such as pointers to IN and OUT data transfers, number of remaining bytes). To resume message processing, the user application must respect the following sequence: 1. If DMA is used, reconfigure the DMA controller to complete the rest of the FIFO IN and FIFO OUT transfers. 2. Make sure the cryptographic processor is disabled by reading the CRYPEN bit in CRYP_CR (it must be set to 0). 3. Configure the cryptographic processor again with the initial setting in CRYP_CR, as well as the key registers using the saved configuration. 4. For AES-ECB or AES-CBC decryption, the key must be prepared again, as described in Section 20.3.7: Preparing the CRYP AES key for decryption. 5. If ECB mode is not selected, restore CRYP_IVx registers using the saved configuration. 6. Enable the cryptographic processor by setting the CRYPEN bit to 1. 7. If DMA is used, enable again the DMA requests from the cryptographic processor, by setting DIEN and DOEN bits to 1 in the CRYP_DMACR register. RM0385 Rev 7 581/1709 622 Cryptographic processor (CRYP) 20.3.12 RM0385 CRYP AES counter mode (AES-CTR) Overview The AES counter mode (CTR) uses the AES block as a key stream generator. The generated keys are then XORed with the plaintext to obtain the ciphertext. CTR chaining is defined in NIST Special Publication 800-38A, Recommendation for Block Cipher Modes of Operation. A typical message construction in CTR mode is given in Figure 136. Figure 136. Message construction for the Counter mode 16-Bytes boundaries CTR mode Encrypted Ciphertext (C) Pad ding decrypt ICB 4-Bytes boundaries Nonce Plaintext (P) Initialization vector (IV) Counter (0x1) MSv43716V1 The structure of this message is as below: • • 582/1709 A 16-byte Initial Counter Block (ICB), composed of three distinct fields: – A nonce: a 32-bit, single-use value (i.e. a new nonce should be assigned to each new communication). – The initialization vector (IV): a 64-bit value that must be unique for each execution of the mode under a given key. – The counter: a 32-bit big-endian integer that is incremented each time a block has been processed. The initial value of the counter should be set to 1. The plaintext (P) is both authenticated and encrypted as ciphertext C, with a known length. This length can be non-multiple of 16 bytes, in which case a plaintext padding is required. RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) AES CTR processing Figure 137 (respectively Figure 138) describes the AES-CTR encryption (respectively decryption) process implemented within this peripheral. This mode is selected by writing in ALGOMODE bitfield to 0b110 in CRYP_CR. Figure 137. AES-CTR mode encryption IN FIFO plaintext P P, 128 bits AHB2 data write (before CRYP is enabled) DATATYPE swapping IV0...1(L/R) Ps, 128 bits +1 K0...3 I, 128 bits 128, 192 or 256 AEA, encrypt (I + 1) is written back into IV at same time than C is pushed in OUT FIFO O, 128 bits + Cs, 128 bit DATATYPE swapping C, 128 bits OUT FIFO ciphertext C ai16073b 1. K: key; C: cipher text; I: input Block; o: output block; Ps: plain text before swapping (when decoding) or after swapping (when encoding); Cs: cipher text after swapping (when decoding) or before swapping (when encoding); P: plain text; IV: Initialization vectors. RM0385 Rev 7 583/1709 622 Cryptographic processor (CRYP) RM0385 Figure 138. AES-CTR mode decryption IN FIFO ciphertext P C, 128 bits AHB2 data write (before CRYP is enabled) DATATYPE swapping IV0...1(L/R) Cs, 128 bits +1 I, 128 bits 128, 192 or 256 K0...3 AEA, encrypt (I + 1) is written back into IV at same time than P is pushed in OUT FIFO O, 128 bits + Ps, 128 bits DATATYPE swapping P, 128 bits OUT FIFO plaintext C MS19025V1 1. K: key; C: cipher text; I: input Block; o: output block; Ps: plain text before swapping (when decoding) or after swapping (when encoding); Cs: cipher text after swapping (when decoding) or before swapping (when encoding); P: plain text; IV: Initialization vectors. In CTR mode, the output block is XORed with the subsequent input block before it is input to the algorithm. Initialization vectors in the peripheral must be initialized as shown on Table 124. Table 124. Counter mode initialization vector CRYP_IV1R[31:0] CRYP_IV1L[31:0] CRYP_IV0R[31:0] CRYP_IV0L[31:0] nonce IV[63:32] IV[31:0] 32-bit counter= 0x1 Unlike in CBC mode, which uses the CRYP_IVx registers only once when processing the first data block, in CTR mode IV registers are used for processing each data block, and the peripheral increments the least significant 32 bits (leaving the other most significant 96 bits unchanged). CTR decryption does not differ from CTR encryption, since the core always encrypts the current counter block to produce the key stream that will be XORed with the plaintext or cipher as input. Thus when ALGOMODE is set to 0b110, ALGODIR is don’t care. Note: 584/1709 In this mode the key must NOT be prepared for decryption. RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) The following sequence must be used to perform an encryption or a decryption in CTR chaining mode: 1. Make sure the cryptographic processor is disabled by clearing the CRYPEN bit in the CRYP_CR register. 2. Configure CRYP_CR as follows: a) Program ALGOMODE bits to 0b110 to select CTR mode. b) Configure the data type (1, 8, 16 or 32 bits) through the DATATYPE bits. 3. Initialize the key registers (128,192 and 256 bits) in CRYP_KEYRx as well as the initialization vector (IV) as described in Table 124. 4. Flush the IN and OUT FIFOs by writing the FFLUSH bit to 1 in the CRYP_CR register. 5. If it is the last block, optionally pad the data with zeros to have a complete block. 6. Append data in the cryptographic processor and read the result. The three possible scenarios are described in Section 20.3.5: CRYP procedure to perform a cipher operation. 7. Repeat the previous step until the second last block is processed. For the last block, execute the two previous steps. For this last block, the driver must discard the data that is not part of the data when the last block size is less than 16 bytes. Suspend/resume operations in CTR mode Like for the CBC mode, it is possible to interrupt a message to send a higher priority message, and resume the message which was interrupted. Detailed CBC sequence can be found in Section 20.3.11: CRYP AES basic chaining modes (ECB, CBC). Note: Like for CBC mode, IV registers must be reloaded during the resume operation. RM0385 Rev 7 585/1709 622 Cryptographic processor (CRYP) 20.3.13 RM0385 CRYP AES Galois/counter mode (GCM) Overview The AES Galois/counter mode (GCM) allows encrypting and authenticating the plaintext, and generating the correspondent ciphertext and tag (also known as message authentication code). To ensure confidentiality, GCM algorithm is based on AES counter mode. It uses a multiplier over a fixed finite field to generate the tag. GCM chaining is defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation - Galois/Counter Mode (GCM) and GMAC. A typical message construction in GCM mode is given in Figure 139. Figure 139. Message construction for the Galois/counter mode [Len(A)]64 Len(A) 16-Bytes boundaries Additional Authenticated Data (AAD) Len(P) = Len(C) Padding ‘0’ Paddi ng ‘0’ Plaintext (P) Last Block Counter (0x1) authentication Initialization vector (IV) Zeroe d bits Authenticated & Encrypted Ciphertext (C) authentication 4-Bytes boundaries authentication encry pt ICB [Len(C)]64 AuthTag (T) MSv43717V1 The structure of this message is defined as below: • Note: 586/1709 A 16-byte Initial Counter Block (ICB), composed of two distinct fields: – The initialization vector (IV): a 96-bit value that must be unique for each execution of the mode under a given key. Note that the GCM standard supports IV that are shorter than 96-bit, but in this case strict rules apply. – The counter: a 32-bit big-endian integer that is incremented each time a block has been processed. According to NIST specification, the counter value is 0x2 when processing the first block of payload. • The authenticated header A (also knows as Additional Authentication Data) has a known length Len(A) that can be non-multiple of 16 bytes and cannot exceed 264-1 bits. This part of the message is only authenticated, not encrypted. • The plaintext message (P) is both authenticated and encrypted as ciphertext C, with a known length Len(P) that can be non-multiple of 16 bytes, and cannot exceed 232 -2 blocks of 128-bits. GCM standard specifies that ciphertext C has same bit length as the plaintext P. • When a part of the message (AAD or P) has a length which is non-multiple of 16 bytes, a special padding scheme is required. • The last block is composed of the length of A (on 64 bits) and the length of ciphertext C (on 64 bits) as shown inTable 125. RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) Table 125. GCM last block definition Endianness Input data Bit[0] Bit[32] 0x0 Bit[64] Header length[31:0] Bit[96] 0x0 Payload length[31:0] AES GCM processing This mode is selected by writing ALGOMODE bitfield to 0b110 in CRYP_CR. The mechanism for the confidentiality of the plaintext in GCM mode is a variation of the Counter mode, with a particular 32-bit incrementing function that generates the necessary sequence of counter blocks. CRYP_IV registers are used for processing each data block. The cryptographic processor automatically increments the 32 least signification bits of the counter block. The first counter block (CB1) written by the application is equal to the Initial Counter Block incremented by one (see Table 126). Table 126. GCM mode IV registers initialization Note: Register CRYP_IV1R[31:0] CRYP_IV1L[31:0] CRYP_IV0R[31:0] CRYP_IV0L[31:0] Input data ICB[127:96] ICB[95:64] ICB[63:32] ICB[31:0] 32-bit counter= 0x2 In this mode the key must NOT be prepared for decryption. The authentication mechanism in GCM mode is based on a hash function, called GF2mul, that performs multiplication by a fixed parameter, called the hash subkey (H), within a binary Galois field. To process a GCM message, the driver must go through four phases, which are described in the following subsections. • The Init phase: the peripheral prepares the GCM hash subkey (H) and performs the IV processing • The Header phase: the peripheral processes the Additional Authenticated Data (AAD), with hash computation only. • The Payload phase: the peripheral processes the plaintext (P) with hash computation, keystream encryption and data XORing. It operates in a similar way for ciphertext (C). • The Final phase: the peripheral generates the authenticated tag (T) using the data last block. RM0385 Rev 7 587/1709 622 Cryptographic processor (CRYP) 1. RM0385 GCM init phase During this first step, the GCM hash subkey (H) is calculated and saved internally to be used for processing all the blocks. It is recommended to follow the sequence below: 2. a) Make sure the cryptographic processor is disabled by clearing the CRYPEN bit in the CRYP_CR register. b) Select the GCM chaining mode by programming ALGOMODE bits to 0b01000 in CRYP_CR. c) Configure GCM_CCMPH bits to 0b00 in CRYP_CR to indicate that the init phase is ongoing. d) Initialize the key registers (128, 192 and 256 bits) in CRYP_KEYRx as well as the initialization vector (IV) as defined in Table 126. e) Set CRYPEN bit to 1 to start the calculation of the hash key. f) Wait for the CRYPEN bit to be cleared to 0 by the cryptographic processor, before moving on to the next phase. GCM header phase The below sequence shall be performed after the GCM init phase. It must be complete before jumping to the payload phase. The sequence is identical for encryption and decryption. Note: g) Set the GCM_CCMPH bits to 0b01 in CRYP_CR to indicate that the header phase is ongoing. h) Set the CRYPEN bit to 1 to start accepting data. i) If it is the last block of additional authenticated data, optionally pad the data with zeros to have a complete block. j) Append additional authenticated data in the cryptographic processor. The three possible scenarios are described in Section 20.3.5: CRYP procedure to perform a cipher operation. k) Repeat the previous step until the second last additional authenticated data block is processed. For the last block, execute the two previous steps. Once all the additional authenticated data have been supplied, wait until the BUSY flag is cleared before moving on to the next phase. This phase can be skipped if there is no additional authenticated data, i.e. Len(A)=0. In header and payload phases, CRYPEN bit is not automatically cleared by the cryptographic processor. 588/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) 3. GCM payload phase (encryption or decryption) When the payload size is not null, this sequence must be executed after the GCM header phase. During this phase, the encrypted/decrypted payload is stored in the CRYP_DOUT register. l) Set the CRYPEN bit to 0. m) Configure GCM_CCMPH to 0b10 in the CRYP_CR register to indicate that the payload phase is ongoing. Note: n) Select the algorithm direction (0 for encryption, 1 for decryption) through the ALGODIR bit in CRYP_CR. o) Set the CRYPEN bit to 1 to start accepting data. p) If it is the last block of cleartext or plaintext, optionally pad the data with zeros to have a complete block. For encryption, refer to Section 20.3.8: CRYP stealing and data padding for more details. q) Append payload data in the cryptographic processor, and read the result. The three possible scenarios are described in Section 20.3.5: CRYP procedure to perform a cipher operation. r) Repeat the previous step until the second last plaintext block is encrypted or until the last block of ciphertext is decrypted. For the last block of plaintext (encryption only), execute the two previous steps. For the last block, the driver must discard the bits that are not part of the cleartext or the ciphertext when the last block size is less than 16 bytes. Once all payload data have been supplied, wait until the BUSY flag is cleared. This phase can be skipped if there is no payload data, i.e. Len(C)=0 (see GMAC mode). 4. GCM final phase In this last step, the cryptographic processor generates the GCM authentication tag and stores it in CRYP_DOUT register. Note: s) Configure GCM_CCMPH[1:0] to 0b11 in CRYP_CR to indicate that the Final phase is ongoing. Set the ALGODIR bit to 0 in the same register. t) Write the input to the CRYP_DIN register four times. The input must be composed of the length in bits of the additional authenticated data (coded on 64 bits) concatenated with the length in bits of the payload (coded of 64 bits), as show in Table 125. In this final phase data have to be swapped according to the DATATYPE programmed in CRYP_CR register. u) Wait until the OFNE flag (FIFO output not empty) is set to 1 in the CRYP_SR register. v) Read the CRYP_DOUT register 4four times: the output corresponds to the authentication tag. w) Disable the cryptographic processor (CRYPEN bit = 0 in CRYP_CR) x) If an authenticated decryption is being performed, compare the generated tag with the expected tag passed with the message. Suspend/resume operations in GCM mode Before interrupting the current message in header or payload phase, the user application must respect the following sequence: RM0385 Rev 7 589/1709 622 Cryptographic processor (CRYP) Note: RM0385 1. If DMA is used, stop DMA transfers to the IN FIFO by clearing to 0 the DIEN bit in the CRYP_DMACR register. 2. Wait until both the IN and the OUT FIFOs are empty (IFEM=1 and OFNE=0 in the CRYP_SR register) and the BUSY bit is cleared. 3. If DMA is used, stop DMA transfers from the OUT FIFO by clearing to 0 the DOEN bit in the CRYP_DMACR register. 4. Disable the cryptographic processor by setting the CRYPEN bit to 0 in CRYP_CR, then save the current configuration (bits [9:2], bits [17:16] and bits 19 of the CRYP_CR register). In addition, save the initialization vector registers, since CRYP_IVx registers have changed from their initial values during data processing. Key registers do not need to be saved as original their key value is known by the application. 5. Save context swap registers: CRYP_CSGCMCCM0..7 and CRYP_CSGCM0..7 6. If DMA is used, save the DMA controller status (pointers to IN and OUT data transfers, number of remaining bytes, etc.). To resume message processing, the user must respect the following sequence: Note: 590/1709 1. If DMA is used, reconfigure the DMA controller to complete the rest of the FIFO IN and FIFO OUT transfers. 2. Make sure the cryptographic processor is disabled by reading the CRYPEN bit in CRYP_CR (it must be 0). 3. Configure again the cryptographic processor with the initial setting in CRYP_CR, as well as the key registers using the saved configuration. 4. Restore context swap registers: CRYP_CSGCMCCM0..7 and CRYP_CSGCM0..7 5. Restore CRYP_IVx registers using the saved configuration. 6. Enable the cryptographic processor by setting the CRYPEN bit to 1. 7. If DMA is used, enable again cryptographic processor DMA requests by setting to 1 the DIEN and DOEN bits in the CRYP_DMACR register. In Header phase, DMA OUT FIFO transfer is not used. RM0385 Rev 7 RM0385 CRYP AES Galois message authentication code (GMAC) Overview The Galois message authentication code (GMAC) allows authenticating a plaintext and generating the corresponding tag information (also known as message authentication code). It is based on GCM algorithm, as defined in NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation - Galois/Counter Mode (GCM) and GMAC. A typical message construction in GMAC mode is given in Figure 140. Figure 140. Message construction for the Galois Message Authentication Code mode [Len(A)]64 064 16-Bytes boundaries Len(A) ICB Authenticated Data Padding ‘0’ Last Block authentication 20.3.14 Cryptographic processor (CRYP) 4-Bytes boundaries AuthTag (T) Initialization vector (IV) Counter (0x1) MSv43718V1 AES GMAC processing This mode is selected by writing ALGOMODE bitfield to 0b110 in CRYP_CR. GMAC algorithm corresponds to the GCM algorithm applied on a message composed only of an header. As a consequence, all steps and settings are the same as in GCM mode, except that the payload phase (3) is not used. Suspend/resume operations in GMAC GMAC is exactly the same as GCM algorithm except that only header phase (2) can be interrupted. RM0385 Rev 7 591/1709 622 Cryptographic processor (CRYP) 20.3.15 RM0385 CRYP AES Counter with CBC-MAC (CCM) Overview The AES Counter with Cipher Block Chaining-Message Authentication Code (CCM) algorithm allows encrypting and authenticating the plaintext, and generating the correspondent ciphertext and tag (also known as message authentication code). To ensure confidentiality, CCM algorithm is based on AES counter mode. It uses Cipher Block Chaining technique to generate the message authentication code. This is commonly called CBC-MAC Note: NIST does not approve this CBC-MAC as an authentication mode outside of the context of the CCM specification. CCM chaining is specified in NIST Special Publication 800-38C, Recommendation for Block Cipher Modes of Operation - The CCM Mode for Authentication and Confidentiality. A typical message construction in CCM mode is given in Figure 141 Figure 141. Message construction for the Counter with CBC-MAC mode Alen 16-Bytes boundaries [a]32 [a]16 Associated Data (A) Padding “0” Tlen Plaintext (P) Paddin g “0” Enc (T) flags Authenticated & Encrypted Ciphertext (C) Nonce (N) Q decryp & compare 4-Bytes boundaries authentication Encrypt. B0 Clen Plen MAC (T) Nlen MSv43719V1 The structure of this message is as below: • Note: 592/1709 One 16-byte first authentication block (called B0 by the standard), composed of three distinct fields: – Q: a bit string representation of the byte length of P (Plen) – A nonce (N): single-use value (i.e. a new nonce should be assigned to each new communication). Size of nonce Nlen + size of Plen shall be equal to 15 bytes. – Flags: most significant byte containing four flags for control information, as specified by the standard. It contains two 3-bit strings to encode the values t (MAC length expressed in bytes) and q (plaintext length such as Plen<28q bytes). Note that the counter blocks range associated to q is equal to 28q-4, i.e. if q maximum value is 8, the counter blocks used in cipher shall be on 60 bits. The cryptographic peripheral can only manage padded plaintext/ciphertext messages of length Plen < 236 +1 bytes. RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) • 16-bytes blocks (B) associated to the Associated Data (A). This part of the message is only authenticated, not encrypted. This section has a known length, ALen, that can be a non-multiple of 16 bytes (see Figure 141). The standard also states that, on the MSB bits of the first message block (B1), the associated data length expressed in bytes (a) must be encoded as defined below: – – – Note: If 0 < a < 216-28, then it is encoded as [a]16, i.e. two bytes. If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six bytes. If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten bytes. • 16-byte blocks (B) associated to the plaintext message (P), which is both authenticated and encrypted as ciphertext C, with a known length of Plen. This length can be a nonmultiple of 16 bytes (see Figure 141) but cannot exceed 232 blocks of 128-bit. • The encrypted MAC (T) of length Tlen appended to the ciphertext C of overall length Clen. • When a part of the message (A or P) has a length which is a non-multiple of 16 bytes, a special padding scheme is required. CCM chaining mode can also be used with associated data only (i.e. no payload). As an example, the C.1 section in NIST Special Publication 800-38C gives the following: N: 10111213 141516 (Nlen= 56 bits or 0x7 bytes) A: 00010203 04050607 (Alen= 64 bits or 0x8 bytes) P: 20212223 (Plen= 32 bits i.e. Q= 0x4 bytes) T: 6084341b (Tlen= 32 bits or t= 4) B0: 4f101112 13141516 00000000 00000004 B1: 00080001 02030405 06070000 00000000 B2: 20212223 00000000 00000000 00000000 CTR0: 0710111213 141516 00000000 00000000 CTR1: 0710111213 141516 00000000 00000001 The usage of control blocks CTRx is explained in the following section. The generation of CTR0 from the first block (B0) must be managed by software. RM0385 Rev 7 593/1709 622 Cryptographic processor (CRYP) RM0385 AES CCM processing This mode is selected by writing ALGOMODE bitfield to 0b1001 in CRYP_CR. The data input to the generation-encryption process are a valid nonce, a valid payload string, and a valid associated data string, all properly formatted. The CBC chaining mechanism is applied to the formatted data to generate a MAC, whose length is known. Counter mode encryption, which requires a sufficiently long sequence of counter blocks as input, is applied to the payload string and separately to the MAC. The resulting data, called the ciphertext C, is the output of the generation-encryption process on plaintext P. CRYP_IV registers are used for processing each data block. The cryptographic processor automatically increments the CTR counter with a bit length defined by the first block (B0). The first counter written by application, CTR1, is equal to B0 with the first 5 bits zeroed and the most significant bits containing P byte length also zeroed, then incremented by one (see Table 127). Table 127. CCM mode IV registers initialization Register CRYP_IV0L[31:0] CRYP_IV0R[31:0] CRYP_IV1L[31:0] CRYP_IV1R[31:0] Endianness IV[0:31] IV[32:63] IV[64:95] IV[96:127] Input data B0[31:0], where the 5 most significant bits are set to 0 (flag bits) B0[63:32] B0[95:64] B0[127:96], where Q length bits are set to 0, except for bit 0 that is set to 1 Note: In this mode, the key must NOT be prepared for decryption. To process a CCM message, the driver must go through four phases, which are described below. 594/1709 • The Init phase: the peripheral processes the first block and prepares the first counter block. • The Header phase: the peripheral processes the Associated data (A), with hash computation only. • The Payload phase: the peripheral processes the plaintext (P), with hash computation, counter block encryption and data XORing. It operates in a similar way for ciphertext (C). • The Final phase: the peripheral generates the message authentication code (MAC). RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) 1. CCM init phase In this first step, the first block (B0) of the CCM message is programmed into the CRYP_DIN register. During this phase, the CRYP_DOUT register does not contain any output data. It is recommended to follow the sequence below: Note: a) Make sure that the cryptographic processor is disabled by clearing the CRYPEN bit in the CRYP_CR register. b) Select the CCM chaining mode by programming the ALGOMODE bits to 0b01001 in the CRYP_CR register. c) Configure the GCM_CCMPH bits to 0b00 in CRYP_CR to indicate that we are in the init phase. d) Initialize the key registers (128, 192 and 256 bits) in CRYP_KEYRx as well as the initialization vector (IV) with CTR1 information, as defined in Table 127. e) Set the CRYPEN bit to 1 in CRYP_CR to start accepting data. f) Write the B0 packet into CRYP_DIN register, then wait for the CRYPEN bit to be cleared to 0 by the cryptographic processor before moving on to the next phase. In this init phase data have to be swapped according to the DATATYPE programmed in CRYP_CR register. 2. CCM header phase The below sequence shall be performed after the CCM Init phase. It must be complete before jumping to the payload phase. The sequence is identical for encryption and decryption. During this phase, the CRYP_DOUT register does not contain any output data. g) Set the GCM_CCMPH bit to 0b01 in CRYP_CR to indicate that the header phase is ongoing. h) Set the CRYPEN bit to 1 to start accepting data. i) If it is the last block of associated data, optionally pad the data with zeros to have a complete block. j) Append the associated data in the cryptographic processor. The three possible scenarios are described in Section 20.3.5: CRYP procedure to perform a cipher operation. k) Repeat the previous step until the second last associated data block is processed. For the last block, execute the two previous steps. Once all the additional authenticated data have been supplied, wait until the BUSY flag is cleared. Note: This phase can be skipped if there is no associated data (Alen=0). Note: The first block of the associated data B1 must be formatted with the associated data length. This task must be managed by the driver. RM0385 Rev 7 595/1709 622 Cryptographic processor (CRYP) 3. RM0385 CCM payload phase (encryption or decryption) When the payload size is not null, this sequence must be performed after the CCM header phase. During this phase, the encrypted/decrypted payload is stored in the CRYP_DOUT register. l) Set the CRYPEN bit to 0. m) Configure GCM_CCMPH bits to 0b10 in CRYP_CR to indicate that the payload phase is ongoing. n) Select the algorithm direction (0 for encryption, 1 for decryption) through the ALGODIR bit in CRYP_CR. o) Set the CRYPEN bit to 1 to start accepting data. p) If it is the last block of cleartext, optionally pad the data with zeros to have a complete block (encryption only). For decryption, refer to Section 20.3.8: CRYP stealing and data padding for more details. q) Append payload data in the cryptographic processor, and read the result. The three possible scenarios are described in Section 20.3.5: CRYP procedure to perform a cipher operation. r) Repeat the previous step until the second last plaintext block is encrypted or until the last block of ciphertext is decrypted. For the last block of plaintext (encryption only), execute the two previous steps. For the last block of ciphertext (decryption only), the driver must discard the data that is not part of the cleartext when the last block size is less than 16 bytes. Once all payload data have been supplied, wait until the BUSY flag is cleared Note: This phase can be skipped if there is no payload data, i.e. Plen=0 or Clen=Tlen Note: Do not forget to remove LSBTlen(C) encrypted tag information when decrypting ciphertext C. 4. CCM final phase In this last step, the cryptographic processor generates the CCM authentication tag and stores it in the CRYP_DOUT register. Note: 596/1709 s) Configure GCM_CCMPH[1:0] bits to 0b11 in CRYP_CR to indicate that the final phase is ongoing and set the ALGODIR bit to 0 in the same register. t) Load in CRYP_DIN, the CTR0 information which is described in Table 127 with bit[0] set to 0. In this final phase, data have to be swapped according to the DATATYPE programmed in CRYP_CR register. u) Wait until the OFNE flag (FIFO output not empty) is set to 1 in the CRYP_SR register. v) Read the CRYP_DOUT register four times: the output corresponds to the encrypted CCM tag. w) Disable the cryptographic processor (CRYPEN bit set to 0 in CRYP_CR) x) If an authenticated decryption is being performed, compare the generated encrypted tag with the encrypted tag padded in the ciphertext, i.e. LSBTlen(C)= MSBTlen(CRYP_DOUT data). RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) Suspend/resume operations in CCM mode Before interrupting the current message in payload phase, the user application must respect the following sequence: Note: 1. If DMA is used, stop the DMA transfers to the IN FIFO by clearing to 0 the DIEN bit in the CRYP_DMACR register. 2. Wait until both the IN and the OUT FIFOs are empty (IFEM=1 and OFNE=0 in the CRYP_SR register) and the BUSY bit is cleared. 3. If DMA is used, stop the DMA transfers from the OUT FIFO by clearing to 0 the DOEN bit in the CRYP_DMACR register. 4. Disable the cryptographic processor by setting the CRYPEN bit to 0 in CRYP_CR, then save the current configuration (bits [9:2], bits [17:16] and bits 19 in the CRYP_CR register). In addition, save the initialization vector registers, since CRYP_IVx registers have changed from their initial values during the data processing. Key registers do not need to be saved as their original key value is known by the application. 5. Save context swap registers: CRYP_CSGCMCCM0..7 6. If DMA is used, save the DMA controller status (pointers for IN and OUT data transfers, number of remaining bytes, etc.). To resume message processing, the user application must respect the following sequence: Note: 1. If DMA is used, reconfigure the DMA controller to complete the rest of the FIFO IN and FIFO OUT transfers. 2. Make sure the cryptographic processor is disabled by reading the CRYPEN bit in CRYP_CR (must be 0). 3. Configure the cryptographic processor again with the initial setting in CRYP_CR and key registers using the saved configuration. 4. Restore context swap registers: CRYP_CSGCMCCM0..7 5. Restore CRYP_IVx registers using the saved configuration. 6. Enable the cryptographic processor by setting the CRYPEN bit to 1. 7. If DMA is used, enable again cryptographic processor DMA requests by setting to 1 the DIEN and DOEN bits in the CRYP_DMACR register. In Header phase DMA OUT FIFO transfer is not used. RM0385 Rev 7 597/1709 622 Cryptographic processor (CRYP) 20.3.16 RM0385 CRYP data registers and data swapping Introduction The CRYP_DIN register is the 32-bit wide data input register of the peripheral. It is used to enter into the input FIFO up to four 64-bit blocks (TDES) or two 128-bit blocks (AES) of plaintext (when encrypting) or ciphertext (when decrypting), one 32-bit word at a time. The first word written into the FIFO is the LSB of the input block. The MSB of the input block is written at the end. CRYP_DIN data endianness can be described as below when DATATYPE=”00” (no data swapping): • In the DES/TDES modes Bit 1 (leftmost bit) of the data block corresponds to the MSB (bit 31) of the first word entered into the FIFO, bit 64 (rightmost bit) corresponds to the LSB (bit 0) of the second word entered into the FIFO. • In the AES mode Bit 0 (leftmost bit) of the data block corresponds to the MSB (bit 31) of the first word written into the FIFO, bit 127 (rightmost bit) corresponds to the LSB (bit 0) of the 4th word written into the FIFO. Similarly CRYP_DOUT register is the 32-bit wide data out register of the peripheral. It is a read-only register that is used to retrieve from the output FIFO up to four 64-bit blocks (TDES) or two 128-bit blocks (AES) of plaintext (when encrypting) or ciphertext (when decrypting), one 32-bit word at a time. Like for the input data, the LSB of the output block is the first word read from the output FIFO. The MSB of the output block is read at the end. CRYP_DOUT data endianness can be described as below when DATATYPE=”00” (no data swapping): • In the DES/TDES modes Bit 1 (leftmost bit) of the data block corresponds to the MSB (bit 31) of the first word read from the FIFO, bit 64 (rightmost bit) corresponds to the LSB (bit 0) of the second word read from the FIFO. • In the AES mode Bit 0 (leftmost bit) of the data block corresponds to the MSB (bit 31) of the first word read from the FIFO, bit 127 (rightmost bit) corresponds to the LSB (bit 0) of the 4th word read from the FIFO. 598/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) DES/TDES data swapping feature Depending on the type of data to be processed (e.g. byte swapping when data are ASCII text stream), a bit, byte, half-word or no swapping operation must be done on the data read from the input FIFO before entering the little-endian DES processing core. The same swapping must be performed on the data produced by the little-endian DES processing core before they are written to the output FIFO. Figure 142 shows how the DES processing core 64-bit data block M1...64 is constructed from two consecutive 32-bit words popped into IN FIFO by the driver. This is done according to the DATATYPE bitfield in the CRYP_CR register. Note: The same swapping is performed between the IN FIFO and the CRYP data block, and between the CRYP data block and the OUT FIFO. Figure 142. 64-bit block construction according to the data type (IN FIFO) DATATYPE = 0b00: no swapping LSB written first! Word0 bit31 DATATYPE = 0b01: 16-bit or half-word swapping System interface bit0 bit31 written first! Word0 bit31 bit16 bit15 bit0 M33 M32 DES core interface M1 LSB LSB MSB Word1 M64 MSB M1 LSB bit31..24 bit23..16 bit15..8 M1..8 LSB System interface MSB bit31..24 bit23..16 bit15..8 LSB bit31 M32 M33 DES core interface M48 System interface written first! Word1 Word2 bit7..0 M17 bit0 MSB Word1 bit16 bit15 M49 bit0 M64 MSB DATATYPE = 0b11: bit swapping DATATYPE = 0b10: 8-bit or byte swapping LSB written first! Word1 M16 System interface bit7..0 M9..16 M17..24 M25..32 M33..40 M41..48 M49..56 M57..64 DES core interface MSB MSB Word2 bit31bit30 bit29 bit2 bit1 bit0 bit31 bit30 bit29 bit2 bit1 bit0 M1 M2 M3 LSB M30 M31 M32 M33 M34 M35 DES core interface M62 M63 M64 MSB MSv43720V1 Note: The CRYP Key registers (CRYP_Kx(L/R)) and initialization registers (CRYP_IVx(L/R)) are not sensitive to the swap mode selected. They have a fixed little-endian configuration (refer to Section 20.3.17 and Section 20.3.18, respectively). A typical example of data swapping is given in Table 128. RM0385 Rev 7 599/1709 622 Cryptographic processor (CRYP) RM0385 Table 128. DES/TDES data swapping feature DATATYPE in CRYP_CR Data block representation (64-bit) 0xABCD7720 6973FE01 Swapping performed System memory data (plaintext or cypher) Address @: 0xABCD7720 (LSB, written first) Address @+4: 0x6973FE01 0b00 No swapping TDES block size = 64bit = 2x 32 bit 0xABCD7720 6973FE01 system memory 0xABCD7720 0x6973FE01 @ @+4 Address @: 0x7720ABCD (swapped LSB, written first) Address @+4: 0xFE016973 0b01 Half-word (16-bit) swapping system memory TDES block size = 64bit = 2x 32 bit 0xABCD 7720 6973 FE01 0x7720 ABCD 0xFE01 6973 @ @+4 Address @: 0x2077CDAB (swapped LSB, written first) Address @+4: 0x01FE7369 0b10 Byte (8-bit) swapping system memory TDES block size = 64bit = 2x 32 bit 0xAB CD 77 20 69 73 FE 01 0b11 Bit swapping 0x 20 77 CD AB 0x 01 FE 73 69 LSB data word: 0xABCD7720 0b1010 1011 1100 1101 0111 0111 0010 0000 MSB data word: 0x6973FE01 0b0110 1001 0111 0011 1111 1110 0000 0001 Address @: 0x04EEB3D5 (swapped LSB, written first) Address @+4: 0x807FCE96 600/1709 RM0385 Rev 7 @ @+4 RM0385 Cryptographic processor (CRYP) AES data swapping feature Depending on the type of data to be processed (e.g. byte swapping when data are ASCII text stream), a bit, byte, half-word or no swapping operation must be done on data read from the input FIFO before entering the little-endian AES processing core. The same swapping must be performed on the data produced by the little-endian AES processing core before they are written to the output FIFO. Figure 143 shows how the AES processing core 128-bit data block P0..127 is constructed from four consecutive 32-bit words written by the driver to the CRYP_DIN register. This is done according to the DATATYPE bitfield in the CRYP control register (CRYP_CR). Note: The same swapping is performed between the CRYP_DIN and the CRYP data block, and between the CRYP data block and the CRYP_DOUT. Figure 143. 128-bit block construction according to the data type DATATYPE “00”: no swapping LSB System interface written first! Word0 bit31 bit0 bit31 P0 P31 P32 MSB Word2 Word1 bit0 bit31 P64 P63 AES core interface LSB Word3 bit0 bit31 P95 P96 bit0 P12 7 MSB DATATYPE “01”: 16-bit or half-word swapping bit31 P 0 LSB System interface written first! LSB Word0 bit16 bit15 P1 5 P1 6 bit31 bit0 P3 1 Word1 bit16 bit15 P3 2 P4 7 P4 8 bit0 bit31 MSB Word2 bit16 bit15 bit0 P6 3 AES core interface bit31 P96 Word3 bit16 bit15 P11 1 P11 2 bit0 P12 7 MSB DATATYPE “10”: 8-bit or byte swapping System interface written first! LSB Word0 bit31..24 bit23..16 bit15..8 P0..7 LSB P8..15 P16..2 3 bit7..0 bit31..24 bit23..16 bit15..8 P24..3 1 MSB Word2 Word1 bit7..0 bit31..24 bit23..16 bit15..8 AES core interface Word3 bit7..0 bit31..24 bit23..16 bit15..8 P96..1 03 P112..1 19 bit7..0 P120..1 27 MSB DATATYPE “11”: bit swapping P0 P1 LSB System interface written first! LSB Word0 bit3 bit3 bit2 9 0 1 P2 bit2 bit1 bit0 P29 P30 P31 Word1 bit3 bit3 bit2 9 0 1 P32 P33 P34 Word2 bit2 bit1 bit0 P61 P62 P63 AES core interface MSB Word3 bit3 bit3 bit2 9 0 1 P96 P97 P98 bit2 bit1 bit0 P125 P126 P127 MSB MSv43721V1 RM0385 Rev 7 601/1709 622 Cryptographic processor (CRYP) Note: RM0385 The swapping operation concerns only the CRYP_DOUT and CRYP_DIN registers. The CRYP_KxL/KxR and CRYP_IVxL/IVxR registers are not sensitive to the swap mode selected.They have a fixed little-endian configuration (refer to Section 20.3.17 and Section 20.3.18). Typical examples of data swapping are given in Table 129. Table 129. AES data swapping feature DATATYPE in CRYP_CR Data block representation (64-bit) 0x4E6F7720 69732074 Swapping performed System memory data (little-endian) Address @: 0x4E6F7720 (LSB, written first) Address @+4: 0x69732074 0b00 No swapping 0b01 Half-word (16-bit) swapping Address @: 0x77204E6F (swapped LSB, written first) Address @+4: 0x20746973 0b10 Byte (8-bit) swapping Address @: 0x20776F4E (swapped LSB, written first) Address @+4: 0x74207369 0b11 Bit swapping LSB data word: 0x4E6F7720 0b0100 1110 0110 1111 0111 0111 0010 0000 MSB data word: 0x69732074 0b0110 1001 0111 0011 0010 0000 0111 0100 Address @: 0x4EEF672 (swapped LSB, written first) Address @+4: 0x2E04CE96 20.3.17 CRYP key registers The CRYP_Kx registers are used to store the encryption or decryption keys. They are organized as eight registers in a little-endian configuration, as shown in Table 130. Table 130. Key registers CRYP_KxR/LR endianness (TDES K1/2/3 and AES 128/192/256-bit keys) K0LR[31:0] K0RR[31:0] K1LR[31:0] K1RR[31:0] K2LR[31:0] K2RR[31:0] K3LR[31:0] K3RR[31:0] - - K1[1:32] K1[33:64] K2[1:32] K2[33:64] K2[1:32] K2[33:64] K0LR[31:0] K0RR[31:0] K1LR[31:0] K1RR[31:0] K2LR[31:0] K2RR[31:0] K3LR[31:0] K3RR[31:0] - - - - k[0:31] k[32:63] k[64:95] k[96:127] K0LR[31:0] K0RR[31:0] K1LR[31:0] K1RR[31:0] K2LR[31:0] K2RR[31:0] K3LR[31:0] K3RR[31:0] - - k[0:31] k[32:63] k[64:95] k[96:127] k[128:159] k[160:191] K0LR[31:0] K0RR[31:0] K1LR[31:0] K1RR[31:0] K2LR[31:0] K2RR[31:0] K3LR[31:0] K3RR[31:0] k[0:31] k[32:63] k[64:95] k[96:127] k[128:159] k[160:191] k[192:223] k[224:255] Note: 602/1709 DES/TDES keys include 8-bit parity information that are not used by the cryptographic processor. In other words, bits 8, 16, 24, 32, 40, 48, 56 and 64 of each 64-bit key value Kx[1:64] are not used. RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) Keys are considered as four 64-bit data items. They therefore do not have the same data format and representation in system memory as plaintext or ciphertext data. Any write operation to the CRYP_Kx(L/R) registers when the BUSY bit is set to 1 in the CRYP_SR register is disregarded (i.e. register content not modified). Thus, the software must check that the BUSY equals 0 before modifying key registers. Key registers are not affected by the data swapping feature controlled by DATATYPE value in CRYP_CR register. Refer to Section 20.6: CRYP registers for a detailed description of CRYP_Kx(L/R) registers. 20.3.18 CRYP initialization vector registers The CRYP_IVxL/IVxR registers are used to store the initialization vector or the nonce, depending on the chaining mode selected. When used, these registers are updated by the core after each computation round of the TDES or AES core. They are organized as four registers in a little-endian configuration, as shown in Table 131. Table 131. Initialization vector registers CRYP_IVxR endianness CRYP_IV1R[31:0] CRYP_IV1L[31:0] CRYP_IV0R[31:0] CRYP_IV0L[31:0] IV[96:127] IV[64:95] IV[32:63] IV[0:31] Initialization vector registers are considered as two 64-bit data items. They therefore do not have the same data format and representation in system memory as plaintext or ciphertext data. Any write operation to the CRYP_IV0...1(L/R) registers when the BUSY bit is set to 1 in the CRYP_SR register is disregarded (i.e. register content not modified). Therefore, the software must check that the BUSY equals 0 in the CRYP_SR register before modifying initialization vectors. Reading the CRYP_IV0...1(L/R) register returns the latest counter value (useful for managing suspend mode) except for CCM/GCM. Note: In DES/TDES mode, only CRYP_IV0x are used. Initialization vector registers are not affected by the data swapping feature controlled by DATATYPE value in CRYP_CR register. Refer to Section 20.6: CRYP registers for a detailed description of CRYP_IVxL/IVxR registers. RM0385 Rev 7 603/1709 622 Cryptographic processor (CRYP) 20.3.19 RM0385 CRYP DMA interface The cryptographic processor provides an interface to connect to the DMA (Direct Memory Access) controller. The DMA operation is controlled through the CRYP DMA control register (CRYP_DMACR). Data input using DMA DMA can be enabled for writing data into the cryptographic peripheral by setting the DIEN bit in the CRYP_DMACR register. When this bit is set, the cryptographic processor initiates a DMA request during the INPUT phase each time it requires a word to be written to the CRYP_DIN register. Table 132 shows the recommended configuration to transfer data from memory to cryptographic processor through the DMA controller. Table 132. Cryptographic processor configuration for memory-to-peripheral DMA transfers DMA channel control register field Programming recommendation Transfer size Message length, multiple of 128-bit. This 128-bit granularity corresponds to two blocks for DES, one block for AES. According to the algorithm and the mode selected, special padding/ ciphertext stealing might be required. Refer to Section 20.3.8: CRYP stealing and data padding for details. Source burst size (memory) CRYP FIFO_size /2 /transfer_width = 4 Destination burst size (peripheral) CRYP FIFO_size /2 /transfer_width = 4 (FIFO_size= 8x32-bit, transfer_width= 32-bit) DMA FIFO size CRYP FIFO_size /2 = 16 bytes Source transfer width (memory) 32-bit words Destination transfer width (peripheral) 32-bit words Source address increment (memory) Yes, after each 32-bit transfer. Destination address Fixed address of CRYP_DIN shall be used (no increment). increment (peripheral) Data output using DMA To enable the DMA for reading data from AES peripheral, set the DOEN bit in the CRYP_DMACR register. When this bit is set, the cryptographic processor initiates a DMA request during the OUTPUT phase each time it requires a word to be read from the CRYP_DOUT register. Table 133 shows the recommended configuration to transfer data from cryptographic processor to memory through the DMA controller. 604/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) Table 133. Cryptographic processor configuration for peripheral to memory DMA transfers DMA channel control register field Programming recommendation Transfer size Message length, multiple of 128-bit. This 128-bit granularity corresponds to two blocks for DES, one block for AES. Depending on the algorithm used, extra bits have to be discarded. Source burst size (peripheral) When DES is used: Single transfer (burst size=1) When AES is used: CRYP FIFO_size /2 /transfer_width = 4 (FIFO_size= 8x32-bit, transfer_width= 32-bit) Destination burst size (memory) CRYP FIFO_size /2 /transfer_width = 4 DMA FIFO size CRYP FIFO_size /2 = 16 bytes Source transfer width (peripheral) 32-bit words memory transfer width 32-bit words (memory) Source address Fixed address of CRYP_DOUT shall be used (no increment). increment (peripheral) Destination address increment (memory) Yes, after each 32-bit transfer. DMA mode When AES is used, the cryptographic processor manages two DMA transfer requests through cryp_in_dma and cryp_out_dma internal input/output signals, which are asserted: • for IN FIFO: every time a block has been read from FIFO by CRYP, • for OUT FIFO: every time a block has been written into the FIFO by the cryptographic processor. When DES is used, the cryptographic processor manages two DMA transfer requests through cryp_in_dma and cryp_out_dma internal input/output signals, which are asserted: • for IN FIFO: every time two blocks have been read from FIFO by the cryptographic processor • for OUT FIFO: every time a word has been written into the FIFO by the cryptographic processor (single transfer). Note that a burst transfer is also triggered when two blocks have been written into the FIFO. All request signals are de-asserted if the cryptographic peripheral is disabled or the DMA enable bit is cleared (DIEN bit for the IN FIFO and DOEN bit for the OUT FIFO in the CRYP_DMACR register). Caution: It is important that DMA controller empties the cryptographic peripheral output FIFO before filling up the CRYP input FIFO. To achieve it, the DMA controller should be configured so RM0385 Rev 7 605/1709 622 Cryptographic processor (CRYP) RM0385 that the transfer from the peripheral to the memory has a higher priority than the transfer from the memory to the peripheral. For more detailed information on DMA operations, refer to Section 20.3.5: CRYP procedure to perform a cipher operation. 20.3.20 CRYP error management No error flags are generated by the cryptographic processor. 20.4 CRYP interrupts Overview There are two individual maskable interrupt sources generated by the cryptographic processor to signal the following events: • Input FIFO empty or not full • Output FIFO full or not empty These two sources are combined into a single interrupt signal which is the only interrupt signal from the CRYP peripheral that drives the NVIC (nested vectored interrupt controller). The interrupt logic is summarized on Figure 144. Figure 144. CRYP interrupt mapping diagram CRYP_CR.CRYPEN INMIS CRYP_RISR.INRIS CRYP_IMSCR.INIM CRYP_RISR.OUTRIS CRYP_IMSCR.OUTIM cryp_it (IP global interrupt request signal) OUTMIS MSv43722V1 You can enable or disable CRYP interrupt sources individually by changing the mask bits in the CRYP_IMSCR register. Setting the appropriate mask bit to 1 enables the interrupt. The status of the individual maskable interrupt sources can be read either from the CRYP_RISR register, for raw interrupt status, or from the CRYP_MISR register for masked interrupt status. The status of the individual source of event flags can be read from the CRYP_SR register. Table 134 gives a summary of the available features. 606/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) Table 134. CRYP interrupt requests Interrupt event Output FIFO full Output FIFO not empty Input FIFO not full Input FIFO empty Event flag (interrupt status) Enable control bit Event flag (source) OUTRIS, OUTMIS OUTIM and CRYPEN OFFU OUTRIS, OUTMIS INIM and CRYPEN OFNE IFNF IFEM Output FIFO service interrupt - OUTMIS The output FIFO service interrupt is asserted when there is one or more (32-bit word) data items in the output FIFO. This interrupt is cleared by reading data from the output FIFO until there is no valid (32-bit) word left (that is when the interrupt follows the state of the output FIFO not empty flag OFNE). The output FIFO service interrupt OUTMIS is NOT enabled with the CRYP enable bit. Consequently, disabling the CRYP will not force the OUTMIS signal low if the output FIFO is not empty. Input FIFO service interrupt - INMIS The input FIFO service interrupt is asserted when there are less than four words in the input FIFO. It is cleared by performing write operations to the input FIFO until it holds four or more words. The input FIFO service interrupt INMIS is enabled with the CRYP enable bit. Consequently, when CRYP is disabled, the INMIS signal is low even if the input FIFO is empty. RM0385 Rev 7 607/1709 622 Cryptographic processor (CRYP) 20.5 RM0385 CRYP processing time The time required to process a 128-bit block for each mode of operation is summarized below. Table 135. Processing time (in clock cycle) for ECB, CBC and CTR per 128-bit block Algorithm / Key size ECB CBC CTR 128b 14 14 14 192b 16 16 16 256b 18 18 18 Table 136. Processing time (in clock cycle) for GCM and CCM per 128-bit block GCM CCM Algorithm / Key size Init 608/1709 Header Payload Tag Total Init Header Payload Tag Total 128b 24 10 14 14 62 12 14 25 14 65 192b 28 10 16 16 70 14 16 29 16 75 256b 32 10 18 18 78 16 18 33 18 85 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) 20.6 CRYP registers The cryptographic core is associated with several control and status registers, eight key registers and four initialization vectors registers. 20.6.1 CRYP control register (CRYP_CR) Address offset: 0x00 Reset value: 0x0000 0000 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 Res. 25 Res. 24 23 22 Res. 21 20 19 ALGOM ODE[3] Res. 18 Res. rw 15 14 CRYPEN FFLUSH rw w 13 12 11 10 Res. Res. Res. Res. 9 8 KEYSIZE[1:0] rw rw 7 6 DATATYPE[1:0] rw rw 5 4 3 ALGOMODE[2:0] rw rw rw 17 16 GCM_CCMPH[ 1:0] rw rw 2 1 0 ALGODIR Res. Res. rw Bits 31:20 Reserved, must be kept at reset value. Bit 18 Reserved, must be kept at reset value. Bits 17:16 GCM_CCMPH[1:0]: GCM or CCM Phase selection This bitfield has no effect if GCM, GMAC or CCM algorithm is not selected in ALGOMODE field. 00: Init phase 01: Header phase 10: Payload phase 11: Final phase Bit 15 CRYPEN: CRYP processor Enable 0: Cryptographic processor peripheral is disabled 1: Cryptographic processor peripheral is enabled This bit is automatically cleared by hardware when the key preparation process ends (ALGOMODE= 0b111) or after GCM/GMAC or CCM init phase. Bit 14 FFLUSH: CRYP FIFO Flush 0: No FIFO flush 1: FIFO flush enabled When CRYPEN = 0, writing this bit to 1 flushes the IN and OUT FIFOs (i.e. read and write pointers of the FIFOs are reset). Writing this bit to 0 has no effect. When CRYPEN = 1, writing this bit to 0 or 1 has no effect. Reading this bit always returns 0. FFLUSH bit has to be set only when BUSY=0. If not, the FIFO is flushed, but the block being processed may be pushed into the output FIFO just after the flush operation, resulting in a non-empty FIFO condition. Bits 13:10 Reserved, must be kept at reset value. RM0385 Rev 7 609/1709 622 Cryptographic processor (CRYP) RM0385 Bits 9:8 KEYSIZE[1:0]: Key Size selection (AES mode only) This bitfield defines the bit-length of the key used for the AES cryptographic core. This bitfield is ‘don’t care’ in the DES or TDES modes. 00: 128-bit key length 01: 192-bit key length 10: 256-bit key length 11: Reserved, do not use this value Writing KEYSIZE bits while BUSY=1 has no effect. These bits can only be configured when BUSY=0. Bits 7:6 DATATYPE[1:0]: Data Type selection This bitfield defines the format of data written in CRYP_DIN or read from CRYP_DOUT registers. For more details refer to Section 20.3.16: CRYP data registers and data swapping). 00: 32-bit data. No swapping for each word. First word pushed into the IN FIFO (or popped off the OUT FIFO) forms bits 1...32 of the data block, the second word forms bits 33...64 etc. 01: 16-bit data, or half-word. Each word pushed into the IN FIFO (or popped off the OUT FIFO) is considered as 2 half-words, which are swapped with each other. 10: 8-bit data, or bytes. Each word pushed into the IN FIFO (or popped off the OUT FIFO) is considered as 4 bytes, which are swapped with each other. 11: bit data, or bit-string. Each word pushed into the IN FIFO (or popped off the OUT FIFO) is considered as 32 bits (1st bit of the string at position 0), which are swapped with each other. Writing DATATYPE bits while BUSY=1 has no effect. These bits can only be configured when BUSY=0. Bits 19, 5:3 ALGOMODE[3:0]: Algorithm mode Below definition includes the bit 19: 0000: TDES-ECB (triple-DES Electronic Codebook). 0001: TDES-CBC (triple-DES Cipher Block Chaining). 0010: DES-ECB (simple DES Electronic Codebook). 0011: DES-CBC (simple DES Cipher Block Chaining). 0100: AES-ECB (AES Electronic Codebook). 0101: AES-CBC (AES Cipher Block Chaining). 0110: AES-CTR (AES Counter Mode). 0111: AES key preparation for ECB or CBC decryption. 1000: AES-GCM (Galois Counter Mode) and AES-GMAC (Galois Message Authentication Code mode). 1001: AES-CCM (Counter with CBC-MAC). Writing ALGOMODE bits while BUSY=1 has no effect. These bits can only be configured when BUSY=0. Bit 2 ALGODIR: Algorithm Direction 0: Encrypt 1: Decrypt Writing ALGODIR bit while BUSY=1 has no effect. It can only be configured when BUSY=0. Bits 1:0 Reserved, must be kept at reset value. 610/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) 20.6.2 CRYP status register (CRYP_SR) Address offset: 0x04 Reset value: 0x0000 0003 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BUSY OFFU OFNE IFNF IFEM r r r r r Bits 31:5 Reserved, must be kept at reset value. Bit 4 BUSY: Busy bit 0: The CRYP core is not processing any data. The reason is: – either that the CRYP core is disabled (CRYPEN=0 in the CRYP_CR register) and the last processing has completed, – or the CRYP core is waiting for enough data in the input FIFO or enough free space in the output FIFO (that is in each case at least 2 words in the DES, 4 words in the AES). 1: The CRYP core is currently processing a block of data or a key preparation is ongoing (AES ECB or CBC decryption only). Bit 3 OFFU: Output FIFO full flag 0: Output FIFO is not full 1: Output FIFO is full Bit 2 OFNE: Output FIFO not empty flag 0: Output FIFO is empty 1: Output FIFO is not empty Bit 1 IFNF: Input FIFO not full flag 0: Input FIFO is full 1: Input FIFO is not full Bit 0 IFEM: Input FIFO empty flag 0: Input FIFO is not empty 1: Input FIFO is empty 20.6.3 CRYP data input register (CRYP_DIN) Address offset: 0x08 Reset value: 0x0000 0000 The CRYP_DIN register is the data input register. It is 32-bit wide. It is used to enter into the input FIFO up to four 64-bit blocks (TDES) or two 128-bit blocks (AES) of plaintext (when encrypting) or ciphertext (when decrypting), one 32-bit word at a time. To fit different data sizes, the data can be swapped after processing by configuring the DATATYPE bits in the CRYP_CR register. Refer to Section 20.3.16: CRYP data registers and data swapping for more details. RM0385 Rev 7 611/1709 622 Cryptographic processor (CRYP) RM0385 When CRYP_DIN register is written to the data are pushed into the input FIFO. • If CRYPEN = 1, when at least two 32-bit words in the DES/TDES mode have been pushed into the input FIFO (four words in the AES mode), and when at least two words are free in the output FIFO (four words in the AES mode), the CRYP engine starts an encrypting or decrypting process. When CRYP_DIN register is read: Note: 31 • If CRYPEN = 0, the FIFO is popped, and then the data present in the Input FIFO are returned, from the oldest one (first reading) to the newest one (last reading). The IFEM flag must be checked before each read operation to make sure that the FIFO is not empty. • if CRYPEN = 1, an undefined value is returned. After the CRYP_DIN register has been read once or several times, the FIFO must be flushed by setting the FFLUSH bit prior to processing new data. 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATAIN[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATAIN[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DATAIN[31:0]: Data Input On read FIFO is popped (last written value is returned), and its value is returned if CRYPEN=0. If CRYPEN=1 DATAIN register returns an undefined value. On write current register content is pushed inside the FIFO. 20.6.4 CRYP data output register (CRYP_DOUT) Address offset: 0x0C Reset value: 0x0000 0000 The CRYP_DOUT register is the data output register. It is read-only and 32-bit wide. It is used to retrieve from the output FIFO up to four 64-bit blocks (TDES) or two 128-bit blocks (AES) of plaintext (when encrypting) or ciphertext (when decrypting), one 32-bit word at a time. To fit different data sizes, the data can be swapped after processing by configuring the DATATYPE bits in the CRYP_CR register. Refer to Section 20.3.16: CRYP data registers and data swapping for more details. When CRYP_DOUT register is read, the last data entered into the output FIFO (pointed to by the read pointer) is returned. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATAOUT[31:16] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r DATAOUT[15:0] 612/1709 r r RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) Bits 31:0 DATAOUT[31:0]: Data Output On read returns output FIFO content (pointed to by read pointer), else returns an undefined value. On write, no effect. 20.6.5 CRYP DMA control register (CRYP_DMACR) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DOEN DIEN rw rw Bits 31:2 Reserved, must be kept at reset value. Bit 1 DOEN: DMA Output Enable When this bit is set, DMA requests are automatically generated by the peripheral during the output data phase. 0: DMA for outgoing data transfer is disabled 1: DMA for outgoing data transfer is enabled Bit 0 DIEN: DMA Input Enable When this bit is set, DMA requests are automatically generated by the peripheral during the input data phase. 0: DMA for incoming data transfer is disabled 1: DMA for incoming data transfer is enabled 20.6.6 CRYP interrupt mask set/clear register (CRYP_IMSCR) Address offset: 0x14 Reset value: 0x0000 0000 The CRYP_IMSCR register is the interrupt mask set or clear register. It is a read/write register. When a read operation is performed, this register gives the current value of the mask applied to the relevant interrupt. Writing 1 to the particular bit sets the mask, thus enabling the interrupt to be read. Writing 0 to this bit clears the corresponding mask. All the bits are cleared to 0 when the peripheral is reset. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OUTIM INIM rw rw RM0385 Rev 7 613/1709 622 Cryptographic processor (CRYP) RM0385 Bits 31:2 Reserved, must be kept at reset value. Bit 1 OUTIM: Output FIFO service interrupt mask 0: Output FIFO service interrupt is masked 1: Output FIFO service interrupt is not masked Bit 0 INIM: Input FIFO service interrupt mask 0: Input FIFO service interrupt is masked 1: Input FIFO service interrupt is not masked 20.6.7 CRYP raw interrupt status register (CRYP_RISR) Address offset: 0x18 Reset value: 0x0000 0001 The CRYP_RISR register is the raw interrupt status register. It is a read-only register. When a read operation is performed, this register gives the current raw status of the corresponding interrupt, i.e. the interrupt information without taking CRYP_IMSCR mask into account. Write operations have no effect. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OUTRIS INRIS r r Bits 31:2 Reserved, must be kept at reset value. Bit 1 OUTRIS: Output FIFO service raw interrupt status This bit gives the output FIFO interrupt information without taking CRYP_IMSCR corresponding mask into account. 0: Raw interrupt not pending 1: Raw interrupt pending Bit 0 INRIS: Input FIFO service raw interrupt status This bit gives the input FIFO interrupt information without taking CRYP_IMSCR corresponding mask into account. 0: Raw interrupt not pending 1: Raw interrupt pending 20.6.8 CRYP masked interrupt status register (CRYP_MISR) Address offset: 0x1C Reset value: 0x0000 0000 The CRYP_MISR register is the masked interrupt status register. It is a read-only register. When a read operation is performed, this register gives the current masked status of the corresponding interrupt, i.e. the interrupt information taking CRYP_IMSCR mask into account. Write operations have no effect. 614/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OUTMIS INMIS r r Bits 31:2 Reserved, must be kept at reset value. Bit 1 OUTMIS: Output FIFO service masked interrupt status This bit gives the output FIFO interrupt information without taking into account the corresponding CRYP_IMSCR mask. 0: Interrupt not pending 1: Interrupt pending Bit 0 INMIS: Input FIFO service masked interrupt status This bit gives the input FIFO interrupt information without taking into account the corresponding CRYP_IMSCR mask. 0: Interrupt not pending 1: Interrupt pending when CRYPEN= 1 20.6.9 CRYP key register 0L (CRYP_K0LR) Address offset: 0x20 Reset value: 0x0000 0000 CRYP key registers contain the cryptographic keys. • In DES/TDES mode, the keys are 64-bit binary values (number from left to right, that is the leftmost bit is bit 1) and named K1, K2 and K3 (K0 is not used). Each key consists of 56 information bits and 8 parity bits. • In AES mode, the key is considered as a single 128, 192 or 256 bits long sequence K0K1K2...K127/191/255. The AES key is entered into the registers as follows: – for AES-128: K0..K127 corresponds to b127..b0 (b255..b128 are not used), – for AES-192: K0..K191 corresponds to b191..b0 (b255..b192 are not used), – for AES-256: K0..K255 corresponds to b255..b0. In all cases key bit K0 is the leftmost bit in CRYP inner memory and register bit b0 is the rightmost bit in corresponding CRYP_KxLR key register. For more information refer to Section 20.3.17: CRYP key registers. Note: Write accesses to these registers are disregarded when the cryptographic processor is busy (bit BUSY = 1 in the CRYP_SR register) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 K255 K254 K253 K252 K251 K250 K249 K248 K247 K246 K245 K244 K243 K242 K241 K240 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 K239 K238 K237 K236 K235 K234 K233 K232 K231 K230 K229 K228 K227 K226 K225 K224 w w w w w w w w w w w w w w w w RM0385 Rev 7 615/1709 622 Cryptographic processor (CRYP) RM0385 Bits 31:0 K[255:224]: AES key bit x (x= 224 to 255) Note: This register is not used in DES mode 20.6.10 CRYP key register 0R (CRYP_K0RR) Address offset: 0x24 Reset value: 0x0000 0000 Refer to Section 20.6.9: CRYP key register 0L (CRYP_K0LR) for details. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 K223 K222 K221 K220 K219 K218 K217 K216 K215 K214 K213 K212 K211 K210 K209 K208 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 K207 K206 K205 K204 K203 K202 K201 K200 K199 K198 K197 K196 K195 K194 K193 K192 w w w w w w w w w w w w w w w w Bits 31:0 K[223:192]: AES key bit x (x= 192 to 223) Note: This register is not used in DES mode 20.6.11 CRYP key register 1L (CRYP_K1LR) Address offset: 0x28 Reset value: 0x0000 0000 Refer to Section 20.6.9: CRYP key register 0L (CRYP_K0LR) for details. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 K191 K190 K189 K188 K187 K186 K185 K184 K183 K182 K181 K180 K179 K178 K177 K176 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 K175 K174 K173 K172 K171 K170 K169 K168 K167 K166 K165 K164 K163 K162 K161 K160 w w w w w w w w w w w w w w w w Bits 31:0 K[191:160]: AES key bit x (x= 160 to 191) In DES mode, K192 corresponds to key K1 bit 1 and K160 corresponds to key K1 bit 32. 20.6.12 CRYP key register 1R (CRYP_K1RR) Address offset: 0x2C Reset value: 0x0000 0000 Refer to Section 20.6.9: CRYP key register 0L (CRYP_K0LR) for details. 616/1709 RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 K159 K158 K157 K156 K155 K154 K153 K152 K151 K150 K149 K148 K147 K146 K145 K144 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 K143 K142 K141 K140 K139 K138 K137 K136 K135 K134 K133 K132 K131 K130 K129 K128 w w w w w w w w w w w w w w w w Bits 31:0 K[159:128]: AES key bit x (x= 128 to 159) In DES mode K159 corresponds to key K1 bit 33 and K128 corresponds to key K1 bit 64. 20.6.13 CRYP key register 2L (CRYP_K2LR) Address offset: 0x30 Reset value: 0x0000 0000 Refer to Section 20.6.9: CRYP key register 0L (CRYP_K0LR) for details. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 K127 K126 K125 K124 K123 K122 K121 K120 K119 K118 K117 K116 K115 K114 K113 K112 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 K111 K110 K109 K108 K107 K106 K105 K104 K103 K102 K101 K100 K99 K98 K97 K96 w w w w w w w w w w w w w w w w Bits 31:0 K[127:96]: AES key bit x (x= 96 to 127) In DES mode K127 corresponds to key K2 bit 1 and K96 corresponds to key K2 bit 32. 20.6.14 CRYP key register 2R (CRYP_K2RR) Address offset: 0x34 Reset value: 0x0000 0000 Refer to Section 20.6.9: CRYP key register 0L (CRYP_K0LR) for details. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 K95 K94 K93 K92 K91 K90 K89 K88 K87 K86 K85 K84 K83 K82 K81 K80 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 K79 K78 K77 K76 K75 K74 K73 K72 K71 K70 K69 K68 K67 K66 K65 K64 w w w w w w w w w w w w w w w w Bits 31:0 K[95:64]: AES key bit x (x= 64 to 95) In DES mode K95 corresponds to key K2 bit 33 and K64 corresponds to key K2 bit 64. RM0385 Rev 7 617/1709 622 Cryptographic processor (CRYP) 20.6.15 RM0385 CRYP key register 3L (CRYP_K3LR) Address offset: 0x38 Reset value: 0x0000 0000 Refer to Section 20.6.9: CRYP key register 0L (CRYP_K0LR) for details. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 K63 K62 K61 K60 K59 K58 K57 K56 K55 K54 K53 K52 K51 K50 K49 K48 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 K47 K46 K45 K44 K43 K42 K41 K40 K39 K38 K37 K36 K35 K34 K33 K32 w w w w w w w w w w w w w w w w Bits 31:0 K[63:32]: AES key bit x (x= 32 to 63) In DES mode K63 corresponds to key K3 bit 1 and K32 corresponds to key K3 bit 32. 20.6.16 CRYP key register 3R (CRYP_K3RR) Address offset: 0x3C Reset value: 0x0000 0000 Refer to Section 20.6.9: CRYP key register 0L (CRYP_K0LR) for details. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 K31 K30 K29 K28 K27 K26 K25 K24 K23 K22 K21 K20 K19 K18 K17 K16 w w w w w w w w w w w w w w w w 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 K15 K14 K13 K12 K11 K10 K9 K8 K7 K6 K5 K4 K3 K2 K1 K0 w w w w w w w w w w w w w w w w Bits 31:0 K[31:0]: AES key bit x (x= 0 to 31) In DES mode K31 corresponds to key K3 bit 33 and K0 corresponds to key K3 bit 64. 20.6.17 CRYP initialization vector register 0L (CRYP_IV0LR) Address offset: 0x40 Reset value: 0x0000 0000 The CRYP_IV0...1(L/R)R are the left-word and right-word registers for the initialization vector (64 bits for DES/TDES and 128 bits for AES). For more information refer to Section 20.3.18: CRYP initialization vector registers. IV0 is the leftmost bit whereas IV63 (DES, TDES) or IV127 (AES) are the rightmost bits of the initialization vector. IV1(L/R)R is used only in the AES. Only CRYP_IV0(L/R) is used in DES/TDES. Note: 618/1709 Write access to these registers are disregarded when the cryptographic processor is busy (bit BUSY = 1 in the CRYP_SR register). RM0385 Rev 7 RM0385 Cryptographic processor (CRYP) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 IV0 IV1 IV2 IV3 IV4 IV5 IV6 IV7 IV8 IV9 IV10 IV11 IV12 IV13 IV14 IV15 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IV16 IV17 IV18 IV19 IV20 IV21 IV22 IV23 IV24 IV25 IV26 IV27 IV28 IV29 IV30 IV31 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:0 IV[0:31]: Initialization vector bit x (x= 0 to 31) 20.6.18 CRYP initialization vector register 0R (CRYP_IV0RR) Address offset: 0x44 Reset value: 0x0000 0000 Refer to Section 20.6.17: CRYP initialization vector register 0L (CRYP_IV0LR) for details. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 IV32 IV33 IV34 IV35 IV36 IV37 IV38 IV39 IV40 IV41 IV42 IV43 IV44 IV45 IV46 IV47 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IV48 IV49 IV50 IV51 IV52 IV53 IV54 IV55 IV56 IV57 IV58 IV59 IV60 IV61 IV62 IV63 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:0 IV[32:63]: Initialization vector bit x (x= 32 to 63) 20.6.19 CRYP initialization vector register 1L (CRYP_IV1LR) Address offset: 0x48 Reset value: 0x0000 0000 Refer to Section 20.6.17: CRYP initialization vector register 0L (CRYP_IV0LR) for details. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 IV64 IV65 IV66 IV67 IV68 IV69 IV70 IV71 IV72 IV73 IV74 IV75 IV76 IV77 IV78 IV79 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IV80 IV81 IV82 IV83 IV84 IV85 IV86 IV87 IV88 IV89 IV90 IV91 IV92 IV93 IV94 IV95 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:0 IV[64:95]: Initialization vector bit x (x= 64 to 95) Note: This register is not used in DES mode 20.6.20 CRYP initialization vector register 1R (CRYP_IV1RR) Address offset: 0x4C Reset value: 0x0000 0000 Refer to Section 20.6.17: CRYP initialization vector register 0L (CRYP_IV0LR) for details. RM0385 Rev 7 619/1709 622 Cryptographic processor (CRYP) RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 IV96 IV97 IV98 IV99 IV100 IV101 IV102 IV103 IV104 IV105 IV106 IV107 IV108 IV109 IV110 IV111 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 IV112 IV113 IV114 IV115 IV116 IV117 IV118 IV119 IV120 IV121 IV122 IV123 IV124 IV125 IV126 IV127 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:0 IV[96:127]: Initialization vector bit x (x= 96 to 127) Note: This register is not used in DES mode 620/1709 RM0385 Rev 7 0x20 0x24 0x38 0x3C 0x40 0x1C CRYP_MISR Reset value Reset value Reset value Reset value Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 CRYP_K0LR CRYP_K0RR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CRYP_K3LR CRYP_K3RR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CRYP_IV0LR 0 RM0385 Rev 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CRYP_DMACR Res. Res. Res. Res. Res. IFEM Res. IFNF Res. OFNE Res. OFFU Res. BUSY 0 Reset value Reset value Reset value Reset value DIEN 0 Res. 0 INIM 0 Res. 0 INRIS 0 Res. 0 INMIS 0 Res. 1 0 Res. 2 3 4 5 6 7 8 9 ALGODIR Res. ALGOMODE[2:0] DATATYPE KEYSIZE 11 10 Res. Res. 0 DOEN 0 Res. 12 Res. Res. 0 OUTIM Res. Res. 0 Res. 13 Res. Res. 0 OUTRIS Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 14 Res. 15 FFLUSH Res. Res. 0 OUTMIS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 16 CRYPEN 17 0 Res. GCM_CCMPH 0 Res. 18 19 20 0 Res. Res. ALGOMODE[3] Res. Res. 0 Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. 0 Res. Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. CRYP_DIN Res. Res. CRYP_DOUT Res. 0 Res. 0 Res. 0 Res. 0 Res. 21 Res. Res. 0 Res. Res. 0 Res. 24 Res. 22 25 Res. 0 Res. 26 Res. 23 27 Res. Res. 28 Res. 0 Res. 29 Res. 0 Res. Res. Res. 30 Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. 0 Res. Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Reset value Res. 0 Res. Res. 31 CRYP_CR Res. Res. 0 Res. Res. Res. Res. Res. Register name Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. 0 Res. CRYP_RISR 0 Res. 0x18 0 Res. CRYP_IMSCR 0 Res. 0x14 0 Res. Reset value Res. 0x10 Reset value Res. 0x0C Res. 0x08 Res. CRYP_SR Res. 0x04 Res. 0x00 0x00 Res. Offset Res. 20.6.21 Res. RM0385 Cryptographic processor (CRYP) CRYP register map Table 137. CRYP register map and reset values 0 0 0 1 1 DATAIN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DATAOUT 0 0 0 0 0 1 0 0 CRYP_K0LR CRYP_K0RR ... ... CRYP_K3LR CRYP_K3RR CRYP_IV0LR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 621/1709 622 Cryptographic processor (CRYP) RM0385 9 8 7 6 5 4 3 2 1 0 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CRYP_IV1LR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CRYP_IV1RR Reset value 0 CRYP_IV0RR CRYP_IV1LR Reset value 10 0x4C Reset value 12 0x48 CRYP_IV0RR 13 0x44 Register name 30 Offset 31 Table 137. CRYP register map and reset values (continued) 0 0 0 0 CRYP_IV1RR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. 622/1709 RM0385 Rev 7 RM0385 21 Hash processor (HASH) Hash processor (HASH) This section applies to the whole STM32F756xx devices, unless otherwise specified. 21.1 Introduction The hash processor is a fully compliant implementation of the secure hash algorithm (SHA-1, SHA-224, SHA-256), the MD5 (message-digest algorithm 5) hash algorithm and the HMAC (keyed-hash message authentication code) algorithm suitable for a variety of applications. HMAC is suitable for applications requiring message authentication. The hash processor computes FIPS (Federal Information Processing Standards) approved digests of length of 160, 224, 256 bits, for messages of up to (261 – 1) bits. It also computes 128 bits digests for the MD5 algorithm. 21.2 HASH main features • • Suitable for data authentication applications, compliant with: – Federal Information Processing Standards Publication FIPS PUB 180-4, Secure Hash Standard (SHA-1 and SHA-2 family) – Internet Engineering Task Force (IETF) Request For Comments RFC 1321 MD5 Message-Digest Algorithm – Internet Engineering Task Force (IETF) Request For Comments RFC 2104 HMAC: Keyed-Hashing for Message Authentication, and Federal Information Processing Standards Publication FIPS PUB 198-1, The Keyed-Hash Message Authentication Code (HMAC) Corresponding 32-bit words of the digest from consecutive message blocks are added to each other to form the digest of the whole message – Automatic 32-bit words swapping to comply with the internal little-endian representation of the input bit-string – Word swapping supported: bits, bytes, half-words and 32-bit words • Automatic padding to complete the input bit string to fit digest minimum block size of 512 bits (16 × 32 bits) • Single 32-bit input register associated to an internal input FIFO of sixteen 32-bit words, corresponding to one block size • Fast computation of SHA-1, SHA-224, SHA-256, and MD5 – 82 (respectively 66) clock cycles for processing one 512-bit block of data using RM0385 Rev 7 623/1709 645 Hash processor (HASH) RM0385 SHA-1 (respectively SHA-256) algorithm – 66 clock cycles for processing one 512-bit block of data using MD5 algorithm • AHB slave peripheral, accessible through 32-bit word accesses only (else an AHB error is generated) • 8 × 32-bit words (H0 to H7) for output message digest • Automatic data flow control with support of direct memory access (DMA) using one channel. Fixed burst of 4 supported. • Interruptible message digest computation, on a per-32-bit word basis – Re-loadable digest registers – Hashing computation suspend/resume mechanism, including using DMA 21.3 HASH functional description 21.3.1 HASH block diagram Figure 145 shows the block diagram of the hash processor. 32-bit AHB2 bus data, key result HASH_Hx status HASH_SR control AHB2 interface HASH_DIN start swapping Banked Registers (main) 16x32-bit IN FIFO Figure 145. HASH block diagram digest HASH_CR + HASH_STR Banked Registers (context swapping) HASH_CSRx hash_hclk2 HASH Core (SHA-1, SHA-224, SHA-256, MD5) HMAC logic Context swap Banked Registers (IRQ) CRYP_IMR hash_in_dma hash_it DMA interface IRQ interface Control Logic MSv41957V2 21.3.2 HASH internal signals Table 138 describes a list of useful to know internal signals available at HASH level, not at product level (on pads). 624/1709 RM0385 Rev 7 RM0385 Hash processor (HASH) Table 138. HASH internal input/output signals 21.3.3 Signal name Signal type hash_hclk2 digital input hash_it digital output hash_in_dma digital input/output Description AHB2 bus clock Hash processor global interrupt request DMA burst request/ acknowledge About secure hash algorithms The hash processor is a fully compliant implementation of the secure hash algorithm defined by FIPS PUB 180-4 standard and the IETF RFC1321 publication (MD5). With each algorithm, the HASH computes a condensed representation of a message or data file. More specifically, when a message of any length below 264 bits is provided on input, the SHA-1, SHA-224, SHA-256 and MD5 processing core produces respectively a 160-bit, 224 bit, 256 bit and 128-bit output string called a message digest. The message digest can then be processed with a digital signature algorithm in order to generate or verify the signature for the message. Signing the message digest rather than the message often improves the efficiency of the process because the message digest is usually much smaller in size than the message. The verifier of a digital signature has to use the same hash algorithm as the one used by the creator of the digital signature. The SHA-2 functions supported by the hash processor are qualified as “secure” because it is computationally infeasible to find a message that corresponds to a given message digest (SHA-1 is no more qualified as secure since February 2017), or to find two different messages that produce the same message digest. Any change to a message in transit will, with very high probability, result in a different message digest, and the signature will fail to verify. 21.3.4 Message data feeding The message (or data file) to be processed by the HASH should be considered as a bit string. Per FIPS PUB 180-1 and 180-2 standards this message bit string grows from left to right, with hexadecimal words expressed in “big-endian” convention, so that within each word, the most significant bit is stored in the left-most bit position. For example message string “abc” with a bit string representation of “01100001 01100010 01100011” is represented by a 32-bit word 0x00636261, and 8-bit words 0x61626300. Data are entered into the HASH one 32-bit word at a time, by writing them into the HASH_DIN register. The current contents of the HASH_DIN register are transferred to the 16 words input FIFO (IN FIFO) each time the register is written with new data. Hence HASH_DIN and the input FIFO form a seventeen 32-bit words length FIFO (named the IN buffer). In accordance to the kind of data to be processed (e.g. byte swapping when data are ASCII text stream) there must be a bit, byte, half-word or no swapping operation to be performed on data from the input FIFO before entering the little-endian hash processing core. Figure 146 shows how the hash processing core 32-bit data block M0...31 is constructed from one 32-bit words popped into IN FIFO by the driver, according to the DATATYPE bitfield in the HASH control register (HASH_CR). RM0385 Rev 7 625/1709 645 Hash processor (HASH) RM0385 HASH_DIN data endianness when bit swapping is disabled (DATATYPE=”00”) can be described as following: the least significant bit of the message has to be at MSB position in the first word entered into the hash processor, the 32nd bit of the bit string has to be at MSB position in the second word entered into the hash processor and so on. Figure 146. Message data swapping feature DATATYPE “00”: no swapping written first! LSB System interface Word0 bit31 bit0 bit31 M0 M31 M32 MSB Word2 Word1 bit0 bit31 M64 M63 HASH core interface LSB Word3 bit0 bit31 bit0 M95 M96 M127 MSB DATATYPE “01”: 16-bit or half-word swapping bit31 M0 LSB System interface written first! LSB Word0 bit16 bit15 M15 M16 bit0 bit31 Word1 bit16 bit15 M31 M32 M47 M48 bit0 bit31 MSB Word2 bit16 bit15 bit0 M63 HASH core interface bit31 M96 Word3 bit16 bit15 M111 M112 bit0 M127 MSB DATATYPE “10”: 8-bit or byte swapping System interface written first! LSB Word0 bit31..24 bit23..16 bit15..8 M0..7 LSB M8..15 bit7..0 MSB Word2 Word1 bit31..24 bit23..16 bit15..8 bit7..0 bit31..24 bit23..16 bit15..8 Word3 bit7..0 bit31..24 bit23..16 bit15..8 M96..103 M16..23 M24..31 HASH core interface bit7..0 M112.119 M120.127 MSB DATATYPE “11”: bit swapping LSB Word0 bit3 bit3 bit2 9 0 1 M0 M1 M2 LSB System interface written first! bit2 bit1 bit0 Word1 bit3 bit3 bit2 9 0 1 M29 M30 M31 M32 M33 M34 Word2 bit2 bit1 bit0 M61 M62 M63 HASH core interface MSB Word3 bit3 bit3 bit2 9 0 1 M96 M97 M98 bit2 bit1 bit0 M125 M126 M127 MSB MSv41984V1 626/1709 RM0385 Rev 7 RM0385 21.3.5 Hash processor (HASH) Message digest computing The hash processor sequentially processes 512-bit blocks when computing the message digest. Thus, each time 16 × 32-bit words (= 512 bits) have been written to the hash processor by the DMA or the CPU, the HASH automatically starts computing the message digest. This operation is known as ‘partial digest computation’. As described in Section 21.3.4: Message data feeding, the message to be processed is entered into the HASH 32-bit word at a time, writing to the HASH_DIN register to fill the input FIFO. In order to perform the hash computation on this data below sequence shall be used by the application. 1. 2. Caution: Initialize the hash processor using the HASH_CR register: – Select the right algorithm using ALGO field. If needed program the correct swapping operation on the message input words using DATATYPE bitfield in HASH_CR. – Set MODE=1 and select the key length using LKEY if HMAC mode has been selected. – Update NBLW to define the number of valid bits in last word if it is different from 32 bits. If it is the case automatic padding could be applied by the HASH. Complete the initialization by setting to 1 the INIT bit in HASH_CR. Also set the bit DMAE to 1 if data are transferred via DMA. When programming step 2, it is important to set up before or at the same time the correct configuration values (ALGO, DATATYPE, HMAC mode, key length, NBLW). 3. Start filling data by writing to HASH_DIN register, unless data are automatically: transferred via DMA. Note that the processing of a block can start only once the last value of the block has entered the IN FIFO. The way the partial or final digest computation is managed depends on the way data are fed into the processor: a) When data are filled by software: – The partial digest computation is triggered when the software writes an additional word to the HASH_DIN register (actually the first word of the next block). Once the processor is ready again (DINIS=1 in HASH_SR), the software can write new data to HASH_DIN. This mechanism avoids the introduction of wait states by the HASH. – The final digest computation is triggered when the last block is entered and the software writes the DCAL bit to 1. If the message length is not an exact multiple of 512 bits, the NBLW field in HASH_STR register must be written prior to writing DCAL bit (see Section 21.3.6 for details). b) When data are filled by DMA as a single DMA transfer (MDMAT bit=”0”): – The partial digest computation is triggered automatically each time the FIFO is full. – The final digest computation is triggered automatically when the last block has been transferred to the HASH_DIN register (DCAL bit is set to 1 by hardware). If the message length is not an exact multiple of 512 bits, the NBLW field in HASH_STR register must be written prior to enabling the DMA (see Section 21.3.6 for details). c) When data are filled using multiple DMA transfers (MDMAT bit=”1”) : – The partial digest computations are triggered as for single DMA transfers. However the final digest computation is not triggered automatically when the last block has been transferred to the HASH_DIN register (DCAL bit is not set to 1 by hardware). It allows the hash processor to receive a new DMA transfer as part of RM0385 Rev 7 627/1709 645 Hash processor (HASH) RM0385 this digest computation. To launch the final digest computation, the software must set MDMAT bit to 0 before the last DMA transfer in order to trigger the final digest computation as it is done for single DMA transfers (see description before). 4. Once computed, the digest can be read from the output registers as described in Table 139. Table 139. Hash processor outputs Algorithm Valid output registers Most significant bit Digest size (in bits) MD5 HASH_H0 to HASH_H3 HASH_H0[31] 128 SHA-1 HASH_H0 to HASH_H4 HASH_H0[31] 160 SHA-224 HASH_H0 to HASH_H6 HASH_H0[31] 224 SHA-256 HASH_H0 to HASH_H7 HASH_H0[31] 256 For more information about HMAC detailed instructions, refer to Section 21.3.7: HMAC operation. 21.3.6 Message padding Overview When computing a condensed representation of a message, the process of feeding data into the hash processor (with automatic partial digest computation every 512-bit block) loops until the last bits of the original message are written to the HASH_DIN register. As the length (number of bits) of a message can be any integer value, the last word written to the hash processor may have a valid number of bits between 1 and 32. This number of valid bits in the last word, NBLW, has to be written to the HASH_STR register, so that message padding is correctly performed before the final message digest computation. Padding processing Detailed padding sequences with DMA is enabled or disabled are described in Section 21.3.5: Message digest computing. Padding example As specified by Federal Information Processing Standards PUB 180-1 and PUB 180-2, message padding consists in appending a “1” followed by k “0”s, itself followed by a 64-bit integer that is equal to the length L in bits of the message. These three padding operations generate a padded message of length L + 1 + k + 64, which by construction is a multiple of 512 bits. For the hash processor, the “1” is added to the last word written to the HASH_DIN register at the bit position defined by the NBLW bitfield, and the remaining upper bits are cleared (“0”s). 628/1709 RM0385 Rev 7 RM0385 Hash processor (HASH) Example from FIPS PUB180-2 Let us assume that the original message is the ASCII binary-coded form of “abc”, of length L = 24: byte 0 byte 1 byte 2 byte 3 01100001 01100010 01100011 UUUUUUUU <-- 1st word written to HASH_DIN --> NBLW has to be loaded with the value 24: a “1” is appended at bit location 24 in the bit string (starting counting from left to right in the above bit string), which corresponds to bit 31 in the HASH_DIN register (little-endian convention): 01100001 01100010 01100011 1UUUUUUU Since L = 24, the number of bits in the above bit string is 25, and 423 “0” bits are appended, making now 448 bits. This gives in hexadecimal (byte words in big-endian format): 61626380 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 The message length value, L, in two-word format (that is 00000000 00000018) is appended. Hence the final padded message in hexadecimal (byte words in big-endian format): 61626380 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000018 If the hash processor is programmed to swap byte within HASH_DIN input register (DATATYPE=10 in HASH_CR), the above message has to be entered by following below the sequence: 1. 0xUU636261 is written to the HASH_DIN register (where ‘U’ means don’t care). 2. 0x18 is written to the HASH_STR register (the number of valid bits in the last word written to the HASH_DIN register is 24, as the original message length is 24 bits). 3. 0x10 is written to the HASH_STR register to start the message padding (described above) and then perform the digest computation. 4. The hash computing is complete with the message digest available in the HASH_HRx registers (x = 0...4) for the SHA-1 algorithm. For this FIPS example, the expected value is as follows: HASH_H0 HASH_H1 HASH_H2 HASH_H3 HASH_H4 21.3.7 = = = = = 0xA9993E36 0x4706816A 0xBA3E2571 0x7850C26C 0x9CD0D89D HMAC operation Overview As specified by Internet Engineering Task Force RFC2104, HMAC: keyed-hashing for message authentication, the HMAC algorithm is used for message authentication by irreversibly binding the message being processed to a key chosen by the user. The algorithm consists of two nested hash operations: RM0385 Rev 7 629/1709 645 Hash processor (HASH) RM0385 HMAC(message) = Hash((key | pad) XOR [0x5C]n | Hash((key | pad) XOR [0x36]n | message)) where: • [X]n represents a repetition of X n times, where n equal to the size of the underlying hash function data block that is 512 bits for SHA-1, SHA224, SHA-256, MD5 hash algorithms (i.e. n=64). • pad is a sequence of zeroes needed to extend the key to the length n defined above. If the key length is greater than n, the application shall first hash the key using Hash() function and then use the resultant byte string as the actual key to HMAC. • | represents the concatenation operator. HMAC processing Four different steps are required to compute the HMAC: 1. 2. The block is initialized by writing the INIT bit to 1 with the MODE bit at 1 and the ALGO bits set to the value corresponding to the desired algorithm. The LKEY bit must also be set to 1 if the key being used is longer than 64 bytes. In this case, as required by HMAC specifications, the hash processor will use the hash of the key instead of the real key. The key to be used for the inner hash function must be provided to the hash processor: The key loading operation follows the same mechanism as the message bit string loading, i.e. write key data into HASH_DIN and complete the transfer by writing to HASH_STR register. Note: Note: Endianness details can be found in Section 21.3.4: Message data feeding. 3. Once the last key word has been entered and computation has started, the hash processor elaborates the inner key material. Once this operation has completed, it is ready to accept the message bit string as described in Section 21.3.4: Message data feeding. 4. After the final hash round, the hash processor returns “ready” to indicate that it is ready to receive the key to be used for the outer hash function (normally, this key is the same as the one used for the inner hash function). When the last word of the key is entered and computation starts, the HMAC result can be found in the HASH_H0...HASH_H7 registers. The computation latency of the HMAC primitive depends on the lengths of the keys and message, as described in Section 21.5: HASH processing time. HMAC example Below is an example of HMAC SHA-1 algorithm (ALGO=”00” and MODE=”1” in HASH_CR) as specified by NIST. Let us assume that the original message is the ASCII binary-coded form of “Sample message for keylen=blocklen”, of length L = 34 bytes. If the HASH is programmed in no swapping mode (DATATYPE=00 in HASH_CR), the following data must be loaded sequentially into HASH_DIN register: 1. Inner hash key input (lenght=64, i.e. no padding), specified by NIST. As key lenght=64, LKEY bit is set to 0 in HASH_CR register 00010203 04050607 08090A0B 0C0D0E0F 10111213 14151617 18191A1B 1C1D1E1F 20212223 24252627 28292A2B 2C2D2E2F 630/1709 RM0385 Rev 7 RM0385 Hash processor (HASH) 30313233 34353637 38393A3B 3C3D3E3F 2. Message input (lenght=34, i.e. padding required). HASH_STR must be set to 0x20 to start message padding and inner hash computation (see ‘U’ as don’t care) 53616D70 6C65206D 65737361 67652066 6F72206B 65796C65 6E3D626C 6F636B6C 656EUUUU 3. Outer hash key input (lenght=64, i.e. no padding). A key identical to the inner hash key is entered here. 4. Final outer hash computing is then performed by the HASH. The HMAC SHA-1 digest result is available in the HASH_HRx registers (x = 0...4), as shown below: HASH_H0 HASH_H1 HASH_H2 HASH_H3 HASH_H4 21.3.8 = = = = = 0x5FD596EE 0x78D5553C 0x8FF4E72D 0x266DFD19 0x2366DA29 Context swapping Overview It is possible to interrupt a hash/HMAC operation to perform another processing with a higher priority. The interrupted process completes later when the higher-priority task has been processed, as shown in Figure 147. Figure 147. HASH save/restore mechanism Message 2 Message 1 512-bit block 1 512-bit block 2 New higher priority message 2 to be processed HASH suspend sequence 512-bit block 1 512-bit block 3 <512-bit block 2 (last block) 512-bit block 4 512-bit block 5 HASH resume sequence 512-bit block 6 ... MSv41985V1 To do so, the context of the interrupted task must be saved from the HASH registers to memory, and then be restored from memory to the HASH registers. The procedures where the data flow is controlled by software or by DMA are described below. RM0385 Rev 7 631/1709 645 Hash processor (HASH) RM0385 Data loaded by software When the DMA is not used to load the message into the hash processor, the context can be saved only when no block processing is ongoing. This means that the user application must wait until DINIS = 1 (last block processed and input FIFO empty) or NBW ≠ 0 (FIFO not full and no processing ongoing). The detailed procedure is described below. • Current context saving Before interrupting the current message digest calculation, the application must store the contents of the following registers into memory: • – HASH_IMR – HASH_STR – HASH_CR – HASH_CSR0 to HASH_CSR53 Current context restoring To resume processing the interrupted message, the application must respect the following steps: a) Write the following registers with the values saved in memory: HASH_IMR, HASH_STR and HASH_CR. b) Initialize the hash processor by setting the INIT bit in the HASH_CR register. c) Write the HASH_CSR0 to HASH_CSR53 registers with the values saved in memory. d) Restart the processing from the point where it has been interrupted. Data loaded by DMA When the DMA is used to load the message into the hash processor, it is not possible to predict if a DMA transfer is ongoing. The user application must thus stop DMA transfers, then wait until the hash processor is ready before interrupting the current message digest calculation. The detailed procedure is described below. • Current context saving Before interrupting the current message digest calculation using DMA, the application must respect the following steps: • a) Clear the DMAE bit to disable the DMA interface. b) Wait until the current DMA transfer is complete (wait for DMAS = 0 in the HASH_SR register). Note that the block may or may not have been totally transferred to the HASH. c) Disable the corresponding channel in the DMA controller. d) Wait until the hash processor is ready (no block is being processed), that is wait for DINIS = 1 Current context restoring To resume processing the interrupted message using DMA, the application must respect the following steps: 632/1709 a) Reconfigure the DMA controller so that it proceeds with the transfer of the message up to the end if it is not interrupted again. b) Restart the processing from the point where it was interrupted by setting the DMAE bit. RM0385 Rev 7 RM0385 Note: Hash processor (HASH) If the context swapping does not involve HMAC operations, the HASH_CSR38 to HASH_CSR53 registers do not need to be saved and restored. If the context swapping occurs between two blocks (the last block was completely processed and the next block has not yet been pushed into the IN FIFO, NBW = 000 in the HASH_CR register), the HASH_CSR22 to HASH_CSR37 registers do not need to be saved and restored. 21.3.9 HASH DMA interface The hash processor provides an interface to connect to the DMA controller. This DMA can be used to write data to the HASH by setting the DMAE bit in the HASH_CR register. When this bit is set, the HASH asserts the burst request signal to the DMA controller when there is enough free words in the FIFO to support a burst of four words. Once four 32-bit words have been received, the HASH automatically restarts this process, checks the FIFO size, and asserts a new request if the FIFO status allow a burst reception. For more information refer to Section 21.3.5: Message digest computing. Before starting the DMA transfer, the software must program the number of valid bits in the last word that will be copied into HASH_DIN register. This is done by writing in HASH_STR register the following value: NBLW = Len(Message)% 32 where “x%32” gives the remainder of x divided by 32. DMAS bit in HASH_SR register provides information on the DMA interface activity. This bit is set with DMAE and cleared when DMAE is cleared to 0 and no DMA transfer is ongoing. Note: No interrupt is associated to DMAS bit. 21.3.10 HASH error management No error flags are generated by the HASH hardware. 21.4 HASH interrupts Two individual maskable interrupt sources are generated by the hash processor to signal following events: • Digest calculation completion (DCIS) • Data input buffer ready (DINIS) Both interrupt sources are connected to the same global interrupt request signal, as shown on Figure 148. Figure 148. HASH interrupt mapping diagram HASH_SR.DCIS HASH_IMR.DCIE HASH_SR.DINIS HASH_IMR.DINIE hash_it (IP global interrupt request signal) MSv41986V1 RM0385 Rev 7 633/1709 645 Hash processor (HASH) RM0385 The above interrupt sources can be enabled or disabled individually by changing the mask bits in the HASH_IMR register. Setting the appropriate mask bit to 1 enables the interrupt. The status of the individual interrupt events can be read from the HASH_SR register. Table 140 gives a summary of the available features. Table 140. HASH interrupt requests Interrupt event 21.5 Event flag Enable control bit Digest computation completed flag DCIS DCIE Data input buffer ready to get a new block flag DINIS DINIE HASH processing time Table 141 summarizes the time required to process a 512-bit intermediate block for each mode of operation. Table 141. Processing time (in clock cycle) Mode of operation FIFO load(1) Computation phase Total MD5 16 50 66 SHA-1 16 66 82 16 50 66 SHA-224 SHA-256 1. The time required to load the 16 words of the block into the processor must be added to this value. The time required to process the last block of a message (or of a key in HMAC) can be longer. This time depends on the length of the last block and the size of the key (in HMAC mode). Compared to the processing of an intermediate block, it can be increased by the factor below: 634/1709 • 1 to 2.5 for a hash message • ~2.5 for an HMAC input-key • 1 to 2.5 for an HMAC message • ~2.5 for an HMAC output key in case of a short key • 3.5 to 5 for an HMAC output key in case of a long key RM0385 Rev 7 RM0385 Hash processor (HASH) 21.6 HASH registers The HASH core is associated with several control and status registers and five message digest registers. All these registers are accessible through 32-bit word accesses only, else an AHB2 error is generated. 21.6.1 HASH control register (HASH_CR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ALGO[1] Res. LKEY rw 15 14 Res. Res. 13 12 11 10 MDMAT DINNE rw r 9 8 NBW r r 7 6 ALGO[0] MODE r r rw rw 5 4 DATATYPE rw rw rw 3 2 1 0 DMAE INIT Res. Res. rw w Bits 31:19 Reserved, must be kept at reset value. Bit 18 ALGO[1]: refer to bit 7 description Bit 17 Reserved, must be kept at reset value. Bit 16 LKEY: Long key selection This bit selects between short key (≤ 64 bytes) or long key (> 64 bytes) in HMAC mode. 0: Short key (≤ 64 bytes) 1: Long key (> 64 bytes) Note: This selection is only taken into account when the INIT bit is set and MODE= 1. Changing this bit during a computation has no effect. Bit 15 Reserved, must be kept at reset value. Bit 14 Reserved, must be kept at reset value. Bit 13 MDMAT: Multiple DMA Transfers This bit is set when hashing large files when multiple DMA transfers are needed. 0: DCAL is automatically set at the end of a DMA transfer. 1: DCAL is not automatically set at the end of a DMA transfer. Bit 12 DINNE: DIN not empty This bit is set when the HASH_DIN register holds valid data (that is after being written at least once). It is cleared when either the INIT bit (initialization) or the DCAL bit (completion of the previous message processing) is written to 1. 0: No data are present in the data input buffer 1: The input buffer contains at least one word of data RM0385 Rev 7 635/1709 645 Hash processor (HASH) RM0385 Bits 11:8 NBW: Number of words already pushed This bitfield reflects the number of words in the message that have already been pushed into the IN FIFO. NBW increments (+1) when a write access is performed to the HASH_DIN register while DINNE = 1. It goes to zero when the INIT bit is written to 1 or when a digest calculation starts (DCAL written to 1 or DMA end of transfer). If the DMA is not used 0000 and DINNE=0: no word has been pushed into the DIN buffer, i.e. both HASH_DIN register and IN FIFO are empty. 0000 and DINNE=1: one word has been pushed into the DIN buffer, i.e. HASH_DIN register contains one word and IN FIFO is empty. 0001: two words have been pushed into the DIN buffer, i.e. HASH_DIN register and the IN FIFO contain one word each. ... 1111: 16 words have been pushed into the DIN buffer. If the DMA is used NBW is the exact number of words that have been pushed into the IN FIFO by the DMA. Bits 18, 7 ALGO[1:0]: Algorithm selection These bits selects the SHA-1, SHA-224, SHA-256 or the MD5 algorithm: 00: SHA-1 algorithm selected 01: MD5 algorithm selected 10: SHA-224 algorithm selected 11: SHA-256 algorithm selected Note: This selection is only taken into account when the INIT bit is set. Changing this bit during a computation has no effect. Bit 6 MODE: Mode selection This bit selects the HASH or HMAC mode for the selected algorithm: 0: Hash mode selected 1: HMAC mode selected. LKEY must be set if the key being used is longer than 64 bytes. Note: This selection is only taken into account when the INIT bit is set. Changing this bit during a computation has no effect. Bits 5:4 DATATYPE: Data type selection These bits define the format of the data entered into the HASH_DIN register: 00: 32-bit data. The data written to HASH_DIN are directly used by the hash processing, without reordering. 01: 16-bit data or half-word. The data written to HASH_DIN are considered as two half-words, and are swapped before being used by the hash processing. 10: 8-bit data or bytes. The data written to HASH_DIN are considered as four bytes, and are swapped before being used by the hash processing. 11: bit data or bit-string. The data written to HASH_DIN are considered as 32 bits (1st bit of the string at position 0), and are swapped before being used by the hash processing (first bit of the string at position 31). 636/1709 RM0385 Rev 7 RM0385 Hash processor (HASH) Bit 3 DMAE: DMA enable 0: DMA transfers disabled 1: DMA transfers enabled. A DMA request is sent as soon as the hash core is ready to receive data. After this bit is set it is cleared by hardware while the last data of the message is written to the hash processor. Setting this bit to 0 while a DMA transfer is on-going is not aborting this current transfer. Instead, the DMA interface of the HASH remains internally enabled until the transfer is complete or INIT is written to 1. Setting INIT bit to 1 does not clear DMAE bit. Bit 2 INIT: Initialize message digest calculation Writing this bit to 1 resets the hash processor core, so that the HASH is ready to compute the message digest of a new message. Writing this bit to 0 has no effect. Reading this bit always return 0. Bits 1:0 Reserved, must be kept at reset value. RM0385 Rev 7 637/1709 645 Hash processor (HASH) 21.6.2 RM0385 HASH data input register (HASH_DIN) Address offset: 0x04 Reset value: 0x0000 0000 HASH_DIN is the data input register. It is 32-bit wide. This register is used to enter the message by blocks of 512 bits. When the HASH_DIN register is programmed, the value presented on the AHB databus is ‘pushed’ into the hash core and the register takes the new value presented on the AHB databus. To get a correct message format, the DATATYPE bits must have been previously configured in the HASH_CR register. When a block of 16 words has been written to the HASH_DIN register, an intermediate digest calculation is launched: • by writing new data into the HASH_DIN register (the first word of the next block) if the DMA is not used (intermediate digest calculation), • automatically if the DMA is used. When the last block has been written to the HASH_DIN register, the final digest calculation (including padding) is launched: • by writing the DCAL bit to 1 in the HASH_STR register (final digest calculation), • automatically if the DMA is used and MDMAT bit is set to 0. When a digest calculation (intermediate or final) is ongoing and a new write access to the HASH_DIN register is performed, wait-states are inserted on the AHB2 bus until the hash calculation completes. When the HASH_DIN register is read, the last word written to this location is accessed (zero after reset). . 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATAIN rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw DATAIN rw rw rw rw rw rw rw rw Bits 31:0 DATAIN: Data input Reading this register returns the current register content. Writing this register pushes the current register content into the IN FIFO, and the register takes the new value presented on the AHB databus. 638/1709 RM0385 Rev 7 RM0385 Hash processor (HASH) 21.6.3 HASH start register (HASH_STR) Address offset: 0x08 Reset value: 0x0000 0000 The HASH_STR register has two functions: • It is used to define the number of valid bits in the last word of the message entered in the hash processor (that is the number of valid least significant bits in the last data written to the HASH_DIN register) • It is used to start the processing of the last block in the message by writing the DCAL bit to 1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. DCAL Res. Res. Res. rw rw rw rw w NBLW rw Bits 31:9 Reserved, must be kept at reset value. Bit 8 DCAL: Digest calculation Writing this bit to 1 starts the message padding, using the previously written value of NBLW, and starts the calculation of the final message digest with all data words written to the IN FIFO since the INIT bit was last written to 1. Reading this bit returns 0. Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 NBLW: Number of valid bits in the last word When the last word of the message bit string is written in HASH_DIN register, the hash processor takes only the valid bits specified as below, after internal data swapping: 0x00: All 32 bits of the last data written are valid message bits i.e. M[31:0] 0x01: Only one bit of the last data written (after swapping) is valid i.e. M[0] 0x02: Only two bits of the last data written (after swapping) are valid i.e. M[1:0] 0x03: Only three bits of the last data written (after swapping) are valid i.e. M[2:0] ... 0x1F: Only 31 bits of the last data written (after swapping) are valid i.e. M[30:0] The above mechanism is valid only if DCAL=0. If NBLW bits are written while DCAL is set to 1, the NBLW bitfield remains unchanged. In other words it is not possible to configure NBLW and set DCAL at the same time. Reading NBLW bits returns the last value written to NBLW. RM0385 Rev 7 639/1709 645 Hash processor (HASH) 21.6.4 RM0385 HASH digest registers (HASH_HR0..7) These registers contain the message digest result named as follows: • HASH_HR0, HASH_HR1, HASH_HR2, HASH_HR3 and HASH_HR4 registers return the SHA-1 digest result In this case, the HASH_HR5 to HASH_HR7 register are not used, and they are read as zero. • HASH_HR0, HASH_HR1, HASH_HR2 and HASH_HR3 registers return A, B, C and D (respectively), as defined by MD5. In this case, the HASH_HR4 to HASH_HR7 registers are not used, and they are read as zero. • HASH_HR0 to HASH_HR6 registers return the SHA-224 digest result. In this case, the HASH_HR7 register is not used, and it is read as zero. • HASH_HR0 to HASH_HR7 registers return the SHA-256 digest result. In all cases, the digest most significant bit is stored in HASH_HR0[31] and it is not used. If a read access to one of these registers is performed while the hash core is calculating an intermediate digest or a final message digest (that is when the DCAL bit has been written to 1), then the read operation is stalled until the hash calculation completes. Note: HASH_HR0, HASH_HR1, HASH_HR2, HASH_HR3 and HASH_HR4 mapping are duplicated in two memory regions. HASH_HR0 Address offset: 0x0C and 0x310 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r 7 6 5 4 3 2 1 0 r r r r r r r r 23 22 21 20 19 18 17 16 r r r r r r r r 7 6 5 4 3 2 1 0 r r r r r r r r H0 r r r r r r r r 15 14 13 12 11 10 9 8 H0 r r r r r r r r HASH_HR1 Address offset: 0x10 and 0x314 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 H1 r r r r r r r r 15 14 13 12 11 10 9 8 H1 r 640/1709 r r r r r r r RM0385 Rev 7 RM0385 Hash processor (HASH) HASH_HR2 Address offset: 0x14 and 0x318 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r 23 22 21 20 19 18 17 16 H2 H2 r r r r r r r HASH_HR3 Address offset: 0x18 and 0x31C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r 23 22 21 20 19 18 17 16 H3 H3 r r r r r r r HASH_HR4 Address offset: 0x1C and 0x320 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 H4 H4 r r r r r r r r r r r r r r r r 23 22 21 20 19 18 17 16 HASH_HR5 Address offset: 0x324 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r H5 H5 r r r r r r r r RM0385 Rev 7 641/1709 645 Hash processor (HASH) RM0385 HASH_HR6 Address offset: 0x328 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 H6 H6 r r r r r r r r r r r r r r r r 23 22 21 20 19 18 17 16 HASH_HR7 Address offset: 0x32C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r H7 H7 r r r r r r r r Note: When starting a digest computation for a new bit stream (by writing the INIT bit to 1), these registers are forced to their reset values. 21.6.5 HASH interrupt enable register (HASH_IMR) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DCIE DINIE rw rw Bits 31:2 Reserved, must be kept at reset value. Bit 1 DCIE: Digest calculation completion interrupt enable 0: Digest calculation completion interrupt disabled 1: Digest calculation completion interrupt enabled. Bit 0 DINIE: Data input interrupt enable 0: Data input interrupt disabled 1: Data input interrupt enabled 642/1709 RM0385 Rev 7 RM0385 Hash processor (HASH) 21.6.6 HASH status register (HASH_SR) Address offset: 0x24 Reset value: 0x0000 0001 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BUSY DMAS DCIS DINIS r r rc_w0 rc_w0 Bits 31:4 Reserved, must be kept at reset value. Bit 3 BUSY: Busy bit 0: No block is currently being processed 1: The hash core is processing a block of data Bit 2 DMAS: DMA Status This bit provides information on the DMA interface activity. It is set with DMAE and cleared when DMAE=0 and no DMA transfer is ongoing. No interrupt is associated with this bit. 0: DMA interface is disabled (DMAE=0) and no transfer is ongoing 1: DMA interface is enabled (DMAE=1) or a transfer is ongoing Bit 1 DCIS: Digest calculation completion interrupt status This bit is set by hardware when a digest becomes ready (the whole message has been processed). It is cleared by writing it to 0 or by writing the INIT bit to 1 in the HASH_CR register. 0: No digest available in the HASH_HRx registers 1: Digest calculation complete, a digest is available in the HASH_HRx registers. An interrupt is generated if the DCIE bit is set in the HASH_IMR register. Bit 0 DINIS: Data input interrupt status This bit is set by hardware when the input buffer is ready to get a new block (16 locations are free). It is cleared by writing it to 0 or by writing the HASH_DIN register. 0: Less than 16 locations are free in the input buffer 1: A new block can be entered into the input buffer. An interrupt is generated if the DINIE bit is set in the HASH_IMR register. RM0385 Rev 7 643/1709 645 Hash processor (HASH) 21.6.7 RM0385 HASH context swap registers (HASH_CSRx) These registers contain the complete internal register states of the hash processor. They are useful when a context swap has to be done because a high-priority task needs to use the hash processor while it is already used by another task. When such an event occurs, the HASH_CSRx registers have to be read and the read values have to be saved in the system memory space. Then the hash processor can be used by the preemptive task, and when the hash computation is complete, the saved context can be read from memory and written back into the HASH_CSRx registers. HASH_CSR0 Address offset: 0x0F8 Reset value: 0x0000 0002 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CS0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 23 22 21 20 19 18 17 16 CS0 HASH_CSRx (x=1 to 53) Address offset: 0x0F8 + x * 0x4 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 CSx rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw CSx 644/1709 RM0385 Rev 7 RM0385 21.6.8 Hash processor (HASH) HASH register map Table 142 gives the summary HASH register map and reset values. 0 0 0 0 0 0 0 0 0 0 0 DCAL Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0xF8 0xFC 0x1CC 0x310 0x314 0x318 0x31C 0x320 0x324 0x328 0x32C HASH_CSR53 Reset value HASH_HR0 Reset value HASH_HR1 Reset value HASH_HR2 Reset value HASH_HR3 Reset value HASH_HR4 Reset value HASH_HR5 Reset value HASH_HR6 Reset value HASH_HR7 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reserved 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BUSY DCIS DINIS Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CSR53 0 0 0 H0 0 0 H1 0 0 H2 0 0 H3 0 0 H4 0 0 H5 0 0 H6 0 0 H7 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CSR0 0 0 0 0 CSR1 0 0 0 0 0 DMAS Reset value HASH_CSR0 Reset value HASH_CSR1 Reset value Res. HASH_SR Res. 0x24 Res. Reset value DINIE 0 0 DCIE 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 NBLW Res. 0 Res. 0 H0 0 0 H1 0 0 H2 0 0 H3 0 0 H4 0 0 Res. 0 Res. 0 Res. HASH_IMR Res. 0 INIT Res. MODE 0 DMAE ALGO[0] 0 0 Reset value HASH_HR0 Reset value HASH_HR1 Reset value HASH_HR2 Reset value HASH_HR3 Reset value HASH_HR4 Reset value DATATYPE DINNE Res. .MDMAT Res. 0 0 Res. 0x20 0 0 Res. 0x1C 0 0 Res. 0x18 0 Reset value Res. 0x14 0 HASH_STR Res. 0x10 0 NBW DATAIN Res. 0x0C HASH_DIN Res. 0x08 0 Res. 0x04 0 LKEY Res. Res. Reset value ALGO[1] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. HASH_CR Res. 0x00 Res. Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 142. HASH register map and reset values Refer to Section 2.2.2 on page 69 for the register boundary addresses. RM0385 Rev 7 645/1709 645 Advanced-control timers (TIM1/TIM8) RM0385 22 Advanced-control timers (TIM1/TIM8) 22.1 TIM1/TIM8 introduction The advanced-control timers (TIM1/TIM8) consist of a 16-bit auto-reload counter driven by a programmable prescaler. It may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The advanced-control (TIM1/TIM8) and general-purpose (TIMy) timers are completely independent, and do not share any resources. They can be synchronized together as described in Section 22.3.25: Timer synchronization. 22.2 TIM1/TIM8 main features TIM1/TIM8 timer features include: 646/1709 • 16-bit up, down, up/down auto-reload counter. • 16-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock frequency either by any factor between 1 and 65536. • Up to 6 independent channels for: – Input Capture (but channels 5 and 6) – Output Compare – PWM generation (Edge and Center-aligned Mode) – One-pulse mode output • Complementary outputs with programmable dead-time • Synchronization circuit to control the timer with external signals and to interconnect several timers together. • Repetition counter to update the timer registers only after a given number of cycles of the counter. • 2 break inputs to put the timer’s output signals in a safe user selectable configuration. • Interrupt/DMA generation on the following events: – Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) – Trigger event (counter start, stop, initialization or count by internal/external trigger) – Input capture – Output compare • Supports incremental (quadrature) encoder and Hall-sensor circuitry for positioning purposes • Trigger input for external clock or cycle-by-cycle current management RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 149. Advanced-control timer block diagram Internal clock (CK_INT) CK_TIM18 from RCC ETRF ETRP Polarity selection & edgedetector & prescaler ETR TIMx_ETR ITR0 ITR1 ITR2 ITR3 Trigger controller TRGO to other timersto DAC/ADC Input filter TGI ITR TRC TRGI Slave controller mode Reset, enable, up/down, count TI1F_ED Encoder Interface TI1FP1 TI2FP2 REP register U UI Auto-reload register Repetition counter Stop, clear or up/down CK_PSC XOR TI1 TIMx_CH1 Input filter & edge detector TI1FP1 TI1FP2 CK_CNT PSC prescaler CC1I U IC1 Prescaler IC1PS TRC +/- CNT counter CC1I Capture/Compare 1 register CC2I TIMx_CH2 Input filter & edge detector TI2FP1 TI2FP2 TRC IC2 Prescaler IC2PS Capture/Compare 2 register TIMx_CH3 Input filter & edge detector TI3FP3 TI3FP4 IC3 Prescaler IC3PS TRC TIMx_CH4 Input filter & edge detector TI4FP3 TI4FP4 TRC Internal sources Output control OC1 TIMx_CH1N OC1N TIMx_CH2 OC2REF DTG Output control OC2 TIMx_CH2N CC3I Capture/Compare 3 register CC4I IC4 Prescaler IC4PS TIMx_CH3 OC3REF DTG CC4I U TI4 TIMx_CH1 DTG OC2N CC3I U TI3 DTG registers OC1REF CC2I U TI2 U Output control OC3 TIMx_CH3N OC3N Capture/Compare 4 register OC4REF Output OC4 control Capture/Compare 5 register OC5REF Output OC5 control Capture/Compare 6 register OC6REF Output OC6 control TIMx_CH4 SBIF BIF TIMx_BKIN ETRF BRK request Break and Break2 circuitry (1) B2IF BRK2 request TIMx_BKIN2 Notes: Reg Preload registers transferred to active registers on U event according to control bit Event Interrupt & DMA output MS34408V1 1. See Figure 191: Break and Break2 circuitry overview for details RM0385 Rev 7 647/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 22.3 TIM1/TIM8 functional description 22.3.1 Time-base unit The main block of the programmable advanced-control timer is a 16-bit counter with its related auto-reload register. The counter can count up, down or both up and down. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: • Counter register (TIMx_CNT) • Prescaler register (TIMx_PSC) • Auto-reload register (TIMx_ARR) • Repetition counter register (TIMx_RCR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detailed for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 150 and Figure 151 give some examples of the counter behavior when the prescaler ratio is changed on the fly: 648/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 150. Counter timing diagram with prescaler division change from 1 to 2 CK_PSC CEN Timerclock = CK_CNT Counter register F7 F8 F9 FA FB FC 01 00 02 03 Update event (UEV) Prescaler control register 0 1 Write a new value in TIMx_PSC Prescaler buffer 0 Prescaler counter 0 1 1 0 0 1 1 0 1 0 MS31076V2 Figure 151. Counter timing diagram with prescaler division change from 1 to 4 CK_PSC CEN Timerclock = CK_CNT Counter register F7 F8 F9 FA FB FC 00 01 Update event (UEV) Prescaler control register 0 3 Write a new value in TIMx_PSC Prescaler buffer Prescaler counter 0 3 0 0 1 2 3 0 1 2 3 MS31077V2 RM0385 Rev 7 649/1709 740 Advanced-control timers (TIM1/TIM8) 22.3.2 RM0385 Counter modes Upcounting mode In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. If the repetition counter is used, the update event (UEV) is generated after upcounting is repeated for the number of times programmed in the repetition counter register (TIMx_RCR) + 1. Else the update event is generated at each counter overflow. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The repetition counter is reloaded with the content of TIMx_RCR register, • The auto-reload shadow register is updated with the preload value (TIMx_ARR), • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. 650/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 152. Counter timing diagram, internal clock divided by 1 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 32 31 33 34 35 36 00 01 02 03 04 05 06 07 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31078V2 Figure 153. Counter timing diagram, internal clock divided by 2 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0034 0035 0036 0000 0001 0002 0003 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31079V2 RM0385 Rev 7 651/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 154. Counter timing diagram, internal clock divided by 4 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0035 0036 0000 0001 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31080V2 Figure 155. Counter timing diagram, internal clock divided by N CK_PSC Timerclock = CK_CNT Counter register 1F 20 00 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31081V2 652/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 156. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) CK_PSC CEN Timerclock = CK_CNT Counter register 31 32 33 34 35 36 00 01 02 03 04 05 06 07 Counter overflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register FF 36 Write a new value in TIMx_ARR MS31082V3 Figure 157. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) CK_PSC CEN Timerclock = CK_CNT Counter register F0 F1 F2 F3 F4 F5 00 01 02 03 04 05 06 07 Counter overflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register F5 36 Auto-reload shadow register F5 Write a new value in TIMx_ARR RM0385 Rev 7 36 MS31083V2 653/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Downcounting mode In downcounting mode, the counter counts from the auto-reload value (content of the TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a counter underflow event. If the repetition counter is used, the update event (UEV) is generated after downcounting is repeated for the number of times programmed in the repetition counter register (TIMx_RCR) + 1. Else the update event is generated at each counter underflow. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter restarts from the current auto-reload value, whereas the counter of the prescaler restarts from 0 (but the prescale rate doesn’t change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The repetition counter is reloaded with the content of TIMx_RCR register. • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so that the next period is the expected one. The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. 654/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 158. Counter timing diagram, internal clock divided by 1 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 04 05 03 02 01 00 36 35 34 33 32 31 30 2F Counter underflow (cnt_udf) Update event (UEV) Update interrupt flag (UIF) MS31184V1 Figure 159. Counter timing diagram, internal clock divided by 2 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0002 0001 0000 0036 0035 0034 0033 Counter underflow Update event (UEV) Update interrupt flag (UIF) MS31185V1 RM0385 Rev 7 655/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 160. Counter timing diagram, internal clock divided by 4 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0001 0000 0000 0001 Counter underflow Update event (UEV) Update interrupt flag (UIF) MS31186V1 Figure 161. Counter timing diagram, internal clock divided by N CK_PSC Timerclock = CK_CNT Counter register 20 1F 00 36 Counter underflow Update event (UEV) Update interrupt flag (UIF) MS31187V1 656/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 162. Counter timing diagram, update event when repetition counter is not used CK_PSC CEN Timerclock = CK_CNT Counter register 05 04 03 02 01 00 36 35 34 33 32 31 30 2F Counter underflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register FF 36 Write a new value in TIMx_ARR MS31188V1 Center-aligned mode (up/down counting) In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register) – 1, generates a counter overflow event, then counts from the autoreload value down to 1 and generates a counter underflow event. Then it restarts counting from 0. Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to '00'. The Output compare interrupt flag of channels configured in output is set when: the counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = "11"). In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated by hardware and gives the current direction of the counter. The update event can be generated at each counter overflow and at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. In this case, the counter restarts counting from 0, as well as the counter of the prescaler. The UEV update event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter continues counting up and down, based on the current auto-reload value. In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an UEV update event but without setting the UIF flag (thus no interrupt or RM0385 Rev 7 657/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The repetition counter is reloaded with the content of TIMx_RCR register • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register) • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that if the update source is a counter overflow, the autoreload is updated before the counter is reloaded, so that the next period is the expected one (the counter is loaded with the new value). The following figures show some examples of the counter behavior for different clock frequencies. Figure 163. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 CK_PSC CEN Timerclock = CK_CNT Counter register 04 03 02 01 00 01 02 03 04 05 06 05 04 03 Counter underflow Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31189V3 1. Here, center-aligned mode 1 is used (for more details refer to Section 22.4: TIM1/TIM8 registers). 658/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 164. Counter timing diagram, internal clock divided by 2 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0002 0003 0001 0000 0001 0002 0003 Counter underflow Update event (UEV) Update interrupt flag (UIF) MS31190V1 Figure 165. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0034 0035 0036 0035 Counter overflow Update event (UEV) Update interrupt flag (UIF) Note: Here, center_aligned mode 2 or 3 is updated with an UIF on overflow MS31191V1 RM0385 Rev 7 659/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 166. Counter timing diagram, internal clock divided by N CK_PSC Timerclock = CK_CNT Counter register 1F 20 01 00 Counter underflow Update event (UEV) Update interrupt flag (UIF) MS31192V1 Figure 167. Counter timing diagram, update event with ARPE=1 (counter underflow) CK_PSC CEN Timerclock = CK_CNT Counter register 06 05 04 03 02 01 00 01 02 03 04 05 06 07 Counter underflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register FD 36 Write a new value in TIMx_ARR Auto-reload active register FD 36 MS31193V1 660/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 168. Counter timing diagram, Update event with ARPE=1 (counter overflow) CK_PSC CEN Timer clock = CK_CNT Counter register F7 F8 F9 FA FB FC 36 35 34 33 32 31 30 2F Counter overflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register FD 36 Write a new value in TIMx_ARR Auto-reload active FD register 36 MS31194V1 22.3.3 Repetition counter Section 22.3.1: Time-base unit describes how the update event (UEV) is generated with respect to the counter overflows/underflows. It is actually generated only when the repetition counter has reached zero. This can be useful when generating PWM signals. This means that data are transferred from the preload registers to the shadow registers (TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx capture/compare registers in compare mode) every N+1 counter overflows or underflows, where N is the value in the TIMx_RCR repetition counter register. The repetition counter is decremented: • At each counter overflow in upcounting mode, • At each counter underflow in downcounting mode, • At each counter overflow and at each counter underflow in center-aligned mode. Although this limits the maximum number of repetition to 32768 PWM cycles, it makes it possible to update the duty cycle twice per PWM period. When refreshing compare registers only once per PWM period in center-aligned mode, maximum resolution is 2xTck, due to the symmetry of the pattern. The repetition counter is an auto-reload type; the repetition rate is maintained as defined by the TIMx_RCR register value (refer to Figure 169). When the update event is generated by software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave mode controller, it occurs immediately whatever the value of the repetition counter is and the repetition counter is reloaded with the content of the TIMx_RCR register. RM0385 Rev 7 661/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 In Center aligned mode, for odd values of RCR, the update event occurs either on the overflow or on the underflow depending on when the RCR register was written and when the counter was launched: if the RCR was written before launching the counter, the UEV occurs on the overflow. If the RCR was written after launching the counter, the UEV occurs on the underflow. For example, for RCR = 3, the UEV is generated each 4th overflow or underflow event depending on when the RCR was written. Figure 169. Update rate examples depending on mode and TIMx_RCR register settings Edge-aligned mode Counter-aligned mode Upcounting Counter TIMx_CNT TIMx_RCR = 0 TIMx_RCR = 1 TIMx_RCR = 2 TIMx_RCR = 3 TIMx_RCR = 3 and re-synchronization UEV UEV UEV UEV UEV (by SW) UEV Downcounting (by SW) (by SW) Update event: Preload registers transferred to active registers and update interrupt generated Update Event if the repetition counter underflow occurs when the counter is equal to the auto-reload value. MSv31195V1 662/1709 RM0385 Rev 7 RM0385 22.3.4 Advanced-control timers (TIM1/TIM8) External trigger input The timer features an external trigger input ETR. It can be used as: • external clock (external clock mode 2, see Section 22.3.5) • trigger for the slave mode (see Section 22.3.25) • PWM reset input for cycle-by-cycle current regulation (see Section 22.3.7) Figure 170 below describes the ETR input conditioning. The input polarity is defined with the ETP bit in TIMxSMCR register. The trigger can be prescaled with the divider programmed by the ETPS[1:0] bitfield and digitally filtered with the ETF[3:0] bitfield. Figure 170. External trigger input block ETR input ETR 0 1 Divider /1, /2, /4, /8 ETP TIMx_SMCR ETPS[1:0] TIMx_SMCR ETRP fDTS RM0385 Rev 7 Filter downcounter ETF[3:0] TIMx_SMCR To the Output mode controller To the CK_PSC circuitry To the Slave mode controller MS34403V2 663/1709 740 Advanced-control timers (TIM1/TIM8) 22.3.5 RM0385 Clock selection The counter clock can be provided by the following clock sources: • Internal clock (CK_INT) • External clock mode1: external input pin • External clock mode2: external trigger input ETR • Encoder mode Internal clock source (CK_INT) If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. Figure 171 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. Figure 171. Control circuit in normal mode, internal clock divided by 1 Internal clock CEN=CNT_EN UG CNT_INIT Counter clock = CK_CNT = CK_PSC Counter register 31 32 33 34 35 36 00 01 02 03 04 05 06 07 MS31085V2 External clock source mode 1 This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. 664/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 172. TI2 external clock connection example TIMx_SMCR TS[2:0] or TI2F TI1F ITRx TI1_ED TI1FP1 TI2 Filter Edge detector TI2F_Rising TI2F_Falling 0 1 TI2FP2 ETRF or or 0xx 100 TRGI 101 110 111 ETRF CK_INT ICF[3:0] CC2P TIMx_CCMR1 TIMx_CCER (internal clock) Encoder mode External clock mode 1 External clock mode 2 CK_PSC Internal clock mode ECE SMS[2:0] TIMx_SMCR MS31196V1 For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: Note: 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in the TIMx_CCMR1 register. 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000). 3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER register. 4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register. 5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register. 6. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The capture prescaler is not used for triggering, so the user does not need to configure it. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. RM0385 Rev 7 665/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 173. Control circuit in external clock mode 1 TI2 CNT_EN Counter clock = CK_CNT = CK_PSC Counter register 34 35 36 TIF Write TIF=0 MS31087V2 External clock source mode 2 This mode is selected by writing ECE=1 in the TIMx_SMCR register. The counter can count at each rising or falling edge on the external trigger input ETR. The Figure 174 gives an overview of the external trigger input block. Figure 174. External trigger input block or TI2F TI1F ETR or or TRGI 0 ETR pin 1 Divider /1, /2, /4, /8 ETRP fDTS Filter downcounter ETRF CK_INT ETP ETPS[1:0] ETF[3:0] TIMx_SMCR TIMx_SMCR TIMx_SMCR (internal clock) Encoder mode External clock mode 1 External clock mode 2 CK_PSC Internal clock mode ECE SMS[2:0] TIMx_SMCR MS33116V1 For example, to configure the upcounter to count each 2 rising edges on ETR, use the following procedure: 666/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) 1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register. 2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register 3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR register 4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register. 5. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The counter counts once each 2 ETR rising edges. The delay between the rising edge on ETR and the actual clock of the counter is due to the resynchronization circuit on the ETRP signal. Figure 175. Control circuit in external clock mode 2 f CK_INT CNT_EN ETR ETRP ETRF Counter clock = CK_INT =CK_PSC Counter register 34 35 36 MS33111V2 RM0385 Rev 7 667/1709 740 Advanced-control timers (TIM1/TIM8) 22.3.6 RM0385 Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), an input stage for capture (with digital filter, multiplexing, and prescaler, except for channels 5 and 6) and an output stage (with comparator and output control). Figure 176 to Figure 179 give an overview of one Capture/Compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). Figure 176. Capture/compare channel (example: channel 1 input stage) TI1F_ED To the slave mode controller TI1 fDTS TI1F_Rising Filter TI1F downcounter Edge detector TI1F_Falling 0 TI1FP1 01 1 TI2FP1 ICF[3:0] TIMx_CCMR1 CC1P/CC1NP TIMx_CCER TI2F_Rising 0 (from channel 2) TI2F_Falling 1 (from channel 2) 10 TRC (from slave mode controller) IC1 IC1PS Divider /1, /2, /4, /8 11 CC1S[1:0] ICPS[1:0] CC1E TIMx_CCMR1 TIMx_CCER MS33115V1 The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. 668/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 177. Capture/compare channel 1 main circuit APB Bus Read CCR1L read_in_progress 8 low Read CCR1H S high 8 (if 16-bit) MCU-peripheral interface Capture/compare preload register CC1S[0] R R compare_transfer capture_transfer CC1S[1] Input mode S write CCR1H write_in_progress Output mode CC1S[1] CC1S[0] OC1PE Capture/compare shadow register UEV Comparator Capture IC1PS write CCR1L CC1E CNT>CCR1 Counter (from time base unit) OC1PE TIM1_CCMR1 CNT=CCR1 CC1G TIM1_EGR MS31089V2 Figure 178. Output stage of capture/compare channel (channel 1, idem ch. 2 and 3) To the master mode controller 0 ETRF ‘0’ OC1REF CNT>CCR1 Output mode CNT=CCR1 controller OC1REFC OC1_DT Output selector Dead-time generator x0 01 11 1 Output enable circuit OC1 Output enable circuit OC1N CC1P TIM1_CCER OC1N_DT (1) ‘0’ OCxREF OC5REF 11 10 0x 0 1 CC1NE CC1E TIM1_CCER OC1CE OC1M[3:0] DTG[7:0] CC1NE CC1E CC1NP MOE OSSI OSSR TIM1_CCMR1 TIM1_BDTR TIM1_CCER TIM1_CCER TIM1_BDTR MS35909V1 1. OCxREF, where x is the rank of the complementary channel RM0385 Rev 7 669/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 179. Output stage of capture/compare channel (channel 4) To the master mode controller ETRF OC4REFC OC4REF ‘0’ 0 0 1 1 CC4E CC4P CNT > CCR4 Output mode CNT = CCR4 controller Output selector OC3REF TIM1_CCER Output enable circuit TIM1_CCER CC4E TIM1_CCER MOE OC4CE OC4M[3:0] OC4 TIM1_CCMR2 OSSI TIM1_BDTR OIS4 TIM1_CR MS35911V1 Figure 180. Output stage of capture/compare channel (channel 5, idem ch. 6) To the master mode controller ETRF ‘0’ CNT > CCR5 Output mode CNT = CCR5 controller 0 0 OC5REF 1 1 CC5E CC5P TIM1_CCER TIM1_CCER OC5CE OC5M[3:0] Output enable circuit OC5 (1) CC5E TIM1_CCER MOE OSSI TIM1_BDTR TIM1_CCMR2 OIS5 TIM1_CR MS35910V1 1. Not available externally. The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. 22.3.7 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or 670/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to ‘0’ or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to ‘0’. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: 1. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only. 2. Program the input filter duration you need with respect to the signal you connect to the timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the TIMx_CCMR1 register. 3. Select the edge of the active transition on the TI1 channel by writing CC1P and CC1NP bits to 0 in the TIMx_CCER register (rising edge in this case). 4. Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the TIMx_CCMR1 register). 5. Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. 6. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register. When an input capture occurs: • The TIMx_CCR1 register gets the value of the counter on the active transition. • CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. • An interrupt is generated depending on the CC1IE bit. • A DMA request is generated depending on the CC1DE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. 22.3.8 PWM input mode This mode is a particular case of input capture mode. The procedure is the same except: • Two ICx signals are mapped on the same TIx input. • These 2 ICx signals are active on edges with opposite polarity. • One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. RM0385 Rev 7 671/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 For example, the user can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): 1. Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 register (TI1 selected). 2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): write the CC1P and CC1NP bits to ‘0’ (active on rising edge). 3. Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 register (TI1 selected). 4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P and CC2NP bits to CC2P/CC2NP=’10’ (active on falling edge). 5. Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register (TI1FP1 selected). 6. Configure the slave mode controller in reset mode: write the SMS bits to 0100 in the TIMx_SMCR register. 7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register. Figure 181. PWM input mode timing 22.3.9 Forced output mode In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (OCXREF/OCx) to its active level, user just needs to write 0101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. For example: CCxP=0 (OCx active high) => OCx is forced to high level. The OCxREF signal can be forced low by writing the OCxM bits to 0100 in the TIMx_CCMRx register. 672/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the output compare mode section below. 22.3.10 Output compare mode This function is used to control an output waveform or indicate when a period of time has elapsed. Channels 1 to 4 can be output, while Channel 5 and 6 are only available inside the microcontroller (for instance, for compound waveform generation or for ADC triggering). When a match is found between the capture/compare register and the counter, the output compare function: • Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=0000), be set active (OCxM=0001), be set inactive (OCxM=0010) or can toggle (OCxM=0011) on match. • Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register). • Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). • Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One Pulse mode). Procedure 1. Select the counter clock (internal, external, prescaler). 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. 3. Set the CCxIE bit if an interrupt request is to be generated. 4. Select the output mode. For example: 5. – Write OCxM = 0011 to toggle OCx output pin when CNT matches CCRx – Write OCxPE = 0 to disable preload register – Write CCxP = 0 to select active high polarity – Write CCxE = 1 to enable the output Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in Figure 182. RM0385 Rev 7 673/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 182. Output compare mode, toggle on OC1 Write B201h in the CC1R register TIM1_CNT 0039 TIM1_CCR1 003B 003A B200 B201 B201 003A OC1REF= OC1 Match detected on CCR1 Interrupt generated if enabled MS31092V1 22.3.11 PWM mode Pulse Width Modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing ‘0110’ (PWM mode 1) or ‘0111’ (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register. OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by a combination of the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers). Refer to the TIMx_CCER register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction of the counter). The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the TIMx_CR1 register. 674/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) PWM edge-aligned mode • Upcounting configuration Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to the Upcounting mode on page 650. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’. Figure 183 shows some edge-aligned PWM waveforms in an example where TIMx_ARR=8. Figure 183. Edge-aligned PWM waveforms (ARR=8) 0 Counter register CCRx=4 1 2 3 4 5 6 7 8 0 1 OCXREF CCxIF OCXREF CCRx=8 CCxIF OCXREF ‘1’ CCRx>8 CCxIF OCXREF ‘0’ CCRx=0 CCxIF MS31093V1 • Downcounting configuration Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to the Downcounting mode on page 654 In PWM mode 1, the reference signal OCxRef is low as long as TIMx_CNT > TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in TIMx_ARR, then OCxREF is held at ‘1’. 0% PWM is not possible in this mode. PWM center-aligned mode Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from ‘00’ (all the remaining configurations having the same effect on the OCxRef/OCx signals). The compare flag is set when the counter counts up, when it counts down or both when it counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the RM0385 Rev 7 675/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to the Center-aligned mode (up/down counting) on page 657. Figure 184 shows some center-aligned PWM waveforms in an example where: • TIMx_ARR=8, • PWM mode is the PWM mode 1, • The flag is set when the counter counts down corresponding to the center-aligned mode 1 selected for CMS=01 in TIMx_CR1 register. Figure 184. Center-aligned PWM waveforms (ARR=8) Counter register 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 OCxREF CCRx = 4 CMS=01 CMS=10 CMS=11 CCxIF OCxREF CCRx=7 CMS=10 or 11 CCxIF OCxREF ‘1’ CCRx=8 CMS=01 CMS=10 CMS=11 CCxIF OCxREF CCRx>8 ‘1’ CMS=01 CMS=10 CMS=11 CCxIF OCxREF CCRx=0 CCxIF ‘0’ CMS=01 CMS=10 CMS=11 AI14681b Hints on using center-aligned mode • 676/1709 When starting in center-aligned mode, the current up-down configuration is used. It means that the counter counts up or down depending on the value written in the DIR bit RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the same time by the software. • • 22.3.12 Writing to the counter while running in center-aligned mode is not recommended as it can lead to unexpected results. In particular: – The direction is not updated if you write a value in the counter that is greater than the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was counting up, it continues to count up. – The direction is updated if you write 0 or write the TIMx_ARR value in the counter but no Update Event UEV is generated. The safest way to use center-aligned mode is to generate an update by software (setting the UG bit in the TIMx_EGR register) just before starting the counter and not to write the counter while it is running. Asymmetric PWM mode Asymmetric mode allows two center-aligned PWM signals to be generated with a programmable phase shift. While the frequency is determined by the value of the TIMx_ARR register, the duty cycle and the phase-shift are determined by a pair of TIMx_CCRx register. One register controls the PWM during up-counting, the second during down counting, so that PWM is adjusted every half PWM cycle: – OC1REFC (or OC2REFC) is controlled by TIMx_CCR1 and TIMx_CCR2 – OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4 Asymmetric PWM mode can be selected independently on two channel (one OCx output per pair of CCR registers) by writing ‘1110’ (Asymmetric PWM mode 1) or ‘1111’ (Asymmetric PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. Note: The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. When a given channel is used as asymmetric PWM channel, its complementary channel can also be used. For instance, if an OC1REFC signal is generated on channel 1 (Asymmetric PWM mode 1), it is possible to output either the OC2REF signal on channel 2, or an OC2REFC signal resulting from asymmetric PWM mode 1. Figure 185 represents an example of signals that can be generated using Asymmetric PWM mode (channels 1 to 4 are configured in Asymmetric PWM mode 1). Together with the deadtime generator, this allows a full-bridge phase-shifted DC to DC converter to be controlled. RM0385 Rev 7 677/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 185. Generation of 2 phase-shifted PWM signals with 50% duty cycle Counter register 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 OC1REFC CCR1=0 CCR2=8 OC3REFC CCR3=3 CCR4=5 MS33117V1 22.3.13 Combined PWM mode Combined PWM mode allows two edge or center-aligned PWM signals to be generated with programmable delay and phase shift between respective pulses. While the frequency is determined by the value of the TIMx_ARR register, the duty cycle and delay are determined by the two TIMx_CCRx registers. The resulting signals, OCxREFC, are made of an OR or AND logical combination of two reference PWMs: – OC1REFC (or OC2REFC) is controlled by TIMx_CCR1 and TIMx_CCR2 – OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4 Combined PWM mode can be selected independently on two channels (one OCx output per pair of CCR registers) by writing ‘1100’ (Combined PWM mode 1) or ‘1101’ (Combined PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. When a given channel is used as combined PWM channel, its complementary channel must be configured in the opposite PWM mode (for instance, one in Combined PWM mode 1 and the other in Combined PWM mode 2). Note: The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. Figure 186 represents an example of signals that can be generated using Asymmetric PWM mode, obtained with the following configuration: 678/1709 – Channel 1 is configured in Combined PWM mode 2, – Channel 2 is configured in PWM mode 1, – Channel 3 is configured in Combined PWM mode 2, – Channel 4 is configured in PWM mode 1. RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 186. Combined PWM mode on channel 1 and 3 OC2’ OC1’ OC2 OC1 OC1REF OC2REF OC1REF’ OC2REF’ OC1REFC OC1REFC’ OC1REFC = OC1REF AND OC2REF OC1REFC’ = OC1REF’ OR OC2REF’ MS31094V1 22.3.14 Combined 3-phase PWM mode Combined 3-phase PWM mode allows one to three center-aligned PWM signals to be generated with a single programmable signal ANDed in the middle of the pulses. The OC5REF signal is used to define the resulting combined signal. The 3-bits GC5C[3:1] in the TIMx_CCR5 allow selection on which reference signal the OC5REF is combined. The resulting signals, OCxREFC, are made of an AND logical combination of two reference PWMs: – If GC5C1 is set, OC1REFC is controlled by TIMx_CCR1 and TIMx_CCR5 – If GC5C2 is set, OC2REFC is controlled by TIMx_CCR2 and TIMx_CCR5 – If GC5C3 is set, OC3REFC is controlled by TIMx_CCR3 and TIMx_CCR5 Combined 3-phase PWM mode can be selected independently on channels 1 to 3 by setting at least one of the 3-bits GC5C[3:1]. RM0385 Rev 7 679/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 187. 3-phase combined PWM signals with multiple trigger pulses per period ARR OC5 OC6 OC1 OC4 OC2 OC3 Counter OC5ref OC1refC GC5C[3:0] OC2refC OC3refC Preload Active xxx 100 001 xxx 100 OC4ref OC6ref TRGO2 MS33102V1 The TRGO2 waveform shows how the ADC can be synchronized on given 3-phase PWM signals. Refer to Section 22.3.26: ADC synchronization for more details. 22.3.15 Complementary outputs and dead-time insertion The advanced-control timers (TIM1/TIM8) can output two complementary signals and manage the switching-off and the switching-on instants of the outputs. This time is generally known as dead-time and you have to adjust it depending on the devices you have connected to the outputs and their characteristics (intrinsic delays of levelshifters, delays due to power switches...) You can select the polarity of the outputs (main output OCx or complementary OCxN) independently for each output. This is done by writing to the CCxP and CCxNP bits in the TIMx_CCER register. The complementary signals OCx and OCxN are activated by a combination of several control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx, OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Table 146: Output control bits for complementary OCx and OCxN channels with break feature on page 725 for more details. In particular, the dead-time is activated when switching to the idle state (MOE falling down to 0). 680/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the break circuit is present. There is one 10-bit dead-time generator for each channel. From a reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are active high: • The OCx output signal is the same as the reference signal except for the rising edge, which is delayed relative to the reference rising edge. • The OCxN output signal is the opposite of the reference signal except for the rising edge, which is delayed relative to the reference falling edge. If the delay is greater than the width of the active output (OCx or OCxN) then the corresponding pulse is not generated. The following figures show the relationships between the output signals of the dead-time generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1, CCxE=1 and CCxNE=1 in these examples) Figure 188. Complementary output with dead-time insertion OCxREF OCx delay OCxN delay MS31095V1 Figure 189. Dead-time waveforms with delay greater than the negative pulse OCxREF OCx delay OCxN MS31096V1 RM0385 Rev 7 681/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 190. Dead-time waveforms with delay greater than the positive pulse OCxREF OCx OCxN delay MS31097V1 The dead-time delay is the same for each of the channels and is programmable with the DTG bits in the TIMx_BDTR register. Refer to Section 22.4.18: TIM1/TIM8 break and deadtime register (TIMx_BDTR) for delay calculation. Re-directing OCxREF to OCx or OCxN In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER register. This allows you to send a specific waveform (such as PWM or static active level) on one output while the complementary remains at its inactive level. Other alternative possibilities are to have both outputs at inactive level or both outputs active and complementary with dead-time. Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes active when OCxREF is high whereas OCxN is complemented and becomes active when OCxREF is low. 22.3.16 Using the break function The purpose of the break function is to protect power switches driven by PWM signals generated with the TIM1 and TIM8 timers. The two break inputs are usually connected to fault outputs of power stages and 3-phase inverters. When activated, the break circuitry shuts down the PWM outputs and forces them to a predefined safe state. A number of internal MCU events can also be selected to trigger an output shut-down. The break features two channels. A break channel which gathers both system-level fault (clock failure,...) and application fault (from input pins), and can force the outputs to a predefined level (either active or inactive) after a deadtime duration. A break2 channel which only includes application faults and is able to force the outputs to an inactive state. 682/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) The output enable signal and output levels during break are depending on several control bits: – the MOE bit in TIMx_BDTR register allows to enable /disable the outputs by software and is reset in case of break or break2 event. – the OSSI bit in the TIMx_BDTR register defines whether the timer controls the output in inactive state or releases the control to the GPIO controller (typically to have it in Hi-Z mode) – the OISx and OISxN bits in the TIMx_CR2 register which are setting the output shut-down level, either active or inactive. The OCx and OCxN outputs cannot be set both to active level at a given time, whatever the OISx and OISxN values. Refer to Table 146: Output control bits for complementary OCx and OCxN channels with break feature on page 725 for more details. When exiting from reset, the break circuit is disabled and the MOE bit is low. You can enable the break functions by setting the BKE and BKE2 bits in the TIMx_BDTR register. The break input polarities can be selected by configuring the BKP and BKP2 bits in the same register. BKEx and BKPx can be modified at the same time. When the BKEx and BKPx bits are written, a delay of 1 APB clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1 APB clock period to correctly read back the bit after the write operation. Because MOE falling edge can be asynchronous, a resynchronization circuit has been inserted between the actual signal (acting on the outputs) and the synchronous control bit (accessed in the TIMx_BDTR register). It results in some delays between the asynchronous and the synchronous signals. In particular, if you write MOE to 1 whereas it was low, you must insert a delay (dummy instruction) before reading it correctly. This is because you write the asynchronous signal and read the synchronous signal. The break (BRK) event can be generated by two sources of events ORed together: • An external source connected to one of the BKIN pin (as per selection done in the AFIO controller) • An internal source: clock failure event generated by the CSS detector The break2 (BRK2) can be generated by an external source connected to one of the BKIN2 pin (as per selection done in the AFIO controller). Break events can also be generated by software using BG and B2G bits in the TIMx_EGR register. The software break generation using BG and BG2 is active whatever the BKE and BKE2 enable bits values. RM0385 Rev 7 683/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 191. Break and Break2 circuitry overview System break requests SBIF flag CSS Software break requests: BG BIF flag BKE BKF[3:0] BKIN inputs from AF controller BKP BRK request Filter Application break requests Software break requests: BG2 B2IF flag BK2E BK2F[3:0] BKIN2 inputs from AF controller BK2P BRK2 request Filter Application break requests MSv37533V2 Note: An asynchronous (clockless) operation is only guaranteed when the programmable filter is disabled. If it is enabled, a fail safe clock mode (for example by using the internal PLL and/or the CSS) must be used to guarantee that break events are handled. When one of the breaks occurs (selected level on one of the break inputs): 684/1709 • The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state or even releasing the control to the GPIO controller (selected by the OSSI bit). This feature is enabled even if the MCU oscillator is off. • Each output channel is driven with the level programmed in the OISx bit in the TIMx_CR2 register as soon as MOE=0. If OSSI=0, the timer releases the output control (taken over by the GPIO controller), otherwise the enable output remains high. • When complementary outputs are used: – The outputs are first put in inactive state (depending on the polarity). This is done asynchronously so that it works even if no clock is provided to the timer. – If the timer clock is still present, then the dead-time generator is reactivated in order to drive the outputs with the level programmed in the OISx and OISxN bits after a dead-time. Even in this case, OCx and OCxN cannot be driven to their RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) active level together. Note that because of the resynchronization on MOE, the dead-time duration is slightly longer than usual (around 2 ck_tim clock cycles). – Note: If OSSI=0, the timer releases the output control (taken over by the GPIO controller which forces a Hi-Z state), otherwise the enable outputs remain or become high as soon as one of the CCxE or CCxNE bits is high. • The break status flag (SBIF, BIF and B2IF bits in the TIMx_SR register) is set. An interrupt is generated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if the BDE bit in the TIMx_DIER register is set. • If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again at the next update event (UEV). As an example, this can be used to perform a regulation. Otherwise, MOE remains low until the application sets it to ‘1’ again. In this case, it can be used for security and you can connect the break input to an alarm from power drivers, thermal sensors or any security components. The break inputs are active on level. Thus, the MOE cannot be set while the break input is active (neither automatically nor by software). In the meantime, the status flag BIF and B2IF cannot be cleared. In addition to the break input and the output management, a write protection has been implemented inside the break circuit to safeguard the application. It allows to freeze the configuration of several parameters (dead-time duration, OCx/OCxN polarities and state when disabled, OCxM configurations, break enable and polarity). The application can choose from 3 levels of protection selected by the LOCK bits in the TIMx_BDTR register. Refer to Section 22.4.18: TIM1/TIM8 break and dead-time register (TIMx_BDTR). The LOCK bits can be written only once after an MCU reset. Figure 192 shows an example of behavior of the outputs in response to a break. RM0385 Rev 7 685/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 192. Various output behavior in response to a break event on BRK (OSSI = 1) BREAK (MOE ) OCxREF OCx (OCxN not implemented, CCxP=0, OISx=1) OCx (OCxN not implemented, CCxP=0, OISx=0) OCx (OCxN not implemented, CCxP=1, OISx=1) OCx (OCxN not implemented, CCxP=1, OISx=0) OCx delay delay OCxN (CCxE=1, CCxP=0, OISx=0, CCxNE=1, CCxNP=0, OISxN=1) delay OCx delay delay OCxN (CCxE=1, CCxP=0, OISx=1, CCxNE=1, CCxNP=1, OISxN=1) delay OCx OCxN (CCxE=1, CCxP=0, OISx=0, CCxNE=0, CCxNP=0, OISxN=1) delay OCx OCxN (CCxE=1, CCxP=0, OISx=1, CCxNE=0, CCxNP=0, OISxN=0) delay OCx OCxN (CCxE=1, CCxP=0, CCxNE=0, CCxNP=0, OISx=OISxN=0 or OISx=OISxN=1) MS31098V1 686/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) The two break inputs have different behaviors on timer outputs: – The BRK input can either disable (inactive state) or force the PWM outputs to a predefined safe state. – BRK2 can only disable (inactive state) the PWM outputs. The BRK has a higher priority than BRK2 input, as described in Table 143. Note: BRK2 must only be used with OSSR = OSSI = 1. Table 143. Behavior of timer outputs versus BRK/BRK2 inputs Typical use case BRK2 Timer outputs state Active Inactive BRK OCxN output (low side switches) OCx output (high side switches) X – Inactive then forced output state (after a deadtime) – Outputs disabled if OSSI = 0 (control taken over by GPIO logic) ON after deadtime insertion OFF Active Inactive OFF OFF Figure 193 gives an example of OCx and OCxN output behavior in case of active signals on BRK and BRK2 inputs. In this case, both outputs have active high polarities (CCxP = CCxNP = 0 in TIMx_CCER register). Figure 193. PWM output state following BRK and BRK2 pins assertion (OSSI=1) BRK2 BRK OCx Deadtime Deadtime I/O state Active Inactive Idle MS34106V1 RM0385 Rev 7 687/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 194. PWM output state following BRK assertion (OSSI=0) BRK I/O state defined by the GPIO controller (HI-Z) OCx Deadtime I/O state defined by the GPIO controller (HI-Z) I/O state Active Inactive Disabled MS34107V1 22.3.17 Clearing the OCxREF signal on an external event The OCxREF signal for a given channel can be driven low by applying a high level to the ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to ‘1’). The OCxREF signal remains low until the next update event, UEV, occurs. When ETRF is chosen, ETR must be configured as follows: 1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR register set to ‘00’. 2. The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set to ‘0’. 3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be configured according to the user needs. Figure 195 shows the behavior of the OCxREF signal when the ETRF Input becomes High, for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in PWM mode. 688/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 195. Clearing TIMx OCxREF (CCRx) Counter (CNT) ETRF OCxREF (OCxCE = ‘0’) OCxREF (OCxCE = ‘1’) ocref_clr_int becomes high ocref_clr_int still high MS33105V2 Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), then OCxREF is enabled again at the next counter overflow. RM0385 Rev 7 689/1709 740 Advanced-control timers (TIM1/TIM8) 22.3.18 RM0385 6-step PWM generation When complementary outputs are used on a channel, preload bits are available on the OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the COM commutation event. Thus you can program in advance the configuration for the next step and change the configuration of all the channels at the same time. COM can be generated by software by setting the COM bit in the TIMx_EGR register or by hardware (on TRGI rising edge). A flag is set when the COM event occurs (COMIF bit in the TIMx_SR register), which can generate an interrupt (if the COMIE bit is set in the TIMx_DIER register) or a DMA request (if the COMDE bit is set in the TIMx_DIER register). The Figure 196 describes the behavior of the OCx and OCxN outputs when a COM event occurs, in 3 different examples of programmed configurations. Figure 196. 6-step generation, COM example (OSSR=1) 690/1709 RM0385 Rev 7 RM0385 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be: • In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx) • In downcounting: CNT > CCRx Figure 197. Example of one pulse mode. TI2 OC1REF OC1 TIM1_ARR Counter 22.3.19 Advanced-control timers (TIM1/TIM8) TIM1_CCR1 0 tDELAY tPULSE t MS31099V1 For example you may want to generate a positive pulse on OC1 with a length of tPULSE and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin. Let’s use TI2FP2 as trigger 1: 1. Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register. 2. TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER register. 3. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=110 in the TIMx_SMCR register. 4. TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register (trigger mode). RM0385 Rev 7 691/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). • The tDELAY is defined by the value written in the TIMx_CCR1 register. • The tPULSE is defined by the difference between the auto-reload value and the compare value (TIMx_ARR - TIMx_CCR1). • Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M=111 in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to ‘0’ in this example. In our example, the DIR and CMS bits in the TIMx_CR1 register should be low. You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected. Particular case: OCx fast enable: In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay tDELAY min we can get. If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. 22.3.20 Retriggerable one pulse mode (OPM) This mode allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length, but with the following differences with Non-retriggerable one pulse mode described in Section 22.3.19: – The pulse starts as soon as the trigger occurs (no programmable delay) – The pulse is extended if a new trigger occurs before the previous one is completed The timer must be in Slave mode, with the bits SMS[3:0] = ‘1000’ (Combined Reset + trigger mode) in the TIMx_SMCR register, and the OCxM[3:0] bits set to ‘1000’ or ‘1001’ for Retrigerrable OPM mode 1 or 2. If the timer is configured in Up-counting mode, the corresponding CCRx must be set to 0 (the ARR register sets the pulse length). If the timer is configured in Down-counting mode, CCRx must be above or equal to ARR. Note: The OCxM[3:0] and SMS[3:0] bit fields are split into two parts for compatibility reasons, the most significant bit are not contiguous with the 3 least significant ones. This mode must not be used with center-aligned PWM modes. It is mandatory to have CMS[1:0] = 00 in TIMx_CR1. 692/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 198. Retriggerable one pulse mode TRGI Counter Output MS33106V1 22.3.21 Encoder interface mode To select Encoder Interface mode write SMS=‘001’ in the TIMx_SMCR register if the counter is counting on TI2 edges only, SMS=’010’ if it is counting on TI1 edges only and SMS=’011’ if it is counting on both TI1 and TI2 edges. Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER register. When needed, you can program the input filter as well. CC1NP and CC2NP must be kept low. The two inputs TI1 and TI2 are used to interface to an quadrature encoder. Refer to Table 144. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2 after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted, TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in TIMx_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated and generates count pulses as well as the direction signal. Depending on the sequence the counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever the counter is counting on TI1 only, TI2 only or both TI1 and TI2. Encoder interface mode acts simply as an external clock with direction selection. This means that the counter just counts continuously between 0 and the auto-reload value in the TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So you must configure TIMx_ARR before starting. In the same way, the capture, compare, repetition counter, trigger output features continue to work as normal. Encoder mode and External clock mode 2 are not compatible and must not be selected together. Note: The prescaler must be set to zero when encoder mode is enabled In this mode, the counter is modified automatically following the speed and the direction of the quadrature encoder and its content, therefore, always represents the encoder’s position. The count direction correspond to the rotation direction of the connected sensor. The table summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the same time. RM0385 Rev 7 693/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Table 144. Counting direction versus encoder signals Active edge Level on opposite signal (TI1FP1 for TI2, TI2FP2 for TI1) TI1FP1 signal TI2FP2 signal Rising Falling Rising Falling Counting on TI1 only High Down Up No Count No Count Low Up Down No Count No Count Counting on TI2 only High No Count No Count Up Down Low No Count No Count Down Up Counting on TI1 and TI2 High Down Up Up Down Low Up Down Down Up A quadrature encoder can be connected directly to the MCU without external interface logic. However, comparators are normally be used to convert the encoder’s differential outputs to digital signals. This greatly increases noise immunity. The third encoder output which indicate the mechanical zero position, may be connected to an external interrupt input and trigger a counter reset. The Figure 199 gives an example of counter operation, showing count signal generation and direction control. It also shows how input jitter is compensated where both edges are selected. This might occur if the sensor is positioned near to one of the switching points. For this example we assume that the configuration is the following: • CC1S=’01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1). • CC2S=’01’ (TIMx_CCMR2 register, TI1FP2 mapped on TI2). • CC1P=’0’ and CC1NP=’0’ (TIMx_CCER register, TI1FP1 non-inverted, TI1FP1=TI1). • CC2P=’0’ and CC2NP=’0’ (TIMx_CCER register, TI1FP2 non-inverted, TI1FP2= TI2). • SMS=’011’ (TIMx_SMCR register, both inputs are active on both rising and falling edges). • CEN=’1’ (TIMx_CR1 register, Counter enabled). Figure 199. Example of counter operation in encoder interface mode. forward jitter backward jitter forward TI1 TI2 Counter up down up MS33107V1 694/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Figure 200 gives an example of counter behavior when TI1FP1 polarity is inverted (same configuration as above except CC1P=’1’). Figure 200. Example of encoder interface mode with TI1FP1 polarity inverted. forward jitter backward jitter forward TI1 TI2 Counter down up down MS33108V1 The timer, when configured in Encoder Interface mode provides information on the sensor’s current position. You can obtain dynamic information (speed, acceleration, deceleration) by measuring the period between two encoder events using a second timer configured in capture mode. The output of the encoder which indicates the mechanical zero can be used for this purpose. Depending on the time between two events, the counter can also be read at regular times. You can do this by latching the counter value into a third input capture register if available (then the capture signal must be periodic and can be generated by another timer). when available, it is also possible to read its value through a DMA request. The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the update interrupt flag (UIF) into the timer counter register’s bit 31 (TIMxCNT[31]). This allows both the counter value and a potential roll-over condition signaled by the UIFCPY flag to be read in an atomic way. It eases the calculation of angular speed by avoiding race conditions caused, for instance, by a processing shared between a background task (counter reading) and an interrupt (update interrupt). There is no latency between the UIF and UIFCPY flag assertions. In 32-bit timer implementations, when the IUFREMAP bit is set, bit 31 of the counter is overwritten by the UIFCPY flag upon read access (the counter’s most significant bit is only accessible in write mode). 22.3.22 UIF bit remapping The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the Update Interrupt Flag UIF into the timer counter register’s bit 31 (TIMxCNT[31]). This allows both the counter value and a potential roll-over condition signaled by the UIFCPY flag to be read in an atomic way. In particular cases, it can ease the calculations by avoiding race conditions, caused for instance by a processing shared between a background task (counter reading) and an interrupt (Update Interrupt). There is no latency between the UIF and UIFCPY flags assertion. RM0385 Rev 7 695/1709 740 Advanced-control timers (TIM1/TIM8) 22.3.23 RM0385 Timer input XOR function The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to the output of an XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and TIMx_CH3. The XOR output can be used with all the timer input functions such as trigger or input capture. It is convenient to measure the interval between edges on two input signals, as per Figure 201 below. Figure 201. Measuring time interval between edges on 3 signals TI1 TI2 TI3 XOR TIMx Counter MS33109V1 22.3.24 Interfacing with Hall sensors This is done using the advanced-control timers (TIM1 or TIM8) to generate PWM signals to drive the motor and another timer TIMx (TIM2, TIM3, TIM4) referred to as “interfacing timer” in Figure 202. The “interfacing timer” captures the 3 timer input pins (CC1, CC2, CC3) connected through a XOR to the TI1 input channel (selected by setting the TI1S bit in the TIMx_CR2 register). The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus, each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a time base triggered by any change on the Hall inputs. On the “interfacing timer”, capture/compare channel 1 is configured in capture mode, capture signal is TRC (See Figure 176: Capture/compare channel (example: channel 1 input stage) on page 668). The captured value, which corresponds to the time elapsed between 2 changes on the inputs, gives information about motor speed. The “interfacing timer” can be used in output mode to generate a pulse which changes the configuration of the channels of the advanced-control timer (TIM1 or TIM8) (by triggering a COM event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this, the interfacing timer channel must be programmed so that a positive pulse is generated after a programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-control timer (TIM1 or TIM8) through the TRGO output. 696/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Example: you want to change the PWM configuration of your advanced-control timer TIM1 after a programmed delay each time a change occurs on the Hall inputs connected to one of the TIMx timers. • Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the TIMx_CR2 register to ‘1’, • Program the time base: write the TIMx_ARR to the max value (the counter must be cleared by the TI1 change. Set the prescaler to get a maximum counter period longer than the time between 2 changes on the sensors, • Program the channel 1 in capture mode (TRC selected): write the CC1S bits in the TIMx_CCMR1 register to ‘01’. You can also program the digital filter if needed, • Program the channel 2 in PWM 2 mode with the desired delay: write the OC2M bits to ‘111’ and the CC2S bits to ‘00’ in the TIMx_CCMR1 register, • Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2 register to ‘101’, In the advanced-control timer TIM1, the right ITR input must be selected as trigger input, the timer is programmed to generate PWM signals, the capture/compare control signals are preloaded (CCPC=1 in the TIMx_CR2 register) and the COM event is controlled by the trigger input (CCUS=1 in the TIMx_CR2 register). The PWM control bits (CCxE, OCxM) are written after a COM event for the next step (this can be done in an interrupt subroutine generated by the rising edge of OC2REF). The Figure 202 describes this example. RM0385 Rev 7 697/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Figure 202. Example of Hall sensor interface 698/1709 RM0385 Rev 7 RM0385 22.3.25 Advanced-control timers (TIM1/TIM8) Timer synchronization The TIMx timers are linked together internally for timer synchronization or chaining. They can be synchronized in several modes: Reset mode, Gated mode, and Trigger mode. Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: • Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write CC1P=0 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect rising edges only). • Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. • Start the counter by writing CEN=1 in the TIMx_CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register). The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. Figure 203. Control circuit in reset mode TI1 UG Counter clock = ck_cnt = ck_psc Counter register 30 31 32 33 34 35 36 00 01 02 03 00 01 02 03 TIF MS31401V1 RM0385 Rev 7 699/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: • Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write CC1P=1 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. • Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the counter doesn’t start if CEN=0, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. Figure 204. Control circuit in Gated mode TI1 cnt_en Counter clock = ck_cnt = ck_psc Counter register 30 31 32 33 34 35 36 37 38 TIF Write TIF=0 MS31402V1 Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: • 700/1709 Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC2F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC2S bits are configured to select the input capture source only, CC2S=01 in TIMx_CCMR1 register. RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Write CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low level only). • Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI2 as the input source by writing TS=110 in TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 205. Control circuit in trigger mode TI2 cnt_en Counter clock = ck_cnt = ck_psc Counter register 34 35 36 37 38 TIF MS31403V1 Slave mode: Combined reset + trigger mode In this case, a rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers, and starts the counter. This mode is used for one-pulse mode. Slave mode: external clock mode 2 + trigger mode The external clock mode 2 can be used in addition to another slave mode (except external clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock input, and another input can be selected as trigger input (in reset mode, gated mode or trigger mode). It is recommended not to select ETR as TRGI through the TS bits of TIMx_SMCR register. In the following example, the upcounter is incremented at each rising edge of the ETR signal as soon as a rising edge of TI1 occurs: RM0385 Rev 7 701/1709 740 Advanced-control timers (TIM1/TIM8) 1. 2. 3. RM0385 Configure the external trigger input circuit by programming the TIMx_SMCR register as follows: – ETF = 0000: no filter – ETPS=00: prescaler disabled – ETP=0: detection of rising edges on ETR and ECE=1 to enable the external clock mode 2. Configure the channel 1 as follows, to detect rising edges on TI: – IC1F=0000: no filter. – The capture prescaler is not used for triggering and does not need to be configured. – CC1S=01in TIMx_CCMR1 register to select only the input capture source – CC1P=0 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect rising edge only). Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select TI1 as the input source by writing TS=101 in TIMx_SMCR register. A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on ETR rising edges. The delay between the rising edge of the ETR signal and the actual reset of the counter is due to the resynchronization circuit on ETRP input. Figure 206. Control circuit in external clock mode 2 + trigger mode TI1 CEN/CNT_EN ETR Counter clock = CK_CNT = CK_PSC Counter register 34 35 36 TIF MS33110V1 Note: 702/1709 The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer. RM0385 Rev 7 RM0385 22.3.26 Advanced-control timers (TIM1/TIM8) ADC synchronization The timer can generate an ADC triggering event with various internal signals, such as reset, enable or compare events. It is also possible to generate a pulse issued by internal edge detectors, such as: – Rising and falling edges of OC4ref – Rising edge on OC5ref or falling edge on OC6ref The triggers are issued on the TRGO2 internal line which is redirected to the ADC. There is a total of 16 possible events, which can be selected using the MMS2[3:0] bits in the TIMx_CR2 register. An example of an application for 3-phase motor drives is given in Figure 187 on page 680. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer. Note: The clock of the ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the timer. 22.3.27 DMA burst mode The TIMx timers have the capability to generate multiple DMA requests upon a single event. The main purpose is to be able to re-program part of the timer multiple times without software overhead, but it can also be used to read several registers in a row, at regular intervals. The DMA controller destination is unique and must point to the virtual register TIMx_DMAR. On a given timer event, the timer launches a sequence of DMA requests (burst). Each write into the TIMx_DMAR register is actually redirected to one of the timer registers. The DBL[4:0] bits in the TIMx_DCR register set the DMA burst length. The timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address), i.e. the number of transfers (either in half-words or in bytes). The DBA[4:0] bits in the TIMx_DCR registers define the DMA base address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register: Example: 00000: TIMx_CR1 00001: TIMx_CR2 00010: TIMx_SMCR As an example, the timer DMA burst feature is used to update the contents of the CCRx registers (x = 2, 3, 4) upon an update event, with the DMA transferring half words into the CCRx registers. RM0385 Rev 7 703/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 This is done in the following steps: 1. Configure the corresponding DMA channel as follows: – DMA channel peripheral address is the DMAR register address – DMA channel memory address is the address of the buffer in the RAM containing the data to be transferred by DMA into CCRx registers. – Number of data to transfer = 3 (See note below). – Circular mode disabled. 2. Configure the DCR register by configuring the DBA and DBL bit fields as follows: DBL = 3 transfers, DBA = 0xE. 3. Enable the TIMx update DMA request (set the UDE bit in the DIER register). 4. Enable TIMx 5. Enable the DMA channel This example is for the case where every CCRx register to be updated once. If every CCRx register is to be updated twice for example, the number of data to transfer should be 6. Let's take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and data6. The data is transferred to the CCRx registers as follows: on the first update DMA request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is transferred to CCR3 and data6 is transferred to CCR4. Note: A null value can be written to the reserved registers. 22.3.28 Debug mode When the microcontroller enters debug mode (Cortex®-M7 core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For safety purposes, when the counter is stopped (DBG_TIMx_STOP = 1), the outputs are disabled (as if the MOE bit was reset). The outputs can either be forced to an inactive state (OSSI bit = 1), or have their control taken over by the GPIO controller (OSSI bit = 0), typically to force a Hi-Z. For more details, refer to Section 40.16.2: Debug support for timers, watchdog, bxCAN and I2C. For safety purposes, when the counter is stopped (DBG_TIMx_STOP = 1), the outputs are disabled (as if the MOE bit was reset). The outputs can either be forced to an inactive state (OSSI bit = 1), or have their control taken over by the GPIO controller (OSSI bit = 0) to force them to Hi-Z. 704/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) 22.4 TIM1/TIM8 registers Refer to for a list of abbreviations used in register descriptions. 22.4.1 TIM1/TIM8 control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 Res. 14 Res. 13 Res. 12 11 10 Res. UIFRE MAP Res. rw 9 8 CKD[1:0] rw 7 ARPE rw rw 6 5 CMS[1:0] rw rw 4 3 2 1 0 DIR OPM URS UDIS CEN rw rw rw rw rw Bits 15:12 Reserved, must be kept at reset value. Bit 11 UIFREMAP: UIF status bit remapping 0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31. 1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31. Bit 10 Reserved, must be kept at reset value. Bits 9:8 CKD[1:0]: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters (ETR, TIx), 00: tDTS=tCK_INT 01: tDTS=2*tCK_INT 10: tDTS=4*tCK_INT 11: Reserved, do not program this value Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered 1: TIMx_ARR register is buffered Bits 6:5 CMS[1:0]: Center-aligned mode selection 00: Edge-aligned mode. The counter counts up or down depending on the direction bit (DIR). 01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting down. 10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set only when the counter is counting up. 11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set both when the counter is counting up or down. Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as the counter is enabled (CEN=1) Bit 4 DIR: Direction 0: Counter used as upcounter 1: Counter used as downcounter Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder mode. RM0385 Rev 7 705/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bit 3 OPM: One pulse mode 0: Counter is not stopped at update event 1: Counter stops counting at the next update event (clearing the bit CEN) Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generate an update interrupt or DMA request if enabled. These events can be: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller 1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable UEV event generation. 0: UEV enabled. The Update (UEV) event is generated by one of the following events: – Counter overflow/underflow – Setting the UG bit – Update generation through the slave mode controller Buffered registers are then loaded with their preload values. 1: UEV disabled. The Update event is not generated, shadow registers keep their value (ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is set or if a hardware reset is received from the slave mode controller. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled Note: External clock, gated mode and encoder mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. 22.4.2 TIM1/TIM8 control register 2 (TIMx_CR2) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 23 21 20 MMS2[3:0] rw rw 6 15 14 13 12 11 10 9 8 7 Res. OIS4 OIS3N OIS3 OIS2N OIS2 OIS1N OIS1 TI1S rw rw rw rw rw rw rw rw 706/1709 22 RM0385 Rev 7 rw rw 5 4 MMS[2:0] rw rw rw 19 18 17 16 Res. OIS6 Res. OIS5 rw rw 3 2 1 0 CCDS CCUS Res. CCPC rw rw rw RM0385 Advanced-control timers (TIM1/TIM8) Bits 31:24 Reserved, must be kept at reset value. Bits 23:20 MMS2[3:0]: Master mode selection 2 These bits allow the information to be sent to ADC for synchronization (TRGO2) to be selected. The combination is as follows: 0000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO2). If the reset is generated by the trigger input (slave mode controller configured in reset mode), the signal on TRGO2 is delayed compared to the actual reset. 0001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO2). It is useful to start several timers at the same time or to control a window in which a slave timer is enabled. The Counter Enable signal is generated by a logic OR between the CEN control bit and the trigger input when configured in Gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO2, except if the Master/Slave mode is selected (see the MSM bit description in TIMx_SMCR register). 0010: Update - the update event is selected as trigger output (TRGO2). For instance, a master timer can then be used as a prescaler for a slave timer. 0011: Compare pulse - the trigger output sends a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or compare match occurs (TRGO2). 0100: Compare - OC1REF signal is used as trigger output (TRGO2) 0101: Compare - OC2REF signal is used as trigger output (TRGO2) 0110: Compare - OC3REF signal is used as trigger output (TRGO2) 0111: Compare - OC4REF signal is used as trigger output (TRGO2) 1000: Compare - OC5REF signal is used as trigger output (TRGO2) 1001: Compare - OC6REF signal is used as trigger output (TRGO2) 1010: Compare Pulse - OC4REF rising or falling edges generate pulses on TRGO2 1011: Compare Pulse - OC6REF rising or falling edges generate pulses on TRGO2 1100: Compare Pulse - OC4REF or OC6REF rising edges generate pulses on TRGO2 1101: Compare Pulse - OC4REF rising or OC6REF falling edges generate pulses on TRGO2 1110: Compare Pulse - OC5REF or OC6REF rising edges generate pulses on TRGO2 1111: Compare Pulse - OC5REF rising or OC6REF falling edges generate pulses on TRGO2 Note: The clock of the slave timer or ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer. Bit 19 Reserved, must be kept at reset value. Bit 18 OIS6: Output Idle state 6 (OC6 output) Refer to OIS1 bit Bit 17 Reserved, must be kept at reset value. Bit 16 OIS5: Output Idle state 5 (OC5 output) Refer to OIS1 bit Bit 15 Reserved, must be kept at reset value. Bit 14 OIS4: Output Idle state 4 (OC4 output) Refer to OIS1 bit Bit 13 OIS3N: Output Idle state 3 (OC3N output) Refer to OIS1N bit Bit 12 OIS3: Output Idle state 3 (OC3 output) Refer to OIS1 bit RM0385 Rev 7 707/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bit 11 OIS2N: Output Idle state 2 (OC2N output) Refer to OIS1N bit Bit 10 OIS2: Output Idle state 2 (OC2 output) Refer to OIS1 bit Bit 9 OIS1N: Output Idle state 1 (OC1N output) 0: OC1N=0 after a dead-time when MOE=0 1: OC1N=1 after a dead-time when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 8 OIS1: Output Idle state 1 (OC1 output) 0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0 1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0 Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). Bit 7 TI1S: TI1 selection 0: The TIMx_CH1 pin is connected to TI1 input 1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination) Bits 6:4 MMS[2:0]: Master mode selection These bits allow to select the information to be sent in master mode to slave timers for synchronization (TRGO). The combination is as follows: 000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the reset is generated by the trigger input (slave mode controller configured in reset mode) then the signal on TRGO is delayed compared to the actual reset. 001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is useful to start several timers at the same time or to control a window in which a slave timer is enable. The Counter Enable signal is generated by a logic OR between CEN control bit and the trigger input when configured in gated mode. When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR register). 010: Update - The update event is selected as trigger output (TRGO). For instance a master timer can then be used as a prescaler for a slave timer. 011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be set (even if it was already high), as soon as a capture or a compare match occurred. (TRGO). 100: Compare - OC1REF signal is used as trigger output (TRGO) 101: Compare - OC2REF signal is used as trigger output (TRGO) 110: Compare - OC3REF signal is used as trigger output (TRGO) 111: Compare - OC4REF signal is used as trigger output (TRGO) Note: The clock of the slave timer or ADC must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer. Bit 3 CCDS: Capture/compare DMA selection 0: CCx DMA request sent when CCx event occurs 1: CCx DMA requests sent when update event occurs 708/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Bit 2 CCUS: Capture/compare control update selection 0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit only 1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting the COMG bit or when an rising edge occurs on TRGI Note: This bit acts only on channels that have a complementary output. Bit 1 Reserved, must be kept at reset value. Bit 0 CCPC: Capture/compare preloaded control 0: CCxE, CCxNE and OCxM bits are not preloaded 1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated only when a commutation event (COM) occurs (COMG bit set or rising edge detected on TRGI, depending on the CCUS bit). Note: This bit acts only on channels that have a complementary output. 22.4.3 TIM1/TIM8 slave mode control register (TIMx_SMCR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SMS[3] 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ETP ECE rw rw rw ETPS[1:0] rw rw ETF[3:0] rw rw rw MSM rw rw TS[2:0] rw rw Res. rw 0 SMS[2:0] rw rw rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 SMS[3]: Slave mode selection - bit 3 Refer to SMS description - bits 2:0. Bit 15 ETP: External trigger polarity This bit selects whether ETR or ETR is used for trigger operations 0: ETR is non-inverted, active at high level or rising edge. 1: ETR is inverted, active at low level or falling edge. Bit 14 ECE: External clock enable This bit enables External clock mode 2. 0: External clock mode 2 disabled 1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF signal. Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI connected to ETRF (SMS=111 and TS=111). 2: It is possible to simultaneously use external clock mode 2 with the following slave modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to ETRF in this case (TS bits must not be 111). 3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the external clock input is ETRF. RM0385 Rev 7 709/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bits 13:12 ETPS[1:0]: External trigger prescaler External trigger signal ETRP frequency must be at most 1/4 of TIMxCLK frequency. A prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external clocks. 00: Prescaler OFF 01: ETRP frequency divided by 2 10: ETRP frequency divided by 4 11: ETRP frequency divided by 8 Bits 11:8 ETF[3:0]: External trigger filter This bit-field then defines the frequency used to sample ETRP signal and the length of the digital filter applied to ETRP. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 Bit 7 MSM: Master/slave mode 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful if we want to synchronize several timers on a single external event. Bits 6:4 TS[2:0]: Trigger selection This bit-field selects the trigger input to be used to synchronize the counter. 000: Internal Trigger 0 (ITR0) 001: Internal Trigger 1 (ITR1) 010: Internal Trigger 2 (ITR2) 011: Internal Trigger 3 (ITR3) 100: TI1 Edge Detector (TI1F_ED) 101: Filtered Timer Input 1 (TI1FP1) 110: Filtered Timer Input 2 (TI2FP2) 111: External Trigger input (ETRF) See Table 145: TIMx internal trigger connection on page 711 for more details on ITRx meaning for each Timer. Note: These bits must be changed only when they are not used (e.g. when SMS=000) to avoid wrong edge detections at the transition. Note: The other bit is at position 16 in the same register Bit 3 Reserved, must be kept at reset value. 710/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Bits 16, 2, 1, 0 SMS[3:0]: Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. 0000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal clock. 0001: Encoder mode 1 - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level. 0010: Encoder mode 2 - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level. 0011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input. 0100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers. 0101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled. 0110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled. 0111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter. 1000: Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers and starts the counter. Codes above 1000: Reserved. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave peripherals (timer, ADC, ...) receiving the TRGO or the TRGO2 signals must be enabled prior to receive events from the master timer, and the clock frequency (prescaler) must not be changed on-the-fly while triggers are received from the master timer. Table 145. TIMx internal trigger connection 22.4.4 Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011) TIM1 TIM5 TIM2 TIM3 TIM4 TIM8 TIM1 TIM2 TIM4 TIM5 TIM1/TIM8 DMA/interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 Res. TDE rw 13 12 11 10 9 COMDE CC4DE CC3DE CC2DE CC1DE rw rw rw rw rw 8 7 6 5 4 3 2 1 0 UDE BIE TIE COMIE CC4IE CC3IE CC2IE CC1IE UIE rw rw rw rw rw rw rw rw rw RM0385 Rev 7 711/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bit 15 Reserved, must be kept at reset value. Bit 14 TDE: Trigger DMA request enable 0: Trigger DMA request disabled 1: Trigger DMA request enabled Bit 13 COMDE: COM DMA request enable 0: COM DMA request disabled 1: COM DMA request enabled Bit 12 CC4DE: Capture/Compare 4 DMA request enable 0: CC4 DMA request disabled 1: CC4 DMA request enabled Bit 11 CC3DE: Capture/Compare 3 DMA request enable 0: CC3 DMA request disabled 1: CC3 DMA request enabled Bit 10 CC2DE: Capture/Compare 2 DMA request enable 0: CC2 DMA request disabled 1: CC2 DMA request enabled Bit 9 CC1DE: Capture/Compare 1 DMA request enable 0: CC1 DMA request disabled 1: CC1 DMA request enabled Bit 8 UDE: Update DMA request enable 0: Update DMA request disabled 1: Update DMA request enabled Bit 7 BIE: Break interrupt enable 0: Break interrupt disabled 1: Break interrupt enabled Bit 6 TIE: Trigger interrupt enable 0: Trigger interrupt disabled 1: Trigger interrupt enabled Bit 5 COMIE: COM interrupt enable 0: COM interrupt disabled 1: COM interrupt enabled Bit 4 CC4IE: Capture/Compare 4 interrupt enable 0: CC4 interrupt disabled 1: CC4 interrupt enabled Bit 3 CC3IE: Capture/Compare 3 interrupt enable 0: CC3 interrupt disabled 1: CC3 interrupt enabled 712/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Bit 2 CC2IE: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled 1: CC2 interrupt enabled Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled 1: CC1 interrupt enabled Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled 1: Update interrupt enabled 22.4.5 TIM1/TIM8 status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC6IF CC5IF rc_w0 rc_w0 15 14 Res. Res. 13 12 11 10 9 CC4OF CC3OF CC2OF CC1OF rc_w0 rc_w0 rc_w0 rc_w0 8 7 6 5 4 3 2 1 0 B2IF BIF TIF COMIF CC4IF CC3IF CC2IF CC1IF UIF rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Bits 31:18 Reserved, must be kept at reset value. Bit 17 CC6IF: Compare 6 interrupt flag Refer to CC1IF description (Note: Channel 6 can only be configured as output) Bit 16 CC5IF: Compare 5 interrupt flag Refer to CC1IF description (Note: Channel 5 can only be configured as output) Bits 15: Reserved, must be kept at reset value. Bit 12 CC4OF: Capture/Compare 4 overcapture flag Refer to CC1OF description Bit 11 CC3OF: Capture/Compare 3 overcapture flag Refer to CC1OF description Bit 10 CC2OF: Capture/Compare 2 overcapture flag Refer to CC1OF description Bit 9 CC1OF: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to ‘0’. 0: No overcapture has been detected. 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set Bit 8 B2IF: Break 2 interrupt flag This flag is set by hardware as soon as the break 2 input goes active. It can be cleared by software if the break 2 input is not active. 0: No break event occurred. 1: An active level has been detected on the break 2 input. An interrupt is generated if BIE=1 in the TIMx_DIER register. RM0385 Rev 7 713/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bit 7 BIF: Break interrupt flag This flag is set by hardware as soon as the break input goes active. It can be cleared by software if the break input is not active. 0: No break event occurred. 1: An active level has been detected on the break input. An interrupt is generated if BIE=1 in the TIMx_DIER register. Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. 0: No trigger event occurred. 1: Trigger interrupt pending. Bit 5 COMIF: COM interrupt flag This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE, CCxNE, OCxM - have been updated). It is cleared by software. 0: No COM event occurred. 1: COM interrupt pending. Bit 4 CC4IF: Capture/Compare 4 interrupt flag Refer to CC1IF description Bit 3 CC3IF: Capture/Compare 3 interrupt flag Refer to CC1IF description Bit 2 CC2IF: Capture/Compare 2 interrupt flag Refer to CC1IF description Bit 1 CC1IF: Capture/Compare 1 interrupt flag If channel CC1 is configured as output: This flag is set by hardware when the counter matches the compare value, with some exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register description). It is cleared by software. 0: No match. 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow (in downcounting mode) If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register. 0: No input capture occurred 1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected on IC1 which matches the selected polarity) Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: – At overflow or underflow regarding the repetition counter value (update if repetition counter = 0) and if the UDIS=0 in the TIMx_CR1 register. – When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and UDIS=0 in the TIMx_CR1 register. – When CNT is reinitialized by a trigger event (refer to Section 22.4.3: TIM1/TIM8 slave mode control register (TIMx_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register. 714/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) 22.4.6 TIM1/TIM8 event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. B2G BG TG COMG CC4G CC3G CC2G CC1G UG w w w w w w w w w Bits 15:9 Reserved, must be kept at reset value. Bit 8 B2G: Break 2 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A break 2 event is generated. MOE bit is cleared and B2IF flag is set. Related interrupt can occur if enabled. Bit 7 BG: Break generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or DMA transfer can occur if enabled. Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if enabled. Bit 5 COMG: Capture/Compare control update generation This bit can be set by software, it is automatically cleared by hardware 0: No action 1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits Note: This bit acts only on channels having a complementary output. Bit 4 CC4G: Capture/Compare 4 generation Refer to CC1G description Bit 3 CC3G: Capture/Compare 3 generation Refer to CC1G description Bit 2 CC2G: Capture/Compare 2 generation Refer to CC1G description RM0385 Rev 7 715/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bit 1 CC1G: Capture/Compare 1 generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: If channel CC1 is configured as output: CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled. If channel CC1 is configured as input: The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Reinitialize the counter and generates an update of the registers. Note that the prescaler counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload value (TIMx_ARR) if DIR=1 (downcounting). 22.4.7 TIM1/TIM8 capture/compare mode register 1 (TIMx_CCMR1) Address offset: 0x18 Reset value: 0x0000 0000 The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits of this register have a different function in input and in output mode. For a given bit, OCxx describes its function when the channel is configured in output, ICxx describes its function when the channel is configured in input. So you must take care that the same bit can have a different meaning for the input stage and for the output stage. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. OC2M[3] Res. Res. Res. Res. Res. Res. Res. OC1M[3] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw 15 14 OC2 CE 13 12 OC2M[2:0] IC2F[3:0] rw rw rw 11 10 OC2 PE OC2 FE 9 rw 8 CC2S[1:0] 7 IC2PSC[1:0] rw rw rw 5 4 OC1M[2:0] IC1F[3:0] rw rw rw Output compare mode Bits 31:25 Reserved, must be kept at reset value. Bit 24 OC2M[3]: Output Compare 2 mode - bit 3 Refer to OC2M description on bits 14:12. Bits 23:17 Reserved, must be kept at reset value. Bits16 OC1M[3]: Output Compare 1 mode - bit 3 Refer to OC1M description on bits 6:4 716/1709 6 OC1 CE RM0385 Rev 7 rw rw 3 2 OC1 PE OC1 FE 1 0 CC1S[1:0] IC1PSC[1:0] rw rw rw rw rw RM0385 Advanced-control timers (TIM1/TIM8) Bit 15 OC2CE: Output Compare 2 clear enable Bits 14:12 OC2M[2:0]: Output Compare 2 mode Bit 11 OC2PE: Output Compare 2 preload enable Bit 10 OC2FE: Output Compare 2 fast enable Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through the TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER). Bit 7 OC1CE: Output Compare 1 clear enable 0: OC1Ref is not affected by the ETRF input 1: OC1Ref is cleared as soon as a High level is detected on ETRF input RM0385 Rev 7 717/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bits 6:4 OC1M: Output Compare 1 mode These bits define the behavior of the output reference signal OC1REF from which OC1 and OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on CC1P and CC1NP bits. 0000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base). 0001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 0010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1). 0011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1. 0100: Force inactive level - OC1REF is forced low. 0101: Force active level - OC1REF is forced high. 0110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT TIMx_CCR1 else active (OC1REF=’1’). 0111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT TIMx_CCR1 else inactive. 1000: Retrigerrable OPM mode 1 - In up-counting mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes active again at the next update. In down-counting mode, the channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes inactive again at the next update. 1001: Retrigerrable OPM mode 2 - In up-counting mode, the channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 2 and the channels becomes inactive again at the next update. In down-counting mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes active again at the next update. 1010: Reserved, 1011: Reserved, 1100: Combined PWM mode 1 - OC1REF has the same behavior as in PWM mode 1. OC1REFC is the logical OR between OC1REF and OC2REF. 1101: Combined PWM mode 2 - OC1REF has the same behavior as in PWM mode 2. OC1REFC is the logical AND between OC1REF and OC2REF. 1110: Asymmetric PWM mode 1 - OC1REF has the same behavior as in PWM mode 1. OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting down. 1111: Asymmetric PWM mode 2 - OC1REF has the same behavior as in PWM mode 2. OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting down. Note: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in output). Note: In PWM mode, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from “frozen” mode to “PWM” mode. Note: On channels having a complementary output, this bit field is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the OC1M active bits take the new value from the preloaded bits only when a COM event is generated. 718/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Bit 3 OC1PE: Output Compare 1 preload enable 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in output). 2: The PWM mode can be used without validating the preload register only in one pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. Bit 2 OC1FE: Output Compare 1 fast enable This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. 1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently from the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode. Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER). Input capture mode Bits 31:16 Reserved, must be kept at reset value. Bits 15:12 IC2F: Input capture 2 filter Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler Bits 9:8 CC2S: Capture/Compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER). RM0385 Rev 7 719/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bits 7:4 IC1F[3:0]: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 Bits 3:2 IC1PSC: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events Bits 1:0 CC1S: Capture/Compare 1 Selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER). 22.4.8 TIM1/TIM8 capture/compare mode register 2 (TIMx_CCMR2) Address offset: 0x1C Reset value: 0x0000 0000 Refer to the above CCMR1 register description. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. OC4M[3] Res. Res. Res. Res. Res. Res. Res. OC3M[3] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 OC3 PE OC3 FE rw 15 14 OC4 CE 13 12 OC4M[2:0] IC4F[3:0] rw 720/1709 rw rw 11 10 OC4 PE OC4 FE 9 8 CC4S[1:0] rw OC3 CE. IC4PSC[1:0] rw rw rw OC3M[2:0] IC3F[3:0] rw rw rw RM0385 Rev 7 rw rw 0 CC3S[1:0] IC3PSC[1:0] rw rw rw rw rw RM0385 Advanced-control timers (TIM1/TIM8) Output compare mode Bits 31:25 Reserved, must be kept at reset value. Bit 24 OC4M[3]: Output Compare 4 mode - bit 3 Bits 23:17 Reserved, must be kept at reset value. Bit 16 OC3M[3]: Output Compare 3 mode - bit 3 Bit 15 OC4CE: Output compare 4 clear enable Bits 14:12 OC4M: Output compare 4 mode Bit 11 OC4PE: Output compare 4 preload enable Bit 10 OC4FE: Output compare 4 fast enable Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER). Bit 7 OC3CE: Output compare 3 clear enable Bits 6:4 OC3M: Output compare 3 mode Bit 3 OC3PE: Output compare 3 preload enable Bit 2 OC3FE: Output compare 3 fast enable Bits 1:0 CC3S: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER). Input capture mode Bits 31:16 Reserved, must be kept at reset value. Bits 15:12 IC4F: Input capture 4 filter Bits 11:10 IC4PSC: Input capture 4 prescaler Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER). RM0385 Rev 7 721/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bits 7:4 IC3F: Input capture 3 filter Bits 3:2 IC3PSC: Input capture 3 prescaler Bits 1:0 CC3S: Capture/compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER). 22.4.9 TIM1/TIM8 capture/compare enable register (TIMx_CCER) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC6P CC6E Res. Res. CC5P CC5E rw rw rw rw 5 4 CC2P CC2E rw rw 15 14 13 12 CC4NP Res. CC4P CC4E rw rw rw 11 10 CC3NP CC3NE rw rw 9 8 CC3P CC3E rw rw 7 6 CC2NP CC2NE rw rw Bits 31:22 Reserved, must be kept at reset value. Bit 21 CC6P: Capture/Compare 6 output polarity Refer to CC1P description Bit 20 CC6E: Capture/Compare 6 output enable Refer to CC1E description Bits 19:18 Reserved, must be kept at reset value. Bit 17 CC5P: Capture/Compare 5 output polarity Refer to CC1P description Bit 16 CC5E: Capture/Compare 5 output enable Refer to CC1E description Bit 15 CC4NP: Capture/Compare 4 complementary output polarity Refer to CC1NP description Bit 14 Reserved, must be kept at reset value. Bit 13 CC4P: Capture/Compare 4 output polarity Refer to CC1P description Bit 12 CC4E: Capture/Compare 4 output enable Refer to CC1E description Bit 11 CC3NP: Capture/Compare 3 complementary output polarity Refer to CC1NP description Bit 10 CC3NE: Capture/Compare 3 complementary output enable Refer to CC1NE description 722/1709 RM0385 Rev 7 3 2 CC1NP CC1NE rw rw 1 0 CC1P CC1E rw rw RM0385 Advanced-control timers (TIM1/TIM8) Bit 9 CC3P: Capture/Compare 3 output polarity Refer to CC1P description Bit 8 CC3E: Capture/Compare 3 output enable Refer to CC1E description Bit 7 CC2NP: Capture/Compare 2 complementary output polarity Refer to CC1NP description Bit 6 CC2NE: Capture/Compare 2 complementary output enable Refer to CC1NE description Bit 5 CC2P: Capture/Compare 2 output polarity Refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable Refer to CC1E description Bit 3 CC1NP: Capture/Compare 1 complementary output polarity CC1 channel configured as output: 0: OC1N active high. 1: OC1N active low. CC1 channel configured as input: This bit is used in conjunction with CC1P to define the polarity of TI1FP1 and TI2FP1. Refer to CC1P description. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=”00” (channel configured as output). On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NP active bit takes the new value from the preloaded bit only when a Commutation event is generated. Bit 2 CC1NE: Capture/Compare 1 complementary output enable 0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. 1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1E bits. On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1NE active bit takes the new value from the preloaded bit only when a Commutation event is generated. RM0385 Rev 7 723/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bit 1 CC1P: Capture/Compare 1 output polarity CC1 channel configured as output: 0: OC1 active high 1: OC1 active low CC1 channel configured as input: CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture operations. 00: non-inverted/rising edge. The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder mode). 01: inverted/falling edge. The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder mode). 10: reserved, do not use this configuration. 11: non-inverted/both edges/ The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode). This configuration must not be used in encoder mode. Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1P active bit takes the new value from the preloaded bit only when a Commutation event is generated. Bit 0 CC1E: Capture/Compare 1 output enable CC1 channel configured as output: 0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits. 1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI, OSSR, OIS1, OIS1N and CC1NE bits. CC1 channel configured as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not. 0: Capture disabled. 1: Capture enabled. On channels having a complementary output, this bit is preloaded. If the CCPC bit is set in the TIMx_CR2 register then the CC1E active bit takes the new value from the preloaded bit only when a Commutation event is generated. 724/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Table 146. Output control bits for complementary OCx and OCxN channels with break feature Output states(1) Control bits MOE bit OSSI bit OSSR bit CCxE bit CCxNE bit 1 0 0 Output disabled (not driven by the timer: Hi-Z) OCx=0, OCxN=0 0 0 1 Output disabled (not driven OCxREF + Polarity by the timer: Hi-Z) OCxN = OCxREF xor CCxNP OCx=0 0 1 0 OCxREF + Polarity OCx=OCxREF xor CCxP Output Disabled (not driven by the timer: Hi-Z) OCxN=0 X 1 1 OCREF + Polarity + deadtime Complementary to OCREF (not OCREF) + Polarity + dead-time 1 0 1 Off-State (output enabled with inactive state) OCx=CCxP OCxREF + Polarity OCxN = OCxREF x or CCxNP 1 1 0 OCxREF + Polarity OCx=OCxREF xor CCxP Off-State (output enabled with inactive state) OCxN=CCxNP X X 0 0 0 1 1 0 1 1 X 1 OCxN output state X 0 0 OCx output state X Output disabled (not driven by the timer anymore). The output state is defined by the GPIO controller and can be High, Low or Hi-Z. Off-State (output enabled with inactive state) Asynchronously: OCx=CCxP, OCxN=CCxNP (if BRK or BRK2 is triggered). Then (this is valid only if BRK is triggered), if the clock is present: OCx=OISx and OCxN=OISxN after a dead-time, assuming that OISx and OISxN do not correspond to OCX and OCxN both in active state (may cause a short circuit when driving switches in half-bridge configuration). Note: BRK2 can only be used if OSSI = OSSR = 1. 1. When both outputs of a channel are not used (control taken over by GPIO), the OISx, OISxN, CCxP and CCxNP bits must be kept cleared. Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels depends on the OCx and OCxN channel state and the GPIO registers. RM0385 Rev 7 725/1709 740 Advanced-control timers (TIM1/TIM8) 22.4.10 RM0385 TIM1/TIM8 counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 UIF CPY Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw r CNT[15:0] rw Bit 31 UIFCPY: UIF copy This bit is a read-only copy of the UIF bit of the TIMx_ISR register. If the UIFREMAP bit in the TIMxCR1 is reset, bit 31 is reserved and read at 0. Bits 30:16 Reserved, must be kept at reset value. Bits 15:0 CNT[15:0]: Counter value 22.4.11 TIM1/TIM8 prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw PSC[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in “reset mode”). 22.4.12 TIM1/TIM8 auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0xFFFF 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw ARR[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 ARR[15:0]: Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to the Section 22.3.1: Time-base unit on page 648 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. 726/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) 22.4.13 TIM1/TIM8 repetition counter register (TIMx_RCR) Address offset: 0x30 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw REP[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 REP[15:0]: Repetition counter value These bits allow the user to set-up the update rate of the compare registers (i.e. periodic transfers from preload to active registers) when preload registers are enable, as well as the update interrupt generation rate, if this interrupt is enable. Each time the REP_CNT related downcounter reaches zero, an update event is generated and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at the repetition update event U_RC, any write to the TIMx_RCR register is not taken in account until the next repetition update event. It means in PWM mode (REP+1) corresponds to: the number of PWM periods in edge-aligned mode the number of half PWM period in center-aligned mode. 22.4.14 TIM1/TIM8 capture/compare register 1 (TIMx_CCR1) Address offset: 0x34 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR1[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR1[15:0]: Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. If channel CC1 is configured as input: CR1 is the counter value transferred by the last input capture 1 event (IC1). The TIMx_CCR1 register is read-only and cannot be programmed. RM0385 Rev 7 727/1709 740 Advanced-control timers (TIM1/TIM8) 22.4.15 RM0385 TIM1/TIM8 capture/compare register 2 (TIMx_CCR2) Address offset: 0x38 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR2[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR2[15:0]: Capture/Compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC2 output. If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). The TIMx_CCR2 register is read-only and cannot be programmed. 22.4.16 TIM1/TIM8 capture/compare register 3 (TIMx_CCR3) Address offset: 0x3C Reset value: 0x0000 15 14 13 12 11 10 9 rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR3[15:0] rw rw Bits 15:0 CCR3[15:0]: Capture/Compare value If channel CC3 is configured as output: CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC3 output. If channel CC3 is configured as input: CCR3 is the counter value transferred by the last input capture 3 event (IC3). The TIMx_CCR3 register is read-only and cannot be programmed. 728/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) 22.4.17 TIM1/TIM8 capture/compare register 4 (TIMx_CCR4) Address offset: 0x40 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR4[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR4[15:0]: Capture/Compare value If channel CC4 is configured as output: CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC4 output. If channel CC4 is configured as input: CCR4 is the counter value transferred by the last input capture 4 event (IC4). The TIMx_CCR4 register is read-only and cannot be programmed. 22.4.18 TIM1/TIM8 break and dead-time register (TIMx_BDTR) Address offset: 0x44 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. BK2P BK2E rw rw rw rw rw rw rw rw rw rw 9 8 7 6 5 4 3 2 1 0 rw rw rw 15 14 13 12 11 10 MOE AOE BKP BKE OSSR OSSI rw rw rw rw rw rw Note: 23 22 21 LOCK[1:0] rw rw 20 19 BK2F[3:0] 18 17 16 BKF[3:0] DTG[7:0] rw rw rw rw rw As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on the LOCK configuration, it can be necessary to configure all of them during the first write access to the TIMx_BDTR register. Bits 31:26 Reserved, must be kept at reset value. Bit 25 BK2P: Break 2 polarity 0: Break input BRK2 is active low 1: Break input BRK2 is active high Note: This bit cannot be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. RM0385 Rev 7 729/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bit 24 BK2E: Break 2 enable This bit enables the complete break 2 protection (including all sources connected to bk_acth and BKIN sources, as per Figure 191: Break and Break2 circuitry overview). 0: Break2 function disabled 1: Break2 function enabled Note: The BRKIN2 must only be used with OSSR = OSSI = 1. Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. Bits 23:20 BK2F[3:0]: Break 2 filter This bit-field defines the frequency used to sample BRK2 input and the length of the digital filter applied to BRK2. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, BRK2 acts asynchronously 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Bits 19:16 BKF[3:0]: Break filter This bit-field defines the frequency used to sample BRK input and the length of the digital filter applied to BRK. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, BRK acts asynchronously 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). 730/1709 RM0385 Rev 7 RM0385 Advanced-control timers (TIM1/TIM8) Bit 15 MOE: Main output enable This bit is cleared asynchronously by hardware as soon as one of the break inputs is active (BRK or BRK2). It is set by software or automatically depending on the AOE bit. It is acting only on the channels which are configured in output. 0: In response to a break 2 event. OC and OCN outputs are disabled In response to a break event or if MOE is written to 0: OC and OCN outputs are disabled or forced to idle state depending on the OSSI bit. 1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in TIMx_CCER register). See OC/OCN enable description for more details (Section 22.4.9: TIM1/TIM8 capture/compare enable register (TIMx_CCER)). Bit 14 AOE: Automatic output enable 0: MOE can be set only by software 1: MOE can be set by software or automatically at the next update event (if none of the break inputs BRK and BRK2 is active) Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Bit 13 BKP: Break polarity 0: Break input BRK is active low 1: Break input BRK is active high Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. Bit 12 BKE: Break enable This bit enables the complete break protection (including all sources connected to bk_acth and BKIN sources, as per Figure 191: Break and Break2 circuitry overview). 0: Break function disabled 1: Break function enabled Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in TIMx_BDTR register). Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective. Bit 11 OSSR: Off-state selection for Run mode This bit is used when MOE=1 on channels having a complementary output which are configured as outputs. OSSR is not implemented if no complementary output is implemented in the timer. See OC/OCN enable description for more details (Section 22.4.9: TIM1/TIM8 capture/compare enable register (TIMx_CCER)). 0: When inactive, OC/OCN outputs are disabled (the timer releases the output control which is taken over by the GPIO logic, which forces a Hi-Z state). 1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1 or CCxNE=1 (the output is still controlled by the timer). Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register). RM0385 Rev 7 731/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bit 10 OSSI: Off-state selection for Idle mode This bit is used when MOE=0 due to a break event or by a software write, on channels configured as outputs. See OC/OCN enable description for more details (Section 22.4.9: TIM1/TIM8 capture/compare enable register (TIMx_CCER)). 0: When inactive, OC/OCN outputs are disabled (the timer releases the output control which is taken over by the GPIO logic and which imposes a Hi-Z state). 1: When inactive, OC/OCN outputs are first forced with their inactive level then forced to their idle level after the deadtime. The timer maintains its control over the output. Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK bits in TIMx_BDTR register). Bits 9:8 LOCK[1:0]: Lock configuration These bits offer a write protection against software errors. 00: LOCK OFF - No bit is write protected. 01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2 register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written. 10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER register, as long as the related channel is configured in output through the CCxS bits) as well as OSSR and OSSI bits can no longer be written. 11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in TIMx_CCMRx registers, as long as the related channel is configured in output through the CCxS bits) can no longer be written. Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register has been written, their content is frozen until the next reset. Bits 7:0 DTG[7:0]: Dead-time generator setup This bit-field defines the duration of the dead-time inserted between the complementary outputs. DT correspond to this duration. DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS. DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS. DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS. DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS. Example if TDTS=125ns (8MHz), dead-time possible values are: 0 to 15875 ns by 125 ns steps, 16 us to 31750 ns by 250 ns steps, 32 us to 63us by 1 us steps, 64 us to 126 us by 2 us steps Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed (LOCK bits in TIMx_BDTR register). 22.4.19 TIM1/TIM8 DMA control register (TIMx_DCR) Address offset: 0x48 Reset value: 0x0000 15 14 13 Res. Res. Res. 12 11 10 9 8 DBL[4:0] rw rw rw rw 7 6 5 Res. Res. Res. rw Bits 15:13 Reserved, must be kept at reset value. 732/1709 RM0385 Rev 7 4 3 2 1 0 rw rw DBA[4:0] rw rw rw RM0385 Advanced-control timers (TIM1/TIM8) Bits 12:8 DBL[4:0]: DMA burst length This 5-bit vector defines the length of DMA transfers (the timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address), i.e. the number of transfers. Transfers can be in half-words or in bytes (see example below). 00000: 1 transfer 00001: 2 transfers 00010: 3 transfers ... 10001: 18 transfers Example: Let us consider the following transfer: DBL = 7 bytes & DBA = TIM2_CR1. – If DBL = 7 bytes and DBA = TIM2_CR1 represents the address of the byte to be transferred, the address of the transfer should be given by the following equation: (TIMx_CR1 address) + DBA + (DMA index), where DMA index = DBL In this example, 7 bytes are added to (TIMx_CR1 address) + DBA, which gives us the address from/to which the data will be copied. In this case, the transfer is done to 7 registers starting from the following address: (TIMx_CR1 address) + DBA According to the configuration of the DMA Data Size, several cases may occur: – If you configure the DMA Data Size in half-words, 16-bit data will be transferred to each of the 7 registers. – If you configure the DMA Data Size in bytes, the data will also be transferred to 7 registers: the first register will contain the first MSB byte, the second register, the first LSB byte and so on. So with the transfer Timer, you also have to specify the size of data transferred by DMA. Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 DBA[4:0]: DMA base address This 5-bits vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: 00000: TIMx_CR1, 00001: TIMx_CR2, 00010: TIMx_SMCR, ... 22.4.20 TIM1/TIM8 DMA address for full transfer (TIMx_DMAR) Address offset: 0x4C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DMAB[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw DMAB[15:0] rw rw RM0385 Rev 7 733/1709 740 Advanced-control timers (TIM1/TIM8) RM0385 Bits 31:0 DMAB[31:0]: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) x 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR). 22.4.21 TIM1/TIM8 capture/compare mode register 3 (TIMx_CCMR3) Address offset: 0x54 Reset value: 0x0000 0000 Refer to the above CCMR1 register description. Channels 5 and 6 can only be configured in output. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. OC6M[3] Res. Res. Res. Res. Res. Res. Res. OC5M[3] rw 15 14 OC6 CE 13 12 OC6M[2:0] rw rw rw rw 11 10 OC6 PE OC6FE rw rw 9 Res. rw 8 7 Res. OC5 CE rw Output compare mode Bits 31:25 Reserved, must be kept at reset value. Bits 23:17 Reserved, must be kept at reset value. Bit 15 OC6CE: Output compare 6 clear enable Bits 24, 14, 13, 12 OC6M[3:0]: Output compare 6 mode Bit 11 OC6PE: Output compare 6 preload enable Bit 10 OC6FE: Output compare 6 fast enable Bits 9:8 Reserved, must be kept at reset value. Bit 7 OC5CE: Output compare 5 clear enable Bits 16, 6, 5, 4 OC5M[3:0]: Output compare 5 mode Bit 3 OC5PE: Output compare 5 preload enable Bit 2 OC5FE: Output compare 5 fast enable Bits 1:0 Reserved, must be kept at reset value. 734/1709 RM0385 Rev 7 6 5 4 OC5M[2:0] rw rw 3 2 OC5PE OC5FE rw rw rw 1 0 Res. Res. RM0385 Advanced-control timers (TIM1/TIM8) 22.4.22 TIM1/TIM8 capture/compare register 5 (TIMx_CCR5) Address offset: 0x58 Reset value: 0x0000 0000 31 30 29 GC5C3 GC5C2 GC5C1 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 rw rw rw rw rw rw rw CCR5[15:0] rw rw Bit 31 GC5C3: Group Channel 5 and Channel 3 Distortion on Channel 3 output: 0: No effect of OC5REF on OC3REFC 1: OC3REFC is the logical AND of OC3REFC and OC5REF This bit can either have immediate effect or be preloaded and taken into account after an update event (if preload feature is selected in TIMxCCMR2). Note: it is also possible to apply this distortion on combined PWM signals. Bit 30 GC5C2: Group Channel 5 and Channel 2 Distortion on Channel 2 output: 0: No effect of OC5REF on OC2REFC 1: OC2REFC is the logical AND of OC2REFC and OC5REF This bit can either have immediate effect or be preloaded and taken into account after an update event (if preload feature is selected in TIMxCCMR1). Note: it is also possible to apply this distortion on combined PWM signals. Bit 29 GC5C1: Group Channel 5 and Channel 1 Distortion on Channel 1 output: 0: No effect of OC5REF on OC1REFC5 1: OC1REFC is the logical AND of OC1REFC and OC5REF This bit can either have immediate effect or be preloaded and taken into account after an update event (if preload feature is selected in TIMxCCMR1). Note: it is also possible to apply this distortion on combined PWM signals. Bits 28:16 Reserved, must be kept at reset value. Bits 15:0 CCR5[15:0]: Capture/Compare 5 value CCR5 is the value to be loaded in the actual capture/compare 5 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit OC5PE). Else the preload value is copied in the active capture/compare 5 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC5 output. RM0385 Rev 7 735/1709 740 Advanced-control timers (TIM1/TIM8) 22.4.23 RM0385 TIM1/TIM8 capture/compare register 6 (TIMx_CCR6) Address offset: 0x5C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR6[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 CCR6[15:0]: Capture/Compare 6 value CCR6 is the value to be loaded in the actual capture/compare 6 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register (bit OC6PE). Else the preload value is copied in the active capture/compare 6 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC6 output. 736/1709 RM0385 Rev 7 0x24 TIM1_CNT Reset value 0 RM0385 Rev 7 0 0 0 0 0 OC4M [2:0] 0 0 IC4F[3:0] 0 0 CC4IF CC3IF CC2IF CC1IF UIF 0 0 0 0 0 Res. Res. CC3G 0 0 IC2 PSC [1:0] CC2 S [1:0] 0 0 0 0 0 0 0 0 0 0 IC4 PSC [1:0] CC4 S [1:0] 0 0 0 0 0 CC4 S [1:0] 0 0 CC2G CC1G UG CC3IE CC2IE CC1IE UIE MSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CNT[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OIS1 TI1S Res. UIFREMAP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ARPE DIR OPM URS UDIS CEN 0 0 0 0 0 CCDS CCUS Res. CCPC 0 0 0 0 TS[2:0] 0 0 0 0 0 0 0 0 0 CC2 S [1:0] OC1M [2:0] 0 0 IC1F[3:0] 0 0 OC3M [2:0] 0 0 IC3F[3:0] Res. OIS2 OIS2N OIS1N OIS3 MMS [2:0] OC1FE CC4IE 0 ETF[3:0] 0 0 OC1PE 0 COMIE 0 TIE 0 BIE 0 UDE 0 CC1DE 0 CC2DE 0 CC3DE OIS3N 0 0 OC3FE COMIF 0 COM TIF 0 CC4G BIF 0 TG B2IF 0 BG CC1OF 0 B2G CC2OF 0 OC1CE CC3OF OIS4 0 CMS [1:0] OC3PE IC2F[3:0] OC2FE 0 0 CC1E 0 0 Res. 0 ETP S [1:0] 0 CC1P 0 0 OC2PE 0 CC4DE 0 COMDE ECE 0 TDE Res. 0 OC3CE 0 CC4OF Reset value 0 Res. Res. ETP 0 Res. 0 0 CC1NE 0 0 0 CC1NP 0 0 0 CC2E 0 Res. Res. OIS5 Res. OIS6 Res. 0 CC2P 0 CC3E 0 OC2M [2:0] OC4FE 0 Res. Res. SMS[3] Reset value 0 Res. Res. Res. Res. Res. 0 OC4PE OC2CE CC5IF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value CKD [1:0] CC2NE 0 CC2NP 0 0 CC3P 0 0 CC3NE Reset value CC3NP Reset value CC4E OC1M[3] CC6IF Res. Res. Res. Res. 0 CC4P Res. Res. Res. Res. Res. 0 Res. OC4CE 0 OC3M[3] Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. CC5E Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. CC5P Res. Res. Res. Res. Res. Reset value Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MMS2[3:0] Res. CC6E Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. OC2M[3] Res. Res. Res. Res. Res. Res. Res. 0 CC6P Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. OC4M[3] Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. TIM1_CCER Res. 0x20 Res. TIM1_CCMR2 Input Capture mode Res. 0x1C Res. TIM1_CCMR2 Output Compare mode Res. TIM1_CCMR1 Input Capture mode Res. TIM1_CCMR1 Output Compare mode Res. 0x18 TIM1_EGR Res. 0x14 TIM1_SR Res. 0x10 TIM1_DIER Res. 0x0C TIM1_SMCR Res. 0x08 TIM1_CR2 Res. 0x04 TIM1_CR1 Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Offset Res. 22.4.24 UIFCP RM0385 Advanced-control timers (TIM1/TIM8) TIM1 register map TIM1 registers are mapped as 16-bit addressable registers as described in the table below: Table 147. TIM1 register map and reset values 0 0 IC1 PSC [1:0] CC1 S [1:0] 0 0 0 0 0 0 SMS[2:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CC1 S [1:0] 0 0 0 0 CC3 S [1:0] IC3 PSC [1:0] CC3 S [1:0] 0 737/1709 740 0x5C 738/1709 TIM1_CCR6 Reset value RM0385 Rev 7 OC5M[3] OC6CE 0 Res. Res. Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OC6M [2:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DBL[4:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OC5M [2:0] 0 CCR5[15:0] 0 CCR6[15:0] 0 Res. Reset value 0 0 0 0 0 Res. 0 0 0 0 0 Res. Res. 1 OC5FE 0 0 0 0 0 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 OC5PE 0 0 0 0 0 1 0 Res. 0 0 0 0 0 0 0 Res. BKF[3:0] 0 0 0 0 1 Res. 0 0 0 0 1 0 Res. Reset value 0 0 0 1 0 OC5CE 0 0 0 OSSI Reset value 0 0 1 0 Res. 0 0 1 0 OC6FE 0 1 0 BKE 0 0 OSSR Reset value BKP Reset value AOE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value MOE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value OC6PE Res. Res. Res. 0 Res. Res. Res. Res. BK2E 0 Res. Res. Res. BK2P 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BK2F[3:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. OC6M[3] Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. Reset value Res. Reset value Res. TIM1_CCR5 Res. Reset value Res. 0x58 Res. TIM1_CCMR3 Output Compare mode Res. TIM1_DMAR Res. 0x4C Res. TIM1_DCR Res. 0x48 Res. TIM1_BDTR Res. 0x44 GC5C1 TIM1_CCR4 Res. 0x40 Res. TIM1_CCR3 Res. 0x3C Res. TIM1_CCR2 Res. 0x38 Res. TIM1_CCR1 Res. 0x34 Res. TIM1_RCR Res. TIM1_ARR Res. 0x54 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIM1_PSC Res. 0x30 GC5C2 0x2C GC5C3 0x28 Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Advanced-control timers (TIM1/TIM8) RM0385 Table 147. TIM1 register map and reset values (continued) PSC[15:0] ARR[15:0] REP[15:0] CCR1[15:0] CCR2[15:0] CCR3[15:0] CCR4[15:0] LOC K [1:0] DT[7:0] 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DBA[4:0] DMAB[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2: Memory map and register boundary addresses for the register boundary addresses. 0x24 TIM8_CNT Reset value 0 0 RM0385 Rev 7 0 0 0 0 0 OC4M [2:0] 0 0 IC4F[3:0] 0 0 0 0 IC2 PSC [1:0] CC2 S [1:0] 0 0 0 0 0 0 0 0 0 0 0 IC4 PSC [1:0] CC4 S [1:0] 0 0 0 0 CC4 S [1:0] 0 0 UIE UIF 0 0 0 0 0 UG CC1IE CC1IF 0 CC1G CC2IE CC2IF 0 CC2G CC3IE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CNT[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. UIFREMA Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ARPE DIR OPM URS UDIS CEN 0 0 0 0 0 CCDS CCUS Res. CCPC 0 TS[2:0] 0 0 0 0 0 0 0 0 0 CC2 S [1:0] OC1M [2:0] 0 0 IC1F[3:0] 0 0 OC3M [2:0] 0 0 IC3F[3:0] Res. TI1S MMS [2:0] OC1FE CC4IE CC3IF 0 CC3G OIS1 OIS2N 0 0 OC1PE COMIE 0 COM 0 CC4G CC4IF TIE 0 TG ETF[3:0] MSM OIS3 OIS2 OIS3N OIS1N OIS4 Res. 0 0 OC3FE IC2F[3:0] 0 CMS [1:0] OC3PE 0 0 CC1E 0 0 0 CC1P 0 COMIF Reset value TIF BIE 0 BIF 0 B2IF 0 CC1OF 0 CC2OF 0 Res. 0 Res. 0 CC3OF 0 Res. 0 CC4OF 0 Res. 0 SBIF 0 Res. UDE 0 0 0 BG 0 0 0 B2G 0 0 0 OC1CE 0 CC1DE 0 CC2DE 0 Res. OIS5 Res. OIS6 Res. 0 CC1NE 0 0 0 CC1NP 0 0 OC2FE 0 ETP S [1:0] 0 CC2E 0 0 OC3CE 0 0 0 CC2P 0 CC3E 0 OC2M [2:0] OC4FE 0 CC3DE Reset value OC2PE 0 CC4DE 0 COMDE ECE 0 TDE ETP 0 Res. Res. 0 Res. Res. SMS[3] 0 Res. Res. Res. Res. Res. Res. 0 CKD [1:0] CC2NE 0 CC2NP 0 0 CC3P Reset value CC3NE OC2CE CC5IF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value OC4PE Reset value CC3NP OC1M[3] CC6IF Res. Res. Res. Res. 0 CC4E Res. Res. Res. Res. 0 CC4P OC4CE 0 OC3M[3] Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. CC5E 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. CC5P Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MMS2[3:0] Res. CC6E 0 Res. Reset value CC6P Res. Res. OC2M[3] Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. OC4M[3] Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. TIM8_CCER Res. 0x20 Res. TIM8_CCMR2 Input Capture mode Res. 0x1C Res. TIM8_CCMR2 Output Compare mode Res. TIM8_CCMR1 Input Capture mode Res. TIM8_CCMR1 Output Compare mode Res. 0x18 TIM8_EGR Res. 0x14 TIM8_SR Res. 0x10 TIM8_DIER Res. 0x0C TIM8_SMCR Res. 0x08 TIM8_CR2 Res. 0x04 TIM8_CR1 Res. 0x00 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Offset Res. 22.4.25 UIFCPY RM0385 Advanced-control timers (TIM1/TIM8) TIM8 register map TIM8 registers are mapped as 16-bit addressable registers as described in the table below: Table 148. TIM8 register map and reset values 0 0 0 0 IC1 PSC [1:0] CC1 S [1:0] 0 0 0 0 0 0 SMS[2:0] 0 0 0 CC1 S [1:0] 0 0 0 0 CC3 S [1:0] 0 IC3 PSC [1:0] CC3 S [1:0] 739/1709 740 0x58 0x5C 740/1709 TIM8_CCR5 Reset value 0 0 0 TIM8_CCR6 Reset value RM0385 Rev 7 Res. Res. OC6CE Res. Res. Res. Res. Res. Res. Res. OC5M[3] 0 Res. Res. Res. Res. Res. Res. Res. Res. OC6M[3] Res. Res. 0 0 0 0 Res. Res. Res. Res. Res. BKF[3:0] Reset value 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 OC6M [2:0] 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 DBL[4:0] 0 0 0 Res. 0 0 0 0 0 Res. Reset value 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 Res. 0 0 OSSI Reset value 0 BKE Res. Res. Res. 0 0 OSSR Res. Res. Res. Res. Reset value 0 0 1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. 0 0 0 1 0 0 0 0 0 0 OC5M [2:0] 0 CCR5[15:0] 0 CCR6[15:0] 0 Res. 0 Res. Res. Res. Res. 0 0 1 0 Res. 0 Res. Res. Res. Res. Reset value 0 1 0 OC5FE 0 Res. Res. Res. Res. Res. 0 1 0 OC5PE BKP 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 1 0 Res. AOE 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 0 OC5CE MOE 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value 0 Res. BK2E 0 Res. Res. Res. Res. Res. Res. Res. Res. 0 OC6FE BK2P Res. Res. 0 Res. Res. Res. Res. Res. Res. Reset value OC6PE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 BK2F[3:0] Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Reset value Res. Res. TIM8_CCMR3 Output Compare mode Res. TIM8_DMAR Res. 0x4C Res. TIM8_DCR Res. TIM8_BDTR Res. 0x48 GC5C1 0x44 Res. TIM8_CCR4 Res. 0x40 Res. TIM8_CCR3 Res. 0x3C Res. TIM8_CCR2 Res. 0x38 Res. TIMx_CCR1 Res. TIM8_RCR Res. 0x34 Res. 0x54 TIM8_ARR Res. 0x30 GC5C2 0x2C GC5C3 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TIM8_PSC Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Register name Res. 0x28 Res. Offset Res. Advanced-control timers (TIM1/TIM8) RM0385 Table 148. TIM8 register map and reset values (continued) PSC[15:0] ARR[15:0] REP[15:0] CCR1[15:0] CCR2[15:0] CCR3[15:0] CCR4[15:0] LOC K [1:0] DT[7:0] 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DBA[4:0] DMAB[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) 23 General-purpose timers (TIM2/TIM3/TIM4/TIM5) 23.1 TIM2/TIM3/TIM4/TIM5 introduction The general-purpose timers consist of a 16-bit or 32-bit auto-reload counter driven by a programmable prescaler. They may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare and PWM). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The timers are completely independent, and do not share any resources. They can be synchronized together as described in Section 23.3.19: Timer synchronization. 23.2 TIM2/TIM3/TIM4/TIM5 main features General-purpose TIMx timer features include: • 16-bit (TIM3, TIM4) or 32-bit (TIM2 and TIM5) up, down, up/down auto-reload counter. • 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock frequency by any factor between 1 and 65535. • Up to 4 independent channels for: – Input capture – Output compare – PWM generation (Edge- and Center-aligned modes) – One-pulse mode output • Synchronization circuit to control the timer with external signals and to interconnect several timers. • Interrupt/DMA generation on the following events: – Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) – Trigger event (counter start, stop, initialization or count by internal/external trigger) – Input capture – Output compare • Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes • Trigger input for external clock or cycle-by-cycle current management RM0385 Rev 7 741/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Figure 207. General-purpose timer block diagram Internal clock (CK_INT) TIMxCLK from RCC ETRF ETR TIMx_ETR Trigger controller TRGO Polarity selection & edge ETRP Input filter detector & prescaler ITR0 ITR1 ITR2 ITR3 to other timers to DAC/ADC TGI ITR TRC TRGI Slave controller Reset, enable, up, count mode TI1F_ED Encoder interface TI1FP1 TI2FP2 U Auto-reload register Stop, clear or up/down CK_PSC XOR TI1 TIMx_CH1 TI2 TIMx_CH2 Input filter & edge detector Input filter & edge detector TI1FP1 TI1FP2 IC1 PSC CK_CNT prescaler CC1I U Prescaler TRC TI2FP1 TI2FP2 TRC IC1PS CC2I IC2 Prescaler TI3 TIMx_CH3 TI4 TIMx_CH4 Input filter & edge detector Input filter & edge detector IC3 Prescaler TRC TI4FP3 TI4FP4 CNT counter CC1I Capture/Compare 1 register Capture/Compare 2 register OC2REF Capture/Compare 3 register Prescaler TIMx_CH1 Output OC2 control TIMx_CH2 OC3REF Output OC3 control TIMx_CH3 Output OC4 control TIMx_CH4 CC4I U IC4PS Output OC1 control CC3I U IC3PS CC4I IC4 OC1REF CC2I U IC2PS CC3I TI3FP3 TI3FP4 +/- UI U Capture/Compare 4 register OC4REF TRC ETRF Notes: Reg Preload registers transferred to active registers on U event according to control bit Event Interrupt & DMA output MS19673V1 742/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) 23.3 TIM2/TIM3/TIM4/TIM5 functional description 23.3.1 Time-base unit The main block of the programmable timer is a 16-bit/32-bit counter with its related autoreload register. The counter can count up, down or both up and down but also down or both up and down. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: • Counter Register (TIMx_CNT) • Prescaler Register (TIMx_PSC): • Auto-Reload Register (TIMx_ARR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in detail for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit/32-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 208 and Figure 209 give some examples of the counter behavior when the prescaler ratio is changed on the fly: RM0385 Rev 7 743/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Figure 208. Counter timing diagram with prescaler division change from 1 to 2 CK_PSC CEN Timerclock = CK_CNT Counter register F7 F8 F9 FA FB FC 01 00 02 03 Update event (UEV) Prescaler control register 0 1 Write a new value in TIMx_PSC Prescaler buffer 0 Prescaler counter 0 1 0 1 0 1 1 0 1 0 MS31076V2 Figure 209. Counter timing diagram with prescaler division change from 1 to 4 CK_PSC CEN Timerclock = CK_CNT Counter register F7 F8 F9 FA FB FC 00 01 Update event (UEV) Prescaler control register 0 3 Write a new value in TIMx_PSC Prescaler buffer Prescaler counter 0 3 0 0 1 2 3 0 1 2 3 MS31077V2 744/1709 RM0385 Rev 7 RM0385 23.3.2 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Counter modes Upcounting mode In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. An Update event can be generated at each counter overflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller). The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register) • The auto-reload shadow register is updated with the preload value (TIMx_ARR) The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 210. Counter timing diagram, internal clock divided by 1 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 31 32 33 34 35 36 00 01 02 03 04 05 06 07 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31078V2 RM0385 Rev 7 745/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Figure 211. Counter timing diagram, internal clock divided by 2 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0035 0034 0036 0000 0001 0002 0003 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31079V2 Figure 212. Counter timing diagram, internal clock divided by 4 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0035 0036 0000 0001 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31080V2 746/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Figure 213. Counter timing diagram, internal clock divided by N CK_PSC Timerclock = CK_CNT Counter register 1F 00 20 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31081V2 Figure 214. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded) CK_PSC CEN Timerclock = CK_CNT Counter register 31 32 33 34 35 36 00 01 02 03 04 05 06 07 Counter overflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register FF 36 Write a new value in TIMx_ARR MS31082V2 RM0385 Rev 7 747/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Figure 215. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded) CK_PSC CEN Timerclock = CK_CNT Counter register F0 F1 F2 F3 F4 F5 00 01 02 03 04 05 06 07 Counter overflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register F5 36 Auto-reload shadow register F5 Write a new value in TIMx_ARR 36 MS31083V2 Downcounting mode In downcounting mode, the counter counts from the auto-reload value (content of the TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a counter underflow event. An Update event can be generate at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until UDIS bit has been written to 0. However, the counter restarts from the current auto-reload value, whereas the counter of the prescaler restarts from 0 (but the prescale rate doesn’t change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): 748/1709 • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that the auto-reload is updated before the counter is reloaded, so that the next period is the expected one. RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 216. Counter timing diagram, internal clock divided by 1 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 04 05 03 02 01 00 36 35 34 33 32 31 30 2F Counter underflow (cnt_udf) Update event (UEV) Update interrupt flag (UIF) MS31184V1 Figure 217. Counter timing diagram, internal clock divided by 2 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0002 0001 0000 0036 0035 0034 0033 Counter underflow Update event (UEV) Update interrupt flag (UIF) MS31185V1 RM0385 Rev 7 749/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Figure 218. Counter timing diagram, internal clock divided by 4 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0001 0000 0000 0001 Counter underflow Update event (UEV) Update interrupt flag (UIF) MS31186V1 Figure 219. Counter timing diagram, internal clock divided by N CK_PSC Timerclock = CK_CNT Counter register 20 1F 00 36 Counter underflow Update event (UEV) Update interrupt flag (UIF) MS31187V1 750/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Figure 220. Counter timing diagram, Update event when repetition counter is not used CK_PSC CEN Timerclock = CK_CNT Counter register 05 04 03 02 01 00 36 35 34 33 32 31 30 2F Counter underflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register FF 36 Write a new value in TIMx_ARR MS31188V1 Center-aligned mode (up/down counting) In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register) – 1, generates a counter overflow event, then counts from the autoreload value down to 1 and generates a counter underflow event. Then it restarts counting from 0. Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to '00'. The Output compare interrupt flag of channels configured in output is set when: the counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3, CMS = "11"). In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated by hardware and gives the current direction of the counter. The update event can be generated at each counter overflow and at each counter underflow or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller) also generates an update event. In this case, the counter restarts counting from 0, as well as the counter of the prescaler. The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter continues counting up and down, based on the current auto-reload value. In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or RM0385 Rev 7 751/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 DMA request is sent). This is to avoid generating both update and capture interrupt when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). • The auto-reload active register is updated with the preload value (content of the TIMx_ARR register). Note that if the update source is a counter overflow, the autoreload is updated before the counter is reloaded, so that the next period is the expected one (the counter is loaded with the new value). The following figures show some examples of the counter behavior for different clock frequencies. Figure 221. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 CK_PSC CEN Timerclock = CK_CNT Counter register 04 03 02 01 00 01 02 03 04 05 06 05 04 03 Counter underflow Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31189V3 1. Here, center-aligned mode 1 is used (for more details refer to Section 23.4.1: TIMx control register 1 (TIMx_CR1) on page 786). 752/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Figure 222. Counter timing diagram, internal clock divided by 2 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0002 0003 0001 0000 0001 0002 0003 Counter underflow Update event (UEV) Update interrupt flag (UIF) MS31190V1 Figure 223. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0034 0035 0036 0035 Counter overflow Update event (UEV) Update interrupt flag (UIF) Note: Here, center_aligned mode 2 or 3 is updated with an UIF on overflow MS31191V1 1. Center-aligned mode 2 or 3 is used with an UIF on overflow. RM0385 Rev 7 753/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Figure 224. Counter timing diagram, internal clock divided by N CK_PSC Timerclock = CK_CNT Counter register 1F 20 01 00 Counter underflow Update event (UEV) Update interrupt flag (UIF) MS31192V1 Figure 225. Counter timing diagram, Update event with ARPE=1 (counter underflow) CK_PSC CEN Timerclock = CK_CNT Counter register 06 05 04 03 02 01 00 01 02 03 04 05 06 07 Counter underflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register FD 36 Write a new value in TIMx_ARR Auto-reload active register FD 36 MS31193V1 754/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Figure 226. Counter timing diagram, Update event with ARPE=1 (counter overflow) CK_PSC CEN Timer clock = CK_CNT Counter register F7 F8 F9 FA FB FC 36 35 34 33 32 31 30 2F Counter overflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register FD 36 Write a new value in TIMx_ARR Auto-reload active FD register 36 MS31194V1 23.3.3 Clock selection The counter clock can be provided by the following clock sources: • Internal clock (CK_INT) • External clock mode1: external input pin (TIx) • External clock mode2: external trigger input (ETR) • Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for example, you can configure Timer 13 to act as a prescaler for Timer 2. Refer to : Using one timer as prescaler for another timer on page 781 for more details. Internal clock source (CK_INT) If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed only by software (except UG which remains cleared automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal clock CK_INT. Figure 227 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. RM0385 Rev 7 755/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Figure 227. Control circuit in normal mode, internal clock divided by 1 Internal clock CEN=CNT_EN UG CNT_INIT Counter clock = CK_CNT = CK_PSC Counter register 32 31 33 34 35 36 00 01 02 03 04 05 06 07 MS31085V2 External clock source mode 1 This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. Figure 228. TI2 external clock connection example TIMx_SMCR TS[2:0] or TI2F TI1F ITRx TI1_ED TI1FP1 TI2 Filter Edge detector TI2F_Rising TI2F_Falling 0 1 TI2FP2 ETRF or or 0xx 100 TRGI 101 110 111 ETRF CK_INT ICF[3:0] CC2P TIMx_CCMR1 TIMx_CCER (internal clock) Encoder mode External clock mode 1 External clock mode 2 CK_PSC Internal clock mode ECE SMS[2:0] TIMx_SMCR MS31196V1 For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: 756/1709 RM0385 Rev 7 RM0385 Note: General-purpose timers (TIM2/TIM3/TIM4/TIM5) 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01 in the TIMx_CCMR1 register. 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=0000). The capture prescaler is not used for triggering, so you don’t need to configure it. 3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 and CC2NP=0 in the TIMx_CCER register. 4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR register. 5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register. 6. Enable the counter by writing CEN=1 in the TIMx_CR1 register. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. Figure 229. Control circuit in external clock mode 1 TI2 CNT_EN Counter clock = CK_CNT = CK_PSC Counter register 34 35 36 TIF Write TIF=0 MS31087V2 External clock source mode 2 This mode is selected by writing ECE=1 in the TIMx_SMCR register. The counter can count at each rising or falling edge on the external trigger input ETR. Figure 230 gives an overview of the external trigger input block. RM0385 Rev 7 757/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Figure 230. External trigger input block or TI2F TI1F ETR or or TRGI 0 ETR pin 1 Divider /1, /2, /4, /8 ETRP fDTS Filter downcounter ETRF CK_INT ETP ETPS[1:0] ETF[3:0] TIMx_SMCR TIMx_SMCR TIMx_SMCR (internal clock) Encoder mode External clock mode 1 External clock mode 2 CK_PSC Internal clock mode ECE SMS[2:0] TIMx_SMCR MS33116V1 For example, to configure the upcounter to count each 2 rising edges on ETR, use the following procedure: 1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register. 2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register 3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR register 4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register. 5. Enable the counter by writing CEN=1 in the TIMx_CR1 register. The counter counts once each 2 ETR rising edges. The delay between the rising edge on ETR and the actual clock of the counter is due to the resynchronization circuit on the ETRP signal. 758/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Figure 231. Control circuit in external clock mode 2 f CK_INT CNT_EN ETR ETRP ETRF Counter clock = CK_INT =CK_PSC Counter register 34 35 36 MS33111V2 23.3.4 Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control). The following figure gives an overview of one Capture/Compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). RM0385 Rev 7 759/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Figure 232. Capture/compare channel (example: channel 1 input stage) TI1F_ED To the slave mode controller TI1F_Rising TI1 Filter TI1F downcounter fDTS Edge detector TI1F_Falling 0 TI1FP1 01 1 TI2FP1 CC1P/CC1NP ICF[3:0] TRC TIMx_CCER TIMx_CCMR1 TI2F_Rising 0 (from channel 2) TI2F_Falling 1 (from channel 2) IC1 10 (from slave mode controller) IC1PS Divider /1, /2, /4, /8 11 CC1S[1:0] ICPS[1:0] CC1E TIMx_CCMR1 TIMx_CCER MS33115V1 The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. Figure 233. Capture/compare channel 1 main circuit APB Bus Read CCR1L read_in_progress CC1S[0] IC1PS write_in_progress Input mode S write CCR1H Capture/compare preload register R R compare_transfer capture_transfer CC1S[1] 8 low Read CCR1H S high 8 (if 16-bit) MCU-peripheral interface Output mode CNT>CCR1 Counter CC1S[0] UEV Comparator CC1E CC1S[1] OC1PE Capture/compare shadow register Capture write CCR1L (from time base unit) OC1PE TIMx_CCMR1 CNT=CCR1 CC1G TIMx_EGR MS33144V1 760/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Figure 234. Output stage of capture/compare channel (channel 1) TIMx_SMCR OCCS OCREF_CLR 0 To the master mode controller ETRF 1 OC1REFC ocref_clr_int OC1REF ‘0’ CNT > CCR1 Output mode CNT = CCR1 controller Output selector OC3REF 0 0 1 1 CC1E CC1P TIMx_CCER TIMx_CCER Output enable circuit CC1E TIMx_CCER MOE OC1CE OC1M[3:0] TIMx_CCMR2 OC1 OSSI TIMx_BDTR OIS4 TIMx_CR2 MS33145V1 The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. 23.3.5 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to 0 or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to 0. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: 1. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00, the channel is configured in input and the TIMx_CCR1 register becomes read-only. 2. Program the input filter duration you need with respect to the signal you connect to the timer (when the input is one of the TIx (ICxF bits in the TIMx_CCMRx register). Let’s imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the new level have been RM0385 Rev 7 761/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the TIMx_CCMR1 register. 3. Select the edge of the active transition on the TI1 channel by writing the CC1P and CC1NP and CC1NP bits to 000 in the TIMx_CCER register (rising edge in this case). 4. Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the TIMx_CCMR1 register). 5. Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. 6. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the TIMx_DIER register. When an input capture occurs: • The TIMx_CCR1 register gets the value of the counter on the active transition. • CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. • An interrupt is generated depending on the CC1IE bit. • A DMA request is generated depending on the CC1DE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt and/or DMA requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. 23.3.6 PWM input mode This mode is a particular case of input capture mode. The procedure is the same except: 762/1709 • Two ICx signals are mapped on the same TIx input. • These 2 ICx signals are active on edges with opposite polarity. • One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): 1. Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1 register (TI1 selected). 2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): write the CC1P to ‘0’ and the CC1NP bit to ‘0’ (active on rising edge). 3. Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1 register (TI1 selected). 4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P bit to ‘1’ and the CC2NP bit to ’0’ (active on falling edge). 5. Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register (TI1FP1 selected). 6. Configure the slave mode controller in reset mode: write the SMS bits to 100 in the TIMx_SMCR register. 7. Enable the captures: write the CC1E and CC2E bits to ‘1 in the TIMx_CCER register. Figure 235. PWM input mode timing 1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only TI1FP1 and TI2FP2 are connected to the slave mode controller. 23.3.7 Forced output mode In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (ocxref/OCx) to its active level, you just need to write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. e.g.: CCxP=0 (OCx active high) => OCx is forced to high level. ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx register. RM0385 Rev 7 763/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt and DMA requests can be sent accordingly. This is described in the Output Compare Mode section. 23.3.8 Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: • Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match. • Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register). • Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). • Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request selection). The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on ocxref and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode). Procedure 1. Select the counter clock (internal, external, prescaler). 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. 3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be generated. 4. Select the output mode. For example, you must write OCxM=011, OCxPE=0, CCxP=0 and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx preload is not used, OCx is enabled and active high. 5. Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in Figure 236. 764/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Figure 236. Output compare mode, toggle on OC1 Write B201h in the CC1R register TIM1_CNT 0039 003B 003A B201 B201 003A TIM1_CCR1 B200 OC1REF= OC1 Match detected on CCR1 Interrupt generated if enabled MS31092V1 23.3.9 PWM mode Pulse width modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register. OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. OCx output is enabled by the CCxE bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction of the counter). However, to comply with the OCREF_CLR functionality (OCREF can be cleared by an external event through the ETR signal until the next PWM period), the OCREF signal is asserted only: • When the result of the comparison or • When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from the “frozen” configuration (no comparison, OCxM=‘000) to one of the PWM modes (OCxM=‘110 or ‘111). This forces the PWM by software while the timer is running. RM0385 Rev 7 765/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 The timer is able to generate PWM in edge-aligned mode or center-aligned mode depending on the CMS bits in the TIMx_CR1 register. PWM edge-aligned mode Upcounting configuration Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Upcounting mode on page 745. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT 8 CCxIF OCXREF ‘0’ CCRx=0 CCxIF MS31093V1 Downcounting configuration Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Downcounting mode on page 748. In PWM mode 1, the reference signal ocxref is low as long as TIMx_CNT>TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in TIMx_ARR, then ocxref is held at 100%. PWM is not possible in this mode. PWM center-aligned mode Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from ‘00 (all the remaining configurations having the same effect on the ocxref/OCx signals). The 766/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) compare flag is set when the counter counts up, when it counts down or both when it counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to Center-aligned mode (up/down counting) on page 751. Figure 238 shows some center-aligned PWM waveforms in an example where: • TIMx_ARR=8, • PWM mode is the PWM mode 1, • The flag is set when the counter counts down corresponding to the center-aligned mode 1 selected for CMS=01 in TIMx_CR1 register. Figure 238. Center-aligned PWM waveforms (ARR=8) Counter register 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 OCxREF CCRx = 4 CMS=01 CMS=10 CMS=11 CCxIF OCxREF CCRx=7 CMS=10 or 11 CCxIF OCxREF ‘1’ CCRx=8 CMS=01 CMS=10 CMS=11 CCxIF OCxREF CCRx>8 ‘1’ CMS=01 CMS=10 CMS=11 CCxIF OCxREF CCRx=0 CCxIF ‘0’ CMS=01 CMS=10 CMS=11 AI14681b Hints on using center-aligned mode: • When starting in center-aligned mode, the current up-down configuration is used. It means that the counter counts up or down depending on the value written in the DIR bit RM0385 Rev 7 767/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the same time by the software. • • 23.3.10 Writing to the counter while running in center-aligned mode is not recommended as it can lead to unexpected results. In particular: – The direction is not updated if you write a value in the counter that is greater than the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter was counting up, it continues to count up. – The direction is updated if you write 0 or write the TIMx_ARR value in the counter but no Update Event UEV is generated. The safest way to use center-aligned mode is to generate an update by software (setting the UG bit in the TIMx_EGR register) just before starting the counter and not to write the counter while it is running. Asymmetric PWM mode Asymmetric mode allows two center-aligned PWM signals to be generated with a programmable phase shift. While the frequency is determined by the value of the TIMx_ARR register, the duty cycle and the phase-shift are determined by a pair of TIMx_CCRx registers. One register controls the PWM during up-counting, the second during down counting, so that PWM is adjusted every half PWM cycle: • OC1REFC (or OC2REFC) is controlled by TIMx_CCR1 and TIMx_CCR2 • OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4 Asymmetric PWM mode can be selected independently on two channels (one OCx output per pair of CCR registers) by writing ‘1110’ (Asymmetric PWM mode 1) or ‘1111’ (Asymmetric PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. Note: The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. When a given channel is used as asymmetric PWM channel, its secondary channel can also be used. For instance, if an OC1REFC signal is generated on channel 1 (Asymmetric PWM mode 1), it is possible to output either the OC2REF signal on channel 2, or an OC2REFC signal resulting from asymmetric PWM mode 2. Figure 239 shows an example of signals that can be generated using Asymmetric PWM mode (channels 1 to 4 are configured in Asymmetric PWM mode 1). Figure 239. Generation of 2 phase-shifted PWM signals with 50% duty cycle Counter register 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 OC1REFC CCR1=0 CCR2=8 OC3REFC CCR3=3 CCR4=5 MS33117V1 768/1709 RM0385 Rev 7 RM0385 23.3.11 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Combined PWM mode Combined PWM mode allows two edge or center-aligned PWM signals to be generated with programmable delay and phase shift between respective pulses. While the frequency is determined by the value of the TIMx_ARR register, the duty cycle and delay are determined by the two TIMx_CCRx registers. The resulting signals, OCxREFC, are made of an OR or AND logical combination of two reference PWMs: – OC1REFC (or OC2REFC) is controlled by TIMx_CCR1 and TIMx_CCR2 – OC3REFC (or OC4REFC) is controlled by TIMx_CCR3 and TIMx_CCR4 Combined PWM mode can be selected independently on two channels (one OCx output per pair of CCR registers) by writing ‘1100’ (Combined PWM mode 1) or ‘1101’ (Combined PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. When a given channel is used as combined PWM channel, its secondary channel must be configured in the opposite PWM mode (for instance, one in Combined PWM mode 1 and the other in Combined PWM mode 2). Note: The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. Figure 240 shows an example of signals that can be generated using Asymmetric PWM mode, obtained with the following configuration: • Channel 1 is configured in Combined PWM mode 2, • Channel 2 is configured in PWM mode 1, • Channel 3 is configured in Combined PWM mode 2, • Channel 4 is configured in PWM mode 1 RM0385 Rev 7 769/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Figure 240. Combined PWM mode on channels 1 and 3 OC2’ OC1’ OC2 OC1 OC1REF OC2REF OC1REF’ OC2REF’ OC1REFC OC1REFC’ OC1REFC = OC1REF AND OC2REF OC1REFC’ = OC1REF’ OR OC2REF’ MS31094V1 23.3.12 Clearing the OCxREF signal on an external event The OCxREF signal of a given channel can be cleared when a high level is applied on the ocref_clr_int input (OCxCE enable bit in the corresponding TIMx_CCMRx register set to 1). OCxREF remains low until the next update event (UEV) occurs. This function can only be used in Output compare and PWM modes. It does not work in Forced mode. OCREF_CLR_INPUT can be selected between the OCREF_CLR input and ETRF (ETR after the filter) by configuring the OCCS bit in the TIMx_SMCR register. The OCxREF signal for a given channel can be reset by applying a high level on the ETRF input (OCxCE enable bit set to 1 in the corresponding TIMx_CCMRx register). OCxREF remains low until the next update event (UEV) occurs. This function can be used only in the output compare and PWM modes. It does not work in forced mode. For example, the OCxREF signal can be connected to the output of a comparator to be used for current handling. In this case, ETR must be configured as follows: 770/1709 1. The external trigger prescaler should be kept off: bits ETPS[1:0] in the TIMx_SMCR register are cleared to 00. 2. The external clock mode 2 must be disabled: bit ECE in the TIM1_SMCR register is cleared to 0. 3. The external trigger polarity (ETP) and the external trigger filter (ETF) can be configured according to the application’s needs. RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Figure 241 shows the behavior of the OCxREF signal when the ETRF input becomes high, for both values of the OCxCE enable bit. In this example, the timer TIMx is programmed in PWM mode. Figure 241. Clearing TIMx OCxREF (CCRx) Counter (CNT) ETRF OCxREF (OCxCE = ‘0’) OCxREF (OCxCE = ‘1’) ocref_clr_int becomes high ocref_clr_int still high MS33105V2 Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), OCxREF is enabled again at the next counter overflow. RM0385 Rev 7 771/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) 23.3.13 RM0385 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be: • CNT TIMx_CCR1 else active (OC1REF=1). 0111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT TIMx_CCR1 else inactive. 1000: Retriggerable OPM mode 1 - In up-counting mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes inactive again at the next update. In down-counting mode, the channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes inactive again at the next update. 1001: Retriggerable OPM mode 2 - In up-counting mode, the channel is inactive until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 2 and the channels becomes inactive again at the next update. In down-counting mode, the channel is active until a trigger event is detected (on TRGI signal). Then, a comparison is performed as in PWM mode 1 and the channels becomes active again at the next update. 1010: Reserved, 1011: Reserved, 1100: Combined PWM mode 1 - OC1REF has the same behavior as in PWM mode 1. OC1REFC is the logical OR between OC1REF and OC2REF. 1101: Combined PWM mode 2 - OC1REF has the same behavior as in PWM mode 2. OC1REFC is the logical AND between OC1REF and OC2REF. 1110: Asymmetric PWM mode 1 - OC1REF has the same behavior as in PWM mode 1. OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting down. 1111: Asymmetric PWM mode 2 - OC1REF has the same behavior as in PWM mode 2. OC1REFC outputs OC1REF when the counter is counting up, OC2REF when it is counting down. Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in output). 2: In PWM mode, the OCREF level changes only when the result of the comparison changes or when the output compare mode switches from “frozen” mode to “PWM” mode. RM0385 Rev 7 797/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Bit 3 OC1PE: Output compare 1 preload enable 0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new value is taken in account immediately. 1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload register. TIMx_CCR1 preload value is loaded in the active register at each update event. Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed (LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in output). 2: The PWM mode can be used without validating the preload register only in onepulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed. Bit 2 OC1FE: Output compare 1 fast enable This bit is used to accelerate the effect of an event on the trigger in input on the CC output. 0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5 clock cycles. 1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is set to the compare level independently from the result of the comparison. Delay to sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if the channel is configured in PWM1 or PWM2 mode. Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output. 01: CC1 channel is configured as input, IC1 is mapped on TI1. 10: CC1 channel is configured as input, IC1 is mapped on TI2. 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). Input capture mode Bits 31:16 Reserved, always read as 0. Bits 15:12 IC2F: Input capture 2 filter Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler Bits 9:8 CC2S: Capture/compare 2 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output. 01: CC2 channel is configured as input, IC2 is mapped on TI2. 10: CC2 channel is configured as input, IC2 is mapped on TI1. 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). 798/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Bits 7:4 IC1F: Input capture 1 filter This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate a transition on the output: 0000: No filter, sampling is done at fDTS 0001: fSAMPLING=fCK_INT, N=2 0010: fSAMPLING=fCK_INT, N=4 0011: fSAMPLING=fCK_INT, N=8 0100: fSAMPLING=fDTS/2, N=6 0101: fSAMPLING=fDTS/2, N=8 0110: fSAMPLING=fDTS/4, N=6 0111: fSAMPLING=fDTS/4, N=8 1000: fSAMPLING=fDTS/8, N=6 1001: fSAMPLING=fDTS/8, N=8 1010: fSAMPLING=fDTS/16, N=5 1011: fSAMPLING=fDTS/16, N=6 1100: fSAMPLING=fDTS/16, N=8 1101: fSAMPLING=fDTS/32, N=5 1110: fSAMPLING=fDTS/32, N=6 1111: fSAMPLING=fDTS/32, N=8 Bits 3:2 IC1PSC: Input capture 1 prescaler This bit-field defines the ratio of the prescaler acting on CC1 input (IC1). The prescaler is reset as soon as CC1E=0 (TIMx_CCER register). 00: no prescaler, capture is done each time an edge is detected on the capture input 01: capture is done once every 2 events 10: capture is done once every 4 events 11: capture is done once every 8 events Bits 1:0 CC1S: Capture/Compare 1 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC1 channel is configured as output 01: CC1 channel is configured as input, IC1 is mapped on TI1 10: CC1 channel is configured as input, IC1 is mapped on TI2 11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER). 23.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2) Address offset: 0x1C Reset value: 0x0000 Refer to the above CCMR1 register description. 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 Res. 25 24 Res. OC4M [3] 23 Res. 22 Res. 21 Res. 20 Res. 19 Res. 18 Res. 17 16 Res. OC3M [3] Res. Res. rw 15 14 OC4CE 13 12 OC4M[2:0] rw rw 10 OC4PE OC4FE IC4F[3:0] rw 11 IC4PSC[1:0] rw rw rw 9 8 CC4S[1:0] rw rw rw 7 6 OC3CE 5 4 OC3M[2:0] RM0385 Rev 7 rw rw 2 OC3PE OC3FE IC3F[3:0] rw 3 IC3PSC[1:0] rw rw rw 1 0 CC3S[1:0] rw rw 799/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Output compare mode Bits 31:25 Reserved, always read as 0. Bit 24 OC4M[3]: Output Compare 2 mode - bit 3 Bits 23:17 Reserved, always read as 0. Bit 16 OC3M[3]: Output Compare 1 mode - bit 3 Bit 15 OC4CE: Output compare 4 clear enable Bits 14:12 OC4M: Output compare 4 mode Refer to OC1M description (bits 6:4 in TIMx_CCMR1 register) Bit 11 OC4PE: Output compare 4 preload enable Bit 10 OC4FE: Output compare 4 fast enable Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER). Bit 7 OC3CE: Output compare 3 clear enable Bits 6:4 OC3M: Output compare 3 mode Refer to OC1M description (bits 6:4 in TIMx_CCMR1 register) Bit 3 OC3PE: Output compare 3 preload enable Bit 2 OC3FE: Output compare 3 fast enable Bits 1:0 CC3S: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER). Input capture mode Bits 31:16 Reserved, always read as 0. Bits 15:12 IC4F: Input capture 4 filter Bits 11:10 IC4PSC: Input capture 4 prescaler Bits 9:8 CC4S: Capture/Compare 4 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC4 channel is configured as output 01: CC4 channel is configured as input, IC4 is mapped on TI4 10: CC4 channel is configured as input, IC4 is mapped on TI3 11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER). 800/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Bits 7:4 IC3F: Input capture 3 filter Bits 3:2 IC3PSC: Input capture 3 prescaler Bits 1:0 CC3S: Capture/Compare 3 selection This bit-field defines the direction of the channel (input/output) as well as the used input. 00: CC3 channel is configured as output 01: CC3 channel is configured as input, IC3 is mapped on TI3 10: CC3 channel is configured as input, IC3 is mapped on TI4 11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if an internal trigger input is selected through TS bit (TIMx_SMCR register) Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER). 23.4.9 TIMx capture/compare enable register (TIMx_CCER) Address offset: 0x20 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CC4NP Res. CC4P CC4E CC3NP Res. CC3P CC3E CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E rw rw rw rw rw rw rw rw rw rw rw rw Bit 15 CC4NP: Capture/Compare 4 output Polarity. Refer to CC1NP description Bit 14 Reserved, must be kept at reset value. Bit 13 CC4P: Capture/Compare 4 output Polarity. Refer to CC1P description Bit 12 CC4E: Capture/Compare 4 output enable. refer to CC1E description Bit 11 CC3NP: Capture/Compare 3 output Polarity. Refer to CC1NP description Bit 10 Reserved, must be kept at reset value. Bit 9 CC3P: Capture/Compare 3 output Polarity. Refer to CC1P description Bit 8 CC3E: Capture/Compare 3 output enable. Refer to CC1E description Bit 7 CC2NP: Capture/Compare 2 output Polarity. Refer to CC1NP description Bit 6 Reserved, must be kept at reset value. Bit 5 CC2P: Capture/Compare 2 output Polarity. refer to CC1P description Bit 4 CC2E: Capture/Compare 2 output enable. Refer to CC1E description Bit 3 CC1NP: Capture/Compare 1 output Polarity. CC1 channel configured as output: CC1NP must be kept cleared in this case. CC1 channel configured as input: This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity. refer to CC1P description. RM0385 Rev 7 801/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Bit 2 Reserved, must be kept at reset value. Bit 1 CC1P: Capture/Compare 1 output Polarity. CC1 channel configured as output: 0: OC1 active high 1: OC1 active low CC1 channel configured as input: CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations. 00: noninverted/rising edge Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode). 01: inverted/falling edge Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger mode), TIxFP1 is inverted (trigger in gated mode, encoder mode). 10: reserved, do not use this configuration. 11: noninverted/both edges Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration must not be used for encoder mode. Bit 0 CC1E: Capture/Compare 1 output enable. CC1 channel configured as output: 0: Off - OC1 is not active 1: On - OC1 signal is output on the corresponding output pin CC1 channel configured as input: This bit determines if a capture of the counter value can actually be done into the input capture/compare register 1 (TIMx_CCR1) or not. 0: Capture disabled 1: Capture enabled Table 151. Output control bit for standard OCx channels CCxE bit OCx output state 0 Output Disabled (OCx=0, OCx_EN=0) 1 OCx=OCxREF + Polarity, OCx_EN=1 Note: The state of the external IO pins connected to the standard OCx channels depends on the OCx channel state and the GPIO and AFIO registers. 23.4.10 TIMx counter (TIMx_CNT) Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 CNT[31] or UIFCPY 23 22 21 20 19 18 17 16 CNT[30:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw CNT[15:0] 802/1709 rw RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) Bit 31 Value depends on IUFREMAP in TIMx_CR1. If UIFREMAP = 0 CNT[31]: Most significant bit of counter value (on TIM2 and TIM5) Reserved on other timers If UIFREMAP = 1 UIFCPY: UIF Copy This bit is a read-only copy of the UIF bit of the TIMx_ISR register Bits 30:16 CNT[30:16]: Most significant part counter value (on TIM2 and TIM5) Bits 15:0 CNT[15:0]: Least significant part of counter value 23.4.11 TIMx prescaler (TIMx_PSC) Address offset: 0x28 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw PSC[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 PSC[15:0]: Prescaler value The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1). PSC contains the value to be loaded in the active prescaler register at each update event (including when the counter is cleared through UG bit of TIMx_EGR register or through trigger controller when configured in “reset mode”). 23.4.12 TIMx auto-reload register (TIMx_ARR) Address offset: 0x2C Reset value: 0xFFFF FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ARR[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw ARR[15:0] rw Bits 31:16 ARR[31:16]: High auto-reload value (on TIM2 and TIM5) Bits 15:0 ARR[15:0]: Low Auto-reload value ARR is the value to be loaded in the actual auto-reload register. Refer to the Section 23.3.1: Time-base unit on page 743 for more details about ARR update and behavior. The counter is blocked while the auto-reload value is null. 23.4.13 TIMx capture/compare register 1 (TIMx_CCR1) Address offset: 0x34 Reset value: 0x0000 0000 RM0385 Rev 7 803/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) 25 24 RM0385 31 30 29 28 27 26 23 rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR1[31:16] (depending on timers) CCR1[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 CCR1[31:16]: High Capture/Compare 1 value (on TIM2 and TIM5) Bits 15:0 CCR1[15:0]: Low Capture/Compare 1 value If channel CC1 is configured as output: CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signaled on OC1 output. If channel CC1is configured as input: CCR1 is the counter value transferred by the last input capture 1 event (IC1). The TIMx_CCR1 register is read-only and cannot be programmed. 23.4.14 TIMx capture/compare register 2 (TIMx_CCR2) Address offset: 0x38 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CCR2[31:16] (depending on timers) rw rw rw rw rw rw rw 15 14 13 12 11 10 9 rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR2[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 CCR2[31:16]: High Capture/Compare 2 value (on TIM2 and TIM5) Bits 15:0 CCR2[15:0]: Low Capture/Compare 2 value If channel CC2 is configured as output: CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC2 output. If channel CC2 is configured as input: CCR2 is the counter value transferred by the last input capture 2 event (IC2). The TIMx_CCR2 register is read-only and cannot be programmed. 23.4.15 TIMx capture/compare register 3 (TIMx_CCR3) Address offset: 0x3C Reset value: 0x0000 0000 804/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) 31 30 29 28 27 26 25 24 23 rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR3[31:16] (depending on timers) CCR3[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 CCR3[31:16]: High Capture/Compare 3 value (on TIM2 and TIM5) Bits 15:0 CCR3[15:0]: Low Capture/Compare value If channel CC3 is configured as output: CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC3 output. If channel CC3is configured as input: CCR3 is the counter value transferred by the last input capture 3 event (IC3). The TIMx_CCR3 register is read-only and cannot be programmed. 23.4.16 TIMx capture/compare register 4 (TIMx_CCR4) Address offset: 0x40 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CCR4[31:16] (depending on timers) rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CCR4[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 CCR4[31:16]: High Capture/Compare 4 value (on TIM2 and TIM5) Bits 15:0 CCR4[15:0]: Low Capture/Compare value 1. if CC4 channel is configured as output (CC4S bits): CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value). It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register (bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when an update event occurs. The active capture/compare register contains the value to be compared to the counter TIMx_CNT and signalled on OC4 output. 2. if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register): CCR4 is the counter value transferred by the last input capture 4 event (IC4). The TIMx_CCR4 register is read-only and cannot be programmed. RM0385 Rev 7 805/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) 23.4.17 RM0385 TIMx DMA control register (TIMx_DCR) Address offset: 0x48 Reset value: 0x0000 15 14 13 Res. Res. Res. 12 11 10 9 8 DBL[4:0] rw rw rw rw 7 6 5 Res. Res. Res. rw 4 3 2 1 0 rw rw DBA[4:0] rw rw rw Bits 15:13 Reserved, must be kept at reset value. Bits 12:8 DBL[4:0]: DMA burst length This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer when a read or a write access is done to the TIMx_DMAR address). 00000: 1 transfer, 00001: 2 transfers, 00010: 3 transfers, ... 10001: 18 transfers. Bits 7:5 Reserved, must be kept at reset value. Bits 4:0 DBA[4:0]: DMA base address This 5-bit vector defines the base-address for DMA transfers (when read/write access are done through the TIMx_DMAR address). DBA is defined as an offset starting from the address of the TIMx_CR1 register. Example: 00000: TIMx_CR1 00001: TIMx_CR2 00010: TIMx_SMCR ... Example: Let us consider the following transfer: DBL = 7 transfers & DBA = TIMx_CR1. In this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address. 23.4.18 TIMx DMA address for full transfer (TIMx_DMAR) Address offset: 0x4C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAB[15:0] rw rw rw rw rw rw rw rw rw Bits 15:0 DMAB[15:0]: DMA register for burst accesses A read or write operation to the DMAR register accesses the register located at the address (TIMx_CR1 address) + (DBA + DMA index) x 4 where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base address configured in TIMx_DCR register, DMA index is automatically controlled by the DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR). 806/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) 23.4.19 TIM2 option register (TIM2_OR) Address offset: 0x50 Reset value: 0x0000 15 14 13 12 Res. Res. Res. Res. 11 10 ITR1_RMP[1:0] rw 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw Bits 15:12 Reserved, must be kept at reset value. Bits 11:10 ITR1_RMP[1:0]: Internal trigger 1 remap Set and cleared by software. 00: TIM8_TRGOUT 01: ETH_PTP trigger output is connected to TIM2_ITR1 10: OTG_FS_SOF is connected to the TIM2_ITR1 input 11: OTG_HS_SOF is connected to the TIM2_ITR1 input Bits 9:0 Reserved, must be kept at reset value. 23.4.20 TIM5 option register (TIM5_OR) Address offset: 0x50 Reset value: 0x0000 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 TI4_RMP[1:0] rw 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. rw Bits 15:8 Reserved, must be kept at reset value. Bits 7:6 TI4_RMP[1:0]: Timer Input 4 remap Set and cleared by software. 00: TIM5 channel4 is connected to the GPIO: Refer to the alternate function mapping table in the datasheets. 01: The LSI internal clock is connected to the TIM5_CH4 input for calibration purposes 10: The LSE internal clock is connected to the TIM5_CH4 input for calibration purposes 11: The RTC wakeup interrupt is connected to the TIM5_CH4 input for calibration purposes. Wakeup interrupt should be enabled. Bits 5:0 Reserved, must be kept at reset value. RM0385 Rev 7 807/1709 810 0x20 TIMx_CCER 808/1709 Reset value RM0385 Rev 7 IC4F[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 OC4M [2:0] CC4S [1:0] 0 0 0 0 0 0 0 Reset value 0 OC1M [2:0] 0 0 0 0 0 IC4 PSC [1:0] CC4S [1:0] 0 0 0 0 0 0 0 0 0 UG 0 CC1G UIE UIF 0 CC2G CC1IE CC1IF 0 0 0 0 0 0 OC1FE 0 0 0 0 OCCS CC2IE CC2IF 0 CC3G CC3IE CC3IF 0 OC1PE TS[2:0] SMS[2:0] 0 0 0 0 0 0 Res. CC4IE 0 Res. CC4IF 0 Res. DIR OPM URS UDIS CEN 0 0 0 0 0 TI1S MMS[2:0] CCDS Res. Res. Res. ARPE Res. Res. UIFREMA Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 CC4G TIE 0 TIF 0 TG MSM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 IC1F[3:0] 0 0 OC3M [2:0] 0 IC3F[3:0] IC1 PSC [1:0] CC1S [1:0] 0 0 0 OC3FE 0 CMS [1:0] OC3PE 0 Res. Res. UDE 0 Res. CC1OF Res. CC2OF 0 Res. 0 Res. 0 CC3OF 0 Res. 0 CC4OF 0 Res. 0 0 Res. 0 IC3 PSC [1:0] CC3S [1:0] 0 0 0 0 0 CC1E CC2S [1:0] 0 CC2S [1:0] OC1CE 0 CC1DE 0 CC2DE 0 ETF[3:0] Res. 0 IC2 PSC [1:0] 0 OC2FE 0 CC3DE 0 CC4DE 0 COMDE 0 Res. ECE 0 Res. Reset value CC1P 0 0 CC1NP 0 0 CC2E IC2F[3:0] OC3CE 0 Res. ETP 0 TDE SMS[3] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ETPS [1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 CKD [1:0] CC2P 0 0 0 Res. 0 OC2M [2:0] OC2PE 0 CC3E 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value CC2NP 0 OC4FE OC2CE 0 OC4PE OC1M[3] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. 0 CC3NP Res. Res. Res. Res. Res. Res. Res. Res. OC2M[3] Res. Res. Res. Res. Res. Res. Res. Reset value CC3P 0 CC4E 0 0 CC4P Reset value Res. O24CE Reset value CC4NP 0 OC3M[3] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. OC4M[3] Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. TIMx_CCMR2 Input Capture mode Res. 0x1C Res. TIMx_CCMR2 Output Compare mode Res. TIMx_CCMR1 Input Capture mode Res. 0x18 Res. TIMx_CCMR1 Output Compare mode Res. TIMx_EGR Res. 0x14 Res. TIMx_SR Res. 0x10 Res. TIMx_DIER Res. 0x0C Res. TIMx_SMCR Res. 0x08 Res. TIMx_CR2 Res. 0x04 Res. 0x00 Res. TIMx_CR1 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Offset Res. 23.4.21 Res. General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 TIMx register map TIMx registers are mapped as described in the table below: Table 152. TIM2/TIM3/TIM4/TIM5 register map and reset values CC1S [1:0] 0 0 0 0 CC3S [1:0] 0 0 0 0 0 0 0 0 0 0 RM0385 General-purpose timers (TIM2/TIM3/TIM4/TIM5) TIMx_CNT CNT[31] or UIFCPY Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TIMx_PSC Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x28 CNT[30:16] (TIM2 and TIM5 only, reserved on the other timers) Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PSC[15:0] 0 0 0 0 0 0 0 0 0 ARR[15:0] 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 Res. Res. 0 Res. 0 0 0 0 0 0 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. 0 ITR1_RMP[1:0 0 0 RM0385 Rev 7 0 DBA[4:0] DMAB[15:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIM2_OR Res. Reset value 0x50 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_DMAR 0x4C 0 Res. Reset value DBL[4:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIMx_DCR 0x48 Res. Reserved Res. 0x44 0 Res. 0 0 CCR4[15:0] Res. 0 0 CCR3[15:0] CCR4[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR4 0 CCR2[15:0] CCR3[31:16] (TIM2 and TIM5 only, reserved on the other timers) 0 0 Res. 0 CCR2[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR3 Reset value 0 CCR1[15:0] Res. 0 TIMx_CCR2 Reset value 0x40 0 CCR1[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_CCR1 Reset value 0x3C 0 Reserved Reset value 0x38 0 Res. 0x30 0x34 0 ARR[31:16] (TIM2 and TIM5 only, reserved on the other timers) TIMx_ARR Reset value 0 0 Res. 0x2C CNT[15:0] Res. 0x24 Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 152. TIM2/TIM3/TIM4/TIM5 register map and reset values (continued) 0 809/1709 810 General-purpose timers (TIM2/TIM3/TIM4/TIM5) RM0385 Reset value 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. 810/1709 RM0385 Rev 7 0 Res. Res. Res. Res. Res. Res. TI4_RMP[1:0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TIM5_OR 0x50 Res. Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 152. TIM2/TIM3/TIM4/TIM5 register map and reset values (continued) RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) 24 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) 24.1 TIM9/TIM10/TIM11/TIM12/TIM13/TIM14 introduction The TIM9/TIM10/TIM11/TIM12/TIM13/TIM14 general-purpose timers consist in a 16-bit auto-reload counter driven by a programmable prescaler. They may be used for a variety of purposes, including measuring the pulse lengths of input signals (input capture) or generating output waveforms (output compare, PWM). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the RCC clock controller prescalers. The TIM9/TIM10/TIM11/TIM12/TIM13/TIM14 timers are completely independent, and do not share any resources. They can be synchronized together as described in Section 24.3.17: Timer synchronization (TIM9/TIM12). 24.2 TIM9/TIM10/TIM11/TIM12/TIM13/TIM14 main features 24.2.1 TIM9/TIM12 main features The features of the TIM9/TIM12 general-purpose timers include: • 16-bit auto-reload upcounter • 16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536 (can be changed “on the fly”) • Up to 2 independent channels for: – Input capture – Output compare – PWM generation (edge-aligned mode) – One-pulse mode output • Synchronization circuit to control the timer with external signals and to interconnect several timers together • Interrupt generation on the following events: – Update: counter overflow, counter initialization (by software or internal trigger) – Trigger event (counter start, stop, initialization or count by internal trigger) – Input capture – Output compare RM0385 Rev 7 811/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 Figure 256. General-purpose timer block diagram (TIM9/TIM12) Internal clock (CK_INT) Trigger controller ITR0 ITR1 ITR2 ITR3 TGI ITR TRC TI1F_ED TRGI Slave controller Reset, enable, up, count mode TI1FP1 TI2FP2 U Auto-reload register Stop, Clear CK_PSC TI1 TIMx_CH1 TI2 TIMx_CH2 Input filter & edge detector Input filter & edge detector TI1FP1 TI1FP2 IC1 PSC CK_CNT prescaler CC1I U Prescaler TRC IC1PS CC2I TI2FP1 TI2FP2 TRC IC2 Prescaler +/- CNT counter CC1I Capture/Compare 1 register OC1REF Output control OC1 TIMx_CH1 CC2I U IC2PS UI U Capture/Compare 2 register OC2REF Output OC2 control TIMx_CH2 Notes: Reg Preload registers transferred to active registers on U event according to control bit Event ai17190b Interrupt 24.2.2 TIM10/TIM11/TIM13/TIM14 main features The features of general-purpose timers TIM10/TIM11/TIM13/TIM14 include: • 16-bit auto-reload upcounter • 16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536 (can be changed “on the fly”) • independent channel for: • 812/1709 – Input capture – Output compare – PWM generation (edge-aligned mode) – One-pulse mode output Interrupt generation on the following events: – Update: counter overflow, counter initialization (by software) – Input capture – Output compare RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) Figure 257. General-purpose timer block diagram (TIM10/TIM11/TIM13/TIM14) Internal clock (CK_INT) Trigger Controller Auto-reload register U UI Stop, clear CK_PSC TIMx_CH1 TI1 Input filter & edge selector TI1FP1 PSC prescaler CK_CNT +/- Prescaler IC1PS U CNT counter C1I CC1I U IC1 Enable counter Capture/compare 1 register OC1REF Output control OC1 TIMx_CH1 Notes: Reg Preload registers transferred to active registers on U event according to control bit Event ai17725d Interrupt & DMA output RM0385 Rev 7 813/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 24.3 TIM9/TIM10/TIM11/TIM12/TIM13/TIM14 functional description 24.3.1 Time-base unit The main block of the timer is a 16-bit up-counter with its related auto-reload register. The counters counts up. The counter clock can be divided by a prescaler. The counter, the auto-reload register and the prescaler register can be written or read by software. This is true even when the counter is running. The time-base unit includes: • Counter register (TIMx_CNT) • Prescaler register (TIMx_PSC) • Auto-reload register (TIMx_ARR) The auto-reload register is preloaded. Writing to or reading from the auto-reload register accesses the preload register. The content of the preload register are transferred into the shadow register permanently or at each update event (UEV), depending on the auto-reload preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be generated by software. The generation of the update event is described in details for each configuration. The counter is clocked by the prescaler output CK_CNT, which is enabled only when the counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller description to get more details on counter enabling). Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1 register. Prescaler description The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register). It can be changed on the fly as this control register is buffered. The new prescaler ratio is taken into account at the next update event. Figure 258 and Figure 259 give some examples of the counter behavior when the prescaler ratio is changed on the fly. 814/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) Figure 258. Counter timing diagram with prescaler division change from 1 to 2 CK_PSC CEN Timerclock = CK_CNT Counter register F7 F8 F9 FA FB FC 01 00 02 03 Update event (UEV) Prescaler control register 0 1 Write a new value in TIMx_PSC Prescaler buffer 0 Prescaler counter 0 1 0 1 0 1 1 0 1 0 MS31076V2 Figure 259. Counter timing diagram with prescaler division change from 1 to 4 CK_PSC CEN Timerclock = CK_CNT Counter register F7 F8 F9 FA FB FC 00 01 Update event (UEV) Prescaler control register 0 3 Write a new value in TIMx_PSC Prescaler buffer Prescaler counter 0 3 0 0 1 2 3 0 1 2 3 MS31077V2 RM0385 Rev 7 815/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) 24.3.2 RM0385 Counter modes Upcounting mode In upcounting mode, the counter counts from 0 to the auto-reload value (content of the TIMx_ARR register), then restarts from 0 and generates a counter overflow event. Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode controller on TIM9/TIM12) also generates an update event. The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1 register. This is to avoid updating the shadow registers while writing new values in the preload registers. Then no update event occurs until the UDIS bit has been written to 0. However, the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate does not change). In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt is sent). This is to avoid generating both update and capture interrupts when clearing the counter on the capture event. When an update event occurs, all the registers are updated and the update flag (UIF bit in TIMx_SR register) is set (depending on the URS bit): • The auto-reload shadow register is updated with the preload value (TIMx_ARR), • The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC register). The following figures show some examples of the counter behavior for different clock frequencies when TIMx_ARR=0x36. Figure 260. Counter timing diagram, internal clock divided by 1 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 31 32 33 34 35 36 00 01 02 03 04 05 06 07 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31078V2 816/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) Figure 261. Counter timing diagram, internal clock divided by 2 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0035 0034 0036 0000 0002 0001 0003 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31079V2 Figure 262. Counter timing diagram, internal clock divided by 4 CK_PSC CNT_EN Timerclock = CK_CNT Counter register 0035 0036 0000 0001 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31080V2 RM0385 Rev 7 817/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 Figure 263. Counter timing diagram, internal clock divided by N CK_PSC Timerclock = CK_CNT Counter register 1F 00 20 Counter overflow Update event (UEV) Update interrupt flag (UIF) MS31081V2 Figure 264. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) CK_PSC CEN Timerclock = CK_CNT Counter register 31 32 33 34 35 36 00 01 02 03 04 05 06 07 Counter overflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register FF 36 Write a new value in TIMx_ARR MS31082V2 818/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) Figure 265. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) CK_PSC CEN Timerclock = CK_CNT Counter register F0 F1 F2 F3 F4 F5 00 01 02 03 04 05 06 07 Counter overflow Update event (UEV) Update interrupt flag (UIF) Auto-reload preload register F5 36 Auto-reload shadow register F5 Write a new value in TIMx_ARR 24.3.3 36 MS31083V2 Clock selection The counter clock can be provided by the following clock sources: • Internal clock (CK_INT) • External clock mode1 (for TIM9/TIM12): external input pin (TIx) • Internal trigger inputs (ITRx) (for TIM9/TIM12): connecting the trigger output from another timer. For instance, another timer can be configured as a prescaler for TIM12. Refer to Section : Using one timer as prescaler for another timer for more details. Internal clock source (CK_INT) The internal clock source is the default clock source for TIM10/TIM11/TIM13/TIM14. For TIM9/TIM12, the internal clock source is selected when the slave mode controller is disabled (SMS=’000’). The CEN bit in the TIMx_CR1 register and the UG bit in the TIMx_EGR register are then used as control bits and can be changed only by software (except for UG which remains cleared). As soon as the CEN bit is programmed to 1, the prescaler is clocked by the internal clock CK_INT. Figure 266 shows the behavior of the control circuit and the upcounter in normal mode, without prescaler. RM0385 Rev 7 819/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 Figure 266. Control circuit in normal mode, internal clock divided by 1 Internal clock CEN=CNT_EN UG CNT_INIT r clock = CK_CNT = CK_PSC Counter register 31 32 33 34 35 36 00 01 02 03 04 05 06 07 MS31085V2 External clock source mode 1 (TIM9/TIM12) This mode is selected when SMS=’111’ in the TIMx_SMCR register. The counter can count at each rising or falling edge on a selected input. Figure 267. TI2 external clock connection example TIMx_SMCR TS[2:0] or TI2F TI1F ITRx TI1_ED TI1FP1 TI2 Filter Edge detector TI2F_Rising TI2F_Falling 0 TI2FP2 1 or or 0xx 100 TRGI 101 CC2P TIMx_CCMR1 TIMx_CCER External clock mode 1 CK_PSC 110 CK_INT ICF[3:0] Encoder mode (internal clock) Internal clock mode SMS[2:0] TIMx_SMCR MS33114V1 For example, to configure the upcounter to count in response to a rising edge on the TI2 input, use the following procedure: 820/1709 RM0385 Rev 7 RM0385 Note: General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) 1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in the TIMx_CCMR1 register. 2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1 register (if no filter is needed, keep IC2F=’0000’). 3. Select the rising edge polarity by writing CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER register. 4. Configure the timer in external clock mode 1 by writing SMS=’111’ in the TIMx_SMCR register. 5. Select TI2 as the trigger input source by writing TS=’110’ in the TIMx_SMCR register. 6. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register. The capture prescaler is not used for triggering, so you don’t need to configure it. When a rising edge occurs on TI2, the counter counts once and the TIF flag is set. The delay between the rising edge on TI2 and the actual clock of the counter is due to the resynchronization circuit on TI2 input. Figure 268. Control circuit in external clock mode 1 TI2 CNT_EN Counter clock = CK_CNT = CK_PSC Counter register 34 35 36 TIF Write TIF=0 MS31087V2 24.3.4 Capture/compare channels Each Capture/Compare channel is built around a capture/compare register (including a shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and an output stage (with comparator and output control). Figure 269 to Figure 271 give an overview of one capture/compare channel. The input stage samples the corresponding TIx input to generate a filtered signal TIxF. Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be used as trigger input by the slave mode controller or as the capture command. It is prescaled before the capture register (ICxPS). RM0385 Rev 7 821/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 Figure 269. Capture/compare channel (example: channel 1 input stage TI1F_ED To the slave mode controller TI1F_Rising TI1 Filter TI1F downcounter fDTS Edge detector TI1F_Falling 0 TI1FP1 01 1 TI2FP1 CC1P/CC1NP ICF[3:0] TRC TIMx_CCER TIMx_CCMR1 TI2F_Rising 0 (from channel 2) TI2F_Falling 1 (from channel 2) IC1 10 (from slave mode controller) IC1PS Divider /1, /2, /4, /8 11 CC1S[1:0] ICPS[1:0] CC1E TIMx_CCMR1 TIMx_CCER MS33115V1 The output stage generates an intermediate waveform which is then used for reference: OCxRef (active high). The polarity acts at the end of the chain. Figure 270. Capture/compare channel 1 main circuit APB Bus Read CCR1L read_in_progress CC1S[0] IC1PS write_in_progress Input mode S write CCR1H Capture/compare preload register R R compare_transfer capture_transfer CC1S[1] 8 low Read CCR1H S high 8 (if 16-bit) MCU-peripheral interface Output mode CNT>CCR1 Counter CC1S[0] UEV Comparator CC1E CC1S[1] OC1PE Capture/compare shadow register Capture write CCR1L (from time base unit) OC1PE TIM1_CCMR1 CNT=CCR1 CC1G TIM1_EGR MS31089V2 822/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) Figure 271. Output stage of capture/compare channel (channel 1) To the master mode controller OC1REF OC1REFC ‘0’ CNT > CCR1 CNT = CCR1 Output mode controller Output selector OC2REF OC1CE 0 0 1 1 Output enable circuit CC1E CC1P CC1E TIM1_CCER TIM1_CCER TIM1_CCER OC1 OC1M[3:0] TIM1_CCMR2 MSv45743V1 The capture/compare block is made of one preload register and one shadow register. Write and read always access the preload register. In capture mode, captures are actually done in the shadow register, which is copied into the preload register. In compare mode, the content of the preload register is copied into the shadow register which is compared to the counter. 24.3.5 Input capture mode In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the value of the counter after a transition detected by the corresponding ICx signal. When a capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be cleared by software by writing it to ‘0’ or by reading the captured data stored in the TIMx_CCRx register. CCxOF is cleared when you write it to ‘0’. The following example shows how to capture the counter value in TIMx_CCR1 when TI1 input rises. To do this, use the following procedure: 1. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S bits to ‘01’ in the TIMx_CCMR1 register. As soon as CC1S becomes different from ‘00’, the channel is configured in input mode and the TIMx_CCR1 register becomes readonly. 2. Program the input filter duration you need with respect to the signal you connect to the timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at must 5 internal clock cycles. We must program a filter duration longer than these 5 clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the RM0385 Rev 7 823/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 new level have been detected (sampled at fDTS frequency). Then write IC1F bits to ‘0011’ in the TIMx_CCMR1 register. 3. Select the edge of the active transition on the TI1 channel by programming CC1P and CC1NP bits to ‘00’ in the TIMx_CCER register (rising edge in this case). 4. Program the input prescaler. In our example, we wish the capture to be performed at each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the TIMx_CCMR1 register). 5. Enable capture from the counter into the capture register by setting the CC1E bit in the TIMx_CCER register. 6. If needed, enable the related interrupt request by setting the CC1IE bit in the TIMx_DIER register. When an input capture occurs: • The TIMx_CCR1 register gets the value of the counter on the active transition. • CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures occurred whereas the flag was not cleared. • An interrupt is generated depending on the CC1IE bit. In order to handle the overcapture, it is recommended to read the data before the overcapture flag. This is to avoid missing an overcapture which could happen after reading the flag and before reading the data. Note: IC interrupt requests can be generated by software by setting the corresponding CCxG bit in the TIMx_EGR register. 24.3.6 PWM input mode (only for TIM9/TIM12) This mode is a particular case of input capture mode. The procedure is the same except: • Two ICx signals are mapped on the same TIx input. • These 2 ICx signals are active on edges with opposite polarity. • One of the two TIxFP signals is selected as trigger input and the slave mode controller is configured in reset mode. For example, you can measure the period (in TIMx_CCR1 register) and the duty cycle (in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending on CK_INT frequency and prescaler value): 824/1709 1. Select the active input for TIMx_CCR1: write the CC1S bits to ‘01’ in the TIMx_CCMR1 register (TI1 selected). 2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter clear): program the CC1P and CC1NP bits to ‘00’ (active on rising edge). 3. Select the active input for TIMx_CCR2: write the CC2S bits to ‘10’ in the TIMx_CCMR1 register (TI1 selected). 4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): program the CC2P and CC2NP bits to ‘11’ (active on falling edge). 5. Select the valid trigger input: write the TS bits to ‘101’ in the TIMx_SMCR register (TI1FP1 selected). 6. Configure the slave mode controller in reset mode: write the SMS bits to ‘100’ in the TIMx_SMCR register. 7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register. RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) Figure 272. PWM input mode timing TI1 TIMx_CNT 0000 0004 0001 0002 TIMx_CCR1 0004 TIMx_CCR2 0002 IC1 capture period measurement 0003 0004 IC2 capture pulse width measurment 0000 IC1 capture period measurement ai15413c 1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only TI1FP1 and TI2FP2 are connected to the slave mode controller. 24.3.7 Forced output mode In output mode (CCxS bits = ‘00’ in the TIMx_CCMRx register), each output compare signal (OCxREF and then OCx) can be forced to active or inactive level directly by software, independently of any comparison between the output compare register and the counter. To force an output compare signal (OCXREF/OCx) to its active level, you just need to write ‘0101’ in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit. For example: CCxP=’0’ (OCx active high) => OCx is forced to high level. The OCxREF signal can be forced low by writing the OCxM bits to ‘0100’ in the TIMx_CCMRx register. Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is described in the output compare mode section below. 24.3.8 Output compare mode This function is used to control an output waveform or indicating when a period of time has elapsed. When a match is found between the capture/compare register and the counter, the output compare function: 1. Assigns the corresponding output pin to a programmable value defined by the output compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP bit in the TIMx_CCER register). The output pin can keep its level (OCxM=’0000’), be set active (OCxM=’0001’), be set inactive (OCxM=’0010’) or can toggle (OCxM=’0011’) on match. 2. Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register). 3. Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the TIMx_DIER register). RM0385 Rev 7 825/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 The TIMx_CCRx registers can be programmed with or without preload registers using the OCxPE bit in the TIMx_CCMRx register. In output compare mode, the update event UEV has no effect on OCxREF and OCx output. The timing resolution is one count of the counter. Output compare mode can also be used to output a single pulse (in One-pulse mode). Procedure: 1. Select the counter clock (internal, external, prescaler). 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. 3. Set the CCxIE bit if an interrupt request is to be generated. 4. Select the output mode. For example: 5. – Write OCxM = ‘0011’ to toggle OCx output pin when CNT matches CCRx – Write OCxPE = ‘0’ to disable preload register – Write CCxP = ‘0’ to select active high polarity – Write CCxE = ‘1’ to enable the output Enable the counter by setting the CEN bit in the TIMx_CR1 register. The TIMx_CCRx register can be updated at any time by software to control the output waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx shadow register is updated only at the next update event UEV). An example is given in Figure 273. Figure 273. Output compare mode, toggle on OC1. Write B201h in the CC1R register TIM1_CNT 0039 TIM1_CCR1 003B 003A B200 B201 B201 003A OC1REF= OC1 Match detected on CCR1 Interrupt generated if enabled MS31092V1 24.3.9 PWM mode Pulse Width Modulation mode allows you to generate a signal with a frequency determined by the value of the TIMx_ARR register and a duty cycle determined by the value of the TIMx_CCRx register. The PWM mode can be selected independently on each channel (one PWM per OCx output) by writing ‘0110’ (PWM mode 1) or ‘0111’ (PWM mode 2) in the OCxM bits in the 826/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) TIMx_CCMRx register. You must enable the corresponding preload register by setting the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register. As the preload registers are transferred to the shadow registers only when an update event occurs, before starting the counter, you have to initialize all the registers by setting the UG bit in the TIMx_EGR register. The OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It can be programmed as active high or active low. The OCx output is enabled by the CCxE bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details. In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine whether TIMx_CNT ≤ TIMx_CCRx. The timer is able to generate PWM in edge-aligned mode only since the counter is upcounting. In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’. Figure 274 shows some edgealigned PWM waveforms in an example where TIMx_ARR=8. Figure 274. Edge-aligned PWM waveforms (ARR=8) 0 Counter register CCRx=4 1 2 3 4 5 6 7 8 0 1 OCXREF CCxIF OCXREF CCRx=8 CCxIF OCXREF ‘1’ CCRx>8 CCxIF OCXREF ‘0’ CCRx=0 CCxIF MS31093V1 24.3.10 Combined PWM mode (TIM9/TIM12 only) Combined PWM mode allows two edge or center-aligned PWM signals to be generated with programmable delay and phase shift between respective pulses. While the frequency is determined by the value of the TIMx_ARR register, the duty cycle and delay are determined RM0385 Rev 7 827/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 by the two TIMx_CCRx registers. The resulting signals, OCxREFC, are made of an OR or AND logical combination of two reference PWMs: • OC1REFC (or OC2REFC) is controlled by the TIMx_CCR1 and TIMx_CCR2 registers Combined PWM mode can be selected independently on two channels (one OCx output per pair of CCR registers) by writing ‘1100’ (Combined PWM mode 1) or ‘1101’ (Combined PWM mode 2) in the OCxM bits in the TIMx_CCMRx register. When a given channel is used as a combined PWM channel, its complementary channel must be configured in the opposite PWM mode (for instance, one in Combined PWM mode 1 and the other in Combined PWM mode 2). Note: The OCxM[3:0] bit field is split into two parts for compatibility reasons, the most significant bit is not contiguous with the 3 least significant ones. Figure 275 represents an example of signals that can be generated using combined PWM mode, obtained with the following configuration: • Channel 1 is configured in Combined PWM mode 2, • Channel 2 is configured in PWM mode 1, Figure 275. Combined PWM mode on channel 1 and 2 OC2’ OC1’ OC2 OC1 OC1REF OC2REF OC1REF’ OC2REF’ OC1REFC OC1REFC’ OC1REFC = OC1REF AND OC2REF OC1REFC’ = OC1REF’ OR OC2REF’ MS31094V1 828/1709 RM0385 Rev 7 RM0385 One-pulse mode One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length after a programmable delay. Starting the counter can be controlled through the slave mode controller. Generating the waveform can be done in output compare mode or PWM mode. You select One-pulse mode by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at the next update event UEV. A pulse can be correctly generated only if the compare value is different from the counter initial value. Before starting (when the timer is waiting for the trigger), the configuration must be as follows: CNT < CCRx ≤ ARR (in particular, 0 < CCRx) Figure 276. Example of one pulse mode. TI2 OC1REF OC1 TIM1_ARR Counter 24.3.11 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) TIM1_CCR1 0 tDELAY tPULSE t MS31099V1 For example you may want to generate a positive pulse on OC1 with a length of tPULSE and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin. Use TI2FP2 as trigger 1: 1. Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register. 2. TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER register. 3. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in the TIMx_SMCR register. 4. TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register (trigger mode). RM0385 Rev 7 829/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 The OPM waveform is defined by writing the compare registers (taking into account the clock frequency and the counter prescaler). • The tDELAY is defined by the value written in the TIMx_CCR1 register. • The tPULSE is defined by the difference between the auto-reload value and the compare value (TIMx_ARR - TIMx_CCR1). • Let’s say you want to build a waveform with a transition from ‘0’ to ‘1’ when a compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload value. To do this you enable PWM mode 2 by writing OC1M=’0111’ in the TIMx_CCMR1 register. You can optionally enable the preload registers by writing OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this case you have to write the compare value in the TIMx_CCR1 register, the auto-reload value in the TIMx_ARR register, generate an update by setting the UG bit and wait for external trigger event on TI2. CC1P is written to ‘0’ in this example. You only want 1 pulse (Single mode), so you write '1 in the OPM bit in the TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the Repetitive Mode is selected. Particular case: OCx fast enable In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the counter. Then the comparison between the counter and the compare value makes the output toggle. But several clock cycles are needed for these operations and it limits the minimum delay tDELAY min we can get. If you want to output a waveform with the minimum delay, you can set the OCxFE bit in the TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus, without taking in account the comparison. Its new level is the same as if a compare match had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode. 24.3.12 Retriggerable one pulse mode (OPM) (TIM12 only) This mode allows the counter to be started in response to a stimulus and to generate a pulse with a programmable length, but with the following differences with non-retriggerable one pulse mode described in Section 24.3.11: One-pulse mode: • The pulse starts as soon as the trigger occurs (no programmable delay) • The pulse is extended if a new trigger occurs before the previous one is completed The timer must be in Slave mode, with the bits SMS[3:0] = ‘1000’ (Combined Reset + trigger mode) in the TIMx_SMCR register, and the OCxM[3:0] bits set to ‘1000’ or ‘1001’ for retrigerrable OPM mode 1 or 2. If the timer is configured in up-counting mode, the corresponding CCRx must be set to 0 (the ARR register sets the pulse length). If the timer is configured in down-counting mode, CCRx must be above or equal to ARR. Note: The OCxM[3:0] and SMS[3:0] bit fields are split into two parts for compatibility reasons, the most significant bit are not contiguous with the 3 least significant ones. This mode must not be used with center-aligned PWM modes. It is mandatory to have CMS[1:0] = 00 in TIMx_CR1. 830/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) Figure 277. Retriggerable one pulse mode TRGI Counter Output MS33106V1 24.3.13 UIF bit remapping The IUFREMAP bit in the TIMx_CR1 register forces a continuous copy of the Update Interrupt Flag UIF into bit 31 of the timer counter register (TIMxCNT[31]). This allows to atomically read both the counter value and a potential roll-over condition signaled by the UIFCPY flag. In particular cases, it can ease the calculations by avoiding race conditions caused for instance by a processing shared between a background task (counter reading) and an interrupt (Update Interrupt). There is no latency between the assertions of the UIF and UIFCPY flags. 24.3.14 Timer input XOR function The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to the output of a XOR gate, combining the two input pins TIMx_CH1 and TIMx_CH2. The XOR output can be used with all the timer input functions such as trigger or input capture. It is useful for measuring the interval between the edges on two input signals, as shown in Figure 278. Figure 278. Measuring time interval between edges on 2 signals TI1 TI2 TI1 XOR TI2 Counter MS31400V1 RM0385 Rev 7 831/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) 24.3.15 RM0385 TIM9/TIM12 external trigger synchronization The TIM9/TIM12 timers can be synchronized with an external trigger in several modes: Reset mode, Gated mode and Trigger mode. Slave mode: Reset mode The counter and its prescaler can be reinitialized in response to an event on a trigger input. Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated. In the following example, the upcounter is cleared in response to a rising edge on TI1 input: 1. Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=’0000’). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S = ‘01’ in the TIMx_CCMR1 register. Program CC1P and CC1NP to ‘00’ in TIMx_CCER register to validate the polarity (and detect rising edges only). 2. Configure the timer in reset mode by writing SMS=’100’ in TIMx_SMCR register. Select TI1 as the input source by writing TS=’101’ in TIMx_SMCR register. 3. Start the counter by writing CEN=’1’ in the TIMx_CR1 register. The counter starts counting on the internal clock, then behaves normally until TI1 rising edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request can be sent if enabled (depending on the TIE bit in TIMx_DIER register). The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay between the rising edge on TI1 and the actual reset of the counter is due to the resynchronization circuit on TI1 input. Figure 279. Control circuit in reset mode TI1 UG Counter clock = ck_cnt = ck_psc Counter register 30 31 32 33 34 35 36 00 01 02 03 00 01 02 03 TIF MS31401V2 Slave mode: Gated mode The counter can be enabled depending on the level of a selected input. In the following example, the upcounter counts only when TI1 input is low: 832/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) 1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC1F=’0000’). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC1S bits select the input capture source only, CC1S=’01’ in TIMx_CCMR1 register. Program CC1P=’1’ and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect low level only). 2. Configure the timer in gated mode by writing SMS=’101’ in TIMx_SMCR register. Select TI1 as the input source by writing TS=’101’ in TIMx_SMCR register. 3. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register (in gated mode, the counter doesn’t start if CEN=’0’, whatever is the trigger input level). The counter starts counting on the internal clock as long as TI1 is low and stops as soon as TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts or stops. The delay between the rising edge on TI1 and the actual stop of the counter is due to the resynchronization circuit on TI1 input. Figure 280. Control circuit in gated mode TI1 cnt_en Counter clock = ck_cnt = ck_psc Counter register 30 31 32 33 34 35 36 37 38 TIF Write TIF=0 MS31402V1 Slave mode: Trigger mode The counter can start in response to an event on a selected input. In the following example, the upcounter starts in response to a rising edge on TI2 input: 1. Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration (in this example, we don’t need any filter, so we keep IC2F=’0000’). The capture prescaler is not used for triggering, so you don’t need to configure it. The CC2S bits are configured to select the input capture source only, CC2S=’01’ in TIMx_CCMR1 register. Program CC2P=’1’ and CC2NP=’0’ in TIMx_CCER register to validate the polarity (and detect low level only). 2. Configure the timer in trigger mode by writing SMS=’110’ in TIMx_SMCR register. Select TI2 as the input source by writing TS=’110’ in TIMx_SMCR register. When a rising edge occurs on TI2, the counter starts counting on the internal clock and the TIF flag is set. RM0385 Rev 7 833/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 The delay between the rising edge on TI2 and the actual start of the counter is due to the resynchronization circuit on TI2 input. Figure 281. Control circuit in trigger mode TI2 cnt_en Counter clock = ck_cnt = ck_psc Counter register 34 35 36 37 38 TIF MS31403V1 24.3.16 Slave mode – combined reset + trigger mode In this case, a rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers, and starts the counter. This mode is used for one-pulse mode. 834/1709 RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) 24.3.17 Timer synchronization (TIM9/TIM12) The TIM timers are linked together internally for timer synchronization or chaining. Refer to Section 23.3.19: Timer synchronization for details. Note: The clock of the slave timer must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer. 24.3.18 Debug mode When the microcontroller enters debug mode (Cortex®-M7 core halted), the TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP configuration bit in DBG module. For more details, refer to Section 40.16.2: Debug support for timers, watchdog, bxCAN and I2C. 24.4 TIM9/TIM12 registers Refer to Section 1.1 for a list of abbreviations used in register descriptions. The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits). 24.4.1 TIM9/TIM12 control register 1 (TIMx_CR1) Address offset: 0x00 Reset value: 0x0000 15 Res. 14 Res. 13 Res. 12 11 10 Res. UIFRE MAP Res. rw 9 8 CKD[1:0] rw 7 6 5 4 3 2 1 0 ARPE Res. Res. Res. OPM URS UDIS CEN rw rw rw rw rw rw Bits 15:12 Reserved, must be kept at reset value. Bit 11 UIFREMAP: UIF status bit remapping 0: No remapping. UIF status bit is not copied to TIMx_CNT register bit 31. 1: Remapping enabled. UIF status bit is copied to TIMx_CNT register bit 31. Bit 10 Reserved, must be kept at reset value. Bits 9:8 CKD[1:0]: Clock division This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and sampling clock used by the digital filters (TIx), 00: tDTS = tCK_INT 01: tDTS = 2 × tCK_INT 10: tDTS = 4 × tCK_INT 11: Reserved Bit 7 ARPE: Auto-reload preload enable 0: TIMx_ARR register is not buffered. 1: TIMx_ARR register is buffered. Bits 6:4 Reserved, must be kept at reset value. RM0385 Rev 7 835/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 Bit 3 OPM: One-pulse mode 0: Counter is not stopped on the update event 1: Counter stops counting on the next update event (clearing the CEN bit). Bit 2 URS: Update request source This bit is set and cleared by software to select the UEV event sources. 0: Any of the following events generates an update interrupt if enabled. These events can be: – Counter overflow – Setting the UG bit – Update generation through the slave mode controller 1: Only counter overflow generates an update interrupt if enabled. Bit 1 UDIS: Update disable This bit is set and cleared by software to enable/disable update event (UEV) generation. 0: UEV enabled. An UEV is generated by one of the following events: – Counter overflow – Setting the UG bit Buffered registers are then loaded with their preload values. 1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC, CCRx). The counter and the prescaler are reinitialized if the UG bit is set. Bit 0 CEN: Counter enable 0: Counter disabled 1: Counter enabled CEN is cleared automatically in one-pulse mode, when an update event occurs. Note: External clock and gated mode can work only if the CEN bit has been previously set by software. However trigger mode can set the CEN bit automatically by hardware. 24.4.2 TIM9/TIM12 slave mode control register (TIMx_SMCR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SMS[3] 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Res. Res. Res. Res. Res. Res. Res. Res. MSM rw rw TS[2:0] rw rw Res. rw rw rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 SMS[3]: Slave mode selection - bit 3 Refer to SMS description - bits 2:0 Bits 15:8 Reserved, must be kept at reset value. Bit 7 MSM: Master/Slave mode 0: No action 1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect synchronization between the current timer and its slaves (through TRGO). It is useful in order to synchronize several timers on a single external event. 836/1709 RM0385 Rev 7 0 SMS[2:0] rw RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) Bits 6:4 TS[2:0]: Trigger selection This bitfield selects the trigger input to be used to synchronize the counter. 000: Internal Trigger 0 (ITR0) 001: Internal Trigger 1 (ITR1) 010: Internal Trigger 2 (ITR2) 011: Internal Trigger 3 (ITR3) 100: TI1 Edge Detector (TI1F_ED) 101: Filtered Timer Input 1 (TI1FP1) 110: Filtered Timer Input 2 (TI2FP2) 111: Reserved. See Table 153: TIMx internal trigger connection on page 837 for more details on the meaning of ITRx for each timer. Note: These bits must be changed only when they are not used (e.g. when SMS=’000’) to avoid wrong edge detections at the transition. Bit 3 Reserved, must be kept at reset value. Bits 16, 2, 1, 0 SMS[3:0]: Slave mode selection When external signals are selected the active edge of the trigger signal (TRGI) is linked to the polarity selected on the external input (see Input Control register and Control Register description. 0000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal clock. 0001: Reserved 0010: Reserved 0011: Reserved 0100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter and generates an update of the registers. 0101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of the counter are controlled. 0110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not reset). Only the start of the counter is controlled. 0111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter. 1000: Combined reset + trigger mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter, generates an update of the registers and starts the counter. Other codes: reserved. Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode checks the level of the trigger signal. Note: The clock of the slave timer must be enabled prior to receive events from the master timer, and must not be changed on-the-fly while triggers are received from the master timer. Table 153. TIMx internal trigger connection Slave TIM ITR0 (TS = ‘000’) ITR1 (TS = ‘001’) ITR2 (TS = ‘010’) ITR3 (TS = ‘011’) TIM9 TIM2 TIM3 TIM10_OC TIM11_OC TIM12 TIM4 TIM5 TIM13_OC TIM14_OC RM0385 Rev 7 837/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) 24.4.3 RM0385 TIM9/TIM12 Interrupt enable register (TIMx_DIER) Address offset: 0x0C Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. TIE Res. Res. Res. CC2IE CC1IE UIE rw rw rw rw Bits 15:7 Reserved, must be kept at reset value. Bit 6 TIE: Trigger interrupt enable 0: Trigger interrupt disabled. 1: Trigger interrupt enabled. Bits 5:3 Reserved, must be kept at reset value. Bit 2 CC2IE: Capture/Compare 2 interrupt enable 0: CC2 interrupt disabled. 1: CC2 interrupt enabled. Bit 1 CC1IE: Capture/Compare 1 interrupt enable 0: CC1 interrupt disabled. 1: CC1 interrupt enabled. Bit 0 UIE: Update interrupt enable 0: Update interrupt disabled. 1: Update interrupt enabled. 24.4.4 TIM9/TIM12 status register (TIMx_SR) Address offset: 0x10 Reset value: 0x0000 15 14 13 12 11 Res. Res. Res. Res. Res. 10 rc_w0 Bits 15:11 9 CC2OF CC1OF 8 7 6 5 4 3 2 1 0 Res. Res. TIF Res. Res. Res. CC2IF CC1IF UIF rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 Reserved, must be kept at reset value. Bit 10 CC2OF: Capture/compare 2 overcapture flag refer to CC1OF description Bit 9 CC1OF: Capture/Compare 1 overcapture flag This flag is set by hardware only when the corresponding channel is configured in input capture mode. It is cleared by software by writing it to ‘0’. 0: No overcapture has been detected. 1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was already set Bits 8:7 838/1709 Reserved, must be kept at reset value. RM0385 Rev 7 RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) Bit 6 TIF: Trigger interrupt flag This flag is set by hardware on trigger event (active edge detected on TRGI input when the slave mode controller is enabled in all modes but gated mode. It is set when the counter starts or stops when gated mode is selected. It is cleared by software. 0: No trigger event occurred. 1: Trigger interrupt pending. Bits 5:3 Reserved, must be kept at reset value. Bit 2 CC2IF: Capture/Compare 2 interrupt flag refer to CC1IF description Bit 1 CC1IF: Capture/compare 1 interrupt flag If channel CC1 is configured as output: This flag is set by hardware when the counter matches the compare value. It is cleared by software. 0: No match. 1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register. When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit goes high on the counter overflow. If channel CC1 is configured as input: This bit is set by hardware on a capture. It is cleared by software or by reading the TIMx_CCR1 register. 0: No input capture occurred. 1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected on IC1 which matches the selected polarity). Bit 0 UIF: Update interrupt flag This bit is set by hardware on an update event. It is cleared by software. 0: No update occurred. 1: Update interrupt pending. This bit is set by hardware when the registers are updated: – At overflow and if UDIS=’0’ in the TIMx_CR1 register. – When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register. – When CNT is reinitialized by a trigger event (refer to the synchro control register description), if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register. 24.4.5 TIM9/TIM12 event generation register (TIMx_EGR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. TG Res. Res. Res. CC2G CC1G UG w w w w Bits 15:7 Reserved, must be kept at reset value. Bit 6 TG: Trigger generation This bit is set by software in order to generate an event, it is automatically cleared by hardware. 0: No action 1: The TIF flag is set in the TIMx_SR register. Related interrupt can occur if enabled Bits 5:3 Reserved, must be kept at reset value. RM0385 Rev 7 839/1709 859 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) RM0385 Bit 2 CC2G: Capture/compare 2 generation refer to CC1G description Bit 1 CC1G: Capture/compare 1 generation This bit is set by software to generate an event, it is automatically cleared by hardware. 0: No action 1: A capture/compare event is generated on channel 1: If channel CC1 is configured as output: the CC1IF flag is set, the corresponding interrupt is sent if enabled. If channel CC1 is configured as input: The current counter value is captured in the TIMx_CCR1 register. The CC1IF flag is set, the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was already high. Bit 0 UG: Update generation This bit can be set by software, it is automatically cleared by hardware. 0: No action 1: Re-initializes the counter and generates an update of the registers. The prescaler counter is also cleared and the prescaler ratio is not affected. The counter is cleared. 24.4.6 TIM9/TIM12 capture/compare mode register 1 (TIMx_CCMR1) Address offset: 0x18 Reset value: 0x0000 The channels can be used in input (capture mode) or in output (compare mode). The direction of a channel is defined by configuring the corresponding CCxS bits. All the other bits in this register have different functions in input and output modes. For a given bit, OCxx describes its function when the channel is configured in output mode, ICxx describes its function when the channel is configured in input mode. So you must take care that the same bit can have different meanings for the input stage and the output stage. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. OC2M [3] Res. Res. Res. Res. Res. Res. Res. OC1M [3] Res. Res. rw 15 14 Res. 13 12 OC2M[2:0] rw rw 10 OC2PE OC2FE IC2F[3:0] rw 11 IC2PSC[1:0] rw rw rw 9 8 CC2S[1:0] rw rw rw 7 Res. rw Bits 31:25 Reserved, always read as 0 Bit 24 OC2M[3]: Output Compare 2 mode - bit 3 Refer to OC2M description on bits 14:12 Bits 23:17 Reserved, always read as 0 Bit 16 OC1M[3]: Output Compare 1 mode - bit 3 Refer to OC1M description on bits 6:4 840/1709 5 4 OC1M[2:0] Reserved, must be kept at reset value. RM0385 Rev 7 rw rw 3 2 OC1PE OC1FE IC1F[3:0] Output compare mode Bit 15 6 IC1PSC[1:0] rw rw rw 1 0 CC1S[1:0] rw rw RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14) Bits 14:12 OC2M[2:0]: Output compare 2 mode Refer to OC1M[3:0] for bit description. Bit 11 OC2PE: Output compare 2 preload enable Bit 10 OC2FE: Output compare 2 fast enable Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection This bitfield defines the direction of the channel (input/output) as well as the used input. 00: CC2 channel is configured as output 01: CC2 channel is configured as input, IC2 is mapped on TI2 10: CC2 channel is configured as input, IC2 is mapped on TI1 11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an internal trigger input is selected through the TS bit (TIMx_SMCR register Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER). Bit 7 Reserved, must be kept at reset value. Bits 6:4 OC1M[3:0]: Output compare 1 mode (refer to bit 16 for OC1M[3]) These bits define the behavior of the output reference signal OC1REF from which OC1 is derived. OC1REF is active high whereas the active level of OC1 depends on the CC1P. 0000: Frozen - The comparison between the output compare register TIMx_CCR1 and the counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing base). 0001: Set channel 1 to active level on match. The OC1REF signal is forced high when the TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1). 0010: Set channel 1 to inactive level on match. The OC1REF signal is forced low when the TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1). 0011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1 0100: Force inactive level - OC1REF is forced low 0101: Force active level - OC1REF is forced high 0110: PWM mode 1 - channel 1 is active as long as TIMx_CNT W[6:0] W[6:0] CMP APB bus Register interface WWDG_SR preload 7-bit DownCounter (CNT) ÷ 4096 T6 EWI EWIF Logic = 0x40 ? readback T[6:0] cnt_out pclk WDGA Write to WWDG_CR T[6:0] WWDG_CR wwdg_out_rst wwdg_it ÷ 2WDGTB MS47214V1 28.3.1 Enabling the watchdog When the user option WWDG_SW selects “Software window watchdog”, the watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in the WWDG_CR register, then it cannot be disabled again except by a reset. When the user option WWDG_SW selects “Hardware window watchdog”, the watchdog is always enabled after a reset, it cannot be disabled. 28.3.2 Controlling the downcounter This downcounter is free-running, counting down even if the watchdog is disabled. When the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset. The T[5:0] bits contain the number of increments which represents the time delay before the watchdog produces a reset. The timing varies between a minimum and a maximum value due to the unknown status of the prescaler when writing to the WWDG_CR register (see Figure 301). The Configuration register (WWDG_CFR) contains the high limit of the window: To prevent a reset, the downcounter must be reloaded when its value is lower than the window register value and greater than 0x3F. Figure 301 describes the window watchdog process. Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared). 28.3.3 Advanced watchdog interrupt feature The Early Wakeup Interrupt (EWI) can be used if specific safety operations or data logging must be performed before the actual reset is generated. The EWI interrupt is enabled by setting the EWI bit in the WWDG_CFR register. When the downcounter reaches the value 0x40, an EWI interrupt is generated and the corresponding interrupt service routine (ISR) can be used to trigger specific actions (such as communications or data logging), before resetting the device. RM0385 Rev 7 903/1709 908 System window watchdog (WWDG) RM0385 In some applications, the EWI interrupt can be used to manage a software system check and/or system recovery/graceful degradation, without generating a WWDG reset. In this case, the corresponding interrupt service routine (ISR) should reload the WWDG counter to avoid the WWDG reset, then trigger the required actions. The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register. Note: When the EWI interrupt cannot be served, e.g. due to a system lock in a higher priority task, the WWDG reset will eventually be generated. 28.3.4 How to program the watchdog timeout Use the formula in Figure 301 to calculate the WWDG timeout. Warning: When writing to the WWDG_CR register, always write 1 in the T6 bit to avoid generating an immediate reset. Figure 301. Window watchdog timing diagram CNT DownCounter Refresh not allowed Refresh allowed T[6:0] W[6:0] 0x3F Time Tpclk x 4096 x 2 WDGTB 0x41 0x40 0x3F wwdg_ewit EWIF = 0 wwdg_rst T6 bit MS47266V1 The formula to calculate the timeout value is given by: WDGTB[1:0] t WWDG = t PCLK × 4096 × 2 × ( T [ 5:0 ] + 1 ) 904/1709 RM0385 Rev 7 ( ms ) RM0385 System window watchdog (WWDG) where: tWWDG: WWDG timeout tPCLK: APB clock period measured in ms 4096: value corresponding to internal divider As an example, lets assume APB frequency is equal to 48 MHz, WDGTB1:0] is set to 3 and T[5:0] is set to 63: 3 t WWDG = ( 1 ⁄ 48000 ) × 4096 × 2 × ( 63 + 1 ) = 43.69ms Refer to the datasheet for the minimum and maximum values of the tWWDG. 28.3.5 Debug mode When the microcontroller enters debug mode (processor halted), the WWDG counter either continues to work normally or stops, depending on the configuration bit in DBG module. For more details refer to Section 40.16.2: Debug support for timers, watchdog, bxCAN and I2C. RM0385 Rev 7 905/1709 908 System window watchdog (WWDG) 28.4 RM0385 WWDG registers Refer to Section 1.1 on page 62 for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). 28.4.1 Control register (WWDG_CR) Address offset: 0x000 Reset value: 0x0000 007F 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 6 5 4 3 2 1 0 rw rw rw 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. WDGA T[6:0] rs rw rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bit 7 WDGA: Activation bit This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset. 0: Watchdog disabled 1: Watchdog enabled Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB) These bits contain the value of the watchdog counter, decremented every (4096 x 2WDGTB1:0]) PCLK cycles. A reset is produced when it is decremented from 0x40 to 0x3F (T6 becomes cleared). 28.4.2 Configuration register (WWDG_CFR) Address offset: 0x004 Reset value: 0x0000 007F 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 8 7 6 5 4 3 2 1 0 rw rw rw 15 14 13 12 11 10 9 Res. Res. Res. Res. Res. Res. EWI rs WDGTB[1:0] rw rw W[6:0] rw rw rw rw Bits 31:10 Reserved, must be kept at reset value. Bit 9 EWI: Early wakeup interrupt When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is only cleared by hardware after a reset. 906/1709 RM0385 Rev 7 RM0385 System window watchdog (WWDG) Bits 8:7 WDGTB[1:0]: Timer base The time base of the prescaler can be modified as follows: 00: CK Counter Clock (PCLK div 4096) div 1 01: CK Counter Clock (PCLK div 4096) div 2 10: CK Counter Clock (PCLK div 4096) div 4 11: CK Counter Clock (PCLK div 4096) div 8 Bits 6:0 W[6:0]: 7-bit window value These bits contain the window value to be compared with the downcounter. 28.4.3 Status register (WWDG_SR) Address offset: 0x008 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EWIF rc_w0 Bits 31:1 Reserved, must be kept at reset value. Bit 0 EWIF: Early wakeup interrupt flag This bit is set by hardware when the counter has reached the value 0x40. It must be cleared by software by writing ‘0’. Writing ‘1’ has no effect. This bit is also set if the interrupt is not enabled. RM0385 Rev 7 907/1709 908 System window watchdog (WWDG) 28.4.4 RM0385 WWDG register map The following table gives the WWDG register map and reset values. 0 1 1 1 1 1 Res. Res. Res. Res. 1 1 W[6:0] Reset value 0 Refer to Section 2.2.2: Memory map and register boundary addresses for the register boundary addresses. 908/1709 1 Res. 0 1 EWIF Res. 0 Res. 1 WDGTB0 1 Res. 1 WDGTB1 1 Res. 1 EWI Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. WWDG_SR Res. 0x008 Res. Reset value T[6:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. WWDG_CFR Res. 0x004 0 Res. Reset value WDGA Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. WWDG_CR Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x000 Register Res. Offset Res. Table 166. WWDG register map and reset values RM0385 Rev 7 RM0385 Real-time clock (RTC) 29 Real-time clock (RTC) 29.1 Introduction The RTC provides an automatic wakeup to manage all low-power modes. The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a timeof-day clock/calendar with programmable alarm interrupts. The RTC includes also a periodic programmable wakeup flag with interrupt capability. Two 32-bit registers contain the seconds, minutes, hours (12- or 24-hour format), day (day of week), date (day of month), month, and year, expressed in binary coded decimal format (BCD). The sub-seconds value is also available in binary format. Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed automatically. Daylight saving time compensation can also be performed. Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date. A digital calibration feature is available to compensate for any deviation in crystal oscillator accuracy. After Backup domain reset, all RTC registers are protected against possible parasitic write accesses. As long as the supply voltage remains in the operating range, the RTC never stops, regardless of the device status (Run mode, low-power mode or under reset). RM0385 Rev 7 909/1709 953 Real-time clock (RTC) 29.2 RM0385 RTC main features The RTC unit main features are the following (see Figure 302: RTC block diagram): • Calendar with subseconds, seconds, minutes, hours (12 or 24 format), day (day of week), date (day of month), month, and year. • Daylight saving compensation programmable by software. • Programmable alarm with interrupt function. The alarm can be triggered by any combination of the calendar fields. • Automatic wakeup unit generating a periodic flag that triggers an automatic wakeup interrupt. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. • Accurate synchronization with an external clock using the subsecond shift feature. • Digital calibration circuit (periodic counter correction): 0.95 ppm accuracy, obtained in a calibration window of several seconds • Time-stamp function for event saving • Tamper detection event with configurable filter and internal pull-up • Maskable interrupts/events: • 910/1709 – Alarm A – Alarm B – Wakeup interrupt – Time-stamp – Tamper detection 32 backup registers. RM0385 Rev 7 RM0385 Real-time clock (RTC) 29.3 RTC functional description 29.3.1 RTC block diagram Figure 302. RTC block diagram RTC_TAMP3 Backup registers and RTC tamper control register RTC_TAMP2 RTC_TAMP1 TAMPxF Time stamp registers RTC_TS RTC_REFIN TSF LSE (32.768 Hz) Divided HSE RTCCLK LSI RTC_CALR Smooth calibration RTC_PRER Asynchronous 7-bit prescaler (default = 128) ck_apre (default 256 Hz RTC_PRER Synchronous 15-bit prescaler (default = 256) ck_spre (default 1 Hz) Calendar Shadow registers RTC_TR, RTC_DR Shadow register RTC_SSR WUCKSEL[1:0] Prescaler 2, 4, 8, 16 RTC_CALIB RTC_ALARM Output control RTC_OUT RTC_WUTR WUTF 16-bit wakeup auto reload timer OSEL[1:0] Alarm A RTC_ALRMAR RTC_ALRMASSR = ALRAF Alarm B RTC_ALRMBR RTC_ALRMBSSR = ALRBF MSv48341V1 RM0385 Rev 7 911/1709 953 Real-time clock (RTC) RM0385 The RTC includes: • Two alarms • Three tamper events from I/Os – One timestamp event from I/O • Tamper event detection can generate a timestamp event • Timestamp can be generated when a switch to VBAT occurs • 32 x 32-bit backup registers – • • 29.3.2 Tamper detection erases the backup registers. • The backup registers (RTC_BKPxR) are implemented in the RTC domain that remains powered-on by VBAT when the VDD power is switched off. Output functions: RTC_OUT which selects one of the following two outputs: – RTC_CALIB: 512 Hz or 1Hz clock output (with an LSE frequency of 32.768 kHz). This output is enabled by setting the COE bit in the RTC_CR register. – RTC_ALARM: This output is enabled by configuring the OSEL[1:0] bits in the RTC_CR register which select the Alarm A, Alarm B or Wakeup outputs. Input functions: – RTC_TS: timestamp event – RTC_TAMP1: tamper1 event detection – RTC_TAMP2: tamper2 event detection – RTC_TAMP3: tamper3 event detection – RTC_REFIN: 50 or 60 Hz reference clock input GPIOs controlled by the RTC RTC_OUT, RTC_TS and RTC_TAMP1 are mapped on the same pin (PC13). PC13 pin configuration is controlled by the RTC, whatever the PC13 GPIO configuration, except for the RTC_ALARM output open-drain mode. The RTC functions mapped on PC13 are available in all low-power modes and in VBAT mode. The output mechanism follows the priority order shown in Table 167. Table 167. RTC pin PC13 configuration(1) OSEL[1:0] bits PC13 Pin configuration (RTC_ALARM and function output enable) TSE bit COE bit (RTC_CALIB output enable) RTC_ALARM _TYPE bit TAMP1E bit (RTC_TAMP1 input enable) (RTC_TS input enable) TSINSEL bits RTC_ALARM output OD 01 or 10 or 11 Don’t care 0 Don’t care Don’t care Don’t care RTC_ALARM output PP 01 or 10 or 11 Don’t care 1 Don’t care Don’t care Don’t care RTC_CALIB output PP 00 1 Don’t care Don’t care Don’t care Don’t care 912/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) Table 167. RTC pin PC13 configuration(1) (continued) OSEL[1:0] bits PC13 Pin configuration (RTC_ALARM and function output enable) RTC_TAMP1 input floating RTC_TS and RTC_TAMP1 input floating RTC_TS input floating Wakeup pin or Standard GPIO COE bit (RTC_CALIB output enable) 00 0 00 1 01 or 10 or 11 0 00 0 00 1 01 or 10 or 11 0 00 0 00 1 01 or 10 or 11 0 00 0 TSE bit RTC_ALARM _TYPE bit TAMP1E bit (RTC_TAMP1 input enable) (RTC_TS input enable) TSINSEL bits Don’t care 1 0 Don’t care Don’t care 1 1 00 Don’t care 0 1 00 Don’t care 0 0 Don’t care 1. OD: open drain; PP: push-pull. RTC_TAMP2 and RTC_TS are mapped on the same pin (PI8). PI8 configuration is controlled by the RTC, whatever the PI8 GPIO configuration. The RTC functions mapped on PI8 are available in all low-power modes and in VBAT mode. The output mechanism follows the priority order shown in Table 168. Table 168. RTC pin PI8 configuration TAMP2E bit (RTC_TAMP2 input enable) TSE bit TSINSEL bit (RTC_TS input enable) (Timestamp pin selection) RTC_TAMP2 input floating 1 0 Don’t care RTC_TS and RTC_TAMP2 input floating 1 1 01 RTC_TS input floating 0 1 01 Wakeup pin or Standard GPIO 0 0 Don’t care PI8 pin configuration and function RTC_TAMP3 and RTC_TS are mapped on the same pin (PC1). PC1 configuration is controlled by the RTC, whatever the PC1 GPIO configuration. The RTC functions mapped on PC1 are available in all low-power modes, but are not available in VBAT mode. RM0385 Rev 7 913/1709 953 Real-time clock (RTC) RM0385 Table 169. RTC pin PC2 configuration TAMP2E bit (RTC_TAMP3 input enable) TSE bit TSINSEL bit (RTC_TS input enable) (Timestamp pin selection) RTC_TAMP3 input floating 1 0 Don’t care RTC_TS and RTC_TAMP3 input floating 1 1 10 or 11 RTC_TS input floating 0 1 01 Wakeup pin or Standard GPIO 0 0 Don’t care PC2 pin configuration and function RTC_REFIN is mapped on PB15. PB15 must be configured in alternate function mode to allow RTC_REFIN function. RTC_REFIN is not available in VBAT and in Standby mode. The table below summarizes the RTC pins and functions capabilities in all modes. Table 170. RTC functions over modes Pin 29.3.3 RTC functions Functional in all lowpower modes except Standby modes Functional in Standby mode Functional in VBAT mode PC13 RTC_TAMP1 RTC_TS RTC_OUT YES YES YES PI8 RTC_TAMP2 RTC_TS YES YES YES PC1 RTC_TAMP3 RTC_TS YES YES NO PB15 RTC_REFIN YES NO NO Clock and prescalers The RTC clock source (RTCCLK) is selected through the clock controller among the LSE clock, the LSI oscillator clock, and the HSE clock. For more information on the RTC clock source configuration, refer to Section 5: Reset and clock control (RCC). A programmable prescaler stage generates a 1 Hz clock which is used to update the calendar. To minimize power consumption, the prescaler is split into 2 programmable prescalers (see Figure 302: RTC block diagram): Note: 914/1709 • A 7-bit asynchronous prescaler configured through the PREDIV_A bits of the RTC_PRER register. • A 15-bit synchronous prescaler configured through the PREDIV_S bits of the RTC_PRER register. When both prescalers are used, it is recommended to configure the asynchronous prescaler to a high value to minimize consumption. RM0385 Rev 7 RM0385 Real-time clock (RTC) The asynchronous prescaler division factor is set to 128, and the synchronous division factor to 256, to obtain an internal clock frequency of 1 Hz (ck_spre) with an LSE frequency of 32.768 kHz. The minimum division factor is 1 and the maximum division factor is 222. This corresponds to a maximum input frequency of around 4 MHz. fck_apre is given by the following formula: f RTCCLK f CK_APRE = --------------------------------------PREDIV_A + 1 The ck_apre clock is used to clock the binary RTC_SSR subseconds downcounter. When it reaches 0, RTC_SSR is reloaded with the content of PREDIV_S. fck_spre is given by the following formula: f RTCCLK f CK_SPRE = ----------------------------------------------------------------------------------------------( PREDIV_S + 1 ) × ( PREDIV_A + 1 ) The ck_spre clock can be used either to update the calendar or as timebase for the 16-bit wakeup auto-reload timer. To obtain short timeout periods, the 16-bit wakeup auto-reload timer can also run with the RTCCLK divided by the programmable 4-bit asynchronous prescaler (see Section 29.3.6: Periodic auto-wakeup for details). 29.3.4 Real-time clock and calendar The RTC calendar time and date registers are accessed through shadow registers which are synchronized with PCLK (APB clock). They can also be accessed directly in order to avoid waiting for the synchronization duration. • RTC_SSR for the subseconds • RTC_TR for the time • RTC_DR for the date Every two RTCCLK periods, the current calendar value is copied into the shadow registers, and the RSF bit of RTC_ISR register is set (see Section 29.6.4: RTC initialization and status register (RTC_ISR)). The copy is not performed in Stop and Standby mode. When exiting these modes, the shadow registers are updated after up to 2 RTCCLK periods. When the application reads the calendar registers, it accesses the content of the shadow registers. It is possible to make a direct access to the calendar registers by setting the BYPSHAD control bit in the RTC_CR register. By default, this bit is cleared, and the user accesses the shadow registers. When reading the RTC_SSR, RTC_TR or RTC_DR registers in BYPSHAD=0 mode, the frequency of the APB clock (fAPB) must be at least 7 times the frequency of the RTC clock (fRTCCLK). The shadow registers are reset by system reset. 29.3.5 Programmable alarms The RTC unit provides programmable alarm: Alarm A and Alarm B. The description below is given for Alarm A, but can be translated in the same way for Alarm B. RM0385 Rev 7 915/1709 953 Real-time clock (RTC) RM0385 The programmable alarm function is enabled through the ALRAE bit in the RTC_CR register. The ALRAF is set to 1 if the calendar subseconds, seconds, minutes, hours, date or day match the values programmed in the alarm registers RTC_ALRMASSR and RTC_ALRMAR. Each calendar field can be independently selected through the MSKx bits of the RTC_ALRMAR register, and through the MASKSSx bits of the RTC_ALRMASSR register. The alarm interrupt is enabled through the ALRAIE bit in the RTC_CR register. Caution: If the seconds field is selected (MSK1 bit reset in RTC_ALRMAR), the synchronous prescaler division factor set in the RTC_PRER register must be at least 3 to ensure correct behavior. Alarm A and Alarm B (if enabled by bits OSEL[1:0] in RTC_CR register) can be routed to the RTC_ALARM output. RTC_ALARM output polarity can be configured through bit POL the RTC_CR register. 29.3.6 Periodic auto-wakeup The periodic wakeup flag is generated by a 16-bit programmable auto-reload down-counter. The wakeup timer range can be extended to 17 bits. The wakeup function is enabled through the WUTE bit in the RTC_CR register. The wakeup timer clock input can be: • RTC clock (RTCCLK) divided by 2, 4, 8, or 16. When RTCCLK is LSE(32.768kHz), this allows to configure the wakeup interrupt period from 122 µs to 32 s, with a resolution down to 61 µs. • ck_spre (usually 1 Hz internal clock) When ck_spre frequency is 1Hz, this allows to achieve a wakeup time from 1 s to around 36 hours with one-second resolution. This large programmable time range is divided in 2 parts: – from 1s to 18 hours when WUCKSEL [2:1] = 10 – and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is added to the 16-bit counter current value.When the initialization sequence is complete (see Programming the wakeup timer on page 918), the timer starts counting down.When the wakeup function is enabled, the down-counting remains active in low-power modes. In addition, when it reaches 0, the WUTF flag is set in the RTC_ISR register, and the wakeup counter is automatically reloaded with its reload value (RTC_WUTR register value). The WUTF flag must then be cleared by software. When the periodic wakeup interrupt is enabled by setting the WUTIE bit in the RTC_CR register, it can exit the device from low-power modes. The periodic wakeup flag can be routed to the RTC_ALARM output provided it has been enabled through bits OSEL[1:0] of RTC_CR register. RTC_ALARM output polarity can be configured through the POL bit in the RTC_CR register. System reset, as well as low-power modes (Sleep, Stop and Standby) have no influence on the wakeup timer. 916/1709 RM0385 Rev 7 RM0385 29.3.7 Real-time clock (RTC) RTC initialization and configuration RTC register access The RTC registers are 32-bit registers. The APB interface introduces 2 wait-states in RTC register accesses except on read accesses to calendar shadow registers when BYPSHAD=0. RTC register write protection After system reset, the RTC registers are protected against parasitic write access by clearing the DBP bit in the PWR_CR1 register (refer to the power control section). DBP bit must be set in order to enable RTC registers write access. After Backup domain reset, all the RTC registers are write-protected. Writing to the RTC registers is enabled by writing a key into the Write Protection register, RTC_WPR. The following steps are required to unlock the write protection on all the RTC registers except for RTC_TAMPCR, RTC_BKPxR, RTC_OR and RTC_ISR[13:8]. 1. Write ‘0xCA’ into the RTC_WPR register. 2. Write ‘0x53’ into the RTC_WPR register. Writing a wrong key reactivates the write protection. The protection mechanism is not affected by system reset. Calendar initialization and configuration To program the initial time and date calendar values, including the time format and the prescaler configuration, the following sequence is required: 1. Set INIT bit to 1 in the RTC_ISR register to enter initialization mode. In this mode, the calendar counter is stopped and its value can be updated. 2. Poll INITF bit of in the RTC_ISR register. The initialization phase mode is entered when INITF is set to 1. It takes around 2 RTCCLK clock cycles (due to clock synchronization). 3. To generate a 1 Hz clock for the calendar counter, program both the prescaler factors in RTC_PRER register. 4. Load the initial time and date values in the shadow registers (RTC_TR and RTC_DR), and configure the time format (12 or 24 hours) through the FMT bit in the RTC_CR register. 5. Exit the initialization mode by clearing the INIT bit. The actual calendar counter value is then automatically loaded and the counting restarts after 4 RTCCLK clock cycles. When the initialization sequence is complete, the calendar starts counting. Note: After a system reset, the application can read the INITS flag in the RTC_ISR register to check if the calendar has been initialized or not. If this flag equals 0, the calendar has not been initialized since the year field is set at its Backup domain reset default value (0x00). To read the calendar after initialization, the software must first check that the RSF flag is set in the RTC_ISR register. RM0385 Rev 7 917/1709 953 Real-time clock (RTC) RM0385 Daylight saving time The daylight saving time management is performed through bits SUB1H, ADD1H, and BKP of the RTC_CR register. Using SUB1H or ADD1H, the software can subtract or add one hour to the calendar in one single operation without going through the initialization procedure. In addition, the software can use the BKP bit to memorize this operation. Programming the alarm A similar procedure must be followed to program or update the programmable alarms. The procedure below is given for Alarm A but can be translated in the same way for Alarm B. Note: 1. Clear ALRAE in RTC_CR to disable Alarm A. 2. Program the Alarm A registers (RTC_ALRMASSR/RTC_ALRMAR). 3. Set ALRAE in the RTC_CR register to enable Alarm A again. Each change of the RTC_CR register is taken into account after around 2 RTCCLK clock cycles due to clock synchronization. Programming the wakeup timer The following sequence is required to configure or change the wakeup timer auto-reload value (WUT[15:0] in RTC_WUTR): 29.3.8 1. Clear WUTE in RTC_CR to disable the wakeup timer. 2. Poll WUTWF until it is set in RTC_ISR to make sure the access to wakeup auto-reload counter and to WUCKSEL[2:0] bits is allowed. It takes around 2 RTCCLK clock cycles (due to clock synchronization). 3. Program the wakeup auto-reload value WUT[15:0], and the wakeup clock selection (WUCKSEL[2:0] bits in RTC_CR). Set WUTE in RTC_CR to enable the timer again. The wakeup timer restarts down-counting. The WUTWF bit is cleared up to 2 RTCCLK clock cycles after WUTE is cleared, due to clock synchronization. Reading the calendar When BYPSHAD control bit is cleared in the RTC_CR register To read the RTC calendar registers (RTC_SSR, RTC_TR and RTC_DR) properly, the APB clock frequency (fPCLK) must be equal to or greater than seven times the RTC clock frequency (fRTCCLK). This ensures a secure behavior of the synchronization mechanism. If the APB clock frequency is less than seven times the RTC clock frequency, the software must read the calendar time and date registers twice. If the second read of the RTC_TR gives the same result as the first read, this ensures that the data is correct. Otherwise a third read access must be done. In any case the APB clock frequency must never be lower than the RTC clock frequency. The RSF bit is set in RTC_ISR register each time the calendar registers are copied into the RTC_SSR, RTC_TR and RTC_DR shadow registers. The copy is performed every two RTCCLK cycles. To ensure consistency between the 3 values, reading either RTC_SSR or RTC_TR locks the values in the higher-order calendar shadow registers until RTC_DR is read. In case the software makes read accesses to the calendar in a time interval smaller than 2 RTCCLK periods: RSF must be cleared by software after the first calendar read, and 918/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) then the software must wait until RSF is set before reading again the RTC_SSR, RTC_TR and RTC_DR registers. After waking up from low-power mode (Stop or Standby), RSF must be cleared by software. The software must then wait until it is set again before reading the RTC_SSR, RTC_TR and RTC_DR registers. The RSF bit must be cleared after wakeup and not before entering low-power mode. After a system reset, the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. Indeed, a system reset resets the shadow registers to their default values. After an initialization (refer to Calendar initialization and configuration on page 917): the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. After synchronization (refer to Section 29.3.10: RTC synchronization): the software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers. When the BYPSHAD control bit is set in the RTC_CR register (bypass shadow registers) Reading the calendar registers gives the values from the calendar counters directly, thus eliminating the need to wait for the RSF bit to be set. This is especially useful after exiting from low-power modes (STOP or Standby), since the shadow registers are not updated during these modes. When the BYPSHAD bit is set to 1, the results of the different registers might not be coherent with each other if an RTCCLK edge occurs between two read accesses to the registers. Additionally, the value of one of the registers may be incorrect if an RTCCLK edge occurs during the read operation. The software must read all the registers twice, and then compare the results to confirm that the data is coherent and correct. Alternatively, the software can just compare the two results of the least-significant calendar register. Note: While BYPSHAD=1, instructions which read the calendar registers require one extra APB cycle to complete. 29.3.9 Resetting the RTC The calendar shadow registers (RTC_SSR, RTC_TR and RTC_DR) and some bits of the RTC status register (RTC_ISR) are reset to their default values by all available system reset sources. On the contrary, the following registers are reset to their default values by a Backup domain reset and are not affected by a system reset: the RTC current calendar registers, the RTC control register (RTC_CR), the prescaler register (RTC_PRER), the RTC calibration register (RTC_CALR), the RTC shift register (RTC_SHIFTR), the RTC timestamp registers (RTC_TSSSR, RTC_TSTR and RTC_TSDR), the RTC tamper configuration register (RTC_TAMPCR), the RTC backup registers (RTC_BKPxR), the wakeup timer register (RTC_WUTR), the Alarm A and Alarm B registers (RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR), and the Option register (RTC_OR). In addition, when it is clocked by the LSE, the RTC keeps on running under system reset if the reset source is different from the Backup domain reset one (refer to the RTC clock section of the Reset and clock controller for details on the list of RTC clock sources not RM0385 Rev 7 919/1709 953 Real-time clock (RTC) RM0385 affected by system reset). When a Backup domain reset occurs, the RTC is stopped and all the RTC registers are set to their reset values. 29.3.10 RTC synchronization The RTC can be synchronized to a remote clock with a high degree of precision. After reading the sub-second field (RTC_SSR or RTC_TSSSR), a calculation can be made of the precise offset between the times being maintained by the remote clock and the RTC. The RTC can then be adjusted to eliminate this offset by “shifting” its clock by a fraction of a second using RTC_SHIFTR. RTC_SSR contains the value of the synchronous prescaler counter. This allows one to calculate the exact time being maintained by the RTC down to a resolution of 1 / (PREDIV_S + 1) seconds. As a consequence, the resolution can be improved by increasing the synchronous prescaler value (PREDIV_S[14:0]. The maximum resolution allowed (30.52 μs with a 32768 Hz clock) is obtained with PREDIV_S set to 0x7FFF. However, increasing PREDIV_S means that PREDIV_A must be decreased in order to maintain the synchronous prescaler output at 1 Hz. In this way, the frequency of the asynchronous prescaler output increases, which may increase the RTC dynamic consumption. The RTC can be finely adjusted using the RTC shift control register (RTC_SHIFTR). Writing to RTC_SHIFTR can shift (either delay or advance) the clock by up to a second with a resolution of 1 / (PREDIV_S + 1) seconds. The shift operation consists of adding the SUBFS[14:0] value to the synchronous prescaler counter SS[15:0]: this will delay the clock. If at the same time the ADD1S bit is set, this results in adding one second and at the same time subtracting a fraction of second, so this will advance the clock. Caution: Before initiating a shift operation, the user must check that SS[15] = 0 in order to ensure that no overflow will occur. As soon as a shift operation is initiated by a write to the RTC_SHIFTR register, the SHPF flag is set by hardware to indicate that a shift operation is pending. This bit is cleared by hardware as soon as the shift operation has completed. Caution: This synchronization feature is not compatible with the reference clock detection feature: firmware must not write to RTC_SHIFTR when REFCKON=1. 29.3.11 RTC reference clock detection The update of the RTC calendar can be synchronized to a reference clock, RTC_REFIN, which is usually the mains frequency (50 or 60 Hz). The precision of the RTC_REFIN reference clock should be higher than the 32.768 kHz LSE clock. When the RTC_REFIN detection is enabled (REFCKON bit of RTC_CR set to 1), the calendar is still clocked by the LSE, and RTC_REFIN is used to compensate for the imprecision of the calendar update frequency (1 Hz). Each 1 Hz clock edge is compared to the nearest RTC_REFIN clock edge (if one is found within a given time window). In most cases, the two clock edges are properly aligned. When the 1 Hz clock becomes misaligned due to the imprecision of the LSE clock, the RTC shifts the 1 Hz clock a bit so that future 1 Hz clock edges are aligned. Thanks to this mechanism, the calendar becomes as precise as the reference clock. The RTC detects if the reference clock source is present by using the 256 Hz clock (ck_apre) generated from the 32.768 kHz quartz. The detection is performed during a time 920/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) window around each of the calendar updates (every 1 s). The window equals 7 ck_apre periods when detecting the first reference clock edge. A smaller window of 3 ck_apre periods is used for subsequent calendar updates. Each time the reference clock is detected in the window, the synchronous prescaler which outputs the ck_spre clock is forced to reload. This has no effect when the reference clock and the 1 Hz clock are aligned because the prescaler is being reloaded at the same moment. When the clocks are not aligned, the reload shifts future 1 Hz clock edges a little for them to be aligned with the reference clock. If the reference clock halts (no reference clock edge occurred during the 3 ck_apre window), the calendar is updated continuously based solely on the LSE clock. The RTC then waits for the reference clock using a large 7 ck_apre period detection window centered on the ck_spre edge. When the RTC_REFIN detection is enabled, PREDIV_A and PREDIV_S must be set to their default values: • PREDIV_A = 0x007F • PREVID_S = 0x00FF Note: RTC_REFIN clock detection is not available in Standby mode. 29.3.12 RTC smooth digital calibration The RTC frequency can be digitally calibrated with a resolution of about 0.954 ppm with a range from -487.1 ppm to +488.5 ppm. The correction of the frequency is performed using series of small adjustments (adding and/or subtracting individual RTCCLK pulses). These adjustments are fairly well distributed so that the RTC is well calibrated even when observed over short durations of time. The smooth digital calibration is performed during a cycle of about 220 RTCCLK pulses, or 32 seconds when the input frequency is 32768 Hz. This cycle is maintained by a 20-bit counter, cal_cnt[19:0], clocked by RTCCLK. The smooth calibration register (RTC_CALR) specifies the number of RTCCLK clock cycles to be masked during the 32-second cycle: • Setting the bit CALM[0] to 1 causes exactly one pulse to be masked during the 32- second cycle. Note: • Setting CALM[1] to 1 causes two additional cycles to be masked • Setting CALM[2] to 1 causes four additional cycles to be masked • and so on up to CALM[8] set to 1 which causes 256 clocks to be masked. CALM[8:0] (RTC_CALR) specifies the number of RTCCLK pulses to be masked during the 32-second cycle. Setting the bit CALM[0] to ‘1’ causes exactly one pulse to be masked during the 32-second cycle at the moment when cal_cnt[19:0] is 0x80000; CALM[1]=1 causes two other cycles to be masked (when cal_cnt is 0x40000 and 0xC0000); CALM[2]=1 causes four other cycles to be masked (cal_cnt = 0x20000/0x60000/0xA0000/ 0xE0000); and so on up to CALM[8]=1 which causes 256 clocks to be masked (cal_cnt = 0xXX800). While CALM allows the RTC frequency to be reduced by up to 487.1 ppm with fine resolution, the bit CALP can be used to increase the frequency by 488.5 ppm. Setting CALP to ‘1’ effectively inserts an extra RTCCLK pulse every 211 RTCCLK cycles, which means that 512 clocks are added during every 32-second cycle. RM0385 Rev 7 921/1709 953 Real-time clock (RTC) RM0385 Using CALM together with CALP, an offset ranging from -511 to +512 RTCCLK cycles can be added during the 32-second cycle, which translates to a calibration range of -487.1 ppm to +488.5 ppm with a resolution of about 0.954 ppm. The formula to calculate the effective calibrated frequency (FCAL) given the input frequency (FRTCCLK) is as follows: FCAL = FRTCCLK x [1 + (CALP x 512 - CALM) / (220 + CALM - CALP x 512)] Calibration when PREDIV_A<3 The CALP bit can not be set to 1 when the asynchronous prescaler value (PREDIV_A bits in RTC_PRER register) is less than 3. If CALP was already set to 1 and PREDIV_A bits are set to a value less than 3, CALP is ignored and the calibration operates as if CALP was equal to 0. To perform a calibration with PREDIV_A less than 3, the synchronous prescaler value (PREDIV_S) should be reduced so that each second is accelerated by 8 RTCCLK clock cycles, which is equivalent to adding 256 clock cycles every 32 seconds. As a result, between 255 and 256 clock pulses (corresponding to a calibration range from 243.3 to 244.1 ppm) can effectively be added during each 32-second cycle using only the CALM bits. With a nominal RTCCLK frequency of 32768 Hz, when PREDIV_A equals 1 (division factor of 2), PREDIV_S should be set to 16379 rather than 16383 (4 less). The only other interesting case is when PREDIV_A equals 0, PREDIV_S should be set to 32759 rather than 32767 (8 less). If PREDIV_S is reduced in this way, the formula given the effective frequency of the calibrated input clock is as follows: FCAL = FRTCCLK x [1 + (256 - CALM) / (220 + CALM - 256)] In this case, CALM[7:0] equals 0x100 (the midpoint of the CALM range) is the correct setting if RTCCLK is exactly 32768.00 Hz. Verifying the RTC calibration RTC precision is ensured by measuring the precise frequency of RTCCLK and calculating the correct CALM value and CALP values. An optional 1 Hz output is provided to allow applications to measure and verify the RTC precision. Measuring the precise frequency of the RTC over a limited interval can result in a measurement error of up to 2 RTCCLK clock cycles over the measurement period, depending on how the digital calibration cycle is aligned with the measurement period. However, this measurement error can be eliminated if the measurement period is the same length as the calibration cycle period. In this case, the only error observed is the error due to the resolution of the digital calibration. • By default, the calibration cycle period is 32 seconds. Using this mode and measuring the accuracy of the 1 Hz output over exactly 32 seconds guarantees that the measure is within 0.477 ppm (0.5 RTCCLK cycles over 32 seconds, due to the limitation of the calibration resolution). • CALW16 bit of the RTC_CALR register can be set to 1 to force a 16- second calibration cycle period. In this case, the RTC precision can be measured during 16 seconds with a maximum error of 0.954 ppm (0.5 RTCCLK cycles over 16 seconds). However, since the calibration 922/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) resolution is reduced, the long term RTC precision is also reduced to 0.954 ppm: CALM[0] bit is stuck at 0 when CALW16 is set to 1. • CALW8 bit of the RTC_CALR register can be set to 1 to force a 8- second calibration cycle period. In this case, the RTC precision can be measured during 8 seconds with a maximum error of 1.907 ppm (0.5 RTCCLK cycles over 8s). The long term RTC precision is also reduced to 1.907 ppm: CALM[1:0] bits are stuck at 00 when CALW8 is set to 1. Re-calibration on-the-fly The calibration register (RTC_CALR) can be updated on-the-fly while RTC_ISR/INITF=0, by using the follow process: 29.3.13 1. Poll the RTC_ISR/RECALPF (re-calibration pending flag). 2. If it is set to 0, write a new value to RTC_CALR, if necessary. RECALPF is then automatically set to 1 3. Within three ck_apre cycles after the write operation to RTC_CALR, the new calibration settings take effect. Time-stamp function Time-stamp is enabled by setting the TSE or ITSE bits of RTC_CR register to 1. When TSE is set: The calendar is saved in the time-stamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR) when a time-stamp event is detected on the RTC_TS pin. When ITSE is set: The calendar is saved in the time-stamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR) when an internal time-stamp event is detected. The internal timestamp event is generated by the switch to the VBAT supply. When a time-stamp event occurs, due to internal or external event, the time-stamp flag bit (TSF) in RTC_ISR register is set. In case the event is internal, the ITSF flag is also set in RTC_ISR register. By setting the TSIE bit in the RTC_CR register, an interrupt is generated when a time-stamp event occurs. If a new time-stamp event is detected while the time-stamp flag (TSF) is already set, the time-stamp overflow flag (TSOVF) flag is set and the time-stamp registers (RTC_TSTR and RTC_TSDR) maintain the results of the previous event. Note: TSF is set 2 ck_apre cycles after the time-stamp event occurs due to synchronization process. There is no delay in the setting of TSOVF. This means that if two time-stamp events are close together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is recommended to poll TSOVF only after TSF has been set. Caution: If a time-stamp event occurs immediately after the TSF bit is supposed to be cleared, then both TSF and TSOVF bits are set.To avoid masking a time-stamp event occurring at the same moment, the application must not write ‘0’ into TSF bit unless it has already read it to ‘1’. RM0385 Rev 7 923/1709 953 Real-time clock (RTC) RM0385 Optionally, a tamper event can cause a time-stamp to be recorded. See the description of the TAMPTS control bit in Section 29.6.16: RTC tamper configuration register (RTC_TAMPCR). 29.3.14 Tamper detection The RTC_TAMPx input events can be configured either for edge detection, or for level detection with filtering. The tamper detection can be configured for the following purposes: • erase the RTC backup registers (default configuration) • generate an interrupt, capable to wakeup from Stop and Standby modes • generate a hardware trigger for the low-power timers RTC backup registers The backup registers (RTC_BKPxR) are not reset by system reset or when the device wakes up from Standby mode. The backup registers are reset when a tamper detection event occurs (see Section 29.6.20: RTC backup registers (RTC_BKPxR) and Tamper detection initialization on page 924) except if the TAMPxNOERASE bit is set, or if TAMPxMF is set in the RTC_TAMPCR register. Tamper detection initialization Each input can be enabled by setting the corresponding TAMPxE bits to 1 in the RTC_TAMPCR register. Each RTC_TAMPx tamper detection input is associated with a flag TAMPxF in the RTC_ISR register. When TAMPxMF is cleared: The TAMPxF flag is asserted after the tamper event on the pin, with the latency provided below: • 3 ck_apre cycles when TAMPFLT differs from 0x0 (Level detection with filtering) • 3 ck_apre cycles when TAMPTS=1 (Timestamp on tamper event) • No latency when TAMPFLT=0x0 (Edge detection) and TAMPTS=0 A new tamper occurring on the same pin during this period and as long as TAMPxF is set cannot be detected. When TAMPxMF is set: A new tamper occurring on the same pin cannot be detected during the latency described above and 2.5 ck_rtc additional cycles. By setting the TAMPIE bit in the RTC_TAMPCR register, an interrupt is generated when a tamper detection event occurs (when TAMPxF is set). Setting TAMPIE is not allowed when one or more TAMPxMF is set. When TAMPIE is cleared, each tamper pin event interrupt can be individually enabled by setting the corresponding TAMPxIE bit in the RTC_TAMPCR register. Setting TAMPxIE is not allowed when the corresponding TAMPxMF is set. 924/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) Trigger output generation on tamper event The tamper event detection can be used as trigger input by the low-power timers. When TAMPxMF bit in cleared in RTC_TAMPCR register, the TAMPxF flag must be cleared by software in order to allow a new tamper detection on the same pin. When TAMPxMF bit is set, the TAMPxF flag is masked, and kept cleared in RTC_ISR register. This configuration allows to trig automatically the low-power timers in Stop mode, without requiring the system wakeup to perform the TAMPxF clearing. In this case, the backup registers are not cleared. Timestamp on tamper event With TAMPTS set to ‘1’, any tamper event causes a timestamp to occur. In this case, either the TSF bit or the TSOVF bit are set in RTC_ISR, in the same manner as if a normal timestamp event occurs. The affected tamper flag register TAMPxF is set at the same time that TSF or TSOVF is set. Edge detection on tamper inputs If the TAMPFLT bits are “00”, the RTC_TAMPx pins generate tamper detection events when either a rising edge or a falling edge is observed depending on the corresponding TAMPxTRG bit. The internal pull-up resistors on the RTC_TAMPx inputs are deactivated when edge detection is selected. Caution: When using the edge detection, it is recommended to check by software the tamper pin level just after enabling the tamper detection (by reading the GPIO registers), and before writing sensitive values in the backup registers, to ensure that an active edge did not occur before enabling the tamper event detection. When TAMPFLT="00" and TAMPxTRG = 0 (rising edge detection), a tamper event may be detected by hardware if the tamper input is already at high level before enabling the tamper detection. After a tamper event has been detected and cleared, the RTC_TAMPx should be disabled and then re-enabled (TAMPxE set to 1) before re-programming the backup registers (RTC_BKPxR). This prevents the application from writing to the backup registers while the RTC_TAMPx input value still indicates a tamper detection. This is equivalent to a level detection on the RTC_TAMPx input. Note: Tamper detection is still active when VDD power is switched off. To avoid unwanted resetting of the backup registers, the pin to which the RTC_TAMPx is mapped should be externally tied to the correct level. Level detection with filtering on RTC_TAMPx inputs Level detection with filtering is performed by setting TAMPFLT to a non-zero value. A tamper detection event is generated when either 2, 4, or 8 (depending on TAMPFLT) consecutive samples are observed at the level designated by the TAMPxTRG bits. The RTC_TAMPx inputs are precharged through the I/O internal pull-up resistance before its state is sampled, unless disabled by setting TAMPPUDIS to 1,The duration of the precharge is determined by the TAMPPRCH bits, allowing for larger capacitances on the RTC_TAMPx inputs. The trade-off between tamper detection latency and power consumption through the pull-up can be optimized by using TAMPFREQ to determine the frequency of the sampling for level detection. RM0385 Rev 7 925/1709 953 Real-time clock (RTC) RM0385 Note: Refer to the datasheets for the electrical characteristics of the pull-up resistors. 29.3.15 Calibration clock output When the COE bit is set to 1 in the RTC_CR register, a reference clock is provided on the RTC_CALIB device output. If the COSEL bit in the RTC_CR register is reset and PREDIV_A = 0x7F, the RTC_CALIB frequency is fRTCCLK/64. This corresponds to a calibration output at 512 Hz for an RTCCLK frequency at 32.768 kHz. The RTC_CALIB duty cycle is irregular: there is a light jitter on falling edges. It is therefore recommended to use rising edges. When COSEL is set and “PREDIV_S+1” is a non-zero multiple of 256 (i.e: PREDIV_S[7:0] = 0xFF), the RTC_CALIB frequency is fRTCCLK/(256 * (PREDIV_A+1)). This corresponds to a calibration output at 1 Hz for prescaler default values (PREDIV_A = Ox7F, PREDIV_S = 0xFF), with an RTCCLK frequency at 32.768 kHz. The 1 Hz output is affected when a shift operation is on going and may toggle during the shift operation (SHPF=1). Note: When the RTC_CALIB or RTC_ALARM output is selected, the RTC_OUT pin is automatically configured as output. When COSEL bit is cleared, the RTC_CALIB output is the output of the 6th stage of the asynchronous prescaler. When COSEL bit is set, the RTC_CALIB output is the output of the 8th stage of the synchronous prescaler. 29.3.16 Alarm output The OSEL[1:0] control bits in the RTC_CR register are used to activate the alarm output RTC_ALARM, and to select the function which is output. These functions reflect the contents of the corresponding flags in the RTC_ISR register. The polarity of the output is determined by the POL control bit in RTC_CR so that the opposite of the selected flag bit is output when POL is set to 1. Alarm output The RTC_ALARM pin can be configured in output open drain or output push-pull using the control bit RTC_ALARM_TYPE in the RTC_OR register. Note: Once the RTC_ALARM output is enabled, it has priority over RTC_CALIB (COE bit is don't care and must be kept cleared). When the RTC_CALIB or RTC_ALARM output is selected, the RTC_OUT pin is automatically configured as output. 926/1709 RM0385 Rev 7 RM0385 29.4 Real-time clock (RTC) RTC low-power modes Table 171. Effect of low-power modes on RTC Mode Description Sleep No effect RTC interrupts cause the device to exit the Sleep mode. Stop The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC tamper event, RTC timestamp event, and RTC Wakeup cause the device to exit the Stop mode. The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC Standby tamper event, RTC timestamp event, and RTC Wakeup cause the device to exit the Standby mode. 29.5 RTC interrupts All RTC interrupts are connected to the EXTI controller. Refer to Section 11: Extended interrupts and events controller (EXTI). To enable the RTC Alarm interrupt, the following sequence is required: 1. Configure and enable the EXTI line corresponding to the RTC Alarm event in interrupt mode and select the rising edge sensitivity. 2. Configure and enable the RTC_ALARM IRQ channel in the NVIC. 3. Configure the RTC to generate RTC alarms. To enable the RTC Tamper interrupt, the following sequence is required: 1. Configure and enable the EXTI line corresponding to the RTC Tamper event in interrupt mode and select the rising edge sensitivity. 2. Configure and Enable the RTC_TAMP_STAMP IRQ channel in the NVIC. 3. Configure the RTC to detect the RTC tamper event. To enable the RTC TimeStamp interrupt, the following sequence is required: 1. Configure and enable the EXTI line corresponding to the RTC TimeStamp event in interrupt mode and select the rising edge sensitivity. 2. Configure and Enable the RTC_TAMP_STAMP IRQ channel in the NVIC. 3. Configure the RTC to detect the RTC time-stamp event. To enable the Wakeup timer interrupt, the following sequence is required: 1. Configure and enable the EXTI line corresponding to the Wakeup timer even in interrupt mode and select the rising edge sensitivity. 2. Configure and Enable the RTC_WKUP IRQ channel in the NVIC. 3. Configure the RTC to detect the RTC Wakeup timer event. RM0385 Rev 7 927/1709 953 Real-time clock (RTC) RM0385 Table 172. Interrupt control bits Interrupt event Event flag Enable control bit Exit from Sleep mode Exit from Stop mode Exit from Standby mode Alarm A ALRAF ALRAIE yes yes(1) yes(1) Alarm B ALRBF ALRBIE yes yes(1) yes(1) RTC_TS input (timestamp) TSF TSIE yes yes(1) yes(1) RTC_TAMP1 input detection TAMP1F TAMPIE yes yes(1) yes(1) RTC_TAMP2 input detection TAMP2F TAMPIE yes yes(1) yes(1) RTC_TAMP3 input detection TAMP3F TAMPIE yes yes(1) yes(1) Wakeup timer interrupt WUTF WUTIE yes yes(1) yes(1) 1. Wakeup from STOP and Standby modes is possible only when the RTC clock source is LSE or LSI. 29.6 RTC registers Refer to Section 1.1 on page 62 of the reference manual for a list of abbreviations used in register descriptions. The peripheral registers can be accessed by words (32-bit). 29.6.1 RTC time register (RTC_TR) The RTC_TR is the calendar time shadow register. This register must be written in initialization mode only. Refer to Calendar initialization and configuration on page 917 and Reading the calendar on page 918. This register is write protected. The write access procedure is described in RTC register write protection on page 917. Address offset: 0x00 Backup domain reset value: 0x0000 0000 System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1. 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. PM rw 15 14 Res. 13 12 11 MNT[2:0] rw rw 10 9 8 MNU[3:0] rw rw rw rw 7 rw Bits 31-23 Reserved, must be kept at reset value Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format 928/1709 6 Res. RM0385 Rev 7 21 20 19 18 HT[1:0] 16 HU[3:0] rw rw rw rw rw rw 5 4 3 2 1 0 rw rw ST[2:0] rw 17 rw SU[3:0] rw rw rw RM0385 Real-time clock (RTC) Bits 19:16 HU[3:0]: Hour units in BCD format Bit 15 Reserved, must be kept at reset value. Bits 14:12 MNT[2:0]: Minute tens in BCD format Bits 11:8 MNU[3:0]: Minute units in BCD format Bit 7 Reserved, must be kept at reset value. Bits 6:4 ST[2:0]: Second tens in BCD format Bits 3:0 SU[3:0]: Second units in BCD format 29.6.2 RTC date register (RTC_DR) The RTC_DR is the calendar date shadow register. This register must be written in initialization mode only. Refer to Calendar initialization and configuration on page 917 and Reading the calendar on page 918. This register is write protected. The write access procedure is described in RTC register write protection on page 917. Address offset: 0x04 Backup domain reset value: 0x0000 2101 System reset: 0x0000 2101 when BYPSHAD = 0. Not affected when BYPSHAD = 1. 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 WDU[2:0] rw rw 12 11 MT rw rw 10 9 rw 22 rw rw 7 6 Res. Res. rw 21 20 19 18 rw rw rw rw rw rw 5 4 3 2 1 0 rw rw YT[3:0] 8 MU[3:0] rw 23 rw 17 16 YU[3:0] DT[1:0] rw rw DU[3:0] rw rw Bits 31:24 Reserved, must be kept at reset value Bits 23:20 YT[3:0]: Year tens in BCD format Bits 19:16 YU[3:0]: Year units in BCD format Bits 15:13 WDU[2:0]: Week day units 000: forbidden 001: Monday ... 111: Sunday Bit 12 MT: Month tens in BCD format Bits 11:8 MU: Month units in BCD format Bits 7:6 Reserved, must be kept at reset value. Bits 5:4 DT[1:0]: Date tens in BCD format Bits 3:0 DU[3:0]: Date units in BCD format RM0385 Rev 7 929/1709 953 Real-time clock (RTC) 29.6.3 RM0385 RTC control register (RTC_CR) Address offset: 0x08 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 Res. Res. Res. Res. Res. Res. Res. ITSE COE rw rw rw 15 14 13 12 11 10 9 8 7 6 TSIE WUTIE ALRBIE ALRAIE rw rw rw rw TSE WUTE rw rw ALRBE ALRAE rw Res. rw 22 21 20 19 18 POL COSEL BKP rw rw rw rw w w 5 4 3 2 1 0 OSEL[1:0] FMT rw BYPS REFCKON TSEDGE HAD rw rw rw 17 16 SUB1H ADD1H WUCKSEL[2:0] rw rw rw Bits 31:25 Reserved, must be kept at reset value. Bit 24 ITSE: timestamp on internal event enable 0: internal event timestamp disabled 1: internal event timestamp enabled Bit 23 COE: Calibration output enable This bit enables the RTC_CALIB output 0: Calibration output disabled 1: Calibration output enabled Bits 22:21 OSEL[1:0]: Output selection These bits are used to select the flag to be routed to RTC_ALARM output 00: Output disabled 01: Alarm A output enabled 10: Alarm B output enabled 11: Wakeup output enabled Bit 20 POL: Output polarity This bit is used to configure the polarity of RTC_ALARM output 0: The pin is high when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]) 1: The pin is low when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]). Bit 19 COSEL: Calibration output selection When COE=1, this bit selects which signal is output on RTC_CALIB. 0: Calibration output is 512 Hz (with default prescaler setting) 1: Calibration output is 1 Hz (with default prescaler setting) These frequencies are valid for RTCCLK at 32.768 kHz and prescalers at their default values (PREDIV_A=127 and PREDIV_S=255). Refer to Section 29.3.15: Calibration clock output Bit 18 BKP: Backup This bit can be written by the user to memorize whether the daylight saving time change has been performed or not. 930/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) Bit 17 SUB1H: Subtract 1 hour (winter time change) When this bit is set, 1 hour is subtracted to the calendar time if the current hour is not 0. This bit is always read as 0. Setting this bit has no effect when current hour is 0. 0: No effect 1: Subtracts 1 hour to the current time. This can be used for winter time change outside initialization mode. Bit 16 ADD1H: Add 1 hour (summer time change) When this bit is set, 1 hour is added to the calendar time. This bit is always read as 0. 0: No effect 1: Adds 1 hour to the current time. This can be used for summer time change outside initialization mode. Bit 15 TSIE: Time-stamp interrupt enable 0: Time-stamp Interrupt disable 1: Time-stamp Interrupt enable Bit 14 WUTIE: Wakeup timer interrupt enable 0: Wakeup timer interrupt disabled 1: Wakeup timer interrupt enabled Bit 13 ALRBIE: Alarm B interrupt enable 0: Alarm B Interrupt disable 1: Alarm B Interrupt enable Bit 12 ALRAIE: Alarm A interrupt enable 0: Alarm A interrupt disabled 1: Alarm A interrupt enabled Bit 11 TSE: timestamp enable 0: timestamp disable 1: timestamp enable Bit 10 WUTE: Wakeup timer enable 0: Wakeup timer disabled 1: Wakeup timer enabled Note: When the wakeup timer is disabled, wait for WUTWF=1 before enabling it again. Bit 9 ALRBE: Alarm B enable 0: Alarm B disabled 1: Alarm B enabled Bit 8 ALRAE: Alarm A enable 0: Alarm A disabled 1: Alarm A enabled Bit 7 Reserved, must be kept at reset value. Bit 6 FMT: Hour format 0: 24 hour/day format 1: AM/PM hour format RM0385 Rev 7 931/1709 953 Real-time clock (RTC) RM0385 Bit 5 BYPSHAD: Bypass the shadow registers 0: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken from the shadow registers, which are updated once every two RTCCLK cycles. 1: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken directly from the calendar counters. Note: If the frequency of the APB clock is less than seven times the frequency of RTCCLK, BYPSHAD must be set to ‘1’. Bit 4 REFCKON: RTC_REFIN reference clock detection enable (50 or 60 Hz) 0: RTC_REFIN detection disabled 1: RTC_REFIN detection enabled Note: PREDIV_S must be 0x00FF. Bit 3 TSEDGE: Time-stamp event active edge 0: RTC_TS input rising edge generates a time-stamp event 1: RTC_TS input falling edge generates a time-stamp event TSE must be reset when TSEDGE is changed to avoid unwanted TSF setting. Bits 2:0 WUCKSEL[2:0]: Wakeup clock selection 000: RTC/16 clock is selected 001: RTC/8 clock is selected 010: RTC/4 clock is selected 011: RTC/2 clock is selected 10x: ck_spre (usually 1 Hz) clock is selected 11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value (see note below) Note: Bits 7, 6 and 4 of this register can be written in initialization mode only (RTC_ISR/INITF = 1). WUT = Wakeup unit counter value. WUT = (0x0000 to 0xFFFF) + 0x10000 added when WUCKSEL[2:1 = 11]. Bits 2 to 0 of this register can be written only when RTC_CR WUTE bit = 0 and RTC_ISR WUTWF bit = 1. It is recommended not to change the hour during the calendar hour increment as it could mask the incrementation of the calendar hour. ADD1H and SUB1H changes are effective in the next second. This register is write protected. The write access procedure is described in RTC register write protection on page 917. Caution: 932/1709 TSE must be reset when TSEDGE is changed to avoid spuriously setting of TSF. RM0385 Rev 7 RM0385 Real-time clock (RTC) 29.6.4 RTC initialization and status register (RTC_ISR) This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure is described in RTC register write protection on page 917. Address offset: 0x0C Backup domain reset value: 0x0000 0007 System reset: not affected except INIT, INITF, and RSF bits which are cleared to ‘0’ 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ITSF RECALPF 15 14 13 12 11 10 9 8 7 6 5 4 3 2 INIT INITF RSF INITS rw r rc_w0 r TAMP3F TAMP2F TAMP1F TSOVF rc_w0 rc_w0 rc_w0 rc_w0 TSF rc_w0 WUTF ALRBF ALRAF rc_w0 rc_w0 rc_w0 SHPF WUTWF r r rc_w0 r 1 0 ALRB WF ALRAWF r r Bits 31:18 Reserved, must be kept at reset value Bit 17 ITSF: Internal tTime-stamp flag This flag is set by hardware when a time-stamp on the internal event occurs. This flag is cleared by software by writing 0, and must be cleared together with TSF bit by writing 0 in both bits. Bit 16 RECALPF: Recalibration pending Flag The RECALPF status flag is automatically set to ‘1’ when software writes to the RTC_CALR register, indicating that the RTC_CALR register is blocked. When the new calibration settings are taken into account, this bit returns to ‘0’. Refer to Re-calibration on-the-fly. Bit 15 TAMP3F: RTC_TAMP3 detection flag This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP3 input. It is cleared by software writing 0 Bit 14 TAMP2F: RTC_TAMP2 detection flag This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP2 input. It is cleared by software writing 0 Bit 13 TAMP1F: RTC_TAMP1 detection flag This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP1 input. It is cleared by software writing 0 Bit 12 TSOVF: Time-stamp overflow flag This flag is set by hardware when a time-stamp event occurs while TSF is already set. This flag is cleared by software by writing 0. It is recommended to check and then clear TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a timestamp event occurs immediately before the TSF bit is cleared. Bit 11 TSF: Time-stamp flag This flag is set by hardware when a time-stamp event occurs. This flag is cleared by software by writing 0. If ITSF flag is set, TSF must be cleared together with ITSF by writing 0 in both bits. RM0385 Rev 7 933/1709 953 Real-time clock (RTC) RM0385 Bit 10 WUTF: Wakeup timer flag This flag is set by hardware when the wakeup auto-reload counter reaches 0. This flag is cleared by software by writing 0. This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1 again. Bit 9 ALRBF: Alarm B flag This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the Alarm B register (RTC_ALRMBR). This flag is cleared by software by writing 0. Bit 8 ALRAF: Alarm A flag This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the Alarm A register (RTC_ALRMAR). This flag is cleared by software by writing 0. Bit 7 INIT: Initialization mode 0: Free running mode 1: Initialization mode used to program time and date register (RTC_TR and RTC_DR), and prescaler register (RTC_PRER). Counters are stopped and start counting from the new value when INIT is reset. Bit 6 INITF: Initialization flag When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler registers can be updated. 0: Calendar registers update is not allowed 1: Calendar registers update is allowed Bit 5 RSF: Registers synchronization flag This bit is set by hardware each time the calendar registers are copied into the shadow registers (RTC_SSRx, RTC_TRx and RTC_DRx). This bit is cleared by hardware in initialization mode, while a shift operation is pending (SHPF=1), or when in bypass shadow register mode (BYPSHAD=1). This bit can also be cleared by software. It is cleared either by software or by hardware in initialization mode. 0: Calendar shadow registers not yet synchronized 1: Calendar shadow registers synchronized Bit 4 INITS: Initialization status flag This bit is set by hardware when the calendar year field is different from 0 (Backup domain reset state). 0: Calendar has not been initialized 1: Calendar has been initialized Bit 3 SHPF: Shift operation pending 0: No shift operation is pending 1: A shift operation is pending This flag is set by hardware as soon as a shift operation is initiated by a write to the RTC_SHIFTR register. It is cleared by hardware when the corresponding shift operation has been executed. Writing to the SHPF bit has no effect. 934/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) Bit 2 WUTWF: Wakeup timer write flag This bit is set by hardware up to 2 RTCCLK cycles after the WUTE bit has been set to 0 in RTC_CR, and is cleared up to 2 RTCCLK cycles after the WUTE bit has been set to 1. The wakeup timer values can be changed when WUTE bit is cleared and WUTWF is set. 0: Wakeup timer configuration update not allowed 1: Wakeup timer configuration update allowed Bit 1 ALRBWF: Alarm B write flag This bit is set by hardware when Alarm B values can be changed, after the ALRBE bit has been set to 0 in RTC_CR. It is cleared by hardware in initialization mode. 0: Alarm B update not allowed 1: Alarm B update allowed Bit 0 ALRAWF: Alarm A write flag This bit is set by hardware when Alarm A values can be changed, after the ALRAE bit has been set to 0 in RTC_CR. It is cleared by hardware in initialization mode. 0: Alarm A update not allowed 1: Alarm A update allowed Note: The bits ALRAF, ALRBF, WUTF and TSF are cleared 2 APB clock cycles after programming them to 0. RM0385 Rev 7 935/1709 953 Real-time clock (RTC) 29.6.5 RM0385 RTC prescaler register (RTC_PRER) This register must be written in initialization mode only. The initialization must be performed in two separate write accesses. Refer to Calendar initialization and configuration on page 917. This register is write protected. The write access procedure is described in RTC register write protection on page 917. Address offset: 0x10 Backup domain reset value: 0x007F 00FF System reset: not affected 31 30 29 28 27 26 25 24 23 Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 rw rw rw rw rw rw rw Res. 22 21 19 18 17 16 PREDIV_A[6:0] rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw rw PREDIV_S[14:0] rw Bits 31:23 Reserved, must be kept at reset value Bits 22:16 PREDIV_A[6:0]: Asynchronous prescaler factor This is the asynchronous division factor: ck_apre frequency = RTCCLK frequency/(PREDIV_A+1) Bit 15 Reserved, must be kept at reset value. Bits 14:0 PREDIV_S[14:0]: Synchronous prescaler factor This is the synchronous division factor: ck_spre frequency = ck_apre frequency/(PREDIV_S+1) 936/1709 20 RM0385 Rev 7 RM0385 Real-time clock (RTC) 29.6.6 RTC wakeup timer register (RTC_WUTR) This register can be written only when WUTWF is set to 1 in RTC_ISR. This register is write protected. The write access procedure is described in RTC register write protection on page 917. Address offset: 0x14 Backup domain reset value: 0x0000 FFFF System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw WUT[15:0] rw Bits 31:16 Reserved, must be kept at reset value Bits 15:0 WUT[15:0]: Wakeup auto-reload value bits When the wakeup timer is enabled (WUTE set to 1), the WUTF flag is set every (WUT[15:0] + 1) ck_wut cycles. The ck_wut period is selected through WUCKSEL[2:0] bits of the RTC_CR register When WUCKSEL[2] = 1, the wakeup timer becomes 17-bits and WUCKSEL[1] effectively becomes WUT[16] the most-significant bit to be reloaded into the timer. The first assertion of WUTF occurs (WUT+1) ck_wut cycles after WUTE is set. Setting WUT[15:0] to 0x0000 with WUCKSEL[2:0] =011 (RTCCLK/2) is forbidden. RM0385 Rev 7 937/1709 953 Real-time clock (RTC) 29.6.7 RM0385 RTC alarm A register (RTC_ALRMAR) This register can be written only when ALRAWF is set to 1 in RTC_ISR, or in initialization mode. This register is write protected. The write access procedure is described in RTC register write protection on page 917. Address offset: 0x1C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 MSK4 WDSEL 29 28 27 DT[1:0] 26 25 24 DU[3:0] 23 22 MSK3 PM 21 20 19 18 HT[1:0] 17 16 HU[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw MSK2 rw MNT[2:0] rw rw MNU[3:0] rw rw rw rw MSK1 rw rw ST[2:0] rw rw Bit 31 MSK4: Alarm A date mask 0: Alarm A set if the date/day match 1: Date/day don’t care in Alarm A comparison Bit 30 WDSEL: Week day selection 0: DU[3:0] represents the date units 1: DU[3:0] represents the week day. DT[1:0] is don’t care. Bits 29:28 DT[1:0]: Date tens in BCD format. Bits 27:24 DU[3:0]: Date units or day in BCD format. Bit 23 MSK3: Alarm A hours mask 0: Alarm A set if the hours match 1: Hours don’t care in Alarm A comparison Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format. Bits 19:16 HU[3:0]: Hour units in BCD format. Bit 15 MSK2: Alarm A minutes mask 0: Alarm A set if the minutes match 1: Minutes don’t care in Alarm A comparison Bits 14:12 MNT[2:0]: Minute tens in BCD format. Bits 11:8 MNU[3:0]: Minute units in BCD format. Bit 7 MSK1: Alarm A seconds mask 0: Alarm A set if the seconds match 1: Seconds don’t care in Alarm A comparison Bits 6:4 ST[2:0]: Second tens in BCD format. Bits 3:0 SU[3:0]: Second units in BCD format. 938/1709 RM0385 Rev 7 SU[3:0] rw rw rw RM0385 Real-time clock (RTC) 29.6.8 RTC alarm B register (RTC_ALRMBR) This register can be written only when ALRBWF is set to 1 in RTC_ISR, or in initialization mode. This register is write protected. The write access procedure is described in RTC register write protection on page 917. Address offset: 0x20 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 MSK4 WDSEL 29 28 27 DT[1:0] 26 25 24 DU[3:0] 23 22 MSK3 PM 21 20 19 18 HT[1:0] 17 16 HU[3:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw MSK2 rw MNT[2:0] rw rw MNU[3:0] rw rw rw rw MSK1 rw rw ST[2:0] rw rw SU[3:0] rw rw rw Bit 31 MSK4: Alarm B date mask 0: Alarm B set if the date and day match 1: Date and day don’t care in Alarm B comparison Bit 30 WDSEL: Week day selection 0: DU[3:0] represents the date units 1: DU[3:0] represents the week day. DT[1:0] is don’t care. Bits 29:28 DT[1:0]: Date tens in BCD format Bits 27:24 DU[3:0]: Date units or day in BCD format Bit 23 MSK3: Alarm B hours mask 0: Alarm B set if the hours match 1: Hours don’t care in Alarm B comparison Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format Bits 19:16 HU[3:0]: Hour units in BCD format Bit 15 MSK2: Alarm B minutes mask 0: Alarm B set if the minutes match 1: Minutes don’t care in Alarm B comparison Bits 14:12 MNT[2:0]: Minute tens in BCD format Bits 11:8 MNU[3:0]: Minute units in BCD format Bit 7 MSK1: Alarm B seconds mask 0: Alarm B set if the seconds match 1: Seconds don’t care in Alarm B comparison Bits 6:4 ST[2:0]: Second tens in BCD format Bits 3:0 SU[3:0]: Second units in BCD format RM0385 Rev 7 939/1709 953 Real-time clock (RTC) 29.6.9 RM0385 RTC write protection register (RTC_WPR) Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 w w w w 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. KEY w w w w Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 KEY: Write protection key This byte is written by software. Reading this byte always returns 0x00. Refer to RTC register write protection for a description of how to unlock RTC register write protection. 29.6.10 RTC sub second register (RTC_SSR) Address offset: 0x28 Backup domain reset value: 0x0000 0000 System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r SS[15:0] r r r r r r r r r Bits31:16 Reserved, must be kept at reset value Bits 15:0 SS: Sub second value SS[15:0] is the value in the synchronous prescaler counter. The fraction of a second is given by the formula below: Second fraction = (PREDIV_S - SS) / (PREDIV_S + 1) Note: SS can be larger than PREDIV_S only after a shift operation. In that case, the correct time/date is one second less than as indicated by RTC_TR/RTC_DR. 940/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) 29.6.11 RTC shift control register (RTC_SHIFTR) This register is write protected. The write access procedure is described in RTC register write protection on page 917. Address offset: 0x2C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ADD1S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 w w w w w w w w 15 Res. SUBFS[14:0] w w w w w w w w Bit 31 ADD1S: Add one second 0: No effect 1: Add one second to the clock/calendar This bit is write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF=1, in RTC_ISR). This function is intended to be used with SUBFS (see description below) in order to effectively add a fraction of a second to the clock in an atomic operation. Bits 30:15 Reserved, must be kept at reset value Bits 14:0 SUBFS: Subtract a fraction of a second These bits are write only and is always read as zero. Writing to this bit has no effect when a shift operation is pending (when SHPF=1, in RTC_ISR). The value which is written to SUBFS is added to the synchronous prescaler counter. Since this counter counts down, this operation effectively subtracts from (delays) the clock by: Delay (seconds) = SUBFS / (PREDIV_S + 1) A fraction of a second can effectively be added to the clock (advancing the clock) when the ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by: Advance (seconds) = (1 - (SUBFS / (PREDIV_S + 1))). Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF=1 to be sure that the shadow registers have been updated with the shifted time. RM0385 Rev 7 941/1709 953 Real-time clock (RTC) 29.6.12 RM0385 RTC timestamp time register (RTC_TSTR) The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when TSF bit is reset. Address offset: 0x30 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. Res. Res. Res. PM r 15 14 Res. 13 12 11 MNT[2:0] r r 10 9 8 MNU[3:0] r r r r 7 r Bits 31:23 Reserved, must be kept at reset value Bit 22 PM: AM/PM notation 0: AM or 24-hour format 1: PM Bits 21:20 HT[1:0]: Hour tens in BCD format. Bits 19:16 HU[3:0]: Hour units in BCD format. Bit 15 Reserved, must be kept at reset value Bits 14:12 MNT[2:0]: Minute tens in BCD format. Bits 11:8 MNU[3:0]: Minute units in BCD format. Bit 7 Reserved, must be kept at reset value Bits 6:4 ST[2:0]: Second tens in BCD format. Bits 3:0 SU[3:0]: Second units in BCD format. 942/1709 6 Res. RM0385 Rev 7 21 20 19 18 HT[1:0] r r r r 5 4 3 2 ST[2:0] r r 17 16 HU[3:0] r r 1 0 r r SU[3:0] r r r RM0385 Real-time clock (RTC) 29.6.13 RTC timestamp date register (RTC_TSDR) The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when TSF bit is reset. Address offset: 0x34 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. r r 15 WDU[1:0] r r MT r r MU[3:0] r r r r DT[1:0] r DU[3:0] r r r Bits 31:16 Reserved, must be kept at reset value Bits 15:13 WDU[1:0]: Week day units Bit 12 MT: Month tens in BCD format Bits 11:8 MU[3:0]: Month units in BCD format Bits 7:6 Reserved, must be kept at reset value Bits 5:4 DT[1:0]: Date tens in BCD format Bits 3:0 DU[3:0]: Date units in BCD format RM0385 Rev 7 943/1709 953 Real-time clock (RTC) 29.6.14 RM0385 RTC time-stamp sub second register (RTC_TSSSR) The content of this register is valid only when RTC_ISR/TSF is set. It is cleared when the RTC_ISR/TSF bit is reset. Address offset: 0x38 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r SS[15:0] r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value Bits 15:0 SS: Sub second value SS[15:0] is the value of the synchronous prescaler counter when the timestamp event occurred. 944/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) 29.6.15 RTC calibration register (RTC_CALR) This register is write protected. The write access procedure is described in RTC register write protection on page 917. Address offset: 0x3C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CALP CALW8 CALW 16 Res. Res. Res. Res. rw rw rw rw rw rw rw CALM[8:0] rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value Bit 15 CALP: Increase frequency of RTC by 488.5 ppm 0: No RTCCLK pulses are added. 1: One RTCCLK pulse is effectively inserted every 211 pulses (frequency increased by 488.5 ppm). This feature is intended to be used in conjunction with CALM, which lowers the frequency of the calendar with a fine resolution. if the input frequency is 32768 Hz, the number of RTCCLK pulses added during a 32-second window is calculated as follows: (512 * CALP) - CALM. Refer to Section 29.3.12: RTC smooth digital calibration. Bit 14 CALW8: Use an 8-second calibration cycle period When CALW8 is set to ‘1’, the 8-second calibration cycle period is selected. Note: CALM[1:0] are stuck at “00” when CALW8=’1’. Refer to Section 29.3.12: RTC smooth digital calibration. Bit 13 CALW16: Use a 16-second calibration cycle period When CALW16 is set to ‘1’, the 16-second calibration cycle period is selected.This bit must not be set to ‘1’ if CALW8=1. Note: CALM[0] is stuck at ‘0’ when CALW16=’1’. Refer to Section 29.3.12: RTC smooth digital calibration. Bits 12:9 Reserved, must be kept at reset value Bits 8:0 CALM[8:0]: Calibration minus The frequency of the calendar is reduced by masking CALM out of 220 RTCCLK pulses (32 seconds if the input frequency is 32768 Hz). This decreases the frequency of the calendar with a resolution of 0.9537 ppm. To increase the frequency of the calendar, this feature should be used in conjunction with CALP. See Section 29.3.12: RTC smooth digital calibration on page 921. RM0385 Rev 7 945/1709 953 Real-time clock (RTC) 29.6.16 RM0385 RTC tamper configuration register (RTC_TAMPCR) Address offset: 0x40 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 TAMP PUDIS rw TAMPPRCH [1:0] rw rw TAMPFLT[1:0] rw rw 24 rw 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 TAMPFREQ[2:0] rw 23 TAMP3 TAMP2 TAMP1 TAMP3 TAMP3 TAMP2 TAMP2 TAMP1 TAMP1 NO NO NO MF IE MF IE MF IE ERASE ERASE ERASE TAMP TS rw rw TAMP3 TAMP3 TAMP2 TAMP2 TRG E TRG E rw rw rw rw TAMPI E rw TAMP1 TAMP1 TRG E rw rw Bits 31:25 Reserved, must be kept at reset value. Bit 24 TAMP3MF: Tamper 3 mask flag 0: Tamper 3 event generates a trigger event and TAMP3F must be cleared by software to allow next tamper event detection. 1: Tamper 3 event generates a trigger event. TAMP3F is masked and internally cleared by hardware. The backup registers are not erased. Note: The Tamper 3 interrupt must not be enabled when TAMP3MF is set. Bit 23 TAMP3NOERASE: Tamper 3 no erase 0: Tamper 3 event erases the backup registers. 1: Tamper 3 event does not erase the backup registers. Bit 22 TAMP3IE: Tamper 3 interrupt enable 0: Tamper 3 interrupt is disabled if TAMPIE = 0. 1: Tamper 3 interrupt enabled. Bit 21 TAMP2MF: Tamper 2 mask flag 0: Tamper 2 event generates a trigger event and TAMP2F must be cleared by software to allow next tamper event detection. 1: Tamper 2 event generates a trigger event. TAMP2F is masked and internally cleared by hardware. The backup registers are not erased. Note: The Tamper 2 interrupt must not be enabled when TAMP2MF is set. Bit 20 TAMP2NOERASE: Tamper 2 no erase 0: Tamper 2 event erases the backup registers. 1: Tamper 2 event does not erase the backup registers. Bit 19 TAMP2IE: Tamper 2 interrupt enable 0: Tamper 2 interrupt is disabled if TAMPIE = 0. 1: Tamper 2 interrupt enabled. Bit 18 TAMP1MF: Tamper 1 mask flag 0: Tamper 1 event generates a trigger event and TAMP1F must be cleared by software to allow next tamper event detection. 1: Tamper 1 event generates a trigger event. TAMP1F is masked and internally cleared by hardware.The backup registers are not erased. Note: The Tamper 1 interrupt must not be enabled when TAMP1MF is set. 946/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) Bit 17 TAMP1NOERASE: Tamper 1 no erase 0: Tamper 1 event erases the backup registers. 1: Tamper 1 event does not erase the backup registers. Bit 16 TAMP1IE: Tamper 1 interrupt enable 0: Tamper 1 interrupt is disabled if TAMPIE = 0. 1: Tamper 1 interrupt enabled. Bit 15 TAMPPUDIS: RTC_TAMPx pull-up disable This bit determines if each of the RTC_TAMPx pins are precharged before each sample. 0: Precharge RTC_TAMPx pins before sampling (enable internal pull-up) 1: Disable precharge of RTC_TAMPx pins. Bits 14:13 TAMPPRCH[1:0]: RTC_TAMPx precharge duration These bit determines the duration of time during which the pull-up/is activated before each sample. TAMPPRCH is valid for each of the RTC_TAMPx inputs. 0x0: 1 RTCCLK cycle 0x1: 2 RTCCLK cycles 0x2: 4 RTCCLK cycles 0x3: 8 RTCCLK cycles Bits 12:11 TAMPFLT[1:0]: RTC_TAMPx filter count These bits determines the number of consecutive samples at the specified level (TAMP*TRG) needed to activate a Tamper event. TAMPFLT is valid for each of the RTC_TAMPx inputs. 0x0: Tamper event is activated on edge of RTC_TAMPx input transitions to the active level (no internal pull-up on RTC_TAMPx input). 0x1: Tamper event is activated after 2 consecutive samples at the active level. 0x2: Tamper event is activated after 4 consecutive samples at the active level. 0x3: Tamper event is activated after 8 consecutive samples at the active level. Bits 10:8 TAMPFREQ[2:0]: Tamper sampling frequency Determines the frequency at which each of the RTC_TAMPx inputs are sampled. 0x0: RTCCLK / 32768 (1 Hz when RTCCLK = 32768 Hz) 0x1: RTCCLK / 16384 (2 Hz when RTCCLK = 32768 Hz) 0x2: RTCCLK / 8192 (4 Hz when RTCCLK = 32768 Hz) 0x3: RTCCLK / 4096 (8 Hz when RTCCLK = 32768 Hz) 0x4: RTCCLK / 2048 (16 Hz when RTCCLK = 32768 Hz) 0x5: RTCCLK / 1024 (32 Hz when RTCCLK = 32768 Hz) 0x6: RTCCLK / 512 (64 Hz when RTCCLK = 32768 Hz) 0x7: RTCCLK / 256 (128 Hz when RTCCLK = 32768 Hz) Bit 7 TAMPTS: Activate timestamp on tamper detection event 0: Tamper detection event does not cause a timestamp to be saved 1: Save timestamp on tamper detection event TAMPTS is valid even if TSE=0 in the RTC_CR register. Bit 6 TAMP3TRG: Active level for RTC_TAMP3 input if TAMPFLT ≠ 00: 0: RTC_TAMP3 input staying low triggers a tamper detection event. 1: RTC_TAMP3 input staying high triggers a tamper detection event. if TAMPFLT = 00: 0: RTC_TAMP3 input rising edge triggers a tamper detection event. 1: RTC_TAMP3 input falling edge triggers a tamper detection event. RM0385 Rev 7 947/1709 953 Real-time clock (RTC) RM0385 Note: The Tamper 3 falling edge detection is not allowed when switch to VBAT is used, otherwise a detection would always occurs when entering in Vbat mode. Bit 5 TAMP3E: RTC_TAMP3 detection enable 0: RTC_TAMP3 input detection disabled 1: RTC_TAMP3 input detection enabled Bit 4 TAMP2TRG: Active level for RTC_TAMP2 input if TAMPFLT != 00: 0: RTC_TAMP2 input staying low triggers a tamper detection event. 1: RTC_TAMP2 input staying high triggers a tamper detection event. if TAMPFLT = 00: 0: RTC_TAMP2 input rising edge triggers a tamper detection event. 1: RTC_TAMP2 input falling edge triggers a tamper detection event. Bit 3 TAMP2E: RTC_TAMP2 input detection enable 0: RTC_TAMP2 detection disabled 1: RTC_TAMP2 detection enabled Bit 2 TAMPIE: Tamper interrupt enable 0: Tamper interrupt disabled 1: Tamper interrupt enabled. Note: This bit enables the interrupt for all tamper pins events, whatever TAMPxIE level. If this bit is cleared, each tamper event interrupt can be individually enabled by setting TAMPxIE. Bit 1 TAMP1TRG: Active level for RTC_TAMP1 input If TAMPFLT != 00 0: RTC_TAMP1 input staying low triggers a tamper detection event. 1: RTC_TAMP1 input staying high triggers a tamper detection event. if TAMPFLT = 00: 0: RTC_TAMP1 input rising edge triggers a tamper detection event. 1: RTC_TAMP1 input falling edge triggers a tamper detection event. Bit 0 TAMP1E: RTC_TAMP1 input detection enable 0: RTC_TAMP1 detection disabled 1: RTC_TAMP1 detection enabled Caution: 948/1709 When TAMPFLT = 0, TAMPxE must be reset when TAMPxTRG is changed to avoid spuriously setting TAMPxF. RM0385 Rev 7 RM0385 Real-time clock (RTC) 29.6.17 RTC alarm A sub second register (RTC_ALRMASSR) This register can be written only when ALRAE is reset in RTC_CR register, or in initialization mode. This register is write protected. The write access procedure is described in RTC register write protection on page 917 Address offset: 0x44 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 Res. Res. Res. Res. 27 26 25 24 rw rw rw rw 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw MASKSS[3:0] Res. 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw rw w rw rw SS[14:0] rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit 0: No comparison on sub seconds for Alarm A. The alarm is set when the seconds unit is incremented (assuming that the rest of the fields match). 1: SS[14:1] are don’t care in Alarm A comparison. Only SS[0] is compared. 2: SS[14:2] are don’t care in Alarm A comparison. Only SS[1:0] are compared. 3: SS[14:3] are don’t care in Alarm A comparison. Only SS[2:0] are compared. ... 12: SS[14:12] are don’t care in Alarm A comparison. SS[11:0] are compared. 13: SS[14:13] are don’t care in Alarm A comparison. SS[12:0] are compared. 14: SS[14] is don’t care in Alarm A comparison. SS[13:0] are compared. 15: All 15 SS bits are compared and must match to activate alarm. The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be different from 0 only after a shift operation. Bits23:15 Reserved, must be kept at reset value. Bits 14:0 SS[14:0]: Sub seconds value This value is compared with the contents of the synchronous prescaler counter to determine if Alarm A is to be activated. Only bits 0 up MASKSS-1 are compared. RM0385 Rev 7 949/1709 953 Real-time clock (RTC) 29.6.18 RM0385 RTC alarm B sub second register (RTC_ALRMBSSR) This register can be written only when ALRBE is reset in RTC_CR register, or in initialization mode. This register is write protected.The write access procedure is described in Section : RTC register write protection. Address offset: 0x48 Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 Res. Res. Res. Res. 27 26 25 24 rw rw rw rw 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw MASKSS[3:0] Res. 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw rw w rw rw SS[14:0] rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit 0x0: No comparison on sub seconds for Alarm B. The alarm is set when the seconds unit is incremented (assuming that the rest of the fields match). 0x1: SS[14:1] are don’t care in Alarm B comparison. Only SS[0] is compared. 0x2: SS[14:2] are don’t care in Alarm B comparison. Only SS[1:0] are compared. 0x3: SS[14:3] are don’t care in Alarm B comparison. Only SS[2:0] are compared. ... 0xC: SS[14:12] are don’t care in Alarm B comparison. SS[11:0] are compared. 0xD: SS[14:13] are don’t care in Alarm B comparison. SS[12:0] are compared. 0xE: SS[14] is don’t care in Alarm B comparison. SS[13:0] are compared. 0xF: All 15 SS bits are compared and must match to activate alarm. The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be different from 0 only after a shift operation. Bits 23:15 Reserved, must be kept at reset value. Bits 14:0 SS[14:0]: Sub seconds value This value is compared with the contents of the synchronous prescaler counter to determine if Alarm B is to be activated. Only bits 0 up to MASKSS-1 are compared. 950/1709 RM0385 Rev 7 RM0385 Real-time clock (RTC) 29.6.19 RTC option register (RTC_OR) Address offset: 0x4C Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. RTC_ ALARM _TYPE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TSINSEL[1:0] rw rw rw Res. Bits 31:4 Reserved, must be kept at reset value. Bit 3 RTC_ALARM_TYPE: RTC_ALARM on PC13 output type 0: RTC_ALARM, when mapped on PC13, is open-drain output 1: RTC_ALARM, when mapped on PC13, is push-pull output Bits 2:1 TSINSEL[1:0]: TIMESTAMP mapping 00: TIMESTAMP is mapped on PC13 01: TIMESTAMP is mapped on PI8 10: TIMESTAMP is mapped on PC1 11: TIMESTAMP is mapped on PC1 Bit 0 Reserved, must be kept at reset value. 29.6.20 RTC backup registers (RTC_BKPxR) Address offset: 0x50 to 0xCC Backup domain reset value: 0x0000 0000 System reset: not affected 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 BKP[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw w rw rw BKP[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 BKP[31:0] The application can write or read data to and from these registers. They are powered-on by VBAT when VDD is switched off, so that they are not reset by System reset, and their contents remain valid when the device operates in low-power mode. This register is reset on a tamper detection event, as long as TAMPxF=1. RM0385 Rev 7 951/1709 953 0x2C 952/1709 RTC_SHIFTR Reset value 0 0 RTC_WPR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 RM0385 Rev 7 1 1 1 Res. Res. Res. Res. Reset value 0 HU[3:0] Reset value 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 MNT[2:0] 0 MNT[2:0] 0 0 0 0 PREDIV_A[6:0] 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 MNU[3:0] 0 0 MNU[3:0] Reset value 0 0 1 1 0 0 0 0 0 SS[15:0] SUBFS[14:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DT[1:0] HT[1:0] PM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ST[2:0] 0 0 0 0 0 PREDIV_S[14:0] WUT[15:0] 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 ST[2:0] 0 ST[2:0] 0 WUCKSEL[2:0] 0 ALRAWF 0 ALRBWF 0 SHPF 0 WUT WF 0 RSF TSEDGE 0 BYPSHAD 0 Res. 0 INITS MU[3:0] Res. 0 INITF MT 0 REFCKON 0 ALRAF WDU[2:0] 0 FMT ALRAE 0 WUTF 0 Res. WUTE ALRBE 0 ALRBF 0 MNU[3:0] INIT TSE COSEL ALRAIE POL 0 TSF 1 ALRBIE 0 TSOVF 0 TAMP1F 0 TSIE 0 WUTIE 1 .TAMP2F 0 ADD1H 0 TAMP3F 0 RECALPF 0 BKP 0 SUB1H 0 ITSF 0 Res. Res. Res. YU[3:0] 0 MSK1 1 Res. Res. OSEL[1:0] Res. 0 MNT[2:0] MSK2 HU[3:0] MSK2 1 Res. Reset value MSK2 HT[1:0] 0 HT[1:0] 1 Res. 0 Res. 0 0 0 HU[3:0] Res. 0 Res. 1 Res. 0 0 Res. 0 PM COE 0 Res. 0 PM Res. Res. Res. Res. Res. YT[3:0] 0 Res. 0 Res. Res. 0 0 Res. 0 MSK3 ITSE 0 Res. Res. Res. 0 Res. 0 0 0 Res. 0 0 MSK3 Res. Res. Res. Res. Res. Res. 0 Res. 0 DU[3:0] 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 0 Res. 0 Res. Res. Reset value Res. 0 Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Reset value Res. 0 DU[3:0] Res. 0 0 Res. 0 Res. Res. Res. Res. Res. Reset value Res. RTC_SSR Res. Reset value Res. 0x28 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. RTC_WUTR Res. 0x14 DT[1:0] Reset value Res. RTC_PRER DT[1:0] RTC_ALRMBR Res. 0x10 Res. RTC_ISR Res. 0x0C Res. RTC_CR Res. 0x08 Res. RTC_DR Res. 0x04 Res. 0 MSK4 RTC_TR Res. 0 WDSEL 0x00 Res. MSK4 WDSEL Reset value Res. 0x24 RTC_ALRMAR Res. 0x20 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Offset Res. 29.6.21 Res. 0x1C ADD1S Real-time clock (RTC) RM0385 RTC register map Table 173. RTC register map and reset values SU[3:0] 0 0 0 0 0 0 0 DU[3:0] 1 SU[3:0] 0 SU[3:0] 0 0 0 KEY 0x50 to 0xCC 0x4C RTC_ OR Reset value Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MASKSS [3:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RTC_BKP0R 0 to RTC_BKP31R 0 RM0385 Rev 7 TAMP2NOERASE TAMP2IE TAMP1MF TAMP1NOERASE TAMP1IE TAMPPUDIS 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. WDU[1:0] 0 0 0 0 0 0 0 0 0 0 0 0 MT 0 0 0 0 0 0 0 0 0 0 0 0 0 MU[3:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 SS[14:0] SS[14:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DT[1:0] 0 Res. 0 Res. 0 TAMP1E 0 .TAMPIE 0 TAMP1TRG 0 .TAMP2E 0 TAMP3E 0 TAMP2TRG 0 Res. 0 TAMPTS 0 Res. 0 TAMP3TRG 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. 0 TAMPFREQ[2:0] 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 TAMPFLT[1:0] 0 CALW16 Reset value 0 CALW8 Reset value CALP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 TAMPPRCH[1:0] TAMP3IE TAMP2MF TAMP3NOERASE Res. Res. Res. Reset value Res. Res. Res. Res. Res. 0 Res. 0 Res. 0 0 Res. MASKSS [3:0] 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 HT[1:0] PM Res. Res. Res. Res. Res. Res. Res. Res. Res. MNT[2:0] Res. Res. ST[2:0] 0 0 Reset value 0 0 Res. Reset value Res. Res. Res. Res. Res. Reset value Res. Reset value Res. Res. Res. Res. Res. RTC_TSTR MNU[3:0] TSINSEL[1:0] RTC_ ALRMBSSR Res. Register name HU[3:0] RTC_ALARM_TYPE 0x48 RTC_ ALRMASSR TAMP3MF Reset value Res. 0x44 Res. RTC_TAMPCR Res. 0x40 Res. RTC_ CALR Res. 0x3C Res. RTC_TSSSR Res. Res. Res. Res. Res. Res. Res. 0x38 Res. RTC_TSDR Res. 0x34 Res. 0x30 Res. Offset Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RM0385 Real-time clock (RTC) Table 173. RTC register map and reset values (continued) SU[3:0] 0 0 0 0 0 DU[3:0] SS[15:0] 0 0 0 0 0 0 0 0 0 0 0 0 CALM[8:0] 0 0 0 0 0 0 0 0 BKP[31:0] BKP[31:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. 953/1709 953 Inter-integrated circuit (I2C) interface RM0385 30 Inter-integrated circuit (I2C) interface 30.1 Introduction The I2C (inter-integrated circuit) bus interface handles communications between the microcontroller and the serial I2C bus. It provides multimaster capability, and controls all I2C bus-specific sequencing, protocol, arbitration and timing. It supports Standard-mode (Sm), Fast-mode (Fm) and Fast-mode Plus (Fm+). It is also SMBus (system management bus) and PMBus (power management bus) compatible. DMA can be used to reduce CPU overload. 30.2 I2C main features • I2C bus specification rev03 compatibility: – Slave and master modes – Multimaster capability – Standard-mode (up to 100 kHz) – Fast-mode (up to 400 kHz) – Fast-mode Plus (up to 1 MHz) – 7-bit and 10-bit addressing mode – Multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) – All 7-bit addresses acknowledge mode – General call – Programmable setup and hold times – Easy to use event management – Optional clock stretching – Software reset • 1-byte buffer with DMA capability • Programmable analog and digital noise filters The following additional features are also available depending on the product implementation (see Section 30.3: I2C implementation): • 954/1709 SMBus specification rev 3.0 compatibility: – Hardware PEC (Packet Error Checking) generation and verification with ACK control – Command and data acknowledge control – Address resolution protocol (ARP) support – Host and Device support – SMBus alert – Timeouts and idle condition detection • PMBus rev 1.3 standard compatibility • Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming RM0385 Rev 7 RM0385 30.3 Inter-integrated circuit (I2C) interface I2C implementation This manual describes the full set of features implemented in I2C1, I2C2, I2C3 and I2C4. I2C1, I2C2, I2C3 and I2C4are identical and implement the full set of features as shown in the following table. Table 174. STM32F75xxx and STM32F74xxx I2C implementation I2C features(1) I2C1 I2C2 I2C3 I2C4 7-bit addressing mode X X X X 10-bit addressing mode X X X X Standard-mode (up to 100 kbit/s) X X X X Fast-mode (up to 400 kbit/s) X X X X Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X X Independent clock X X X X Wakeup from Stop mode - - - - SMBus/PMBus X X X X 1. X = supported. 30.4 I2C functional description In addition to receiving and transmitting data, this interface converts it from serial to parallel format and vice versa. The interrupts are enabled or disabled by software. The interface is connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected with a standard (up to 100 kHz), Fast-mode (up to 400 kHz) or Fast-mode Plus (up to 1 MHz) I2C bus. This interface can also be connected to a SMBus with the data pin (SDA) and clock pin (SCL). If SMBus feature is supported: the additional optional SMBus Alert pin (SMBA) is also available. RM0385 Rev 7 955/1709 1020 Inter-integrated circuit (I2C) interface 30.4.1 RM0385 I2C block diagram The block diagram of the I2C interface is shown in Figure 303. Figure 303. I2C block diagram I2c_ker_ck I2CCLK Data control Shift register Digital noise filter Analog noise filter GPIO logic I2C_SDA Digital noise filter Analog noise filter GPIO logic I2C_SCL SMBUS PEC generation/ check Wakeup on address match Clock control Master clock generation Slave clock stretching SMBus Timeout check SMBus Alert control & status I2c_pclk PCLK I2C_SMBA Registers APB bus MSv46198V2 The I2C is clocked by an independent clock source which allows to the I2C to operate independently from the PCLK frequency. This independent clock source can be selected from the following three clock sources: • PCLK1: APB1 clock (default value) • HSI: high speed internal oscillator • SYSCLK: system clock Refer to Section 5: Reset and clock control (RCC) for more details. 956/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface For I2C I/Os supporting 20 mA output current drive for Fast-mode Plus operation, the driving capability is enabled through control bits in the system configuration controller (SYSCFG). Refer to Section 30.3: I2C implementation. 30.4.2 I2C clock requirements The I2C kernel is clocked by I2CCLK. The I2CCLK period tI2CCLK must respect the following conditions: tI2CCLK < (tLOW - tfilters) / 4 and tI2CCLK < tHIGH with: tLOW: SCL low time and tHIGH: SCL high time tfilters: when enabled, sum of the delays brought by the analog filter and by the digital filter. Analog filter delay is maximum 260 ns. Digital filter delay is DNF x tI2CCLK. The PCLK clock period tPCLK must respect the following condition: tPCLK < 4/3 tSCL with tSCL: SCL period Caution: When the I2C kernel is clocked by PCLK, this clock must respect the conditions for tI2CCLK. 30.4.3 Mode selection The interface can operate in one of the four following modes: • Slave transmitter • Slave receiver • Master transmitter • Master receiver By default, it operates in slave mode. The interface automatically switches from slave to master when it generates a START condition, and from master to slave if an arbitration loss or a STOP generation occurs, allowing multimaster capability. Communication flow In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A serial data transfer always begins with a START condition and ends with a STOP condition. Both START and STOP conditions are generated in master mode by software. In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and the General Call address. The General Call address detection can be enabled or disabled by software. The reserved SMBus addresses can also be enabled by software. Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the START condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is always transmitted in Master mode. A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must send an acknowledge bit to the transmitter. Refer to the following figure. RM0385 Rev 7 957/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Figure 304. I2C bus protocol SDA MSB ACK SCL 1 2 8 9 Start condition Stop condition MS19854V1 Acknowledge can be enabled or disabled by software. The I2C interface addresses can be selected by software. 30.4.4 I2C initialization Enabling and disabling the peripheral The I2C peripheral clock must be configured and enabled in the clock controller (refer to Section 5: Reset and clock control (RCC)). Then the I2C can be enabled by setting the PE bit in the I2C_CR1 register. When the I2C is disabled (PE=0), the I2C performs a software reset. Refer to Section 30.4.5: Software reset for more details. Noise filters Before enabling the I2C peripheral by setting the PE bit in I2C_CR1 register, the user must configure the noise filters, if needed. By default, an analog noise filter is present on the SDA and SCL inputs. This analog filter is compliant with the I2C specification which requires the suppression of spikes with a pulse width up to 50 ns in Fast-mode and Fast-mode Plus. The user can disable this analog filter by setting the ANFOFF bit, and/or select a digital filter by configuring the DNF[3:0] bit in the I2C_CR1 register. When the digital filter is enabled, the level of the SCL or the SDA line is internally changed only if it remains stable for more than DNF x I2CCLK periods. This allows to suppress spikes with a programmable length of 1 to 15 I2CCLK periods. Table 175. Comparison of analog vs. digital filters - Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Available in Stop mode – Programmable length: extra filtering capability vs. standard requirements – Stable length Variation vs. temperature, voltage, process Wakeup from Stop mode on address match is not available when digital filter is enabled Benefits Drawbacks 958/1709 RM0385 Rev 7 RM0385 Caution: Inter-integrated circuit (I2C) interface Changing the filter configuration is not allowed when the I2C is enabled. I2C timings The timings must be configured in order to guarantee a correct data hold and setup time, used in master and slave modes. This is done by programming the PRESC[3:0], SCLDEL[3:0] and SDADEL[3:0] bits in the I2C_TIMINGR register. The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C configuration window Figure 305. Setup and hold timings DATA HOLD TIME SCL falling edge internal detection tSYNC1 SDADEL: SCL stretched low by the I2C SDA output delay SCL SDA tHD;DAT Data hold time: in case of transmission, the data is sent on SDA output after the SDADEL delay, if it is already available in I2C_TXDR. DATA SETUP TIME SCLDEL SCL stretched low by the I2C SCL SDA tSU;DAT SU;STA Data setup time: in case of transmission, the SCLDEL counter starts when the data is sent on SDA output. MSv40108V1 MS49608V1 RM0385 Rev 7 959/1709 1020 Inter-integrated circuit (I2C) interface • RM0385 When the SCL falling edge is internally detected, a delay is inserted before sending SDA output. This delay is tSDADEL = SDADEL x tPRESC + tI2CCLK where tPRESC = (PRESC+1) x tI2CCLK. TSDADEL impacts the hold time tHD;DAT. The total SDA output delay is: tSYNC1 + {[SDADEL x (PRESC+1) + 1] x tI2CCLK } tSYNC1 duration depends on these parameters: – SCL falling slope – When enabled, input delay brought by the analog filter: tAF(min) < tAF < tAF(max) ns. – When enabled, input delay brought by the digital filter: tDNF = DNF x tI2CCLK – Delay due to SCL synchronization to I2CCLK clock (2 to 3 I2CCLK periods) In order to bridge the undefined region of the SCL falling edge, the user must program SDADEL in such a way that: {tf (max) +tHD;DAT (min) -tAF(min) - [(DNF +3) x tI2CCLK]} / {(PRESC +1) x tI2CCLK } ≤ SDADEL SDADEL ≤ {tHD;DAT (max) -tAF(max) - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK } Note: tAF(min) / tAF(max) are part of the equation only when the analog filter is enabled. Refer to device datasheet for tAF values. The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for Standard-mode, Fast-mode and Fast-mode Plus, but must be less than the maximum of tVD;DAT by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock. The SDA rising edge is usually the worst case, so in this case the previous equation becomes: SDADEL ≤ {tVD;DAT (max) -tr (max) -260 ns - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK }. Note: This condition can be violated when NOSTRETCH=0, because the device stretches SCL low to guarantee the set-up time, according to the SCLDEL value. Refer to Table 176: I2C-SMBUS specification data setup and hold times for tf, tr, tHD;DAT and tVD;DAT standard values. • After tSDADEL delay, or after sending SDA output in case the slave had to stretch the clock because the data was not yet written in I2C_TXDR register, SCL line is kept at low level during the setup time. This setup time is tSCLDEL = (SCLDEL+1) x tPRESC where tPRESC = (PRESC+1) x tI2CCLK. tSCLDEL impacts the setup time tSU;DAT . In order to bridge the undefined region of the SDA transition (rising edge usually worst case), the user must program SCLDEL in such a way that: {[tr (max) + tSU;DAT (min)] / [(PRESC+1)] x tI2CCLK]} - 1 <= SCLDEL Refer to Table 176: I2C-SMBUS specification data setup and hold times for tr and tSU;DAT standard values. The SDA and SCL transition time values to be used are the ones in the application. Using the maximum values from the standard increases the constraints for the SDADEL and SCLDEL calculation, but ensures the feature whatever the application. 960/1709 RM0385 Rev 7 RM0385 Note: Inter-integrated circuit (I2C) interface At every clock pulse, after SCL falling edge detection, the I2C master or slave stretches SCL low during at least [(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK, in both transmission and reception modes. In transmission mode, in case the data is not yet written in I2C_TXDR when SDADEL counter is finished, the I2C keeps on stretching SCL low until the next data is written. Then new data MSB is sent on SDA output, and SCLDEL counter starts, continuing stretching SCL low to guarantee the data setup time. If NOSTRETCH=1 in slave mode, the SCL is not stretched. Consequently the SDADEL must be programmed in such a way to guarantee also a sufficient setup time. Table 176. I2C-SMBUS specification data setup and hold times Symbol Parameter Standard-mode (Sm) Fast-mode (Fm) Fast-mode Plus (Fm+) SMBUS Unit Min. Max Min. Max Min. Max Min. Max tHD;DAT Data hold time 0 - 0 - 0 - 0.3 - tVD;DAT Data valid time - 3.45 - 0.9 - 0.45 - - tSU;DAT Data setup time 250 - 100 - 50 - 250 - µs tr Rise time of both SDA and SCL signals - 1000 - 300 - 120 - 1000 tf Fall time of both SDA and SCL signals - 300 - 300 - 120 - 300 ns Additionally, in master mode, the SCL clock high and low levels must be configured by programming the PRESC[3:0], SCLH[7:0] and SCLL[7:0] bits in the I2C_TIMINGR register. • When the SCL falling edge is internally detected, a delay is inserted before releasing the SCL output. This delay is tSCLL = (SCLL+1) x tPRESC where tPRESC = (PRESC+1) x tI2CCLK. tSCLL impacts the SCL low time tLOW . • When the SCL rising edge is internally detected, a delay is inserted before forcing the SCL output to low level. This delay is tSCLH = (SCLH+1) x tPRESC where tPRESC = (PRESC+1) x tI2CCLK. tSCLH impacts the SCL high time tHIGH . Refer to I2C master initialization for more details. Caution: Changing the timing configuration is not allowed when the I2C is enabled. The I2C slave NOSTRETCH mode must also be configured before enabling the peripheral. Refer to I2C slave initialization for more details. Caution: Changing the NOSTRETCH configuration is not allowed when the I2C is enabled. RM0385 Rev 7 961/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Figure 306. I2C initialization flowchart Initial settings Clear PE bit in I2C_CR1 Configure ANFOFF and DNF[3:0] in I2C_CR1 Configure PRESC[3:0], SDADEL[3:0], SCLDEL[3:0], SCLH[7:0], SCLL[7:0] in I2C_TIMINGR Configure NOSTRETCH in I2C_CR1 Set PE bit in I2C_CR1 End MS19847V2 30.4.5 Software reset A software reset can be performed by clearing the PE bit in the I2C_CR1 register. In that case I2C lines SCL and SDA are released. Internal states machines are reset and communication control bits, as well as status bits come back to their reset value. The configuration registers are not impacted. Here is the list of impacted register bits: 1. I2C_CR2 register: START, STOP, NACK 2. I2C_ISR register: BUSY, TXE, TXIS, RXNE, ADDR, NACKF, TCR, TC, STOPF, BERR, ARLO, OVR and in addition when the SMBus feature is supported: 1. I2C_CR2 register: PECBYTE 2. I2C_ISR register: PECERR, TIMEOUT, ALERT PE must be kept low during at least 3 APB clock cycles in order to perform the software reset. This is ensured by writing the following software sequence: - Write PE=0 - Check PE=0 - Write PE=1. 962/1709 RM0385 Rev 7 RM0385 30.4.6 Inter-integrated circuit (I2C) interface Data transfer The data transfer is managed through transmit and receive data registers and a shift register. Reception The SDA input fills the shift register. After the 8th SCL pulse (when the complete data byte is received), the shift register is copied into I2C_RXDR register if it is empty (RXNE=0). If RXNE=1, meaning that the previous received data byte has not yet been read, the SCL line is stretched low until I2C_RXDR is read. The stretch is inserted between the 8th and 9th SCL pulse (before the Acknowledge pulse). Figure 307. Data reception ACK pulse ACK pulse legend: SCL Shift register SCL stretch xx data1 xx data2 xx RXNE rd data0 rd data1 I2C_RXDR data0 data1 data2 MS19848V1 RM0385 Rev 7 963/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Transmission If the I2C_TXDR register is not empty (TXE=0), its content is copied into the shift register after the 9th SCL pulse (the Acknowledge pulse). Then the shift register content is shifted out on SDA line. If TXE=1, meaning that no data is written yet in I2C_TXDR, SCL line is stretched low until I2C_TXDR is written. The stretch is done after the 9th SCL pulse. Figure 308. Data transmission ACK pulse ACK pulse legend: xx xx data2 Shift register data1 SCL SCL stretch xx TXE wr data1 I2C_TXDR data0 wr data2 data1 data2 MS19849V1 Hardware transfer management The I2C has a byte counter embedded in hardware in order to manage byte transfer and to close the communication in various modes such as: – NACK, STOP and ReSTART generation in master mode – ACK control in slave receiver mode – PEC generation/checking when SMBus feature is supported The byte counter is always used in master mode. By default it is disabled in slave mode, but it can be enabled by software by setting the SBC (Slave Byte Control) bit in the I2C_CR2 register. The number of bytes to be transferred is programmed in the NBYTES[7:0] bit field in the I2C_CR2 register. If the number of bytes to be transferred (NBYTES) is greater than 255, or if a receiver wants to control the acknowledge value of a received data byte, the reload mode must be selected by setting the RELOAD bit in the I2C_CR2 register. In this mode, TCR flag is set when the number of bytes programmed in NBYTES has been transferred, and an interrupt is generated if TCIE is set. SCL is stretched as long as TCR flag is set. TCR is cleared by software when NBYTES is written to a non-zero value. When the NBYTES counter is reloaded with the last number of bytes, RELOAD bit must be cleared. 964/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface When RELOAD=0 in master mode, the counter can be used in 2 modes: Caution: • Automatic end mode (AUTOEND = ‘1’ in the I2C_CR2 register). In this mode, the master automatically sends a STOP condition once the number of bytes programmed in the NBYTES[7:0] bit field has been transferred. • Software end mode (AUTOEND = ‘0’ in the I2C_CR2 register). In this mode, software action is expected once the number of bytes programmed in the NBYTES[7:0] bit field has been transferred; the TC flag is set and an interrupt is generated if the TCIE bit is set. The SCL signal is stretched as long as the TC flag is set. The TC flag is cleared by software when the START or STOP bit is set in the I2C_CR2 register. This mode must be used when the master wants to send a RESTART condition. The AUTOEND bit has no effect when the RELOAD bit is set. Table 177. I2C configuration 30.4.7 Function SBC bit RELOAD bit AUTOEND bit Master Tx/Rx NBYTES + STOP x 0 1 Master Tx/Rx + NBYTES + RESTART x 0 0 Slave Tx/Rx all received bytes ACKed 0 x x Slave Rx with ACK control 1 1 x I2C slave mode I2C slave initialization In order to work in slave mode, the user must enable at least one slave address. Two registers I2C_OAR1 and I2C_OAR2 are available in order to program the slave own addresses OA1 and OA2. • OA1 can be configured either in 7-bit mode (by default) or in 10-bit addressing mode by setting the OA1MODE bit in the I2C_OAR1 register. OA1 is enabled by setting the OA1EN bit in the I2C_OAR1 register. • If additional slave addresses are required, the 2nd slave address OA2 can be configured. Up to 7 OA2 LSB can be masked by configuring the OA2MSK[2:0] bits in the I2C_OAR2 register. Therefore for OA2MSK configured from 1 to 6, only OA2[7:2], OA2[7:3], OA2[7:4], OA2[7:5], OA2[7:6] or OA2[7] are compared with the received address. As soon as OA2MSK is not equal to 0, the address comparator for OA2 excludes the I2C reserved addresses (0000 XXX and 1111 XXX), which are not acknowledged. If OA2MSK=7, all received 7-bit addresses are acknowledged (except reserved addresses). OA2 is always a 7-bit address. These reserved addresses can be acknowledged if they are enabled by the specific enable bit, if they are programmed in the I2C_OAR1 or I2C_OAR2 register with OA2MSK=0. OA2 is enabled by setting the OA2EN bit in the I2C_OAR2 register. • The General Call address is enabled by setting the GCEN bit in the I2C_CR1 register. When the I2C is selected by one of its enabled addresses, the ADDR interrupt status flag is set, and an interrupt is generated if the ADDRIE bit is set. RM0385 Rev 7 965/1709 1020 Inter-integrated circuit (I2C) interface RM0385 By default, the slave uses its clock stretching capability, which means that it stretches the SCL signal at low level when needed, in order to perform software actions. If the master does not support clock stretching, the I2C must be configured with NOSTRETCH=1 in the I2C_CR1 register. After receiving an ADDR interrupt, if several addresses are enabled the user must read the ADDCODE[6:0] bits in the I2C_ISR register in order to check which address matched. DIR flag must also be checked in order to know the transfer direction. Slave clock stretching (NOSTRETCH = 0) In default mode, the I2C slave stretches the SCL clock in the following situations: • When the ADDR flag is set: the received address matches with one of the enabled slave addresses. This stretch is released when the ADDR flag is cleared by software setting the ADDRCF bit. • In transmission, if the previous data transmission is completed and no new data is written in I2C_TXDR register, or if the first data byte is not written when the ADDR flag is cleared (TXE=1). This stretch is released when the data is written to the I2C_TXDR register. • In reception when the I2C_RXDR register is not read yet and a new data reception is completed. This stretch is released when I2C_RXDR is read. • When TCR = 1 in Slave Byte Control mode, reload mode (SBC=1 and RELOAD=1), meaning that the last data byte has been transferred. This stretch is released when then TCR is cleared by writing a non-zero value in the NBYTES[7:0] field. • After SCL falling edge detection, the I2C stretches SCL low during [(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK. Slave without clock stretching (NOSTRETCH = 1) When NOSTRETCH = 1 in the I2C_CR1 register, the I2C slave does not stretch the SCL signal. 966/1709 • The SCL clock is not stretched while the ADDR flag is set. • In transmission, the data must be written in the I2C_TXDR register before the first SCL pulse corresponding to its transfer occurs. If not, an underrun occurs, the OVR flag is set in the I2C_ISR register and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. The OVR flag is also set when the first data transmission starts and the STOPF bit is still set (has not been cleared). Therefore, if the user clears the STOPF flag of the previous transfer only after writing the first data to be transmitted in the next transfer, he ensures that the OVR status is provided, even for the first data to be transmitted. • In reception, the data must be read from the I2C_RXDR register before the 9th SCL pulse (ACK pulse) of the next data byte occurs. If not an overrun occurs, the OVR flag is set in the I2C_ISR register and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Slave Byte Control mode In order to allow byte ACK control in slave reception mode, Slave Byte Control mode must be enabled by setting the SBC bit in the I2C_CR1 register. This is required to be compliant with SMBus standards. Reload mode must be selected in order to allow byte ACK control in slave reception mode (RELOAD=1). To get control of each byte, NBYTES must be initialized to 0x1 in the ADDR interrupt subroutine, and reloaded to 0x1 after each received byte. When the byte is received, the TCR bit is set, stretching the SCL signal low between the 8th and 9th SCL pulses. The user can read the data from the I2C_RXDR register, and then decide to acknowledge it or not by configuring the ACK bit in the I2C_CR2 register. The SCL stretch is released by programming NBYTES to a non-zero value: the acknowledge or notacknowledge is sent and next byte can be received. NBYTES can be loaded with a value greater than 0x1, and in this case, the reception flow is continuous during NBYTES data reception. Note: The SBC bit must be configured when the I2C is disabled, or when the slave is not addressed, or when ADDR=1. The RELOAD bit value can be changed when ADDR=1, or when TCR=1. Caution: Slave Byte Control mode is not compatible with NOSTRETCH mode. Setting SBC when NOSTRETCH=1 is not allowed. Figure 309. Slave initialization flowchart Slave initialization Initial settings Clear {OA1EN, OA2EN} in I2C_OAR1 and I2C_OAR2 Configure {OA1[9:0], OA1MODE, OA1EN, OA2[6:0], OA2MSK[2:0], OA2EN, GCEN} Configure SBC in I2C_CR1* Enable interrupts and/or DMA in I2C_CR1 End *SBC must be set to support SMBus features MS19850V2 RM0385 Rev 7 967/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Slave transmitter A transmit interrupt status (TXIS) is generated when the I2C_TXDR register becomes empty. An interrupt is generated if the TXIE bit is set in the I2C_CR1 register. The TXIS bit is cleared when the I2C_TXDR register is written with the next data byte to be transmitted. When a NACK is received, the NACKF bit is set in the I2C_ISR register and an interrupt is generated if the NACKIE bit is set in the I2C_CR1 register. The slave automatically releases the SCL and SDA lines in order to let the master perform a STOP or a RESTART condition. The TXIS bit is not set when a NACK is received. When a STOP is received and the STOPIE bit is set in the I2C_CR1 register, the STOPF flag is set in the I2C_ISR register and an interrupt is generated. In most applications, the SBC bit is usually programmed to ‘0’. In this case, If TXE = 0 when the slave address is received (ADDR=1), the user can choose either to send the content of the I2C_TXDR register as the first data byte, or to flush the I2C_TXDR register by setting the TXE bit in order to program a new data byte. In Slave Byte Control mode (SBC=1), the number of bytes to be transmitted must be programmed in NBYTES in the address match interrupt subroutine (ADDR=1). In this case, the number of TXIS events during the transfer corresponds to the value programmed in NBYTES. Caution: When NOSTRETCH=1, the SCL clock is not stretched while the ADDR flag is set, so the user cannot flush the I2C_TXDR register content in the ADDR subroutine, in order to program the first data byte. The first data byte to be sent must be previously programmed in the I2C_TXDR register: • This data can be the data written in the last TXIS event of the previous transmission message. • If this data byte is not the one to be sent, the I2C_TXDR register can be flushed by setting the TXE bit in order to program a new data byte. The STOPF bit must be cleared only after these actions, in order to guarantee that they are executed before the first data transmission starts, following the address acknowledge. If STOPF is still set when the first data transmission starts, an underrun error will be generated (the OVR flag is set). If a TXIS event is needed, (Transmit Interrupt or Transmit DMA request), the user must set the TXIS bit in addition to the TXE bit, in order to generate a TXIS event. 968/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Figure 310. Transfer sequence flowchart for I2C slave transmitter, NOSTRETCH=0 Slave transmission Slave initialization No I2C_ISR.ADDR =1? Yes SCL stretched Read ADDCODE and DIR in I2C_ISR Optional: Set I2C_ISR.TXE = 1 Set I2C_ICR.ADDRCF No I2C_ISR.TXIS =1? Yes Write I2C_TXDR.TXDATA MS19851V2 RM0385 Rev 7 969/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Figure 311. Transfer sequence flowchart for I2C slave transmitter, NOSTRETCH=1 Slave transmission Slave initialization No No I2C_ISR.TXIS =1? I2C_ISR.STOPF =1? Yes Yes Write I2C_TXDR.TXDATA Optional: Set I2C_ISR.TXE = 1 and I2C_ISR.TXIS=1 Set I2C_ICR.STOPCF MS19852V2 970/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Figure 312. Transfer bus diagrams for I2C slave transmitter legend: Example I2C slave transmitter 3 bytes with 1st data flushed, NOSTRETCH=0: TXIS TXIS ADDR S Address A TXIS A data1 reception data3 A data2 EV2 EV3 EV1 transmission TXIS NA P SCL stretch EV4 EV5 TXE EV1: ADDR ISR: check ADDCODE and DIR, set TXE, set ADDRCF EV2: TXIS ISR: wr data1 EV3: TXIS ISR: wr data2 EV4: TXIS ISR: wr data3 EV5: TXIS ISR: wr data4 (not sent) legend : Example I2C slave transmitter 3 bytes without 1st data flush, NOSTRETCH=0: S TXIS TXIS ADDR Address A EV1 data1 A transmission TXIS data2 A EV2 reception data3 EV3 NA SCL stretch P EV4 TXE EV1: ADDR ISR: check ADDCODE and DIR, set ADDRCF EV2: TXIS ISR: wr data2 EV3: TXIS ISR: wr data3 EV4: TXIS ISR: wr data4 (not sent) legend: Example I2C slave transmitter 3 bytes, NOSTRETCH=1: transmission TXIS S Address EV1 TXIS data1 A EV2 A STOPF TXIS data2 EV3 A data3 EV4 reception SCL stretch NA P EV5 TXE EV1: wr data1 EV2: TXIS ISR: wr data2 EV3: TXIS ISR: wr data3 EV4: TXIS ISR: wr data4 (not sent) EV5: STOPF ISR: (optional: set TXE and TXIS), set STOPCF MS19853V1 RM0385 Rev 7 971/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Slave receiver RXNE is set in I2C_ISR when the I2C_RXDR is full, and generates an interrupt if RXIE is set in I2C_CR1. RXNE is cleared when I2C_RXDR is read. When a STOP is received and STOPIE is set in I2C_CR1, STOPF is set in I2C_ISR and an interrupt is generated. Figure 313. Transfer sequence flowchart for slave receiver with NOSTRETCH=0 Slave reception Slave initialization No I2C_ISR.ADDR =1? Yes SCL stretched Read ADDCODE and DIR in I2C_ISR Set I2C_ICR.ADDRCF No I2C_ISR.RXNE =1? Yes Write I2C_RXDR.RXDATA MS19855V2 972/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Figure 314. Transfer sequence flowchart for slave receiver with NOSTRETCH=1 Slave reception Slave initialization No No I2C_ISR.STOPF =1? I2C_ISR.RXNE =1? Yes Yes Set I2C_ICR.STOPCF Read I2C_RXDR.RXDATA MS19856V2 Figure 315. Transfer bus diagrams for I2C slave receiver legend: Example I2C slave receiver 3 bytes, NOSTRETCH=0: transmission ADDR S RXNE Address A data1 A RXNE RXNE data2 data3 A EV1 EV2 EV3 A reception SCL stretch EV4 RXNE EV1: ADDR ISR: check ADDCODE and DIR, set ADDRCF EV2: RXNE ISR: rd data1 EV3 : RXNE ISR: rd data2 EV4: RXNE ISR: rd data3 Example I2C slave receiver 3 bytes, NOSTRETCH=1: legend: transmission RXNE S Address A data 1 RXNE data 2 A EV1 RXNE data 3 A EV2 A reception P SCL stretch EV3 RXNE EV1: RXNE ISR: rd data1 EV2: RXNE ISR: rd data2 EV3: RXNE ISR: rd data3 EV4: STOPF ISR: set STOPCF MS19857V2 RM0385 Rev 7 973/1709 1020 Inter-integrated circuit (I2C) interface 30.4.8 RM0385 I2C master mode I2C master initialization Before enabling the peripheral, the I2C master clock must be configured by setting the SCLH and SCLL bits in the I2C_TIMINGR register. The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C Configuration window. A clock synchronization mechanism is implemented in order to support multi-master environment and slave clock stretching. In order to allow clock synchronization: • The low level of the clock is counted using the SCLL counter, starting from the SCL low level internal detection. • The high level of the clock is counted using the SCLH counter, starting from the SCL high level internal detection. The I2C detects its own SCL low level after a tSYNC1 delay depending on the SCL falling edge, SCL input noise filters (analog + digital) and SCL synchronization to the I2CxCLK clock. The I2C releases SCL to high level once the SCLL counter reaches the value programmed in the SCLL[7:0] bits in the I2C_TIMINGR register. The I2C detects its own SCL high level after a tSYNC2 delay depending on the SCL rising edge, SCL input noise filters (analog + digital) and SCL synchronization to I2CxCLK clock. The I2C ties SCL to low level once the SCLH counter is reached reaches the value programmed in the SCLH[7:0] bits in the I2C_TIMINGR register. Consequently the master clock period is: tSCL = tSYNC1 + tSYNC2 + {[(SCLH+1) + (SCLL+1)] x (PRESC+1) x tI2CCLK} The duration of tSYNC1 depends on these parameters: – SCL falling slope – When enabled, input delay induced by the analog filter. – When enabled, input delay induced by the digital filter: DNF x tI2CCLK – Delay due to SCL synchronization with I2CCLK clock (2 to 3 I2CCLK periods) The duration of tSYNC2 depends on these parameters: 974/1709 – SCL rising slope – When enabled, input delay induced by the analog filter. – When enabled, input delay induced by the digital filter: DNF x tI2CCLK – Delay due to SCL synchronization with I2CCLK clock (2 to 3 I2CCLK periods) RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Figure 316. Master clock generation SCL master clock generation SCL high level detected SCLH counter starts tSYNC2 SCLH tSYNC1 SCLL SCL SCL low level detected SCLL counter starts SCL released SCL driven low SCL master clock synchronization SCL high level detected SCLH counter starts SCL high level detected SCLH counter starts SCLH SCL high level detected SCLH counter starts SCLH SCLL SCLH SCLL SCL driven low by another device SCL driven low by another device SCL low level detected SCLL counter starts SCL low level detected SCLL counter starts SCL released MS19858V1 Caution: In order to be I2C or SMBus compliant, the master clock must respect the timings given below: RM0385 Rev 7 975/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Table 178. I2C-SMBUS specification clock timings Symbol fSCL Parameter SCL clock frequency Standardmode (Sm) Fast-mode Fast-mode (Fm) Plus (Fm+) Min Max Min Max Min Max Min Max - 100 - 400 - 1000 - 100 kHz SMBUS Unit tHD:STA Hold time (repeated) START condition 4.0 - 0.6 - 0.26 - 4.0 - µs tSU:STA Set-up time for a repeated START condition 4.7 - 0.6 - 0.26 - 4.7 - µs tSU:STO Set-up time for STOP condition 4.0 - 0.6 - 0.26 - 4.0 - µs tBUF Bus free time between a STOP and START condition 4.7 - 1.3 - 0.5 - 4.7 - µs tLOW Low period of the SCL clock 4.7 - 1.3 - 0.5 - 4.7 - µs tHIGH Period of the SCL clock 4.0 - 0.6 - 0.26 - 4.0 50 µs tr Rise time of both SDA and SCL signals - 1000 - 300 - 120 - 1000 ns tf Fall time of both SDA and SCL signals - 300 - 300 - 120 - 300 ns Note: SCLL is also used to generate the tBUF and tSU:STA timings. SCLH is also used to generate the tHD:STA and tSU:STO timings. Refer to Section 30.4.9: I2C_TIMINGR register configuration examples for examples of I2C_TIMINGR settings vs. I2CCLK frequency. Master communication initialization (address phase) In order to initiate the communication, the user must program the following parameters for the addressed slave in the I2C_CR2 register: • Addressing mode (7-bit or 10-bit): ADD10 • Slave address to be sent: SADD[9:0] • Transfer direction: RD_WRN • In case of 10-bit address read: HEAD10R bit. HEAD10R must be configure to indicate if the complete address sequence must be sent, or only the header in case of a direction change. • The number of bytes to be transferred: NBYTES[7:0]. If the number of bytes is equal to or greater than 255 bytes, NBYTES[7:0] must initially be filled with 0xFF. The user must then set the START bit in I2C_CR2 register. Changing all the above bits is not allowed when START bit is set. Then the master automatically sends the START condition followed by the slave address as soon as it detects that the bus is free (BUSY = 0) and after a delay of tBUF. In case of an arbitration loss, the master automatically switches back to slave mode and can acknowledge its own address if it is addressed as a slave. Note: 976/1709 The START bit is reset by hardware when the slave address has been sent on the bus, whatever the received acknowledge value. The START bit is also reset by hardware if an arbitration loss occurs. In 10-bit addressing mode, when the Slave Address first 7 bits is NACKed by the slave, the RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface master will re-launch automatically the slave address transmission until ACK is received. In this case ADDRCF must be set if a NACK is received from the slave, in order to stop sending the slave address. If the I2C is addressed as a slave (ADDR=1) while the START bit is set, the I2C switches to slave mode and the START bit is cleared when the ADDRCF bit is set. Note: The same procedure is applied for a Repeated Start condition. In this case BUSY=1. Figure 317. Master initialization flowchart Master initialization Initial settings Enable interrupts and/or DMA in I2C_CR1 End MS19859V2 Initialization of a master receiver addressing a 10-bit address slave • If the slave address is in 10-bit format, the user can choose to send the complete read sequence by clearing the HEAD10R bit in the I2C_CR2 register. In this case the master automatically sends the following complete sequence after the START bit is set: (Re)Start + Slave address 10-bit header Write + Slave address 2nd byte + REStart + Slave address 10-bit header Read Figure 318. 10-bit address read access with HEAD10R=0 S 11110XX 0 Slave address 1st 7 bits R/W A1 Slave address 2nd byte A2 Sr 11110XX 1 Slave address 1st 7 bits R/W A3 DATA A DATA A P Read Write MSv41066V1 RM0385 Rev 7 977/1709 1020 Inter-integrated circuit (I2C) interface • RM0385 If the master addresses a 10-bit address slave, transmits data to this slave and then reads data from the same slave, a master transmission flow must be done first. Then a repeated start is set with the 10 bit slave address configured with HEAD10R=1. In this case the master sends this sequence: ReStart + Slave address 10-bit header Read. Figure 319. 10-bit address read access with HEAD10R=1 S 11110XX 0 Slave address 1st 7 bits R/W A Slave address 2nd byte A DATA A DATA A/A Write Sr 11110XX 1 Slave address 1st 7 bits R/W A DATA A DATA A P Read MS19823V1 Master transmitter In the case of a write transfer, the TXIS flag is set after each byte transmission, after the 9th SCL pulse when an ACK is received. A TXIS event generates an interrupt if the TXIE bit is set in the I2C_CR1 register. The flag is cleared when the I2C_TXDR register is written with the next data byte to be transmitted. The number of TXIS events during the transfer corresponds to the value programmed in NBYTES[7:0]. If the total number of data bytes to be sent is greater than 255, reload mode must be selected by setting the RELOAD bit in the I2C_CR2 register. In this case, when NBYTES data have been transferred, the TCR flag is set and the SCL line is stretched low until NBYTES[7:0] is written to a non-zero value. The TXIS flag is not set when a NACK is received. • When RELOAD=0 and NBYTES data have been transferred: – In automatic end mode (AUTOEND=1), a STOP is automatically sent. – In software end mode (AUTOEND=0), the TC flag is set and the SCL line is stretched low in order to perform software actions: A RESTART condition can be requested by setting the START bit in the I2C_CR2 register with the proper slave address configuration, and number of bytes to be transferred. Setting the START bit clears the TC flag and the START condition is sent on the bus. A STOP condition can be requested by setting the STOP bit in the I2C_CR2 register. Setting the STOP bit clears the TC flag and the STOP condition is sent on the bus. • 978/1709 If a NACK is received: the TXIS flag is not set, and a STOP condition is automatically sent after the NACK reception. the NACKF flag is set in the I2C_ISR register, and an interrupt is generated if the NACKIE bit is set. RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Figure 320. Transfer sequence flowchart for I2C master transmitter for N≤255 bytes Master transmission Master initialization NBYTES = N AUTOEND = 0 for RESTART; 1 for STOP Configure slave address Set I2C_CR2.START No I2C_ISR.TXIS =1? I2C_ISR.NACKF = 1? No Yes Yes Write I2C_TXDR End NBYTES transmitted? No Yes I2C_ISR.TC = 1? No Yes Set I2C_CR2.START with slave addess NBYTES ... End MS19860V2 RM0385 Rev 7 979/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Figure 321. Transfer sequence flowchart for I2C master transmitter for N>255 bytes Master transmission Master initialization NBYTES = 0xFF; N=N-255 RELOAD = 1 Configure slave address Set I2C_CR2.START No No I2C_ISR.TXIS I2C_ISR.NACKF = 1? = 1? Yes Yes Write I2C_TXDR End No NBYTES transmitted ? Yes Yes I2C_ISR.TC = 1? Set I2C_CR2.START No with slave addess NBYTES ... I2C_ISR.TCR = 1? Yes IF N< 256 NBYTES = N; N = 0; RELOAD = 0 End AUTOEND = 0 for RESTART; 1 for STOP ELSE NBYTES = 0xFF; N = N-255 RELOAD = 1 MS19861V3 980/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Figure 322. Transfer bus diagrams for I2C master transmitter Example I2C master transmitter 2 bytes, automatic end mode (STOP) legend: transmission TXIS TXIS reception S Address A A data1 data2 A P SCL stretch INIT EV1 EV2 TXE NBYTES xx 2 INIT: program Slave address, program NBYTES = 2, AUTOEND=1, set START EV1: TXIS ISR: wr data1 EV2: TXIS ISR: wr data2 Example I2C master transmitter 2 bytes, software end mode (RESTART) TXIS TXIS legend: TC transmission S Address INIT A data1 A data2 EV1 EV2 A ReS EV3 Address reception SCL stretch TXE NBYTES xx 2 INIT: program Slave address, program NBYTES = 2, AUTOEND=0, set START EV1: TXIS ISR: wr data1 EV2: TXIS ISR: wr data2 EV3: TC ISR: program Slave address, program NBYTES = N, set START MS19862V1 RM0385 Rev 7 981/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Master receiver In the case of a read transfer, the RXNE flag is set after each byte reception, after the 8th SCL pulse. An RXNE event generates an interrupt if the RXIE bit is set in the I2C_CR1 register. The flag is cleared when I2C_RXDR is read. If the total number of data bytes to be received is greater than 255, reload mode must be selected by setting the RELOAD bit in the I2C_CR2 register. In this case, when NBYTES[7:0] data have been transferred, the TCR flag is set and the SCL line is stretched low until NBYTES[7:0] is written to a non-zero value. • When RELOAD=0 and NBYTES[7:0] data have been transferred: – In automatic end mode (AUTOEND=1), a NACK and a STOP are automatically sent after the last received byte. – In software end mode (AUTOEND=0), a NACK is automatically sent after the last received byte, the TC flag is set and the SCL line is stretched low in order to allow software actions: A RESTART condition can be requested by setting the START bit in the I2C_CR2 register with the proper slave address configuration, and number of bytes to be transferred. Setting the START bit clears the TC flag and the START condition, followed by slave address, are sent on the bus. A STOP condition can be requested by setting the STOP bit in the I2C_CR2 register. Setting the STOP bit clears the TC flag and the STOP condition is sent on the bus. 982/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Figure 323. Transfer sequence flowchart for I2C master receiver for N≤255 bytes Master reception Master initialization NBYTES = N AUTOEND = 0 for RESTART; 1 for STOP Configure slave address Set I2C_CR2.START I2C_ISR.RXNE =1? No Yes Read I2C_RXDR NBYTES received? No Yes I2C_ISR.TC = 1? No Yes Set I2C_CR2.START with slave addess NBYTES ... End MS19863V2 RM0385 Rev 7 983/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Figure 324. Transfer sequence flowchart for I2C master receiver for N >255 bytes Master reception Master initialization NBYTES = 0xFF; N=N-255 RELOAD =1 Configure slave address Set I2C_CR2.START I2C_ISR.RXNE =1? No Yes Read I2C_RXDR NBYTES received? No Yes Yes I2C_ISR.TC = 1? Set I2C_CR2.START with slave addess NBYTES ... No No I2C_ISR.TCR = 1? Yes IF N< 256 NBYTES =N; N=0;RELOAD=0 AUTOEND=0 for RESTART; 1 for STOP ELSE NBYTES =0xFF;N=N-255 RELOAD=1 End MS19864V2 984/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Figure 325. Transfer bus diagrams for I2C master receiver Example I2C master receiver 2 bytes, automatic end mode (STOP) RXNE S Address A data1 RXNE data2 A NA legend: P transmission reception INIT EV2 EV1 SCL stretch NBYTES xx 2 INIT: program Slave address, program NBYTES = 2, AUTOEND=1, set START EV1: RXNE ISR: rd data1 EV2: RXNE ISR: rd data2 Example I2C master receiver 2 bytes, software end mode (RESTART) RXNE RXNE legend: TC transmission S Address A data1 INIT data2 A EV1 NA ReS Address EV2 reception SCL stretch NBYTES xx 2 N INIT: program Slave address, program NBYTES = 2, AUTOEND=0, set START EV1: RXNE ISR: rd data1 EV2: RXNE ISR: read data2 EV3: TC ISR: program Slave address, program NBYTES = N, set START MS19865V1 RM0385 Rev 7 985/1709 1020 Inter-integrated circuit (I2C) interface 30.4.9 RM0385 I2C_TIMINGR register configuration examples The tables below provide examples of how to program the I2C_TIMINGR to obtain timings compliant with the I2C specification. In order to get more accurate configuration values, the STM32CubeMX tool (I2C Configuration window) should be used. Table 179. Examples of timing settings for fI2CCLK = 8 MHz Standard-mode (Sm) Fast-mode (Fm) Fast-mode Plus (Fm+) Parameter 10 kHz 100 kHz 400 kHz 500 kHz PRESC 1 1 0 0 SCLL 0xC7 0x13 0x9 0x6 tSCLL 200x250 ns = 50 µs 20x250 ns = 5.0 µs 10x125 ns = 1250 ns 7x125 ns = 875 ns SCLH 0xC3 0xF 0x3 0x3 tSCLH 196x250 ns = 49 µs 16x250 ns = 4.0µs 4x125ns = 500ns 4x125 ns = 500 ns (1) tSCL ~100 µs(2) ~10 µs(2) ~2500 ns(3) ~2000 ns(4) SDADEL 0x2 0x2 0x1 0x0 tSDADEL 2x250 ns = 500 ns 2x250 ns = 500 ns 1x125 ns = 125 ns 0 ns SCLDEL 0x4 0x4 0x3 0x1 tSCLDEL 5x250 ns = 1250 ns 5x250 ns = 1250 ns 4x125 ns = 500 ns 2x125 ns = 250 ns 1. SCL period tSCL is greater than tSCLL + tSCLH due to SCL internal detection delay. Values provided for tSCL are examples only. 2. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 500 ns. Example with tSYNC1 + tSYNC2 = 1000 ns 3. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 500 ns. Example with tSYNC1 + tSYNC2 = 750 ns 4. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 500 ns. Example with tSYNC1 + tSYNC2 = 655 ns Table 180. Examples of timings settings for fI2CCLK = 16 MHz Standard-mode (Sm) Fast-mode (Fm) Fast-mode Plus (Fm+) Parameter 10 kHz 100 kHz 400 kHz 1000 kHz PRESC 3 3 1 0 SCLL 0xC7 0x13 0x9 0x4 tSCLL 200 x 250 ns = 50 µs 20 x 250 ns = 5.0 µs 10 x 125 ns = 1250 ns 5 x 62.5 ns = 312.5 ns SCLH 0xC3 0xF 0x3 0x2 tSCLH 196 x 250 ns = 49 µs 16 x 250 ns = 4.0 µs 4 x 125ns = 500 ns 3 x 62.5 ns = 187.5 ns (1) tSCL ~100 µs(2) ~10 µs(2) ~2500 ns(3) ~1000 ns(4) SDADEL 0x2 0x2 0x2 0x0 tSDADEL 2 x 250 ns = 500 ns 2 x 250 ns = 500 ns 2 x 125 ns = 250 ns 0 ns SCLDEL 0x4 0x4 0x3 0x2 tSCLDEL 5 x 250 ns = 1250 ns 5 x 250 ns = 1250 ns 4 x 125 ns = 500 ns 3 x 62.5 ns = 187.5 ns 1. SCL period tSCL is greater than tSCLL + tSCLH due to SCL internal detection delay. Values provided for tSCL are examples only. 986/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface 2. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 250 ns. Example with tSYNC1 + tSYNC2 = 1000 ns 3. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 250 ns. Example with tSYNC1 + tSYNC2 = 750 ns 4. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 250 ns. Example with tSYNC1 + tSYNC2 = 500 ns Table 181. Examples of timings settings for fI2CCLK = 48 MHz Standard-mode (Sm) Fast-mode (Fm) Fast-mode Plus (Fm+) 400 kHz 1000 kHz Parameter 10 kHz 100 kHz PRESC 0xB 0xB 5 5 SCLL 0xC7 0x13 0x9 0x3 tSCLL 200 x 250 ns = 50 µs 20 x 250 ns = 5.0 µs 10 x 125 ns = 1250 ns 4 x 125 ns = 500 ns SCLH 0xC3 0xF 0x3 0x1 tSCLH 196 x 250 ns = 49 µs 16 x 250 ns = 4.0 µs 4 x 125 ns = 500 ns 2 x 125 ns = 250 ns tSCL(1) ~100 µs(2) ~10 µs(2) ~2500 ns(3) ~875 ns(4) SDADEL 0x2 0x2 0x3 0x0 tSDADEL 2 x 250 ns = 500 ns 2 x 250 ns = 500 ns 3 x 125 ns = 375 ns 0 ns SCLDEL 0x4 0x4 0x3 0x1 tSCLDEL 5 x 250 ns = 1250 ns 5 x 250 ns = 1250 ns 4 x 125 ns = 500 ns 2 x 125 ns = 250 ns 1. The SCL period tSCL is greater than tSCLL + tSCLH due to the SCL internal detection delay. Values provided for tSCL are only examples. 2. tSYNC1 + tSYNC2 minimum value is 4x tI2CCLK = 83.3 ns. Example with tSYNC1 + tSYNC2 = 1000 ns 3. tSYNC1 + tSYNC2 minimum value is 4x tI2CCLK = 83.3 ns. Example with tSYNC1 + tSYNC2 = 750 ns 4. tSYNC1 + tSYNC2 minimum value is 4x tI2CCLK = 83.3 ns. Example with tSYNC1 + tSYNC2 = 250 ns 30.4.10 SMBus specific features This section is relevant only when SMBus feature is supported. Refer to Section 30.3: I2C implementation. Introduction The System Management Bus (SMBus) is a two-wire interface through which various devices can communicate with each other and with the rest of the system. It is based on I2C principles of operation. SMBus provides a control bus for system and power management related tasks. This peripheral is compatible with the SMBUS specification (http://smbus.org). The System Management Bus Specification refers to three types of devices. • A slave is a device that receives or responds to a command. • A master is a device that issues commands, generates the clocks and terminates the transfer. • A host is a specialized master that provides the main interface to the system’s CPU. A host must be a master-slave and must support the SMBus host notify protocol. Only one host is allowed in a system. This peripheral can be configured as master or slave device, and also as a host. RM0385 Rev 7 987/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Bus protocols There are eleven possible command protocols for any given device. A device may use any or all of the eleven protocols to communicate. The protocols are Quick Command, Send Byte, Receive Byte, Write Byte, Write Word, Read Byte, Read Word, Process Call, Block Read, Block Write and Block Write-Block Read Process Call. These protocols should be implemented by the user software. For more details of these protocols, refer to SMBus specification (http://smbus.org). Address resolution protocol (ARP) SMBus slave address conflicts can be resolved by dynamically assigning a new unique address to each slave device. In order to provide a mechanism to isolate each device for the purpose of address assignment each device must implement a unique device identifier (UDID). This 128-bit number is implemented by software. This peripheral supports the Address Resolution Protocol (ARP). The SMBus Device Default Address (0b1100 001) is enabled by setting SMBDEN bit in I2C_CR1 register. The ARP commands should be implemented by the user software. Arbitration is also performed in slave mode for ARP support. For more details of the SMBus Address Resolution Protocol, refer to SMBus specification (http://smbus.org). Received Command and Data acknowledge control A SMBus receiver must be able to NACK each received command or data. In order to allow the ACK control in slave mode, the Slave Byte Control mode must be enabled by setting SBC bit in I2C_CR1 register. Refer to Slave Byte Control mode on page 967 for more details. Host Notify protocol This peripheral supports the Host Notify protocol by setting the SMBHEN bit in the I2C_CR1 register. In this case the host will acknowledge the SMBus Host address (0b0001 000). When this protocol is used, the device acts as a master and the host as a slave. SMBus alert The SMBus ALERT optional signal is supported. A slave-only device can signal the host through the SMBALERT# pin that it wants to talk. The host processes the interrupt and simultaneously accesses all SMBALERT# devices through the Alert Response Address (0b0001 100). Only the device(s) which pulled SMBALERT# low will acknowledge the Alert Response Address. When configured as a slave device(SMBHEN=0), the SMBA pin is pulled low by setting the ALERTEN bit in the I2C_CR1 register. The Alert Response Address is enabled at the same time. When configured as a host (SMBHEN=1), the ALERT flag is set in the I2C_ISR register when a falling edge is detected on the SMBA pin and ALERTEN=1. An interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. When ALERTEN=0, the ALERT line is considered high even if the external SMBA pin is low. If the SMBus ALERT pin is not needed, the SMBA pin can be used as a standard GPIO if ALERTEN=0. 988/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Packet error checking A packet error checking mechanism has been introduced in the SMBus specification to improve reliability and communication robustness. Packet Error Checking is implemented by appending a Packet Error Code (PEC) at the end of each message transfer. The PEC is calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial on all the message bytes (including addresses and read/write bits). The peripheral embeds a hardware PEC calculator and allows to send a Not Acknowledge automatically when the received byte does not match with the hardware calculated PEC. Timeouts This peripheral embeds hardware timers in order to be compliant with the 3 timeouts defined in SMBus specification. . Table 182. SMBus timeout specifications Limits Symbol tTIMEOUT Parameter Unit Detect clock low timeout Min Max 25 35 ms tLOW:SEXT(1) Cumulative clock low extend time (slave device) - 25 ms tLOW:MEXT(2) Cumulative clock low extend time (master device) - 10 ms 1. tLOW:SEXT is the cumulative time a given slave device is allowed to extend the clock cycles in one message from the initial START to the STOP. It is possible that, another slave device or the master will also extend the clock causing the combined clock low extend time to be greater than tLOW:SEXT. Therefore, this parameter is measured with the slave device as the sole target of a full-speed master. 2. tLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device or another master will also extend the clock causing the combined clock low time to be greater than tLOW:MEXT on a given byte. Therefore, this parameter is measured with a full speed slave device as the sole target of the master. Figure 326. Timeout intervals for tLOW:SEXT, tLOW:MEXT. Start Stop tLOW:SEXT ClkAck tLOW:MEXT ClkAck tLOW:MEXT tLOW:MEXT SMBCLK SMBDAT MS19866V1 RM0385 Rev 7 989/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Bus idle detection A master can assume that the bus is free if it detects that the clock and data signals have been high for tIDLE greater than tHIGH,MAX. (refer to Table 176: I2C-SMBUS specification data setup and hold times) This timing parameter covers the condition where a master has been dynamically added to the bus and may not have detected a state transition on the SMBCLK or SMBDAT lines. In this case, the master must wait long enough to ensure that a transfer is not currently in progress. The peripheral supports a hardware bus idle detection. 30.4.11 SMBus initialization This section is relevant only when SMBus feature is supported. Refer to Section 30.3: I2C implementation. In addition to I2C initialization, some other specific initialization must be done in order to perform SMBus communication: Received Command and Data Acknowledge control (Slave mode) A SMBus receiver must be able to NACK each received command or data. In order to allow ACK control in slave mode, the Slave Byte Control mode must be enabled by setting the SBC bit in the I2C_CR1 register. Refer to Slave Byte Control mode on page 967 for more details. Specific address (Slave mode) The specific SMBus addresses should be enabled if needed. Refer to Bus idle detection on page 990 for more details. • The SMBus Device Default address (0b1100 001) is enabled by setting the SMBDEN bit in the I2C_CR1 register. • The SMBus Host address (0b0001 000) is enabled by setting the SMBHEN bit in the I2C_CR1 register. • The Alert Response Address (0b0001100) is enabled by setting the ALERTEN bit in the I2C_CR1 register. Packet error checking PEC calculation is enabled by setting the PECEN bit in the I2C_CR1 register. Then the PEC transfer is managed with the help of a hardware byte counter: NBYTES[7:0] in the I2C_CR2 register. The PECEN bit must be configured before enabling the I2C. The PEC transfer is managed with the hardware byte counter, so the SBC bit must be set when interfacing the SMBus in slave mode. The PEC is transferred after NBYTES-1 data have been transferred when the PECBYTE bit is set and the RELOAD bit is cleared. If RELOAD is set, PECBYTE has no effect. Caution: 990/1709 Changing the PECEN configuration is not allowed when the I2C is enabled. RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Table 183. SMBUS with PEC configuration Mode SBC bit RELOAD bit AUTOEND bit PECBYTE bit Master Tx/Rx NBYTES + PEC+ STOP x 0 1 1 Master Tx/Rx NBYTES + PEC + ReSTART x 0 0 1 Slave Tx/Rx with PEC 1 0 x 1 Timeout detection The timeout detection is enabled by setting the TIMOUTEN and TEXTEN bits in the I2C_TIMEOUTR register. The timers must be programmed in such a way that they detect a timeout before the maximum time given in the SMBus specification. • tTIMEOUT check In order to enable the tTIMEOUT check, the 12-bit TIMEOUTA[11:0] bits must be programmed with the timer reload value in order to check the tTIMEOUT parameter. The TIDLE bit must be configured to ‘0’ in order to detect the SCL low level timeout. Then the timer is enabled by setting the TIMOUTEN in the I2C_TIMEOUTR register. If SCL is tied low for a time greater than (TIMEOUTA+1) x 2048 x tI2CCLK, the TIMEOUT flag is set in the I2C_ISR register. Refer to Table 184: Examples of TIMEOUTA settings for various I2CCLK frequencies (max tTIMEOUT = 25 ms). Caution: Changing the TIMEOUTA[11:0] bits and TIDLE bit configuration is not allowed when the TIMEOUTEN bit is set. • tLOW:SEXT and tLOW:MEXT check Depending on if the peripheral is configured as a master or as a slave, The 12-bit TIMEOUTB timer must be configured in order to check tLOW:SEXT for a slave and tLOW:MEXT for a master. As the standard specifies only a maximum, the user can choose the same value for the both. Then the timer is enabled by setting the TEXTEN bit in the I2C_TIMEOUTR register. If the SMBus peripheral performs a cumulative SCL stretch for a time greater than (TIMEOUTB+1) x 2048 x tI2CCLK, and in the timeout interval described in Bus idle detection on page 990 section, the TIMEOUT flag is set in the I2C_ISR register. Refer to Table 185: Examples of TIMEOUTB settings for various I2CCLK frequencies Caution: Changing the TIMEOUTB configuration is not allowed when the TEXTEN bit is set. Bus Idle detection In order to enable the tIDLE check, the 12-bit TIMEOUTA[11:0] field must be programmed with the timer reload value in order to obtain the tIDLE parameter. The TIDLE bit must be configured to ‘1 in order to detect both SCL and SDA high level timeout. Then the timer is enabled by setting the TIMOUTEN bit in the I2C_TIMEOUTR register. If both the SCL and SDA lines remain high for a time greater than (TIMEOUTA+1) x 4 x tI2CCLK, the TIMEOUT flag is set in the I2C_ISR register. Refer to Table 186: Examples of TIMEOUTA settings for various I2CCLK frequencies (max tIDLE = 50 µs) RM0385 Rev 7 991/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Caution: Changing the TIMEOUTA and TIDLE configuration is not allowed when the TIMEOUTEN is set. 30.4.12 SMBus: I2C_TIMEOUTR register configuration examples This section is relevant only when SMBus feature is supported. Refer to Section 30.3: I2C implementation. • Configuring the maximum duration of tTIMEOUT to 25 ms: Table 184. Examples of TIMEOUTA settings for various I2CCLK frequencies (max tTIMEOUT = 25 ms) • fI2CCLK TIMEOUTA[11:0] bits 8 MHz 0x61 0 1 98 x 2048 x 125 ns = 25 ms 16 MHz 0xC3 0 1 196 x 2048 x 62.5 ns = 25 ms 32 MHz 0x186 0 1 391 x 2048 x 31.25 ns = 25 ms TIDLE bit TIMEOUTEN bit tTIMEOUT Configuring the maximum duration of tLOW:SEXT and tLOW:MEXT to 8 ms: Table 185. Examples of TIMEOUTB settings for various I2CCLK frequencies • tLOW:EXT fI2CCLK TIMEOUTB[11:0] bits TEXTEN bit 8 MHz 0x1F 1 32 x 2048 x 125 ns = 8 ms 16 MHz 0x3F 1 64 x 2048 x 62.5 ns = 8 ms 32 MHz 0x7C 1 125 x 2048 x 31.25 ns = 8 ms Configuring the maximum duration of tIDLE to 50 µs Table 186. Examples of TIMEOUTA settings for various I2CCLK frequencies (max tIDLE = 50 µs) 30.4.13 tTIDLE fI2CCLK TIMEOUTA[11:0] bits 8 MHz 0x63 1 1 100 x 4 x 125 ns = 50 µs 16 MHz 0xC7 1 1 200 x 4 x 62.5 ns = 50 µs 32 MHz 0x18F 1 1 400 x 4 x 31.25 ns = 50 µs TIDLE bit TIMEOUTEN bit SMBus slave mode This section is relevant only when SMBus feature is supported. Refer to Section 30.3: I2C implementation. In addition to I2C slave transfer management (refer to Section 30.4.7: I2C slave mode) some additional software flowcharts are provided to support SMBus. SMBus Slave transmitter When the IP is used in SMBus, SBC must be programmed to ‘1’ in order to allow the PEC transmission at the end of the programmed number of data bytes. When the PECBYTE bit is set, the number of bytes programmed in NBYTES[7:0] includes the PEC transmission. In 992/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface that case the total number of TXIS interrupts will be NBYTES-1 and the content of the I2C_PECR register is automatically transmitted if the master requests an extra byte after the NBYTES-1 data transfer. Caution: The PECBYTE bit has no effect when the RELOAD bit is set. Figure 327. Transfer sequence flowchart for SMBus slave transmitter N bytes + PEC SMBus slave transmission Slave initialization No I2C_ISR.ADDR = 1? Yes Read ADDCODE and DIR in I2C_ISR I2C_CR2.NBYTES = N + 1 PECBYTE=1 Set I2C_ICR.ADDRCF I2C_ISR.TXIS =1? SCL stretched No Yes Write I2C_TXDR.TXDATA MS19867V2 RM0385 Rev 7 993/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Figure 328. Transfer bus diagrams for SMBus slave transmitter (SBC=1) legend: Example SMBus slave transmitter 2 bytes + PEC, transmission TXIS TXIS ADDR S Address A EV1 NBYTES reception data1 A data2 A PEC NA P SCL stretch EV2 EV3 3 EV1: ADDR ISR: check ADDCODE, program NBYTES=3, set PECBYTE, set ADDRCF EV2: TXIS ISR: wr data1 EV3: TXIS ISR: wr data2 MS19869V1 SMBus Slave receiver When the I2C is used in SMBus mode, SBC must be programmed to ‘1’ in order to allow the PEC checking at the end of the programmed number of data bytes. In order to allow the ACK control of each byte, the reload mode must be selected (RELOAD=1). Refer to Slave Byte Control mode on page 967 for more details. In order to check the PEC byte, the RELOAD bit must be cleared and the PECBYTE bit must be set. In this case, after NBYTES-1 data have been received, the next received byte is compared with the internal I2C_PECR register content. A NACK is automatically generated if the comparison does not match, and an ACK is automatically generated if the comparison matches, whatever the ACK bit value. Once the PEC byte is received, it is copied into the I2C_RXDR register like any other data, and the RXNE flag is set. In the case of a PEC mismatch, the PECERR flag is set and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. If no ACK software control is needed, the user can program PECBYTE=1 and, in the same write operation, program NBYTES with the number of bytes to be received in a continuous flow. After NBYTES-1 are received, the next received byte is checked as being the PEC. Caution: 994/1709 The PECBYTE bit has no effect when the RELOAD bit is set. RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Figure 329. Transfer sequence flowchart for SMBus slave receiver N Bytes + PEC SMBus slave reception Slave initialization No I2C_ISR.ADDR = 1? Yes Read ADDCODE and DIR in I2C_ISR I2C_CR2.NBYTES = 1, RELOAD =1 PECBYTE=1 Set I2C_ICR.ADDRCF I2C_ISR.RXNE =1? I2C_ISR.TCR = 1? SCL stretched No Yes Read I2C_RXDR.RXDATA Program I2C_CR2.NACK = 0 I2C_CR2.NBYTES = 1 N=N-1 N = 1? No Yes Read I2C_RXDR.RXDATA Program RELOAD = 0 NACK = 0 and NBYTES = 1 No I2C_ISR.RXNE =1? Yes Read I2C_RXDR.RXDATA End MS19868V2 RM0385 Rev 7 995/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Figure 330. Bus transfer diagrams for SMBus slave receiver (SBC=1) legend: Example SMBus slave receiver 2 bytes + PEC transmission ADDR RXNE S Address A data1 A EV1 RXNE data2 A EV2 NBYTES RXNE PEC reception A EV3 SCL stretch P EV4 3 EV1: ADDR ISR: check ADDCODE and DIR, program NBYTES = 3, PECBYTE=1, RELOAD=0, set ADDRCF EV2: RXNE ISR: rd data1 EV3: RXNE ISR: rd data2 EV4: RXNE ISR: rd PEC legend : Example SMBus slave receiver 2 bytes + PEC, with ACK control (RELOAD=1/0) ADDR S Address RXNE,TCR A data1 EV1 NBYTES A RXNE,TCR data2 EV2 A transmission RXNE PEC EV3 A reception P SCL stretch EV4 1 EV1: ADDR ISR: check ADDCODE and DIR, program NBYTES = 1, PECBYTE=1, RELOAD=1, set ADDRCF EV2: RXNE-TCR ISR: rd data1, program NACK=0 and NBYTES = 1 EV3: RXNE-TCR ISR: rd data2, program NACK=0, NBYTES = 1 and RELOAD=0 EV4: RXNE-TCR ISR: rd PEC MS19870V1 This section is relevant only when SMBus feature is supported. Refer to Section 30.3: I2C implementation. In addition to I2C master transfer management (refer to Section 30.4.8: I2C master mode) some additional software flowcharts are provided to support SMBus. SMBus Master transmitter When the SMBus master wants to transmit the PEC, the PECBYTE bit must be set and the number of bytes must be programmed in the NBYTES[7:0] field, before setting the START bit. In this case the total number of TXIS interrupts will be NBYTES-1. So if the PECBYTE bit is set when NBYTES=0x1, the content of the I2C_PECR register is automatically transmitted. If the SMBus master wants to send a STOP condition after the PEC, automatic end mode should be selected (AUTOEND=1). In this case, the STOP condition automatically follows the PEC transmission. 996/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface When the SMBus master wants to send a RESTART condition after the PEC, software mode must be selected (AUTOEND=0). In this case, once NBYTES-1 have been transmitted, the I2C_PECR register content is transmitted and the TC flag is set after the PEC transmission, stretching the SCL line low. The RESTART condition must be programmed in the TC interrupt subroutine. Caution: The PECBYTE bit has no effect when the RELOAD bit is set. Figure 331. Bus transfer diagrams for SMBus master transmitter Example SMBus master transmitter 2 bytes + PEC, automatic end mode (STOP) TXIS TXIS S Address A legend: data1 A data2 A PEC A P transmission reception EV1 INIT EV2 SCL stretch TXE NBYTES xx 3 INIT: program Slave address, program NBYTES = 3, AUTOEND=1, set PECBYTE, set START EV1: TXIS ISR: wr data1 EV2: TXIS ISR: wr data2 Example SMBus master transmitter 2 bytes + PEC, software end mode (RESTART) TXIS legend: TC TXIS transmission S Address A INIT xx data1 A data2 A PEC A EV1 EV2 Rstart Address EV3 reception SCL stretch N 3 NBYTES INIT: program Slave address, program NBYTES = 3, AUTOEND=0, set PECBYTE, set START EV1: TXIS ISR: wr data1 EV2: TXIS ISR: wr data2 EV3: TC ISR: program Slave address, program NBYTES = N, set START MS19871V1 RM0385 Rev 7 997/1709 1020 Inter-integrated circuit (I2C) interface RM0385 SMBus Master receiver When the SMBus master wants to receive the PEC followed by a STOP at the end of the transfer, automatic end mode can be selected (AUTOEND=1). The PECBYTE bit must be set and the slave address must be programmed, before setting the START bit. In this case, after NBYTES-1 data have been received, the next received byte is automatically checked versus the I2C_PECR register content. A NACK response is given to the PEC byte, followed by a STOP condition. When the SMBus master receiver wants to receive the PEC byte followed by a RESTART condition at the end of the transfer, software mode must be selected (AUTOEND=0). The PECBYTE bit must be set and the slave address must be programmed, before setting the START bit. In this case, after NBYTES-1 data have been received, the next received byte is automatically checked versus the I2C_PECR register content. The TC flag is set after the PEC byte reception, stretching the SCL line low. The RESTART condition can be programmed in the TC interrupt subroutine. Caution: 998/1709 The PECBYTE bit has no effect when the RELOAD bit is set. RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Figure 332. Bus transfer diagrams for SMBus master receiver Example SMBus master receiver 2 bytes + PEC, automatic end mode (STOP) RXNE Address S A data1 A RXNE data2 A RXNE PEC NA legend: transmission P reception INIT EV2 EV1 EV3 SCL stretch NBYTES xx 3 INIT: program Slave address, program NBYTES = 3, AUTOEND=1, set PECBYTE, set START EV1: RXNE ISR: rd data1 EV2: RXNE ISR: rd data2 EV3: RXNE ISR: rd PEC Example SMBus master receiver 2 bytes + PEC, software end mode (RESTART) RXNE RXNE legend: RXNE TC transmission S Address A data1 data2 A EV1 INIT A PEC EV2 NA EV3 Restart Address EV4 reception SCL stretch NBYTES xx 3 N INIT: program Slave address, program NBYTES = 3, AUTOEND=0, set PECBYTE, set START EV1: RXNE ISR: rd data1 EV2: RXNE ISR: rd data2 EV3: RXNE ISR: read PEC EV4: TC ISR: program Slave address, program NBYTES = N, set START MS19872V1 30.4.14 Error conditions The following are the error conditions which may cause communication to fail. Bus error (BERR) A bus error is detected when a START or a STOP condition is detected and is not located after a multiple of 9 SCL clock pulses. A START or a STOP condition is detected when a SDA edge occurs while SCL is high. The bus error flag is set only if the I2C is involved in the transfer as master or addressed slave (i.e not during the address phase in slave mode). RM0385 Rev 7 999/1709 1020 Inter-integrated circuit (I2C) interface RM0385 In case of a misplaced START or RESTART detection in slave mode, the I2C enters address recognition state like for a correct START condition. When a bus error is detected, the BERR flag is set in the I2C_ISR register, and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. Arbitration lost (ARLO) An arbitration loss is detected when a high level is sent on the SDA line, but a low level is sampled on the SCL rising edge. • In master mode, arbitration loss is detected during the address phase, data phase and data acknowledge phase. In this case, the SDA and SCL lines are released, the START control bit is cleared by hardware and the master switches automatically to slave mode. • In slave mode, arbitration loss is detected during data phase and data acknowledge phase. In this case, the transfer is stopped, and the SCL and SDA lines are released. When an arbitration loss is detected, the ARLO flag is set in the I2C_ISR register, and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. Overrun/underrun error (OVR) An overrun or underrun error is detected in slave mode when NOSTRETCH=1 and: • In reception when a new byte is received and the RXDR register has not been read yet. The new received byte is lost, and a NACK is automatically sent as a response to the new byte. • In transmission: – When STOPF=1 and the first data byte should be sent. The content of the I2C_TXDR register is sent if TXE=0, 0xFF if not. – When a new byte should be sent and the I2C_TXDR register has not been written yet, 0xFF is sent. When an overrun or underrun error is detected, the OVR flag is set in the I2C_ISR register, and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. Packet Error Checking Error (PECERR) This section is relevant only when the SMBus feature is supported. Refer to Section 30.3: I2C implementation. A PEC error is detected when the received PEC byte does not match with the I2C_PECR register content. A NACK is automatically sent after the wrong PEC reception. When a PEC error is detected, the PECERR flag is set in the I2C_ISR register, and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. 1000/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Timeout Error (TIMEOUT) This section is relevant only when the SMBus feature is supported. Refer to Section 30.3: I2C implementation. A timeout error occurs for any of these conditions: • TIDLE=0 and SCL remained low for the time defined in the TIMEOUTA[11:0] bits: this is used to detect a SMBus timeout. • TIDLE=1 and both SDA and SCL remained high for the time defined in the TIMEOUTA [11:0] bits: this is used to detect a bus idle condition. • Master cumulative clock low extend time reached the time defined in the TIMEOUTB[11:0] bits (SMBus tLOW:MEXT parameter) • Slave cumulative clock low extend time reached the time defined in TIMEOUTB[11:0] bits (SMBus tLOW:SEXT parameter) When a timeout violation is detected in master mode, a STOP condition is automatically sent. When a timeout violation is detected in slave mode, SDA and SCL lines are automatically released. When a timeout error is detected, the TIMEOUT flag is set in the I2C_ISR register, and an interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. Alert (ALERT) This section is relevant only when the SMBus feature is supported. Refer to Section 30.3: I2C implementation. The ALERT flag is set when the I2C interface is configured as a Host (SMBHEN=1), the alert pin detection is enabled (ALERTEN=1) and a falling edge is detected on the SMBA pin. An interrupt is generated if the ERRIE bit is set in the I2C_CR1 register. 30.4.15 DMA requests Transmission using DMA DMA (Direct Memory Access) can be enabled for transmission by setting the TXDMAEN bit in the I2C_CR1 register. Data is loaded from an SRAM area configured using the DMA peripheral (see Section 8: Direct memory access controller (DMA) on page 222) to the I2C_TXDR register whenever the TXIS bit is set. Only the data are transferred with DMA. • In master mode: the initialization, the slave address, direction, number of bytes and START bit are programmed by software (the transmitted slave address cannot be transferred with DMA). When all data are transferred using DMA, the DMA must be RM0385 Rev 7 1001/1709 1020 Inter-integrated circuit (I2C) interface RM0385 initialized before setting the START bit. The end of transfer is managed with the NBYTES counter. Refer to Master transmitter on page 978. • • Note: In slave mode: – With NOSTRETCH=0, when all data are transferred using DMA, the DMA must be initialized before the address match event, or in ADDR interrupt subroutine, before clearing ADDR. – With NOSTRETCH=1, the DMA must be initialized before the address match event. For instances supporting SMBus: the PEC transfer is managed with NBYTES counter. Refer to SMBus Slave transmitter on page 992 and SMBus Master transmitter on page 996. If DMA is used for transmission, the TXIE bit does not need to be enabled. Reception using DMA DMA (Direct Memory Access) can be enabled for reception by setting the RXDMAEN bit in the I2C_CR1 register. Data is loaded from the I2C_RXDR register to an SRAM area configured using the DMA peripheral (refer to Section 8: Direct memory access controller (DMA)) whenever the RXNE bit is set. Only the data (including PEC) are transferred with DMA. • In master mode, the initialization, the slave address, direction, number of bytes and START bit are programmed by software. When all data are transferred using DMA, the DMA must be initialized before setting the START bit. The end of transfer is managed with the NBYTES counter. • In slave mode with NOSTRETCH=0, when all data are transferred using DMA, the DMA must be initialized before the address match event, or in the ADDR interrupt subroutine, before clearing the ADDR flag. • If SMBus is supported (see Section 30.3: I2C implementation): the PEC transfer is managed with the NBYTES counter. Refer to SMBus Slave receiver on page 994 and SMBus Master receiver on page 998. Note: If DMA is used for reception, the RXIE bit does not need to be enabled. 30.4.16 Debug mode When the microcontroller enters debug mode (core halted), the SMBus timeout either continues to work normally or stops, depending on the DBG_I2Cx_STOP configuration bits in the DBG module. 30.5 I2C low-power modes Table 187. Low-power modes Mode Description Sleep No effect I2C interrupts cause the device to exit the Sleep mode. Stop The contents of I2C registers are kept. Standby The I2C peripheral is powered down and must be reinitialized after exiting Standby. 1002/1709 RM0385 Rev 7 RM0385 30.6 Inter-integrated circuit (I2C) interface I2C interrupts The table below gives the list of I2C interrupt requests. Table 188. I2C Interrupt requests Event flag Event flag/Interrupt clearing method Interrupt enable control bit Receive buffer not empty RXNE Read I2C_RXDR register RXIE Transmit buffer interrupt status TXIS Write I2C_TXDR register TXIE Stop detection interrupt flag STOPF Write STOPCF=1 STOPIE Transfer Complete Reload TCR Write I2C_CR2 with NBYTES[7:0] ≠ 0 TCIE Transfer complete TC Write START=1 or STOP=1 Address matched ADDR Write ADDRCF=1 ADDRIE NACK reception NACKF Write NACKCF=1 NACKIE Bus error BERR Write BERRCF=1 Arbitration loss ARLO Write ARLOCF=1 Overrun/Underrun OVR Write OVRCF=1 PEC error PECERR Write PECERRCF=1 Timeout/tLOW error TIMEOUT Write TIMEOUTCF=1 ALERT Write ALERTCF=1 Interrupt event SMBus Alert ERRIE Depending on the product implementation, all these interrupts events can either share the same interrupt vector (I2C global interrupt), or be grouped into 2 interrupt vectors (I2C event interrupt and I2C error interrupt). Refer to Table 43: STM32F75xxx and STM32F74xxx vector table for details. Figure 333. I2C interrupt mapping diagram TCR TC TCIE TXIS TXIE RXNE RXIE I2C event interrupt STOPF STOPIE ADDR ADDRIE I2C global interrupt NACKF NACKIE BERR OVR ARLO TIMEOUT ALERT PECERR ERRIE I2C error interrupt MSv41065V1 RM0385 Rev 7 1003/1709 1020 Inter-integrated circuit (I2C) interface 30.7 RM0385 I2C registers Refer to Section 1.1 on page 62 for a list of abbreviations used in register descriptions. The peripheral registers are accessed by words (32-bit). 30.7.1 Control register 1 (I2C_CR1) Address offset: 0x00 Reset value: 0x0000 0000 Access: No wait states, except if a write access occurs while a write access to this register is ongoing. In this case, wait states are inserted in the second write access until the previous one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x I2CCLK. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. PECEN ALERT EN SMBD EN SMBH EN GCEN Res. NOSTR ETCH SBC rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 ERRIE TCIE STOP IE NACK IE ADDR IE RXIE TXIE PE rw rw rw rw rw rw rw rw 15 14 RXDMA TXDMA EN EN rw rw 13 12 Res. ANF OFF rw 11 10 9 8 DNF rw rw rw rw Bits 31:24 Reserved, must be kept at reset value. Bit 23 PECEN: PEC enable 0: PEC calculation disabled 1: PEC calculation enabled Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. Bit 22 ALERTEN: SMBus alert enable Device mode (SMBHEN=0): 0: Releases SMBA pin high and Alert Response Address Header disabled: 0001100x followed by NACK. 1: Drives SMBA pin low and Alert Response Address Header enables: 0001100x followed by ACK. Host mode (SMBHEN=1): 0: SMBus Alert pin (SMBA) not supported. 1: SMBus Alert pin (SMBA) supported. Note: When ALERTEN=0, the SMBA pin can be used as a standard GPIO. If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. Bit 21 SMBDEN: SMBus Device Default address enable 0: Device default address disabled. Address 0b1100001x is NACKed. 1: Device default address enabled. Address 0b1100001x is ACKed. Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. 1004/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Bit 20 SMBHEN: SMBus Host address enable 0: Host address disabled. Address 0b0001000x is NACKed. 1: Host address enabled. Address 0b0001000x is ACKed. Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. Bit 19 GCEN: General call enable 0: General call disabled. Address 0b00000000 is NACKed. 1: General call enabled. Address 0b00000000 is ACKed. Bit 18 Reserved, must be kept at reset value. Bit 17 NOSTRETCH: Clock stretching disable This bit is used to disable clock stretching in slave mode. It must be kept cleared in master mode. 0: Clock stretching enabled 1: Clock stretching disabled Note: This bit can only be programmed when the I2C is disabled (PE = 0). Bit 16 SBC: Slave byte control This bit is used to enable hardware byte control in slave mode. 0: Slave byte control disabled 1: Slave byte control enabled Bit 15 RXDMAEN: DMA reception requests enable 0: DMA mode disabled for reception 1: DMA mode enabled for reception Bit 14 TXDMAEN: DMA transmission requests enable 0: DMA mode disabled for transmission 1: DMA mode enabled for transmission Bit 13 Reserved, must be kept at reset value. Bit 12 ANFOFF: Analog noise filter OFF 0: Analog noise filter enabled 1: Analog noise filter disabled Note: This bit can only be programmed when the I2C is disabled (PE = 0). Bits 11:8 DNF[3:0]: Digital noise filter These bits are used to configure the digital noise filter on SDA and SCL input. The digital filter will filter spikes with a length of up to DNF[3:0] * tI2CCLK 0000: Digital filter disabled 0001: Digital filter enabled and filtering capability up to 1 tI2CCLK ... 1111: digital filter enabled and filtering capability up to15 tI2CCLK Note: If the analog filter is also enabled, the digital filter is added to the analog filter. This filter can only be programmed when the I2C is disabled (PE = 0). RM0385 Rev 7 1005/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Bit 7 ERRIE: Error interrupts enable 0: Error detection interrupts disabled 1: Error detection interrupts enabled Note: Any of these errors generate an interrupt: Arbitration Loss (ARLO) Bus Error detection (BERR) Overrun/Underrun (OVR) Timeout detection (TIMEOUT) PEC error detection (PECERR) Alert pin event detection (ALERT) Bit 6 TCIE: Transfer Complete interrupt enable 0: Transfer Complete interrupt disabled 1: Transfer Complete interrupt enabled Note: Any of these events will generate an interrupt: Transfer Complete (TC) Transfer Complete Reload (TCR) Bit 5 STOPIE: STOP detection Interrupt enable 0: Stop detection (STOPF) interrupt disabled 1: Stop detection (STOPF) interrupt enabled Bit 4 NACKIE: Not acknowledge received Interrupt enable 0: Not acknowledge (NACKF) received interrupts disabled 1: Not acknowledge (NACKF) received interrupts enabled Bit 3 ADDRIE: Address match Interrupt enable (slave only) 0: Address match (ADDR) interrupts disabled 1: Address match (ADDR) interrupts enabled Bit 2 RXIE: RX Interrupt enable 0: Receive (RXNE) interrupt disabled 1: Receive (RXNE) interrupt enabled Bit 1 TXIE: TX Interrupt enable 0: Transmit (TXIS) interrupt disabled 1: Transmit (TXIS) interrupt enabled Bit 0 PE: Peripheral enable 0: Peripheral disable 1: Peripheral enable Note: When PE=0, the I2C SCL and SDA lines are released. Internal state machines and status bits are put back to their reset value. When cleared, PE must be kept low for at least 3 APB clock cycles. 1006/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface 30.7.2 Control register 2 (I2C_CR2) Address offset: 0x04 Reset value: 0x0000 0000 Access: No wait states, except if a write access occurs while a write access to this register is ongoing. In this case, wait states are inserted in the second write access until the previous one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x I2CCLK. 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. PEC BYTE AUTO END RE LOAD rs rw rw rw rw rw rw 9 8 7 6 5 4 15 14 13 12 11 10 NACK STOP START HEAD 10R ADD10 RD_ WRN rs rs rs rw rw rw 23 22 21 20 19 18 17 16 rw rw rw rw 3 2 1 0 rw rw rw rw NBYTES[7:0] SADD[9:0] rw rw rw rw rw rw Bits 31:27 Reserved, must be kept at reset value. Bit 26 PECBYTE: Packet error checking byte This bit is set by software, and cleared by hardware when the PEC is transferred, or when a STOP condition or an Address matched is received, also when PE=0. 0: No PEC transfer. 1: PEC transmission/reception is requested Note: Writing ‘0’ to this bit has no effect. This bit has no effect when RELOAD is set. This bit has no effect is slave mode when SBC=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. Bit 25 AUTOEND: Automatic end mode (master mode) This bit is set and cleared by software. 0: software end mode: TC flag is set when NBYTES data are transferred, stretching SCL low. 1: Automatic end mode: a STOP condition is automatically sent when NBYTES data are transferred. Note: This bit has no effect in slave mode or when the RELOAD bit is set. Bit 24 RELOAD: NBYTES reload mode This bit is set and cleared by software. 0: The transfer is completed after the NBYTES data transfer (STOP or RESTART will follow). 1: The transfer is not completed after the NBYTES data transfer (NBYTES will be reloaded). TCR flag is set when NBYTES data are transferred, stretching SCL low. Bits 23:16 NBYTES[7:0]: Number of bytes The number of bytes to be transmitted/received is programmed there. This field is don’t care in slave mode with SBC=0. Note: Changing these bits when the START bit is set is not allowed. RM0385 Rev 7 1007/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Bit 15 NACK: NACK generation (slave mode) The bit is set by software, cleared by hardware when the NACK is sent, or when a STOP condition or an Address matched is received, or when PE=0. 0: an ACK is sent after current received byte. 1: a NACK is sent after current received byte. Note: Writing ‘0’ to this bit has no effect. This bit is used in slave mode only: in master receiver mode, NACK is automatically generated after last byte preceding STOP or RESTART condition, whatever the NACK bit value. When an overrun occurs in slave receiver NOSTRETCH mode, a NACK is automatically generated whatever the NACK bit value. When hardware PEC checking is enabled (PECBYTE=1), the PEC acknowledge value does not depend on the NACK value. Bit 14 STOP: Stop generation (master mode) The bit is set by software, cleared by hardware when a Stop condition is detected, or when PE = 0. In Master Mode: 0: No Stop generation. 1: Stop generation after current byte transfer. Note: Writing ‘0’ to this bit has no effect. Bit 13 START: Start generation This bit is set by software, and cleared by hardware after the Start followed by the address sequence is sent, by an arbitration loss, by a timeout error detection, or when PE = 0. It can also be cleared by software by writing ‘1’ to the ADDRCF bit in the I2C_ICR register. 0: No Start generation. 1: Restart/Start generation: – If the I2C is already in master mode with AUTOEND = 0, setting this bit generates a Repeated Start condition when RELOAD=0, after the end of the NBYTES transfer. – Otherwise setting this bit will generate a START condition once the bus is free. Note: Writing ‘0’ to this bit has no effect. The START bit can be set even if the bus is BUSY or I2C is in slave mode. This bit has no effect when RELOAD is set. In 10-bit addressing mode, if a NACK is received on the first part of the address, the START bit is not cleared by hardware and the master will resend the address sequence, unless the START bit is cleared by software Bit 12 HEAD10R: 10-bit address header only read direction (master receiver mode) 0: The master sends the complete 10 bit slave address read sequence: Start + 2 bytes 10bit address in write direction + Restart + 1st 7 bits of the 10 bit address in read direction. 1: The master only sends the 1st 7 bits of the 10 bit address, followed by Read direction. Note: Changing this bit when the START bit is set is not allowed. Bit 11 ADD10: 10-bit addressing mode (master mode) 0: The master operates in 7-bit addressing mode, 1: The master operates in 10-bit addressing mode Note: Changing this bit when the START bit is set is not allowed. Bit 10 RD_WRN: Transfer direction (master mode) 0: Master requests a write transfer. 1: Master requests a read transfer. Note: Changing this bit when the START bit is set is not allowed. 1008/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Bits 9:8 SADD[9:8]: Slave address bit 9:8 (master mode) In 7-bit addressing mode (ADD10 = 0): These bits are don’t care In 10-bit addressing mode (ADD10 = 1): These bits should be written with bits 9:8 of the slave address to be sent Note: Changing these bits when the START bit is set is not allowed. Bits 7:1 SADD[7:1]: Slave address bit 7:1 (master mode) In 7-bit addressing mode (ADD10 = 0): These bits should be written with the 7-bit slave address to be sent In 10-bit addressing mode (ADD10 = 1): These bits should be written with bits 7:1 of the slave address to be sent. Note: Changing these bits when the START bit is set is not allowed. Bit 0 SADD0: Slave address bit 0 (master mode) In 7-bit addressing mode (ADD10 = 0): This bit is don’t care In 10-bit addressing mode (ADD10 = 1): This bit should be written with bit 0 of the slave address to be sent Note: Changing these bits when the START bit is set is not allowed. RM0385 Rev 7 1009/1709 1020 Inter-integrated circuit (I2C) interface 30.7.3 RM0385 Own address 1 register (I2C_OAR1) Address offset: 0x08 Reset value: 0x0000 0000 Access: No wait states, except if a write access occurs while a write access to this register is ongoing. In this case, wait states are inserted in the second write access until the previous one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x I2CCLK. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OA1EN Res. Res. Res. Res. OA1 MODE rw rw OA1[9:8] rw rw OA1[7:1] rw rw rw rw OA1[0] rw Bits 31:16 Reserved, must be kept at reset value. Bit 15 OA1EN: Own Address 1 enable 0: Own address 1 disabled. The received slave address OA1 is NACKed. 1: Own address 1 enabled. The received slave address OA1 is ACKed. Bits 14:11 Reserved, must be kept at reset value. Bit 10 OA1MODE: Own Address 1 10-bit mode 0: Own address 1 is a 7-bit address. 1: Own address 1 is a 10-bit address. Note: This bit can be written only when OA1EN=0. Bits 9:8 OA1[9:8]: Interface address 7-bit addressing mode: do not care 10-bit addressing mode: bits 9:8 of address Note: These bits can be written only when OA1EN=0. Bits 7:1 OA1[7:1]: Interface address 7-bit addressing mode: 7-bit address 10-bit addressing mode: bits 7:1 of 10-bit address Note: These bits can be written only when OA1EN=0. Bit 0 OA1[0]: Interface address 7-bit addressing mode: do not care 10-bit addressing mode: bit 0 of address Note: This bit can be written only when OA1EN=0. 1010/1709 RM0385 Rev 7 rw rw rw RM0385 Inter-integrated circuit (I2C) interface 30.7.4 Own address 2 register (I2C_OAR2) Address offset: 0x0C Reset value: 0x0000 0000 Access: No wait states, except if a write access occurs while a write access to this register is ongoing. In this case, wait states are inserted in the second write access until the previous one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x I2CCLK. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OA2EN Res. Res. Res. Res. rw rw rw rw rw rw rw rw OA2MSK[2:0] rw rw OA2[7:1] rw Res. Bits 31:16 Reserved, must be kept at reset value. Bit 15 OA2EN: Own Address 2 enable 0: Own address 2 disabled. The received slave address OA2 is NACKed. 1: Own address 2 enabled. The received slave address OA2 is ACKed. Bits 14:11 Reserved, must be kept at reset value. Bits 10:8 OA2MSK[2:0]: Own Address 2 masks 000: No mask 001: OA2[1] is masked and don’t care. Only OA2[7:2] are compared. 010: OA2[2:1] are masked and don’t care. Only OA2[7:3] are compared. 011: OA2[3:1] are masked and don’t care. Only OA2[7:4] are compared. 100: OA2[4:1] are masked and don’t care. Only OA2[7:5] are compared. 101: OA2[5:1] are masked and don’t care. Only OA2[7:6] are compared. 110: OA2[6:1] are masked and don’t care. Only OA2[7] is compared. 111: OA2[7:1] are masked and don’t care. No comparison is done, and all (except reserved) 7-bit received addresses are acknowledged. Note: These bits can be written only when OA2EN=0. As soon as OA2MSK is not equal to 0, the reserved I2C addresses (0b0000xxx and 0b1111xxx) are not acknowledged even if the comparison matches. Bits 7:1 OA2[7:1]: Interface address 7-bit addressing mode: 7-bit address Note: These bits can be written only when OA2EN=0. Bit 0 Reserved, must be kept at reset value. RM0385 Rev 7 1011/1709 1020 Inter-integrated circuit (I2C) interface 30.7.5 RM0385 Timing register (I2C_TIMINGR) Address offset: 0x10 Reset value: 0x0000 0000 Access: No wait states 31 30 29 28 PRESC[3:0] rw rw rw rw 15 14 13 12 rw rw rw 27 26 25 24 23 22 21 Res. Res. Res. Res. rw rw rw rw rw rw rw rw 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw 19 SCLDEL[3:0] SCLH[7:0] rw 20 18 17 16 SDADEL[3:0] SCLL[7:0] rw Bits 31:28 PRESC[3:0]: Timing prescaler This field is used to prescale I2CCLK in order to generate the clock period tPRESC used for data setup and hold counters (refer to I2C timings on page 959) and for SCL high and low level counters (refer to I2C master initialization on page 974). tPRESC = (PRESC+1) x tI2CCLK Bits 27:24 Reserved, must be kept at reset value. Bits 23:20 SCLDEL[3:0]: Data setup time This field is used to generate a delay tSCLDEL between SDA edge and SCL rising edge. In master mode and in slave mode with NOSTRETCH = 0, the SCL line is stretched low during tSCLDEL. tSCLDEL = (SCLDEL+1) x tPRESC Note: tSCLDEL is used to generate tSU:DAT timing. Bits 19:16 SDADEL[3:0]: Data hold time This field is used to generate the delay tSDADEL between SCL falling edge and SDA edge. In master mode and in slave mode with NOSTRETCH = 0, the SCL line is stretched low during tSDADEL. tSDADEL= SDADEL x tPRESC Note: SDADEL is used to generate tHD:DAT timing. Bits 15:8 SCLH[7:0]: SCL high period (master mode) This field is used to generate the SCL high period in master mode. tSCLH = (SCLH+1) x tPRESC Note: SCLH is also used to generate tSU:STO and tHD:STA timing. Bits 7:0 SCLL[7:0]: SCL low period (master mode) This field is used to generate the SCL low period in master mode. tSCLL = (SCLL+1) x tPRESC Note: SCLL is also used to generate tBUF and tSU:STA timings. Note: This register must be configured when the I2C is disabled (PE = 0). Note: The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C Configuration window. 1012/1709 RM0385 Rev 7 RM0385 30.7.6 Inter-integrated circuit (I2C) interface Timeout register (I2C_TIMEOUTR) Address offset: 0x14 Reset value: 0x0000 0000 Access: No wait states, except if a write access occurs while a write access to this register is ongoing. In this case, wait states are inserted in the second write access until the previous one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x I2CCLK. 31 30 29 28 TEXTEN Res. Res. Res. rw 15 14 13 12 TIMOUTEN Res. Res. TIDLE rw rw 27 26 25 24 23 22 21 20 19 18 17 16 TIMEOUTB[11:0] rw rw rw rw rw 11 10 9 8 7 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw TIMEOUTA[11:0] rw rw rw rw rw rw rw Bit 31 TEXTEN: Extended clock timeout enable 0: Extended clock timeout detection is disabled 1: Extended clock timeout detection is enabled. When a cumulative SCL stretch for more than tLOW:EXT is done by the I2C interface, a timeout error is detected (TIMEOUT=1). Bits 30:28 Reserved, must be kept at reset value. Bits 27:16 TIMEOUTB[11:0]: Bus timeout B This field is used to configure the cumulative clock extension timeout: In master mode, the master cumulative clock low extend time (tLOW:MEXT) is detected In slave mode, the slave cumulative clock low extend time (tLOW:SEXT) is detected tLOW:EXT= (TIMEOUTB+1) x 2048 x tI2CCLK Note: These bits can be written only when TEXTEN=0. Bit 15 TIMOUTEN: Clock timeout enable 0: SCL timeout detection is disabled 1: SCL timeout detection is enabled: when SCL is low for more than tTIMEOUT (TIDLE=0) or high for more than tIDLE (TIDLE=1), a timeout error is detected (TIMEOUT=1). Bits 14:13 Reserved, must be kept at reset value. Bit 12 TIDLE: Idle clock timeout detection 0: TIMEOUTA is used to detect SCL low timeout 1: TIMEOUTA is used to detect both SCL and SDA high timeout (bus idle condition) Note: This bit can be written only when TIMOUTEN=0. Bits 11:0 TIMEOUTA[11:0]: Bus Timeout A This field is used to configure: – The SCL low timeout condition tTIMEOUT when TIDLE=0 tTIMEOUT= (TIMEOUTA+1) x 2048 x tI2CCLK – The bus idle condition (both SCL and SDA high) when TIDLE=1 tIDLE= (TIMEOUTA+1) x 4 x tI2CCLK Note: These bits can be written only when TIMOUTEN=0. Note: If the SMBus feature is not supported, this register is reserved and forced by hardware to “0x00000000”. Refer to Section 30.3: I2C implementation. RM0385 Rev 7 1013/1709 1020 Inter-integrated circuit (I2C) interface 30.7.7 RM0385 Interrupt and status register (I2C_ISR) Address offset: 0x18 Reset value: 0x0000 0001 Access: No wait states 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 BUSY Res. ALERT TIME OUT PEC ERR OVR ARLO BERR TCR TC ADDR RXNE TXIS TXE r r r r r r r r r r rs rs r 23 22 21 20 19 18 17 ADDCODE[6:0] STOPF NACKF r r 16 DIR Bits 31:24 Reserved, must be kept at reset value. Bits 23:17 ADDCODE[6:0]: Address match code (Slave mode) These bits are updated with the received address when an address match event occurs (ADDR = 1). In the case of a 10-bit address, ADDCODE provides the 10-bit header followed by the 2 MSBs of the address. Bit 16 DIR: Transfer direction (Slave mode) This flag is updated when an address match event occurs (ADDR=1). 0: Write transfer, slave enters receiver mode. 1: Read transfer, slave enters transmitter mode. Bit 15 BUSY: Bus busy This flag indicates that a communication is in progress on the bus. It is set by hardware when a START condition is detected. It is cleared by hardware when a Stop condition is detected, or when PE=0. Bit 14 Reserved, must be kept at reset value. Bit 13 ALERT: SMBus alert This flag is set by hardware when SMBHEN=1 (SMBus host configuration), ALERTEN=1 and a SMBALERT event (falling edge) is detected on SMBA pin. It is cleared by software by setting the ALERTCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. Bit 12 TIMEOUT: Timeout or tLOW detection flag This flag is set by hardware when a timeout or extended clock timeout occurred. It is cleared by software by setting the TIMEOUTCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. 1014/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Bit 11 PECERR: PEC Error in reception This flag is set by hardware when the received PEC does not match with the PEC register content. A NACK is automatically sent after the wrong PEC reception. It is cleared by software by setting the PECCF bit. Note: This bit is cleared by hardware when PE=0. If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. Bit 10 OVR: Overrun/Underrun (slave mode) This flag is set by hardware in slave mode with NOSTRETCH=1, when an overrun/underrun error occurs. It is cleared by software by setting the OVRCF bit. Note: This bit is cleared by hardware when PE=0. Bit 9 ARLO: Arbitration lost This flag is set by hardware in case of arbitration loss. It is cleared by software by setting the ARLOCF bit. Note: This bit is cleared by hardware when PE=0. Bit 8 BERR: Bus error This flag is set by hardware when a misplaced Start or Stop condition is detected whereas the peripheral is involved in the transfer. The flag is not set during the address phase in slave mode. It is cleared by software by setting BERRCF bit. Note: This bit is cleared by hardware when PE=0. Bit 7 TCR: Transfer Complete Reload This flag is set by hardware when RELOAD=1 and NBYTES data have been transferred. It is cleared by software when NBYTES is written to a non-zero value. Note: This bit is cleared by hardware when PE=0. This flag is only for master mode, or for slave mode when the SBC bit is set. Bit 6 TC: Transfer Complete (master mode) This flag is set by hardware when RELOAD=0, AUTOEND=0 and NBYTES data have been transferred. It is cleared by software when START bit or STOP bit is set. Note: This bit is cleared by hardware when PE=0. Bit 5 STOPF: Stop detection flag This flag is set by hardware when a Stop condition is detected on the bus and the peripheral is involved in this transfer: – either as a master, provided that the STOP condition is generated by the peripheral. – or as a slave, provided that the peripheral has been addressed previously during this transfer. It is cleared by software by setting the STOPCF bit. Note: This bit is cleared by hardware when PE=0. Bit 4 NACKF: Not Acknowledge received flag This flag is set by hardware when a NACK is received after a byte transmission. It is cleared by software by setting the NACKCF bit. Note: This bit is cleared by hardware when PE=0. Bit 3 ADDR: Address matched (slave mode) This bit is set by hardware as soon as the received slave address matched with one of the enabled slave addresses. It is cleared by software by setting ADDRCF bit. Note: This bit is cleared by hardware when PE=0. RM0385 Rev 7 1015/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Bit 2 RXNE: Receive data register not empty (receivers) This bit is set by hardware when the received data is copied into the I2C_RXDR register, and is ready to be read. It is cleared when I2C_RXDR is read. Note: This bit is cleared by hardware when PE=0. Bit 1 TXIS: Transmit interrupt status (transmitters) This bit is set by hardware when the I2C_TXDR register is empty and the data to be transmitted must be written in the I2C_TXDR register. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to ‘1’ by software when NOSTRETCH=1 only, in order to generate a TXIS event (interrupt if TXIE=1 or DMA request if TXDMAEN=1). Note: This bit is cleared by hardware when PE=0. Bit 0 TXE: Transmit data register empty (transmitters) This bit is set by hardware when the I2C_TXDR register is empty. It is cleared when the next data to be sent is written in the I2C_TXDR register. This bit can be written to ‘1’ by software in order to flush the transmit data register I2C_TXDR. Note: This bit is set by hardware when PE=0. 30.7.8 Interrupt clear register (I2C_ICR) Address offset: 0x1C Reset value: 0x0000 0000 Access: No wait states 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. ARLO CF BERR CF Res. Res. STOP CF NACK CF ADDR CF Res. Res. Res. w w w w w ALERT TIM PECCF OVRCF CF OUTCF w w w w Bits 31:14 Reserved, must be kept at reset value. Bit 13 ALERTCF: Alert flag clear Writing 1 to this bit clears the ALERT flag in the I2C_ISR register. Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. Bit 12 TIMOUTCF: Timeout detection flag clear Writing 1 to this bit clears the TIMEOUT flag in the I2C_ISR register. Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. Bit 11 PECCF: PEC Error flag clear Writing 1 to this bit clears the PECERR flag in the I2C_ISR register. Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’. Refer to Section 30.3: I2C implementation. Bit 10 OVRCF: Overrun/Underrun flag clear Writing 1 to this bit clears the OVR flag in the I2C_ISR register. 1016/1709 RM0385 Rev 7 RM0385 Inter-integrated circuit (I2C) interface Bit 9 ARLOCF: Arbitration Lost flag clear Writing 1 to this bit clears the ARLO flag in the I2C_ISR register. Bit 8 BERRCF: Bus error flag clear Writing 1 to this bit clears the BERRF flag in the I2C_ISR register. Bits 7:6 Reserved, must be kept at reset value. Bit 5 STOPCF: Stop detection flag clear Writing 1 to this bit clears the STOPF flag in the I2C_ISR register. Bit 4 NACKCF: Not Acknowledge flag clear Writing 1 to this bit clears the NACKF flag in I2C_ISR register. Bit 3 ADDRCF: Address matched flag clear Writing 1 to this bit clears the ADDR flag in the I2C_ISR register. Writing 1 to this bit also clears the START bit in the I2C_CR2 register. Bits 2:0 Reserved, must be kept at reset value. 30.7.9 PEC register (I2C_PECR) Address offset: 0x20 Reset value: 0x0000 0000 Access: No wait states 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. r r r PEC[7:0] r r r r r Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 PEC[7:0] Packet error checking register This field contains the internal PEC when PECEN=1. The PEC is cleared by hardware when PE=0. Note: If the SMBus feature is not supported, this register is reserved and forced by hardware to “0x00000000”. Refer to Section 30.3: I2C implementation. RM0385 Rev 7 1017/1709 1020 Inter-integrated circuit (I2C) interface 30.7.10 RM0385 Receive data register (I2C_RXDR) Address offset: 0x24 Reset value: 0x0000 0000 Access: No wait states 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. r r r r r r r r RXDATA[7:0] Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 RXDATA[7:0] 8-bit receive data Data byte received from the I2C bus. 30.7.11 Transmit data register (I2C_TXDR) Address offset: 0x28 Reset value: 0x0000 0000 Access: No wait states 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw rw rw rw TXDATA[7:0] Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 TXDATA[7:0] 8-bit transmit data Data byte to be transmitted to the I2C bus. Note: These bits can be written only when TXE=1. 1018/1709 RM0385 Rev 7 rw rw 0x24 I2C_RXDR Reset value RM0385 Rev 7 ARLO BERR TCR TC STOPF NACKF ADDR RXNE TXIS TXE 0 0 0 0 0 0 0 0 0 0 0 0 1 Res. Res. STOPCF NACKCF ADDRCF 0 0 0 PECCF OVRCF ARLOCF BERRCF 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. ADD10 RD_WRN Res. Res. Res. 0 OA1MODE STOP START Res. HEAD10R NACK Res. OA1EN 0 0 0 0 0 0 0 0 0 SMBDEN SMBHEN GCEN TXDMAEN ANFOFF Res. SBC RXDMAEN NOSTRETCH Res ALERTEN Res. Res. Res. Res. Res. PECEN 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 SADD[9:0] 0 0 0 0 0 0 SCLH[7:0] 0 0 0 0 OA1[9:0] 0 0 OA2[7:1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. PE 0 TXIE NACKIE ADDRIE 0 RXIE TCIE 0 STOPIE ERRIE 0 PEC[7:0] RXDATA[7:0] Res. Res. 0 0 Res. 0 DNF[3:0] Res. Res. 0 Res. Res. 0 0 Res. OVR 0 Res. 0 Res. Res. 0 0 Res. PECERR 0 Res. 0 TIDLE Res. Res. Res. 0 Res. 0 0 Res. TIMEOUT 0 TIMOUTCF ADDCODE[6:0] 0 Res. 0 0 Res. 0 Res. Reset value Res. ALERT 0 Res. 0 0 ALERTCF 0 Res. 0 0 Res. OA2EN 0 Res. TIMEOUTB[11:0] TIMOUTEN 0 0 Res. 0 Res. 0 Res. DIR BUSY 0 Res. RELOAD 0 NBYTES[7:0] Res. 0 Res. AUTOEND 0 Res. 0 0 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. PECBYTE 0 Res. Res. Res. 0 Res. 0 Res. OA2MS K [2:0] Res. Res. Res. Res. 0 Res. I2C_OAR2 Res. Res. Res. 0 Res. 0 Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. 0 Res. 0 Res. 0 Res. 0 0 Res. 0 Res. 0 Res. Res. Res. Res. Res. SDADEL[3: 0] 0 Res. Res. 0 Res. Reset value 0 Res. Res. 0 Res. Res. 0 Res. Reset value SCLDEL[3:0 ] 0 Res. 0 Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. Res. Res. Reset value Res. Res. I2C_ISR Res. Res. 0 Res. Res. Reset value Res. I2C_ TIMEOUTR Res. 0 Res. 0 Res. Res. PRESC[3:0] Res. I2C_PECR Res. Reset value Res. 0x20 Res. 0x10 Res. I2C_ICR Res. 0x1C Res. I2C_TIMINGR Res. 0xC Reset value Res. I2C_OAR1 Res. 0x8 Res. 0 Res. I2C_CR2 Res. 0 TEXTEN 0x18 Reset value Res. 0x4 Res. I2C_CR1 Res. 0x0 Res. 0x14 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. Offset Res. 30.7.12 Res. RM0385 Inter-integrated circuit (I2C) interface I2C register map The table below provides the I2C register map and reset values. Table 189. I2C register map and reset values SCLL[7:0] 0 0 0 0 TIMEOUTA[11:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1019/1709 1020 Inter-integrated circuit (I2C) interface RM0385 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. I2C_TXDR 0x28 Res. Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 189. I2C register map and reset values (continued) Reset value 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. 1020/1709 TXDATA[7:0] RM0385 Rev 7 0 0 0 0 0 0 0 RM0385 Universal synchronous asynchronous receiver transmitter (USART) 31 Universal synchronous asynchronous receiver transmitter (USART) 31.1 Introduction The universal synchronous asynchronous receiver transmitter (USART) offers a flexible means of Full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The USART offers a very wide range of baud rates using a programmable baud rate generator. It supports synchronous one-way communication and Half-duplex Single-wire communication, as well as multiprocessor communications. It also supports the LIN (Local Interconnect Network), Smartcard protocol and IrDA (Infrared Data Association) SIR ENDEC specifications and Modem operations (CTS/RTS). High speed data communication is possible by using the DMA (direct memory access) for multibuffer configuration. 31.2 USART main features • Full-duplex asynchronous communications • NRZ standard format (mark/space) • Configurable oversampling method by 16 or 8 to give flexibility between speed and clock tolerance • A common programmable transmit and receive baud rate of up to 27 Mbit/s when USART clock source is the system clock frequency (Max is 216 MHz) and the oversampling by 8 is used • Dual clock domain allowing: – Convenient baud rate programming independent from the PCLK reprogramming • Auto baud rate detection • Programmable data word length (7, 8 or 9 bits) • Programmable data order with MSB-first or LSB-first shifting • Configurable stop bits (1 or 2 stop bits) • Synchronous mode and clock output for synchronous communications • Single-wire Half-duplex communications • Continuous communications using DMA • Received/transmitted bytes are buffered in reserved SRAM using centralized DMA • Separate enable bits for transmitter and receiver • Separate signal polarity control for transmission and reception • Swappable Tx/Rx pin configuration • Hardware flow control for modem and RS-485 transceiver RM0385 Rev 7 1021/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) • Communication control/error detection flags • Parity control: – Transmits parity bit – Checks parity of received data byte • Fourteen interrupt sources with flags • Multiprocessor communications RM0385 The USART enters mute mode if the address does not match. • 31.3 Wakeup from mute mode (by idle line detection or address mark detection) USART extended features • LIN master synchronous break send capability and LIN slave break detection capability – • IrDA SIR encoder decoder supporting 3/16 bit duration for normal mode • Smartcard mode • 1022/1709 13-bit break generation and 10/11-bit break detection when USART is hardware configured for LIN – Supports the T=0 and T=1 asynchronous protocols for smartcards as defined in the ISO/IEC 7816-3 standard – 0.5 and 1.5 stop bits for smartcard operation Support for ModBus communication – Timeout feature – CR/LF character recognition RM0385 Rev 7 RM0385 31.4 Universal synchronous asynchronous receiver transmitter (USART) USART implementation Table 190. STM32F75xxx and STM32F74xxx USART features USART1/USART2/ USART3/USART6 UART4/UART5/ Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X - Smartcard mode X - Single-wire Half-duplex communication X X IrDA SIR ENDEC block X X LIN mode X X Dual clock domain X X Receiver timeout interrupt X X Modbus communication X X Auto baud rate detection X X Driver Enable X USART modes/features(1) X (2), USART data length UART7/UART8 7 8 and 9 bits 1. X = supported. 2. In 7-bit data length mode, Smartcard mode, LIN master mode and Auto baud rate (0x7F and 0x55 frames) detection are not supported. 31.5 USART functional description Any USART bidirectional communication requires a minimum of two pins: Receive data In (RX) and Transmit data Out (TX): • RX: Receive data Input. This is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. • TX: Transmit data Output. When the transmitter is disabled, the output pin returns to its I/O port configuration. When the transmitter is enabled and nothing is to be transmitted, the TX pin is at high level. In Single-wire and Smartcard modes, this I/O is used to transmit and receive the data. RM0385 Rev 7 1023/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Serial data are transmitted and received through these pins in normal USART mode. The frames are comprised of: • An Idle Line prior to transmission or reception • A start bit • A data word (7, 8 or 9 bits) least significant bit first • 0.5, 1, 1.5, 2 stop bits indicating that the frame is complete • The USART interface uses a baud rate generator • A status register (USART_ISR) • Receive and transmit data registers (USART_RDR, USART_TDR) • A baud rate register (USART_BRR) • A guard-time register (USART_GTPR) in case of Smartcard mode. Refer to Section 31.8: USART registers on page 1064 for the definitions of each bit. The following pin is required to interface in synchronous mode and Smartcard mode: • CK: Clock output. This pin outputs the transmitter data clock for synchronous transmission corresponding to SPI master mode (no clock pulses on start bit and stop bit, and a software option to send a clock pulse on the last data bit). In parallel, data can be received synchronously on RX. This can be used to control peripherals that have shift registers. The clock phase and polarity are software programmable. In Smartcard mode, CK output can provide the clock to the smartcard. The following pins are required in RS232 Hardware flow control mode: • CTS: Clear To Send blocks the data transmission at the end of the current transfer when high • RTS: Request to send indicates that the USART is ready to receive data (when low). The following pin is required in RS485 Hardware control mode: • Note: 1024/1709 DE: Driver Enable activates the transmission mode of the external transceiver. DE and RTS share the same pin. RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 334. USART block diagram PWDATA PRDATA Write Read (CPU or DMA) TX RX IrDA SIR ENDEC block DR (data register) (CPU or DMA) Transmit data register (TDR) Transmit shift register Receive data register (RDR) Receive shift register USART_GTPR register GT PSC USART_CR3 register USART_CR2 register RTS/ DE CTS CK control CK USART_CR2 register USART_CR1 register Hardware flow controller Transmit control Receiver control USART_CR1 register Receiver clock USART_ISR register USART interrupt control USART_BRR register TE Transmitter clock /USARTDIV or 2/USARTDIV (depending on the oversampling mode) (Note 1) BRR[15:0] RE fCK (Note 2) Transmitter rate controller Receiver rate controller Conventional baud rate generator MSv35479V2 1. For details on coding USARTDIV in the USART_BRR register, refer to Section 31.5.4: USART baud rate generation. 2. fCK can be fLSE, fHSI, fPCLK, fSYS. RM0385 Rev 7 1025/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) 31.5.1 RM0385 USART character description The word length can be selected as being either 7 or 8 or 9 bits by programming the M[1:0] bits in the USART_CR1 register (see Figure 335). Note: • 7-bit character length: M[1:0] = 10 • 8-bit character length: M[1:0] = 00 • 9-bit character length: M[1:0] = 01 The 7-bit mode is supported only on some USARTs. In addition, not all modes are supported in 7-bit data length mode. Refer to Section 31.4: USART implementation for additional information. By default, the signal (TX or RX) is in low state during the start bit. It is in high state during the stop bit. These values can be inverted, separately for each signal, through polarity configuration control. An Idle character is interpreted as an entire frame of “1”s (the number of “1”s includes the number of stop bits). A Break character is interpreted on receiving “0”s for a frame period. At the end of the break frame, the transmitter inserts 2 stop bits. Transmission and reception are driven by a common baud rate generator, the clock for each is generated when the enable bit is set respectively for the transmitter and receiver. The details of each block is given below. 1026/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 335. Word length programming 9-bit word length (M = 01 ), 1 Stop bit Possible Parity bit Data frame Start bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Clock Bit8 Stop bit Next Start bit ** Start bit Idle frame Stop bit Stop bit Stop bit Stop bit Start bit Stop bit Start bit Break frame Start bit 8-bit word length (M = 00 ), 1 Stop bit Possible Parity bit Data frame Start bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Clock Stop bit Next Start bit ** Start bit Idle frame Break frame 7-bit word length (M = 10 ), 1 Stop bit Possible Parity bit Data frame Start bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Stop bit Next Start bit ** Clock Idle frame Break frame Start bit Stop bit ** LBCL bit controls last data clock pulse MS33194V2 RM0385 Rev 7 1027/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) 31.5.2 RM0385 USART transmitter The transmitter can send data words of either 7, 8 or 9 bits depending on the M bits status. The Transmit Enable bit (TE) must be set in order to activate the transmitter function. The data in the transmit shift register is output on the TX pin and the corresponding clock pulses are output on the CK pin. Character transmission During an USART transmission, data shifts out least significant bit first (default configuration) on the TX pin. In this mode, the USART_TDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 334). Every character is preceded by a start bit which is a logic level low for one bit period. The character is terminated by a configurable number of stop bits. The following stop bits are supported by USART: 0.5, 1, 1.5 and 2 stop bits. Note: The TE bit must be set before writing the data to be transmitted to the USART_TDR. The TE bit should not be reset during transmission of data. Resetting the TE bit during the transmission will corrupt the data on the TX pin as the baud rate counters will get frozen. The current data being transmitted will be lost. An idle frame will be sent after the TE bit is enabled. Configurable stop bits The number of stop bits to be transmitted with every character can be programmed in Control register 2, bits 13,12. • 1 stop bit: This is the default value of number of stop bits. • 2 stop bits: This will be supported by normal USART, Single-wire and Modem modes. • 1.5 stop bits: To be used in Smartcard mode. • 0.5 stop bit: To be used when receiving data in Smartcard mode. An idle frame transmission will include the stop bits. A break transmission will be 10 low bits (when M[1:0] = 00) or 11 low bits (when M[1:0] = 01) or 9 low bits (when M[1:0] = 10) followed by 2 stop bits (see Figure 336). It is not possible to transmit long breaks (break of length greater than 9/10/11 low bits). 1028/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 336. Configurable stop bits 8-bit data, 1 Stop bit Possible parity bit Data frame Start bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 CLOCK Bit7 Stop bit Next start bit Next data frame ** ** LBCL bit controls last data clock pulse 8-bit data, 1 1/2 Stop bits Possible parity bit Data frame Start bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 1.5 Stop bits Next start bit Next data frame 8-bit data, 2 Stop bits Possible parity bit Data frame Start bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 2 Stop bits Next start bit Next data frame MSv31887V1 Character transmission procedure 1. Program the M bits in USART_CR1 to define the word length. 2. Select the desired baud rate using the USART_BRR register. 3. Program the number of stop bits in USART_CR2. 4. Enable the USART by writing the UE bit in USART_CR1 register to 1. 5. Select DMA enable (DMAT) in USART_CR3 if multibuffer communication is to take place. Configure the DMA register as explained in multibuffer communication. 6. Set the TE bit in USART_CR1 to send an idle frame as first transmission. 7. Write the data to send in the USART_TDR register (this clears the TXE bit). Repeat this for each data to be transmitted in case of single buffer. 8. After writing the last data into the USART_TDR register, wait until TC=1. This indicates that the transmission of the last frame is complete. This is required for instance when the USART is disabled or enters the Halt mode to avoid corrupting the last transmission. Single byte communication Clearing the TXE bit is always performed by a write to the transmit data register. The TXE bit is set by hardware and it indicates: • The data has been moved from the USART_TDR register to the shift register and the data transmission has started. • The USART_TDR register is empty. • The next data can be written in the USART_TDR register without overwriting the previous data. This flag generates an interrupt if the TXEIE bit is set. When a transmission is taking place, a write instruction to the USART_TDR register stores the data in the TDR register; next, the data is copied in the shift register at the end of the currently ongoing transmission. RM0385 Rev 7 1029/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 When no transmission is taking place, a write instruction to the USART_TDR register places the data in the shift register, the data transmission starts, and the TXE bit is set. If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An interrupt is generated if the TCIE bit is set in the USART_CR1 register. After writing the last data in the USART_TDR register, it is mandatory to wait for TC=1 before disabling the USART or causing the microcontroller to enter the low-power mode (see Figure 337: TC/TXE behavior when transmitting). Figure 337. TC/TXE behavior when transmitting Break characters Setting the SBKRQ bit transmits a break character. The break frame length depends on the M bits (see Figure 335). If a ‘1’ is written to the SBKRQ bit, a break character is sent on the TX line after completing the current character transmission. The SBKF bit is set by the write operation and it is reset by hardware when the break character is completed (during the stop bits after the break character). The USART inserts a logic 1 signal (STOP) for the duration of 2 bits at the end of the break frame to guarantee the recognition of the start bit of the next frame. In the case the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software should wait for the TXE flag assertion before setting the SBKRQ bit. Idle characters Setting the TE bit drives the USART to send an idle frame before the first data frame. 31.5.3 USART receiver The USART can receive data words of either 7, 8 or 9 bits depending on the M bits in the USART_CR1 register. Start bit detection The start bit detection sequence is the same when oversampling by 16 or by 8. 1030/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) In the USART, the start bit is detected when a specific sequence of samples is recognized. This sequence is: 1 1 1 0 X 0 X 0X 0X 0 X 0X 0. Figure 338. Start bit detection when oversampling by 16 or 8 Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the idle state (no flag is set), where it waits for a falling edge. The start bit is confirmed (RXNE flag set, interrupt generated if RXNEIE=1) if the 3 sampled bits are at 0 (first sampling on the 3rd, 5th and 7th bits finds the 3 bits at 0 and second sampling on the 8th, 9th and 10th bits also finds the 3 bits at 0). The start bit is validated (RXNE flag set, interrupt generated if RXNEIE=1) but the NF noise flag is set if, a) for both samplings, 2 out of the 3 sampled bits are at 0 (sampling on the 3rd, 5th and 7th bits and sampling on the 8th, 9th and 10th bits) or b) for one of the samplings (sampling on the 3rd, 5th and 7th bits or sampling on the 8th, 9th and 10th bits), 2 out of the 3 bits are found at 0. If neither conditions a. or b. are met, the start detection aborts and the receiver returns to the idle state (no flag is set). RM0385 Rev 7 1031/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Character reception During an USART reception, data shifts in least significant bit first (default configuration) through the RX pin. In this mode, the USART_RDR register consists of a buffer (RDR) between the internal bus and the receive shift register. Character reception procedure 1. Program the M bits in USART_CR1 to define the word length. 2. Select the desired baud rate using the baud rate register USART_BRR 3. Program the number of stop bits in USART_CR2. 4. Enable the USART by writing the UE bit in USART_CR1 register to 1. 5. Select DMA enable (DMAR) in USART_CR3 if multibuffer communication is to take place. Configure the DMA register as explained in multibuffer communication. 6. Set the RE bit USART_CR1. This enables the receiver which begins searching for a start bit. When a character is received: • The RXNE bit is set to indicate that the content of the shift register is transferred to the RDR. In other words, data has been received and can be read (as well as its associated error flags). • An interrupt is generated if the RXNEIE bit is set. • The error flags can be set if a frame error, noise or an overrun error has been detected during reception. PE flag can also be set with RXNE. • In multibuffer, RXNE is set after every byte received and is cleared by the DMA read of the Receive data Register. • In single buffer mode, clearing the RXNE bit is performed by a software read to the USART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. The RXNE bit must be cleared before the end of the reception of the next character to avoid an overrun error. Break character When a break character is received, the USART handles it as a framing error. Idle character When an idle frame is detected, there is the same procedure as for a received data character plus an interrupt if the IDLEIE bit is set. 1032/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Overrun error An overrun error occurs when a character is received when RXNE has not been reset. Data can not be transferred from the shift register to the RDR register until the RXNE bit is cleared. The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set when the next data is received or the previous DMA request has not been serviced. When an overrun error occurs: Note: • The ORE bit is set. • The RDR content will not be lost. The previous data is available when a read to USART_RDR is performed. • The shift register will be overwritten. After that point, any data received during overrun is lost. • An interrupt is generated if either the RXNEIE bit is set or EIE bit is set. • The ORE bit is reset by setting the ORECF bit in the ICR register. The ORE bit, when set, indicates that at least 1 data has been lost. There are two possibilities: - if RXNE=1, then the last valid data is stored in the receive register RDR and can be read, - if RXNE=0, then it means that the last valid data has already been read and thus there is nothing to be read in the RDR. This case can occur when the last valid data is read in the RDR at the same time as the new (and lost) data is received. Selecting the clock source and the proper oversampling method The choice of the clock source is done through the Clock Control system (see Section Reset and clock control (RCC))). The clock source must be chosen before enabling the USART (by setting the UE bit). The clock source frequency is fCK. When the dual clock domain is supported, the clock source can be one of the following sources: PCLK (default), LSE, HSI or SYSCLK. The communication speed range (specially the maximum communication speed) is also determined by the clock source. The receiver implements different user-configurable oversampling techniques for data recovery by discriminating between valid incoming data and noise. This allows a trade-off between the maximum communication speed and noise/clock inaccuracy immunity. The oversampling method can be selected by programming the OVER8 bit in the USART_CR1 register and can be either 16 or 8 times the baud rate clock (Figure 339 and Figure 340). Depending on the application: • Select oversampling by 8 (OVER8=1) to achieve higher speed (up to fCK/8). In this case the maximum receiver tolerance to clock deviation is reduced (refer to Section 31.5.5: Tolerance of the USART receiver to clock deviation on page 1039) • Select oversampling by 16 (OVER8=0) to increase the tolerance of the receiver to clock deviations. In this case, the maximum speed is limited to maximum fCK/16 where fCK is the clock source frequency. RM0385 Rev 7 1033/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Programming the ONEBIT bit in the USART_CR3 register selects the method used to evaluate the logic level. There are two options: • The majority vote of the three samples in the center of the received bit. In this case, when the 3 samples used for the majority vote are not equal, the NF bit is set • A single sample in the center of the received bit Depending on the application: – select the three samples’ majority vote method (ONEBIT=0) when operating in a noisy environment and reject the data when a noise is detected (refer to Figure 191) because this indicates that a glitch occurred during the sampling. – select the single sample method (ONEBIT=1) when the line is noise-free to increase the receiver’s tolerance to clock deviations (see Section 31.5.5: Tolerance of the USART receiver to clock deviation on page 1039). In this case the NF bit will never be set. When noise is detected in a frame: • The NF bit is set at the rising edge of the RXNE bit. • The invalid data is transferred from the Shift register to the USART_RDR register. • No interrupt is generated in case of single byte communication. However this bit rises at the same time as the RXNE bit which itself generates an interrupt. In case of multibuffer communication an interrupt will be issued if the EIE bit is set in the USART_CR3 register. The NF bit is reset by setting NFCF bit in ICR register. Note: Oversampling by 8 is not available in LIN, Smartcard and IrDA modes. In those modes, the OVER8 bit is forced to ‘0’ by hardware. Figure 339. Data sampling when oversampling by 16 RX line sampled values Sample clock 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 6/16 7/16 7/16 One bit time MSv31152V1 1034/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 340. Data sampling when oversampling by 8 RX line sampled values Sample clock (x8) 1 2 3 4 5 6 7 8 2/8 3/8 3/8 One bit time MSv31153V1 Table 191. Noise detection from sampled data Sampled value NE status Received bit value 000 0 0 001 1 0 010 1 0 011 1 1 100 1 0 101 1 1 110 1 1 111 0 1 Framing error A framing error is detected when the stop bit is not recognized on reception at the expected time, following either a de-synchronization or excessive noise. When the framing error is detected: • The FE bit is set by hardware • The invalid data is transferred from the Shift register to the USART_RDR register. • No interrupt is generated in case of single byte communication. However this bit rises at the same time as the RXNE bit which itself generates an interrupt. In case of multibuffer communication an interrupt will be issued if the EIE bit is set in the USART_CR3 register. The FE bit is reset by writing 1 to the FECF in the USART_ICR register. RM0385 Rev 7 1035/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Configurable stop bits during reception The number of stop bits to be received can be configured through the control bits of Control Register 2 - it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode. 31.5.4 • 0.5 stop bit (reception in Smartcard mode): No sampling is done for 0.5 stop bit. As a consequence, no framing error and no break frame can be detected when 0.5 stop bit is selected. • 1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples. • 1.5 stop bits (Smartcard mode): When transmitting in Smartcard mode, the device must check that the data is correctly sent. Thus the receiver block must be enabled (RE =1 in the USART_CR1 register) and the stop bit is checked to test if the smartcard has detected a parity error. In the event of a parity error, the smartcard forces the data signal low during the sampling - NACK signal-, which is flagged as a framing error. Then, the FE flag is set with the RXNE at the end of the 1.5 stop bits. Sampling for 1.5 stop bits is done on the 16th, 17th and 18th samples (1 baud clock period after the beginning of the stop bit). The 1.5 stop bits can be decomposed into 2 parts: one 0.5 baud clock period during which nothing happens, followed by 1 normal stop bit period during which sampling occurs halfway through. Refer to Section 31.5.13: USART Smartcard mode on page 1050 for more details. • 2 stop bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the first stop bit. If a framing error is detected during the first stop bit the framing error flag will be set. The second stop bit is not checked for framing error. The RXNE flag will be set at the end of the first stop bit. USART baud rate generation The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as programmed in the USART_BRR register. Equation 1: Baud rate for standard USART (SPI mode included) (OVER8 = 0 or 1) In case of oversampling by 16, the equation is: f CK Tx/Rx baud = -------------------------------USARTDIV In case of oversampling by 8, the equation is: 2 × f CK Tx/Rx baud = -------------------------------USARTDIV Equation 2: Baud rate in Smartcard, LIN and IrDA modes (OVER8 = 0) In Smartcard, LIN and IrDA modes, only Oversampling by 16 is supported: f CK Tx/Rx baud = -------------------------------USARTDIV 1036/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) USARTDIV is an unsigned fixed point number that is coded on the USART_BRR register. Note: • When OVER8 = 0, BRR = USARTDIV. • When OVER8 = 1 – BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right. – BRR[3] must be kept cleared. – BRR[15:4] = USARTDIV[15:4] The baud counters are updated to the new value in the baud registers after a write operation to USART_BRR. Hence the baud rate register value should not be changed during communication. In case of oversampling by 16 or 8, USARTDIV must be greater than or equal to 16d. How to derive USARTDIV from USART_BRR register values Example 1 To obtain 9600 baud with fCK = 8 MHz. • In case of oversampling by 16: USARTDIV = 8 000 000/9600 BRR = USARTDIV = 833d = 0341h • In case of oversampling by 8: USARTDIV = 2 * 8 000 000/9600 USARTDIV = 1666,66 (1667d = 683h) BRR[3:0] = 3h >> 1 = 1h BRR = 0x681 Example 2 To obtain 921.6 Kbaud with fCK = 48 MHz. • In case of oversampling by 16: USARTDIV = 48 000 000/921 600 BRR = USARTDIV = 52d = 34h • In case of oversampling by 8: USARTDIV = 2 * 48 000 000/921 600 USARTDIV = 104 (104d = 68h) BRR[3:0] = USARTDIV[3:0] >> 1 = 8h >> 1 = 4h BRR = 0x64 RM0385 Rev 7 1037/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Table 192. Error calculation for programmed baud rates at fCK = 216 MHz in both cases of oversampling by 8 (OVER8 = 1)(1) Desired baud rate (Bps) Actual baud rate (Bps) BRR Error 9600 9600 AFC4 0.00000000 19200 19200 57E2 0.00000000 38400 38400 2BF1 0.00000000 57600 57600 1D46 0.00000000 115200 115200 EA3 0.00000000 230400 230400 751 0.00000000 460800 461538.461 3A4 0.160256293 921600 923076.923 1D2 0.001602564 13500000 13500000.000 20 0.00000000 27000000 27000000.000 10 0.00000000 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. Table 193. Error calculation for programmed baud rates at fCK = 216 MHz in both cases of oversampling by 16 (OVER8 = 0)(1) Desired baud rate (Bps) Actual baud rate (Bps) BRR Error 9600 9600.000 57E4 0.00000000 19200 19200.000 2BF2 0.00000000 38400 38400.000 15F9 0.00000000 57600 57600.000 EA6 0.00000000 115200 115200.000 753 0.00000000 230400 230522.946 3A9 0.05336179 460800 461538.462 1D4 0.16025641 921600 923076.923 EA 0.16025641 4000000 4000000.000 36 0.00000000 6000000 6000000.000 24 0.00000000 10000000 10285714.286 15 2.85714286 13500000 13500000.000 10 0.00000000 1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can be fixed with these data. 1038/1709 RM0385 Rev 7 RM0385 31.5.5 Universal synchronous asynchronous receiver transmitter (USART) Tolerance of the USART receiver to clock deviation The asynchronous receiver of the USART works correctly only if the total clock system deviation is less than the tolerance of the USART receiver. The causes which contribute to the total deviation are: • DTRA: Deviation due to the transmitter error (which also includes the deviation of the transmitter’s local oscillator) • DQUANT: Error due to the baud rate quantization of the receiver • DREC: Deviation of the receiver’s local oscillator • DTCL: Deviation due to the transmission line (generally due to the transceivers which can introduce an asymmetry between the low-to-high transition timing and the high-tolow transition timing) DTRA + DQUANT + DREC + DTCL < USART receiver′ s tolerance The USART receiver can receive data correctly at up to the maximum tolerated deviation specified in Table 194 and Table 194 depending on the following choices: • 9-, 10- or 11-bit character length defined by the M bits in the USART_CR1 register • Oversampling by 8 or 16 defined by the OVER8 bit in the USART_CR1 register • Bits BRR[3:0] of USART_BRR register are equal to or different from 0000. • Use of 1 bit or 3 bits to sample the data, depending on the value of the ONEBIT bit in the USART_CR3 register. Table 194. Tolerance of the USART receiver when BRR [3:0] = 0000 OVER8 bit = 0 OVER8 bit = 1 M bits ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1 00 3.75% 4.375% 2.50% 3.75% 01 3.41% 3.97% 2.27% 3.41% 10 4.16% 4.86% 2.77% 4.16% Table 195. Tolerance of the USART receiver when BRR [3:0] is different from 0000 OVER8 bit = 0 OVER8 bit = 1 M bits Note: ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1 00 3.33% 3.88% 2% 3% 01 3.03% 3.53% 1.82% 2.73% 10 3.7% 4.31% 2.22% 3.33% The data specified in Table 194 and Table 195 may slightly differ in the special case when the received frames contain some Idle frames of exactly 10-bit durations when M bits = 00 (11-bit durations when M bits =01 or 9- bit durations when M bits = 10). RM0385 Rev 7 1039/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) 31.5.6 RM0385 USART auto baud rate detection The USART is able to detect and automatically set the USART_BRR register value based on the reception of one character. Automatic baud rate detection is useful under two circumstances: • The communication speed of the system is not known in advance • The system is using a relatively low accuracy clock source and this mechanism allows the correct baud rate to be obtained without measuring the clock deviation. The clock source frequency must be compatible with the expected communication speed (when oversampling by 16, the baud rate is between fCK/65535 and fCK/16. when oversampling by 8, the baud rate is between fCK/65535 and fCK/8). Before activating the auto baud rate detection, the auto baud rate detection mode must be chosen. There are various modes based on different character patterns. They can be chosen through the ABRMOD[1:0] field in the USART_CR2 register. In these auto baud rate modes, the baud rate is measured several times during the synchronization data reception and each measurement is compared to the previous one. These modes are: • Mode 0: Any character starting with a bit at 1. In this case the USART measures the duration of the Start bit (falling edge to rising edge). • Mode 1: Any character starting with a 10xx bit pattern. In this case, the USART measures the duration of the Start and of the 1st data bit. The measurement is done falling edge to falling edge, ensuring better accuracy in the case of slow signal slopes. • Mode 2: A 0x7F character frame (it may be a 0x7F character in LSB first mode or a 0xFE in MSB first mode). In this case, the baud rate is updated first at the end of the start bit (BRs), then at the end of bit 6 (based on the measurement done from falling edge to falling edge: BR6). Bit 0 to bit 6 are sampled at BRs while further bits of the character are sampled at BR6. • Mode 3: A 0x55 character frame. In this case, the baud rate is updated first at the end of the start bit (BRs), then at the end of bit 0 (based on the measurement done from falling edge to falling edge: BR0), and finally at the end of bit 6 (BR6). Bit 0 is sampled at BRs, bit 1 to bit 6 are sampled at BR0, and further bits of the character are sampled at BR6. In parallel, another check is performed for each intermediate transition of RX line. An error is generated if the transitions on RX are not sufficiently synchronized with the receiver (the receiver being based on the baud rate calculated on bit 0). Prior to activating auto baud rate detection, the USART_BRR register must be initialized by writing a non-zero baud rate value. The automatic baud rate detection is activated by setting the ABREN bit in the USART_CR2 register. The USART will then wait for the first character on the RX line. The auto baud rate operation completion is indicated by the setting of the ABRF flag in the USART_ISR register. If the line is noisy, the correct baud rate detection cannot be guaranteed. In this case the BRR value may be corrupted and the ABRE error flag will be set. This also happens if the communication speed is not compatible with the automatic baud rate detection range (bit duration not between 16 and 65536 clock periods (oversampling by 16) and not between 8 and 65536 clock periods (oversampling by 8)). The RXNE interrupt will signal the end of the operation. 1040/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) At any later time, the auto baud rate detection may be relaunched by resetting the ABRF flag (by writing a 0). Note: If the USART is disabled (UE=0) during an auto baud rate operation, the BRR value may be corrupted. 31.5.7 Multiprocessor communication using USART In multiprocessor communication, the following bits are to be kept cleared: • LINEN bit in the USART_CR2 register, • HDSEL, IREN and SCEN bits in the USART_CR3 register. It is possible to perform multiprocessor communication with the USART (with several USARTs connected in a network). For instance one of the USARTs can be the master, its TX output connected to the RX inputs of the other USARTs. The others are slaves, their respective TX outputs are logically ANDed together and connected to the RX input of the master. In multiprocessor configurations it is often desirable that only the intended message recipient should actively receive the full message contents, thus reducing redundant USART service overhead for all non addressed receivers. The non addressed devices may be placed in mute mode by means of the muting function. In order to use the mute mode feature, the MME bit must be set in the USART_CR1 register. In mute mode: • None of the reception status bits can be set. • All the receive interrupts are inhibited. • The RWU bit in USART_ISR register is set to 1. RWU can be controlled automatically by hardware or by software, through the MMRQ bit in the USART_RQR register, under certain conditions. The USART can enter or exit from mute mode using one of two methods, depending on the WAKE bit in the USART_CR1 register: • Idle Line detection if the WAKE bit is reset, • Address Mark detection if the WAKE bit is set. RM0385 Rev 7 1041/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Idle line detection (WAKE=0) The USART enters mute mode when the MMRQ bit is written to 1 and the RWU is automatically set. It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but the IDLE bit is not set in the USART_ISR register. An example of mute mode behavior using Idle line detection is given in Figure 341. Figure 341. Mute mode using Idle line detection RXNE Data 1 Data 2 Data 3 Data 4 RX RWU MMRQ written to 1 Mute mode IDLE RXNE Data 5 Data 6 Normal mode Idle frame detected MSv31154V1 Note: If the MMRQ is set while the IDLE character has already elapsed, mute mode will not be entered (RWU is not set). If the USART is activated while the line is IDLE, the idle state is detected after the duration of one IDLE frame (not only after the reception of one character frame). 4-bit/7-bit address mark detection (WAKE=1) In this mode, bytes are recognized as addresses if their MSB is a ‘1’ otherwise they are considered as data. In an address byte, the address of the targeted receiver is put in the 4 or 7 LSBs. The choice of 7 or 4-bit address detection is done using the ADDM7 bit. This 4bit/7-bit word is compared by the receiver with its own address which is programmed in the ADD bits in the USART_CR2 register. Note: In 7-bit and 9-bit data modes, address detection is done on 6-bit and 8-bit addresses (ADD[5:0] and ADD[7:0]) respectively. The USART enters mute mode when an address character is received which does not match its programmed address. In this case, the RWU bit is set by hardware. The RXNE flag is not set for this address byte and no interrupt or DMA request is issued when the USART enters mute mode. The USART also enters mute mode when the MMRQ bit is written to 1. The RWU bit is also automatically set in this case. The USART exits from mute mode when an address character is received which matches the programmed address. Then the RWU bit is cleared and subsequent bytes are received normally. The RXNE bit is set for the address character since the RWU bit has been cleared. An example of mute mode behavior using address mark detection is given in Figure 342. 1042/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 342. Mute mode using address mark detection In this example, the current address of the receiver is 1 (programmed in the USART_CR2 register) RXNE IDLE RX Addr=0 Data 1 Data 2 RWU IDLE RXNE Addr=1 Data 3 Data 4 Addr=2 Data 5 Mute mode Normal mode Matching address MMRQ written to 1 (RXNE was cleared) RXNE Mute mode Non-matching address Non-matching address MSv31155V1 31.5.8 Modbus communication using USART The USART offers basic support for the implementation of Modbus/RTU and Modbus/ASCII protocols. Modbus/RTU is a half duplex, block transfer protocol. The control part of the protocol (address recognition, block integrity control and command interpretation) must be implemented in software. The USART offers basic support for the end of the block detection, without software overhead or other resources. Modbus/RTU In this mode, the end of one block is recognized by a “silence” (idle line) for more than 2 character times. This function is implemented through the programmable timeout function. The timeout function and interrupt must be activated, through the RTOEN bit in the USART_CR2 register and the RTOIE in the USART_CR1 register. The value corresponding to a timeout of 2 character times (for example 22 x bit duration) must be programmed in the RTO register. when the receive line is idle for this duration, after the last stop bit is received, an interrupt is generated, informing the software that the current block reception is completed. Modbus/ASCII In this mode, the end of a block is recognized by a specific (CR/LF) character sequence. The USART manages this mechanism using the character match function. By programming the LF ASCII code in the ADD[7:0] field and by activating the character match interrupt (CMIE=1), the software is informed when a LF has been received and can check the CR/LF in the DMA buffer. RM0385 Rev 7 1043/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) 31.5.9 RM0385 USART parity control Parity control (generation of parity bit in transmission and parity checking in reception) can be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame length defined by the M bits, the possible USART frame formats are as listed in Table 196. Table 196. Frame formats M bits PCE bit USART frame(1) 00 0 | SB | 8-bit data | STB | 00 1 | SB | 7-bit data | PB | STB | 01 0 | SB | 9-bit data | STB | 01 1 | SB | 8-bit data | PB | STB | 10 0 | SB | 7-bit data | STB | 10 1 | SB | 6-bit data | PB | STB | 1. Legends: SB: start bit, STB: stop bit, PB: parity bit. In the data register, the PB is always taking the MSB position (9th, 8th or 7th, depending on the M bits value). Even parity The parity bit is calculated to obtain an even number of “1s” inside the frame of the 6, 7 or 8 LSB bits (depending on M bits values) and the parity bit. As an example, if data=00110101, and 4 bits are set, then the parity bit will be 0 if even parity is selected (PS bit in USART_CR1 = 0). Odd parity The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 6, 7 or 8 LSB bits (depending on M bits values) and the parity bit. As an example, if data=00110101 and 4 bits set, then the parity bit will be 1 if odd parity is selected (PS bit in USART_CR1 = 1). Parity checking in reception If the parity check fails, the PE flag is set in the USART_ISR register and an interrupt is generated if PEIE is set in the USART_CR1 register. The PE flag is cleared by software writing 1 to the PECF in the USART_ICR register. Parity generation in transmission If the PCE bit is set in USART_CR1, then the MSB bit of the data written in the data register is transmitted but is changed by the parity bit (even number of “1s” if even parity is selected (PS=0) or an odd number of “1s” if odd parity is selected (PS=1)). 1044/1709 RM0385 Rev 7 RM0385 31.5.10 Universal synchronous asynchronous receiver transmitter (USART) USART LIN (local interconnection network) mode This section is relevant only when LIN mode is supported. Please refer to Section 31.4: USART implementation on page 1023. The LIN mode is selected by setting the LINEN bit in the USART_CR2 register. In LIN mode, the following bits must be kept cleared: • STOP[1:0] and CLKEN in the USART_CR2 register, • SCEN, HDSEL and IREN in the USART_CR3 register. LIN transmission The procedure explained in Section 31.5.2: USART transmitter has to be applied for LIN Master transmission. It must be the same as for normal USART transmission with the following differences: • Clear the M bits to configure 8-bit word length. • Set the LINEN bit to enter LIN mode. In this case, setting the SBKRQ bit sends 13 ‘0’ bits as a break character. Then 2 bits of value ‘1’ are sent to allow the next start detection. LIN reception When LIN mode is enabled, the break detection circuit is activated. The detection is totally independent from the normal USART receiver. A break can be detected whenever it occurs, during Idle state or during a frame. When the receiver is enabled (RE=1 in USART_CR1), the circuit looks at the RX input for a start signal. The method for detecting start bits is the same when searching break characters or data. After a start bit has been detected, the circuit samples the next bits exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in USART_CR2) or 11 (when LBDL=1 in USART_CR2) consecutive bits are detected as ‘0, and are followed by a delimiter character, the LBDF flag is set in USART_ISR. If the LBDIE bit=1, an interrupt is generated. Before validating the break, the delimiter is checked for as it signifies that the RX line has returned to a high level. If a ‘1’ is sampled before the 10 or 11 have occurred, the break detection circuit cancels the current detection and searches for a start bit again. If the LIN mode is disabled (LINEN=0), the receiver continues working as normal USART, without taking into account the break detection. If the LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit detected at ‘0’, which will be the case for any break frame), the receiver stops until the break detection circuit receives either a ‘1’, if the break word was not complete, or a delimiter character if a break has been detected. The behavior of the break detector state machine and the break flag is shown on the Figure 343: Break detection in LIN mode (11-bit break length - LBDL bit is set) on page 1046. Examples of break frames are given on Figure 344: Break detection in LIN mode vs. Framing error detection on page 1047. RM0385 Rev 7 1045/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Figure 343. Break detection in LIN mode (11-bit break length - LBDL bit is set) Case 1: break signal not long enough => break discarded, LBDF is not set Break frame RX line Capture strobe Break state machine Idle Bit0 Bit1 Bit2 Bit3 0 Read samples 0 0 0 Bit4 Bit5 Bit6 0 0 0 Bit7 Bit8 Bit9 Bit10 0 0 0 Idle 1 Case 2: break signal just long enough => break detected, LBDF is set Break frame RX line Delimiter is immediate Capture strobe Break state machine Idle Bit0 Bit1 Bit2 Bit3 0 Read samples 0 0 0 Bit4 Bit5 Bit6 0 0 0 Bit7 Bit8 Bit9 B10 0 0 0 Idle 0 LBDF Case 3: break signal long enough => break detected, LBDF is set Break frame RX line Capture strobe Break state Idle machine Read samples Bit0 Bit1 Bit2 Bit3 0 0 0 0 Bit4 Bit5 Bit6 0 0 0 Bit7 Bit8 Bit9 Bit10 wait delimiter Idle 0 0 0 0 LBDF MSv31156V1 1046/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 344. Break detection in LIN mode vs. Framing error detection Case 1: break occurring after an Idle RX line data 1 IDLE BREAK 1 data time data 2 (0x55) data 3 (header) 1 data time RXNE /FE LBDF Case 2: break occurring while data is being received RX line data 1 data2 BREAK 1 data time data 2 (0x55) data 3 (header) 1 data time RXNE /FE LBDF MSv31157V1 31.5.11 USART synchronous mode The synchronous mode is selected by writing the CLKEN bit in the USART_CR2 register to 1. In synchronous mode, the following bits must be kept cleared: • LINEN bit in the USART_CR2 register, • SCEN, HDSEL and IREN bits in the USART_CR3 register. In this mode, the USART can be used to control bidirectional synchronous serial communications in master mode. The CK pin is the output of the USART transmitter clock. No clock pulses are sent to the CK pin during start bit and stop bit. Depending on the state of the LBCL bit in the USART_CR2 register, clock pulses are, or are not, generated during the last valid data bit (address mark). The CPOL bit in the USART_CR2 register is used to select the clock polarity, and the CPHA bit in the USART_CR2 register is used to select the phase of the external clock (see Figure 345, Figure 346 and Figure 347). During the Idle state, preamble and send break, the external CK clock is not activated. In synchronous mode the USART transmitter works exactly like in asynchronous mode. But as CK is synchronized with TX (according to CPOL and CPHA), the data on TX is synchronous. In this mode the USART receiver works in a different manner compared to the asynchronous mode. If RE=1, the data is sampled on CK (rising or falling edge, depending on CPOL and CPHA), without any oversampling. A setup and a hold time must be respected (which depends on the baud rate: 1/16 bit duration). RM0385 Rev 7 1047/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) Note: RM0385 The CK pin works in conjunction with the TX pin. Thus, the clock is provided only if the transmitter is enabled (TE=1) and data is being transmitted (the data register USART_TDR written). This means that it is not possible to receive synchronous data without transmitting data. The LBCL, CPOL and CPHA bits have to be selected when the USART is disabled (UE=0) to ensure that the clock pulses function correctly. Figure 345. USART example of synchronous transmission RX TX Data out Data in Synchronous device (e.g. slave SPI) USART Clock CK MSv31158V2 Figure 346. USART data clock timing diagram (M bits = 00) Idle or preceding Start transmission Idle or next Stop transmission M bits = 00 (8 data bits) Clock (CPOL=0, CPHA=0) * Clock (CPOL=0, CPHA=1) * * Clock (CPOL=1, CPHA=0) * Clock (CPOL=1, CPHA=1) Data on TX (from master) 0 Start Data on RX (from slave) 1 2 3 4 5 6 1 2 3 4 5 6 LSB 0 7 MSB Stop 7 MSB * LSB Capture strobe *LBCL bit controls last data pulse MSv34709V2 1048/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 347. USART data clock timing diagram (M bits = 01) Idle or preceding Start transmission Stop M bits =01 (9 data bits) Clock (CPOL=0, CPHA=0) Idle or next transmission * Clock (CPOL=0, CPHA=1) * Clock (CPOL=1, CPHA=0) * Clock (CPOL=1, CPHA=1) * Data on TX (from master) 0 1 2 3 4 5 6 7 Start LSB Data on RX (from slave) 0 8 MSB 1 2 3 4 5 6 LSB Capture strobe 7 Stop 8 MSB * *LBCL bit controls last data pulse MSv34710V1 Figure 348. RX data setup/hold time CK (capture strobe on CK rising edge in this example) Data on RX (from slave) Valid DATA bit tSETUP tHOLD tSETUP=tHOLD 1/16 bit time MSv31161V2 Note: The function of CK is different in Smartcard mode. Refer to Section 31.5.13: USART Smartcard mode for more details. RM0385 Rev 7 1049/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) 31.5.12 RM0385 USART Single-wire Half-duplex communication Single-wire Half-duplex mode is selected by setting the HDSEL bit in the USART_CR3 register. In this mode, the following bits must be kept cleared: • LINEN and CLKEN bits in the USART_CR2 register, • SCEN and IREN bits in the USART_CR3 register. The USART can be configured to follow a Single-wire Half-duplex protocol where the TX and RX lines are internally connected. The selection between half- and Full-duplex communication is made with a control bit HDSEL in USART_CR3. As soon as HDSEL is written to 1: • The TX and RX lines are internally connected • The RX pin is no longer used • The TX pin is always released when no data is transmitted. Thus, it acts as a standard I/O in idle or in reception. It means that the I/O must be configured so that TX is configured as alternate function open-drain with an external pull-up. Apart from this, the communication protocol is similar to normal USART mode. Any conflicts on the line must be managed by software (by the use of a centralized arbiter, for instance). In particular, the transmission is never blocked by hardware and continues as soon as data is written in the data register while the TE bit is set. 31.5.13 USART Smartcard mode This section is relevant only when Smartcard mode is supported. Please refer to Section 31.4: USART implementation on page 1023. Smartcard mode is selected by setting the SCEN bit in the USART_CR3 register. In Smartcard mode, the following bits must be kept cleared: • LINEN bit in the USART_CR2 register, • HDSEL and IREN bits in the USART_CR3 register. Moreover, the CLKEN bit may be set in order to provide a clock to the smartcard. The smartcard interface is designed to support asynchronous protocol for smartcards as defined in the ISO 7816-3 standard. Both T=0 (character mode) and T=1 (block mode) are supported. The USART should be configured as: • 8 bits plus parity: where word length is set to 8 bits and PCE=1 in the USART_CR1 register • 1.5 stop bits: where STOP=11 in the USART_CR2 register. It is also possible to choose 0.5 stop bit for receiving. In T=0 (character) mode, the parity error is indicated at the end of each character during the guard time period. Figure 349 shows examples of what can be seen on the data line with and without parity error. 1050/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 349. ISO 7816-3 asynchronous protocol Without Parity error S 0 1 Guard time 2 3 4 5 6 7 p Start bit WithParity error S 0 Guard time 1 2 3 4 Start bit 5 6 7 p Line pulled low by receiver during stop in case of parity error MSv31162V1 When connected to a smartcard, the TX output of the USART drives a bidirectional line that is also driven by the smartcard. The TX pin must be configured as open drain. Smartcard mode implements a single wire half duplex communication protocol. • Transmission of data from the transmit shift register is guaranteed to be delayed by a minimum of 1/2 baud clock. In normal operation a full transmit shift register starts shifting on the next baud clock edge. In Smartcard mode this transmission is further delayed by a guaranteed 1/2 baud clock. • In transmission, if the smartcard detects a parity error, it signals this condition to the USART by driving the line low (NACK). This NACK signal (pulling transmit line low for 1 baud clock) causes a framing error on the transmitter side (configured with 1.5 stop bits). The USART can handle automatic re-sending of data according to the protocol. The number of retries is programmed in the SCARCNT bit field. If the USART continues receiving the NACK after the programmed number of retries, it stops transmitting and signals the error as a framing error. The TXE bit can be set using the TXFRQ bit in the USART_RQR register. • Smartcard auto-retry in transmission: a delay of 2.5 baud periods is inserted between the NACK detection by the USART and the start bit of the repeated character. The TC bit is set immediately at the end of reception of the last repeated character (no guardtime). If the software wants to repeat it again, it must insure the minimum 2 baud periods required by the standard. • If a parity error is detected during reception of a frame programmed with a 1.5 stop bits period, the transmit line is pulled low for a baud clock period after the completion of the receive frame. This is to indicate to the smartcard that the data transmitted to the USART has not been correctly received. A parity error is NACKed by the receiver if the NACK control bit is set, otherwise a NACK is not transmitted (to be used in T=1 mode). If the received character is erroneous, the RXNE/receive DMA request is not activated. According to the protocol specification, the smartcard must resend the same character. If the received character is still erroneous after the maximum number of retries specified in the SCARCNT bit field, the USART stops transmitting the NACK and signals the error as a parity error. • Smartcard auto-retry in reception: the BUSY flag remains set if the USART NACKs the card but the card doesn’t repeat the character. RM0385 Rev 7 1051/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) Note: RM0385 • In transmission, the USART inserts the Guard Time (as programmed in the Guard Time register) between two successive characters. As the Guard Time is measured after the stop bit of the previous character, the GT[7:0] register must be programmed to the desired CGT (Character Guard Time, as defined by the 7816-3 specification) minus 12 (the duration of one character). • The assertion of the TC flag can be delayed by programming the Guard Time register. In normal operation, TC is asserted when the transmit shift register is empty and no further transmit requests are outstanding. In Smartcard mode an empty transmit shift register triggers the Guard Time counter to count up to the programmed value in the Guard Time register. TC is forced low during this time. When the Guard Time counter reaches the programmed value TC is asserted high. • The de-assertion of TC flag is unaffected by Smartcard mode. • If a framing error is detected on the transmitter end (due to a NACK from the receiver), the NACK is not detected as a start bit by the receive block of the transmitter. According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud clock periods. • On the receiver side, if a parity error is detected and a NACK is transmitted the receiver does not detect the NACK as a start bit. A break character is not significant in Smartcard mode. A 0x00 data with a framing error is treated as data and not as a break. No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the other configurations) is not defined by the ISO protocol. Figure 350 details how the NACK signal is sampled by the USART. In this example the USART is transmitting data and is configured with 1.5 stop bits. The receiver part of the USART is enabled in order to check the integrity of the data and the NACK signal. Figure 350. Parity error detection using the 1.5 stop bits Bit 7 Parity bit 1.5 Stop bit 1 bit time 1.5 bit time Sampling at Sampling at 8th, 9th, 10th 8th, 9th, 10th 0.5 bit time Sampling at Sampling at 8th, 9th, 10th 8th, 9th, 10th MSv31163V1 The USART can provide a clock to the smartcard through the CK output. In Smartcard mode, CK is not associated to the communication but is simply derived from the internal peripheral input clock through a 5-bit prescaler. The division ratio is configured in the prescaler register USART_GTPR. CK frequency can be programmed from fCK/2 to fCK/62, where fCK is the peripheral input clock. 1052/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Block mode (T=1) In T=1 (block) mode, the parity error transmission is deactivated, by clearing the NACK bit in the UART_CR3 register. When requesting a read from the smartcard, in block mode, the software must enable the receiver Timeout feature by setting the RTOEN bit in the USART_CR2 register and program the RTO bits field in the RTOR register to the BWT (block wait time) - 11 value. If no answer is received from the card before the expiration of this period, the RTOF flag will be set and a timeout interrupt will be generated (if RTOIE bit in the USART_CR1 register is set). If the first character is received before the expiration of the period, it is signaled by the RXNE interrupt. Note: The RXNE interrupt must be enabled even when using the USART in DMA mode to read from the smartcard in block mode. In parallel, the DMA must be enabled only after the first received byte. After the reception of the first character (RXNE interrupt), the RTO bit fields in the RTOR register must be programmed to the CWT (character wait time) - 11 value, in order to allow the automatic check of the maximum wait time between two consecutive characters. This time is expressed in baudtime units. If the smartcard does not send a new character in less than the CWT period after the end of the previous character, the USART signals this to the software through the RTOF flag and interrupt (when RTOIE bit is set). Note: The RTO counter starts counting: - From the end of the stop bit in case STOP = 00. - From the end of the second stop bit in case of STOP = 10. - 1 bit duration after the beginning of the STOP bit in case STOP = 11. - From the beginning of the STOP bit in case STOP = 01. As in the Smartcard protocol definition, the BWT/CWT values are defined from the beginning (start bit) of the last character. The RTO register must be programmed to BWT 11 or CWT -11, respectively, taking into account the length of the last character itself. A block length counter is used to count all the characters received by the USART. This counter is reset when the USART is transmitting (TXE=0). The length of the block is communicated by the smartcard in the third byte of the block (prologue field). This value must be programmed to the BLEN field in the USART_RTOR register. when using DMA mode, before the start of the block, this register field must be programmed to the minimum value (0x0). with this value, an interrupt is generated after the 4th received character. The software must read the LEN field (third byte), its value must be read from the receive buffer. In interrupt driven receive mode, the length of the block may be checked by software or by programming the BLEN value. However, before the start of the block, the maximum value of BLEN (0xFF) may be programmed. The real value will be programmed after the reception of the third character. If the block is using the LRC longitudinal redundancy check (1 epilogue byte), the BLEN=LEN. If the block is using the CRC mechanism (2 epilogue bytes), BLEN=LEN+1 must be programmed. The total block length (including prologue, epilogue and information fields) equals BLEN+4. The end of the block is signaled to the software through the EOBF flag and interrupt (when EOBIE bit is set). In case of an error in the block length, the end of the block is signaled by the RTO interrupt (Character wait Time overflow). RM0385 Rev 7 1053/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) Note: RM0385 The error checking code (LRC/CRC) must be computed/verified by software. Direct and inverse convention The Smartcard protocol defines two conventions: direct and inverse. The direct convention is defined as: LSB first, logical bit value of 1 corresponds to a H state of the line and parity is even. In order to use this convention, the following control bits must be programmed: MSBFIRST=0, DATAINV=0 (default values). The inverse convention is defined as: MSB first, logical bit value 1 corresponds to an L state on the signal line and parity is even. In order to use this convention, the following control bits must be programmed: MSBFIRST=1, DATAINV=1. Note: When logical data values are inverted (0=H, 1=L), the parity bit is also inverted in the same way. In order to recognize the card convention, the card sends the initial character, TS, as the first character of the ATR (Answer To Reset) frame. The two possible patterns for the TS are: LHHL LLL LLH and LHHL HHH LLH. • (H) LHHL LLL LLH sets up the inverse convention: state L encodes value 1 and moment 2 conveys the most significant bit (MSB first). when decoded by inverse convention, the conveyed byte is equal to '3F'. • (H) LHHL HHH LLH sets up the direct convention: state H encodes value 1 and moment 2 conveys the least significant bit (LSB first). when decoded by direct convention, the conveyed byte is equal to '3B'. Character parity is correct when there is an even number of bits set to 1 in the nine moments 2 to 10. As the USART does not know which convention is used by the card, it needs to be able to recognize either pattern and act accordingly. The pattern recognition is not done in hardware, but through a software sequence. Moreover, supposing that the USART is configured in direct convention (default) and the card answers with the inverse convention, TS = LHHL LLL LLH => the USART received character will be ‘03’ and the parity will be odd. Therefore, two methods are available for TS pattern recognition: Method 1 The USART is programmed in standard Smartcard mode/direct convention. In this case, the TS pattern reception generates a parity error interrupt and error signal to the card. • The parity error interrupt informs the software that the card didn’t answer correctly in direct convention. Software then reprograms the USART for inverse convention • In response to the error signal, the card retries the same TS character, and it will be correctly received this time, by the reprogrammed USART Alternatively, in answer to the parity error interrupt, the software may decide to reprogram the USART and to also generate a new reset command to the card, then wait again for the TS. 1054/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Method 2 The USART is programmed in 9-bit/no-parity mode, no bit inversion. In this mode it receives any of the two TS patterns as: (H) LHHL LLL LLH = 0x103 -> inverse convention to be chosen (H) LHHL HHH LLH = 0x13B -> direct convention to be chosen The software checks the received character against these two patterns and, if any of them match, then programs the USART accordingly for the next character reception. If none of the two is recognized, a card reset may be generated in order to restart the negotiation. 31.5.14 USART IrDA SIR ENDEC block This section is relevant only when IrDA mode is supported. Please refer to Section 31.4: USART implementation on page 1023. IrDA mode is selected by setting the IREN bit in the USART_CR3 register. In IrDA mode, the following bits must be kept cleared: • LINEN, STOP and CLKEN bits in the USART_CR2 register, • SCEN and HDSEL bits in the USART_CR3 register. The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation scheme that represents logic 0 as an infrared light pulse (see Figure 351). The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream output from USART. The output pulse stream is transmitted to an external output driver and infrared LED. USART supports only bit rates up to 115.2 Kbps for the SIR ENDEC. In normal mode the transmitted pulse width is specified as 3/16 of a bit period. The SIR receive decoder demodulates the return-to-zero bit stream from the infrared detector and outputs the received NRZ serial bit stream to the USART. The decoder input is normally high (marking state) in the Idle state. The transmit encoder output has the opposite polarity to the decoder input. A start bit is detected when the decoder input is low. • IrDA is a half duplex communication protocol. If the Transmitter is busy (when the USART is sending data to the IrDA encoder), any data on the IrDA receive line is ignored by the IrDA decoder and if the Receiver is busy (when the USART is receiving decoded data from the IrDA decoder), data on the TX from the USART to IrDA is not encoded. while receiving data, transmission should be avoided as the data to be transmitted could be corrupted. • A 0 is transmitted as a high pulse and a 1 is transmitted as a 0. The width of the pulse is specified as 3/16th of the selected bit period in normal mode (see Figure 352). • The SIR decoder converts the IrDA compliant receive signal into a bit stream for USART. • The SIR receive logic interprets a high state as a logic one and low pulses as logic zeros. • The transmit encoder output has the opposite polarity to the decoder input. The SIR output is in low state when Idle. RM0385 Rev 7 1055/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 • The IrDA specification requires the acceptance of pulses greater than 1.41 µs. The acceptable pulse width is programmable. Glitch detection logic on the receiver end filters out pulses of width less than 2 PSC periods (PSC is the prescaler value programmed in the USART_GTPR). Pulses of width less than 1 PSC period are always rejected, but those of width greater than one and less than two periods may be accepted or rejected, those greater than 2 periods will be accepted as a pulse. The IrDA encoder/decoder doesn’t work when PSC=0. • The receiver can communicate with a low-power transmitter. • In IrDA mode, the STOP bits in the USART_CR2 register must be configured to “1 stop bit”. IrDA low-power mode Transmitter In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz. Generally, this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode programmable divisor divides the system clock to achieve this value. Receiver Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the USART should discard pulses of duration shorter than 1 PSC period. A valid low is accepted only if its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in the USART_GTPR). Note: A pulse of width less than two and greater than one PSC period(s) may or may not be rejected. The receiver set up time should be managed by software. The IrDA physical layer specification specifies a minimum of 10 ms delay between transmission and reception (IrDA is a half duplex protocol). Figure 351. IrDA SIR ENDEC- block diagram SIREN TX OR USART_TX SIR Transmit Encoder IrDA_OUT SIR Receive DEcoder IrDA_IN USART RX USART_RX MSv31164V2 1056/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 352. IrDA data modulation (3/16) -Normal Mode TX Start bit 0 Stop bit 1 0 1 0 0 1 1 0 1 IrDA_OUT Bit period IrDA_IN RX 0 1 0 3/16 1 0 0 1 1 0 1 MSv31165V1 31.5.15 USART continuous communication in DMA mode The USART is capable of performing continuous communication using the DMA. The DMA requests for Rx buffer and Tx buffer are generated independently. Note: Please refer to Section 31.4: USART implementation on page 1023 to determine if the DMA mode is supported. If DMA is not supported, use the USART as explained in Section 31.5.2: USART transmitter or Section 31.5.3: USART receiver. To perform continuous communication, the user can clear the TXE/ RXNE flags In the USART_ISR register. Transmission using DMA DMA mode can be enabled for transmission by setting DMAT bit in the USART_CR3 register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to Section 8: Direct memory access controller (DMA) on page 242) to the USART_TDR register whenever the TXE bit is set. To map a DMA channel for USART transmission, use the following procedure (x denotes the channel number): 1. Write the USART_TDR register address in the DMA control register to configure it as the destination of the transfer. The data is moved to this address from memory after each TXE event. 2. Write the memory address in the DMA control register to configure it as the source of the transfer. The data is loaded into the USART_TDR register from this memory area after each TXE event. 3. Configure the total number of bytes to be transferred to the DMA control register. 4. Configure the channel priority in the DMA register 5. Configure DMA interrupt generation after half/ full transfer as required by the application. 6. Clear the TC flag in the USART_ISR register by setting the TCCF bit in the USART_ICR register. 7. Activate the channel in the DMA register. When the number of data transfers programmed in the DMA Controller is reached, the DMA controller generates an interrupt on the DMA channel interrupt vector. In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART RM0385 Rev 7 1057/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 communication is complete. This is required to avoid corrupting the last transmission before disabling the USART or entering Stop mode. Software must wait until TC=1. The TC flag remains cleared during all data transfers and it is set by hardware at the end of transmission of the last frame. Figure 353. Transmission using DMA Idle preamble Frame 2 Frame 1 Frame 3 TX line Set by hardware cleared by DMA read Set by hardware cleared by DMA read TXE flag Set by hardware Ignored by the DMA because the transfer is complete DMA request F1 USART_TDR F2 F3 TC flag Set by hardware DMA writes USART_TDR DMA TCIF flag (transfer complete) Set by hardware Software configures DMA DMA writes DMA writes DMA writes F1 into F2 into F3 into to send 3 data USART_TDR USART_TDR USART_TDR blocks and enables USART Cleared by software The DMA transfer is complete (TCIF=1 in DMA_ISR) Software waits until TC=1 ai17192b Reception using DMA DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register. Data is loaded from the USART_RDR register to a SRAM area configured using the DMA peripheral (refer to Section 8: Direct memory access controller (DMA)) whenever a data byte is received. To map a DMA channel for USART reception, use the following procedure: 1. Write the USART_RDR register address in the DMA control register to configure it as the source of the transfer. The data is moved from this address to the memory after each RXNE event. 2. Write the memory address in the DMA control register to configure it as the destination of the transfer. The data is loaded from USART_RDR to this memory area after each RXNE event. 3. Configure the total number of bytes to be transferred to the DMA control register. 4. Configure the channel priority in the DMA control register 5. Configure interrupt generation after half/ full transfer as required by the application. 6. Activate the channel in the DMA control register. When the number of data transfers programmed in the DMA Controller is reached, the DMA controller generates an interrupt on the DMA channel interrupt vector. 1058/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 354. Reception using DMA Frame 2 Frame 1 Frame 3 TX line Set by hardware cleared by DMA read RXNE flag DMA request F2 F1 USART_TDR F3 DMA reads USART_TDR DMA TCIF flag (transfer complete) Software configures the DMA to receive 3 data blocks and enables the USART Cleared by software Set by hardware DMA reads F1 from USART_TDR DMA reads F2 from USART_TDR The DMA transfer DMA reads F3 is complete from USART_TDR (TCIF=1 in DMA_ISR) ai17193b Error flagging and interrupt generation in multibuffer communication In multibuffer communication if any error occurs during the transaction the error flag is asserted after the current byte. An interrupt is generated if the interrupt enable flag is set. For framing error, overrun error and noise flag which are asserted with RXNE in single byte reception, there is a separate error flag interrupt enable bit (EIE bit in the USART_CR3 register), which, if set, enables an interrupt after the current byte if any of these errors occur. 31.5.16 RS232 hardware flow control and RS485 driver enable using USART It is possible to control the serial data flow between 2 devices by using the CTS input and the RTS output. The Figure 355 shows how to connect 2 devices in this mode: Figure 355. Hardware flow control between 2 USARTs USART 2 USART 1 RX TX TX circuit RX circuit RTS CTS RX TX RTS CTS RX circuit TX circuit MSv31169V2 RM0385 Rev 7 1059/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 RS232 RTS and CTS flow control can be enabled independently by writing the RTSE and CTSE bits respectively to 1 (in the USART_CR3 register). RS232 RTS flow control If the RTS flow control is enabled (RTSE=1), then RTS is asserted (tied low) as long as the USART receiver is ready to receive a new data. When the receive register is full, RTS is deasserted, indicating that the transmission is expected to stop at the end of the current frame. Figure 356 shows an example of communication with RTS flow control enabled. Figure 356. RS232 RTS flow control RX Start bit Data 1 Stop Start Idle bit bit Data 2 Stop bit RTS RXNE RXNE Data 1 read Data 2 can now be transmitted MSv31168V2 RS232 CTS flow control If the CTS flow control is enabled (CTSE=1), then the transmitter checks the CTS input before transmitting the next frame. If CTS is asserted (tied low), then the next data is transmitted (assuming that data is to be transmitted, in other words, if TXE=0), else the transmission does not occur. when CTS is de-asserted during a transmission, the current transmission is completed before the transmitter stops. When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the CTS input toggles. It indicates when the receiver becomes ready or not ready for communication. An interrupt is generated if the CTSIE bit in the USART_CR3 register is set. Figure 357 shows an example of communication with CTS flow control enabled. 1060/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 357. RS232 CTS flow control CTS CTS CTS Transmit data register TDR Data 2 TX Data 1 empty Stop Start bit bit empty Data 3 Data 2 Writing data 3 in TDR Stop Start Idle bit bit Data 3 Transmission of Data 3 is delayed until CTS = 0 MSv31167V2 Note: For correct behavior, CTS must be asserted at least 3 USART clock source periods before the end of the current character. In addition it should be noted that the CTSCF flag may not be set for pulses shorter than 2 x PCLK periods. RS485 Driver Enable The driver enable feature is enabled by setting bit DEM in the USART_CR3 control register. This allows the user to activate the external transceiver control, through the DE (Driver Enable) signal. The assertion time is the time between the activation of the DE signal and the beginning of the START bit. It is programmed using the DEAT [4:0] bit fields in the USART_CR1 control register. The de-assertion time is the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE signal. It is programmed using the DEDT [4:0] bit fields in the USART_CR1 control register. The polarity of the DE signal can be configured using the DEP bit in the USART_CR3 control register. In USART, the DEAT and DEDT are expressed in sample time units (1/8 or 1/16 bit duration, depending on the oversampling rate). 31.6 USART low-power modes Table 197. Effect of low-power modes on the USART Mode Description Sleep No effect. USART interrupt causes the device to exit Sleep mode. Stop No effect. Standby The USART is powered down and must be reinitialized when the device has exited from Standby mode. RM0385 Rev 7 1061/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) 31.7 RM0385 USART interrupts Table 198. USART interrupt requests Interrupt event Transmit data register empty CTS interrupt Transmission Complete Receive data register not empty (data ready to be read) Event flag Enable Control bit TXE TXEIE CTSIF CTSIE TC TCIE RXNE RXNEIE Overrun error detected ORE Idle line detected IDLE IDLEIE PE PEIE LBDF LBDIE NF or ORE or FE EIE Character match CMF CMIE Receiver timeout RTOF RTOIE End of Block EOBF EOBIE Parity error LIN break Noise Flag, Overrun error and Framing Error in multibuffer communication. The USART interrupt events are connected to the same interrupt vector (see Figure 358). • During transmission: Transmission Complete, Clear to Send, Transmit data Register empty or Framing error (in Smartcard mode) interrupt. • During reception: Idle Line detection, Overrun error, Receive data register not empty, Parity error, LIN break detection, Noise Flag, Framing Error, Character match, etc. These events generate an interrupt if the corresponding Enable Control Bit is set. 1062/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Figure 358. USART interrupt mapping diagram TC TCIE TXE TXEIE CTSIF CTSIE IDLE IDLEIE USART interrupt RXNEIE ORE RXNEIE RXNE PE PEIE LBDF LBDIE FE NF ORE EIE CMF CMIE RTOF RTOIE EOBF EOBIE MSv35480V1 RM0385 Rev 7 1063/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) 31.8 RM0385 USART registers Refer to Section 1.1 on page 62 for a list of abbreviations used in register descriptions. 31.8.1 Control register 1 (USART_CR1) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 Res. Res. Res. M1 EOBIE RTOIE rw rw rw 25 24 23 22 21 20 19 DEAT[4:0] rw rw rw 18 17 16 rw rw DEDT[4:0] rw 15 14 13 12 11 10 9 8 7 6 OVER8 CMIE MME M0 WAKE PCE PS PEIE TXEIE TCIE rw rw rw rw rw rw rw rw rw rw rw rw 5 4 RXNEIE IDLEIE rw rw rw rw 3 2 1 0 TE RE Res. UE rw rw rw Bits 31:29 Reserved, must be kept at reset value. Bit 28 M1: Word length This bit, with bit 12 (M0), determines the word length. It is set or cleared by software. M[1:0] = 00: 1 Start bit, 8 data bits, n stop bits M[1:0] = 01: 1 Start bit, 9 data bits, n stop bits M[1:0] = 10: 1 Start bit, 7 data bits, n stop bits This bit can only be written when the USART is disabled (UE=0). Note: Not all modes are supported In 7-bit data length mode. Refer to Section 31.4: USART implementation for details. Bit 27 EOBIE: End of Block interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A USART interrupt is generated when the EOBF flag is set in the USART_ISR register. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 26 RTOIE: Receiver timeout interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: An USART interrupt is generated when the RTOF bit is set in the USART_ISR register. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Section 31.4: USART implementation on page 1023. Bits 25:21 DEAT[4:0]: Driver Enable assertion time This 5-bit value defines the time between the activation of the DE (Driver Enable) signal and the beginning of the start bit. It is expressed in sample time units (1/8 or 1/16 bit duration, depending on the oversampling rate). This bit field can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. 1064/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Bits 20:16 DEDT[4:0]: Driver Enable de-assertion time This 5-bit value defines the time between the end of the last stop bit, in a transmitted message, and the de-activation of the DE (Driver Enable) signal. It is expressed in sample time units (1/8 or 1/16 bit duration, depending on the oversampling rate). If the USART_TDR register is written during the DEDT time, the new data is transmitted only when the DEDT and DEAT times have both elapsed. This bit field can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 15 OVER8: Oversampling mode 0: Oversampling by 16 1: Oversampling by 8 This bit can only be written when the USART is disabled (UE=0). Note: In LIN, IrDA and modes, this bit must be kept at reset value. Bit 14 CMIE: Character match interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A USART interrupt is generated when the CMF bit is set in the USART_ISR register. Bit 13 MME: Mute mode enable This bit activates the mute mode function of the USART. when set, the USART can switch between the active and mute modes, as defined by the WAKE bit. It is set and cleared by software. 0: Receiver in active mode permanently 1: Receiver can switch between mute mode and active mode. Bit 12 M0: Word length This bit, with bit 28 (M1), determines the word length. It is set or cleared by software. See Bit 28 (M1) description. This bit can only be written when the USART is disabled (UE=0). Bit 11 WAKE: Receiver wakeup method This bit determines the USART wakeup method from Mute mode. It is set or cleared by software. 0: Idle line 1: Address mark This bit field can only be written when the USART is disabled (UE=0). Bit 10 PCE: Parity control enable This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). 0: Parity control disabled 1: Parity control enabled This bit field can only be written when the USART is disabled (UE=0). Bit 9 PS: Parity selection This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity will be selected after the current byte. 0: Even parity 1: Odd parity This bit field can only be written when the USART is disabled (UE=0). RM0385 Rev 7 1065/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Bit 8 PEIE: PE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A USART interrupt is generated whenever PE=1 in the USART_ISR register Bit 7 TXEIE: interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A USART interrupt is generated whenever TXE=1 in the USART_ISR register Bit 6 TCIE: Transmission complete interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A USART interrupt is generated whenever TC=1 in the USART_ISR register Bit 5 RXNEIE: RXNE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A USART interrupt is generated whenever ORE=1 or RXNE=1 in the USART_ISR register Bit 4 IDLEIE: IDLE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A USART interrupt is generated whenever IDLE=1 in the USART_ISR register Bit 3 TE: Transmitter enable This bit enables the transmitter. It is set and cleared by software. 0: Transmitter is disabled 1: Transmitter is enabled Note: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble (idle line) after the current word, except in Smartcard mode. In order to generate an idle character, the TE must not be immediately written to 1. In order to ensure the required duration, the software can poll the TEACK bit in the USART_ISR register. In Smartcard mode, when TE is set there is a 1 bit-time delay before the transmission starts. Bit 2 RE: Receiver enable This bit enables the receiver. It is set and cleared by software. 0: Receiver is disabled 1: Receiver is enabled and begins searching for a start bit Bit 1 Reserved, must be kept at reset value. Bit 0 UE: USART enable When this bit is cleared, the USART prescalers and outputs are stopped immediately, and current operations are discarded. The configuration of the USART is kept, but all the status flags, in the USART_ISR are set to their default values. This bit is set and cleared by software. 0: USART prescaler and outputs disabled, low-power mode 1: USART enabled Note: In order to go into low-power mode without generating errors on the line, the TE bit must be reset before and the software must wait for the TC bit in the USART_ISR to be set before resetting the UE bit. The DMA requests are also reset when UE = 0 so the DMA channel must be disabled before resetting the UE bit. 1066/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) 31.8.2 Control register 2 (USART_CR2) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 ADD[7:4] 26 25 24 ADD[3:0] 23 RTOEN 22 21 ABRMOD[1:0] 20 19 18 17 MSBFI DATAINV TXINV ABREN RST 16 RXINV rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SWAP LINEN CLKEN CPOL CPHA LBCL Res. LBDIE LBDL ADDM7 Res. Res. Res. Res. rw rw rw rw rw rw rw rw rw STOP[1:0] rw rw Bits 31:28 ADD[7:4]: Address of the USART node This bit-field gives the address of the USART node or a character code to be recognized. This is used in multiprocessor communication during Mute mode, for wakeup with 7-bit address mark detection. The MSB of the character sent by the transmitter should be equal to 1. It may also be used for character detection during normal reception, Mute mode inactive (for example, end of block detection in ModBus protocol). In this case, the whole received character (8-bit) is compared to the ADD[7:0] value and CMF flag is set on match. This bit field can only be written when reception is disabled (RE = 0) or the USART is disabled (UE=0) Bits 27:24 ADD[3:0]: Address of the USART node This bit-field gives the address of the USART node or a character code to be recognized. This is used in multiprocessor communication during Mute mode, for wakeup with address mark detection. This bit field can only be written when reception is disabled (RE = 0) or the USART is disabled (UE=0) Bit 23 RTOEN: Receiver timeout enable This bit is set and cleared by software. 0: Receiver timeout feature disabled. 1: Receiver timeout feature enabled. When this feature is enabled, the RTOF flag in the USART_ISR register is set if the RX line is idle (no reception) for the duration programmed in the RTOR (receiver timeout register). Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bits 22:21 ABRMOD[1:0]: Auto baud rate mode These bits are set and cleared by software. 00: Measurement of the start bit is used to detect the baud rate. 01: Falling edge to falling edge measurement. (the received frame must start with a single bit = 1 -> Frame = Start10xxxxxx) 10: 0x7F frame detection. 11: 0x55 frame detection This bit field can only be written when ABREN = 0 or the USART is disabled (UE=0). Note: If DATAINV=1 and/or MSBFIRST=1 the patterns must be the same on the line, for example 0xAA for MSBFIRST) If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. RM0385 Rev 7 1067/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Bit 20 ABREN: Auto baud rate enable This bit is set and cleared by software. 0: Auto baud rate detection is disabled. 1: Auto baud rate detection is enabled. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 19 MSBFIRST: Most significant bit first This bit is set and cleared by software. 0: data is transmitted/received with data bit 0 first, following the start bit. 1: data is transmitted/received with the MSB (bit 7/8/9) first, following the start bit. This bit field can only be written when the USART is disabled (UE=0). Bit 18 DATAINV: Binary data inversion This bit is set and cleared by software. 0: Logical data from the data register are send/received in positive/direct logic. (1=H, 0=L) 1: Logical data from the data register are send/received in negative/inverse logic. (1=L, 0=H). The parity bit is also inverted. This bit field can only be written when the USART is disabled (UE=0). Bit 17 TXINV: TX pin active level inversion This bit is set and cleared by software. 0: TX pin signal works using the standard logic levels (VDD =1/idle, Gnd=0/mark) 1: TX pin signal values are inverted. (VDD =0/mark, Gnd=1/idle). This allows the use of an external inverter on the TX line. This bit field can only be written when the USART is disabled (UE=0). Bit 16 RXINV: RX pin active level inversion This bit is set and cleared by software. 0: RX pin signal works using the standard logic levels (VDD =1/idle, Gnd=0/mark) 1: RX pin signal values are inverted. (VDD =0/mark, Gnd=1/idle). This allows the use of an external inverter on the RX line. This bit field can only be written when the USART is disabled (UE=0). Bit 15 SWAP: Swap TX/RX pins This bit is set and cleared by software. 0: TX/RX pins are used as defined in standard pinout 1: The TX and RX pins functions are swapped. This allows to work in the case of a cross-wired connection to another USART. This bit field can only be written when the USART is disabled (UE=0). Bit 14 LINEN: LIN mode enable This bit is set and cleared by software. 0: LIN mode disabled 1: LIN mode enabled The LIN mode enables the capability to send LIN synchronous breaks (13 low bits) using the SBKRQ bit in the USART_RQR register, and to detect LIN Sync breaks. This bit field can only be written when the USART is disabled (UE=0). Note: If the USART does not support LIN mode, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. 1068/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Bits 13:12 STOP[1:0]: STOP bits These bits are used for programming the stop bits. 00: 1 stop bit 01: 0.5 stop bit 10: 2 stop bits 11: 1.5 stop bits This bit field can only be written when the USART is disabled (UE=0). Bit 11 CLKEN: Clock enable This bit allows the user to enable the CK pin. 0: CK pin disabled 1: CK pin enabled This bit can only be written when the USART is disabled (UE=0). Note: If neither synchronous mode nor Smartcard mode is supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. In order to provide correctly the CK clock to the Smartcard when CK is always available When CLKEN = 1, regardless of the UE bit value, the steps below must be respected: - UE = 0 - SCEN = 1 - GTPR configuration (If PSC needs to be configured, it is recommended to configure PSC and GT in a single access to USART_ GTPR register). - CLKEN= 1 - UE = 1 Bit 10 CPOL: Clock polarity This bit allows the user to select the polarity of the clock output on the CK pin in synchronous mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship 0: Steady low value on CK pin outside transmission window 1: Steady high value on CK pin outside transmission window This bit can only be written when the USART is disabled (UE=0). Note: If synchronous mode is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 9 CPHA: Clock phase This bit is used to select the phase of the clock output on the CK pin in synchronous mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see Figure 346 and Figure 347) 0: The first clock transition is the first data capture edge 1: The second clock transition is the first data capture edge This bit can only be written when the USART is disabled (UE=0). Note: If synchronous mode is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 8 LBCL: Last bit clock pulse This bit is used to select whether the clock pulse associated with the last data bit transmitted (MSB) has to be output on the CK pin in synchronous mode. 0: The clock pulse of the last data bit is not output to the CK pin 1: The clock pulse of the last data bit is output to the CK pin Caution: The last bit is the 7th or 8th or 9th data bit transmitted depending on the 7 or 8 or 9 bit format selected by the M bits in the USART_CR1 register. This bit can only be written when the USART is disabled (UE=0). Note: If synchronous mode is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 7 Reserved, must be kept at reset value. RM0385 Rev 7 1069/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Bit 6 LBDIE: LIN break detection interrupt enable Break interrupt mask (break detection using break delimiter). 0: Interrupt is inhibited 1: An interrupt is generated whenever LBDF=1 in the USART_ISR register Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 5 LBDL: LIN break detection length This bit is for selection between 11 bit or 10 bit break detection. 0: 10-bit break detection 1: 11-bit break detection This bit can only be written when the USART is disabled (UE=0). Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 4 ADDM7:7-bit Address Detection/4-bit Address Detection This bit is for selection between 4-bit address detection or 7-bit address detection. 0: 4-bit address detection 1: 7-bit address detection (in 8-bit data mode) This bit can only be written when the USART is disabled (UE=0) Note: In 7-bit and 9-bit data modes, the address detection is done on 6-bit and 8-bit address (ADD[5:0] and ADD[7:0]) respectively. Bits 3:0 Reserved, must be kept at reset value. Note: The 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled. 31.8.3 Control register 3 (USART_CR3) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 SCARC SCARC SCARC NT2 NT1 NT0 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 CTSIE CTSE RTSE DMAT DMAR SCEN NACK HDSEL IRLP IREN EIE rw rw rw rw rw rw rw rw rw rw rw DEP DEM DDRE rw rw rw OVRDI ONEBI S T rw rw Bits 31:25 Reserved, must be kept at reset value. Bit 24 Reserved, must be kept at reset value. Bit 23 Reserved, must be kept at reset value. Bits 22:20 Reserved, must be kept at reset value. 1070/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Bits 19:17 SCARCNT[2:0]: Smartcard auto-retry count This bit-field specifies the number of retries in transmit and receive, in Smartcard mode. In transmission mode, it specifies the number of automatic retransmission retries, before generating a transmission error (FE bit set). In reception mode, it specifies the number or erroneous reception trials, before generating a reception error (RXNE and PE bits set). This bit field must be programmed only when the USART is disabled (UE=0). When the USART is enabled (UE=1), this bit field may only be written to 0x0, in order to stop retransmission. 0x0: retransmission disabled - No automatic retransmission in transmit mode. 0x1 to 0x7: number of automatic retransmission attempts (before signaling error) Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 16 Reserved, must be kept at reset value. Bit 15 DEP: Driver enable polarity selection 0: DE signal is active high. 1: DE signal is active low. This bit can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 14 DEM: Driver enable mode This bit allows the user to activate the external transceiver control, through the DE signal. 0: DE function is disabled. 1: DE function is enabled. The DE signal is output on the RTS pin. This bit can only be written when the USART is disabled (UE=0). Note: If the Driver Enable feature is not supported, this bit is reserved and must be kept at reset value. Section 31.4: USART implementation on page 1023. Bit 13 DDRE: DMA Disable on Reception Error 0: DMA is not disabled in case of reception error. The corresponding error flag is set but RXNE is kept 0 preventing from overrun. As a consequence, the DMA request is not asserted, so the erroneous data is not transferred (no DMA request), but next correct received data will be transferred (used for Smartcard mode). 1: DMA is disabled following a reception error. The corresponding error flag is set, as well as RXNE. The DMA request is masked until the error flag is cleared. This means that the software must first disable the DMA request (DMAR = 0) or clear RXNE before clearing the error flag. This bit can only be written when the USART is disabled (UE=0). Note: The reception errors are: parity error, framing error or noise error. Bit 12 OVRDIS: Overrun Disable This bit is used to disable the receive overrun detection. 0: Overrun Error Flag, ORE, is set when received data is not read before receiving new data. 1: Overrun functionality is disabled. If new data is received while the RXNE flag is still set the ORE flag is not set and the new received data overwrites the previous content of the USART_RDR register. This bit can only be written when the USART is disabled (UE=0). Note: This control bit allows checking the communication flow without reading the data. RM0385 Rev 7 1071/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Bit 11 ONEBIT: One sample bit method enable This bit allows the user to select the sample method. When the one sample bit method is selected the noise detection flag (NF) is disabled. 0: Three sample bit method 1: One sample bit method This bit can only be written when the USART is disabled (UE=0). Note: ONEBIT feature applies only to data bits, It does not apply to Start bit. Bit 10 CTSIE: CTS interrupt enable 0: Interrupt is inhibited 1: An interrupt is generated whenever CTSIF=1 in the USART_ISR register Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 9 CTSE: CTS enable 0: CTS hardware flow control disabled 1: CTS mode enabled, data is only transmitted when the CTS input is asserted (tied to 0). If the CTS input is de-asserted while data is being transmitted, then the transmission is completed before stopping. If data is written into the data register while CTS is de-asserted, the transmission is postponed until CTS is asserted. This bit can only be written when the USART is disabled (UE=0) Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 8 RTSE: RTS enable 0: RTS hardware flow control disabled 1: RTS output enabled, data is only requested when there is space in the receive buffer. The transmission of data is expected to cease after the current character has been transmitted. The RTS output is asserted (pulled to 0) when data can be received. This bit can only be written when the USART is disabled (UE=0). Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 7 DMAT: DMA enable transmitter This bit is set/reset by software 1: DMA mode is enabled for transmission 0: DMA mode is disabled for transmission Bit 6 DMAR: DMA enable receiver This bit is set/reset by software 1: DMA mode is enabled for reception 0: DMA mode is disabled for reception Bit 5 SCEN: Smartcard mode enable This bit is used for enabling Smartcard mode. 0: Smartcard Mode disabled 1: Smartcard Mode enabled This bit field can only be written when the USART is disabled (UE=0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. 1072/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Bit 4 NACK: Smartcard NACK enable 0: NACK transmission in case of parity error is disabled 1: NACK transmission during parity error is enabled This bit field can only be written when the USART is disabled (UE=0). Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 3 HDSEL: Half-duplex selection Selection of Single-wire Half-duplex mode 0: Half duplex mode is not selected 1: Half duplex mode is selected This bit can only be written when the USART is disabled (UE=0). Bit 2 IRLP: IrDA low-power This bit is used for selecting between normal and low-power IrDA modes 0: Normal mode 1: Low-power mode This bit can only be written when the USART is disabled (UE=0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 1 IREN: IrDA mode enable This bit is set and cleared by software. 0: IrDA disabled 1: IrDA enabled This bit can only be written when the USART is disabled (UE=0). Note: If IrDA mode is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 0 EIE: Error interrupt enable Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USART_ISR register). 0: Interrupt is inhibited 1: An interrupt is generated when FE=1 or ORE=1 or NF=1 in the USART_ISR register. 31.8.4 Baud rate register (USART_BRR) This register can only be written when the USART is disabled (UE=0). It may be automatically updated by hardware in auto baud rate detection mode. Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw BRR[15:0] rw RM0385 Rev 7 1073/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Bits 31:16 Reserved, must be kept at reset value. Bits 15:4 BRR[15:4] BRR[15:4] = USARTDIV[15:4] Bits 3:0 BRR[3:0] When OVER8 = 0, BRR[3:0] = USARTDIV[3:0]. When OVER8 = 1: BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right. BRR[3] must be kept cleared. 31.8.5 Guard time and prescaler register (USART_GTPR) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw GT[7:0] rw rw 1074/1709 rw rw rw PSC[7:0] rw rw rw rw RM0385 Rev 7 rw rw rw rw RM0385 Universal synchronous asynchronous receiver transmitter (USART) Bits 31:16 Reserved, must be kept at reset value. Bits 15:8 GT[7:0]: Guard time value This bit-field is used to program the Guard time value in terms of number of baud clock periods. This is used in Smartcard mode. The Transmission Complete flag is set after this guard time value. This bit field can only be written when the USART is disabled (UE=0). Note: If Smartcard mode is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bits 7:0 PSC[7:0]: Prescaler value In IrDA Low-power and normal IrDA mode: PSC[7:0] = IrDA Normal and Low-Power Baud Rate Used for programming the prescaler for dividing the USART source clock to achieve the lowpower frequency: The source clock is divided by the value given in the register (8 significant bits): 00000000: Reserved - do not program this value 00000001: divides the source clock by 1 00000010: divides the source clock by 2 ... In Smartcard mode: PSC[4:0]: Prescaler value Used for programming the prescaler for dividing the USART source clock to provide the Smartcard clock. The value given in the register (5 significant bits) is multiplied by 2 to give the division factor of the source clock frequency: 00000: Reserved - do not program this value 00001: divides the source clock by 2 00010: divides the source clock by 4 00011: divides the source clock by 6 ... This bit field can only be written when the USART is disabled (UE=0). Note: Bits [7:5] must be kept at reset value if Smartcard mode is used. This bit field is reserved and must be kept at reset value when the Smartcard and IrDA modes are not supported. Please refer to Section 31.4: USART implementation on page 1023. 31.8.6 Receiver timeout register (USART_RTOR) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 BLEN[7:0] 20 19 18 17 16 RTO[23:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw RTO[15:0] rw RM0385 Rev 7 1075/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Bits 31:24 BLEN[7:0]: Block Length This bit-field gives the Block length in Smartcard T=1 Reception. Its value equals the number of information characters + the length of the Epilogue Field (1-LEC/2-CRC) - 1. Examples: BLEN = 0 -> 0 information characters + LEC BLEN = 1 -> 0 information characters + CRC BLEN = 255 -> 254 information characters + CRC (total 256 characters)) In Smartcard mode, the Block length counter is reset when TXE=0. This bit-field can be used also in other modes. In this case, the Block length counter is reset when RE=0 (receiver disabled) and/or when the EOBCF bit is written to 1. Note: This value can be programmed after the start of the block reception (using the data from the LEN character in the Prologue Field). It must be programmed only once per received block. Bits 23:0 RTO[23:0]: Receiver timeout value This bit-field gives the Receiver timeout value in terms of number of bit duration. In standard mode, the RTOF flag is set if, after the last received character, no new start bit is detected for more than the RTO value. In Smartcard mode, this value is used to implement the CWT and BWT. See Smartcard section for more details. In this case, the timeout measurement is done starting from the Start Bit of the last received character. Note: This value must only be programmed once per received character. Note: RTOR can be written on the fly. If the new value is lower than or equal to the counter, the RTOF flag is set. This register is reserved and forced by hardware to “0x00000000” when the Receiver timeout feature is not supported. Please refer to Section 31.4: USART implementation on page 1023. 31.8.7 Request register (USART_RQR) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TXFRQ RXFRQ MMRQ SBKRQ ABRRQ w 1076/1709 RM0385 Rev 7 w w w w RM0385 Universal synchronous asynchronous receiver transmitter (USART) Bits 31:5 Reserved, must be kept at reset value. Bit 4 TXFRQ: Transmit data flush request Writing 1 to this bit sets the TXE flag. This allows to discard the transmit data. This bit must be used only in Smartcard mode, when data has not been sent due to errors (NACK) and the FE flag is active in the USART_ISR register. If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 3 RXFRQ: Receive data flush request Writing 1 to this bit clears the RXNE flag. This allows to discard the received data without reading it, and avoid an overrun condition. Bit 2 MMRQ: Mute mode request Writing 1 to this bit puts the USART in mute mode and sets the RWU flag. Bit 1 SBKRQ: Send break request Writing 1 to this bit sets the SBKF flag and request to send a BREAK on the line, as soon as the transmit machine is available. Note: In the case the application needs to send the break character following all previously inserted data, including the ones not yet transmitted, the software should wait for the TXE flag assertion before setting the SBKRQ bit. Bit 0 ABRRQ: Auto baud rate request Writing 1 to this bit resets the ABRF flag in the USART_ISR and request an automatic baud rate measurement on the next received data frame. Note: If the USART does not support the auto baud rate feature, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. 31.8.8 Interrupt and status register (USART_ISR) Address offset: 0x1C Reset value: 0x0200 00C0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TEACK Res. RWU SBKF CMF BUSY r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ABRF ABRE Res. EOBF RTOF CTS CTSIF LBDF TXE TC RXNE IDLE ORE NF FE PE r r r r r r r r r r r r r r r r Bits 31:25 Reserved, must be kept at reset value. Bits 24:22 Reserved, must be kept at reset value. Bit 21 TEACK: Transmit enable acknowledge flag This bit is set/reset by hardware, when the Transmit Enable value is taken into account by the USART. It can be used when an idle frame request is generated by writing TE=0, followed by TE=1 in the USART_CR1 register, in order to respect the TE=0 minimum period. Bit 20 Reserved, must be kept at reset value. RM0385 Rev 7 1077/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Bit 19 RWU: Receiver wakeup from Mute mode This bit indicates if the USART is in mute mode. It is cleared/set by hardware when a wakeup/mute sequence is recognized. The mute mode control sequence (address or IDLE) is selected by the WAKE bit in the USART_CR1 register. When wakeup on IDLE mode is selected, this bit can only be set by software, writing 1 to the MMRQ bit in the USART_RQR register. 0: Receiver in active mode 1: Receiver in mute mode Bit 18 SBKF: Send break flag This bit indicates that a send break character was requested. It is set by software, by writing 1 to the SBKRQ bit in the USART_RQR register. It is automatically reset by hardware during the stop bit of break transmission. 0: No break character is transmitted 1: Break character will be transmitted Bit 17 CMF: Character match flag This bit is set by hardware, when the character defined by ADD[7:0] is received. It is cleared by software, writing 1 to the CMCF in the USART_ICR register. An interrupt is generated if CMIE=1in the USART_CR1 register. 0: No Character match detected 1: Character Match detected Bit 16 BUSY: Busy flag This bit is set and reset by hardware. It is active when a communication is ongoing on the RX line (successful start bit detected). It is reset at the end of the reception (successful or not). 0: USART is idle (no reception) 1: Reception on going Bit 15 ABRF: Auto baud rate flag This bit is set by hardware when the automatic baud rate has been set (RXNE will also be set, generating an interrupt if RXNEIE = 1) or when the auto baud rate operation was completed without success (ABRE=1) (ABRE, RXNE and FE are also set in this case) It is cleared by software, in order to request a new auto baud rate detection, by writing 1 to the ABRRQ in the USART_RQR register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value. Bit 14 ABRE: Auto baud rate error This bit is set by hardware if the baud rate measurement failed (baud rate out of range or character comparison failed) It is cleared by software, by writing 1 to the ABRRQ bit in the USART_CR3 register. Note: If the USART does not support the auto baud rate feature, this bit is reserved and kept at reset value. Bit 13 Reserved, must be kept at reset value. 1078/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Bit 12 EOBF: End of block flag This bit is set by hardware when a complete block has been received (for example T=1 Smartcard mode). The detection is done when the number of received bytes (from the start of the block, including the prologue) is equal or greater than BLEN + 4. An interrupt is generated if the EOBIE=1 in the USART_CR2 register. It is cleared by software, writing 1 to the EOBCF in the USART_ICR register. 0: End of Block not reached 1: End of Block (number of characters) reached Note: If Smartcard mode is not supported, this bit is reserved and kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 11 RTOF: Receiver timeout This bit is set by hardware when the timeout value, programmed in the RTOR register has lapsed, without any communication. It is cleared by software, writing 1 to the RTOCF bit in the USART_ICR register. An interrupt is generated if RTOIE=1 in the USART_CR1 register. In Smartcard mode, the timeout corresponds to the CWT or BWT timings. 0: Timeout value not reached 1: Timeout value reached without any data reception Note: If a time equal to the value programmed in RTOR register separates 2 characters, RTOF is not set. If this time exceeds this value + 2 sample times (2/16 or 2/8, depending on the oversampling method), RTOF flag is set. The counter counts even if RE = 0 but RTOF is set only when RE = 1. If the timeout has already elapsed when RE is set, then RTOF will be set. If the USART does not support the Receiver timeout feature, this bit is reserved and kept at reset value. Bit 10 CTS: CTS flag This bit is set/reset by hardware. It is an inverted copy of the status of the CTS input pin. 0: CTS line set 1: CTS line reset Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value. Bit 9 CTSIF: CTS interrupt flag This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by software, by writing 1 to the CTSCF bit in the USART_ICR register. An interrupt is generated if CTSIE=1 in the USART_CR3 register. 0: No change occurred on the CTS status line 1: A change occurred on the CTS status line Note: If the hardware flow control feature is not supported, this bit is reserved and kept at reset value. Bit 8 LBDF: LIN break detection flag This bit is set by hardware when the LIN break is detected. It is cleared by software, by writing 1 to the LBDCF in the USART_ICR. An interrupt is generated if LBDIE = 1 in the USART_CR2 register. 0: LIN Break not detected 1: LIN break detected Note: If the USART does not support LIN mode, this bit is reserved and kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. RM0385 Rev 7 1079/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Bit 7 TXE: Transmit data register empty This bit is set by hardware when the content of the USART_TDR register has been transferred into the shift register. It is cleared by a write to the USART_TDR register. The TXE flag can also be cleared by writing 1 to the TXFRQ in the USART_RQR register, in order to discard the data (only in Smartcard T=0 mode, in case of transmission failure). An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register. 0: data is not transferred to the shift register 1: data is transferred to the shift register) Note: This bit is used during single buffer transmission. Bit 6 TC: Transmission complete This bit is set by hardware if the transmission of a frame containing data is complete and if TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the TCCF in the USART_ICR register or by a write to the USART_TDR register. An interrupt is generated if TCIE=1 in the USART_CR1 register. 0: Transmission is not complete 1: Transmission is complete Note: If TE bit is reset and no transmission is on going, the TC bit will be set immediately. Bit 5 RXNE: Read data register not empty This bit is set by hardware when the content of the RDR shift register has been transferred to the USART_RDR register. It is cleared by a read to the USART_RDR register. The RXNE flag can also be cleared by writing 1 to the RXFRQ in the USART_RQR register. An interrupt is generated if RXNEIE=1 in the USART_CR1 register. 0: data is not received 1: Received data is ready to be read. Bit 4 IDLE: Idle line detected This bit is set by hardware when an Idle Line is detected. An interrupt is generated if IDLEIE=1 in the USART_CR1 register. It is cleared by software, writing 1 to the IDLECF in the USART_ICR register. 0: No Idle line is detected 1: Idle line is detected Note: The IDLE bit will not be set again until the RXNE bit has been set (i.e. a new idle line occurs). If mute mode is enabled (MME=1), IDLE is set if the USART is not mute (RWU=0), whatever the mute mode selected by the WAKE bit. If RWU=1, IDLE is not set. Bit 3 ORE: Overrun error This bit is set by hardware when the data currently being received in the shift register is ready to be transferred into the RDR register while RXNE=1. It is cleared by a software, writing 1 to the ORECF, in the USART_ICR register. An interrupt is generated if RXNEIE=1 or EIE = 1 in the USART_CR1 register. 0: No overrun error 1: Overrun error is detected Note: When this bit is set, the RDR register content is not lost but the shift register is overwritten. An interrupt is generated if the ORE flag is set during multibuffer communication if the EIE bit is set. This bit is permanently forced to 0 (no overrun detection) when the OVRDIS bit is set in the USART_CR3 register. 1080/1709 RM0385 Rev 7 RM0385 Universal synchronous asynchronous receiver transmitter (USART) Bit 2 NF: START bit Noise detection flag This bit is set by hardware when noise is detected on a received frame. It is cleared by software, writing 1 to the NFCF bit in the USART_ICR register. 0: No noise is detected 1: Noise is detected Note: This bit does not generate an interrupt as it appears at the same time as the RXNE bit which itself generates an interrupt. An interrupt is generated when the NF flag is set during multibuffer communication if the EIE bit is set. Note: When the line is noise-free, the NF flag can be disabled by programming the ONEBIT bit to 1 to increase the USART tolerance to deviations (Refer to Section 31.5.5: Tolerance of the USART receiver to clock deviation on page 1039). Bit 1 FE: Framing error This bit is set by hardware when a de-synchronization, excessive noise or a break character is detected. It is cleared by software, writing 1 to the FECF bit in the USART_ICR register. In Smartcard mode, in transmission, this bit is set when the maximum number of transmit attempts is reached without success (the card NACKs the data frame). An interrupt is generated if EIE = 1 in the USART_CR1 register. 0: No Framing error is detected 1: Framing error or break character is detected Bit 0 PE: Parity error This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by software, writing 1 to the PECF in the USART_ICR register. An interrupt is generated if PEIE = 1 in the USART_CR1 register. 0: No parity error 1: Parity error 31.8.9 Interrupt flag clear register (USART_ICR) Address offset: 0x20 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CMCF Res. rc_w1 15 14 13 Res. Res. Res. 12 11 EOBCF RTOCF rc_w1 rc_w1 10 Res. 9 8 CTSCF LBDCF rc_w1 7 6 5 Res. TCCF Res. rc_w1 rc_w1 4 3 IDLECF ORECF rc_w1 rc_w1 2 1 0 NCF FECF PECF rc_w1 rc_w1 rc_w1 Bits 31:20 Reserved, must be kept at reset value. Bits 19:18 Reserved, must be kept at reset value. Bit 17 CMCF: Character match clear flag Writing 1 to this bit clears the CMF flag in the USART_ISR register. Bits 16:13 Reserved, must be kept at reset value. Bit 12 EOBCF: End of block clear flag Writing 1 to this bit clears the EOBF flag in the USART_ISR register. Note: If the USART does not support Smartcard mode, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. RM0385 Rev 7 1081/1709 1084 Universal synchronous asynchronous receiver transmitter (USART) RM0385 Bit 11 RTOCF: Receiver timeout clear flag Writing 1 to this bit clears the RTOF flag in the USART_ISR register. Note: If the USART does not support the Receiver timeout feature, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 10 Reserved, must be kept at reset value. Bit 9 CTSCF: CTS clear flag Writing 1 to this bit clears the CTSIF flag in the USART_ISR register. Note: If the hardware flow control feature is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 8 LBDCF: LIN break detection clear flag Writing 1 to this bit clears the LBDF flag in the USART_ISR register. Note: If LIN mode is not supported, this bit is reserved and must be kept at reset value. Please refer to Section 31.4: USART implementation on page 1023. Bit 7 Reserved, must be kept at reset value. Bit 6 TCCF: Transmission complete clear flag Writing 1 to this bit clears the TC flag in the USART_ISR register. Bit 5 Reserved, must be kept at reset value. Bit 4 IDLECF: Idle line detected clear flag Writing 1 to this bit clears the IDLE flag in the USART_ISR register. Bit 3 ORECF: Overrun error clear flag Writing 1 to this bit clears the ORE flag in the USART_ISR register. Bit 2 NCF: Noise detected clear flag Writing 1 to this bit clears the NF flag in the USART_ISR register. Bit 1 FECF: Framing error clear flag Writing 1 to this bit clears the FE flag in the USART_ISR register. Bit 0 PECF: Parity error clear flag Writing 1 to this bit clears the PE flag in the USART_ISR register. 31.8.10 Receive data register (USART_RDR) Address offset: 0x24 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 8 7 6 5 4 3 2 1 0 r r r r 15 14 13 12 11 10 9 Res. Res. Res. Res. Res. Res. Res. RDR[8:0] r 1082/1709 r RM0385 Rev 7 r r r RM0385 Universal synchronous asynchronous receiver transmitter (USART) Bits 31:9 Reserved, must be kept at reset value. Bits 8:0 RDR[8:0]: Receive data value Contains the received data character. The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure 334). When receiving with the parity enabled, the value read in the MSB bit is the received parity bit. 31.8.11 Transmit data register (USART_TDR) Address offset: 0x28 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 8 7 6 5 4 3 2 1 0 rw rw rw rw 15 14 13 12 11 10 9 Res. Res. Res. Res. Res. Res. Res. TDR[8:0] rw rw rw rw rw Bits 31:9 Reserved, must be kept at reset value. Bits 8:0 TDR[8:0]: Transmit data value Contains the data character to be transmitted. The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 334). When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because it is replaced by the parity. Note: This register must be written only when TXE=1. 31.8.12 USART register map The table below gives the USART register map and reset values. RM0385 Rev 7 TE RE 0 0 Res. LBDIE LBDL ADDM7 Res. Res. 0 0 0 STOP [1:0] 0 0 0 0 0 0 0 UE IDLEIE 0 Res. TCIE RXNEIE 0 0 Res. TXEIE 0 0 Res. PS PEIE 0 0 0 LBCL 0 0 PCE 0 0 0 CPOL MME 0 CPHA CMIE 0 0 M0 DEDT0 OVER8 SWAP 0 0 WAKE DEDT1 RXINV 0 0 CLKEN DEDT2 TXINV 0 0 LINEN DEDT3 0 DEAT0 0 DEDT4 0 DEAT1 0 DEAT2 0 DEAT3 DATAINV 0 0 0 ADD[3:0] 0 0 MSBFIRST 0 0 ABREN 0 0 ABRMOD0 0 0 0 0x04 Reset value 0 ABRMOD1 ADD[7:4] 0 RTOIE 0 DEAT4 0 RTOEN USART_CR2 M1 Reset value EOBIE Res. USART_CR1 0x00 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 199. USART register map and reset values 1083/1709 1084 0x28 USART_TDR 1084/1709 Reset value RM0385 Rev 7 CTS CTSIF LBDF TXE TC RXNE IDLE ORE NF FE PE 0 0 1 1 0 0 0 0 0 0 Res. CTSCF LBDCF Res. TCCF Res. IDLECF 0 0 0 RTOCF 0 0 Reset value Refer to Section 2.2 on page 68 for the register boundary addresses. 0 0 0 0 0 0 0 0 USART_RQR Res. Res. NACK HDSEL 0 0 0 0 BRR[15:0] 0 EIE SCEN 0 IRLP DMAR CTSE RTSE CTSIE DMAT ONEBIT 0 IREN 0 GT[7:0] Reset value ABRRQ 0 Res. 0 RDR[8:0] X X X X X X TDR[8:0] X X X X X X PECF 0 Res. 0 MMRQ 0 Res. 0 SBKRQ 0 Res. 0 NCF 0 Res. DDRE OVRDIS 0 FECF 0 Res. 0 RXFRQ 0 Res. Res. DEP Res. SCARCNT2:0] Res. Res. Res. DEM Res. Res. Res. Res. Res. Res. Res. 0 ORECF 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 TXFRQ 0 Res. 0 Res. Res. 0 Res. 0 0 Res. RTOF 0 Res. 0 Res. 0 0 Res. 0 Res. BLEN[7:0] 0 Res. 0 Res. EOBF 0 Res. 0 Res. 0 EOBCF 0 Res. 0 0 Res. 0 Res. 0 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. ABRE 0 Res. 0 Res. Reset value Res. 0 Res. Res. 0 Res. ABRF 0 Res. 0 Res. Res. Reset value Res. 0 Res. 0 Res. Res. Res. 0 Res. CMF BUSY 0 CMCF 0 Res. 0 Res. Res. RWU SBKF 0 Res. 0 0 Res. Res. TEACK Res. Res. Res. Res. Res. 0 Res. Res. Res. 0 Res. Reset value Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. USART_RDR Res. 0x24 Res. USART_ICR Res. 0x20 Res. USART_ISR Res. 0x1C Res. USART_RTOR Res. 0 Res. 0x18 Reset value Res. USART_GTPR Res. 0x10 Res. USART_BRR Res. 0x0C Res. USART_CR3 Res. 0x08 Res. 0x14 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. Universal synchronous asynchronous receiver transmitter (USART) RM0385 Table 199. USART register map and reset values (continued) 0 0 0 0 0 0 0 0 0 PSC[7:0] 0 0 0 0 0 0 0 0 0 0 RTO[23:0] 0 0 0 0 0 0 0 0 0 X X X X X X RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) 32 Serial peripheral interface / inter-IC sound (SPI/I2S) 32.1 Introduction The SPI/I²S interface can be used to communicate with external devices using the SPI protocol or the I2S audio protocol. SPI or I2S mode is selectable by software. SPI Motorola mode is selected by default after a device reset. The serial peripheral interface (SPI) protocol supports half-duplex, full-duplex and simplex synchronous, serial communication with external devices. The interface can be configured as master and in this case it provides the communication clock (SCK) to the external slave device. The interface is also capable of operating in multimaster configuration. The Inter-IC sound (I2S) protocol is also a synchronous serial communication interface.It can operate in slave or master mode with half-duplex communication. Full-duplex operations are possible by combining two I2S blocks. It can address four different audio standards including the Philips I2S standard, the MSB- and LSB-justified standards and the PCM standard. 32.2 SPI main features • Master or slave operation • Full-duplex synchronous transfers on three lines • Half-duplex synchronous transfer on two lines (with bidirectional data line) • Simplex synchronous transfers on two lines (with unidirectional data line) • 4-bit to 16-bit data size selection • Multimaster mode capability • 8 master mode baud rate prescalers up to fPCLK/2 • Slave mode frequency up to fPCLK/2. • NSS management by hardware or software for both master and slave: dynamic change of master/slave operations • Programmable clock polarity and phase • Programmable data order with MSB-first or LSB-first shifting • Dedicated transmission and reception flags with interrupt capability • SPI bus busy status flag • SPI Motorola support • Hardware CRC feature for reliable communication: – CRC value can be transmitted as last byte in Tx mode – Automatic CRC error checking for last received byte • Master mode fault, overrun flags with interrupt capability • CRC Error flag • Two 32-bit embedded Rx and Tx FIFOs with DMA capability • SPI TI mode support RM0385 Rev 7 1085/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) 32.3 32.4 RM0385 I2S main features • Half-duplex communication (only transmitter or receiver) • Master or slave operations • 8-bit programmable linear prescaler to reach accurate audio sample frequencies (from 8 kHz to 192 kHz) • Data format may be 16-bit, 24-bit or 32-bit • Packet frame is fixed to 16-bit (16-bit data frame) or 32-bit (16-bit, 24-bit, 32-bit data frame) by audio channel • Programmable clock polarity (steady state) • Underrun flag in slave transmission mode, overrun flag in reception mode (master and slave) and Frame Error Flag in reception and transmitter mode (slave only) • 16-bit register for transmission and reception with one data register for both channel sides • Supported I2S protocols: – I2S Philips standard – MSB-justified standard (left-justified) – LSB-justified standard (right-justified) – PCM standard (with short and long frame synchronization on 16-bit channel frame or 16-bit data frame extended to 32-bit channel frame) • Data direction is always MSB first • DMA capability for transmission and reception (16-bit wide) • Master clock can be output to drive an external audio component. Ratio is fixed at 256 × FS (where FS is the audio sampling frequency) SPI/I2S implementation This manual describes the SPI/I2S implementation in STM32F75xxx and STM32F74xxx devices. Table 200. STM32F75xxx and STM32F74xxx SPI implementation SPI Features(1) SPI1 SPI2 SPI3 SPI4 SPI5 SPI6 Hardware CRC calculation X X X X X X Rx/Tx FIFO X X X X X X NSS pulse mode X X X X X X I2S mode X X X - - - TI mode X X X X X X 1. X = supported. 1086/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) 32.5 SPI functional description 32.5.1 General description The SPI allows synchronous, serial communication between the MCU and external devices. Application software can manage the communication by polling the status flag or using dedicated SPI interrupt. The main elements of SPI and their interactions are shown in the following block diagram Figure 359. Figure 359. SPI block diagram Address and data bus Read Rx FIFO CRC controller MOSI MISO Shift register RXONLY CPOL CPHA DS[0:3] Tx FIFO Write BIDIOE SCK Baud rate generator CRCEN CRCNEXT CRCL Communication controller BR[2:0] Internal NSS NSS logic NSS MS30117V1 Four I/O pins are dedicated to SPI communication with external devices. • MISO: Master In / Slave Out data. In the general case, this pin is used to transmit data in slave mode and receive data in master mode. • MOSI: Master Out / Slave In data. In the general case, this pin is used to transmit data in master mode and receive data in slave mode. • SCK: Serial Clock output pin for SPI masters and input pin for SPI slaves. • NSS: Slave select pin. Depending on the SPI and NSS settings, this pin can be used to either: – select an individual slave device for communication – synchronize the data frame or – detect a conflict between multiple masters See Section 32.5.5: Slave select (NSS) pin management for details. The SPI bus allows the communication between one master device and one or more slave devices. The bus consists of at least two wires - one for the clock signal and the other for synchronous data transfer. Other signals can be added depending on the data exchange between SPI nodes and their slave select signal management. RM0385 Rev 7 1087/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) 32.5.2 RM0385 Communications between one master and one slave The SPI allows the MCU to communicate using different configurations, depending on the device targeted and the application requirements. These configurations use 2 or 3 wires (with software NSS management) or 3 or 4 wires (with hardware NSS management). Communication is always initiated by the master. Full-duplex communication By default, the SPI is configured for full-duplex communication. In this configuration, the shift registers of the master and slave are linked using two unidirectional lines between the MOSI and the MISO pins. During SPI communication, data is shifted synchronously on the SCK clock edges provided by the master. The master transmits the data to be sent to the slave via the MOSI line and receives data from the slave via the MISO line. When the data frame transfer is complete (all the bits are shifted) the information between the master and slave is exchanged. Figure 360. Full-duplex single master/ single slave application Rx shift register Tx shift register SPI clock generator MISO MISO MOSI MOSI SCK SCK NSS(1) NSS (1) Master Tx shift register Rx shift register Slave MSv39623V1 1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 32.5.5: Slave select (NSS) pin management. Half-duplex communication The SPI can communicate in half-duplex mode by setting the BIDIMODE bit in the SPIx_CR1 register. In this configuration, one single cross connection line is used to link the shift registers of the master and slave together. During this communication, the data is synchronously shifted between the shift registers on the SCK clock edge in the transfer direction selected reciprocally by both master and slave with the BDIOE bit in their SPIx_CR1 registers. In this configuration, the master’s MISO pin and the slave’s MOSI pin are free for other application uses and act as GPIOs. 1088/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Figure 361. Half-duplex single master/ single slave application (2) Rx shift register Tx shift register SPI clock generator MISO MISO MOSI (3) 1kΩ MOSI SCK SCK NSS (1) NSS(1) Master Tx shift register (2) Rx shift register Slave MSv39624V1 1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 32.5.5: Slave select (NSS) pin management. 2. In this configuration, the master’s MISO pin and the slave’s MOSI pin can be used as GPIOs. 3. A critical situation can happen when communication direction is changed not synchronously between two nodes working at bidirectionnal mode and new transmitter accesses the common data line while former transmitter still keeps an opposite value on the line (the value depends on SPI configuration and communication data). Both nodes then fight while providing opposite output levels on the common line temporary till next node changes its direction settings correspondingly, too. It is suggested to insert a serial resistance between MISO and MOSI pins at this mode to protect the outputs and limit the current blowing between them at this situation. Simplex communications The SPI can communicate in simplex mode by setting the SPI in transmit-only or in receiveonly using the RXONLY bit in the SPIx_CR2 register. In this configuration, only one line is used for the transfer between the shift registers of the master and slave. The remaining MISO and MOSI pins pair is not used for communication and can be used as standard GPIOs. • Transmit-only mode (RXONLY=0): The configuration settings are the same as for fullduplex. The application has to ignore the information captured on the unused input pin. This pin can be used as a standard GPIO. • Receive-only mode (RXONLY=1): The application can disable the SPI output function by setting the RXONLY bit. In slave configuration, the MISO output is disabled and the pin can be used as a GPIO. The slave continues to receive data from the MOSI pin while its slave select signal is active (see 32.5.5: Slave select (NSS) pin management). Received data events appear depending on the data buffer configuration. In the master configuration, the MOSI output is disabled and the pin can be used as a GPIO. The clock signal is generated continuously as long as the SPI is enabled. The only way to stop the clock is to clear the RXONLY bit or the SPE bit and wait until the incoming pattern from the MISO pin is finished and fills the data buffer structure, depending on its configuration. RM0385 Rev 7 1089/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Figure 362. Simplex single master/single slave application (master in transmit-only/ slave in receive-only mode) Rx shift register Tx shift register SPI clock generator (2) MISO MISO MOSI MOSI SCK SCK NSS(1) NSS(1) Master Tx shift register Rx shift register Slave MSv39625V1 1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and slave. For more details see Section 32.5.5: Slave select (NSS) pin management. 2. An accidental input information is captured at the input of transmitter Rx shift register. All the events associated with the transmitter receive flow must be ignored in standard transmit only mode (e.g. OVF flag). 3. In this configuration, both the MISO pins can be used as GPIOs. Note: Any simplex communication can be alternatively replaced by a variant of the half-duplex communication with a constant setting of the transaction direction (bidirectional mode is enabled while BDIO bit is not changed). 32.5.3 Standard multi-slave communication In a configuration with two or more independent slaves, the master uses GPIO pins to manage the chip select lines for each slave (see Figure 363.). The master must select one of the slaves individually by pulling low the GPIO connected to the slave NSS input. When this is done, a standard master and dedicated slave communication is established. 1090/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Figure 363. Master and three independent slaves NSS (1) Rx shift register Tx shift register SPI clock generator Master MISO MISO MOSI MOSI SCK SCK IO1 NSS Tx shift register Rx shift register Slave 1 IO2 IO3 MISO MOSI Tx shift register Rx shift register SCK NSS Slave 2 MISO MOSI Tx shift register Rx shift register SCK NSS Slave 3 MSv39626V1 1. NSS pin is not used on master side at this configuration. It has to be managed internally (SSM=1, SSI=1) to prevent any MODF error. 2. As MISO pins of the slaves are connected together, all slaves must have the GPIO configuration of their MISO pin set as alternate function open-drain (see Section 6.3.7: I/O alternate function input/output on page 204. 32.5.4 Multi-master communication Unless SPI bus is not designed for a multi-master capability primarily, the user can use build in feature which detects a potential conflict between two nodes trying to master the bus at the same time. For this detection, NSS pin is used configured at hardware input mode. The connection of more than two SPI nodes working at this mode is impossible as only one node can apply its output on a common data line at time. When nodes are non active, both stay at slave mode by default. Once one node wants to overtake control on the bus, it switches itself into master mode and applies active level on the slave select input of the other node via dedicated GPIO pin. After the session is RM0385 Rev 7 1091/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 completed, the active slave select signal is released and the node mastering the bus temporary returns back to passive slave mode waiting for next session start. If potentially both nodes raised their mastering request at the same time a bus conflict event appears (see mode fault MODF event). Then the user can apply some simple arbitration process (e.g. to postpone next attempt by predefined different time-outs applied at both nodes). Figure 364. Multi-master application Rx (Tx) shift register Tx (Rx) shift register SPI clock generator Master (Slave) MISO MISO MOSI MOSI SCK SCK GPIO NSS NSS(1) GPIO Rx (Tx) shift register Tx (Rx) shift register SPI clock generator (1) Master (Slave) MSv39628V1 1. The NSS pin is configured at hardware input mode at both nodes. Its active level enables the MISO line output control as the passive node is configured as a slave. 32.5.5 Slave select (NSS) pin management In slave mode, the NSS works as a standard “chip select” input and lets the slave communicate with the master. In master mode, NSS can be used either as output or input. As an input it can prevent multimaster bus collision, and as an output it can drive a slave select signal of a single slave. Hardware or software slave select management can be set using the SSM bit in the SPIx_CR1 register: 1092/1709 • Software NSS management (SSM = 1): in this configuration, slave select information is driven internally by the SSI bit value in register SPIx_CR1. The external NSS pin is free for other application uses. • Hardware NSS management (SSM = 0): in this case, there are two possible configurations. The configuration used depends on the NSS output configuration (SSOE bit in register SPIx_CR1). – NSS output enable (SSM=0,SSOE = 1): this configuration is only used when the MCU is set as master. The NSS pin is managed by the hardware. The NSS signal is driven low as soon as the SPI is enabled in master mode (SPE=1), and is kept low until the SPI is disabled (SPE =0). A pulse can be generated between continuous communications if NSS pulse mode is activated (NSSP=1). The SPI cannot work in multimaster configuration with this NSS setting. – NSS output disable (SSM=0, SSOE = 0): if the microcontroller is acting as the master on the bus, this configuration allows multimaster capability. If the NSS pin is pulled low in this mode, the SPI enters master mode fault state and the device is automatically reconfigured in slave mode. In slave mode, the NSS pin works as a standard “chip select” input and the slave is selected while NSS line is at low level. RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Figure 365. Hardware/software slave select management SSI control bit SSM control bit 1 NSS Inp. Master mode Slave mode Vdd OK Non active Vss Conflict Active NSS Input NSS pin 0 GPIO logic NSS Output Control NSS Output (used in Master mode and NSS HW management only) SSOE control bit NSS external logic NSS internal logic MSv35526V6 32.5.6 Communication formats During SPI communication, receive and transmit operations are performed simultaneously. The serial clock (SCK) synchronizes the shifting and sampling of the information on the data lines. The communication format depends on the clock phase, the clock polarity and the data frame format. To be able to communicate together, the master and slaves devices must follow the same communication format. Clock phase and polarity controls Four possible timing relationships may be chosen by software, using the CPOL and CPHA bits in the SPIx_CR1 register. The CPOL (clock polarity) bit controls the idle state value of the clock when no data is being transferred. This bit affects both master and slave modes. If CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a high-level idle state. If the CPHA bit is set, the second edge on the SCK pin captures the first data bit transacted (falling edge if the CPOL bit is reset, rising edge if the CPOL bit is set). Data are latched on each occurrence of this clock transition type. If the CPHA bit is reset, the first edge on the SCK pin captures the first data bit transacted (falling edge if the CPOL bit is set, rising edge if the CPOL bit is reset). Data are latched on each occurrence of this clock transition type. The combination of CPOL (clock polarity) and CPHA (clock phase) bits selects the data capture clock edge. RM0385 Rev 7 1093/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Figure 366, shows an SPI full-duplex transfer with the four combinations of the CPHA and CPOL bits. Note: Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit. The idle state of SCK must correspond to the polarity selected in the SPIx_CR1 register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0). Figure 366. Data clock timing diagram CPHA =1 CPOL = 1 CPOL = 0 MOSI(1) MSBit MISO(1) MSBit LSBit LSBit NSS (to slave) Capture strobe CPHA =0 CPOL = 1 CPOL = 0 MOSI(1) MISO(1) LSBit MSBit MSBit LSBit NSS (to slave) Capture strobe ai17154e 1. The order of data bits depends on LSBFIRST bit setting. Data frame format The SPI shift register can be set up to shift out MSB-first or LSB-first, depending on the value of the LSBFIRST bit. The data frame size is chosen by using the DS bits. It can be set from 4-bit up to 16-bit length and the setting applies for both transmission and reception. Whatever the selected data frame size, read access to the FIFO must be aligned with the FRXTH level. When the SPIx_DR register is accessed, data frames are always right-aligned into either a byte (if the data fits into a byte) or a half-word (see Figure 367). During communication, only bits within the data frame are clocked and transferred. 1094/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Figure 367. Data alignment when data length is not equal to 8-bit or 16-bit DS <= 8 bits: data is right-aligned on byte Example: DS = 5 bit 7 5 4 XXX 7 15 0 15 0 RX Data frame 14 13 XX TX Data frame 5 4 000 DS > 8 bits: data is right-aligned on 16 bit Example: DS = 14 bit 0 Data frame 14 13 00 TX 0 Data frame RX MS19589V2 Note: The minimum data length is 4 bits. If a data length of less than 4 bits is selected, it is forced to an 8-bit data frame size. 32.5.7 Configuration of SPI The configuration procedure is almost the same for master and slave. For specific mode setups, follow the dedicated sections. When a standard communication is to be initialized, perform these steps: 1. 2. 3. Write proper GPIO registers: Configure GPIO for MOSI, MISO and SCK pins. Write to the SPI_CR1 register: a) Configure the serial clock baud rate using the BR[2:0] bits (Note: 4). b) Configure the CPOL and CPHA bits combination to define one of the four relationships between the data transfer and the serial clock (CPHA must be cleared in NSSP mode). (Note: 2 - except the case when CRC is enabled at TI mode). c) Select simplex or half-duplex mode by configuring RXONLY or BIDIMODE and BIDIOE (RXONLY and BIDIMODE can't be set at the same time). d) Configure the LSBFIRST bit to define the frame format (Note: 2). e) Configure the CRCL and CRCEN bits if CRC is needed (while SCK clock signal is at idle state). f) Configure SSM and SSI (Notes: 2 & 3). g) Configure the MSTR bit (in multimaster NSS configuration, avoid conflict state on NSS if master is configured to prevent MODF error). Write to SPI_CR2 register: a) Configure the DS[3:0] bits to select the data length for the transfer. b) Configure SSOE (Notes: 1 & 2 & 3). c) Set the FRF bit if the TI protocol is required (keep NSSP bit cleared in TI mode). d) Set the NSSP bit if the NSS pulse mode between two data units is required (keep CHPA and TI bits cleared in NSSP mode). e) Configure the FRXTH bit. The RXFIFO threshold must be aligned to the read access size for the SPIx_DR register. f) Initialize LDMA_TX and LDMA_RX bits if DMA is used in packed mode. 4. Write to SPI_CRCPR register: Configure the CRC polynomial if needed. 5. Write proper DMA registers: Configure DMA streams dedicated for SPI Tx and Rx in DMA registers if the DMA streams are used. RM0385 Rev 7 1095/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) Note: RM0385 (1) Step is not required in slave mode. (2) Step is not required in TI mode. (3) Step is not required in NSSP mode. (4) The step is not required in slave mode except slave working at TI mode 32.5.8 Procedure for enabling SPI It is recommended to enable the SPI slave before the master sends the clock. If not, undesired data transmission might occur. The data register of the slave must already contain data to be sent before starting communication with the master (either on the first edge of the communication clock, or before the end of the ongoing communication if the clock signal is continuous). The SCK signal must be settled at an idle state level corresponding to the selected polarity before the SPI slave is enabled. The master at full-duplex (or in any transmit-only mode) starts to communicate when the SPI is enabled and TXFIFO is not empty, or with the next write to TXFIFO. In any master receive only mode (RXONLY=1 or BIDIMODE=1 & BIDIOE=0), master starts to communicate and the clock starts running immediately after SPI is enabled. For handling DMA, follow the dedicated section. 32.5.9 Data transmission and reception procedures RXFIFO and TXFIFO All SPI data transactions pass through the 32-bit embedded FIFOs. This enables the SPI to work in a continuous flow, and prevents overruns when the data frame size is short. Each direction has its own FIFO called TXFIFO and RXFIFO. These FIFOs are used in all SPI modes except for receiver-only mode (slave or master) with CRC calculation enabled (see Section 32.5.14: CRC calculation). The handling of FIFOs depends on the data exchange mode (duplex, simplex), data frame format (number of bits in the frame), access size performed on the FIFO data registers (8-bit or 16-bit), and whether or not data packing is used when accessing the FIFOs (see Section 32.5.13: TI mode). A read access to the SPIx_DR register returns the oldest value stored in RXFIFO that has not been read yet. A write access to the SPIx_DR stores the written data in the TXFIFO at the end of a send queue. The read access must be always aligned with the RXFIFO threshold configured by the FRXTH bit in SPIx_CR2 register. FTLVL[1:0] and FRLVL[1:0] bits indicate the current occupancy level of both FIFOs. A read access to the SPIx_DR register must be managed by the RXNE event. This event is triggered when data is stored in RXFIFO and the threshold (defined by FRXTH bit) is reached. When RXNE is cleared, RXFIFO is considered to be empty. In a similar way, write access of a data frame to be transmitted is managed by the TXE event. This event is triggered when the TXFIFO level is less than or equal to half of its capacity. Otherwise TXE is cleared and the TXFIFO is considered as full. In this way, RXFIFO can store up to four data frames, whereas TXFIFO can only store up to three when the data frame format is not greater than 8 bits. This difference prevents possible corruption of 3x 8-bit data frames already stored in the TXFIFO when software tries to write more data in 16-bit mode into TXFIFO. Both TXE and RXNE events can be polled or handled by interrupts. See Figure 369 through Figure 372. 1096/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Another way to manage the data exchange is to use DMA (see Communication using DMA (direct memory addressing)). If the next data is received when the RXFIFO is full, an overrun event occurs (see description of OVR flag at Section 32.5.10: SPI status flags). An overrun event can be polled or handled by an interrupt. The BSY bit being set indicates ongoing transaction of a current data frame. When the clock signal runs continuously, the BSY flag stays set between data frames at master but becomes low for a minimum duration of one SPI clock at slave between each data frame transfer. Sequence handling A few data frames can be passed at single sequence to complete a message. When transmission is enabled, a sequence begins and continues while any data is present in the TXFIFO of the master. The clock signal is provided continuously by the master until TXFIFO becomes empty, then it stops waiting for additional data. In receive-only modes, half-duplex (BIDIMODE=1, BIDIOE=0) or simplex (BIDIMODE=0, RXONLY=1) the master starts the sequence immediately when both SPI is enabled and receive-only mode is activated. The clock signal is provided by the master and it does not stop until either SPI or receive-only mode is disabled by the master. The master receives data frames continuously up to this moment. While the master can provide all the transactions in continuous mode (SCK signal is continuous) it has to respect slave capability to handle data flow and its content at anytime. When necessary, the master must slow down the communication and provide either a slower clock or separate frames or data sessions with sufficient delays. Be aware there is no underflow error signal for master or slave in SPI mode, and data from the slave is always transacted and processed by the master even if the slave could not prepare it correctly in time. It is preferable for the slave to use DMA, especially when data frames are shorter and bus rate is high. Each sequence must be encased by the NSS pulse in parallel with the multislave system to select just one of the slaves for communication. In a single slave system it is not necessary to control the slave with NSS, but it is often better to provide the pulse here too, to synchronize the slave with the beginning of each data sequence. NSS can be managed by both software and hardware (see Section 32.5.5: Slave select (NSS) pin management). When the BSY bit is set it signifies an ongoing data frame transaction. When the dedicated frame transaction is finished, the RXNE flag is raised. The last bit is just sampled and the complete data frame is stored in the RXFIFO. Procedure for disabling the SPI When SPI is disabled, it is mandatory to follow the disable procedures described in this paragraph. It is important to do this before the system enters a low-power mode when the peripheral clock is stopped. Ongoing transactions can be corrupted in this case. In some modes the disable procedure is the only way to stop continuous communication running. Master in full-duplex or transmit only mode can finish any transaction when it stops providing data for transmission. In this case, the clock stops after the last data transaction. Special care must be taken in packing mode when an odd number of data frames are transacted to prevent some dummy byte exchange (refer to Data packing section). Before the SPI is disabled in these modes, the user must follow standard disable procedure. When RM0385 Rev 7 1097/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 the SPI is disabled at the master transmitter while a frame transaction is ongoing or next data frame is stored in TXFIFO, the SPI behavior is not guaranteed. When the master is in any receive only mode, the only way to stop the continuous clock is to disable the peripheral by SPE=0. This must occur in specific time window within last data frame transaction just between the sampling time of its first bit and before its last bit transfer starts (in order to receive a complete number of expected data frames and to prevent any additional “dummy” data reading after the last valid data frame). Specific procedure must be followed when disabling SPI in this mode. Data received but not read remains stored in RXFIFO when the SPI is disabled, and must be processed the next time the SPI is enabled, before starting a new sequence. To prevent having unread data, ensure that RXFIFO is empty when disabling the SPI, by using the correct disabling procedure, or by initializing all the SPI registers with a software reset via the control of a specific register dedicated to peripheral reset (see the SPIiRST bits in the RCC_APBiRSTR registers). Standard disable procedure is based on pulling BSY status together with FTLVL[1:0] to check if a transmission session is fully completed. This check can be done in specific cases, too, when it is necessary to identify the end of ongoing transactions, for example: • When NSS signal is managed by software and master has to provide proper end of NSS pulse for slave, or • When transactions’ streams from DMA or FIFO are completed while the last data frame or CRC frame transaction is still ongoing in the peripheral bus. The correct disable procedure is (except when receive only mode is used): 1. Wait until FTLVL[1:0] = 00 (no more data to transmit). 2. Wait until BSY=0 (the last data frame is processed). 3. Disable the SPI (SPE=0). 4. Read data until FRLVL[1:0] = 00 (read all the received data). The correct disable procedure for certain receive only modes is: Note: 1. Interrupt the receive flow by disabling SPI (SPE=0) in the specific time window while the last data frame is ongoing. 2. Wait until BSY=0 (the last data frame is processed). 3. Read data until FRLVL[1:0] = 00 (read all the received data). If packing mode is used and an odd number of data frames with a format less than or equal to 8 bits (fitting into one byte) has to be received, FRXTH must be set when FRLVL[1:0] = 01, in order to generate the RXNE event to read the last odd data frame and to keep good FIFO pointer alignment. Data packing When the data frame size fits into one byte (less than or equal to 8 bits), data packing is used automatically when any read or write 16-bit access is performed on the SPIx_DR register. The double data frame pattern is handled in parallel in this case. At first, the SPI operates using the pattern stored in the LSB of the accessed word, then with the other half stored in the MSB. Figure 368 provides an example of data packing mode sequence handling. Two data frames are sent after the single 16-bit access the SPIx_DR register of the transmitter. This sequence can generate just one RXNE event in the receiver if the RXFIFO threshold is set to 16 bits (FRXTH=0). The receiver then has to access both data frames by a single 16-bit read of SPIx_DR as a response to this single RXNE event. The 1098/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) RxFIFO threshold setting and the following read access must be always kept aligned at the receiver side, as data can be lost if it is not in line. A specific problem appears if an odd number of such “fit into one byte” data frames must be handled. On the transmitter side, writing the last data frame of any odd sequence with an 8bit access to SPIx_DR is enough. The receiver has to change the Rx_FIFO threshold level for the last data frame received in the odd sequence of frames in order to generate the RXNE event. Figure 368. Packing data in FIFO for transmission and reception NSS SCK TXFIFO SPIx_DR 0x0A 0x04 0x0A 0x04 RXFIFO MOSI 0x0A SPI fsm & shift 16-bit write access to data register at TxE event: SPI_DR= 0x40A; SPIx_DR 0x0A 0x04 SPI fsm & shift 0x04 0x04 0x0A 16-bit read access from data register at RxNE event: unit16_t var; var= SPI_DR /*var=0x040A*/ MS19590V2 1. In this example: Data size DS[3:0] is 4-bit configured, CPOL=0, CPHA=1 and LSBFIRST =0. The Data storage is always right aligned while the valid bits are performed on the bus only, the content of LSB byte goes first on the bus, the unused bits are not taken into account on the transmitter side and padded by zeros at the receiver side. Communication using DMA (direct memory addressing) To operate at its maximum speed and to facilitate the data register read/write process required to avoid overrun, the SPI features a DMA capability, which implements a simple request/acknowledge protocol. A DMA access is requested when the TXE or RXNE enable bit in the SPIx_CR2 register is set. Separate requests must be issued to the Tx and Rx buffers. • In transmission, a DMA request is issued each time TXE is set to 1. The DMA then writes to the SPIx_DR register. • In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads the SPIx_DR register. See Figure 369 through Figure 372. When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA channel. In this case, the OVR flag is set because the data received is not read. When the SPI is used only to receive data, it is possible to enable only the SPI Rx DMA channel. In transmission mode, when the DMA has written all the data to be transmitted (the TCIF flag is set in the DMA_ISR register), the BSY flag can be monitored to ensure that the SPI communication is complete. This is required to avoid corrupting the last transmission before disabling the SPI or entering the Stop mode. The software must first wait until FTLVL[1:0]=00 and then until BSY=0. RM0385 Rev 7 1099/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 When starting communication using DMA, to prevent DMA channel management raising error events, these steps must be followed in order: 1. Enable DMA Rx buffer in the RXDMAEN bit in the SPI_CR2 register, if DMA Rx is used. 2. Enable DMA streams for Tx and Rx in DMA registers, if the streams are used. 3. Enable DMA Tx buffer in the TXDMAEN bit in the SPI_CR2 register, if DMA Tx is used. 4. Enable the SPI by setting the SPE bit. To close communication it is mandatory to follow these steps in order: 1. Disable DMA streams for Tx and Rx in the DMA registers, if the streams are used. 2. Disable the SPI by following the SPI disable procedure. 3. Disable DMA Tx and Rx buffers by clearing the TXDMAEN and RXDMAEN bits in the SPI_CR2 register, if DMA Tx and/or DMA Rx are used. Packing with DMA If the transfers are managed by DMA (TXDMAEN and RXDMAEN set in the SPIx_CR2 register) packing mode is enabled/disabled automatically depending on the PSIZE value configured for SPI TX and the SPI RX DMA channel. If the DMA channel PSIZE value is equal to 16-bit and SPI data size is less than or equal to 8-bit, then packing mode is enabled. The DMA then automatically manages the write operations to the SPIx_DR register. If data packing mode is used and the number of data to transfer is not a multiple of two, the LDMA_TX/LDMA_RX bits must be set. The SPI then considers only one data for the transmission or reception to serve the last DMA transfer (for more details refer to Data packing on page 1098.) 1100/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Communication diagrams Some typical timing schemes are explained in this section. These schemes are valid no matter if the SPI events are handled by polling, interrupts or DMA. For simplicity, the LSBFIRST=0, CPOL=0 and CPHA=1 setting is used as a common assumption here. No complete configuration of DMA streams is provided. The following numbered notes are common for Figure 369 on page 1102 through Figure 372 on page 1105. 1. The slave starts to control MISO line as NSS is active and SPI is enabled, and is disconnected from the line when one of them is released. Sufficient time must be provided for the slave to prepare data dedicated to the master in advance before its transaction starts. At the master, the SPI peripheral takes control at MOSI and SCK signals (occasionally at NSS signal as well) only if SPI is enabled. If SPI is disabled the SPI peripheral is disconnected from GPIO logic, so the levels at these lines depends on GPIO setting exclusively. 2. At the master, BSY stays active between frames if the communication (clock signal) is continuous. At the slave, BSY signal always goes down for at least one clock cycle between data frames. 3. The TXE signal is cleared only if TXFIFO is full. 4. The DMA arbitration process starts just after the TXDMAEN bit is set. The TXE interrupt is generated just after the TXEIE is set. As the TXE signal is at an active level, data transfers to TxFIFO start, until TxFIFO becomes full or the DMA transfer completes. 5. If all the data to be sent can fit into TxFIFO, the DMA Tx TCIF flag can be raised even before communication on the SPI bus starts. This flag always rises before the SPI transaction is completed. 6. The CRC value for a package is calculated continuously frame by frame in the SPIx_TxCRCR and SPIx_RxCRCR registers. The CRC information is processed after the entire data package has completed, either automatically by DMA (Tx channel must be set to the number of data frames to be processed) or by SW (the user must handle CRCNEXT bit during the last data frame processing). While the CRC value calculated in SPIx_TxCRCR is simply sent out by transmitter, received CRC information is loaded into RxFIFO and then compared with the SPIx_RxCRCR register content (CRC error flag can be raised here if any difference). This is why the user must take care to flush this information from the FIFO, either by software reading out all the stored content of RxFIFO, or by DMA when the proper number of data frames is preset for Rx channel (number of data frames + number of CRC frames) (see the settings at the example assumption). 7. In data packed mode, TxE and RxNE events are paired and each read/write access to the FIFO is 16 bits wide until the number of data frames are even. If the TxFIFO is ¾ full FTLVL status stays at FIFO full level. That is why the last odd data frame cannot be stored before the TxFIFO becomes ½ full. This frame is stored into TxFIFO with an 8bit access either by software or automatically by DMA when LDMA_TX control is set. 8. To receive the last odd data frame in packed mode, the Rx threshold must be changed to 8-bit when the last data frame is processed, either by software setting FRXTH=1 or automatically by a DMA internal signal when LDMA_RX is set. RM0385 Rev 7 1101/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Figure 369. Master full-duplex communication NSS SCK 2 BSY MOSI DTx1 MSB 2 DTx2 MSB MSB DTx3 SPE 3 TXE 3 Enable Tx/Rx DMA or interrupts DTx1 FTLVL 00 DTx2 10 DTx3 11 10 DMA or software control at Tx events 10 11 00 4 DRx1 MISO LSB DRx2 LSB DRx3 LSB 1 1 RXNE DMA or software control at Rx events FRLVL 00 DMA Tx TICF DRx1 10 5 00 DRx2 10 DRx3 00 10 00 DMA Rx TICF MSv19266V2 Assumptions for master full-duplex communication example: • Data size > 8 bit If DMA is used: • Number of Tx frames transacted by DMA is set to 3 • Number of Rx frames transacted by DMA is set to 3 See also : Communication diagrams on page 1101 for details about common assumptions and notes. 1102/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Figure 370. Slave full-duplex communication NSS SCK BSY 2 MISO MSB DTx1 MSB MSB DTx2 DTx3 1 1 SPE 3 TXE 3 Enable Tx/Rx DMA or interrupts 4 DTx1 FTLVL 00 DTx3 DTx2 10 10 11 10 11 DRx1 MOSI DMA or software control at Tx events LSB DRx2 00 LSB DRx3 LSB RXNE DMA or software control at Rx events 00 FRLVL DMA Tx TICF DRx1 10 5 00 DRx2 10 DRx3 00 10 00 DMA Rx TICF MSv32123V2 Assumptions for slave full-duplex communication example: • Data size > 8 bit If DMA is used: • Number of Tx frames transacted by DMA is set to 3 • Number of Rx frames transacted by DMA is set to 3 See also : Communication diagrams on page 1101 for details about common assumptions and notes. RM0385 Rev 7 1103/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Figure 371. Master full-duplex communication with CRC NSS SCK BSY 2 MOSI MSB DTx1 MSB MSB DTx2 CRC SPE TXE 3 Enable Tx/Rx DMA or interrupts DTx1 FTLVL 00 DTx2 10 DMA or software control at Tx events 11 10 00 4 DRx1 MISO LSB DRx2 LSB CRC LSB 1 1 RXNE DMA or software control at Rx events FRLVL 00 DMA Tx TICF 5 DRx1 10 00 DRx2 10 DRx3 00 DMA Rx TICF 00 10 6 MSv32124V2 Assumptions for master full-duplex communication with CRC example: • Data size = 16 bit • CRC enabled If DMA is used: • Number of Tx frames transacted by DMA is set to 2 • Number of Rx frames transacted by DMA is set to 3 See also : Communication diagrams on page 1101 for details about common assumptions and notes. 1104/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Figure 372. Master full-duplex communication in packed mode NSS SCK BSY 2 DTx1-2 MOSI 4 3 2 1 5 5 DTx3-4 5 4 3 2 1 4 3 2 1 5 DTx5 4 3 2 1 4 3 2 1 5 SPE 3 3 TXE Enable Tx/Rx DMA or interrupts DTx1-2 DTx3-4 DTx5 DMA or software control at Tx events 7 FTLVL 10 00 10 11 10 11 01 00 4 5 4 3 2 MISO 1 5 4 3 2 5 4 3 2 1 5 4 3 2 1 5 4 3 2 DRx3-4 DRx1-2 1 1 1 DRx5 1 RXNE DMA or software control at Rx events DRx1-2 DRx3-4 FRTHX=1 DRx5 8 FRLVL 00 DMA Tx TICF 10 01 5 00 01 10 00 01 00 DMA Rx TICF MSv32125V2 Assumptions for master full-duplex communication in packed mode example: • Data size = 5 bit • Read/write FIFO is performed mostly by 16-bit access • FRXTH=0 If DMA is used: • Number of Tx frames to be transacted by DMA is set to 3 • Number of Rx frames to be transacted by DMA is set to 3 • PSIZE for both Tx and Rx DMA channel is set to 16-bit • LDMA_TX=1 and LDMA_RX=1 See also : Communication diagrams on page 1101 for details about common assumptions and notes. RM0385 Rev 7 1105/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) 32.5.10 RM0385 SPI status flags Three status flags are provided for the application to completely monitor the state of the SPI bus. Tx buffer empty flag (TXE) The TXE flag is set when transmission TXFIFO has enough space to store data to send. TXE flag is linked to the TXFIFO level. The flag goes high and stays high until the TXFIFO level is lower or equal to 1/2 of the FIFO depth. An interrupt can be generated if the TXEIE bit in the SPIx_CR2 register is set. The bit is cleared automatically when the TXFIFO level becomes greater than 1/2. Rx buffer not empty (RXNE) The RXNE flag is set depending on the FRXTH bit value in the SPIx_CR2 register: • If FRXTH is set, RXNE goes high and stays high until the RXFIFO level is greater or equal to 1/4 (8-bit). • If FRXTH is cleared, RXNE goes high and stays high until the RXFIFO level is greater than or equal to 1/2 (16-bit). An interrupt can be generated if the RXNEIE bit in the SPIx_CR2 register is set. The RXNE is cleared by hardware automatically when the above conditions are no longer true. Busy flag (BSY) The BSY flag is set and cleared by hardware (writing to this flag has no effect). When BSY is set, it indicates that a data transfer is in progress on the SPI (the SPI bus is busy). The BSY flag can be used in certain modes to detect the end of a transfer so that the software can disable the SPI or its peripheral clock before entering a low-power mode which does not provide a clock for the peripheral. This avoids corrupting the last transfer. The BSY flag is also useful for preventing write collisions in a multimaster system. The BSY flag is cleared under any one of the following conditions: Note: 1106/1709 • When the SPI is correctly disabled • When a fault is detected in Master mode (MODF bit set to 1) • In Master mode, when it finishes a data transmission and no new data is ready to be sent • In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between each data transfer. When the next transmission can be handled immediately by the master (e.g. if the master is in Receive-only mode or its Transmit FIFO is not empty), communication is continuous and the BSY flag remains set to '1' between transfers on the master side. Although this is not the case with a slave, it is recommended to use always the TXE and RXNE flags (instead of the BSY flags) to handle data transmission or reception operations. RM0385 Rev 7 RM0385 32.5.11 Serial peripheral interface / inter-IC sound (SPI/I2S) SPI error flags An SPI interrupt is generated if one of the following error flags is set and interrupt is enabled by setting the ERRIE bit. Overrun flag (OVR) An overrun condition occurs when data is received by a master or slave and the RXFIFO has not enough space to store this received data. This can happen if the software or the DMA did not have enough time to read the previously received data (stored in the RXFIFO) or when space for data storage is limited e.g. the RXFIFO is not available when CRC is enabled in receive only mode so in this case the reception buffer is limited into a single data frame buffer (see Section 32.5.14: CRC calculation). When an overrun condition occurs, the newly received value does not overwrite the previous one in the RXFIFO. The newly received value is discarded and all data transmitted subsequently is lost. Clearing the OVR bit is done by a read access to the SPI_DR register followed by a read access to the SPI_SR register. Mode fault (MODF) Mode fault occurs when the master device has its internal NSS signal (NSS pin in NSS hardware mode, or SSI bit in NSS software mode) pulled low. This automatically sets the MODF bit. Master mode fault affects the SPI interface in the following ways: • The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set. • The SPE bit is cleared. This blocks all output from the device and disables the SPI interface. • The MSTR bit is cleared, thus forcing the device into slave mode. Use the following software sequence to clear the MODF bit: 1. Make a read or write access to the SPIx_SR register while the MODF bit is set. 2. Then write to the SPIx_CR1 register. To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can be restored to their original state after this clearing sequence. As a security, hardware does not allow the SPE and MSTR bits to be set while the MODF bit is set. In a slave device the MODF bit cannot be set except as the result of a previous multimaster conflict. CRC error (CRCERR) This flag is used to verify the validity of the value received when the CRCEN bit in the SPIx_CR1 register is set. The CRCERR flag in the SPIx_SR register is set if the value received in the shift register does not match the receiver SPIx_RXCRCR value. The flag is cleared by the software. TI mode frame format error (FRE) A TI mode frame format error is detected when an NSS pulse occurs during an ongoing communication when the SPI is operating in slave mode and configured to conform to the TI mode protocol. When this error occurs, the FRE flag is set in the SPIx_SR register. The SPI is not disabled when an error occurs, the NSS pulse is ignored, and the SPI waits for the next NSS pulse before starting a new transfer. The data may be corrupted since the error detection may result in the loss of two data bytes. RM0385 Rev 7 1107/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 The FRE flag is cleared when SPIx_SR register is read. If the ERRIE bit is set, an interrupt is generated on the NSS error detection. In this case, the SPI should be disabled because data consistency is no longer guaranteed and communications should be reinitiated by the master when the slave SPI is enabled again. 32.5.12 NSS pulse mode This mode is activated by the NSSP bit in the SPIx_CR2 register and it takes effect only if the SPI interface is configured as Motorola SPI master (FRF=0) with capture on the first edge (SPIx_CR1 CPHA = 0, CPOL setting is ignored). When activated, an NSS pulse is generated between two consecutive data frame transfers when NSS stays at high level for the duration of one clock period at least. This mode allows the slave to latch data. NSSP pulse mode is designed for applications with a single master-slave pair. Figure 373 illustrates NSS pin management when NSSP pulse mode is enabled. Figure 373. NSSP pulse generation in Motorola SPI master mode Master continuous transfer (CPOL = 1; CPHA = 0; NSSP= 1) sampling sampling sampling sampling sampling sampling NSS output SCK output MOSI output MSB MISO input Do not care MSB LSB LSB Do not care tSCK tSCK tSCK 4-bits to 16-bits MSB LSB MSB LSB tSCK Do not care tSCK 4-bits to 16-bits MS19838V1 Note: Similar behavior is encountered when CPOL = 0. In this case the sampling edge is the rising edge of SCK, and NSS assertion and deassertion refer to this sampling edge. 32.5.13 TI mode TI protocol in master mode The SPI interface is compatible with the TI protocol. The FRF bit of the SPIx_CR2 register can be used to configure the SPI to be compliant with this protocol. The clock polarity and phase are forced to conform to the TI protocol requirements whatever the values set in the SPIx_CR1 register. NSS management is also specific to the TI protocol which makes the configuration of NSS management through the SPIx_CR1 and SPIx_CR2 registers (SSM, SSI, SSOE) impossible in this case. In slave mode, the SPI baud rate prescaler is used to control the moment when the MISO pin state changes to HiZ when the current transaction finishes (see Figure 374). Any baud rate can be used, making it possible to determine this moment with optimal flexibility. However, the baud rate is generally set to the external master clock baud rate. The delay for the MISO signal to become HiZ (trelease) depends on internal resynchronization and on the 1108/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) baud rate value set in through the BR[2:0] bits in the SPIx_CR1 register. It is given by the formula: t baud_rate t baud_rate --------------------- + 4 × t pclk < t release < --------------------- + 6 × t pclk 2 2 If the slave detects a misplaced NSS pulse during a data frame transaction the TIFRE flag is set. If the data size is equal to 4-bits or 5-bits, the master in full-duplex mode or transmit-only mode uses a protocol with one more dummy data bit added after LSB. TI NSS pulse is generated above this dummy bit clock cycle instead of the LSB in each period. This feature is not available for Motorola SPI communications (FRF bit set to 0). Figure 374: TI mode transfer shows the SPI communication waveforms when TI mode is selected. Figure 374. TI mode transfer g t RELEASE sa m pl er in g in gg tr i sa m pl er gg pl tri m sa tri gg er in g NSS SCK MOSI MISO Do not care 1 or 0 MSB LSB MSB LSB MSB LSB MSB LSB FRAME 1 FRAME 2 MS19835V2 32.5.14 CRC calculation Two separate CRC calculators are implemented in order to check the reliability of transmitted and received data. The SPI offers CRC8 or CRC16 calculation independently of the frame data length, which can be fixed to 8-bit or 16-bit. For all the other data frame lengths, no CRC is available. CRC principle CRC calculation is enabled by setting the CRCEN bit in the SPIx_CR1 register before the SPI is enabled (SPE = 1). The CRC value is calculated using an odd programmable polynomial on each bit. The calculation is processed on the sampling clock edge defined by the CPHA and CPOL bits in the SPIx_CR1 register. The calculated CRC value is checked automatically at the end of the data block as well as for transfer managed by CPU or by the DMA. When a mismatch is detected between the CRC calculated internally on the received data and the CRC sent by the transmitter, a CRCERR flag is set to indicate a data corruption error. The right procedure for handling the CRC calculation depends on the SPI configuration and the chosen transfer management. RM0385 Rev 7 1109/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) Note: RM0385 The polynomial value should only be odd. No even values are supported. CRC transfer managed by CPU Communication starts and continues normally until the last data frame has to be sent or received in the SPIx_DR register. Then CRCNEXT bit has to be set in the SPIx_CR1 register to indicate that the CRC frame transaction will follow after the transaction of the currently processed data frame. The CRCNEXT bit must be set before the end of the last data frame transaction. CRC calculation is frozen during CRC transaction. The received CRC is stored in the RXFIFO like a data byte or word. That is why in CRC mode only, the reception buffer has to be considered as a single 16-bit buffer used to receive only one data frame at a time. A CRC-format transaction usually takes one more data frame to communicate at the end of data sequence. However, when setting an 8-bit data frame checked by 16-bit CRC, two more frames are necessary to send the complete CRC. When the last CRC data is received, an automatic check is performed comparing the received value and the value in the SPIx_RXCRC register. Software has to check the CRCERR flag in the SPIx_SR register to determine if the data transfers were corrupted or not. Software clears the CRCERR flag by writing '0' to it. After the CRC reception, the CRC value is stored in the RXFIFO and must be read in the SPIx_DR register in order to clear the RXNE flag. CRC transfer managed by DMA When SPI communication is enabled with CRC communication and DMA mode, the transmission and reception of the CRC at the end of communication is automatic (with the exception of reading CRC data in receive only mode). The CRCNEXT bit does not have to be handled by the software. The counter for the SPI transmission DMA channel has to be set to the number of data frames to transmit excluding the CRC frame. On the receiver side, the received CRC value is handled automatically by DMA at the end of the transaction but user must take care to flush out received CRC information from RXFIFO as it is always loaded into it. In full-duplex mode, the counter of the reception DMA channel can be set to the number of data frames to receive including the CRC, which means, for example, in the specific case of an 8-bit data frame checked by 16-bit CRC: DMA_RX = Numb_of_data + 2 In receive only mode, the DMA reception channel counter should contain only the amount of data transferred, excluding the CRC calculation. Then based on the complete transfer from DMA, all the CRC values must be read back by software from FIFO as it works as a single buffer in this mode. At the end of the data and CRC transfers, the CRCERR flag in the SPIx_SR register is set if corruption occurred during the transfer. If packing mode is used, the LDMA_RX bit needs managing if the number of data is odd. Resetting the SPIx_TXCRC and SPIx_RXCRC values The SPIx_TXCRC and SPIx_RXCRC values are cleared automatically when new data is sampled after a CRC phase. This allows the use of DMA circular mode (not available in receive-only mode) in order to transfer data without any interruption, (several data blocks covered by intermediate CRC checking phases). 1110/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) If the SPI is disabled during a communication the following sequence must be followed: Note: 1. Disable the SPI 2. Clear the CRCEN bit 3. Enable the CRCEN bit 4. Enable the SPI When the SPI interface is configured as a slave, the NSS internal signal needs to be kept low during transaction of the CRC phase once the CRCNEXT signal is released. That is why the CRC calculation can’t be used at NSS Pulse mode when NSS hardware mode should be applied at slave normally (see more details at the product errata sheet). At TI mode, despite the fact that clock phase and clock polarity setting is fixed and independent on SPIx_CR1 register, the corresponding setting CPOL=0 CPHA=1 has to be kept at the SPIx_CR1 register anyway if CRC is applied. In addition, the CRC calculation has to be reset between sessions by SPI disable sequence with re-enable the CRCEN bit described above at both master and slave side, else CRC calculation can be corrupted at this specific mode. 32.6 SPI interrupts During SPI communication an interrupts can be generated by the following events: • Transmit TXFIFO ready to be loaded • Data received in Receive RXFIFO • Master mode fault • Overrun error • TI frame format error • CRC protocol error Interrupts can be enabled and disabled separately. Table 201. SPI interrupt requests Interrupt event Event flag Enable Control bit TXE TXEIE Data received in RXFIFO RXNE RXNEIE Master Mode fault event MODF Transmit TXFIFO ready to be loaded Overrun error OVR TI frame format error FRE CRC protocol error ERRIE CRCERR RM0385 Rev 7 1111/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) 32.7 I2S functional description 32.7.1 I2S general description RM0385 The block diagram of the I2S is shown in Figure 375. Figure 375. I2S block diagram Address and data bus Tx buffer 16-bit BSY OVR MODF CH CRC TxE RxNE FRE UDR SIDE ERR MOSI/SD Shift register MISO LSB first Communication control 16-bit Rx buffer NSS/WS I2SCFG [1:0] I2SSTD [1:0] CK POL DATLEN CH LEN [1:0] I2S I2SE MOD Master control logic Rx Bidi Bidi CRC CRC SSM SSI mode OE EN Next DFF only SPI baud rate generator LSB SPE BR2 BR1 BR0 MSTR CPOL CPHA First CK I2S clock generator I2S_CK I2SMOD I2SxCLK MCK MCKOE ODD I2SDIV[7:0] MS32126V1 1. MCK is mapped on the MISO pin. The SPI can function as an audio I2S interface when the I2S capability is enabled (by setting the I2SMOD bit in the SPIx_I2SCFGR register). This interface mainly uses the same pins, flags and interrupts as the SPI. 1112/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) The I2S shares three common pins with the SPI: • SD: Serial Data (mapped on the MOSI pin) to transmit or receive the two timemultiplexed data channels (in half-duplex mode only). • WS: Word Select (mapped on the NSS pin) is the data control signal output in master mode and input in slave mode. • CK: Serial Clock (mapped on the SCK pin) is the serial clock output in master mode and serial clock input in slave mode. An additional pin can be used when a master clock output is needed for some external audio devices: • MCK: Master Clock (mapped separately) is used, when the I2S is configured in master mode (and when the MCKOE bit in the SPIx_I2SPR register is set), to output this additional clock generated at a preconfigured frequency rate equal to 256 × fS, where fS is the audio sampling frequency. The I2S uses its own clock generator to produce the communication clock when it is set in master mode. This clock generator is also the source of the master clock output. Two additional registers are available in I2S mode. One is linked to the clock generator configuration SPIx_I2SPR and the other one is a generic I2S configuration register SPIx_I2SCFGR (audio standard, slave/master mode, data format, packet frame, clock polarity, etc.). The SPIx_CR1 register and all CRC registers are not used in the I2S mode. Likewise, the SSOE bit in the SPIx_CR2 register and the MODF and CRCERR bits in the SPIx_SR are not used. The I2S uses the same SPI register for data transfer (SPIx_DR) in 16-bit wide mode. 32.7.2 I2S full duplex Figure 376 shows how to perform full-duplex communications using two SPI/I2S instances. In this case, the WS and CK IOs of both SPI/I2S must be connected together. For the master full-duplex mode, one of the SPI/I2S block must be programmed in master (I2SCFG = ‘10’ or ‘11’), and the other SPI/I2S block must be programmed in slave (I2SCFG = ‘00’ or ‘01’). The MCK can be generated or not, depending on the application needs. For the slave full-duplex mode, both SPI/I2S blocks must be programmed in slave. One of them in the slave receiver (I2SCFG = ‘01’), and the other in the slave transmitter (I2SCFG = ‘00’). The master external device then provides the bit clock (CK) and the frame synchronization (WS). Note that the full-duplex mode can be used for all the supported standards: I2S Philips, MSB-justified, LSB-justified and PCM. For the full-duplex mode, both SPI/I2S instances must use the same standard, with the same parameters: I2SMOD, I2SSTD, CKPOL, PCMSYNC, DATLEN and CHLEN must contain the same value on both instances. RM0385 Rev 7 1113/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Figure 376. Full-duplex communication MASTER full-duplex configurations spix_tx_dma SPI/I2Sx (MASTER-TX) STM32 STM32 MCK (O) MCK (O) SD (O) spix_rx_dma CK (O) External slave device WS (O) WS (I) spix_rx_dma SPI/I2Sy (SLAVE-RX) SPI/I2Sx (MASTER-RX) CK (O) WS (O) WS (I) spix_tx_dma CK (I) SD (I) SD (I) SPI/I2Sy (SLAVE-TX) External slave device CK (I) SD (O) SLAVE full-duplex configurations STM32 SD (O) spix_tx_dma SPI/I2Sx (SLAVE-TX) CK (I) WS (I) Optional Master Slave WS (I) spix_rx_dma SPI/I2Sy (SLAVE-RX) External master device CK (I) SD (I) MSv42093V2 32.7.3 Supported audio protocols The three-line bus has to handle only audio data generally time-multiplexed on two channels: the right channel and the left channel. However there is only one 16-bit register for transmission or reception. So, it is up to the software to write into the data register the appropriate value corresponding to each channel side, or to read the data from the data register and to identify the corresponding channel by checking the CHSIDE bit in the SPIx_SR register. Channel left is always sent first followed by the channel right (CHSIDE has no meaning for the PCM protocol). Four data and packet frames are available. Data may be sent with a format of: • 16-bit data packed in a 16-bit frame • 16-bit data packed in a 32-bit frame • 24-bit data packed in a 32-bit frame • 32-bit data packed in a 32-bit frame When using 16-bit data extended on 32-bit packet, the first 16 bits (MSB) are the significant bits, the 16-bit LSB is forced to 0 without any need for software action or DMA request (only one read/write operation). The 24-bit and 32-bit data frames need two CPU read or write operations to/from the SPIx_DR register or two DMA operations if the DMA is preferred for the application. For 24bit data frame specifically, the 8 non-significant bits are extended to 32 bits with 0-bits (by hardware). For all data formats and communication standards, the most significant bit is always sent first (MSB first). 1114/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) The I2S interface supports four audio standards, configurable using the I2SSTD[1:0] and PCMSYNC bits in the SPIx_I2SCFGR register. I2S Philips standard For this standard, the WS signal is used to indicate which channel is being transmitted. It is activated one CK clock cycle before the first bit (MSB) is available. Figure 377. I2S Philips protocol waveforms (16/32-bit full accuracy) CK WS transmission reception Can be 16-bit or 32-bit SD MSB LSB MSB Channel left Channel right MS19591V1 Data are latched on the falling edge of CK (for the transmitter) and are read on the rising edge (for the receiver). The WS signal is also latched on the falling edge of CK. Figure 378. I2S Philips standard waveforms (24-bit frame) CK WS Transmission Reception 24-bit data 8-bit remaining 0 forced SD MSB LSB Channel left 32-bit Channel right MS19592V1 This mode needs two write or read operations to/from the SPIx_DR register. • In transmission mode: If 0x8EAA33 has to be sent (24-bit): RM0385 Rev 7 1115/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Figure 379. Transmitting 0x8EAA33 First write to Data register Second write to Data register 0x8EAA 0x33XX Only the 8 MSB are sent to compare the 24 bits 8 LSBs have no meaning and can be anything MS19593V2 • In reception mode: If data 0x8EAA33 is received: Figure 380. Receiving 0x8EAA33 First read to Data register Second read to Data register 0x8EAA 0x33XX Only the 8 MSB are sent to compare the 24 bits 8 LSBs have no meaning and can be anything MS19594V1 Figure 381. I2S Philips standard (16-bit extended to 32-bit packet frame) CK WS Transmission Reception 16-bit data 16-bit remaining 0 forced SD MSB LSB Channel left 32-bit Channel right MS19599V1 When 16-bit data frame extended to 32-bit channel frame is selected during the I2S configuration phase, only one access to the SPIx_DR register is required. The 16 remaining bits are forced by hardware to 0x0000 to extend the data to 32-bit format. If the data to transmit or the received data are 0x76A3 (0x76A30000 extended to 32-bit), the operation shown in Figure 382 is required. Figure 382. Example of 16-bit data frame extended to 32-bit channel frame Only one access to SPIx_DR 0x76A3 MS19595V1 1116/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) For transmission, each time an MSB is written to SPIx_DR, the TXE flag is set and its interrupt, if allowed, is generated to load the SPIx_DR register with the new value to send. This takes place even if 0x0000 have not yet been sent because it is done by hardware. For reception, the RXNE flag is set and its interrupt, if allowed, is generated when the first 16 MSB half-word is received. In this way, more time is provided between two write or read operations, which prevents underrun or overrun conditions (depending on the direction of the data transfer). MSB justified standard For this standard, the WS signal is generated at the same time as the first data bit, which is the MSBit. Figure 383. MSB Justified 16-bit or 32-bit full-accuracy length CK Transmission WS Reception 16- or 32 bit data SD LSB MSB MSB Channel left Channel right MS30100 V1 Data are latched on the falling edge of CK (for transmitter) and are read on the rising edge (for the receiver). Figure 384. MSB justified 24-bit frame length CK Transmission WS Reception 24 bit data 8-bit remaining 0 forced SD MSB LSB Channel left 32-bit Channel right MS30101V1 RM0385 Rev 7 1117/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Figure 385. MSB justified 16-bit extended to 32-bit packet frame CK Transmission WS Reception 16-bit data 16-bit remaining 0 forced SD MSB LSB Channel left 32-bit Channel right MS30102V1 LSB justified standard This standard is similar to the MSB justified standard (no difference for the 16-bit and 32-bit full-accuracy frame formats). The sampling of the input and output signals is the same as for the I2S Philips standard. Figure 386. LSB justified 16-bit or 32-bit full-accuracy CK WS Reception Transmission 16- or 32-bit data SD LSB MSB MSB Channel left Channel right MS30103V1 Figure 387. LSB justified 24-bit frame length CK WS Reception Transmission SD 8-bit data 0 forced 24-bit remaining MSB LSB Channel left 32-bit Channel right MS30104V1 • In transmission mode: If data 0x3478AE have to be transmitted, two write operations to the SPIx_DR register are required by software or by DMA. The operations are shown below. 1118/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Figure 388. Operations required to transmit 0x3478AE First write to Data register conditioned by TXE=1 Second write to Data register conditioned by TXE=1 0xXX34 0x78AE Only the 8 LSB of the half-word are significant. A field of 0x00 is forced instead of the 8 MSBs. • MS19596V1 In reception mode: If data 0x3478AE are received, two successive read operations from the SPIx_DR register are required on each RXNE event. Figure 389. Operations required to receive 0x3478AE First read from Data register conditioned by RXNE=1 Second read from Data register conditioned by RXNE=1 0xXX34 0x78AE Only the 8 LSB of the half-word are significant. A field of 0x00 is forced instead of the 8 MSBs. MS19597V1 Figure 390. LSB justified 16-bit extended to 32-bit packet frame CK Reception WS Transmission SD 16-bit remaining 16-bit data 0 forced MSB LSB Channel left 32-bit Channel right MS30105V1 When 16-bit data frame extended to 32-bit channel frame is selected during the I2S configuration phase, Only one access to the SPIx_DR register is required. The 16 remaining bits are forced by hardware to 0x0000 to extend the data to 32-bit format. In this case it corresponds to the half-word MSB. If the data to transmit or the received data are 0x76A3 (0x0000 76A3 extended to 32-bit), the operation shown in Figure 391 is required. RM0385 Rev 7 1119/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Figure 391. Example of 16-bit data frame extended to 32-bit channel frame Only one access to the SPIx-DR register 0x76A3 MS19598V1 In transmission mode, when a TXE event occurs, the application has to write the data to be transmitted (in this case 0x76A3). The 0x000 field is transmitted first (extension on 32-bit). The TXE flag is set again as soon as the effective data (0x76A3) is sent on SD. In reception mode, RXNE is asserted as soon as the significant half-word is received (and not the 0x0000 field). In this way, more time is provided between two write or read operations to prevent underrun or overrun conditions. PCM standard For the PCM standard, there is no need to use channel-side information. The two PCM modes (short and long frame) are available and configurable using the PCMSYNC bit in SPIx_I2SCFGR register. In PCM mode, the output signals (WS, SD) are sampled on the rising edge of CK signal. The input signals (WS, SD) are captured on the falling edge of CK. Note that CK and WS are configured as output in MASTER mode. Figure 392. PCM standard waveforms (16-bit) CK WS short frame 13-bits WS long frame SD MSB LSB MSB MS30106V1 For long frame synchronization, the WS signal assertion time is fixed to 13 bits in master mode. For short frame synchronization, the WS synchronization signal is only one cycle long. 1120/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Figure 393. PCM standard waveforms (16-bit extended to 32-bit packet frame) CK WS short frame Up to 13-bits WS long frame 16 bits SD MSB LSB MS30107V1 Note: For both modes (master and slave) and for both synchronizations (short and long), the number of bits between two consecutive pieces of data (and so two synchronization signals) needs to be specified (DATLEN and CHLEN bits in the SPIx_I2SCFGR register) even in slave mode. 32.7.4 Start-up description The Figure 394 shows how the serial interface is handled in MASTER mode, when the SPI/I2S is enabled (via I2SE bit). It shows as well the effect of CKPOL on the generated signals. RM0385 Rev 7 1121/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Figure 394. Start sequence in master mode Master I2S Philips Standard WS (O) CK (O), CKPOL = 0 CK (O), CKPOL = 1 dum SD (O) Left sample Right sample I2SE Master I2S MSB or LSB justified WS (O) CK (O), CKPOL = 0 CK (O), CKPOL = 1 dum SD (O) Left sample Right sample I2SE Master PCM short frame WS (O) CK (O), CKPOL = 0 CK (O), CKPOL = 1 SD (O) dum Sample1 Sample 2 I2SE Master PCM long frame WS (O) CK (O), CKPOL = 0 CK (O), CKPOL = 1 SD (O) dum Sample1 Sample 2 I2SE dum: not significant data MSv37520V2 In slave mode, the way the frame synchronization is detected, depends on the value of ASTRTEN bit. If ASTRTEN = 0, when the audio interface is enabled (I2SE = 1), then the hardware waits for the appropriate transition on the incoming WS signal, using the CK signal. 1122/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) The appropriate transition is a falling edge on WS signal when I2S Philips Standard is used, or a rising edge for other standards. The falling edge is detected by sampling first WS to 1 and then to 0, and vice-versa for the rising edge detection. If ASTRTEN = 1, the user has to enable the audio interface before the WS becomes active. This means that the I2SE bit must be set to 1 when WS = 1 for I2S Philips standard, or when WS = 0 for other standards. Clock generator The I2S bit rate determines the data flow on the I2S data line and the I2S clock signal frequency. I2S bit rate = number of bits per channel × number of channels × sampling audio frequency For a 16-bit audio, left and right channel, the I2S bit rate is calculated as follows: I2S bit rate = 16 × 2 × fS It will be: I2S bit rate = 32 x 2 x fS if the packet length is 32-bit wide. Figure 395. Audio sampling frequency definition 16-or 32-bit right channel 16-or 32-bit left channel 32- or 64-bits FS sampling point sampling point FS : audio sampling frequency MS30108V1 When the master mode is configured, a specific action needs to be taken to properly program the linear divider in order to communicate with the desired audio frequency. Figure 396. I2S clock generator architecture MCK I²SxCLK 8-bit linear divider + reshaping stage 0 Div2 Divider by 4 0 1 1 CK MCKOE ODD I²SDIV[7:0] CHLEN MCKOE I²SMOD 32.7.5 MS30109V1 1. Where x can be 2 or 3. RM0385 Rev 7 1123/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Figure 396 presents the communication clock architecture. The I2SxCLK clock is provided by the Reset and Clock Controller (RCC) of the product. The I2SxCLK clock can be asynchronous with respect to the SPI/I2S APB clock. Warning: In addition, it is mandatory to keep the I2SxCLK frequency higher or equal to the APB clock used by the SPI/I2S block. If this condition is not respected, the SPI/I2S will not work properly. The audio sampling frequency may be 192 kHz, 96 kHz, 48 kHz, 44.1 kHz, 32 kHz, 22.05 kHz, 16 kHz, 11.025 kHz or 8 kHz (or any other value within this range). In order to reach the desired frequency, the linear divider needs to be programmed according to the formulas below: For I2S modes: When the master clock is generated (MCKOE in the SPIx_I2SPR register is set): Fs = F I2SxCLK ----------------------------------------------------------------------------------------------------------256 × ( ( 2 × I2SDIV ) + ODD ) When the master clock is disabled (MCKOE bit cleared): Fs = F I2SxCLK -----------------------------------------------------------------------------------------------------------------------------------------------------------------32 × ( CHLEN + 1 ) × ( ( 2 × I2SDIV ) + ODD ) CHLEN = 0 when the channel frame is 16-bit wide and, CHLEN = 1 when the channel frame is 32-bit wide. For PCM modes: When the master clock is generated (MCKOE in the SPIx_I2SPR register is set): Fs = F I2SxCLK ----------------------------------------------------------------------------------------------------------128 × ( ( 2 × I2SDIV ) + ODD ) When the master clock is disabled (MCKOE bit cleared): Fs = F I2SxCLK -----------------------------------------------------------------------------------------------------------------------------------------------------------------16 × ( CHLEN + 1 ) × ( ( 2 × I2SDIV ) + ODD ) CHLEN = 0 when the channel frame is 16-bit wide and, CHLEN = 1 when the channel frame is 32-bit wide. 1124/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Where FS is the audio sampling frequency, and FI2SxCLKis the frequency of the kernel clock provided to the SPI/I2S block. Note: Note that I2SDIV must be strictly higher than 1. Table 202provides example precision values for different clock configurations. Note: Other configurations are possible that allow optimum clock precision. Table 202. Audio-frequency precision using standard 8 MHz HSE(1) SYSCLK (MHz) Data length I2SDIV I2SODD MCLK 48 16 8 0 No 96000 93750 2.3438% 48 32 4 0 No 96000 93750 2.3438% 48 16 15 1 No 48000 48387.0968 0.8065% 48 32 8 0 No 48000 46875 2.3438% 48 16 17 0 No 44100 44117.647 0.0400% 48 32 8 1 No 44100 44117.647 0.0400% 48 16 23 1 No 32000 31914.8936 0.2660% 48 32 11 1 No 32000 32608.696 1.9022% 48 16 34 0 No 22050 22058.8235 0.0400% 48 32 17 0 No 22050 22058.8235 0.0400% 48 16 47 0 No 16000 15957.4468 0.2660% 48 32 23 1 No 16000 15957.447 0.2660% 48 16 68 0 No 11025 11029.4118 0.0400% 48 32 34 0 No 11025 11029.412 0.0400% 48 16 94 0 No 8000 7978.7234 0.2660% 48 32 47 0 No 8000 7978.7234 0.2660% 48 16 2 0 Yes 48000 46875 2.3430% 48 32 2 0 Yes 48000 46875 2.3430% 48 16 2 0 Yes 44100 46875 6.2925% 48 32 2 0 Yes 44100 46875 6.2925% 48 16 3 0 Yes 32000 31250 2.3438% 48 32 3 0 Yes 32000 31250 2.3438% 48 16 4 1 Yes 22050 20833.333 5.5178% 48 32 4 1 Yes 22050 20833.333 5.5178% 48 16 6 0 Yes 16000 15625 2.3438% 48 32 6 0 Yes 16000 15625 2.3438% 48 16 8 1 Yes 11025 11029.4118 0.0400% 48 32 8 1 Yes 11025 11029.4118 0.0400% RM0385 Rev 7 Target fs (Hz) Real fs (kHz) Error 1125/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Table 202. Audio-frequency precision using standard 8 MHz HSE(1) (continued) SYSCLK (MHz) Data length I2SDIV I2SODD MCLK Target fs (Hz) 48 16 11 1 Yes 8000 8152.17391 1.9022% 48 32 11 1 Yes 8000 8152.17391 1.9022% Real fs (kHz) Error 1. This table gives only example values for different clock configurations. Other configurations allowing optimum clock precision are possible. 32.7.6 I2S master mode The I2S can be configured in master mode. This means that the serial clock is generated on the CK pin as well as the Word Select signal WS. Master clock (MCK) may be output or not, controlled by the MCKOE bit in the SPIx_I2SPR register. Procedure 1. Select the I2SDIV[7:0] bits in the SPIx_I2SPR register to define the serial clock baud rate to reach the proper audio sample frequency. The ODD bit in the SPIx_I2SPR register also has to be defined. 2. Select the CKPOL bit to define the steady level for the communication clock. Set the MCKOE bit in the SPIx_I2SPR register if the master clock MCK needs to be provided to the external DAC/ADC audio component (the I2SDIV and ODD values should be computed depending on the state of the MCK output, for more details refer to Section 32.7.5: Clock generator). 3. Set the I2SMOD bit in the SPIx_I2SCFGR register to activate the I2S functions and choose the I2S standard through the I2SSTD[1:0] and PCMSYNC bits, the data length through the DATLEN[1:0] bits and the number of bits per channel by configuring the CHLEN bit. Select also the I2S master mode and direction (Transmitter or Receiver) through the I2SCFG[1:0] bits in the SPIx_I2SCFGR register. 4. If needed, select all the potential interrupt sources and the DMA capabilities by writing the SPIx_CR2 register. 5. The I2SE bit in SPIx_I2SCFGR register must be set. WS and CK are configured in output mode. MCK is also an output, if the MCKOE bit in SPIx_I2SPR is set. Transmission sequence The transmission sequence begins when a half-word is written into the Tx buffer. Lets assume the first data written into the Tx buffer corresponds to the left channel data. When data are transferred from the Tx buffer to the shift register, TXE is set and data corresponding to the right channel have to be written into the Tx buffer. The CHSIDE flag indicates which channel is to be transmitted. It has a meaning when the TXE flag is set because the CHSIDE flag is updated when TXE goes high. A full frame has to be considered as a left channel data transmission followed by a right channel data transmission. It is not possible to have a partial frame where only the left channel is sent. The data half-word is parallel loaded into the 16-bit shift register during the first bit transmission, and then shifted out, serially, to the MOSI/SD pin, MSB first. The TXE flag is 1126/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) set after each transfer from the Tx buffer to the shift register and an interrupt is generated if the TXEIE bit in the SPIx_CR2 register is set. For more details about the write operations depending on the I2S standard mode selected, refer to Section 32.7.3: Supported audio protocols). To ensure a continuous audio data transmission, it is mandatory to write the SPIx_DR register with the next data to transmit before the end of the current transmission. To switch off the I2S, by clearing I2SE, it is mandatory to wait for TXE = 1 and BSY = 0. Reception sequence The operating mode is the same as for transmission mode except for the point 3 (refer to the procedure described in Section 32.7.6: I2S master mode), where the configuration should set the master reception mode through the I2SCFG[1:0] bits. Whatever the data or channel length, the audio data are received by 16-bit packets. This means that each time the Rx buffer is full, the RXNE flag is set and an interrupt is generated if the RXNEIE bit is set in SPIx_CR2 register. Depending on the data and channel length configuration, the audio value received for a right or left channel may result from one or two receptions into the Rx buffer. Clearing the RXNE bit is performed by reading the SPIx_DR register. CHSIDE is updated after each reception. It is sensitive to the WS signal generated by the I2S cell. For more details about the read operations depending on the I2S standard mode selected, refer to Section 32.7.3: Supported audio protocols. If data are received while the previously received data have not been read yet, an overrun is generated and the OVR flag is set. If the ERRIE bit is set in the SPIx_CR2 register, an interrupt is generated to indicate the error. To switch off the I2S, specific actions are required to ensure that the I2S completes the transfer cycle properly without initiating a new data transfer. The sequence depends on the configuration of the data and channel lengths, and on the audio protocol mode selected. In the case of: • • • 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) using the LSB justified mode (I2SSTD = 10) a) Wait for the second to last RXNE = 1 (n – 1) b) Then wait 17 I2S clock cycles (using a software loop) c) Disable the I2S (I2SE = 0) 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) in MSB justified, I2S or PCM modes (I2SSTD = 00, I2SSTD = 01 or I2SSTD = 11, respectively) a) Wait for the last RXNE b) Then wait 1 I2S clock cycle (using a software loop) c) Disable the I2S (I2SE = 0) For all other combinations of DATLEN and CHLEN, whatever the audio mode selected through the I2SSTD bits, carry out the following sequence to switch off the I2S: a) Wait for the second to last RXNE = 1 (n – 1) b) Then wait one I2S clock cycle (using a software loop) RM0385 Rev 7 1127/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) c) RM0385 Disable the I2S (I2SE = 0) Note: The BSY flag is kept low during transfers. 32.7.7 I2S slave mode For the slave configuration, the I2S can be configured in transmission or reception mode. The operating mode is following mainly the same rules as described for the I2S master configuration. In slave mode, there is no clock to be generated by the I2S interface. The clock and WS signals are input from the external master connected to the I2S interface. There is then no need, for the user, to configure the clock. The configuration steps to follow are listed below: 1. Set the I2SMOD bit in the SPIx_I2SCFGR register to select I2S mode and choose the I2S standard through the I2SSTD[1:0] bits, the data length through the DATLEN[1:0] bits and the number of bits per channel for the frame configuring the CHLEN bit. Select also the mode (transmission or reception) for the slave through the I2SCFG[1:0] bits in SPIx_I2SCFGR register. 2. If needed, select all the potential interrupt sources and the DMA capabilities by writing the SPIx_CR2 register. 3. The I2SE bit in SPIx_I2SCFGR register must be set. Transmission sequence The transmission sequence begins when the external master device sends the clock and when the NSS_WS signal requests the transfer of data. The slave has to be enabled before the external master starts the communication. The I2S data register has to be loaded before the master initiates the communication. For the I2S, MSB justified and LSB justified modes, the first data item to be written into the data register corresponds to the data for the left channel. When the communication starts, the data are transferred from the Tx buffer to the shift register. The TXE flag is then set in order to request the right channel data to be written into the I2S data register. The CHSIDE flag indicates which channel is to be transmitted. Compared to the master transmission mode, in slave mode, CHSIDE is sensitive to the WS signal coming from the external master. This means that the slave needs to be ready to transmit the first data before the clock is generated by the master. WS assertion corresponds to left channel transmitted first. Note: The I2SE has to be written at least two PCLK cycles before the first clock of the master comes on the CK line. The data half-word is parallel-loaded into the 16-bit shift register (from the internal bus) during the first bit transmission, and then shifted out serially to the MOSI/SD pin MSB first. The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt is generated if the TXEIE bit in the SPIx_CR2 register is set. Note that the TXE flag should be checked to be at 1 before attempting to write the Tx buffer. For more details about the write operations depending on the I2S standard mode selected, refer to Section 32.7.3: Supported audio protocols. To secure a continuous audio data transmission, it is mandatory to write the SPIx_DR register with the next data to transmit before the end of the current transmission. An underrun flag is set and an interrupt may be generated if the data are not written into the 1128/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) SPIx_DR register before the first clock edge of the next data communication. This indicates to the software that the transferred data are wrong. If the ERRIE bit is set into the SPIx_CR2 register, an interrupt is generated when the UDR flag in the SPIx_SR register goes high. In this case, it is mandatory to switch off the I2S and to restart a data transfer starting from the left channel. To switch off the I2S, by clearing the I2SE bit, it is mandatory to wait for TXE = 1 and BSY = 0. Reception sequence The operating mode is the same as for the transmission mode except for the point 1 (refer to the procedure described in Section 32.7.7: I2S slave mode), where the configuration should set the master reception mode using the I2SCFG[1:0] bits in the SPIx_I2SCFGR register. Whatever the data length or the channel length, the audio data are received by 16-bit packets. This means that each time the RX buffer is full, the RXNE flag in the SPIx_SR register is set and an interrupt is generated if the RXNEIE bit is set in the SPIx_CR2 register. Depending on the data length and channel length configuration, the audio value received for a right or left channel may result from one or two receptions into the RX buffer. The CHSIDE flag is updated each time data are received to be read from the SPIx_DR register. It is sensitive to the external WS line managed by the external master component. Clearing the RXNE bit is performed by reading the SPIx_DR register. For more details about the read operations depending the I2S standard mode selected, refer to Section 32.7.3: Supported audio protocols. If data are received while the preceding received data have not yet been read, an overrun is generated and the OVR flag is set. If the bit ERRIE is set in the SPIx_CR2 register, an interrupt is generated to indicate the error. To switch off the I2S in reception mode, I2SE has to be cleared immediately after receiving the last RXNE = 1. Note: The external master components should have the capability of sending/receiving data in 16bit or 32-bit packets via an audio channel. 32.7.8 I2S status flags Three status flags are provided for the application to fully monitor the state of the I2S bus. Busy flag (BSY) The BSY flag is set and cleared by hardware (writing to this flag has no effect). It indicates the state of the communication layer of the I2S. When BSY is set, it indicates that the I2S is busy communicating. There is one exception in master receive mode (I2SCFG = 11) where the BSY flag is kept low during reception. The BSY flag is useful to detect the end of a transfer if the software needs to disable the I2S. This avoids corrupting the last transfer. For this, the procedure described below must be strictly respected. The BSY flag is set when a transfer starts, except when the I2S is in master receiver mode. RM0385 Rev 7 1129/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 The BSY flag is cleared: • When a transfer completes (except in master transmit mode, in which the communication is supposed to be continuous) • When the I2S is disabled When communication is continuous: Note: • In master transmit mode, the BSY flag is kept high during all the transfers • In slave mode, the BSY flag goes low for one I2S clock cycle between each transfer Do not use the BSY flag to handle each data transmission or reception. It is better to use the TXE and RXNE flags instead. Tx buffer empty flag (TXE) When set, this flag indicates that the Tx buffer is empty and the next data to be transmitted can then be loaded into it. The TXE flag is reset when the Tx buffer already contains data to be transmitted. It is also reset when the I2S is disabled (I2SE bit is reset). RX buffer not empty (RXNE) When set, this flag indicates that there are valid received data in the RX Buffer. It is reset when SPIx_DR register is read. Channel Side flag (CHSIDE) In transmission mode, this flag is refreshed when TXE goes high. It indicates the channel side to which the data to transfer on SD has to belong. In case of an underrun error event in slave transmission mode, this flag is not reliable and I2S needs to be switched off and switched on before resuming the communication. In reception mode, this flag is refreshed when data are received into SPIx_DR. It indicates from which channel side data have been received. Note that in case of error (like OVR) this flag becomes meaningless and the I2S should be reset by disabling and then enabling it (with configuration if it needs changing). This flag has no meaning in the PCM standard (for both Short and Long frame modes). When the OVR or UDR flag in the SPIx_SR is set and the ERRIE bit in SPIx_CR2 is also set, an interrupt is generated. This interrupt can be cleared by reading the SPIx_SR status register (once the interrupt source has been cleared). 32.7.9 I2S error flags There are three error flags for the I2S cell. Underrun flag (UDR) In slave transmission mode this flag is set when the first clock for data transmission appears while the software has not yet loaded any value into SPIx_DR. It is available when the I2SMOD bit in the SPIx_I2SCFGR register is set. An interrupt may be generated if the ERRIE bit in the SPIx_CR2 register is set. The UDR bit is cleared by a read operation on the SPIx_SR register. 1130/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Overrun flag (OVR) This flag is set when data are received and the previous data have not yet been read from the SPIx_DR register. As a result, the incoming data are lost. An interrupt may be generated if the ERRIE bit is set in the SPIx_CR2 register. In this case, the receive buffer contents are not updated with the newly received data from the transmitter device. A read operation to the SPIx_DR register returns the previous correctly received data. All other subsequently transmitted half-words are lost. Clearing the OVR bit is done by a read operation on the SPIx_DR register followed by a read access to the SPIx_SR register. Frame error flag (FRE) This flag can be set by hardware only if the I2S is configured in Slave mode. It is set if the external master is changing the WS line while the slave is not expecting this change. If the synchronization is lost, the following steps are required to recover from this state and resynchronize the external master device with the I2S slave device: 1. Disable the I2S. 2. Re-enable the I2S interface again (Keeping ASTRTEN=0). Desynchronization between master and slave devices may be due to noisy environment on the CK communication clock or on the WS frame synchronization line. An error interrupt can be generated if the ERRIE bit is set. The desynchronization flag (FRE) is cleared by software when the status register is read. 32.7.10 DMA features In I2S mode, the DMA works in exactly the same way as it does in SPI mode. There is no difference except that the CRC feature is not available in I2S mode since there is no data transfer protection system. 32.8 I2S interrupts Table 203 provides the list of I2S interrupts. Table 203. I2S interrupt requests Interrupt event Event flag Enable control bit Transmit buffer empty flag TXE TXEIE Receive buffer not empty flag RXNE RXNEIE Overrun error OVR Underrun error UDR Frame error flag FRE RM0385 Rev 7 ERRIE 1131/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 SPI and I2S registers 32.9 The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). SPI_DR in addition by can be accessed by 8-bit access. 32.9.1 SPI control register 1 (SPIx_CR1) Address offset: 0x00 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 BIDI MODE BIDI OE CRC EN CRC NEXT CRCL RX ONLY SSM SSI LSB FIRST SPE rw rw rw rw rw rw rw rw rw rw 5 4 3 BR [2:0] rw rw rw 2 1 0 MSTR CPOL CPHA rw rw rw Bit 15 BIDIMODE: Bidirectional data mode enable. This bit enables half-duplex communication using common single bidirectional data line. Keep RXONLY bit clear when bidirectional mode is active. 0: 2-line unidirectional data mode selected 1: 1-line bidirectional data mode selected Note: This bit is not used in I2S mode. Bit 14 BIDIOE: Output enable in bidirectional mode This bit combined with the BIDIMODE bit selects the direction of transfer in bidirectional mode 0: Output disabled (receive-only mode) 1: Output enabled (transmit-only mode) Note: In master mode, the MOSI pin is used and in slave mode, the MISO pin is used. This bit is not used in I2S mode. Bit 13 CRCEN: Hardware CRC calculation enable 0: CRC calculation disabled 1: CRC calculation Enabled Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation. This bit is not used in I2S mode. Bit 12 CRCNEXT: Transmit CRC next 0: Next transmit value is from Tx buffer 1: Next transmit value is from Tx CRC register Note: This bit has to be written as soon as the last data is written in the SPIx_DR register. This bit is not used in I2S mode. Bit 11 CRCL: CRC length This bit is set and cleared by software to select the CRC length. 0: 8-bit CRC length 1: 16-bit CRC length Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation. This bit is not used in I2S mode. 1132/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Bit 10 RXONLY: Receive only mode enabled. This bit enables simplex communication using a single unidirectional line to receive data exclusively. Keep BIDIMODE bit clear when receive only mode is active.This bit is also useful in a multislave system in which this particular slave is not accessed, the output from the accessed slave is not corrupted. 0: Full-duplex (Transmit and receive) 1: Output disabled (Receive-only mode) Note: This bit is not used in I2S mode. Bit 9 SSM: Software slave management When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit. 0: Software slave management disabled 1: Software slave management enabled Note: This bit is not used in I2S mode and SPI TI mode. Bit 8 SSI: Internal slave select This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the NSS pin and the I/O value of the NSS pin is ignored. Note: This bit is not used in I2S mode and SPI TI mode. Bit 7 LSBFIRST: Frame format 0: data is transmitted / received with the MSB first 1: data is transmitted / received with the LSB first Note: 1. This bit should not be changed when communication is ongoing. 2. This bit is not used in I2S mode and SPI TI mode. Bit 6 SPE: SPI enable 0: Peripheral disabled 1: Peripheral enabled Note: When disabling the SPI, follow the procedure described in Procedure for disabling the SPI on page 1097. This bit is not used in I2S mode. Bits 5:3 BR[2:0]: Baud rate control 000: fPCLK/2 001: fPCLK/4 010: fPCLK/8 011: fPCLK/16 100: fPCLK/32 101: fPCLK/64 110: fPCLK/128 111: fPCLK/256 Note: These bits should not be changed when communication is ongoing. This bit is not used in I2S mode. Bit 2 MSTR: Master selection 0: Slave configuration 1: Master configuration Note: This bit should not be changed when communication is ongoing. This bit is not used in I2S mode. RM0385 Rev 7 1133/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Bit1 CPOL: Clock polarity 0: CK to 0 when idle 1: CK to 1 when idle Note: This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode except the case when CRC is applied at TI mode. Bit 0 CPHA: Clock phase 0: The first clock transition is the first data capture edge 1: The second clock transition is the first data capture edge Note: This bit should not be changed when communication is ongoing. This bit is not used in SPI TI mode except the case when CRC is applied at TI mode. 32.9.2 SPI control register 2 (SPIx_CR2) Address offset: 0x04 Reset value: 0x0700 15 14 13 12 Res. LDMA _TX LDMA _RX FRXT H rw rw rw 11 10 9 8 DS [3:0] rw rw rw 7 6 5 TXEIE RXNEIE ERRIE rw rw rw rw 4 3 2 FRF NSSP SSOE rw rw rw 1 0 TXDMAEN RXDMAEN rw rw Bit 15 Reserved, must be kept at reset value. Bit 14 LDMA_TX: Last DMA transfer for transmission This bit is used in data packing mode, to define if the total number of data to transmit by DMA is odd or even. It has significance only if the TXDMAEN bit in the SPIx_CR2 register is set and if packing mode is used (data length =< 8-bit and write access to SPIx_DR is 16-bit wide). It has to be written when the SPI is disabled (SPE = 0 in the SPIx_CR1 register). 0: Number of data to transfer is even 1: Number of data to transfer is odd Note: Refer to Procedure for disabling the SPI on page 1097 if the CRCEN bit is set. This bit is not used in I²S mode. Bit 13 LDMA_RX: Last DMA transfer for reception This bit is used in data packing mode, to define if the total number of data to receive by DMA is odd or even. It has significance only if the RXDMAEN bit in the SPIx_CR2 register is set and if packing mode is used (data length =< 8-bit and write access to SPIx_DR is 16-bit wide). It has to be written when the SPI is disabled (SPE = 0 in the SPIx_CR1 register). 0: Number of data to transfer is even 1: Number of data to transfer is odd Note: Refer to Procedure for disabling the SPI on page 1097 if the CRCEN bit is set. This bit is not used in I²S mode. Bit 12 FRXTH: FIFO reception threshold This bit is used to set the threshold of the RXFIFO that triggers an RXNE event 0: RXNE event is generated if the FIFO level is greater than or equal to 1/2 (16-bit) 1: RXNE event is generated if the FIFO level is greater than or equal to 1/4 (8-bit) Note: This bit is not used in I²S mode. 1134/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Bits 11:8 DS [3:0]: Data size These bits configure the data length for SPI transfers: 0000: Not used 0001: Not used 0010: Not used 0011: 4-bit 0100: 5-bit 0101: 6-bit 0110: 7-bit 0111: 8-bit 1000: 9-bit 1001: 10-bit 1010: 11-bit 1011: 12-bit 1100: 13-bit 1101: 14-bit 1110: 15-bit 1111: 16-bit If software attempts to write one of the “Not used” values, they are forced to the value “0111”(8bit). Note: This bit is not used in I²S mode. Bit 7 TXEIE: Tx buffer empty interrupt enable 0: TXE interrupt masked 1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set. Bit 6 RXNEIE: RX buffer not empty interrupt enable 0: RXNE interrupt masked 1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is set. Bit 5 ERRIE: Error interrupt enable This bit controls the generation of an interrupt when an error condition occurs (CRCERR, OVR, MODF in SPI mode, FRE at TI mode and UDR, OVR, and FRE in I2S mode). 0: Error interrupt is masked 1: Error interrupt is enabled Bit 4 FRF: Frame format 0: SPI Motorola mode 1 SPI TI mode Note: This bit must be written only when the SPI is disabled (SPE=0). This bit is not used in I2S mode. Bit 3 NSSP: NSS pulse management This bit is used in master mode only. it allow the SPI to generate an NSS pulse between two consecutive data when doing continuous transfers. In the case of a single data transfer, it forces the NSS pin high level after the transfer. It has no meaning if CPHA = ’1’, or FRF = ’1’. 0: No NSS pulse 1: NSS pulse generated Note: 1. This bit must be written only when the SPI is disabled (SPE=0). 2. This bit is not used in I2S mode and SPI TI mode. RM0385 Rev 7 1135/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Bit 2 SSOE: SS output enable 0: SS output is disabled in master mode and the SPI interface can work in multimaster configuration 1: SS output is enabled in master mode and when the SPI interface is enabled. The SPI interface cannot work in a multimaster environment. Note: This bit is not used in I2S mode and SPI TI mode. Bit 1 TXDMAEN: Tx buffer DMA enable When this bit is set, a DMA request is generated whenever the TXE flag is set. 0: Tx buffer DMA disabled 1: Tx buffer DMA enabled Bit 0 RXDMAEN: Rx buffer DMA enable When this bit is set, a DMA request is generated whenever the RXNE flag is set. 0: Rx buffer DMA disabled 1: Rx buffer DMA enabled 1136/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) 32.9.3 SPI status register (SPIx_SR) Address offset: 0x08 Reset value: 0x0002 15 Res. 14 Res. 13 Res. 12 11 10 9 FTLVL[1:0] FRLVL[2:0] r r r r 8 7 6 5 4 3 2 1 0 UDR CHSIDE TXE RXNE r r FRE BSY OVR MODF CRC ERR r r r r rc_w0 Bits 15:13 Reserved, must be kept at reset value. Bits 12:11 FTLVL[1:0]: FIFO Transmission Level These bits are set and cleared by hardware. 00: FIFO empty 01: 1/4 FIFO 10: 1/2 FIFO 11: FIFO full (considered as FULL when the FIFO threshold is greater than 1/2) Note: These bits are not used in I²S mode. Bits 10:9 FRLVL[1:0]: FIFO reception level These bits are set and cleared by hardware. 00: FIFO empty 01: 1/4 FIFO 10: 1/2 FIFO 11: FIFO full Note: These bits are not used in I²S mode and in SPI receive-only mode while CRC calculation is enabled. Bit 8 FRE: Frame format error This flag is used for SPI in TI slave mode and I2S slave mode. Refer to Section 32.5.11: SPI error flags and Section 32.7.9: I2S error flags. This flag is set by hardware and reset when SPIx_SR is read by software. 0: No frame format error 1: A frame format error occurred Bit 7 BSY: Busy flag 0: SPI (or I2S) not busy 1: SPI (or I2S) is busy in communication or Tx buffer is not empty This flag is set and cleared by hardware. Note: The BSY flag must be used with caution: refer to Section 32.5.10: SPI status flags and Procedure for disabling the SPI on page 1097. Bit 6 OVR: Overrun flag 0: No overrun occurred 1: Overrun occurred This flag is set by hardware and reset by a software sequence. Refer to I2S error flags on page 1130 for the software sequence. Bit 5 MODF: Mode fault 0: No mode fault occurred 1: Mode fault occurred This flag is set by hardware and reset by a software sequence. Refer to Section : Mode fault (MODF) on page 1107 for the software sequence. Note: This bit is not used in I2S mode. RM0385 Rev 7 1137/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Bit 4 CRCERR: CRC error flag 0: CRC value received matches the SPIx_RXCRCR value 1: CRC value received does not match the SPIx_RXCRCR value This flag is set by hardware and cleared by software writing 0. Note: This bit is not used in I2S mode. Bit 3 UDR: Underrun flag 0: No underrun occurred 1: Underrun occurred This flag is set by hardware and reset by a software sequence. Refer to I2S error flags on page 1130 for the software sequence. Note: This bit is not used in SPI mode. Bit 2 CHSIDE: Channel side 0: Channel Left has to be transmitted or has been received 1: Channel Right has to be transmitted or has been received Note: This bit is not used in SPI mode. It has no significance in PCM mode. Bit 1 TXE: Transmit buffer empty 0: Tx buffer not empty 1: Tx buffer empty Bit 0 RXNE: Receive buffer not empty 0: Rx buffer empty 1: Rx buffer not empty 32.9.4 SPI data register (SPIx_DR) Address offset: 0x0C Reset value: 0x0000 15 14 13 12 11 10 9 8 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DR[15:0] rw Bits 15:0 DR[15:0]: Data register Data received or to be transmitted The data register serves as an interface between the Rx and Tx FIFOs. When the data register is read, RxFIFO is accessed while the write to data register accesses TxFIFO (See Section 32.5.9: Data transmission and reception procedures). Note: Data is always right-aligned. Unused bits are ignored when writing to the register, and read as zero when the register is read. The Rx threshold setting must always correspond with the read access currently used. 32.9.5 SPI CRC polynomial register (SPIx_CRCPR) Address offset: 0x10 Reset value: 0x0007 15 14 13 12 11 10 9 rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CRCPOLY[15:0] 1138/1709 rw rw RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) Bits 15:0 CRCPOLY[15:0]: CRC polynomial register This register contains the polynomial for the CRC calculation. The CRC polynomial (0007h) is the reset value of this register. Another polynomial can be configured as required. Note: The polynomial value should be odd only. No even value is supported. RM0385 Rev 7 1139/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) 32.9.6 RM0385 SPI Rx CRC register (SPIx_RXCRCR) Address offset: 0x14 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r RxCRC[15:0] r r r r r r r r r Bits 15:0 RXCRC[15:0]: Rx CRC register When CRC calculation is enabled, the RxCRC[15:0] bits contain the computed CRC value of the subsequently received bytes. This register is reset when the CRCEN bit in SPIx_CR1 register is written to 1. The CRC is calculated serially using the polynomial programmed in the SPIx_CRCPR register. Only the 8 LSB bits are considered when the CRC frame format is set to be 8-bit length (CRCL bit in the SPIx_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit CRC frame format is selected (CRCL bit in the SPIx_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY Flag is set could return an incorrect value. These bits are not used in I2S mode. 32.9.7 SPI Tx CRC register (SPIx_TXCRCR) Address offset: 0x18 Reset value: 0x0000 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r TxCRC[15:0] r r r r r r r r r Bits 15:0 TxCRC[15:0]: Tx CRC register When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPIx_CR1 is written to 1. The CRC is calculated serially using the polynomial programmed in the SPIx_CRCPR register. Only the 8 LSB bits are considered when the CRC frame format is set to be 8-bit length (CRCL bit in the SPIx_CR1 is cleared). CRC calculation is done based on any CRC8 standard. The entire 16-bits of this register are considered when a 16-bit CRC frame format is selected (CRCL bit in the SPIx_CR1 register is set). CRC calculation is done based on any CRC16 standard. Note: A read to this register when the BSY flag is set could return an incorrect value. These bits are not used in I2S mode. 1140/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) SPIx_I2S configuration register (SPIx_I2SCFGR) 32.9.8 Address offset: 0x1C Reset value: 0x0000 15 14 13 12 11 10 Res. Res. Res. ASTR TEN I2SMOD I2SE rw rw rw 9 8 I2SCFG rw rw 7 6 PCMSYNC Res. rw 5 4 I2SSTD rw rw 3 CKPOL rw 2 1 0 DATLEN rw CHLEN rw rw Bits 15:13 Reserved: Forced to 0 by hardware Bit 12 ASTRTEN: Asynchronous start enable. 0: The Asynchronous start is disabled. When the I2S is enabled in slave mode, the hardware starts the transfer when the I2S clock is received and an appropriate transition is detected on the WS signal. 1: The Asynchronous start is enabled. When the I2S is enabled in slave mode, the hardware starts the transfer when the I2S clock is received and the appropriate level is detected on the WS signal. Note: The appropriate transition is a falling edge on WS signal when I2S Philips Standard is used, or a rising edge for other standards. The appropriate level is a LOW level on WS signal when I2S Philips Standard is used, or a HIGH level for other standards. Please refer to Section 32.7.4: Start-up description for additional information. Bit 11 I2SMOD: I2S mode selection 0: SPI mode is selected 1: I2S mode is selected Note: This bit should be configured when the SPI is disabled. Bit 10 I2SE: I2S enable 0: I2S peripheral is disabled 1: I2S peripheral is enabled Note: This bit is not used in SPI mode. Bits 9:8 I2SCFG: I2S configuration mode 00: Slave - transmit 01: Slave - receive 10: Master - transmit 11: Master - receive Note: These bits should be configured when the I2S is disabled. They are not used in SPI mode. Bit 7 PCMSYNC: PCM frame synchronization 0: Short frame synchronization 1: Long frame synchronization Note: This bit has a meaning only if I2SSTD = 11 (PCM standard is used). It is not used in SPI mode. Bit 6 Reserved: forced at 0 by hardware RM0385 Rev 7 1141/1709 1144 Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 Bits 5:4 I2SSTD: I2S standard selection 00: I2S Philips standard. 01: MSB justified standard (left justified) 10: LSB justified standard (right justified) 11: PCM standard For more details on I2S standards, refer to Section 32.7.3 on page 1114 Note: For correct operation, these bits should be configured when the I2S is disabled. They are not used in SPI mode. Bit 3 CKPOL: Inactive state clock polarity 0: I2S clock inactive state is low level 1: I2S clock inactive state is high level Note: For correct operation, this bit should be configured when the I2S is disabled. It is not used in SPI mode. The bit CKPOL does not affect the CK edge sensitivity used to receive or transmit the SD and WS signals. Bits 2:1 DATLEN: Data length to be transferred 00: 16-bit data length 01: 24-bit data length 10: 32-bit data length 11: Not allowed Note: For correct operation, these bits should be configured when the I2S is disabled. They are not used in SPI mode. Bit 0 CHLEN: Channel length (number of bits per audio channel) 0: 16-bit wide 1: 32-bit wide The bit write operation has a meaning only if DATLEN = 00 otherwise the channel length is fixed to 32-bit by hardware whatever the value filled in. Note: For correct operation, this bit should be configured when the I2S is disabled. It is not used in SPI mode. 1142/1709 RM0385 Rev 7 RM0385 Serial peripheral interface / inter-IC sound (SPI/I2S) SPIx_I2S prescaler register (SPIx_I2SPR) 32.9.9 Address offset: 0x20 Reset value: 0x0002 15 14 13 12 11 10 9 8 7 6 5 4 3 Res. Res. Res. Res. Res. Res. MCKOE ODD I2SDIV[7:0] rw rw rw 2 1 0 Bits 15:10 Reserved: Forced to 0 by hardware Bit 9 MCKOE: Master clock output enable 0: Master clock output is disabled 1: Master clock output is enabled Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master mode. It is not used in SPI mode. Bit 8 ODD: Odd factor for the prescaler 0: Real divider value is = I2SDIV *2 1: Real divider value is = (I2SDIV * 2)+1 Refer to Section 32.7.4 on page 1121 Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master mode. It is not used in SPI mode. Bits 7:0 I2SDIV[7:0]: I2S linear prescaler I2SDIV [7:0] = 0 or I2SDIV [7:0] = 1 are forbidden values. Refer to Section 32.7.4 on page 1121 Note: These bits should be configured when the I2S is disabled. They are used only when the I2S is in master mode. They are not used in SPI mode. RM0385 Rev 7 1143/1709 1144 0x20 SPIx_I2SPR 1144/1709 RM0385 Rev 7 Reset value 0 0 0 0 Reset value 1 0 0 0 0 0 0 0 0 RXDMAEN 0 0 0 0 DR[15:0] 0 0 CRCPOLY[15:0] 0 0 RxCRC[15:0] 0 0 TxCRC[15:0] 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. RXNE SSOE TXDMAEN 0 TXE 0 CHSIDE FRF NSSP 0 UDR 0 CRCERR ERRIE 0 OVR 1 MODF RXNEIE 0 TXEIE 1 BSY 0 0 0 0 BR [2:0] MSTR CPOL CPHA SSI LSBFIRST 0 SPE SSM 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CHLEN 0 FRE 0 DATLEN 0 0 CKPOL 0 0 I2SSTD 0 DS[3:0] Res. 0 FRLVL[1:0] CRCNEXT 0 CRCL BIDIOE CRCEN 0 RXONLY BIDIMODE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 PCMSYNC FRXTH 0 FTLVL[1:0] LDMA_TX LDMA_RX 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 I2SCFG 0 ODD 0 MCKOE 0 I2SE 0 0 Res. 0 0 0 I2SMOD 0 0 ASTRTEN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. 0 Res. Reset value Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SPIx_I2SCFGR Res. 0x1C Res. SPIx_TXCRCR Res. 0x18 Res. SPIx_RXCRCR Res. 0x14 Res. SPIx_CRCPR Res. 0x10 Res. SPIx_DR Res. 0x0C Res. SPIx_SR Res. 0x08 Res. SPIx_CR2 Res. 0x04 Res. SPIx_CR1 Res. 0x00 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. 32.9.10 Res. Serial peripheral interface / inter-IC sound (SPI/I2S) RM0385 SPI/I2S register map Table 204 shows the SPI/I2S register map and reset values. Table 204. SPI register map and reset values 0 0 0 0 0 0 0 I2SDIV 0 0 0 0 1 0 RM0385 Serial audio interface (SAI) 33 Serial audio interface (SAI) 33.1 Introduction The SAI interface (Serial Audio Interface) offers a wide set of audio protocols due to its flexibility and wide range of configurations. Many stereo or mono audio applications may be targeted. I2S standards, LSB or MSB-justified, PCM/DSP, TDM, and AC’97 protocols may be addressed for example. SPDIF output is offered when the audio block is configured as a transmitter. To bring this level of flexibility and reconfigurability, the SAI contains two independent audio sub-blocks. Each block has it own clock generator and I/O line controller. The SAI can work in master or slave configuration. The audio sub-blocks can be either receiver or transmitter and can work synchronously or not (with respect to the other one). The SAI can be connected with other SAIs to work synchronously. RM0385 Rev 7 1145/1709 1188 Serial audio interface (SAI) 33.2 SAI main features • Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO. • 8-word integrated FIFOs for each audio sub-block. • Synchronous or asynchronous mode between the audio sub-blocks. • Possible synchronization between multiple SAIs. • Master or slave configuration independent for both audio sub-blocks. • Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode. • Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit. • Audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 • SPDIF output available if required. • Up to 16 slots available with configurable size. • Number of bits by frame can be configurable. • Frame synchronization active level configurable (offset, bit length, level). • First active bit position in the slot is configurable. • LSB first or MSB first for data transfer. • Mute mode. • Stereo/Mono audio frame capability. • Communication clock strobing edge configurable (SCK). • Error flags with associated interrupts if enabled respectively. • • 1146/1709 RM0385 – Overrun and underrun detection, – Anticipated frame synchronization signal detection in slave mode, – Late frame synchronization signal detection in slave mode, – Codec not ready for the AC’97 mode in reception. Interruption sources when enabled: – Errors, – FIFO requests. 2-channel DMA interface. RM0385 Rev 7 RM0385 Serial audio interface (SAI) 33.3 SAI functional description 33.3.1 SAI block diagram Figure 397 shows the SAI block diagram while Table 205 and Table 206 list SAI internal and external signals. Figure 397. SAI functional block diagram 32-bit APB bus Audio block A FIFO ctrl FIFO sai_a_ ker_ck Clock generator Audio block A FSM Configuration and status registers 32-bit shift register sai_pclk Audio block B FIFO ctrl FIFO sai_b_ ker_ck Clock generator Audio block B Synchro ctrl out Configuration and status registers sai_sync_out_sck sai_sync_out_fs FS_A SCK_A SD_A MCLK_A FS_B SCK_B SD_B MCLK_B FSM sai_sync_in_sck 32-bit shift register SAI_BCR1 APB Interface sai_b_gbl_it sai_b_dma 32-bit APB bus sai_sync_in_fs From other SAI Blocks SAI_ACR1 SAI_GCR IO Line Management APB Interface Synchro in SAI To other SAI Blocks sai_a_gbl_it sai_a_dma MSv30031V5 The SAI is mainly composed of two audio sub-blocks with their own clock generator. Each audio block integrates a 32-bit shift register controlled by their own functional state machine. Data are stored or read from the dedicated FIFO. FIFO may be accessed by the CPU, or by DMA in order to leave the CPU free during the communication. Each audio block is independent. They can be synchronous with each other. An I/O line controller manages a set of 4 dedicated pins (SD, SCK, FS, MCLK) for a given audio block in the SAI. Some of these pins can be shared if the two sub-blocks are declared as synchronous to leave some free to be used as general purpose I/Os. The MCLK pin can be output, or not, depending on the application, the decoder requirement and whether the audio block is configured as the master. If one SAI is configured to operate synchronously with another one, even more I/Os can be freed (except for pins SD_x). The functional state machine can be configured to address a wide range of audio protocols. Some registers are present to set-up the desired protocols (audio frame waveform generator). RM0385 Rev 7 1147/1709 1188 Serial audio interface (SAI) RM0385 The audio sub-block can be a transmitter or receiver, in master or slave mode. The master mode means the SCK_x bit clock and the frame synchronization signal are generated from the SAI, whereas in slave mode, they come from another external or internal master. There is a particular case for which the FS signal direction is not directly linked to the master or slave mode definition. In AC’97 protocol, it will be an SAI output even if the SAI (link controller) is set-up to consume the SCK clock (and so to be in Slave mode). Note: For ease of reading of this section, the notation SAI_x refers to SAI_A or SAI_B, where ‘x’ represents the SAI A or B sub-block. 33.3.2 SAI pins and internal signals Table 205. SAI internal input/output signals Internal signal name Signal type sai_a_gbl_it/ sai_b_gbl_it sai_a_dma, sai_b_dma Output Description Audio block A and B global interrupts. Input/output Audio block A and B DMA acknowledges and requests. sai_sync_out_sck, sai_sync_out_fs Output Internal clock and frame synchronization output signals exchanged with other SAI blocks. sai_sync_in_sck, sai_sync_in_fs Input Internal clock and frame synchronization input signals exchanged with other SAI blocks. sai_a_ker_ck/ sai_b_ker_ck Input Audio block A/B kernel clock. sai_pclk Input APB clock. Table 206. SAI input/output pins Name SAI_SCK_A/B SAI_MCLK_A/B 33.3.3 Signal type Comments Input/output Audio block A/B bit clock. Output Audio block A/B master clock. SAI_SD_A/B Input/output Data line for block A/B. SAI_FS_A/B Input/output Frame synchronization line for audio block A/B. Main SAI modes Each audio sub-block of the SAI can be configured to be master or slave via MODE bits in the SAI_xCR1 register of the selected audio block. Master mode In master mode, the SAI delivers the timing signals to the external connected device: • The bit clock and the frame synchronization are output on pin SCK_x and FS_x, respectively. • If needed, the SAI can also generate a master clock on MCLK_x pin. Both SCK_x, FS_x and MCLK_x are configured as outputs. 1148/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Slave mode The SAI expects to receive timing signals from an external device. • If the SAI sub-block is configured in asynchronous mode, then SCK_x and FS_x pins are configured as inputs. • If the SAI sub-block is configured to operate synchronously with another SAI interface or with the second audio sub-block, the corresponding SCK_x and FS_x pins are left free to be used as general purpose I/Os. In slave mode, MCLK_x pin is not used and can be assigned to another function. It is recommended to enable the slave device before enabling the master. Configuring and enabling SAI modes Each audio sub-block can be independently defined as a transmitter or receiver through the MODE bit in the SAI_xCR1 register of the corresponding audio block. As a result, SAI_SD_x pin will be respectively configured as an output or an input. Two master audio blocks in the same SAI can be configured with two different MCLK and SCK clock frequencies. In this case they have to be configured in asynchronous mode. Each of the audio blocks in the SAI are enabled by SAIEN bit in the SAI_xCR1 register. As soon as this bit is active, the transmitter or the receiver is sensitive to the activity on the clock line, data line and synchronization line in slave mode. In master TX mode, enabling the audio block immediately generates the bit clock for the external slaves even if there is no data in the FIFO, However FS signal generation is conditioned by the presence of data in the FIFO. After the FIFO receives the first data to transmit, this data is output to external slaves. If there is no data to transmit in the FIFO, 0 values are then sent in the audio frame with an underrun flag generation. In slave mode, the audio frame starts when the audio block is enabled and when a start of frame is detected. In Slave TX mode, no underrun event is possible on the first frame after the audio block is enabled, because the mandatory operating sequence in this case is: 33.3.4 1. Write into the SAI_xDR (by software or by DMA). 2. Wait until the FIFO threshold (FLH) flag is different from 000b (FIFO empty). 3. Enable the audio block in slave transmitter mode. SAI synchronization mode There are two levels of synchronization, either at audio sub-block level or at SAI level. Internal synchronization An audio sub-block can be configured to operate synchronously with the second audio subblock in the same SAI. In this case, the bit clock and the frame synchronization signals are shared to reduce the number of external pins used for the communication. The audio block configured in synchronous mode sees its own SCK_x, FS_x, and MCLK_x pins released back as GPIOs while the audio block configured in asynchronous mode is the one for which FS_x and SCK_x ad MCLK_x I/O pins are relevant (if the audio block is considered as master). RM0385 Rev 7 1149/1709 1188 Serial audio interface (SAI) RM0385 Typically, the audio block in synchronous mode can be used to configure the SAI in full duplex mode. One of the two audio blocks can be configured as a master and the other as slave, or both as slaves with one asynchronous block (corresponding SYNCEN[1:0] bits set to 00 in SAI_xCR1) and one synchronous block (corresponding SYNCEN[1:0] bits set to 01 in the SAI_xCR1). Note: Due to internal resynchronization stages, PCLK APB frequency must be higher than twice the bit rate clock frequency. External synchronization The audio sub-blocks can also be configured to operate synchronously with another SAI. This can be done as follow: Note: 1. The SAI, which is configured as the source from which the other SAI is synchronized, has to define which of its audio sub-block is supposed to provide the FS and SCK signals to other SAI. This is done by programming SYNCOUT[1:0] bits. 2. The SAI which shall receive the synchronization signals has to select which SAI will provide the synchronization by setting the proper value on SYNCIN[1:0] bits. For each of the two SAI audio sub-blocks, the user must then specify if it operates synchronously with the other SAI via the SYNCEN bit. SYNCIN[1:0] and SYNCOUT[1:0] bits are located into the SAI_GCR register, and SYNCEN bits into SAI_xCR1 register. If both audio sub-blocks in a given SAI need to be synchronized with another SAI, it is possible to choose one of the following configurations: • Configure each audio block to be synchronous with another SAI block through the SYNCEN[1:0] bits. • Configure one audio block to be synchronous with another SAI through the SYNCEN[1:0] bits. The other audio block is then configured as synchronous with the second SAI audio block through SYNCEN[1:0] bits. The following table shows how to select the proper synchronization signal depending on the SAI block used. For example SAI2 can select the synchronization from SAI1 by setting SAI2 SYNCIN to 0. If SAI1 wants to select the synchronization coming from SAI2, SAI1 SYNCIN must be set to 1. Positions noted as ‘Res.’ shall not be used. Table 207. External synchronization selection Block instance 33.3.5 SYNCIN= 3 SYNCIN= 2 SYNCIN= 1 SYNCIN= 0 SAI1 Res. Res. SAI2 sync Res. SAI2 Res. Res. Res. SAI1 sync Audio data size The audio frame can target different data sizes by configuring bit DS[2:0] in the SAI_xCR1 register. The data sizes may be 8, 10, 16, 20, 24 or 32 bits. During the transfer, either the MSB or the LSB of the data are sent first, depending on the configuration of bit LSBFIRST in the SAI_xCR1 register. 1150/1709 RM0385 Rev 7 RM0385 33.3.6 Serial audio interface (SAI) Frame synchronization The FS signal acts as the Frame synchronization signal in the audio frame (start of frame). The shape of this signal is completely configurable in order to target the different audio protocols with their own specificities concerning this Frame synchronization behavior. This reconfigurability is done using register SAI_xFRCR. Figure 398 illustrates this flexibility. Figure 398. Audio frame FS Length: up to 256 bits FS active: up to 128 bits FS The falling edge can occur into this area SCK SD (FSOFF = 0) Slot 0 SD (FSOFF = 1) Slot 0 Slot 1 Slot 2 Slot 1 Slot 2 Slot 3 Slot 3 Slot 4 Slot 4 …... …... Slot 0 Slot 0 MSv30037V2 In AC’97 mode or in SPDIF mode (bit PRTCFG[1:0] = 10 or PRTCFG[1:0] = 01 in the SAI_xCR1 register), the frame synchronization shape is forced to match the AC’97 protocol. The SAI_xFRCR register value is ignored. Each audio block is independent and consequently each one requires a specific configuration. Frame length • Master mode The audio frame length can be configured to up to 256 bit clock cycles, by setting FRL[7:0] field in the SAI_xFRCR register. If the frame length is greater than the number of declared slots for the frame, the remaining bits to transmit will be extended to 0 or the SD line will be released to HI-z depending the state of bit TRIS in the SAI_xCR2 register (refer to FS signal role). In reception mode, the remaining bit is ignored. If bit NODIV is cleared, (FRL+1) must be equal to a power of 2, from 8 to 256, to ensure that an audio frame contains an integer number of MCLK pulses per bit clock cycle. If bit NODIV is set, the (FRL+1) field can take any value from 8 to 256. Refer to Section 33.3.8: SAI clock generator”. • Slave mode The audio frame length is mainly used to specify to the slave the number of bit clock cycles per audio frame sent by the external master. It is used mainly to detect from the master any anticipated or late occurrence of the Frame synchronization signal during an on-going audio frame. In this case an error will be generated. For more details refer to Section 33.3.13: Error flags. In slave mode, there are no constraints on the FRL[7:0] configuration in the SAI_xFRCR register. The number of bits in the frame is equal to FRL[7:0] + 1. The minimum number of bits to transfer in an audio frame is 8. RM0385 Rev 7 1151/1709 1188 Serial audio interface (SAI) RM0385 Frame synchronization polarity FSPOL bit in the SAI_xFRCR register sets the active polarity of the FS pin from which a frame is started. The start of frame is edge sensitive. In slave mode, the audio block waits for a valid frame to start transmitting or receiving. Start of frame is synchronized to this signal. It is effective only if the start of frame is not detected during an ongoing communication and assimilated to an anticipated start of frame (refer to Section 33.3.13: Error flags). In master mode, the frame synchronization is sent continuously each time an audio frame is complete until the SAIEN bit in the SAI_xCR1 register is cleared. If no data are present in the FIFO at the end of the previous audio frame, an underrun condition will be managed as described in Section 33.3.13: Error flags), but the audio communication flow will not be interrupted. Frame synchronization active level length The FSALL[6:0] bits of the SAI_xFRCR register allow configuring the length of the active level of the Frame synchronization signal. The length can be set from 1 to 128 bit clock cycles. As an example, the active length can be half of the frame length in I2S, LSB or MSB-justified modes, or one-bit wide for PCM/DSP or TDM mode. Frame synchronization offset Depending on the audio protocol targeted in the application, the Frame synchronization signal can be asserted when transmitting the last bit or the first bit of the audio frame (this is the case in I2S standard protocol and in MSB-justified protocol, respectively). FSOFF bit in the SAI_xFRCR register allows to choose one of the two configurations. FS signal role The FS signal can have a different meaning depending on the FS function. FSDEF bit in the SAI_xFRCR register selects which meaning it will have: • 0: start of frame, like for instance the PCM/DSP, TDM, AC’97, audio protocols, • 1: start of frame and channel side identification within the audio frame like for the I2S, the MSB or LSB-justified protocols. When the FS signal is considered as a start of frame and channel side identification within the frame, the number of declared slots must be considered to be half the number for the left channel and half the number for the right channel. If the number of bit clock cycles on half audio frame is greater than the number of slots dedicated to a channel side, and TRIS = 0, 0 is sent for transmission for the remaining bit clock cycles in the SAI_xCR2 register. Otherwise if TRIS = 1, the SD line is released to HI-Z. In reception mode, the remaining bit clock cycles are not considered until the channel side changes. 1152/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Figure 399. FS role is start of frame + channel side identification (FSDEF = TRIS = 1) Number of slots not aligned with the audio frame Audio frame Half of frame FS sck slot Slot 0 ON Slot 3 ON Slot 4 OFF Slot 5 ON Slot 1 OFF Slot 2 ON Number of slots aligned with the audio frame Audio frame Half of frame FS sck slot Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 MS30038V1 1. The frame length should be even. If FSDEF bit in SAI_xFRCR is kept clear, so FS signal is equivalent to a start of frame, and if the number of slots defined in NBSLOT[3:0] in SAI_xSLOTR multiplied by the number of bits by slot configured in SLOTSZ[1:0] in SAI_xSLOTR is less than the frame size (bit FRL[7:0] in the SAI_xFRCR register), then: • if TRIS = 0 in the SAI_xCR2 register, the remaining bit after the last slot will be forced to 0 until the end of frame in case of transmitter, • if TRIS = 1, the line will be released to HI-Z during the transfer of these remaining bits. In reception mode, these bits are discarded. RM0385 Rev 7 1153/1709 1188 Serial audio interface (SAI) RM0385 Figure 400. FS role is start of frame (FSDEF = 0) Audio frame sck slot Slot 0 Slot 1 Slot 2 ... Slot n Data = 0 after slot n if TRIS = 0 SD output released (HI-Z) after slot n if TRIS = 1 MS30039V1 The FS signal is not used when the audio block in transmitter mode is configured to get the SPDIF output on the SD line. The corresponding FS I/O will be released and left free for other purposes. 33.3.7 Slot configuration The slot is the basic element in the audio frame. The number of slots in the audio frame is equal to NBSLOT[3:0] + 1. The maximum number of slots per audio frame is fixed at 16. For AC’97 protocol or SPDIF (when bit PRTCFG[1:0] = 10 or PRTCFG[1:0] = 01), the number of slots is automatically set to target the protocol specification, and the value of NBSLOT[3:0] is ignored. Each slot can be defined as a valid slot, or not, by setting SLOTEN[15:0] bits of the SAI_xSLOTR register. When a invalid slot is transferred, the SD data line is either forced to 0 or released to HI-z depending on TRIS bit configuration (refer to Output data line management on an inactive slot) in transmitter mode. In receiver mode, the received value from the end of this slot is ignored. Consequently, there will be no FIFO access and so no request to read or write the FIFO linked to this inactive slot status. The slot size is also configurable as shown in Figure 401. The size of the slots is selected by setting SLOTSZ[1:0] bits in the SAI_xSLOTR register. The size is applied identically for each slot in an audio frame. 1154/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Figure 401. Slot size configuration with FBOFF = 0 in SAI_xSLOTR Audio block is receiver Audio block is transmitter Slot size = data size Slot size = data size slotx data size data size slotx data size data size slotx 00..00 data size slotx data size 16-bit slotx X..X 16-bit 00..00 data size slotx data size 32-bit XX..XX 32-bit X: don’t care MS30033V1 It is possible to choose the position of the first data bit to transfer within the slots. This offset is configured by FBOFF[4:0] bits in the SAI_xSLOTR register. 0 values will be injected in transmitter mode from the beginning of the slot until this offset position is reached. In reception, the bit in the offset phase is ignored. This feature targets the LSB justified protocol (if the offset is equal to the slot size minus the data size). Figure 402. First bit offset Audio block is receiver Audio block is transmitter Slot size = data size Slot size = data size slotx slotx data size data size data size data size FBOFF FBOFF slotx XX 00 data size 00 slotx 16-bit data size 00..00 XX 16-bit FBOFF = SLOT SZ -DS FBOFF = SLOT SZ -DS slotx data size slotx XX .. XX data size 32-bit X: don’t care 32-bit MS30034V1 It is mandatory to respect the following conditions to avoid bad SAI behavior: FBOFF ≤(SLOTSZ - DS), DS ≤SLOTSZ, NBSLOT x SLOTSZ ≤FRL (frame length), The number of slots must be even when bit FSDEF in the SAI_xFRCR register is set. In AC’97 and SPDIF protocol (bit PRTCFG[1:0] = 10 or PRTCFG[1:0] = 01), the slot size is automatically set as defined in Section 33.3.10: AC’97 link controller. RM0385 Rev 7 1155/1709 1188 Serial audio interface (SAI) 33.3.8 RM0385 SAI clock generator Each audio block has its own clock generator that makes these two blocks completely independent. There is no difference in terms of functionality between these two clock generators. When the audio block is configured as Master, the clock generator provides the communication clock (the bit clock) and the master clock for external decoders. When the audio block is defined as slave, the clock generator is OFF. Figure 403 illustrates the architecture of the audio block clock generator. Figure 403. Audio block clock generator overview NODIV MCKDIV[3:0] MCLK_x 0 1 sai_x_ker _ck Master clock divider 0 FRL[7:0] NODIV NODIV 0 1 Bit clock divider 0 1 SCK_x MSv30040V2 Note: If NODIV is set to 1, the MCLK_x signal will be set at 0 level if this pin is configured as the SAI pin in GPIO peripherals. The clock source for the clock generator comes from the product clock controller. The sai_x_ker_ck clock is equivalent to the master clock which can be divided for the external decoders using bit MCKDIV[3:0]: MCLK_x = sai_x_ker_ck / (MCKDIV[3:0] * 2), if MCKDIV[3:0] is not equal to 0000. MCLK_x = sai_x_ker_ck, if MCKDIV[3:0] is equal to 0000. MCLK_x signal is used only in TDM. The division must be even in order to keep 50% on the Duty cycle on the MCLK output and on the SCK_x clock. If bit MCKDIV[3:0] = 0000, division by one is applied to obtain MCLK_x equal to sai_x_ker_ck. In the SAI, the single ratio MCLK/FS = 256 is considered. Mostly, three frequency ranges will be encountered as illustrated in Table 208. 1156/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Table 208. Example of possible audio frequency sampling range Input sai_x_ker_ck clock frequency 192 kHz x 256 44.1 kHz x 256 sai_x_ker_ck = MCLK(1) Most usual audio frequency sampling achievable MCKDIV[3:0] 192 kHz MCKDIV[3:0] = 0000 96 kHz MCKDIV[3:0] = 0001 48 kHz MCKDIV[3:0] = 0010 16 kHz MCKDIV[3:0] = 0110 8 kHz MCKDIV[3:0] = 1100 44.1 kHz MCKDIV[3:0] = 0000 22.05 kHz MCKDIV[3:0] = 0001 11.025 kHz MCKDIV[3:0] = 0010 MCLK MCKDIV[3:0] = 0000 1. This may happen when the product clock controller selects an external clock source, instead of PLL clock. The master clock can be generated externally on an I/O pad for external decoders if the corresponding audio block is declared as master with bit NODIV = 0 in the SAI_xCR1 register. In slave, the value set in this last bit is ignored since the clock generator is OFF, and the MCLK_x I/O pin is released for use as a general purpose I/O. The bit clock is derived from the master clock. The bit clock divider sets the divider factor between the bit clock (SCK_x) and the master clock (MCLK_x) following the formula: SCK_x = MCLK x (FRL[7:0] +1) / 256 where: 256 is the fixed ratio between MCLK and the audio frequency sampling. FRL[7:0] is the number of bit clock cycles- 1 in the audio frame, configured in the SAI_xFRCR register. In master mode it is mandatory that (FRL[7:0] +1) is equal to a number with a power of 2 (refer to Section 33.3.6: Frame synchronization) to obtain an even integer number of MCLK_x pulses by bit clock cycle. The 50% duty cycle is guaranteed on the bit clock (SCK_x). The sai_x_ker_ck clock can also be equal to the bit clock frequency. In this case, NODIV bit in the SAI_xCR1 register should be set and the value inside the MCKDIV divider and the bit clock divider will be ignored. In this case, the number of bits per frame is fully configurable without the need to be equal to a power of two. The bit clock strobing edge on SCK can be configured by bit CKSTR in the SAI_xCR1 register. Refer to Section 33.3.11: SPDIF output for details on clock generator programming in SPDIF mode. RM0385 Rev 7 1157/1709 1188 Serial audio interface (SAI) 33.3.9 RM0385 Internal FIFOs Each audio block in the SAI has its own FIFO. Depending if the block is defined to be a transmitter or a receiver, the FIFO can be written or read, respectively. There is therefore only one FIFO request linked to FREQ bit in the SAI_xSR register. An interrupt is generated if FREQIE bit is enabled in the SAI_xIM register. This depends on: • FIFO threshold setting (FLVL bits in SAI_xCR2) • Communication direction (transmitter or receiver). Refer to Interrupt generation in transmitter mode and Interrupt generation in reception mode. Interrupt generation in transmitter mode The interrupt generation depends on the FIFO configuration in transmitter mode: • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO empty (FTH[2:0] set to 000b), an interrupt is generated (FREQ bit set by hardware to 1 in SAI_xSR register) if no data are available in SAI_xDR register (FLVL[2:0] bits in SAI_xSR is less than 001b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when the FIFO is no more empty (FLVL[2:0] bits in SAI_xSR are different from 000b) i.e one or more data are stored in the FIFO. • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO quarter full (FTH[2:0] set to 001b), an interrupt is generated (FREQ bit set by hardware to 1 in SAI_xSR register) if less than a quarter of the FIFO contains data (FLVL[2:0] bits in SAI_xSR are less than 010b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when at least a quarter of the FIFO contains data (FLVL[2:0] bits in SAI_xSR are higher or equal to 010b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO half full (FTH[2:0] set to 010b), an interrupt is generated (FREQ bit set by hardware to 1 in SAI_xSR register) if less than half of the FIFO contains data (FLVL[2:0] bits in SAI_xSR are less than 011b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when at least half of the FIFO contains data (FLVL[2:0] bits in SAI_xSR are higher or equal to 011b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO three quarter (FTH[2:0] set to 011b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if less than three quarters of the FIFO contain data (FLVL[2:0] bits in SAI_xSR are less than 100b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when at least three quarters of the FIFO contain data (FLVL[2:0] bits in SAI_xSR are higher or equal to 100b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO full (FTH[2:0] set to 100b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if the FIFO is not full (FLVL[2:0] bits in SAI_xSR is less than 101b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when the FIFO is full (FLVL[2:0] bits in SAI_xSR is equal to 101b value). Interrupt generation in reception mode The interrupt generation depends on the FIFO configuration in reception mode: • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO empty (FTH[2:0] set to 000b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if at least one data is available in SAI_xDR register(FLVL[2:0] bits in SAI_xSR is higher or equal to 001b). This Interrupt (FREQ bit in SAI_xSR register) is 1158/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) cleared by hardware when the FIFO becomes empty (FLVL[2:0] bits in SAI_xSR is equal to 000b) i.e no data are stored in FIFO. • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO quarter fully (FTH[2:0] set to 001b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if at least one quarter of the FIFO data locations are available (FLVL[2:0] bits in SAI_xSR is higher or equal to 010b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when less than a quarter of the FIFO data locations become available (FLVL[2:0] bits in SAI_xSR is less than 010b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO half fully (FTH[2:0] set to 010b value), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if at least half of the FIFO data locations are available (FLVL[2:0] bits in SAI_xSR is higher or equal to 011b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when less than half of the FIFO data locations become available (FLVL[2:0] bits in SAI_xSR is less than 011b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO three quarter full(FTH[2:0] set to 011b value), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if at least three quarters of the FIFO data locations are available (FLVL[2:0] bits in SAI_xSR is higher or equal to 100b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when the FIFO has less than three quarters of the FIFO data locations avalable(FLVL[2:0] bits in SAI_xSR is less than 100b). • When the FIFO threshold bits in SAI_xCR2 register are configured as FIFO full(FTH[2:0] set to 100b), an interrupt is generated (FREQ bit is set by hardware to 1 in SAI_xSR register) if the FIFO is full (FLVL[2:0] bits in SAI_xSR is equal to 101b). This Interrupt (FREQ bit in SAI_xSR register) is cleared by hardware when the FIFO is not full (FLVL[2:0] bits in SAI_xSR is less than 101b). Like interrupt generation, the SAI can use the DMA if DMAEN bit in the SAI_xCR1 register is set. The FREQ bit assertion mechanism is the same as the interruption generation mechanism described above for FREQIE. Each FIFO is an 8-word FIFO. Each read or write operation from/to the FIFO targets one word FIFO location whatever the access size. Each FIFO word contains one audio slot. FIFO pointers are incremented by one word after each access to the SAI_xDR register. Data should be right aligned when it is written in the SAI_xDR. Data received will be right aligned in the SAI_xDR. The FIFO pointers can be reinitialized when the SAI is disabled by setting bit FFLUSH in the SAI_xCR2 register. If FFLUSH is set when the SAI is enabled the data present in the FIFO will be lost automatically. RM0385 Rev 7 1159/1709 1188 Serial audio interface (SAI) 33.3.10 RM0385 AC’97 link controller The SAI is able to work as an AC’97 link controller. In this protocol: • The slot number and the slot size are fixed. • The frame synchronization signal is perfectly defined and has a fixed shape. To select this protocol, set PRTCFG[1:0] bits in the SAI_xCR1 register to 10. When AC’97 mode is selected, only data sizes of 16 or 20 bits can be used, otherwise the SAI behavior is not guaranteed. • NBSLOT[3:0] and SLOTSZ[1:0] bits are consequently ignored. • The number of slots is fixed to 13 slots. The first one is 16-bit wide and all the others are 20-bit wide (data slots). • FBOFF[4:0] bits in the SAI_xSLOTR register are ignored. • The SAI_xFRCR register is ignored. • The MCLK is not used. The FS signal from the block defined as asynchronous is configured automatically as an output, since the AC’97 controller link drives the FS signal whatever the master or slave configuration. Figure 404 shows an AC’97 audio frame structure. Figure 404. AC’97 audio frame FS 1 SDI Tag SDO Tag 2 3 4 5 6 7 8 CMD CMD PCM PCM LINE1 PCM PCM PCM ADDR DATA LFRONT RFRONT DAC CENTER LSURR RSURR STATUS STATUS PCM PCM ADDR DATA LEFT RIGHT LINE1 ADC PCM MIC RSR VD RSR VD 9 10 11 12 PCM LFE LINE2 DAC HSET DAC IO CTRL RSR LVD LINE2 ADC HSET IO STATUS MS192343V1 Note: In AC’97 protocol, bit 2 of the tag is reserved (always 0), so bit 2 of the TAG is forced to 0 level whatever the value written in the SAI FIFO. For more details about tag representation, refer to the AC’97 protocol standard. One SAI can be used to target an AC’97 point-to-point communication. Using two SAIs (for devices featuring two embedded SAIs) allows controlling three external AC’97 decoders as illustrated in Figure 405. In SAI1, the audio block A must be declared as asynchronous master transmitter whereas the audio block B is defined to be slave receiver and internally synchronous to the audio block A. The SAI2 is configured for audio block A and B both synchronous with the external SAI1 in slave receiver mode. 1160/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Figure 405. Example of typical AC’97 configuration on devices featuring at least 2 embedded SAIs (three external AC’97 decoders) AC’97 Link Controller (Bit clock provider) Audio block A Primary codec 1 Master SDA FIFO Block B synchronous with block A Transmitter FSA SCLKA Clock generator Sdata_out Sync Bit_clk Sdata_in Slave SDB FIFO Receiver FSB SCLKB Secondary codec 1 Audio block B Sdata_out Sync Bit_clk SAI1 Audio block A Slave Sdata_in SDA FIFO Synchronous with other SAI clocks Receiver FSA SCLKA Secondary codec 2 Clock generator Slave SDB FIFO Receiver FSB SCLKB Sdata_out Sync Bit_clk Sdata_in Audio block B SAI2 MSv31173V1 In receiver mode, the SAI acting as an AC’97 link controller requires no FIFO request and so no data storage in the FIFO when the Codec ready bit in the slot 0 is decoded low. If bit CNRDYIE is enabled in the SAI_xIM register, flag CNRDY will be set in the SAI_xSR register and an interrupt is generated. This flag is dedicated to the AC’97 protocol. Clock generator programming in AC’97 mode In AC’97 mode, the frame length is fixed at 256 bits, and its frequency shall be set to 48 kHz. The formulas given in Section 33.3.8: SAI clock generator shall be used with FRL = 255, in order to generate the proper frame rate (FFS_x). RM0385 Rev 7 1161/1709 1188 Serial audio interface (SAI) 33.3.11 RM0385 SPDIF output The SPDIF interface is available in transmitter mode only. It supports the audio IEC60958. To select SPDIF mode, set PRTCFG[1:0] bit to 01 in the SAI_xCR1 register. For SPDIF protocol: • Only SD data line is enabled. • FS, SCK, MCLK I/Os pins are left free. • MODE[1] bit is forced to 0 to select the master mode in order to enable the clock generator of the SAI and manage the data rate on the SD line. • The data size is forced to 24 bits. The value set in DS[2:0] bits in the SAI_xCR1 register is ignored. • The clock generator must be configured to define the symbol-rate, knowing that the bit clock should be twice the symbol-rate. The data is coded in Manchester protocol. • The SAI_xFRCR and SAI_xSLOTR registers are ignored. The SAI is configured internally to match the SPDIF protocol requirements as shown in Figure 406. Figure 406. SPDIF format Block N+1 Block N Frame 0 Frame 191 Frame 1 Frame 0 Sub-frame B Channel A W Channel B M Channel A W Channel B SOPD SOPD B,M,W D0 D1 D2 D3 M Channel A W Channel B B D20 D21 D22 D23 VP D4 24-bit data U Channel A W Channel B CS Status bit Channel MS30042V1 A SPDIF block contains 192 frames. Each frame is composed of two 32-bit sub-frames, generally one for the left channel and one for the right channel. Each sub-frame is composed of a SOPD pattern (4-bit) to specify if the sub-frame is the start of a block (and so is identifying a channel A) or if it is identifying a channel A somewhere in the block, or if it is referring to channel B (see Table 209). The next 28 bits of channel information are composed of 24 bits data + 4 status bits. 1162/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Table 209. SOPD pattern Preamble coding SOPD Description last bit is 0 last bit is 1 B 11101000 00010111 Channel A data at the start of block W 11100100 00011011 Channel B data somewhere in the block M 11100010 00011101 Channel A data The data stored in SAI_xDR has to be filled as follows: • SAI_xDR[26:24] contain the Channel status, User and Validity bits. • SAI_xDR[23:0] contain the 24-bit data for the considered channel. If the data size is 20 bits, then data shall be mapped on SAI_xDR[23:4]. If the data size is 16 bits, then data shall be mapped on SAI_xDR[23:8]. SAI_xDR[23] always represents the MSB. Figure 407. SAI_xDR register ordering SAI_xDR[26:0] 0 26 CS U V D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Data[23:0] Status bits MSv31174V1 Note: The transfer is performed always with LSB first. The SAI first sends the adequate preamble for each sub-frame in a block. The SAI_xDR is then sent on the SD line (manchester coded). The SAI ends the sub-frame by transferring the Parity bit calculated as described in Table 210. Table 210. Parity bit calculation SAI_xDR[26:0] Parity bit P value transferred odd number of 0 0 odd number of 1 1 The underrun is the only error flag available in the SAI_xSR register for SPDIF mode since the SAI can only operate in transmitter mode. As a result, the following sequence should be RM0385 Rev 7 1163/1709 1188 Serial audio interface (SAI) RM0385 executed to recover from an underrun error detected via the underrun interrupt or the underrun status bit: 1. Disable the DMA stream (via the DMA peripheral) if the DMA is used. 2. Disable the SAI and check that the peripheral is physically disabled by polling the SAIEN bit in SAI_xCR1 register. 3. Clear the COVRUNDR flag in the SAI_xCLRFR register. 4. Flush the FIFO by setting the FFLUSH bit in SAI_xCR2. The software needs to point to the address of the future data corresponding to a start of new block (data for preamble B). If the DMA is used, the DMA source base address pointer should be updated accordingly. 5. Enable again the DMA stream (DMA peripheral) if the DMA used to manage data transfers according to the new source base address. 6. Enable again the SAI by setting SAIEN bit in SAI_xCR1 register. Clock generator programming in SPDIF generator mode For the SPDIF generator, the SAI shall provide a bit clock twice faster as the symbol-rate. The table hereafter shows usual examples of symbol rates with respect to the audio sampling rate. Table 211. Audio sampling frequency versus symbol rates Audio Sampling Frequencies (FS) Symbol-rate 44.1 kHz 2.8224 MHz 48 kHz 3.072 MHz 96 kHz 6.144 MHz 192 kHz 12.288 MHz More generally, the relationship between the audio sampling frequency (FS) and the bit clock rate (FSCK_X) is given by the formula: F SCK_x F S = ----------------------128 And the bit clock rate is obtained as follow: F SCK_x = F SAI_CK_x 1164/1709 RM0385 Rev 7 RM0385 33.3.12 Serial audio interface (SAI) Specific features The SAI interface embeds specific features which can be useful depending on the audio protocol selected. These functions are accessible through specific bits of the SAI_xCR2 register. Mute mode The mute mode can be used when the audio sub-block is a transmitter or a receiver. Audio sub-block in transmission mode In transmitter mode, the mute mode can be selected at anytime. The mute mode is active for entire audio frames. The MUTE bit in the SAI_xCR2 register enables the mute mode when it is set during an ongoing frame. The mute mode bit is strobed only at the end of the frame. If it is set at this time, the mute mode is active at the beginning of the new audio frame and for a complete frame, until the next end of frame. The bit is then strobed to determine if the next frame will still be a mute frame. If the number of slots set through NBSLOT[3:0] bits in the SAI_xSLOTR register is lower than or equal to 2, it is possible to specify if the value sent in mute mode is 0 or if it is the last value of each slot. The selection is done via MUTEVAL bit in the SAI_xCR2 register. If the number of slots set in NBSLOT[3:0] bits in the SAI_xSLOTR register is greater than 2, MUTEVAL bit in the SAI_xCR2 is meaningless as 0 values are sent on each bit on each slot. The FIFO pointers are still incremented in mute mode. This means that data present in the FIFO and for which the mute mode is requested are discarded. Audio sub-block in reception mode In reception mode, it is possible to detect a mute mode sent from the external transmitter when all the declared and valid slots of the audio frame receive 0 for a given consecutive number of audio frames (MUTECNT[5:0] bits in the SAI_xCR2 register). When the number of MUTE frames is detected, the MUTEDET flag in the SAI_xSR register is set and an interrupt can be generated if MUTEDETIE bit is set in SAI_xCR2. The mute frame counter is cleared when the audio sub-block is disabled or when a valid slot receives at least one data in an audio frame. The interrupt is generated just once, when the counter reaches the value specified in MUTECNT[5:0] bits. The interrupt event is then reinitialized when the counter is cleared. Note: The mute mode is not available for SPDIF audio blocks. Mono/stereo mode In transmitter mode, the mono mode can be addressed, without any data preprocessing in memory, assuming the number of slots is equal to 2 (NBSLOT[3:0] = 0001 in SAI_xSLOTR). In this case, the access time to and from the FIFO will be reduced by 2 since the data for slot 0 is duplicated into data slot 1. To enable the mono mode, 1. Set MONO bit to 1 in the SAI_xCR1 register. 2. Set NBSLOT to 1 and SLOTEN to 3 in SAI_xSLOTR. RM0385 Rev 7 1165/1709 1188 Serial audio interface (SAI) RM0385 In reception mode, the MONO bit can be set and is meaningful only if the number of slots is equal to 2 as in transmitter mode. When it is set, only slot 0 data will be stored in the FIFO. The data belonging to slot 1 will be discarded since, in this case, it is supposed to be the same as the previous slot. If the data flow in reception mode is a real stereo audio flow with a distinct and different left and right data, the MONO bit is meaningless. The conversion from the output stereo file to the equivalent mono file is done by software. Companding mode Telecommunication applications can require to process the data to be transmitted or received using a data companding algorithm. Depending on the COMP[1:0] bits in the SAI_xCR2 register (used only when TDM mode is selected), the application software can choose to process or not the data before sending it on SD serial output line (compression) or to expand the data after the reception on SD serial input line (expansion) as illustrated in Figure 408. The two companding modes supported are the µ-Law and the A-Law log which are a part of the CCITT G.711 recommendation. The companding standard used in the United States and Japan is the µ-Law. It supports 14 bits of dynamic range (COMP[1:0] = 10 in the SAI_xCR2 register). The European companding standard is A-Law and supports 13 bits of dynamic range (COMP[1:0] = 11 in the SAI_xCR2 register). Both µ-Law or A-Law companding standard can be computed based on 1’s complement or 2’s complement representation depending on the CPL bit setting in the SAI_xCR2 register. In µ-Law and A-Law standards, data are coded as 8 bits with MSB alignment. Companded data are always 8-bit wide. For this reason, DS[2:0] bits in the SAI_xCR1 register will be forced to 010 when the SAI audio block is enabled (SAIEN bit = 1 in the SAI_xCR1 register) and when one of these two companding modes selected through the COMP[1:0] bits. If no companding processing is required, COMP[1:0] bits should be kept clear. Figure 408. Data companding hardware in an audio block in the SAI Receiver mode (bit MODE[0] = 1 in SAI_xCR1) COMP[1] FIFO 1 SD expand 32-bit shift register 0 Transmitter mode (bit MODE[0] = 0 in SAI_xCR1) 0 FIFO compress SD 32-bit shift register 1 COMP[1] MS19244V1 1. Not applicable when AC’97 or SPDIF are selected. 1166/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Expansion and compression mode are automatically selected through the SAI_xCR2: • If the SAI audio block is configured to be a transmitter, and if the COMP[1] bit is set in the SAI_xCR2 register, the compression mode will be applied. • If the SAI audio block is declared as a receiver, the expansion algorithm will be applied. Output data line management on an inactive slot In transmitter mode, it is possible to choose the behavior of the SD line output when an inactive slot is sent on the data line (via TRIS bit). • Either the SAI forces 0 on the SD output line when an inactive slot is transmitted, or • The line is released in HI-z state at the end of the last bit of data transferred, to release the line for other transmitters connected to this node. It is important to note that the two transmitters cannot attempt to drive the same SD output pin simultaneously, which could result in a short circuit. To ensure a gap between transmissions, if the data is lower than 32-bit, the data can be extended to 32-bit by setting bit SLOTSZ[1:0] = 10 in the SAI_xSLOTR register. The SD output pin will then be tri-stated at the end of the LSB of the active slot (during the padding to 0 phase to extend the data to 32-bit) if the following slot is declared inactive. In addition, if the number of slots multiplied by the slot size is lower than the frame length, the SD output line will be tri-stated when the padding to 0 is done to complete the audio frame. Figure 409 illustrates these behaviors. RM0385 Rev 7 1167/1709 1188 Serial audio interface (SAI) RM0385 Figure 409. Tristate strategy on SD output line on an inactive slot Bit TRIS = 1 in the SAI_xCR1 and frame length = number of slots Audio frame sck Slot size = data size Slot 0 ON slot SD (output) Slot 1 OFF Slot 2 OFF Data 0 Slot 3 ON Data 1 .. ON .. .. ON .. Slot n ON Data m Slot size > data size slot Slot 0 ON SD (output) slot Slot 1 OFF Slot 2 OFF Data 1 Data 0 Slot 0 ON Slot 3 ON Slot 1 OFF Slot 2 OFF SD (output) Slot 3 ON Data 0 .. ON .. .. ON .. .. ON .. .. ON .. Slot n ON Data m Slot n ON Data m Bit TRIS = 1 in the SAI_xCR1 and frame length > number of slots Audio frame sck Slot size = data size Slot 0 ON slot SD (output) Slot 1 OFF Slot 2 OFF Data 0 .. ON .. Slot n ON Data m Slot size > data size Slot 0 ON slot SD (output) SD (output) Slot 2 OFF .. ON .. Data 0 Slot 0 ON slot Slot 1 OFF Slot 1 OFF Slot 2 OFF .. ON .. Slot n ON Data m .. ON Data m MS192345V1 When the selected audio protocol uses the FS signal as a start of frame and a channel side identification (bit FSDEF = 1 in the SAI_xFRCR register), the tristate mode is managed according to Figure 410 (where bit TRIS in the SAI_xCR1 register = 1, and FSDEF=1, and half frame length is higher than number of slots/2, and NBSLOT=6). 1168/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Figure 410. Tristate on output data line in a protocol like I2S sck Slot size = data size slot Slot 0 ON SD (output) Slot 1 OFF Data 0 Slot 2 ON Slot 3 ON Data 1 Data 2 Slot 4 OFF Slot 5 ON Data 3 Slot size > data size Slot 0 ON slot SD (output) Slot 1 OFF Data 0 Slot 0 ON slot SD (output) Data 0 Slot 2 ON Data 1 Slot 1 OFF Slot 3 ON Slot 4 OFF Data 2 Slot 2 ON Slot 3 ON Data 1 Slot 5 ON Data 3 Slot 4 OFF Slot 5 ON Data m MS192346V1 If the TRIS bit in the SAI_xCR2 register is cleared, all the High impedance states on the SD output line on Figure 409 and Figure 410 are replaced by a drive with a value of 0. 33.3.13 Error flags The SAI implements the following error flags: • FIFO overrun/underrun • Anticipated frame synchronization detection • Late frame synchronization detection • Codec not ready (AC’97 exclusively) • Wrong clock configuration in master mode. FIFO overrun/underrun (OVRUDR) The FIFO overrun/underrun bit is called OVRUDR in the SAI_xSR register. The overrun or underrun errors share the same bit since an audio block can be either receiver or transmitter and each audio block in a given SAI has its own SAI_xSR register. Overrun When the audio block is configured as receiver, an overrun condition may appear if data are received in an audio frame when the FIFO is full and not able to store the received data. In this case, the received data are lost, the flag OVRUDR in the SAI_xSR register is set and an interrupt is generated if OVRUDRIE bit is set in the SAI_xIM register. The slot number, from which the overrun occurs, is stored internally. No more data will be stored into the FIFO until it becomes free to store new data. When the FIFO has at least one data free, the SAI audio block receiver will store new data (from new audio frame) from the slot number which was stored internally when the overrun condition was detected. This avoids data slot dealignment in the destination memory (refer to Figure 411). RM0385 Rev 7 1169/1709 1188 Serial audio interface (SAI) RM0385 The OVRUDR flag is cleared when COVRUDR bit is set in the SAI_xCLRFR register. Figure 411. Overrun detection error Example: FIFO overrun on Slot 1 Audio frame Audio frame sck data Slot 0 ON Slot 1 ON Slot 1 ON Slot 0 ON Slot 1 ON ... ON Slot n ON FIFO full Data stored again in FIFO Received data discarded OVRUDR COVRUDR = 1 MS192348V2 Underrun An underrun may occur when the audio block in the SAI is a transmitter and the FIFO is empty when data need to be transmitted. If an underrun is detected, the slot number for which the event occurs is stored and MUTE value (00) is sent until the FIFO is ready to transmit the data corresponding to the slot for which the underrun was detected (refer to Figure 412). This avoids desynchronization between the memory pointer and the slot in the audio frame. The underrun event sets the OVRUDR flag in the SAI_xSR register and an interrupt is generated if the OVRUDRIE bit is set in the SAI_xIM register. To clear this flag, set COVRUDR bit in the SAI_xCLRFR register. The underrun event can occur when the audio sub-block is configured as master or slave. Figure 412. FIFO underrun event Example: FIFO underrun on Slot 1 Audio frame Audio frame sck Slot size = data size data SD (output) Slot 0 ON MUTE MUTE MUTE Slot 1 ON ... ON Slot 0 ON FIFO empty OVRUND OVRUND=1 MS192347V2 1170/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Anticipated frame synchronization detection (AFSDET) The AFSDET flag is used only in slave mode. It is never asserted in master mode. It indicates that a frame synchronization (FS) has been detected earlier than expected since the frame length, the frame polarity, the frame offset are defined and known. Anticipated frame detection sets the AFSDET flag in the SAI_xSR register. This detection has no effect on the current audio frame which is not sensitive to the anticipated FS. This means that “parasitic” events on signal FS are flagged without any perturbation of the current audio frame. An interrupt is generated if the AFSDETIE bit is set in the SAI_xIM register. To clear the AFSDET flag, CAFSDET bit must be set in the SAI_xCLRFR register. To resynchronize with the master after an anticipated frame detection error, four steps are required: Note: 1. Disable the SAI block by resetting SAIEN bit in SAI_xCR1 register. To make sure the SAI is disabled, read back the SAIEN bit and check it is set to 0. 2. Flush the FIFO via FFLUS bit in SAI_xCR2 register. 3. Enable again the SAI peripheral (SAIEN bit set to 1). 4. The SAI block will wait for the assertion on FS to restart the synchronization with master. The SAIEN flag is not asserted in AC’97 mode since the SAI audio block acts as a link controller and generates the FS signal even when declared as slave.It has no meaning in SPDIF mode since the FS signal is not used. Late frame synchronization detection The LFSDET flag in the SAI_xSR register can be set only when the SAI audio block operates as a slave. The frame length, the frame polarity and the frame offset configuration are known in register SAI_xFRCR. If the external master does not send the FS signal at the expecting time thus generating the signal too late, the LFSDET flag is set and an interrupt is generated if LFSDETIE bit is set in the SAI_xIM register. The LFSDET flag is cleared when CLFSDET bit is set in the SAI_xCLRFR register. The late frame synchronization detection flag is set when the corresponding error is detected. The SAI needs to be resynchronized with the master (see sequence described in Anticipated frame synchronization detection (AFSDET)). In a noisy environment, glitches on the SCK clock may be wrongly detected by the audio block state machine and shift the SAI data at a wrong frame position. This event can be detected by the SAI and reported as a late frame synchronization detection error. There is no corruption if the external master is not managing the audio data frame transfer in continuous mode, which should not be the case in most applications. In this case, the LFSDET flag will be set. Note: The LFSDET flag is not asserted in AC’97 mode since the SAI audio block acts as a link controller and generates the FS signal even when declared as slave.It has no meaning in SPDIF mode since the signal FS is not used by the protocol. RM0385 Rev 7 1171/1709 1188 Serial audio interface (SAI) RM0385 Codec not ready (CNRDY AC’97) The CNRDY flag in the SAI_xSR register is relevant only if the SAI audio block is configured to operate in AC’97 mode (PRTCFG[1:0] = 10 in the SAI_xCR1 register). If CNRDYIE bit is set in the SAI_xIM register, an interrupt is generated when the CNRDY flag is set. CNRDY is asserted when the Codec is not ready to communicate during the reception of the TAG 0 (slot0) of the AC’97 audio frame. In this case, no data will be automatically stored into the FIFO since the Codec is not ready, until the TAG 0 indicates that the Codec is ready. All the active slots defined in the SAI_xSLOTR register will be captured when the Codec is ready. To clear CNRDY flag, CCNRDY bit must be set in the SAI_xCLRFR register. Wrong clock configuration in master mode (with NODIV = 0) When the audio block operates as a master (MODE[1] = 0) and NODIV bit is equal to 0, the WCKCFG flag is set as soon as the SAI is enabled if the following conditions are met: • (FRL+1) is not a power of 2, and • (FRL+1) is not between 8 and 256. MODE, NODIV, and SAIEN bits belong to SAI_xCR1 register and FRL to SAI_xFRCR register. If WCKCFGIE bit is set, an interrupt is generated when WCKCFG flag is set in the SAI_xSR register. To clear this flag, set CWCKCFG bit in the SAI_xCLRFR register. When WCKCFG bit is set, the audio block is automatically disabled, thus performing a hardware clear of SAIEN bit. 33.3.14 Disabling the SAI The SAI audio block can be disabled at any moment by clearing SAIEN bit in the SAI_xCR1 register. All the already started frames are automatically completed before the SAI is stops working. SAIEN bit remains High until the SAI is completely switched-off at the end of the current audio frame transfer. If an audio block in the SAI operates synchronously with the other one, the one which is the master must be disabled first. 33.3.15 SAI DMA interface To free the CPU and to optimize bus bandwidth, each SAI audio block has an independent DMA interface to read/write from/to the SAI_xDR register (to access the internal FIFO). There is one DMA channel per audio sub-block supporting basic DMA request/acknowledge protocol. To configure the audio sub-block for DMA transfer, set DMAEN bit in the SAI_xCR1 register. The DMA request is managed directly by the FIFO controller depending on the FIFO threshold level (for more details refer to Section 33.3.9: Internal FIFOs). DMA transfer direction is linked to the SAI audio sub-block configuration: 1172/1709 • If the audio block operates as a transmitter, the audio block FIFO controller outputs a DMA request to load the FIFO with data written in the SAI_xDR register. • If the audio block is operates as a receiver, the DMA request is related to read operations from the SAI_xDR register. RM0385 Rev 7 RM0385 Serial audio interface (SAI) Follow the sequence below to configure the SAI interface in DMA mode: 1. Configure SAI and FIFO threshold levels to specify when the DMA request will be launched. 2. Configure SAI DMA channel. 3. Enable the DMA. 4. Enable the SAI interface. Note: Before configuring the SAI block, the SAI DMA channel must be disabled. 33.4 SAI interrupts The SAI supports 7 interrupt sources as shown in Table 212. Table 212. SAI interrupt sources Interrupt source Interrupt group Audio block mode Interrupt enable Interrupt clear Depends on: FREQ FREQ – FIFO threshold setting (FLVL bits in SAI_xCR2) FREQIE in SAI_xIM – Communication direction (transmitter register or receiver) Master or slave Receiver or transmitter For more details refer to Section 33.3.9: Internal FIFOs OVRUDR ERROR Master or slave Receiver or transmitter OVRUDRIE in SAI_xIM register COVRUDR = 1 in SAI_xCLRFR register AFSDET ERROR Slave (not used in AC’97 mode and SPDIF mode) AFSDETIE in SAI_xIM register CAFSDET = 1 in SAI_xCLRFR register LFSDET ERROR Slave (not used in AC’97 mode and SPDIF mode) LFSDETIE in SAI_xIM register CLFSDET = 1 in SAI_xCLRFR register CNRDY ERROR Slave (only in AC’97 mode) CNRDYIE in SAI_xIM register CCNRDY = 1 in SAI_xCLRFR register MUTEDET MUTE Master or slave Receiver mode only MUTEDETIE in SAI_xIM register CMUTEDET = 1 in SAI_xCLRFR register WCKCFG ERROR Master with NODIV = 0 in SAI_xCR1 register WCKCFGIE in SAI_xIM register CWCKCFG = 1 in SAI_xCLRFR register Follow the sequence below to enable an interrupt: 1. Disable SAI interrupt. 2. Configure SAI. 3. Configure SAI interrupt source. 4. Enable SAI. RM0385 Rev 7 1173/1709 1188 Serial audio interface (SAI) RM0385 33.5 SAI registers 33.5.1 Global configuration register (SAI_GCR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SYNCOUT[1:0] rw rw SYNCIN[1:0] rw rw Bits 31:6 Reserved, must be kept at reset value. Bits 5:4 SYNCOUT[1:0]: Synchronization outputs These bits are set and cleared by software. 00: No synchronization output signals. SYNCOUT[1:0] should be configured as “No synchronization output signals” when audio block is configured as SPDIF 01: Block A used for further synchronization for others SAI 10: Block B used for further synchronization for others SAI 11: Reserved. These bits must be set when both audio block (A and B) are disabled. Bits 3:2 Reserved, must be kept at reset value. Bits 1:0 SYNCIN[1:0]: Synchronization inputs These bits are set and cleared by software. Refer to Table 207: External synchronization selection for information on how to program this field. These bits must be set when both audio blocks (A and B) are disabled. They are meaningful if one of the two audio blocks is defined to operate in synchronous mode with an external SAI (SYNCEN[1:0] = 10 in SAI_ACR1 or in SAI_BCR1 registers). 33.5.2 Configuration register 1 (SAI_ACR1 / SAI_BCR1) Address offset: Block A: 0x004 Address offset: Block B: 0x024 Reset value: 0x0000 0040 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 Res. Res. OUTD MONO RIV rw 1174/1709 rw SYNCEN[1:0] rw rw 23 rw 21 20 MCKDIV[3:0] 19 18 NODIV Res. rw rw rw rw rw 7 6 5 4 3 CKSTR LSBFIRST rw 22 DS[2:0] rw rw RM0385 Rev 7 Res. rw 2 17 16 DMAEN SAIEN rw rw 1 0 PRTCFG[1:0] MODE[1:0] rw rw rw rw RM0385 Serial audio interface (SAI) Bits 31:24 Reserved, must be kept at reset value. Bits 23:20 MCKDIV[3:0]: Master clock divider These bits are set and cleared by software. These bits are meaningless when the audio block operates in slave mode. They have to be configured when the audio block is disabled. 0000: Divides by 1 the master clock input. Others: the master clock frequency is calculated accordingly to the following formula: F sai_x_ker_ck F SCK_x = -------------------------------------MCKDIV × 2 Bit 19 NODIV: No divider This bit is set and cleared by software. 0: Master clock generator is enabled 1: No divider used in the clock generator (in this case Master Clock Divider bit has no effect) Bit 18 Reserved, must be kept at reset value. Bit 17 DMAEN: DMA enable This bit is set and cleared by software. 0: DMA disabled 1: DMA enabled Note: Since the audio block defaults to operate as a transmitter after reset, the MODE[1:0] bits must be configured before setting DMAEN to avoid a DMA request in receiver mode. Bit 16 SAIEN: Audio block enable This bit is set by software. To switch off the audio block, the application software must program this bit to 0 and poll the bit till it reads back 0, meaning that the block is completely disabled. Before setting this bit to 1, check that it is set to 0, otherwise the enable command will not be taken into account. This bit allows controlling the state of the SAI audio block. If it is disabled when an audio frame transfer is ongoing, the ongoing transfer completes and the cell is fully disabled at the end of this audio frame transfer. 0: SAI audio block disabled 1: SAI audio block enabled. Note: When the SAI block (A or B) is configured in master mode, the clock must be present on the SAI block input before setting SAIEN bit. Bits 15:14 Reserved, must be kept at reset value. Bit 13 OUTDRIV: Output drive This bit is set and cleared by software. 0: Audio block output driven when SAIEN is set 1: Audio block output driven immediately after the setting of this bit. Note: This bit has to be set before enabling the audio block and after the audio block configuration. Bit 12 MONO: Mono mode This bit is set and cleared by software. It is meaningful only when the number of slots is equal to 2. When the mono mode is selected, slot 0 data are duplicated on slot 1 when the audio block operates as a transmitter. In reception mode, the slot1 is discarded and only the data received from slot 0 are stored. Refer to Section : Mono/stereo mode for more details. 0: Stereo mode 1: Mono mode. RM0385 Rev 7 1175/1709 1188 Serial audio interface (SAI) RM0385 Bits 11:10 SYNCEN[1:0]: Synchronization enable These bits are set and cleared by software. They must be configured when the audio sub-block is disabled. 00: audio sub-block in asynchronous mode. 01: audio sub-block is synchronous with the other internal audio sub-block. In this case, the audio sub-block must be configured in slave mode 10: audio sub-block is synchronous with an external SAI embedded peripheral. In this case the audio sub-block should be configured in Slave mode. 11: Reserved Note: The audio sub-block should be configured as asynchronous when SPDIF mode is enabled. Bit 9 CKSTR: Clock strobing edge This bit is set and cleared by software. It must be configured when the audio block is disabled. This bit has no meaning in SPDIF audio protocol. 0: Signals generated by the SAI change on SCK rising edge, while signals received by the SAI are sampled on the SCK falling edge. 1: Signals generated by the SAI change on SCK falling edge, while signals received by the SAI are sampled on the SCK rising edge. Bit 8 LSBFIRST: Least significant bit first This bit is set and cleared by software. It must be configured when the audio block is disabled. This bit has no meaning in AC’97 audio protocol since AC’97 data are always transferred with the MSB first. This bit has no meaning in SPDIF audio protocol since in SPDIF data are always transferred with LSB first. 0: Data are transferred with MSB first 1: Data are transferred with LSB first Bits 7:5 DS[2:0]: Data size These bits are set and cleared by software. These bits are ignored when the SPDIF protocols are selected (bit PRTCFG[1:0]), because the frame and the data size are fixed in such case. When the companding mode is selected through COMP[1:0] bits, DS[1:0] are ignored since the data size is fixed to 8 bits by the algorithm. These bits must be configured when the audio block is disabled. 000: Reserved 001: Reserved 010: 8 bits 011: 10 bits 100: 16 bits 101: 20 bits 110: 24 bits 111: 32 bits 1176/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Bit 4 Reserved, must be kept at reset value. Bits 3:2 PRTCFG[1:0]: Protocol configuration These bits are set and cleared by software. These bits have to be configured when the audio block is disabled. 00: Free protocol. Free protocol allows to use the powerful configuration of the audio block to address a specific audio protocol (such as I2S, LSB/MSB justified, TDM, PCM/DSP...) by setting most of the configuration register bits as well as frame configuration register. 01: SPDIF protocol 10: AC’97 protocol 11: Reserved Bits 1:0 MODE[1:0]: SAIx audio block mode These bits are set and cleared by software. They must be configured when SAIx audio block is disabled. 00: Master transmitter 01: Master receiver 10: Slave transmitter 11: Slave receiver Note: When the audio block is configured in SPDIF mode, the master transmitter mode is forced (MODE[1:0] = 00). In Master transmitter mode, the audio block starts generating the FS and the clocks immediately. 33.5.3 Configuration register 2 (SAI_ACR2 / SAI_BCR2) Address offset: Block A: 0x008 Address offset: Block B: 0x028 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 COMP[1:0] rw rw CPL rw MUTECNT[5:0] rw rw rw rw rw MUTE VAL MUTE TRIS F FLUSH rw rw rw w rw RM0385 Rev 7 FTH[2:0] rw rw rw 1177/1709 1188 Serial audio interface (SAI) RM0385 Bits 31:16 Reserved, must be kept at reset value. Bits 15:14 COMP[1:0]: Companding mode. These bits are set and cleared by software. The µ-Law and the A-Law log are a part of the CCITT G.711 recommendation, the type of complement that will be used depends on CPL bit. The data expansion or data compression are determined by the state of bit MODE[0]. The data compression is applied if the audio block is configured as a transmitter. The data expansion is automatically applied when the audio block is configured as a receiver. Refer to Section : Companding mode for more details. 00: No companding algorithm 01: Reserved. 10: µ-Law algorithm 11: A-Law algorithm Note: Companding mode is applicable only when TDM is selected. Bit 13 CPL: Complement bit. This bit is set and cleared by software. It defines the type of complement to be used for companding mode 0: 1’s complement representation. 1: 2’s complement representation. Note: This bit has effect only when the companding mode is µ-Law algorithm or A-Law algorithm. Bits 12:7 MUTECNT[5:0]: Mute counter. These bits are set and cleared by software. They are used only in reception mode. The value set in these bits is compared to the number of consecutive mute frames detected in reception. When the number of mute frames is equal to this value, the flag MUTEDET will be set and an interrupt will be generated if bit MUTEDETIE is set. Refer to Section : Mute mode for more details. Bit 6 MUTEVAL: Mute value. This bit is set and cleared by software.It must be written before enabling the audio block: SAIEN. This bit is meaningful only when the audio block operates as a transmitter, the number of slots is lower or equal to 2 and the MUTE bit is set. If more slots are declared, the bit value sent during the transmission in mute mode is equal to 0, whatever the value of MUTEVAL. if the number of slot is lower or equal to 2 and MUTEVAL = 1, the MUTE value transmitted for each slot is the one sent during the previous frame. Refer to Section : Mute mode for more details. 0: Bit value 0 is sent during the mute mode. 1: Last values are sent during the mute mode. Note: This bit is meaningless and should not be used for SPDIF audio blocks. Bit 5 MUTE: Mute. This bit is set and cleared by software. It is meaningful only when the audio block operates as a transmitter. The MUTE value is linked to value of MUTEVAL if the number of slots is lower or equal to 2, or equal to 0 if it is greater than 2. Refer to Section : Mute mode for more details. 0: No mute mode. 1: Mute mode enabled. Note: This bit is meaningless and should not be used for SPDIF audio blocks. 1178/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Bit 4 TRIS: Tristate management on data line. This bit is set and cleared by software. It is meaningful only if the audio block is configured as a transmitter. This bit is not used when the audio block is configured in SPDIF mode. It should be configured when SAI is disabled. Refer to Section : Output data line management on an inactive slot for more details. 0: SD output line is still driven by the SAI when a slot is inactive. 1: SD output line is released (HI-Z) at the end of the last data bit of the last active slot if the next one is inactive. Bit 3 FFLUSH: FIFO flush. This bit is set by software. It is always read as 0. This bit should be configured when the SAI is disabled. 0: No FIFO flush. 1: FIFO flush. Programming this bit to 1 triggers the FIFO Flush. All the internal FIFO pointers (read and write) are cleared. In this case data still present in the FIFO are lost (no more transmission or received data lost). Before flushing, SAI DMA stream/interruption must be disabled Bits 2:0 FTH[2:0]: FIFO threshold. This bit is set and cleared by software. 000: FIFO empty 001: ¼ FIFO 010: ½ FIFO 011: ¾ FIFO 100: FIFO full 101: Reserved 110: Reserved 111: Reserved 33.5.4 Frame configuration register (SAI_AFRCR / SAI_BFRCR) Address offset: Block A: 0x00C Address offset: Block B: 0x02C Reset value: 0x0000 0007 Note: This register has no meaning in AC’97 and SPDIF audio protocol 31 30 29 28 27 26 25 24 23 22 21 20 19 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw Res. FSALL[6:0] rw rw rw rw rw 18 17 16 FSOFF FSPOL FSDEF FRL[7:0] rw rw rw rw RM0385 Rev 7 rw rw 1179/1709 1188 Serial audio interface (SAI) RM0385 Bits 31:19 Reserved, must be kept at reset value. Bit 18 FSOFF: Frame synchronization offset. This bit is set and cleared by software. It is meaningless and is not used in AC’97 or SPDIF audio block configuration. This bit must be configured when the audio block is disabled. 0: FS is asserted on the first bit of the slot 0. 1: FS is asserted one bit before the first bit of the slot 0. Bit 17 FSPOL: Frame synchronization polarity. This bit is set and cleared by software. It is used to configure the level of the start of frame on the FS signal. It is meaningless and is not used in AC’97 or SPDIF audio block configuration. This bit must be configured when the audio block is disabled. 0: FS is active low (falling edge) 1: FS is active high (rising edge) Bit 16 FSDEF: Frame synchronization definition. This bit is set and cleared by software. 0: FS signal is a start frame signal 1: FS signal is a start of frame signal + channel side identification When the bit is set, the number of slots defined in the SAI_xSLOTR register has to be even. It means that half of this number of slots will be dedicated to the left channel and the other slots for the right channel (e.g: this bit has to be set for I2S or MSB/LSB-justified protocols...). This bit is meaningless and is not used in AC’97 or SPDIF audio block configuration. It must be configured when the audio block is disabled. Bit 15 Reserved, must be kept at reset value. Bits 14:8 FSALL[6:0]: Frame synchronization active level length. These bits are set and cleared by software. They specify the length in number of bit clock (SCK) + 1 (FSALL[6:0] + 1) of the active level of the FS signal in the audio frame These bits are meaningless and are not used in AC’97 or SPDIF audio block configuration. They must be configured when the audio block is disabled. Bits 7:0 FRL[7:0]: Frame length. These bits are set and cleared by software. They define the audio frame length expressed in number of SCK clock cycles: the number of bits in the frame is equal to FRL[7:0] + 1. The minimum number of bits to transfer in an audio frame must be equal to 8, otherwise the audio block will behaves in an unexpected way. This is the case when the data size is 8 bits and only one slot 0 is defined in NBSLOT[4:0] of SAI_xSLOTR register (NBSLOT[3:0] = 0000). In master mode, if the master clock (available on MCLK_x pin) is used, the frame length should be aligned with a number equal to a power of 2, ranging from 8 to 256. When the master clock is not used (NODIV = 1), it is recommended to program the frame length to an value ranging from 8 to 256. These bits are meaningless and are not used in AC’97 or SPDIF audio block configuration. 1180/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) 33.5.5 Slot register (SAI_ASLOTR / SAI_BSLOTR) Address offset: Block A: 0x010 Address offset: Block B: 0x030 Reset value: 0x0000 0000 Note: 31 This register has no meaning in AC’97 and SPDIF audio protocol 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 SLOTEN[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. rw rw NBSLOT[3:0] rw rw rw SLOTSZ[1:0] rw rw rw Res. FBOFF[4:0] rw rw rw Bits 31:16 SLOTEN[15:0]: Slot enable. These bits are set and cleared by software. Each SLOTEN bit corresponds to a slot position from 0 to 15 (maximum 16 slots). 0: Inactive slot. 1: Active slot. The slot must be enabled when the audio block is disabled. They are ignored in AC’97 or SPDIF mode. Bits 15:12 Reserved, must be kept at reset value. Bits 11:8 NBSLOT[3:0]: Number of slots in an audio frame. These bits are set and cleared by software. The value set in this bitfield represents the number of slots + 1 in the audio frame (including the number of inactive slots). The maximum number of slots is 16. The number of slots should be even if FSDEF bit in the SAI_xFRCR register is set. The number of slots must be configured when the audio block is disabled. They are ignored in AC’97 or SPDIF mode. RM0385 Rev 7 1181/1709 1188 Serial audio interface (SAI) RM0385 Bits 7:6 SLOTSZ[1:0]: Slot size This bits is set and cleared by software. The slot size must be higher or equal to the data size. If this condition is not respected, the behavior of the SAI will be undetermined. Refer to Section : Output data line management on an inactive slot for information on how to drive SD line. These bits must be set when the audio block is disabled. They are ignored in AC’97 or SPDIF mode. 00: The slot size is equivalent to the data size (specified in DS[3:0] in the SAI_xCR1 register). 01: 16-bit 10: 32-bit 11: Reserved Bit 5 Reserved, must be kept at reset value. Bits 4:0 FBOFF[4:0]: First bit offset These bits are set and cleared by software. The value set in this bitfield defines the position of the first data transfer bit in the slot. It represents an offset value. In transmission mode, the bits outside the data field are forced to 0. In reception mode, the extra received bits are discarded. These bits must be set when the audio block is disabled. They are ignored in AC’97 or SPDIF mode. 33.5.6 Interrupt mask register 2 (SAI_AIM / SAI_BIM) Address offset: block A: 0x014 Address offset: block B: 0x034 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. LFSDET AFSDET CNRDY FREQ WCKCFG MUTEDET OVRUDR IE IE IE IE IE IE IE rw rw rw rw rw rw rw Bits 31:7 Reserved, must be kept at reset value. Bit 6 LFSDETIE: Late frame synchronization detection interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt will be generated if the LFSDET bit is set in the SAI_xSR register. This bit is meaningless in AC’97, SPDIF mode or when the audio block operates as a master. Bit 5 AFSDETIE: Anticipated frame synchronization detection interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt will be generated if the AFSDET bit in the SAI_xSR register is set. This bit is meaningless in AC’97, SPDIF mode or when the audio block operates as a master. 1182/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Bit 4 CNRDYIE: Codec not ready interrupt enable (AC’97). This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When the interrupt is enabled, the audio block detects in the slot 0 (tag0) of the AC’97 frame if the Codec connected to this line is ready or not. If it is not ready, the CNRDY flag in the SAI_xSR register is set and an interruption i generated. This bit has a meaning only if the AC’97 mode is selected through PRTCFG[1:0] bits and the audio block is operates as a receiver. Bit 3 FREQIE: FIFO request interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt is generated if the FREQ bit in the SAI_xSR register is set. Since the audio block defaults to operate as a transmitter after reset, the MODE bit must be configured before setting FREQIE to avoid a parasitic interruption in receiver mode, Bit 2 WCKCFGIE: Wrong clock configuration interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled This bit is taken into account only if the audio block is configured as a master (MODE[1] = 0) and NODIV = 0. It generates an interrupt if the WCKCFG flag in the SAI_xSR register is set. Note: This bit is used only in TDM mode and is meaningless in other modes. Bit 1 MUTEDETIE: Mute detection interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt is generated if the MUTEDET bit in the SAI_xSR register is set. This bit has a meaning only if the audio block is configured in receiver mode. Bit 0 OVRUDRIE: Overrun/underrun interrupt enable. This bit is set and cleared by software. 0: Interrupt is disabled 1: Interrupt is enabled When this bit is set, an interrupt is generated if the OVRUDR bit in the SAI_xSR register is set. 33.5.7 Status register (SAI_ASR / SAI_BSR) Address offset: block A: 0x018 Address offset: block B: 0x038 Reset value: 0x0000 0008 31 30 29 28 27 26 25 24 23 22 21 20 19 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 Res. Res. Res. Res. Res. Res. Res. Res. Res. LFSDET AFSDET CNRDY r r RM0385 Rev 7 r FREQ r 18 17 16 FLVL[2:0] r r r 2 1 0 WCKCFG MUTEDET OVRUDR r r r 1183/1709 1188 Serial audio interface (SAI) RM0385 Bits 31:19 Reserved, must be kept at reset value. Bits 18:16 FLVL[2:0]: FIFO level threshold. This bit is read only. The FIFO level threshold flag is managed only by hardware and its setting depends on SAI block configuration (transmitter or receiver mode). If the SAI block is configured as transmitter: 000: FIFO empty 001: FIFO <= ¼ but not empty 010: ¼ < FIFO <= ½ 011: ½ < FIFO <= ¾ 100: ¾ < FIFO but not full 101: FIFO full If SAI block is configured as receiver: 000: FIFO empty 001: FIFO < ¼ but not empty 010: ¼ <= FIFO < ½ 011: ½ =< FIFO < ¾ 100: ¾ =< FIFO but not full 101: FIFO full Bits 15:7 Reserved, must be kept at reset value. Bit 6 LFSDET: Late frame synchronization detection. This bit is read only. 0: No error. 1: Frame synchronization signal is not present at the right time. This flag can be set only if the audio block is configured in slave mode. It is not used in AC’97 or SPDIF mode. It can generate an interrupt if LFSDETIE bit is set in the SAI_xIM register. This flag is cleared when the software sets bit CLFSDET in SAI_xCLRFR register Bit 5 AFSDET: Anticipated frame synchronization detection. This bit is read only. 0: No error. 1: Frame synchronization signal is detected earlier than expected. This flag can be set only if the audio block is configured in slave mode. It is not used in AC’97or SPDIF mode. It can generate an interrupt if AFSDETIE bit is set in SAI_xIM register. This flag is cleared when the software sets CAFSDET bit in SAI_xCLRFR register. Bit 4 CNRDY: Codec not ready. This bit is read only. 0: External AC’97 Codec is ready 1: External AC’97 Codec is not ready This bit is used only when the AC’97 audio protocol is selected in the SAI_xCR1 register and configured in receiver mode. It can generate an interrupt if CNRDYIE bit is set in SAI_xIM register. This flag is cleared when the software sets CCNRDY bit in SAI_xCLRFR register. 1184/1709 RM0385 Rev 7 RM0385 Serial audio interface (SAI) Bit 3 FREQ: FIFO request. This bit is read only. 0: No FIFO request. 1: FIFO request to read or to write the SAI_xDR. The request depends on the audio block configuration: – If the block is configured in transmission mode, the FIFO request is related to a write request operation in the SAI_xDR. – If the block configured in reception, the FIFO request related to a read request operation from the SAI_xDR. This flag can generate an interrupt if FREQIE bit is set in SAI_xIM register. Bit 2 WCKCFG: Wrong clock configuration flag. This bit is read only. 0: Clock configuration is correct 1: Clock configuration does not respect the rule concerning the frame length specification defined in Section 33.3.6: Frame synchronization (configuration of FRL[7:0] bit in the SAI_xFRCR register) This bit is used only when the audio block operates in master mode (MODE[1] = 0) and NODIV = 0. It can generate an interrupt if WCKCFGIE bit is set in SAI_xIM register. This flag is cleared when the software sets CWCKCFG bit in SAI_xCLRFR register. Bit 1 MUTEDET: Mute detection. This bit is read only. 0: No MUTE detection on the SD input line 1: MUTE value detected on the SD input line (0 value) for a specified number of consecutive audio frame This flag is set if consecutive 0 values are received in each slot of a given audio frame and for a consecutive number of audio frames (set in the MUTECNT bit in the SAI_xCR2 register). It can generate an interrupt if MUTEDETIE bit is set in SAI_xIM register. This flag is cleared when the software sets bit CMUTEDET in the SAI_xCLRFR register. Bit 0 OVRUDR: Overrun / underrun. This bit is read only. 0: No overrun/underrun error. 1: Overrun/underrun error detection. The overrun and underrun conditions can occur only when the audio block is configured as a receiver and a transmitter, respectively. It can generate an interrupt if OVRUDRIE bit is set in SAI_xIM register. This flag is cleared when the software sets COVRUDR bit in SAI_xCLRFR register. 33.5.8 Clear flag register (SAI_ACLRFR / SAI_BCLRFR) Address offset: block A: 0x01C Address offset: block B: 0x03C Reset value: 0x0000 0000 31 Res. 15 Res. 30 29 28 27 26 Res. Res. Res. Res. Res. 14 13 12 11 10 Res. Res. Res. Res. Res. 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. CLFSDET CAFSDET w w RM0385 Rev 7 CCNRDY w Res. CMUTE COVRUD CWCKCFG DET R w w w 1185/1709 1188 Serial audio interface (SAI) RM0385 Bits 31:7 Reserved, must be kept at reset value. Bit 6 CLFSDET: Clear late frame synchronization detection flag. This bit is write only. Programming this bit to 1 clears the LFSDET flag in the SAI_xSR register. This bit is not used in AC’97or SPDIF mode Reading this bit always returns the value 0. Bit 5 CAFSDET: Clear anticipated frame synchronization detection flag. This bit is write only. Programming this bit to 1 clears the AFSDET flag in the SAI_xSR register. It is not used in AC’97or SPDIF mode. Reading this bit always returns the value 0. Bit 4 CCNRDY: Clear Codec not ready flag. This bit is write only. Programming this bit to 1 clears the CNRDY flag in the SAI_xSR register. This bit is used only when the AC’97 audio protocol is selected in the SAI_xCR1 register. Reading this bit always returns the value 0. Bit 3 Reserved, must be kept at reset value. Bit 2 CWCKCFG: Clear wrong clock configuration flag. This bit is write only. Programming this bit to 1 clears the WCKCFG flag in the SAI_xSR register. This bit is used only when the audio block is set as master (MODE[1] = 0) and NODIV = 0 in the SAI_xCR1 register. Reading this bit always returns the value 0. Bit 1 CMUTEDET: Mute detection flag. This bit is write only. Programming this bit to 1 clears the MUTEDET flag in the SAI_xSR register. Reading this bit always returns the value 0. Bit 0 COVRUDR: Clear overrun / underrun. This bit is write only. Programming this bit to 1 clears the OVRUDR flag in the SAI_xSR register. Reading this bit always returns the value 0. 33.5.9 Data register (SAI_ADR / SAI_BDR) Address offset: block A: 0x020 Address offset: block B: 0x040 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DATA[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATA[15:0] rw 1186/1709 rw rw rw rw rw rw rw rw RM0385 Rev 7 RM0385 Serial audio interface (SAI) Bits 31:0 DATA[31:0]: Data A write to this register loads the FIFO provided the FIFO is not full. A read from this register empties the FIFO if the FIFO is not empty. RM0385 Rev 7 1187/1709 1188 0x001C or 0x003C 0x0020 or 0x0040 1188/1709 SAI_xCLRFR Reset value 0 0 0 0 0 0 0 0 0 0 0 0 Reset value SAI_xDR 0 0 RM0385 Rev 7 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2 on page 68 for the register boundary addresses. 0 Reset value 0 OVRUDRIE 0 0 0 DATA[31:0] 0 0 0 0 0 0 OVRUDR TRIS FFLUS 0 0 0 0 0 0 FTH MUTE 0 0 0 1 0 0 OVRUDR MUTEDET 0 MUTEDET 0 MUTEDET FREQIE WCKCFG 0 FREQ FSALL[6:0] WCKCFG LSBFIRST 0 MODE[1:0] PRTCFG[1:0] Res. DS[2:0] CKSTR 1 MUTE VAL 0 Res. MONO SYNCEN[1:0] OUTDRIV Res. 0 WCKCFG CNRDYIE CPL COMP[1:0] SAIEN Res. Res. DMAEN Res. NODIV Res. 0 Res. Res. MCKDIV[3:0] Reset value CNRDY Reset value CNRDY 0 AFSDETIE 0 CAFSDET SLOTSZ[1:0} 0 LFSDET Res. MUTECN[5:0] LFSDET 0 Res. 0 0 Res. 0 Res. NBSLOT[3:0] Res. Res. Res. Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. Res. Res. Res. FSDEF 0 0 AFSDET 0 0 0 LFSDET 0 0 Res. SAI_xIM 0 0 Res. 0 0 0 Res. 0 0 Res. 0 Res. Res. SLOTEN[15:0] 0 Res. 0 Res. FSPOL 0 Res. 0 Res. FSOFF 0 0 Res. 0 Res. Res. 0 0 Res. 0 Res. Res. 0 Res. 0 Res. Res. Reset value Res. 0 Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Reset value Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. 0 FLVL[2:0] 0 Res. Res. Res. 0 Res. Res. Res. Res. Res. 0 Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. Reset value Res. Res. Res. Res. Res. Res. SAI_xSLOTR Res. Res. SAI_xSR Res. 0x0018 or 0x0038 SAI_xFRCR Res. 0x0014 or 0x0034 SAI_xCR2 Res. 0x0010 or 0x0030 SAI_xCR1 Res. 0x000C or 0x002C Res. 0x0008 or 0x0028 Res. 0x0004 or 0x0024 0 0 SYNCIN[1:0] Res. Res.. SYNCOUT[1:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SAI_GCR Res. 0x0000 Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. 33.5.10 Res. Serial audio interface (SAI) RM0385 SAI register map The following table summarizes the SAI registers. Table 213. SAI register map and reset values 0 0 0 0 FRL[7:0] 0 0 0 1 1 1 FBOFF[4:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 SPDIF receiver interface (SPDIFRX) 34 SPDIF receiver interface (SPDIFRX) 34.1 SPDIFRX interface introduction The SPDIFRX interface handles S/PDIF audio protocol. 34.2 34.3 SPDIFRX main features • Up to 4 inputs available • Automatic symbol rate detection • Maximum symbol rate: 12.288 MHz • Stereo stream from 8 to 192 kHz supported • Supports Audio IEC-60958 and IEC-61937, consumer applications • SOPDs B, M and W insertion inside S/PDIF flow • Parity bit management • Communication using DMA for audio samples • Communication using DMA for control and user channel information • Interrupt capabilities SPDIFRX functional description The SPDIFRX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS. The receiver provides all the necessary features to detect the symbol rate, and decode the incoming data. It is possible to use a dedicated path for the user and channel information in order to ease the interface handling. Figure 413 shows a simplified block diagram. The SPDIFRX_DC block is responsible of the decoding of the S/PDIF stream received from SPDIFRX_IN[4:1] inputs. This block re-sample the incoming signal, decode the manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the REG_IF part, decoded data, and associated status flags. This peripheral can be fully controlled via the APB1 bus, and can handle two DMA channels: • A DMA channel dedicated to the transfer of audio samples • A DMA channel dedicated to the transfer of IEC60958 channel status and user information Interrupt services are also available either as an alternative function to the DMA, or for signaling error or key status of the peripheral. The SPDIFRX also offers a signal named spdifrx_frame_sync, which toggles every time that a sub-frame’s preamble is detected. So the duty cycle will be 50%, and the frequency equal to the frame rate. This signal can be connected to timer events, in order to compute frequency drift. RM0385 Rev 7 1189/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 Figure 413. SPDIFRX block diagram SPDIFRX SPDIFRX_CLK SPDIFRX_DC SPDIFRX_SR SPDIFRX_IFCR SPDIFRX_IN[1] SPDIFRX_IN[2] ... SPDIFRX_FE ctrl ch. SPDIFRX_CSR Re-sync & Edge detection SYNC SPDIFRX_IMR SPDIFRX_DEC SPDIFRX_SEQ 32-bit APB1 bus SPDIFRX_CR Biphase and transition decoder RX_BUF 32 bits data SPDIFRX_DR SPDIF data packing and sequencer REG_IF PCLK1 SPDIFRX_IN[n] (1) SPDIFRX_DIR SPDIFRX_IRQ IRQ_IF DMA_SPDIFRX_DT spdifrx_frame_sync DMA_IF DMA_SPDIFRX_CS PCLK1 clock domain SPDIFRX_CLK clock domain MSv35927V2 1. ‘n’ is fixed to 4. 34.3.1 S/PDIF protocol (IEC-60958) S/PDIF block A S/PDIF frame is composed of two sub-frames (see Figure 415). Each sub-frame contains 32 bits (or time slots): • Bits 0 to 3 carry one of the synchronization preambles • Bits 4 to 27 carry the audio sample word in linear 2's complement representation. The most significant bit (MSB) is carried by bit 27. When a 20-bit coding range is used, bits 8 to 27 carry the audio sample word with the LSB in bit 8. • Bit 28 (validity bit “V”) indicates if the data is valid (for converting it to analog for example) • Bit 29 (user data bit “U”) carries the user data information like the number of tracks of a Compact Disk. • Bit 30 (channel status bit “C”) carries the channel status information like sample rate and protection against copy. • Bit 31 (parity bit “P”) carries a parity bit such that bits 4 to 31 inclusive carry an even number of ones and an even number of zeroes (even parity). Figure 414. S/PDIF Sub-Frame Format 0 3 Sync Preamble 4 5 6 7 D0 D1 D2 D3 25 26 27 28 29 30 31 D21 D22 D23 V U C P LSb MSb Synchronization (type B,M or W) Audio sample, up to 24 bits Status bits 28 information bits MSv35981V1 1190/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) For linear coded audio applications, the first sub-frame (left or “A” channel in stereophonic operation and primary channel in monophonic operation) normally starts with preamble “M”. However, the preamble changes to preamble “B” once every 192 frames to identify the start of the block structure used to organize the channel status and user information. The second sub-frame (right or “B” channel in stereophonic operation and secondary channel in monophonic operation) always starts with preamble “W”. A S/PDIF block contains 192 pairs of sub-frames of 32 bits. Figure 415. S/PDIF block format X M Y Ch A W Z Ch B B Y Ch A W X Ch B M Y Ch A W X Ch B M Y Ch A W Z Ch B B Y Ch A Ch B W Sub-frame Sub-frame Frame 191 Frame 0 Frame 1 Frame 191 Start of block Frame 0 Start of block NOTE For historical reasons preambles "B", "M" and "W" are, for use in professional applications, referred to as "Z", "X" and "Y", respectively. MSv35923V1 Synchronization preambles The preambles patterns are inverted or not according to the previous half-bit value. This previous half-bit value is the level of the line before enabling a transfer for the first “B” preamble of the first frame. For the others preambles, this previous half-bit value is the second half-bit of the parity bit of the previous sub-frame. The preambles patterns B, M and W are described in the Figure 416. Figure 416. S/PDIF Preambles 0 1 UI 1 2 UI 3 UI 2 4 UI 5 UI 3 6 UI 7 UI 8 UI Previous half-bit = 0 Preamble “B” Previous half-bit = 1 Lack of transitions ! Previous half-bit = 0 Preamble “M” Previous half-bit = 1 Lack of transitions ! Previous half-bit = 0 Preamble “W” Previous half-bit = 1 Lack of transitions ! Symbol boundary MSv35982V1 RM0385 Rev 7 1191/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 Coding of information bits In order to minimize the DC component value on the transmission line, and to facilitate clock recovery from the data stream, bits 4 to 31 are encoded in biphase-mark. Each bit to be transmitted is represented by a symbol comprising two consecutive binary states. The first state of a symbol is always different from the second state of the previous symbol. The second state of the symbol is identical to the first if the bit to be transmitted is logical 0. However, it is different if the bit is logical 1. These states are named “UI” (Unit Interval) in the IEC-60958 specification. The 24 data bits are transferred LSB first. Figure 417. Channel coding example 1 UI 2 UI 3 UI 4 UI 5 UI 6 UI 7 UI 8 UI 9 UI 10 UI 11 UI 12 UI 1 2 3 4 5 6 1 0 1 1 0 0 13 UI 14 UI 7 Bit Clock Source coding Channel coding (Biphase-Mark) BitStream Biphase-Mark Coded MSv35921V1 34.3.2 SPDIFRX decoder (SPDIFRX_DC) Main principle The technique used by the SPDIFRX in order to decode the S/PDIF stream is based on the measurement of the time interval between two consecutive edges. Three kinds of time intervals may be found into an S/PDIF stream: • The long time interval, having a duration of 3 x UI, noted TL. It appears only during preambles. • The medium time interval, having a duration of 2 x UI, noted TM. It appears both in some preambles or into the information field. • The short time interval, having a duration of 1 x UI, noted TS. It appears both in some preambles or into the information field. The SPDIFRX_DC block is responsible of the decoding of the received S/PDIF stream. It takes care of the following functions: 1192/1709 • Resampling and filtering of the incoming signal • Estimation of the time-intervals • Estimation of the symbol rate and synchronization • Decoding of the serial data, and check of integrity • Detection of the block, and sub-frame preambles • Continuous tracking of the symbol rate RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) Figure 418 gives a detailed view of the SPDIFRX decoder. Figure 418. SPDIFRX decoder SPDIFRX_DC SPDIFRX_SEQ transition_pulse SPDIFRX_CLK transition_width_count TRCNT (13 bits) 13 SPDIFRX_DEC SPDIFRX_IN[1] ... SPDIFRX_IN[n] Noise filtering & Edge detection Longest & shortest transition detector MAX_CNT Transition preamble_info coder & trans_info MIN_CNT Preamble detector data_valid Biphase decoder RX_BUF Data Packing data data SYNC SPDIFRX_FE ctrl_ch. WIDTH24 WIDTH40 FINE SYNC transition_pulse MSv35983V2 Noise filtering & rising/falling edge detection The S/PDIF signal received on the selected SPDIFRX_IN is re-sampled using the SPDIFRX_CLK clock (acquisition clock). A simple filtering is applied in order cancel spurs. This is performed by the stage detecting the edge transitions. The edge transitions are detected as follow: • A rising edge is detected when the sequence 0 followed by two 1 is sampled. • A falling edge is detected when the sequence 1 followed by two 0 is sampled. • After a rising edge, a falling edge sequence is expected. • After a falling edge, a rising edge sequence is expected. Figure 419. Noise filtering and edge detection S1 S2 Glitch !! S3 S4 SPDIFRX_IN[n:1] SPDIFRX_CLK 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 resampled input filtered input transition_pulse MSv35926V2 Longest and shortest transition detector The longest and shortest transition detector block detects the maximum (MAX_CNT) and minimum (MIN_CNT) duration between two transitions. The TRCNT counter is used to measure the time interval duration. It is clocked by the SPDIFRX_CLK signal. On every transition pulse, the counter value is stored and the counter is reset to start counting again. The maximum duration is normally found during the preamble period. This maximum duration is sent out as MAX_CNT. The minimum duration is sent out as MIN_CNT. RM0385 Rev 7 1193/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 The search of the longest and shortest transition is stopped when the transition timer expires. The transition timer is like a watchdog timer that generates a trigger after 70 transitions of the incoming signal. Note that counting 70 transitions insures a delay a bit longer than a sub-frame. Note that when the TRCNT overflows due to a too long time interval between two pulses, the SPDIFRX is stopped and the flag TERR of SPDIFRX_SR register is set to 1. Transition coder and preamble detector The transition coder and preamble detector block receives the MAX_CNT and MIN_CNT. It also receives the current transition width from the TRCNT counter (see Figure 418). This block encodes the current transition width by comparing the current transition width with two different thresholds, names THHI and THLO. • If the current transition width is less than (THLO - 1), then the data received is half part of data bit ‘1’, and is coded as TS. • If the current transition width is greater than (THLO - 1), and less than THHI, then the data received is data bit ‘0’, and is coded as TM. • If the current transition width is greater than THHI, then the data received is the long pulse of preambles, and is coded as TL. • Else an error code is generated (FERR flag is set). The thresholds THHI and THLO are elaborated using two different methods. If the peripheral is doing its initial synchronization (‘coarse synchronization’), then the thresholds are computed as follow: • THLO = MAX_CNT / 2. • THHI = MIN_CNT + MAX_CNT / 2. Once the ‘coarse synchronization’ is completed, then the SPDIFRX uses a more accurate reference in order to elaborate the thresholds. The SPDIFRX measures the length of 24 symbols (WIDTH24) for defining THLO and the length of 40 symbols (WIDTH40) for THHI. THHI and THLO are computed as follow: • THLO = (WIDTH24) / 32 • THHI = (WIDTH40) / 32 This second synchronization phase is called the ‘fine synchronization’. Refer to Figure 422 for additional information. As shown in the figure hereafter, THLO is ideally equal to 1.5 UI, and to THHI 2.5 UI. 1194/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) Figure 420. Thresholds MAX_CNT MIN_CNT 1 UI 2 UI 3 UI SPDIFRX Signal 1.5 UI 2.5 UI Detection of Short Transition Detection of Medium Transition THLO Detection of Long Transition THHI MSv35931V2 The preamble detector checks four consecutive transitions of a specific sequence to determine if they form the part of preamble. Let us say TRANS0, TRANS1, TRANS2 and TRANS3 represent four consecutive transitions encoded as mentioned above. Table 214 shows the values of these four transitions to form a preamble. Absence of this pattern indicates that these transitions form part of the data in the sub frame and bi-phase decoder will decode them. Table 214. Transition sequence for preamble Preamble type Biphase data pattern TRANS3 TRANS2 TRANS1 TRANS0 Preamble B 11101000 TL TS TS TL Preamble M 11100010 TL TL TS TS Preamble W 11100100 TL TM TS TM Bi-phase decoder The Bi-phase decoder decodes the input bi-phase marked data stream using the transition information provided by the transition coder and preamble detector block. It first waits for the preamble detection information. After the preamble detection, it decodes the following transition information: • If the incoming transition information is TM then it is decoded as a ‘0’. • Two consecutive TS are decoded as a ‘1’. • Any other transition sequence generates an error signal (FERR set to 1). After decoding 28 data bits this way, this module looks for the following preamble data. If the new preamble is not what is expected, then this block generates an error signal (FERR set to 1). Refer to Section 34.3.8: Reception errors, for additional information on error flags. Data packing This block is responsible of the decoding of the IEC-60958 frames and blocks. It also handles the writing into the RX_BUF or into SPDIFRX_CSR register. RM0385 Rev 7 1195/1709 1221 SPDIF receiver interface (SPDIFRX) 34.3.3 RM0385 SPDIFRX tolerance to clock deviation The SPDIFRX tolerance to clock deviation depends on the number of sample clock cycles in one bit slot. The fastest SPDIFRX_CLK is, the more robust the reception will be. The ratio between SPDIFRX_CLK frequency and the symbol rate must be at least 11. Two kinds of phenomenon (at least!) can degrade the reception quality: 34.3.4 • The cycle-to-cycle jitter which reflects the difference of transition length between two consecutive transitions. • The long term jitter which reflects a cumulative effect of the cycle-to-cycle jitter. It can be seen as a low-frequency symbol modulation. SPDIFRX synchronization The synchronization phase starts when setting SPDIFRXEN to 0b01 or 0b11. Figure 421 shows the synchronization process. If the bit WFA of SPDIFRX_CR register is set to 1, then the peripheral must first detect activity on the selected SPDIFRX_IN line before starting the synchronization process. The activity detection is performed by detecting four transitions on the selected SPDIFRX_IN. The peripheral remains in this state until transitions are not detected. This function can be particularly helpful because the IP switches in COARSE SYNC mode only if activity is present on the selected SPDIFRX_IN input, avoiding synchronization errors. See Section 34.4: Programming procedures for additional information. The user can still set the SPDIFRX into STATE_IDLE by setting SPDIFRXEN to 0. If the WFA is set to 0, the peripheral starts the coarse synchronization without checking activity. The next step consists on doing a first estimate of the thresholds (COARSE SYNC), in order to perform the fine synchronization (FINE SYNC). Due to disturbances of the SPDIFRX line, it could happen that the process is not executed first time right. For this purpose, the user can program the number of allowed re-tries (NBTR) before setting SERR error flag. When the SPDIFRX has been able to measure properly the duration of 24 and 40 consecutive symbols then the FINE SYNC is completed, the threshold values are updated, and the flag SYNCD is set to 1. Refer to Section : Transition coder and preamble detector for additional information. Two kinds of errors are detected: • An overflow of the TRCNT, which generally means that there is no valid S/PDIF stream in the input line. This overflow is indicated by TERR flag. • The number of retries reached the programmed value. This means that strong jitter is present on the S/PDIF signal. This error is indicated by SERR flag. When the first FINE SYNC is completed, the reception of channel status (C) and user data (U) will start when the next “B” preamble is detected (see Figure 425).Then the user can read IEC-60958 C and U bits through SPDIFRX_CSR register. According to this information the user can then select the proper settings for DRFMT and RXSTEO. For example if the user detects that the current audio stream transports encoded data, then he can put RXSTEO to 0, and DRFMT to 0b10 prior to start data reception. Note that DRFMT and RXSTEO cannot be modified when SPDIFRXEN = 0b11. Writes to these fields are ignored if SPDIFRXEN is already 0b11, though these field can be changed with the same write instruction that causes SPDIFRXEN to become 0b11. Then the SPDIFRX waits for SPDIFRXEN = 0b11 and the “B” preamble before starting saving audio samples. 1196/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) Figure 421. Synchronization flowchart Initial Sync Process Wait for 4 transitions if WFA = 1, else skip this step Parallel flows Search for Longest/Shortest pulses for 70 transitions Compute COARSE thresholds (THLO, THHI) COARSE SYNC Search for preamble for 70 transitions N N preamble found within 70 trans. ? TRCNT overflows ? FINE SYNC Y Decode properly the next 40 symbols Measurement of 24 and 40 symbols duration (WIDTH24, WIDTH40) Y N Symb. decoding (1) OK ? Y ATTEMPT ++ Compute FINE thresholds (THLO, THHI) N ATTEMPT == NBTR ? Y ERROR: Sync failure ! TERR = 1 Set SYNCD to 1 ERROR: Sync failure ! SERR = 1 Synchronization done Sync stopped · (1) - The decoding is considered OK, when the symbols are properly decoded, and preamble occurs at the expected position MSv35932V1 Refer to Frame structure and synchronization error for additional information concerning TRCNT overflow. The FINE SYNC process is re-triggered every frame in order to update thresholds as shown in Figure 422 in order to continuously track S/PDIF synchronization. RM0385 Rev 7 1197/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 Figure 422. Synchronization process scheduling STATE_SYNC 70 trans. Frame SPDIFRX_IN Synchronization processes Frame STATE_RCV Frame Frame Frame Frame Frame M A1 W B1 M A2 W B2 M A3 W B3 B A4 W B4 M A5 W B5 M A6 W B6 M A5 W B5 M A5 W B5 T S COARSE SPDIFRXEN FINE FINE 0b01 FINE FINE FINE FINE FINE 0b11 SYNCD Coarse Synchronization process COARSE Fine Synchronization process FINE T S 34.3.5 Transition Search (optional phase) MSv35984V2 SPDIFRX handling The software can control the state of the SPDIFRX through SPDIFRXEN field. The SPDIFRX can be into one of the following states: • STATE_IDLE: The peripheral is disabled, the SPDIFRX_CLK domain is reset. The PCLK1 domain is functional. • STATE_SYNC: The peripheral is synchronized to the stream, thresholds are updated regularly, user and channel status can be read via interrupt of DMA. The audio samples are not provided to receive buffer. • STATE_RCV: The peripheral is synchronized to the stream, thresholds are updated regularly, user, channel status and audio samples can be read via interrupt or DMA channels. When SPDIFRXEN goes to 0b11, the SPDIFRX waits for “B” preamble before starting saving audio samples. • STOP_STATE: The peripheral is no longer synchronized, the reception of the user, channel status and audio samples are stopped. It is expected that the software re-starts the SPDIFRX. The Figure 423 shows the possible states of the SPDIFRX, and how to transition from one state to the other. The bits under software control are followed by the mention “(SW)”, the bits under IP control are followed by the mention “(HW)”. 1198/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) Figure 423. SPDIFRX States STATE_IDLE SPDIFRXEN = 0b00 (SW) SPDIFRXEN = 0b01 (SW) or SPDIFRXEN = 0b11 (SW) SPDIFRXEN = 0b00 (SW) SPDIFRXEN = 0b00 (SW) STATE_SYNC FERR = 1 (HW) or TERR = 1 (HW) or SERR = 1 (HW) STATE_STOP SPDIFRXEN = 0b11 (SW) and sync_done = 1 (HW) STATE_RCV FERR = 1 (HW) or TERR = 1 (HW) NOTE: sync_done is an internal event informing that the SPDIFRX is properly synchronized MSv35985V2 When SPDIFRX is in STATE_IDLE: • The software can transition to STATE_SYNC by setting SPDIFRXEN to 0b01 or 0b11 When SPDIFRX is in STATE_SYNC: • If the synchronization fails or if the received data are not properly decoded with no chance of recovery without a re-synchronization (FERR or SERR or TERR = 1), the SPDIFRX goes to STATE_STOP, and waits for software acknowledge. • When the synchronization phase is completed, if SPDIFRXEN = 0b01 the peripheral remains in this state. • At any time the software can set SPDIFRXEN to 0, then SPDIFRX returns immediately to STATE_IDLE. If a DMA transfer is on-going, it will be properly completed. • The SPDIFRX goes to STATE_RCV if SPDIFRXEN = 0b11 and if the SYNCD = 1 When SPDIFRX is in STATE_RCV: • If the received data are not properly decoded with no chance of recovery without a resynchronization (FERR or SERR or TERR = 1), the SPDIFRX goes to STATE_STOP, and waits for software acknowledge. • At any time the software can set SPDIFRXEN to 0, then SPDIFRX returns immediately to STATE_IDLE. If a DMA transfer is on-going, it will properly be completed. When SPDIFRX is in STATE_STOP: • The SPDIFRX stops reception and synchronization, and waits for the software to set the bit SPDIFRXEN to 0, in order to clear the error flags. RM0385 Rev 7 1199/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 When SPDIFRXEN is set to 0, the IP is disabled, meaning that all the state machines are reset, and RX_BUF is flushed. Note as well that flags FERR, SERR and TERR are reset. 34.3.6 Data reception management The SPDIFRX offers a double buffer for the audio sample reception. A 32-bit buffer located into the SPDIFRX_CLK clock domain (RX_BUF), and the SPDIFRX_DR register. The valid data contained into the RX_BUF will be immediately transferred into SPDIFRX_DR if SPDIFRX_DR is empty. The valid data contained into the RX_BUF will be transferred into SPDIFRX_DR when the two following conditions are reached: • The transition between the parity bit (P) and the next preamble is detected (this indicated that the word has been completely received). • The SPDIFRX_DR is empty. Having a 2-word buffer gives more flexibility for the latency constraint. The maximum latency allowed is TSAMPLE - 2TPCLK - 2TSPDIFRX_CLK Where TSAMPLE is the audio sampling rate of the received stereo audio samples, TPCLK is the period of PCLK1 clock, and TSPDIFRX_CLK is the period of SPDIFRX_CLK clock. The SPDIFRX offers the possibility to use either DMA (spdifrx_dma_req/clr_d) or interrupts for transferring the audio samples into the memory. The recommended option is DMA, refer to Section 34.3.10: DMA Interface for additional information. The SPDIFRX offers several way on handling the received data. The user can either have a separate flow for control information and audio samples, or get them all together. For each sub-frame, the data reception register SPDIFRX_DR contains the 24 data bits, and optionally the V, U, C, PE status bits, and the PT (see Mixing data and control flow). Note that PE bit stands for Parity Error bit, and will be set to 1 when a parity error is detected in the decoded sub-frame. The PT field carries the preamble type (B, M or W). V, U and C are a direct copy of the value received from the S/PDIF interface. The bit DRFMT allows the selection between 3 audio formats as shown in Figure 424. 1200/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) Figure 424. SPDIFRX_DR register format Frame 191 IEC60958 block format M Ch A 0 3 Sync Preamble IEC60958 sub-frame W Frame 0 Ch B B Ch A W Frame 1 Ch B Ch A M W Ch B 4 5 6 7 12 25 26 27 28 29 30 31 S0 S1 S2 S3 S8 S21 S22 S23 V U C P LSb MSb DRFMT = 0b00 31 30 29 0 0 PT[1:0] or 0 28 27 26 25 24 C or 0 U or 0 V or 0 PE or 0 23 0 S23 S0 DR[23:0] MSb LSb DRFMT = 0b01 SPDIFRX_DR 31 S23 DR[23:0] MSb 8 7 6 S0 0 0 5 4 PT[1:0] or 0 3 2 1 0 C or 0 U or 0 V or 0 PE or 0 LSb DRFMT = 0b10 31 S23 MSb 16 S8 DRNL2[15:0] LSb Ch A 15 S23 MSb 0 DRNL1[15:0] Ch B S8 LSb MSv35925V2 Setting DRFMT to 0b00 or 0b01, offers the possibility to have the data either right or left aligned into the SPDIFRX_DR register. The status information can be enabled or forced to zero according to the way the software wants to handle them. The format given by DRFMT= 0b10 is interesting in non-linear mode, as only 16 bits per sub-frame are used. By using this format, the data of two consecutive sub-frames are stored into SPDIFRX_DR, dividing by two the amount of memory footprint. Note that when RXSTEO = 1, there is no misalignment risks (i.e. data from ChA will be always stored into SPDIFRX_DR[31:16]). If RXSTEO = 0, then there is a misalignment risk is case of overrun situation. In that case SPDIFRX_DR[31:16] will always contain the oldest value and SPDIFRX_DR[15:0] the more recent value (see Figure 426). In this format the status information cannot be mixed with data, but the user can still get them through SPDIFRX_CSR register, and use a dedicated DMA channel or interrupt to transfer them to memory (see Section 34.3.7: Dedicated control flow) Mixing data and control flow The user can choose to use this mode in order to get the full flexibility of the handling of the control flow. The user can select which field shall be kept into the data register (SPDIFRX_DR). • When bit PMSK = 1, the Parity Error information is masked (set to 0), otherwise it is copied into SPDIFRX_DR. • When bit VMSK = 1, the Validity information is masked (set to 0), otherwise it is copied into SPDIFRX_DR. • When bit CUMSK = 1, the Channel Status, and Used data information are masked (set to 0), otherwise they are copied into SPDIFRX_DR. • When bit PTMSK = 1, the Preamble Type is masked (set to 0), otherwise it is copied into SPDIFRX_DR. RM0385 Rev 7 1201/1709 1221 SPDIF receiver interface (SPDIFRX) 34.3.7 RM0385 Dedicated control flow The SPDIFRX offers the possibility to catch both user data and channel status information via a dedicated DMA channel. This feature allows the SPDIFRX to acquire continuously the channel status and user information. The acquisition will start at the beginning of a IEC 60958 block. Two fields are available to control this path: CBDMAEN and SPDIFRXEN. When SPDIFRXEN is set to 0b01 or 0x11, the acquisition is started, after completion of the synchronization phase. When 8 channel status and 16 user data bits have been received, they are packed and stored into SPDIFRX_CSR register. A DMA request is triggered if the bit CBDMAEN is set to 1 (see Figure 425). If CS[0] corresponds to the first bit of a new block, the bit SOB will be set to 1. Refer to Section 34.5.8: Channel status register (SPDIFRX_CSR). A bit is available (CHSEL) in order to select if the user wants to select channel status information (C) from the channel A or B. Figure 425. Channel/user data format Frame 191 SPDIFRX_IN M A1 W B1 B A2 W B2 Frame 0 Frame 7 M A3 W B3 B A4 W B4 Frame 8 Frame 15 M A5 W B5 M A6 W B6 Frame 16 M A5 W B5 M A5 W B5 0b01 or 0b11 SPDIFRXEN SYNCD Start of a new block spdifrx_dma_req_c spdifrx_dma_clr_c Synchronization done Acquisition of C and U bits started !!! Transfer of first SPDIFRX_CB word with SOB = 1 Transfer of second SPDIFRX_CB word with SOB = 0 SPDIFRX_CSR format 31 25 reserved 24 23 16 15 SOB CS[7:0] 0 USR[15:0] MSv35924V2 Note: Once the first start of block is detected (B preamble), the SPDIFRX is checking the preamble type every 8 frames. Note: Overrun error on SPDIFRX_DR register does not affect this path. 34.3.8 Reception errors Frame structure and synchronization error The SPDIFRX, detects errors, when one of the following condition occurs: • 1202/1709 The FERR bit is set to 1 on the following conditions: – For each of the 28 information bits, if one symbol transition sequence is not correct: for example if short pulses are not grouped by pairs. – If preambles occur to an unexpected place, or an expected preamble is not received. • The SERR bit is set when the synchronization fails, because the number of re-tries exceeded the programmed value. • The TERR bit is set when the counter used to estimate the width between two transitions overflows (TRCNT). RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) The overflow occurs when no transition is detected during 8192 periods of SPDIFRX_CLK clock. It represents at most a time interval of 11.6 frames. When one of those flags goes to 1, the traffic on selected SPDIFRX_IN is then ignored, an interrupt is generated if the IFEIE bit of the SPDIFRX_CR register is set. The normal procedure when one of those errors occur is: • Set SPDIFRXEN to 0 in order to clear the error flags • Set SPDIFRXEN to 0b01 or 0b11 in order to restart the IP Refer to Figure 423 for additional information. Parity error For each sub-frame, an even number of zeros and ones is expected inside the 28 information bits. If not, the parity error bit PERR is set in the SPDIFRX_SR register and an interrupt is generated if the parity interrupt enable PERRIE bit is set in the SPDIFRX_CR register. The reception of the incoming data is not paused, and the SPDIFRX continue to deliver data to SPDIFRX_DR even if the interrupt is still pending. The interrupt is acknowledged by clearing the PERR flag through PERRCF bit. If the software wants to guarantee the coherency between the data read in the SPDIFRX_DR register and the value of the bit PERR, the bit PMSK must be set to 0. Overrun error If both SPDIFRX_DR and RX_BUF are full, while the SPDIFRX_DC needs to write a new sample in RX_BUF, this new sample is dropped, and an overrun condition is triggered. The overrun error flag OVR is set in the SPDIFRX_SR register and an interrupt is generated if the OVRIE bit of the SPDIFRX_CR register is set. If the RXSTEO bit is set to 0, then as soon as the RX_BUF is empty, the IP will store the next incoming data, even if the OVR flag is still pending. The main purpose is to reduce as much as possible the amount of lost samples. Note that the behavior is similar independently of DRFMT value. See Figure 426. RM0385 Rev 7 1203/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 Figure 426. S/PDIF overrun error when RXSTEO = 0 DRFMT = 0b0x Ch B2 cannot be written into the RX_BUF because it is FULL Overrun ! SPDIFRX_IN Ch A3 can be written into the RX_BUF M Ch A1 W Ch B1 B Ch A2 W Ch B2 M Ch A3 W Ch B3 M Ch A4 W Ch B4 B Ch A5 W Ch B5 Ch A1 Ch B1 Ch A2 Ch B1 Ch A2 Ch B1 Ch A3 Ch B3 Ch A4 Ch A4 Ch B0 Ch B3 RX_BUF and SPDIFRX_DR content Ch A3 RX_BUF FULL Ch B4 Ch A5 Ch A5 Ch B4 Ch A2 Ch A1 Ch B0 Samples stored into memory Ch B1 SPDIFRX_DMA_REQ SPDIFRX_IRQ (OVR) Acknowledged by SW DRFMT = 0b10 D6 is available and RX_BUF is FULL Overrun ! RX_BUF cannot be emptied because SPDIF_RX is FULL Frame 191 IEC60958 block format Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 M D0 W D1 B D2 W D3 M D4 W D5 M D6 W D7 M D8 W D9 M D10 W D11 ChA ChB ChA ChB ChA ChB ChA ChB ChA ChB ChA ChB RX_BUF FULL RXNE SPDIFRX_DMA_REQ Acknowledged by SW SPDIFRX_IRQ (OVR) Data read from SPDIFRX_DR 31 16-15 0 D0 D1 SPDIFRX_DR 31 16-15 0 D2 D3 SPDIFRX_DR 31 16-15 0 D4 D5 SPDIFRX_DR 31 16-15 0 D7 D8 SPDIFRX_DR 31 16-15 0 D9 D10 SPDIFRX_DR D6 is lost,SPDIFRX[31:16] contains the oldest data MSv35929V2 If the RXSTEO bit is set to 1, it means that stereo data are transported, then the SPDIFRX has to avoid misalignment between left and right channels. So the peripheral has to drop a second sample even if there is room inside the RX_BUF in order to avoid misalignment. Then the incoming samples can be written normally into the RX_BUF even if the OVR flag is still pending. Refer to Figure 427. The OVR flag is cleared by software, by setting the OVRCF bit to 1. 1204/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) Figure 427. S/PDIF overrun error when RXSTEO = 1 Ch B2 cannot be written into the RX_BUF because it is FULL Overrun ! SPDIFRX_IN Ch A3 cannot be written into the RX_BUF even if the RX_BUF is not FULL in order to avoid misalignments M Ch A1 W Ch B1 B Ch A2 W Ch B2 M Ch A3 W Ch B3 M Ch A4 W Ch B4 B Ch A5 W Ch B5 Ch B1 Ch A2 Ch B1 Ch A2 Ch B1 - Ch B3 Ch A4 Ch B4 Ch A5 Ch A5 Ch A1 Ch B4 Ch B0 Ch A4 RX_BUF and SPDIFRX_DR content Ch B3 RX_BUF FULL Ch A2 Ch B1 Ch A1 Samples stored into memory Ch B0 SPDIFRX_DMA_REQ SPDIFRX_IRQ Acknowledged by SW MSv35930V2 34.3.9 Clocking strategy The SPDIFRX block needs two different clocks: • The APB1 clock (PCLK1), which is used for the register interface, • The SPDIFRX_CLK which is mainly used by the SPDIFRX_DC part. Those clocks are not supposed to be phase locked, so all signals crossing those clock domains are resynchronized (SYNC block on Figure 413). In order to decode properly the incoming S/PDIF stream the SPDIFRX_DC shall re-sample the received data with a clock at least 11 times higher than the maximum symbol rate, or 704 times higher than the audio sample rate. For example if the user expects to receive a symbol rate to up to 12.288 MHz, the sample rate shall be at least 135.2 MHz. The clock used by the SPDIFRX_DC is the SPDIFRX_CLK. The frequency of the PCLK1 must be at least equal to the symbol rate. Table 215. Minimum SPDIFRX_CLK frequency versus audio sampling rate 34.3.10 Symbol Rate Minimum SPDIFRX_CLK frequency Comments 3.072 MHz 33.8 MHz For 48 kHz stream 6.144 MHz 67.6 MHz For 96 kHz stream 12.288 MHz 135.2 MHz For 192 kHz stream DMA Interface The SPDIFRX interface is able to perform communication using the DMA. Note: The user should refer to product specifications for availability of the DMA controller. The SPDIFRX offers two independent DMA channels: • A DMA channel dedicated to the data transfer • A DMA channel dedicated to the channel status and user data transfer The DMA mode for the data can be enabled for reception by setting the RXDMAEN bit in the SPDIFRX_CR register. In this case, as soon as the SPDIFRX_DR is not empty, the RM0385 Rev 7 1205/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 SPDIFRX interface sends a transfer request to the DMA. The DMA reads the data received through the SPDIFRX_DR register without CPU intervention. For the use of DMA for the control data refer to Section 34.3.7: Dedicated control flow. 34.3.11 Interrupt Generation An interrupt line is shared between: • Reception events for data flow (RXNE) • Reception event for control flow (CSRNE) • Data corruption detection (PERR) • Transfer flow interruption (OVR) • Frame structure and synchronization errors (SERR, TERR and FERR) • Start of new block interrupt (SBD) • Synchronization done (SYNCD) Figure 428. SPDIFRX interface interrupt mapping diagram SYNCD SYNCDIE RXNE RXNEIE PERR PERRIE OVR OR OVRIE SPDIFRX_IRQ CSRNE CSRNEIE SBD SBDIE FERR OR SERR TERR IFEIE MSv35928V2 Clearing interrupt source Note: 1206/1709 • RXNE is cleared when SPDIFRX_DR register is read • CSRNE is cleared when SPDIFRX_CSR register is read • FERR is cleared when SPDIFRXEN is set to 0 • SERR is cleared when SPDIFRXEN is set to 0 • TERR is cleared when SPDIFRXEN is set to 0 • Others are cleared through SPDIFRX_IFCR register The SBD event can only occur when the SPDIFRX is synchronized to the input stream (SYNCD = 1). RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) The SBD flag behavior is not guaranteed when the sub-frame which contains the B preamble is lost due to an overrun. 34.3.12 Register protection The SPDIFRX block embeds some hardware protection avoid erroneous use of control registers. The table hereafter shows the bit field properties according to the SPDIFRX state. Table 216. Bit field property versus SPDIFRX state SPDIFRXEN Registers SPDIFRX_CR SPDIFRX_IMR Field 0b00 0b01 0b11 (STATE_IDLE) (STATE_SYNC) (STATE_RCV) INSEL rw r r WFA rw r r NBTR rw r r CHSEL rw r r CBDMAEN rw rw rw PTMSK rw rw rw CUMSK rw rw rw VMSK rw rw rw PMSK rw rw rw DRFMT rw rw r RXSTEO rw rw r RXDMAEN rw rw rw All fields rw rw rw The table clearly shows that fields such as INSEL must be programmed when the IP is in STATE_IDLE. In the others IP states, the hardware prevents writing to this field. Note: Even if the hardware allows the writing of CBDMAEN and RXDMAEN “on-the-fly”, it is not recommended to enable the DMA when the IP is already receiving data. Note: Note that each of the mask bits (PMSK, VMSK, …) can be changed “on-the-fly” at any IP state, but any change does not affect data which is already being held in SPDIFRX_DR. 34.4 Programming procedures The following example illustrates a complete activation sequence of the SPDIFRX block. The data path and channel status & user information will both use a dedicated DMA channel. The activation sequence is then split into the following steps: • Wait for valid data on the selected SPDIFRX_IN input • Synchronize to the S/PDIF stream • Read the channel status and user information in order to setup the complete audio path • Start data acquisition RM0385 Rev 7 1207/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 A simple way to check if valid data are available into the SPDIFRX_IN line is to switch the SPDIFRX into the STATE_SYNC, with bit WFA set to 1. The description hereafter will focus on detection. It is also possible to implement this function as follow: • The software has to check from time to time (i.e. every 100 ms for example) if the SPDIFRX can find synchronization. This can be done by checking if the bit TERR is set. When it is set it indicates that no activity as been found. • Connect the SPDIFRX_IN input to an external interrupt event block in order to detect transitions of SPDIFRX_IN line. When activity is detected, then SPDIFRXEN can be set to 0b01 or 0b11. For those two implementations, the bit WFA is set to 0. 34.4.1 Initialization phase • The initialization function will look like this: • Configure the DMA transfer for both audio samples and IEC60958 channel status and user information (DMA channel selection and activation, priority, number of data to transfer, circular/no circular mode, DMA interrupts) • Configure the destination address: – Configure the address of the SPDIFRX_CSR register as source address for IEC60958 channel status and user information – Configure the address of the SPDIFRX_DR register as source address for audio samples – Enable the generation of the SPDIFRX_CLK. Refer to Table 215 in order to define the minimum clock frequency versus supported audio sampling rate. Note that the audio sampling rate of the received stream is not known in advance. This means that the user has to select a SPDIFRX_CLK frequency at least 704 times higher than the maximum audio sampling rate the application is supposed to handle: for example if the application is able to handle streams to up to 96 kHz, then FSPDIFRX_CLK shall be at least 704 x 96 kHz = 67.6 MHz • Enable interrupt for errors and event signaling (IFEIE = SYNCDIE = OVRIE, PERRIE = 1, others set to 0). Note that SYNCDIE can be set to 0. • Configure the SPDIFRX_CR register: • – INSEL shall select the wanted input – NBTR = 2, WFA = 1 (16 re-tries allowed, wait for activity before going to synchronization phase), – PTMSK = CUMSK = 1 (Preamble, C and U bits are not mixed with data) – VMSK = PMSK = 0 (Parity error and validity bit mixed with data) – CHSEL = 0 (channels status will be read from sub-frame A) – DRFMT = 0b01 (data aligned to the left) – RXSTEO = 1 (expected stereo mode linear) – CBDMAEN = RXDMAEN = 1 (enable DMA channels) – SPDIFRXEN = 0b01 (switch SPDIFRX to STATE_SYNC) The CPU can enter in WFI mode Then the CPU will receive interrupts coming either from DMA or SPDIFRX. 1208/1709 RM0385 Rev 7 RM0385 34.4.2 SPDIF receiver interface (SPDIFRX) Handling of interrupts coming from SPDIFRX When an interrupt from the SPDIFRX is received, then the software has to check what is the source of the interrupt by reading the SPDIFRX_SR register. • If SYNCD is set to 1, then it means that the synchronization has been properly completed. No action has to be performed in our case as the DMA is already programmed. The software just needs to wait for DMA interrupt in order to read channel status information. The SYNCD flag must be cleared by setting SYNCDCF bit of SPDIFRX_IFCR register to 1. • If TERR or SERR or FERR are set to 1, the software has to set SPDIFRXEN to 0, and re-start from the initialization phase. • 34.4.3 – TERR indicates that a time-out occurs either during synchronization phase or after. – SERR indicates that the synchronization fails because the maximum allowed retries have been reached. – FERR indicates that the reading of information after synchronization fails (unexpected preamble, bad data decoding...). If PERR is set to 1, it means that a parity error has been detected, so one of the received audio sample or the channel status or user data bits are corrupted. The action taken here depends on the application: one action could be to drop the current channel status block as it is not reliable. There is no need to re-start from the initialization phase, as the synchronization is not lost. The PERR flag must be cleared by setting PERRCF bit of SPDIFRX_IFCR register to 1. Handling of interrupts coming from DMA If an interrupt is coming from the DMA channel used of the channel status (SPDIFRX_CSR): If no error occurred (i.e. PERR), the CPU can start the decoding of channel information. For example bit 1 of the channel status informs the user if the current stream is linear or not. This information is very important in order to set-up the proper processing chain. In the same way, bits 24 to 27 of the channel status give the sampling frequency of the stream incoming stream. Thanks to that information, the user can then configure the RXSTEO bit and DRFMT field prior to start the data reception. For example if the current stream is non linear PCM then RXSTEO is set to 0, and DRFMT is set to 0b10. Then the user can enable the data reception by setting SPDIFRXEN to 0b11. The bit SOB, when set to 1 indicates the start of a new block. This information will help the software to identify the bit 0 of the channel status. Note that if the DMA generates an interrupt every time 24 values are transferred into the memory, then the first word will always correspond to the start of a new block. If an interrupt is coming from the DMA channel used of the audio samples (SPDIFRX_DR): The process performed here depends of the data type (linear or non-linear), and on the data format selected. For example in linear mode, if PE or V bit is set a special processing can be performed locally in order to avoid spurs on output. In non-linear mode those bits are not important as data frame have their own checksum. RM0385 Rev 7 1209/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 34.5 SPDIFRX interface registers 34.5.1 Control register (SPDIFRX_CR) Address offset: 0x00 29 28 27 26 25 24 23 22 21 20 19 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. CHSEL CBDMAEN PTMSK CUMSK VMSK PMSK RXSTEO RXDMAEN rw rw rw rw rw rw rw rw rw rw rw rw rw 18 17 16 INSEL[2:0] SPDIFRXEN[1:0] DRFMT[1:0] 30 Res. NBTR[1:0] 31 Res. WFA Reset value: 0x0000 0000 rw Bits 31:19 Reserved, must be kept at reset value. Bits 18:16 INSEL[2:0]: SPDIFRX input selection(1) 0b000: SPDIFRX_IN1 selected 0b001: SPDIFRX_IN2 selected 0b010: SPDIFRX_IN3 selected 0b011: SPDIFRX_IN4 selected others reserved Bit 15 Reserved, must be kept at reset value. Bit 14 WFA: Wait for activity(1) This bit is set/reset by software 1: The SPDIFRX waits for activity on SPDIFRX_IN line (4 transitions) before performing the synchronization 0: The SPDIFRX does not wait for activity on SPDIFRX_IN line before performing the synchronization Bits 13:12 NBTR[1:0]: Maximum allowed re-tries during synchronization phase(1) 0b00: No re-try is allowed (only one attempt) 0b01: 3 re-tries allowed 0b10: 15 re-tries allowed 0b11: 63 re-tries allowed Bit 11 CHSEL: Channel selection(1) This bit is set/reset by software 1: The control flow will take the channel status from channel B 0: The control flow will take the channel status from channel A Bit 10 CBDMAEN: Control buffer DMA enable for control flow(1) This bit is set/reset by software 1: DMA mode is enabled for reception of channel status and used data information. 0: DMA mode is disabled for reception of channel status and used data information. When this bit is set, the DMA request is made whenever the CSRNE flag is set. 1210/1709 RM0385 Rev 7 rw RM0385 SPDIF receiver interface (SPDIFRX) Bit 9 PTMSK: Mask of preamble type bits(1) This bit is set/reset by software 1: The preamble type bits are not copied into the SPDIFRX_DR, zeros are written instead 0: The preamble type bits are copied into the SPDIFRX_DR Bit 8 CUMSK: Mask of channel status and user bits(1) This bit is set/reset by software 1: The channel status and user bits are not copied into the SPDIFRX_DR, zeros are written instead 0: The channel status and user bits are copied into the SPDIFRX_DR Bit 7 VMSK: Mask of validity bit(1) This bit is set/reset by software 1: The validity bit is not copied into the SPDIFRX_DR, a zero is written instead 0: The validity bit is copied into the SPDIFRX_DR Bit 6 PMSK: Mask parity error bit(1) This bit is set/reset by software 1: The parity error bit is not copied into the SPDIFRX_DR, a zero is written instead 0: The parity error bit is copied into the SPDIFRX_DR Bits 5:4 DRFMT[1:0]: RX data format(1) This bit is set/reset by software 0b11: reserved 0b10: Data sample are packed by setting two 16-bit sample into a 32-bit word 0b01: Data samples are aligned in the left (MSB) 0b00: Data samples are aligned in the right (LSB) Bit 3 RXSTEO: Stereo mode(1) This bit is set/reset by software 1: The peripheral is in STEREO mode 0: The peripheral is in MONO mode This bit is used in case of overrun situation in order to handle misalignment Bit 2 RXDMAEN: Receiver DMA enable for data flow(1) This bit is set/reset by software 1: DMA mode is enabled for reception. 0: DMA mode is disabled for reception. When this bit is set, the DMA request is made whenever the RXNE flag is set. Bits 1:0 SPDIFRXEN[1:0]: Peripheral block enable(1) This field is modified by software. It shall be used to change the peripheral phase among the three possible states: STATE_IDLE, STATE_SYNC and STATE_RCV. 0b00: Disable SPDIFRX (STATE_IDLE). 0b01: Enable SPDIFRX Synchronization only 0b10: Reserved 0b11: Enable SPDIF Receiver Note: it is not possible to transition from STATE_RCV to STATE_SYNC, the user shall first go the STATE_IDLE. it is possible to transition from STATE_IDLE to STATE_RCV: in that case the peripheral transitions from STATE_IDLE to STATE_SYNC and as soon as the synchronization is performed goes to STATE_RCV. 1. Refer to Section 34.3.12: Register protection for additional information on fields properties. RM0385 Rev 7 1211/1709 1221 SPDIF receiver interface (SPDIFRX) 34.5.2 RM0385 Interrupt mask register (SPDIFRX_IMR) Address offset: 0x04 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. IFE IE SYNCD IE SBLK IE OVR IE rw rw rw rw PERR CSRNE RXNE IE IE IE rw rw rw Bits 31:7 Reserved, must be kept at reset value. Bit 6 IFEIE: Serial Interface Error Interrupt Enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever SERR=1, TERR=1 or FERR=1 in the SPDIFRX_SR register. Bit 5 SYNCDIE: Synchronization Done This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever SYNCD = 1 in the SPDIFRX_SR register. Bit 4 SBLKIE: Synchronization Block Detected Interrupt Enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever SBD = 1 in the SPDIFRX_SR register. Bit 3 OVRIE: Overrun error Interrupt Enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever OVR=1 in the SPDIFRX_SR register Bit 2 PERRIE: Parity error interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever PERR=1 in the SPDIFRX_SR register Bit 1 CSRNEIE: Control Buffer Ready Interrupt Enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever CSRNE = 1 in the SPDIFRX_SR register. Bit 0 RXNEIE: RXNE interrupt enable This bit is set and cleared by software. 0: Interrupt is inhibited 1: A SPDIFRX interface interrupt is generated whenever RXNE=1 in the SPDIFRX_SR register 1212/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) 34.5.3 Status register (SPDIFRX_SR) Address offset: 0x08 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. 23 22 21 20 19 18 17 16 WIDTH5[14:0] r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. TERR SERR FERR SYNCD SBD OVR r r r r r r PERR CSRNE RXNE r r r Bit 31 Reserved, must be kept at reset value. Bits 30:16 WIDTH5[14:0]: Duration of 5 symbols counted with SPDIFRX_CLK This value represents the amount of SPDIFRX_CLK clock periods contained on a length of 5 consecutive symbols. This value can be used to estimate the S/PDIF symbol rate. Its accuracy is limited by the frequency of SPDIFRX_CLK. For example if the SPDIFRX_CLK is fixed to 84 MHz, and WIDTH5 = 147d. The estimated sampling rate of the S/PDIF stream is: Fs = 5 x FSPDIFRX_CLK / (WIDTH5 x 64) ~ 44.6 kHz, so the closest standard sampling rate is 44.1 kHz. Note that WIDTH5 is updated by the hardware when SYNCD goes high, and then every frame. Bits 15:9 Reserved, must be kept at reset value. Bit 8 TERR: Time-out error This bit is set by hardware when the counter TRCNT reaches its max value. It indicates that the time interval between two transitions is too long. It generally indicates that there is no valid signal on SPDIFRX_IN input. This flag is cleared by writing SPDIFRXEN to 0 An interrupt is generated if IFEIE=1 in the SPDIFRX_IMR register 0: No sequence error is detected 1: Sequence error is detected Bit 7 SERR: Synchronization error This bit is set by hardware when the synchronization fails due to amount of re-tries for NBTR. This flag is cleared by writing SPDIFRXEN to 0 An interrupt is generated if IFEIE=1 in the SPDIFRX_IMR register. 0: No synchronization error is detected 1: Synchronization error is detected Bit 6 FERR: Framing error This bit is set by hardware when an error occurs during data reception: preamble not at the expected place, short transition not grouped by pairs... This is set by the hardware only if the synchronization has been completed (SYNCD = 1). This flag is cleared by writing SPDIFRXEN to 0 An interrupt is generated if IFEIE=1 in the SPDIFRX_IMR register. 0: no Manchester Violation detected 1: Manchester Violation detected RM0385 Rev 7 1213/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 Bit 5 SYNCD: Synchronization Done This bit is set by hardware when the initial synchronization phase is properly completed. This flag is cleared by writing a 1 to its corresponding bit on SPDIFRX_CLR_SR register. An interrupt is generated if SYNCDIE = 1 in the SPDIFRX_IMR register 0: Synchronization is pending 1: Synchronization is completed Bit 4 SBD: Synchronization Block Detected This bit is set by hardware when a “B” preamble is detected This flag is cleared by writing a 1 to its corresponding bit on SPDIFRX_CLR_SR register. An interrupt is generated if SBLKIE = 1 in the SPDIFRX_IMR register 0: No “B” preamble detected 1: “B” preamble has been detected Bit 3 OVR: Overrun error This bit is set by hardware when a received data is ready to be transferred in the SPDIFRX_DR register while RXNE = 1 and both SPDIFRX_DR and RX_BUF are full. This flag is cleared by writing a 1 to its corresponding bit on SPDIFRX_CLR_SR register. An interrupt is generated if OVRIE=1 in the SPDIFRX_IMR register. 0: No Overrun error 1: Overrun error is detected Note: When this bit is set, the SPDIFRX_DR register content will not be lost but the last data received will. Bit 2 PERR: Parity error This bit is set by hardware when the data and status bits of the sub-frame received contain an odd number of 0 and 1. This flag is cleared by writing a 1 to its corresponding bit on SPDIFRX_CLR_SR register. An interrupt is generated if PIE = 1 in the SPDIFRX_IMR register. 0: No parity error 1: Parity error Bit 1 CSRNE: The Control Buffer register is not empty This bit is set by hardware when a valid control information is ready. This flag is cleared when reading SPDIFRX_CSR register. An interrupt is generated if CBRDYIE = 1 in the SPDIFRX_IMR register 0: No control word available on SPDIFRX_CSR register 1: A control word is available on SPDIFRX_CSR register Bit 0 RXNE: Read data register not empty This bit is set by hardware when a valid data is available into SPDIFRX_DR register. This flag is cleared by reading the SPDIFRX_DR register. An interrupt is generated if RXNEIE=1 in the SPDIFRX_IMR register. 0: Data is not received 1: Received data is ready to be read. 1214/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) 34.5.4 Interrupt flag clear register (SPDIFRX_IFCR) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SYNCD CF SBD CF OVR CF PERR CF Res. Res. w w w w Bits 31:6 Reserved, must be kept at reset value. Bit 5 SYNCDCF: Clears the Synchronization Done flag Writing 1 in this bit clears the flag SYNCD in the SPDIFRX_SR register. Reading this bit always returns the value 0. Bit 4 SBDCF: Clears the Synchronization Block Detected flag Writing 1 in this bit clears the flag SBD in the SPDIFRX_SR register. Reading this bit always returns the value 0. Bit 3 OVRCF: Clears the Overrun error flag Writing 1 in this bit clears the flag OVR in the SPDIFRX_SR register. Reading this bit always returns the value 0. Bit 2 PERRCF: Clears the Parity error flag Writing 1 in this bit clears the flag PERR in the SPDIFRX_SR register. Reading this bit always returns the value 0. Bits 1:0 Reserved, must be kept at reset value. RM0385 Rev 7 1215/1709 1221 SPDIF receiver interface (SPDIFRX) 34.5.5 RM0385 Data input register (SPDIFRX_DR) Address offset: 0x10 Reset value: 0x0000 0000 This register can take 3 different formats according to DRFMT. Here is the format when DRFMT = 0b00: 31 30 Res. Res. 29 28 r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r r PT[1:0] 27 26 25 24 C U V PE 23 22 21 20 19 18 17 16 DR[23:16] DR[15:0] r Bits 31:30 Reserved, must be kept at reset value. Bits 29:28 PT[1:0]: Preamble Type These bits indicate the preamble received. 00: not used 01: Preamble B received 10: Preamble M received 11: Preamble W received Note that if PTMSK = 1, this field is forced to zero Bit 27 C: Channel Status bit Contains the received channel status bit, if CUMSK = 0, otherwise it is forced to 0 Bit 26 U: User bit Contains the received user bit, if CUMSK = 0, otherwise it is forced to 0 Bit 25 V: Validity bit Contains the received validity bit if VMSK = 0, otherwise it is forced to 0 Bit 24 PE: Parity Error bit Contains a copy of PERR bit if PMSK = 0, otherwise it is forced to 0 Bits 23:0 DR[23:0]: Data value Contains the 24 received data bits, aligned on D[23] 1216/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) 34.5.6 Data input register (SPDIFRX_FMT1_DR) Address offset: 0x10 Reset value: 0x0000 0000 This register can take 3 different formats according to DRFMT. Here is the format when DRFMT = 0b01: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DR[23:8] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. C U V PE r r r r r r r r r r r DR[7:0] r PT[1:0] r r Bits 31:8 DR[23:0]: Data value Contains the 24 received data bits, aligned on D[23] Bits 7:6 Reserved, must be kept at reset value. Bits 5:4 PT[1:0]: Preamble Type These bits indicate the preamble received. 00: not used 01: Preamble B received 10: Preamble M received 11: Preamble W received Note that if PTMSK = 1, this field is forced to zero Bit 3 C: Channel Status bit Contains the received channel status bit, if CUMSK = 0, otherwise it is forced to 0 Bit 2 U: User bit Contains the received user bit, if CUMSK = 0, otherwise it is forced to 0 Bit 1 V: Validity bit Contains the received validity bit if VMSK = 0, otherwise it is forced to 0 Bit 0 PE: Parity Error bit Contains a copy of PERR bit if PMSK = 0, otherwise it is forced to 0 RM0385 Rev 7 1217/1709 1221 SPDIF receiver interface (SPDIFRX) 34.5.7 RM0385 Data input register (SPDIFRX_FMT2_DR) Address offset: 0x10 Reset value: 0x0000 0000 This register can take 3 different formats according to DRFMT. The data format proposed when DRFMT = 0b10, is dedicated to non-linear mode, as only 16 bits are used (bits 23 to 8 from S/PDIF sub-frame). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DRNL2[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r DRNL1[15:0] r r Bits 31:16 DRNL2[15:0]: Data value This field contains the Channel A Bits 15:0 DRNL1[15:0]: Data value This field contains the Channel B 1218/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) 34.5.8 Channel status register (SPDIFRX_CSR) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. SOB 23 22 21 20 19 18 17 16 r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r 17 16 CS[7:0] USR[15:0] r r Bits 31:25 Reserved, must be kept at reset value. Bit 24 SOB: Start Of Block This bit indicates if the bit CS[0] corresponds to the first bit of a new block 0: CS[0] is not the first bit of a new block 1: CS[0] is the first bit of a new block Bits 23:16 CS[7:0]: Channel A status information Bit CS[0] is the oldest value Bits 15:0 USR[15:0]: User data information Bit USR[0] is the oldest value, and comes from channel A, USR[1] comes channel B. So USR[n] bits come from channel A is n is even, otherwise they come from channel B. 34.5.9 Debug information register (SPDIFRX_DIR) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 Res. Res. Res. 15 14 13 Res. Res. Res. 28 27 26 25 24 23 22 21 20 19 18 TLO[12:0] r r r r r r r r r r r r r 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r THI[12:0] r Bits 31:29 Reserved, must be kept at reset value. RM0385 Rev 7 1219/1709 1221 SPDIF receiver interface (SPDIFRX) RM0385 Bits 28:16 TLO[12:0]: Threshold LOW (TLO = 1.5 x UI / TSPDIFRX_CLK) This field contains the current threshold LOW estimation. This value can be used to estimate the sampling rate of the received stream. The accuracy of TLO is limited to a period of the SPDIFRX_CLK. The sampling rate can be estimated as follow: Sampling Rate = [2 x TLO x TSPDIFRX_CLK +/- TSPDIFRX_CLK] x 2/3 Note that TLO is updated by the hardware when SYNCD goes high, and then every frame. Bits 15:13 Reserved, must be kept at reset value. Bits 12:0 THI[12:0]: Threshold HIGH (THI = 2.5 x UI / TSPDIFRX_CLK) This field contains the current threshold HIGH estimation. This value can be used to estimate the sampling rate of the received stream. The accuracy of THI is limited to a period of the SPDIFRX_CLK. The sampling rate can be estimated as follow: Sampling Rate = [2 x THI x TSPDIFRX_CLK +/- TSPDIFRX_CLK] x 2/5 Note that THI is updated by the hardware when SYNCD goes high, and then every frame. 1220/1709 RM0385 Rev 7 RM0385 SPDIF receiver interface (SPDIFRX) 34.5.10 SPDIFRX interface register map Table 217 gives the SPDIFRX interface register map and reset values. 0 0 Res. Res. Res. Res. Res. Res. Res. RXNE Res. CSRNE Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SPDIFRX_ FMT2_DR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. SOB Res. Res. 0 Res. Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C U V P E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 USR[15:0] 0 0 0 TLO[12:0] 0 0 DRNL1[15:0] CS[7:0] 0 0 Res. 0 0 0 0 0 0 Res. 0 Reset value 0 Res. 0 SPDIFRX_ CSR SPDIFRX_DIR 0 DRNL2[15:0] Reset value 0x18 0 DR[23:0] Res. 0x14 0 0 DR[23:0] SPDIFRX_ FMT1_DR Reset value 0x10 0 P E 0 PT[1:0] 0 PT[1:0] Reset value C U V Res. 0x10 SPDIFRX_DR Res. 0x10 Res. Reset value Res. Res. 0 Res. Res. OVR Res. PERR Res. 0 OVRCF Res. 0 PERRCF Res. SBD Res. 0 SBDCF Res. SYNCD Res. 0 SYNCDCF 0 0 FERR 0 0 SERR 0 0 Res. 0 0 Res. 0 0 TERR 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. Res. 0 Res. 0x0C SPDIFRX_ IFCR Res. Reset value WIDTH5[14:0] Res. SPDIFRX_SR SPDIFRXEN[1:0] 0 RXNEIE 0 CSRNEIE RXSTEO RXDMAEN 0 OVRIE 0 PERRIE 0 Reset value 0x08 DRFMT[1:0] 0 SBLKIE Res. PMSK Res. 0 SYNCDIE Res. VMSK Res. 0 Res. 0 IFEIE 0 Res. PTMSK 0 Res. CUMSK CHSEL CBDMAEN 0 NBTR[1:0] 0 WFA Res. Res. Res. 0 Res. INSEL[2:0] 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SPDIFRX_IMR Res. Reset value 0x04 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SPDIFRX_CR 0x00 Res. Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 217. SPDIFRX interface register map and reset values 0 0 0 0 0 0 0 THI[12:0] 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. RM0385 Rev 7 1221/1709 1221 SD/SDIO/MMC card host interface (SDMMC) 35 SD/SDIO/MMC card host interface (SDMMC) 35.1 SDMMC main features RM0385 The SD/SDIO MMC card host interface (SDMMC) provides an interface between the APB2 peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards. The MultiMediaCard system specifications are available through the MultiMediaCard Association website, published by the MMCA technical committee. SD memory card and SD I/O card system specifications are available through the SD card Association website. The SDMMC features include the following: Note: • Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit • Full compatibility with previous versions of MultiMediaCards (forward compatibility) • Full compliance with SD Memory Card Specifications Version 2.0 • Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit • Data transfer up to 50 MHz for the 8 bit mode • Data and command output enable signals to control external bidirectional drivers. 1 The SDMMC does not have an SPI-compatible communication mode. 2 The SD memory card protocol is a superset of the MultiMediaCard protocol as defined in the MultiMediaCard system specification V2.11. Several commands required for SD memory devices are not supported by either SD I/O-only cards or the I/O portion of combo cards. Some of these commands have no use in SD I/O devices, such as erase commands, and thus are not supported in the SDIO protocol. In addition, several commands are different between SD memory cards and SD I/O cards and thus are not supported in the SDIO protocol. For details refer to SD I/O card Specification Version 1.0. The MultiMediaCard/SD bus connects cards to the controller. The current version of the SDMMC supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. 35.2 SDMMC bus topology Communication over the bus is based on command and data transfers. The basic transaction on the MultiMediaCard/SD/SD I/O bus is the command/response transaction. These types of bus transaction transfer their information directly within the command or response structure. In addition, some operations have a data token. Data transfers to/from SD/SDIO memory cards are done in data blocks. Data transfers to/from MMC are done data blocks or streams. 1222/1709 RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Figure 429. “No response” and “no data” operations From host to card(s) SDMMC_CMD From host to card Command Command From card to host Response SDMMC_D Operation (no response) Operation (no data) ai14734b Figure 430. (Multiple) block read operation From host to card From card to host data from card to host SDMMC_CMD Command Stop command stops data transfer Response SDMMC_D Command Data block crc Data block crc Response Data block crc Block read operation Data stop operation Multiple block read operation ai14735b Figure 431. (Multiple) block write operation From host to card From card to host data from host to card SDMMC_CMD SDMMC_D Command Stop command stops data transfer Response Command Data block crc Busy Block write operation Data block crc Response Busy Data stop operation Multiple block write operation ai14737b Note: The SDMMC will not send any data as long as the Busy signal is asserted (SDMMC_D0 pulled low). RM0385 Rev 7 1223/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Figure 432. Sequential read operation From host to From card to host card(s) Stop command stops data transfer Data from card to host SDMMC_CMD Command Response Command Response Data stream SDMMC_D Data stop operation Data transfer operation ai14738b Figure 433. Sequential write operation From host to card(s) From card to host Stop command stops data transfer Data from host to card SDMMC_CMD Command Response Command Response Data stream SDMMC_D Data stop operation Data transfer operation ai14739b 35.3 SDMMC functional description The SDMMC consists of two parts: • The SDMMC adapter block provides all functions specific to the MMC/SD/SD I/O card such as the clock generation unit, command and data transfer. • The APB2 interface accesses the SDMMC adapter registers, and generates interrupt and DMA request signals. Figure 434. SDMMC block diagram SDMMC SDMMC_CK Interrupts and DMA request SDMMC_CMD APB2 interface SDMMC adapter PCLK2 SDMMCCLK SDMMC_D[7:0] APB2 bus ai15898b 1224/1709 RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) By default SDMMC_D0 is used for data transfer. After initialization, the host can change the databus width. If a MultiMediaCard is connected to the bus, SDMMC_D0, SDMMC_D[3:0] or SDMMC_D[7:0] can be used for data transfer. MMC V3.31 or previous, supports only 1 bit of data so only SDMMC_D0 can be used. If an SD or SD I/O card is connected to the bus, data transfer can be configured by the host to use SDMMC_D0 or SDMMC_D[3:0]. All data lines are operating in push-pull mode. SDMMC_CMD has two operational modes: • Open-drain for initialization (only for MMCV3.31 or previous) • Push-pull for command transfer (SD/SD I/O card MMC4.2 use push-pull drivers also for initialization) SDMMC_CK is the clock to the card: one bit is transferred on both command and data lines with each clock cycle. The SDMMC uses two clock signals: • SDMMC adapter clock SDMMCCLK = 50 MHz) • APB2 bus clock (PCLK2) PCLK2 and SDMMC_CK clock frequencies must respect the following condition: Frequenc ( PCLK2 ) > ( ( 3xWidth ) ⁄ 32 ) × Frequency ( SDMMC_CK ) The signals shown in Table 218 are used on the MultiMediaCard/SD/SD I/O card bus. Table 218. SDMMC I/O definitions Pin Direction Description SDMMC_CK Output MultiMediaCard/SD/SDIO card clock. This pin is the clock from host to card. SDMMC_CMD Bidirectional MultiMediaCard/SD/SDIO card command. This pin is the bidirectional command/response signal. SDMMC_D[7:0] Bidirectional MultiMediaCard/SD/SDIO card data. These pins are the bidirectional databus. RM0385 Rev 7 1225/1709 1280 SD/SDIO/MMC card host interface (SDMMC) 35.3.1 RM0385 SDMMC adapter Figure 435 shows a simplified block diagram of an SDMMC adapter. Figure 435. SDMMC adapter SDMMC adapter Adapter registers To APB2 interface FIFO PCLK2 SDMMC_CK Command path SDMMC_CMD Data path SDMMC_D[7:0] Card bus Control unit SDMMCCLK ai15899b The SDMMC adapter is a multimedia/secure digital memory card bus master that provides an interface to a multimedia card stack or to a secure digital memory card. It consists of five subunits: Note: • Adapter register block • Control unit • Command path • Data path • Data FIFO The adapter registers and FIFO use the APB2 bus clock domain (PCLK2). The control unit, command path and data path use the SDMMC adapter clock domain (SDMMCCLK). Adapter register block The adapter register block contains all system registers. This block also generates the signals that clear the static flags in the multimedia card. The clear signals are generated when 1 is written into the corresponding bit location in the SDMMC Clear register. Control unit The control unit contains the power management functions and the clock divider for the memory card clock. There are three power phases: 1226/1709 • power-off • power-up • power-on RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Figure 436. Control unit Control unit Power management Adapter registers Clock management SDMMC_CK To command and data path ai14804b The control unit is illustrated in Figure 436. It consists of a power management subunit and a clock management subunit. The power management subunit disables the card bus output signals during the power-off and power-up phases. The clock management subunit generates and controls the SDMMC_CK signal. The SDMMC_CK output can use either the clock divide or the clock bypass mode. The clock output is inactive: • after reset • during the power-off or power-up phases • if the power saving mode is enabled and the card bus is in the Idle state (eight clock periods after both the command and data path subunits enter the Idle phase) The clock management subunit controls SDMMC_CK dephasing. When not in bypass mode the SDMMC command and data output are generated on the SDMMCCLK falling edge succeeding the rising edge of SDMMC_CK. (SDMMC_CK rising edge occurs on SDMMCCLK rising edge) when SDMMC_CLKCR[13] bit is reset (NEGEDGE = 0). When SDMMC_CLKCR[13] bit is set (NEGEDGE = 1) SDMMC command and data changed on the SDMMC_CK falling edge. When SDMMC_CLKCR[10] is set (BYPASS = 1), SDMMC_CK rising edge occurs on SDMMCCLK rising edge. The data and the command change on SDMMCCLK falling edge whatever NEGEDGE value. The data and command responses are latched using SDMMC_CK rising edge. RM0385 Rev 7 1227/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Figure 437. SDMMC_CK clock dephasing (BYPASS = 0) SDMMCCLK SDMMC_CK CMD / Data output NEGEDGE = 0 NEGEDGE = 1 MSv36077V1 Command path The command path unit sends commands to and receives responses from the cards. Figure 438. SDMMC adapter command path To control unit Status flag Control logic Command timer Adapter registers SDMMC_CMDin CMD Argument CRC SDMMC_CMDout Shift register CMD Response To APB2 interface registers ai15900b • Command path state machine (CPSM) – 1228/1709 When the command register is written to and the enable bit is set, command transfer starts. When the command has been sent, the command path state machine (CPSM) sets the status flags and enters the Idle state if a response is not required. If a response is required, it waits for the response (see Figure 439 on page 1229). When the response is received, the received CRC code and the internally generated code are compared, and the appropriate status flags are set. RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Figure 439. Command path state machine (SDMMC) On reset CPSM enabled and pending command Idle CPSM disabled Pend Response received or disabled or command CRC failed Enabled and command start CPSM disabled or no response Last data CPSM disabled or command timeout Send Receive Response started Wait for response Wait MS34444V1 When the Wait state is entered, the command timer starts running. If the timeout is reached before the CPSM moves to the Receive state, the timeout flag is set and the Idle state is entered. Note: The command timeout has a fixed value of 64 SDMMC_CK clock periods. If the interrupt bit is set in the command register, the timer is disabled and the CPSM waits for an interrupt request from one of the cards. If a pending bit is set in the command register, the CPSM enters the Pend state, and waits for a CmdPend signal from the data path subunit. When CmdPend is detected, the CPSM moves to the Send state. This enables the data counter to trigger the stop command transmission. Note: The CPSM remains in the Idle state for at least eight SDMMC_CK periods to meet the NCC and NRC timing constraints. NCC is the minimum delay between two host commands, and NRC is the minimum delay between the host command and the card response. RM0385 Rev 7 1229/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Figure 440. SDMMC command transfer at least 8 SDMMC_CK cycles SDMMC_CK Command Command Response State Idle Send Wait Receive Idle Send SDMMC_CMD Hi-Z Controller drives Hi-Z Card drives Hi-Z Controller drives ai14807b • Command format – Command: a command is a token that starts an operation. Command are sent from the host either to a single card (addressed command) or to all connected cards (broadcast command are available for MMC V3.31 or previous). Commands are transferred serially on the CMD line. All commands have a fixed length of 48 bits. The general format for a command token for MultiMediaCards, SD-Memory cards and SDIO-Cards is shown in Table 219. The command path operates in a half-duplex mode, so that commands and responses can either be sent or received. If the CPSM is not in the Send state, the SDMMC_CMD output is in the Hi-Z state, as shown in Figure 440 on page 1230. Data on SDMMC_CMD are synchronous with the rising edge of SDMMC_CK. Table 219 shows the command format. Table 219. Command format Bit position Width Value Description 47 1 0 Start bit 46 1 1 Transmission bit [45:40] 6 - Command index [39:8] 32 - Argument [7:1] 7 - CRC7 0 1 1 End bit – Response: a response is a token that is sent from an addressed card (or synchronously from all connected cards for MMC V3.31 or previous), to the host as an answer to a previously received command. Responses are transferred serially on the CMD line. The SDMMC supports two response types. Both use CRC error checking: Note: 1230/1709 • 48 bit short response • 136 bit long response If the response does not contain a CRC (CMD1 response), the device driver must ignore the CRC failed status. RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Table 220. Short response format Bit position Width Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 - Command index [39:8] 32 - Argument [7:1] 7 - CRC7(or 1111111) 0 1 1 End bit Table 221. Long response format Bit position Width Value Description 135 1 0 Start bit 134 1 0 Transmission bit [133:128] 6 111111 Reserved [127:1] 127 - CID or CSD (including internal CRC7) 0 1 1 End bit The command register contains the command index (six bits sent to a card) and the command type. These determine whether the command requires a response, and whether the response is 48 or 136 bits long (see Section 35.8.4 on page 1266). The command path implements the status flags shown in Table 222: Table 222. Command path status flags Flag Description CMDREND Set if response CRC is OK. CCRCFAIL Set if response CRC fails. CMDSENT Set when command (that does not require response) is sent CTIMEOUT Response timeout. CMDACT Command transfer in progress. The CRC generator calculates the CRC checksum for all bits before the CRC code. This includes the start bit, transmitter bit, command index, and command argument (or card status). The CRC checksum is calculated for the first 120 bits of CID or CSD for the long response format. Note that the start bit, transmitter bit and the six reserved bits are not used in the CRC calculation. The CRC checksum is a 7-bit value: CRC[6:0] = Remainder [(M(x) * x7) / G(x)] G(x) = x7 + x3 + 1 M(x) = (start bit) * x39 + ... + (last bit before CRC) * x0, or M(x) = (start bit) * x119 + ... + (last bit before CRC) * x0 RM0385 Rev 7 1231/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Data path The data path subunit transfers data to and from cards. Figure 441 shows a block diagram of the data path. Figure 441. Data path Data path To control unit Status flag Control logic Data timer Data FIFO SDMMC_Din[7:0] Transmit CRC SDMMC_Dout[7:0] Shift register Receive ai14808b The card databus width can be programmed using the clock control register. If the 4-bit wide bus mode is enabled, data is transferred at four bits per clock cycle over all four data signals (SDMMC_D[3:0]). If the 8-bit wide bus mode is enabled, data is transferred at eight bits per clock cycle over all eight data signals (SDMMC_D[7:0]). If the wide bus mode is not enabled, only one bit per clock cycle is transferred over SDMMC_D0. Depending on the transfer direction (send or receive), the data path state machine (DPSM) moves to the Wait_S or Wait_R state when it is enabled: • Send: the DPSM moves to the Wait_S state. If there is data in the transmit FIFO, the DPSM moves to the Send state, and the data path subunit starts sending data to a card. • Receive: the DPSM moves to the Wait_R state and waits for a start bit. When it receives a start bit, the DPSM moves to the Receive state, and the data path subunit starts receiving data from a card. Data path state machine (DPSM) The DPSM operates at SDMMC_CK frequency. Data on the card bus signals is synchronous to the rising edge of SDMMC_CK. The DPSM has six states, as shown in Figure 442: Data path state machine (DPSM). 1232/1709 RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Figure 442. Data path state machine (DPSM) On reset DPSM disabled Read Wait DPSM enabled and Read Wait Started and SD I/O mode enabled Disabled or FIFO underrun or end of data or CRC fail Idle Disabled or CRC fail or timeout Enable and not send ReadWait Stop Disabled or end of data Disabled or Rx FIFO empty or timeout or start bit error Busy Not busy Enable and send Wait_R Data received and Read Wait Started and SD I/O mode enabled End of packet Wait_S End of packet or end of data or FIFO overrun Disabled or CRC fail Start bit Data ready Send Receive ai14809b • Idle: the data path is inactive, and the SDMMC_D[7:0] outputs are in Hi-Z. When the data control register is written and the enable bit is set, the DPSM loads the data counter with a new value and, depending on the data direction bit, moves to either the Wait_S or the Wait_R state. • Wait_R: if the data counter equals zero, the DPSM moves to the Idle state when the receive FIFO is empty. If the data counter is not zero, the DPSM waits for a start bit on SDMMC_D. The DPSM moves to the Receive state if it receives a start bit before a timeout, and loads the data block counter. If it reaches a timeout before it detects a start bit, it moves to the Idle state and sets the timeout status flag. • Receive: serial data received from a card is packed in bytes and written to the data FIFO. Depending on the transfer mode bit in the data control register, the data transfer mode can be either block or stream: – In block mode, when the data block counter reaches zero, the DPSM waits until it receives the CRC code. If the received code matches the internally generated CRC code, the DPSM moves to the Wait_R state. If not, the CRC fail status flag is set and the DPSM moves to the Idle state. – In stream mode, the DPSM receives data while the data counter is not zero. When the counter is zero, the remaining data in the shift register is written to the data FIFO, and the DPSM moves to the Wait_R state. If a FIFO overrun error occurs, the DPSM sets the FIFO error flag and moves to the Idle state: • Wait_S: the DPSM moves to the Idle state if the data counter is zero. If not, it waits until the data FIFO empty flag is deasserted, and moves to the Send state. RM0385 Rev 7 1233/1709 1280 SD/SDIO/MMC card host interface (SDMMC) Note: RM0385 The DPSM remains in the Wait_S state for at least two clock periods to meet the NWR timing requirements, where NWR is the number of clock cycles between the reception of the card response and the start of the data transfer from the host. • Send: the DPSM starts sending data to a card. Depending on the transfer mode bit in the data control register, the data transfer mode can be either block or stream: – In block mode, when the data block counter reaches zero, the DPSM sends an internally generated CRC code and end bit, and moves to the Busy state. – In stream mode, the DPSM sends data to a card while the enable bit is high and the data counter is not zero. It then moves to the Idle state. If a FIFO underrun error occurs, the DPSM sets the FIFO error flag and moves to the Idle state. • Busy: the DPSM waits for the CRC status flag: – If it does not receive a positive CRC status, it moves to the Idle state and sets the CRC fail status flag. – If it receives a positive CRC status, it moves to the Wait_S state if SDMMC_D0 is not low (the card is not busy). If a timeout occurs while the DPSM is in the Busy state, it sets the data timeout flag and moves to the Idle state. The data timer is enabled when the DPSM is in the Wait_R or Busy state, and generates the data timeout error: • – When transmitting data, the timeout occurs if the DPSM stays in the Busy state for longer than the programmed timeout period – When receiving data, the timeout occurs if the end of the data is not true, and if the DPSM stays in the Wait_R state for longer than the programmed timeout period. Data: data can be transferred from the card to the host or vice versa. Data is transferred via the data lines. They are stored in a FIFO of 32 words, each word is 32 bits wide. Table 223. Data token format Description 1234/1709 Start bit Data CRC16 End bit Block Data 0 - yes 1 Stream Data 0 - no 1 RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) DPSM Flags The status of the data path subunit transfer is reported by several status flags Table 224. DPSM flags Flag Description DBCKEND Set to high when data block send/receive CRC check is passed. In SDIO multibyte transfer mode this flag is set at the end of the transfer (a multibyte transfer is considered as a single block transfer by the host). DATAEND Set to high when SDMMC_DCOUNT register decrements and reaches 0. DATAEND indicates the end of a transfer on SDMMC data line. DTIMEOUT Set to high when data timeout period is reached. When data timer reaches zero while DPSM is in Wait_R or Busy state, timeout is set. DTIMEOUT can be set after DATAEND if DPSM remains in busy state for longer than the programmed period. DCRCFAIL Set to high when data block send/receive CRC check fails. Data FIFO The data FIFO (first-in-first-out) subunit is a data buffer with a transmit and receive unit. The FIFO contains a 32-bit wide, 32-word deep data buffer, and transmit and receive logic. Because the data FIFO operates in the APB2 clock domain (PCLK2), all signals from the subunits in the SDMMC clock domain (SDMMCCLK) are resynchronized. Depending on the TXACT and RXACT flags, the FIFO can be disabled, transmit enabled, or receive enabled. TXACT and RXACT are driven by the data path subunit and are mutually exclusive: • – The transmit FIFO refers to the transmit logic and data buffer when TXACT is asserted – The receive FIFO refers to the receive logic and data buffer when RXACT is asserted Transmit FIFO: Data can be written to the transmit FIFO through the APB2 interface when the SDMMC is enabled for transmission. The transmit FIFO is accessible via 32 sequential addresses. The transmit FIFO contains a data output register that holds the data word pointed to by the read pointer. When the data path subunit has loaded its shift register, it increments the read pointer and drives new data out. If the transmit FIFO is disabled, all status flags are deasserted. The data path subunit asserts TXACT when it transmits data. RM0385 Rev 7 1235/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Table 225. Transmit FIFO status flags Flag Description TXFIFOF Set to high when all 32 transmit FIFO words contain valid data. TXFIFOE Set to high when the transmit FIFO does not contain valid data. TXFIFOHE Set to high when 8 or more transmit FIFO words are empty. This flag can be used as a DMA request. TXDAVL Set to high when the transmit FIFO contains valid data. This flag is the inverse of the TXFIFOE flag. TXUNDERR Set to high when an underrun error occurs. This flag is cleared by writing to the SDMMC Clear register. Note: In case of TXUNDERR, and DMA is used to fill SDMMC FIFO, user software should disable DMA stream, and then write DMAEN bit in SDMMC_DCTRL with ‘0’ (to disable DMA request generation). • Receive FIFO When the data path subunit receives a word of data, it drives the data on the write databus. The write pointer is incremented after the write operation completes. On the read side, the contents of the FIFO word pointed to by the current value of the read pointer is driven onto the read databus. If the receive FIFO is disabled, all status flags are deasserted, and the read and write pointers are reset. The data path subunit asserts RXACT when it receives data. Table 226 lists the receive FIFO status flags. The receive FIFO is accessible via 32 sequential addresses. Table 226. Receive FIFO status flags Flag 1236/1709 Description RXFIFOF Set to high when all 32 receive FIFO words contain valid data RXFIFOE Set to high when the receive FIFO does not contain valid data. RXFIFOHF Set to high when 8 or more receive FIFO words contain valid data. This flag can be used as a DMA request. RXDAVL Set to high when the receive FIFO is not empty. This flag is the inverse of the RXFIFOE flag. RXOVERR Set to high when an overrun error occurs. This flag is cleared by writing to the SDMMC Clear register. Note: In case of RXOVERR, and DMA is used to read SDMMC FIFO, user software should disable DMA stream, and then write DMAEN bit in SDMMC_DCTRL with ‘0’ (to disable DMA request generation). RM0385 Rev 7 RM0385 35.3.2 SD/SDIO/MMC card host interface (SDMMC) SDMMC APB2 interface The APB2 interface generates the interrupt and DMA requests, and accesses the SDMMC adapter registers and the data FIFO. It consists of a data path, register decoder, and interrupt/DMA logic. SDMMC interrupts The interrupt logic generates an interrupt request signal that is asserted when at least one of the selected status flags is high. A mask register is provided to allow selection of the conditions that will generate an interrupt. A status flag generates the interrupt request if a corresponding mask flag is set. SDMMC/DMA interface SDMMC APB interface controls all subunit to perform transfers between the host and card Example of read procedure using DMA Send CMD17 (READ_BLOCK) as follows: Note: a) Program the SDMMC data length register (SDMMC data timer register should be already programmed before the card identification process) b) Program DMA channel (refer to DMA configuration for SDMMC controller) c) Program the SDMMC data control register: DTEN with ‘1’ (SDMMC card host enabled to send data); DTDIR with ‘1’ (from card to controller); DTMODE with ‘0’ (block data transfer); DMAEN with ‘1’ (DMA enabled); DBLOCKSIZE with 0x9 (512 bytes). Other fields are don’t care. d) Program the SDMMC argument register with the address location of the card from where data is to be transferred e) Program the SDMMC command register: CmdIndex with 17(READ_BLOCK); WaitResp with ‘1’ (SDMMC card host waits for a response); CPSMEN with ‘1’ (SDMMC card host enabled to send a command). Other fields are at their reset value. f) Wait for SDMMC_STA[6] = CMDREND interrupt, (CMDREND is set if there is no error on command path). g) Wait for SDMMC_STA[10] = DBCKEND, (DBCKEND is set in case of no errors until the CRC check is passed) h) Wait until the FIFO is empty, when FIFO is empty the SDMMC_STA[5] = RXOVERR value has to be check to guarantee that read succeeded When FIFO overrun error occurs with last 1-4 bytes, it may happens that RXOVERR flag is set 2 APB clock cycles after DATAEND flag is set. To guarantee success of read operation RXOVERR must be cheked after FIFO is empty. RM0385 Rev 7 1237/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Example of write procedure using DMA Send CMD24 (WRITE_BLOCK) as follows: a) Program the SDMMC data length register (SDMMC data timer register should be already programmed before the card identification process) b) Program DMA channel (refer to DMA configuration for SDMMC controller) c) Program the SDMMC argument register with the address location of the card from where data is to be transferred d) Program the SDMMC command register: CmdIndex with 24(WRITE_BLOCK); WaitResp with ‘1’ (SDMMC card host waits for a response); CPSMEN with ‘1’ (SDMMC card host enabled to send a command). Other fields are at their reset value. e) Wait for SDMMC_STA[6] = CMDREND interrupt, then Program the SDMMC data control register: DTEN with ‘1’ (SDMMC card host enabled to send data); DTDIR with ‘0’ (from controller to card); DTMODE with ‘0’ (block data transfer); DMAEN with ‘1’ (DMA enabled); DBLOCKSIZE with 0x9 (512 bytes). Other fields are don’t care. f) Wait for SDMMC_STA[10] = DBCKEND, (DBCKEND is set in case of no errors) DMA configuration for SDMMC controller Note: a) Enable DMA2 controller and clear any pending interrupts. b) Program the DMA2_Stream3 (or DMA2_Stream6) Channel4 source address register with the memory location base address and DMA2_Stream3 (or DMA2_Stream6) Channel4 destination address register with the SDMMC_FIFO register address. c) Program DMA2_Stream3 (or DMA2_Stream6) Channel4 control register (memory increment, not peripheral increment, peripheral and source width is word size). d) Program DMA2_Stream3 (or DMA2_Stream6) Channel4 to select the peripheral as flow controller (set PFCTRL bit in DMA_S3CR (or DMA_S6CR) configuration register). e) Configure the incremental burst transfer to 4 beats (at least from peripheral side) in DMA2_Stream3 (or DMA2_Stream6) Channel4. f) Enable DMA2_Stream3 (or DMA2_Stream6) Channel4 SDMMC host allows only to use the DMA in peripheral flow controller mode. DMA stream used to serve SDMMC must be configured in peripheral flow controller mode SDMMC generates only DMA burst requests to DMA controller. DMA must be configured in incremental burst mode on peripheral side. 35.4 Card functional description 35.4.1 Card identification mode While in card identification mode the host resets all cards, validates the operation voltage range, identifies cards and sets a relative card address (RCA) for each card on the bus. All data communications in the card identification mode use the command line (CMD) only. 1238/1709 RM0385 Rev 7 RM0385 35.4.2 SD/SDIO/MMC card host interface (SDMMC) Card reset The GO_IDLE_STATE command (CMD0) is the software reset command and it puts the MultiMediaCard and SD memory in the Idle state. The IO_RW_DIRECT command (CMD52) resets the SD I/O card. After power-up or CMD0, all cards output bus drivers are in the highimpedance state and the cards are initialized with a default relative card address (RCA=0x0001) and with a default driver stage register setting (lowest speed, highest driving current capability). 35.4.3 Operating voltage range validation All cards can communicate with the SDMMC card host using any operating voltage within the specification range. The supported minimum and maximum VDD values are defined in the operation conditions register (OCR) on the card. Cards that store the card identification number (CID) and card specific data (CSD) in the payload memory are able to communicate this information only under data-transfer VDD conditions. When the SDMMC card host module and the card have incompatible VDD ranges, the card is not able to complete the identification cycle and cannot send CSD data. For this purpose, the special commands, SEND_OP_COND (CMD1), SD_APP_OP_COND (ACMD41 for SD Memory), and IO_SEND_OP_COND (CMD5 for SD I/O), are designed to provide a mechanism to identify and reject cards that do not match the VDD range desired by the SDMMC card host. The SDMMC card host sends the required VDD voltage window as the operand of these commands. Cards that cannot perform data transfer in the specified range disconnect from the bus and go to the inactive state. By using these commands without including the voltage range as the operand, the SDMMC card host can query each card and determine the common voltage range before placing outof-range cards in the inactive state. This query is used when the SDMMC card host is able to select a common voltage range or when the user requires notification that cards are not usable. 35.4.4 Card identification process The card identification process differs for MultiMediaCards and SD cards. For MultiMediaCard cards, the identification process starts at clock rate Fod. The SDMMC_CMD line output drivers are open-drain and allow parallel card operation during this process. The registration process is accomplished as follows: 1. The bus is activated. 2. The SDMMC card host broadcasts SEND_OP_COND (CMD1) to receive operation conditions. 3. The response is the wired AND operation of the operation condition registers from all cards. 4. Incompatible cards are placed in the inactive state. 5. The SDMMC card host broadcasts ALL_SEND_CID (CMD2) to all active cards. 6. The active cards simultaneously send their CID numbers serially. Cards with outgoing CID bits that do not match the bits on the command line stop transmitting and must wait for the next identification cycle. One card successfully transmits a full CID to the SDMMC card host and enters the Identification state. 7. The SDMMC card host issues SET_RELATIVE_ADDR (CMD3) to that card. This new address is called the relative card address (RCA); it is shorter than the CID and RM0385 Rev 7 1239/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 addresses the card. The assigned card changes to the Standby state, it does not react to further identification cycles, and its output switches from open-drain to push-pull. 8. The SDMMC card host repeats steps 5 through 7 until it receives a timeout condition. For the SD card, the identification process starts at clock rate Fod, and the SDMMC_CMD line output drives are push-pull drivers instead of open-drain. The registration process is accomplished as follows: 1. The bus is activated. 2. The SDMMC card host broadcasts SD_APP_OP_COND (ACMD41). 3. The cards respond with the contents of their operation condition registers. 4. The incompatible cards are placed in the inactive state. 5. The SDMMC card host broadcasts ALL_SEND_CID (CMD2) to all active cards. 6. The cards send back their unique card identification numbers (CIDs) and enter the Identification state. 7. The SDMMC card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an address. This new address is called the relative card address (RCA); it is shorter than the CID and addresses the card. The assigned card changes to the Standby state. The SDMMC card host can reissue this command to change the RCA. The RCA of the card is the last assigned value. 8. The SDMMC card host repeats steps 5 through 7 with all active cards. For the SD I/O card, the registration process is accomplished as follows: 35.4.5 1. The bus is activated. 2. The SDMMC card host sends IO_SEND_OP_COND (CMD5). 3. The cards respond with the contents of their operation condition registers. 4. The incompatible cards are set to the inactive state. 5. The SDMMC card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an address. This new address is called the relative card address (RCA); it is shorter than the CID and addresses the card. The assigned card changes to the Standby state. The SDMMC card host can reissue this command to change the RCA. The RCA of the card is the last assigned value. Block write During block write (CMD24 - 27) one or more blocks of data are transferred from the host to the card with a CRC appended to the end of each block by the host. A card supporting block write is always able to accept a block of data defined by WRITE_BL_LEN. If the CRC fails, the card indicates the failure on the SDMMC_D line and the transferred data are discarded and not written, and all further transmitted blocks (in multiple block write mode) are ignored. If the host uses partial blocks whose accumulated length is not block aligned and, block misalignment is not allowed (CSD parameter WRITE_BLK_MISALIGN is not set), the card will detect the block misalignment error before the beginning of the first misaligned block. (ADDRESS_ERROR error bit is set in the status register). The write operation will also be aborted if the host tries to write over a write-protected area. In this case, however, the card will set the WP_VIOLATION bit. Programming of the CID and CSD registers does not require a previous block length setting. The transferred data is also CRC protected. If a part of the CSD or CID register is stored in ROM, then this unchangeable part must match the corresponding part of the receive buffer. If this match fails, then the card reports an error and does not change any register contents. 1240/1709 RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Some cards may require long and unpredictable times to write a block of data. After receiving a block of data and completing the CRC check, the card begins writing and holds the SDMMC_D line low if its write buffer is full and unable to accept new data from a new WRITE_BLOCK command. The host may poll the status of the card with a SEND_STATUS command (CMD13) at any time, and the card will respond with its status. The READY_FOR_DATA status bit indicates whether the card can accept new data or whether the write process is still in progress. The host may deselect the card by issuing CMD7 (to select a different card), which will place the card in the Disconnect state and release the SDMMC_D line(s) without interrupting the write operation. When reselecting the card, it will reactivate busy indication by pulling SDMMC_D to low if programming is still in progress and the write buffer is unavailable. 35.4.6 Block read In Block read mode the basic unit of data transfer is a block whose maximum size is defined in the CSD (READ_BL_LEN). If READ_BL_PARTIAL is set, smaller blocks whose start and end addresses are entirely contained within one physical block (as defined by READ_BL_LEN) may also be transmitted. A CRC is appended to the end of each block, ensuring data transfer integrity. CMD17 (READ_SINGLE_BLOCK) initiates a block read and after completing the transfer, the card returns to the Transfer state. CMD18 (READ_MULTIPLE_BLOCK) starts a transfer of several consecutive blocks. The host can abort reading at any time, within a multiple block operation, regardless of its type. Transaction abort is done by sending the stop transmission command. If the card detects an error (for example, out of range, address misalignment or internal error) during a multiple block read operation (both types) it stops the data transmission and remains in the data state. The host must than abort the operation by sending the stop transmission command. The read error is reported in the response to the stop transmission command. If the host sends a stop transmission command after the card transmits the last block of a multiple block operation with a predefined number of blocks, it is responded to as an illegal command, since the card is no longer in the data state. If the host uses partial blocks whose accumulated length is not block-aligned and block misalignment is not allowed, the card detects a block misalignment error condition at the beginning of the first misaligned block (ADDRESS_ERROR error bit is set in the status register). 35.4.7 Stream access, stream write and stream read (MultiMediaCard only) In stream mode, data is transferred in bytes and no CRC is appended at the end of each block. Stream write (MultiMediaCard only) WRITE_DAT_UNTIL_STOP (CMD20) starts the data transfer from the SDMMC card host to the card, beginning at the specified address and continuing until the SDMMC card host issues a stop command. When partial blocks are allowed (CSD parameter WRITE_BL_PARTIAL is set), the data stream can start and stop at any address within the card address space, otherwise it can only start and stop at block boundaries. Because the amount of data to be transferred is not determined in advance, a CRC cannot be used. When the end of the memory range is reached while sending data and no stop command is sent by the SDMMC card host, any additional transferred data are discarded. RM0385 Rev 7 1241/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 The maximum clock frequency for a stream write operation is given by the following equation fields of the card-specific data register: 8 × 2 writebllen ) ( – NSAC )) Maximumspeed = MIN (TRANSPEED,(------------------------------------------------------------------------TAAC × R2WFACTOR • Maximumspeed = maximum write frequency • TRANSPEED = maximum data transfer rate • writebllen = maximum write data block length • NSAC = data read access time 2 in CLK cycles • TAAC = data read access time 1 • R2WFACTOR = write speed factor If the host attempts to use a higher frequency, the card may not be able to process the data and stop programming, set the OVERRUN error bit in the status register, and while ignoring all further data transfer, wait (in the receive data state) for a stop command. The write operation is also aborted if the host tries to write over a write-protected area. In this case, however, the card sets the WP_VIOLATION bit. Stream read (MultiMediaCard only) READ_DAT_UNTIL_STOP (CMD11) controls a stream-oriented data transfer. This command instructs the card to send its data, starting at a specified address, until the SDMMC card host sends STOP_TRANSMISSION (CMD12). The stop command has an execution delay due to the serial command transmission and the data transfer stops after the end bit of the stop command. When the end of the memory range is reached while sending data and no stop command is sent by the SDMMC card host, any subsequent data sent are considered undefined. The maximum clock frequency for a stream read operation is given by the following equation and uses fields of the card specific data register. ( 8 × 2 readbllen ) ( – NSAC )) Maximumspeed = MIN (TRANSPEED,-----------------------------------------------------------------------TAAC × R2WFACTOR • Maximumspeed = maximum read frequency • TRANSPEED = maximum data transfer rate • readbllen = maximum read data block length • writebllen = maximum write data block length • NSAC = data read access time 2 in CLK cycles • TAAC = data read access time 1 • R2WFACTOR = write speed factor If the host attempts to use a higher frequency, the card is not able to sustain data transfer. If this happens, the card sets the UNDERRUN error bit in the status register, aborts the transmission and waits in the data state for a stop command. 1242/1709 RM0385 Rev 7 RM0385 35.4.8 SD/SDIO/MMC card host interface (SDMMC) Erase: group erase and sector erase The erasable unit of the MultiMediaCard is the erase group. The erase group is measured in write blocks, which are the basic writable units of the card. The size of the erase group is a card-specific parameter and defined in the CSD. The host can erase a contiguous range of Erase Groups. Starting the erase process is a three-step sequence. First the host defines the start address of the range using the ERASE_GROUP_START (CMD35) command, next it defines the last address of the range using the ERASE_GROUP_END (CMD36) command and, finally, it starts the erase process by issuing the ERASE (CMD38) command. The address field in the erase commands is an Erase Group address in byte units. The card ignores all LSBs below the Erase Group size, effectively rounding the address down to the Erase Group boundary. If an erase command is received out of sequence, the card sets the ERASE_SEQ_ERROR bit in the status register and resets the whole sequence. If an out-of-sequence (neither of the erase commands, except SEND_STATUS) command received, the card sets the ERASE_RESET status bit in the status register, resets the erase sequence and executes the last command. If the erase range includes write protected blocks, they are left intact and only nonprotected blocks are erased. The WP_ERASE_SKIP status bit in the status register is set. The card indicates that an erase is in progress by holding SDMMC_D low. The actual erase time may be quite long, and the host may issue CMD7 to deselect the card. 35.4.9 Wide bus selection or deselection Wide bus (4-bit bus width) operation mode is selected or deselected using SET_BUS_WIDTH (ACMD6). The default bus width after power-up or GO_IDLE_STATE (CMD0) is 1 bit. SET_BUS_WIDTH (ACMD6) is only valid in a transfer state, which means that the bus width can be changed only after a card is selected by SELECT/DESELECT_CARD (CMD7). 35.4.10 Protection management Three write protection methods for the cards are supported in the SDMMC card host module: 1. internal card write protection (card responsibility) 2. mechanical write protection switch (SDMMC card host module responsibility only) 3. password-protected card lock operation Internal card write protection Card data can be protected against write and erase. By setting the permanent or temporary write-protect bits in the CSD, the entire card can be permanently write-protected by the manufacturer or content provider. For cards that support write protection of groups of sectors by setting the WP_GRP_ENABLE bit in the CSD, portions of the data can be protected, and the write protection can be changed by the application. The write protection is in units of WP_GRP_SIZE sectors as specified in the CSD. The SET_WRITE_PROT and CLR_WRITE_PROT commands control the protection of the addressed group. The SEND_WRITE_PROT command is similar to a single block read command. The card sends RM0385 Rev 7 1243/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 a data block containing 32 write protection bits (representing 32 write protect groups starting at the specified address) followed by 16 CRC bits. The address field in the write protect commands is a group address in byte units. The card ignores all LSBs below the group size. Mechanical write protect switch A mechanical sliding tab on the side of the card allows the user to set or clear the write protection on a card. When the sliding tab is positioned with the window open, the card is write-protected, and when the window is closed, the card contents can be changed. A matched switch on the socket side indicates to the SDMMC card host module that the card is write-protected. The SDMMC card host module is responsible for protecting the card. The position of the write protect switch is unknown to the internal circuitry of the card. Password protect The password protection feature enables the SDMMC card host module to lock and unlock a card with a password. The password is stored in the 128-bit PWD register and its size is set in the 8-bit PWD_LEN register. These registers are nonvolatile so that a power cycle does not erase them. Locked cards respond to and execute certain commands. This means that the SDMMC card host module is allowed to reset, initialize, select, and query for status, however it is not allowed to access data on the card. When the password is set (as indicated by a nonzero value of PWD_LEN), the card is locked automatically after power-up. As with the CSD and CID register write commands, the lock/unlock commands are available in the transfer state only. In this state, the command does not include an address argument and the card must be selected before using it. The card lock/unlock commands have the structure and bus transaction types of a regular single-block write command. The transferred data block includes all of the required information for the command (the password setting mode, the PWD itself, and card lock/unlock). The command data block size is defined by the SDMMC card host module before it sends the card lock/unlock command, and has the structure shown in Table 240. The bit settings are as follows: • ERASE: setting it forces an erase operation. All other bits must be zero, and only the command byte is sent • LOCK_UNLOCK: setting it locks the card. LOCK_UNLOCK can be set simultaneously with SET_PWD, however not with CLR_PWD • CLR_PWD: setting it clears the password data • SET_PWD: setting it saves the password data to memory • PWD_LEN: it defines the length of the password in bytes • PWD: the password (new or currently used, depending on the command) The following sections list the command sequences to set/reset a password, lock/unlock the card, and force an erase. Setting the password 1244/1709 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes of the new password. RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) When a password replacement is done, the block size must take into account that both the old and the new passwords are sent with the command. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (SET_PWD = 1), the length (PWD_LEN), and the password (PWD) itself. When a password replacement is done, the length value (PWD_LEN) includes the length of both passwords, the old and the new one, and the PWD field includes the old password (currently used) followed by the new password. 4. When the password is matched, the new password and its size are saved into the PWD and PWD_LEN fields, respectively. When the old password sent does not correspond (in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the password is not changed. The password length field (PWD_LEN) indicates whether a password is currently set. When this field is nonzero, there is a password set and the card locks itself after power-up. It is possible to lock the card immediately in the current power session by setting the LOCK_UNLOCK bit (while setting the password) or sending an additional command for card locking. Resetting the password 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes in the currently used password. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (CLR_PWD = 1), the length (PWD_LEN) and the password (PWD) itself. The LOCK_UNLOCK bit is ignored. 4. When the password is matched, the PWD field is cleared and PWD_LEN is set to 0. When the password sent does not correspond (in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the password is not changed. Locking a card 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card lock/unlock mode (byte 0 in Table 240), the 8-bit PWD_LEN, and the number of bytes of the current password. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 1), the length (PWD_LEN), and the password (PWD) itself. 4. When the password is matched, the card is locked and the CARD_IS_LOCKED status bit is set in the card status register. When the password sent does not correspond (in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the lock fails. It is possible to set the password and to lock the card in the same sequence. In this case, the SDMMC card host module performs all the required steps for setting the password (see Setting the password on page 1244), however it is necessary to set the LOCK_UNLOCK bit in Step 3 when the new password command is sent. RM0385 Rev 7 1245/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 When the password is previously set (PWD_LEN is not 0), the card is locked automatically after power on reset. An attempt to lock a locked card or to lock a card that does not have a password fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register. Unlocking the card 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit cardlock/unlock mode (byte 0 in Table 240), the 8-bit PWD_LEN, and the number of bytes of the current password. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 0), the length (PWD_LEN), and the password (PWD) itself. 4. When the password is matched, the card is unlocked and the CARD_IS_LOCKED status bit is cleared in the card status register. When the password sent is not correct in size and/or content and does not correspond to the expected password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and the card remains locked. The unlocking function is only valid for the current power session. When the PWD field is not clear, the card is locked automatically on the next power-up. An attempt to unlock an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register. Forcing erase If the user has forgotten the password (PWD content), it is possible to access the card after clearing all the data on the card. This forced erase operation erases all card data and all password data. 1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected. 2. Set the block length (SET_BLOCKLEN, CMD16) to 1 byte. Only the 8-bit card lock/unlock byte (byte 0 in Table 240) is sent. 3. Send LOCK/UNLOCK (CMD42) with the appropriate data byte on the data line including the 16-bit CRC. The data block indicates the mode (ERASE = 1). All other bits must be zero. 4. When the ERASE bit is the only bit set in the data field, all card contents are erased, including the PWD and PWD_LEN fields, and the card is no longer locked. When any other bits are set, the LOCK_UNLOCK_FAILED error bit is set in the card status register and the card retains all of its data, and remains locked. An attempt to use a force erase on an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register. 1246/1709 RM0385 Rev 7 RM0385 35.4.11 SD/SDIO/MMC card host interface (SDMMC) Card status register The response format R1 contains a 32-bit field named card status. This field is intended to transmit the card status information (which may be stored in a local status register) to the host. If not specified otherwise, the status entries are always related to the previously issued command. Table 227 defines the different entries of the status. The type and clear condition fields in the table are abbreviated as follows: Type: • E: error bit • S: status bit • R: detected and set for the actual command response • X: detected and set during command execution. The SDMMC card host must poll the card by issuing the status command to read these bits. Clear condition: • A: according to the card current state • B: always related to the previous command. Reception of a valid command clears it (with a delay of one command) • C: clear by read Table 227. Card status Bits 31 30 29 Identifier ADDRESS_ OUT_OF_RANGE ADDRESS_MISALIGN BLOCK_LEN_ERROR Type ERX - - Value Description Clear condition ’0’= no error ’1’= error The command address argument was out of the allowed range for this card. A multiple block or stream read/write C operation is (although started in a valid address) attempting to read or write beyond the card capacity. ’0’= no error ’1’= error The commands address argument (in accordance with the currently set block length) positions the first data block misaligned to the card physical blocks. A multiple block read/write operation (although started with a valid address/block-length combination) is attempting to read or write a data block which is not aligned with the physical blocks of the card. ’0’= no error ’1’= error Either the argument of a SET_BLOCKLEN command exceeds the maximum value allowed for the card, or the previously defined block length is illegal for the current command (e.g. the C host issues a write command, the current block length is smaller than the maximum allowed value for the card and it is not allowed to write partial blocks) RM0385 Rev 7 C 1247/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Table 227. Card status (continued) Bits Identifier Type Value Description Clear condition - ’0’= no error ’1’= error An error in the sequence of erase commands occurred. C ERASE_PARAM EX ’0’= no error ’1’= error An invalid selection of erase groups for erase occurred. C 26 WP_VIOLATION EX ’0’= no error ’1’= error Attempt to program a write-protected block. 25 CARD_IS_LOCKED SR ‘0’ = card unlocked ‘1’ = card locked When set, signals that the card is locked by the host A 24 LOCK_UNLOCK_ FAILED EX ’0’= no error ’1’= error Set when a sequence or password error has been detected in lock/unlock card command C 23 COM_CRC_ERROR ER ’0’= no error ’1’= error The CRC check of the previous command B failed. 22 ILLEGAL_COMMAND ER ’0’= no error ’1’= error Command not legal for the card state B 21 CARD_ECC_FAILED EX ’0’= success ’1’= failure Card internal ECC was applied but failed to correct the data. C 20 CC_ERROR ER ’0’= no error ’1’= error (Undefined by the standard) A card error occurred, which is not related to the host command. C EX ’0’= no error ’1’= error (Undefined by the standard) A generic card error related to the (and detected during) execution of the last host command (e.g. read or write failures). C Can be either of the following errors: – The CID register has already been written and cannot be overwritten – The read-only section of the CSD does C not match the card contents – An attempt to reverse the copy (set as original) or permanent WP (unprotected) bits was made 28 ERASE_SEQ_ERROR 27 19 ERROR 18 Reserved 17 Reserved 16 CID/CSD_OVERWRITE EX ’0’= no error ‘1’= error 15 WP_ERASE_SKIP EX ’0’= not protected Set when only partial address space ’1’= protected was erased due to existing write 14 CARD_ECC_DISABLED S X 1248/1709 ’0’= enabled ’1’= disabled C C The command has been executed without A using the internal ECC. RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Table 227. Card status (continued) Bits 13 Identifier ERASE_RESET Type - Value Description Clear condition ’0’= cleared ’1’= set An erase sequence was cleared before executing because an out of erase sequence command was received (commands other than CMD35, CMD36, CMD38 or CMD13) The state of the card when receiving the command. If the command execution causes a state change, it will be visible to B the host in the response on the next command. The four bits are interpreted as a binary number between 0 and 15. C 12:9 CURRENT_STATE SR 0 = Idle 1 = Ready 2 = Ident 3 = Stby 4 = Tran 5 = Data 6 = Rcv 7 = Prg 8 = Dis 9 = Btst 10-15 = reserved 8 READY_FOR_DATA SR ’0’= not ready ‘1’ = ready Corresponds to buffer empty signalling on the bus 7 SWITCH_ERROR EX ’0’= no error ’1’= switch error If set, the card did not switch to the expected mode as requested by the SWITCH command B 6 Reserved 5 APP_CMD SR ‘0’ = Disabled ‘1’ = Enabled The card will expect ACMD, or an indication that the command has been interpreted as ACMD C 4 Reserved for SD I/O Card 3 AKE_SEQ_ERROR ER ’0’= no error ’1’= error Error in the sequence of the authentication process C 2 Reserved for application specific commands 1 0 Reserved for manufacturer test mode RM0385 Rev 7 1249/1709 1280 SD/SDIO/MMC card host interface (SDMMC) 35.4.12 RM0385 SD status register The SD status contains status bits that are related to the SD memory card proprietary features and may be used for future application-specific usage. The size of the SD Status is one data block of 512 bits. The contents of this register are transmitted to the SDMMC card host if ACMD13 is sent (CMD55 followed with CMD13). ACMD13 can be sent to a card in transfer state only (card is selected). Table 228 defines the different entries of the SD status register. The type and clear condition fields in the table are abbreviated as follows: Type: • E: error bit • S: status bit • R: detected and set for the actual command response • X: detected and set during command execution. The SDMMC card Host must poll the card by issuing the status command to read these bits Clear condition: • A: according to the card current state • B: always related to the previous command. Reception of a valid command clears it (with a delay of one command) • C: clear by read Table 228. SD status Bits Identifier Type Value Description Clear condition 511: 510 DAT_BUS_WIDTH S R ’00’= 1 (default) ‘01’= reserved ‘10’= 4 bit width ‘11’= reserved Shows the currently defined databus width that was defined by SET_BUS_WIDTH command A 509 ’0’= Not in the mode ’1’= In Secured Mode Card is in Secured Mode of operation (refer to the “SD Security Specification”). A ’00xxh’= SD Memory Cards as defined in Physical Spec Ver1.012.00 (’x’= don’t care). The following cards are currently defined: ’0000’= Regular SD RD/WR Card. ’0001’= SD ROM Card In the future, the 8 LSBs will be used to define different variations of an SD memory card (each bit will define different SD types). The 8 A MSBs will be used to define SD Cards that do not comply with current SD physical layer specification. Size of protected area (See below) (See below) A Speed Class of the card (See below) (See below) A SECURED_MODE S R 508: 496 Reserved 495: 480 SD_CARD_TYPE 479: 448 SIZE_OF_PROTE SR CT ED_AREA 447: 440 SPEED_CLASS 1250/1709 SR SR RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Table 228. SD status (continued) Bits Identifier Type Value Description Clear condition 439: 432 PERFORMANCE_ SR MOVE Performance of move indicated by 1 [MB/s] step. (See below) (See below) A 431:428 AU_SIZE SR Size of AU (See below) (See below) A 427:424 Reserved 423:408 ERASE_SIZE SR Number of AUs to be erased at a time (See below) A 407:402 ERASE_TIMEOUT S R Timeout value for erasing areas specified by UNIT_OF_ERASE_AU (See below) A 401:400 ERASE_OFFSET Fixed offset value added to erase (See below) time. A 399:312 Reserved 311:0 Reserved for Manufacturer SR SIZE_OF_PROTECTED_AREA Setting this field differs between standard- and high-capacity cards. In the case of a standard-capacity card, the capacity of protected area is calculated as follows: Protected area = SIZE_OF_PROTECTED_AREA_* MULT * BLOCK_LEN. SIZE_OF_PROTECTED_AREA is specified by the unit in MULT*BLOCK_LEN. In the case of a high-capacity card, the capacity of protected area is specified in this field: Protected area = SIZE_OF_PROTECTED_AREA SIZE_OF_PROTECTED_AREA is specified by the unit in bytes. SPEED_CLASS This 8-bit field indicates the speed class and the value can be calculated by PW/2 (where PW is the write performance). Table 229. Speed class code field SPEED_CLASS Value definition 00h Class 0 01h Class 2 02h Class 4 03h Class 6 04h – FFh Reserved RM0385 Rev 7 1251/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 PERFORMANCE_MOVE This 8-bit field indicates Pm (performance move) and the value can be set by 1 [MB/sec] steps. If the card does not move used RUs (recording units), Pm should be considered as infinity. Setting the field to FFh means infinity. Table 230. Performance move field PERFORMANCE_MOVE Value definition 00h Not defined 01h 1 [MB/sec] 02h 02h 2 [MB/sec] --------- --------- FEh 254 [MB/sec] FFh Infinity AU_SIZE This 4-bit field indicates the AU size and the value can be selected in the power of 2 base from 16 KB. Table 231. AU_SIZE field AU_SIZE Value definition 00h Not defined 01h 16 KB 02h 32 KB 03h 64 KB 04h 128 KB 05h 256 KB 06h 512 KB 07h 1 MB 08h 2 MB 09h 4 MB Ah – Fh Reserved The maximum AU size, which depends on the card capacity, is defined in Table 232. The card can be set to any AU size between RU size and maximum AU size. Table 232. Maximum AU size 1252/1709 Capacity 16 MB-64 MB 128 MB-256 MB 512 MB 1 GB-32 GB Maximum AU Size 512 KB 1 MB 2 MB 4 MB RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) ERASE_SIZE This 16-bit field indicates NERASE. When NERASE numbers of AUs are erased, the timeout value is specified by ERASE_TIMEOUT (Refer to ERASE_TIMEOUT). The host should determine the proper number of AUs to be erased in one operation so that the host can show the progress of the erase operation. If this field is set to 0, the erase timeout calculation is not supported. Table 233. Erase size field ERASE_SIZE Value definition 0000h Erase timeout calculation is not supported. 0001h 1 AU 0002h 2 AU 0003h 3 AU --------- --------- FFFFh 65535 AU ERASE_TIMEOUT This 6-bit field indicates TERASE and the value indicates the erase timeout from offset when multiple AUs are being erased as specified by ERASE_SIZE. The range of ERASE_TIMEOUT can be defined as up to 63 seconds and the card manufacturer can choose any combination of ERASE_SIZE and ERASE_TIMEOUT depending on the implementation. Determining ERASE_TIMEOUT determines the ERASE_SIZE. Table 234. Erase timeout field ERASE_TIMEOUT Value definition 00 Erase timeout calculation is not supported. 01 1 [sec] 02 2 [sec] 03 3 [sec] --------- --------- 63 63 [sec] ERASE_OFFSET This 2-bit field indicates TOFFSET and one of four values can be selected. This field is meaningless if the ERASE_SIZE and ERASE_TIMEOUT fields are set to 0. Table 235. Erase offset field ERASE_OFFSET Value definition 0h 0 [sec] 1h 1 [sec] RM0385 Rev 7 1253/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Table 235. Erase offset field (continued) ERASE_OFFSET 35.4.13 Value definition 2h 2 [sec] 3h 3 [sec] SD I/O mode SD I/O interrupts To allow the SD I/O card to interrupt the MultiMediaCard/SD module, an interrupt function is available on a pin on the SD interface. Pin 8, used as SDMMC_D1 when operating in the 4bit SD mode, signals the cards interrupt to the MultiMediaCard/SD module. The use of the interrupt is optional for each card or function within a card. The SD I/O interrupt is levelsensitive, which means that the interrupt line must be held active (low) until it is either recognized and acted upon by the MultiMediaCard/SD module or deasserted due to the end of the interrupt period. After the MultiMediaCard/SD module has serviced the interrupt, the interrupt status bit is cleared via an I/O write to the appropriate bit in the SD I/O card’s internal registers. The interrupt output of all SD I/O cards is active low and the application must provide pull-up resistors externally on all data lines (SDMMC_D[3:0]). The MultiMediaCard/SD module samples the level of pin 8 (SDMMC_D/IRQ) into the interrupt detector only during the interrupt period. At all other times, the MultiMediaCard/SD module ignores this value. The interrupt period is applicable for both memory and I/O operations. The definition of the interrupt period for operations with single blocks is different from the definition for multipleblock data transfers. SD I/O suspend and resume Within a multifunction SD I/O or a card with both I/O and memory functions, there are multiple devices (I/O and memory) that share access to the MMC/SD bus. To share access to the MMC/SD module among multiple devices, SD I/O and combo cards optionally implement the concept of suspend/resume. When a card supports suspend/resume, the MMC/SD module can temporarily halt a data transfer operation to one function or memory (suspend) to free the bus for a higher-priority transfer to a different function or memory. After this higher-priority transfer is complete, the original transfer is resumed (restarted) where it left off. Support of suspend/resume is optional on a per-card basis. To perform the suspend/resume operation on the MMC/SD bus, the MMC/SD module performs the following steps: 1. Determines the function currently using the SDMMC_D [3:0] line(s) 2. Requests the lower-priority or slower transaction to suspend 3. Waits for the transaction suspension to complete 4. Begins the higher-priority transaction 5. Waits for the completion of the higher priority transaction 6. Restores the suspended transaction SD I/O ReadWait The optional ReadWait (RW) operation is defined only for the SD 1-bit and 4-bit modes. The ReadWait operation allows the MMC/SD module to signal a card that it is reading multiple 1254/1709 RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) registers (IO_RW_EXTENDED, CMD53) to temporarily stall the data transfer while allowing the MMC/SD module to send commands to any function within the SD I/O device. To determine when a card supports the ReadWait protocol, the MMC/SD module must test capability bits in the internal card registers. The timing for ReadWait is based on the interrupt period. 35.4.14 Commands and responses Application-specific and general commands The SDMMC card host module system is designed to provide a standard interface for a variety of applications types. In this environment, there is a need for specific customer/application features. To implement these features, two types of generic commands are defined in the standard: application-specific commands (ACMD) and general commands (GEN_CMD). When the card receives the APP_CMD (CMD55) command, the card expects the next command to be an application-specific command. ACMDs have the same structure as regular MultiMediaCard commands and can have the same CMD number. The card recognizes it as ACMD because it appears after APP_CMD (CMD55). When the command immediately following the APP_CMD (CMD55) is not a defined application-specific command, the standard command is used. For example, when the card has a definition for SD_STATUS (ACMD13), and receives CMD13 immediately following APP_CMD (CMD55), this is interpreted as SD_STATUS (ACMD13). However, when the card receives CMD7 immediately following APP_CMD (CMD55) and the card does not have a definition for ACMD7, this is interpreted as the standard (SELECT/DESELECT_CARD) CMD7. To use one of the manufacturer-specific ACMDs the SD card Host must perform the following steps: 1. Send APP_CMD (CMD55) The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit is set and an ACMD is now expected. 2. Send the required ACMD The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit is set and that the accepted command is interpreted as an ACMD. When a nonACMD is sent, it is handled by the card as a normal MultiMediaCard command and the APP_CMD bit in the card status register stays clear. When an invalid command is sent (neither ACMD nor CMD) it is handled as a standard MultiMediaCard illegal command error. The bus transaction for a GEN_CMD is the same as the single-block read or write commands (WRITE_BLOCK, CMD24 or READ_SINGLE_BLOCK,CMD17). In this case, the argument denotes the direction of the data transfer rather than the address, and the data block has vendor-specific format and meaning. The card must be selected (in transfer state) before sending GEN_CMD (CMD56). The data block size is defined by SET_BLOCKLEN (CMD16). The response to GEN_CMD (CMD56) is in R1b format. RM0385 Rev 7 1255/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Command types Both application-specific and general commands are divided into the four following types: • broadcast command (BC): sent to all cards; no responses returned. • broadcast command with response (BCR): sent to all cards; responses received from all cards simultaneously. • addressed (point-to-point) command (AC): sent to the card that is selected; does not include a data transfer on the SDMMC_D line(s). • addressed (point-to-point) data transfer command (ADTC): sent to the card that is selected; includes a data transfer on the SDMMC_D line(s). Command formats See Table 219 on page 1230 for command formats. Commands for the MultiMediaCard/SD module Table 236. Block-oriented write commands CMD index Type Argument Response format Abbreviation Description CMD23 ac [31:16] set to 0 [15:0] number R1 of blocks SET_BLOCK_COUNT Defines the number of blocks which are going to be transferred in the multiple-block read or write command that follows. CMD24 adtc [31:0] data address R1 WRITE_BLOCK Writes a block of the size selected by the SET_BLOCKLEN command. CMD25 adtc [31:0] data address R1 Continuously writes blocks of data until a STOP_TRANSMISSION WRITE_MULTIPLE_BLOCK follows or the requested number of blocks has been received. CMD26 adtc [31:0] stuff bits R1 PROGRAM_CID Programming of the card identification register. This command must be issued only once per card. The card contains hardware to prevent this operation after the first programming. Normally this command is reserved for manufacturer. CMD27 adtc [31:0] stuff bits R1 PROGRAM_CSD Programming of the programmable bits of the CSD. 1256/1709 RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Table 237. Block-oriented write protection commands CMD index Type Argument Response format Abbreviation Description CMD28 ac [31:0] data address R1b SET_WRITE_PROT If the card has write protection features, this command sets the write protection bit of the addressed group. The properties of write protection are coded in the cardspecific data (WP_GRP_SIZE). CMD29 ac [31:0] data address R1b CLR_WRITE_PROT If the card provides write protection features, this command clears the write protection bit of the addressed group. CMD30 adtc [31:0] write protect data address SEND_WRITE_PROT If the card provides write protection features, this command asks the card to send the status of the write protection bits. R1 CMD31 Reserved Table 238. Erase commands CMD index Type Argument Response format Abbreviation Description CMD32 Reserved. These command indexes cannot be used in order to maintain backward compatibility with older ... versions of the MultiMediaCard. CMD34 CMD35 ac [31:0] data address R1 Sets the address of the first erase ERASE_GROUP_START group within a range to be selected for erase. CMD36 ac [31:0] data address R1 ERASE_GROUP_END CMD37 Sets the address of the last erase group within a continuous range to be selected for erase. Reserved. This command index cannot be used in order to maintain backward compatibility with older versions of the MultiMediaCards CMD38 ac [31:0] stuff bits R1 Erases all previously selected write blocks. ERASE Table 239. I/O mode commands CMD index Type CMD39 ac Argument [31:16] RCA [15:15] register write flag [14:8] register address [7:0] register data Response format R4 Abbreviation FAST_IO RM0385 Rev 7 Description Used to write and read 8-bit (register) data fields. The command addresses a card and a register and provides the data for writing if the write flag is set. The R4 response contains data read from the addressed register. This command accesses application-dependent registers that are not defined in the MultiMediaCard standard. 1257/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Table 239. I/O mode commands (continued) CMD index Type CMD40 bcr Argument [31:0] stuff bits Response format R5 Abbreviation Description GO_IRQ_STATE Places the system in the interrupt mode. CMD41 Reserved Table 240. Lock card CMD index Type CMD42 adtc Response format Argument [31:0] stuff bits R1b Abbreviation LOCK_UNLOCK Description Sets/resets the password or locks/unlocks the card. The size of the data block is set by the SET_BLOCK_LEN command. CMD43 ... Reserved CMD54 Table 241. Application-specific commands CMD index CMD55 Type ac Argument [31:16] RCA [15:0] stuff bits Response format R1 [31:1] stuff bits [0]: RD/WR CMD56 adtc CMD57 ... CMD59 Reserved. CMD60 ... CMD63 Reserved for manufacturer. 35.5 Abbreviation APP_CMD - - Description Indicates to the card that the next command bits is an application specific command rather than a standard command Used either to transfer a data block to the card or to get a data block from the card for general purpose/application-specific commands. The size of the data block shall be set by the SET_BLOCK_LEN command. Response formats All responses are sent via the SDMMC command line SDMMC_CMD. The response transmission always starts with the left bit of the bit string corresponding to the response code word. The code length depends on the response type. A response always starts with a start bit (always 0), followed by the bit indicating the direction of transmission (card = 0). A value denoted by x in the tables below indicates a variable entry. All responses, except for the R3 response type, are protected by a CRC. Every command code word is terminated by the end bit (always 1). There are five types of responses. Their formats are defined as follows: 1258/1709 RM0385 Rev 7 RM0385 35.5.1 SD/SDIO/MMC card host interface (SDMMC) R1 (normal response command) Code length = 48 bits. The 45:40 bits indicate the index of the command to be responded to, this value being interpreted as a binary-coded number (between 0 and 63). The status of the card is coded in 32 bits. Table 242. R1 response Bit position 35.5.2 Width (bits Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 X Command index [39:8] 32 X Card status [7:1] 7 X CRC7 0 1 1 End bit R1b It is identical to R1 with an optional busy signal transmitted on the data line. The card may become busy after receiving these commands based on its state prior to the command reception. 35.5.3 R2 (CID, CSD register) Code length = 136 bits. The contents of the CID register are sent as a response to the CMD2 and CMD10 commands. The contents of the CSD register are sent as a response to CMD9. Only the bits [127...1] of the CID and CSD are transferred, the reserved bit [0] of these registers is replaced by the end bit of the response. The card indicates that an erase is in progress by holding SDMMC_D0 low. The actual erase time may be quite long, and the host may issue CMD7 to deselect the card. Table 243. R2 response Bit position Width (bits Value Description 135 1 0 Start bit 134 1 0 Transmission bit [133:128] 6 ‘111111’ Command index [127:1] 127 X Card status 0 1 1 End bit RM0385 Rev 7 1259/1709 1280 SD/SDIO/MMC card host interface (SDMMC) 35.5.4 RM0385 R3 (OCR register) Code length: 48 bits. The contents of the OCR register are sent as a response to CMD1. The level coding is as follows: restricted voltage windows = low, card busy = low. Table 244. R3 response Bit position 35.5.5 Width (bits Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘111111’ Reserved [39:8] 32 X OCR register [7:1] 7 ‘1111111’ Reserved 0 1 1 End bit R4 (Fast I/O) Code length: 48 bits. The argument field contains the RCA of the addressed card, the register address to be read out or written to, and its content. Table 245. R4 response Bit position Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘100111’ CMD39 [31:16] 16 X RCA [15:8] 8 X register address [7:0] 8 X read register contents [7:1] 7 X CRC7 0 1 1 End bit [39:8] Argument field 35.5.6 Width (bits R4b For SD I/O only: an SDIO card receiving the CMD5 will respond with a unique SDIO response R4. The format is: Table 246. R4b response Bit position 1260/1709 Width (bits Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 X Reserved RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Table 246. R4b response (continued) Bit position Width (bits Value Description 39 16 X Card is ready [38:36] 3 X Number of I/O functions 35 1 X Present memory [34:32] 3 X Stuff bits [31:8] 24 X I/O ORC [7:1] 7 X Reserved 0 1 1 End bit [39:8] Argument field Once an SD I/O card has received a CMD5, the I/O portion of that card is enabled to respond normally to all further commands. This I/O enable of the function within the I/O card will remain set until a reset, power cycle or CMD52 with write to I/O reset is received by the card. Note that an SD memory-only card may respond to a CMD5. The proper response for a memory-only card would be Present memory = 1 and Number of I/O functions = 0. A memory-only card built to meet the SD Memory Card specification version 1.0 would detect the CMD5 as an illegal command and not respond. The I/O aware host will send CMD5. If the card responds with response R4, the host determines the card’s configuration based on the data contained within the R4 response. 35.5.7 R5 (interrupt request) Only for MultiMediaCard. Code length: 48 bits. If the response is generated by the host, the RCA field in the argument will be 0x0. Table 247. R5 response Bit position Width (bits Value 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘101000’ CMD40 [31:16] 16 X RCA [31:16] of winning card or of the host [15:0] 16 X Not defined. May be used for IRQ data [7:1] 7 X CRC7 0 1 1 End bit [39:8] Argument field 35.5.8 Description R6 Only for SD I/O. The normal response to CMD3 by a memory device. It is shown in Table 248. RM0385 Rev 7 1261/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Table 248. R6 response Bit position Width (bits) Value Description 47 1 0 Start bit 46 1 0 Transmission bit [45:40] 6 ‘101000’ CMD40 [31:16] 16 X RCA [31:16] of winning card or of the host [15:0] 16 X Not defined. May be used for IRQ data [7:1] 7 X CRC7 0 1 1 End bit [39:8] Argument field The card [23:8] status bits are changed when CMD3 is sent to an I/O-only card. In this case, the 16 bits of response are the SD I/O-only values: 35.6 • Bit [15] COM_CRC_ERROR • Bit [14] ILLEGAL_COMMAND • Bit [13] ERROR • Bits [12:0] Reserved SDIO I/O card-specific operations The following features are SD I/O-specific operations: • SDIO read wait operation by SDMMC_D2 signalling • SDIO read wait operation by stopping the clock • SDIO suspend/resume operation (write and read suspend) • SDIO interrupts The SDMMC supports these operations only if the SDMMC_DCTRL[11] bit is set, except for read suspend that does not need specific hardware implementation. 35.6.1 SDIO I/O read wait operation by SDMMC_D2 signalling It is possible to start the readwait interval before the first block is received: when the data path is enabled (SDMMC_DCTRL[0] bit set), the SDIO-specific operation is enabled (SDMMC_DCTRL[11] bit set), read wait starts (SDMMC_DCTRL[10] =0 and SDMMC_DCTRL[8] =1) and data direction is from card to SDMMC (SDMMC_DCTRL[1] = 1), the DPSM directly moves from Idle to Readwait. In Readwait the DPSM drives SDMMC_D2 to 0 after 2 SDMMC_CK clock cycles. In this state, when you set the RWSTOP bit (SDMMC_DCTRL[9]), the DPSM remains in Wait for two more SDMMC_CK clock cycles to drive SDMMC_D2 to 1 for one clock cycle (in accordance with SDIO specification). The DPSM then starts waiting again until it receives data from the card. The DPSM will not start a readwait interval while receiving a block even if read wait start is set: the readwait interval will start after the CRC is received. The RWSTOP bit has to be cleared to start a new read wait operation. During the readwait interval, the SDMMC can detect SDIO interrupts on SDMMC_D1. 1262/1709 RM0385 Rev 7 RM0385 35.6.2 SD/SDIO/MMC card host interface (SDMMC) SDIO read wait operation by stopping SDMMC_CK If the SDIO card does not support the previous read wait method, the SDMMC can perform a read wait by stopping SDMMC_CK (SDMMC_DCTRL is set just like in the method presented in Section 35.6.1, but SDMMC_DCTRL[10] =1): DSPM stops the clock two SDMMC_CK cycles after the end bit of the current received block and starts the clock again after the read wait start bit is set. As SDMMC_CK is stopped, any command can be issued to the card. During a read/wait interval, the SDMMC can detect SDIO interrupts on SDMMC_D1. 35.6.3 SDIO suspend/resume operation While sending data to the card, the SDMMC can suspend the write operation. the SDMMC_CMD[11] bit is set and indicates to the CPSM that the current command is a suspend command. The CPSM analyzes the response and when the ACK is received from the card (suspend accepted), it acknowledges the DPSM that goes Idle after receiving the CRC token of the current block. The hardware does not save the number of the remaining block to be sent to complete the suspended operation (resume). The write operation can be suspended by software, just by disabling the DPSM (SDMMC_DCTRL[0] =0) when the ACK of the suspend command is received from the card. The DPSM enters then the Idle state. To suspend a read: the DPSM waits in the Wait_r state as the function to be suspended sends a complete packet just before stopping the data transaction. The application continues reading RxFIFO until the FIF0 is empty, and the DPSM goes Idle automatically. 35.6.4 SDIO interrupts SDIO interrupts are detected on the SDMMC_D1 line once the SDMMC_DCTRL[11] bit is set. When SDIO interrupt is detected, SDMMC_STA[22] (SDIOIT) bit is set. This static bit can be cleared with clear bit SDMMC_ICR[22] (SDIOITC). An interrupt can be generated when SDIOIT status bit is set. Separated interrupt enable SDMMC_MASK[22] bit (SDIOITE) is available to enable and disable interrupt request. When SD card interrupt occurs (SDMMC_STA[22] bit set), host software follows below steps to handle it. 1. Disable SDIOIT interrupt signaling by clearing SDIOITE bit (SDMMC_MASK[22] = ‘0’), 2. Serve card interrupt request, and clear the source of interrupt on the SD card, 3. Clear SDIOIT bit by writing ‘1’ to SDIOITC bit (SDMMC_ICR[22] = ‘1’), 4. Enable SDIOIT interrupt signaling by writing ‘1’ to SDIOITE bit (SDMMC_MASK[22] = ‘1’). Steps 2 to 4 can be executed out of the SDIO interrupt service routine. 35.7 HW flow control The HW flow control functionality is used to avoid FIFO underrun (TX mode) and overrun (RX mode) errors. RM0385 Rev 7 1263/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 The behavior is to stop SDMMC_CK and freeze SDMMC state machines. The data transfer is stalled while the FIFO is unable to transmit or receive data. Only state machines clocked by SDMMCCLK are frozen, the APB2 interface is still alive. The FIFO can thus be filled or emptied even if flow control is activated. To enable HW flow control, the SDMMC_CLKCR[14] register bit must be set to 1. After reset Flow Control is disabled. 35.8 SDMMC registers The device communicates to the system via 32-bit-wide control registers accessible via APB2. 35.8.1 SDMMC power control register (SDMMC_POWER) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PWRCTRL rw rw Bits 31:2 Reserved, must be kept at reset value. [1:0] PWRCTRL: Power supply control bits. These bits are used to define the current functional state of the card clock: 00: Power-off: the clock to card is stopped. 01: Reserved 10: Reserved power-up 11: Power-on: the card is clocked. Note: At least seven PCLK2 clock periods are needed between two write accesses to this register. Note: After a data write, data cannot be written to this register for three SDMMCCLK clock periods plus two PCLK2 clock periods. 35.8.2 SDMMC clock control register (SDMMC_CLKCR) Address offset: 0x04 Reset value: 0x0000 0000 The SDMMC_CLKCR register controls the SDMMC_CK output clock. 1264/1709 RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw 15 14 13 Res. HWFC _EN NEGE DGE rw rw WID BUS rw BYPAS PWRS CLKEN S AV rw rw rw rw CLKDIV rw rw rw rw rw Bits 31:15 Reserved, must be kept at reset value. Bit 14 HWFC_EN: HW Flow Control enable 0b: HW Flow Control is disabled 1b: HW Flow Control is enabled When HW Flow Control is enabled, the meaning of the TXFIFOE and RXFIFOF interrupt signals, see SDMMC Status register definition in Section 35.8.11. Bit 13 NEGEDGE: SDMMC_CK dephasing selection bit 0b: Command and Data changed on the SDMMCCLK falling edge succeeding the rising edge of SDMMC_CK. (SDMMC_CK rising edge occurs on SDMMCCLK rising edge). 1b: Command and Data changed on the SDMMC_CK falling edge. When BYPASS is active, the data and the command change on SDMMCCLK falling edge whatever NEGEDGE value. Bits 12:11 WIDBUS: Wide bus mode enable bit 00: Default bus mode: SDMMC_D0 used 01: 4-wide bus mode: SDMMC_D[3:0] used 10: 8-wide bus mode: SDMMC_D[7:0] used Bit 10 BYPASS: Clock divider bypass enable bit 0: Disable bypass: SDMMCCLK is divided according to the CLKDIV value before driving the SDMMC_CK output signal. 1: Enable bypass: SDMMCCLK directly drives the SDMMC_CK output signal. Bit 9 PWRSAV: Power saving configuration bit For power saving, the SDMMC_CK clock output can be disabled when the bus is idle by setting PWRSAV: 0: SDMMC_CK clock is always enabled 1: SDMMC_CK is only enabled when the bus is active Bit 8 CLKEN: Clock enable bit 0: SDMMC_CK is disabled 1: SDMMC_CK is enabled Bits 7:0 CLKDIV: Clock divide factor This field defines the divide factor between the input clock (SDMMCCLK) and the output clock (SDMMC_CK): SDMMC_CK frequency = SDMMCCLK / [CLKDIV + 2]. Note: 1 While the SD/SDIO card or MultiMediaCard is in identification mode, the SDMMC_CK frequency must be less than 400 kHz. 2 The clock frequency can be changed to the maximum card bus frequency when relative card addresses are assigned to all cards. 3 After a data write, data cannot be written to this register for three SDMMCCLK clock periods plus two PCLK2 clock periods. SDMMC_CK can also be stopped during the read wait interval for SD I/O cards: in this case the SDMMC_CLKCR register does not control SDMMC_CK. RM0385 Rev 7 1265/1709 1280 SD/SDIO/MMC card host interface (SDMMC) 35.8.3 RM0385 SDMMC argument register (SDMMC_ARG) Address offset: 0x08 Reset value: 0x0000 0000 The SDMMC_ARG register contains a 32-bit command argument, which is sent to a card as part of a command message. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CMDARG[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw CMDARG[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 CMDARG: Command argument Command argument sent to a card as part of a command message. If a command contains an argument, it must be loaded into this register before writing a command to the command register. 35.8.4 SDMMC command register (SDMMC_CMD) Address offset: 0x0C Reset value: 0x0000 0000 The SDMMC_CMD register contains the command index and command type bits. The command index is sent to a card as part of a command message. The command type bits control the command path state machine (CPSM). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. SDIO Suspend CPSM EN WAIT PEND WAIT INT rw rw rw rw rw rw Res. Res. Res. WAITRESP rw rw CMDINDEX rw rw rw rw Bits 31:12 Reserved, must be kept at reset value. Bit 11 SDIOSuspend: SD I/O suspend command If this bit is set, the command to be sent is a suspend command (to be used only with SDIO card). Bit 10 CPSMEN: Command path state machine (CPSM) Enable bit If this bit is set, the CPSM is enabled. Bit 9 WAITPEND: CPSM Waits for ends of data transfer (CmdPend internal signal). If this bit is set, the CPSM waits for the end of data transfer before it starts sending a command. This feature is available only with Stream data transfer mode SDMMC_DCTRL[2] = 1. 1266/1709 RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Bit 8 WAITINT: CPSM waits for interrupt request If this bit is set, the CPSM disables command timeout and waits for an interrupt request. Bits 7:6 WAITRESP: Wait for response bits They are used to configure whether the CPSM is to wait for a response, and if yes, which kind of response. 00: No response, expect CMDSENT flag 01: Short response, expect CMDREND or CCRCFAIL flag 10: No response, expect CMDSENT flag 11: Long response, expect CMDREND or CCRCFAIL flag Bits 5:0 CMDINDEX: Command index The command index is sent to the card as part of a command message. Note: 1 After a data write, data cannot be written to this register for three SDMMCCLK clock periods plus two PCLK2 clock periods. 2 MultiMediaCards can send two kinds of response: short responses, 48 bits long, or long responses,136 bits long. SD card and SD I/O card can send only short responses, the argument can vary according to the type of response: the software will distinguish the type of response according to the sent command. 35.8.5 SDMMC command response register (SDMMC_RESPCMD) Address offset: 0x10 Reset value: 0x0000 0000 The SDMMC_RESPCMD register contains the command index field of the last command response received. If the command response transmission does not contain the command index field (long or OCR response), the RESPCMD field is unknown, although it must contain 111111b (the value of the reserved field from the response). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 5 4 3 2 1 0 r r 15 14 13 12 11 10 9 8 7 6 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RESPCMD r r r r Bits 31:6 Reserved, must be kept at reset value. Bits 5:0 RESPCMD: Response command index Read-only bit field. Contains the command index of the last command response received. 35.8.6 SDMMC response 1..4 register (SDMMC_RESPx) Address offset: (0x10 + (4 × x)); x = 1..4 Reset value: 0x0000 0000 The SDMMC_RESP1/2/3/4 registers contain the status of a card, which is part of the received response. RM0385 Rev 7 1267/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r CARDSTATUSx[31:16] CARDSTATUSx[15:0] r r r r r r r r r Bits 31:0 CARDSTATUSx: see Table 249. The Card Status size is 32 or 127 bits, depending on the response type. Table 249. Response type and SDMMC_RESPx registers Register Short response Long response SDMMC_RESP1 Card Status[31:0] Card Status [127:96] SDMMC_RESP2 Unused Card Status [95:64] SDMMC_RESP3 Unused Card Status [63:32] SDMMC_RESP4 Unused Card Status [31:1]0b The most significant bit of the card status is received first. The SDMMC_RESP4 register LSB is always 0b. 35.8.7 SDMMC data timer register (SDMMC_DTIMER) Address offset: 0x24 Reset value: 0x0000 0000 The SDMMC_DTIMER register contains the data timeout period, in card bus clock periods. A counter loads the value from the SDMMC_DTIMER register, and starts decrementing when the data path state machine (DPSM) enters the Wait_R or Busy state. If the timer reaches 0 while the DPSM is in either of these states, the timeout status flag is set. 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATATIME[31:16] DATATIME[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DATATIME: Data timeout period Data timeout period expressed in card bus clock periods. Note: 1268/1709 A data transfer must be written to the data timer register and the data length register before being written to the data control register. RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) 35.8.8 SDMMC data length register (SDMMC_DLEN) Address offset: 0x28 Reset value: 0x0000 0000 The SDMMC_DLEN register contains the number of data bytes to be transferred. The value is loaded into the data counter when data transfer starts. 31 30 29 28 27 26 25 Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 rw rw rw rw rw rw rw 24 23 22 21 20 19 18 17 16 DATALENGTH[24:16] rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DATALENGTH[15:0] rw rw Bits 31:25 Reserved, must be kept at reset value. Bits 24:0 DATALENGTH: Data length value Number of data bytes to be transferred. Note: For a block data transfer, the value in the data length register must be a multiple of the block size (see SDMMC_DCTRL). Before being written to the data control register a timeout must be written to the data timer register and the data length register. In case of IO_RW_EXTENDED (CMD53): - If the Stream or SDIO multibyte data transfer is selected the value in the data length register must be between 1 and 512. - If the Block data transfer is selected the value in the data length register must be between 1*Data block size and 512*Data block size. 35.8.9 SDMMC data control register (SDMMC_DCTRL) Address offset: 0x2C Reset value: 0x0000 0000 The SDMMC_DCTRL register control the data path state machine (DPSM). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. SDIO EN RW MOD RW STOP RW START DMA EN DT MODE DTDIR DTEN rw rw rw rw rw rw rw rw DBLOCKSIZE rw RM0385 Rev 7 rw rw rw 1269/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Bits 31:12 Reserved, must be kept at reset value. Bit 11 SDIOEN: SD I/O enable functions If this bit is set, the DPSM performs an SD I/O-card-specific operation. Bit 10 RWMOD: Read wait mode 0: Read Wait control stopping SDMMC_D2 1: Read Wait control using SDMMC_CK Bit 9 RWSTOP: Read wait stop 0: Read wait in progress if RWSTART bit is set 1: Enable for read wait stop if RWSTART bit is set Bit 8 RWSTART: Read wait start If this bit is set, read wait operation starts. Bits 7:4 DBLOCKSIZE: Data block size Define the data block length when the block data transfer mode is selected: 0000: (0 decimal) lock length = 20 = 1 byte 0001: (1 decimal) lock length = 21 = 2 bytes 0010: (2 decimal) lock length = 22 = 4 bytes 0011: (3 decimal) lock length = 23 = 8 bytes 0100: (4 decimal) lock length = 24 = 16 bytes 0101: (5 decimal) lock length = 25 = 32 bytes 0110: (6 decimal) lock length = 26 = 64 bytes 0111: (7 decimal) lock length = 27 = 128 bytes 1000: (8 decimal) lock length = 28 = 256 bytes 1001: (9 decimal) lock length = 29 = 512 bytes 1010: (10 decimal) lock length = 210 = 1024 bytes 1011: (11 decimal) lock length = 211 = 2048 bytes 1100: (12 decimal) lock length = 212 = 4096 bytes 1101: (13 decimal) lock length = 213 = 8192 bytes 1110: (14 decimal) lock length = 214 = 16384 bytes 1111: (15 decimal) reserved Bit 3 DMAEN: DMA enable bit 0: DMA disabled. 1: DMA enabled. Bit 2 DTMODE: Data transfer mode selection 1: Stream or SDIO multibyte data transfer. 0: Block data transfer 1: Stream or SDIO multibyte data transfer Bit 1 DTDIR: Data transfer direction selection 0: From controller to card. 1: From card to controller. [0] DTEN: Data transfer enabled bit Data transfer starts if 1b is written to the DTEN bit. Depending on the direction bit, DTDIR, the DPSM moves to the Wait_S, Wait_R state or Readwait if RW Start is set immediately at the beginning of the transfer. It is not necessary to clear the enable bit after the end of a data transfer but the SDMMC_DCTRL must be updated to enable a new data transfer 1270/1709 RM0385 Rev 7 RM0385 Note: SD/SDIO/MMC card host interface (SDMMC) After a data write, data cannot be written to this register for three SDMMCCLK (48 MHz) clock periods plus two PCLK2 clock periods. The meaning of the DTMODE bit changes according to the value of the SDIOEN bit. When SDIOEN=0 and DTMODE=1, the MultiMediaCard stream mode is enabled, and when SDIOEN=1 and DTMODE=1, the peripheral enables an SDIO multibyte transfer. RM0385 Rev 7 1271/1709 1280 SD/SDIO/MMC card host interface (SDMMC) 35.8.10 RM0385 SDMMC data counter register (SDMMC_DCOUNT) Address offset: 0x30 Reset value: 0x0000 0000 The SDMMC_DCOUNT register loads the value from the data length register (see SDMMC_DLEN) when the DPSM moves from the Idle state to the Wait_R or Wait_S state. As data is transferred, the counter decrements the value until it reaches 0. The DPSM then moves to the Idle state and the data status end flag, DATAEND, is set. 31 30 29 28 27 26 25 Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 r r r r r r r 24 23 22 21 20 19 18 17 16 DATACOUNT[24:16] r r r r r r r r r 8 7 6 5 4 3 2 1 0 r r r r r r r DATACOUNT[15:0] r r Bits 31:25 Reserved, must be kept at reset value. Bits 24:0 DATACOUNT: Data count value When this bit is read, the number of remaining data bytes to be transferred is returned. Write has no effect. Note: This register should be read only when the data transfer is complete. 35.8.11 SDMMC status register (SDMMC_STA) Address offset: 0x34 Reset value: 0x0000 0000 The SDMMC_STA register is a read-only register. It contains two types of flag: • Static flags (bits [23:22,10:0]): these bits remain asserted until they are cleared by writing to the SDMMC Interrupt Clear register (see SDMMC_ICR) • Dynamic flags (bits [21:11]): these bits change state depending on the state of the underlying logic (for example, FIFO full and empty flags are asserted and deasserted as data while written to the FIFO) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIOIT RXD AVL TXD AVL RX FIFOE TX FIFOE RX FIFOF TX FIFOF r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RX FIFO HF TX FIFO HE CMD ACT DBCK END Res. DATA END CMDS ENT DCRC FAIL CCRC FAIL r r r r r r r r RXACT TXACT r r Bits 31:23 Reserved, must be kept at reset value. Bit 22 SDIOIT: SDIO interrupt received Bit 21 RXDAVL: Data available in receive FIFO 1272/1709 RM0385 Rev 7 CMDR RX TXUND DTIME CTIME END OVERR ERR OUT OUT r r r r r RM0385 SD/SDIO/MMC card host interface (SDMMC) Bit 20 TXDAVL: Data available in transmit FIFO Bit 19 RXFIFOE: Receive FIFO empty Bit 18 TXFIFOE: Transmit FIFO empty When HW Flow Control is enabled, TXFIFOE signals becomes activated when the FIFO contains 2 words. Bit 17 RXFIFOF: Receive FIFO full When HW Flow Control is enabled, RXFIFOF signals becomes activated 2 words before the FIFO is full. Bit 16 TXFIFOF: Transmit FIFO full Bit 15 RXFIFOHF: Receive FIFO half full: there are at least 8 words in the FIFO Bit 14 TXFIFOHE: Transmit FIFO half empty: at least 8 words can be written into the FIFO Bit 13 RXACT: Data receive in progress Bit 12 TXACT: Data transmit in progress Bit 11 CMDACT: Command transfer in progress Bit 10 DBCKEND: Data block sent/received (CRC check passed) Bit 9 Reserved, must be kept at reset value. Bit 8 DATAEND: Data end (data counter, SDIDCOUNT, is zero) Bit 7 CMDSENT: Command sent (no response required) Bit 6 CMDREND: Command response received (CRC check passed) Bit 5 RXOVERR: Received FIFO overrun error Note: If DMA is used to read SDMMC FIFO (DMAEN bit is set in SDMMC_DCTRL register), user software should disable DMA stream, and then write with ‘0’ (to disable DMA request generation). Bit 4 TXUNDERR: Transmit FIFO underrun error Note: If DMA is used to fill SDMMC FIFO (DMAEN bit is set in SDMMC_DCTRL register), user software should disable DMA stream, and then write DMAEN with ‘0’ (to disable DMA request generation). Bit 3 DTIMEOUT: Data timeout Bit 2 CTIMEOUT: Command response timeout The Command TimeOut period has a fixed value of 64 SDMMC_CK clock periods. Bit 1 DCRCFAIL: Data block sent/received (CRC check failed) Bit 0 CCRCFAIL: Command response received (CRC check failed) 35.8.12 SDMMC interrupt clear register (SDMMC_ICR) Address offset: 0x38 Reset value: 0x0000 0000 The SDMMC_ICR register is a write-only register. Writing a bit with 1b clears the corresponding bit in the SDMMC_STA Status register. RM0385 Rev 7 1273/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. SDIO ITC Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 5 4 3 2 1 0 DCRC FAILC CCRC FAILC rw rw rw Res. Res. Res. Res. Res. DBCK ENDC rw Res. 6 CMD DATA CMD REND ENDC SENTC C rw rw rw Bits 31:23 Reserved, must be kept at reset value. Bit 22 SDIOITC: SDIOIT flag clear bit Set by software to clear the SDIOIT flag. 0: SDIOIT not cleared 1: SDIOIT cleared Bits 21:11 Reserved, must be kept at reset value. Bit 10 DBCKENDC: DBCKEND flag clear bit Set by software to clear the DBCKEND flag. 0: DBCKEND not cleared 1: DBCKEND cleared Bit 9 Reserved, must be kept at reset value. Bit 8 DATAENDC: DATAEND flag clear bit Set by software to clear the DATAEND flag. 0: DATAEND not cleared 1: DATAEND cleared Bit 7 CMDSENTC: CMDSENT flag clear bit Set by software to clear the CMDSENT flag. 0: CMDSENT not cleared 1: CMDSENT cleared Bit 6 CMDRENDC: CMDREND flag clear bit Set by software to clear the CMDREND flag. 0: CMDREND not cleared 1: CMDREND cleared Bit 5 RXOVERRC: RXOVERR flag clear bit Set by software to clear the RXOVERR flag. 0: RXOVERR not cleared 1: RXOVERR cleared Bit 4 TXUNDERRC: TXUNDERR flag clear bit Set by software to clear TXUNDERR flag. 0: TXUNDERR not cleared 1: TXUNDERR cleared Bit 3 DTIMEOUTC: DTIMEOUT flag clear bit Set by software to clear the DTIMEOUT flag. 0: DTIMEOUT not cleared 1: DTIMEOUT cleared 1274/1709 RM0385 Rev 7 RX TX DTIME CTIME OVERR UNDERR OUTC OUTC C C rw rw rw rw RM0385 SD/SDIO/MMC card host interface (SDMMC) Bit 2 CTIMEOUTC: CTIMEOUT flag clear bit Set by software to clear the CTIMEOUT flag. 0: CTIMEOUT not cleared 1: CTIMEOUT cleared Bit 1 DCRCFAILC: DCRCFAIL flag clear bit Set by software to clear the DCRCFAIL flag. 0: DCRCFAIL not cleared 1: DCRCFAIL cleared Bit 0 CCRCFAILC: CCRCFAIL flag clear bit Set by software to clear the CCRCFAIL flag. 0: CCRCFAIL not cleared 1: CCRCFAIL cleared 35.8.13 SDMMC mask register (SDMMC_MASK) Address offset: 0x3C Reset value: 0x0000 0000 The interrupt mask register determines which status flags generate an interrupt request by setting the corresponding bit to 1b. 31 30 29 28 27 26 25 24 23 22 20 19 18 17 16 TX FIFO EIE RX FIFO FIE TX FIFO FIE SDIO ITIE RXD AVLIE TXD AVLIE RX FIFO EIE rw rw rw rw rw rw rw 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 RX FIFO HFIE TX FIFO HEIE RX ACTIE TX ACTIE CMD ACTIE DBCK ENDIE DATA ENDIE CMD SENT IE CMD REND IE rw rw rw rw rw rw rw rw rw Res. 21 RX TX DTIME CTIME DCRC OVERR UNDERR OUTIE OUTIE FAILIE IE IE rw rw rw rw rw CCRC FAILIE rw Bits 31:23 Reserved, must be kept at reset value. Bit 22 SDIOITIE: SDIO mode interrupt received interrupt enable Set and cleared by software to enable/disable the interrupt generated when receiving the SDIO mode interrupt. 0: SDIO Mode Interrupt Received interrupt disabled 1: SDIO Mode Interrupt Received interrupt enabled Bit 21 RXDAVLIE: Data available in Rx FIFO interrupt enable Set and cleared by software to enable/disable the interrupt generated by the presence of data available in Rx FIFO. 0: Data available in Rx FIFO interrupt disabled 1: Data available in Rx FIFO interrupt enabled Bit 20 TXDAVLIE: Data available in Tx FIFO interrupt enable Set and cleared by software to enable/disable the interrupt generated by the presence of data available in Tx FIFO. 0: Data available in Tx FIFO interrupt disabled 1: Data available in Tx FIFO interrupt enabled RM0385 Rev 7 1275/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 Bit 19 RXFIFOEIE: Rx FIFO empty interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO empty. 0: Rx FIFO empty interrupt disabled 1: Rx FIFO empty interrupt enabled Bit 18 TXFIFOEIE: Tx FIFO empty interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO empty. 0: Tx FIFO empty interrupt disabled 1: Tx FIFO empty interrupt enabled Bit 17 RXFIFOFIE: Rx FIFO full interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO full. 0: Rx FIFO full interrupt disabled 1: Rx FIFO full interrupt enabled Bit 16 TXFIFOFIE: Tx FIFO full interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO full. 0: Tx FIFO full interrupt disabled 1: Tx FIFO full interrupt enabled Bit 15 RXFIFOHFIE: Rx FIFO half full interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO half full. 0: Rx FIFO half full interrupt disabled 1: Rx FIFO half full interrupt enabled Bit 14 TXFIFOHEIE: Tx FIFO half empty interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO half empty. 0: Tx FIFO half empty interrupt disabled 1: Tx FIFO half empty interrupt enabled Bit 13 RXACTIE: Data receive acting interrupt enable Set and cleared by software to enable/disable interrupt caused by data being received (data receive acting). 0: Data receive acting interrupt disabled 1: Data receive acting interrupt enabled Bit 12 TXACTIE: Data transmit acting interrupt enable Set and cleared by software to enable/disable interrupt caused by data being transferred (data transmit acting). 0: Data transmit acting interrupt disabled 1: Data transmit acting interrupt enabled Bit 11 CMDACTIE: Command acting interrupt enable Set and cleared by software to enable/disable interrupt caused by a command being transferred (command acting). 0: Command acting interrupt disabled 1: Command acting interrupt enabled Bit 10 DBCKENDIE: Data block end interrupt enable Set and cleared by software to enable/disable interrupt caused by data block end. 0: Data block end interrupt disabled 1: Data block end interrupt enabled Bit 9 Reserved, must be kept at reset value. 1276/1709 RM0385 Rev 7 RM0385 SD/SDIO/MMC card host interface (SDMMC) Bit 8 DATAENDIE: Data end interrupt enable Set and cleared by software to enable/disable interrupt caused by data end. 0: Data end interrupt disabled 1: Data end interrupt enabled Bit 7 CMDSENTIE: Command sent interrupt enable Set and cleared by software to enable/disable interrupt caused by sending command. 0: Command sent interrupt disabled 1: Command sent interrupt enabled Bit 6 CMDRENDIE: Command response received interrupt enable Set and cleared by software to enable/disable interrupt caused by receiving command response. 0: Command response received interrupt disabled 1: command Response Received interrupt enabled Bit 5 RXOVERRIE: Rx FIFO overrun error interrupt enable Set and cleared by software to enable/disable interrupt caused by Rx FIFO overrun error. 0: Rx FIFO overrun error interrupt disabled 1: Rx FIFO overrun error interrupt enabled Bit 4 TXUNDERRIE: Tx FIFO underrun error interrupt enable Set and cleared by software to enable/disable interrupt caused by Tx FIFO underrun error. 0: Tx FIFO underrun error interrupt disabled 1: Tx FIFO underrun error interrupt enabled Bit 3 DTIMEOUTIE: Data timeout interrupt enable Set and cleared by software to enable/disable interrupt caused by data timeout. 0: Data timeout interrupt disabled 1: Data timeout interrupt enabled Bit 2 CTIMEOUTIE: Command timeout interrupt enable Set and cleared by software to enable/disable interrupt caused by command timeout. 0: Command timeout interrupt disabled 1: Command timeout interrupt enabled Bit 1 DCRCFAILIE: Data CRC fail interrupt enable Set and cleared by software to enable/disable interrupt caused by data CRC failure. 0: Data CRC fail interrupt disabled 1: Data CRC fail interrupt enabled Bit 0 CCRCFAILIE: Command CRC fail interrupt enable Set and cleared by software to enable/disable interrupt caused by command CRC failure. 0: Command CRC fail interrupt disabled 1: Command CRC fail interrupt enabled 35.8.14 SDMMC FIFO counter register (SDMMC_FIFOCNT) Address offset: 0x48 Reset value: 0x0000 0000 The SDMMC_FIFOCNT register contains the remaining number of words to be written to or read from the FIFO. The FIFO counter loads the value from the data length register (see SDMMC_DLEN) when the data transfer enable bit, DTEN, is set in the data control register (SDMMC_DCTRL register) and the DPSM is at the Idle state. If the data length is not wordaligned (multiple of 4), the remaining 1 to 3 bytes are regarded as a word. RM0385 Rev 7 1277/1709 1280 SD/SDIO/MMC card host interface (SDMMC) RM0385 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 23 22 21 20 r r r r 7 6 5 r r 19 18 17 16 r r r r 4 3 2 1 0 r r r r r FIFOCOUNT[23:16] FIFOCOUNT[15:0] r r r r r r r r r Bits 31:24 Reserved, must be kept at reset value. Bits 23:0 FIFOCOUNT: Remaining number of words to be written to or read from the FIFO. 35.8.15 SDMMC data FIFO register (SDMMC_FIFO) Address offset: 0x80 Reset value: 0x0000 0000 The receive and transmit FIFOs can be read or written as 32-bit wide registers. The FIFOs contain 32 entries on 32 sequential addresses. This allows the CPU to use its load and store multiple operands to read from/write to the FIFO. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FIF0Data[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw FIF0Data[15:0] rw rw bits 31:0 FIFOData: Receive and transmit FIFO data The FIFO data occupies 32 entries of 32-bit words, from address: SDMMC base + 0x080 to SDMMC base + 0xFC. 1278/1709 RM0385 Rev 7 RM0385 35.8.16 SD/SDIO/MMC card host interface (SDMMC) SDMMC register map The following table summarizes the SDMMC registers. PWRSAV CLKEN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SDMMC_CMD Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SDMMC_ RESPCMD Res. 0x10 Res. Reset value 0 0 0 0 0 WAITRESP CMDINDEX 0 Res. 0 Res. 0 WAITINT 0 Res. 0 WAITPEND 0 Res. 0 CPSMEN 0 Res. 0 SDIOSuspend 0 Res. 0 Res. CMDARG Reset value 0x0C CLKDIV BYPASS 0 WIDBUS 0 Res. SDMMC_ARG 0 Res. 0x08 Reset value SDMMC_ RESP1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DTEN 0 0 0 0 0 0 0 0 0 CARDSTATUS2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CARDSTATUS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CARDSTATUS4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 SDMMC_ DTIMER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RWSTOP RWSTART DATALENGTH RWMOD Res. Res. 0 SDIOEN Res. Res. 0 Res. Res. Res. 0 Res. Res. 0 Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 SDMMC_ DLEN Res. DATATIME Reset value SDMMC_ DCTRL 0 DTDIR 0 Reset value 0x2C 0 DTMODE 0 Res. 0x28 0 SDMMC_ RESP4 Reset value 0x24 0 Res. 0x20 0 SDMMC_ RESP3 Reset value 0 DMAEN Reset value 0x1C 0 SDMMC_ RESP2 Res. 0x18 0 0 0 0 0 Reset value RM0385 Rev 7 DBLOCKSIZE Reset value RESPCMD CARDSTATUS1 Res. 0x14 0 NEGEDGE Reset value 0 HWFC_EN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SDMMC_ CLKCR Res. Reset value 0x04 PWRCTRL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SDMMC_ POWER Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 250. SDMMC register map 1279/1709 1280 0x80 0x48 SDMMC_ FIFOCNT Reset value 1280/1709 0 0 0 0 0 0 0 Reset value 0 0 0 0 SDMMC_FIFO FIF0Data 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 Rev 7 RXACTIE TXACTIE CMDACTIE DBCKENDIE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. DBCKENDC DATAENDC CMDSENTC CMDRENDC RXOVERRC TXUNDERRC DTIMEOUTC CTIMEOUTC DCRCFAILC CCRCFAILC 0 CCRCFAILIE 0 DCRCFAILIE 0 CTIMEOUTIE 0 DTIMEOUTIE 0 RXOVERRIE 0 TXUNDERRIE 0 CMDSENTIE DBCKEND 0 CMDRENDIE TXACT CMDACT 0 0 CCRCFAIL 0 DCRCFAIL 0 CTIMEOUT 0 DTIMEOUT 0 RXOVERR 0 TXUNDERR 0 CMDSENT 0 CMDREND 0 DATAEND 0 Res. RXACT 0 DATAENDIE TXFIFOHE 0 Res. TXFIFOF RXFIFOHF Res. 0 Res. 0 Res. 0 TXFIFOE 0 RXFIFOF 0 Res. 0 Res. 0 TXDAVL 0 RXFIFOE 0 Res. 0 RXDAVL 0 Res. 0 Res. 0 Res. TXFIFOHEIE 0 TXFIFOFIE 0 RXFIFOHFIE TXFIFOEIE 0 RXFIFOFIE RXFIFOEIE Reset value TXDAVLIE Reset value RXDAVLIE 0 SDIOIT Res. Res. Res. Res. Res. Res. Res. 0 SDIOITC Reset value SDIOITIE Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. Res. Res. SDMMC_ MASK Res. 0x3C Res. SDMMC_ICR Res. 0x38 Res. SDMMC_STA Res. 0x34 Res. Res. Res. Res. Res. Res. Res. Res. SDMMC_ DCOUNT Res. 0x30 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Offset Res. SD/SDIO/MMC card host interface (SDMMC) RM0385 Table 250. SDMMC register map (continued) DATACOUNT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FIFOCOUNT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2: Memory map and register boundary addresses for the register boundary addresses. RM0385 Controller area network (bxCAN) 36 Controller area network (bxCAN) 36.1 Introduction The Basic Extended CAN peripheral, named bxCAN, interfaces the CAN network. It supports the CAN protocols version 2.0A and B. It has been designed to manage a high number of incoming messages efficiently with a minimum CPU load. It also meets the priority requirements for transmit messages. For safety-critical applications, the CAN controller provides all hardware functions for supporting the CAN Time Triggered Communication option. 36.2 bxCAN main features • Supports CAN protocol version 2.0 A, B Active • Bit rates up to 1 Mbit/s • Supports the Time Triggered Communication option Transmission • Three transmit mailboxes • Configurable transmit priority • Time Stamp on SOF transmission Reception • Two receive FIFOs with three stages • Scalable filter banks: – 28 filter banks shared between CAN1 and CAN2 for dual CAN • Identifier list feature • Configurable FIFO overrun • Time Stamp on SOF reception Time-triggered communication option • Disable automatic retransmission mode • 16-bit free running timer • Time Stamp sent in last two data bytes Management • Maskable interrupts • Software-efficient mailbox mapping at a unique address space Dual CAN peripheral configuration • CAN1: Master bxCAN for managing the communication between a Slave bxCAN and the 512-byte SRAM memory • CAN2: Slave bxCAN, with no direct access to the SRAM memory. • The two bxCAN cells share the 512-byte SRAM memory (see Figure 444: Dual-CAN block diagram) RM0385 Rev 7 1281/1709 1325 Controller area network (bxCAN) 36.3 RM0385 bxCAN general description In today CAN applications, the number of nodes in a network is increasing and often several networks are linked together via gateways. Typically the number of messages in the system (to be handled by each node) has significantly increased. In addition to the application messages, Network Management and Diagnostic messages have been introduced. • An enhanced filtering mechanism is required to handle each type of message. Furthermore, application tasks require more CPU time, therefore real-time constraints caused by message reception have to be reduced. • A receive FIFO scheme allows the CPU to be dedicated to application tasks for a long time period without losing messages. The standard HLP (Higher Layer Protocol) based on standard CAN drivers requires an efficient interface to the CAN controller. MCU Application CAN Controller CAN Rx CAN node n CAN node 2 CAN node 1 Figure 443. CAN network topology CAN Tx CAN Transceiver CAN High CAN Low CAN Bus MS30392V1 36.3.1 CAN 2.0B active core The bxCAN module handles the transmission and the reception of CAN messages fully autonomously. Standard identifiers (11-bit) and extended identifiers (29-bit) are fully supported by hardware. 36.3.2 Control, status and configuration registers The application uses these registers to: 36.3.3 • Configure CAN parameters, e.g. baud rate • Request transmissions • Handle receptions • Manage interrupts • Get diagnostic information Tx mailboxes Three transmit mailboxes are provided to the software for setting up messages. The transmission Scheduler decides which mailbox has to be transmitted first. 1282/1709 RM0385 Rev 7 RM0385 Acceptance filters The bxCAN provides up to 28 scalable/configurable identifier filter banks in dual CAN configuration, for selecting the incoming messages, that the software needs and discarding the others. Receive FIFO Two receive FIFOs are used by hardware to store the incoming messages. Three complete messages can be stored in each FIFO. The FIFOs are managed completely by hardware. Figure 444. Dual-CAN block diagram CAN1 (Master) with 512 bytes SRAM Master Tx Mailboxes 2 Mailbox 0 Master Receive FIFO 0 Master Receive FIFO 1 2 2 1 Mailbox 0 Master Control 1 Mailbox 0 1 Master Status Tx Status Control/Status/Configuration Rx FIFO 0 Status Transmission Scheduler Rx FIFO 1 Status Acceptance Filters Interrupt Enable CAN 2.0B Active Core Error Status Memory Access Controller Bit Timing Filter 1 0 Master Filters (0 to 27) Filter Master 2 3 .. 27 .. 26 Slave Filters (0 to 27) Filter Mode Transmission Scheduler Filter Scale Slave Receive FIFO 0 Slave Tx Mailboxes Filter FIFOAssign Mailbox 0 Slave Receive FIFO 1 2 2 Filter Activation 1 Mailbox 0 1 2 Mailbox 0 1 CAN2 (Slave) Control/Status/Configuration 36.3.4 Controller area network (bxCAN) Master Control Master Status Tx Status Rx FIFO 0 Status Rx FIFO 1 Status CAN 2.0B Active Core Note: CAN2 start filter bank number n is configurable by writing CAN2SB[5:0] bits in the CAN_FMR register Interrupt Enable Error Status Bit Timing ai16094b RM0385 Rev 7 1283/1709 1325 Controller area network (bxCAN) 36.4 RM0385 bxCAN operating modes bxCAN has three main operating modes: initialization, normal and Sleep. After a hardware reset, bxCAN is in Sleep mode to reduce power consumption and an internal pullup is active on CANTX. The software requests bxCAN to enter initialization or Sleep mode by setting the INRQ or SLEEP bits in the CAN_MCR register. Once the mode has been entered, bxCAN confirms it by setting the INAK or SLAK bits in the CAN_MSR register and the internal pull-up is disabled. When neither INAK nor SLAK are set, bxCAN is in normal mode. Before entering normal mode bxCAN always has to synchronize on the CAN bus. To synchronize, bxCAN waits until the CAN bus is idle, this means 11 consecutive recessive bits have been monitored on CANRX. 36.4.1 Initialization mode The software initialization can be done while the hardware is in Initialization mode. To enter this mode the software sets the INRQ bit in the CAN_MCR register and waits until the hardware has confirmed the request by setting the INAK bit in the CAN_MSR register. To leave Initialization mode, the software clears the INQR bit. bxCAN has left Initialization mode once the INAK bit has been cleared by hardware. While in Initialization Mode, all message transfers to and from the CAN bus are stopped and the status of the CAN bus output CANTX is recessive (high). Entering Initialization Mode does not change any of the configuration registers. To initialize the CAN Controller, software has to set up the Bit Timing (CAN_BTR) and CAN options (CAN_MCR) registers. To initialize the registers associated with the CAN filter banks (mode, scale, FIFO assignment, activation and filter values), software has to set the FINIT bit (CAN_FMR). Filter initialization also can be done outside the initialization mode. Note: When FINIT=1, CAN reception is deactivated. The filter values also can be modified by deactivating the associated filter activation bits (in the CAN_FA1R register). If a filter bank is not used, it is recommended to leave it non active (leave the corresponding FACT bit cleared). 36.4.2 Normal mode Once the initialization is complete, the software must request the hardware to enter Normal mode to be able to synchronize on the CAN bus and start reception and transmission. The request to enter Normal mode is issued by clearing the INRQ bit in the CAN_MCR register. The bxCAN enters Normal mode and is ready to take part in bus activities when it has synchronized with the data transfer on the CAN bus. This is done by waiting for the occurrence of a sequence of 11 consecutive recessive bits (Bus Idle state). The switch to Normal mode is confirmed by the hardware by clearing the INAK bit in the CAN_MSR register. The initialization of the filter values is independent from Initialization Mode but must be done while the filter is not active (corresponding FACTx bit cleared). The filter scale and mode configuration must be configured before entering Normal Mode. 1284/1709 RM0385 Rev 7 RM0385 36.4.3 Controller area network (bxCAN) Sleep mode (low-power) To reduce power consumption, bxCAN has a low-power mode called Sleep mode. This mode is entered on software request by setting the SLEEP bit in the CAN_MCR register. In this mode, the bxCAN clock is stopped, however software can still access the bxCAN mailboxes. If software requests entry to initialization mode by setting the INRQ bit while bxCAN is in Sleep mode, it must also clear the SLEEP bit. bxCAN can be woken up (exit Sleep mode) either by software clearing the SLEEP bit or on detection of CAN bus activity. On CAN bus activity detection, hardware automatically performs the wakeup sequence by clearing the SLEEP bit if the AWUM bit in the CAN_MCR register is set. If the AWUM bit is cleared, software has to clear the SLEEP bit when a wakeup interrupt occurs, in order to exit from Sleep mode. Note: If the wakeup interrupt is enabled (WKUIE bit set in CAN_IER register) a wakeup interrupt will be generated on detection of CAN bus activity, even if the bxCAN automatically performs the wakeup sequence. After the SLEEP bit has been cleared, Sleep mode is exited once bxCAN has synchronized with the CAN bus, refer to Figure 445: bxCAN operating modes. The Sleep mode is exited once the SLAK bit has been cleared by hardware. Figure 445. bxCAN operating modes Reset Sleep SLAK = 1 INAK = 0 SL Q EE R .IN C YN .S EP EE K . EP Q .A C R K Q .A LE C S Normal R P. IN AC E SL P. IN SL K INRQ.ACK SLAK = 0 INAK = 0 INRQ.SYNC.SLEEP Initialization SLAK = 0 INAK = 1 ai15902 1. ACK = The wait state during which hardware confirms a request by setting the INAK or SLAK bits in the CAN_MSR register 2. SYNC = The state during which bxCAN waits until the CAN bus is idle, meaning 11 consecutive recessive bits have been monitored on CANRX RM0385 Rev 7 1285/1709 1325 Controller area network (bxCAN) 36.5 RM0385 Test mode Test mode can be selected by the SILM and LBKM bits in the CAN_BTR register. These bits must be configured while bxCAN is in Initialization mode. Once test mode has been selected, the INRQ bit in the CAN_MCR register must be reset to enter Normal mode. 36.5.1 Silent mode The bxCAN can be put in Silent mode by setting the SILM bit in the CAN_BTR register. In Silent mode, the bxCAN is able to receive valid data frames and valid remote frames, but it sends only recessive bits on the CAN bus and it cannot start a transmission. If the bxCAN has to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted internally so that the CAN Core monitors this dominant bit, although the CAN bus may remain in recessive state. Silent mode can be used to analyze the traffic on a CAN bus without affecting it by the transmission of dominant bits (Acknowledge Bits, Error Frames). Figure 446. bxCAN in silent mode bxCAN Tx Rx =1 CANTX CANRX MS30393V2 36.5.2 Loop back mode The bxCAN can be set in Loop Back Mode by setting the LBKM bit in the CAN_BTR register. In Loop Back Mode, the bxCAN treats its own transmitted messages as received messages and stores them (if they pass acceptance filtering) in a Receive mailbox. Figure 447. bxCAN in loop back mode bxCAN Tx Rx CANTX CANRX MS30394V2 1286/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) This mode is provided for self-test functions. To be independent of external events, the CAN Core ignores acknowledge errors (no dominant bit sampled in the acknowledge slot of a data / remote frame) in Loop Back Mode. In this mode, the bxCAN performs an internal feedback from its Tx output to its Rx input. The actual value of the CANRX input pin is disregarded by the bxCAN. The transmitted messages can be monitored on the CANTX pin. 36.5.3 Loop back combined with silent mode It is also possible to combine Loop Back mode and Silent mode by setting the LBKM and SILM bits in the CAN_BTR register. This mode can be used for a “Hot Selftest”, meaning the bxCAN can be tested like in Loop Back mode but without affecting a running CAN system connected to the CANTX and CANRX pins. In this mode, the CANRX pin is disconnected from the bxCAN and the CANTX pin is held recessive. Figure 448. bxCAN in combined mode bxCAN Tx Rx =1 CANTX CANRX MS30395V2 36.6 Behavior in debug mode When the microcontroller enters the debug mode (Cortex®-M7 core halted), the bxCAN continues to work normally or stops, depending on: • the DBG_CAN1_STOP bit for CAN1 or the DBG_CAN2_STOP bit for CAN2 in the DBG module for the dual mode. • the DBF bit in CAN_MCR. For more details, refer to Section 36.9.2: CAN control and status registers. 36.7 bxCAN functional description 36.7.1 Transmission handling In order to transmit a message, the application must select one empty transmit mailbox, set up the identifier, the data length code (DLC) and the data before requesting the transmission by setting the corresponding TXRQ bit in the CAN_TIxR register. Once the mailbox has left empty state, the software no longer has write access to the mailbox registers. Immediately after the TXRQ bit has been set, the mailbox enters pending state and waits to become the highest priority mailbox, see Transmit Priority. As soon as the mailbox has the highest priority it will be scheduled for transmission. The transmission of the message of the RM0385 Rev 7 1287/1709 1325 Controller area network (bxCAN) RM0385 scheduled mailbox will start (enter transmit state) when the CAN bus becomes idle. Once the mailbox has been successfully transmitted, it will become empty again. The hardware indicates a successful transmission by setting the RQCP and TXOK bits in the CAN_TSR register. If the transmission fails, the cause is indicated by the ALST bit in the CAN_TSR register in case of an Arbitration Lost, and/or the TERR bit, in case of transmission error detection. Transmit priority By identifier When more than one transmit mailbox is pending, the transmission order is given by the identifier of the message stored in the mailbox. The message with the lowest identifier value has the highest priority according to the arbitration of the CAN protocol. If the identifier values are equal, the lower mailbox number will be scheduled first. By transmit request order The transmit mailboxes can be configured as a transmit FIFO by setting the TXFP bit in the CAN_MCR register. In this mode the priority order is given by the transmit request order. This mode is very useful for segmented transmission. Abort A transmission request can be aborted by the user setting the ABRQ bit in the CAN_TSR register. In pending or scheduled state, the mailbox is aborted immediately. An abort request while the mailbox is in transmit state can have two results. If the mailbox is transmitted successfully the mailbox becomes empty with the TXOK bit set in the CAN_TSR register. If the transmission fails, the mailbox becomes scheduled, the transmission is aborted and becomes empty with TXOK cleared. In all cases the mailbox will become empty again at least at the end of the current transmission. Non automatic retransmission mode This mode has been implemented in order to fulfill the requirement of the Time Triggered Communication option of the CAN standard. To configure the hardware in this mode the NART bit in the CAN_MCR register must be set. In this mode, each transmission is started only once. If the first attempt fails, due to an arbitration loss or an error, the hardware will not automatically restart the message transmission. At the end of the first transmission attempt, the hardware considers the request as completed and sets the RQCP bit in the CAN_TSR register. The result of the transmission is indicated in the CAN_TSR register by the TXOK, ALST and TERR bits. 1288/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) Figure 449. Transmit mailbox states EMPTY RQCP=X TXOK=X TME = 1 TXRQ=1 PENDING ABRQ=1 RQCP=0 TXOK=0 TME = 0 Mailbox does not have highest priority EMPTY ABRQ=1 RQCP=1 TXOK=0 TME = 1 CAN Bus = IDLE Transmit failed * NART TRANSMIT RQCP=0 TXOK=0 TME = 0 EMPTY RQCP=1 TXOK=1 TME = 1 Mailbox has highest priority SCHEDULED RQCP=0 TXOK=0 TME = 0 Transmit failed * NART Transmit succeeded MS30396V2 36.7.2 Time triggered communication mode In this mode, the internal counter of the CAN hardware is activated and used to generate the Time Stamp value stored in the CAN_RDTxR/CAN_TDTxR registers, respectively (for Rx and Tx mailboxes). The internal counter is incremented each CAN bit time (refer to Section 36.7.7: Bit timing). The internal counter is captured on the sample point of the Start Of Frame bit in both reception and transmission. 36.7.3 Reception handling For the reception of CAN messages, three mailboxes organized as a FIFO are provided. In order to save CPU load, simplify the software and guarantee data consistency, the FIFO is managed completely by hardware. The application accesses the messages stored in the FIFO through the FIFO output mailbox. Valid message A received message is considered as valid when it has been received correctly according to the CAN protocol (no error until the last but one bit of the EOF field) and It passed through the identifier filtering successfully, see Section 36.7.4: Identifier filtering. RM0385 Rev 7 1289/1709 1325 Controller area network (bxCAN) RM0385 Figure 450. Receive FIFO states EMPTY Valid Message FMP=0x00 FOVR=0 Received Release Mailbox PENDING_1 FMP=0x01 FOVR=0 Release Mailbox RFOM=1 Valid Message Received PENDING_2 FMP=0x10 FOVR=0 Release Mailbox RFOM=1 Valid Message Received PENDING_3 FMP=0x11 FOVR=0 Valid Message Received Release Mailbox RFOM=1 OVERRUN FMP=0x11 FOVR=1 Valid Message Received MS30397V2 FIFO management Starting from the empty state, the first valid message received is stored in the FIFO which becomes pending_1. The hardware signals the event setting the FMP[1:0] bits in the CAN_RFR register to the value 01b. The message is available in the FIFO output mailbox. The software reads out the mailbox content and releases it by setting the RFOM bit in the CAN_RFR register. The FIFO becomes empty again. If a new valid message has been received in the meantime, the FIFO stays in pending_1 state and the new message is available in the output mailbox. If the application does not release the mailbox, the next valid message will be stored in the FIFO which enters pending_2 state (FMP[1:0] = 10b). The storage process is repeated for the next valid message putting the FIFO into pending_3 state (FMP[1:0] = 11b). At this point, the software must release the output mailbox by setting the RFOM bit, so that a mailbox is free to store the next valid message. Otherwise the next valid message received will cause a loss of message. Refer also to Section 36.7.5: Message storage 1290/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) Overrun Once the FIFO is in pending_3 state (i.e. the three mailboxes are full) the next valid message reception will lead to an overrun and a message will be lost. The hardware signals the overrun condition by setting the FOVR bit in the CAN_RFR register. Which message is lost depends on the configuration of the FIFO: • If the FIFO lock function is disabled (RFLM bit in the CAN_MCR register cleared) the last message stored in the FIFO will be overwritten by the new incoming message. In this case the latest messages will be always available to the application. • If the FIFO lock function is enabled (RFLM bit in the CAN_MCR register set) the most recent message will be discarded and the software will have the three oldest messages in the FIFO available. Reception related interrupts Once a message has been stored in the FIFO, the FMP[1:0] bits are updated and an interrupt request is generated if the FMPIE bit in the CAN_IER register is set. When the FIFO becomes full (i.e. a third message is stored) the FULL bit in the CAN_RFR register is set and an interrupt is generated if the FFIE bit in the CAN_IER register is set. On overrun condition, the FOVR bit is set and an interrupt is generated if the FOVIE bit in the CAN_IER register is set. 36.7.4 Identifier filtering In the CAN protocol the identifier of a message is not associated with the address of a node but related to the content of the message. Consequently a transmitter broadcasts its message to all receivers. On message reception a receiver node decides - depending on the identifier value - whether the software needs the message or not. If the message is needed, it is copied into the SRAM. If not, the message must be discarded without intervention by the software. To fulfill this requirement the bxCAN Controller provides 28 configurable and scalable filter banks (27-0) to the application, in order to receive only the messages the software needs. This hardware filtering saves CPU resources which would be otherwise needed to perform filtering by software. Each filter bank x consists of two 32-bit registers, CAN_FxR0 and CAN_FxR1. Scalable width To optimize and adapt the filters to the application needs, each filter bank can be scaled independently. Depending on the filter scale a filter bank provides: • One 32-bit filter for the STDID[10:0], EXTID[17:0], IDE and RTR bits. • Two 16-bit filters for the STDID[10:0], RTR, IDE and EXTID[17:15] bits. Refer to Figure 451. Furthermore, the filters can be configured in mask mode or in identifier list mode. Mask mode In mask mode the identifier registers are associated with mask registers specifying which bits of the identifier are handled as “must match” or as “don’t care”. RM0385 Rev 7 1291/1709 1325 Controller area network (bxCAN) RM0385 Identifier list mode In identifier list mode, the mask registers are used as identifier registers. Thus instead of defining an identifier and a mask, two identifiers are specified, doubling the number of single identifiers. All bits of the incoming identifier must match the bits specified in the filter registers. Filter bank scale and mode configuration The filter banks are configured by means of the corresponding CAN_FMR register. To configure a filter bank it must be deactivated by clearing the FACT bit in the CAN_FAR register. The filter scale is configured by means of the corresponding FSCx bit in the CAN_FS1R register, refer to Figure 451. The identifier list or identifier mask mode for the corresponding Mask/Identifier registers is configured by means of the FBMx bits in the CAN_FMR register. To filter a group of identifiers, configure the Mask/Identifier registers in mask mode. To select single identifiers, configure the Mask/Identifier registers in identifier list mode. Filters not used by the application should be left deactivated. Each filter within a filter bank is numbered (called the Filter Number) from 0 to a maximum dependent on the mode and the scale of each of the filter banks. Concerning the filter configuration, refer to Figure 451. 1292/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) Figure 451. Filter bank scale configuration - register organization Filter Num. FBMx = 0 ID CAN_FxR1[31:24] CAN_FxR1[23:16] CAN_FxR1[15:8] CAN_FxR1[7:0] Mask CAN_FxR2[31:24] CAN_FxR2[23:16] CAN_FxR2[15:8] CAN_FxR2[7:0] Mapping STD ID Mapping Ext ID STID[10:3] EXTID[28:21] n STID[2:0] EXID[20:13] EXID[12:5] EXID[4:0] IDE RTR 0 Two 32-Bit Filters - Identifier List FBMx = 1 FSCx = 1 One 32-Bit Filter - Identifier Mask ID CAN_FxR1[31:24] CAN_FxR1[23:16] CAN_FxR1[15:8] CAN_FxR1[7:0] n ID CAN_FxR2[31:24] CAN_FxR2[23:16] CAN_FxR2[15:8] CAN_FxR2[7:0] n+1 Mapping STD ID Mapping Ext ID STID[10:3] EXTID[28:21] STID[2:0] EXID[20:13] EXID[12:5] EXID[4:0] IDE RTR 0 FBMx = 0 Two 16-Bit Filters - Identifier Mask ID CAN_FxR1[15:8] CAN_FxR1[7:0] Mask CAN_FxR1[31:24] CAN_FxR1[23:16] ID CAN_FxR2[15:8] CAN_FxR2[7:0] Mask CAN_FxR2[31:24] CAN_FxR2[23:16] FSCx = 0 Mapping STID[10:3] n n+1 STID[2:0] RTR IDE EXID[17:15] FBMx = 1 Four 16-Bit Filters - Identifier List ID CAN_FxR1[15:8] CAN_FxR1[7:0] ID CAN_FxR1[31:24] CAN_FxR1[23:16] n n+1 ID CAN_FxR2[15:8] CAN_FxR2[7:0] n+2 ID CAN_FxR2[31:24] CAN_FxR2[23:16] n+3 STID[10:3] STID[2:0] RTR IDE EXID[17:15] x = filter bank number ID=Identifier Filter Bank Mode Filter Bank Scale 1 Config. Bits 2 Mapping 1 These bits are located in the CAN_FS1R register 2 These bits are located in the CAN_FM1R register MSv30398V4 Filter match index Once a message has been received in the FIFO it is available to the application. Typically, application data is copied into SRAM locations. To copy the data to the right location the application has to identify the data by means of the identifier. To avoid this, and to ease the access to the SRAM locations, the CAN controller provides a Filter Match Index. This index is stored in the mailbox together with the message according to the filter priority rules. Thus each received message has its associated filter match index. The Filter Match index can be used in two ways: • Compare the Filter Match index with a list of expected values. • Use the Filter Match Index as an index on an array to access the data destination location. For non masked filters, the software no longer has to compare the identifier. If the filter is masked the software reduces the comparison to the masked bits only. RM0385 Rev 7 1293/1709 1325 Controller area network (bxCAN) RM0385 The index value of the filter number does not take into account the activation state of the filter banks. In addition, two independent numbering schemes are used, one for each FIFO. Refer to Figure 452 for an example. Figure 452. Example of filter numbering Filter Bank FIFO0 Filter Num. Filter Bank FIFO1 Filter Num. 0 ID List (32-bit) 0 1 2 ID Mask (16-bit) 0 1 1 ID Mask (32-bit) 2 4 ID List (32-bit) 2 3 3 ID List (16-bit) 3 4 5 6 7 Deactivated ID Mask (16-bit) 4 5 5 Deactivated ID List (32-bit) 7 8 8 ID Mask (16-bit) 6 7 6 ID Mask (16-bit) 9 10 10 Deactivated ID List (16-bit) 8 9 10 11 9 ID List (32-bit) 11 12 11 ID List (32-bit) 12 13 13 ID Mask (32-bit) 13 12 ID Mask (32-bit) 14 ID=Identifier MS30399V2 Filter priority rules Depending on the filter combination it may occur that an identifier passes successfully through several filters. In this case the filter match value stored in the receive mailbox is chosen according to the following priority rules: 1294/1709 • A 32-bit filter takes priority over a 16-bit filter. • For filters of equal scale, priority is given to the Identifier List mode over the Identifier Mask mode • For filters of equal scale and mode, priority is given by the filter number (the lower the number, the higher the priority). RM0385 Rev 7 RM0385 Controller area network (bxCAN) Figure 453. Filtering mechanism - example Example of 3 filter banks in 32-bit unidentified mode and the remaining in 32-bit identifier mask mode Message Received Identifier Ctrl Data Filter bank Num Receive FIFO 3 1 4 Identifier & Mask 2 Identifier List 0 Identifier Identifier Identifier 0 1 4 Identifier 5 Identifier Mask 2 Identifier #4 Match Identifier 3 Mask No Match Found Message Stored FMI Filter number stored in the Filter Match Index field within the CAN_RDTxR register Message Discarded MS31000V2 The example above shows the filtering principle of the bxCAN. On reception of a message, the identifier is compared first with the filters configured in identifier list mode. If there is a match, the message is stored in the associated FIFO and the index of the matching filter is stored in the Filter Match Index. As shown in the example, the identifier matches with Identifier #2 thus the message content and FMI 2 is stored in the FIFO. If there is no match, the incoming identifier is then compared with the filters configured in mask mode. If the identifier does not match any of the identifiers configured in the filters, the message is discarded by hardware without disturbing the software. 36.7.5 Message storage The interface between the software and the hardware for the CAN messages is implemented by means of mailboxes. A mailbox contains all information related to a message; identifier, data, control, status and time stamp information. Transmit mailbox The software sets up the message to be transmitted in an empty transmit mailbox. The status of the transmission is indicated by hardware in the CAN_TSR register. RM0385 Rev 7 1295/1709 1325 Controller area network (bxCAN) RM0385 Table 251. Transmit mailbox mapping Offset to transmit mailbox base address Register name 0 CAN_TIxR 4 CAN_TDTxR 8 CAN_TDLxR 12 CAN_TDHxR Receive mailbox When a message has been received, it is available to the software in the FIFO output mailbox. Once the software has handled the message (e.g. read it) the software must release the FIFO output mailbox by means of the RFOM bit in the CAN_RFR register to make the next incoming message available. The filter match index is stored in the MFMI field of the CAN_RDTxR register. The 16-bit time stamp value is stored in the TIME[15:0] field of CAN_RDTxR. Table 252. Receive mailbox mapping Offset to receive mailbox base address (bytes) Register name 0 CAN_RIxR 4 CAN_RDTxR 8 CAN_RDLxR 12 CAN_RDHxR Figure 454. CAN error state diagram When TEC or REC > 127 ERROR PASSIVE ERROR ACTIVE When TEC and REC < 128 When 128*11 recessive bits occur: When TEC > 255 BUS OFF ai15903 1296/1709 RM0385 Rev 7 RM0385 36.7.6 Controller area network (bxCAN) Error management The error management as described in the CAN protocol is handled entirely by hardware using a Transmit Error Counter (TEC value, in CAN_ESR register) and a Receive Error Counter (REC value, in the CAN_ESR register), which get incremented or decremented according to the error condition. For detailed information about TEC and REC management, refer to the CAN standard. Both of them may be read by software to determine the stability of the network. Furthermore, the CAN hardware provides detailed information on the current error status in CAN_ESR register. By means of the CAN_IER register (ERRIE bit, etc.), the software can configure the interrupt generation on error detection in a very flexible way. Bus-Off recovery The Bus-Off state is reached when TEC is greater than 255, this state is indicated by BOFF bit in CAN_ESR register. In Bus-Off state, the bxCAN is no longer able to transmit and receive messages. Depending on the ABOM bit in the CAN_MCR register bxCAN will recover from Bus-Off (become error active again) either automatically or on software request. But in both cases the bxCAN has to wait at least for the recovery sequence specified in the CAN standard (128 occurrences of 11 consecutive recessive bits monitored on CANRX). If ABOM is set, the bxCAN will start the recovering sequence automatically after it has entered Bus-Off state. If ABOM is cleared, the software must initiate the recovering sequence by requesting bxCAN to enter and to leave initialization mode. Note: In initialization mode, bxCAN does not monitor the CANRX signal, therefore it cannot complete the recovery sequence. To recover, bxCAN must be in normal mode. 36.7.7 Bit timing The bit timing logic monitors the serial bus-line and performs sampling and adjustment of the sample point by synchronizing on the start-bit edge and resynchronizing on the following edges. Its operation may be explained simply by splitting nominal bit time into three segments as follows: • Synchronization segment (SYNC_SEG): a bit change is expected to occur within this time segment. It has a fixed length of one time quantum (1 x tq). • Bit segment 1 (BS1): defines the location of the sample point. It includes the PROP_SEG and PHASE_SEG1 of the CAN standard. Its duration is programmable between 1 and 16 time quanta but may be automatically lengthened to compensate for positive phase drifts due to differences in the frequency of the various nodes of the network. • Bit segment 2 (BS2): defines the location of the transmit point. It represents the PHASE_SEG2 of the CAN standard. Its duration is programmable between 1 and 8 time quanta but may also be automatically shortened to compensate for negative phase drifts. The resynchronization Jump Width (SJW) defines an upper bound to the amount of lengthening or shortening of the bit segments. It is programmable between 1 and 4 time quanta. RM0385 Rev 7 1297/1709 1325 Controller area network (bxCAN) RM0385 A valid edge is defined as the first transition in a bit time from dominant to recessive bus level provided the controller itself does not send a recessive bit. If a valid edge is detected in BS1 instead of SYNC_SEG, BS1 is extended by up to SJW so that the sample point is delayed. Conversely, if a valid edge is detected in BS2 instead of SYNC_SEG, BS2 is shortened by up to SJW so that the transmit point is moved earlier. As a safeguard against programming errors, the configuration of the Bit Timing Register (CAN_BTR) is only possible while the device is in Standby mode. Note: For a detailed description of the CAN bit timing and resynchronization mechanism, refer to the ISO 11898 standard. Figure 455. Bit timing NOMINAL BIT TIME SYNC_SEG BIT SEGMENT 1 (BS1) tBS1 1 x tq 1 Baud Rate = ------------------------------------------NominalBitTime NominalBitTime BIT SEGMENT 2 (BS2) tBS2 SAMPLE POINT TRANSMIT POINT = 1 X t q + t BS 1 + t BS 2 with: tBS1 = tq x (TS1[3:0] + 1), tBS2 = tq x (TS2[2:0] + 1), tq = (BRP[9:0] + 1) x tPCLK where tq refers to the Time quantum tPCLK = time period of the APB clock, BRP[9:0], TS1[3:0] and TS2[2:0] are defined in the CAN_BTR Register. MS31001V2 1298/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) Figure 456. CAN frames Inter-Frame Space or Overload Frame Data Frame (Standard Identifier) Inter-Frame Space Arbitration Field 32 6 ID DLC ACK Field 2 CRC Field 16 8 *N ACK Inter-Frame Space Inter-Frame Space or Overload Frame Data Frame (Extended Identifier) 64 + 8 *N Arbitration Field Arbitration Field 32 Ctrl Field Data Field 8 *N 32 Arbitration Field 32 16 6 DLC ID Flag Echo 6 ACK ACK Field 2 CRC End of Frame or Error Delimiter or Overload Delimiter 6 6 EOF ACK Data Frame or Remote Frame Bus Idle Inter-Frame Space or Error Frame Overload Frame Overload Overload Echo Flag 7 Error Delimiter 8 Inter-Frame Space Suspend Intermission Transmission 3 8 EOF Inter-Frame Space or Overload Frame Error Frame Error Flag 6 7 Inter-Frame Space or Overload Frame RTR IDE r0 SOF CRC RTR r1 r0 SRR IDE Remote Frame 44 CRC Field Ctrl Field Inter-Frame Space Data Frame or Remote Frame CRC Field ACK Field 2 16 DLC SOF ID Any Frame 7 EOF CRC RTR IDE r0 SOF 44 + 8 *N Data Field Ctrl Field Overload Delimiter Notes: 0 <= N <= 8 SOF = Start Of Frame ID = Identifier RTR = Remote Transmission Request IDE = Identifier Extension Bit r0 = Reserved Bit DLC = Data Length Code CRC = Cyclic Redundancy Code Error flag: 6 dominant bits if node is error active, else 6 recessive bits. Suspend transmission: applies to error passive nodes only. EOF = End of Frame ACK = Acknowledge bit Ctrl = Control 8 ai15154b RM0385 Rev 7 1299/1709 1325 Controller area network (bxCAN) 36.8 RM0385 bxCAN interrupts Four interrupt vectors are dedicated to bxCAN. Each interrupt source can be independently enabled or disabled by means of the CAN Interrupt Enable Register (CAN_IER). Figure 457. Event flags and interrupt generation CAN_IER CAN_TSR RQCP0 RQCP1 RQCP2 + TRANSMIT INTERRUPT TMEIE & FMPIE0 & FMP0 FIFO 0 INTERRUPT CAN_RF0R FFIE0 & FOVIE0 & FMPIE1 & FULL0 FOVR0 FMP1 + FIFO 1 INTERRUPT CAN_RF1R FFIE1 & FOVIE1 & FULL1 FOVR1 + ERRIE EWGIE & EPVIE & EWGF CAN_ESR EPVF BOFIE BOFF LECIE 1 LEC 6 & ERRI CAN_MSR STATUS CHANGE ERROR INTERRUPT & + WKUIE & SLKIE & WKUI CAN_MSR & + SLAKI MS31002V2 1300/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) • • • • 36.9 The transmit interrupt can be generated by the following events: – Transmit mailbox 0 becomes empty, RQCP0 bit in the CAN_TSR register set. – Transmit mailbox 1 becomes empty, RQCP1 bit in the CAN_TSR register set. – Transmit mailbox 2 becomes empty, RQCP2 bit in the CAN_TSR register set. The FIFO 0 interrupt can be generated by the following events: – Reception of a new message, FMP0 bits in the CAN_RF0R register are not ‘00’. – FIFO0 full condition, FULL0 bit in the CAN_RF0R register set. – FIFO0 overrun condition, FOVR0 bit in the CAN_RF0R register set. The FIFO 1 interrupt can be generated by the following events: – Reception of a new message, FMP1 bits in the CAN_RF1R register are not ‘00’. – FIFO1 full condition, FULL1 bit in the CAN_RF1R register set. – FIFO1 overrun condition, FOVR1 bit in the CAN_RF1R register set. The error and status change interrupt can be generated by the following events: – Error condition, for more details on error conditions refer to the CAN Error Status register (CAN_ESR). – Wakeup condition, SOF monitored on the CAN Rx signal. – Entry into Sleep mode. CAN registers The peripheral registers have to be accessed by words (32 bits). 36.9.1 Register access protection Erroneous access to certain configuration registers can cause the hardware to temporarily disturb the whole CAN network. Therefore the CAN_BTR register can be modified by software only while the CAN hardware is in initialization mode. Although the transmission of incorrect data will not cause problems at the CAN network level, it can severely disturb the application. A transmit mailbox can be only modified by software while it is in empty state, refer to Figure 449: Transmit mailbox states. The filter values can be modified either deactivating the associated filter banks or by setting the FINIT bit. Moreover, the modification of the filter configuration (scale, mode and FIFO assignment) in CAN_FMxR, CAN_FSxR and CAN_FFAR registers can only be done when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. 36.9.2 CAN control and status registers Refer to Section 1.1 for a list of abbreviations used in register descriptions. CAN master control register (CAN_MCR) Address offset: 0x00 Reset value: 0x0001 0002 RM0385 Rev 7 1301/1709 1325 Controller area network (bxCAN) RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DBF rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RESET Res. Res. Res. Res. Res. Res. Res. TTCM ABOM AWUM NART RFLM TXFP SLEEP INRQ rw rw rw rw rw rw rw rw rs Bits 31:17 Reserved, must be kept at reset value. Bit 16 DBF: Debug freeze 0: CAN working during debug 1: CAN reception/transmission frozen during debug. Reception FIFOs can still be accessed/controlled normally. Bit 15 RESET: bxCAN software master reset 0: Normal operation. 1: Force a master reset of the bxCAN -> Sleep mode activated after reset (FMP bits and CAN_MCR register are initialized to the reset values). This bit is automatically reset to 0. Bits 14:8 Reserved, must be kept at reset value. Bit 7 TTCM: Time triggered communication mode 0: Time Triggered Communication mode disabled. 1: Time Triggered Communication mode enabled Note: For more information on Time Triggered Communication mode, refer to Section 36.7.2: Time triggered communication mode. Bit 6 ABOM: Automatic bus-off management This bit controls the behavior of the CAN hardware on leaving the Bus-Off state. 0: The Bus-Off state is left on software request, once 128 occurrences of 11 recessive bits have been monitored and the software has first set and cleared the INRQ bit of the CAN_MCR register. 1: The Bus-Off state is left automatically by hardware once 128 occurrences of 11 recessive bits have been monitored. For detailed information on the Bus-Off state refer to Section 36.7.6: Error management. Bit 5 AWUM: Automatic wakeup mode This bit controls the behavior of the CAN hardware on message reception during Sleep mode. 0: The Sleep mode is left on software request by clearing the SLEEP bit of the CAN_MCR register. 1: The Sleep mode is left automatically by hardware on CAN message detection. The SLEEP bit of the CAN_MCR register and the SLAK bit of the CAN_MSR register are cleared by hardware. Bit 4 NART: No automatic retransmission 0: The CAN hardware will automatically retransmit the message until it has been successfully transmitted according to the CAN standard. 1: A message will be transmitted only once, independently of the transmission result (successful, error or arbitration lost). 1302/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) Bit 3 RFLM: Receive FIFO locked mode 0: Receive FIFO not locked on overrun. Once a receive FIFO is full the next incoming message will overwrite the previous one. 1: Receive FIFO locked against overrun. Once a receive FIFO is full the next incoming message will be discarded. Bit 2 TXFP: Transmit FIFO priority This bit controls the transmission order when several mailboxes are pending at the same time. 0: Priority driven by the identifier of the message 1: Priority driven by the request order (chronologically) Bit 1 SLEEP: Sleep mode request This bit is set by software to request the CAN hardware to enter the Sleep mode. Sleep mode will be entered as soon as the current CAN activity (transmission or reception of a CAN frame) has been completed. This bit is cleared by software to exit Sleep mode. This bit is cleared by hardware when the AWUM bit is set and a SOF bit is detected on the CAN Rx signal. This bit is set after reset - CAN starts in Sleep mode. Bit 0 INRQ: Initialization request The software clears this bit to switch the hardware into normal mode. Once 11 consecutive recessive bits have been monitored on the Rx signal the CAN hardware is synchronized and ready for transmission and reception. Hardware signals this event by clearing the INAK bit in the CAN_MSR register. Software sets this bit to request the CAN hardware to enter initialization mode. Once software has set the INRQ bit, the CAN hardware waits until the current CAN activity (transmission or reception) is completed before entering the initialization mode. Hardware signals this event by setting the INAK bit in the CAN_MSR register. CAN master status register (CAN_MSR) Address offset: 0x04 Reset value: 0x0000 0C02 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. RX SAMP RXM TXM Res. Res. Res. SLAKI WKUI ERRI SLAK INAK r r r r rc_w1 rc_w1 rc_w1 r r Bits 31:12 Reserved, must be kept at reset value. Bit 11 RX: CAN Rx signal Monitors the actual value of the CAN_RX Pin. Bit 10 SAMP: Last sample point The value of RX on the last sample point (current received bit value). Bit 9 RXM: Receive mode The CAN hardware is currently receiver. RM0385 Rev 7 1303/1709 1325 Controller area network (bxCAN) RM0385 Bit 8 TXM: Transmit mode The CAN hardware is currently transmitter. Bits 7:5 Reserved, must be kept at reset value. Bit 4 SLAKI: Sleep acknowledge interrupt When SLKIE=1, this bit is set by hardware to signal that the bxCAN has entered Sleep Mode. When set, this bit generates a status change interrupt if the SLKIE bit in the CAN_IER register is set. This bit is cleared by software or by hardware, when SLAK is cleared. Note: When SLKIE=0, no polling on SLAKI is possible. In this case the SLAK bit can be polled. Bit 3 WKUI: Wakeup interrupt This bit is set by hardware to signal that a SOF bit has been detected while the CAN hardware was in Sleep mode. Setting this bit generates a status change interrupt if the WKUIE bit in the CAN_IER register is set. This bit is cleared by software. Bit 2 ERRI: Error interrupt This bit is set by hardware when a bit of the CAN_ESR has been set on error detection and the corresponding interrupt in the CAN_IER is enabled. Setting this bit generates a status change interrupt if the ERRIE bit in the CAN_IER register is set. This bit is cleared by software. Bit 1 SLAK: Sleep acknowledge This bit is set by hardware and indicates to the software that the CAN hardware is now in Sleep mode. This bit acknowledges the Sleep mode request from the software (set SLEEP bit in CAN_MCR register). This bit is cleared by hardware when the CAN hardware has left Sleep mode (to be synchronized on the CAN bus). To be synchronized the hardware has to monitor a sequence of 11 consecutive recessive bits on the CAN RX signal. Note: The process of leaving Sleep mode is triggered when the SLEEP bit in the CAN_MCR register is cleared. Refer to the AWUM bit of the CAN_MCR register description for detailed information for clearing SLEEP bit Bit 0 INAK: Initialization acknowledge This bit is set by hardware and indicates to the software that the CAN hardware is now in initialization mode. This bit acknowledges the initialization request from the software (set INRQ bit in CAN_MCR register). This bit is cleared by hardware when the CAN hardware has left the initialization mode (to be synchronized on the CAN bus). To be synchronized the hardware has to monitor a sequence of 11 consecutive recessive bits on the CAN RX signal. CAN transmit status register (CAN_TSR) Address offset: 0x08 Reset value: 0x1C00 0000 31 30 29 28 27 26 LOW2 LOW1 LOW0 TME2 TME1 TME0 25 24 CODE[1:0] 23 22 21 20 19 18 17 16 ABRQ2 Res. Res. Res. TERR2 ALST2 TXOK2 RQCP2 rc_w1 rc_w1 rc_w1 rc_w1 6 5 4 3 2 1 0 Res. Res. Res. TERR0 ALST0 TXOK0 RQCP0 rc_w1 rc_w1 rc_w1 rc_w1 r r r r r r r r rs 15 14 13 12 11 10 9 8 7 ABRQ1 Res. Res. Res. TERR1 ALST1 TXOK1 rc_w1 rc_w1 rc_w1 rs 1304/1709 RQCP1 ABRQ0 rc_w1 rs RM0385 Rev 7 RM0385 Controller area network (bxCAN) Bit 31 LOW2: Lowest priority flag for mailbox 2 This bit is set by hardware when more than one mailbox are pending for transmission and mailbox 2 has the lowest priority. Bit 30 LOW1: Lowest priority flag for mailbox 1 This bit is set by hardware when more than one mailbox are pending for transmission and mailbox 1 has the lowest priority. Bit 29 LOW0: Lowest priority flag for mailbox 0 This bit is set by hardware when more than one mailbox are pending for transmission and mailbox 0 has the lowest priority. Note: The LOW[2:0] bits are set to zero when only one mailbox is pending. Bit 28 TME2: Transmit mailbox 2 empty This bit is set by hardware when no transmit request is pending for mailbox 2. Bit 27 TME1: Transmit mailbox 1 empty This bit is set by hardware when no transmit request is pending for mailbox 1. Bit 26 TME0: Transmit mailbox 0 empty This bit is set by hardware when no transmit request is pending for mailbox 0. Bits 25:24 CODE[1:0]: Mailbox code In case at least one transmit mailbox is free, the code value is equal to the number of the next transmit mailbox free. In case all transmit mailboxes are pending, the code value is equal to the number of the transmit mailbox with the lowest priority. Bit 23 ABRQ2: Abort request for mailbox 2 Set by software to abort the transmission request for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. Setting this bit has no effect when the mailbox is not pending for transmission. Bits 22:20 Reserved, must be kept at reset value. Bit 19 TERR2: Transmission error of mailbox 2 This bit is set when the previous TX failed due to an error. Bit 18 ALST2: Arbitration lost for mailbox 2 This bit is set when the previous TX failed due to an arbitration lost. Bit 17 TXOK2: Transmission OK of mailbox 2 The hardware updates this bit after each transmission attempt. 0: The previous transmission failed 1: The previous transmission was successful This bit is set by hardware when the transmission request on mailbox 2 has been completed successfully. Refer to Figure 449. Bit 16 RQCP2: Request completed mailbox2 Set by hardware when the last request (transmit or abort) has been performed. Cleared by software writing a “1” or by hardware on transmission request (TXRQ2 set in CAN_TMID2R register). Clearing this bit clears all the status bits (TXOK2, ALST2 and TERR2) for Mailbox 2. Bit 15 ABRQ1: Abort request for mailbox 1 Set by software to abort the transmission request for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. Setting this bit has no effect when the mailbox is not pending for transmission. Bits 14:12 Reserved, must be kept at reset value. RM0385 Rev 7 1305/1709 1325 Controller area network (bxCAN) RM0385 Bit 11 TERR1: Transmission error of mailbox1 This bit is set when the previous TX failed due to an error. Bit 10 ALST1: Arbitration lost for mailbox1 This bit is set when the previous TX failed due to an arbitration lost. Bit 9 TXOK1: Transmission OK of mailbox1 The hardware updates this bit after each transmission attempt. 0: The previous transmission failed 1: The previous transmission was successful This bit is set by hardware when the transmission request on mailbox 1 has been completed successfully. Refer to Figure 449 Bit 8 RQCP1: Request completed mailbox1 Set by hardware when the last request (transmit or abort) has been performed. Cleared by software writing a “1” or by hardware on transmission request (TXRQ1 set in CAN_TI1R register). Clearing this bit clears all the status bits (TXOK1, ALST1 and TERR1) for Mailbox 1. Bit 7 ABRQ0: Abort request for mailbox0 Set by software to abort the transmission request for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. Setting this bit has no effect when the mailbox is not pending for transmission. Bits 6:4 Reserved, must be kept at reset value. Bit 3 TERR0: Transmission error of mailbox0 This bit is set when the previous TX failed due to an error. Bit 2 ALST0: Arbitration lost for mailbox0 This bit is set when the previous TX failed due to an arbitration lost. Bit 1 TXOK0: Transmission OK of mailbox0 The hardware updates this bit after each transmission attempt. 0: The previous transmission failed 1: The previous transmission was successful This bit is set by hardware when the transmission request on mailbox 1 has been completed successfully. Refer to Figure 449 Bit 0 RQCP0: Request completed mailbox0 Set by hardware when the last request (transmit or abort) has been performed. Cleared by software writing a “1” or by hardware on transmission request (TXRQ0 set in CAN_TI0R register). Clearing this bit clears all the status bits (TXOK0, ALST0 and TERR0) for Mailbox 0. CAN receive FIFO 0 register (CAN_RF0R) Address offset: 0x0C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FULL0 Res. RFOM0 FOVR0 rs 1306/1709 RM0385 Rev 7 rc_w1 rc_w1 FMP0[1:0] r r RM0385 Controller area network (bxCAN) Bits 31:6 Reserved, must be kept at reset value. Bit 5 RFOM0: Release FIFO 0 output mailbox Set by software to release the output mailbox of the FIFO. The output mailbox can only be released when at least one message is pending in the FIFO. Setting this bit when the FIFO is empty has no effect. If at least two messages are pending in the FIFO, the software has to release the output mailbox to access the next message. Cleared by hardware when the output mailbox has been released. Bit 4 FOVR0: FIFO 0 overrun This bit is set by hardware when a new message has been received and passed the filter while the FIFO was full. This bit is cleared by software. Bit 3 FULL0: FIFO 0 full Set by hardware when three messages are stored in the FIFO. This bit is cleared by software. Bit 2 Reserved, must be kept at reset value. Bits 1:0 FMP0[1:0]: FIFO 0 message pending These bits indicate how many messages are pending in the receive FIFO. FMP is increased each time the hardware stores a new message in to the FIFO. FMP is decreased each time the software releases the output mailbox by setting the RFOM0 bit. CAN receive FIFO 1 register (CAN_RF1R) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FULL1 Res. RFOM1 FOVR1 rs rc_w1 rc_w1 FMP1[1:0] r r Bits 31:6 Reserved, must be kept at reset value. Bit 5 RFOM1: Release FIFO 1 output mailbox Set by software to release the output mailbox of the FIFO. The output mailbox can only be released when at least one message is pending in the FIFO. Setting this bit when the FIFO is empty has no effect. If at least two messages are pending in the FIFO, the software has to release the output mailbox to access the next message. Cleared by hardware when the output mailbox has been released. Bit 4 FOVR1: FIFO 1 overrun This bit is set by hardware when a new message has been received and passed the filter while the FIFO was full. This bit is cleared by software. RM0385 Rev 7 1307/1709 1325 Controller area network (bxCAN) RM0385 Bit 3 FULL1: FIFO 1 full Set by hardware when three messages are stored in the FIFO. This bit is cleared by software. Bit 2 Reserved, must be kept at reset value. Bits 1:0 FMP1[1:0]: FIFO 1 message pending These bits indicate how many messages are pending in the receive FIFO1. FMP1 is increased each time the hardware stores a new message in to the FIFO1. FMP is decreased each time the software releases the output mailbox by setting the RFOM1 bit. CAN interrupt enable register (CAN_IER) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SLKIE WKUIE rw rw 15 ERRIE 14 Res. rw 13 Res. 12 11 10 9 8 Res. LEC IE BOF IE EPV IE EWG IE rw rw rw rw 7 6 5 4 3 2 1 0 Res. FOV IE1 FF IE1 FMP IE1 FOV IE0 FF IE0 FMP IE0 TME IE rw rw rw rw rw rw rw Bits 31:18 Reserved, must be kept at reset value. Bit 17 SLKIE: Sleep interrupt enable 0: No interrupt when SLAKI bit is set. 1: Interrupt generated when SLAKI bit is set. Bit 16 WKUIE: Wakeup interrupt enable 0: No interrupt when WKUI is set. 1: Interrupt generated when WKUI bit is set. Bit 15 ERRIE: Error interrupt enable 0: No interrupt will be generated when an error condition is pending in the CAN_ESR. 1: An interrupt will be generation when an error condition is pending in the CAN_ESR. Bits 14:12 Reserved, must be kept at reset value. Bit 11 LECIE: Last error code interrupt enable 0: ERRI bit will not be set when the error code in LEC[2:0] is set by hardware on error detection. 1: ERRI bit will be set when the error code in LEC[2:0] is set by hardware on error detection. Bit 10 BOFIE: Bus-off interrupt enable 0: ERRI bit will not be set when BOFF is set. 1: ERRI bit will be set when BOFF is set. Bit 9 EPVIE: Error passive interrupt enable 0: ERRI bit will not be set when EPVF is set. 1: ERRI bit will be set when EPVF is set. 1308/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) Bit 8 EWGIE: Error warning interrupt enable 0: ERRI bit will not be set when EWGF is set. 1: ERRI bit will be set when EWGF is set. Bit 7 Reserved, must be kept at reset value. Bit 6 FOVIE1: FIFO overrun interrupt enable 0: No interrupt when FOVR is set. 1: Interrupt generation when FOVR is set. Bit 5 FFIE1: FIFO full interrupt enable 0: No interrupt when FULL bit is set. 1: Interrupt generated when FULL bit is set. Bit 4 FMPIE1: FIFO message pending interrupt enable 0: No interrupt generated when state of FMP[1:0] bits are not 00b. 1: Interrupt generated when state of FMP[1:0] bits are not 00b. Bit 3 FOVIE0: FIFO overrun interrupt enable 0: No interrupt when FOVR bit is set. 1: Interrupt generated when FOVR bit is set. Bit 2 FFIE0: FIFO full interrupt enable 0: No interrupt when FULL bit is set. 1: Interrupt generated when FULL bit is set. Bit 1 FMPIE0: FIFO message pending interrupt enable 0: No interrupt generated when state of FMP[1:0] bits are not 00b. 1: Interrupt generated when state of FMP[1:0] bits are not 00b. Bit 0 TMEIE: Transmit mailbox empty interrupt enable 0: No interrupt when RQCPx bit is set. 1: Interrupt generated when RQCPx bit is set. Note: Refer to Section 36.8: bxCAN interrupts. CAN error status register (CAN_ESR) Address offset: 0x18 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 REC[7:0] r r r r r 20 19 18 17 16 r r r TEC[7:0] r r r r r 6 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. r 5 4 LEC[2:0] rw RM0385 Rev 7 r rw rw r 3 2 1 0 Res. BOFF EPVF EWGF r r r 1309/1709 1325 Controller area network (bxCAN) RM0385 Bits 31:24 REC[7:0]: Receive error counter The implementing part of the fault confinement mechanism of the CAN protocol. In case of an error during reception, this counter is incremented by 1 or by 8 depending on the error condition as defined by the CAN standard. After every successful reception the counter is decremented by 1 or reset to 120 if its value was higher than 128. When the counter value exceeds 127, the CAN controller enters the error passive state. Bits 23:16 TEC[7:0]: Least significant byte of the 9-bit transmit error counter The implementing part of the fault confinement mechanism of the CAN protocol. Bits 15:7 Reserved, must be kept at reset value. Bits 6:4 LEC[2:0]: Last error code This field is set by hardware and holds a code which indicates the error condition of the last error detected on the CAN bus. If a message has been transferred (reception or transmission) without error, this field will be cleared to ‘0’. The LEC[2:0] bits can be set to value 0b111 by software. They are updated by hardware to indicate the current communication status. 000: No Error 001: Stuff Error 010: Form Error 011: Acknowledgment Error 100: Bit recessive Error 101: Bit dominant Error 110: CRC Error 111: Set by software Bit 3 Reserved, must be kept at reset value. Bit 2 BOFF: Bus-off flag This bit is set by hardware when it enters the bus-off state. The bus-off state is entered on TEC overflow, greater than 255, refer to Section 36.7.6 on page 1297. Bit 1 EPVF: Error passive flag This bit is set by hardware when the Error Passive limit has been reached (Receive Error Counter or Transmit Error Counter>127). Bit 0 EWGF: Error warning flag This bit is set by hardware when the warning limit has been reached (Receive Error Counter or Transmit Error Counter≥96). CAN bit timing register (CAN_BTR) Address offset: 0x1C Reset value: 0x0123 0000 This register can only be accessed by the software when the CAN hardware is in initialization mode. 31 30 29 28 27 26 SILM LBKM Res. Res. Res. Res. rw rw 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. 25 SJW[1:0] rw rw 9 8 23 22 Res. 7 21 20 19 18 TS2[2:0] 17 16 TS1[3:0] rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw BRP[9:0] rw 1310/1709 24 rw rw RM0385 Rev 7 rw rw rw RM0385 Controller area network (bxCAN) Bit 31 SILM: Silent mode (debug) 0: Normal operation 1: Silent Mode Bit 30 LBKM: Loop back mode (debug) 0: Loop Back Mode disabled 1: Loop Back Mode enabled Bits 29:26 Reserved, must be kept at reset value. Bits 25:24 SJW[1:0]: Resynchronization jump width These bits define the maximum number of time quanta the CAN hardware is allowed to lengthen or shorten a bit to perform the resynchronization. tRJW = tq x (SJW[1:0] + 1) Bit 23 Reserved, must be kept at reset value. Bits 22:20 TS2[2:0]: Time segment 2 These bits define the number of time quanta in Time Segment 2. tBS2 = tq x (TS2[2:0] + 1) Bits 19:16 TS1[3:0]: Time segment 1 These bits define the number of time quanta in Time Segment 1 tBS1 = tq x (TS1[3:0] + 1) For more information on bit timing, refer to Section 36.7.7: Bit timing on page 1297. Bits 15:10 Reserved, must be kept at reset value. Bits 9:0 BRP[9:0]: Baud rate prescaler These bits define the length of a time quanta. tq = (BRP[9:0]+1) x tPCLK 36.9.3 CAN mailbox registers This chapter describes the registers of the transmit and receive mailboxes. Refer to Section 36.7.5: Message storage on page 1295 for detailed register mapping. Transmit and receive mailboxes have the same registers except: • The FMI field in the CAN_RDTxR register. • A receive mailbox is always write protected. • A transmit mailbox is write-enabled only while empty, corresponding TME bit in the CAN_TSR register set. There are 3 TX Mailboxes and 2 RX Mailboxes. Each RX Mailbox allows access to a 3 level depth FIFO, the access being offered only to the oldest received message in the FIFO. Each mailbox consist of 4 registers. RM0385 Rev 7 1311/1709 1325 Controller area network (bxCAN) RM0385 Figure 458. CAN mailbox registers CAN_RI0R CAN_RI1R CAN_TI0R CAN_TI1R CAN_TI2R CAN_RDT0R CAN_RDT1R CAN_TDT0R CAN_TDT1R CAN_TDT2R CAN_RL0R CAN_RL1R CAN_TDL0R CAN_TDL1R CAN_TDL2R CAN_RH0R CAN_RH1R CAN_TDH0R CAN_TDH1R CAN_TDH2R FIFO1 FIFO0 Three Tx Mailboxes MS31003V2 CAN TX mailbox identifier register (CAN_TIxR) (x = 0..2) Address offsets: 0x180, 0x190, 0x1A0 Reset value: 0xXXXX XXXX (except bit 0, TXRQ = 0) All TX registers are write protected when the mailbox is pending transmission (TMEx reset). This register also implements the TX request control (bit 0) - reset value 0. 31 30 29 28 27 26 rw rw rw rw rw rw 15 14 13 12 11 10 25 24 23 22 21 20 19 rw rw rw rw rw rw rw 9 8 7 6 5 4 3 STID[10:0]/EXID[28:18] rw rw rw rw rw rw 17 16 rw rw rw 2 1 0 IDE RTR TXRQ rw rw rw EXID[17:13] EXID[12:0] rw 18 rw rw rw rw rw rw Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier The standard identifier or the MSBs of the extended identifier (depending on the IDE bit value). Bit 20:3 EXID[17:0]: Extended identifier The LSBs of the extended identifier. Bit 2 IDE: Identifier extension This bit defines the identifier type of message in the mailbox. 0: Standard identifier. 1: Extended identifier. Bit 1 RTR: Remote transmission request 0: Data frame 1: Remote frame Bit 0 TXRQ: Transmit mailbox request Set by software to request the transmission for the corresponding mailbox. Cleared by hardware when the mailbox becomes empty. 1312/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) CAN mailbox data length control and time stamp register (CAN_TDTxR) (x = 0..2) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x184, 0x194, 0x1A4 Reset value: 0xXXXX XXXX 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 TIME[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw DLC[3:0] rw rw Bits 31:16 TIME[15:0]: Message time stamp This field contains the 16-bit timer value captured at the SOF transmission. Bits 15:9 Reserved, must be kept at reset value. Bit 8 TGT: Transmit global time This bit is active only when the hardware is in the Time Trigger Communication mode, TTCM bit of the CAN_MCR register is set. 0: Time stamp TIME[15:0] is not sent. 1: Time stamp TIME[15:0] value is sent in the last two data bytes of the 8-byte message: TIME[7:0] in data byte 7 and TIME[15:8] in data byte 6, replacing the data written in CAN_TDHxR[31:16] register (DATA6[7:0] and DATA7[7:0]). DLC must be programmed as 8 in order these two bytes to be sent over the CAN bus. Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 DLC[3:0]: Data length code This field defines the number of data bytes a data frame contains or a remote frame request. A message can contain from 0 to 8 data bytes, depending on the value in the DLC field. RM0385 Rev 7 1313/1709 1325 Controller area network (bxCAN) RM0385 CAN mailbox data low register (CAN_TDLxR) (x = 0..2) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x188, 0x198, 0x1A8 Reset value: 0xXXXX XXXX 31 30 29 28 27 26 25 24 23 22 21 DATA3[7:0] rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 DATA1[7:0] rw rw rw rw 19 18 17 16 DATA2[7:0] rw rw 20 rw rw rw rw rw 4 3 2 1 0 rw rw rw 18 17 16 DATA0[7:0] rw rw rw rw rw rw rw rw Bits 31:24 DATA3[7:0]: Data byte 3 Data byte 3 of the message. Bits 23:16 DATA2[7:0]: Data byte 2 Data byte 2 of the message. Bits 15:8 DATA1[7:0]: Data byte 1 Data byte 1 of the message. Bits 7:0 DATA0[7:0]: Data byte 0 Data byte 0 of the message. A message can contain from 0 to 8 data bytes and starts with byte 0. CAN mailbox data high register (CAN_TDHxR) (x = 0..2) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x18C, 0x19C, 0x1AC Reset value: 0xXXXX XXXX 31 30 29 28 27 26 25 24 23 22 21 DATA7[7:0] 20 19 DATA6[7:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw DATA5[7:0] 1314/1709 rw DATA4[7:0] RM0385 Rev 7 rw RM0385 Controller area network (bxCAN) Bits 31:24 DATA7[7:0]: Data byte 7 Data byte 7 of the message. Note: If TGT of this message and TTCM are active, DATA7 and DATA6 will be replaced by the TIME stamp value. Bits 23:16 DATA6[7:0]: Data byte 6 Data byte 6 of the message. Bits 15:8 DATA5[7:0]: Data byte 5 Data byte 5 of the message. Bits 7:0 DATA4[7:0]: Data byte 4 Data byte 4 of the message. CAN receive FIFO mailbox identifier register (CAN_RIxR) (x = 0..1) Address offsets: 0x1B0, 0x1C0 Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 27 26 25 24 23 22 21 20 19 STID[10:0]/EXID[28:18] r r r r r r 15 14 13 12 11 10 r r r r r r r r r r r r 9 8 7 6 5 4 3 r 17 16 r r EXID[17:13] EXID[12:0] r 18 r r r r r r r 2 1 0 IDE RTR Res r r Bits 31:21 STID[10:0]/EXID[28:18]: Standard identifier or extended identifier The standard identifier or the MSBs of the extended identifier (depending on the IDE bit value). Bits 20:3 EXID[17:0]: Extended identifier The LSBs of the extended identifier. Bit 2 IDE: Identifier extension This bit defines the identifier type of message in the mailbox. 0: Standard identifier. 1: Extended identifier. Bit 1 RTR: Remote transmission request 0: Data frame 1: Remote frame Bit 0 Reserved, must be kept at reset value. RM0385 Rev 7 1315/1709 1325 Controller area network (bxCAN) RM0385 CAN receive FIFO mailbox data length control and time stamp register (CAN_RDTxR) (x = 0..1) Address offsets: 0x1B4, 0x1C4 Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 TIME[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. r r r r r r r r r FMI[7:0] r DLC[3:0] r r Bits 31:16 TIME[15:0]: Message time stamp This field contains the 16-bit timer value captured at the SOF detection. Bits 15:8 FMI[7:0]: Filter match index This register contains the index of the filter the message stored in the mailbox passed through. For more details on identifier filtering refer to Section 36.7.4: Identifier filtering on page 1291 - Filter Match Index paragraph. Bits 7:4 Reserved, must be kept at reset value. Bits 3:0 DLC[3:0]: Data length code This field defines the number of data bytes a data frame contains (0 to 8). It is 0 in the case of a remote frame request. 1316/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) CAN receive FIFO mailbox data low register (CAN_RDLxR) (x = 0..1) All bits of this register are write protected when the mailbox is not in empty state. Address offsets: 0x1B8, 0x1C8 Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 27 26 25 24 23 22 21 DATA3[7:0] r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 DATA1[7:0] r r r r 19 18 17 16 DATA2[7:0] r r 20 r r r r r 4 3 2 1 0 r r r 18 17 16 DATA0[7:0] r r r r r r r r Bits 31:24 DATA3[7:0]: Data Byte 3 Data byte 3 of the message. Bits 23:16 DATA2[7:0]: Data Byte 2 Data byte 2 of the message. Bits 15:8 DATA1[7:0]: Data Byte 1 Data byte 1 of the message. Bits 7:0 DATA0[7:0]: Data Byte 0 Data byte 0 of the message. A message can contain from 0 to 8 data bytes and starts with byte 0. CAN receive FIFO mailbox data high register (CAN_RDHxR) (x = 0..1) Address offsets: 0x1BC, 0x1CC Reset value: 0xXXXX XXXX All RX registers are write protected. 31 30 29 28 27 26 25 24 23 22 21 DATA7[7:0] 20 19 DATA6[7:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r DATA5[7:0] r r DATA4[7:0] r r Bits 31:24 DATA7[7:0]: Data Byte 7 Data byte 3 of the message. RM0385 Rev 7 1317/1709 1325 Controller area network (bxCAN) RM0385 Bits 23:16 DATA6[7:0]: Data Byte 6 Data byte 2 of the message. Bits 15:8 DATA5[7:0]: Data Byte 5 Data byte 1 of the message. Bits 7:0 DATA4[7:0]: Data Byte 4 Data byte 0 of the message. 36.9.4 CAN filter registers CAN filter master register (CAN_FMR) Address offset: 0x200 Reset value: 0x2A1C 0E01 All bits of this register are set and cleared by software. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 Res. Res. CANSB[5:0] rw Bits 31:14 Bits 13:8 Bits 7:1 Bit 0 rw rw rw rw 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. FINIT rw rw Reserved, must be kept at reset value. CANSB[5:0]: CAN start bank These bits are set and cleared by software. When both CAN are used, they define the start bank of each CAN interface: 000001 = 1 filter assigned to CAN1 and 27 assigned to CAN2 011011 = 27 filters assigned to CAN1 and 1 filter assigned to CAN2 – to assign all filters to one CAN set CANSB value to zero and deactivate the non used CAN – to use CAN1 only: stop the clock on CAN2 and/or set the CAN_MCR.INRQ on CAN2 – to use CAN2 only: set the CAN_MCR.INRQ on CAN1 or deactivate the interupt register CAN_IER on CAN1 Reserved, must be kept at reset value. FINIT: Filter initialization mode Initialization mode for filter banks 0: Active filters mode. 1: Initialization mode for the filters. CAN filter mode register (CAN_FM1R) Address offset: 0x204 Reset value: 0x0000 0000 This register can be written only when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. 1318/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) 31 30 29 28 Res. Res. Res. Res. 15 14 13 12 27 26 rw rw Note: rw 24 23 22 21 20 19 18 17 16 FBM27 FBM26 FBM25 FBM24 FBM23 FBM22 FBM21 FBM20 FBM19 FBM18 FBM17 FBM16 rw rw rw rw rw rw rw rw rw rw rw 11 10 9 8 7 6 5 4 3 2 1 0 FBM9 FBM8 FBM7 FBM6 FBM5 FBM4 FBM3 FBM2 FBM1 FBM0 rw rw rw rw rw rw rw rw rw rw FBM15 FBM14 FBM13 FBM12 FBM11 FBM10 rw 25 rw rw rw Refer to Figure 451: Filter bank scale configuration - register organization on page 1293. Bits 31: Reserved, must be kept at reset value. Bits 27:0 FBMx: Filter mode Mode of the registers of Filter x. 0: Two 32-bit registers of filter bank x are in Identifier Mask mode. 1: Two 32-bit registers of filter bank x are in Identifier List mode. CAN filter scale register (CAN_FS1R) Address offset: 0x20C Reset value: 0x0000 0000 This register can be written only when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. FSC27 FSC26 FSC25 FSC24 FSC23 FSC22 FSC21 FSC20 FSC19 FSC18 FSC17 FSC16 rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FSC15 FSC14 FSC13 FSC12 FSC11 FSC10 FSC9 FSC8 FSC7 FSC6 FSC5 FSC4 FSC3 FSC2 FSC1 FSC0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FSCx: Filter scale configuration These bits define the scale configuration of Filters 27-0. 0: Dual 16-bit scale configuration 1: Single 32-bit scale configuration Note: Refer to Figure 451: Filter bank scale configuration - register organization on page 1293. CAN filter FIFO assignment register (CAN_FFA1R) Address offset: 0x214 Reset value: 0x0000 0000 This register can be written only when the filter initialization mode is set (FINIT=1) in the CAN_FMR register. RM0385 Rev 7 1319/1709 1325 Controller area network (bxCAN) RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. FFA27 FFA26 FFA25 FFA24 FFA23 FFA22 FFA21 FFA20 FFA19 FFA18 FFA17 FFA16 rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FFA15 FFA14 FFA13 FFA12 FFA11 FFA10 FFA9 FFA8 FFA7 FFA6 FFA5 FFA4 FFA3 FFA2 FFA1 FFA0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FFAx: Filter FIFO assignment for filter x The message passing through this filter will be stored in the specified FIFO. 0: Filter assigned to FIFO 0 1: Filter assigned to FIFO 1 CAN filter activation register (CAN_FA1R) Address offset: 0x21C Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FACT2 7 FACT2 6 FACT2 5 FACT2 4 FACT2 3 FACT2 2 FACT2 1 FACT2 0 FACT1 9 FACT1 8 FACT1 7 FACT1 6 Res. Res. Res. Res. rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FACT1 5 FACT1 4 FACT1 3 FACT1 2 FACT1 1 FACT1 0 FACT9 FACT8 FACT7 FACT6 FACT5 FACT4 FACT3 FACT2 FACT1 FACT0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bits 27:0 FACTx: Filter active The software sets this bit to activate Filter x. To modify the Filter x registers (CAN_FxR[0:7]), the FACTx bit must be cleared or the FINIT bit of the CAN_FMR register must be set. 0: Filter x is not active 1: Filter x is active 1320/1709 RM0385 Rev 7 RM0385 Controller area network (bxCAN) Filter bank i register x (CAN_FiRx) (i = 0..27, x = 1, 2) Address offsets: 0x240 to 0x31C Reset value: 0xXXXX XXXX There are 28 filter banks, i= 0 to 27. Each filter bank i is composed of two 32-bit registers, CAN_FiR[2:1]. This register can only be modified when the FACTx bit of the CAN_FAxR register is cleared or when the FINIT bit of the CAN_FMR register is set. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FB31 FB30 FB29 FB28 FB27 FB26 FB25 FB24 FB23 FB22 FB21 FB20 FB19 FB18 FB17 FB16 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FB15 FB14 FB13 FB12 FB11 FB10 FB9 FB8 FB7 FB6 FB5 FB4 FB3 FB2 FB1 FB0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw In all configurations: Bits 31:0 FB[31:0]: Filter bits Identifier Each bit of the register specifies the level of the corresponding bit of the expected identifier. 0: Dominant bit is expected 1: Recessive bit is expected Mask Each bit of the register specifies whether the bit of the associated identifier register must match with the corresponding bit of the expected identifier or not. 0: Do not care, the bit is not used for the comparison 1: Must match, the bit of the incoming identifier must have the same level has specified in the corresponding identifier register of the filter. Note: Depending on the scale and mode configuration of the filter the function of each register can differ. For the filter mapping, functions description and mask registers association, refer to Section 36.7.4: Identifier filtering on page 1291. A Mask/Identifier register in mask mode has the same bit mapping as in identifier list mode. For the register mapping/addresses of the filter banks refer to Table 253 on page 1322. RM0385 Rev 7 1321/1709 1325 0x180 1322/1709 0 0 CAN_BTR Res. Reset value 0 0 - CAN_TI0R Reset value x x x x x x 0 Res. x x x 1 0 0 0 1 1 Res. Res. Res. x x x x x x RM0385 Rev 7 STID[10:0]/EXID[28:18] x x x x x x 0 TMEIE 0 0 0 0 EWGF 0 EPVF 0 BOFF FMP1[1:0] Res. RQCP0 INRQ INAK 0 0 0 0 0 FMP0[1:0] TXFP SLEEP ERRI 1 ALST0 SLAK NART RFLM WKUI 0 SLAKI 1 Res. 0 0 TXOK0 FULL0 ABOM AWUM 0 Res. Res. Res. 0 Res. TXM Res. 0 0 Res. FOVR0 Res. RXM Res. TTCM SAMP Res. Res. Res. 0 Res. RX Res. Res. Res. DBF RESET Res. 0 0 TERR0 RFOM0 0 Res. 0 FFIE0 FULL1 0 FMPIE0 FOVR1 0 FOVIE0 0 FMPIE1 0 Res. Res. Res. Res. Res. ABRQ0 Res. 0 0 0 0 x x x x x x x Res. 0 0 TXRQ 0 Res. Res. Reset value Res. 0 Res. Reset value RFOM1 RQCP1 0 FFIE1 TXOK1 0 FOVIE1 ALST1 0 LEC[2:0] Res. Res. TERR1 Res. Res. 0 Res. Res. Res. 0 Res. 0 Res. EWGIE 0 Res. Res. ABRQ1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 IDE 0 Res. EPVIE 0 Res. Res. RQCP2 Res. Res. TXOK2 Res. Res. ALST2 Res. Res. Res. Res. Res. Res. 0 Res. BOFIE 0 Res. Res. Res. Res. Res. TERR2 Res. Res. Res. Res. Res. Res. ABRQ2 Res. 1 Res. LECIE Res. 0 Res. Res. Res. Res. CODE[1:0] Res. Res. Res. Res. Res. 1 RTR 0 Res. x 0 Res. EXID[17:0] 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. Res. Reset value Res. TS1[3:0] Res. Res. Res. TME[2:0] 0 Res. ERRIE Res. TEC[7:0] WKUIE 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. 0 Res. 0 0 Res. TS2[2:0] 0 0 Res. 0 Res. 0x018 SLKIE Reset value 1 Res. 0 Res. Res. Res. Res. Reset value Res. 0 Res. REC[7:0] Res. CAN_RF0R Res. 0 Res. 0 Res. 0 Res. 1 Res. 1 Res. Res. 1 Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. 0 Res. CAN_ESR Res. CAN_IER SJW[1:0] 0 Res. 0x014 Res. CAN_RF1R Res. 0x010 Res. CAN_TSR LOW[2:0] 0x008 Res. 0 Res. 0x00C Reset value Res. CAN_MSR Res. 0x004 Res. CAN_MCR Res. 0x000 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. 0 Res. 0x0200x17F 0 Res. 0x01C 0 SILM Reset value LBKM Offset Res. 36.9.5 Res. Controller area network (bxCAN) RM0385 bxCAN register map Refer to Section 2.2.2 on page 69 for the register boundary addresses. The registers from offset 0x200 to 0x31C are present only in CAN1. Table 253. bxCAN register map and reset values 0 0 0 0 0 0 0 BRP[9:0] x x 0 RM0385 Controller area network (bxCAN) x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 0x1A8 x x x x x x x 0x1AC x x x x x x x x x x x x x x x x x x x x x DATA7[7:0] x x CAN_RI0R x x x x x x Res. Res. Res. Res. x x x x x - - - - - - - - - - - x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x - - - - - - - - - - - x x x x x x x x x x x x x STID[10:0]/EXID[28:18] x x x x x x x x x x x x x x x x x x x x x x x x x x RM0385 Rev 7 x x x x x x x x x x x 0 x x x x x x x x x x 0 x x x x x x x x x x x - x DATA4[7:0] x x x x x x x x x x x x x x EXID[17:0] x x DLC[3:0] 0x1B0 Reset value x DATA0[7:0] DATA5[7:0] x x x DLC[3:0] x x x x DATA4[7:0] DATA1[7:0] x x DATA0[7:0] x DATA6[7:0] x Res. x DATA2[7:0] x Res. x EXID[17:0] DATA3[7:0] CAN_TDH2R Reset value x DATA5[7:0] TIME[15:0] CAN_TDL2R Reset value x DATA1[7:0] 0x1A4 Reset value x x Res. x x Res. CAN_TDT2R x x Res. x x Res. x x TGT x x Res. x x Res. x x x x STID[10:0]/EXID[28:18] x x x DATA6[7:0] x x x DATA2[7:0] x x Res. x DATA7[7:0] CAN_TI2R Reset value x x x DATA4[7:0] Res. 0x1A0 x x EXID[17:0] DATA3[7:0] CAN_TDH1R Reset value x x Res. 0x19C x Res. DATA5[7:0] TIME[15:0] x x Res. x x Res. x x Res. x x TGT x x Res. x x Res. x x Res. x x x DATA0[7:0] Res. x - - - - Res. x CAN_TDL1R Reset value x STID[10:0]/EXID[28:18] CAN_TDT1R 0x198 x DATA6[7:0] x x DATA1[7:0] 0x194 Reset value - - - - - - - DATA2[7:0] DATA7[7:0] x x TXRQ x x TXRQ x x Res. x x IDE x x RTR x IDE x RTR x TGT x Res. x IDE x CAN_TI1R Reset value x Res. 0x190 x DATA3[7:0] CAN_TDH0R Reset value x DLC[3:0] RTR CAN_TDL0R Reset value 0x18C x Res. 0x188 x Res. Reset value Res. TIME[15:0] Res. Res. CAN_TDT0R 0x184 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 253. bxCAN register map and reset values (continued) 1323/1709 1325 Controller area network (bxCAN) RM0385 x x x x x x x x x x x x CAN_RI1R x x x x x x x x x x DATA2[7:0] x x x x x DATA7[7:0] x x x x x x x x x x x x x x x x x - - - - DATA1[7:0] x x x x DATA6[7:0] x x x x x x x x x STID[10:0]/EXID[28:18] x x x x x x x x x x x x x x x x x x CAN_RDT1R x x x x x x x x x x x x TIME[15:0] x x x x x x x x x x x x x x x x x FMI[7:0] 0x1C4 CAN_RDL1R Reset value x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x DATA4[7:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x Res. x x Res. x x Res. x x Res. x x Res. x x Res. x x Res. x x DATA0[7:0] DATA5[7:0] x x Res. x x x Res. x - - - - Res. x x Res. x x Res. x x Res. x x Res. x x DATA1[7:0] DATA6[7:0] x x Res. x x Res. x x DLC[3:0] Res. x x - Res. x x x Res. Res. Res. x x DATA2[7:0] DATA7[7:0] x x x Res. - x x Res. 0x208 - x x Res. 0x1D00x1FF x DATA3[7:0] CAN_RDH1R Reset value x x Res. 0x1CC x x Res. 0x1C8 x Res. Reset value x DATA4[7:0] EXID[17:0] x x x 0x1C0 Reset value x DATA0[7:0] DATA5[7:0] x x Res. x IDE x Res. x DATA3[7:0] CAN_RDH0R Reset value x Res. CAN_RDL0R Reset value 0x1BC x Res. 0x1B8 x Res. Reset value DLC[3:0] RTR FMI[7:0] Res. TIME[15:0] Res. CAN_RDT0R 0x1B4 Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 253. bxCAN register map and reset values (continued) 0 0 0 0 0 0 - 1324/1709 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 0 0 0 0 Res. Res. FFA[27:0] Res. Res. Res. 0 Res. Res. Res. Res. Res. 0 Res. Res. - Res. 0x218 Res. Reset value 0 Res. Res. CAN_FFA1R 0x214 0 Res. - Res. 0x210 Res. Reset value FSC[27:0] Res. CAN_FS1R 0x20C RM0385 Rev 7 RM0385 Controller area network (bxCAN) Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x FB[31:0] x x x x x x x x x x x x x x x x x FB[31:0] x x x x x x x x x x x x x x x x x FB[31:0] x x x x x x x x x x x x x x x x x . . . . CAN_F27R1 FB[31:0] x x x x x x x x x x x x x x x CAN_F27R2 Reset value 0 Res. 0x31C x . . . . Reset value 0 Res. Res. Res. 0x318 0 Res. Res. Res. . . . . x CAN_F1R2 Reset value 0 Res. Res. Res. 0x24C x CAN_F1R1 Reset value 0 Res. Res. Res. 0x248 0 FB[31:0] CAN_F0R2 Reset value 0 Res. Res. Res. 0x244 0 Res. Res. Res. Reset value 0 Res. Res. Res. CAN_F0R1 0 Res. Res. Res. 0x240 0 Res. Res. - 0 Res. Res. 0x2240x23F 0 Res. - 0 Res. 0x220 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Reset value FACT[27:0] Res. Res. CAN_FA1R 0x21C Res. Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 253. bxCAN register map and reset values (continued) x x FB[31:0] x x x x x x x x x x x x x x x RM0385 Rev 7 x x 1325/1709 1325 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.1 Introduction RM0385 Portions Copyright (c) Synopsys, Inc. All rights reserved. Used with permission. This section presents the architecture and the programming model of the OTG_FS/OTG_HS controller. The following acronyms are used throughout the section: FS Full-speed LS Low-speed HS High-speed MAC Media access controller OTG On-the-go PFC Packet FIFO controller PHY Physical layer USB Universal serial bus UTMI USB 2.0 Transceiver Macrocell interface (UTMI) ULPI UTMI+ Low Pin Interface LPM Link power management HNP Host negotiation protocol SRP Session request protocol References are made to the following documents: • USB On-The-Go Supplement, Revision 2.0 • Universal Serial Bus Revision 2.0 Specification • USB 2.0 Link Power Management Addendum Engineering Change Notice to the USB 2.0 specification, July 16, 2007 • Errata for USB 2.0 ECN: Link Power Management (LPM) - 7/2007 The USB OTG is a dual-role device (DRD) controller that supports both device and host functions and is fully compliant with the On-The-Go Supplement to the USB 2.0 Specification. It can also be configured as a host-only or device-only controller, fully compliant with the USB 2.0 Specification. OTG_HS supports the speeds defined in the Table 254: OTG_HS speeds supported below.OTG_FS supports the speeds defined in the Table 255: OTG_FS speeds supported below.The USB OTG supports both HNP and SRP. The only external device required is a charge pump for VBUS in OTG mode. 1326/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 254. OTG_HS speeds supported - HS (480 Mb/s) FS (12 Mb/s) LS (1.5 Mb/s) Host mode X X X Device mode X X - Table 255. OTG_FS speeds supported - 37.2 HS (480 Mb/s) FS (12 Mb/s) LS (1.5 Mb/s) Host mode - X X Device mode - X - OTG main features The main features can be divided into three categories: general, host-mode and devicemode features. RM0385 Rev 7 1327/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.2.1 RM0385 General features The OTG_FS/OTG_HS interface general features are the following: • It is USB-IF certified to the Universal Serial Bus Specification Rev 2.0 • OTG_HS supports the following PHY interfaces: • • • An on-chip full-speed PHY – An ULPI interface for external high-speed PHY It includes full support (PHY) for the optional On-The-Go (OTG) protocol detailed in the On-The-Go Supplement Rev 2.0 specification – Integrated support for A-B device identification (ID line) – Integrated support for host Negotiation protocol (HNP) and session request protocol (SRP) – It allows host to turn VBUS off to conserve battery power in OTG applications – It supports OTG monitoring of VBUS levels with internal comparators – It supports dynamic host-peripheral switch of role It is software-configurable to operate as: – SRP capable USB FS/HS Peripheral (B-device) – SRP capable USB FS/HS/LS host (A-device) – USB On-The-Go Full-Speed Dual Role device It supports FS/HS SOF and LS Keep-alives with – SOF pulse PAD connectivity – SOF pulse internal connection to timer (TIMx) – Configurable framing period – Configurable end of frame interrupt • OTG_HS embeds an internal DMA with shareholding support and software selectable AHB burst type in DMA mode. • It includes power saving features such as system stop during USB suspend, switch-off of clock domains internal to the digital core, PHY and DFIFO power management. • It features a dedicated RAM of 1.25[FS] / 4[HS] Kbytes with advanced FIFO control: • 1328/1709 – – Configurable partitioning of RAM space into different FIFOs for flexible and efficient use of RAM – Each FIFO can hold multiple packets – Dynamic memory allocation – Configurable FIFO sizes that are not powers of 2 to allow the use of contiguous memory locations It guarantees max USB bandwidth for up to one frame (1 ms) without system intervention. RM0385 Rev 7 RM0385 37.2.2 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Host-mode features The OTG_FS/OTG_HS interface main features and requirements in host-mode are the following: • External charge pump for VBUS voltage generation. • Up to 12[FS] / 16[HS] host channels (pipes): each channel is dynamically reconfigurable to allocate any type of USB transfer. • Built-in hardware scheduler holding: • 37.2.3 – Up to 12[FS] / 16[HS] interrupt plus isochronous transfer requests in the periodic hardware queue – Up to 12[FS] / 16[HS] control plus bulk transfer requests in the non-periodic hardware queue Management of a shared Rx FIFO, a periodic Tx FIFO and a nonperiodic Tx FIFO for efficient usage of the USB data RAM. Peripheral-mode features The OTG_FS/OTG_HS interface main features in peripheral-mode are the following: • 1 bidirectional control endpoint0 • 5[FS] / 8[HS] IN endpoints (EPs) configurable to support bulk, interrupt or isochronous transfers • 5[FS] / 8[HS] OUT endpoints configurable to support bulk, interrupt or isochronous transfers • Management of a shared Rx FIFO and a Tx-OUT FIFO for efficient usage of the USB data RAM • Management of up to 6[FS] / 9[HS] dedicated Tx-IN FIFOs (one for each active IN EP) to put less load on the application • Support for the soft disconnect feature. RM0385 Rev 7 1329/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.3 RM0385 OTG implementation Table 256. OTG implementation(1) USB features OTG_FS OTG_HS Device bidirectional endpoints (including EP0) 6 9 Host mode channels 12 16 1.2 KB 4 KB Size of dedicated SRAM USB 2.0 link power management (LPM) support X OTG revision supported 2.0 Attach detection protocol (ADP) support - Battery charging detection (BCD) support - 1. “X” = supported, “-” = not supported 1330/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.4 OTG functional description 37.4.1 OTG block diagram Figure 459. OTG full-speed block diagram AHB peripheral Cortex core USB Interrupt DP DM USB2.0 OTG FS core Power and clock control UTMIFS OTG FS PHY ID VBUS Universal serial bus USB suspend SOF USB clock at 48 MHz USB clock domain RAM bus System clock domain 1.25 Kbyte USB data FIFOs MS19928V4 RM0385 Rev 7 1331/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Figure 460. OTG high-speed block diagram OTG FS PHY transceiver OTG_HS_DP OTG_HS_DM serial Peripheral 1 AHB (application bus) Memory OTG_HS_ID OTG_HS (USB OTG HS core) CPU OTG detections AHB master interface OTG_HS_VBUS EXTI Interrupt: async wakeup Interrupt: EP1 out NVIC Interrupt: EP1 in AHB slave interface Interrupt: global ULPI_CK; ULPI_DIR; ULPI_STP; ULPI_NXT; ULPI_D0-7 USB2.0 (D+/D-) ULPI PHY (external component) ULPI interface (12 pins) Data FIFO RAM interface Peripheral 2 OTG_HS_SOF Data FIFO Single-port RAM (SPRAM) MSv43325V1 37.4.2 USB OTG pin and internal signals Table 257. OTG_FS input/output pins Signal name Signal type Description OTG_FS_DP Digital input/output USB OTG D+ line OTG_FS_DM Digital input/output USB OTG D- line OTG_FS_ID Digital input USB OTG ID OTG_FS_VBUS Analog input USB OTG VBUS OTG_FS_SOF Digital output USB OTG Start Of Frame (visibility) Table 258. OTG_HS input/output pins Signal name 1332/1709 Signal type Description OTG_HS_DP Digital input/output USB OTG D+ line OTG_HS_DM Digital input/output USB OTG D- line OTG_HS_ID Digital input USB OTG ID OTG_HS_VBUS Analog input USB OTG VBUS OTG_HS_SOF Digital output USB OTG Start Of Frame (visibility) RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 258. OTG_HS input/output pins (continued) Signal name Signal type Description OTG_HS_ULPI_CK Digital input USB OTG ULPI clock OTG_HS_ULPI_DIR Digital input USB OTG ULPI data bus direction control OTG_HS_ULPI_STP Digital output USB OTG ULPI data stream stop OTG_HS_ULPI_NXT Digital input USB OTG ULPI next data stream request OTG_HS_ULPI_D[0..7] Digital input/output USB OTG ULPI 8-bit bi-directional data bus Table 259. OTG_FS/OTG_HS input/output signals Signal name 37.4.3 Signal type Description usb_sof Digital output USB OTG start-of-frame event for on chip peripherals usb_wkup Digital output USB OTG wakeup event output usb_gbl_it Digital output USB OTG global interrupt usb_ep1_in_it Digital output USB OTG endpoint 1 in interrupt usb_ep1_out_it Digital output USB OTG endpoint 1 out interrupt OTG core The USB OTG receives the 48 MHz clock from the reset and clock controller (RCC). The USB clock is used for driving the 48 MHz domain at full-speed (12 Mbit/s) and must be enabled prior to configuring the OTG core. The CPU reads and writes from/to the OTG core registers through the AHB peripheral bus. It is informed of USB events through the single USB OTG interrupt line described in Section 37.13: OTG_FS/OTG_HS interrupts. The CPU submits data over the USB by writing 32-bit words to dedicated OTG locations (push registers). The data are then automatically stored into Tx-data FIFOs configured within the USB data RAM. There is one Tx FIFO push register for each in-endpoint (peripheral mode) or out-channel (host mode). The CPU receives the data from the USB by reading 32-bit words from dedicated OTG addresses (pop registers). The data are then automatically retrieved from a shared Rx FIFO configured within the 1.25[FS] / 4[HS]-Kbyte USB data RAM. There is one Rx FIFO pop register for each out-endpoint or in-channel. The USB protocol layer is driven by the serial interface engine (SIE) and serialized over the USB by the transceiver module within the on-chip physical layer (PHY) or external HS PHY. 37.4.4 Full-speed OTG PHY(a) The embedded full-speed OTG PHY is controlled by the OTG FS core and conveys USB control & data signals through the full-speed subset of the UTMI+ Bus (UTMIFS). It provides a. The content of this section applies only to USB OTG FS. RM0385 Rev 7 1333/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 the physical support to USB connectivity. The full-speed OTG PHY includes the following components: • FS/LS transceiver module used by both host and device. It directly drives transmission and reception on the single-ended USB lines. • Integrated ID pull-up resistor used to sample the ID line for A/B device identification. • DP/DM integrated pull-up and pull-down resistors controlled by the OTG_FS core depending on the current role of the device. As a peripheral, it enables the DP pull-up resistor to signal full-speed peripheral connections as soon as VBUS is sensed to be at a valid level (B-session valid). In host mode, pull-down resistors are enabled on both DP/DM. Pull-up and pull-down resistors are dynamically switched when the role of the device is changed via the host negotiation protocol (HNP). • Pull-up/pull-down resistor ECN circuit. The DP pull-up consists of two resistors controlled separately from the OTG_FS as per the resistor Engineering Change Notice applied to USB Rev2.0. The dynamic trimming of the DP pull-up strength allows for better noise rejection and Tx/Rx signal quality. • VBUS sensing comparators with hysteresis used to detect VBUS valid, A-B session valid and session-end voltage thresholds. They are used to drive the session request protocol (SRP), detect valid startup and end-of-session conditions, and constantly monitor the VBUS supply during USB operations. • VBUS pulsing method circuit used to charge/discharge VBUS through resistors during the SRP (weak drive). Caution: To guarantee a correct operation for the USB OTG FS peripheral, the AHB frequency should be higher than 14.2 MHz. 37.4.5 Embedded full speed OTG PHY(a) The full-speed OTG PHY includes the following components: • FS/LS transceiver module used by both host and device. It directly drives transmission and reception on the single-ended USB lines. • integrated ID pull-up resistor used to sample the ID line for A/B device identification. • DP/DM integrated pull-up and pull-down resistors controlled by the OTG_HS core depending on the current role of the device. As a peripheral, it enables the DP pull-up resistor to signal full-speed peripheral connections as soon as VBUS is sensed to be at a valid level (B-session valid). In host mode, pull-down resistors are enabled on both DP/DM. Pull-up and pull-down resistors are dynamically switched when the peripheral role is changed via the host negotiation protocol (HNP). • Pull-up/pull-down resistor ECN circuit. The DP pull-up consists of 2 resistors controlled separately from the OTG_HS as per the resistor Engineering Change Notice applied to USB Rev2.0. The dynamic trimming of the DP pull-up strength allows to achieve a better noise rejection and Tx/Rx signal quality. • VBUS sensing comparators with hysteresis used to detect VBUS valid, A-B session valid and session-end voltage thresholds. They are used to drive the session request protocol (SRP), detect valid startup and end-of-session conditions, and constantly monitor the VBUS supply during USB operations. a. The content of this section applies only to USB OTG HS. 1334/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) To guarantee a correct operation for the USB OTG_HS peripheral, the AHB frequency should be higher than 30 MHz. 37.4.6 High-speed OTG PHY(a) The USB OTG_HS core includes an ULPI interface to connect an external HS PHY. 37.5 OTG dual role device (DRD) Figure 461. OTG_FS A-B device connection VDD 5 V to VDD Voltage regulator VDD GPIO + IRQ STMPS2141STR Current-limited 5 V Pwr Overcurrent power distribution switch(2) VBUS DM OSC_IN DP ID OSC_OUT VSS USBmicro-AB connector GPIO EN MSv36917V1 1. External voltage regulator only needed when building a VBUS powered device. 2. STMPS2141STR needed only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. 37.5.1 ID line detection The host or peripheral (the default) role is assumed depending on the ID input pin. The ID line status is determined on plugging in the USB cable, depending on whether a MicroA or MicroB plug is connected to the micro-AB receptacle. • If the B-side of the USB cable is connected with a floating ID wire, the integrated pullup resistor detects a high ID level and the default peripheral role is confirmed. In this configuration the OTG_FS/OTG_HS complies with the standard FSM described in section 4.2.4: ID pin of the On-the-Go specification Rev2.0, supplement to the USB2.0. • If the A-side of the USB cable is connected with a grounded ID, the OTG_FS/OTG_HS issues an ID line status change interrupt (CIDSCHG bit in OTG_GINTSTS) for host software initialization, and automatically switches to the host role. In this configuration the OTG_FS/OTG_HS complies with the standard FSM described by section 4.2.4: ID pin of the On-the-Go specification Rev2.0, supplement to the USB2.0. a. The content of this section applies only to USB OTG HS. RM0385 Rev 7 1335/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.5.2 RM0385 HNP dual role device The HNP capable bit in the Global USB configuration register (HNPCAP bit in OTG_ GUSBCFG) enables the OTG_FS/OTG_HS core to dynamically change its role from A-host to A-peripheral and vice-versa, or from B-Peripheral to B-host and vice-versa according to the host negotiation protocol (HNP). The current device status can be read by the combined values of the connector ID status bit in the Global OTG control and status register (CIDSTS bit in OTG_GOTGCTL) and the current mode of operation bit in the global interrupt and status register (CMOD bit in OTG_GINTSTS). The HNP program model is described in detail in Section 37.16: OTG_FS/OTG_HS programming model. 37.5.3 SRP dual role device The SRP capable bit in the global USB configuration register (SRPCAP bit in OTG_GUSBCFG) enables the OTG_FS/OTG_HS core to switch off the generation of VBUS for the A-device to save power. Note that the A-device is always in charge of driving VBUS regardless of the host or peripheral role of the OTG_FS/OTG_HS. The SRP A/B-device program model is described in detail in Section 37.16: OTG_FS/OTG_HS programming model. 37.6 USB peripheral This section gives the functional description of the OTG_FS/OTG_HS in the USB peripheral mode. The OTG_FS/OTG_HS works as an USB peripheral in the following circumstances: • OTG B-Peripheral – • – • 1336/1709 If the ID line is present, functional and connected to the B-side of the USB cable, and the HNP-capable bit in the Global USB Configuration register (HNPCAP bit in OTG_GUSBCFG) is cleared. Peripheral only (see Figure 462: USB_FS peripheral-only connection) – Note: OTG A-device state after the HNP switches the OTG_FS/OTG_HS to its peripheral role B-device – • OTG B-device default state if B-side of USB cable is plugged in OTG A-Peripheral The force device mode bit (FDMOD) in the Section 37.15.4: OTG USB configuration register (OTG_GUSBCFG) is set to 1, forcing the OTG_FS/OTG_HS core to work as an USB peripheral-only. In this case, the ID line is ignored even if it is present on the USB connector. To build a bus-powered device implementation in case of the B-device or peripheral-only configuration, an external regulator has to be added, that generates the necessary powersupply from VBUS. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 462. USB_FS peripheral-only connection VDD 5 V to VDD Voltage regulator VDD GPIO GPIO + IRQ EN STMPS2141STR Current-limited 5 V Pwr Overcurrent power distribution switch(1) DM OSC_IN DP OSC_OUT VSS USB micro connector VBUS MSv36916V2 1. Use a regulator to build a bus-powered device. 37.6.1 SRP-capable peripheral The SRP capable bit in the Global USB configuration register (SRPCAP bit in OTG_GUSBCFG) enables the OTG_FS/OTG_HS to support the session request protocol (SRP). In this way, it allows the remote A-device to save power by switching off VBUS while the USB session is suspended. The SRP peripheral mode program model is described in detail in the B-device session request protocol section. 37.6.2 Peripheral states Powered state The VBUS input detects the B-session valid voltage by which the USB peripheral is allowed to enter the powered state (see USB2.0 section 9.1). The OTG_FS/OTG_HS then automatically connects the DP pull-up resistor to signal full-speed device connection to the host and generates the session request interrupt (SRQINT bit in OTG_GINTSTS) to notify the powered state. The VBUS input also ensures that valid VBUS levels are supplied by the host during USB operations. If a drop in VBUS below B-session valid happens to be detected (for instance because of a power disturbance or if the host port has been switched off), the OTG_FS/OTG_HS automatically disconnects and the session end detected (SEDET bit in OTG_GOTGINT) interrupt is generated to notify that the OTG_FS/OTG_HS has exited the powered state. In the powered state, the OTG_FS/OTG_HS expects to receive some reset signaling from the host. No other USB operation is possible. When a reset signaling is received the reset detected interrupt (USBRST in OTG_GINTSTS) is generated. When the reset signaling is complete, the enumeration done interrupt (ENUMDNE bit in OTG_GINTSTS) is generated and the OTG_FS/OTG_HS enters the Default state. RM0385 Rev 7 1337/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Soft disconnect The powered state can be exited by software with the soft disconnect feature. The DP pullup resistor is removed by setting the soft disconnect bit in the device control register (SDIS bit in OTG_DCTL), causing a device disconnect detection interrupt on the host side even though the USB cable was not really removed from the host port. Default state In the Default state the OTG_FS/OTG_HS expects to receive a SET_ADDRESS command from the host. No other USB operation is possible. When a valid SET_ADDRESS command is decoded on the USB, the application writes the corresponding number into the device address field in the device configuration register (DAD bit in OTG_DCFG). The OTG_FS/OTG_HS then enters the address state and is ready to answer host transactions at the configured USB address. Suspended state The OTG_FS/OTG_HS peripheral constantly monitors the USB activity. After counting 3 ms of USB idleness, the early suspend interrupt (ESUSP bit in OTG_GINTSTS) is issued, and confirmed 3 ms later, if appropriate, by the suspend interrupt (USBSUSP bit in OTG_GINTSTS). The device suspend bit is then automatically set in the device status register (SUSPSTS bit in OTG_DSTS) and the OTG_FS/OTG_HS enters the suspended state. The suspended state may optionally be exited by the device itself. In this case the application sets the remote wakeup signaling bit in the device control register (RWUSIG bit in OTG_DCTL) and clears it after 1 to 15 ms. When a resume signaling is detected from the host, the resume interrupt (WKUPINT bit in OTG_GINTSTS) is generated and the device suspend bit is automatically cleared. 37.6.3 Peripheral endpoints The OTG_FS/OTG_HS core instantiates the following USB endpoints: • • 1338/1709 Control endpoint 0: – Bidirectional and handles control messages only – Separate set of registers to handle in and out transactions – Proper control (OTG_DIEPCTL0/OTG_DOEPCTL0), transfer configuration (OTG_DIEPTSIZ0/OTG_DOEPTSIZ0), and status-interrupt (OTG_DIEPINT0/)OTG_DOEPINT0) registers. The available set of bits inside the control and transfer size registers slightly differs from that of other endpoints 5[FS] / 8[HS] IN endpoints – Each of them can be configured to support the isochronous, bulk or interrupt transfer type – Each of them has proper control (OTG_DIEPCTLx), transfer configuration (OTG_DIEPTSIZx), and status-interrupt (OTG_DIEPINTx) registers – The device IN endpoints common interrupt mask register (OTG_DIEPMSK) is available to enable/disable a single kind of endpoint interrupt source on all of the IN endpoints (EP0 included) – Support for incomplete isochronous IN transfer interrupt (IISOIXFR bit in OTG_GINTSTS), asserted when there is at least one isochronous IN endpoint on RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) which the transfer is not completed in the current frame. This interrupt is asserted along with the end of periodic frame interrupt (OTG_GINTSTS/EOPF). • 5[FS] / 8[HS] OUT endpoints – Each of them can be configured to support the isochronous, bulk or interrupt transfer type – Each of them has a proper control (OTG_DOEPCTLx), transfer configuration (OTG_DOEPTSIZx) and status-interrupt (OTG_DOEPINTx) register – Device OUT endpoints common interrupt mask register (OTG_DOEPMSK) is available to enable/disable a single kind of endpoint interrupt source on all of the OUT endpoints (EP0 included) – Support for incomplete isochronous OUT transfer interrupt (INCOMPISOOUT bit in OTG_GINTSTS), asserted when there is at least one isochronous OUT endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the end of periodic frame interrupt (OTG_GINTSTS/EOPF). Endpoint control • The following endpoint controls are available to the application through the device endpoint-x IN/OUT control register (OTG_DIEPCTLx/OTG_DOEPCTLx): – Endpoint enable/disable – Endpoint activate in current configuration – Program USB transfer type (isochronous, bulk, interrupt) – Program supported packet size – Program Tx FIFO number associated with the IN endpoint – Program the expected or transmitted data0/data1 PID (bulk/interrupt only) – Program the even/odd frame during which the transaction is received or transmitted (isochronous only) – Optionally program the NAK bit to always negative-acknowledge the host regardless of the FIFO status – Optionally program the STALL bit to always stall host tokens to that endpoint – Optionally program the SNOOP mode for OUT endpoint not to check the CRC field of received data Endpoint transfer The device endpoint-x transfer size registers (OTG_DIEPTSIZx/OTG_DOEPTSIZx) allow the application to program the transfer size parameters and read the transfer status. Programming must be done before setting the endpoint enable bit in the endpoint control register. Once the endpoint is enabled, these fields are read-only as the OTG_FS/OTG_HS core updates them with the current transfer status. The following transfer parameters can be programmed: • Transfer size in bytes • Number of packets that constitute the overall transfer size Endpoint status/interrupt The device endpoint-x interrupt registers (OTG_DIEPINTx/OTG_DOPEPINTx) indicate the status of an endpoint with respect to USB- and AHB-related events. The application must read these registers when the OUT endpoint interrupt bit or the IN endpoint interrupt bit in RM0385 Rev 7 1339/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 the core interrupt register (OEPINT bit in OTG_GINTSTS or IEPINT bit in OTG_GINTSTS, respectively) is set. Before the application can read these registers, it must first read the device all endpoints interrupt (OTG_DAINT) register to get the exact endpoint number for the device endpoint-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_DAINT and OTG_GINTSTS registers The peripheral core provides the following status checks and interrupt generation: 37.7 • Transfer completed interrupt, indicating that data transfer was completed on both the application (AHB) and USB sides • Setup stage has been done (control-out only) • Associated transmit FIFO is half or completely empty (in endpoints) • NAK acknowledge has been transmitted to the host (isochronous-in only) • IN token received when Tx FIFO was empty (bulk-in/interrupt-in only) • Out token received when endpoint was not yet enabled • Babble error condition has been detected • Endpoint disable by application is effective • Endpoint NAK by application is effective (isochronous-in only) • More than 3 back-to-back setup packets were received (control-out only) • Timeout condition detected (control-in only) • Isochronous out packet has been dropped, without generating an interrupt USB host This section gives the functional description of the OTG_FS/OTG_HS in the USB host mode. The OTG_FS/OTG_HS works as a USB host in the following circumstances: • OTG A-host – • OTG B-host – • 1340/1709 If the ID line is present, functional and connected to the A-side of the USB cable, and the HNP-capable bit is cleared in the Global USB Configuration register (HNPCAP bit in OTG_GUSBCFG). Integrated pull-down resistors are automatically set on the DP/DM lines. Host only – Note: OTG B-device after HNP switching to the host role A-device – • OTG A-device default state when the A-side of the USB cable is plugged in The force host mode bit (FHMOD) in the OTG USB configuration register (OTG_GUSBCFG) forces the OTG_FS/OTG_HS core to work as a USB host-only. In this case, the ID line is ignored even if present on the USB connector. Integrated pull-down resistors are automatically set on the DP/DM lines. On-chip 5 V VBUS generation is not supported. For this reason, a charge pump or, if 5 V are available on the application board, a basic power switch must be added externally to drive the 5 V VBUS line. The external charge pump can be driven by any GPIO output. This is required for the OTG A-host, A-device and host-only configurations. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 463. USB_FS host-only connection VDD 5V GPIO + IRQ EN STMPS2141STR 5 V Pwr Current-limited Overcurrent power distribution switch(2) VBUS DM OSC_IN DP VSS OSC_OUT USB Std-A connector GPIO MSv36915V2 1. VDD range is between 2 V and 3.6 V. 37.7.1 SRP-capable host SRP support is available through the SRP capable bit in the global USB configuration register (SRPCAP bit in OTG_GUSBCFG). With the SRP feature enabled, the host can save power by switching off the VBUS power while the USB session is suspended. The SRP host mode program model is described in detail in the A-device session request protocol) section. 37.7.2 USB host states Host port power On-chip 5 V VBUS generation is not supported. For this reason, a charge pump or, if 5 V are available on the application board, a basic power switch, must be added externally to drive the 5 V VBUS line. The external charge pump can be driven by any GPIO output or via an I2C interface connected to an external PMIC (power management IC). When the application decides to power on VBUS, it must also set the port power bit in the host port control and status register (PPWR bit in OTG_HPRT). VBUS valid When HNP or SRP is enabled the VBUS sensing pin should be connected to VBUS. The VBUS input ensures that valid VBUS levels are supplied by the charge pump during USB operations. Any unforeseen VBUS voltage drop below the VBUS valid threshold (4.4 V) leads to an OTG interrupt triggered by the session end detected bit (SEDET bit in OTG_GOTGINT). The application is then required to remove the VBUS power and clear the port power bit. When HNP and SRP are both disabled, the VBUS sensing pin does not need to be connected to VBUS. The charge pump overcurrent flag can also be used to prevent electrical damage. Connect the overcurrent flag output from the charge pump to any GPIO input and configure it to generate a port interrupt on the active level. The overcurrent ISR must promptly disable the VBUS generation and clear the port power bit. RM0385 Rev 7 1341/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Host detection of a peripheral connection If SRP or HNP are enabled, even if USB peripherals or B-devices can be attached at any time, the OTG_FS/OTG_HS will not detect any bus connection until VBUS is no longer sensed at a valid level (5 V). When VBUS is at a valid level and a remote B-device is attached, the OTG_FS/OTG_HS core issues a host port interrupt triggered by the device connected bit in the host port control and status register (PCDET bit in OTG_HPRT). When HNP and SRP are both disabled, USB peripherals or B-device are detected as soon as they are connected. The OTG_FS/OTG_HS core issues a host port interrupt triggered by the device connected bit in the host port control and status (PCDET bit in OTG_HPRT). Host detection of peripheral a disconnection The peripheral disconnection event triggers the disconnect detected interrupt (DISCINT bit in OTG_GINTSTS). Host enumeration After detecting a peripheral connection the host must start the enumeration process by sending USB reset and configuration commands to the new peripheral. Before starting to drive a USB reset, the application waits for the OTG interrupt triggered by the debounce done bit (DBCDNE bit in OTG_GOTGINT), which indicates that the bus is stable again after the electrical debounce caused by the attachment of a pull-up resistor on DP (FS) or DM (LS). The application drives a USB reset signaling (single-ended zero) over the USB by keeping the port reset bit set in the host port control and status register (PRST bit in OTG_HPRT) for a minimum of 10 ms and a maximum of 20 ms. The application takes care of the timing count and then of clearing the port reset bit. Once the USB reset sequence has completed, the host port interrupt is triggered by the port enable/disable change bit (PENCHNG bit in OTG_HPRT). This informs the application that the speed of the enumerated peripheral can be read from the port speed field in the host port control and status register (PSPD bit in OTG_HPRT) and that the host is starting to drive SOFs (FS) or Keep alives (LS). The host is now ready to complete the peripheral enumeration by sending peripheral configuration commands. Host suspend The application decides to suspend the USB activity by setting the port suspend bit in the host port control and status register (PSUSP bit in OTG_HPRT). The OTG_FS/OTG_HS core stops sending SOFs and enters the suspended state. The suspended state can be optionally exited on the remote device’s initiative (remote wakeup). In this case the remote wakeup interrupt (WKUPINT bit in OTG_GINTSTS) is generated upon detection of a remote wakeup signaling, the port resume bit in the host port control and status register (PRES bit in OTG_HPRT) self-sets, and resume signaling is automatically driven over the USB. The application must time the resume window and then clear the port resume bit to exit the suspended state and restart the SOF. If the suspended state is exited on the host initiative, the application must set the port resume bit to start resume signaling on the host port, time the resume window and finally clear the port resume bit. 1342/1709 RM0385 Rev 7 RM0385 37.7.3 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Host channels The OTG_FS/OTG_HS core instantiates 12[FS] / 16[HS] host channels. Each host channel supports an USB host transfer (USB pipe). The host is not able to support more than 12[FS] / 16[HS] transfer requests at the same time. If more than 12[FS] / 16[HS] transfer requests are pending from the application, the host controller driver (HCD) must re-allocate channels when they become available from previous duty, that is, after receiving the transfer completed and channel halted interrupts. Each host channel can be configured to support in/out and any type of periodic/nonperiodic transaction. Each host channel makes us of proper control (OTG_HCCHARx), transfer configuration (OTG_HCTSIZx) and status/interrupt (OTG_HCINTx) registers with associated mask (OTG_HCINTMSKx) registers. Host channel control • The following host channel controls are available to the application through the host channel-x characteristics register (OTG_HCCHARx): – Channel enable/disable – Program the HS/FS/LS speed of target USB peripheral – Program the address of target USB peripheral – Program the endpoint number of target USB peripheral – Program the transfer IN/OUT direction – Program the USB transfer type (control, bulk, interrupt, isochronous) – Program the maximum packet size (MPS) – Program the periodic transfer to be executed during odd/even frames Host channel transfer The host channel transfer size registers (OTG_HCTSIZx) allow the application to program the transfer size parameters, and read the transfer status. Programming must be done before setting the channel enable bit in the host channel characteristics register. Once the endpoint is enabled the packet count field is read-only as the OTG_FS/OTG_HS core updates it according to the current transfer status. • The following transfer parameters can be programmed: – transfer size in bytes – number of packets making up the overall transfer size – initial data PID Host channel status/interrupt The host channel-x interrupt register (OTG_HCINTx) indicates the status of an endpoint with respect to USB- and AHB-related events. The application must read these register when the host channels interrupt bit in the core interrupt register (HCINT bit in OTG_GINTSTS) is set. Before the application can read these registers, it must first read the host all channels interrupt (OTG_HAINT) register to get the exact channel number for the host channel-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_HAINT and OTG_GINTSTS registers. RM0385 Rev 7 1343/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 The mask bits for each interrupt source of each channel are also available in the OTG_HCINTMSKx register. • 37.7.4 The host core provides the following status checks and interrupt generation: – Transfer completed interrupt, indicating that the data transfer is complete on both the application (AHB) and USB sides – Channel has stopped due to transfer completed, USB transaction error or disable command from the application – Associated transmit FIFO is half or completely empty (IN endpoints) – ACK response received – NAK response received – STALL response received – USB transaction error due to CRC failure, timeout, bit stuff error, false EOP – Babble error – frame overrun – data toggle error Host scheduler The host core features a built-in hardware scheduler which is able to autonomously re-order and manage the USB transaction requests posted by the application. At the beginning of each frame the host executes the periodic (isochronous and interrupt) transactions first, followed by the nonperiodic (control and bulk) transactions to achieve the higher level of priority granted to the isochronous and interrupt transfer types by the USB specification. The host processes the USB transactions through request queues (one for periodic and one for nonperiodic). Each request queue can hold up to 8 entries. Each entry represents a pending transaction request from the application, and holds the IN or OUT channel number along with other information to perform a transaction on the USB. The order in which the requests are written to the queue determines the sequence of the transactions on the USB interface. At the beginning of each frame, the host processes the periodic request queue first, followed by the nonperiodic request queue. The host issues an incomplete periodic transfer interrupt (IPXFR bit in OTG_GINTSTS) if an isochronous or interrupt transaction scheduled for the current frame is still pending at the end of the current frame. The OTG_FS/OTG_HS core is fully responsible for the management of the periodic and nonperiodic request queues.The periodic transmit FIFO and queue status register (OTG_HPTXSTS) and nonperiodic transmit FIFO and queue status register (OTG_HNPTXSTS) are read-only registers which can be used by the application to read the status of each request queue. They contain: • The number of free entries currently available in the periodic (nonperiodic) request queue (8 max) • Free space currently available in the periodic (nonperiodic) Tx FIFO (out-transactions) • IN/OUT token, host channel number and other status information. As request queues can hold a maximum of 8 entries each, the application can push to schedule host transactions in advance with respect to the moment they physically reach the SB for a maximum of 8 pending periodic transactions plus 8 pending non-periodic transactions. To post a transaction request to the host scheduler (queue) the application must check that there is at least 1 entry available in the periodic (nonperiodic) request queue by reading the 1344/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) PTXQSAV bits in the OTG_HNPTXSTS register or NPTQXSAV bits in the OTG_HNPTXSTS register. 37.8 SOF trigger Figure 464. SOF connectivity (SOF trigger output to TIM and ITR1 connection) SOF pulse output, to external audio control VBUS ITR1 SOF pulse DD+ TIM SOFgen ID USB micro-AB connector STM32 VSS MSv36914V1 The OTG_FS/OTG_HS core provides means to monitor, track and configure SOF framing in the host and peripheral, as well as an SOF pulse output connectivity feature. Such utilities are especially useful for adaptive audio clock generation techniques, where the audio peripheral needs to synchronize to the isochronous stream provided by the PC, or the host needs to trim its framing rate according to the requirements of the audio peripheral. 37.8.1 Host SOFs In host mode the number of PHY clocks occurring between the generation of two consecutive SOF (HS/FS) or Keep-alive (LS) tokens is programmable in the host frame interval register (HFIR), thus providing application control over the SOF framing period. An interrupt is generated at any start of frame (SOF bit in OTG_GINTSTS). The current frame number and the time remaining until the next SOF are tracked in the host frame number register (HFNUM). A SOF pulse signal, is generated at any SOF starting token and with a width of 20 HCLK cycles. The SOF pulse is also internally connected to the input trigger of the timer, so that the input capture feature, the output compare feature and the timer can be triggered by the SOF pulse. 37.8.2 Peripheral SOFs In device mode, the start of frame interrupt is generated each time an SOF token is received on the USB (SOF bit in OTG_GINTSTS). The corresponding frame number can be read from the device status register (FNSOF bit in OTG_DSTS). A SOF pulse signal with a width of 20 HCLK cycles is also generated.The SOF pulse signal is also internally connected to the TIM input trigger, so that the input capture feature, the output compare feature and the timer can be triggered by the SOF pulse. RM0385 Rev 7 1345/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 The end of periodic frame interrupt (OTG_GINTSTS/EOPF) is used to notify the application when 80%, 85%, 90% or 95% of the time frame interval elapsed depending on the periodic frame interval field in the device configuration register (PFIVL bit in OTG_DCFG). This feature can be used to determine if all of the isochronous traffic for that frame is complete. 37.9 OTG low-power modes Table 260 below defines the STM32 low power modes and their compatibility with the OTG. Table 260. Compatibility of STM32 low power modes with the OTG Mode Description USB compatibility Run MCU fully active Required when USB not in suspend state. Sleep USB suspend exit causes the device to exit Sleep mode. Peripheral registers content is kept. Available while USB is in suspend state. Stop USB suspend exit causes the device to exit Stop mode. Peripheral registers content is kept(1). Available while USB is in suspend state. Standby Powered-down. The peripheral must be reinitialized after exiting Standby mode. Not compatible with USB applications. 1. Within Stop mode there are different possible settings. Some restrictions may also exist, please refer to Section 4: Power controller (PWR) to understand which (if any) restrictions apply when using OTG. The following bits and procedures reduce power consumption. The power consumption of the OTG PHY is controlled by two or three bits in the general core configuration register, depending on OTG revision supported. • PHY power down (OTG_GCCFG/PWRDWN) It switches on/off the full-speed transceiver module of the PHY. It must be preliminarily set to allow any USB operation • VBUS detection enable (OTG_GCCFG/VBDEN) It switches on/off the VBUS sensing comparators associated with OTG operations Power reduction techniques are available while in the USB suspended state, when the USB session is not yet valid or the device is disconnected. • Stop PHY clock (STPPCLK bit in OTG_PCGCCTL) When setting the stop PHY clock bit in the clock gating control register, most of the 48 MHz clock domain internal to the OTG full-speed core is switched off by clock gating. The dynamic power consumption due to the USB clock switching activity is cut even if the 48 MHz clock input is kept running by the application Most of the transceiver is also disabled, and only the part in charge of detecting the asynchronous resume or remote wakeup event is kept alive. • Gate HCLK (GATEHCLK bit in OTG_PCGCCTL) When setting the Gate HCLK bit in the clock gating control register, most of the system clock domain internal to the OTG_FS/OTG_HS core is switched off by clock gating. Only the register read and write interface is kept alive. The dynamic power 1346/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) consumption due to the USB clock switching activity is cut even if the system clock is kept running by the application for other purposes. • USB system stop When the OTG_FS/OTG_HS is in the USB suspended state, the application may decide to drastically reduce the overall power consumption by a complete shut down of all the clock sources in the system. USB System Stop is activated by first setting the Stop PHY clock bit and then configuring the system deep sleep mode in the power control system module (PWR). The OTG_FS/OTG_HS core automatically reactivates both system and USB clocks by asynchronous detection of remote wakeup (as an host) or resume (as a device) signaling on the USB. To save dynamic power, the USB data FIFO is clocked only when accessed by the OTG_FS/OTG_HS core. 37.10 Dynamic update of the OTG_HFIR register The USB core embeds a dynamic trimming capability of micro-SOF[HS] / SOF[FS] framing period in host mode allowing to synchronize an external device with the micro-SOF[HS] / SOF[FS] frames. When the OTG_HFIR register is changed within a current micro-SOF[HS] / SOF[FS] frame, the SOF period correction is applied in the next frame as described in Figure 465. For a dynamic update, it is required to set RLDCTRL=0. Figure 465. Updating OTG_HFIR dynamically (RLDCTRL = 0) SOF reload OTG_HFIR write ... 1 0 450 449 ... 450 1 0 400 399 1 0 400 399 Frame timer 400 ... 1 0 450 449 OTG_HFIR value ... ai18440b 37.11 USB data FIFOs The USB system features 1.25[FS] / 4[HS] Kbytes of dedicated RAM with a sophisticated FIFO control mechanism. The packet FIFO controller module in the OTG_FS/OTG_HS core organizes RAM space into Tx FIFOs into which the application pushes the data to be temporarily stored before the USB transmission, and into a single Rx FIFO where the data received from the USB are temporarily stored before retrieval (popped) by the application. The number of instructed FIFOs and how these are organized inside the RAM depends on RM0385 Rev 7 1347/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 the device’s role. In peripheral mode an additional Tx FIFO is instructed for each active IN endpoint. Any FIFO size is software configured to better meet the application requirements. 37.11.1 Peripheral FIFO architecture Figure 466. Device-mode FIFO address mapping and AHB FIFO access mapping Single data FIFO IN endpoint Tx FIFO #x DFIFO push access from AHB Dedicated Tx FIFO #x control (optional) MAC pop IN endpoint Tx FIFO #1 DFIFO push access from AHB . . . Tx FIFO #x packet OTG_DIEPTXFx[31:16] OTG_DIEPTXFx[15:0] . . . Dedicated Tx FIFO #1 control (optional) Tx FIFO #1 packet . . . OTG_DIEPTXF1[31:16] OTG_DIEPTXF1[15:0] MAC pop IN endpoint Tx FIFO #0 DFIFO push access from AHB Dedicated Tx FIFO #0 control (optional) Tx FIFO #0 packet OTG_DIEPTXF0[31:16] OTG_DIEPTXF0[15:0] MAC pop Any OUT endpoint DFIFO pop access from AHB Dedicated Tx FIFO #1 control (optional) MAC push Rx packets OTG_GRXFSIZ[15:0] A1=0 (Rx start address fixed to 0) MSv36929V1 Peripheral Rx FIFO The OTG peripheral uses a single receive FIFO that receives the data directed to all OUT endpoints. Received packets are stacked back-to-back until free space is available in the Rx FIFO. The status of the received packet (which contains the OUT endpoint destination number, the byte count, the data PID and the validity of the received data) is also stored by the core on top of the data payload. When no more space is available, host transactions are NACKed and an interrupt is received on the addressed endpoint. The size of the receive FIFO is configured in the receive FIFO size register (OTG_GRXFSIZ). The single receive FIFO architecture makes it more efficient for the USB peripheral to fill in the receive RAM buffer: • All OUT endpoints share the same RAM buffer (shared FIFO) • The OTG_FS/OTG_HS core can fill in the receive FIFO up to the limit for any host sequence of OUT tokens The application keeps receiving the Rx FIFO non-empty interrupt (RXFLVL bit in OTG_GINTSTS) as long as there is at least one packet available for download. It reads the packet information from the receive status read and pop register (OTG_GRXSTSP) and finally pops data off the receive FIFO by reading from the endpoint-related pop address. 1348/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Peripheral Tx FIFOs The core has a dedicated FIFO for each IN endpoint. The application configures FIFO sizes by writing the endpoint 0 transmit FIFO size register (OTG_DIEPTXF0) for IN endpoint0 and the device IN endpoint transmit FIFOx registers (OTG_DIEPTXFx) for IN endpoint-x. 37.11.2 Host FIFO architecture Figure 467. Host-mode FIFO address mapping and AHB FIFO access mapping Single data FIFO Any periodic channel DFIFO push access from AHB Periodic Tx packets Periodic Tx FIFO control (optional) OTG_HPTXFSIZ[31:16] OTG_HPTXFSIZ[15:0] MAC pop Any non-periodic channel DFIFO push access from AHB Non-periodic Tx packets Non-periodic Tx FIFO control OTG_HNPTXFSIZ[31:16] OTG_HNPTXFSIZ[15:0] MAC pop Rx packets Any channel DFIFO pop access from AHB OTG_GRXFSIZ[15:0] Rx FIFO control Rx start address fixed to 0 A1=0 MAC push MSv36930V1 Host Rx FIFO The host uses one receiver FIFO for all periodic and nonperiodic transactions. The FIFO is used as a receive buffer to hold the received data (payload of the received packet) from the USB until it is transferred to the system memory. Packets received from any remote IN endpoint are stacked back-to-back until free space is available. The status of each received packet with the host channel destination, byte count, data PID and validity of the received data are also stored into the FIFO. The size of the receive FIFO is configured in the receive FIFO size register (OTG_GRXFSIZ). The single receive FIFO architecture makes it highly efficient for the USB host to fill in the receive data buffer: • All IN configured host channels share the same RAM buffer (shared FIFO) • The OTG_FS/OTG_HS core can fill in the receive FIFO up to the limit for any sequence of IN tokens driven by the host software The application receives the Rx FIFO not-empty interrupt as long as there is at least one packet available for download. It reads the packet information from the receive status read and pop register and finally pops the data off the receive FIFO. RM0385 Rev 7 1349/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Host Tx FIFOs The host uses one transmit FIFO for all non-periodic (control and bulk) OUT transactions and one transmit FIFO for all periodic (isochronous and interrupt) OUT transactions. FIFOs are used as transmit buffers to hold the data (payload of the transmit packet) to be transmitted over the USB. The size of the periodic (nonperiodic) Tx FIFO is configured in the host periodic (nonperiodic) transmit FIFO size OTG_HPTXFSIZ / OTG_HNPTXFSIZ) register. The two Tx FIFO implementation derives from the higher priority granted to the periodic type of traffic over the USB frame. At the beginning of each frame, the built-in host scheduler processes the periodic request queue first, followed by the nonperiodic request queue. The two transmit FIFO architecture provides the USB host with separate optimization for periodic and nonperiodic transmit data buffer management: • All host channels configured to support periodic (nonperiodic) transactions in the OUT direction share the same RAM buffer (shared FIFOs) • The OTG_FS/OTG_HS core can fill in the periodic (nonperiodic) transmit FIFO up to the limit for any sequence of OUT tokens driven by the host software The OTG_FS/OTG_HS core issues the periodic Tx FIFO empty interrupt (PTXFE bit in OTG_GINTSTS) as long as the periodic Tx FIFO is half or completely empty, depending on the value of the periodic Tx FIFO empty level bit in the AHB configuration register (PTXFELVL bit in OTG_GAHBCFG). The application can push the transmission data in advance as long as free space is available in both the periodic Tx FIFO and the periodic request queue. The host periodic transmit FIFO and queue status register (OTG_HPTXSTS) can be read to know how much space is available in both. OTG_FS/OTG_HS core issues the non periodic Tx FIFO empty interrupt (NPTXFE bit in OTG_GINTSTS) as long as the nonperiodic Tx FIFO is half or completely empty depending on the non periodic Tx FIFO empty level bit in the AHB configuration register (TXFELVL bit in OTG_GAHBCFG). The application can push the transmission data as long as free space is available in both the nonperiodic Tx FIFO and nonperiodic request queue. The host nonperiodic transmit FIFO and queue status register (OTG_HNPTXSTS) can be read to know how much space is available in both. 37.11.3 FIFO RAM allocation Device mode Receive FIFO RAM allocation: the application should allocate RAM for SETUP packets: 1350/1709 • 10 locations must be reserved in the receive FIFO to receive SETUP packets on control endpoint. The core does not use these locations, which are reserved for SETUP packets, to write any other data. • One location is to be allocated for Global OUT NAK. • Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (largest packet size / 4) + 1 must be allocated to receive packets. If multiple isochronous endpoints are enabled, then at least two (largest packet size / 4) + 1 spaces must be allocated to receive back-to-back packets. Typically, two (largest packet size / 4) + 1 spaces are recommended so that when the previous packet is being transferred to the CPU, the USB can receive the subsequent packet. • Along with the last packet for each endpoint, transfer complete status information is also pushed to the FIFO. One location for each OUT endpoint is recommended. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Device RxFIFO = (5 * number of control endpoints + 8) + ((largest USB packet used / 4) + 1 for status information) + (2 * number of OUT endpoints) + 1 for Global NAK Example: The MPS is 1,024 bytes for a periodic USB packet and 512 bytes for a nonperiodic USB packet. There are three OUT endpoints, three IN endpoints, one control endpoint, and three host channels. Device RxFIFO = (5 * 1 + 8) + ((1,024 / 4) +1) + (2 * 4) + 1 = 279 Transmit FIFO RAM allocation: the minimum RAM space required for each IN endpoint Transmit FIFO is the maximum packet size for that particular IN endpoint. Note: More space allocated in the transmit IN endpoint FIFO results in better performance on the USB. Host mode Receive FIFO RAM allocation: Status information is written to the FIFO along with each received packet. Therefore, a minimum space of (largest packet size / 4) + 1 must be allocated to receive packets. If multiple isochronous channels are enabled, then at least two (largest packet size / 4) + 1 spaces must be allocated to receive back-to-back packets. Typically, two (largest packet size / 4) + 1 spaces are recommended so that when the previous packet is being transferred to the CPU, the USB can receive the subsequent packet. Along with the last packet in the host channel, transfer complete status information is also pushed to the FIFO. So one location must be allocated for this. Host RxFIFO = (largest USB packet used / 4) + 1 for status information + 1 transfer complete Example: Host RxFIFO = ((1,024 / 4) + 1) + 1 = 258 Transmit FIFO RAM allocation: The minimum amount of RAM required for the host Non-periodic Transmit FIFO is the largest maximum packet size among all supported non-periodic OUT channels. Typically, two largest packet sizes worth of space is recommended, so that when the current packet is under transfer to the USB, the CPU can get the next packet. Non-Periodic TxFIFO = largest non-periodic USB packet used / 4 Example: Non-Periodic TxFIFO = (512 / 4) = 128 The minimum amount of RAM required for host periodic Transmit FIFO is the largest maximum packet size out of all the supported periodic OUT channels. If there is at least one isochronous OUT endpoint, then the space must be at least two times the maximum packet size of that channel. Host Periodic TxFIFO = largest periodic USB packet used / 4 Example: Host Periodic TxFIFO = (1,024 / 4) = 256 Note: More space allocated in the Transmit Non-periodic FIFO results in better performance on the USB. RM0385 Rev 7 1351/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.12 RM0385 OTG_FS system performance Best USB and system performance is achieved owing to the large RAM buffers, the highly configurable FIFO sizes, the quick 32-bit FIFO access through AHB push/pop registers and, especially, the advanced FIFO control mechanism. Indeed, this mechanism allows the OTG_FS to fill in the available RAM space at best regardless of the current USB sequence. With these features: • • The application gains good margins to calibrate its intervention in order to optimize the CPU bandwidth usage: – It can accumulate large amounts of transmission data in advance compared to when they are effectively sent over the USB – It benefits of a large time margin to download data from the single receive FIFO The USB core is able to maintain its full operating rate, that is to provide maximum fullspeed bandwidth with a great margin of autonomy versus application intervention: – It has a large reserve of transmission data at its disposal to autonomously manage the sending of data over the USB – It has a lot of empty space available in the receive buffer to autonomously fill it in with the data coming from the USB As the OTG_FS core is able to fill in the 1.25-Kbyte RAM buffer very efficiently, and as 1.25-Kbyte of transmit/receive data is more than enough to cover a full speed frame, the USB system is able to withstand the maximum full-speed data rate for up to one USB frame (1 ms) without any CPU intervention. 37.13 OTG_FS/OTG_HS interrupts When the OTG_FS/OTG_HS controller is operating in one mode, either device or host, the application must not access registers from the other mode. If an illegal access occurs, a mode mismatch interrupt is generated and reflected in the core interrupt register (MMIS bit in the OTG_GINTSTS register). When the core switches from one mode to the other, the registers in the new mode of operation must be reprogrammed as they would be after a power-on reset. Figure 468 shows the interrupt hierarchy. 1352/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 468. Interrupt hierarchy Wakeup interrupt OTG_FS_WKUP / OTG_HS_WKUP (1) AND Global interrupt OTG_FS / OTG_HS OR OTG_AHBCFG AHB configuration register AND OT OE GI NT PIN IEP P IN T HC IN T HP RT IN T Global interrupt mask (bit 0) OTG_GINTSTS Core register interrupt 31:26 25 24 23:20 19 18 17:3 2 1:0 OTG_GINTMSK Core interrupt mask register OTG_GOTGINT OTG interrupt register EP1_OUT interrupt OTG_HS_EP1_OUT EP1_IN interrupt OTG_HS_EP1_IN (15 + #EP):16 OUT endpoints (#EP-1):0 IN endpoints 17 EP1OUT 1 EP1IN OTG_DAINTMSK Device all endpoints interrupt mask register OTG_DEACHINTMSK Device each endpoint interrupt mask register OTG_DAINT Device all endpoints interrupt register OTG_DEACHINT Device each endpoint interrupt register OTG_DIEPMSK/ OTG_DOEPMSK Device IN/OUT endpoints common interrupt mask register OTG_DIEPEACHMSK1/ OTG_DOEPEACHMSK1 Device each IN/OUT endpoint interrupt mask registers x=0 ... OTG_DIEPINTx/ OTG_DOEPINTx Device IN/OUT endpoint interrupt registers x = #HC-1 HS only OTG_HPRT Host port control and status register OTG_HAINTMSK Host all channels interrupt mask register OTG_HAINT Host all channels interrupt register x=0 ... OTG_HCTINTMSKx Host channels interrupt mask registers x = #HC-1 OTG_HCTINTx Host channels interrupt registers MSv47471V2 1. OTG_FS_WKUP / OTG_HS_WKUP become active (high state) when resume condition occurs during L1 SLEEP or L2 SUSPEND states. RM0385 Rev 7 1353/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.14 RM0385 OTG_FS/OTG_HS control and status registers By reading from and writing to the control and status registers (CSRs) through the AHB slave interface, the application controls the OTG_FS/OTG_HS controller. These registers are 32 bits wide, and the addresses are 32-bit block aligned. The OTG_FS/OTG_HS registers must be accessed by words (32 bits). CSRs are classified as follows: • Core global registers • Host-mode registers • Host global registers • Host port CSRs • Host channel-specific registers • Device-mode registers • Device global registers • Device endpoint-specific registers • Power and clock-gating registers • Data FIFO (DFIFO) access registers Only the core global, power and clock-gating, data FIFO access, and host port control and status registers can be accessed in both host and device modes. When the OTG_FS/OTG_HS controller is operating in one mode, either device or host, the application must not access registers from the other mode. If an illegal access occurs, a mode mismatch interrupt is generated and reflected in the core interrupt register (MMIS bit in the OTG_GINTSTS register). When the core switches from one mode to the other, the registers in the new mode of operation must be reprogrammed as they would be after a power-on reset. 37.14.1 CSR memory map The host and device mode registers occupy different addresses. All registers are implemented in the AHB clock domain. Global CSR map These registers are available in both host and device modes. Table 261. Core global control and status registers (CSRs) Acronym Address offset Register name OTG_GOTGCTL 0x000 Section 37.15.1: OTG control and status register (OTG_GOTGCTL) OTG_GOTGINT 0x004 Section 37.15.2: OTG interrupt register (OTG_GOTGINT) OTG_GAHBCFG 0x008 Section 37.15.3: OTG AHB configuration register (OTG_GAHBCFG) OTG_GUSBCFG 0x00C Section 37.15.4: OTG USB configuration register (OTG_GUSBCFG) OTG_GRSTCTL 0x010 Section 37.15.5: OTG reset register (OTG_GRSTCTL) OTG_GINTSTS 0x014 Section 37.15.6: OTG core interrupt register (OTG_GINTSTS) OTG_GINTMSK 0x018 Section 37.15.7: OTG interrupt mask register (OTG_GINTMSK) 1354/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 261. Core global control and status registers (CSRs) (continued) Acronym Address offset Register name OTG_GRXSTSR 0x01C OTG_GRXSTSP 0x020 Section 37.15.8: OTG receive status debug read/OTG status read and pop registers (OTG_GRXSTSR/OTG_GRXSTSP) OTG_GRXFSIZ 0x024 Section 37.15.9: OTG receive FIFO size register (OTG_GRXFSIZ) OTG_HNPTXFSIZ/ OTG_DIEPTXF0(1) 0x028 Section 37.15.10: OTG host non-periodic transmit FIFO size register (OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size (OTG_DIEPTXF0) OTG_HNPTXSTS 0x02C Section 37.15.11: OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS) OTG_GCCFG 0x038 Section 37.15.12: OTG general core configuration register (OTG_GCCFG) OTG_CID 0x03C Section 37.15.13: OTG core ID register (OTG_CID) OTG_GLPMCFG 0x54 Section 37.15.14: OTG core LPM configuration register (OTG_GLPMCFG) OTG_HPTXFSIZ 0x100 Section 37.15.15: OTG host periodic transmit FIFO size register (OTG_HPTXFSIZ) OTG_DIEPTXFx 0x104 0x108 ... 0x114 Section 37.15.16: OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5[FS] /8[HS], where x is the FIFO number) for USB_OTG FS OTG_DIEPTXFx 0x104 0x108 ... 0x120 Section 37.15.16: OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5[FS] /8[HS], where x is the FIFO number) for USB_OTG HS 1. The general rule is to use OTG_HNPTXFSIZ for host mode and OTG_DIEPTXF0 for device mode. Host-mode CSR map These registers must be programmed every time the core changes to host mode. Table 262. Host-mode control and status registers (CSRs) Acronym Offset address Register name OTG_HCFG 0x400 Section 37.15.18: OTG host configuration register (OTG_HCFG) OTG_HFIR 0x404 Section 37.15.19: OTG host frame interval register (OTG_HFIR) OTG_HFNUM 0x408 Section 37.15.20: OTG host frame number/frame time remaining register (OTG_HFNUM) OTG_HPTXSTS 0x410 Section 37.15.21: OTG_Host periodic transmit FIFO/queue status register (OTG_HPTXSTS) OTG_HAINT 0x414 Section 37.15.22: OTG host all channels interrupt register (OTG_HAINT) OTG_HAINTMSK 0x418 Section 37.15.23: OTG host all channels interrupt mask register (OTG_HAINTMSK) RM0385 Rev 7 1355/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Table 262. Host-mode control and status registers (CSRs) (continued) Acronym Offset address Register name OTG_HPRT 0x440 Section 37.15.24: OTG host port control and status register (OTG_HPRT) OTG_HCCHARx 0x500 0x520 ... 0x660 Section 37.15.25: OTG host channel x characteristics register (OTG_HCCHARx) (x = 0..15[HS] / 11[FS], where x = Channel number) for USB_OTG FS OTG_HCCHARx 0x500 0x520 ... 0x6E0 Section 37.15.25: OTG host channel x characteristics register (OTG_HCCHARx) (x = 0..15[HS] / 11[FS], where x = Channel number) for USB_OTG HS OTG_HCSPLTx 0x504 0x524 .... 0x6E4 Section 37.15.26: OTG host channel x split control register (OTG_HCSPLTx) (x = 0..15, where x = Channel number) OTG_HCINTx 0x508 0x528 .... 0x668 Section 37.15.27: OTG host channel x interrupt register (OTG_HCINTx) (x = 0..15[HS] / 11[FS], where x = Channel number) for USB_OTG FS OTG_HCINTx 0x508 0x528 .... 0x6E8 Section 37.15.27: OTG host channel x interrupt register (OTG_HCINTx) (x = 0..15[HS] / 11[FS], where x = Channel number) for USB_OTG HS OTG_HCINTMSKx 0x50C 0x52C .... 0x66C Section 37.15.28: OTG host channel x interrupt mask register (OTG_HCINTMSKx) (x = 0..15[HS] / 11[FS], where x = Channel number) for USB_OTG FS OTG_HCINTMSKx 0x50C 0x52C .... 0x6EC Section 37.15.28: OTG host channel x interrupt mask register (OTG_HCINTMSKx) (x = 0..15[HS] / 11[FS], where x = Channel number) for USB_OTG HS OTG_HCTSIZx 0x510 0x530 .... 0x670 Section 37.15.29: OTG host channel x transfer size register (OTG_HCTSIZx) (x = 0..15[HS] / 11[FS], where x = Channel number) for USB_OTG FS OTG_HCTSIZx 0x510 0x530 .... 0x6F0 Section 37.15.29: OTG host channel x transfer size register (OTG_HCTSIZx) (x = 0..15[HS] / 11[FS], where x = Channel number) for USB_OTG HS OTG_HCDMAx 0x514 0x534 .... 0x6F4 Section 37.15.30: OTG host channel x DMA address register (OTG_HCDMAx) (x = 0..15, where x = Channel number) 1356/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Device-mode CSR map These registers must be programmed every time the core changes to device mode. Table 263. Device-mode control and status registers Acronym Offset address Register name OTG_DCFG 0x800 Section 37.15.32: OTG device configuration register (OTG_DCFG) OTG_DCTL 0x804 Section 37.15.33: OTG device control register (OTG_DCTL) OTG_DSTS 0x808 Section 37.15.34: OTG device status register (OTG_DSTS) OTG_DIEPMSK 0x810 Section 37.15.35: OTG device IN endpoint common interrupt mask register (OTG_DIEPMSK) OTG_DOEPMSK 0x814 Section 37.15.36: OTG device OUT endpoint common interrupt mask register (OTG_DOEPMSK) OTG_DAINT 0x818 Section 37.15.37: OTG device all endpoints interrupt register (OTG_DAINT) OTG_DAINTMSK 0x81C Section 37.15.38: OTG all endpoints interrupt mask register (OTG_DAINTMSK) OTG_DVBUSDIS 0x828 Section 37.15.39: OTG device VBUS discharge time register (OTG_DVBUSDIS) OTG_DVBUSPULSE 0x82C Section 37.15.40: OTG device VBUS pulsing time register (OTG_DVBUSPULSE) OTG_DTHRCTL 0x830 Section 37.15.41: OTG device threshold control register (OTG_DTHRCTL) OTG_DIEPEMPMSK 0x834 Section 37.15.42: OTG device IN endpoint FIFO empty interrupt mask register (OTG_DIEPEMPMSK) OTG_DEACHINT 0x838 Section 37.15.43: OTG device each endpoint interrupt register (OTG_DEACHINT) OTG_DEACHINTMSK 0x83C Section 37.15.44: OTG device each endpoint interrupt mask register (OTG_DEACHINTMSK) OTG_HS_DIEPEACHM SK1 0x844 Section 37.15.45: OTG device each IN endpoint-1 interrupt mask register (OTG_HS_DIEPEACHMSK1) OTG_HS_DOEPEACHM 0x884 SK1 Section 37.15.46: OTG device each OUT endpoint-1 interrupt mask register (OTG_HS_DOEPEACHMSK1) OTG_DIEPCTL0 0x900 Section 37.15.47: OTG device control IN endpoint 0 control register (OTG_DIEPCTL0) for USB_OTG FS OTG_DIEPCTLx 0x920 0x940 ... 0x9A0 Section 37.15.48: OTG device IN endpoint x control register (OTG_DIEPCTLx) (x = 1..5[FS] / 0..8[HS], where x = endpoint number) for USB_OTG FS RM0385 Rev 7 1357/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Table 263. Device-mode control and status registers (continued) Acronym Offset address Register name OTG_DIEPCTLx 0x900 0x920 ... 0xA00 Section 37.15.48: OTG device IN endpoint x control register (OTG_DIEPCTLx) (x = 1..5[FS] / 0..8[HS], where x = endpoint number) for USB_OTG HS OTG_DIEPINTx 0x908 0x928 .... 0x988 Section 37.15.49: OTG device IN endpoint x interrupt register (OTG_DIEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint number) for USB_OTG FS OTG_DIEPINTx 0x908 0x928 ... 0x9E8 Section 37.15.49: OTG device IN endpoint x interrupt register (OTG_DIEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint number) for USB_OTG HS OTG_DIEPTSIZ0 0x910 Section 37.15.50: OTG device IN endpoint 0 transfer size register (OTG_DIEPTSIZ0) OTG_DIEPDMAx 0x914 0x934 ... 0x9F4 Section 37.15.51: OTG device IN endpoint x DMA address register (OTG_DIEPDMAx) (x = 0..8, where x = endpoint number) OTG_DTXFSTSx 0x918 0x938 .... 0x998 Section 37.15.52: OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5[FS] /8[HS], where x = endpoint number) for USB_OTG FS OTG_DTXFSTSx 0x918 0x938 ..... 0x9F8 Section 37.15.52: OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5[FS] /8[HS], where x = endpoint number) for USB_OTG HS OTG_DIEPTSIZx 0x930 0x950 ... 0x9B0 Section 37.15.53: OTG device IN endpoint x transfer size register (OTG_DIEPTSIZx) (x = 1..5[FS] /8[HS], where x = endpoint number) for USB_OTG FS OTG_DIEPTSIZx 0x930 0x950 ... 0x9F0 Section 37.15.53: OTG device IN endpoint x transfer size register (OTG_DIEPTSIZx) (x = 1..5[FS] /8[HS], where x = endpoint number) for USB_OTG HS OTG_DOEPCTL0 0xB00 Section 37.15.54: OTG device control OUT endpoint 0 control register (OTG_DOEPCTL0) OTG_DOEPINTx 0xB08 0xB28 ... 0xBA8 Section 37.15.55: OTG device OUT endpoint x interrupt register (OTG_DOEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint number) for USB_OTG FS 1358/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 263. Device-mode control and status registers (continued) Acronym Offset address Register name OTG_DOEPINTx 0xB08 0XB28 ... 0xC08 Section 37.15.55: OTG device OUT endpoint x interrupt register (OTG_DOEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint number) for USB_OTG HS OTG_DOEPTSIZ0 0xB10 Section 37.15.56: OTG device OUT endpoint 0 transfer size register (OTG_DOEPTSIZ0) OTG_DOEPDMAx 0xB14 0xB34 ... 0xC14 Section 37.15.57: OTG device OUT endpoint x DMA address register (OTG_DOEPDMAx) (x = 0..8, where x = endpoint number) OTG_DOEPCTLx 0xB20 0xB40 ... 0xBA0 Section 37.15.58: OTG device OUT endpoint x control register (OTG_DOEPCTLx) (x = 1..5[FS] /8[HS], where x = endpoint number) for USB_OTG FS OTG_DOEPCTLx 0xB20 0xB40 ... 0xC00 Section 37.15.58: OTG device OUT endpoint x control register (OTG_DOEPCTLx) (x = 1..5[FS] /8[HS], where x = endpoint number) for USB_OTG HS OTG_DOEPTSIZx 0xB30 0xB50 ... 0xBB0 Section 37.15.59: OTG device OUT endpoint x transfer size register (OTG_DOEPTSIZx) (x = 1..5[FS] /8[HS], where x = Endpoint number) for USB_OTG FS OTG_DOEPTSIZx 0xB30 0xB50 .. 0xBF0 Section 37.15.59: OTG device OUT endpoint x transfer size register (OTG_DOEPTSIZx) (x = 1..5[FS] /8[HS], where x = Endpoint number) for USB_OTG HS Data FIFO (DFIFO) access register map These registers, available in both host and device modes, are used to read or write the FIFO space for a specific endpoint or a channel, in a given direction. If a host channel is of type IN, the FIFO can only be read on the channel. Similarly, if a host channel is of type OUT, the FIFO can only be written on the channel. Table 264. Data FIFO (DFIFO) access register map FIFO access register section Offset address Access Device IN endpoint 0/Host OUT Channel 0: DFIFO write access Device OUT endpoint 0/Host IN Channel 0: DFIFO read access 0x1000–0x1FFC w r Device IN endpoint 1/Host OUT Channel 1: DFIFO write access Device OUT endpoint 1/Host IN Channel 1: DFIFO read access 0x2000–0x2FFC w r RM0385 Rev 7 1359/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Table 264. Data FIFO (DFIFO) access register map (continued) FIFO access register section Offset address ... Access ... ... Device IN endpoint x(1)/Host OUT Channel x(1): DFIFO write access 0xX000–0xXFFC Device OUT endpoint x(1)/Host IN Channel x(1): DFIFO read access w r 1. Where x is 5[FS] / 8[HS]in device mode and 11[FS] / 15[HS]in host mode. Power and clock gating CSR map There is a single register for power and clock gating. It is available in both host and device modes. Table 265. Power and clock gating control and status registers Acronym Offset address OTG_PCGCCTL 37.15 0xE00–0xE04 Register name Section 37.15.60: OTG power and clock gating control register (OTG_PCGCCTL) OTG_FS/OTG_HS registers These registers are available in both host and device modes, and do not need to be reprogrammed when switching between these modes. Bit values in the register descriptions are expressed in binary unless otherwise specified. 37.15.1 OTG control and status register (OTG_GOTGCTL) Address offset: 0x000 Reset value: 0x0001 0000 The OTG_GOTGCTL register controls the behavior and reflects the status of the OTG function of the core. 31 30 29 28 27 26 25 24 23 22 21 20 OTG VER 19 18 17 16 DBCT CID STS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CUR MOD r rw r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. EHEN HNP RQ HNG SCS SRQ SRQ SCS rw r rw r rw 1360/1709 DHNP HSHNP EN EN rw rw BSVLD ASVLD BVALO BVALO AVALO AVALO VBVAL VBVAL VAL EN VAL EN OVAL OEN rw RM0385 Rev 7 rw rw rw rw rw RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 31:22 Reserved, must be kept at reset value. Bit 21 CURMOD: Current mode of operation Indicates the current mode (host or device). 0: Device mode 1: Host mode Bit 20 OTGVER: OTG version Selects the OTG revision. 0:OTG Version 1.3. OTG1.3 is obsolete for new product development. 1:OTG Version 2.0. In this version the core supports only data line pulsing for SRP. Bit 19 BSVLD: B-session valid Indicates the device mode transceiver status. 0: B-session is not valid. 1: B-session is valid. In OTG mode, the user can use this bit to determine if the device is connected or disconnected. Note: Only accessible in device mode. Bit 18 ASVLD: A-session valid Indicates the host mode transceiver status. 0: A-session is not valid 1: A-session is valid Note: Only accessible in host mode. Bit 17 DBCT: Long/short debounce time Indicates the debounce time of a detected connection. 0: Long debounce time, used for physical connections (100 ms + 2.5 µs) 1: Short debounce time, used for soft connections (2.5 µs) Note: Only accessible in host mode. Bit 16 CIDSTS: Connector ID status Indicates the connector ID status on a connect event. 0: The OTG_FS/OTG_HS controller is in A-device mode 1: The OTG_FS/OTG_HS controller is in B-device mode Note: Accessible in both device and host modes. Bits 15:13 Reserved, must be kept at reset value. Bit 12 EHEN: Embedded host enable It is used to select between OTG A device state machine and embedded host state machine. 0: OTG A device state machine is selected 1: Embedded host state machine is selected Bit 11 DHNPEN: Device HNP enabled The application sets this bit when it successfully receives a SetFeature.SetHNPEnable command from the connected USB host. 0: HNP is not enabled in the application 1: HNP is enabled in the application Note: Only accessible in device mode. RM0385 Rev 7 1361/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 10 HSHNPEN: host set HNP enable The application sets this bit when it has successfully enabled HNP (using the SetFeature.SetHNPEnable command) on the connected device. 0: Host Set HNP is not enabled 1: Host Set HNP is enabled Note: Only accessible in host mode. Bit 9 HNPRQ: HNP request The application sets this bit to initiate an HNP request to the connected USB host. The application can clear this bit by writing a 0 when the host negotiation success status change bit in the OTG_GOTGINT register (HNSSCHG bit in OTG_GOTGINT) is set. The core clears this bit when the HNSSCHG bit is cleared. 0: No HNP request 1: HNP request Note: Only accessible in device mode. Bit 8 HNGSCS: Host negotiation success The core sets this bit when host negotiation is successful. The core clears this bit when the HNP request (HNPRQ) bit in this register is set. 0: Host negotiation failure 1: Host negotiation success Note: Only accessible in device mode. Bit 7 BVALOVAL: B-peripheral session valid override value. This bit is used to set override value for Bvalid signal when BVALOEN bit is set. 0: Bvalid value is '0' when BVALOEN = 1 1: Bvalid value is '1' when BVALOEN = 1 Note: Only accessible in device mode. Bit 6 BVALOEN: B-peripheral session valid override enable. This bit is used to enable/disable the software to override the Bvalid signal using the BVALOVAL bit. 0:Override is disabled and Bvalid signal from the respective PHY selected is used internally by the core 1:Internally Bvalid received from the PHY is overridden with BVALOVAL bit value Note: Only accessible in device mode. Bit 5 AVALOVAL: A-peripheral session valid override value. This bit is used to set override value for Avalid signal when AVALOEN bit is set. 0: Avalid value is '0' when AVALOEN = 1 1: Avalid value is '1' when AVALOEN = 1 Note: Only accessible in host mode. Bit 4 AVALOEN: A-peripheral session valid override enable. This bit is used to enable/disable the software to override the Avalid signal using the AVALOVAL bit. 0:Override is disabled and Avalid signal from the respective PHY selected is used internally by the core 1:Internally Avalid received from the PHY is overridden with AVALOVAL bit value Note: Only accessible in host mode. 1362/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 3 VBVALOVAL: VBUS valid override value. This bit is used to set override value for vbusvalid signal when VBVALOEN bit is set. 0: vbusvalid value is '0' when VBVALOEN = 1 1: vbusvalid value is '1' when VBVALOEN = 1 Note: Only accessible in host mode. Bit 2 VBVALOEN: VBUS valid override enable. This bit is used to enable/disable the software to override the vbusvalid signal using the VBVALOVAL bit. 0: Override is disabled and vbusvalid signal from the respective PHY selected is used internally by the core 1: Internally vbusvalid received from the PHY is overridden with VBVALOVAL bit value Note: Only accessible in host mode. Bit 1 SRQ: Session request The application sets this bit to initiate a session request on the USB. The application can clear this bit by writing a 0 when the host negotiation success status change bit in the OTG_GOTGINT register (HNSSCHG bit in OTG_GOTGINT) is set. The core clears this bit when the HNSSCHG bit is cleared. If the user uses the USB 1.1 full-speed serial transceiver interface to initiate the session request, the application must wait until VBUS discharges to 0.2 V, after the B-session valid bit in this register (BSVLD bit in OTG_GOTGCTL) is cleared. 0: No session request 1: Session request Note: Only accessible in device mode. Bit 0 SRQSCS: Session request success The core sets this bit when a session request initiation is successful. 0: Session request failure 1: Session request success Note: Only accessible in device mode. 37.15.2 OTG interrupt register (OTG_GOTGINT) Address offset: 0x04 Reset value: 0x0000 0000 The application reads this register whenever there is an OTG interrupt and clears the bits in this register to clear the OTG interrupt. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ID CHNG DBC DNE ADTO CHG HNG DET Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rc_w1 rc_w1 rc_w1 rc_w1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. HNSS CHG SRSS CHG Res. Res. Res. Res. Res. SEDET Res. Res. rc_w1 rc_w1 Res. Res. Res. Res. Res. RM0385 Rev 7 rc_w1 1363/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bits 31:21 Reserved, must be kept at reset value. Bit 20 IDCHNG: This bit when set indicates that there is a change in the value of the ID input pin. Bit 19 DBCDNE: Debounce done The core sets this bit when the debounce is completed after the device connect. The application can start driving USB reset after seeing this interrupt. This bit is only valid when the HNP Capable or SRP Capable bit is set in the OTG_GUSBCFG register (HNPCAP bit or SRPCAP bit in OTG_GUSBCFG, respectively). Note: Only accessible in host mode. Bit 18 ADTOCHG: A-device timeout change The core sets this bit to indicate that the A-device has timed out while waiting for the B-device to connect. Note: Accessible in both device and host modes. Bit 17 HNGDET: Host negotiation detected The core sets this bit when it detects a host negotiation request on the USB. Note: Accessible in both device and host modes. Bits 16:10 Reserved, must be kept at reset value. Bit 9 HNSSCHG: Host negotiation success status change The core sets this bit on the success or failure of a USB host negotiation request. The application must read the host negotiation success bit of the OTG_GOTGCTL register (HNGSCS bit in OTG_GOTGCTL) to check for success or failure. Note: Accessible in both device and host modes. Bits 7:3 Reserved, must be kept at reset value. Bit 8 SRSSCHG: Session request success status change The core sets this bit on the success or failure of a session request. The application must read the session request success bit in the OTG_GOTGCTL register (SRQSCS bit in OTG_GOTGCTL) to check for success or failure. Note: Accessible in both device and host modes. Bit 2 SEDET: Session end detected The core sets this bit to indicate that the level of the voltage on VBUS is no longer valid for a B-Peripheral session when VBUS < 0.8 V. Note: Accessible in both device and host modes. Bits 1:0 Reserved, must be kept at reset value. 1364/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.3 OTG AHB configuration register (OTG_GAHBCFG) Address offset: 0x008 Reset value: 0x0000 0000 This register can be used to configure the core after power-on or a change in mode. This register mainly contains AHB system-related configuration parameters. Do not change this register after the initial programming. The application must program this register before starting any transactions on either the AHB or the USB. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. PTXFE LVL TXFE LVL Res. GINT MSK rw rw Res. Res. Note: Res. Res. Res. Res. Res. Res. Res. Res. Res. rw Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Res. PTXFE LVL TXFE LVL rw rw Res. Note: Res. Res. Res. Res. Res. Res. DMAEN rw HBSTLEN[3:0] rw rw rw 0 GINT MSK rw rw Configuration register for USB OTG HS RM0385 Rev 7 1365/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bits 31:9 Reserved, must be kept at reset value. Bit 8 PTXFELVL: Periodic Tx FIFO empty level Indicates when the periodic Tx FIFO empty interrupt bit in the OTG_GINTSTS register (PTXFE bit in OTG_GINTSTS) is triggered. 0: PTXFE (in OTG_GINTSTS) interrupt indicates that the Periodic Tx FIFO is half empty 1: PTXFE (in OTG_GINTSTS) interrupt indicates that the Periodic Tx FIFO is completely empty Note: Only accessible in host mode. Bit 7 TXFELVL: Tx FIFO empty level In device mode, this bit indicates when IN endpoint Transmit FIFO empty interrupt (TXFE in OTG_DIEPINTx) is triggered: 0:The TXFE (in OTG_DIEPINTx) interrupt indicates that the IN endpoint Tx FIFO is half empty 1:The TXFE (in OTG_DIEPINTx) interrupt indicates that the IN endpoint Tx FIFO is completely empty In host mode, this bit indicates when the nonperiodic Tx FIFO empty interrupt (NPTXFE bit in OTG_GINTSTS) is triggered: 0:The NPTXFE (in OTG_GINTSTS) interrupt indicates that the nonperiodic Tx FIFO is half empty 1:The NPTXFE (in OTG_GINTSTS) interrupt indicates that the nonperiodic Tx FIFO is completely empty Bits 6:1 Reserved, must be kept at reset value for USB OTG FS. Bit 6 Reserved, must be kept at reset value for USB OTG HS. Bit 5 DMAEN: DMA enabled for USB OTG HS 0: The core operates in slave mode 1: The core operates in DMA mode Bits 4:1 HBSTLEN[3:0]: Burst length/type for USB OTG HS 0000 Single: Bus transactions use single 32 bit accesses (not recommended) 0001 INCR: Bus transactions use unspecified length accesses (not recommended, uses the INCR AHB bus command) 0011 INCR4: Bus transactions target 4x 32 bit accesses 0101 INCR8: Bus transactions target 8x 32 bit accesses 0111 INCR16: Bus transactions based on 16x 32 bit accesses Others: Reserved Bit 0 GINTMSK: Global interrupt mask The application uses this bit to mask or unmask the interrupt line assertion to itself. Irrespective of this bit’s setting, the interrupt status registers are updated by the core. 0: Mask the interrupt assertion to the application. 1: Unmask the interrupt assertion to the application. Note: Accessible in both device and host modes. 1366/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.4 OTG USB configuration register (OTG_GUSBCFG) Address offset: 0x00C Reset value: 0x0000 1440 for USB OTG FS Reset value: 0x0000 1400 for USB OTG HS This register can be used to configure the core after power-on or a changing to host mode or device mode. It contains USB and USB-PHY related configuration parameters. The application must program this register before starting any transactions on either the AHB or the USB. Do not make changes to this register after the initial programming. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. FD MOD FH MOD Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw rw 14 13 12 11 10 7 6 5 4 3 2 1 0 Res. PHY SEL Res. Res. Res. 15 Res. Res. Note: 30 29 Res. FD MOD FH MOD rw rw 15 14 13 PHYL PC Res. Note: 8 TRDT SRP CAP rw rw rw TOCAL r rw Configuration register for USB OTG FS 31 rw 9 HNP CAP 28 27 26 25 ULPI IPD PTCI PCCI rw rw rw rw rw 9 8 7 6 5 HNP CAP SRP CAP Res. PHY SEL Res. rw rw Res. Res. Res. 12 11 10 TRDT[3:0] rw rw rw rw 24 23 22 21 20 19 18 17 16 ULPI CSM ULPI AR ULPI FSL Res. rw rw rw rw 4 3 2 1 Res. Res. ULPIE ULPIE TSDPS VBUSI VBUSD rw 0 TOCAL[2:0] rw rw rw Configuration register for USB OTG HS Bit 31 Reserved, must be kept at reset value. Bit 30 FDMOD: Force device mode Writing a 1 to this bit, forces the core to device mode irrespective of the OTG_ID input pin. 0: Normal mode 1: Force device mode After setting the force bit, the application must wait at least 25 ms before the change takes effect. Note: Accessible in both device and host modes. Bit 29 FHMOD: Force host mode Writing a 1 to this bit, forces the core to host mode irrespective of the OTG_ID input pin. 0: Normal mode 1: Force host mode After setting the force bit, the application must wait at least 25 ms before the change takes effect. Note: Accessible in both device and host modes. Bits 28:26 Reserved, must be kept at reset value. RM0385 Rev 7 1367/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 25 ULPIIPD: ULPI interface protect disable for USB OTG HS This bit controls the circuitry built in the PHY to protect the ULPI interface when the link tristates stp and data. Any pull-up or pull-down resistors employed by this feature can be disabled. Refer to the ULPI specification for more details. 0: Enables the interface protection circuit 1: Disables the interface protection circuit Bit 24 PTCI: Indicator pass through for USB OTG HS This bit controls whether the complement output is qualified with the internal VBUS valid comparator before being used in the VBUS state in the RX CMD. Refer to the ULPI specification for more details. 0: Complement Output signal is qualified with the Internal VBUS valid comparator 1: Complement Output signal is not qualified with the Internal VBUS valid comparator Bit 23 PCCI: Indicator complement for USB OTG HS This bit controls the PHY to invert the ExternalVbusIndicator input signal, and generate the complement output. Refer to the ULPI specification for more details. 0: PHY does not invert the ExternalVbusIndicator signal 1: PHY inverts ExternalVbusIndicator signal Bit 22 TSDPS: TermSel DLine pulsing selection for USB OTG HS This bit selects utmi_termselect to drive the data line pulse during SRP (session request protocol). 0: Data line pulsing using utmi_txvalid (default) 1: Data line pulsing using utmi_termsel Bit 21 ULPIEVBUSI: ULPI external VBUS indicator for USB OTG HS This bit indicates to the ULPI PHY to use an external VBUS overcurrent indicator. 0: PHY uses an internal VBUS valid comparator 1: PHY uses an external VBUS valid comparator Bit 20 ULPIEVBUSD: ULPI External VBUS Drive for USB OTG HS This bit selects between internal or external supply to drive 5 V on VBUS, in the ULPI PHY. 0: PHY drives VBUS using internal charge pump (default) 1: PHY drives VBUS using external supply. Bit 19 ULPICSM: ULPI clock SuspendM for USB OTG HS This bit sets the ClockSuspendM bit in the interface control register on the ULPI PHY. This bit applies only in the serial and carkit modes. 0: PHY powers down the internal clock during suspend 1: PHY does not power down the internal clock Bit 18 ULPIAR: ULPI Auto-resume for USB OTG HS This bit sets the AutoResume bit in the interface control register on the ULPI PHY. 0: PHY does not use AutoResume feature 1: PHY uses AutoResume feature Bit 17 ULPIFSLS: ULPI FS/LS select for USB OTG HS The application uses this bit to select the FS/LS serial interface for the ULPI PHY. This bit is valid only when the FS serial transceiver is selected on the ULPI PHY. 0: ULPI interface 1: ULPI FS/LS serial interface Bit 16 Reserved, must be kept at reset value. 1368/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 15 PHYLPC: PHY Low-power clock select for USB OTG HS This bit selects either 480 MHz or 48 MHz (low-power) PHY mode. In FS and LS modes, the PHY can usually operate on a 48 MHz clock to save power. 0: 480 MHz internal PLL clock 1: 48 MHz external clock In 480 MHz mode, the UTMI interface operates at either 60 or 30 MHz, depending on whether the 8- or 16-bit data width is selected. In 48 MHz mode, the UTMI interface operates at 48 MHz in FS and LS modes. Bit 14 Reserved, must be kept at reset value. Bits 13:10 TRDT[3:0]: USB turnaround time These bits allows to set the turnaround time in PHY clocks. They must be configured according to Table 266: TRDT values (FS) or Table 267: TRDT values (HS), depending on the application AHB frequency. Higher TRDT values allow stretching the USB response time to IN tokens in order to compensate for longer AHB read access latency to the data FIFO. Note: Only accessible in device mode. Bit 9 HNPCAP: HNP-capable The application uses this bit to control the OTG_FS/OTG_HS controller’s HNP capabilities. 0: HNP capability is not enabled. 1: HNP capability is enabled. Note: Accessible in both device and host modes. Bit 8 SRPCAP: SRP-capable The application uses this bit to control the OTG_FS/OTG_HS controller’s SRP capabilities. If the core operates as a non-SRP-capable B-device, it cannot request the connected A-device (host) to activate VBUS and start a session. 0: SRP capability is not enabled. 1: SRP capability is enabled. Note: Accessible in both device and host modes. Bit 7 Reserved, must be kept at reset value. Bit 6 PHYSEL: Full Speed serial transceiver select for USB OTG FS This bit is always 1 with read-only access. Bit 6 PHYSEL: Full speed serial transceiver select for USB OTG HS 0: USB 2.0 external ULPI high-speed PHY. 1: USB 1.1 full-speed serial transceiver. Bit 5 Reserved, must be kept at reset value. Bit 4 Reserved, must be kept at reset value. Bit 3 Reserved, must be kept at reset value. Bits 2:0 TOCAL[2:0]: FS timeout calibration The number of PHY clocks that the application programs in this field is added to the fullspeed interpacket timeout duration in the core to account for any additional delays introduced by the PHY. This can be required, because the delay introduced by the PHY in generating the line state condition can vary from one PHY to another. The USB standard timeout value for full-speed operation is 16 to 18 (inclusive) bit times. The application must program this field based on the speed of enumeration. The number of bit times added per PHY clock is 0.25 bit times. RM0385 Rev 7 1369/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Table 266. TRDT values (FS) AHB frequency range (MHz) TRDT minimum value Min Max 14.2 15 0xF 15 16 0xE 16 17.2 0xD 17.2 18.5 0xC 18.5 20 0xB 20 21.8 0xA 21.8 24 0x9 24 27.5 0x8 27.5 32 0x7 32 - 0x6 Table 267. TRDT values (HS) AHB frequency range (MHz) TRDT minimum value 37.15.5 Min Max 30 - 0x9 OTG reset register (OTG_GRSTCTL) Address offset: 0x10 Reset value: 0x8000 0000 The application uses this register to reset various hardware features inside the core. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 AHB IDL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r 15 Res. r 14 Res. Note: 1370/1709 13 Res. 12 Res. 11 Res. 10 9 8 7 5 4 3 TXFNUM TXF FLSH RXF FLSH Res. rw rs rs Configuration register for USB OTG FS RM0385 Rev 7 6 2 1 0 FCRST PSRST CSRST rs rs r RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 AHB IDL DMAR EQ Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 13 12 11 10 9 8 7 6 1 0 r r 15 14 Res. Res. Res. Res. Res. TXFNUM[4:0] rw Note: rw rw rw rw 5 4 3 2 TXF FLSH RXF FLSH Res. Res. rs rs PSRST CSRST rs rs Configuration register for USB OTG HS Bit 31 AHBIDL: AHB master idle Indicates that the AHB master state machine is in the Idle condition. Note: Accessible in both device and host modes. Bits 30:11 Reserved, must be kept at reset value for USB OTG FS. Bit 30 DMAREQ: DMA request signal enabled for USB OTG HS This bit indicates that the DMA request is in progress. Used for debug. Bits 29:11 Reserved, must be kept at reset value for USB OTG HS. Bits 10:6 TXFNUM[4:0]: Tx FIFO number This is the FIFO number that must be flushed using the Tx FIFO Flush bit. This field must not be changed until the core clears the Tx FIFO Flush bit. 00000: – Non-periodic Tx FIFO flush in host mode – Tx FIFO 0 flush in device mode 00001: – Periodic Tx FIFO flush in host mode – Tx FIFO 1 flush in device mode 00010: Tx FIFO 2 flush in device mode ... 01111: Tx FIFO 15 flush in device mode 10000: Flush all the transmit FIFOs in device or host mode. Note: Accessible in both device and host modes. Bit 5 TXFFLSH: Tx FIFO flush This bit selectively flushes a single or all transmit FIFOs, but cannot do so if the core is in the midst of a transaction. The application must write this bit only after checking that the core is neither writing to the Tx FIFO nor reading from the Tx FIFO. Verify using these registers: Read—NAK Effective interrupt ensures the core is not reading from the FIFO Write—AHBIDL bit in OTG_GRSTCTL ensures the core is not writing anything to the FIFO. Flushing is normally recommended when FIFOs are reconfigured. FIFO flushing is also recommended during device endpoint disable. The application must wait until the core clears this bit before performing any operations. This bit takes eight clocks to clear, using the slower clock of phy_clk or hclk. Note: Accessible in both device and host modes. RM0385 Rev 7 1371/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 4 RXFFLSH: Rx FIFO flush The application can flush the entire Rx FIFO using this bit, but must first ensure that the core is not in the middle of a transaction. The application must only write to this bit after checking that the core is neither reading from the Rx FIFO nor writing to the Rx FIFO. The application must wait until the bit is cleared before performing any other operations. This bit requires 8 clocks (slowest of PHY or AHB clock) to clear. Note: Accessible in both device and host modes. Bit 3 Reserved, must be kept at reset value. Bit 2 FCRST: Host frame counter reset for USB OTG FS The application writes this bit to reset the frame number counter inside the core. When the frame counter is reset, the subsequent SOF sent out by the core has a frame number of 0. When application writes '1' to the bit, it might not be able to read back the value as it will get cleared by the core in a few clock cycles. Note: Only accessible in host mode. Bit 2 Reserved, must be kept at reset value for USB OTG HS. Bit 1 PSRST: Partial soft reset Resets the internal state machines but keeps the enumeration info. Could be used to recover some specific PHY errors. Note: Accessible in both device and host modes. Bit 0 CSRST: Core soft reset Resets the HCLK and PHY clock domains as follows: Clears the interrupts and all the CSR register bits except for the following bits: – GATEHCLK bit in OTG_PCGCCTL – STPPCLK bit in OTG_PCGCCTL – FSLSPCS bits in OTG_HCFG – DSPD bit in OTG_DCFG – SDIS bit in OTG_DCTL – OTG_GCCFG register All module state machines (except for the AHB slave unit) are reset to the Idle state, and all the transmit FIFOs and the receive FIFO are flushed. Any transactions on the AHB Master are terminated as soon as possible, after completing the last data phase of an AHB transfer. Any transactions on the USB are terminated immediately. The application can write to this bit any time it wants to reset the core. This is a self-clearing bit and the core clears this bit after all the necessary logic is reset in the core, which can take several clocks, depending on the current state of the core. Once this bit has been cleared, the software must wait at least 3 PHY clocks before accessing the PHY domain (synchronization delay). The software must also check that bit 31 in this register is set to 1 (AHB Master is Idle) before starting any operation. Typically, the software reset is used during software development and also when the user dynamically changes the PHY selection bits in the above listed USB configuration registers. When you change the PHY, the corresponding clock for the PHY is selected and used in the PHY domain. Once a new clock is selected, the PHY domain has to be reset for proper operation. Note: Accessible in both device and host modes. 1372/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.6 OTG core interrupt register (OTG_GINTSTS) Address offset: 0x014 Reset value: 0x1400 0020 This register interrupts the application for system-level events in the current mode (device mode or host mode). Some of the bits in this register are valid only in host mode, while others are valid in device mode only. This register also indicates the current mode. To clear the interrupt status bits of the rc_w1 type, the application must write 1 into the bit. The FIFO status interrupts are read-only; once software reads from or writes to the FIFO while servicing these interrupts, FIFO interrupt conditions are cleared automatically. The application must clear the OTG_GINTSTS register at initialization before unmasking the interrupt bit to avoid any interrupts generated prior to initialization. 31 30 29 28 27 26 25 WKUP INT SRQ INT DISC INT CIDS CHG LPM INT rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 r 15 14 13 12 11 10 EOPF ISOO DRP ENUM DNE USB RST USB SUSP ESUSP Res. rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Note: 31 24 23 22 21 20 19 18 17 16 Res. IPXFR/ IN COMP ISO OUT IISOI XFR OEP INT IEPINT Res. Res. HPRT INT RST DET r r rc_w1 rc_w1 rc_w1 r r 9 8 7 6 5 4 3 2 1 0 Res. GO NAK EFF GI NAK EFF NPTXF E RXF LVL SOF OTG INT MMIS CMOD r r r r rc_w1 r rc_w1 r 23 22 21 PTXFE HCINT Configuration register for USB OTG FS 30 29 28 27 26 25 24 19 18 17 16 IISOI XFR OEP INT IEPINT Res. Res. WKUP INT SRQ INT DISC INT CIDS CHG rc_w1 rc_w1 rc_w1 rc_w1 r r r rc_w1 rc_w1 rc_w1 r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EOPF ISOO DRP ENUM DNE USB RST USB SUSP ESUSP Res. Res. GO NAK EFF GI NAK EFF NPTXF E RXF LVL SOF OTG INT MMIS CMOD rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 r r r r rc_w1 r rc_w1 r Note: Res. PTXFE HCINT HPRT INT 20 IPXFR/ IN DATAF COMP SUSP ISO OUT Res. Configuration register for USB OTG HS RM0385 Rev 7 1373/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 31 WKUPINT: Resume/remote wakeup detected interrupt Wakeup interrupt during suspend(L2) or LPM(L1) state. – During suspend(L2): In device mode, this interrupt is asserted when a resume is detected on the USB. In host mode, this interrupt is asserted when a remote wakeup is detected on the USB. – During LPM(L1): This interrupt is asserted for either host initiated resume or device initiated remote wakeup on USB. Note: Accessible in both device and host modes. Bit 30 SRQINT: Session request/new session detected interrupt In host mode, this interrupt is asserted when a session request is detected from the device. In device mode, this interrupt is asserted when VBUS is in the valid range for a B-peripheral device. Accessible in both device and host modes. Bit 29 DISCINT: Disconnect detected interrupt Asserted when a device disconnect is detected. Note: Only accessible in host mode. Bit 28 CIDSCHG: Connector ID status change The core sets this bit when there is a change in connector ID status. Note: Accessible in both device and host modes. Bit 27 LPMINT: LPM interrupt In device mode, this interrupt is asserted when the device receives an LPM transaction and responds with a non-ERRORed response. In host mode, this interrupt is asserted when the device responds to an LPM transaction with a non-ERRORed response or when the host core has completed LPM transactions for the programmed number of times (RETRYCNT bit in OTG_GLPMCFG). This field is valid only if the LPMEN bit in OTG_GLPMCFG is set to 1. Bit 27 Reserved, must be kept at reset value for USB OTG FS. Bit 26 PTXFE: Periodic Tx FIFO empty Asserted when the periodic transmit FIFO is either half or completely empty and there is space for at least one entry to be written in the periodic request queue. The half or completely empty status is determined by the periodic Tx FIFO empty level bit in the OTG_GAHBCFG register (PTXFELVL bit in OTG_GAHBCFG). Note: Only accessible in host mode. Bit 25 HCINT: Host channels interrupt The core sets this bit to indicate that an interrupt is pending on one of the channels of the core (in host mode). The application must read the OTG_HAINT register to determine the exact number of the channel on which the interrupt occurred, and then read the corresponding OTG_HCINTx register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the OTG_HCINTx register to clear this bit. Note: Only accessible in host mode. Bit 24 HPRTINT: Host port interrupt The core sets this bit to indicate a change in port status of one of the OTG_FS/OTG_HS controller ports in host mode. The application must read the OTG_HPRT register to determine the exact event that caused this interrupt. The application must clear the appropriate status bit in the OTG_HPRT register to clear this bit. Note: Only accessible in host mode. 1374/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 23 RSTDET: Reset detected interrupt In device mode, this interrupt is asserted when a reset is detected on the USB in partial power-down mode when the device is in suspend. Note: Only accessible in device mode. Bit 23 Reserved, must be kept at reset value for USB OTG HS. Bit 22 Reserved, must be kept at reset value for USB OTG FS. Bit 22 DATAFSUSP: Data fetch suspended for USB OTG HS This interrupt is valid only in DMA mode. This interrupt indicates that the core has stopped fetching data for IN endpoints due to the unavailability of TxFIFO space or request queue space. This interrupt is used by the application for an endpoint mismatch algorithm. For example, after detecting an endpoint mismatch, the application: – Sets a global nonperiodic IN NAK handshake – Disables IN endpoints – Flushes the FIFO – Determines the token sequence from the IN token sequence learning queue – Re-enables the endpoints Clears the global nonperiodic IN NAK handshake If the global nonperiodic IN NAK is cleared, the core has not yet fetched data for the IN endpoint, and the IN token is received: the core generates an “IN token received when FIFO empty” interrupt. The OTG then sends a NAK response to the host. To avoid this scenario, the application can check the FetSusp interrupt in OTG_GINTSTS, which ensures that the FIFO is full before clearing a global NAK handshake. Alternatively, the application can mask the “IN token received when FIFO empty” interrupt when clearing a global IN NAK handshake. Bit 21 IPXFR: Incomplete periodic transfer In host mode, the core sets this interrupt bit when there are incomplete periodic transactions still pending, which are scheduled for the current frame. INCOMPISOOUT: Incomplete isochronous OUT transfer In device mode, the core sets this interrupt to indicate that there is at least one isochronous OUT endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the End of periodic frame interrupt (EOPF) bit in this register. Bit 20 IISOIXFR: Incomplete isochronous IN transfer The core sets this interrupt to indicate that there is at least one isochronous IN endpoint on which the transfer is not completed in the current frame. This interrupt is asserted along with the End of periodic frame interrupt (EOPF) bit in this register. Note: Only accessible in device mode. Bit 19 OEPINT: OUT endpoint interrupt The core sets this bit to indicate that an interrupt is pending on one of the OUT endpoints of the core (in device mode). The application must read the OTG_DAINT register to determine the exact number of the OUT endpoint on which the interrupt occurred, and then read the corresponding OTG_DOEPINTx register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the corresponding OTG_DOEPINTx register to clear this bit. Note: Only accessible in device mode. RM0385 Rev 7 1375/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 18 IEPINT: IN endpoint interrupt The core sets this bit to indicate that an interrupt is pending on one of the IN endpoints of the core (in device mode). The application must read the OTG_DAINT register to determine the exact number of the IN endpoint on which the interrupt occurred, and then read the corresponding OTG_DIEPINTx register to determine the exact cause of the interrupt. The application must clear the appropriate status bit in the corresponding OTG_DIEPINTx register to clear this bit. Note: Only accessible in device mode. Bits 17:16 Reserved, must be kept at reset value. Bit 15 EOPF: End of periodic frame interrupt Indicates that the period specified in the periodic frame interval field of the OTG_DCFG register (PFIVL bit in OTG_DCFG) has been reached in the current frame. Note: Only accessible in device mode. Bit 14 ISOODRP: Isochronous OUT packet dropped interrupt The core sets this bit when it fails to write an isochronous OUT packet into the Rx FIFO because the Rx FIFO does not have enough space to accommodate a maximum size packet for the isochronous OUT endpoint. Note: Only accessible in device mode. Bit 13 ENUMDNE: Enumeration done The core sets this bit to indicate that speed enumeration is complete. The application must read the OTG_DSTS register to obtain the enumerated speed. Note: Only accessible in device mode. Bit 12 USBRST: USB reset The core sets this bit to indicate that a reset is detected on the USB. Note: Only accessible in device mode. Bit 11 USBSUSP: USB suspend The core sets this bit to indicate that a suspend was detected on the USB. The core enters the suspended state when there is no activity on the data lines for an extended period of time. Note: Only accessible in device mode. Bit 10 ESUSP: Early suspend The core sets this bit to indicate that an Idle state has been detected on the USB for 3 ms. Note: Only accessible in device mode. Bits 9:8 Reserved, must be kept at reset value. Bit 7 GONAKEFF: Global OUT NAK effective Indicates that the Set global OUT NAK bit in the OTG_DCTL register (SGONAK bit in OTG_DCTL), set by the application, has taken effect in the core. This bit can be cleared by writing the Clear global OUT NAK bit in the OTG_DCTL register (CGONAK bit in OTG_DCTL). Note: Only accessible in device mode. 1376/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 6 GINAKEFF: Global IN non-periodic NAK effective Indicates that the Set global non-periodic IN NAK bit in the OTG_DCTL register (SGINAK bit in OTG_DCTL), set by the application, has taken effect in the core. That is, the core has sampled the Global IN NAK bit set by the application. This bit can be cleared by clearing the Clear global non-periodic IN NAK bit in the OTG_DCTL register (CGINAK bit in OTG_DCTL). This interrupt does not necessarily mean that a NAK handshake is sent out on the USB. The STALL bit takes precedence over the NAK bit. Note: Only accessible in device mode. Bit 5 NPTXFE: Non-periodic Tx FIFO empty This interrupt is asserted when the non-periodic Tx FIFO is either half or completely empty, and there is space for at least one entry to be written to the non-periodic transmit request queue. The half or completely empty status is determined by the non-periodic Tx FIFO empty level bit in the OTG_GAHBCFG register (TXFELVL bit in OTG_GAHBCFG). Note: Accessible in host mode only. Bit 4 RXFLVL: Rx FIFO non-empty Indicates that there is at least one packet pending to be read from the Rx FIFO. Note: Accessible in both host and device modes. Bit 3 SOF: Start of frame In host mode, the core sets this bit to indicate that an SOF (FS), or Keep-Alive (LS) is transmitted on the USB. The application must write a 1 to this bit to clear the interrupt. In device mode, in the core sets this bit to indicate that an SOF token has been received on the USB. The application can read the OTG_DSTS register to get the current frame number. This interrupt is seen only when the core is operating in FS. Note: This register may return '1' if read immediately after power on reset. If the register bit reads '1' immediately after power on reset it does not indicate that an SOF has been sent (in case of host mode) or SOF has been received (in case of device mode). The read value of this interrupt is valid only after a valid connection between host and device is established. If the bit is set after power on reset the application can clear the bit. Note: Accessible in both host and device modes. Bit 2 OTGINT: OTG interrupt The core sets this bit to indicate an OTG protocol event. The application must read the OTG interrupt status (OTG_GOTGINT) register to determine the exact event that caused this interrupt. The application must clear the appropriate status bit in the OTG_GOTGINT register to clear this bit. Note: Accessible in both host and device modes. Bit 1 MMIS: Mode mismatch interrupt The core sets this bit when the application is trying to access: – A host mode register, when the core is operating in device mode – A device mode register, when the core is operating in host mode The register access is completed on the AHB with an OKAY response, but is ignored by the core internally and does not affect the operation of the core. Note: Accessible in both host and device modes. Bit 0 CMOD: Current mode of operation Indicates the current mode. 0: Device mode 1: Host mode Note: Accessible in both host and device modes. RM0385 Rev 7 1377/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.7 RM0385 OTG interrupt mask register (OTG_GINTMSK) Address offset: 0x018 Reset value: 0x0000 0000 This register works with the core interrupt register to interrupt the application. When an interrupt bit is masked, the interrupt associated with that bit is not generated. However, the core interrupt (OTG_GINTSTS) register bit corresponding to that interrupt is still set. 31 WUIM 30 SRQIM 29 28 DISCIN CIDSC T HGM 27 26 LPMIN PTXFE TM M 25 24 23 HCIM PRTIM RSTDE TM rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 EOPF M ISOOD RPM Res. Res. rw rw Note: 31 WUIM ENUM USBRS USBSU ESUSP DNEM T SPM M rw rw rw rw 22 21 20 Res. IPXFR M/IISO OXFR M IISOIX FRM rw rw rw rw 5 4 3 2 6 GONA GINAK NPTXF RXFLV KEFFM EFFM EM LM rw rw 23 19 18 OEPIN IEPINT T SOFM 17 16 Res. Res. 1 0 OTGIN MMISM T Res. rw rw rw rw rw 22 21 20 19 18 17 16 IISOIX FRM Res. Res. 1 0 Configuration register for USB OTG FS 30 SRQIM 29 28 DISCIN CIDSC T HGM 27 26 LPMIN PTXFE TM M 25 HCIM 24 PRTIM RSTDE TM FSUS PM IPXFR M/IISO OXFR M OEPIN IEPINT T rw rw rw rw rw rw rw r rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 EOPF M ISOOD RPM Res. Res. rw rw Note: ENUM USBRS USBSU ESUSP DNEM T SPM M rw rw rw rw GONA GINAK NPTXF RXFLV KEFFM EFFM EM LM rw rw rw rw Configuration register for USB OTG HS Bit 31 WUIM: Resume/remote wakeup detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 30 SRQIM: Session request/new session detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 29 DISCINT: Disconnect detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 28 CIDSCHGM: Connector ID status change mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. 1378/1709 RM0385 Rev 7 SOFM rw OTGIN MMISM T rw rw Res. RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 27 LPMINTM: LPM interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both host and device modes. Bit 26 PTXFEM: Periodic Tx FIFO empty mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 25 HCIM: Host channels interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 24 PRTIM: Host port interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 23 RSTDETM: Reset detected interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 22 Reserved, must be kept at reset value for USB OTG FS. Bit 22 FSUSPM: Data fetch suspended mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Only accessible in peripheral mode. Bit 21 IPXFRM: Incomplete periodic transfer mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. IISOOXFRM: Incomplete isochronous OUT transfer mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 20 IISOIXFRM: Incomplete isochronous IN transfer mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 19 OEPINT: OUT endpoints interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 18 IEPINT: IN endpoints interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. RM0385 Rev 7 1379/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 17:16 Reserved, must be kept at reset value. Bit 15 EOPFM: End of periodic frame interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 14 ISOODRPM: Isochronous OUT packet dropped interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 13 ENUMDNEM: Enumeration done mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 12 USBRST: USB reset mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 11 USBSUSPM: USB suspend mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 10 ESUSPM: Early suspend mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bits 9:8 Reserved, must be kept at reset value. Bit 7 GONAKEFFM: Global OUT NAK effective mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 6 GINAKEFFM: Global non-periodic IN NAK effective mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in device mode. Bit 5 NPTXFEM: Non-periodic Tx FIFO empty mask 0: Masked interrupt 1: Unmasked interrupt Note: Only accessible in host mode. Bit 4 RXFLVLM: Receive FIFO non-empty mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. 1380/1709 RM0385 Rev 7 RM0385 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 3 SOFM: Start of frame mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 2 OTGINT: OTG interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 1 MMISM: Mode mismatch interrupt mask 0: Masked interrupt 1: Unmasked interrupt Note: Accessible in both device and host modes. Bit 0 Reserved, must be kept at reset value. 37.15.8 OTG receive status debug read/OTG status read and pop registers (OTG_GRXSTSR/OTG_GRXSTSP) Address offset for read: 0x01C Address offset for pop: 0x020 Reset value: 0x0000 0000 A read to the receive status debug read register returns the contents of the top of the receive FIFO. A read to the receive status read and pop register additionally pops the top data entry out of the Rx FIFO. The receive status contents must be interpreted differently in host and device modes. The core ignores the receive status pop/read when the receive FIFO is empty and returns a value of 0x0000 0000. The application must only pop the receive status FIFO when the receive FIFO non-empty bit of the core interrupt register (RXFLVL bit in OTG_GINTSTS) is asserted. Host mode: 31 30 29 28 27 26 25 24 23 22 21 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 DPID r 9 8 7 6 5 20 19 r r r r r 17 PKTSTS[3:0] 16 DPID r r r r r 4 3 2 1 0 BCNT[10:0] r 18 CHNUM[3:0] r r RM0385 Rev 7 r r r r r r r 1381/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 31:21 Reserved, must be kept at reset value. Bits 20:17 PKTSTS[3:0]: Packet status Indicates the status of the received packet 0010: IN data packet received 0011: IN transfer completed (triggers an interrupt) 0101: Data toggle error (triggers an interrupt) 0111: Channel halted (triggers an interrupt) Others: Reserved Bits 16:15 DPID: Data PID Indicates the data PID of the received packet 00: DATA0 10: DATA1 01: DATA2 11: MDATA Bits 14:4 BCNT[10:0]: Byte count Indicates the byte count of the received IN data packet. Bits 3:0 CHNUM[3:0]: Channel number Indicates the channel number to which the current received packet belongs. 1382/1709 RM0385 Rev 7 RM0385 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Device mode: 31 30 29 28 27 26 25 Res. Res. 10 9 Res. Res. Res. Res. STSPH ST 15 14 13 12 11 24 r 22 21 20 FRMNUM[3:0] r DPID[0] 23 19 r r r r r 17 PKTSTS[3:0] 16 DPID[1] r r r r r r r r r 8 7 6 5 4 3 2 1 0 BCNT[10:0] r 18 EPNUM[3:0] r r r r r r r r r Bits 31:28 Reserved, must be kept at reset value. Bit 27 STSPHST: Status phase start Indicates the start of the status phase for a control write transfer. This bit is set along with the OUT transfer completed PKTSTS pattern. Bits 26:25 Reserved, must be kept at reset value. Bits 24:21 FRMNUM[3:0]: Frame number This is the least significant 4 bits of the frame number in which the packet is received on the USB. This field is supported only when isochronous OUT endpoints are supported. Bits 20:17 PKTSTS[3:0]: Packet status Indicates the status of the received packet 0001: Global OUT NAK (triggers an interrupt) 0010: OUT data packet received 0011: OUT transfer completed (triggers an interrupt) 0100: SETUP transaction completed (triggers an interrupt) 0110: SETUP data packet received Others: Reserved Bits 16:15 DPID[1:0]: Data PID Indicates the data PID of the received OUT data packet 00: DATA0 10: DATA1 01: DATA2 11: MDATA Bits 14:4 BCNT[10:0]: Byte count Indicates the byte count of the received data packet. Bits 3:0 EPNUM[3:0]: Endpoint number Indicates the endpoint number to which the current received packet belongs. RM0385 Rev 7 1383/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.9 RM0385 OTG receive FIFO size register (OTG_GRXFSIZ) Address offset: 0x024 Reset value: 0x0000 0200 for USB OTG FS Reset value: 0x0000 0400 for USB OTG HS The application can program the RAM size that must be allocated to the Rx FIFO. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw RXFD[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 RXFD[15:0]: Rx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Maximum value is 1024 Programmed values must respect the available FIFO memory allocation and must not exceed the power-on value. 37.15.10 OTG host non-periodic transmit FIFO size register (OTG_HNPTXFSIZ)/Endpoint 0 Transmit FIFO size (OTG_DIEPTXF0) Address offset: 0x028 Reset value: 0x0200 0200 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 NPTXFD/TX0FD[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw NPTXFSA/TX0FSA[15:0] rw rw rw rw rw rw rw rw rw Host mode Bits 31:16 NPTXFD[15:0]: Non-periodic Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Programmed values must respect the available FIFO memory allocation and must not exceed the power-on value. Bits 15:0 NPTXFSA[15:0]: Non-periodic transmit RAM start address This field configures the memory start address for non-periodic transmit FIFO RAM. 1384/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Device mode Bits 31:16 TX0FD: Endpoint 0 Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Programmed values must respect the available FIFO memory allocation and must not exceed the power-on value. Bits 15:0 TX0FSA: Endpoint 0 transmit RAM start address This field configures the memory start address for the endpoint 0 transmit FIFO RAM. 37.15.11 OTG non-periodic transmit FIFO/queue status register (OTG_HNPTXSTS) Address offset: 0x02C Reset value: 0x0008 0200 for USB OTG FS Reset value: 0x0008 0400 for USB OTG HS Note: In device mode, this register is not valid. This read-only register contains the free space information for the non-periodic Tx FIFO and the non-periodic transmit request queue. 31 30 29 28 Res. 15 27 26 25 24 23 22 21 NPTXQTOP[6:0] 20 19 18 17 16 NPTQXSAV[7:0] r r r r r r r r r r r r r r r 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r NPTXFSAV[15:0] r r r r r r r r r RM0385 Rev 7 1385/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 31 Reserved, must be kept at reset value. Bits 30:24 NPTXQTOP[6:0]: Top of the non-periodic transmit request queue Entry in the non-periodic Tx request queue that is currently being processed by the MAC. Bits 30:27: Channel/endpoint number Bits 26:25: 00: IN/OUT token 01: Zero-length transmit packet (device IN/host OUT) 11: Channel halt command Bit 24: Terminate (last entry for selected channel/endpoint) Bits 23:16 NPTQXSAV[7:0]: Non-periodic transmit request queue space available Indicates the amount of free space available in the non-periodic transmit request queue. This queue holds both IN and OUT requests. 0: Non-periodic transmit request queue is full 1: 1 location available 2: locations available n: n locations available (0 ≤ n ≤ 8) Others: Reserved Bits 15:0 NPTXFSAV[15:0]: Non-periodic Tx FIFO space available Indicates the amount of free space available in the non-periodic Tx FIFO. Values are in terms of 32-bit words. 0: Non-periodic Tx FIFO is full 1: 1 word available 2: 2 words available n: n words available (where 0 ≤ n ≤ 512) Others: Reserved 37.15.12 OTG general core configuration register (OTG_GCCFG) Address offset: 0x038 Reset value: 0x0000 XXXX 31 30 29 28 27 26 25 24 23 22 21 VBDEN 20 19 18 Res. Res. DCD EN 17 16 Res. PWR DWN Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DCDET rw rw rw r Bits 31:22 Reserved, must be kept at reset value. Bit 21 VBDEN: USB VBUS detection enable Enables VBUS sensing comparators to detect VBUS valid levels on the VBUS PAD for USB host and device operation. If HNP and/or SRP support is enabled, VBUS comparators are automatically enabled independently of VBDEN value. 0 = VBUS detection disabled 1 = VBUS detection enabled Bits 20:19 Reserved, must be kept at reset value. 1386/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 18 DCDEN: Data contact detection (DCD) mode enable This bit is set by the software to put the BCD into DCD mode. Only one detection mode (DCD, PD, SD or OFF) should be selected to work correctly. Bit 17 Reserved, must be kept at reset value. Bit 16 PWRDWN: Power down control Used to activate the transceiver in transmission/reception. When reset, the transceiver is kept in power-down. 0 = USB FS transceiver disabled 1 = USB FS transceiver enabled Bits 15:4 Reserved, must be kept at reset value. Bits 3:1 Reserved, must be kept at reset value. Bit 0 DCDET: Data contact detection (DCD) status This bit gives the result of DCD. 0: data lines contact not detected 1: data lines contact detected 37.15.13 OTG core ID register (OTG_CID) Address offset: 0x03C Reset value: 0x0000 2000 for USB OTG FS Reset value: 0x0000 2100 for USB OTG HS This is a register containing the Product ID as reset value. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PRODUCT_ID[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw 18 17 16 PRODUCT_ID[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 PRODUCT_ID[31:0]: Product ID field Application-programmable ID field. 37.15.14 OTG core LPM configuration register (OTG_GLPMCFG) Address offset: 0x54 Reset value: 0x0000 0000 31 30 29 28 Res. Res. Res. EN BESL rw r r r rs rw rw rw rw rw rw rw r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 L1SS EN REM WAKE LPM ACK LPM EN rw rw/r rw rw SLP STS r LPMRSP[1:0] r r 27 25 LPMRCNTSTS[2:0] L1DS EN rw 26 24 SND LPM BESLTHRS[3:0] rw rw rw 23 rw 22 21 20 LPMRCNT[2:0] RM0385 Rev 7 19 L1RSM OK LPMCHIDX[3:0] BESL[3:0] rw/r rw/r rw/r rw/r 1387/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bits 31:29 Reserved, must be kept at reset value. Bit 28 ENBESL: Enable best effort service latency This bit enables the BESL feature as defined in the LPM errata: 0:The core works as described in the following document: USB 2.0 Link Power Management Addendum Engineering Change Notice to the USB 2.0 specification, July 16, 2007 1:The core works as described in the LPM Errata: Errata for USB 2.0 ECN: Link Power Management (LPM) - 7/2007 Note: Only the updated behavior (described in LPM Errata) is considered in this document and so the ENBESL bit should be set to '1' by application SW. Bits 27:25 LPMRCNTSTS[2:0]: LPM retry count status Number of LPM host retries still remaining to be transmitted for the current LPM sequence. Note: Accessible only in host mode. Bit 24 SNDLPM: Send LPM transaction When the application software sets this bit, an LPM transaction containing two tokens, EXT and LPM is sent. The hardware clears this bit once a valid response (STALL, NYET, or ACK) is received from the device or the core has finished transmitting the programmed number of LPM retries. Note: This bit must be set only when the host is connected to a local port. Note: Accessible only in host mode. Bits 23:21 LPMRCNT:[2:0] LPM retry count When the device gives an ERROR response, this is the number of additional LPM retries that the host performs until a valid device response (STALL, NYET, or ACK) is received. Note: Accessible only in host mode. Bits 20:17 LPMCHIDX[3:0]: LPM Channel Index The channel number on which the LPM transaction has to be applied while sending an LPM transaction to the local device. Based on the LPM channel index, the core automatically inserts the device address and endpoint number programmed in the corresponding channel into the LPM transaction. Note: Accessible only in host mode. Bit 16 L1RSMOK: Sleep state resume OK Indicates that the device or host can start resume from Sleep state. This bit is valid in LPM sleep (L1) state. It is set in sleep mode after a delay of 50 μs (TL1Residency). This bit is reset when SLPSTS is 0. 1: The application or host can start resume from Sleep state 0: The application or host cannot start resume from Sleep state 1388/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 15 SLPSTS: Port sleep status Device mode: This bit is set as long as a Sleep condition is present on the USB bus. The core enters the Sleep state when an ACK response is sent to an LPM transaction and the TL1TokenRetry timer has expired. To stop the PHY clock, the application must set the STPPCLK bit in OTG_PCGCCTL, which asserts the PHY suspend input signal. The application must rely on SLPSTS and not ACK in LPMRSP to confirm transition into sleep. The core comes out of sleep: – When there is any activity on the USB linestate – When the application writes to the RWUSIG bit in OTG_DCTL or when the application resets or soft-disconnects the device. Host mode: The host transitions to Sleep (L1) state as a side-effect of a successful LPM transaction by the core to the local port with ACK response from the device. The read value of this bit reflects the current Sleep status of the port. The core clears this bit after: – The core detects a remote L1 wakeup signal, – The application sets the PRST bit or the PRES bit in the OTG_HPRT register, or – The application sets the L1Resume/ remote wakeup detected interrupt bit or disconnect detected interrupt bit in the core interrupt register (WKUPINT or DISCINT bit in OTG_GINTSTS, respectively). 0: Core not in L1 1: Core in L1 Bits 14:13 LPMRST[1:0]: LPM response Device mode: The response of the core to LPM transaction received is reflected in these two bits. Host mode: Handshake response received from local device for LPM transaction 11: ACK 10: NYET 01: STALL 00: ERROR (No handshake response) Bit 12 L1DSEN: L1 deep sleep enable Enables suspending the PHY in L1 Sleep mode. For maximum power saving during L1 Sleep mode, this bit should be set to '1' by application SW in all the cases. RM0385 Rev 7 1389/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bits11:8 BESLTHRS[3:0]: BESL threshold Device mode: The core puts the PHY into deep low power mode in L1 when BESL value is greater than or equal to the value defined in this field BESL_Thres[3:0]. Host mode: The core puts the PHY into deep low power mode in L1. BESLTHRS[3:0] specifies the time for which resume signaling is to be reflected by host (TL1HubDrvResume2) on the USB bus when it detects device initiated resume. BESLTHRS must not be programmed with a value greater than 1100b in host mode, because this exceeds maximum TL1HubDrvResume2. Thres[3:0] host mode resume signaling time (μs): 0000: 75 0001: 100 0010: 150 0011: 250 0100: 350 0101: 450 0110: 950 All other values: reserved Bit 7 L1SSEN: L1 Shallow Sleep enable Enables suspending the PHY in L1 Sleep mode. For maximum power saving during L1 Sleep mode, this bit should be set to '1' by application SW in all the cases. Bit 6 REMWAKE: bRemoteWake value Host mode: The value of remote wake up to be sent in the wIndex field of LPM transaction. Device mode (read-only): This field is updated with the received LPM token bRemoteWake bmAttribute when an ACK, NYET, or STALL response is sent to an LPM transaction. 1390/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 5:2 BESL[3:0]: Best effort service latency Host mode: The value of BESL to be sent in an LPM transaction. This value is also used to initiate resume for a duration TL1HubDrvResume1 for host initiated resume. Device mode (read-only): This field is updated with the received LPM token BESL bmAttribute when an ACK, NYET, or STALL response is sent to an LPM transaction. BESL[3:0]TBESL (μs) 0000: 125 0001: 150 0010: 200 0011: 300 0100: 400 0101: 500 0110: 1000 0111: 2000 1000: 3000 1001: 4000 1010: 5000 1011: 6000 1100: 7000 1101: 8000 1110: 9000 1111: 10000 Bit 1 LPMACK: LPM token acknowledge enable Handshake response to LPM token preprogrammed by device application software. 1: ACK Even though ACK is preprogrammed, the core device responds with ACK only on successful LPM transaction. The LPM transaction is successful if: – No PID/CRC5 errors in either EXT token or LPM token (else ERROR) – Valid bLinkState = 0001B (L1) received in LPM transaction (else STALL) – No data pending in transmit queue (else NYET). 0: NYET The preprogrammed software bit is over-ridden for response to LPM token when: – The received bLinkState is not L1 (STALL response), or – An error is detected in either of the LPM token packets because of corruption (ERROR response). Note: Accessible only in device mode. Bit 0 LPMEN: LPM support enable The application uses this bit to control the OTG_FS/OTG_HS core LPM capabilities. If the core operates as a non-LPM-capable host, it cannot request the connected device or hub to activate LPM mode. If the core operates as a non-LPM-capable device, it cannot respond to any LPM transactions. 0: LPM capability is not enabled 1: LPM capability is enabled RM0385 Rev 7 1391/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 37.15.15 OTG host periodic transmit FIFO size register (OTG_HPTXFSIZ) Address offset: 0x100 Reset value: 0x0200 0400 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PTXFSIZ[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw PTXSA[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 PTXFSIZ[15:0]: Host periodic Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Bits 15:0 PTXSA[15:0]: Host periodic Tx FIFO start address This field configures the memory start address for periodic transmit FIFO RAM. 37.15.16 OTG device IN endpoint transmit FIFO size register (OTG_DIEPTXFx) (x = 1..5[FS] /8[HS], where x is the FIFO number) Address offset: 0x104 + (x – 1) * 0x04 Reset value: 0x0200 0200 + (x * 0x200) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 INEPTXFD[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw INEPTXSA[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 INEPTXFD[15:0]: IN endpoint Tx FIFO depth This value is in terms of 32-bit words. Minimum value is 16 Bits 15:0 INEPTXSA[15:0]: IN endpoint FIFOx transmit RAM start address This field contains the memory start address for IN endpoint transmit FIFOx. The address must be aligned with a 32-bit memory location. 1392/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.17 Host-mode registers Bit values in the register descriptions are expressed in binary unless otherwise specified. Host-mode registers affect the operation of the core in the host mode. Host mode registers must not be accessed in device mode, as the results are undefined. Host mode registers can be categorized as follows: 37.15.18 OTG host configuration register (OTG_HCFG) Address offset: 0x400 Reset value: 0x0000 0000 This register configures the core after power-on. Do not make changes to this register after initializing the host. 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 Res. Res. Res. Res. Res. Res. Res. 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. FSLSS Res. r FSLSPCS[1:0] rw rw Bits 31:3 Reserved, must be kept at reset value. Bit 2 FSLSS: FS- and LS-only support The application uses this bit to control the core’s enumeration speed. Using this bit, the application can make the core enumerate as an FS host, even if the connected device supports HS traffic. Do not make changes to this field after initial programming. 1: FS/LS-only, even if the connected device can support HS (read-only). Bits 1:0 FSLSPCS[1:0]: FS/LS PHY clock select When the core is in FS host mode 01: PHY clock is running at 48 MHz Others: Reserved When the core is in LS host mode 00: Reserved 01: Select 48 MHz PHY clock frequency 10: Select 6 MHz PHY clock frequency 11: Reserved Note: The FSLSPCS must be set on a connection event according to the speed of the connected device (after changing this bit, a software reset must be performed). RM0385 Rev 7 1393/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 37.15.19 OTG host frame interval register (OTG_HFIR) Address offset: 0x404 Reset value: 0x0000 EA60 This register stores the frame interval information for the current speed to which the OTG_FS/OTG_HS controller has enumerated. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RLD CTRL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw FRIVL[15:0] rw rw rw rw rw rw rw rw rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 RLDCTRL: Reload control This bit allows dynamic reloading of the HFIR register during run time. 0: The HFIR can be dynamically reloaded during run time. 1: The HFIR cannot be reloaded dynamically This bit needs to be programmed during initial configuration and its value must not be changed during run time. Caution: RLDCTRL = 1 is not recommended. Bits 15:0 FRIVL[15:0]: Frame interval for USB OTG FS The value that the application programs to this field, specifies the interval between two consecutive SOFs (FS) or Keep-Alive tokens (LS). This field contains the number of PHY clocks that constitute the required frame interval. The application can write a value to this register only after the port enable bit of the host port control and status register (PENA bit in OTG_HPRT) has been set. If no value is programmed, the core calculates the value based on the PHY clock specified in the FS/LS PHY clock select field of the host configuration register (FSLSPCS in OTG_HCFG). Do not change the value of this field after the initial configuration, unless the RLDCTRL bit is set. In such case, the FRIVL is reloaded with each SOF event. – Frame interval = 1 ms × (FRIVL - 1) Bits 15:0 FRIVL[15:0]: Frame interval for USB OTG HS The value that the application programs to this field, specifies the interval between two consecutive micro-SOFs (HS) or Keep-Alive tokens (LS). This field contains the number of PHY clocks that constitute the required frame interval. The application can write a value to this register only after the port enable bit of the host port control and status register (PENA bit in OTG_HPRT) has been set. If no value is programmed, the core calculates the value based on the PHY clock specified in the FS/LS PHY clock select field of the host configuration register (FSLSPCS in OTG_HCFG). Do not change the value of this field after the initial configuration, unless the RLDCTRL bit is set. In such case, the FRIVL is reloaded with each SOF event. – Frame interval = 125 μs × (FRIVL - 1) in high speed operation (PHYSEL = 0) – Frame interval = 1 ms × (FRIVL - 1) in low/full speed operation (PHYSEL = 1) 1394/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.20 OTG host frame number/frame time remaining register (OTG_HFNUM) Address offset: 0x408 Reset value: 0x0000 3FFF This register indicates the current frame number. It also indicates the time remaining (in terms of the number of PHY clocks) in the current frame. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FTREM[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r FRNUM[15:0] r r r r r r r r r Bits 31:16 FTREM[15:0]: Frame time remaining Indicates the amount of time remaining in the current frame, in terms of PHY clocks. This field decrements on each PHY clock. When it reaches zero, this field is reloaded with the value in the Frame interval register and a new SOF is transmitted on the USB. Bits 15:0 FRNUM[15:0]: Frame number This field increments when a new SOF is transmitted on the USB, and is cleared to 0 when it reaches 0x3FFF. 37.15.21 OTG_Host periodic transmit FIFO/queue status register (OTG_HPTXSTS) Address offset: 0x410 Reset value: 0x0008 0100 This read-only register contains the free space information for the periodic Tx FIFO and the periodic transmit request queue. 31 30 29 28 27 26 25 24 23 22 21 PTXQTOP[7:0] 20 19 18 17 16 PTXQSAV[7:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r PTXFSAVL[15:0] r r r r r r r r r RM0385 Rev 7 1395/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bits 31:24 PTXQTOP[7:0]: Top of the periodic transmit request queue This indicates the entry in the periodic Tx request queue that is currently being processed by the MAC. This register is used for debugging. Bit 31: Odd/Even frame 0: send in even frame 1: send in odd frame Bits 30:27: Channel/endpoint number Bits 26:25: Type 00: IN/OUT 01: Zero-length packet 11: Disable channel command Bit 24: Terminate (last entry for the selected channel/endpoint) Bits 23:16 PTXQSAV[7:0]: Periodic transmit request queue space available Indicates the number of free locations available to be written in the periodic transmit request queue. This queue holds both IN and OUT requests. 00: Periodic transmit request queue is full 01: 1 location available 10: 2 locations available bxn: n locations available (0 ≤ n ≤ 8) Others: Reserved Bits 15:0 PTXFSAVL[15:0]: Periodic transmit data FIFO space available Indicates the number of free locations available to be written to in the periodic Tx FIFO. Values are in terms of 32-bit words 0000: Periodic Tx FIFO is full 0001: 1 word available 0010: 2 words available bxn: n words available (where 0 ≤ n ≤ PTXFD) Others: Reserved 37.15.22 OTG host all channels interrupt register (OTG_HAINT) Address offset: 0x414 Reset value: 0x0000 0000 When a significant event occurs on a channel, the host all channels interrupt register interrupts the application using the host channels interrupt bit of the core interrupt register (HCINT bit in OTG_GINTSTS). This is shown in Figure 468. There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in this register are set and cleared when the application sets and clears bits in the corresponding host channel-x interrupt register. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r HAINT[15:0] r r 1396/1709 r r r r r r r RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 HAINT[15:0]: Channel interrupts One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15 37.15.23 OTG host all channels interrupt mask register (OTG_HAINTMSK) Address offset: 0x418 Reset value: 0x0000 0000 The host all channel interrupt mask register works with the host all channel interrupt register to interrupt the application when an event occurs on a channel. There is one interrupt mask bit per channel, up to a maximum of 16 bits. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw HAINTM[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 HAINTM[15:0]: Channel interrupt mask 0: Masked interrupt 1: Unmasked interrupt One bit per channel: Bit 0 for channel 0, bit 15 for channel 15 RM0385 Rev 7 1397/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 37.15.24 OTG host port control and status register (OTG_HPRT) Address offset: 0x440 Reset value: 0x0000 0000 This register is available only in host mode. Currently, the OTG host supports only one port. A single register holds USB port-related information such as USB reset, enable, suspend, resume, connect status, and test mode for each port. It is shown in Figure 468. The rc_w1 bits in this register can trigger an interrupt to the application through the host port interrupt bit of the core interrupt register (HPRTINT bit in OTG_GINTSTS). On a port interrupt, the application must read this register and clear the bit that caused the interrupt. For the rc_w1 bits, the application must write a 1 to the bit to clear the interrupt. 31 Res. 15 30 29 Res. Res. 14 13 PTCTL[2:0] rw rw 28 Res. 12 PPWR rw rw 27 Res. 11 26 Res. 10 PLSTS[1:0] r r 25 Res. 9 Res. 24 Res. 23 Res. 8 7 22 Res. 21 Res. 20 Res. 19 Res. 18 PSPD[1:0] r rw 1 0 5 4 3 2 POCA PEN CHNG PENA r rc_w1 rc_w1 PRST PSUSP PRES rw rs rw rc_w1 16 PTCTL [3] r 6 POC CHNG 17 PCDET PCSTS rc_w1 r Bits 31:19 Reserved, must be kept at reset value. Bits 18:17 PSPD[1:0]: Port speed Indicates the speed of the device attached to this port. 01: Full speed 10: Low speed 11: Reserved 00: High speed Bits 16:13 PTCTL[3:0]: Port test control The application writes a nonzero value to this field to put the port into a Test mode, and the corresponding pattern is signaled on the port. 0000: Test mode disabled 0001: Test_J mode 0010: Test_K mode 0011: Test_SE0_NAK mode 0100: Test_Packet mode 0101: Test_Force_Enable Others: Reserved Bit 12 PPWR: Port power The application uses this field to control power to this port, and the core clears this bit on an overcurrent condition. 0: Power off 1: Power on Bits 11:10 PLSTS[1:0]: Port line status Indicates the current logic level USB data lines Bit 10: Logic level of OTG_DP Bit 11: Logic level of OTG_DM Bit 9 Reserved, must be kept at reset value. 1398/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 8 PRST: Port reset When the application sets this bit, a reset sequence is started on this port. The application must time the reset period and clear this bit after the reset sequence is complete. 0: Port not in reset 1: Port in reset The application must leave this bit set for a minimum duration of at least 10 ms to start a reset on the port. The application can leave it set for another 10 ms in addition to the required minimum duration, before clearing the bit, even though there is no maximum limit set by the USB standard. High speed: 50 ms Full speed/Low speed: 10 ms Bit 7 PSUSP: Port suspend The application sets this bit to put this port in suspend mode. The core only stops sending SOFs when this is set. To stop the PHY clock, the application must set the port clock stop bit, which asserts the suspend input pin of the PHY. The read value of this bit reflects the current suspend status of the port. This bit is cleared by the core after a remote wakeup signal is detected or the application sets the port reset bit or port resume bit in this register or the resume/remote wakeup detected interrupt bit or disconnect detected interrupt bit in the core interrupt register (WKUPINT or DISCINT in OTG_GINTSTS, respectively). 0: Port not in suspend mode 1: Port in suspend mode Bit 6 PRES: Port resume The application sets this bit to drive resume signaling on the port. The core continues to drive the resume signal until the application clears this bit. If the core detects a USB remote wakeup sequence, as indicated by the port resume/remote wakeup detected interrupt bit of the core interrupt register (WKUPINT bit in OTG_GINTSTS), the core starts driving resume signaling without application intervention and clears this bit when it detects a disconnect condition. The read value of this bit indicates whether the core is currently driving resume signaling. 0: No resume driven 1: Resume driven When LPM is enabled and the core is in L1 state, the behavior of this bit is as follow: 1. The application sets this bit to drive resume signaling on the port. 2. The core continues to drive the resume signal until a predetermined time specified in BESLTHRS[3:0] field of OTG_GLPMCFG register. 3. If the core detects a USB remote wakeup sequence, as indicated by the port L1Resume/Remote L1Wakeup detected interrupt bit of the core interrupt register (WKUPINT in OTG_GINTSTS), the core starts driving resume signaling without application intervention and clears this bit at the end of resume.This bit can be set or cleared by both the core and the application. This bit is cleared by the core even if there is no device connected to the host. Bit 5 POCCHNG: Port overcurrent change The core sets this bit when the status of the port overcurrent active bit (bit 4) in this register changes. Bit 4 POCA: Port overcurrent active Indicates the overcurrent condition of the port. 0: No overcurrent condition 1: Overcurrent condition Bit 3 PENCHNG: Port enable/disable change The core sets this bit when the status of the port enable bit 2 in this register changes. RM0385 Rev 7 1399/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 2 PENA: Port enable A port is enabled only by the core after a reset sequence, and is disabled by an overcurrent condition, a disconnect condition, or by the application clearing this bit. The application cannot set this bit by a register write. It can only clear it to disable the port. This bit does not trigger any interrupt to the application. 0: Port disabled 1: Port enabled Bit 1 PCDET: Port connect detected The core sets this bit when a device connection is detected to trigger an interrupt to the application using the host port interrupt bit in the core interrupt register (HPRTINT bit in OTG_GINTSTS). The application must write a 1 to this bit to clear the interrupt. Bit 0 PCSTS: Port connect status 0: No device is attached to the port 1: A device is attached to the port 37.15.25 OTG host channel x characteristics register (OTG_HCCHARx) (x = 0..15[HS] / 11[FS], where x = Channel number) Address offset: 0x500 + (x * 0x20) Reset value: 0x0000 0000 31 30 CHENA CHDIS 29 28 27 26 ODD FRM 25 24 23 22 DAD[6:0] 21 20 19 18 MCNT[1:0] EPTYP[1:0] 17 16 LSDEV Res. rs rs rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw EPDIR rw EPNUM[3:0] rw rw rw MPSIZ[10:0] rw rw rw rw rw rw rw Bit 31 CHENA: Channel enable This field is set by the application and cleared by the OTG host. 0: Channel disabled 1: Channel enabled Bit 30 CHDIS: Channel disable The application sets this bit to stop transmitting/receiving data on a channel, even before the transfer for that channel is complete. The application must wait for the Channel disabled interrupt before treating the channel as disabled. Bit 29 ODDFRM: Odd frame This field is set (reset) by the application to indicate that the OTG host must perform a transfer in an odd frame. This field is applicable for only periodic (isochronous and interrupt) transactions. 0: Even frame 1: Odd frame Bits 28:22 DAD[6:0]: Device address This field selects the specific device serving as the data source or sink. 1400/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 21:20 MCNT[1:0]: Multicount This field indicates to the host the number of transactions that must be executed per frame for this periodic endpoint. For non-periodic transfers, this field is not used 00: Reserved. This field yields undefined results 01: 1 transaction 10: 2 transactions per frame to be issued for this endpoint 11: 3 transactions per frame to be issued for this endpoint Note: This field must be set to at least 01. Bits 19:18 EPTYP[1:0]: Endpoint type Indicates the transfer type selected. 00: Control 01: Isochronous 10: Bulk 11: Interrupt Bit 17 LSDEV: Low-speed device This field is set by the application to indicate that this channel is communicating to a lowspeed device. Bit 16 Reserved, must be kept at reset value. Bit 15 EPDIR: Endpoint direction Indicates whether the transaction is IN or OUT. 0: OUT 1: IN Bits 14:11 EPNUM[3:0]: Endpoint number Indicates the endpoint number on the device serving as the data source or sink. Bits 10:0 MPSIZ[10:0]: Maximum packet size Indicates the maximum packet size of the associated endpoint. 37.15.26 OTG host channel x split control register (OTG_HCSPLTx) (x = 0..15, where x = Channel number) Address offset: 0x504 + (x * 0x20) Reset value: 0x0000 0000 Note: 31 SPLIT EN Configuration register applies only to USB OTG HS. 30 Res. 29 Res. 28 Res. 27 26 Res. Res. 25 Res. 24 Res. 23 Res. 22 Res. 21 Res. 20 19 Res. Res. 18 Res. 17 16 Res. COMP LSPLT rw rw 15 14 13 12 11 XACTPOS[1:0] rw rw 10 9 8 7 6 5 4 HUBADDR[6:0] rw rw rw rw 3 2 1 0 rw rw rw PRTADDR[6:0] rw rw rw RM0385 Rev 7 rw rw rw rw 1401/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 31 SPLITEN: Split enable The application sets this bit to indicate that this channel is enabled to perform split transactions. Bits 30:17 Reserved, must be kept at reset value. Bit 16 COMPLSPLT: Do complete split The application sets this bit to request the OTG host to perform a complete split transaction. Bits 15:14 XACTPOS[1:0]: Transaction position This field is used to determine whether to send all, first, middle, or last payloads with each OUT transaction. 11: All. This is the entire data payload of this transaction (which is less than or equal to 188 bytes) 10: Begin. This is the first data payload of this transaction (which is larger than 188 bytes) 00: Mid. This is the middle payload of this transaction (which is larger than 188 bytes) 01: End. This is the last payload of this transaction (which is larger than 188 bytes) Bits 13:7 HUBADDR[6:0]: Hub address This field holds the device address of the transaction translator’s hub. Bits 6:0 PRTADDR[6:0]: Port address This field is the port number of the recipient transaction translator. 37.15.27 OTG host channel x interrupt register (OTG_HCINTx) (x = 0..15[HS] / 11[FS], where x = Channel number) Address offset: 0x508 + (x * 0x20) Reset value: 0x0000 0000 This register indicates the status of a channel with respect to USB- and AHB-related events. It is shown in Figure 468. The application must read this register when the host channels interrupt bit in the core interrupt register (HCINT bit in OTG_GINTSTS) is set. Before the application can read this register, it must first read the host all channels interrupt (OTG_HAINT) register to get the exact channel number for the host channel-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_HAINT and OTG_GINTSTS registers. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DTERR FRM OR Res. ACK NAK STALL Res. CHH XFRC rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Res. Res. Note: 1402/1709 Res. Res. Res. BBERR TXERR rc_w1 rc_w1 Configuration register for USB OTG FS. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DTERR FRM OR CHH XFRC rc_w1 rc_w1 rc_w1 rc_w1 Res. Note: Res. Res. Res. Res. BBERR TXERR rc_w1 rc_w1 NYET ACK NAK STALL AHB ERR rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Configuration register for USB OTG HS. Bits 31:11 Reserved, must be kept at reset value. Bit 10 DTERR: Data toggle error. Bit 9 FRMOR: Frame overrun. Bit 8 BBERR: Babble error. Bit 7 TXERR: Transaction error. Indicates one of the following errors occurred on the USB. CRC check failure Timeout Bit stuff error False EOP Bit 6 Reserved, must be kept at reset value for USB OTG FS. Bit 6 NYET: Not yet ready response received interrupt for USB OTG HS. Bit 5 ACK: ACK response received/transmitted interrupt. Bit 4 NAK: NAK response received interrupt. Bit 3 STALL: STALL response received interrupt. Bit 2 Reserved, must be kept at reset value for USB OTG FS. Bit 2 AHBERR: AHB error for USB OTG HS This error is generated only in Internal DMA mode when an AHB error occurs during an AHB read/write operation. The application can read the corresponding DMA channel address register to get the error address. Bit 1 CHH: Channel halted. Indicates the transfer completed abnormally either because of any USB transaction error or in response to disable request by the application. Bit 0 XFRC: Transfer completed. Transfer completed normally without any errors. RM0385 Rev 7 1403/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 37.15.28 OTG host channel x interrupt mask register (OTG_HCINTMSKx) (x = 0..15[HS] / 11[FS], where x = Channel number) Address offset: 0x50C + (x * 0x20) Reset value: 0x0000 0000 This register reflects the mask for each channel status described in the previous section. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. DTERR M FRM ORM Res. ACKM NAKM STALL M Res. CHHM XFRC M rw rw rw rw rw rw rw Note: BBERR TXERR M M rw rw Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. DTERR M FRM ORM AHB ERRM CHHM XFRC M rw rw rw rw rw Res. Res. Note: Res. Res. BBERR TXERR M M rw rw NYET ACKM NAKM STALL M rw rw rw rw Configuration register for USB OTG HS Bits 31:11 Reserved, must be kept at reset value. Bit 10 DTERRM: Data toggle error mask. 0: Masked interrupt 1: Unmasked interrupt Bit 9 FRMORM: Frame overrun mask. 0: Masked interrupt 1: Unmasked interrupt Bit 8 BBERRM: Babble error mask. 0: Masked interrupt 1: Unmasked interrupt Bit 7 TXERRM: Transaction error mask. 0: Masked interrupt 1: Unmasked interrupt Bit 6 Reserved, must be kept at reset value for USB OTG FS. Bit 6 NYET: response received interrupt mask for USB OTG HS. 0: Masked interrupt 1: Unmasked interrupt 1404/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 5 ACKM: ACK response received/transmitted interrupt mask. 0: Masked interrupt 1: Unmasked interrupt Bit 4 NAKM: NAK response received interrupt mask. 0: Masked interrupt 1: Unmasked interrupt Bit 3 STALLM: STALL response received interrupt mask. 0: Masked interrupt 1: Unmasked interrupt Bit 2 AHBERRM: AHB error for USB OTG HS. 0: Masked interrupt 1: Unmasked interrupt Bit 2 Reserved, must be kept at reset value for USB OTG FS. Bit 1 CHHM: Channel halted mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed mask 0: Masked interrupt 1: Unmasked interrupt 37.15.29 OTG host channel x transfer size register (OTG_HCTSIZx) (x = 0..15[HS] / 11[FS], where x = Channel number) Address offset: 0x510 + (x * 0x20) Reset value: 0x0000 0000 31 Res. 15 30 29 28 27 26 25 DPID[1:0] 24 23 22 21 20 19 18 PKTCNT[9:0] 17 16 XFRSIZ[18:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw XFRSIZ[15:0] rw rw rw rw rw rw rw rw rw RM0385 Rev 7 1405/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 31 Reserved, must be kept at reset value. Bits 30:29 DPID[1:0]: Data PID The application programs this field with the type of PID to use for the initial transaction. The host maintains this field for the rest of the transfer. 00: DATA0 01: DATA2 10: DATA1 11: SETUP (control) / reserved[FS]MDATA[HS] (non-control) Bits 28:19 PKTCNT[9:0]: Packet count This field is programmed by the application with the expected number of packets to be transmitted (OUT) or received (IN). The host decrements this count on every successful transmission or reception of an OUT/IN packet. Once this count reaches zero, the application is interrupted to indicate normal completion. Bits 18:0 XFRSIZ[18:0]: Transfer size For an OUT, this field is the number of data bytes the host sends during the transfer. For an IN, this field is the buffer size that the application has reserved for the transfer. The application is expected to program this field as an integer multiple of the maximum packet size for IN transactions (periodic and non-periodic). 37.15.30 OTG host channel x DMA address register (OTG_HCDMAx) (x = 0..15, where x = Channel number) Address offset: 0x514 + (x * 0x20) Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DMAADDR[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAADDR[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DMAADDR[31:0]: DMA address This field holds the start address in the external memory from which the data for the endpoint must be fetched or to which it must be stored. This register is incremented on every AHB transaction. 37.15.31 Device-mode registers These registers must be programmed every time the core changes to device mode 1406/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.32 OTG device configuration register (OTG_DCFG) Address offset: 0x800 Reset value: 0x0220 0000 This register configures the core in device mode after power-on or after certain control commands or enumeration. Do not make changes to this register after initial programming. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ERRAT IM Res. Res. Res. NZLSO HSK rw PFIVL[1:0] rw Note: rw DAD[6:0] rw rw rw rw rw rw rw rw rw 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 Res. NZLSO HSK Configuration register for USB OTG FS 31 30 29 28 27 26 Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 ERRAT IM XCVR DLY rw rw Note: rw DSPD[1:0] Res. 25 24 PERSCHIVL[1:0] rw rw 9 8 PFIVL[1:0] rw rw DAD[6:0] rw rw rw rw rw rw rw rw DSPD[1:0] rw rw Configuration register for USB OTG HS Bits 31:16 Reserved, must be kept at reset value for USB OTG FS. Bits 31:26 Reserved, must be kept at reset value for USB OTG HS. Bits 25:24 PERSCHIVL[1:0]: Periodic schedule interval for USB OTG HS This field specifies the amount of time the Internal DMA engine must allocate for fetching periodic IN endpoint data. Based on the number of periodic endpoints, this value must be specified as 25, 50 or 75% of the (micro) frame. – When any periodic endpoints are active, the internal DMA engine allocates the specified amount of time in fetching periodic IN endpoint data – When no periodic endpoint is active, then the internal DMA engine services nonperiodic endpoints, ignoring this field – After the specified time within a (micro) frame, the DMA switches to fetching nonperiodic endpoints 00: 25% of (micro)frame 01: 50% of (micro)frame 10: 75% of (micro)frame 11: Reserved Bits 23:16 Reserved, must be kept at reset value for USB OTG HS. Bit 15 ERRATIM: Erratic error interrupt mask 1: Mask early suspend interrupt on erratic error 0: Early suspend interrupt is generated on erratic error RM0385 Rev 7 1407/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 14 XCVRDLY: Transceiver delay Enables or disables delay in ULPI timing during device chirp. 0: Disable delay (use default timing) 1: Enable delay to default timing, necessary for some ULPI PHYs Bit 13 Reserved, must be kept at reset value. Bits 12:11 PFIVL[1:0]: Periodic frame interval Indicates the time within a frame at which the application must be notified using the end of periodic frame interrupt. This can be used to determine if all the isochronous traffic for that frame is complete. 00: 80% of the frame interval 01: 85% of the frame interval 10: 90% of the frame interval 11: 95% of the frame interval Bits 10:4 DAD[6:0]: Device address The application must program this field after every SetAddress control command. Bit 3 Reserved, must be kept at reset value. Bit 2 NZLSOHSK: Non-zero-length status OUT handshake The application can use this field to select the handshake the core sends on receiving a nonzero-length data packet during the OUT transaction of a control transfer’s status stage. 1:Send a STALL handshake on a nonzero-length status OUT transaction and do not send the received OUT packet to the application. 0:Send the received OUT packet to the application (zero-length or nonzero-length) and send a handshake based on the NAK and STALL bits for the endpoint in the device endpoint control register. Bits 1:0 DSPD[1:0]: Device speed Indicates the speed at which the application requires the core to enumerate, or the maximum speed the application can support. However, the actual bus speed is determined only after the chirp sequence is completed, and is based on the speed of the USB host to which the core is connected. 00: Reserved 01: Reserved 10: Reserved 11: Full speed (USB 1.1 transceiver clock is 48 MHz) Bits 1:0 DSPD[1:0]: Device speed Indicates the speed at which the application requires the core to enumerate, or the maximum speed the application can support. However, the actual bus speed is determined only after the chirp sequence is completed, and is based on the speed of the USB host to which the core is connected. 00: High speed 01: Full speed using HS 10: Reserved 11: Full speed using internal FS PHY 1408/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.33 OTG device control register (OTG_DCTL) Address offset: 0x804 Reset value: 0x0000 0002 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DS BESL RJCT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. PO PRG DNE CGO NAK SGO NAK CGI NAK SGI NAK GON STS GIN STS SDIS RWU SIG rw w w w w r r rw rw rw TCTL[2:0] rw rw rw Bits 31:19 Reserved, must be kept at reset value. Bit 18 DSBESLRJCT: Deep sleep BESL reject Core rejects LPM request with BESL value greater than BESL threshold programmed. NYET response is sent for LPM tokens with BESL value greater than BESL threshold. By default, the deep sleep BESL reject feature is disabled. Bits 17:12 Reserved, must be kept at reset value. Bit 11 POPRGDNE: Power-on programming done The application uses this bit to indicate that register programming is completed after a wakeup from power down mode. Bit 10 CGONAK: Clear global OUT NAK Writing 1 to this field clears the Global OUT NAK. Bit 9 SGONAK: Set global OUT NAK Writing 1 to this field sets the Global OUT NAK. The application uses this bit to send a NAK handshake on all OUT endpoints. The application must set the this bit only after making sure that the Global OUT NAK effective bit in the core interrupt register (GONAKEFF bit in OTG_GINTSTS) is cleared. Bit 8 CGINAK: Clear global IN NAK Writing 1 to this field clears the Global IN NAK. Bit 7 SGINAK: Set global IN NAK Writing 1 to this field sets the Global non-periodic IN NAK.The application uses this bit to send a NAK handshake on all non-periodic IN endpoints. The application must set this bit only after making sure that the Global IN NAK effective bit in the core interrupt register (GINAKEFF bit in OTG_GINTSTS) is cleared. Bits 6:4 TCTL[2:0]: Test control 000: Test mode disabled 001: Test_J mode 010: Test_K mode 011: Test_SE0_NAK mode 100: Test_Packet mode 101: Test_Force_Enable Others: Reserved RM0385 Rev 7 1409/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 3 GONSTS: Global OUT NAK status 0:A handshake is sent based on the FIFO status and the NAK and STALL bit settings. 1:No data is written to the Rx FIFO, irrespective of space availability. Sends a NAK handshake on all packets, except on SETUP transactions. All isochronous OUT packets are dropped. Bit 2 GINSTS: Global IN NAK status 0:A handshake is sent out based on the data availability in the transmit FIFO. 1:A NAK handshake is sent out on all non-periodic IN endpoints, irrespective of the data availability in the transmit FIFO. Bit 1 SDIS: Soft disconnect The application uses this bit to signal the USB OTG core to perform a soft disconnect. As long as this bit is set, the host does not see that the device is connected, and the device does not receive signals on the USB. The core stays in the disconnected state until the application clears this bit. 0:Normal operation. When this bit is cleared after a soft disconnect, the core generates a device connect event to the USB host. When the device is reconnected, the USB host restarts device enumeration. 1:The core generates a device disconnect event to the USB host. Bit 0 RWUSIG: Remote wakeup signaling When the application sets this bit, the core initiates remote signaling to wake up the USB host. The application must set this bit to instruct the core to exit the suspend state. As specified in the USB 2.0 specification, the application must clear this bit 1 ms to 15 ms after setting it. If LPM is enabled and the core is in the L1 (sleep) state, when the application sets this bit, the core initiates L1 remote signaling to wake up the USB host. The application must set this bit to instruct the core to exit the sleep state. As specified in the LPM specification, the hardware automatically clears this bit 50 µs (TL1DevDrvResume) after being set by the application. The application must not set this bit when bRemoteWake from the previous LPM transaction is zero (refer to REMWAKE bit in GLPMCFG register). Table 268 contains the minimum duration (according to device state) for which the Soft disconnect (SDIS) bit must be set for the USB host to detect a device disconnect. To accommodate clock jitter, it is recommended that the application add some extra delay to the specified minimum duration. Table 268. Minimum duration for soft disconnect Operating speed 1410/1709 Device state Minimum duration Full speed Suspended 1 ms + 2.5 µs Full speed Idle 2.5 µs Full speed Not Idle or suspended (Performing transactions) 2.5 µs High speed Not Idle or suspended (Performing transactions) 125 µs RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.34 OTG device status register (OTG_DSTS) Address offset: 0x808 Reset value: 0x0000 0010 This register indicates the status of the core with respect to USB-related events. It must be read on interrupts from the device all interrupts (OTG_DAINT) register. 31 30 29 28 27 26 25 24 Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 r r r r r 21 20 19 18 17 16 r FNSOF[13:8] r r r r r r r 7 6 5 4 3 2 1 Res. r 22 DEVLNSTS[1:0] 8 FNSOF[7:0] r 23 Res. r Res. Res. EERR r ENUMSPD[1:0] r 0 SUSP STS r r Bits 31:24 Reserved, must be kept at reset value. Bits 23:22 DEVLNSTS[1:0]: Device line status Indicates the current logic level USB data lines. Bit [23]: Logic level of D+ Bit [22]: Logic level of DBits 21:8 FNSOF[13:0]: Frame number of the received SOF Bits 7:4 Reserved, must be kept at reset value. Bit 3 EERR: Erratic error The core sets this bit to report any erratic errors. Due to erratic errors, the OTG_FS/OTG_HS controller goes into suspended state and an interrupt is generated to the application with Early suspend bit of the OTG_GINTSTS register (ESUSP bit in OTG_GINTSTS). If the early suspend is asserted due to an erratic error, the application can only perform a soft disconnect recover. Bits 2:1 ENUMSPD[1:0]: Enumerated speed Indicates the speed at which the OTG_FS/OTG_HS controller has come up after speed detection through a chirp sequence. 01: Reserved 10: Reserved 11: Full speed (PHY clock is running at 48 MHz) Others: reserved Bit 0 SUSPSTS: Suspend status In device mode, this bit is set as long as a suspend condition is detected on the USB. The core enters the suspended state when there is no activity on the USB data lines for a period of 3 ms. The core comes out of the suspend: – When there is an activity on the USB data lines – When the application writes to the remote wakeup signaling bit in the OTG_DCTL register (RWUSIG bit in OTG_DCTL). RM0385 Rev 7 1411/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 37.15.35 OTG device IN endpoint common interrupt mask register (OTG_DIEPMSK) Address offset: 0x810 Reset value: 0x0000 0000 This register works with each of the OTG_DIEPINTx registers for all endpoints to generate an interrupt per IN endpoint. The IN endpoint interrupt for a specific status in the OTG_DIEPINTx register can be masked by writing to the corresponding bit in this register. Status bits are masked by default. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. NAKM Res. Res. Res. Res. TXFU RM Res. INEPN EM TOM Res. EPDM XFRC M rw rw rw Note: rw INEPN ITTXFE MM MSK rw rw rw rw Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. TXFU RM Res. INEPN EM TOM AHB ERRM EPDM XFRC M rw rw rw rw Res. Res. NAKM Res. Res. Res. rw Note: rw rw INEPN ITTXFE MM MSK rw Configuration register for USB OTG HS Bits 31:14 Reserved, must be kept at reset value. Bit 13 NAKM: NAK interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bits 12:10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bit 8 TXFURM: FIFO underrun mask 0: Masked interrupt 1: Unmasked interrupt Bit 7 Reserved, must be kept at reset value. Bit 6 INEPNEM: IN endpoint NAK effective mask 0: Masked interrupt 1: Unmasked interrupt Bit 5 INEPNMM: IN token received with EP mismatch mask 0: Masked interrupt 1: Unmasked interrupt 1412/1709 RM0385 Rev 7 rw RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 4 ITTXFEMSK: IN token received when Tx FIFO empty mask 0: Masked interrupt 1: Unmasked interrupt Bit 3 TOM: Timeout condition mask (Non-isochronous endpoints) 0: Masked interrupt 1: Unmasked interrupt Bit 2 AHBERRM: AHB error mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Bit 1 EPDM: Endpoint disabled interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed interrupt mask 0: Masked interrupt 1: Unmasked interrupt 37.15.36 OTG device OUT endpoint common interrupt mask register (OTG_DOEPMSK) Address offset: 0x814 Reset value: 0x0000 0000 This register works with each of the OTG_DOEPINTx registers for all endpoints to generate an interrupt per OUT endpoint. The OUT endpoint interrupt for a specific status in the OTG_DOEPINTx register can be masked by writing into the corresponding bit in this register. Status bits are masked by default. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. OUT PKT ERRM Res. STS PHSR XM Res. EPDM XFRC M rw rw Res. NYET MSK NAK MSK BERR M rw rw rw Note: Res. Res. Res. rw OTEPD STUPM M rw rw rw Configuration register for USB OTG FS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. OUT PKT ERRM EPDM XFRC M rw rw Res. Note: NYET MSK NAK MSK BERR M rw rw rw Res. Res. Res. rw STS B2B PHSR STUPM XM rw rw AHB OTEPD STUPM ERRM M rw rw rw Configuration register for USB OTG HS RM0385 Rev 7 1413/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bits 31:15 Reserved, must be kept at reset value. Bit 14 NYETMSK: NYET interrupt mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Bit 13 NAKMSK: NAK interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 12 BERRM: Babble error interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bits 11:10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bit 8 OUTPKTERRM: Out packet error mask 0: Masked interrupt 1: Unmasked interrupt Bit 7 Reserved, must be kept at reset value. Bit 6 B2BSTUPM: Back-to-back SETUP packets received mask for USB OTG HS Applies to control OUT endpoints only. 0: Masked interrupt 1: Unmasked interrupt Bit 5 STSPHSRXM: Status phase received for control write mask 0: Masked interrupt 1: Unmasked interrupt Bit 4 OTEPDM: OUT token received when endpoint disabled mask. Applies to control OUT endpoints only. 0: Masked interrupt 1: Unmasked interrupt Bit 3 STUPM: STUPM: SETUP phase done mask. Applies to control endpoints only. 0: Masked interrupt 1: Unmasked interrupt Bit 2 AHBERRM: AHB error mask for USB OTG HS 0: Masked interrupt 1: Unmasked interrupt Bit 1 EPDM: Endpoint disabled interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed interrupt mask 0: Masked interrupt 1: Unmasked interrupt 1414/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.37 OTG device all endpoints interrupt register (OTG_DAINT) Address offset: 0x818 Reset value: 0x0000 0000 When a significant event occurs on an endpoint, a OTG_DAINT register interrupts the application using the device OUT endpoints interrupt bit or device IN endpoints interrupt bit of the OTG_GINTSTS register (OEPINT or IEPINT in OTG_GINTSTS, respectively). There is one interrupt bit per endpoint, up to a maximum of 16 bits for OUT endpoints and 16 bits for IN endpoints. For a bidirectional endpoint, the corresponding IN and OUT interrupt bits are used. Bits in this register are set and cleared when the application sets and clears bits in the corresponding device endpoint-x interrupt register (OTG_DIEPINTx/OTG_DOEPINTx). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 OEPINT[15:0] r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r IEPINT[15:0] r r r r r r r r r Bits 31:16 OEPINT[15:0]: OUT endpoint interrupt bits One bit per OUT endpoint: Bit 16 for OUT endpoint 0, bit 19 for OUT endpoint 3. Bits 15:0 IEPINT[15:0]: IN endpoint interrupt bits One bit per IN endpoint: Bit 0 for IN endpoint 0, bit 3 for endpoint 3. 37.15.38 OTG all endpoints interrupt mask register (OTG_DAINTMSK) Address offset: 0x81C Reset value: 0x0000 0000 The OTG_DAINTMSK register works with the device endpoint interrupt register to interrupt the application when an event occurs on a device endpoint. However, the OTG_DAINT register bit corresponding to that interrupt is still set. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 OEPM[15:0] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw IEPM[15:0] rw rw rw rw rw rw rw rw rw RM0385 Rev 7 1415/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bits 31:16 OEPM[15:0]: OUT EP interrupt mask bits One per OUT endpoint: Bit 16 for OUT EP 0, bit 19 for OUT EP 3 0: Masked interrupt 1: Unmasked interrupt Bits 15:0 IEPM[15:0]: IN EP interrupt mask bits One bit per IN endpoint: Bit 0 for IN EP 0, bit 3 for IN EP 3 0: Masked interrupt 1: Unmasked interrupt 37.15.39 OTG device VBUS discharge time register (OTG_DVBUSDIS) Address offset: 0x0828 Reset value: 0x0000 17D7 This register specifies the VBUS discharge time after VBUS pulsing during SRP. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw VBUSDT[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 VBUSDT[15:0]: Device VBUS discharge time Specifies the VBUS discharge time after VBUS pulsing during SRP. This value equals: VBUS discharge time in PHY clocks / 1 024 Depending on your VBUS load, this value may need adjusting. 37.15.40 OTG device VBUS pulsing time register (OTG_DVBUSPULSE) Address offset: 0x082C Reset value: 0x0000 05B8 This register specifies the VBUS pulsing time during SRP. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DVBUSP[15:0] rw rw 1416/1709 rw rw rw rw rw rw rw RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 DVBUSP[15:0]: Device VBUS pulsing time. This feature is only relevant to OTG1.3. Specifies the VBUS pulsing time during SRP. This value equals: VBUS pulsing time in PHY clocks / 1 024 37.15.41 OTG device threshold control register (OTG_DTHRCTL) Address offset: 0x0830 Reset value: 0x0000 0000 Note: 31 Configuration register applies only to USB OTG HS 30 29 28 Res. Res. Res. Res. 15 14 13 12 27 ARPEN 26 Res. Res. Res. Res. 24 23 22 Res. rw 11 25 10 21 20 19 18 16 RXTH REN RXTHRLEN[8:0] rw rw rw rw rw rw rw rw rw 9 8 7 6 5 4 3 2 1 0 ISOT HREN NONIS OTH REN rw rw Res. TXTHRLEN[8:0] rw 17 rw rw rw rw rw rw rw rw rw Bits 31:28 Reserved, must be kept at reset value. Bit 27 ARPEN: Arbiter parking enable This bit controls internal DMA arbiter parking for IN endpoints. When thresholding is enabled and this bit is set to one, then the arbiter parks on the IN endpoint for which there is a token received on the USB. This is done to avoid getting into underrun conditions. By default parking is enabled. Bit 26 Reserved, must be kept at reset value. Bits 25:17 RXTHRLEN[8:0]: Receive threshold length This field specifies the receive thresholding size in 32-bit words. This field also specifies the amount of data received on the USB before the core can start transmitting on the AHB. The threshold length has to be at least eight 32-bit words. The recommended value for RXTHRLEN is to be the same as the programmed AHB burst length (HBSTLEN bit in OTG_GAHBCFG). Bit 16 RXTHREN: Receive threshold enable When this bit is set, the core enables thresholding in the receive direction. Bits 15:11 Reserved, must be kept at reset value. RM0385 Rev 7 1417/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bits 10:2 TXTHRLEN[8:0]: Transmit threshold length This field specifies the transmit thresholding size in 32-bit words. This field specifies the amount of data in bytes to be in the corresponding endpoint transmit FIFO, before the core can start transmitting on the USB. The threshold length has to be at least eight 32-bit words. This field controls both isochronous and nonisochronous IN endpoint thresholds. The recommended value for TXTHRLEN is to be the same as the programmed AHB burst length (HBSTLEN bit in OTG_GAHBCFG). Bit 1 ISOTHREN: ISO IN endpoint threshold enable When this bit is set, the core enables thresholding for isochronous IN endpoints. Bit 0 NONISOTHREN: Nonisochronous IN endpoints threshold enable When this bit is set, the core enables thresholding for nonisochronous IN endpoints. 37.15.42 OTG device IN endpoint FIFO empty interrupt mask register (OTG_DIEPEMPMSK) Address offset: 0x834 Reset value: 0x0000 0000 This register is used to control the IN endpoint FIFO empty interrupt generation (TXFE_OTG_DIEPINTx). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw INEPTXFEM[15:0] rw rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 INEPTXFEM[15:0]: IN EP Tx FIFO empty interrupt mask bits These bits act as mask bits for OTG_DIEPINTx. TXFE interrupt one bit per IN endpoint: Bit 0 for IN endpoint 0, bit 3 for IN endpoint 3 0: Masked interrupt 1: Unmasked interrupt 1418/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.43 OTG device each endpoint interrupt register (OTG_DEACHINT) Address offset: 0x0838 Reset value: 0x0000 0000 Note: 31 Configuration register applies only to USB OTG HS. 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OEP1 INT 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. IEP1 INT Res. r r Bits 31:18 Reserved, must be kept at reset value. Bit 17 OEP1INT: OUT endpoint 1 interrupt bit Bits 16:2 Reserved, must be kept at reset value. Bit 1 IEP1INT: IN endpoint 1interrupt bit Bit 0 Reserved, must be kept at reset value. 37.15.44 OTG device each endpoint interrupt mask register (OTG_DEACHINTMSK) Address offset: 0x083C Reset value: 0x0000 0000 There is one interrupt bit for endpoint 1 IN and one interrupt bit for endpoint 1 OUT. 31 Res. 30 Res. 29 Res. 28 Res. 27 Res. 26 Res. 25 Res. 24 Res. 23 Res. 22 Res. 21 Res. 20 Res. 19 Res. 18 17 16 Res. OEP1 INTM Res. rw 15 Res. 14 Res. 13 Res. 12 Res. 11 Res. 10 Res. 9 Res. 8 Res. 7 Res. 6 Res. 5 Res. 4 Res. 3 Res. 2 1 0 Res. IEP1I NTM Res. rw Bits 31:18 Reserved, must be kept at reset value. Bit 17 OEP1INTM: OUT endpoint 1 interrupt mask bit Bits 16:2 Reserved, must be kept at reset value. Bit 1 IEP1INTM: IN endpoint 1 interrupt mask bit Bit 0 Reserved, must be kept at reset value. Note: Configuration register applies only to USB OTG HS RM0385 Rev 7 1419/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 37.15.45 OTG device each IN endpoint-1 interrupt mask register (OTG_HS_DIEPEACHMSK1) Address offset: 0x844 Reset value: 0x0000 0000 This register works with the OTG_DIEPINT1 register to generate a dedicated interrupt OTG_HS_EP1_IN for endpoint #1. The IN endpoint interrupt for a specific status in the OTG_DOEPINT1 register can be masked by writing into the corresponding bit in this register. Status bits are masked by default. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. NAKM Res. Res. Res. Res. TXFU RM Res. INEPN EM Res. ITTXFE MSK TOM AHB ERRM EPDM XFRC M rw rw rw rw rw rw Note: rw rw Configuration register applies only to USB OTG HS Bits 31:14 Reserved, must be kept at reset value. Bit 13 NAKM: NAK interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bits 12:10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bit 8 TXFURM: FIFO underrun mask 0: Masked interrupt 1: Unmasked interrupt Bit 7 Reserved, must be kept at reset value. Bit 6 INEPNEM: IN endpoint NAK effective mask 0: Masked interrupt 1: Unmasked interrupt Bit 5 Reserved, must be kept at reset value. Bit 4 ITTXFEMSK: IN token received when Tx FIFO empty mask 0: Masked interrupt 1: Unmasked interrupt Bit 3 TOM: Timeout condition mask (Non-isochronous endpoints) 0: Masked interrupt 1: Unmasked interrupt 1420/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 2 AHBERRM: AHB error mask 0: Masked interrupt 1: Unmasked interrupt Bit 1 EPDM: Endpoint disabled interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed interrupt mask 0: Masked interrupt 1: Unmasked interrupt 37.15.46 OTG device each OUT endpoint-1 interrupt mask register (OTG_HS_DOEPEACHMSK1) Address offset: 0x884 Reset value: 0x0000 0000 This register works with the OTG_DOEPINT1 register to generate a dedicated interrupt OTG_HS_EP1_OUT for endpoint #1. The OUT endpoint interrupt for a specific status in the OTG_DOEPINT1 register can be masked by writing into the corresponding bit in this register. Status bits are masked by default. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. NYET MSK NAK MSK BERR M Res. Res. Res. OUT PKT ERRM Res. B2B STUPM Res. EPDM XFRC M rw rw rw rw rw Note: rw rw OTEPD AHB STUPM M ERRM rw rw rw Configuration register applies only to USB OTG HS Bits 31:15 Reserved, must be kept at reset value. Bit 14 NYETMSK: NYET interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 13 NAKMSK: NAK interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 12 BERRM: Babble error interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bits 11:10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bit 8 OUTPKTERRM: Out packet error mask 0: Masked interrupt 1: Unmasked interrupt RM0385 Rev 7 1421/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 7 Reserved, must be kept at reset value. Bit 6 B2BSTUPM: Back-to-back SETUP packets received mask Applies to control OUT endpoints only. 0: Masked interrupt 1: Unmasked interrupt Bit 5 Reserved, must be kept at reset value. Bit 4 OTEPDM: OUT token received when endpoint disabled mask Applies to control OUT endpoints only. 0: Masked interrupt 1: Unmasked interrupt Bit 3 STUPM: STUPM: SETUP phase done mask Applies to control endpoints only. 0: Masked interrupt 1: Unmasked interrupt Bit 2 AHBERRM: AHB error mask 0: Masked interrupt 1: Unmasked interrupt Bit 1 EPDM: Endpoint disabled interrupt mask 0: Masked interrupt 1: Unmasked interrupt Bit 0 XFRCM: Transfer completed interrupt mask 0: Masked interrupt 1: Unmasked interrupt 37.15.47 OTG device control IN endpoint 0 control register (OTG_DIEPCTL0) Address offset: 0x900 Reset value: 0x0000 0000 This section describes the OTG_DIEPCTL0 register for USB_OTG FS. Nonzero control endpoints use registers for endpoints 1–3. 31 30 EPENA EPDIS 29 Res. 28 Res. 27 26 25 24 23 22 TXFNUM[3:0] 21 SNAK CNAK STALL w w rw rw rw rw rs rs rs 15 14 13 12 11 10 9 8 7 6 5 USBA EP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r 1422/1709 20 19 Res. 18 EPTYP 17 16 NAK STS Res. r r r 4 3 2 1 Res. Res. Res. MPSIZ[1:0] rw RM0385 Rev 7 0 rw RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 31 EPENA: Endpoint enable The application sets this bit to start transmitting data on the endpoint 0. The core clears this bit before setting any of the following interrupts on this endpoint: – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application sets this bit to stop transmitting data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the endpoint disabled interrupt. The application must set this bit only if endpoint enable is already set for this endpoint. Bits 29:28 Reserved, must be kept at reset value. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for an endpoint after a SETUP packet is received on that endpoint. Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 TXFNUM[3:0]: Tx FIFO number This value is set to the FIFO number that is assigned to IN endpoint 0. Bit 21 STALL: STALL handshake The application can only set this bit, and the core clears it when a SETUP token is received for this endpoint. If a NAK bit, a Global IN NAK or Global OUT NAK is set along with this bit, the STALL bit takes priority. Bit 20 Reserved, must be kept at reset value. Bits 19:18 EPTYP: Endpoint type Hardcoded to ‘00’ for control. Bit 17 NAKSTS: NAK status Indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status 1: The core is transmitting NAK handshakes on this endpoint. When this bit is set, either by the application or core, the core stops transmitting data, even if there are data available in the Tx FIFO. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 16 Reserved, must be kept at reset value. RM0385 Rev 7 1423/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 15 USBAEP: USB active endpoint This bit is always set to 1, indicating that control endpoint 0 is always active in all configurations and interfaces. Bits 14:2 Reserved, must be kept at reset value. Bits 1:0 MPSIZ[1:0]: Maximum packet size The application must program this field with the maximum packet size for the current logical endpoint. 00: 64 bytes 01: 32 bytes 10: 16 bytes 11: 8 bytes Note: Configuration register applies only to USB OTG FS 37.15.48 OTG device IN endpoint x control register (OTG_DIEPCTLx) (x = 1..5[FS] / 0..8[HS], where x = endpoint number) Address offset: 0x900 + (x * 0x20) Reset value: 0x0000 0000 The application uses this register to control the behavior of each logical endpoint other than endpoint 0. 31 30 EPENA EPDIS 29 28 27 26 SODD FRM SD0 PID/ SEVN FRM SNAK CNAK 25 24 23 22 TXFNUM[3:0] 21 20 STALL Res. rs rs w w w w rw rw rw rw rw/rs 15 14 13 12 11 10 9 8 7 6 5 USBA EP Res. Res. Res. Res. rw 19 18 EPTYP[1:0] 17 16 NAK STS EO NUM/ DPID rw rw r r 4 3 2 1 0 rw rw rw rw rw MPSIZ[10:0] rw rw rw rw rw rw Bit 31 EPENA: Endpoint enable The application sets this bit to start transmitting data on an endpoint. The core clears this bit before setting any of the following interrupts on this endpoint: – SETUP phase done – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application sets this bit to stop transmitting/receiving data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the endpoint disabled interrupt. The application must set this bit only if endpoint enable is already set for this endpoint. Bit 29 SODDFRM: Set odd frame Applies to isochronous IN and OUT endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to odd frame. 1424/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 28 SD0PID: Set DATA0 PID Applies to interrupt/bulk IN endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA0. SEVNFRM: Set even frame Applies to isochronous IN endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to even frame. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for OUT endpoints on a transfer completed interrupt, or after a SETUP is received on the endpoint. Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 TXFNUM: Tx FIFO number These bits specify the FIFO number associated with this endpoint. Each active IN endpoint must be programmed to a separate FIFO number. This field is valid only for IN endpoints. Bit 21 STALL: STALL handshake Applies to non-control, non-isochronous IN endpoints only (access type is rw). The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Only the application can clear this bit, never the core. Applies to control endpoints only (access type is rs). The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 20 Reserved, must be kept at reset value. Bits 19:18 EPTYP[1:0]: Endpoint type This is the transfer type supported by this logical endpoint. 00: Control 01: Isochronous 10: Bulk 11: Interrupt Bit 17 NAKSTS: NAK status It indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status. 1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit: For non-isochronous IN endpoints: The core stops transmitting any data on an IN endpoint, even if there are data available in the Tx FIFO. For isochronous IN endpoints: The core sends out a zero-length data packet, even if there are data available in the Tx FIFO. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. RM0385 Rev 7 1425/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 16 EONUM: Even/odd frame Applies to isochronous IN endpoints only. Indicates the frame number in which the core transmits/receives isochronous data for this endpoint. The application must program the even/odd frame number in which it intends to transmit/receive isochronous data for this endpoint using the SEVNFRM and SODDFRM fields in this register. 0: Even frame 1: Odd frame DPID: Endpoint data PID Applies to interrupt/bulk IN endpoints only. Contains the PID of the packet to be received or transmitted on this endpoint. The application must program the PID of the first packet to be received or transmitted on this endpoint, after the endpoint is activated. The application uses the SD0PID register field to program either DATA0 or DATA1 PID. 0: DATA0 1: DATA1 Bit 15 USBAEP: USB active endpoint Indicates whether this endpoint is active in the current configuration and interface. The core clears this bit for all endpoints (other than EP 0) after detecting a USB reset. After receiving the SetConfiguration and SetInterface commands, the application must program endpoint registers accordingly and set this bit. Bits 14:11 Reserved, must be kept at reset value. Bits 10:0 MPSIZ[10:0]: Maximum packet size The application must program this field with the maximum packet size for the current logical endpoint. This value is in bytes. 37.15.49 OTG device IN endpoint x interrupt register (OTG_DIEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint number) Address offset: 0x908 + (x * 0x20) Reset value: 0x0000 0080 This register indicates the status of an endpoint with respect to USB- and AHB-related events. It is shown in Figure 468. The application must read this register when the IN endpoints interrupt bit of the core interrupt register (IEPINT in OTG_GINTSTS) is set. Before the application can read this register, it must first read the device all endpoints interrupt (OTG_DAINT) register to get the exact endpoint number for the device endpoint-x interrupt register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_DAINT and OTG_GINTSTS registers. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. TXFIF OUD RN TXFE IN EPNE IN ITTXFE EPNM TOC Res. EP DISD XFRC rc_w1 r r rc_w1 rc_w1 rc_w1 rc_w1 Res. Res. NAK rc_w1 Note: 1426/1709 Res. PKTD RPSTS rc_w1 Res. Configuration register for USB OTG FS RM0385 Rev 7 rc_w1 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. TXFIF OUD RN TXFE IN EPNE IN ITTXFE EPNM TOC AHB ERR EP DISD XFRC rc_w1 r r rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Res. Res. NAK rc_w1 Note: Res. PKTD RPSTS rc_w1 Res. rc_w1 Configuration register for USB OTG HS Bits 31:14 Reserved, must be kept at reset value. Bit 13 NAK: NAK input The core generates this interrupt when a NAK is transmitted or received by the device. In case of isochronous IN endpoints the interrupt gets generated when a zero length packet is transmitted due to unavailability of data in the Tx FIFO. Bit 12 Reserved, must be kept at reset value. Bit 11 PKTDRPSTS: Packet dropped status This bit indicates to the application that an ISOC OUT packet has been dropped. This bit does not have an associated mask bit and does not generate an interrupt. Bit 10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bit 8 TXFIFOUDRN: Transmit Fifo Underrun (TxfifoUndrn) The core generates this interrupt when it detects a transmit FIFO underrun condition for this endpoint. Dependency: This interrupt is valid only when Thresholding is enabled Bit 7 TXFE: Transmit FIFO empty This interrupt is asserted when the Tx FIFO for this endpoint is either half or completely empty. The half or completely empty status is determined by the Tx FIFO Empty Level bit in the OTG_GAHBCFG register (TXFELVL bit in OTG_GAHBCFG). Bit 6 INEPNE: IN endpoint NAK effective This bit can be cleared when the application clears the IN endpoint NAK by writing to the CNAK bit in OTG_DIEPCTLx. This interrupt indicates that the core has sampled the NAK bit set (either by the application or by the core). The interrupt indicates that the IN endpoint NAK bit set by the application has taken effect in the core. This interrupt does not guarantee that a NAK handshake is sent on the USB. A STALL bit takes priority over a NAK bit. Bit 5 INEPNM: IN token received with EP mismatch Indicates that the data in the top of the non-periodic TxFIFO belongs to an endpoint other than the one for which the IN token was received. This interrupt is asserted on the endpoint for which the IN token was received. Bit 4 ITTXFE: IN token received when Tx FIFO is empty Indicates that an IN token was received when the associated Tx FIFO (periodic/nonperiodic) was empty. This interrupt is asserted on the endpoint for which the IN token was received. RM0385 Rev 7 1427/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 3 TOC: Timeout condition Indicates that the core has detected a timeout condition on the USB for the last IN token on this endpoint. Bit 2 AHBERR: AHB error for USB OTG HS This is generated only in internal DMA mode when there is an AHB error during an AHB read/write. The application can read the corresponding endpoint DMA address register to get the error address. Bit 1 EPDISD: Endpoint disabled interrupt This bit indicates that the endpoint is disabled per the application’s request. Bit 0 XFRC: Transfer completed interrupt This field indicates that the programmed transfer is complete on the AHB as well as on the USB, for this endpoint. 37.15.50 OTG device IN endpoint 0 transfer size register (OTG_DIEPTSIZ0) Address offset: 0x910 Reset value: 0x0000 0000 The application must modify this register before enabling endpoint 0. Once endpoint 0 is enabled using the endpoint enable bit in the device control endpoint 0 control registers (EPENA in OTG_DIEPCTL0), the core modifies this register. The application can only read this register once the core has cleared the endpoint enable bit. Nonzero endpoints use the registers for endpoints 1–3. 31 30 29 28 27 26 25 24 23 22 21 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 Res. Res. Res. Res. Res. Res. Res. Res. Res. 20 19 PKTCNT[1:0] rw rw 4 3 18 17 16 Res. Res. Res. 2 1 0 rw rw rw XFRSIZ[6:0] rw rw rw rw Bits 31:21 Reserved, must be kept at reset value. Bits 20:19 PKTCNT[1:0]: Packet count Indicates the total number of USB packets that constitute the transfer size amount of data for endpoint 0. This field is decremented every time a packet (maximum size or short packet) is read from the Tx FIFO. Bits 18:7 Reserved, must be kept at reset value. Bits 6:0 XFRSIZ[6:0]: Transfer size Indicates the transfer size in bytes for endpoint 0. The core interrupts the application only after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet from the external memory is written to the Tx FIFO. 1428/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.51 OTG device IN endpoint x DMA address register (OTG_DIEPDMAx) (x = 0..8, where x = endpoint number) Address offset: 0x914 + (x * 0x20) Reset value: 0x0000 0000 Note: 31 Configuration register applies only to USB OTG HS 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DMAADDR[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAADDR[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DMAADDR[31:0]: DMA Address This field holds the start address in the external memory from which the data for the endpoint must be fetched. This register is incremented on every AHB transaction. 37.15.52 OTG device IN endpoint transmit FIFO status register (OTG_DTXFSTSx) (x = 0..5[FS] /8[HS], where x = endpoint number) Address offset for IN endpoints: 0x918 + (x * 0x20) This read-only register contains the free space information for the device IN endpoint Tx FIFO. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r INEPTFSAV[15:0] r r r r r r r r r Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 INEPTFSAV[15:0]: IN endpoint Tx FIFO space available Indicates the amount of free space available in the endpoint Tx FIFO. Values are in terms of 32-bit words: 0x0: Endpoint Tx FIFO is full 0x1: 1 word available 0x2: 2 words available 0xn: n words available Others: Reserved RM0385 Rev 7 1429/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 37.15.53 OTG device IN endpoint x transfer size register (OTG_DIEPTSIZx) (x = 1..5[FS] /8[HS], where x = endpoint number) Address offset: 0x910 + (x * 0x20) Reset value: 0x0000 0000 The application must modify this register before enabling the endpoint. Once the endpoint is enabled using the endpoint enable bit in the OTG_DIEPCTLx registers (EPENA bit in OTG_DIEPCTLx), the core modifies this register. The application can only read this register once the core has cleared the endpoint enable bit. 31 Res. 15 30 29 28 27 26 25 MCNT[1:0] 24 23 22 21 20 19 18 PKTCNT[9:0] 17 16 XFRSIZ[18:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw XFRSIZ[15:0] rw rw rw rw rw rw rw rw rw Bit 31 Reserved, must be kept at reset value. Bits 30:29 MCNT[1:0]: Multi count For periodic IN endpoints, this field indicates the number of packets that must be transmitted per frame on the USB. The core uses this field to calculate the data PID for isochronous IN endpoints. 01: 1 packet 10: 2 packets 11: 3 packets Bits 28:19 PKTCNT[9:0]: Packet count Indicates the total number of USB packets that constitute the transfer size amount of data for this endpoint. This field is decremented every time a packet (maximum size or short packet) is read from the Tx FIFO. Bits 18:0 XFRSIZ[18:0]: Transfer size This field contains the transfer size in bytes for the current endpoint. The core only interrupts the application after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet from the external memory is written to the Tx FIFO. 1430/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.15.54 OTG device control OUT endpoint 0 control register (OTG_DOEPCTL0) Address offset: 0xB00 Reset value: 0x0000 8000 This section describes the OTG_DOEPCTL0 register. Nonzero control endpoints use registers for endpoints 1–3. 31 30 EPENA EPDIS 29 Res. 28 Res. 27 26 SNAK CNAK w w 25 Res. 24 Res. 23 Res. 22 Res. 21 20 19 18 EPTYP[1:0] 17 16 NAK STS Res. STALL SNPM rs rw r r r 1 w r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 USBA EP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. r 0 MPSIZ[1:0] r r Bit 31 EPENA: Endpoint enable The application sets this bit to start transmitting data on endpoint 0. The core clears this bit before setting any of the following interrupts on this endpoint: – SETUP phase done – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application cannot disable control OUT endpoint 0. Bits 29:28 Reserved, must be kept at reset value. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit on a transfer completed interrupt, or after a SETUP is received on the endpoint. Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 Reserved, must be kept at reset value. Bit 21 STALL: STALL handshake The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 20 SNPM: Snoop mode This bit configures the endpoint to Snoop mode. In Snoop mode, the core does not check the correctness of OUT packets before transferring them to application memory. Bits 19:18 EPTYP[1:0]: Endpoint type Hardcoded to 2’b00 for control. RM0385 Rev 7 1431/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 17 NAKSTS: NAK status Indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status. 1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit, the core stops receiving data, even if there is space in the Rx FIFO to accommodate the incoming packet. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 16 Reserved, must be kept at reset value. Bit 15 USBAEP: USB active endpoint This bit is always set to 1, indicating that a control endpoint 0 is always active in all configurations and interfaces. Bits 14:2 Reserved, must be kept at reset value. Bits 1:0 MPSIZ[1:0]: Maximum packet size The maximum packet size for control OUT endpoint 0 is the same as what is programmed in control IN endpoint 0. 00: 64 bytes 01: 32 bytes 10: 16 bytes 11: 8 bytes 37.15.55 OTG device OUT endpoint x interrupt register (OTG_DOEPINTx) (x = 0..5[FS] /8[HS], where x = Endpoint number) Address offset: 0xB08 + (x * 0x20) Reset value: 0x0000 0080 This register indicates the status of an endpoint with respect to USB- and AHB-related events. It is shown in Figure 468. The application must read this register when the OUT endpoints interrupt bit of the OTG_GINTSTS register (OEPINT bit in OTG_GINTSTS) is set. Before the application can read this register, it must first read the OTG_DAINT register to get the exact endpoint number for the OTG_DOEPINTx register. The application must clear the appropriate bit in this register to clear the corresponding bits in the OTG_DAINT and OTG_GINTSTS registers. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. OUT PKT ERR Res. Res. STSPH SRX OTEP DIS STUP Res. EP DISD XFRC rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 Res. NYET NAK BERR rc_w1 rc_w1 rc_w1 Note: 1432/1709 Res. Res. rc_w1 Configuration register for USB OTG FS. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. OUT PKT ERR Res. B2B STUP STSPH SRX OTEP DIS STUP AHB ERR EP DISD XFRC rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 STPK TRX NYET NAK BERR rc_w1 rc_w1 rc_w1 rc_w1 Note: Res. Res. rc_w1 Configuration register for USB OTG HS. Bits 31:16 Reserved, must be kept at reset value. Bit 15 STPKTRX: Setup packet received. Applicable for control OUT endpoints in only in the Buffer DMA Mode. Set by the OTG_HS, this bit indicates that this buffer holds 8 bytes of setup data. There is only one setup packet per buffer. On receiving a setup packet, the OTG_HS closes the buffer and disables the corresponding endpoint after SETUP_COMPLETE status is seen in the Rx FIFO. OTG_HS puts a SETUP_COMPLETE status into the Rx FIFO when it sees the first IN or OUT token after the SETUP packet for that particular endpoint. The application must then re-enable the endpoint to receive any OUT data for the control transfer and reprogram the buffer start address. Because of the above behavior, OTG_HS can receive any number of back to back setup packets and one buffer for every setup packet is used. Bit 14 NYET: NYET interrupt This interrupt is generated when a NYET response is transmitted for a non isochronous OUT endpoint. Bit 13 NAK: NAK input The core generates this interrupt when a NAK is transmitted or received by the device. In case of isochronous IN endpoints the interrupt gets generated when a zero length packet is transmitted due to unavailability of data in the Tx FIFO. Bit 12 BERR: Babble error interrupt The core generates this interrupt when babble is received for the endpoint. Bits 11:10 Reserved, must be kept at reset value. Bit 9 Reserved, must be kept at reset value. Bit 8 OUTPKTERR: OUT packet error This interrupt is asserted when the core detects an overflow or a CRC error for an OUT packet. This interrupt is valid only when thresholding is enabled. Bit 7 Reserved, must be kept at reset value. Bit 6 B2BSTUP: Back-to-back SETUP packets received for USB OTG HS Applies to control OUT endpoint only. This bit indicates that the core has received more than three back-to-back SETUP packets for this particular endpoint. Bit 5 STSPHSRX: Status phase received for control write This interrupt is valid only for control OUT endpoints. This interrupt is generated only after OTG_FS/OTG_HS has transferred all the data that the host has sent during the data phase of a control write transfer, to the system memory buffer. The interrupt indicates to the application that the host has switched from data phase to the status phase of a control write transfer. The application can use this interrupt to ACK or STALL the status phase, after it has decoded the data phase. RM0385 Rev 7 1433/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 4 OTEPDIS: OUT token received when endpoint disabled Applies only to control OUT endpoints. Indicates that an OUT token was received when the endpoint was not yet enabled. This interrupt is asserted on the endpoint for which the OUT token was received. Bit 3 STUP: SETUP phase done Applies to control OUT endpoint only. Indicates that the SETUP phase for the control endpoint is complete and no more back-toback SETUP packets were received for the current control transfer. On this interrupt, the application can decode the received SETUP data packet. Bit 2 AHBERR: AHB error for USB OTG HS This is generated only in internal DMA mode when there is an AHB error during an AHB read/write. The application can read the corresponding endpoint DMA address register to get the error address. Bit 1 EPDISD: Endpoint disabled interrupt This bit indicates that the endpoint is disabled per the application’s request. Bit 0 XFRC: Transfer completed interrupt This field indicates that the programmed transfer is complete on the AHB as well as on the USB, for this endpoint. 37.15.56 OTG device OUT endpoint 0 transfer size register (OTG_DOEPTSIZ0) Address offset: 0xB10 Reset value: 0x0000 0000 The application must modify this register before enabling endpoint 0. Once endpoint 0 is enabled using the endpoint enable bit in the OTG_DOEPCTL0 registers (EPENA bit in OTG_DOEPCTL0), the core modifies this register. The application can only read this register once the core has cleared the endpoint enable bit. 31 Res. 30 29 STUPCNT[1:0] 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. PKTCNT Nonzero endpoints use the registers for endpoints 1–5[FS] /8[HS]. Res. Res. Res. 2 1 0 rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. 6 RM0385 Rev 7 4 3 XFRSIZ[6:0] rw 1434/1709 5 rw rw rw RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 31 Reserved, must be kept at reset value. Bits 30:29 STUPCNT[1:0]: SETUP packet count This field specifies the number of back-to-back SETUP data packets the endpoint can receive. 01: 1 packet 10: 2 packets 11: 3 packets Bits 28:20 Reserved, must be kept at reset value. Bit 19 PKTCNT: Packet count This field is decremented to zero after a packet is written into the Rx FIFO. Bits 18:7 Reserved, must be kept at reset value. Bits 6:0 XFRSIZ[6:0]: Transfer size Indicates the transfer size in bytes for endpoint 0. The core interrupts the application only after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet is read from the Rx FIFO and written to the external memory. 37.15.57 OTG device OUT endpoint x DMA address register (OTG_DOEPDMAx) (x = 0..8, where x = endpoint number) Address offset: 0xB14 + (x * 0x20) Reset value: 0x0000 0000 Note: 31 Configuration register applies only to USB OTG HS 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DMAADDR[31:16] rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw DMAADDR[15:0] rw rw rw rw rw rw rw rw rw Bits 31:0 DMAADDR[31:0]: DMA Address This field holds the start address in the external memory from which the data for the endpoint must be fetched. This register is incremented on every AHB transaction. RM0385 Rev 7 1435/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 37.15.58 OTG device OUT endpoint x control register (OTG_DOEPCTLx) (x = 1..5[FS] /8[HS], where x = endpoint number) Address offset for OUT endpoints: 0xB00 + (x * 0x20) Reset value: 0x0000 0000 The application uses this register to control the behavior of each logical endpoint other than endpoint 0. 31 30 EPENA EPDIS 29 28 27 26 25 24 23 22 21 20 SD1 PID/ SODD FRM SD0 PID/ SEVN FRM SNAK CNAK Res. Res. Res. Res. STALL SNPM rw/rs rw rw 5 4 rw rs rs w w w w 15 14 13 12 11 10 USBA EP Res. Res. Res. Res. rw 9 8 7 6 19 18 17 16 NAK STS EO NUM/ DPID rw r r 3 2 1 0 rw rw rw rw EPTYP[1:0] MPSIZ[10:0] rw rw rw rw rw rw Bit 31 EPENA: Endpoint enable Applies to IN and OUT endpoints. The application sets this bit to start transmitting data on an endpoint. The core clears this bit before setting any of the following interrupts on this endpoint: – SETUP phase done – Endpoint disabled – Transfer completed Bit 30 EPDIS: Endpoint disable The application sets this bit to stop transmitting/receiving data on an endpoint, even before the transfer for that endpoint is complete. The application must wait for the endpoint disabled interrupt before treating the endpoint as disabled. The core clears this bit before setting the endpoint disabled interrupt. The application must set this bit only if endpoint enable is already set for this endpoint. Bit 29 SD1PID: Set DATA1 PID Applies to interrupt/bulk IN and OUT endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA1. SODDFRM: Set odd frame Applies to isochronous IN and OUT endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to odd frame. Bit 28 SD0PID: Set DATA0 PID Applies to interrupt/bulk OUT endpoints only. Writing to this field sets the endpoint data PID (DPID) field in this register to DATA0. SEVNFRM: Set even frame Applies to isochronous OUT endpoints only. Writing to this field sets the Even/Odd frame (EONUM) field to even frame. Bit 27 SNAK: Set NAK A write to this bit sets the NAK bit for the endpoint. Using this bit, the application can control the transmission of NAK handshakes on an endpoint. The core can also set this bit for OUT endpoints on a transfer completed interrupt, or after a SETUP is received on the endpoint. 1436/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Bit 26 CNAK: Clear NAK A write to this bit clears the NAK bit for the endpoint. Bits 25:22 Reserved, must be kept at reset value. Bit 21 STALL: STALL handshake Applies to non-control, non-isochronous OUT endpoints only (access type is rw). The application sets this bit to stall all tokens from the USB host to this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Only the application can clear this bit, never the core. Applies to control endpoints only (access type is rs). The application can only set this bit, and the core clears it, when a SETUP token is received for this endpoint. If a NAK bit, Global IN NAK, or Global OUT NAK is set along with this bit, the STALL bit takes priority. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 20 SNPM: Snoop mode This bit configures the endpoint to Snoop mode. In Snoop mode, the core does not check the correctness of OUT packets before transferring them to application memory. Bits 19:18 EPTYP[1:0]: Endpoint type This is the transfer type supported by this logical endpoint. 00: Control 01: Isochronous 10: Bulk 11: Interrupt Bit 17 NAKSTS: NAK status Indicates the following: 0: The core is transmitting non-NAK handshakes based on the FIFO status. 1: The core is transmitting NAK handshakes on this endpoint. When either the application or the core sets this bit: The core stops receiving any data on an OUT endpoint, even if there is space in the Rx FIFO to accommodate the incoming packet. Irrespective of this bit’s setting, the core always responds to SETUP data packets with an ACK handshake. Bit 16 EONUM: Even/odd frame Applies to isochronous IN and OUT endpoints only. Indicates the frame number in which the core transmits/receives isochronous data for this endpoint. The application must program the even/odd frame number in which it intends to transmit/receive isochronous data for this endpoint using the SEVNFRM and SODDFRM fields in this register. 0: Even frame 1: Odd frame DPID: Endpoint data PID Applies to interrupt/bulk OUT endpoints only. Contains the PID of the packet to be received or transmitted on this endpoint. The application must program the PID of the first packet to be received or transmitted on this endpoint, after the endpoint is activated. The application uses the SD0PID register field to program either DATA0 or DATA1 PID. 0: DATA0 1: DATA1 RM0385 Rev 7 1437/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bit 15 USBAEP: USB active endpoint Indicates whether this endpoint is active in the current configuration and interface. The core clears this bit for all endpoints (other than EP 0) after detecting a USB reset. After receiving the SetConfiguration and SetInterface commands, the application must program endpoint registers accordingly and set this bit. Bits 14:11 Reserved, must be kept at reset value. Bits 10:0 MPSIZ[10:0]: Maximum packet size The application must program this field with the maximum packet size for the current logical endpoint. This value is in bytes. 37.15.59 OTG device OUT endpoint x transfer size register (OTG_DOEPTSIZx) (x = 1..5[FS] /8[HS], where x = Endpoint number) Address offset: 0xB10 + (x * 0x20) Reset value: 0x0000 0000 The application must modify this register before enabling the endpoint. Once the endpoint is enabled using endpoint enable bit of the OTG_DOEPCTLx registers (EPENA bit in OTG_DOEPCTLx), the core modifies this register. The application can only read this register once the core has cleared the endpoint enable bit. 31 Res. 15 30 29 28 27 26 25 RXDPID/ STUPCNT[1:0] 24 23 22 21 20 19 18 PKTCNT[9:0] 17 16 XFRSIZ r/rw r/rw rw rw rw rw rw rw rw rw rw rw rw rw rw 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw XFRSIZ rw rw rw rw rw rw rw rw rw Bit 31 Reserved, must be kept at reset value. Bits 30:29 RXDPID[1:0]: Received data PID Applies to isochronous OUT endpoints only. This is the data PID received in the last packet for this endpoint. 00: DATA0 01: DATA2 10: DATA1 11: MDATA 1438/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) STUPCNT[1:0]: SETUP packet count Applies to control OUT endpoints only. This field specifies the number of back-to-back SETUP data packets the endpoint can receive. 01: 1 packet 10: 2 packets 11: 3 packets Bits 28:19 PKTCNT[9:0]: Packet count Indicates the total number of USB packets that constitute the transfer size amount of data for this endpoint. This field is decremented every time a packet (maximum size or short packet) is written to the Rx FIFO. Bits 18:0 XFRSIZ: Transfer size This field contains the transfer size in bytes for the current endpoint. The core only interrupts the application after it has exhausted the transfer size amount of data. The transfer size can be set to the maximum packet size of the endpoint, to be interrupted at the end of each packet. The core decrements this field every time a packet is read from the Rx FIFO and written to the external memory. 37.15.60 OTG power and clock gating control register (OTG_PCGCCTL) Address offset: 0xE00 Reset value: 0x200B 8000 This register is available in host and device modes. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SUSP PHY SLEEP ENL1 GTG PHY SUSP Res. GATE HCLK STPP CLK r r rw r rw rw Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:8 Reserved, must be kept at reset value. Bit 7 SUSP: Deep Sleep This bit indicates that the PHY is in Deep Sleep when in L1 state. Bit 6 PHYSLEEP: PHY in Sleep This bit indicates that the PHY is in the Sleep state. Bit 5 ENL1GTG: Enable sleep clock gating When this bit is set, core internal clock gating is enabled in Sleep state if the core cannot assert utmi_l1_suspend_n. When this bit is not set, the PHY clock is not gated in Sleep state. Bit 4 PHYSUSP: PHY suspended Indicates that the PHY has been suspended. This bit is updated once the PHY is suspended after the application has set the STPPCLK bit. RM0385 Rev 7 1439/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Bits 3:2 Reserved, must be kept at reset value. Bit 1 GATEHCLK: Gate HCLK The application sets this bit to gate HCLK to modules other than the AHB Slave and Master and wakeup logic when the USB is suspended or the session is not valid. The application clears this bit when the USB is resumed or a new session starts. Bit 0 STPPCLK: Stop PHY clock The application sets this bit to stop the PHY clock when the USB is suspended, the session is not valid, or the device is disconnected. The application clears this bit when the USB is resumed or a new session starts. 37.15.61 OTG_FS/OTG_HS register map The table below gives the USB OTG register map and reset values. VBVALOEN SRQ SRQSCS 0 0 0 Res. 1440/1709 RM0385 Rev 7 0 0 Res. Res. Res. Res. Res. SEDET 1 0 1 Res. Res. Res. Res. Res. 1 0 Res. Res. 0 Res. 0 TOCAL 0 Res. 0 GINTMSK DMAEN 0 Res. TXFELVL Res. 0 Res. 0 PHYSEL 1 HBSTLEN 0 Res. ULPIFSL 0 0 Res. ULPIAR 0 0 PHYSEL ULPICSM 0 TRDT HNPCA ULPIEVBUSD 0 1 0 SRPCAP ULPIEVBUSI 0 0 0 0 SRPCAP TSDPS 0 Res. PCCI 0 PHYLPC PTCI 0 Res. ULPIIPD 0 1 0 HNPCAP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. FHMOD 0 Reset value TRDT 0 Res. OTG_ GUSBCFG Res. FHMOD 0 Res. 0 Res. FDMOD 0x00C Reset value OTG_ GUSBCFG Res. 0x00C FDMOD Reset value 0 TXFELVL Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ GAHBCFG Res. 0x008 Res. Reset value 0 PTXFELVL 0 PTXFELVL 0 Res. - Res. AVALOEN VBVALOVA 0 GINTMSK BVALOEN AVALOVAL 0 Res. BVALOVAL 0 Res. HNPRQ HNGSCS 0 SRSSCHG 0 HNSSCHG 0 Res. DHNPEN HSHNPEN 0 Res. 0 Res. Res. EHEN 0 Res. Res. Res. 0 Res. Res. Res. Res. 0 Res. 0 Res. 0 Res. DBCT CIDSTS Res. 0 Res. ASVLD HNGDET Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ GAHBCFG Res. 0x008 Res. Reset value Res. BSVLD 1 ADTOCHG 0 Res. OTGVER 0 IDCHNG 0 DBCDNE 0 Res. 0 Res. Res. CURMOD Res. Res. Res. Res. Res. Res. Res. Res. OTG_ GOTGINT Res. 0x004 Res. Reset value Res. Res. Res. Res. Res. Res. Res. OTG_ GOTGCTL Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0x000 Register name Res. Offset Res. Table 269. OTG_FS/OTG_HS register map and reset values 0 0 TOCAL 0 0 0 0 OTG_ GINTSTS DISCINT CIDSCHG Res. Res. Reset value 0 0 0 1 OTG_ GINTMSK DISCINT CIDSCHGM Reset value 0 0 0 0 OTG_ GINTMSK DISCINT CIDSCHGM LPMINTM PTXFEM HCIM PRTIM RSTDETM Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 Rev 7 ENUMDNEM USBRST USBSUSPM ESUSPM 0 0 0 0 ENUMDNEM USBRST USBSUSPM ESUSPM 0 0 0 0 0 0 MMISM 0 0 0 0 0 0 SOFM MMISM NPTXFE RXFLVL SOF OTGINT MMIS CMOD SOF OTGINT MMIS CMOD Res. Res. 0 0 PSRST CSRST 0 PSRST 0 CSRST FCRST 0 Res. Res. TXFFLSH RXFFLSH 0 Res. TXFFLSH RXFFLSH 0 RXFLVL 0 NPTXFE 0 GINAKEFF 0 Res. TXFNUM 0 GONAKEFF 0 0 0 0 0 0 0 0 Res. SOFM OTGINT 0 OTGINT GINAKEFF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TXFNUM Res. RXFLVLM 0 RXFLVLM 0 NPTXFEM 0 GINAKEFFM 0 NPTXFEM 0 GINAKEFFM 0 GONAKEFF 0 Res. 0 Res. ESUSP 0 0 GONAKEFFM ESUSP USBSUSP Res. Res. Res. 1 0 GONAKEFFM USBSUSP USBRST 0 Res. USBRST ENUMDNE 0 0 Res. ENUMDNE ISOODRP Res. Res. AHBIDL Reset value 0 Res. ISOODRP EOPF Res. 0 Res. ISOODRPM 0 ISOODRPM EOPF Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OTG_ GRSTCTL Res. Register name 0 Res. EOPFM Res. 0 EOPFM Res. IEPINT 0 Res. OEPINT 0 Res. IISOIXFR 0 Res. IPXFR/INCOMPISOOUT 0 Res. IEPINT IEPINT 0 IEPINT OEPINT OEPINT 0 OEPINT IISOIXFR IISOIXFRM 0 IISOIXFRM 0 IPXFR/INCOMPISOOUT 0 IPXFRM/IISOOXFRM 0 IPXFRM/IISOOXFRM 0 DATAFSUSP 0 Res. 0 FSUSPM 1 Res. RSTDET 0 RSTDETM HPRTINT 0 HPRTINT 1 PRTIM HCINT 0 HCINT 1 HCIM PTXFE 0 PTXFE 0 PTXFEM LPMINT 0 LPMINTM DISCINT CIDSCHG Reset value Res. AHBIDL DMAREQ OTG_ GINTSTS SRQINT 0x018 0 WKUPINT 0x018 1 SRQINT 0x014 Reset value WKUPINT 0x014 OTG_ GRSTCTL WUIM 0x010 SRQIM 0x010 WUIM Offset SRQIM RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 269. OTG_FS/OTG_HS register map and reset values (continued) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1441/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 0 0 0 0 Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Res. Res. Res. Res. Res. 0 0 0 0 1442/1709 0 0 0 0 0 0 0 0 0 0 BCNT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CHNUM 0 0 0 0 0 0 BCNT 0 0 EPNUM 0 0 0 EPNUM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RXFD 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Res. VBDEN Res. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Res. Res. 0 Res. Res. 0 Res. Res. 1 Res. 0 Res. 0 NPTXFSAV Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 1 Res. 0 0 0 X PRODUCT_ID (for USB OTG FS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 BESLTHRS LPMR CNTSTS 0 0 0 0 0 0 LPM RCNT 0 0 0 0 0 0 0 LPMCHIDX 0 0 0 0 0 0 0 0 0 1 0 LPM RSP 0 0 0 0 0 0 0 PTXFSIZ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BESL PTXSA 0 0 0 0 0 0 0 0 0 0 0 0 1 INEPTXFD 0 0 LPMEN 0 LPMACK 0 0 0 REMWAKE 0 0 L1DSEN 0 SLPSTS 0 L1RSMOK 0 SNDLPM 0 Res. PRODUCT_ID (for USB OTG HS) OTG_ DIEPTXF1 Reset value 0 0 L1SSEN 0x104 0 0 Res. 0 OTG_ HPTXFSIZ Reset value 0 Res. 0 Reset value 0x100 0 Res. 0 ENBESL OTG_ GLPMCFG 0 Res. 0 Res. 0x054 0 BCNT NPTQXSAV OTG_CID Reset value 0 0 Res. 0x03C 0 Res. NPTXQTOP 0 PWRDWN 0 OTG_CID Reset value 0 0 Res. 0 Reset value 0x03C 0 0 Res. 0 0 DCDEN 0 Res. Res. Reset value 0 Res. 0 OTG_ HNPTXSTS OTG_ GCCFG 0 CHNUM NPTXFSA/TX0FSA Res. Reset value 0x038 0 NPTXFD/TX0FD Res. 0x02C 0 0 Res. 0x028 0 DPID Res. PKTSTS 0 Reset value OTG_ HNPTXFSIZ/ OTG_ DIEPTXF0 0 DPID Res. FRMNUM 0 0 BCNT DPID PKTSTS 0 0 Res. Res. 0 Res. Res. Res. Res. Res. Res. 0x024 Res. OTG_ GRXFSIZ 0 Res. Reset value STSPHST Res. Res. Res. OTG_ GRXSTSP (Device mode) 0 0 Res. Reset value 0x020 0 PKTSTS Res. Res. FRMNUM 0 DPID Res. Res. Res. Res. Res. Res. Res. Res. OTG_ GRXSTSP (host mode) 0 Res. Reset value STSPHST Res. Res. OTG_ GRXSTSR (Device mode) Res. 0x01C 0 Res. Reset value PKTSTS DCDET Res. Res. Res. Res. Res. Res. Res. Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OTG_ GRXSTSR (host mode) Offset Res. Register name Res. Table 269. OTG_FS/OTG_HS register map and reset values (continued) 0 0 0 0 INEPTXSA 0 0 0 0 0 RM0385 Rev 7 0 0 0 0 0 0 1 0 0 0 0 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 . . . . INEPTXFD 0 0 0 0 0 0 1 0 0 INEPTXSA 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 . . . . 0 0 0 0 0 0 1 1 0 0 0 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 1 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 INEPTXSA Res. INEPTXFD Res. OTG_ HCFG 0 Res. 0x400 0 Res. Reset value 1 INEPTXSA Res. OTG_ DIEPTXF7 0 Res. 0x120 0 Res. . . . . 0 Res. Reset value . . . . 0 Res. OTG_ DIEPTXF5 0 Res. 0x114 0 Res. . . . . Res. Reset value . . . . INEPTXFD FSLSS OTG_ DIEPTXF2 Res. 0x108 Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 269. OTG_FS/OTG_HS register map and reset values (continued) Reset value 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 Res. EPDIR EPTYP MCNT ODDFRM 0 0 LSDEV Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CHDIS 1 1 1 1 0 RM0385 Rev 7 0 0 0 0 1 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CHENA DAD 0 1 0 0 PTCTL PSPD 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HAINTM 0 0 0 HAINT 0 0 0 PTXFSAVL 0 0 0 PTXQSAV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EPNUM 0 0 0 PCSTS 0 0 Reset value 1 PCDET 0 PTXQTOP OTG_ HCCHAR0 1 PENA 0 0 PENCHNG 0 0 POCCHNG 0 Reset value 0x500 0 PRES 0 OTG_ HAINT OTG_ HPRT 1 PSUSP 0 Reset value 0x440 0 PRST 0 Reset value OTG_ HAINTMSK 1 Res. OTG_ HPTXSTS 0 Reset value 0x418 1 PLSTS 0 0 FRNUM Res. 0x414 1 FTREM 0 0 POCA OTG_ HFNUM Reset value 0x410 0 0 FRIVL PPWR 0x408 RLDCTR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ HFIR Res. 0x404 Res. Reset value FSLS PCS 0 0 0 0 0 0 0 0 0 MPSIZ 0 0 0 0 0 0 0 0 1443/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. OTG_ HCTSIZ1 Reset value 0x534 1444/1709 DPID 0 0 0 XFRCM STALLM 0 Res. NAKM 0 CHHM ACKM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 EPDIR EPNUM 0 0 0 XAC TPOS MPSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. 0 0 0 STALLM 0 0 NAKM 0 0 ACKM 0 Res.NYE 0 TXERRM 0 BBERRM Res. Res. Res. Res. Res. Res. 0 XFRC 0 CHH 0 STALL 0 NAK 0 ACK 0 TXERR 0 BBERR 0 FRMOR 0 FRMORM 0 DTERR 0 DTERRM 0 Res. PRTADDR Res. HUBADDR 0 0 0 0 0 0 0 XFRCM Res. 0 COMPLSPLT 0 0 Res. 0 PKTCNT 0 0 XFRSIZ 0 0 0 0 0 OTG_ HCDMA1 Reset value 0 0 Reset value 0x530 0 CHHM 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ HCINTMSK1 0 0 Reset value 0x52C 0 0 Res. 0 Res. 0 0 LSDEV 0 EPTYP 0 Res. Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 0 Res. 0 Res. 0 MCNT 0 Res. Res. 0 Res. OTG_ HCINT1 0 Res. 0 0 Res. Reset value 0 Res. OTG_ HCSPLT1 0 Res. 0 Res. ODDFRM 0 0 DAD Res. CHDIS 0 0 Res. CHENA Reset value 0 Res. OTG_ HCCHAR1 Res. 0 Res. 0 Res. 0 SPLITEN 0x528 Reset value Res. 0x524 0 0 DMAADDR Res. 0x520 0 XFRSIZ OTG_ HCDMA0 0x514 0 0 XFRC Res. PKTCNT 0 0 Res. Reset value DPID Res. 0x510 Res. OTG_ HCTSIZ0 Res. Reset value 0 Res.NYE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ HCINTMSK0 Res. 0x50C Res. Reset value 0 Res. 0 CHH 0 NAK 0 STALL 0 ACK 0 TXERR 0 BBERR 0 TXERRM Res. 0 FRMOR Res. 0 BBERRM 0 FRMORM 0 Res. 0 DTERR 0 PRTADDR DTERRM 0 Res. HUBADDR Res. Res. COMPLSPLT Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. XAC TPOS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ HCINT0 Res. 0 Res. Reset value Res. SPLITEN 0x508 OTG_ HCSPLT0 Res. 0x504 Res. Register name Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 269. OTG_FS/OTG_HS register map and reset values (continued) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMAADDR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 Rev 7 0 0 0 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 0 0 0 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XFRCM 0 STALLM 0 NAKM Res. Res. Res. Res. Res. 0 XFRC 0 CHH 0 NAK 0 STALL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XFRC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . . LSDEV Res. EPDIR 0 - 0 Res. COMPLSPLT RM0385 Rev 7 0 0 0 XAC TPOS MPSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. DTERR FRMOR BBERR TXERR Res. ACK NAK STALL PRTADDR Res. HUBADDR 0 Res. Reset value EPNUM Res. Res. EPTYP Res. Res. 0 Res. 0 Res. MCNT Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. Res. OTG_ HCINT15 0 Res. 0 0 Res. Reset value 0 Res. OTG_ HCSPLT15 0 Res. 0 Res. ODDFRM 0 Res. 0 Res. CHDIS Reset value DAD Res. OTG_ HCCHAR15 CHENA 0x6E8 0 0 XFRSIZ . . . . SPLITEN 0x6E4 0 0 DMAADDR Res. 0x6E0 0 0 ACK 0 ACKM Res. 0 TXERR Res. 0 Res.NYE Res. 0 BBERR Res. 0 TXERRM 0 0 PRTADDR FRMOR 0 0 Res. Reset value . . . . 0 0 BBERRM 0 PKTCNT OTG_ HCDMA11 Res. 0x674 0 0 CHH Res. Reset value DPID Res. 0x670 0 FRMORM 0 Reset value OTG_ HCTSIZ11 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ HCINTMSK11 0 HUBADDR Reset value 0x66C 0 Res. XAC TPOS 0 Res. 0 CHHM 0 DTERR 0 MPSIZ DTERRM Res. EPDIR LSDEV Res. Res. 0 COMPLSPLT 0 EPNUM Res. EPTYP Res. 0 Res. Res. 0 Res. MCNT Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. 0 Res. Res. OTG_ HCINT11 0 Res. 0 0 Res. Reset value 0 Res. OTG_ HCSPLT11 Res. 0 DAD Res. 0 Res. 0x668 0 Res. 0x664 Reset value Res. 0x660 OTG_ HCCHAR11 ODDFRM . . . . CHDIS . . . . CHENA . . . . SPLITEN Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 269. OTG_FS/OTG_HS register map and reset values (continued) 0 0 0 0 0 0 0 1445/1709 1514 1446/1709 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OTG_ DVBUSDIS Res. Res. Res. Res. Res. Res. Res. Res. Res. 0x828 Reset value Res. 0x81C Res. 0x818 Res. 0x814 OTG_ DOEPMSK Reset value 0 0 0 0 0 0 OTG_ DAINT OTG_ DAINTMSK 0 0 0 0 0 0 0 0 0 Reset value RM0385 Rev 7 Reset value 0 0 0 0 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. NZLSOHSK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Res. 0 OEPINT 0 0 0 0 0 1 0 OEPM 0 1 0 0 1 1 INEPNEM INEPNMM ITTXFEMSK TOM AHBERRM EPDM XFRCM 0 0 0 0 0 0 0 Res. 0 B2BSTUPM Res. GINSTS SDIS RWUSIG 0 0 0 0 0 1 0 Res. Res. Res. EERR TXERRM Res.NYE ACKM NAKM STALLM 0 0 0 0 0 0 0 0 0 DSPD BBERRM 0 CHHM XFRCM Res. FRMORM 0 SUSPSTS DAD DTERRM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 ENUMSPD GONSTS 0 TCTL SGINAK 0 Res. 0 CGINAK 0 XFRCM FNSOF EPDM 0 0 AHBERRM 0 0 STUPM 0 0 OTEPDM 0 SGONAK 0 Res. 0 PFIVL 0 TXFURM 0 Res. Res. 0 Res. 0 Res. OTG_ DCFG Res. PKTCNT OUTPKTERRM 0 0 CGONAK 0 Res. 0 Res. Reset value Res. 0 Res. 0 Res. DMAADDR 0 POPRGDNE 0 Res. 0 XCVRDLY 0 Res. 0 Res. 0 Res. 0 NAKM DEV LN STS BERRM 0 Res. 0 ERRATIM 0 Res. Reset value 0 NAKMSK 0 Res. Res. 0 Res. 0 NYETMSK 0 Res. Res. DSBESLRJCT 0 Res. OTG_ HCDMA15 0 Res. 0 Res. Reset value 0 Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. 0 Res. Res. Reset value Res. Res. 0 Res. 0 Res. Res. Res. 0 Res. 0 Res. Res. Res. 0 Res. Res. DPID Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Reset value Res. 0 Res. Res. Res. Res. 0 Res. OTG_ DIEPMSK Res. OTG_ DSTS 0 Res. OTG_ DCTL 0 Res. 0x810 Res. 0x808 Res. 0x804 Res. Reset value Res. 0x800 Res. 0x6F4 OTG_ HCTSIZ15 Res. 0x6F0 Res. OTG_ HCINTMSK15 Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. 0x6EC Res. Offset Res. USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Table 269. OTG_FS/OTG_HS register map and reset values (continued) 0 0 XFRSIZ 0 0 0 0 0 0 0 0 0 0 0 0 IEPINT IEPM VBUSDT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0x900 0x900 OTG_ DIEPCTL0 Reset value 0 0 OTG_ DIEPCTL0 Reset value 0 0 0 SNAK CNAK 0 0 SNAK CNAK 0 0 0 0 0 0 TXFNUM 0 0 0 0 RM0385 Rev 7 0 0 0 0 0 0 0 0 0 0 0 0 AHBERRM EPDM XFRCM 0 0 0 0 Res. ITTXFEMSK TOM 0 AHBERRM EPDM XFRCM 0 0 1 0 0 Res. Res. Res. 0 0 0 0 0 0 0 ISOTHREN 0 0 NONISOTHREN 0 Res. 1 Res. 0 Res. INEPTXFEM 1 IEP1INT 0 IEP1INTM 0 Res. Res. Res. 0 Res. TXTHRLEN MPSIZ STUPM 0 Res. 0 OTEPDM Res. 1 Res. Res. 0 Res. 0 Res. Res. 0 Res. 0 0 Res. INEPNEM - B2BSTUPM Res. 0 Res. 0 1 Res. Res. 0 Res. Res. Res. 1 Res. 0 TXFURM 0 Res. 0 OUTPKTERRM Res. Res. Res. 0 Res. Res. Res. 0 Res. Res. 0 Res. 0 1 Res. 0 Res. Res. 0 Res. 0 Res. 0 Res. Res. 0 Res. Res. RXTHREN 0 Res. Res. Res. Res. 0 Res. Res. 0 Res. BERRM 0 Res. Res. NAKM Res. Res. Res. 0 Res. NAKMSK Res. Res. OEP1INT Res. Res. Res. Res. ARPEN Res. Res. Res. Res. 0 Res. NYETMSK 0 Res. Reset value Res. Reset value Res. 0 Res. Res. OEP1INTM Res. Res. Res. Reset value USBAEP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RXTHRLEN Res. NAKSTS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value Res. 0 USBAEP 0 EPTYP Res. Res. Res. Res. Reset value EONUM/DPID 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Reset value NAKSTS 0 EPTYP 0 STALL TXFNUM Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Reset value STALL Res. OTG_HS_ DOEPEACH MSK1 Res. OTG_HS_ DIEPEACH MSK1 Res. OTG_DEACHI NTMSK SD0PID/SEVNFRM 0x884 SODDFRM/SD1PID 0x844 OTG_ DEACHINT Res. 0x83C OTG_DIE PEMPMSK Res. 0x838 OTG_ DTHRCTL Res. 0x834 EPDIS 0x830 EPENA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 OTG_DVB USPULSE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Register name Res. 0x82C EPDIS Offset EPENA RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 269. OTG_FS/OTG_HS register map and reset values (continued) DVBUSP 0 0 0 0 0 0 0 0 0 MPSIZ 0 0 0 0 1447/1709 1514 0x940 . . . . 1448/1709 Reset value 0 0 CNAK OTG_ DIEPCTL2 SNAK 0 0 0 0 0 Res. Res. Res. Res. 0 0 0 0 OTG_ DIEPINT1 0 0 0 0 TXFNUM 0 0 0 0 0 Res. Res. Res. Reset value 0 0 . . . . RM0385 Rev 7 0 Reset value 0 0 0 . . . . 0 0 0 0 0 0 0 PKTCNT 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 XFRSIZ 0 INEPTFSAV 1 MPSIZ 0 XFRC 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 EPDISD 0 0 AHBERR Res. 0 TOC Res. 0 ITTXFE Res. 0 INEPNM Reset value 0 TXFE OTG_ DTXFSTS0 0 INEPNE 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ITTXFE TOC AHBERR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XFRC INEPNM 1 EPDISD TXFE Res. INEPNE TXFIFOUDRN Res. Res. PKTDRPSTS Res. NAK Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 TXFIFOUDRN 0 Res. 0 Res. 0 Res. 0 Res. 0 PKTDRPSTS 0 Res. 0 Res. 0 Res. Res. Res. Reset value NAK 0 Res. USBAEP 0 Res. 0 Res. EONUM/DPID 0 Res. 0 Res. NAKSTS 0 Res. EPTYP 0 Res. Res. STALL 0 Res. Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. CNAK 0 USBAEP 0 Res. SNAK 0 Res. 0 Res. OTG_ DIEPDMA EONUM/DPID 0 Res. SD0PID/SEVNFRM 0 TXFNUM PKT CNT NAKSTS 0 Res. SODDFRM/SD1PID Reset value Res. Reset value Res. 0 EPTYP 0 Res. EPDIS Reset value Res. 0 Res. MCNT STALL OTG_ DTXFSTS1 0 Res. Reset value SODDFRM 0x938 OTG_ DIEPTSIZ1 SD0PID/SEVNFRM 0x930 EPENA 0x928 OTG_ DIEPCTL1 Res. 0x920 Res. 0x918 OTG_ DIEPTSIZ0 Res. 0x914 OTG_ DIEPINT0 Res. 0x910 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. 0x908 EPDIS Offset EPENA USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Table 269. OTG_FS/OTG_HS register map and reset values (continued) 0 0 XFRSIZ DMAADDR INEPTFSAV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MPSIZ 0x9E8 OTG_ DIEPINT7 0 0 0 0 0 0 0 0 0 0 0 Res. Res. NAK Res. PKTDRPSTS Res. 0 0 Res. . . . . 0 0 0 0 Res. Res. Res. Res. 0 0 USBAEP . . . . 0 NAKSTS Reset value EONUM/DPID EPTY P Reset value RM0385 Rev 7 Res. Res. Res. Res. Res. Res. Res. Res. . . . . . . . . Reset value 0 0 0 0 0 PKTCNT 0 . . . . 0 0 0 0 0 0 . . . . INEPTFSAV 1 0 0 0 XFRC 0 EPDISD 0 TOC 0 AHBERR 0 ITTXFE 0 INEPNM 0 TXFE 0 INEPNE 0 Res. 0 TXFIFOUDRN Res. PKTDRPSTS Res. Res. Res. Res. Res. USBAEP 0 NAK NAKSTS EONUM/DPID EPTYP Res. STALL 0 Res. . . . . Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 XFRC 0 Res. 0 0 EPDISD 0 Res. 0 STALL TXFNUM 0 AHBERR 0 Res. 0 0 TOC 0 Res. 0 0 ITTXFE 0 Res. 0 0 INEPNM 0 Res. 0 0 TXFE 0 Res. 0 0 INEPNE 0 Res. SNAK CNAK 0 Res. SODDFRM 0 SD0PID/SEVNFRM EPDIS 0 0 Res. Res. Res. Res. Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 EPENA Reset value 0 Res. Res. Res. Res. Res. Res. Res. OTG_ DIEPCTL5 0 Res. 0 Res. 0 SNAK 0 CNAK Reset value SODDFRM OTG_ DIEPCTL7 SD0PID/SEVNFRM Res. Register name TXFNUM TXFIFOUDRN 0 Res. Reset value Res. 0x9B0 OTG_ DIEPTSIZ5 Res. . . . . Res. 0x9E0 Res. . . . . OTG_ DTXFSTS5 MCNT 0x9B8 OTG_ DIEPINT5 Res. . . . . EPDIS 0x9A8 EPENA . . . . Res. 0x9A0 Res. Offset Res. RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Table 269. OTG_FS/OTG_HS register map and reset values (continued) MPSIZ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MPSIZ 0 0 0 0 0 0 0 0 . . . . XFRSIZ 0 1 0 0 0 0 0 0 0 1449/1709 1514 0xB30 OTG_ DOEPTSIZ1 Reset value 1450/1709 0 OTG_ DOEPINT1 Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NAKSTS EONUM/DPID USBAEP 0 0 0 0 0 0 Res. Res. Res. STPKTRX NYET NAK BERR Reset value 0 Res. 0 SNPM 0 Res. 0 STALL 0 0 0 0 0 0 0 0 0 RM0385 Rev 7 0 0 0 0 0 0 PKTCNT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XFRSIZ 0 XFRC 0 Res. Res. Res. STSPHSRX OTEPDIS STUP AHBERR EPDISD XFRC Res. OUTPKTERR Res. Res. B2BSTUP 0 EPDISD 0 0 0 1 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 1 MPSIZ 0 Res. 0 AHBERR 0 0 STUP 0 0 OTEPDIS 0 0 STSPHSRX 0 0 Res. 0 Res. 0 B2BSTUP BERR 0 Res. 0 Res. Res. 0 Res. NAK 0 Res. 0 USBAEP Res. Res. Res. 0 Res. NYET 0 Res. Reset value STPKTRX Res. NAKSTS Reset value 0 Res. Res. Res. Res. Res. . . . . Res. Res. 0 0 OUTPKTERR 0 Res. EP TYP 0 Res. 0 Res. OTG_ DOEPDMA0 0 Res. 0 0 Res. 0 EPTYP 0 Res. Res. 0 Res. 0 Res. SNPM 0 Res. Res. Res. 0 PKTCNT STALL 0 Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. 0 Res. Res. Res. Res. Res. Res. PKTCNT Res. 0 Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. 0 0 Res. 0 0 Res. 0 Res. CNAK 0 Res. Res. Res. 0 Res. Res. SNAK Res. 0 Res. Res. Res. Res. MCNT Res. 0 0 Res. STUP CNT 0 Res. OTG_ DOEPINT0 Res. 0 Res. EPDIS 0 0 Res. EPENA 0 Res. Reset value 0 CNAK OTG_ DOEPCTL1 0 SNAK 0 Res. Reset value SODDFRM OTG_ DOEPTSIZ0 SD0PID/SEVNFRM 0 Res. 0xB28 Reset value Res. 0xB20 Reset value Res. 0xB08 OTG_ DOEPCTL0 Res. 0x9F8 OTG_ DTXFSTS7 Res. Reset value EPDIS 0xB14 EPENA 0xB10 Res. 0xB00 Res. . . . . Res. 0x9F0 OTG_ DIEPTSIZ7 RXDPID/ STUPCNT Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Table 269. OTG_FS/OTG_HS register map and reset values (continued) . . . . . . . . . . . . XFRSIZ . . . . INEPTFSAV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XFRSIZ DMAADDR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MPSIZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NAK BERR Res. Res. 0 0 0 0 XFRC 0 0 EPDISD 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XFRSIZ 0 0 0 0 0 0 0 0 0 0 0 0 Res. 0 0 STUP NYET 0 0 AHBERR STPKTRX 0 0 OTEPDIS Res. 0 0 STSPHSRX Res. 0 MPSIZ 0 Res. 0 0 0 0 Res. RXDPID/ STUPCNT 0 0 0 0 0 0 0 0 BERR Res. Res. 0 0 0 0 0 0 XFRC NAK PKTCNT 0 EPDISD NYET - 0 AHBERR STPKTRX 0 0 STUP Res. 0 0 OTEPDIS Res. 0 0 STSPHSRX Res. 0 0 Res. 0 B2BSTUP 0 Res. USBAEP 0 MPSIZ OUTPKTERR NAKSTS EONUM/DPID 0 EPTYP SNPM Res. 0 Res. Res. 0 Res. Res. STALL Res. 0 Res. OTG_ DOEPINT8 Res. 0 Res. 0 Res. 0 Res. 0 Res. SNAK CNAK 0 Res. SODDFRM SD0PID/SEVNFRM 0 Res. EPDIS Reset value Res. EPENA . . . . OTG_ DOEPCTL8 0 0 0 0 0 0 0 XFRSIZ 0 0 0 0 0 OTG_ DOEPDMA8 Reset value 0 Res. 0 Res. Res. RXDPID/ STUPCNT 0 Reset value 0xC14 0 B2BSTUP 0 . . . . OTG_ DOEPTSIZ8 0 Res. USBAEP 0 Reset value 0xC10 0 OUTPKTERR NAKSTS EONUM/DPID 0 EPTYP Res. 0 Res. Res. SNPM Res. 0 Res. Res. 0 PKTCNT Res. 0xC08 0 Res. OTG_ DOEPINT5 Res. 0 Res. 0xC00 0 STALL 0 Reset value . . . . 0 Res. 0 Res. SNAK CNAK 0 Res. SODDFRM SD0PID/SEVNFRM 0 Res. EPDIS 0 Res. EPENA Reset value Res. OTG_ DOEPCTL5 OTG_ DOEPTSIZ5 0 . . . . Reset value 0xBB0 0 Res. 0 Res. 0 Res. 0xBA8 0 Res. 0xBA0 0 . . . . Res. Reset value . . . . Res. DMAADDR Res. OTG_ DOEPDMA1 Res. 0xB34 Register name Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 269. OTG_FS/OTG_HS register map and reset values (continued) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DMAADDR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 Rev 7 0 0 0 1451/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. 1452/1709 RM0385 Rev 7 STPPCLK 0 Res. 0 GATEHCLK ENL1GTG PHYSUSP 0 Reset value Res. PHYSLEEP Res. SUSP Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OTG_ PCGCCTL Res. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0xE00 Register name Res. Offset Res. Table 269. OTG_FS/OTG_HS register map and reset values (continued) 0 0 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.16 OTG_FS/OTG_HS programming model 37.16.1 Core initialization The application must perform the core initialization sequence. If the cable is connected during power-up, the current mode of operation bit in the OTG_GINTSTS (CMOD bit in OTG_GINTSTS) reflects the mode. The OTG_FS/OTG_HS controller enters host mode when an “A” plug is connected or device mode when a “B” plug is connected. This section explains the initialization of the OTG_FS/OTG_HS controller after power-on. The application must follow the initialization sequence irrespective of host or device mode operation. All core global registers are initialized according to the core’s configuration: 1. 2. 3. Program the following fields in the OTG_GAHBCFG register: – Global interrupt mask bit GINTMSK = 1 – Rx FIFO non-empty (RXFLVL bit in OTG_GINTSTS) – Periodic Tx FIFO empty level Program the following fields in the OTG_GUSBCFG register: – HNP capable bit – SRP capable bit – OTG_FS/OTG_HS timeout calibration field – USB turnaround time field The software must unmask the following bits in the OTG_GINTMSK register: OTG interrupt mask Mode mismatch interrupt mask 4. 37.16.2 The software can read the CMOD bit in OTG_GINTSTS to determine whether the OTG_FS/OTG_HS controller is operating in host or device mode. Host initialization To initialize the core as host, the application must perform the following steps: RM0385 Rev 7 1453/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. Program the HPRTINT in the OTG_GINTMSK register to unmask 2. Program the OTG_HCFG register to select full-speed host 3. Program the PPWR bit in OTG_HPRT to 1. This drives VBUS on the USB. 4. Wait for the PCDET interrupt in OTG_HPRT0. This indicates that a device is connecting to the port. 5. Program the PRST bit in OTG_HPRT to 1. This starts the reset process. 6. Wait at least 10 ms for the reset process to complete. 7. Program the PRST bit in OTG_HPRT to 0. 8. Wait for the PENCHNG interrupt in OTG_HPRT. 9. Read the PSPD bit in OTG_HPRT to get the enumerated speed. RM0385 10. Program the HFIR register with a value corresponding to the selected PHY clock 1 11. Program the FSLSPCS field in the OTG_HCFG register following the speed of the device detected in step 9. If FSLSPCS has been changed a port reset must be performed. 12. Program the OTG_GRXFSIZ register to select the size of the receive FIFO. 13. Program the OTG_HNPTXFSIZ register to select the size and the start address of the Non-periodic transmit FIFO for non-periodic transactions. 14. Program the OTG_HPTXFSIZ register to select the size and start address of the periodic transmit FIFO for periodic transactions. To communicate with devices, the system software must initialize and enable at least one channel. 37.16.3 Device initialization The application must perform the following steps to initialize the core as a device on powerup or after a mode change from host to device. 1. 2. 3. Program the following fields in the OTG_DCFG register: – Device speed – Non-zero-length status OUT handshake Program the OTG_GINTMSK register to unmask the following interrupts: – USB reset – Enumeration done – Early suspend – USB suspend – SOF Wait for the USBRST interrupt in OTG_GINTSTS. It indicates that a reset has been detected on the USB that lasts for about 10 ms on receiving this interrupt. Wait for the ENUMDNE interrupt in OTG_GINTSTS. This interrupt indicates the end of reset on the USB. On receiving this interrupt, the application must read the OTG_DSTS register to determine the enumeration speed and perform the steps listed in Endpoint initialization on enumeration completion on page 1488. At this point, the device is ready to accept SOF packets and perform control transfers on control endpoint 0. 1454/1709 RM0385 Rev 7 RM0385 37.16.4 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) DMA mode The OTG host uses the AHB master interface to fetch the transmit packet data (AHB to USB) and receive the data update (USB to AHB). The AHB master uses the programmed DMA address (OTG_HCDMAx register in host mode and OTG_DIEPDMAx/OTG_DOEPDMAx register in peripheral mode) to access the data buffers. 37.16.5 Host programming model Channel initialization The application must initialize one or more channels before it can communicate with connected devices. To initialize and enable a channel, the application must perform the following steps: 1. 2. Program the OTG_GINTMSK register to unmask the following: Channel interrupt – Non-periodic transmit FIFO empty for OUT transactions (applicable when operating in pipelined transaction-level with the packet count field programmed with more than one). – Non-periodic transmit FIFO half-empty for OUT transactions (applicable when operating in pipelined transaction-level with the packet count field programmed with more than one). 3. Program the OTG_HAINTMSK register to unmask the selected channels’ interrupts. 4. Program the OTG_HCINTMSK register to unmask the transaction-related interrupts of interest given in the host channel interrupt register. 5. Program the selected channel’s OTG_HCTSIZx register with the total transfer size, in bytes, and the expected number of packets, including short packets. The application must program the PID field with the initial data PID (to be used on the first OUT transaction or to be expected from the first IN transaction). 6. Program the OTG_HCCHARx register of the selected channel with the device’s endpoint characteristics, such as type, speed, direction, and so forth. (The channel can be enabled by setting the channel enable bit to 1 only when the application is ready to transmit or receive any packet). 7. Program the selected channels in the OTG_HCSPLTx register(s) with the hub and port addresses (split transactions only). 8. Program the selected channels in the OTG_HCDMAx register(s) with the buffer start address (DMA transactions only). Halting a channel The application can disable any channel by programming the OTG_HCCHARx register with the CHDIS and CHENA bits set to 1. This enables the OTG_FS/OTG_HS host to flush the posted requests (if any) and generates a channel halted interrupt. The application must wait for the CHH interrupt in OTG_HCINTx before reallocating the channel for other transactions. The OTG_FS/OTG_HS host does not interrupt the transaction that has already been started on the USB. To disable a channel in DMA mode operation, the application does not need to check for space in the request queue. The OTG_HS host checks for space to write the disable RM0385 Rev 7 1455/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 request on the disabled channel’s turn during arbitration. Meanwhile, all posted requests are dropped from the request queue when the CHDIS bit in OTG_HCCHARx is set to 1. Before disabling a channel, the application must ensure that there is at least one free space available in the non-periodic request queue (when disabling a non-periodic channel) or the periodic request queue (when disabling a periodic channel). The application can simply flush the posted requests when the request queue is full (before disabling the channel), by programming the OTG_HCCHARx register with the CHDIS bit set to 1, and the CHENA bit cleared to 0. The application is expected to disable a channel on any of the following conditions: 1. When an STALL, TXERR, BBERR or DTERR interrupt in OTG_HCINTx is received for an IN or OUT channel. The application must be able to receive other interrupts (DTERR, Nak, data, TXERR) for the same channel before receiving the halt. 2. When an XFRC interrupt in OTG_HCINTx is received during a non periodic IN transfer or high-bandwidth interrupt IN transfer 3. When a DISCINT (disconnect device) interrupt in OTG_GINTSTS is received. (The application is expected to disable all enabled channels). 4. When the application aborts a transfer before normal completion. Ping protocol When the OTG_HS host operates in high speed, the application must initiate the ping protocol when communicating with high-speed bulk or control (data and status stage) OUT endpoints.The application must initiate the ping protocol when it receives a NAK/NYET/TXERR interrupt. When the OTG_HS host receives one of the above responses, it does not continue any transaction for a specific endpoint, drops all posted or fetched OUT requests (from the request queue), and flushes the corresponding data (from the transmit FIFO).This is valid in slave mode only. In Slave mode, the application can send a ping token either by setting the DOPING bit in OTG_HCTSIZx before enabling the channel or by just writing the OTG_HCTSIZx register with the DOPING bit set when the channel is already enabled. This enables the OTG_HS host to write a ping request entry to the request queue. The application must wait for the response to the ping token (a NAK, ACK, or TXERR interrupt) before continuing the transaction or sending another ping token. The application can continue the data transaction only after receiving an ACK from the OUT endpoint for the requested ping. In DMA mode operation, the application does not need to set the DOPING bit in OTG_HCTSIZx for a NAK/NYET response in case of bulk/control OUT. The OTG_HS host automatically sets the DOPING bit in OTG_HCTSIZx, and issues the ping tokens for bulk/control OUT. The OTG_HS host continues sending ping tokens until it receives an ACK, and then switches automatically to the data transaction. Operational model The application must initialize a channel before communicating to the connected device. This section explains the sequence of operation to be performed for different types of USB transactions. • Writing the transmit FIFO The OTG_FS/OTG_HS host automatically writes an entry (OUT request) to the periodic/non-periodic request queue, along with the last 32-bit word write of a packet. The application must ensure that at least one free space is available in the periodic/non-periodic request queue before starting to write to the transmit FIFO. The application must always write to the transmit FIFO in 32-bit words. If the packet size is non-32-bit word aligned, the application must use padding. The OTG_FS/OTG_HS 1456/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) host determines the actual packet size based on the programmed maximum packet size and transfer size. Figure 469. Transmit FIFO write task Start Read OTG_HPTXSTS /OTG_HNPTXSTS registers for available FIFO and queue spaces Wait for NPTXFE/PTXFE interrupt in OTG_GINTSTS No 1 MPS or LPS FIFO space available? Yes Yes Write 1 packet data to transmit FIFO More packets to send? No MPS: Maximum packet size LPS: Last packet size • Done ai15673c Reading the receive FIFO The application must ignore all packet statuses other than IN data packet (bx0010). RM0385 Rev 7 1457/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Figure 470. Receive FIFO read task • Bulk and control OUT/SETUP transactions A typical bulk or control OUT/SETUP pipelined transaction-level operation is shown in Figure 471. See channel 1 (ch_1). Two bulk OUT packets are transmitted. A control SETUP transaction operates in the same way but has only one packet. The assumptions are: • – The application is attempting to send two maximum-packet-size packets (transfer size = 1, 024 bytes). – The non-periodic transmit FIFO can hold two packets (1 KB for HS/128 bytes for FS). – The non-periodic request queue depth = 4. Normal bulk and control OUT/SETUP operations The sequence of operations in (channel 1) is as follows: 1458/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. Initialize channel 1 2. Write the first packet for channel 1 3. Along with the last word write, the core writes an entry to the non-periodic request queue 4. As soon as the non-periodic queue becomes non-empty, the core attempts to send an OUT token in the current frame 5. Write the second (last) packet for channel 1 6. The core generates the XFRC interrupt as soon as the last transaction is completed successfully 7. In response to the XFRC interrupt, de-allocate the channel for other transfers 8. Handling non-ACK responses RM0385 Rev 7 1459/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Figure 471. Normal bulk/control OUT/SETUP Application 1 init_reg(ch_2) set_ch_en (ch_2) 1 set_ch_en (ch_2) Host USB Device init_reg(ch_1) write_tx_fifo (ch_1) 2 2 AHB 1 MPS 4 3 Non-Periodic Request Queue Assume that this queue can hold 4 entries. ch_1 write_tx_fifo (ch_1) 5 1 MPS ch_2 _ ch_1 ch_2 OU T D AT A0 MPS 3 ACK set_ch_en (ch_2) IN 4 D AT A0 5 RxFLvl interruptt 1 MPS read_rx_sts read_rx_fifo ch_1 ch_2 set_ch_en (ch_2) ch_2 ACK O UT D AT A1 MPS ch_2 7 ACK XferCompl interrupt 6 IN De-allocate (ch_1) D AT A1 RxFLvl interruptt 1 MPS read_rx_stsre ad_rx_fifo RxFLvl interruptt read_rx_sts Disable (ch_2) 7 6 8 ACK ch_2 XferCompl interruptt 9 RxFLvl interruptt read_rx_sts De-allocate (ch_2) 11 ChHltd interruptt 10 12 13 MSv36018V1 1. The grayed elements are not relevant in the context of this figure. 1460/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) The channel-specific interrupt service routine for bulk and control OUT/SETUP transactions is shown in the following code samples. • Interrupt service routine for bulk/control OUT/SETUP and bulk/control IN transactions a) Bulk/control OUT/SETUP Unmask (NAK/TXERR/STALL/XFRC) if (XFRC) { Reset Error Count Mask ACK De-allocate Channel } else if (STALL) { Transfer Done = 1 Unmask CHH Disable Channel } else if (NAK or TXERR ) { Rewind Buffer Pointers Unmask CHH Disable Channel if (TXERR) { Increment Error Count Unmask ACK } else { Reset Error Count } } else if (CHH) { Mask CHH if (Transfer Done or (Error_count == 3)) { De-allocate Channel } else { Re-initialize Channel } } RM0385 Rev 7 1461/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 else if (ACK) { Reset Error Count Mask ACK } The application is expected to write the data packets into the transmit FIFO when the space is available in the transmit FIFO and the request queue. The application can make use of the NPTXFE interrupt in OTG_GINTSTS to find the transmit FIFO space. b) Bulk/control IN Unmask (TXERR/XFRC/BBERR/STALL/DTERR) if (XFRC) { Reset Error Count Unmask CHH Disable Channel Reset Error Count Mask ACK } else if (TXERR or BBERR or STALL) { Unmask CHH Disable Channel if (TXERR) { Increment Error Count Unmask ACK } } else if (CHH) { Mask CHH if (Transfer Done or (Error_count == 3)) { De-allocate Channel } else { Re-initialize Channel } } else if (ACK) { Reset Error Count Mask ACK } 1462/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) else if (DTERR) { Reset Error Count } The application is expected to write the requests as and when the request queue space is available and until the XFRC interrupt is received. • Bulk and control IN transactions A typical bulk or control IN pipelined transaction-level operation is shown in Figure 472. See channel 2 (ch_2). The assumptions are: – The application is attempting to receive two maximum-packet-size packets (transfer size = 1 024 bytes). – The receive FIFO can contain at least one maximum-packet-size packet and two status words per packet (72 bytes for FS/520 bytes for HS). – The non-periodic request queue depth = 4. RM0385 Rev 7 1463/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Figure 472. Bulk/control IN transactions Application 1 init_reg(ch_2) set_ch_en (ch_2) 1 set_ch_en (ch_2) Host USB Device init_reg(ch_1) write_tx_fifo (ch_1) 2 2 AHB 1 MPS 4 3 Non-Periodic Request Queue Assume that this queue can hold 4 entries. ch_1 ch c 1 write_tx_fifo (ch_1) 5 1 MPS ch_2 ch_1 ch_2 OU T D AT A0 MPS 3 ACK set_ch_en (ch_2) IN 4 D AT A0 5 RxFLvl interrupt 1 MPS read_rx_sts read_rx_fifo ch_1 ch_2 set_ch_en (ch_2) ch_2 ACK O UT D AT A1 MPS ch_2 7 K ACK r pt XferC r ompl interru 6 IN De-allocate (ch_1) D AT A1 RxFLvl interrupt 1 MPS read_rx_stsre ad_rx_fifo RxFLvl interrupt read_rx_sts Disable (ch_2) 7 6 8 ACK ch_2 XferCompl interrupt 9 RxFLvl interrupt read_rx_sts De-allocate (ch_2) 11 ChHltd interrupt 10 12 13 ai15675b 1. The grayed elements are not relevant in the context of this figure. 1464/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) The sequence of operations is as follows: 1. Initialize channel 2. 2. Set the CHENA bit in OTG_HCCHAR2 to write an IN request to the non-periodic request queue. 3. The core attempts to send an IN token after completing the current OUT transaction. 4. The core generates an RXFLVL interrupt as soon as the received packet is written to the receive FIFO. 5. In response to the RXFLVL interrupt, mask the RXFLVL interrupt and read the received packet status to determine the number of bytes received, then read the receive FIFO accordingly. Following this, unmask the RXFLVL interrupt. 6. The core generates the RXFLVL interrupt for the transfer completion status entry in the receive FIFO. 7. The application must read and ignore the receive packet status when the receive packet status is not an IN data packet (PKTSTS in OTG_GRXSTSR ≠ 0b0010). 8. The core generates the XFRC interrupt as soon as the receive packet status is read. 9. In response to the XFRC interrupt, disable the channel and stop writing the OTG_HCCHAR2 register for further requests. The core writes a channel disable request to the non-periodic request queue as soon as the OTG_HCCHAR2 register is written. 10. The core generates the RXFLVL interrupt as soon as the halt status is written to the receive FIFO. 11. Read and ignore the receive packet status. 12. The core generates a CHH interrupt as soon as the halt status is popped from the receive FIFO. 13. In response to the CHH interrupt, de-allocate the channel for other transfers. 14. Handling non-ACK responses • Control transactions Setup, data, and status stages of a control transfer must be performed as three separate transfers. setup-, data- or status-stage OUT transactions are performed similarly to the bulk OUT transactions explained previously. Data- or status-stage IN transactions are performed similarly to the bulk IN transactions explained previously. For all three stages, the application is expected to set the EPTYP field in OTG_HCCHAR1 to control. During the setup stage, the application is expected to set the PID field in OTG_HCTSIZ1 to SETUP. • Interrupt OUT transactions A typical interrupt OUT operation is shown in Figure 473. The assumptions are: – The application is attempting to send one packet in every frame (up to 1 maximum packet size), starting with the odd frame (transfer size = 1 024 bytes) – The periodic transmit FIFO can hold one packet (1 KB) – Periodic request queue depth = 4 The sequence of operations is as follows: RM0385 Rev 7 1465/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1466/1709 RM0385 1. Initialize and enable channel 1. The application must set the ODDFRM bit in OTG_HCCHAR1. 2. Write the first packet for channel 1. 3. Along with the last word write of each packet, the OTG_FS/OTG_HS host writes an entry to the periodic request queue. 4. The OTG_FS/OTG_HS host attempts to send an OUT token in the next (odd) frame. 5. The OTG_FS/OTG_HS host generates an XFRC interrupt as soon as the last packet is transmitted successfully. 6. In response to the XFRC interrupt, reinitialize the channel for the next transfer. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 473. Normal interrupt OUT Application 1 AHB Host USB init_reg(ch_1) init_reg(ch_2) 1 write_tx_fifo (ch_1) 2 set_ch_en (ch_2) Device Periodic Request Queue Assume that this queue can hold 4 entries. 3 1 MPS 4 ch_1 2 ch_2 _ 3 OU T Odd (micro) D ATA0 M PS frame 5 6 AC K XferCompl interrupt 4 init_reg(ch_1) write_tx_fifo (ch_1) IN 5 1 MPS D ATA0 RxFLvl interrupt ACK read_rx_sts read_rx_fifo 1 MPS 6 RxFLvl interrupt read_rx_sts 7 init_reg(ch_2) XferCompl interrupt 8 ch_1 ch 2 ch_2 9 set_ch_en (ch_2) Even OU T frame XferCompl interrupt D ATA1 MPS init_reg(ch_1) write_tx_fifo (ch_1) (micro) 1 MPS ACK IN D ATA1 MSv36020V1 1. The grayed elements are not relevant in the context of this figure. • Interrupt service routine for interrupt OUT/IN transactions a) Interrupt OUT Unmask (NAK/TXERR/STALL/XFRC/FRMOR) RM0385 Rev 7 1467/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) if (XFRC) { Reset Error Count Mask ACK De-allocate Channel } else if (STALL or FRMOR) { Mask ACK Unmask CHH Disable Channel if (STALL) { Transfer Done = 1 } } else if (NAK or TXERR) { Rewind Buffer Pointers Reset Error Count Mask ACK Unmask CHH Disable Channel } else if (CHH) { Mask CHH if (Transfer Done or (Error_count == 3)) { De-allocate Channel } else { Re-initialize Channel (in next b_interval - 1 Frame) } } else if (ACK) { Reset Error Count Mask ACK } 1468/1709 RM0385 Rev 7 RM0385 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) The application uses the NPTXFE interrupt in OTG_GINTSTS to find the transmit FIFO space. Interrupt IN Unmask (NAK/TXERR/XFRC/BBERR/STALL/FRMOR/DTERR) if (XFRC) { Reset Error Count Mask ACK if (OTG_HCTSIZx.PKTCNT == 0) { De-allocate Channel } else { Transfer Done = 1 Unmask CHH Disable Channel } } else if (STALL or FRMOR or NAK or DTERR or BBERR) { Mask ACK Unmask CHH Disable Channel if (STALL or BBERR) { Reset Error Count Transfer Done = 1 } else if (!FRMOR) { Reset Error Count } } else if (TXERR) { Increment Error Count Unmask ACK Unmask CHH Disable Channel } else RM0385 Rev 7 1469/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 if (CHH) { Mask CHH if (Transfer Done or (Error_count == 3)) { De-allocate Channel } else Re-initialize Channel (in next b_interval - 1 /Frame) } } else if (ACK) { Reset Error Count Mask ACK } • Interrupt IN transactions The assumptions are: • – The application is attempting to receive one packet (up to 1 maximum packet size) in every frame, starting with odd (transfer size = 1 024 bytes). – The receive FIFO can hold at least one maximum-packet-size packet and two status words per packet (1 031 bytes). – Periodic request queue depth = 4. Normal interrupt IN operation The sequence of operations is as follows: 1470/1709 1. Initialize channel 2. The application must set the ODDFRM bit in OTG_HCCHAR2. 2. Set the CHENA bit in OTG_HCCHAR2 to write an IN request to the periodic request queue. 3. The OTG_FS/OTG_HS host writes an IN request to the periodic request queue for each OTG_HCCHAR2 register write with the CHENA bit set. 4. The OTG_FS/OTG_HS host attempts to send an IN token in the next (odd) frame. 5. As soon as the IN packet is received and written to the receive FIFO, the OTG_FS/OTG_HS host generates an RXFLVL interrupt. 6. In response to the RXFLVL interrupt, read the received packet status to determine the number of bytes received, then read the receive FIFO accordingly. The application must mask the RXFLVL interrupt before reading the receive FIFO, and unmask after reading the entire packet. 7. The core generates the RXFLVL interrupt for the transfer completion status entry in the receive FIFO. The application must read and ignore the receive packet status when the receive packet status is not an IN data packet (PKTSTS in GRXSTSR ≠ 0b0010). 8. The core generates an XFRC interrupt as soon as the receive packet status is read. 9. In response to the XFRC interrupt, read the PKTCNT field in OTG_HCTSIZ2. If the PKTCNT bit in OTG_HCTSIZ2 is not equal to 0, disable the channel before re- RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) initializing the channel for the next transfer, if any). If PKTCNT bit in OTG_HCTSIZ2 = 0, reinitialize the channel for the next transfer. This time, the application must reset the ODDFRM bit in OTG_HCCHAR2. RM0385 Rev 7 1471/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Figure 474. Normal interrupt IN Application 1 AHB Host USB init_reg(ch_1) init_reg(ch_2) 1 write_tx_fifo (ch_1) 2 set_ch_en (ch_2) Device Periodic Request Queue Assume that this queue can hold 4 entries. 3 1 MPS 4 ch 1 ch_1 2 ch_2 3 OU T Odd (micro) D ATA0 M PS frame 5 6 AC K Xfer Com pl i nterr upt 4 init_reg(ch_1) write_tx_fifo (ch_1) IN 5 1 MPS D ATA0 RxFLvl interrupt ACK read_rx_sts read_rx_fifo 1 MPS 6 RxFLvl interrupt read_rx_sts 7 init_reg(ch_2) XferCompl interrupt 8 ch 1 ch_1 ch_2 9 set_ch_en (ch_2) Even OU T frame Xfferr Compl interrr upt D ATA1 MPS init_reg(ch_1) write_tx_fifo (ch_1) (micro) 1 MPS ACK IN D ATA1 ai15676b 1. The grayed elements are not relevant in the context of this figure. • Isochronous OUT transactions A typical isochronous OUT operation is shown in Figure 474. The assumptions are: – 1472/1709 The application is attempting to send one packet every frame (up to 1 maximum RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) packet size), starting with an odd frame. (transfer size = 1 024 bytes). – The periodic transmit FIFO can hold one packet (1 KB). – Periodic request queue depth = 4. The sequence of operations is as follows: 1. Initialize and enable channel 1. The application must set the ODDFRM bit in OTG_HCCHAR1. 2. Write the first packet for channel 1. 3. Along with the last word write of each packet, the OTG_FS/OTG_HS host writes an entry to the periodic request queue. 4. The OTG_FS/OTG_HS host attempts to send the OUT token in the next frame (odd). 5. The OTG_FS/OTG_HS host generates the XFRC interrupt as soon as the last packet is transmitted successfully. 6. In response to the XFRC interrupt, reinitialize the channel for the next transfer. 7. Handling non-ACK responses RM0385 Rev 7 1473/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Figure 475. Isochronous OUT transactions Application 1 AHB USB Host init_reg(ch_1) Periodic Request Queue Assume that this queue can hold 4 entries. init_reg(ch_2) 1 write_tx_fifo (ch_1) 2 set_ch_en (ch_2) Device 3 1 MPS 4 ch_1 2 ch_2 3 OUT Odd (micro) frame D A T A0 MPS 5 6 XferCompl interrupt init_reg(ch_1) write_tx_fifo (ch_1) 4 1 MPS 5 IN D A T A0 RxFLvl interrupt 1 MPS 6 read_rx_sts read_rx_fifo RxFLvl interrupt read_rx_sts 7 XferCompl interrupt init_reg(ch_2) 8 ch_1 ch 2 ch_2 9 set_ch_en (ch_2) Even OUT (micro) frame D A T A0 MPS XferCompl interrupt init_reg(ch_1) IN write_tx_fifo (ch_1) 1 MPS DA TA 0 MSv36022V1 1. The grayed elements are not relevant in the context of this figure. • Interrupt service routine for isochronous OUT/IN transactions Code sample: isochronous OUT Unmask (FRMOR/XFRC) if (XFRC) 1474/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) { De-allocate Channel } else if (FRMOR) { Unmask CHH Disable Channel } else if (CHH) { Mask CHH De-allocate Channel } Code sample: Isochronous IN Unmask (TXERR/XFRC/FRMOR/BBERR) if (XFRC or FRMOR) { if (XFRC and (OTG_HCTSIZx.PKTCNT == 0)) { Reset Error Count De-allocate Channel } else { Unmask CHH Disable Channel } } else if (TXERR or BBERR) { Increment Error Count Unmask CHH Disable Channel } else if (CHH) { Mask CHH if (Transfer Done or (Error_count == 3)) { De-allocate Channel } RM0385 Rev 7 1475/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 else { Re-initialize Channel } } • Isochronous IN transactions The assumptions are: – The application is attempting to receive one packet (up to 1 maximum packet size) in every frame starting with the next odd frame (transfer size = 1 024 bytes). – The receive FIFO can hold at least one maximum-packet-size packet and two status word per packet (1 031 bytes). – Periodic request queue depth = 4. The sequence of operations is as follows: 1476/1709 1. Initialize channel 2. The application must set the ODDFRM bit in OTG_HCCHAR2. 2. Set the CHENA bit in OTG_HCCHAR2 to write an IN request to the periodic request queue. 3. The OTG_FS/OTG_HS host writes an IN request to the periodic request queue for each OTG_HCCHAR2 register write with the CHENA bit set. 4. The OTG_FS/OTG_HS host attempts to send an IN token in the next odd frame. 5. As soon as the IN packet is received and written to the receive FIFO, the OTG_FS/OTG_HS host generates an RXFLVL interrupt. 6. In response to the RXFLVL interrupt, read the received packet status to determine the number of bytes received, then read the receive FIFO accordingly. The application must mask the RXFLVL interrupt before reading the receive FIFO, and unmask it after reading the entire packet. 7. The core generates an RXFLVL interrupt for the transfer completion status entry in the receive FIFO. This time, the application must read and ignore the receive packet status when the receive packet status is not an IN data packet (PKTSTS bit in OTG_GRXSTSR ≠ 0b0010). 8. The core generates an XFRC interrupt as soon as the receive packet status is read. 9. In response to the XFRC interrupt, read the PKTCNT field in OTG_HCTSIZ2. If PKTCNT ≠ 0 in OTG_HCTSIZ2, disable the channel before re-initializing the channel for the next transfer, if any. If PKTCNT = 0 in OTG_HCTSIZ2, reinitialize the channel for the next transfer. This time, the application must reset the ODDFRM bit in OTG_HCCHAR2. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 476. Isochronous IN transactions Application 1 AHB USB Host init_reg(ch_1) Periodic Request Queue Assume that this queue can hold 4 entries. init_reg(ch_2) 1 write_tx_fifo (ch_1) 2 set_ch_en (ch_2) Device 3 1 MPS 4 ch 1 ch_1 2 ch_2 3 Odd OUT (micro) frame DATA0 MPS 5 6 XferCompl interrupt init_reg(ch_1) write_tx_fifo (ch_1) 4 1 MPS 5 IN DATA0 RxFLvl interrupt 1 MPS 6 read_rx_sts read_rx_fifo RxFLvl interrupt read_rx_sts 7 XferCompl interrupt init_reg(ch_2) 8 ch 1 ch_1 ch_2 9 set_ch_en (ch_2) Even OUT (micro) frame DATA0 MPS XferCompl interrupt init_reg(ch_1) IN write_tx_fifo (ch_1) 1 MPS DATA0 MSv36021V1 1. The grayed elements are not relevant in the context of this figure. • Selecting the queue depth Choose the periodic and non-periodic request queue depths carefully to match the number of periodic/non-periodic endpoints accessed. The non-periodic request queue depth affects the performance of non-periodic RM0385 Rev 7 1477/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 transfers. The deeper the queue (along with sufficient FIFO size), the more often the core is able to pipeline non-periodic transfers. If the queue size is small, the core is able to put in new requests only when the queue space is freed up. The core’s periodic request queue depth is critical to perform periodic transfers as scheduled. Select the periodic queue depth, based on the number of periodic transfers scheduled in a microframe. If the periodic request queue depth is smaller than the periodic transfers scheduled in a microframe, a frame overrun condition occurs. • Handling babble conditions OTG_FS/OTG_HS controller handles two cases of babble: packet babble and port babble. Packet babble occurs if the device sends more data than the maximum packet size for the channel. Port babble occurs if the core continues to receive data from the device at EOF2 (the end of frame 2, which is very close to SOF). When OTG_FS/OTG_HS controller detects a packet babble, it stops writing data into the Rx buffer and waits for the end of packet (EOP). When it detects an EOP, it flushes already written data in the Rx buffer and generates a Babble interrupt to the application. When OTG_FS/OTG_HS controller detects a port babble, it flushes the Rx FIFO and disables the port. The core then generates a port disabled interrupt (HPRTINT in OTG_GINTSTS, PENCHNG in OTG_HPRT). On receiving this interrupt, the application must determine that this is not due to an overcurrent condition (another cause of the port disabled interrupt) by checking POCA in OTG_HPRT, then perform a soft reset. The core does not send any more tokens after it has detected a port babble condition. Note: The following paragraphs, ranging from here to the beginning of Section 37.16, and covering DMA configurations, apply only to USB OTG HS. • Bulk and control OUT/SETUP transactions in DMA mode The sequence of operations is as follows: 1478/1709 1. Initialize and enable channel 1 as explained in Section : Channel initialization. 2. The OTG_HS host starts fetching the first packet as soon as the channel is enabled. For internal DMA mode, the OTG_HS host uses the programmed DMA address to fetch the packet. 3. After fetching the last 32-bit word of the second (last) packet, the OTG_HS host masks channel 1 internally for further arbitration. 4. The OTG_HS host generates a CHH interrupt as soon as the last packet is sent. 5. In response to the CHH interrupt, de-allocate the channel for other transfers. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 477. Normal bulk/control OUT/SETUP transactions - DMA Application 1 Host AHB USB Device init_reg(ch_1) 2 init_reg(ch_2) Non-Periodic Request Queue Assume that this queue can hold 4 entries. 1 1 MPS ch_1 1 MPS 2 ch_2 OUT ch_1 D ATA0 MPS ch_2 3 AC K IN D ATA0 3 AC K 1 MPS ch_1 OUT ch_2 D ATA1 MPS ch_2 5 ch_2 5 AC K C hHltd interrupt 4 IN De-allocate (ch_1) D ATA1 4 1 MPS AC K ch_2 6 7 ChHltd interrupt De-allocate (ch_2) MSv36927V1 • NAK and NYET handling with internal DMA: 1. The OTG_HS host sends a bulk OUT transaction. 2. The device responds with NAK or NYET. 3. If the application has unmasked NAK or NYET, the core generates the corresponding interrupt(s) to the application. The application is not required to service these interrupts, since the core takes care of rewinding the buffer pointers and re-initializing the Channel without application intervention. 4. The core automatically issues a ping token. 5. When the device returns an ACK, the core continues with the transfer. Optionally, the application can utilize these interrupts, in which case the NAK or NYET interrupt is masked by the application. RM0385 Rev 7 1479/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 The core does not generate a separate interrupt when NAK or NYET is received by the host functionality. • Bulk and control IN transactions in DMA mode The sequence of operations is as follows: 1480/1709 1. Initialize and enable the used channel (channel x) as explained in Section : Channel initialization. 2. The OTG_HS host writes an IN request to the request queue as soon as the channel receives the grant from the arbiter (arbitration is performed in a round-robin fashion). 3. The OTG_HS host starts writing the received data to the system memory as soon as the last byte is received with no errors. 4. When the last packet is received, the OTG_HS host sets an internal flag to remove any extra IN requests from the request queue. 5. The OTG_HS host flushes the extra requests. 6. The final request to disable channel x is written to the request queue. At this point, channel 2 is internally masked for further arbitration. 7. The OTG_HS host generates the CHH interrupt as soon as the disable request comes to the top of the queue. 8. In response to the CHH interrupt, de-allocate the channel for other transfers. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 478. Normal bulk/control IN transaction - DMA Application 1 Host AHB USB Device init_reg(ch_1) 2 init_reg(ch_2) 1 Non-Periodic Request Queue Assume that this queue can hold 4 entries. 1 MPS ch_1 h 1 1 MPS 2 ch_2 OUT ch_1 0 DATA0 MPS ch_2 3 AC K IN DATA0 0 3 AC K 1 MPS ch_1 OUT ch_2 D ATA1 MPS ch_2 5 ch_2 5 AC K C hHltd interruptt 4 IN De D ATA1 4 1 MPS AC K ch_2 6 7 ChHltd interrupt De-allocate (ch_2) 8 MSv36928V1 • Interrupt OUT transactions in DMA mode 1. Initialize and enable channel x as explained in Section : Channel initialization. 2. The OTG_HS host starts fetching the first packet as soon the channel is enabled and writes the OUT request along with the last 32-bit word fetch. In high-bandwidth transfers, the OTG_HS host continues fetching the next packet (up to the value specified in the MC field) before switching to the next channel. 3. The OTG_HS host attempts to send the OUT token at the beginning of the next odd frame/micro-frame. RM0385 Rev 7 1481/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 4. After successfully transmitting the packet, the OTG_HS host generates a CHH interrupt. 5. In response to the CHH interrupt, reinitialize the channel for the next transfer. Figure 479. Normal interrupt OUT transactions - DMA mode Application 1 Host AHB USB Device init_reg(ch_1) Periodic Request Queue Assume that this queue can hold 4 entries. init_reg(ch_2) 1 2 1 MPS 3 ch_1 ch_2 _ 2 O UT DATA0 MP S Odd (micro) frame 4 5 A CK C hH ltd interrupt init_reg(ch_1) 3 IN 1 MPS DATA0 AC K 1 MPS ChHltd interrupt 4 ch_1 ch 2 ch_2 init_reg(ch_2) 5 OUT Even (micro) frame D ATA1 MP S C hH ltd interrupt init_reg(ch_1) AC K IN 1 MPS DATA1 MSv36924V1 • Interrupt IN transactions in DMA mode The sequence of operations (channelx) is as follows: 1482/1709 1. Initialize and enable channel x as explained in Section : Channel initialization. 2. The OTG_HS host writes an IN request to the request queue as soon as the channel x gets the grant from the arbiter (round-robin with fairness). In high-bandwidth transfers, the OTG_HS host writes consecutive writes up to MC times. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 3. The OTG_HS host attempts to send an IN token at the beginning of the next (odd) frame/micro-frame. 4. As soon the packet is received and written to the receive FIFO, the OTG_HS host generates a CHH interrupt. 5. In response to the CHH interrupt, reinitialize the channel for the next transfer. Figure 480. Normal interrupt IN transactions - DMA mode Application 1 AHB USB Host Device init_reg(ch_1) Periodic Request Queue Assume that this queue can hold 4 entries. init_reg(ch_2) 1 2 1 MPS 3 ch_1 h 1 ch_2 2 O UT DATA0 MP S Odd (micro) frame 4 5 A CK C h H ltd interruptt init 3 IN 1 MPS DATA0 AC K 1 MPS ChHltd interrupt 4 ch_1 ch 1 ch_2 init_reg(ch_2) 5 OUT Even (micro) frame D A TA 1 MP S C h H ltd inte rruptt init AC K IN 1 MPS DATA1 MSv36925V1 • Isochronous OUT transactions in DMA mode 1. Initialize and enable channel x as explained in Section : Channel initialization. 2. The OTG_HS host starts fetching the first packet as soon as the channel is enabled, and writes the OUT request along with the last 32-bit word fetch. In high-bandwidth RM0385 Rev 7 1483/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 transfers, the OTG_HS host continues fetching the next packet (up to the value specified in the MC field) before switching to the next channel. 3. The OTG_HS host attempts to send an OUT token at the beginning of the next (odd) frame/micro-frame. 4. After successfully transmitting the packet, the OTG_HS host generates a CHH interrupt. 5. In response to the CHH interrupt, reinitialize the channel for the next transfer. Figure 481. Normal isochronous OUT transaction - DMA mode Application 1 Host AHB USB Device init_reg(ch_1) Periodic Request Queue Assume that this queue can hold 4 entries. init_reg(ch_2) 1 2 1 MPS 3 ch_1 ch_2 2 OUT DATA0 MPS 4 Odd (micro) frame 5 C hHltd interrupt init_reg(ch_1) 3 IN 1 MPS DATA0 1 MPS ChHltd interrupt 4 ch_1 ch_2 init_reg(ch_2) OUT Even (micro) frame DATA0 MPS C hH ltd interrupt init_reg(ch_1) IN 1 MPS DATA0 MSv36923V1 • Isochronous IN transactions in DMA mode The sequence of operations ((channel x) is as follows: 1484/1709 1. Initialize and enable channel x as explained in Section : Channel initialization. 2. The OTG_HS host writes an IN request to the request queue as soon as the channel x gets the grant from the arbiter (round-robin with fairness). In high-bandwidth transfers, the OTG_HS host performs consecutive write operations up to MC times. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 3. The OTG_HS host attempts to send an IN token at the beginning of the next (odd) frame/micro-frame. 4. As soon the packet is received and written to the receive FIFO, the OTG_HS host generates a CHH interrupt. 5. In response to the CHH interrupt, reinitialize the channel for the next transfer. Figure 482. Normal isochronous IN transactions - DMA mode Application 1 Host AHB USB Device init_reg(ch_1) Periodic Request Queue Assume that this queue can hold 4 entries. init_reg(ch_2) 1 2 1 MPS 3 ch_1 h 1 ch_2 2 OUT Odd (micro) frame DATA0 MPS 4 5 C hHltd interrupt init_r 3 IN 1 MPS DATA0 1 MPS ChHltdInterrupt 4 ch_1 ch 1 ch_2 init_reg(ch_2) 5 OUT Even (micro) frame DATA0 MPS C hH ltd interrupt init_reg(ch_1) IN 1 MPS DATA0 MS36922V1 • Bulk and control OUT/SETUP split transactions in DMA mode The sequence of operations in (channel x) is as follows: 1. Initialize and enable channel x for start split as explained in Section : Channel initialization. 2. The OTG_HS host starts fetching the first packet as soon the channel is enabled and writes the OUT request along with the last 32-bit word fetch. 3. After successfully transmitting start split, the OTG_HS host generates the CHH interrupt. 4. In response to the CHH interrupt, set the COMPLSPLT bit in OTG_HCSPLT1 to send the complete split. RM0385 Rev 7 1485/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 5. After successfully transmitting complete split, the OTG_HS host generates the CHH interrupt. 6. In response to the CHH interrupt, de-allocate the channel. • Bulk/control IN split transactions in DMA mode The sequence of operations (channel x) is as follows: 1. Initialize and enable channel x as explained in Section : Channel initialization. 2. The OTG_HS host writes the start split request to the nonperiodic request after getting the grant from the arbiter. The OTG_HS host masks the channel x internally for the arbitration after writing the request. 3. As soon as the IN token is transmitted, the OTG_HS host generates the CHH interrupt. 4. In response to the CHH interrupt, set the COMPLSPLT bit in OTG_HCSPLT2 and reenable the channel to send the complete split token. This unmasks channel x for arbitration. 5. The OTG_HS host writes the complete split request to the nonperiodic request after receiving the grant from the arbiter. 6. The OTG_HS host starts writing the packet to the system memory after receiving the packet successfully. 7. As soon as the received packet is written to the system memory, the OTG_HS host generates a CHH interrupt. 8. In response to the CHH interrupt, de-allocate the channel. • Interrupt OUT split transactions in DMA mode The sequence of operations in (channel x) is as follows: 1. Initialize and enable channel 1 for start split as explained in Section : Channel initialization. The application must set the ODDFRM bit in OTG_HCCHAR1. 2. The OTG_HS host starts reading the packet. 3. The OTG_HS host attempts to send the start split transaction. 4. After successfully transmitting the start split, the OTG_HS host generates the CHH interrupt. 5. In response to the CHH interrupt, set the COMPLSPLT bit in OTG_HCSPLT1 to send the complete split. 6. After successfully completing the complete split transaction, the OTG_HS host generates the CHH interrupt. 7. In response to CHH interrupt, de-allocate the channel. • Interrupt IN split transactions in DMA mode The sequence of operations in (channel x) is as follows: 1486/1709 1. Initialize and enable channel x for start split as explained in Section : Channel initialization. 2. The OTG_HS host writes an IN request to the request queue as soon as channel x receives the grant from the arbiter. 3. The OTG_HS host attempts to send the start split IN token at the beginning of the next odd micro-frame. 4. The OTG_HS host generates the CHH interrupt after successfully transmitting the start split IN token. 5. In response to the CHH interrupt, set the COMPLSPLT bit in OTG_HCSPLT2 to send the complete split. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 6. As soon as the packet is received successfully, the OTG_HS host starts writing the data to the system memory. 7. The OTG_HS host generates the CHH interrupt after transferring the received data to the system memory. 8. In response to the CHH interrupt, de-allocate or reinitialize the channel for the next start split. • Isochronous OUT split transactions in DMA mode The sequence of operations (channel x) is as follows: 1. Initialize and enable channel x for start split (begin) as explained in Section : Channel initialization. The application must set the ODDFRM bit in OTG_HCCHAR1. Program the MPS field. 2. The OTG_HS host starts reading the packet. 3. After successfully transmitting the start split (begin), the OTG_HS host generates the CHH interrupt. 4. In response to the CHH interrupt, reinitialize the registers to send the start split (end). 5. After successfully transmitting the start split (end), the OTG_HS host generates a CHH interrupt. 6. In response to the CHH interrupt, de-allocate the channel. • Isochronous IN split transactions in DMA mode The sequence of operations (channel x) is as follows: 1. Initialize and enable channel x for start split as explained in Section : Channel initialization. 2. The OTG_HS host writes an IN request to the request queue as soon as channel x receives the grant from the arbiter. 3. The OTG_HS host attempts to send the start split IN token at the beginning of the next odd micro-frame. 4. The OTG_HS host generates the CHH interrupt after successfully transmitting the start split IN token. 5. In response to the CHH interrupt, set the COMPLSPLT bit in OTG_HCSPLT2 to send the complete split. 6. As soon as the packet is received successfully, the OTG_HS host starts writing the data to the system memory. The OTG_HS host generates the CHH interrupt after transferring the received data to the system memory. In response to the CHH interrupt, de-allocate the channel or reinitialize the channel for the next start split. RM0385 Rev 7 1487/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 37.16.6 RM0385 Device programming model Endpoint initialization on USB reset 1. Set the NAK bit for all OUT endpoints – 2. 3. 4. Unmask the following interrupt bits – INEP0 = 1 in OTG_DAINTMSK (control 0 IN endpoint) – OUTEP0 = 1 in OTG_DAINTMSK (control 0 OUT endpoint) – STUPM = 1 in OTG_DOEPMSK – XFRCM = 1 in OTG_DOEPMSK – XFRCM = 1 in OTG_DIEPMSK – TOM = 1 in OTG_DIEPMSK Set up the data FIFO RAM for each of the FIFOs – Program the OTG_GRXFSIZ register, to be able to receive control OUT data and setup data. If thresholding is not enabled, at a minimum, this must be equal to 1 max packet size of control endpoint 0 + 2 words (for the status of the control OUT data packet) + 10 words (for setup packets). – Program the OTG_DIEPTXF0 register (depending on the FIFO number chosen) to be able to transmit control IN data. At a minimum, this must be equal to 1 max packet size of control endpoint 0. Program the following fields in the endpoint-specific registers for control OUT endpoint 0 to receive a SETUP packet – 5. SNAK = 1 in OTG_DOEPCTLx (for all OUT endpoints) STUPCNT = 3 in OTG_DOEPTSIZ0 (to receive up to 3 back-to-back SETUP packets) For USB OTG_HS in DMA mode, the OTG_DOEPDMA0 register should have a valid memory address to store any SETUP packets received. At this point, all initialization required to receive SETUP packets is done. Endpoint initialization on enumeration completion 1. On the Enumeration Done interrupt (ENUMDNE in OTG_GINTSTS), read the OTG_DSTS register to determine the enumeration speed. 2. Program the MPSIZ field in OTG_DIEPCTL0 to set the maximum packet size. This step configures control endpoint 0. The maximum packet size for a control endpoint depends on the enumeration speed. 3. For USB OTG_HS in DMA mode, program the OTG_DOEPCTL0 register to enable control OUT endpoint 0, to receive a SETUP packet. At this point, the device is ready to receive SOF packets and is configured to perform control transfers on control endpoint 0. Endpoint initialization on SetAddress command This section describes what the application must do when it receives a SetAddress command in a SETUP packet. 1488/1709 1. Program the OTG_DCFG register with the device address received in the SetAddress command 2. Program the core to send out a status IN packet RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Endpoint initialization on SetConfiguration/SetInterface command This section describes what the application must do when it receives a SetConfiguration or SetInterface command in a SETUP packet. 1. When a SetConfiguration command is received, the application must program the endpoint registers to configure them with the characteristics of the valid endpoints in the new configuration. 2. When a SetInterface command is received, the application must program the endpoint registers of the endpoints affected by this command. 3. Some endpoints that were active in the prior configuration or alternate setting are not valid in the new configuration or alternate setting. These invalid endpoints must be deactivated. 4. Unmask the interrupt for each active endpoint and mask the interrupts for all inactive endpoints in the OTG_DAINTMSK register. 5. Set up the data FIFO RAM for each FIFO. 6. After all required endpoints are configured; the application must program the core to send a status IN packet. At this point, the device core is configured to receive and transmit any type of data packet. Endpoint activation This section describes the steps required to activate a device endpoint or to configure an existing device endpoint to a new type. 1. 2. Program the characteristics of the required endpoint into the following fields of the OTG_DIEPCTLx register (for IN or bidirectional endpoints) or the OTG_DOEPCTLx register (for OUT or bidirectional endpoints). – Maximum packet size – USB active endpoint = 1 – Endpoint start data toggle (for interrupt and bulk endpoints) – Endpoint type – Tx FIFO number Once the endpoint is activated, the core starts decoding the tokens addressed to that endpoint and sends out a valid handshake for each valid token received for the endpoint. Endpoint deactivation This section describes the steps required to deactivate an existing endpoint. Note: 1. In the endpoint to be deactivated, clear the USB active endpoint bit in the OTG_DIEPCTLx register (for IN or bidirectional endpoints) or the OTG_DOEPCTLx register (for OUT or bidirectional endpoints). 2. Once the endpoint is deactivated, the core ignores tokens addressed to that endpoint, which results in a timeout on the USB. The application must meet the following conditions to set up the device core to handle traffic: NPTXFEM and RXFLVLM in the OTG_GINTMSK register must be cleared. RM0385 Rev 7 1489/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Operational model SETUP and OUT data transfers: This section describes the internal data flow and application-level operations during data OUT transfers and SETUP transactions. • Packet read This section describes how to read packets (OUT data and SETUP packets) from the receive FIFO. 1. On catching an RXFLVL interrupt (OTG_GINTSTS register), the application must read the receive status pop register (OTG_GRXSTSP). 2. The application can mask the RXFLVL interrupt (in OTG_GINTSTS) by writing to RXFLVLM = 0 (in OTG_GINTMSK), until it has read the packet from the receive FIFO. 3. If the received packet’s byte count is not 0, the byte count amount of data is popped from the receive data FIFO and stored in memory. If the received packet byte count is 0, no data is popped from the receive data FIFO. 4. The receive status readout of the packet of FIFO indicates one of the following: a) Global OUT NAK pattern: PKTSTS = Global OUT NAK, BCNT = 0x000, EPNUM = (0x0), DPID = (0b00). These data indicate that the global OUT NAK bit has taken effect. b) SETUP packet pattern: PKTSTS = SETUP, BCNT = 0x008, EPNUM = Control EP Num, DPID = DATA0. These data indicate that a SETUP packet for the specified endpoint is now available for reading from the receive FIFO. c) Setup stage done pattern: PKTSTS = Setup Stage Done, BCNT = 0x0, EPNUM = Control EP Num, DPID = (0b00). These data indicate that the setup stage for the specified endpoint has completed and the data stage has started. After this entry is popped from the receive FIFO, the core asserts a setup interrupt on the specified control OUT endpoint. d) Data OUT packet pattern: PKTSTS = DataOUT, BCNT = size of the received data OUT packet (0 ≤ BCNT ≤ 1 024), EPNUM = EPNUM on which the packet was received, DPID = Actual Data PID. e) Data transfer completed pattern: PKTSTS = Data OUT transfer done, BCNT = 0x0, EPNUM = OUT EP Num on which the data transfer is complete, DPID = (0b00). These data indicate that an OUT data transfer for the specified OUT endpoint has completed. After this entry is popped from the receive FIFO, the core asserts a transfer completed interrupt on the specified OUT endpoint. 5. After the data payload is popped from the receive FIFO, the RXFLVL interrupt (OTG_GINTSTS) must be unmasked. 6. Steps 1–5 are repeated every time the application detects assertion of the interrupt line due to RXFLVL in OTG_GINTSTS. Reading an empty receive FIFO can result in undefined core behavior. Figure 483 provides a flowchart of the above procedure. 1490/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 483. Receive FIFO packet read wait until RXFLVL in OTG_GINTSTSG rd_data = rd_reg (OTG_GRXSTSP); Y rd_data.BCNT =0 rcv_out_pkt() N Packet stored in memory mem[0:word_cnt _1] = rd_rxfifo(rd_data.EPNUM, word_cnt) word_cnt = BCNT[11:2] + (BCNT[1] | BCNT[1]) ai15677b SETUP transactions This section describes how the core handles SETUP packets and the application’s sequence for handling SETUP transactions. • Application requirements 1. To receive a SETUP packet, the STUPCNT field (OTG_DOEPTSIZx) in a control OUT endpoint must be programmed to a non-zero value. When the application programs the STUPCNT field to a non-zero value, the core receives SETUP packets and writes them to the receive FIFO, irrespective of the NAK status and EPENA bit setting in OTG_DOEPCTLx. The STUPCNT field is decremented every time the control endpoint receives a SETUP packet. If the STUPCNT field is not programmed to a proper value before receiving a SETUP packet, the core still receives the SETUP packet and decrements the STUPCNT field, but the application may not be able to determine the correct number of SETUP packets received in the setup stage of a control transfer. – 2. STUPCNT = 3 in OTG_DOEPTSIZx The application must always allocate some extra space in the receive data FIFO, to be able to receive up to three SETUP packets on a control endpoint. – The space to be reserved is 10 words. Three words are required for the first SETUP packet, 1 word is required for the setup stage done word and 6 words are required to store two extra SETUP packets among all control endpoints. – 3 words per SETUP packet are required to store 8 bytes of SETUP data and 4 bytes of SETUP status (setup packet pattern). The core reserves this space in the RM0385 Rev 7 1491/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 receive data FIFO to write SETUP data only, and never uses this space for data packets. 3. The application must read the 2 words of the SETUP packet from the receive FIFO. 4. The application must read and discard the setup stage done word from the receive FIFO. • Internal data flow 1. When a SETUP packet is received, the core writes the received data to the receive FIFO, without checking for available space in the receive FIFO and irrespective of the endpoint’s NAK and STALL bit settings. – 2. For every SETUP packet received on the USB, 3 words of data are written to the receive FIFO, and the STUPCNT field is decremented by 1. – The first word contains control information used internally by the core – The second word contains the first 4 bytes of the SETUP command – The third word contains the last 4 bytes of the SETUP command 3. When the setup stage changes to a data IN/OUT stage, the core writes an entry (setup stage done word) to the receive FIFO, indicating the completion of the setup stage. 4. On the AHB side, SETUP packets are emptied by the application. 5. When the application pops the setup stage done word from the receive FIFO, the core interrupts the application with an STUP interrupt (OTG_DOEPINTx), indicating it can process the received SETUP packet. 6. The core clears the endpoint enable bit for control OUT endpoints. • Application programming sequence 1. Program the OTG_DOEPTSIZx register. – STUPCNT = 3 2. Wait for the RXFLVL interrupt (OTG_GINTSTS) and empty the data packets from the receive FIFO. 3. Assertion of the STUP interrupt (OTG_DOEPINTx) marks a successful completion of the SETUP data transfer. – 1492/1709 The core internally sets the IN NAK and OUT NAK bits for the control IN/OUT endpoints on which the SETUP packet was received. On this interrupt, the application must read the OTG_DOEPTSIZx register to determine the number of SETUP packets received and process the last received SETUP packet. RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 484. Processing a SETUP packet Wait for STP in OTG_DOEPINTx rem_supcnt= rd_reg(OTG_DOEPTSIZx) setup_cmd[31:0 = mem[4 – 2 * rem_supcnt] setup_cmd[63:32] = mem[5 – 2 * rem_supcnt] Find setup cmd type ctrl_rd/wr/2 stage Read Write 2-stage setup_np_in_pkt Data IN phase setup_np_in_pkt Status IN phase rcv_out_pkt Data OUT phase MSv37035V1 • Handling more than three back-to-back SETUP packets Per the USB 2.0 specification, normally, during a SETUP packet error, a host does not send more than three back-to-back SETUP packets to the same endpoint. However, the USB 2.0 specification does not limit the number of back-to-back SETUP packets a host can send to the same endpoint. When this condition occurs, the OTG_FS/OTG_HS controller generates an interrupt (B2BSTUP in OTG_DOEPINTx). • Setting the global OUT NAK Internal data flow: 1. When the application sets the Global OUT NAK (SGONAK bit in OTG_DCTL), the core stops writing data, except SETUP packets, to the receive FIFO. Irrespective of the space availability in the receive FIFO, non-isochronous OUT tokens receive a NAK handshake response, and the core ignores isochronous OUT data packets 2. The core writes the Global OUT NAK pattern to the receive FIFO. The application must reserve enough receive FIFO space to write this data pattern. 3. When the application pops the Global OUT NAK pattern word from the receive FIFO, the core sets the GONAKEFF interrupt (OTG_GINTSTS). 4. Once the application detects this interrupt, it can assume that the core is in Global OUT NAK mode. The application can clear this interrupt by clearing the SGONAK bit in OTG_DCTL. Application programming sequence: RM0385 Rev 7 1493/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. RM0385 To stop receiving any kind of data in the receive FIFO, the application must set the Global OUT NAK bit by programming the following field: – SGONAK = 1 in OTG_DCTL 2. Wait for the assertion of the GONAKEFF interrupt in OTG_GINTSTS. When asserted, this interrupt indicates that the core has stopped receiving any type of data except SETUP packets. 3. The application can receive valid OUT packets after it has set SGONAK in OTG_DCTL and before the core asserts the GONAKEFF interrupt (OTG_GINTSTS). 4. The application can temporarily mask this interrupt by writing to the GONAKEFFM bit in the OTG_GINTMSK register. – 5. Whenever the application is ready to exit the Global OUT NAK mode, it must clear the SGONAK bit in OTG_DCTL. This also clears the GONAKEFF interrupt (OTG_GINTSTS). – 6. CGONAK = 1 in OTG_DCTL If the application has masked this interrupt earlier, it must be unmasked as follows: – • GONAKEFFM = 0 in the OTG_GINTMSK register GONAKEFFM = 1 in OTG_GINTMSK Disabling an OUT endpoint The application must use this sequence to disable an OUT endpoint that it has enabled. Application programming sequence: 1. Before disabling any OUT endpoint, the application must enable Global OUT NAK mode in the core. – SGONAK = 1 in OTG_DCTL 2. Wait for the GONAKEFF interrupt (OTG_GINTSTS) 3. Disable the required OUT endpoint by programming the following fields: 4. 5. – EPDIS = 1 in OTG_DOEPCTLx – SNAK = 1 in OTG_DOEPCTLx Wait for the EPDISD interrupt (OTG_DOEPINTx), which indicates that the OUT endpoint is completely disabled. When the EPDISD interrupt is asserted, the core also clears the following bits: – EPDIS = 0 in OTG_DOEPCTLx – EPENA = 0 in OTG_DOEPCTLx The application must clear the Global OUT NAK bit to start receiving data from other non-disabled OUT endpoints. – • SGONAK = 0 in OTG_DCTL Generic non-isochronous OUT data transfers This section describes a regular non-isochronous OUT data transfer (control, bulk, or interrupt). Application requirements: 1494/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. Before setting up an OUT transfer, the application must allocate a buffer in the memory to accommodate all data to be received as part of the OUT transfer. 2. For OUT transfers, the transfer size field in the endpoint’s transfer size register must be a multiple of the maximum packet size of the endpoint, adjusted to the word boundary. 3. – transfer size[EPNUM] = n × (MPSIZ[EPNUM] + 4 – (MPSIZ[EPNUM] mod 4)) – packet count[EPNUM] = n – n>0 On any OUT endpoint interrupt, the application must read the endpoint’s transfer size register to calculate the size of the payload in the memory. The received payload size can be less than the programmed transfer size. – Payload size in memory = application programmed initial transfer size – core updated final transfer size – Number of USB packets in which this payload was received = application programmed initial packet count – core updated final packet count Internal data flow: 1. The application must set the transfer size and packet count fields in the endpointspecific registers, clear the NAK bit, and enable the endpoint to receive the data. 2. Once the NAK bit is cleared, the core starts receiving data and writes it to the receive FIFO, as long as there is space in the receive FIFO. For every data packet received on the USB, the data packet and its status are written to the receive FIFO. Every packet (maximum packet size or short packet) written to the receive FIFO decrements the packet count field for that endpoint by 1. – OUT data packets received with bad data CRC are flushed from the receive FIFO automatically. – After sending an ACK for the packet on the USB, the core discards nonisochronous OUT data packets that the host, which cannot detect the ACK, resends. The application does not detect multiple back-to-back data OUT packets on the same endpoint with the same data PID. In this case the packet count is not decremented. – If there is no space in the receive FIFO, isochronous or non-isochronous data packets are ignored and not written to the receive FIFO. Additionally, nonisochronous OUT tokens receive a NAK handshake reply. – In all the above three cases, the packet count is not decremented because no data are written to the receive FIFO. 3. When the packet count becomes 0 or when a short packet is received on the endpoint, the NAK bit for that endpoint is set. Once the NAK bit is set, the isochronous or nonisochronous data packets are ignored and not written to the receive FIFO, and nonisochronous OUT tokens receive a NAK handshake reply. 4. After the data are written to the receive FIFO, the application reads the data from the receive FIFO and writes it to external memory, one packet at a time per endpoint. 5. At the end of every packet write on the AHB to external memory, the transfer size for the endpoint is decremented by the size of the written packet. 6. The OUT data transfer completed pattern for an OUT endpoint is written to the receive FIFO on one of the following conditions: – The transfer size is 0 and the packet count is 0 – The last OUT data packet written to the receive FIFO is a short packet (0 ≤ packet size < maximum packet size) RM0385 Rev 7 1495/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 7. RM0385 When either the application pops this entry (OUT data transfer completed), a transfer completed interrupt is generated for the endpoint and the endpoint enable is cleared. Application programming sequence: 1. Program the OTG_DOEPTSIZx register for the transfer size and the corresponding packet count. 2. Program the OTG_DOEPCTLx register with the endpoint characteristics, and set the EPENA and CNAK bits. 3. – EPENA = 1 in OTG_DOEPCTLx – CNAK = 1 in OTG_DOEPCTLx Wait for the RXFLVL interrupt (in OTG_GINTSTS) and empty the data packets from the receive FIFO. – This step can be repeated many times, depending on the transfer size. 4. Asserting the XFRC interrupt (OTG_DOEPINTx) marks a successful completion of the non-isochronous OUT data transfer. 5. Read the OTG_DOEPTSIZx register to determine the size of the received data payload. • Generic isochronous OUT data transfer This section describes a regular isochronous OUT data transfer. Application requirements: 1. All the application requirements for non-isochronous OUT data transfers also apply to isochronous OUT data transfers. 2. For isochronous OUT data transfers, the transfer size and packet count fields must always be set to the number of maximum-packet-size packets that can be received in a single frame and no more. Isochronous OUT data transfers cannot span more than 1 frame. 3. The application must read all isochronous OUT data packets from the receive FIFO (data and status) before the end of the periodic frame (EOPF interrupt in OTG_GINTSTS). 4. To receive data in the following frame, an isochronous OUT endpoint must be enabled after the EOPF (OTG_GINTSTS) and before the SOF (OTG_GINTSTS). Internal data flow: 1. The internal data flow for isochronous OUT endpoints is the same as that for nonisochronous OUT endpoints, but for a few differences. 2. When an isochronous OUT endpoint is enabled by setting the endpoint enable and clearing the NAK bits, the Even/Odd frame bit must also be set appropriately. The core receives data on an isochronous OUT endpoint in a particular frame only if the following condition is met: – 3. EONUM (in OTG_DOEPCTLx) = FNSOF[0] (in OTG_DSTS) When the application completely reads an isochronous OUT data packet (data and status) from the receive FIFO, the core updates the RXDPID field in OTG_DOEPTSIZx with the data PID of the last isochronous OUT data packet read from the receive FIFO. Application programming sequence: 1496/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. Program the OTG_DOEPTSIZx register for the transfer size and the corresponding packet count 2. Program the OTG_DOEPCTLx register with the endpoint characteristics and set the endpoint enable, ClearNAK, and Even/Odd frame bits. 3. – EPENA = 1 – CNAK = 1 – EONUM = (0: Even/1: Odd) Wait for the RXFLVL interrupt (in OTG_GINTSTS) and empty the data packets from the receive FIFO – This step can be repeated many times, depending on the transfer size. 4. The assertion of the XFRC interrupt (in OTG_DOEPINTx) marks the completion of the isochronous OUT data transfer. This interrupt does not necessarily mean that the data in memory are good. 5. This interrupt cannot always be detected for isochronous OUT transfers. Instead, the application can detect the INCOMPISOOUT interrupt in OTG_GINTSTS. 6. Read the OTG_DOEPTSIZx register to determine the size of the received transfer and to determine the validity of the data received in the frame. The application must treat the data received in memory as valid only if one of the following conditions is met: – RXDPID = DATA0 (in OTG_DOEPTSIZx) and the number of USB packets in which this payload was received = 1 – RXDPID = DATA1 (in OTG_DOEPTSIZx) and the number of USB packets in which this payload was received = 2 – RXDPID = D2 (in OTG_DOEPTSIZx) and the number of USB packets in which this payload was received = 3[HS] The number of USB packets in which this payload was received = Application programmed initial packet count – core updated final packet count The application can discard invalid data packets. • Incomplete isochronous OUT data transfers This section describes the application programming sequence when isochronous OUT data packets are dropped inside the core. Internal data flow: 1. 2. For isochronous OUT endpoints, the XFRC interrupt (in OTG_DOEPINTx) may not always be asserted. If the core drops isochronous OUT data packets, the application could fail to detect the XFRC interrupt (OTG_DOEPINTx) under the following circumstances: – When the receive FIFO cannot accommodate the complete ISO OUT data packet, the core drops the received ISO OUT data – When the isochronous OUT data packet is received with CRC errors – When the isochronous OUT token received by the core is corrupted – When the application is very slow in reading the data from the receive FIFO When the core detects an end of periodic frame before transfer completion to all isochronous OUT endpoints, it asserts the incomplete isochronous OUT data interrupt (INCOMPISOOUT in OTG_GINTSTS), indicating that an XFRC interrupt (in OTG_DOEPINTx) is not asserted on at least one of the isochronous OUT endpoints. At RM0385 Rev 7 1497/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 this point, the endpoint with the incomplete transfer remains enabled, but no active transfers remain in progress on this endpoint on the USB. Application programming sequence: 1. Asserting the INCOMPISOOUT interrupt (OTG_GINTSTS) indicates that in the current frame, at least one isochronous OUT endpoint has an incomplete transfer. 2. If this occurs because isochronous OUT data is not completely emptied from the endpoint, the application must ensure that the application empties all isochronous OUT data (data and status) from the receive FIFO before proceeding. – 3. When all data are emptied from the receive FIFO, the application can detect the XFRC interrupt (OTG_DOEPINTx). In this case, the application must re-enable the endpoint to receive isochronous OUT data in the next frame. When it receives an INCOMPISOOUT interrupt (in OTG_GINTSTS), the application must read the control registers of all isochronous OUT endpoints (OTG_DOEPCTLx) to determine which endpoints had an incomplete transfer in the current microframe. An endpoint transfer is incomplete if both the following conditions are met: – EONUM bit (in OTG_DOEPCTLx) = FNSOF[0] (in OTG_DSTS) – EPENA = 1 (in OTG_DOEPCTLx) 4. The previous step must be performed before the SOF interrupt (in OTG_GINTSTS) is detected, to ensure that the current frame number is not changed. 5. For isochronous OUT endpoints with incomplete transfers, the application must discard the data in the memory and disable the endpoint by setting the EPDIS bit in OTG_DOEPCTLx. 6. Wait for the EPDISD interrupt (in OTG_DOEPINTx) and enable the endpoint to receive new data in the next frame. – • Because the core can take some time to disable the endpoint, the application may not be able to receive the data in the next frame after receiving bad isochronous data. Stalling a non-isochronous OUT endpoint This section describes how the application can stall a non-isochronous endpoint. 1. 2. Put the core in the Global OUT NAK mode. Disable the required endpoint – When disabling the endpoint, instead of setting the SNAK bit in OTG_DOEPCTL, set STALL = 1 (in OTG_DOEPCTL). The STALL bit always takes precedence over the NAK bit. 3. When the application is ready to end the STALL handshake for the endpoint, the STALL bit (in OTG_DOEPCTLx) must be cleared. 4. If the application is setting or clearing a STALL for an endpoint due to a SetFeature.Endpoint Halt or ClearFeature.Endpoint Halt command, the STALL bit must be set or cleared before the application sets up the status stage transfer on the control endpoint. Examples This section describes and depicts some fundamental transfer types and scenarios. • 1498/1709 Bulk OUT transaction RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 485 depicts the reception of a single Bulk OUT data packet from the USB to the AHB and describes the events involved in the process. Figure 485. Bulk OUT transaction Host USB Device Application init _out_ep 1 2 XFRSIZ = 64 bytes PKTCNT = 1 Wr_reg(OTG_DOEPTSIZx) EPENA = 1 CN AK = 1 O UT Wr_reg(OTG_DOEPCTLx) 3 64 bytes 4 6 xact_1 AC K RXFLVL iintr OTG_DO 5 EPCTLx PKTCN , NAK=1 XFRSIZ =0 r OU T NA K idle until intr T0 7 rcv_out _pkt() XF int r RC 8 On new xfer or RxFIFO not em pty idle until intr MS36931V1 After a SetConfiguration/SetInterface command, the application initializes all OUT endpoints by setting CNAK = 1 and EPENA = 1 (in OTG_DOEPCTLx), and setting a suitable XFRSIZ and PKTCNT in the OTG_DOEPTSIZx register. 1. host attempts to send data (OUT token) to an endpoint. 2. When the core receives the OUT token on the USB, it stores the packet in the Rx FIFO because space is available there. 3. After writing the complete packet in the Rx FIFO, the core then asserts the RXFLVL interrupt (in OTG_GINTSTS). 4. On receiving the PKTCNT number of USB packets, the core internally sets the NAK bit for this endpoint to prevent it from receiving any more packets. 5. The application processes the interrupt and reads the data from the Rx FIFO. 6. When the application has read all the data (equivalent to XFRSIZ), the core generates an XFRC interrupt (in OTG_DOEPINTx). 7. The application processes the interrupt and uses the setting of the XFRC interrupt bit (in OTG_DOEPINTx) to determine that the intended transfer is complete. IN data transfers • Packet write This section describes how the application writes data packets to the endpoint FIFO when dedicated transmit FIFOs are enabled. RM0385 Rev 7 1499/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. 2. RM0385 The application can either choose the polling or the interrupt mode. – In polling mode, the application monitors the status of the endpoint transmit data FIFO by reading the OTG_DTXFSTSx register, to determine if there is enough space in the data FIFO. – In interrupt mode, the application waits for the TXFE interrupt (in OTG_DIEPINTx) and then reads the OTG_DTXFSTSx register, to determine if there is enough space in the data FIFO. – To write a single non-zero length data packet, there must be space to write the entire packet in the data FIFO. – To write zero length packet, the application must not look at the FIFO space. Using one of the above mentioned methods, when the application determines that there is enough space to write a transmit packet, the application must first write into the endpoint control register, before writing the data into the data FIFO. Typically, the application, must do a read modify write on the OTG_DIEPCTLx register to avoid modifying the contents of the register, except for setting the endpoint enable bit. The application can write multiple packets for the same endpoint into the transmit FIFO, if space is available. For periodic IN endpoints, the application must write packets only for one microframe. It can write packets for the next periodic transaction only after getting transfer complete for the previous transaction. • Setting IN endpoint NAK Internal data flow: 1. When the application sets the IN NAK for a particular endpoint, the core stops transmitting data on the endpoint, irrespective of data availability in the endpoint’s transmit FIFO. 2. Non-isochronous IN tokens receive a NAK handshake reply – Isochronous IN tokens receive a zero-data-length packet reply 3. The core asserts the INEPNE (IN endpoint NAK effective) interrupt in OTG_DIEPINTx in response to the SNAK bit in OTG_DIEPCTLx. 4. Once this interrupt is seen by the application, the application can assume that the endpoint is in IN NAK mode. This interrupt can be cleared by the application by setting the CNAK bit in OTG_DIEPCTLx. Application programming sequence: 1. To stop transmitting any data on a particular IN endpoint, the application must set the IN NAK bit. To set this bit, the following field must be programmed. – 2. Wait for assertion of the INEPNE interrupt in OTG_DIEPINTx. This interrupt indicates that the core has stopped transmitting data on the endpoint. 3. The core can transmit valid IN data on the endpoint after the application has set the NAK bit, but before the assertion of the NAK Effective interrupt. 4. The application can mask this interrupt temporarily by writing to the INEPNEM bit in OTG_DIEPMSK. – 5. 1500/1709 SNAK = 1 in OTG_DIEPCTLx INEPNEM = 0 in OTG_DIEPMSK To exit endpoint NAK mode, the application must clear the NAK status bit (NAKSTS) in OTG_DIEPCTLx. This also clears the INEPNE interrupt (in OTG_DIEPINTx). RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) – 6. If the application masked this interrupt earlier, it must be unmasked as follows: – • CNAK = 1 in OTG_DIEPCTLx INEPNEM = 1 in OTG_DIEPMSK IN endpoint disable Use the following sequence to disable a specific IN endpoint that has been previously enabled. Application programming sequence: 1. 2. The application must stop writing data on the AHB for the IN endpoint to be disabled. The application must set the endpoint in NAK mode. – SNAK = 1 in OTG_DIEPCTLx 3. Wait for the INEPNE interrupt in OTG_DIEPINTx. 4. Set the following bits in the OTG_DIEPCTLx register for the endpoint that must be disabled. 5. – EPDIS = 1 in OTG_DIEPCTLx – SNAK = 1 in OTG_DIEPCTLx Assertion of the EPDISD interrupt in OTG_DIEPINTx indicates that the core has completely disabled the specified endpoint. Along with the assertion of the interrupt, the core also clears the following bits: – EPENA = 0 in OTG_DIEPCTLx – EPDIS = 0 in OTG_DIEPCTLx 6. The application must read the OTG_DIEPTSIZx register for the periodic IN EP, to calculate how much data on the endpoint were transmitted on the USB. 7. The application must flush the data in the endpoint transmit FIFO, by setting the following fields in the OTG_GRSTCTL register: – TXFNUM (in OTG_GRSTCTL) = Endpoint transmit FIFO number – TXFFLSH in (OTG_GRSTCTL) = 1 The application must poll the OTG_GRSTCTL register, until the TXFFLSH bit is cleared by the core, which indicates the end of flush operation. To transmit new data on this endpoint, the application can re-enable the endpoint at a later point. • Generic non-periodic IN data transfers Application requirements: 1. Before setting up an IN transfer, the application must ensure that all data to be transmitted as part of the IN transfer are part of a single buffer. 2. For IN transfers, the transfer size field in the endpoint transfer size register denotes a payload that constitutes multiple maximum-packet-size packets and a single short packet. This short packet is transmitted at the end of the transfer. – To transmit a few maximum-packet-size packets and a short packet at the end of the transfer: Transfer size[EPNUM] = x × MPSIZ[EPNUM] + sp If (sp > 0), then packet count[EPNUM] = x + 1. Otherwise, packet count[EPNUM] = x – To transmit a single zero-length data packet: RM0385 Rev 7 1501/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Transfer size[EPNUM] = 0 Packet count[EPNUM] = 1 – To transmit a few maximum-packet-size packets and a zero-length data packet at the end of the transfer, the application must split the transfer into two parts. The first sends maximum-packet-size data packets and the second sends the zerolength data packet alone. First transfer: transfer size[EPNUM] = x × MPSIZ[epnum]; packet count = n; Second transfer: transfer size[EPNUM] = 0; packet count = 1; 3. Once an endpoint is enabled for data transfers, the core updates the transfer size register. At the end of the IN transfer, the application must read the transfer size register to determine how much data posted in the transmit FIFO have already been sent on the USB. 4. Data fetched into transmit FIFO = Application-programmed initial transfer size – coreupdated final transfer size – Data transmitted on USB = (application-programmed initial packet count – core updated final packet count) × MPSIZ[EPNUM] – Data yet to be transmitted on USB = (Application-programmed initial transfer size – data transmitted on USB) Internal data flow: 1. The application must set the transfer size and packet count fields in the endpointspecific registers and enable the endpoint to transmit the data. 2. The application must also write the required data to the transmit FIFO for the endpoint. 3. Every time a packet is written into the transmit FIFO by the application, the transfer size for that endpoint is decremented by the packet size. The data is fetched from the memory by the application, until the transfer size for the endpoint becomes 0. After writing the data into the FIFO, the “number of packets in FIFO” count is incremented (this is a 3-bit count, internally maintained by the core for each IN endpoint transmit FIFO. The maximum number of packets maintained by the core at any time in an IN endpoint FIFO is eight). For zero-length packets, a separate flag is set for each FIFO, without any data in the FIFO. 4. Once the data are written to the transmit FIFO, the core reads them out upon receiving an IN token. For every non-isochronous IN data packet transmitted with an ACK handshake, the packet count for the endpoint is decremented by one, until the packet count is zero. The packet count is not decremented on a timeout. 5. For zero length packets (indicated by an internal zero length flag), the core sends out a zero-length packet for the IN token and decrements the packet count field. 6. If there are no data in the FIFO for a received IN token and the packet count field for that endpoint is zero, the core generates an “IN token received when Tx FIFO is empty” (ITTXFE) interrupt for the endpoint, provided that the endpoint NAK bit is not set. The core responds with a NAK handshake for non-isochronous endpoints on the USB. 7. The core internally rewinds the FIFO pointers and no timeout interrupt is generated. 8. When the transfer size is 0 and the packet count is 0, the transfer complete (XFRC) interrupt for the endpoint is generated and the endpoint enable is cleared. Application programming sequence: 1502/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. Program the OTG_DIEPTSIZx register with the transfer size and corresponding packet count. 2. Program the OTG_DIEPCTLx register with the endpoint characteristics and set the CNAK and EPENA (endpoint enable) bits. 3. When transmitting non-zero length data packet, the application must poll the OTG_DTXFSTSx register (where x is the FIFO number associated with that endpoint) to determine whether there is enough space in the data FIFO. The application can optionally use TXFE (in OTG_DIEPINTx) before writing the data. • Generic periodic IN data transfers This section describes a typical periodic IN data transfer. Application requirements: 1. Application requirements 1, 2, 3, and 4 of Generic non-periodic IN data transfers on page 1501 also apply to periodic IN data transfers, except for a slight modification of requirement 2. – The application can only transmit multiples of maximum-packet-size data packets or multiples of maximum-packet-size packets, plus a short packet at the end. To transmit a few maximum-packet-size packets and a short packet at the end of the transfer, the following conditions must be met: transfer size[EPNUM] = x × MPSIZ[EPNUM] + sp (where x is an integer ≥ 0, and 0 ≤ sp < MPSIZ[EPNUM]) If (sp > 0), packet count[EPNUM] = x + 1 Otherwise, packet count[EPNUM] = x; MCNT[EPNUM] = packet count[EPNUM] – The application cannot transmit a zero-length data packet at the end of a transfer. It can transmit a single zero-length data packet by itself. To transmit a single zerolength data packet: – transfer size[EPNUM] = 0 packet count[EPNUM] = 1 MCNT[EPNUM] = packet count[EPNUM] 2. 3. The application can only schedule data transfers one frame at a time. – (MCNT – 1) × MPSIZ ≤ XFERSIZ ≤ MCNT × MPSIZ – PKTCNT = MCNT (in OTG_DIEPTSIZx) – If XFERSIZ < MCNT × MPSIZ, the last data packet of the transfer is a short packet. – Note that: MCNT is in OTG_DIEPTSIZx, MPSIZ is in OTG_DIEPCTLx, PKTCNT is in OTG_DIEPTSIZx and XFERSIZ is in OTG_DIEPTSIZx The complete data to be transmitted in the frame must be written into the transmit FIFO by the application, before the IN token is received. Even when 1 word of the data to be transmitted per frame is missing in the transmit FIFO when the IN token is received, the core behaves as when the FIFO is empty. When the transmit FIFO is empty: – A zero data length packet would be transmitted on the USB for isochronous IN endpoints – A NAK handshake would be transmitted on the USB for interrupt IN endpoints Internal data flow: RM0385 Rev 7 1503/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 1. The application must set the transfer size and packet count fields in the endpointspecific registers and enable the endpoint to transmit the data. 2. The application must also write the required data to the associated transmit FIFO for the endpoint. 3. Every time the application writes a packet to the transmit FIFO, the transfer size for that endpoint is decremented by the packet size. The data are fetched from application memory until the transfer size for the endpoint becomes 0. 4. When an IN token is received for a periodic endpoint, the core transmits the data in the FIFO, if available. If the complete data payload (complete packet, in dedicated FIFO mode) for the frame is not present in the FIFO, then the core generates an IN token received when Tx FIFO empty interrupt for the endpoint. 5. 6. – A zero-length data packet is transmitted on the USB for isochronous IN endpoints – A NAK handshake is transmitted on the USB for interrupt IN endpoints The packet count for the endpoint is decremented by 1 under the following conditions: – For isochronous endpoints, when a zero- or non-zero-length data packet is transmitted – For interrupt endpoints, when an ACK handshake is transmitted – When the transfer size and packet count are both 0, the transfer completed interrupt for the endpoint is generated and the endpoint enable is cleared. At the “Periodic frame Interval” (controlled by PFIVL in OTG_DCFG), when the core finds non-empty any of the isochronous IN endpoint FIFOs scheduled for the current frame non-empty, the core generates an IISOIXFR interrupt in OTG_GINTSTS. Application programming sequence: 1. Program the OTG_DIEPCTLx register with the endpoint characteristics and set the CNAK and EPENA bits. 2. Write the data to be transmitted in the next frame to the transmit FIFO. 3. Asserting the ITTXFE interrupt (in OTG_DIEPINTx) indicates that the application has not yet written all data to be transmitted to the transmit FIFO. 4. If the interrupt endpoint is already enabled when this interrupt is detected, ignore the interrupt. If it is not enabled, enable the endpoint so that the data can be transmitted on the next IN token attempt. 5. Asserting the XFRC interrupt (in OTG_DIEPINTx) with no ITTXFE interrupt in OTG_DIEPINTx indicates the successful completion of an isochronous IN transfer. A read to the OTG_DIEPTSIZx register must give transfer size = 0 and packet count = 0, indicating all data were transmitted on the USB. 6. Asserting the XFRC interrupt (in OTG_DIEPINTx), with or without the ITTXFE interrupt (in OTG_DIEPINTx), indicates the successful completion of an interrupt IN transfer. A read to the OTG_DIEPTSIZx register must give transfer size = 0 and packet count = 0, indicating all data were transmitted on the USB. 7. Asserting the incomplete isochronous IN transfer (IISOIXFR) interrupt in OTG_GINTSTS with none of the aforementioned interrupts indicates the core did not receive at least 1 periodic IN token in the current frame. • Incomplete isochronous IN data transfers This section describes what the application must do on an incomplete isochronous IN data transfer. 1504/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Internal data flow: 1. An isochronous IN transfer is treated as incomplete in one of the following conditions: a) The core receives a corrupted isochronous IN token on at least one isochronous IN endpoint. In this case, the application detects an incomplete isochronous IN transfer interrupt (IISOIXFR in OTG_GINTSTS). b) The application is slow to write the complete data payload to the transmit FIFO and an IN token is received before the complete data payload is written to the FIFO. In this case, the application detects an IN token received when Tx FIFO empty interrupt in OTG_DIEPINTx. The application can ignore this interrupt, as it eventually results in an incomplete isochronous IN transfer interrupt (IISOIXFR in OTG_GINTSTS) at the end of periodic frame. The core transmits a zero-length data packet on the USB in response to the received IN token. 2. The application must stop writing the data payload to the transmit FIFO as soon as possible. 3. The application must set the NAK bit and the disable bit for the endpoint. 4. The core disables the endpoint, clears the disable bit, and asserts the endpoint disable interrupt for the endpoint. Application programming sequence: 1. The application can ignore the IN token received when Tx FIFO empty interrupt in OTG_DIEPINTx on any isochronous IN endpoint, as it eventually results in an incomplete isochronous IN transfer interrupt (in OTG_GINTSTS). 2. Assertion of the incomplete isochronous IN transfer interrupt (in OTG_GINTSTS) indicates an incomplete isochronous IN transfer on at least one of the isochronous IN endpoints. 3. The application must read the endpoint control register for all isochronous IN endpoints to detect endpoints with incomplete IN data transfers. 4. The application must stop writing data to the Periodic Transmit FIFOs associated with these endpoints on the AHB. 5. Program the following fields in the OTG_DIEPCTLx register to disable the endpoint: 6. – SNAK = 1 in OTG_DIEPCTLx – EPDIS = 1 in OTG_DIEPCTLx The assertion of the endpoint disabled interrupt in OTG_DIEPINTx indicates that the core has disabled the endpoint. – • At this point, the application must flush the data in the associated transmit FIFO or overwrite the existing data in the FIFO by enabling the endpoint for a new transfer in the next microframe. To flush the data, the application must use the OTG_GRSTCTL register. Stalling non-isochronous IN endpoints This section describes how the application can stall a non-isochronous endpoint. Application programming sequence: RM0385 Rev 7 1505/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) 1. Disable the IN endpoint to be stalled. Set the STALL bit as well. 2. EPDIS = 1 in OTG_DIEPCTLx, when the endpoint is already enabled – STALL = 1 in OTG_DIEPCTLx – The STALL bit always takes precedence over the NAK bit RM0385 3. Assertion of the endpoint disabled interrupt (in OTG_DIEPINTx) indicates to the application that the core has disabled the specified endpoint. 4. The application must flush the non-periodic or periodic transmit FIFO, depending on the endpoint type. In case of a non-periodic endpoint, the application must re-enable the other non-periodic endpoints that do not need to be stalled, to transmit data. 5. Whenever the application is ready to end the STALL handshake for the endpoint, the STALL bit must be cleared in OTG_DIEPCTLx. 6. If the application sets or clears a STALL bit for an endpoint due to a SetFeature.Endpoint Halt command or ClearFeature.Endpoint Halt command, the STALL bit must be set or cleared before the application sets up the status stage transfer on the control endpoint. Special case: stalling the control OUT endpoint The core must stall IN/OUT tokens if, during the data stage of a control transfer, the host sends more IN/OUT tokens than are specified in the SETUP packet. In this case, the application must enable the ITTXFE interrupt in OTG_DIEPINTx and the OTEPDIS interrupt in OTG_DOEPINTx during the data stage of the control transfer, after the core has transferred the amount of data specified in the SETUP packet. Then, when the application receives this interrupt, it must set the STALL bit in the corresponding endpoint control register, and clear this interrupt. 37.16.7 Worst case response time When the OTG_FS/OTG_HS controller acts as a device, there is a worst case response time for any tokens that follow an isochronous OUT. This worst case response time depends on the AHB clock frequency. The core registers are in the AHB domain, and the core does not accept another token before updating these register values. The worst case is for any token following an isochronous OUT, because for an isochronous transaction, there is no handshake and the next token could come sooner. This worst case value is 7 PHY clocks when the AHB clock is the same as the PHY clock. When the AHB clock is faster, this value is smaller. If this worst case condition occurs, the core responds to bulk/interrupt tokens with a NAK and drops isochronous and SETUP tokens. The host interprets this as a timeout condition for SETUP and retries the SETUP packet. For isochronous transfers, the Incomplete isochronous IN transfer interrupt (IISOIXFR) and Incomplete isochronous OUT transfer interrupt (IISOOXFR) inform the application that isochronous IN/OUT packets were dropped. Choosing the value of TRDT in OTG_GUSBCFG The value in TRDT (OTG_GUSBCFG) is the time it takes for the MAC, in terms of PHY clocks after it has received an IN token, to get the FIFO status, and thus the first data from the PFC block. This time involves the synchronization delay between the PHY and AHB clocks. The worst case delay for this is when the AHB clock is the same as the PHY clock. In this case, the delay is 5 clocks. 1506/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Once the MAC receives an IN token, this information (token received) is synchronized to the AHB clock by the PFC (the PFC runs on the AHB clock). The PFC then reads the data from the SPRAM and writes them into the dual clock source buffer. The MAC then reads the data out of the source buffer (4 deep). If the AHB is running at a higher frequency than the PHY, the application can use a smaller value for TRDT (in OTG_GUSBCFG). Figure 486 has the following signals: • tkn_rcvd: Token received information from MAC to PFC • dynced_tkn_rcvd: Doubled sync tkn_rcvd, from PCLK to HCLK domain • spr_read: Read to SPRAM • spr_addr: Address to SPRAM • spr_rdata: Read data from SPRAM • srcbuf_push: Push to the source buffer • srcbuf_rdata: Read data from the source buffer. Data seen by MAC To calculate the value of TRDT, refer to Table 266: TRDT values (FS) or Table 267: TRDT values (HS). RM0385 Rev 7 1507/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Figure 486. TRDT max timing case 37.16.8 OTG programming model The OTG_FS/OTG_HS controller is an OTG device supporting HNP and SRP. When the core is connected to an “A” plug, it is referred to as an A-device. When the core is connected to a “B” plug it is referred to as a B-device. In host mode, the OTG_FS/OTG_HS controller turns off VBUS to conserve power. SRP is a method by which the B-device signals the Adevice to turn on VBUS power. A device must perform both data-line pulsing and VBUS pulsing, but a host can detect either data-line pulsing or VBUS pulsing for SRP. HNP is a method by which the B-device negotiates and switches to host role. In Negotiated mode after HNP, the B-device suspends the bus and reverts to the device role. A-device session request protocol The application must set the SRP-capable bit in the core USB configuration register. This enables the OTG_FS/OTG_HS controller to detect SRP as an A-device. 1508/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 487. A-device SRP Suspend 6 1 DRV_VBUS 5 2 VBUS_VALID VBUS pulsing A_VALID 3 D+ D- 4 Data line pulsing 7 Connect Low ai15681c 1. DRV_VBUS = VBUS drive signal to the PHY VBUS_VALID = VBUS valid signal from PHY A_VALID = A-peripheral VBUS level signal to PHY D+ = Data plus line D- = Data minus line The following points refer and describe the signal numeration shown in the Figure 487: 1. To save power, the application suspends and turns off port power when the bus is idle by writing the port suspend and port power bits in the host port control and status register. 2. PHY indicates port power off by deasserting the VBUS_VALID signal. 3. The device must detect SE0 for at least 2 ms to start SRP when VBUS power is off. 4. To initiate SRP, the device turns on its data line pull-up resistor for 5 to 10 ms. The OTG_FS/OTG_HS controller detects data-line pulsing. 5. The device drives VBUS above the A-device session valid (2.0 V minimum) for VBUS pulsing. The OTG_FS/OTG_HS controller interrupts the application on detecting SRP. The session request detected bit is set in Global interrupt status register (SRQINT set in OTG_GINTSTS). 6. The application must service the session request detected interrupt and turn on the port power bit by writing the port power bit in the host port control and status register. The PHY indicates port power-on by asserting the VBUS_VALID signal. 7. When the USB is powered, the device connects, completing the SRP process. B-device session request protocol The application must set the SRP-capable bit in the core USB configuration register. This enables the OTG_FS/OTG_HS controller to initiate SRP as a B-device. SRP is a means by which the OTG_FS/OTG_HS controller can request a new session from the host. RM0385 Rev 7 1509/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 Figure 488. B-device SRP 6 Suspend 1 VBUS_VALID 2 B_VALID 3 DISCHRG_VBUS 4 SESS_END 5 8 Data line pulsing Connect DP DM Low 7 VBUS pulsing CHRG_VBUS ai15682c 1. VBUS_VALID = VBUS valid signal from PHY B_VALID = B-peripheral valid session to PHY DISCHRG_VBUS = discharge signal to PHY SESS_END = session end signal to PHY CHRG_VBUS = charge VBUS signal to PHY DP = Data plus line DM = Data minus line The following points refer and describe the signal numeration shown in the Figure 488: 1510/1709 1. To save power, the host suspends and turns off port power when the bus is idle. The OTG_FS/OTG_HS controller sets the early suspend bit in the core interrupt register after 3 ms of bus idleness. Following this, the OTG_FS/OTG_HS controller sets the USB suspend bit in the core interrupt register. The OTG_FS/OTG_HS controller informs the PHY to discharge VBUS. 2. The PHY indicates the session’s end to the device. This is the initial condition for SRP. The OTG_FS/OTG_HS controller requires 2 ms of SE0 before initiating SRP. For a USB 1.1 full-speed serial transceiver, the application must wait until VBUS discharges to 0.2 V after BSVLD (in OTG_GOTGCTL) is deasserted. This discharge time can be obtained from the transceiver vendor and varies from one transceiver to another. 3. The OTG_FS/OTG_HS core informs the PHY to speed up VBUS discharge. 4. The application initiates SRP by writing the session request bit in the OTG control and status register. The OTG_FS/OTG_HS controller perform data-line pulsing followed by VBUS pulsing. 5. The host detects SRP from either the data-line or VBUS pulsing, and turns on VBUS. The PHY indicates VBUS power-on to the device. 6. The OTG_FS/OTG_HS controller performs VBUS pulsing. The host starts a new session by turning on VBUS, indicating SRP success. The OTG_FS/OTG_HS controller interrupts the application by setting the session request RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) success status change bit in the OTG interrupt status register. The application reads the session request success bit in the OTG control and status register. 7. When the USB is powered, the OTG_FS/OTG_HS controller connects, completing the SRP process. A-device host negotiation protocol HNP switches the USB host role from the A-device to the B-device. The application must set the HNP-capable bit in the core USB configuration register to enable the OTG_FS/OTG_HS controller to perform HNP as an A-device. Figure 489. A-device HNP 1. DPPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DP line inside the PHY. DMPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DM line inside the PHY. The following points refer and describe the signal numeration shown in the Figure 489: 1. The OTG_FS/OTG_HS controller sends the B-device a SetFeature b_hnp_enable descriptor to enable HNP support. The B-device’s ACK response indicates that the Bdevice supports HNP. The application must set host Set HNP enable bit in the OTG RM0385 Rev 7 1511/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 control and status register to indicate to the OTG_FS/OTG_HS controller that the Bdevice supports HNP. 2. When it has finished using the bus, the application suspends by writing the port suspend bit in the host port control and status register. 3. When the B-device observes a USB suspend, it disconnects, indicating the initial condition for HNP. The B-device initiates HNP only when it must switch to the host role; otherwise, the bus continues to be suspended. The OTG_FS/OTG_HS controller sets the host negotiation detected interrupt in the OTG interrupt status register, indicating the start of HNP. The OTG_FS/OTG_HS controller deasserts the DM pull down and DM pull down in the PHY to indicate a device role. The PHY enables the OTG_DP pull-up resistor to indicate a connect for B-device. The application must read the current mode bit in the OTG control and status register to determine device mode operation. 4. The B-device detects the connection, issues a USB reset, and enumerates the OTG_FS/OTG_HS controller for data traffic. 5. The B-device continues the host role, initiating traffic, and suspends the bus when done. The OTG_FS/OTG_HS controller sets the early suspend bit in the core interrupt register after 3 ms of bus idleness. Following this, the OTG_FS/OTG_HS controller sets the USB suspend bit in the core interrupt register. 6. In Negotiated mode, the OTG_FS/OTG_HS controller detects the suspend, disconnects, and switches back to the host role. The OTG_FS/OTG_HS controller asserts the DM pull down and DM pull down in the PHY to indicate its assumption of the host role. 7. The OTG_FS/OTG_HS controller sets the connector ID status change interrupt in the OTG interrupt status register. The application must read the connector ID status in the OTG control and status register to determine the OTG_FS/OTG_HS controller operation as an A-device. This indicates the completion of HNP to the application. The application must read the Current mode bit in the OTG control and status register to determine host mode operation. 8. The B-device connects, completing the HNP process. B-device host negotiation protocol HNP switches the USB host role from B-device to A-device. The application must set the HNP-capable bit in the core USB configuration register to enable the OTG_FS/OTG_HS controller to perform HNP as a B-device. 1512/1709 RM0385 Rev 7 RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) Figure 490. B-device HNP 1. DPPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DP line inside the PHY. DMPULLDOWN = signal from core to PHY to enable/disable the pull-down on the DM line inside the PHY. The following points refer and describe the signal numeration shown in the Figure 490: 1. The A-device sends the SetFeature b_hnp_enable descriptor to enable HNP support. The OTG_FS/OTG_HS controller’s ACK response indicates that it supports HNP. The application must set the device HNP enable bit in the OTG control and status register to indicate HNP support. The application sets the HNP request bit in the OTG control and status register to indicate to the OTG_FS/OTG_HS controller to initiate HNP. 2. When it has finished using the bus, the A-device suspends by writing the port suspend bit in the host port control and status register. The OTG_FS/OTG_HS controller sets the Early suspend bit in the core interrupt register after 3 ms of bus idleness. Following this, the OTG_FS/OTG_HS controller sets the USB suspend bit in the core interrupt register. The OTG_FS/OTG_HS controller disconnects and the A-device detects SE0 on the bus, indicating HNP. The OTG_FS/OTG_HS controller asserts the DP pull down and DM pull down in the PHY to indicate its assumption of the host role. The A-device responds by activating its OTG_DP pull-up resistor within 3 ms of detecting SE0. The OTG_FS/OTG_HS controller detects this as a connect. The OTG_FS/OTG_HS controller sets the host negotiation success status change interrupt in the OTG interrupt status register, indicating the HNP status. The application must read the host negotiation success bit in the OTG control and status register to RM0385 Rev 7 1513/1709 1514 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS) RM0385 determine host negotiation success. The application must read the current Mode bit in the core interrupt register (OTG_GINTSTS) to determine host mode operation. 1514/1709 3. The application sets the reset bit (PRST in OTG_HPRT) and the OTG_FS/OTG_HS controller issues a USB reset and enumerates the A-device for data traffic. 4. The OTG_FS/OTG_HS controller continues the host role of initiating traffic, and when done, suspends the bus by writing the port suspend bit in the host port control and status register. 5. In Negotiated mode, when the A-device detects a suspend, it disconnects and switches back to the host role. The OTG_FS/OTG_HS controller deasserts the DP pull down and DM pull down in the PHY to indicate the assumption of the device role. 6. The application must read the current mode bit in the core interrupt (OTG_GINTSTS) register to determine the host mode operation. 7. The OTG_FS/OTG_HS controller connects, completing the HNP process. RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 38 Ethernet (ETH): media access control (MAC) with DMA controller 38.1 Ethernet introduction Portions Copyright (c) 2004, 2005 Synopsys, Inc. All rights reserved. Used with permission. The Ethernet peripheral enables the STM32F75xxx and STM32F74xxx to transmit and receive data over Ethernet in compliance with the IEEE 802.3-2002 standard. The Ethernet provides a configurable, flexible peripheral to meet the needs of various applications and customers. It supports two industry standard interfaces to the external physical layer (PHY): the default media independent interface (MII) defined in the IEEE 802.3 specifications and the reduced media independent interface (RMII). It can be used in number of applications such as switches, network interface cards, etc. The Ethernet is compliant with the following standards: 38.2 • IEEE 802.3-2002 for Ethernet MAC • IEEE 1588-2008 standard for precision networked clock synchronization • AMBA 2.0 for AHB Master/Slave ports • RMII specification from RMII consortium Ethernet main features The Ethernet (ETH) peripheral includes the following features, listed by category: RM0385 Rev 7 1515/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller 38.2.1 MAC core features • Supports 10/100 Mbit/s data transfer rates with external PHY interfaces • IEEE 802.3-compliant MII interface to communicate with an external Fast Ethernet PHY • Supports both full-duplex and half-duplex operations – 1516/1709 RM0385 Supports CSMA/CD Protocol for half-duplex operation – Supports IEEE 802.3x flow control for full-duplex operation – Optional forwarding of received pause control frames to the user application in fullduplex operation – Back-pressure support for half-duplex operation – Automatic transmission of zero-quanta pause frame on deassertion of flow control input in full-duplex operation • Preamble and start-of-frame data (SFD) insertion in Transmit, and deletion in Receive paths • Automatic CRC and pad generation controllable on a per-frame basis • Options for automatic pad/CRC stripping on receive frames • Programmable frame length to support Standard frames with sizes up to 16 KB • Programmable interframe gap (40-96 bit times in steps of 8) • Supports a variety of flexible address filtering modes: – Up to four 48-bit perfect (DA) address filters with masks for each byte – Up to three 48-bit SA address comparison check with masks for each byte – 64-bit Hash filter (optional) for multicast and unicast (DA) addresses – Option to pass all multicast addressed frames – Promiscuous mode support to pass all frames without any filtering for network monitoring – Passes all incoming packets (as per filter) with a status report • Separate 32-bit status returned for transmission and reception packets • Supports IEEE 802.1Q VLAN tag detection for reception frames • Separate transmission, reception, and control interfaces to the Application • Supports mandatory network statistics with RMON/MIB counters (RFC2819/RFC2665) • MDIO interface for PHY device configuration and management • Detection of LAN wakeup frames and AMD Magic Packet™ frames • Receive feature for checksum off-load for received IPv4 and TCP packets encapsulated by the Ethernet frame • Enhanced receive feature for checking IPv4 header checksum and TCP, UDP, or ICMP checksum encapsulated in IPv4 or IPv6 datagrams • Support Ethernet frame time stamping as described in IEEE 1588-2008. Sixty-four-bit time stamps are given in each frame’s transmit or receive status • Two sets of FIFOs: a 2-KB Transmit FIFO with programmable threshold capability, and a 2-KB Receive FIFO with a configurable threshold (default of 64 bytes) • Receive Status vectors inserted into the Receive FIFO after the EOF transfer enables multiple-frame storage in the Receive FIFO without requiring another FIFO to store those frames’ Receive Status • Option to filter all error frames on reception and not forward them to the application in RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Store-and-Forward mode 38.2.2 38.2.3 • Option to forward under-sized good frames • Supports statistics by generating pulses for frames dropped or corrupted (due to overflow) in the Receive FIFO • Supports Store and Forward mechanism for transmission to the MAC core • Automatic generation of PAUSE frame control or back pressure signal to the MAC core based on Receive FIFO-fill (threshold configurable) level • Handles automatic retransmission of Collision frames for transmission • Discards frames on late collision, excessive collisions, excessive deferral and underrun conditions • Software control to flush Tx FIFO • Calculates and inserts IPv4 header checksum and TCP, UDP, or ICMP checksum in frames transmitted in Store-and-Forward mode • Supports internal loopback on the MII for debugging DMA features • Supports all AHB burst types in the AHB Slave Interface • Software can select the type of AHB burst (fixed or indefinite burst) in the AHB Master interface. • Option to select address-aligned bursts from AHB master port • Optimization for packet-oriented DMA transfers with frame delimiters • Byte-aligned addressing for data buffer support • Dual-buffer (ring) or linked-list (chained) descriptor chaining • Descriptor architecture, allowing large blocks of data transfer with minimum CPU intervention; • each descriptor can transfer up to 8 KB of data • Comprehensive status reporting for normal operation and transfers with errors • Individual programmable burst size for Transmit and Receive DMA Engines for optimal host bus utilization • Programmable interrupt options for different operational conditions • Per-frame Transmit/Receive complete interrupt control • Round-robin or fixed-priority arbitration between Receive and Transmit engines • Start/Stop modes • Current Tx/Rx Buffer pointer as status registers • Current Tx/Rx Descriptor pointer as status registers PTP features • Received and transmitted frames time stamping • Coarse and fine correction methods • Trigger interrupt when system time becomes greater than target time • Pulse per second output (product alternate function output) RM0385 Rev 7 1517/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller 38.3 RM0385 Ethernet pins Table 270 shows the MAC signals and the corresponding MII/RMII signal mapping. All MAC signals are mapped onto AF11, some signals are mapped onto different I/O pins, and should be configured in Alternate function mode (for more details, refer to Section 6.3.2: I/O pin alternate function multiplexer and mapping and the corresponding datasheet). Table 270. Alternate function mapping AF11 ETH ETH_MII_CRS ETH_MII _RX_CLK / ETH_RMII _REF_CLK ETH _MDIO ETH _MII_COL ETH_MII _RX_DV / ETH_RMII _CRS_DV ETH _MII_RXD2 ETH _MII_RXD3 ETH _PPS_OUT ETH _MII_TXD3 ETH_ MII_RX_ER ETH _MII_TX_EN / ETH _RMII_TX_EN ETH _MII_TXD0 / ETH _RMII_TXD0 ETH _MII_TXD1 / ETH _RMII_TXD1 ETH _MDC ETH _MII_TXD2 ETH _MII_TX_CLK ETH_MII_RXD0 / ETH_RMII_RXD0 ETH _MII_RXD1/ ETH _RMII_RXD1 ETH_MII_TXD3 ETH_PPS_OUT ETH _MII_TX_EN / ETH _RMII_TX_EN ETH _MII_TXD0 / ETH _RMII_TXD0 ETH _MII_TXD1 / ETH _RMII_TXD1 ETH _MII_CRS ETH _MII_COL ETH _MII_RXD2 ETH _MII_RXD3 ETH _MII_RX_ER 1518/1709 RM0385 Rev 7 RM0385 38.4 Ethernet (ETH): media access control (MAC) with DMA controller Ethernet functional description: SMI, MII and RMII The Ethernet peripheral consists of a MAC 802.3 (media access control) with a dedicated DMA controller. It supports both default media-independent interface (MII) and reduced media-independent interface (RMII) through one selection bit (refer to SYSCFG_PMC register). The DMA controller interfaces with the Core and memories through the AHB Master and Slave interfaces. The AHB Master Interface controls data transfers while the AHB Slave interface accesses Control and Status Registers (CSR) space. The Transmit FIFO (Tx FIFO) buffers data read from system memory by the DMA before transmission by the MAC Core. Similarly, the Receive FIFO (Rx FIFO) stores the Ethernet frames received from the line until they are transferred to system memory by the DMA. The Ethernet peripheral also includes an SMI to communicate with external PHY. A set of configuration registers permit the user to select the desired mode and features for the MAC and the DMA controller. Note: The AHB clock frequency must be at least 25 MHz when the Ethernet is used. Bus matrix AHB Slave interface Figure 491. ETH block diagram DMA control & status registers Operation mode register Media access control MAC 802.3 Interface Select MAC control registers 2 Kbyte RX FIFO Ethernet DMA RMII 2 Kbyte TX FIFO Checksum PTP offload IEEE1588 PMT MMC MII External PHY MDC MDIO ai15620c 1. For AHB connections refer to Figure 1: System architecture. 38.4.1 Station management interface: SMI The station management interface (SMI) allows the application to access any PHY registers through a 2-wire clock and data lines. The interface supports accessing up to 32 PHYs. The application can select one of the 32 PHYs and one of the 32 registers within any PHY and send control data or receive status information. Only one register in one PHY can be addressed at any given time. Both the MDC clock line and the MDIO data line are implemented as alternate function I/O in the microcontroller: • MDC: a periodic clock that provides the timing reference for the data transfer at the maximum frequency of 2.5 MHz. The minimum high and low times for MDC must be RM0385 Rev 7 1519/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 160 ns each, and the minimum period for MDC must be 400 ns. In idle state the SMI management interface drives the MDC clock signal low. • MDIO: data input/output bitstream to transfer status information to/from the PHY device synchronously with the MDC clock signal STM32 MCU 802.3 MAC Figure 492. SMI interface signals MDC External PHY MDIO ai15621b SMI frame format The frame structure related to a read or write operation is shown in Table 271, the order of bit transmission must be from left to right. Table 271. Management frame format Management frame fields - Preamble (32 bits) Start Operation PADDR RADDR TA Data (16 bits) Idle Read 1... 1 01 10 ppppp rrrrr Z0 ddddddddddddddd Z Write 1... 1 01 01 ppppp rrrrr 10 ddddddddddddddd Z The management frame consists of eight fields: 1520/1709 • Preamble: each transaction (read or write) can be initiated with the preamble field that corresponds to 32 contiguous logic one bits on the MDIO line with 32 corresponding cycles on MDC. This field is used to establish synchronization with the PHY device. • Start: the start of frame is defined by a <01> pattern to verify transitions on the line from the default logic one state to zero and back to one. • Operation: defines the type of transaction (read or write) in progress. • PADDR: the PHY address is 5 bits, allowing 32 unique PHY addresses. The MSB bit of the address is the first transmitted and received. • RADDR: the register address is 5 bits, allowing 32 individual registers to be addressed within the selected PHY device. The MSB bit of the address is the first transmitted and received. • TA: the turn-around field defines a 2-bit pattern between the RADDR and DATA fields to avoid contention during a read transaction. For a read transaction the MAC controller drives high-impedance on the MDIO line for the 2 bits of TA. The PHY device must drive a high-impedance state on the first bit of TA, a zero bit on the second one. RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller For a write transaction, the MAC controller drives a <10> pattern during the TA field. The PHY device must drive a high-impedance state for the 2 bits of TA. • Data: the data field is 16-bit. The first bit transmitted and received must be bit 15 of the ETH_MIID register. • Idle: the MDIO line is driven in high-impedance state. All three-state drivers must be disabled and the PHY’s pull-up resistor keeps the line at logic one. SMI write operation When the application sets the MII Write and Busy bits (in Ethernet MAC MII address register (ETH_MACMIIAR)), the SMI initiates a write operation into the PHY registers by transferring the PHY address, the register address in PHY, and the write data (in Ethernet MAC MII data register (ETH_MACMIIDR). The application should not change the MII Address register contents or the MII Data register while the transaction is ongoing. Write operations to the MII Address register or the MII Data Register during this period are ignored (the Busy bit is high), and the transaction is completed without any error. After the Write operation has completed, the SMI indicates this by resetting the Busy bit. Figure 493 shows the frame format for the write operation. Figure 493. MDIO timing and frame structure - Write cycle MDC MDIO 32 1's 0 1 0 1 Start OP Preamble of code frame A4 A3 A2 A1 A0 R4 R3 R2 R1 R0 Register address Turn around PHY address D15 D14 D1 D0 data Data to PHY ai15626 SMI read operation When the user sets the MII Busy bit in the Ethernet MAC MII address register (ETH_MACMIIAR) with the MII Write bit at 0, the SMI initiates a read operation in the PHY registers by transferring the PHY address and the register address in PHY. The application should not change the MII Address register contents or the MII Data register while the transaction is ongoing. Write operations to the MII Address register or MII Data Register during this period are ignored (the Busy bit is high) and the transaction is completed without any error. After the read operation has completed, the SMI resets the Busy bit and then updates the MII Data register with the data read from the PHY. Figure 494 shows the frame format for the read operation. RM0385 Rev 7 1521/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Figure 494. MDIO timing and frame structure - Read cycle MDC MDIO 32 1's 0 1 1 0 Start OP Preamble of code frame A4 A3 A2 A1 A0 R4 R3 PHY address R2 R1 R0 Register address Turn around Data to PHY D15 D14 D1 D0 data Data from PHY ai15627 SMI clock selection The MAC initiates the Management Write/Read operation. The SMI clock is a divided clock whose source is the application clock (AHB clock). The divide factor depends on the clock range setting in the MII Address register. Table 272 shows how to set the clock ranges. Table 272. Clock range 1522/1709 Selection HCLK clock MDC clock 000 60-100 MHz AHB clock / 42 001 100-150 MHz AHB clock / 62 010 20-35 MHz AHB clock / 16 011 35-60 MHz AHB clock / 26 100 150-216 MHz AHB clock / 102 101, 110, 111 Reserved - RM0385 Rev 7 RM0385 Media-independent interface: MII The media-independent interface (MII) defines the interconnection between the MAC sublayer and the PHY for data transfer at 10 Mbit/s and 100 Mbit/s. Figure 495. Media independent interface signals TX_CLK TXD[3:0] TX_EN STM32 MCU 802.3 MAC 38.4.2 Ethernet (ETH): media access control (MAC) with DMA controller RX_CLK RXD[3:0] RX_ER RX_DV External PHY CRS COL MDC MDIO ai15622c • MII_TX_CLK: continuous clock that provides the timing reference for the TX data transfer. The nominal frequency is: 2.5 MHz at 10 Mbit/s speed; 25 MHz at 100 Mbit/s speed. • MII_RX_CLK: continuous clock that provides the timing reference for the RX data transfer. The nominal frequency is: 2.5 MHz at 10 Mbit/s speed; 25 MHz at 100 Mbit/s speed. • MII_TX_EN: transmission enable indicates that the MAC is presenting nibbles on the MII for transmission. It must be asserted synchronously (MII_TX_CLK) with the first nibble of the preamble and must remain asserted while all nibbles to be transmitted are presented to the MII. • MII_TXD[3:0]: transmit data is a bundle of 4 data signals driven synchronously by the MAC sublayer and qualified (valid data) on the assertion of the MII_TX_EN signal. MII_TXD[0] is the least significant bit, MII_TXD[3] is the most significant bit. While MII_TX_EN is deasserted the transmit data must have no effect upon the PHY. • MII_CRS: carrier sense is asserted by the PHY when either the transmit or receive medium is non idle. It shall be deasserted by the PHY when both the transmit and receive media are idle. The PHY must ensure that the MII_CS signal remains asserted throughout the duration of a collision condition. This signal is not required to transition synchronously with respect to the TX and RX clocks. In full duplex mode the state of this signal is don’t care for the MAC sublayer. • MII_COL: collision detection must be asserted by the PHY upon detection of a collision on the medium and must remain asserted while the collision condition persists. This signal is not required to transition synchronously with respect to the TX and RX clocks. In full duplex mode the state of this signal is don’t care for the MAC sublayer. • MII_RXD[3:0]: reception data is a bundle of 4 data signals driven synchronously by the PHY and qualified (valid data) on the assertion of the MII_RX_DV signal. MII_RXD[0] is the least significant bit, MII_RXD[3] is the most significant bit. While MII_RX_EN is RM0385 Rev 7 1523/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 deasserted and MII_RX_ER is asserted, a specific MII_RXD[3:0] value is used to transfer specific information from the PHY (see Table 274). • MII_RX_DV: receive data valid indicates that the PHY is presenting recovered and decoded nibbles on the MII for reception. It must be asserted synchronously (MII_RX_CLK) with the first recovered nibble of the frame and must remain asserted through the final recovered nibble. It must be deasserted prior to the first clock cycle that follows the final nibble. In order to receive the frame correctly, the MII_RX_DV signal must encompass the frame, starting no later than the SFD field. • MII_RX_ER: receive error must be asserted for one or more clock periods (MII_RX_CLK) to indicate to the MAC sublayer that an error was detected somewhere in the frame. This error condition must be qualified by MII_RX_DV assertion as described in Table 274. Table 273. TX interface signal encoding MII_TX_EN MII_TXD[3:0] Description 0 0000 through 1111 Normal inter-frame 1 0000 through 1111 Normal data transmission Table 274. RX interface signal encoding MII_RX_DV MII_RX_ERR MII_RXD[3:0] Description 0 0 0000 through 1111 Normal inter-frame 0 1 0000 Normal inter-frame 0 1 0001 through 1101 0 1 1110 False carrier indication 0 1 1111 Reserved 1 0 0000 through 1111 Normal data reception 1 1 0000 through 1111 Data reception with errors Reserved MII clock sources To generate both TX_CLK and RX_CLK clock signals, the external PHY must be clocked with an external 25 MHz as shown in Figure 496. Instead of using an external 25 MHz quartz to provide this clock, the STM32F75xxx and STM32F74xxx microcontrollers can output this signal on its MCO pin. In this case, the PLL multiplier has to be configured so as to get the desired frequency on the MCO pin, from the 25 MHz external quartz. 1524/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 25 MHz 802.3 MAC Figure 496. MII clock sources STM32 MCU TX _CLK External PHY RX _CLK HSE MCO For 10/100 Mbit/s 25 MHz ai15623b Reduced media-independent interface: RMII The reduced media-independent interface (RMII) specification reduces the pin count between the microcontroller Ethernet peripheral and the external Ethernet in 10/100 Mbit/s. According to the IEEE 802.3u standard, an MII contains 16 pins for data and control. The RMII specification is dedicated to reduce the pin count to 7 pins (a 62.5% decrease in pin count). The RMII is instantiated between the MAC and the PHY. This helps translation of the MAC’s MII into the RMII. The RMII block has the following characteristics: • It supports 10-Mbit/s and 100-Mbit/s operating rates • The clock reference must be doubled to 50 MHz • The same clock reference must be sourced externally to both MAC and external Ethernet PHY • It provides independent 2-bit wide (dibit) transmit and receive data paths Figure 497. Reduced media-independent interface signals TXD[1:0] TX_EN STM32 MCU 802.3 MAC 38.4.3 RXD[1:0] CRS_ DV External PHY MDC MDIO REF_ CLK Clock source ai15624b RM0385 Rev 7 1525/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 RMII clock sources Either clock the PHY from an external 50 MHz clock or use a PHY with an embedded PLL to generate the 50 MHz frequency. 802.3 MAC Figure 498. RMII clock sources- STM32 MCU 25 MHz External PHY PLL REF_CLK 50 MHz For 10/100 Mbit/s MS19930V1 38.4.4 MII/RMII selection The mode, MII or RMII, is selected using the configuration bit 23, MII_RMII_SEL, in the SYSCFG_PMC register. The application has to set the MII/RMII mode while the Ethernet controller is under reset or before enabling the clocks. MII/RMII internal clock scheme The clock scheme required to support both the MII and RMII, as well as 10 and 100 Mbit/s operations is described in Figure 499. Figure 499. Clock scheme MAC MII_TX_CLK as AF (25 MHz or 2.5 MHz) MII_RX_CLK as AF (25 MHz or 2.5 MHz) RMII_REF_CK as AF (50 MHz) GPIO and AF controller 25 MHz or 2.5 MHz 50 MHz Sync. divider /2 for 100 Mb/s /20 for 10 Mb/s GPIO and AF controller 25 MHz or 2.5 MHz 0 1 25 MHz or 2.5 MHz MACTXCLK TX MACRXCLK RX 0 MII 1 RMII(1) 0 1 25 MHz or 2.5 MHz AHB RMII HCLK HCLK must be greater than 25 MHz ai15650 1. The MII/RMII selection is controlled through bit 23, MII_RMII_SEL, in the SYSCFG_PMC register. To save a pin, the two input clock signals, RMII_REF_CK and MII_RX_CLK, are multiplexed on the same GPIO pin. 1526/1709 RM0385 Rev 7 RM0385 38.5 Ethernet (ETH): media access control (MAC) with DMA controller Ethernet functional description: MAC 802.3 The IEEE 802.3 International Standard for local area networks (LANs) employs the CSMA/CD (carrier sense multiple access with collision detection) as the access method. The Ethernet peripheral consists of a MAC 802.3 (media access control) controller with media independent interface (MII) and a dedicated DMA controller. The MAC block implements the LAN CSMA/CD sublayer for the following families of systems: 10 Mbit/s and 100 Mbit/s of data rates for baseband and broadband systems. Half- and full-duplex operation modes are supported. The collision detection access method is applied only to the half-duplex operation mode. The MAC control frame sublayer is supported. The MAC sublayer performs the following functions associated with a data link control procedure: • • Data encapsulation (transmit and receive) – Framing (frame boundary delimitation, frame synchronization) – Addressing (handling of source and destination addresses) – Error detection Media access management – Medium allocation (collision avoidance) – Contention resolution (collision handling) Basically there are two operating modes of the MAC sublayer: 38.5.1 • Half-duplex mode: the stations contend for the use of the physical medium, using the CSMA/CD algorithms. • Full duplex mode: simultaneous transmission and reception without contention resolution (CSMA/CD algorithm are unnecessary) when all the following conditions are met: – physical medium capability to support simultaneous transmission and reception – exactly 2 stations connected to the LAN – both stations configured for full-duplex operation MAC 802.3 frame format The MAC block implements the MAC sublayer and the optional MAC control sublayer (10/100 Mbit/s) as specified by the IEEE 802.3-2002 standard. Two frame formats are specified for data communication systems using the CSMA/CD MAC: • Basic MAC frame format • Tagged MAC frame format (extension of the basic MAC frame format) RM0385 Rev 7 1527/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Figure 501 and Figure 502 describe the frame structure (untagged and tagged) that includes the following fields: • Preamble: 7-byte field used for synchronization purposes (PLS circuitry) Hexadecimal value: 55-55-55-55-55-55-55 Bit pattern: 01010101 01010101 01010101 01010101 01010101 01010101 01010101 (right-to-left bit transmission) • Start frame delimiter (SFD): 1-byte field used to indicate the start of a frame. Hexadecimal value: D5 Bit pattern: 11010101 (right-to-left bit transmission) • Destination and Source Address fields: 6-byte fields to indicate the destination and source station addresses as follows (see Figure 500): – Each address is 48 bits in length – The first LSB bit (I/G) in the destination address field is used to indicate an individual (I/G = 0) or a group address (I/G = 1). A group address could identify none, one or more, or all the stations connected to the LAN. In the source address the first bit is reserved and reset to 0. – The second bit (U/L) distinguishes between locally (U/L = 1) or globally (U/L = 0) administered addresses. For broadcast addresses this bit is also 1. – Each byte of each address field must be transmitted least significant bit first. The address designation is based on the following types: • Individual address: this is the physical address associated with a particular station on the network. • Group address. A multidestination address associated with one or more stations on a given network. There are two kinds of multicast address: – Multicast-group address: an address associated with a group of logically related stations. – Broadcast address: a distinguished, predefined multicast address (all 1’s in the destination address field) that always denotes all the stations on a given LAN. Figure 500. Address field format MSB 46-bit address U/L I/G LSB I/G = 0 Individual address I/G = 1 Group address U/L = 0 Globally administered address U/L = 1 Locally administered address Bit transmission order (right to left) ai15628 • QTag Prefix: 4-byte field inserted between the Source address field and the MAC Client Length/Type field. This field is an extension of the basic frame (untagged) to obtain the tagged MAC frame. The untagged MAC frames do not include this field. The extensions for tagging are as follows: – 1528/1709 2-byte constant Length/Type field value consistent with the Type interpretation (greater than 0x0600) equal to the value of the 802.1Q Tag Protocol Type (0x8100 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller hexadecimal). This constant field is used to distinguish tagged and untagged MAC frames. – • 2-byte field containing the Tag control information field subdivided as follows: a 3bit user priority, a canonical format indicator (CFI) bit and a 12-bit VLAN Identifier. The length of the tagged MAC frame is extended by 4 bytes by the QTag Prefix. MAC client length/type: 2-byte field with different meaning (mutually exclusive), depending on its value: – If the value is less than or equal to maxValidFrame (0d1500) then this field indicates the number of MAC client data bytes contained in the subsequent data field of the 802.3 frame (length interpretation). – If the value is greater than or equal to MinTypeValue (0d1536 decimal, 0x0600) then this field indicates the nature of the MAC client protocol (Type interpretation) related to the Ethernet frame. Regardless of the interpretation of the length/type field, if the length of the data field is less than the minimum required for proper operation of the protocol, a PAD field is added after the data field but prior to the FCS (frame check sequence) field. The length/type field is transmitted and received with the higher-order byte first. For length/type field values in the range between maxValidLength and minTypeValue (boundaries excluded), the behavior of the MAC sublayer is not specified: they may or may not be passed by the MAC sublayer. • Data and PAD fields: n-byte data field. Full data transparency is provided, it means that any arbitrary sequence of byte values may appear in the data field. The size of the PAD, if any, is determined by the size of the data field. Max and min length of the data and PAD field are: – Maximum length = 1500 bytes – Minimum length for untagged MAC frames = 46 bytes – Minimum length for tagged MAC frames = 42 bytes When the data field length is less than the minimum required, the PAD field is added to match the minimum length (42 bytes for tagged frames, 46 bytes for untagged frames). • Frame check sequence: 4-byte field that contains the cyclic redundancy check (CRC) value. The CRC computation is based on the following fields: source address, destination address, QTag prefix, length/type, LLC data and PAD (that is, all fields except the preamble, SFD). The generating polynomial is the following: G( x) = x 32 +x 26 +x 23 +x 22 +x 16 +x 12 +x 11 +x 10 8 7 5 4 2 +x +x +x +x +x +x+1 The CRC value of a frame is computed as follows: • The first 2 bits of the frame are complemented • The n-bits of the frame are the coefficients of a polynomial M(x) of degree (n – 1). The first bit of the destination address corresponds to the xn – 1 term and the last bit of the data field corresponds to the x0 term • M(x) is multiplied by x32 and divided by G(x), producing a remainder R(x) of degree ≤ 31 • The coefficients of R(x) are considered as a 32-bit sequence • The bit sequence is complemented and the result is the CRC • The 32-bits of the CRC value are placed in the frame check sequence. The x32 term is the first transmitted, the x0 term is the last one RM0385 Rev 7 1529/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Figure 501. MAC frame format 7 bytes Preamble 1 byte SFD 6 bytes Destination address 6 bytes Source address 2 bytes MAC client length/type Bytes within frame transmitted top to bottom MAC client data 46-1500 bytes PAD 4 bytes Frame check sequence MSB LSB Bit transmission order (right to left) ai15629 Figure 502. Tagged MAC frame format 7 bytes 1 byte 6 bytes 6 bytes QTag Prefix 4 bytes 2 bytes 42-1500 bytes Preamble SFD bytes within frame transmitted top to bottom Destination address MSB Source address Length/type = 802.1QTagType Tag control information 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 MAC client length/type MAC client data User priority CFI Pad 4 bytes LSB VLAN identifier (VID, 12 bits) Frame check sequence MSB LSB Bit transmission order (r ight to left) ai15630 Each byte of the MAC frame, except the FCS field, is transmitted low-order bit first. An invalid MAC frame is defined by one of the following conditions: 1530/1709 • The frame length is inconsistent with the expected value as specified by the length/type field. If the length/type field contains a type value, then the frame length is assumed to be consistent with this field (no invalid frame) • The frame length is not an integer number of bytes (extra bits) • The CRC value computed on the incoming frame does not match the included FCS RM0385 Rev 7 RM0385 38.5.2 Ethernet (ETH): media access control (MAC) with DMA controller MAC frame transmission The DMA controls all transactions for the transmit path. Ethernet frames read from the system memory are pushed into the FIFO by the DMA. The frames are then popped out and transferred to the MAC core. When the end-of-frame is transferred, the status of the transmission is taken from the MAC core and transferred back to the DMA. The Transmit FIFO has a depth of 2 Kbyte. FIFO-fill level is indicated to the DMA so that it can initiate a data fetch in required bursts from the system memory, using the AHB interface. The data from the AHB Master interface is pushed into the FIFO. When the SOF is detected, the MAC accepts the data and begins transmitting to the MII. The time required to transmit the frame data to the MII after the application initiates transmission is variable, depending on delay factors like IFG delay, time to transmit preamble/SFD, and any back-off delays for Half-duplex mode. After the EOF is transferred to the MAC core, the core completes normal transmission and then gives the status of transmission back to the DMA. If a normal collision (in Half-duplex mode) occurs during transmission, the MAC core makes the transmit status valid, then accepts and drops all further data until the next SOF is received. The same frame should be retransmitted from SOF on observing a Retry request (in the Status) from the MAC. The MAC issues an underflow status if the data are not provided continuously during the transmission. During the normal transfer of a frame, if the MAC receives an SOF without getting an EOF for the previous frame, then the SOF is ignored and the new frame is considered as the continuation of the previous frame. There are two modes of operation for popping data towards the MAC core: • In Threshold mode, as soon as the number of bytes in the FIFO crosses the configured threshold level (or when the end-of-frame is written before the threshold is crossed), the data is ready to be popped out and forwarded to the MAC core. The threshold level is configured using the TTC bits of ETH_DMABMR. • In Store-and-forward mode, only after a complete frame is stored in the FIFO, the frame is popped towards the MAC core. If the Tx FIFO size is smaller than the Ethernet frame to be transmitted, then the frame is popped towards the MAC core when the Tx FIFO becomes almost full. The application can flush the Transmit FIFO of all contents by setting the FTF (ETH_DMAOMR register [20]) bit. This bit is self-clearing and initializes the FIFO pointers to the default state. If the FTF bit is set during a frame transfer to the MAC core, then transfer is stopped as the FIFO is considered to be empty. Hence an underflow event occurs at the MAC transmitter and the corresponding Status word is forwarded to the DMA. Automatic CRC and pad generation When the number of bytes received from the application falls below 60 (DA+SA+LT+Data), zeros are appended to the transmitting frame to make the data length exactly 46 bytes to meet the minimum data field requirement of IEEE 802.3. The MAC can be programmed not to append any padding. The cyclic redundancy check (CRC) for the frame check sequence (FCS) field is calculated and appended to the data being transmitted. When the MAC is programmed to not append the CRC value to the end of Ethernet frames, the computed CRC is not transmitted. An exception to this rule is that when the MAC is programmed to append pads for frames (DA+SA+LT+Data) less than 60 bytes, CRC will be appended at the end of the padded frames. RM0385 Rev 7 1531/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 The CRC generator calculates the 32-bit CRC for the FCS field of the Ethernet frame. The encoding is defined by the following polynomial. G( x) = x 32 +x 26 +x 23 +x 22 +x 16 +x 12 +x 11 +x 10 8 7 5 4 2 +x +x +x +x +x +x+1 Transmit protocol The MAC controls the operation of Ethernet frame transmission. It performs the following functions to meet the IEEE 802.3/802.3z specifications. It: • generates the preamble and SFD • generates the jam pattern in Half-duplex mode • controls the Jabber timeout • controls the flow for Half-duplex mode (back pressure) • generates the transmit frame status • contains time stamp snapshot logic in accordance with IEEE 1588 When a new frame transmission is requested, the MAC sends out the preamble and SFD, followed by the data. The preamble is defined as 7 bytes of 0b10101010 pattern, and the SFD is defined as 1 byte of 0b10101011 pattern. The collision window is defined as 1 slot time (512 bit times for 10/100 Mbit/s Ethernet). The jam pattern generation is applicable only to Half-duplex mode, not to Full-duplex mode. In MII mode, if a collision occurs at any time from the beginning of the frame to the end of the CRC field, the MAC sends a 32-bit jam pattern of 0x5555 5555 on the MII to inform all other stations that a collision has occurred. If the collision is seen during the preamble transmission phase, the MAC completes the transmission of the preamble and SFD and then sends the jam pattern. A jabber timer is maintained to cut off the transmission of Ethernet frames if more than 2048 (default) bytes have to be transferred. The MAC uses the deferral mechanism for flow control (back pressure) in Half-duplex mode. When the application requests to stop receiving frames, the MAC sends a JAM pattern of 32 bytes whenever it senses the reception of a frame, provided that transmit flow control is enabled. This results in a collision and the remote station backs off. The application requests flow control by setting the BPA bit (bit 0) in the ETH_MACFCR register. If the application requests a frame to be transmitted, then it is scheduled and transmitted even when back pressure is activated. Note that if back pressure is kept activated for a long time (and more than 16 consecutive collision events occur) then the remote stations abort their transmissions due to excessive collisions. If IEEE 1588 time stamping is enabled for the transmit frame, this block takes a snapshot of the system time when the SFD is put onto the transmit MII bus. Transmit scheduler The MAC is responsible for scheduling the frame transmission on the MII. It maintains the interframe gap between two transmitted frames and follows the truncated binary exponential backoff algorithm for Half-duplex mode. The MAC enables transmission after satisfying the IFG and backoff delays. It maintains an idle period of the configured interframe gap (IFG bits in the ETH_MACCR register) between any two transmitted frames. If frames to be transmitted arrive sooner than the configured IFG time, the MII waits for the enable signal from the MAC before starting the transmission on it. The MAC starts its IFG counter as soon as the carrier signal of the MII goes inactive. At the end of the programmed IFG value, the MAC enables transmission in Full-duplex mode. In Half-duplex mode and when IFG is 1532/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller configured for 96 bit times, the MAC follows the rule of deference specified in Section 4.2.3.2.1 of the IEEE 802.3 specification. The MAC resets its IFG counter if a carrier is detected during the first two-thirds (64-bit times for all IFG values) of the IFG interval. If the carrier is detected during the final one third of the IFG interval, the MAC continues the IFG count and enables the transmitter after the IFG interval. The MAC implements the truncated binary exponential backoff algorithm when it operates in Half-duplex mode. Transmit flow control When the Transmit Flow Control Enable bit (TFE bit in ETH_MACFCR) is set, the MAC generates Pause frames and transmits them as necessary, in Full-duplex mode. The Pause frame is appended with the calculated CRC, and is sent. Pause frame generation can be initiated in two ways. A pause frame is sent either when the application sets the FCB bit in the ETH_MACFCR register or when the receive FIFO is full (packet buffer). • If the application has requested flow control by setting the FCB bit in ETH_MACFCR, the MAC generates and transmits a single Pause frame. The value of the pause time in the generated frame contains the programmed pause time value in ETH_MACFCR. To extend the pause or end the pause prior to the time specified in the previously transmitted Pause frame, the application must request another Pause frame transmission after programming the Pause Time value (PT in ETH_MACFCR register) with the appropriate value. • If the application has requested flow control when the receive FIFO is full, the MAC generates and transmits a Pause frame. The value of the pause time in the generated frame is the programmed pause time value in ETH_MACFCR. If the receive FIFO remains full at a configurable number of slot-times (PLT bits in ETH_MACFCR) before this Pause time runs out, a second Pause frame is transmitted. The process is repeated as long as the receive FIFO remains full. If this condition is no more satisfied prior to the sampling time, the MAC transmits a Pause frame with zero pause time to indicate to the remote end that the receive buffer is ready to receive new data frames. Single-packet transmit operation The general sequence of events for a transmit operation is as follows: 1. If the system has data to be transferred, the DMA controller fetches them from the memory through the AHB Master interface and starts forwarding them to the FIFO. It continues to receive the data until the end of frame is transferred. 2. When the threshold level is crossed or a full packet of data is received into the FIFO, the frame data are popped and driven to the MAC core. The DMA continues to transfer data from the FIFO until a complete packet has been transferred to the MAC. Upon completion of the frame, the DMA controller is notified by the status coming from the MAC. Transmit operation—Two packets in the buffer 1. Because the DMA must update the descriptor status before releasing it to the Host, there can be at the most two frames inside a transmit FIFO. The second frame is fetched by the DMA and put into the FIFO only if the OSF (operate on second frame) bit is set. If this bit is not set, the next frame is fetched from the memory only after the MAC has completely processed the frame and the DMA has released the descriptors. 2. If the OSF bit is set, the DMA starts fetching the second frame immediately after completing the transfer of the first frame to the FIFO. It does not wait for the status to be updated. In the meantime, the second frame is received into the FIFO while the first RM0385 Rev 7 1533/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 frame is being transmitted. As soon as the first frame has been transferred and the status is received from the MAC, it is pushed to the DMA. If the DMA has already completed sending the second packet to the FIFO, the second transmission must wait for the status of the first packet before proceeding to the next frame. Retransmission during collision While a frame is being transferred to the MAC, a collision event may occur on the MAC line interface in Half-duplex mode. The MAC would then indicate a retry attempt by giving the status even before the end of frame is received. Then the retransmission is enabled and the frame is popped out again from the FIFO. After more than 96 bytes have been popped towards the MAC core, the FIFO controller frees up that space and makes it available to the DMA to push in more data. This means that the retransmission is not possible after this threshold is crossed or when the MAC core indicates a late collision event. Transmit FIFO flush operation The MAC provides a control to the software to flush the Transmit FIFO through the use of Bit 20 in the Operation mode register. The Flush operation is immediate and the Tx FIFO and the corresponding pointers are cleared to the initial state even if the Tx FIFO is in the middle of transferring a frame to the MAC Core. This results in an underflow event in the MAC transmitter, and the frame transmission is aborted. The status of such a frame is marked with both underflow and frame flush events (TDES0 bits 13 and 1). No data are coming to the FIFO from the application (DMA) during the Flush operation. Transfer transmit status words are transferred to the application for the number of frames that is flushed (including partial frames). Frames that are completely flushed have the Frame flush status bit (TDES0 13) set. The Flush operation is completed when the application (DMA) has accepted all of the Status words for the frames that were flushed. The Transmit FIFO Flush control register bit is then cleared. At this point, new frames from the application (DMA) are accepted. All data presented for transmission after a Flush operation are discarded unless they start with an SOF marker. Transmit status word At the end of the Ethernet frame transfer to the MAC core and after the core has completed the transmission of the frame, the transmit status is given to the application. The detailed description of the Transmit Status is the same as for bits [23:0] in TDES0. If IEEE 1588 time stamping is enabled, a specific frames’ 64-bit time stamp is returned, along with the transmit status. Transmit checksum offload Communication protocols such as TCP and UDP implement checksum fields, which helps determine the integrity of data transmitted over a network. Because the most widespread use of Ethernet is to encapsulate TCP and UDP over IP datagrams, the Ethernet controller has a transmit checksum offload feature that supports checksum calculation and insertion in the transmit path, and error detection in the receive path. This section explains the operation of the checksum offload feature for transmitted frames. Note: 1534/1709 The checksum for TCP, UDP or ICMP is calculated over a complete frame, then inserted into its corresponding header field. Due to this requirement, this function is enabled only when the Transmit FIFO is configured for Store-and-forward mode (that is, when the TSF bit RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller is set in the ETH_ETH_DMAOMR register). If the core is configured for Threshold (cutthrough) mode, the Transmit checksum offload is bypassed. The user must make sure the Transmit FIFO is deep enough to store a complete frame before that frame is transferred to the MAC Core transmitter. If the FIFO depth is less than the input Ethernet frame size, the payload (TCP/UDP/ICMP) checksum insertion function is bypassed and only the frame’s IPv4 Header checksum is modified, even in Store-andforward mode. The transmit checksum offload supports two types of checksum calculation and insertion. This checksum can be controlled for each frame by setting the CIC bits (Bits 28:27 in TDES1, described in TDES1: Transmit descriptor Word1 on page 1568). See IETF specifications RFC 791, RFC 793, RFC 768, RFC 792, RFC 2460 and RFC 4443 for IPv4, TCP, UDP, ICMP, IPv6 and ICMPv6 packet header specifications, respectively. • IP header checksum In IPv4 datagrams, the integrity of the header fields is indicated by the 16-bit header checksum field (the eleventh and twelfth bytes of the IPv4 datagram). The checksum offload detects an IPv4 datagram when the Ethernet frame’s Type field has the value 0x0800 and the IP datagram’s Version field has the value 0x4. The input frame’s checksum field is ignored during calculation and replaced by the calculated value. IPv6 headers do not have a checksum field; thus, the checksum offload does not modify IPv6 header fields. The result of this IP header checksum calculation is indicated by the IP Header Error status bit in the Transmit status (Bit 16). This status bit is set whenever the values of the Ethernet Type field and the IP header’s Version field are not consistent, or when the Ethernet frame does not have enough data, as indicated by the IP header Length field. In other words, this bit is set when an IP header error is asserted under the following circumstances: a) For IPv4 datagrams: – The received Ethernet type is 0x0800, but the IP header’s Version field does not equal 0x4 – The IPv4 Header Length field indicates a value less than 0x5 (20 bytes) – The total frame length is less than the value given in the IPv4 Header Length field b) For IPv6 datagrams: – The Ethernet type is 0x86DD but the IP header Version field does not equal 0x6 – The frame ends before the IPv6 header (40 bytes) or extension header (as given in the corresponding Header Length field in an extension header) has been completely received. Even when the checksum offload detects such an IP header error, it inserts an IPv4 header checksum if the Ethernet Type field indicates an IPv4 payload. RM0385 Rev 7 1535/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller • RM0385 TCP/UDP/ICMP checksum The TCP/UDP/ICMP checksum processes the IPv4 or IPv6 header (including extension headers) and determines whether the encapsulated payload is TCP, UDP or ICMP. Note that: a) For non-TCP, -UDP, or -ICMP/ICMPv6 payloads, this checksum is bypassed and nothing further is modified in the frame. b) Fragmented IP frames (IPv4 or IPv6), IP frames with security features (such as an authentication header or encapsulated security payload), and IPv6 frames with routing headers are bypassed and not processed by the checksum. The checksum is calculated for the TCP, UDP, or ICMP payload and inserted into its corresponding field in the header. It can work in the following two modes: – In the first mode, the TCP, UDP, or ICMPv6 pseudo-header is not included in the checksum calculation and is assumed to be present in the input frame’s checksum field. The checksum field is included in the checksum calculation, and then replaced by the final calculated checksum. – In the second mode, the checksum field is ignored, the TCP, UDP, or ICMPv6 pseudo-header data are included into the checksum calculation, and the checksum field is overwritten with the final calculated value. Note that: for ICMP-over-IPv4 packets, the checksum field in the ICMP packet must always be 0x0000 in both modes, because pseudo-headers are not defined for such packets. If it does not equal 0x0000, an incorrect checksum may be inserted into the packet. The result of this operation is indicated by the payload checksum error status bit in the Transmit Status vector (bit 12). The payload checksum error status bit is set when either of the following is detected: – the frame has been forwarded to the MAC transmitter in Store-and-forward mode without the end of frame being written to the FIFO – the packet ends before the number of bytes indicated by the payload length field in the IP header is received. When the packet is longer than the indicated payload length, the bytes are ignored as stuff bytes, and no error is reported. When the first type of error is detected, the TCP, UDP or ICMP header is not modified. For the second error type, still, the calculated checksum is inserted into the corresponding header field. MII/RMII transmit bit order Each nibble from the MII is transmitted on the RMII a dibit at a time with the order of dibit transmission shown in Figure 503. Lower order bits (D1 and D0) are transmitted first followed by higher order bits (D2 and D3). 1536/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller LSB RMII_TXD[1:0] Figure 503. Transmission bit order D0 LSB MSB D1 Bibit stream D0 D1 MII_TXD[3:0] D2 MSB D3 Nibble stream ai15632 MII/RMII transmit timing diagrams Figure 504. Transmission with no collision MII_TX_CLK MII_TX_EN MII_TXD[3:0] PR EA MB LE MII_CS MII_COL Low ai15631 RM0385 Rev 7 1537/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Figure 505. Transmission with collision MII_TX_CLK MII_TX_EN MII_TXD[3:0] PR EAM BLE SFD DA DA JAM JAM JAM JAM MII_CS MII_COL ai15651 Figure 506 shows a frame transmission in MII and RMII. Figure 506. Frame transmission in MMI and RMII modes MII_RX_CLK MII_TX_EN MII_TXD[3:0] RMII_REF_CLK RMII_TX_EN RMII_TXD[1:0] ai15652 38.5.3 MAC frame reception The MAC received frames are pushes into the Rx FIFO. The status (fill level) of this FIFO is indicated to the DMA once it crosses the configured receive threshold (RTC in the ETH_DMAOMR register) so that the DMA can initiate pre-configured burst transfers towards the AHB interface. In the default Cut-through mode, when 64 bytes (configured with the RTC bits in the ETH_DMAOMR register) or a full packet of data are received into the FIFO, the data are popped out and the DMA is notified of its availability. Once the DMA has initiated the transfer to the AHB interface, the data transfer continues from the FIFO until a complete 1538/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller packet has been transferred. Upon completion of the EOF frame transfer, the status word is popped out and sent to the DMA controller. In Rx FIFO Store-and-forward mode (configured by the RSF bit in the ETH_DMAOMR register), a frame is read out only after being written completely into the Receive FIFO. In this mode, all error frames are dropped (if the core is configured to do so) such that only valid frames are read out and forwarded to the application. In Cut-through mode, some error frames are not dropped, because the error status is received at the end of the frame, by which time the start of that frame has already been read out of the FIFO. A receive operation is initiated when the MAC detects an SFD on the MII. The core strips the preamble and SFD before proceeding to process the frame. The header fields are checked for the filtering and the FCS field used to verify the CRC for the frame. The frame is dropped in the core if it fails the address filter. Receive protocol The received frame preamble and SFD are stripped. Once the SFD has been detected, the MAC starts sending the Ethernet frame data to the receive FIFO, beginning with the first byte following the SFD (destination address). If IEEE 1588 time stamping is enabled, a snapshot of the system time is taken when any frame's SFD is detected on the MII. Unless the MAC filters out and drops the frame, this time stamp is passed on to the application. If the received frame length/type field is less than 0x600 and if the MAC is programmed for the auto CRC/pad stripping option, the MAC sends the data of the frame to RxFIFO up to the count specified in the length/type field, then starts dropping bytes (including the FCS field). If the Length/Type field is greater than or equal to 0x600, the MAC sends all received Ethernet frame data to Rx FIFO, regardless of the value on the programmed auto-CRC strip option. The MAC watchdog timer is enabled by default, that is, frames above 2048 bytes (DA + SA + LT + Data + pad + FCS) are cut off. This feature can be disabled by programming the watchdog disable (WD) bit in the MAC configuration register. However, even if the watchdog timer is disabled, frames greater than 16 KB in size are cut off and a watchdog timeout status is given. Receive CRC: automatic CRC and pad stripping The MAC checks for any CRC error in the receiving frame. It calculates the 32-bit CRC for the received frame that includes the Destination address field through the FCS field. The encoding is defined by the following polynomial. G( x) = x 32 +x 26 +x 23 +x 22 +x 16 +x 12 +x 11 +x 10 8 7 5 4 2 +x +x +x +x +x +x+1 Regardless of the auto-pad/CRC strip, the MAC receives the entire frame to compute the CRC check for the received frame. Receive checksum offload Both IPv4 and IPv6 frames in the received Ethernet frames are detected and processed for data integrity. The user can enable the receive checksum offload by setting the IPCO bit in the ETH_MACCR register. The MAC receiver identifies IPv4 or IPv6 frames by checking for value 0x0800 or 0x86DD, respectively, in the received Ethernet frame Type field. This identification applies to VLAN-tagged frames as well. The receive checksum offload calculates IPv4 header checksums and checks that they match the received IPv4 header checksums. The IP Header Error bit is set for any mismatch between the indicated payload RM0385 Rev 7 1539/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 type (Ethernet Type field) and the IP header version, or when the received frame does not have enough bytes, as indicated by the IPv4 header’s Length field (or when fewer than 20 bytes are available in an IPv4 or IPv6 header). The receive checksum offload also identifies a TCP, UDP or ICMP payload in the received IP datagrams (IPv4 or IPv6) and calculates the checksum of such payloads properly, as defined in the TCP, UDP or ICMP specifications. It includes the TCP/UDP/ICMPv6 pseudo-header bytes for checksum calculation and checks whether the received checksum field matches the calculated value. The result of this operation is given as a Payload Checksum Error bit in the receive status word. This status bit is also set if the length of the TCP, UDP or ICMP payload does not match the expected payload length given in the IP header. As mentioned in TCP/UDP/ICMP checksum on page 1536, the receive checksum offload bypasses the payload of fragmented IP datagrams, IP datagrams with security features, IPv6 routing headers, and payloads other than TCP, UDP or ICMP. This information (whether the checksum is bypassed or not) is given in the receive status, as described in the RDES0: Receive descriptor Word0 section. In this configuration, the core does not append any payload checksum bytes to the received Ethernet frames. As mentioned in RDES0: Receive descriptor Word0 on page 1575, the meaning of certain register bits changes as shown in Table 275. Table 275. Frame statuses Bit 18: Bit 27: Header Bit 28: Payload Ethernet frame checksum error checksum error Frame status 0 0 0 The frame is an IEEE 802.3 frame (Length field value is less than 0x0600). 1 0 0 IPv4/IPv6 Type frame in which no checksum error is detected. 1 0 1 IPv4/IPv6 Type frame in which a payload checksum error (as described for PCE) is detected 1 1 0 IPv4/IPv6 Type frame in which IP header checksum error (as described for IPCO HCE) is detected. 1 1 1 IPv4/IPv6 Type frame in which both PCE and IPCO HCE are detected. 0 0 1 IPv4/IPv6 Type frame in which there is no IP HCE and the payload check is bypassed due to unsupported payload. 0 1 1 Type frame which is neither IPv4 or IPv6 (checksum offload bypasses the checksum check completely) 0 1 0 Reserved Receive frame controller If the RA bit is reset in the MAC CSR frame filter register, the MAC performs frame filtering based on the destination/source address (the application still needs to perform another level of filtering if it decides not to receive any bad frames like runt, CRC error frames, etc.). On detecting a filter-fail, the frame is dropped and not transferred to the application. When the filtering parameters are changed dynamically, and in case of (DA-SA) filter-fail, the rest of 1540/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller the frame is dropped and the Rx Status Word is immediately updated (with zero frame length, CRC error and Runt Error bits set), indicating the filter fail. In Ethernet power down mode, all received frames are dropped, and are not forwarded to the application. Receive flow control The MAC detects the receiving Pause frame and pauses the frame transmission for the delay specified within the received Pause frame (only in Full-duplex mode). The Pause frame detection function can be enabled or disabled with the RFCE bit in ETH_MACFCR. Once receive flow control has been enabled, the received frame destination address begins to be monitored for any match with the multicast address of the control frame (0x0180 C200 0001). If a match is detected (the destination address of the received frame matches the reserved control frame destination address), the MAC then decides whether or not to transfer the received control frame to the application, based on the level of the PCF bit in ETH_MACFFR. The MAC also decodes the type, opcode, and Pause Timer fields of the receiving control frame. If the byte count of the status indicates 64 bytes, and if there is no CRC error, the MAC transmitter pauses the transmission of any data frame for the duration of the decoded Pause time value, multiplied by the slot time (64 byte times for both 10/100 Mbit/s modes). Meanwhile, if another Pause frame is detected with a zero Pause time value, the MAC resets the Pause time and manages this new pause request. If the received control frame matches neither the type field (0x8808), the opcode (0x00001), nor the byte length (64 bytes), or if there is a CRC error, the MAC does not generate a Pause. In the case of a pause frame with a multicast destination address, the MAC filters the frame based on the address match. For a pause frame with a unicast destination address, the MAC filtering depends on whether the DA matched the contents of the MAC address 0 register and whether the UPDF bit in ETH_MACFCR is set (detecting a pause frame even with a unicast destination address). The PCF register bits (bits [7:6] in ETH_MACFFR) control filtering for control frames in addition to address filtering. Receive operation multiframe handling Since the status is available immediately following the data, the FIFO is capable of storing any number of frames into it, as long as it is not full. Error handling If the Rx FIFO is full before it receives the EOF data from the MAC, an overflow is declared and the whole frame is dropped, and the overflow counter in the (ETH_DMAMFBOCR register) is incremented. The status indicates a partial frame due to overflow. The Rx FIFO can filter error and undersized frames, if enabled (using the FEF and FUGF bits in ETH_DMAOMR). If the Receive FIFO is configured to operate in Store-and-forward mode, all error frames can be filtered and dropped. In Cut-through mode, if a frame's status and length are available when that frame's SOF is read from the Rx FIFO, then the complete erroneous frame can be dropped. The DMA can flush the error frame being read from the FIFO, by enabling the receive frame flash bit. The data transfer to the application (DMA) is then stopped and the rest of the frame is internally read and dropped. The next frame transfer can then be started, if available. RM0385 Rev 7 1541/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Receive status word At the end of the Ethernet frame reception, the MAC outputs the receive status to the application (DMA). The detailed description of the receive status is the same as for bits[31:0] in RDES0, given in RDES0: Receive descriptor Word0. Frame length interface In case of switch applications, data transmission and reception between the application and MAC happen as complete frame transfers. The application layer should be aware of the length of the frames received from the ingress port in order to transfer the frame to the egress port. The MAC core provides the frame length of each received frame inside the status at the end of each frame reception. Note: A frame length value of 0 is given for partial frames written into the Rx FIFO due to overflow. MII/RMII receive bit order Each nibble is transmitted to the MII from the dibit received from the RMII in the nibble transmission order shown in Figure 507. The lower-order bits (D0 and D1) are received first, followed by the higher-order bits (D2 and D3). LSB D0 LSB RMII_RXD[1:0] Figure 507. Receive bit order MSB D1 Di-bit stream D0 D1 MII_RXD[3:0] D2 MSB D3 Nibble stream 1542/1709 RM0385 Rev 7 ai15633 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Figure 508. Reception with no error MII_RX_CLK MII_RX_DV MII_RXD[3:0] PREAMBLE SFD FCS MII_RX_ERR ai15634 Figure 509. Reception with errors MII_RX_CLK MII_RX_DV MII_RXD[3:0] PREAMBLE SFD DA DA XX XX XX MII_RX_ERR ai15635 Figure 510. Reception with false carrier indication MII_RX_CLK MII_RX_DV MII_RXD[3:0] XX XX XX XX 0E XX XX XX XX MII_RX_ERR ai15636 RM0385 Rev 7 1543/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller 38.5.4 RM0385 MAC interrupts Interrupts can be generated from the MAC core as a result of various events. The ETH_MACSR register describes the events that can cause an interrupt from the MAC core. The user can prevent each event from asserting the interrupt by setting the corresponding mask bits in the Interrupt Mask register. The interrupt register bits only indicate the block from which the event is reported. The user has to read the corresponding status registers and other registers to clear the interrupt. For example, bit 3 of the Interrupt register, set high, indicates that the Magic packet or Wake-onLAN frame is received in Power-down mode. The user must read the ETH_MACPMTCSR Register to clear this interrupt event. Figure 511. MAC core interrupt masking scheme TSTS AND TSTI TSTIM OR Interrupt PMTS PMTIM AND PMTI ai15637 38.5.5 MAC filtering Address filtering Address filtering checks the destination and source addresses on all received frames and the address filtering status is reported accordingly. Address checking is based on different parameters (Frame filter register) chosen by the application. The filtered frame can also be identified: multicast or broadcast frame. Address filtering uses the station's physical (MAC) address and the Multicast Hash table for address checking purposes. Unicast destination address filter The MAC supports up to 4 MAC addresses for unicast perfect filtering. If perfect filtering is selected (HU bit in the Frame filter register is reset), the MAC compares all 48 bits of the received unicast address with the programmed MAC address for any match. Default MacAddr0 is always enabled, other addresses MacAddr1–MacAddr3 are selected with an individual enable bit. Each byte of these other addresses (MacAddr1–MacAddr3) can be masked during comparison with the corresponding received DA byte by setting the corresponding Mask Byte Control bit in the register. This helps group address filtering for the DA. In Hash filtering mode (when HU bit is set), the MAC performs imperfect filtering for unicast addresses using a 64-bit Hash table. For hash filtering, the MAC uses the 6 upper CRC (see note 1 below) bits of the received destination address to index the content of the Hash table. A value of 000000 selects bit 0 in the selected register, and a value of 111111 selects bit 63 in the Hash Table register. If the corresponding bit (indicated by the 6-bit CRC) 1544/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller is set to 1, the unicast frame is said to have passed the Hash filter; otherwise, the frame has failed the Hash filter. Note: This CRC is a 32-bit value coded by the following polynomial (for more details refer to Section 38.5.3: MAC frame reception): G(x ) = x 32 +x 26 +x 23 +x 22 +x 16 +x 12 +x 11 +x 10 8 7 5 4 2 +x +x +x +x +x +x+1 Multicast destination address filter The MAC can be programmed to pass all multicast frames by setting the PAM bit in the Frame filter register. If the PAM bit is reset, the MAC performs the filtering for multicast addresses based on the HM bit in the Frame filter register. In Perfect filtering mode, the multicast address is compared with the programmed MAC destination address registers (1–3). Group address filtering is also supported. In Hash filtering mode, the MAC performs imperfect filtering using a 64-bit Hash table. For hash filtering, the MAC uses the 6 upper CRC (see note 1 below) bits of the received multicast address to index the content of the Hash table. A value of 000000 selects bit 0 in the selected register and a value of 111111 selects bit 63 in the Hash Table register. If the corresponding bit is set to 1, then the multicast frame is said to have passed the Hash filter; otherwise, the frame has failed the Hash filter. Note: This CRC is a 32-bit value coded by the following polynomial (for more details refer to Section 38.5.3: MAC frame reception): G(x ) = x 32 +x 26 +x 23 +x 22 +x 16 +x 12 +x 11 +x 10 8 7 5 4 2 +x +x +x +x +x +x+1 Hash or perfect address filter The DA filter can be configured to pass a frame when its DA matches either the Hash filter or the Perfect filter by setting the HPF bit in the Frame filter register and setting the corresponding HU or HM bits. This configuration applies to both unicast and multicast frames. If the HPF bit is reset, only one of the filters (Hash or Perfect) is applied to the received frame. Broadcast address filter The MAC does not filter any broadcast frames in the default mode. However, if the MAC is programmed to reject all broadcast frames by setting the BFD bit in the Frame filter register, any broadcast frames are dropped. Unicast source address filter The MAC can also perform perfect filtering based on the source address field of the received frames. By default, the MAC compares the SA field with the values programmed in the SA registers. The MAC address registers [1:3] can be configured to contain SA instead of DA for comparison, by setting bit 30 in the corresponding register. Group filtering with SA is also supported. The frames that fail the SA filter are dropped by the MAC if the SAF bit in the Frame filter register is set. Otherwise, the result of the SA filter is given as a status bit in the Receive Status word (see RDES0: Receive descriptor Word0). When the SAF bit is set, the result of the SA and DA filters is AND’ed to decide whether the frame needs to be forwarded. This means that either of the filter fail result will drop the frame. Both filters have to pass the frame for the frame to be forwarded to the application. RM0385 Rev 7 1545/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Inverse filtering operation For both destination and source address filtering, there is an option to invert the filter-match result at the final output. These are controlled by the DAIF and SAIF bits in the Frame filter register, respectively. The DAIF bit is applicable for both Unicast and Multicast DA frames. The result of the unicast/multicast destination address filter is inverted in this mode. Similarly, when the SAIF bit is set, the result of the unicast SA filter is inverted. Table 276 and Table 277 summarize destination and source address filtering based on the type of frame received. Table 276. Destination address filtering Frame type Broadcast Unicast Multicast 1546/1709 PM HPF HU DAIF HM PAM DB 1 X X X X X X Pass 0 X X X X X 0 Pass 0 X X X X X 1 Fail 1 X X X X X X Pass all frames 0 X 0 0 X X X Pass on perfect/group filter match 0 X 0 1 X X X Fail on perfect/Group filter match 0 0 1 0 X X X Pass on hash filter match 0 0 1 1 X X X Fail on hash filter match 0 1 1 0 X X X Pass on hash or perfect/Group filter match 0 1 1 1 X X X Fail on hash or perfect/Group filter match 1 X X X X X X Pass all frames X X X X X 1 X Pass all frames 0 X X 0 0 0 X Pass on Perfect/Group filter match and drop PAUSE control frames if PCF = 0x 0 0 X 0 1 0 X Pass on hash filter match and drop PAUSE control frames if PCF = 0x 0 1 X 0 1 0 X Pass on hash or perfect/Group filter match and drop PAUSE control frames if PCF = 0x 0 X X 1 0 0 X Fail on perfect/Group filter match and drop PAUSE control frames if PCF = 0x 0 0 X 1 1 0 X Fail on hash filter match and drop PAUSE control frames if PCF = 0x 0 1 X 1 1 0 X Fail on hash or perfect/Group filter match and drop PAUSE control frames if PCF = 0x RM0385 Rev 7 DA filter operation RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Table 277. Source address filtering Frame type Unicast 38.5.6 PM SAIF SAF SA filter operation 1 X X Pass all frames 0 0 0 Pass status on perfect/Group filter match but do not drop frames that fail 0 1 0 Fail status on perfect/group filter match but do not drop frame 0 0 1 Pass on perfect/group filter match and drop frames that fail 0 1 1 Fail on perfect/group filter match and drop frames that fail MAC loopback mode The MAC supports loopback of transmitted frames onto its receiver. By default, the MAC loopback function is disabled, but this feature can be enabled by programming the Loopback bit in the MAC ETH_MACCR register. 38.5.7 MAC management counters: MMC The MAC management counters (MMC) maintain a set of registers for gathering statistics on the received and transmitted frames. These include a control register for controlling the behavior of the registers, two 32-bit registers containing generated interrupts (receive and transmit), and two 32-bit registers containing masks for the Interrupt register (receive and transmit). These registers are accessible from the application. Each register is 32 bits wide. Section 38.8: Ethernet register descriptions describes the various counters and lists the addresses of each of the statistics counters. This address is used for read/write accesses to the desired transmit/receive counter. The Receive MMC counters are updated for frames that pass address filtering. Dropped frames statistics are not updated unless the dropped frames are runt frames of less than 6 bytes (DA bytes are not received fully). Good transmitted and received frames Transmitted frames are considered “good” if transmitted successfully. In other words, a transmitted frame is good if the frame transmission is not aborted due to any of the following errors: + Jabber Timeout + No Carrier/Loss of Carrier + Late Collision + Frame Underflow + Excessive Deferral + Excessive Collision RM0385 Rev 7 1547/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Received frames are considered “good” if none of the following errors exists: + CRC error + Runt Frame (shorter than 64 bytes) + Alignment error (in 10/ 100 Mbit/s only) + Length error (non-Type frames only) + Out of Range (non-Type frames only, longer than maximum size) + MII_RXER Input error The maximum frame size depends on the frame type, as follows: + Untagged frame maxsize = 1518 + VLAN Frame maxsize = 1522 38.5.8 Power management: PMT This section describes the power management (PMT) mechanisms supported by the MAC. PMT supports the reception of network (remote) wakeup frames and Magic Packet frames. PMT generates interrupts for wakeup frames and Magic Packets received by the MAC. The PMT block is enabled with remote wakeup frame enable and Magic Packet enable. These enable bits (WFE and MPE) are in the ETH_MACPMTCSR register and are programmed by the application. When the power down mode is enabled in the PMT, then all received frames are dropped by the MAC and they are not forwarded to the application. The MAC comes out of the power down mode only when either a Magic Packet or a Remote wakeup frame is received and the corresponding detection is enabled. Remote wakeup frame filter register There are eight wakeup frame filter registers. To write on each of them, load the wakeup frame filter register value by value. The wanted values of the wakeup frame filter are loaded by sequentially loading eight times the wakeup frame filter register. The read operation is identical to the write operation. To read the eight values, the user has to read eight times the wakeup frame filter register to reach the last register. Each read/write points the wakeup frame filter register to the next filter register. 1548/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Figure 512. Wakeup frame filter register Wakeup frame filter reg0 Filter 0 Byte Mask Wakeup frame filter reg1 Filter 1 Byte Mask Wakeup frame filter reg2 Filter 2 Byte Mask Wakeup frame filter reg3 Wakeup frame filter reg4 Wakeup frame filter reg5 Filter 3 Byte Mask RSVD Filter 3 Command Filter 3 Offset RSVD Filter 2 Command Filter 2 Offset RSVD Filter 1 Command Filter 1 Offset RSVD Filter 0 Command Filter 0 Offset Wakeup frame filter reg6 Filter 1 CRC - 16 Filter 0 CRC - 16 Wakeup frame filter reg7 Filter 3 CRC - 16 Filter 2 CRC - 16 ai15647 • Filter i Byte Mask This register defines which bytes of the frame are examined by filter i (0, 1, 2, and 3) in order to determine whether or not the frame is a wakeup frame. The MSB (thirty-first bit) must be zero. Bit j [30:0] is the Byte Mask. If bit j (byte number) of the Byte Mask is set, then Filter i Offset + j of the incoming frame is processed by the CRC block; otherwise Filter i Offset + j is ignored. • Filter i Command This 4-bit command controls the filter i operation. Bit 3 specifies the address type, defining the pattern’s destination address type. When the bit is set, the pattern applies to only multicast frames. When the bit is reset, the pattern applies only to unicast frames. Bit 2 and bit 1 are reserved. Bit 0 is the enable bit for filter i; if bit 0 is not set, filter i is disabled. • Filter i Offset This register defines the offset (within the frame) from which the frames are examined by filter i. This 8-bit pattern offset is the offset for the filter i first byte to be examined. The minimum allowed is 12, which refers to the 13th byte of the frame (offset value 0 refers to the first byte of the frame). • Filter i CRC-16 This register contains the CRC_16 value calculated from the pattern, as well as the byte mask programmed to the wakeup filter register block. Remote wakeup frame detection When the MAC is in sleep mode and the remote wakeup bit is enabled in the ETH_MACPMTCSR register, normal operation is resumed after receiving a remote wakeup frame. The application writes all eight wakeup filter registers, by performing a sequential write to the wakeup frame filter register address. The application enables remote wakeup by writing a 1 to bit 2 in the ETH_MACPMTCSR register. PMT supports four programmable filters that provide different receive frame patterns. If the incoming frame passes the address filtering of Filter Command, and if Filter CRC-16 matches the incoming examined pattern, then the wakeup frame is received. Filter_offset (minimum value 12, which refers to the 13th byte of the frame) determines the offset from which the frame is to be examined. Filter Byte Mask determines which bytes of the frame must be examined. The thirty-first bit of Byte Mask must be set to zero. The wakeup frame is checked only for length error, FCS error, dribble bit error, MII error, collision, and to ensure that it is not a runt frame. Even if the RM0385 Rev 7 1549/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 wakeup frame is more than 512 bytes long, if the frame has a valid CRC value, it is considered valid. Wakeup frame detection is updated in the ETH_MACPMTCSR register for every remote wakeup frame received. If enabled, a PMT interrupt is generated to indicate the reception of a remote wakeup frame. Magic packet detection The Magic Packet frame is based on a method that uses Advanced Micro Device’s Magic Packet technology to power up the sleeping device on the network. The MAC receives a specific packet of information, called a Magic Packet, addressed to the node on the network. Only Magic Packets that are addressed to the device or a broadcast address are checked to determine whether they meet the wakeup requirements. Magic Packets that pass address filtering (unicast or broadcast) are checked to determine whether they meet the remote Wake-on-LAN data format of 6 bytes of all ones followed by a MAC address appearing 16 times. The application enables Magic Packet wakeup by writing a 1 to bit 1 in the ETH_MACPMTCSR register. The PMT block constantly monitors each frame addressed to the node for a specific Magic Packet pattern. Each received frame is checked for a 0xFFFF FFFF FFFF pattern following the destination and source address field. The PMT block then checks the frame for 16 repetitions of the MAC address without any breaks or interruptions. In case of a break in the 16 repetitions of the address, the 0xFFFF FFFF FFFF pattern is scanned for again in the incoming frame. The 16 repetitions can be anywhere in the frame, but must be preceded by the synchronization stream (0xFFFF FFFF FFFF). The device also accepts a multicast frame, as long as the 16 duplications of the MAC address are detected. If the MAC address of a node is 0x0011 2233 4455, then the MAC scans for the data sequence: Destination address source address ……………….. FFFF FFFF FFFF 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 0011 2233 4455 …CRC Magic Packet detection is updated in the ETH_MACPMTCSR register for received Magic Packet. If enabled, a PMT interrupt is generated to indicate the reception of a Magic Packet. System consideration during power-down The Ethernet PMT block is able to detect frames while the system is in the Stop mode, provided that the EXTI line 19 is enabled. The MAC receiver state machine should remain enabled during the power-down mode. This means that the RE bit has to remain set in the ETH_MACCR register because it is involved in magic packet/ wake-on-LAN frame detection. The transmit state machine should however be turned off during the power-down mode by clearing the TE bit in the ETH_MACCR register. Moreover, the Ethernet DMA should be disabled during the power-down mode, because it is not necessary to copy the magic packet/wake-on-LAN frame into the SRAM. To disable the Ethernet DMA, clear the ST bit and the SR bit (for the transmit DMA and the receive DMA, respectively) in the ETH_DMAOMR register. The recommended power-down and wakeup sequences are as follows: 1550/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 1. Disable the transmit DMA and wait for any previous frame transmissions to complete. These transmissions can be detected when the transmit interrupt ETH_DMASR register[0] is received. 2. Disable the MAC transmitter and MAC receiver by clearing the RE and TE bits in the ETH_MACCR configuration register. 3. Wait for the receive DMA to have emptied all the frames in the Rx FIFO. 4. Disable the receive DMA. 5. Configure and enable the EXTI line 19 to generate either an event or an interrupt. 6. If you configure the EXTI line 19 to generate an interrupt, you also have to correctly configure the ETH_WKUP_IRQ Handler function, which should clear the pending bit of the EXTI line 19. 7. Enable Magic packet/Wake-on-LAN frame detection by setting the MFE/ WFE bit in the ETH_MACPMTCSR register. 8. Enable the MAC power-down mode, by setting the PD bit in the ETH_MACPMTCSR register. 9. Enable the MAC Receiver by setting the RE bit in the ETH_MACCR register. 10. Enter the system’s Stop mode (for more details refer to Section 4.3.5: Stop mode): 11. On receiving a valid wakeup frame, the Ethernet peripheral exits the power-down mode. 12. Read the ETH_MACPMTCSR to clear the power management event flag, enable the MAC transmitter state machine, and the receive and transmit DMA. 13. Configure the system clock: enable the HSE and set the clocks. 38.5.9 Precision time protocol (IEEE1588 PTP) The IEEE 1588 standard defines a protocol that allows precise clock synchronization in measurement and control systems implemented with technologies such as network communication, local computing and distributed objects. The protocol applies to systems that communicate by local area networks supporting multicast messaging, including (but not limited to) Ethernet. This protocol is used to synchronize heterogeneous systems that include clocks of varying inherent precision, resolution and stability. The protocol supports system-wide synchronization accuracy in the submicrosecond range with minimum network and local clock computing resources. The message-based protocol, known as the precision time protocol (PTP), is transported over UDP/IP. The system or network is classified into Master and Slave nodes for distributing the timing/clock information. The protocol’s technique for synchronizing a slave node to a master node by exchanging PTP messages is described in Figure 513. RM0385 Rev 7 1551/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Figure 513. Networked time synchronization Master clock time Slave clock time Sync message t1 t2m Follow_up message containing value of t1 Data at slave clock t2 t2 t1, t2 t3m Delay_Req message t3 t1, t2, t3 t4 Delay_Resp message containing value of t4 time t1, t2, t3, t4 ai15669 1. The master broadcasts PTP Sync messages to all its nodes. The Sync message contains the master’s reference time information. The time at which this message leaves the master’s system is t1. For Ethernet ports, this time has to be captured at the MII. 2. A slave receives the Sync message and also captures the exact time, t2, using its timing reference. 3. The master then sends the slave a Follow_up message, which contains the t1 information for later use. 4. The slave sends the master a Delay_Req message, noting the exact time, t3, at which this frame leaves the MII. 5. The master receives this message and captures the exact time, t4, at which it enters its system. 6. The master sends the t4 information to the slave in the Delay_Resp message. 7. The slave uses the four values of t1, t2, t3, and t4 to synchronize its local timing reference to the master’s timing reference. Most of the protocol implementation occurs in the software, above the UDP layer. As described above, however, hardware support is required to capture the exact time when specific PTP packets enter or leave the Ethernet port at the MII. This timing information has to be captured and returned to the software for a proper, high-accuracy implementation of PTP. Reference timing source To get a snapshot of the time, the core requires a reference time in 64-bit format (split into two 32-bit channels, with the upper 32 bits providing time in seconds, and the lower 32 bits indicating time in nanoseconds) as defined in the IEEE 1588 specification. 1552/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller The PTP reference clock input is used to internally generate the reference time (also called the System Time) and to capture time stamps. The frequency of this reference clock must be greater than or equal to the resolution of time stamp counter. The synchronization accuracy target between the master node and the slaves is around 100 ns. The generation, update and modification of the System Time are described in the System Time correction methods. The accuracy depends on the PTP reference clock input period, the characteristics of the oscillator (drift) and the frequency of the synchronization procedure. Due to the synchronization from the Tx and Rx clock input domain to the PTP reference clock domain, the uncertainty on the time stamp latched value is 1 reference clock period. If we add the uncertainty due to resolution, we will add half the period for time stamping. Transmission of frames with the PTP feature When a frame’s SFD is output on the MII, a time stamp is captured. Frames for which time stamp capture is required are controllable on a per-frame basis. In other words, each transmitted frame can be marked to indicate whether a time stamp must be captured or not for that frame. The transmitted frames are not processed to identify PTP frames. Frame control is exercised through the control bits in the transmit descriptor. Captured time stamps are returned to the application in the same way as the status is provided for frames. The time stamp is sent back along with the Transmit status of the frame, inside the corresponding transmit descriptor, thus connecting the time stamp automatically to the specific PTP frame. The 64-bit time stamp information is written back to the TDES2 and TDES3 fields, with TDES2 holding the time stamp’s 32 least significant bits. Reception of frames with the PTP feature When the IEEE 1588 time stamping feature is enabled, the Ethernet MAC captures the time stamp of all frames received on the MII. The MAC provides the time stamp as soon as the frame reception is complete. Captured time stamps are returned to the application in the same way as the frame status is provided. The time stamp is sent back along with the Receive status of the frame, inside the corresponding receive descriptor. The 64-bit time stamp information is written back to the RDES2 and RDES3 fields, with RDES2 holding the time stamp’s 32 least significant bits. System Time correction methods The 64-bit PTP time is updated using the PTP input reference clock, HCLK. This PTP time is used as a source to take snapshots (time stamps) of the Ethernet frames being transmitted or received at the MII. The System Time counter can be initialized or corrected using either the Coarse or the Fine correction method. In the Coarse correction method, the initial value or the offset value is written to the Time stamp update register (refer to Section 38.8.3: IEEE 1588 time stamp registers on page 1610). For initialization, the System Time counter is written with the value in the Time stamp update registers, whereas for system time correction, the offset value (Time stamp update register) is added to or subtracted from the system time. In the Fine correction method, the slave clock (reference clock) frequency drift with respect to the master clock (as defined in IEEE 1588) is corrected over a period of time, unlike in the Coarse correction method where it is corrected in a single clock cycle. The longer correction time helps maintain linear time and does not introduce drastic changes (or a large jitter) in the reference time between PTP Sync message intervals. In this method, an accumulator RM0385 Rev 7 1553/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 sums up the contents of the Addend register as shown in Figure 514. The arithmetic carry that the accumulator generates is used as a pulse to increment the system time counter. The accumulator and the addend are 32-bit registers. Here, the accumulator acts as a highprecision frequency multiplier or divider. Figure 514 shows this algorithm. Figure 514. System time update using the Fine correction method Addend register Addend update + Accumulator register Constant value Increment Subsecond register + Subsecond register Increment Second register Second register ai15670 The system time update logic requires a 50 MHz clock frequency to achieve 20 ns accuracy. The frequency division is the ratio of the reference clock frequency to the required clock frequency. Hence, if the reference clock (HCLK) is, let us say, 66 MHz, the ratio is calculated as 66 MHz/50 MHz = 1.32. Hence, the default addend value to be set in the register is 232/1.32, which is equal to 0xC1F0 7C1F. If the reference clock drifts lower, to 65 MHz for example, the ratio is 65/50 or 1.3 and the value to set in the addend register is 232/1.30 equal to 0xC4EC 4EC4. If the clock drifts higher, to 67 MHz for example, the addend register must be set to 0xBF0 B7672. When the clock drift is zero, the default addend value of 0xC1F0 7C1F (232/1.32) should be programmed. In Figure 514, the constant value used to increment the subsecond register is 0d43. This makes an accuracy of 20 ns in the system time (in other words, it is incremented by 20 ns steps). The software has to calculate the drift in frequency based on the Sync messages, and to update the Addend register accordingly. Initially, the slave clock is set with FreqCompensationValue0 in the Addend register. This value is as follows: FreqCompensationValue0 = 232 / FreqDivisionRatio If MasterToSlaveDelay is initially assumed to be the same for consecutive Sync messages, the algorithm described below must be applied. After a few Sync cycles, frequency lock occurs. The slave clock can then determine a precise MasterToSlaveDelay value and resynchronize with the master using the new value. 1554/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller The algorithm is as follows: • At time MasterSyncTime (n) the master sends the slave clock a Sync message. The slave receives this message when its local clock is SlaveClockTime (n) and computes MasterClockTime (n) as: MasterClockTime (n) = MasterSyncTime (n) + MasterToSlaveDelay (n) • The master clock count for current Sync cycle, MasterClockCount (n) is given by: MasterClockCount (n) = MasterClockTime (n) – MasterClockTime (n – 1) (assuming that MasterToSlaveDelay is the same for Sync cycles n and n – 1) • The slave clock count for current Sync cycle, SlaveClockCount (n) is given by: SlaveClockCount (n) = SlaveClockTime (n) – SlaveClockTime (n – 1) • The difference between master and slave clock counts for current Sync cycle, ClockDiffCount (n) is given by: ClockDiffCount (n) = MasterClockCount (n) – SlaveClockCount (n) • The frequency-scaling factor for slave clock, FreqScaleFactor (n) is given by: FreqScaleFactor (n) = (MasterClockCount (n) + ClockDiffCount (n)) / SlaveClockCount (n) • The frequency compensation value for Addend register, FreqCompensationValue (n) is given by: FreqCompensationValue (n) = FreqScaleFactor (n) × FreqCompensationValue (n – 1) In theory, this algorithm achieves lock in one Sync cycle; however, it may take several cycles, due to changing network propagation delays and operating conditions. This algorithm is self-correcting: if for any reason the slave clock is initially set to a value from the master that is incorrect, the algorithm corrects it at the cost of more Sync cycles. Programming steps for system time generation initialization The time stamping feature can be enabled by setting bit 0 in the Time stamp control register (ETH__PTPTSCR). However, it is essential to initialize the time stamp counter after this bit is set to start time stamp operation. The proper sequence is the following: 1. Mask the Time stamp trigger interrupt by setting bit 9 in the MACIMR register. 2. Program Time stamp register bit 0 to enable time stamping. 3. Program the Subsecond increment register based on the PTP clock frequency. 4. If you are using the Fine correction method, program the Time stamp addend register and set Time stamp control register bit 5 (addend register update). 5. Poll the Time stamp control register until bit 5 is cleared. 6. To select the Fine correction method (if required), program Time stamp control register bit 1. 7. Program the Time stamp high update and Time stamp low update registers with the appropriate time value. 8. Set Time stamp control register bit 2 (Time stamp init). 9. The Time stamp counter starts operation as soon as it is initialized with the value written in the Time stamp update register. 10. Enable the MAC receiver and transmitter for proper time stamping. Note: If time stamp operation is disabled by clearing bit 0 in the ETH_PTPTSCR register, the above steps must be repeated to restart the time stamp operation. RM0385 Rev 7 1555/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Programming steps for system time update in the Coarse correction method To synchronize or update the system time in one process (coarse correction method), perform the following steps: 1. Write the offset (positive or negative) in the Time stamp update high and low registers. 2. Set bit 3 (TSSTU) in the Time stamp control register. 3. The value in the Time stamp update registers is added to or subtracted from the system time when the TSSTU bit is cleared. Programming steps for system time update in the Fine correction method To synchronize or update the system time to reduce system-time jitter (fine correction method), perform the following steps: 1. With the help of the algorithm explained in System Time correction methods, calculate the rate by which you want to speed up or slow down the system time increments. 2. Update the time stamp. 3. Wait the time you want the new value of the Addend register to be active. You can do this by activating the Time stamp trigger interrupt after the system time reaches the target value. 4. Program the required target time in the Target time high and low registers. Unmask the Time stamp interrupt by clearing bit 9 in the ETH_MACIMR register. 5. Set Time stamp control register bit 4 (TSARU). 6. When this trigger causes an interrupt, read the ETH_MACSR register. 7. Reprogram the Time stamp addend register with the old value and set ETH_TPTSCR bit 5 again. PTP trigger internal connection with TIM2 The MAC provides a trigger interrupt when the system time becomes greater than the target time. Using an interrupt introduces a known latency plus an uncertainty in the command execution time. In order to avoid this uncertainty, a PTP trigger output signal is set high when the system time is greater than the target time. It is internally connected to the TIM2 input trigger. With this signal, the input capture feature, the output compare feature and the waveforms of the timer can be used, triggered by the synchronized PTP system time. No uncertainty is introduced since the clock of the timer (PCLK1: TIM2 APB1 clock) and PTP reference clock (HCLK) are synchronous. This PTP trigger signal is connected to the TIM2 ITR1 input selectable by software. The connection is enabled through bits 11 and 10 in the TIM2 option register (TIM2_OR). Figure 515 shows the connection. Figure 515. PTP trigger output to TIM2 ITR1 connection PTP trigger Ethernet MAC ITR1 TIM2 ai15671 1556/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller PTP pulse-per-second output signal This PTP pulse output is used to check the synchronization between all nodes in the network. To be able to test the difference between the local slave clock and the master reference clock, both clocks were given a pulse-per-second (PPS) output signal that may be connected to an oscilloscope if necessary. The deviation between the two signals can therefore be measured. The pulse width of the PPS output is 125 ms. The PPS output is enabled through bits 11 and 10 in the TIM2 option register (TIM2_OR). The default frequency of the PPS output is 1 Hz. PPSFREQ[3:0] (in ETH_PTPPPSCR) can be used to set the frequency of the PPS output to 2PPSFREQ Hz. When set to 1 Hz, the PPS pulse width is 125 ms with binary rollover (TSSSR=0, bit 9 in ETH_PTPTSCR) and 100 ms with digital rollover (TSSSR=1). When set to 2 Hz and higher, the duty cycle of the PPS output is 50% with binary rollover. With digital rollover (TSSSR=1), it is recommended not to use the PPS output with a frequency other than 1 Hz as it would have irregular waveforms (though its average frequency would always be correct during any one-second window). Figure 516. PPS output PPS output Ethernet MAC ai15672 38.6 Ethernet functional description: DMA controller operation The DMA has independent transmit and receive engines, and a CSR space. The transmit engine transfers data from system memory into the Tx FIFO while the receive engine transfers data from the Rx FIFO into system memory. The controller utilizes descriptors to efficiently move data from source to destination with minimum CPU intervention. The DMA is designed for packet-oriented data transfers such as frames in Ethernet. The controller can be programmed to interrupt the CPU in cases such as frame transmit and receive transfer completion, and other normal/error conditions. The DMA and the STM32F75xxx and STM32F74xxx communicate through two data structures: • Control and status registers (CSR) • Descriptor lists and data buffers. Control and status registers are described in detail in Section 38.8: Ethernet register descriptions. Descriptors are described in detail in Normal Tx DMA descriptors. The DMA transfers the received data frames to the receive buffer in the STM32F75xxx and STM32F74xxx memory, and transmits data frames from the transmit buffer in the STM32F75xxx and STM32F74xxx memory. Descriptors that reside in the STM32F75xxx and STM32F74xxx memory act as pointers to these buffers. There are two descriptor lists: one for reception, and one for transmission. The base address of each list is written into DMA Registers 3 and 4, respectively. A descriptor list is forward-linked (either implicitly or explicitly). The last descriptor may point back to the first entry to create a ring structure. Explicit chaining of descriptors is accomplished by configuring the second address chained in both the receive and transmit descriptors (RDES1[14] and TDES0[20]). The descriptor lists reside in the Host’s physical memory space. Each descriptor can point to a maximum of RM0385 Rev 7 1557/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 two buffers. This enables the use of two physically addressed buffers, instead of two contiguous buffers in memory. A data buffer resides in the Host’s physical memory space, and consists of an entire frame or part of a frame, but cannot exceed a single frame. Buffers contain only data. The buffer status is maintained in the descriptor. Data chaining refers to frames that span multiple data buffers. However, a single descriptor cannot span multiple frames. The DMA skips to the next frame buffer when the end of frame is detected. Data chaining can be enabled or disabled. The descriptor ring and chain structure is shown in Figure 517. Figure 517. Descriptor ring and chain structure Ring structure Chain structure Buffer 1 Descriptor 0 Buffer 2 Descriptor 0 Buffer 1 Buffer 1 Descriptor 1 Buffer 2 Descriptor 1 Buffer 1 Buffer 1 Descriptor 2 Buffer 2 Descriptor 2 Buffer 1 Buffer 1 Descriptor n Buffer 2 Next descriptor ai15638 38.6.1 Initialization of a transfer using DMA Initialization for the MAC is as follows: 38.6.2 1. Write to ETH_DMABMR to set STM32F75xxx and STM32F74xxx bus access parameters. 2. Write to the ETH_DMAIER register to mask unnecessary interrupt causes. 3. The software driver creates the transmit and receive descriptor lists. Then it writes to both the ETH_DMARDLAR and ETH_DMATDLAR registers, providing the DMA with the start address of each list. 4. Write to MAC Registers 1, 2, and 3 to choose the desired filtering options. 5. Write to the MAC ETH_MACCR register to configure and enable the transmit and receive operating modes. The PS and DM bits are set based on the auto-negotiation result (read from the PHY). 6. Write to the ETH_DMAOMR register to set bits 13 and 1 and start transmission and reception. 7. The transmit and receive engines enter the running state and attempt to acquire descriptors from the respective descriptor lists. The receive and transmit engines then begin processing receive and transmit operations. The transmit and receive processes are independent of each other and can be started or stopped separately. Host bus burst access The DMA attempts to execute fixed-length burst transfers on the AHB master interface if configured to do so (FB bit in ETH_DMABMR). The maximum burst length is indicated and 1558/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller limited by the PBL field (ETH_DMABMR [13:8]). The receive and transmit descriptors are always accessed in the maximum possible burst size (limited by PBL) for the 16 bytes to be read. The Transmit DMA initiates a data transfer only when there is sufficient space in the Transmit FIFO to accommodate the configured burst or the number of bytes until the end of frame (when it is less than the configured burst length). The DMA indicates the start address and the number of transfers required to the AHB Master Interface. When the AHB Interface is configured for fixed-length burst, then it transfers data using the best combination of INCR4, INCR8, INCR16 and SINGLE transactions. Otherwise (no fixed-length burst), it transfers data using INCR (undefined length) and SINGLE transactions. The Receive DMA initiates a data transfer only when sufficient data for the configured burst is available in Receive FIFO or when the end of frame (when it is less than the configured burst length) is detected in the Receive FIFO. The DMA indicates the start address and the number of transfers required to the AHB master interface. When the AHB interface is configured for fixed-length burst, then it transfers data using the best combination of INCR4, INCR8, INCR16 and SINGLE transactions. If the end of frame is reached before the fixedburst ends on the AHB interface, then dummy transfers are performed in order to complete the fixed-length burst. Otherwise (FB bit in ETH_DMABMR is reset), it transfers data using INCR (undefined length) and SINGLE transactions. When the AHB interface is configured for address-aligned beats, both DMA engines ensure that the first burst transfer the AHB initiates is less than or equal to the size of the configured PBL. Thus, all subsequent beats start at an address that is aligned to the configured PBL. The DMA can only align the address for beats up to size 16 (for PBL > 16), because the AHB interface does not support more than INCR16. 38.6.3 Host data buffer alignment The transmit and receive data buffers do not have any restrictions on start address alignment. In our system with 32-bit memory, the start address for the buffers can be aligned to any of the four bytes. However, the DMA always initiates transfers with address aligned to the bus width with dummy data for the byte lanes not required. This typically happens during the transfer of the beginning or end of an Ethernet frame. • Example of buffer read: If the Transmit buffer address is 0x0000 0FF2, and 15 bytes need to be transferred, then the DMA will read five full words from address 0x0000 0FF0, but when transferring data to the Transmit FIFO, the extra bytes (the first two bytes) will be dropped or ignored. Similarly, the last 3 bytes of the last transfer will also be ignored. The DMA always ensures it transfers a full 32-bit data items to the Transmit FIFO, unless it is the end of frame. • Example of buffer write: If the Receive buffer address is 0x0000 0FF2, and 16 bytes of a received frame need to be transferred, then the DMA will write five full 32-bit data items from address 0x0000 0FF0. But the first 2 bytes of the first transfer and the last 2 bytes of the third transfer will have dummy data. 38.6.4 Buffer size calculations The DMA does not update the size fields in the transmit and receive descriptors. The DMA updates only the status fields (xDES0) of the descriptors. The driver has to calculate the sizes. The transmit DMA transfers the exact number of bytes (indicated by buffer size field in RM0385 Rev 7 1559/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 TDES1) towards the MAC core. If a descriptor is marked as first (FS bit in TDES0 is set), then the DMA marks the first transfer from the buffer as the start of frame. If a descriptor is marked as last (LS bit in TDES0), then the DMA marks the last transfer from that data buffer as the end of frame. The receive DMA transfers data to a buffer until the buffer is full or the end of frame is received. If a descriptor is not marked as last (LS bit in RDES0), then the buffer(s) that correspond to the descriptor are full and the amount of valid data in a buffer is accurately indicated by the buffer size field minus the data buffer pointer offset when the descriptor’s FS bit is set. The offset is zero when the data buffer pointer is aligned to the databus width. If a descriptor is marked as last, then the buffer may not be full (as indicated by the buffer size in RDES1). To compute the amount of valid data in this final buffer, the driver must read the frame length (FL bits in RDES0[29:16]) and subtract the sum of the buffer sizes of the preceding buffers in this frame. The receive DMA always transfers the start of next frame with a new descriptor. Note: Even when the start address of a receive buffer is not aligned to the system databus width the system should allocate a receive buffer of a size aligned to the system bus width. For example, if the system allocates a 1024 byte (1 KB) receive buffer starting from address 0x1000, the software can program the buffer start address in the receive descriptor to have a 0x1002 offset. The receive DMA writes the frame to this buffer with dummy data in the first two locations (0x1000 and 0x1001). The actual frame is written from location 0x1002. Thus, the actual useful space in this buffer is 1022 bytes, even though the buffer size is programmed as 1024 bytes, due to the start address offset. 38.6.5 DMA arbiter The arbiter inside the DMA takes care of the arbitration between transmit and receive channel accesses to the AHB master interface. Two types of arbitrations are possible: round-robin, and fixed-priority. When round-robin arbitration is selected (DA bit in ETH_DMABMR is reset), the arbiter allocates the databus in the ratio set by the PM bits in ETH_DMABMR, when both transmit and receive DMAs request access simultaneously. When the DA bit is set, the receive DMA always gets priority over the transmit DMA for data access. 38.6.6 Error response to DMA For any data transfer initiated by a DMA channel, if the slave replies with an error response, that DMA stops all operations and updates the error bits and the fatal bus error bit in the Status register (ETH_DMASR register). That DMA controller can resume operation only after soft- or hard-resetting the peripheral and re-initializing the DMA. 38.6.7 Tx DMA configuration TxDMA operation: default (non-OSF) mode The transmit DMA engine in default mode proceeds as follows: 1560/1709 1. The user sets up the transmit descriptor (TDES0-TDES3) and sets the OWN bit (TDES0[31]) after setting up the corresponding data buffer(s) with Ethernet frame data. 2. Once the ST bit (ETH_DMAOMR register[13]) is set, the DMA enters the Run state. 3. While in the Run state, the DMA polls the transmit descriptor list for frames requiring transmission. After polling starts, it continues in either sequential descriptor ring order or chained order. If the DMA detects a descriptor flagged as owned by the CPU, or if an error condition occurs, transmission is suspended and both the Transmit Buffer RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Unavailable (ETH_DMASR register[2]) and Normal Interrupt Summary (ETH_DMASR register[16]) bits are set. The transmit engine proceeds to Step 9. 4. If the acquired descriptor is flagged as owned by DMA (TDES0[31] is set), the DMA decodes the transmit data buffer address from the acquired descriptor. 5. The DMA fetches the transmit data from the STM32F75xxx and STM32F74xxx memory and transfers the data. 6. If an Ethernet frame is stored over data buffers in multiple descriptors, the DMA closes the intermediate descriptor and fetches the next descriptor. Steps 3, 4, and 5 are repeated until the end of Ethernet frame data is transferred. 7. When frame transmission is complete, if IEEE 1588 time stamping was enabled for the frame (as indicated in the transmit status) the time stamp value is written to the transmit descriptor (TDES2 and TDES3) that contains the end-of-frame buffer. The status information is then written to this transmit descriptor (TDES0). Because the OWN bit is cleared during this step, the CPU now owns this descriptor. If time stamping was not enabled for this frame, the DMA does not alter the contents of TDES2 and TDES3. 8. Transmit Interrupt (ETH_DMASR register [0]) is set after completing the transmission of a frame that has Interrupt on Completion (TDES1[31]) set in its last descriptor. The DMA engine then returns to Step 3. 9. In the Suspend state, the DMA tries to re-acquire the descriptor (and thereby returns to Step 3) when it receives a transmit poll demand, and the Underflow Interrupt Status bit is cleared. Figure 518 shows the TxDMA transmission flow in default mode. RM0385 Rev 7 1561/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Figure 518. TxDMA operation in default mode Start TxDMA Start Stop TxDMA (Re-)fetch next descriptor (AHB) error? Poll demand Yes No TxDMA suspended No Own bit set? Yes Transfer data from buffer(s) (AHB) error? Yes No No Frame xfer complete? Yes Close intermediate descriptor Wait for Tx status Time stamp present? Yes Write time stamp to TDES2 and TDES3 No Write status word to TDES0 No (AHB) error? No (AHB) error? Yes Yes ai15639 TxDMA operation: OSF mode While in the Run state, the transmit process can simultaneously acquire two frames without closing the Status descriptor of the first (if the OSF bit is set in ETH_DMAOMR register[2]). As the transmit process finishes transferring the first frame, it immediately polls the transmit descriptor list for the second frame. If the second frame is valid, the transmit process transfers this frame before writing the first frame’s status information. In OSF mode, the Run-state transmit DMA operates according to the following sequence: 1562/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 1. The DMA operates as described in steps 1–6 of the TxDMA (default mode). 2. Without closing the previous frame’s last descriptor, the DMA fetches the next descriptor. 3. If the DMA owns the acquired descriptor, the DMA decodes the transmit buffer address in this descriptor. If the DMA does not own the descriptor, the DMA goes into Suspend mode and skips to Step 7. 4. The DMA fetches the Transmit frame from the STM32F75xxx and STM32F74xxx memory and transfers the frame until the end of frame data are transferred, closing the intermediate descriptors if this frame is split across multiple descriptors. 5. The DMA waits for the transmission status and time stamp of the previous frame. When the status is available, the DMA writes the time stamp to TDES2 and TDES3, if such time stamp was captured (as indicated by a status bit). The DMA then writes the status, with a cleared OWN bit, to the corresponding TDES0, thus closing the descriptor. If time stamping was not enabled for the previous frame, the DMA does not alter the contents of TDES2 and TDES3. 6. If enabled, the Transmit interrupt is set, the DMA fetches the next descriptor, then proceeds to Step 3 (when Status is normal). If the previous transmission status shows an underflow error, the DMA goes into Suspend mode (Step 7). 7. In Suspend mode, if a pending status and time stamp are received by the DMA, it writes the time stamp (if enabled for the current frame) to TDES2 and TDES3, then writes the status to the corresponding TDES0. It then sets relevant interrupts and returns to Suspend mode. 8. The DMA can exit Suspend mode and enter the Run state (go to Step 1 or Step 2 depending on pending status) only after receiving a Transmit Poll demand (ETH_DMATPDR register). Figure 519 shows the basic flowchart in OSF mode. RM0385 Rev 7 1563/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Figure 519. TxDMA operation in OSF mode Start TxDMA Start Stop TxDMA (Re-)fetch next descriptor (AHB) error? Poll demand Yes No TxDMA suspended Own bit set? No Yes Previous frame status available Transfer data from buffer(s) (AHB) error? Time stamp present? Yes No Yes No Write time stamp to TDES2 & TDES3 for previous frame Frame xfer complete? No Yes No Yes Wait for previous frame’s Tx status Close intermediate descriptor (AHB) error? Yes Time stamp present? No Yes Write time stamp to TDES2 & TDES3 for previous frame No Write status word to prev. frame’s TDES0 Write status word to prev. frame’s TDES0 No Second frame? (AHB) error? No No (AHB) error? Yes (AHB) error? Yes Yes ai15640 Transmit frame processing The transmit DMA expects that the data buffers contain complete Ethernet frames, excluding preamble, pad bytes, and FCS fields. The DA, SA, and Type/Len fields contain valid data. If the transmit descriptor indicates that the MAC core must disable CRC or pad insertion, the buffer must have complete Ethernet frames (excluding preamble), including the CRC bytes. Frames can be data-chained and span over several buffers. Frames have to be delimited by the first descriptor (TDES0[28]) and the last descriptor (TDES0[29]). As the transmission starts, TDES0[28] has to be set in the first descriptor. When this occurs, the frame data are transferred from the memory buffer to the Transmit FIFO. Concurrently, if the last descriptor (TDES0[29]) of the current frame is cleared, the transmit process attempts to acquire the next descriptor. The transmit process expects TDES0[28] to be cleared in this descriptor. If TDES0[29] is cleared, it indicates an intermediary buffer. If TDES0[29] is set, it indicates the last buffer of the frame. After the last buffer of the frame has been transmitted, 1564/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller the DMA writes back the final status information to the transmit descriptor 0 (TDES0) word of the descriptor that has the last segment set in transmit descriptor 0 (TDES0[29]). At this time, if Interrupt on Completion (TDES0[30]) is set, Transmit Interrupt (in ETH_DMASR register [0]) is set, the next descriptor is fetched, and the process repeats. Actual frame transmission begins after the Transmit FIFO has reached either a programmable transmit threshold (ETH_DMAOMR register[16:14]), or a full frame is contained in the FIFO. There is also an option for the Store and forward mode (ETH_DMAOMR register[21]). Descriptors are released (OWN bit TDES0[31] is cleared) when the DMA finishes transferring the frame. Transmit polling suspended Transmit polling can be suspended by either of the following conditions: • The DMA detects a descriptor owned by the CPU (TDES0[31]=0) and the Transmit buffer unavailable flag is set (ETH_DMASR register[2]). To resume, the driver must give descriptor ownership to the DMA and then issue a Poll Demand command. • A frame transmission is aborted when a transmit error due to underflow is detected. The appropriate Transmit Descriptor 0 (TDES0) bit is set. If the second condition occurs, both the Abnormal Interrupt Summary (in ETH_DMASR register [15]) and Transmit Underflow bits (in ETH_DMASR register[5]) are set, and the information is written to Transmit Descriptor 0, causing the suspension. If the DMA goes into Suspend state due to the first condition, then both the Normal Interrupt Summary (ETH_DMASR register [16]) and Transmit Buffer Unavailable (ETH_DMASR register[2]) bits are set. In both cases, the position in the transmit list is retained. The retained position is that of the descriptor following the last descriptor closed by the DMA. The driver must explicitly issue a Transmit Poll Demand command after rectifying the suspension cause. Normal Tx DMA descriptors The normal transmit descriptor structure consists of four 32-bit words as shown in Figure 520. The bit descriptions of TDES0, TDES1, TDES2 and TDES3 are given below. Note that enhanced descriptors must be used if time stamping is activated (ETH_PTPTSCR bit 0, TSE=1) or if IPv4 checksum offload is activated (ETH_MACCR bit 10, IPCO=1). Figure 520. Normal transmit descriptor 31 TDES 0 TDES 1 TDES 2 TDES 3 O W N 0 Ctrl [30:26] Reserved [31:29] T T Res. S 24 E Ctrl [23:20] T Reserved T [19:18] S S Buffer 2 byte count [28:16] Reserved [15:13] Status [16:0] Buffer 1 byte count [12:0] Buffer 1 address [31:0] / Time stamp low [31:0] Buffer 2 address [31:0] or Next descriptor address [31:0] / Time stamp high [31:0] ai15642b RM0385 Rev 7 1565/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller • RM0385 TDES0: Transmit descriptor Word0 The application software has to program the control bits [30:26]+[23:20] plus the OWN bit [31] during descriptor initialization. When the DMA updates the descriptor (or writes it back), it resets all the control bits plus the OWN bit, and reports only the status bits. 31 30 29 28 27 26 25 24 OWN IC LS FS DC DP TTSE Res. 23 22 CIC 21 20 19 18 17 16 TER TCH Res. Res. TTSS IHE rw rw 2 1 0 ED UF DB rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 ES JT FF IPE LCA NC LCO EC VF rw rw rw rw rw rw rw rw rw rw rw rw rw CC Bit 31 OWN: Own bit When set, this bit indicates that the descriptor is owned by the DMA. When this bit is reset, it indicates that the descriptor is owned by the CPU. The DMA clears this bit either when it completes the frame transmission or when the buffers allocated in the descriptor are read completely. The ownership bit of the frame’s first descriptor must be set after all subsequent descriptors belonging to the same frame have been set. Bit 30 IC: Interrupt on completion When set, this bit sets the Transmit Interrupt (Register 5[0]) after the present frame has been transmitted. Bit 29 LS: Last segment When set, this bit indicates that the buffer contains the last segment of the frame. Bit 28 FS: First segment When set, this bit indicates that the buffer contains the first segment of a frame. Bit 27 DC: Disable CRC When this bit is set, the MAC does not append a cyclic redundancy check (CRC) to the end of the transmitted frame. This is valid only when the first segment (TDES0[28]) is set. Bit 26 DP: Disable pad When set, the MAC does not automatically add padding to a frame shorter than 64 bytes. When this bit is reset, the DMA automatically adds padding and CRC to a frame shorter than 64 bytes, and the CRC field is added despite the state of the DC (TDES0[27]) bit. This is valid only when the first segment (TDES0[28]) is set. Bit 25 TTSE: Transmit time stamp enable When TTSE is set and when TSE is set (ETH_PTPTSCR bit 0), IEEE1588 hardware time stamping is activated for the transmit frame described by the descriptor. This field is only valid when the First segment control bit (TDES0[28]) is set. Bit 24 Reserved, must be kept at reset value. Bits 23:22 CIC: Checksum insertion control These bits control the checksum calculation and insertion. Bit encoding is as shown below: 00: Checksum Insertion disabled 01: Only IP header checksum calculation and insertion are enabled 10: IP header checksum and payload checksum calculation and insertion are enabled, but pseudo-header checksum is not calculated in hardware 11: IP Header checksum and payload checksum calculation and insertion are enabled, and pseudo-header checksum is calculated in hardware. 1566/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bit 21 TER: Transmit end of ring When set, this bit indicates that the descriptor list reached its final descriptor. The DMA returns to the base address of the list, creating a descriptor ring. Bit 20 TCH: Second address chained When set, this bit indicates that the second address in the descriptor is the next descriptor address rather than the second buffer address. When TDES0[20] is set, TBS2 (TDES1[28:16]) is a “don’t care” value. TDES0[21] takes precedence over TDES0[20]. Bits 19:18 Reserved, must be kept at reset value. Bit 17 TTSS: Transmit time stamp status This field is used as a status bit to indicate that a time stamp was captured for the described transmit frame. When this bit is set, TDES2 and TDES3 have a time stamp value captured for the transmit frame. This field is only valid when the descriptor’s Last segment control bit (TDES0[29]) is set. Note that when enhanced descriptors are enabled (EDFE=1 in ETH_DMABMR), TTSS=1 indicates that TDES6 and TDES7 have the time stamp value. Bit 16 IHE: IP header error When set, this bit indicates that the MAC transmitter detected an error in the IP datagram header. The transmitter checks the header length in the IPv4 packet against the number of header bytes received from the application and indicates an error status if there is a mismatch. For IPv6 frames, a header error is reported if the main header length is not 40 bytes. Furthermore, the Ethernet length/type field value for an IPv4 or IPv6 frame must match the IP header version received with the packet. For IPv4 frames, an error status is also indicated if the Header Length field has a value less than 0x5. Bit 15 ES: Error summary Indicates the logical OR of the following bits: TDES0[14]: Jabber timeout TDES0[13]: Frame flush TDES0[11]: Loss of carrier TDES0[10]: No carrier TDES0[9]: Late collision TDES0[8]: Excessive collision TDES0[2]:Excessive deferral TDES0[1]: Underflow error TDES0[16]: IP header error TDES0[12]: IP payload error Bit 14 JT: Jabber timeout When set, this bit indicates the MAC transmitter has experienced a jabber timeout. This bit is only set when the MAC configuration register’s JD bit is not set. Bit 13 FF: Frame flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a software Flush command given by the CPU. Bit 12 IPE: IP payload error When set, this bit indicates that MAC transmitter detected an error in the TCP, UDP, or ICMP IP datagram payload. The transmitter checks the payload length received in the IPv4 or IPv6 header against the actual number of TCP, UDP or ICMP packet bytes received from the application and issues an error status in case of a mismatch. RM0385 Rev 7 1567/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bit 11 LCA: Loss of carrier When set, this bit indicates that a loss of carrier occurred during frame transmission (that is, the MII_CRS signal was inactive for one or more transmit clock periods during frame transmission). This is valid only for the frames transmitted without collision when the MAC operates in Half-duplex mode. Bit 10 NC: No carrier When set, this bit indicates that the Carrier Sense signal form the PHY was not asserted during transmission. Bit 9 LCO: Late collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times, including preamble, in MII mode). This bit is not valid if the Underflow Error bit is set. Bit 8 EC: Excessive collision When set, this bit indicates that the transmission was aborted after 16 successive collisions while attempting to transmit the current frame. If the RD (Disable retry) bit in the MAC Configuration register is set, this bit is set after the first collision, and the transmission of the frame is aborted. Bit 7 VF: VLAN frame When set, this bit indicates that the transmitted frame was a VLAN-type frame. Bits 6:3 CC: Collision count This 4-bit counter value indicates the number of collisions occurring before the frame was transmitted. The count is not valid when the Excessive collisions bit (TDES0[8]) is set. Bit 2 ED: Excessive deferral When set, this bit indicates that the transmission has ended because of excessive deferral of over 24 288 bit times if the Deferral check (DC) bit in the MAC Control register is set high. Bit 1 UF: Underflow error When set, this bit indicates that the MAC aborted the frame because data arrived late from the RAM memory. Underflow error indicates that the DMA encountered an empty transmit buffer while transmitting the frame. The transmission process enters the Suspended state and sets both Transmit underflow (Register 5[5]) and Transmit interrupt (Register 5[0]). Bit 0 DB: Deferred bit When set, this bit indicates that the MAC defers before transmission because of the presence of the carrier. This bit is valid only in Half-duplex mode. • TDES1: Transmit descriptor Word1 31 30 29 Res. Res. Res. 15 14 13 Res. Res. Res. 28 27 26 25 24 23 22 21 20 19 18 17 16 TBS2 rw rw rw rw rw rw rw rw rw rw rw rw rw 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw TBS1 rw rw rw rw rw rw rw 31:29 Reserved, must be kept at reset value. 28:16 TBS2: Transmit buffer 2 size These bits indicate the second data buffer size in bytes. This field is not valid if TDES0[20] is set. 1568/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 15:13 Reserved, must be kept at reset value. 12:0 TBS1: Transmit buffer 1 size These bits indicate the first data buffer byte size, in bytes. If this field is 0, the DMA ignores this buffer and uses Buffer 2 or the next descriptor, depending on the value of TCH (TDES0[20]). • TDES2: Transmit descriptor Word2 TDES2 contains the address pointer to the first buffer of the descriptor or it contains time stamp data. 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw TBAP1/TBAP/TTSL TBAP1/TBAP/TTSL rw rw rw rw rw rw rw rw rw Bits 31:0 TBAP1: Transmit buffer 1 address pointer / Transmit frame time stamp low These bits have two different functions: they indicate to the DMA the location of data in memory, and after all data are transferred, the DMA can then use these bits to pass back time stamp data. TBAP: When the software makes this descriptor available to the DMA (at the moment that the OWN bit is set to 1 in TDES0), these bits indicate the physical address of Buffer 1. There is no limitation on the buffer address alignment. See Host data buffer alignment on page 1559 for further details on buffer address alignment. TTSL: Before it clears the OWN bit in TDES0, the DMA updates this field with the 32 least significant bits of the time stamp captured for the corresponding transmit frame (overwriting the value for TBAP1). This field has the time stamp only if time stamping is activated for this frame (see TTSE, TDES0 bit 25) and if the Last segment control bit (LS) in the descriptor is set. • TDES3: Transmit descriptor Word3 TDES3 contains the address pointer either to the second buffer of the descriptor or the next descriptor, or it contains time stamp data. 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw TBAP2/TBAP2/TTSH TBAP2/TBAP2/TTSH rw rw rw rw rw rw rw rw rw RM0385 Rev 7 1569/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bits 31:0 TBAP2: Transmit buffer 2 address pointer (Next descriptor address) / Transmit frame time stamp high These bits have two different functions: they indicate to the DMA the location of data in memory, and after all data are transferred, the DMA can then use these bits to pass back time stamp data. TBAP2: When the software makes this descriptor available to the DMA (at the moment when the OWN bit is set to 1 in TDES0), these bits indicate the physical address of Buffer 2 when a descriptor ring structure is used. If the Second address chained (TDES1 [20]) bit is set, this address contains the pointer to the physical memory where the next descriptor is present. The buffer address pointer must be aligned to the bus width only when TDES1 [20] is set. (LSBs are ignored internally.) TTSH: Before it clears the OWN bit in TDES0, the DMA updates this field with the 32 most significant bits of the time stamp captured for the corresponding transmit frame (overwriting the value for TBAP2). This field has the time stamp only if activated for this frame (see TDES0 bit 25, TTSE) and if the Last segment control bit (LS) in the descriptor is set. Enhanced Tx DMA descriptors Enhanced descriptors (enabled with EDFE=1, ETHDMABMR bit 7), must be used if time stamping is activated (TSE=1, ETH_PTPTSCR bit 0) or if IPv4 checksum offload is activated (IPCO=1, ETH_MACCR bit 10). Enhanced descriptors comprise eight 32-bit words, twice the size of normal descriptors. TDES0, TDES1, TDES2 and TDES3 have the same definitions as for normal transmit descriptors (refer to Normal Tx DMA descriptors). TDES6 and TDES7 hold the time stamp. TDES4, TDES5, TDES6 and TDES7 are defined below. When the Enhanced descriptor mode is selected, the software needs to allocate 32-bytes (8 DWORDS) of memory for every descriptor. When time stamping or IPv4 checksum offload are not being used, the enhanced descriptor format may be disabled and the software can use normal descriptors with the default size of 16 bytes. 1570/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Figure 521. Enhanced transmit descriptor 31 TDES 0 TDES 1 O W N 0 Ctrl [30:26] Reserved [31:29] T T Res. S 24 E T Reserved T [19:18] S S Ctrl [23:20] Buffer 2 byte count [28:16] TDES 2 Status [16:0] Reserved [15:13] Buffer 1 byte count [12:0] Buffer 1 address [31:0] Buffer 2 address [31:0] or Next descriptor address [31:0] TDES 3 TDES 4 Reserved TDES 5 Reserved TDES 6 Time stamp low [31:0] TDES 7 Time stamp high [31:0] ai17105b • TDES4: Transmit descriptor Word4 Reserved • TDES5: Transmit descriptor Word5 Reserved • 31 30 TDES6: Transmit descriptor Word6 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw TTSL rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 TTSL rw rw rw rw rw rw rw rw Bits 31:0 TTSL: Transmit frame time stamp low This field is updated by DMA with the 32 least significant bits of the time stamp captured for the corresponding transmit frame. This field has the time stamp only if the Last segment control bit (LS) in the descriptor is set. • 31 30 TDES7: Transmit descriptor Word7 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw TTSH rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 TTSH rw rw rw rw rw rw rw rw RM0385 Rev 7 1571/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bits 31:0 TTSH: Transmit frame time stamp high This field is updated by DMA with the 32 most significant bits of the time stamp captured for the corresponding transmit frame. This field has the time stamp only if the Last segment control bit (LS) in the descriptor is set. 38.6.8 Rx DMA configuration The Receive DMA engine’s reception sequence is illustrated in Figure 522 and described below: 1. The CPU sets up Receive descriptors (RDES0-RDES3) and sets the OWN bit (RDES0[31]). 2. Once the SR (ETH_DMAOMR register[1]) bit is set, the DMA enters the Run state. While in the Run state, the DMA polls the receive descriptor list, attempting to acquire free descriptors. If the fetched descriptor is not free (is owned by the CPU), the DMA enters the Suspend state and jumps to Step 9. 3. The DMA decodes the receive data buffer address from the acquired descriptors. 4. Incoming frames are processed and placed in the acquired descriptor’s data buffers. 5. When the buffer is full or the frame transfer is complete, the Receive engine fetches the next descriptor. 6. If the current frame transfer is complete, the DMA proceeds to step 7. If the DMA does not own the next fetched descriptor and the frame transfer is not complete (EOF is not yet transferred), the DMA sets the Descriptor error bit in RDES0 (unless flushing is disabled). The DMA closes the current descriptor (clears the OWN bit) and marks it as intermediate by clearing the Last segment (LS) bit in the RDES1 value (marks it as last descriptor if flushing is not disabled), then proceeds to step 8. If the DMA owns the next descriptor but the current frame transfer is not complete, the DMA closes the current descriptor as intermediate and returns to step 4. 7. If IEEE 1588 time stamping is enabled, the DMA writes the time stamp (if available) to the current descriptor’s RDES2 and RDES3. It then takes the received frame’s status and writes the status word to the current descriptor’s RDES0, with the OWN bit cleared and the Last segment bit set. 8. The Receive engine checks the latest descriptor’s OWN bit. If the CPU owns the descriptor (OWN bit is at 0) the Receive buffer unavailable bit (in ETH_DMASR register[7]) is set and the DMA Receive engine enters the Suspended state (step 9). If the DMA owns the descriptor, the engine returns to step 4 and awaits the next frame. 9. Before the Receive engine enters the Suspend state, partial frames are flushed from the Receive FIFO (you can control flushing using bit 24 in the ETH_DMAOMR register). 10. The Receive DMA exits the Suspend state when a Receive Poll demand is given or the start of next frame is available from the Receive FIFO. The engine proceeds to step 2 and re-fetches the next descriptor. The DMA does not acknowledge accepting the status until it has completed the time stamp write-back and is ready to perform status write-back to the descriptor. If software has enabled time stamping through CSR, when a valid time stamp value is not available for the frame (for example, because the receive FIFO was full before the time stamp could be written to it), the DMA writes all ones to RDES2 and RDES3. Otherwise (that is, if time stamping is not enabled), RDES2 and RDES3 remain unchanged. 1572/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Figure 522. Receive DMA operation Start RxDMA Stop RxDMA (Re-)Fetch next descriptor Poll demand / new frame available (AHB) erro r? RxDMA suspended Ye s No Ye s Frame transfer complete? Yes Start No Own bit set? No Ye s Flush disabled ? Frame data available ? No Ye s Flush the remaining frame Write data to buffer(s) No Wait for frame data (AHB) erro r? Ye s No Fetch next descriptor (AHB) erro r? Ye s No Flush disabled ? No Set descriptor error No Ye s Own bit set for next desc? Frame transfer complete? No Ye s Ye s Close RDES0 as intermediate descriptor Time stamp present? Ye s Write time stamp to RDES2 & RDES3 No Close RDES0 as last descriptor No (AHB) erro r? No (AHB) erro r? Ye s Ye s ai15643 RM0385 Rev 7 1573/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Receive descriptor acquisition The receive engine always attempts to acquire an extra descriptor in anticipation of an incoming frame. Descriptor acquisition is attempted if any of the following conditions is/are satisfied: • The receive Start/Stop bit (ETH_DMAOMR register[1]) has been set immediately after the DMA has been placed in the Run state. • The data buffer of the current descriptor is full before the end of the frame currently being transferred • The controller has completed frame reception, but the current receive descriptor has not yet been closed. • The receive process has been suspended because of a CPU-owned buffer (RDES0[31] = 0) and a new frame is received. • A Receive poll demand has been issued. Receive frame processing The MAC transfers the received frames to the STM32F75xxx and STM32F74xxx memory only when the frame passes the address filter and the frame size is greater than or equal to the configurable threshold bytes set for the Receive FIFO, or when the complete frame is written to the FIFO in Store-and-forward mode. If the frame fails the address filtering, it is dropped in the MAC block itself (unless Receive All ETH_MACFFR [31] bit is set). Frames that are shorter than 64 bytes, because of collision or premature termination, can be purged from the Receive FIFO. After 64 (configurable threshold) bytes have been received, the DMA block begins transferring the frame data to the receive buffer pointed to by the current descriptor. The DMA sets the first descriptor (RDES0[9]) after the DMA AHB Interface becomes ready to receive a data transfer (if DMA is not fetching transmit data from the memory), to delimit the frame. The descriptors are released when the OWN (RDES0[31]) bit is reset to 0, either as the data buffer fills up or as the last segment of the frame is transferred to the receive buffer. If the frame is contained in a single descriptor, both the last descriptor (RDES0[8]) and first descriptor (RDES0[9]) bits are set. The DMA fetches the next descriptor, sets the last descriptor (RDES0[8]) bit, and releases the RDES0 status bits in the previous frame descriptor. Then the DMA sets the receive interrupt bit (ETH_DMASR register [6]). The same process repeats unless the DMA encounters a descriptor flagged as being owned by the CPU. If this occurs, the receive process sets the receive buffer unavailable bit (ETH_DMASR register[7]) and then enters the Suspend state. The position in the receive list is retained. Receive process suspended If a new receive frame arrives while the receive process is in Suspend state, the DMA refetches the current descriptor in the STM32F75xxx and STM32F74xxx memory. If the descriptor is now owned by the DMA, the receive process re-enters the Run state and starts frame reception. If the descriptor is still owned by the host, by default, the DMA discards the current frame at the top of the Rx FIFO and increments the missed frame counter. If more than one frame is stored in the Rx FIFO, the process repeats. The discarding or flushing of the frame at the top of the Rx FIFO can be avoided by setting the DMA Operation mode register bit 24 (DFRF). In such conditions, the receive process sets the receive buffer unavailable status bit and returns to the Suspend state. 1574/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Normal Rx DMA descriptors The normal receive descriptor structure consists of four 32-bit words (16 bytes). These are shown in Figure 523. The bit descriptions of RDES0, RDES1, RDES2 and RDES3 are given below. Note that enhanced descriptors must be used if time stamping is activated (TSE=1, ETH_PTPTSCR bit 0) or if IPv4 checksum offload is activated (IPCO=1, ETH_MACCR bit 10). Figure 523. Normal Rx DMA descriptor structure O RDES 0 W N Status [30:0] RDES 1 CT Reserved RL [30:29] Buffer 2 byte count [28:16] RDES 2 CTRL Res. [15:14] Buffer 1 byte count [12:0] Buffer 1 address [31:0] Buffer 2 address [31:0] or Next descriptor address [31:0] RDES 3 ai15644 • RDES0: Receive descriptor Word0 RDES0 contains the received frame status, the frame length and the descriptor ownership information. 31 30 OWN AFM 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FL rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ES DE SAF LE OE VLAN FS LS IPHCE/TSV LCO FT RWT RE DE CE PCE/ESA rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bit 31 OWN: Own bit When set, this bit indicates that the descriptor is owned by the DMA of the MAC Subsystem. When this bit is reset, it indicates that the descriptor is owned by the Host. The DMA clears this bit either when it completes the frame reception or when the buffers that are associated with this descriptor are full. Bit 30 AFM: Destination address filter fail When set, this bit indicates a frame that failed the DA filter in the MAC Core. Bits 29:16 FL: Frame length These bits indicate the byte length of the received frame that was transferred to host memory (including CRC). This field is valid only when last descriptor (RDES0[8]) is set and descriptor error (RDES0[14]) is reset. This field is valid when last descriptor (RDES0[8]) is set. When the last descriptor and error summary bits are not set, this field indicates the accumulated number of bytes that have been transferred for the current frame. RM0385 Rev 7 1575/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bit 15 ES: Error summary Indicates the logical OR of the following bits: RDES0[1]: CRC error RDES0[3]: Receive error RDES0[4]: Watchdog timeout RDES0[6]: Late collision RDES0[7]: Giant frame (This is not applicable when RDES0[7] indicates an IPV4 header checksum error.) RDES0[11]: Overflow error RDES0[14]: Descriptor error. This field is valid only when the last descriptor (RDES0[8]) is set. Bit 14 DE: Descriptor error When set, this bit indicates a frame truncation caused by a frame that does not fit within the current descriptor buffers, and that the DMA does not own the next descriptor. The frame is truncated. This field is valid only when the last descriptor (RDES0[8]) is set. Bit 13 SAF: Source address filter fail When set, this bit indicates that the SA field of frame failed the SA filter in the MAC Core. Bit 12 LE: Length error When set, this bit indicates that the actual length of the received frame does not match the value in the Length/ Type field. This bit is valid only when the Frame type (RDES0[5]) bit is reset. Bit 11 OE: Overflow error When set, this bit indicates that the received frame was damaged due to buffer overflow. Bit 10 VLAN: VLAN tag When set, this bit indicates that the frame pointed to by this descriptor is a VLAN frame tagged by the MAC core. Bit 9 FS: First descriptor When set, this bit indicates that this descriptor contains the first buffer of the frame. If the size of the first buffer is 0, the second buffer contains the beginning of the frame. If the size of the second buffer is also 0, the next descriptor contains the beginning of the frame. Bit 8 LS: Last descriptor When set, this bit indicates that the buffers pointed to by this descriptor are the last buffers of the frame. Bit 7 IPHCE/TSV: IPv header checksum error / time stamp valid If IPHCE is set, it indicates an error in the IPv4 or IPv6 header. This error can be due to inconsistent Ethernet Type field and IP header Version field values, a header checksum mismatch in IPv4, or an Ethernet frame lacking the expected number of IP header bytes. This bit can take on special meaning as specified in Table 278. If enhanced descriptor format is enabled (EDFE=1, bit 7 of ETH_DMABMR), this bit takes on the TSV function (otherwise it is IPHCE). When TSV is set, it indicates that a snapshot of the timestamp is written in descriptor words 6 (RDES6) and 7 (RDES7). TSV is valid only when the Last descriptor bit (RDES0[8]) is set. Bit 6 LCO: Late collision When set, this bit indicates that a late collision has occurred while receiving the frame in Halfduplex mode. 1576/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bit 5 FT: Frame type When set, this bit indicates that the Receive frame is an Ethernet-type frame (the LT field is greater than or equal to 0x0600). When this bit is reset, it indicates that the received frame is an IEEE802.3 frame. This bit is not valid for Runt frames less than 14 bytes. When the normal descriptor format is used (ETH_DMABMR EDFE=0), FT can take on special meaning as specified in Table 278. Bit 4 RWT: Receive watchdog timeout When set, this bit indicates that the Receive watchdog timer has expired while receiving the current frame and the current frame is truncated after the watchdog timeout. Bit 3 RE: Receive error When set, this bit indicates that the RX_ERR signal is asserted while RX_DV is asserted during frame reception. Bit 2 DE: Dribble bit error When set, this bit indicates that the received frame has a non-integer multiple of bytes (odd nibbles). This bit is valid only in MII mode. Bit 1 CE: CRC error When set, this bit indicates that a cyclic redundancy check (CRC) error occurred on the received frame. This field is valid only when the last descriptor (RDES0[8]) is set. Bit 0 PCE/ESA: Payload checksum error / extended status available When set, it indicates that the TCP, UDP or ICMP checksum the core calculated does not match the received encapsulated TCP, UDP or ICMP segment’s Checksum field. This bit is also set when the received number of payload bytes does not match the value indicated in the Length field of the encapsulated IPv4 or IPv6 datagram in the received Ethernet frame. This bit can take on special meaning as specified in Table 278. If the enhanced descriptor format is enabled (EDFE=1, bit 7 in ETH_DMABMR), this bit takes on the ESA function (otherwise it is PCE). When ESA is set, it indicates that the extended status is available in descriptor word 4 (RDES4). ESA is valid only when the last descriptor bit (RDES0[8]) is set. Bits 5, 7, and 0 reflect the conditions discussed in Table 278. RM0385 Rev 7 1577/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Table 278. Receive descriptor 0 - encoding for bits 7, 5 and 0 (normal descriptor format only, EDFE=0) Bit 5: frame type • Bit 7: IPC Bit 0: payload checksum checksum error error Frame status 0 0 0 IEEE 802.3 Type frame (Length field value is less than 0x0600.) 1 0 0 IPv4/IPv6 Type frame, no checksum error detected 1 0 1 IPv4/IPv6 Type frame with a payload checksum error (as described for PCE) detected 1 1 0 IPv4/IPv6 Type frame with an IP header checksum error (as described for IPC CE) detected 1 1 1 IPv4/IPv6 Type frame with both IP header and payload checksum errors detected 0 0 1 IPv4/IPv6 Type frame with no IP header checksum error and the payload check bypassed, due to an unsupported payload 0 1 1 A Type frame that is neither IPv4 or IPv6 (the checksum offload engine bypasses checksum completely.) 0 1 0 Reserved RDES1: Receive descriptor Word1 31 30 29 DIC Res. Res. rw 15 14 13 RER RCH Res. rw rw 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 6 5 4 3 2 1 0 rw rw rw rw rw rw RBS2 rw rw rw rw rw rw 12 11 10 9 8 7 RBS rw rw rw rw rw rw rw Bit 31 DIC: Disable interrupt on completion When set, this bit prevents setting the Status register’s RS bit (CSR5[6]) for the received frame ending in the buffer indicated by this descriptor. This, in turn, disables the assertion of the interrupt to Host due to RS for that frame. Bits 30:29 Reserved, must be kept at reset value. Bits 28:16 RBS2: Receive buffer 2 size These bits indicate the second data buffer size, in bytes. The buffer size must be a multiple of 4, 8, or 16, depending on the bus widths (32, 64 or 128, respectively), even if the value of RDES3 (buffer2 address pointer) is not aligned to bus width. If the buffer size is not an appropriate multiple of 4, 8 or 16, the resulting behavior is undefined. This field is not valid if RDES1 [14] is set. Bit 15 RER: Receive end of ring When set, this bit indicates that the descriptor list reached its final descriptor. The DMA returns to the base address of the list, creating a descriptor ring. 1578/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bit 14 RCH: Second address chained When set, this bit indicates that the second address in the descriptor is the next descriptor address rather than the second buffer address. When this bit is set, RBS2 (RDES1[28:16]) is a “don’t care” value. RDES1[15] takes precedence over RDES1[14]. Bit 13 Reserved, must be kept at reset value. Bits 12:0 RBS1: Receive buffer 1 size Indicates the first data buffer size in bytes. The buffer size must be a multiple of 4, 8 or 16, depending upon the bus widths (32, 64 or 128), even if the value of RDES2 (buffer1 address pointer) is not aligned. When the buffer size is not a multiple of 4, 8 or 16, the resulting behavior is undefined. If this field is 0, the DMA ignores this buffer and uses Buffer 2 or next descriptor depending on the value of RCH (bit 14). • RDES2: Receive descriptor Word2 RDES2 contains the address pointer to the first data buffer in the descriptor, or it contains time stamp data. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RBP1 / RTSL rw rw rw rw rw rw rw 15 14 13 12 11 10 9 rw rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw RBP1 / RTSL rw rw rw rw rw rw rw rw rw Bits 31:0 RBAP1 / RTSL: Receive buffer 1 address pointer / Receive frame time stamp low These bits take on two different functions: the application uses them to indicate to the DMA where to store the data in memory, and then after transferring all the data the DMA may use these bits to pass back time stamp data. RBAP1: When the software makes this descriptor available to the DMA (at the moment that the OWN bit is set to 1 in RDES0), these bits indicate the physical address of Buffer 1. There are no limitations on the buffer address alignment except for the following condition: the DMA uses the configured value for its address generation when the RDES2 value is used to store the start of frame. Note that the DMA performs a write operation with the RDES2[3/2/1:0] bits as 0 during the transfer of the start of frame but the frame data is shifted as per the actual Buffer address pointer. The DMA ignores RDES2[3/2/1:0] (corresponding to bus width of 128/64/32) if the address pointer is to a buffer where the middle or last part of the frame is stored. RTSL: Before it clears the OWN bit in RDES0, the DMA updates this field with the 32 least significant bits of the time stamp captured for the corresponding receive frame (overwriting the value for RBAP1). This field has the time stamp only if time stamping is activated for this frame and if the Last segment control bit (LS) in the descriptor is set. • RDES3: Receive descriptor Word3 RDES3 contains the address pointer either to the second data buffer in the descriptor or to the next descriptor, or it contains time stamp data. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RBP2 / RTSH rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw RBP2 / RTSH rw rw rw rw rw rw rw rw rw RM0385 Rev 7 1579/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bits 31:0 RBAP2 / RTSH: Receive buffer 2 address pointer (next descriptor address) / Receive frame time stamp high These bits take on two different functions: the application uses them to indicate to the DMA the location of where to store the data in memory, and then after transferring all the data the DMA may use these bits to pass back time stamp data. RBAP1: When the software makes this descriptor available to the DMA (at the moment that the OWN bit is set to 1 in RDES0), these bits indicate the physical address of buffer 2 when a descriptor ring structure is used. If the second address chained (RDES1 [24]) bit is set, this address contains the pointer to the physical memory where the next descriptor is present. If RDES1 [24] is set, the buffer (next descriptor) address pointer must be bus width-aligned (RDES3[3, 2, or 1:0] = 0, corresponding to a bus width of 128, 64 or 32. LSBs are ignored internally.) However, when RDES1 [24] is reset, there are no limitations on the RDES3 value, except for the following condition: the DMA uses the configured value for its buffer address generation when the RDES3 value is used to store the start of frame. The DMA ignores RDES3[3, 2, or 1:0] (corresponding to a bus width of 128, 64 or 32) if the address pointer is to a buffer where the middle or last part of the frame is stored. RTSH: Before it clears the OWN bit in RDES0, the DMA updates this field with the 32 most significant bits of the time stamp captured for the corresponding receive frame (overwriting the value for RBAP2). This field has the time stamp only if time stamping is activated and if the Last segment control bit (LS) in the descriptor is set. Enhanced Rx DMA descriptors format with IEEE1588 time stamp Enhanced descriptors (enabled with EDFE=1, ETHDMABMR bit 7), must be used if time stamping is activated (TSE=1, ETH_PTPTSCR bit 0) or if IPv4 checksum offload is activated (IPCO=1, ETH_MACCR bit 10). Enhanced descriptors comprise eight 32-bit words, twice the size of normal descriptors. RDES0, RDES1, RDES2 and RDES3 have the same definitions as for normal receive descriptors (refer to Normal Rx DMA descriptors). RDES4 contains extended status while RDES6 and RDES7 hold the time stamp. RDES4, RDES5, RDES6 and RDES7 are defined below. When the Enhanced descriptor mode is selected, the software needs to allocate 32 bytes (8 DWORDS) of memory for every descriptor. When time stamping or IPv4 checksum offload are not being used, the enhanced descriptor format may be disabled and the software can use normal descriptors with the default size of 16 bytes. 1580/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Figure 524. Enhanced receive descriptor field format with IEEE1588 time stamp enabled 31 0 O RDES 0 W N Status [30:0] RDES 1 CT Reserved RL [30:29] Buffer 2 byte count [28:16] RDES 2 CTRL Res. [15:14] Buffer 1 byte count [12:0] Buffer 1 address [31:0] RDES 3 Buffer 2 address [31:0] or Next descriptor address [31:0] RDES 4 Extended Status [31:0] RDES 5 Reserved RDES 6 Time stamp low [31:0] Time stamp high [31:0] RDES 7 ai17104 • RDES4: Receive descriptor Word4 The extended status, shown below, is valid only when there is status related to IPv4 checksum or time stamp available as indicated by bit 0 in RDES0. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 11 10 9 8 2 1 0 15 14 13 12 Res. Res. PV PFT rw rw PMT rw rw rw 7 6 5 4 3 IPV6PR IPV4PR IPCB IPPE IPHE rw rw rw rw rw rw IPPT rw rw rw Bits 31:14 Reserved, must be kept at reset value. Bit 13 PV: PTP version When set, indicates that the received PTP message uses the IEEE 1588 version 2 format. When cleared, it uses version 1 format. This is valid only if the message type is non-zero. Bit 12 PFT: PTP frame type When set, this bit indicates that the PTP message is sent directly over Ethernet. When this bit is cleared and the message type is non-zero, it indicates that the PTP message is sent over UDP-IPv4 or UDP-IPv6. The information on IPv4 or IPv6 can be obtained from bits 6 and 7. RM0385 Rev 7 1581/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bits 11:8 PMT: PTP message type These bits are encoded to give the type of the message received. – 0000: No PTP message received – 0001: SYNC (all clock types) – 0010: Follow_Up (all clock types) – 0011: Delay_Req (all clock types) – 0100: Delay_Resp (all clock types) – 0101: Pdelay_Req (in peer-to-peer transparent clock) or Announce (in ordinary or boundary clock) – 0110: Pdelay_Resp (in peer-to-peer transparent clock) or Management (in ordinary or boundary clock) – 0111: Pdelay_Resp_Follow_Up (in peer-to-peer transparent clock) or Signaling (for ordinary or boundary clock) – 1xxx - Reserved Bit 7 IPV6PR: IPv6 packet received When set, this bit indicates that the received packet is an IPv6 packet. Bit 6 IPV4PR: IPv4 packet received When set, this bit indicates that the received packet is an IPv4 packet. Bit 5 IPCB: IP checksum bypassed When set, this bit indicates that the checksum offload engine is bypassed. Bit 4 IPPE: IP payload error When set, this bit indicates that the 16-bit IP payload checksum (that is, the TCP, UDP, or ICMP checksum) that the core calculated does not match the corresponding checksum field in the received segment. It is also set when the TCP, UDP, or ICMP segment length does not match the payload length value in the IP Header field. Bit 3 IPHE: IP header error When set, this bit indicates either that the 16-bit IPv4 header checksum calculated by the core does not match the received checksum bytes, or that the IP datagram version is not consistent with the Ethernet Type value. Bits 2:0 IPPT: IP payload type if IPv4 checksum offload is activated (IPCO=1, ETH_MACCR bit 10), these bits – – – – – • indicate the type of payload encapsulated in the IP datagram. These bits are ‘00’ if there is an IP header error or fragmented IP. 000: Unknown or did not process IP payload 001: UDP 010: TCP 011: ICMP 1xx: Reserved RDES5: Receive descriptor Word5 Reserved. • RDES6: Receive descriptor Word6 The table below describes the fields that have different meaning for RDES6 when the receive descriptor is closed and time stamping is enabled. 1582/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw RTSL RTSL rw rw rw rw rw rw rw rw . Bits 31:0 RTSL: Receive frame time stamp low The DMA updates this field with the 32 least significant bits of the time stamp captured for the corresponding receive frame. The DMA updates this field only for the last descriptor of the receive frame indicated by last descriptor status bit (RDES0[8]). When this field and the RTSH field in RDES7 show all ones, the time stamp must be treated as corrupt. • RDES7: Receive descriptor Word7 The table below describes the fields that have a different meaning for RDES7 when the receive descriptor is closed and time stamping is enabled. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw RTSH rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 RTSH rw rw rw rw rw rw rw rw . Bits 31:0 RTSH: Receive frame time stamp high The DMA updates this field with the 32 most significant bits of the time stamp captured for the corresponding receive frame. The DMA updates this field only for the last descriptor of the receive frame indicated by last descriptor status bit (RDES0[8]). When this field and RDES7’s RTSL field show all ones, the time stamp must be treated as corrupt. 38.6.9 DMA interrupts Interrupts can be generated as a result of various events. The ETH_DMASR register contains all the bits that might cause an interrupt. The ETH_DMAIER register contains an enable bit for each of the events that can cause an interrupt. There are two groups of interrupts, Normal and Abnormal, as described in the ETH_DMASR register. Interrupts are cleared by writing a 1 to the corresponding bit position. When all the enabled interrupts within a group are cleared, the corresponding summary bit is cleared. If the MAC core is the cause for assertion of the interrupt, then any of the TSTS or PMTS bits in the ETH_DMASR register is set high. Interrupts are not queued and if the interrupt event occurs before the driver has responded to it, no additional interrupts are generated. For example, the Receive Interrupt bit (ETH_DMASR register [6]) indicates that one or more frames were transferred to the STM32F75xxx and STM32F74xxx buffer. The driver must scan all descriptors, from the last recorded position to the first one owned by the DMA. An interrupt is generated only once for simultaneous, multiple events. The driver must scan the ETH_DMASR register for the cause of the interrupt. The interrupt is not generated again unless a new interrupting event occurs, after the driver has cleared the appropriate bit in the RM0385 Rev 7 1583/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 ETH_DMASR register. For example, the controller generates a Receive interrupt (ETH_DMASR register[6]) and the driver begins reading the ETH_DMASR register. Next, receive buffer unavailable (ETH_DMASR register[7]) occurs. The driver clears the Receive interrupt. Even then, a new interrupt is generated, due to the active or pending Receive buffer unavailable interrupt. Figure 525. Interrupt scheme TS TIE TBUS TBUIE MMCI AND PMTI TSTI AND RS RIE OR AND AND ERS ERIE NIS NISE AND OR Interrupt FBES FBEIE TPSS TPSSIE AND TJTS AND ROS ROIE TUS TUIE AND AISE AND AND AND RBU RWTS RWTIE TJTIE AIS RBUIE OR AND RPSS RPSSIE AND AND ETS ETIE AND ai15646 38.7 Ethernet interrupts The Ethernet controller has two interrupt vectors: one dedicated to normal Ethernet operations and the other, used only for the Ethernet wakeup event (with wakeup frame or Magic Packet detection) when it is mapped on EXTI lIne19. The first Ethernet vector is reserved for interrupts generated by the MAC and the DMA as listed in the MAC interrupts and DMA interrupts sections. The second vector is reserved for interrupts generated by the PMT on wakeup events. The mapping of a wakeup event on EXTI line19 causes the STM32F75xxx and STM32F74xxx to exit the low-power mode, and generates an interrupt. When an Ethernet wakeup event mapped on EXTI Line19 occurs and the MAC PMT interrupt is enabled and the EXTI Line19 interrupt, with detection on rising edge, is also enabled, both interrupts are generated. A watchdog timer (see ETH_DMARSWTR register) is given for flexible control of the RS bit (ETH_DMASR register). When this watchdog timer is programmed with a non-zero value, it 1584/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller gets activated as soon as the RxDMA completes a transfer of a received frame to system memory without asserting the Receive Status because it is not enabled in the corresponding Receive descriptor (RDES1[31]). When this timer runs out as per the programmed value, the RS bit is set and the interrupt is asserted if the corresponding RIE is enabled in the ETH_DMAIER register. This timer is disabled before it runs out, when a frame is transferred to memory and the RS is set because it is enabled for that descriptor. Note: Reading the PMT control and status register automatically clears the Wakeup Frame Received and Magic Packet Received PMT interrupt flags. However, since the registers for these flags are in the CLK_RX domain, there may be a significant delay before this update is visible by the firmware. The delay is especially long when the RX clock is slow (in 10 Mbit mode) and when the AHB bus is high-frequency. Since interrupt requests from the PMT to the CPU are based on the same registers in the CLK_RX domain, the CPU may spuriously call the interrupt routine a second time even after reading PMT_CSR. Thus, it may be necessary that the firmware polls the Wakeup Frame Received and Magic Packet Received bits and exits the interrupt service routine only when they are found to be at ‘0’. 38.8 Ethernet register descriptions The peripheral registers can be accessed by bytes (8-bit), half-words (16-bit) or words (32-bit). 38.8.1 MAC register description Ethernet MAC configuration register (ETH_MACCR) Address offset: 0x0000 Reset value: 0x0000 8000 The MAC configuration register is the operation mode register of the MAC. It establishes receive and transmit operating modes. 31 30 29 28 27 26 25 24 23 22 21 20 Res. Res. Res. Res. Res. Res. CSTF Res. WD JD Res. Res. rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. FES ROD LM DM IPCO RD Res. APCS BL DC TE RE Res. Res. rw rw rw rw rw rw rw rw rw rw rw rw 19 18 17 IFG 16 CSD rw rw Bits 31:26 Reserved, must be kept at reset value. Bit 25 CSTF: CRC stripping for Type frames When set, the last 4 bytes (FCS) of all frames of Ether type (type field greater than 0x0600) will be stripped and dropped before forwarding the frame to the application. Bit 24 Reserved, must be kept at reset value. RM0385 Rev 7 1585/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bit 23 WD: Watchdog disable When this bit is set, the MAC disables the watchdog timer on the receiver, and can receive frames of up to 16 384 bytes. When this bit is reset, the MAC allows no more than 2 048 bytes of the frame being received and cuts off any bytes received after that. Bit 22 JD: Jabber disable When this bit is set, the MAC disables the jabber timer on the transmitter, and can transfer frames of up to 16 384 bytes. When this bit is reset, the MAC cuts off the transmitter if the application sends out more than 2 048 bytes of data during transmission. Bits 21:20 Reserved, must be kept at reset value. Bits 19:17 IFG: Interframe gap These bits control the minimum interframe gap between frames during transmission. 000: 96 bit times 001: 88 bit times 010: 80 bit times …. 111: 40 bit times Note: In Half-duplex mode, the minimum IFG can be configured for 64 bit times (IFG = 100) only. Lower values are not considered. Bit 16 CSD: Carrier sense disable When set high, this bit makes the MAC transmitter ignore the MII CRS signal during frame transmission in Half-duplex mode. No error is generated due to Loss of Carrier or No Carrier during such transmission. When this bit is low, the MAC transmitter generates such errors due to Carrier Sense and even aborts the transmissions. Bit 15 Reserved, must be kept at reset value. Bit 14 FES: Fast Ethernet speed Indicates the speed in Fast Ethernet (MII) mode: 0: 10 Mbit/s 1: 100 Mbit/s Bit 13 ROD: Receive own disable When this bit is set, the MAC disables the reception of frames in Half-duplex mode. When this bit is reset, the MAC receives all packets that are given by the PHY while transmitting. This bit is not applicable if the MAC is operating in Full-duplex mode. Bit 12 LM: Loopback mode When this bit is set, the MAC operates in loopback mode at the MII. The MII receive clock input (RX_CLK) is required for the loopback to work properly, as the transmit clock is not looped-back internally. Bit 11 DM: Duplex mode When this bit is set, the MAC operates in a Full-duplex mode where it can transmit and receive simultaneously. Bit 10 IPCO: IPv4 checksum offload When set, this bit enables IPv4 checksum checking for received frame payloads' TCP/UDP/ICMP headers. When this bit is reset, the checksum offload function in the receiver is disabled and the corresponding PCE and IP HCE status bits (see Table 275) are always cleared. 1586/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bit 9 RD: Retry disable When this bit is set, the MAC attempts only 1 transmission. When a collision occurs on the MII, the MAC ignores the current frame transmission and reports a Frame Abort with excessive collision error in the transmit frame status. When this bit is reset, the MAC attempts retries based on the settings of BL. Note: This bit is applicable only in the Half-duplex mode. Bit 8 Reserved, must be kept at reset value. Bit 7 APCS: Automatic pad/CRC stripping When this bit is set, the MAC strips the Pad/FCS field on incoming frames only if the length’s field value is less than or equal to 1 500 bytes. All received frames with length field greater than or equal to 1 501 bytes are passed on to the application without stripping the Pad/FCS field. When this bit is reset, the MAC passes all incoming frames unmodified. Bits 6:5 BL: Back-off limit The Back-off limit determines the random integer number (r) of slot time delays (4 096 bit times for 1000 Mbit/s and 512 bit times for 10/100 Mbit/s) the MAC waits before rescheduling a transmission attempt during retries after a collision. Note: This bit is applicable only to Half-duplex mode. 00: k = min (n, 10) 01: k = min (n, 8) 10: k = min (n, 4) 11: k = min (n, 1), where n = retransmission attempt. The random integer r takes the value in the range 0 ≤ r ≤ 2k Bit 4 DC: Deferral check When this bit is set, the deferral check function is enabled in the MAC. The MAC issues a Frame Abort status, along with the excessive deferral error bit set in the transmit frame status when the transmit state machine is deferred for more than 24 288 bit times in 10/100Mbit/s mode. Deferral begins when the transmitter is ready to transmit, but is prevented because of an active CRS (carrier sense) signal on the MII. Defer time is not cumulative. If the transmitter defers for 10 000 bit times, then transmits, collides, backs off, and then has to defer again after completion of back-off, the deferral timer resets to 0 and restarts. When this bit is reset, the deferral check function is disabled and the MAC defers until the CRS signal goes inactive. This bit is applicable only in Half-duplex mode. Bit 3 TE: Transmitter enable When this bit is set, the transmit state machine of the MAC is enabled for transmission on the MII. When this bit is reset, the MAC transmit state machine is disabled after the completion of the transmission of the current frame, and does not transmit any further frames. Bit 2 RE: Receiver enable When this bit is set, the receiver state machine of the MAC is enabled for receiving frames from the MII. When this bit is reset, the MAC receive state machine is disabled after the completion of the reception of the current frame, and will not receive any further frames from the MII. Bits 1:0 Reserved, must be kept at reset value. RM0385 Rev 7 1587/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Ethernet MAC frame filter register (ETH_MACFFR) Address offset: 0x0004 Reset value: 0x0000 0000 The MAC frame filter register contains the filter controls for receiving frames. Some of the controls from this register go to the address check block of the MAC, which performs the first level of address filtering. The second level of filtering is performed on the incoming frame, based on other controls such as pass bad frames and pass control frames. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RA Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 7 rw 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. HPF SAF SAIF rw rw rw 6 PCF rw rw 5 4 3 2 1 0 BFD PAM DAIF HM HU PM rw rw rw rw rw rw Bit 31 RA: Receive all When this bit is set, the MAC receiver passes all received frames on to the application, irrespective of whether they have passed the address filter. The result of the SA/DA filtering is updated (pass or fail) in the corresponding bits in the receive status word. When this bit is reset, the MAC receiver passes on to the application only those frames that have passed the SA/DA address filter. Bits 30:11 Reserved, must be kept at reset value. Bit 10 HPF: Hash or perfect filter When this bit is set and if the HM or HU bit is set, the address filter passes frames that match either the perfect filtering or the hash filtering. When this bit is cleared and if the HU or HM bit is set, only frames that match the Hash filter are passed. Bit 9 SAF: Source address filter The MAC core compares the SA field of the received frames with the values programmed in the enabled SA registers. If the comparison matches, then the SAMatch bit in the RxStatus word is set high. When this bit is set high and the SA filter fails, the MAC drops the frame. When this bit is reset, the MAC core forwards the received frame to the application. It also forwards the updated SA Match bit in RxStatus depending on the SA address comparison. Bit 8 SAIF: Source address inverse filtering When this bit is set, the address check block operates in inverse filtering mode for the SA address comparison. The frames whose SA matches the SA registers are marked as failing the SA address filter. When this bit is reset, frames whose SA does not match the SA registers are marked as failing the SA address filter. 1588/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bits 7:6 PCF: Pass control frames These bits control the forwarding of all control frames (including unicast and multicast PAUSE frames). Note that the processing of PAUSE control frames depends only on RFCE in Flow Control Register[2]. 00: MAC prevents all control frames from reaching the application 01: MAC forwards all control frames to application except Pause control frames 10: MAC forwards all control frames to application even if they fail the address filter 11: MAC forwards control frames that pass the address filter. These bits control the forwarding of all control frames (including unicast and multicast PAUSE frames). Note that the processing of PAUSE control frames depends only on RFCE in Flow Control Register[2]. 00 or 01: MAC prevents all control frames from reaching the application 10: MAC forwards all control frames to application even if they fail the address filter 11: MAC forwards control frames that pass the address filter. Bit 5 BFD: Broadcast frames disable When this bit is set, the address filters filter all incoming broadcast frames. When this bit is reset, the address filters pass all received broadcast frames. Bit 4 PAM: Pass all multicast When set, this bit indicates that all received frames with a multicast destination address (first bit in the destination address field is '1') are passed. When reset, filtering of multicast frame depends on the HM bit. Bit 3 DAIF: Destination address inverse filtering When this bit is set, the address check block operates in inverse filtering mode for the DA address comparison for both unicast and multicast frames. When reset, normal filtering of frames is performed. Bit 2 HM: Hash multicast When set, MAC performs destination address filtering of received multicast frames according to the hash table. When reset, the MAC performs a perfect destination address filtering for multicast frames, that is, it compares the DA field with the values programmed in DA registers. Bit 1 HU: Hash unicast When set, MAC performs destination address filtering of unicast frames according to the hash table. When reset, the MAC performs a perfect destination address filtering for unicast frames, that is, it compares the DA field with the values programmed in DA registers. Bit 0 PM: Promiscuous mode When this bit is set, the address filters pass all incoming frames regardless of their destination or source address. The SA/DA filter fails status bits in the receive status word are always cleared when PM is set. Ethernet MAC hash table high register (ETH_MACHTHR) Address offset: 0x0008 Reset value: 0x0000 0000 The 64-bit Hash table is used for group address filtering. For hash filtering, the contents of the destination address in the incoming frame are passed through the CRC logic, and the upper 6 bits in the CRC register are used to index the contents of the Hash table. This CRC RM0385 Rev 7 1589/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 is a 32-bit value coded by the following polynomial (for more details refer to Section 38.5.3: MAC frame reception): G( x) = x 32 +x 26 +x 23 +x 22 +x 16 +x 12 +x 11 +x 10 8 7 5 4 2 +x +x +x +x +x +x+1 The most significant bit determines the register to be used (hash table high/hash table low), and the other 5 bits determine which bit within the register. A hash value of 0b0 0000 selects bit 0 in the selected register, and a value of 0b1 1111 selects bit 31 in the selected register. For example, if the DA of the incoming frame is received as 0x1F52 419C B6AF (0x1F is the first byte received on the MII interface), then the internally calculated 6-bit Hash value is 0x2C and the HTH register bit[12] is checked for filtering. If the DA of the incoming frame is received as 0xA00A 9800 0045, then the calculated 6-bit Hash value is 0x07 and the HTL register bit[7] is checked for filtering. If the corresponding bit value in the register is 1, the frame is accepted. Otherwise, it is rejected. If the PAM (pass all multicast) bit is set in the ETH_MACFFR register, then all multicast frames are accepted regardless of the multicast hash values. The Hash table high register contains the higher 32 bits of the multicast Hash table. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 HTH rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw HTH rw rw rw rw rw rw rw rw Bits 31:0 HTH: Hash table high This field contains the upper 32 bits of Hash table. Ethernet MAC hash table low register (ETH_MACHTLR) Address offset: 0x000C Reset value: 0x0000 0000 The Hash table low register contains the lower 32 bits of the multi-cast Hash table. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 HTL rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw HTL Bits 31:0 HTL: Hash table low This field contains the lower 32 bits of the Hash table. Ethernet MAC MII address register (ETH_MACMIIAR) Address offset: 0x0010 Reset value: 0x0000 0000 The MII address register controls the management cycles to the external PHY through the management interface. 1590/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 PA rw rw rw MR rw rw rw rw rw Res. rw rw CR rw rw rw 1 0 MW MB rw rc_w1 Bits 31:16 Reserved, must be kept at reset value. Bits 15:11 PA: PHY address This field tells which of the 32 possible PHY devices are being accessed. Bits 10:6 MR: MII register These bits select the desired MII register in the selected PHY device. Bit 5 Reserved, must be kept at reset value. Bits 4:2 CR: Clock range The CR clock range selection determines the HCLK frequency and is used to decide the frequency of the MDC clock: Selection HCLK MDC Clock 000 60-100 MHz HCLK/42 001 100-150 MHz HCLK/62 010 20-35 MHz HCLK/16 011 35-60 MHz HCLK/26 100 150-216 MHz HCLK/102 101, 110, 111 Reserved Bit 1 MW: MII write When set, this bit tells the PHY that this will be a Write operation using the MII Data register. If this bit is not set, this will be a Read operation, placing the data in the MII Data register. Bit 0 MB: MII busy This bit should read a logic 0 before writing to ETH_MACMIIAR and ETH_MACMIIDR. This bit must also be reset to 0 during a Write to ETH_MACMIIAR. During a PHY register access, this bit is set to 0b1 by the application to indicate that a read or write access is in progress. ETH_MACMIIDR (MII Data) should be kept valid until this bit is cleared by the MAC during a PHY Write operation. The ETH_MACMIIDR is invalid until this bit is cleared by the MAC during a PHY Read operation. The ETH_MACMIIAR (MII Address) should not be written to until this bit is cleared. Ethernet MAC MII data register (ETH_MACMIIDR) Address offset: 0x0014 Reset value: 0x0000 0000 The MAC MII Data register stores write data to be written to the PHY register located at the address specified in ETH_MACMIIAR. ETH_MACMIIDR also stores read data from the PHY register located at the address specified by ETH_MACMIIAR. RM0385 Rev 7 1591/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw MD rw rw rw rw rw rw rw rw Bits 31:16 Reserved, must be kept at reset value. Bits 15:0 MD: MII data This contains the 16-bit data value read from the PHY after a Management Read operation, or the 16-bit data value to be written to the PHY before a Management Write operation. Ethernet MAC flow control register (ETH_MACFCR) Address offset: 0x0018 Reset value: 0x0000 0000 The Flow control register controls the generation and reception of the control (Pause Command) frames by the MAC. A write to a register with the Busy bit set to '1' causes the MAC to generate a pause control frame. The fields of the control frame are selected as specified in the 802.3x specification, and the Pause Time value from this register is used in the Pause Time field of the control frame. The Busy bit remains set until the control frame is transferred onto the cable. The Host must make sure that the Busy bit is cleared before writing to the register. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 rw rw rw rw rw rw rw rw 9 8 7 6 5 4 3 2 1 Res. Res. Res. Res. Res. Res. 0 Res. Res. ZQPD Res. UPFD RFCE TFCE FCB/BPA rw rw rw rc_w1/rw PT rw PLT rw rw Bits 31:16 PT: Pause time This field holds the value to be used in the Pause Time field in the transmit control frame. If the Pause Time bits is configured to be double-synchronized to the MII clock domain, then consecutive write operations to this register should be performed only after at least 4 clock cycles in the destination clock domain. Bits 15:8 Reserved, must be kept at reset value. Bit 7 ZQPD: Zero-quanta pause disable When set, this bit disables the automatic generation of Zero-quanta pause control frames on the deassertion of the flow-control signal from the FIFO layer. When this bit is reset, normal operation with automatic Zero-quanta pause control frame generation is enabled. Bit 6 Reserved, must be kept at reset value. 1592/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bits 5:4 PLT: Pause low threshold This field configures the threshold of the Pause timer at which the Pause frame is automatically retransmitted. The threshold values should always be less than the Pause Time configured in bits[31:16]. For example, if PT = 100H (256 slot-times), and PLT = 01, then a second PAUSE frame is automatically transmitted if initiated at 228 (256 – 28) slottimes after the first PAUSE frame is transmitted. Selection Threshold 00 Pause time minus 4 slot times 01 Pause time minus 28 slot times 10 Pause time minus 144 slot times 11 Pause time minus 256 slot times Slot time is defined as time taken to transmit 512 bits (64 bytes) on the MII interface. Bit 3 UPFD: Unicast pause frame detect When this bit is set, the MAC detects the Pause frames with the station’s unicast address specified in the ETH_MACA0HR and ETH_MACA0LR registers, in addition to detecting Pause frames with the unique multicast address. When this bit is reset, the MAC detects only a Pause frame with the unique multicast address specified in the 802.3x standard. Bit 2 RFCE: Receive flow control enable When this bit is set, the MAC decodes the received Pause frame and disables its transmitter for a specified (Pause Time) time. When this bit is reset, the decode function of the Pause frame is disabled. Bit 1 TFCE: Transmit flow control enable In Full-duplex mode, when this bit is set, the MAC enables the flow control operation to transmit Pause frames. When this bit is reset, the flow control operation in the MAC is disabled, and the MAC does not transmit any Pause frames. In Half-duplex mode, when this bit is set, the MAC enables the back-pressure operation. When this bit is reset, the back pressure feature is disabled. Bit 0 FCB/BPA: Flow control busy/back pressure activate This bit initiates a Pause Control frame in Full-duplex mode and activates the back pressure function in Half-duplex mode if TFCE bit is set. In Full-duplex mode, this bit should be read as 0 before writing to the Flow control register. To initiate a Pause control frame, the Application must set this bit to 1. During a transfer of the Control frame, this bit continues to be set to signify that a frame transmission is in progress. After completion of the Pause control frame transmission, the MAC resets this bit to 0. The Flow control register should not be written to until this bit is cleared. In Half-duplex mode, when this bit is set (and TFCE is set), back pressure is asserted by the MAC core. During back pressure, when the MAC receives a new frame, the transmitter starts sending a JAM pattern resulting in a collision. When the MAC is configured to Fullduplex mode, the BPA is automatically disabled. Ethernet MAC VLAN tag register (ETH_MACVLANTR) Address offset: 0x001C Reset value: 0x0000 0000 The VLAN tag register contains the IEEE 802.1Q VLAN Tag to identify the VLAN frames. The MAC compares the 13th and 14th bytes of the receiving frame (Length/Type) with 0x8100, and the following 2 bytes are compared with the VLAN tag; if a match occurs, the received VLAN bit in the receive frame status is set. The legal length of the frame is increased from 1518 bytes to 1522 bytes. RM0385 Rev 7 1593/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. VLANTC 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw VLANTI rw rw rw rw rw rw rw rw rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 VLANTC: 12-bit VLAN tag comparison When this bit is set, a 12-bit VLAN identifier, rather than the complete 16-bit VLAN tag, is used for comparison and filtering. Bits[11:0] of the VLAN tag are compared with the corresponding field in the received VLAN-tagged frame. When this bit is reset, all 16 bits of the received VLAN frame’s fifteenth and sixteenth bytes are used for comparison. Bits 15:0 VLANTI: VLAN tag identifier (for receive frames) This contains the 802.1Q VLAN tag to identify VLAN frames, and is compared to the fifteenth and sixteenth bytes of the frames being received for VLAN frames. Bits[15:13] are the user priority, Bit[12] is the canonical format indicator (CFI) and bits[11:0] are the VLAN tag’s VLAN identifier (VID) field. When the VLANTC bit is set, only the VID (bits[11:0]) is used for comparison. If VLANTI (VLANTI[11:0] if VLANTC is set) is all zeros, the MAC does not check the fifteenth and sixteenth bytes for VLAN tag comparison, and declares all frames with a Type field value of 0x8100 as VLAN frames. Ethernet MAC remote wakeup frame filter register (ETH_MACRWUFFR) Address offset: 0x0028 Reset value: 0x0000 0000 This is the address through which the remote wakeup frame filter registers are written/read by the application. The Wakeup frame filter register is actually a pointer to eight (not transparent) such wakeup frame filter registers. Eight sequential write operations to this address with the offset (0x0028) will write all wakeup frame filter registers. Eight sequential read operations from this address with the offset (0x0028) will read all wakeup frame filter registers. This register contains the higher 16 bits of the 7th MAC address. Refer to Remote wakeup frame filter register section for additional information. 1594/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Figure 526. Ethernet MAC remote wakeup frame filter register (ETH_MACRWUFFR) Wakeup frame filter reg0 Filter 0 Byte Mask Wakeup frame filter reg1 Filter 1 Byte Mask Wakeup frame filter reg2 Filter 2 Byte Mask Wakeup frame filter reg3 Wakeup frame filter reg4 Wakeup frame filter reg5 Filter 3 Byte Mask RSVD Filter 3 Command Filter 3 Offset RSVD Filter 2 Command Filter 2 Offset RSVD Filter 1 Command Filter 1 Offset RSVD Filter 0 Command Filter 0 Offset Wakeup frame filter reg6 Filter 1 CRC - 16 Filter 0 CRC - 16 Wakeup frame filter reg7 Filter 3 CRC - 16 Filter 2 CRC - 16 ai15648 RM0385 Rev 7 1595/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Ethernet MAC PMT control and status register (ETH_MACPMTCSR) Address offset: 0x002C Reset value: 0x0000 0000 The ETH_MACPMTCSR programs the request wakeup events and monitors the wakeup events. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 WFFRPR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rs 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. GU Res. Res. WFR MPR Res. Res. WFE MPE PD rc_r rc_r rw rw rs rw Bit 31 WFFRPR: Wakeup frame filter register pointer reset When set, it resets the Remote wakeup frame filter register pointer to 0b000. It is automatically cleared after 1 clock cycle. Bits 30:10 Reserved, must be kept at reset value. Bit 9 GU: Global unicast When set, it enables any unicast packet filtered by the MAC (DAF) address recognition to be a wakeup frame. Bits 8:7 Reserved, must be kept at reset value. Bit 6 WFR: Wakeup frame received When set, this bit indicates the power management event was generated due to reception of a wakeup frame. This bit is cleared by a read into this register. Bit 5 MPR: Magic packet received When set, this bit indicates the power management event was generated by the reception of a Magic Packet. This bit is cleared by a read into this register. Bits 4:3 Reserved, must be kept at reset value. Bit 2 WFE: Wakeup frame enable When set, this bit enables the generation of a power management event due to wakeup frame reception. Bit 1 MPE: Magic Packet enable When set, this bit enables the generation of a power management event due to Magic Packet reception. Bit 0 PD: Power down When this bit is set, all received frames will be dropped. This bit is cleared automatically when a magic packet or wakeup frame is received, and Power-down mode is disabled. Frames received after this bit is cleared are forwarded to the application. This bit must only be set when either the Magic Packet Enable or Wakeup Frame Enable bit is set high. 1596/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Ethernet MAC debug register (ETH_MACDBGR) Address offset: 0x0034 Reset value: 0x0000 0000 This debug register gives the status of all the main modules of the transmit and receive data paths and the FIFOs. An all-zero status indicates that the MAC core is in Idle state (and FIFOs are empty) and no activity is going on in the data paths. 31 30 29 28 27 26 25 24 23 22 Res. Res. Res. Res. Res. Res. TFF TFNE Res. TFWA ro ro 15 14 13 12 11 10 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 9 8 RFFL ro 7 Res. ro 21 ro ro 6 5 RFRCS ro 20 TFRS 19 ro ro 4 3 RFWRA Res. ro 18 MTP ro 17 MTFCS ro ro 2 1 MSFRWCS ro 16 MMTEA ro ro 0 MMRPEA ro Bits 31:26 Reserved, must be kept at reset value. Bit 25 TFF: Tx FIFO full When high, it indicates that the Tx FIFO is full and hence no more frames will be accepted for transmission. Bit 24 TFNE: Tx FIFO not empty When high, it indicates that the TxFIFO is not empty and has some data left for transmission. Bit 23 Reserved, must be kept at reset value. Bit 22 TFWA: Tx FIFO write active When high, it indicates that the TxFIFO write controller is active and transferring data to the TxFIFO. Bits 21:20 TFRS: Tx FIFO read status This indicates the state of the TxFIFO read controller: 00: Idle state 01: Read state (transferring data to the MAC transmitter) 10: Waiting for TxStatus from MAC transmitter 11: Writing the received TxStatus or flushing the TxFIFO Bit 19 MTP: MAC transmitter in pause When high, it indicates that the MAC transmitter is in Pause condition (in full-duplex mode only) and hence will not schedule any frame for transmission Bits 18:17 MTFCS: MAC transmit frame controller status This indicates the state of the MAC transmit frame controller: 00: Idle 01: Waiting for Status of previous frame or IFG/backoff period to be over 10: Generating and transmitting a Pause control frame (in full duplex mode) 11: Transferring input frame for transmission Bit 16 MMTEA: MAC MII transmit engine active When high, it indicates that the MAC MII transmit engine is actively transmitting data and that it is not in the Idle state. Bits 15:10 Reserved, must be kept at reset value. RM0385 Rev 7 1597/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bits 9:8 RFFL: Rx FIFO fill level This gives the status of the Rx FIFO fill-level: 00: RxFIFO empty 01: RxFIFO fill-level below flow-control de-activate threshold 10: RxFIFO fill-level above flow-control activate threshold 11: RxFIFO full Bit 7 Reserved, must be kept at reset value. Bits 6:5 RFRCS: Rx FIFO read controller status It gives the state of the Rx FIFO read controller: 00: IDLE state 01: Reading frame data 10: Reading frame status (or time-stamp) 11: Flushing the frame data and status Bit 4 RFWRA: Rx FIFO write controller active When high, it indicates that the Rx FIFO write controller is active and transferring a received frame to the FIFO. Bit 3 Reserved, must be kept at reset value. Bits 2:1 MSFRWCS: MAC small FIFO read / write controllers status When high, these bits indicate the respective active state of the small FIFO read and write controllers of the MAC receive frame controller module. Bit 0 MMRPEA: MAC MII receive protocol engine active When high, it indicates that the MAC MII receive protocol engine is actively receiving data and is not in the Idle state. Ethernet MAC interrupt status register (ETH_MACSR) Address offset: 0x0038 Reset value: 0x0000 0000 The ETH_MACSR register contents identify the events in the MAC that can generate an interrupt. 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. TSTS Res. Res. 6 5 MMCTS MMCRS rc_r r r 4 3 2 1 0 MMCS PMTS Res. Res. Res. r r Bits 15:10 Reserved, must be kept at reset value. Bit 9 TSTS: Time stamp trigger status This bit is set high when the system time value equals or exceeds the value specified in the Target time high and low registers. This bit is cleared by reading the ETH_PTPTSSR register. Bits 8:7 Reserved, must be kept at reset value. Bit 6 MMCTS: MMC transmit status This bit is set high whenever an interrupt is generated in the ETH_MMCTIR Register. This bit is cleared when all the bits in this interrupt register (ETH_MMCTIR) are cleared. Bit 5 MMCRS: MMC receive status This bit is set high whenever an interrupt is generated in the ETH_MMCRIR register. This bit is cleared when all the bits in this interrupt register (ETH_MMCRIR) are cleared. 1598/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bit 4 MMCS: MMC status This bit is set high whenever any of bits 6:5 is set high. It is cleared only when both bits are low. Bit 3 PMTS: PMT status This bit is set whenever a Magic packet or Wake-on-LAN frame is received in Power-down mode (See bits 5 and 6 in the ETH_MACPMTCSR register Ethernet MAC PMT control and status register (ETH_MACPMTCSR)). This bit is cleared when both bits[6:5], of this last register, are cleared due to a read operation to the ETH_MACPMTCSR register. Bits 2:0 Reserved, must be kept at reset value. Ethernet MAC interrupt mask register (ETH_MACIMR) Address offset: 0x003C Reset value: 0x0000 0000 The ETH_MACIMR register bits make it possible to mask the interrupt signal due to the corresponding event in the ETH_MACSR register. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. TSTIM Res. Res. Res. Res. Res. PMTIM Res. Res. Res. rw rw Bits 15:10 Reserved, must be kept at reset value. Bit 9 TSTIM: Time stamp trigger interrupt mask When set, this bit disables the time stamp interrupt generation. Bits 8:4 Reserved, must be kept at reset value. Bit 3 PMTIM: PMT interrupt mask When set, this bit disables the assertion of the interrupt signal due to the setting of the PMT Status bit in ETH_MACSR. Bits 2:0 Reserved, must be kept at reset value. Ethernet MAC address 0 high register (ETH_MACA0HR) Address offset: 0x0040 Reset value: 0x8000 FFFF The MAC address 0 high register holds the upper 16 bits of the 6-byte first MAC address of the station. Note that the first DA byte that is received on the MII interface corresponds to the LS Byte (bits [7:0]) of the MAC address low register. For example, if 0x1122 3344 5566 is received (0x11 is the first byte) on the MII as the destination address, then the MAC address 0 register [47:0] is compared with 0x6655 4433 2211. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MO Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw 1 15 MACA0H rw rw rw rw rw rw rw rw rw RM0385 Rev 7 1599/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bit 31 MO: Always 1. Bits 30:16 Reserved, must be kept at reset value. Bits 15:0 MACA0H: MAC address0 high [47:32] This field contains the upper 16 bits (47:32) of the 6-byte MAC address0. This is used by the MAC for filtering for received frames and for inserting the MAC address in the transmit flow control (Pause) frames. Ethernet MAC address 0 low register (ETH_MACA0LR) Address offset: 0x0044 Reset value: 0xFFFF FFFF The MAC address 0 low register holds the lower 32 bits of the 6-byte first MAC address of the station. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MACA0L rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MACA0L rw rw rw rw rw rw rw rw rw Bits 31:0 MACA0L: MAC address0 low [31:0] This field contains the lower 32 bits of the 6-byte MAC address0. This is used by the MAC for filtering for received frames and for inserting the MAC address in the transmit flow control (Pause) frames. Ethernet MAC address 1 high register (ETH_MACA1HR) Address offset: 0x0048 Reset value: 0x0000 FFFF The MAC address 1 high register holds the upper 16 bits of the 6-byte second MAC address of the station. rw rw 15 14 13 12 rw rw rw rw 11 10 9 8 MBC 23 22 21 20 19 18 17 16 Res. rw 24 Res. rw 25 Res. SA 26 Res. AE 27 Res. 28 Res. 29 Res. 30 Res. 31 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MACA1H rw rw 1600/1709 rw rw rw rw rw rw rw RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bit 31 AE: Address enable When this bit is set, the address filters use the MAC address1 for perfect filtering. When this bit is cleared, the address filters ignore the address for filtering. Bit 30 SA: Source address When this bit is set, the MAC address1[47:0] is used for comparison with the SA fields of the received frame. When this bit is cleared, the MAC address1[47:0] is used for comparison with the DA fields of the received frame. Bits 29:24 MBC: Mask byte control These bits are mask control bits for comparison of each of the MAC address1 bytes. When they are set high, the MAC core does not compare the corresponding byte of received DA/SA with the contents of the MAC address1 registers. Each bit controls the masking of the bytes as follows: – Bit 29: ETH_MACA1HR [15:8] – Bit 28: ETH_MACA1HR [7:0] – Bit 27: ETH_MACA1LR [31:24] … – Bit 24: ETH_MACA1LR [7:0] Bits 23:16 Reserved, must be kept at reset value. Bits 15:0 MACA1H: MAC address1 high [47:32] This field contains the upper 16 bits (47:32) of the 6-byte second MAC address. Ethernet MAC address1 low register (ETH_MACA1LR) Address offset: 0x004C Reset value: 0xFFFF FFFF The MAC address 1 low register holds the lower 32 bits of the 6-byte second MAC address of the station. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 MACA1L rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MACA1L rw rw rw rw rw rw rw rw rw Bits 31:0 MACA1L: MAC address1 low [31:0] This field contains the lower 32 bits of the 6-byte MAC address1. The content of this field is undefined until loaded by the application after the initialization process. Ethernet MAC address 2 high register (ETH_MACA2HR) Address offset: 0x0050 Reset value: 0x0000 FFFF The MAC address 2 high register holds the upper 16 bits of the 6-byte second MAC address of the station. RM0385 Rev 7 1601/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller rw rw 15 14 13 12 rw rw rw rw 11 10 9 8 MBC 23 22 21 20 19 18 17 16 Res. rw 24 Res. rw 25 Res. SA 26 Res. AE 27 Res. 28 Res. 29 Res. 30 Res. 31 RM0385 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MACA2H rw rw rw rw rw rw rw rw rw Bit 31 AE: Address enable When this bit is set, the address filters use the MAC address2 for perfect filtering. When reset, the address filters ignore the address for filtering. Bit 30 SA: Source address When this bit is set, the MAC address 2 [47:0] is used for comparison with the SA fields of the received frame. When this bit is reset, the MAC address 2 [47:0] is used for comparison with the DA fields of the received frame. Bits 29:24 MBC: Mask byte control These bits are mask control bits for comparison of each of the MAC address2 bytes. When set high, the MAC core does not compare the corresponding byte of received DA/SA with the contents of the MAC address 2 registers. Each bit controls the masking of the bytes as follows: – Bit 29: ETH_MACA2HR [15:8] – Bit 28: ETH_MACA2HR [7:0] – Bit 27: ETH_MACA2LR [31:24] … – Bit 24: ETH_MACA2LR [7:0] Bits 23:16Reserved, must be kept at reset value. MACA2H: MAC address2 high [47:32] Bits 15:0 This field contains the upper 16 bits (47:32) of the 6-byte MAC address2. Ethernet MAC address 2 low register (ETH_MACA2LR) Address offset: 0x0054 Reset value: 0xFFFF FFFF The MAC address 2 low register holds the lower 32 bits of the 6-byte second MAC address of the station. 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MACA2L MACA2L rw rw rw rw rw rw rw rw rw Bits 31:0 MACA2L: MAC address2 low [31:0] This field contains the lower 32 bits of the 6-byte second MAC address2. The content of this field is undefined until loaded by the application after the initialization process. 1602/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Ethernet MAC address 3 high register (ETH_MACA3HR) Address offset: 0x0058 Reset value: 0x0000 FFFF The MAC address 3 high register holds the upper 16 bits of the 6-byte second MAC address of the station. rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 Re s. 24 Re s. 25 Re s. 26 MBC Re s. 27 Re s. 28 Re s. 29 Re s. 30 SA Re s. 31 AE 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MACA3H rw rw rw rw rw rw rw rw rw Bit 31 AE: Address enable When this bit is set, the address filters use the MAC address3 for perfect filtering. When this bit is cleared, the address filters ignore the address for filtering. Bit 30 SA: Source address When this bit is set, the MAC address 3 [47:0] is used for comparison with the SA fields of the received frame. When this bit is cleared, the MAC address 3[47:0] is used for comparison with the DA fields of the received frame. Bits 29:24 MBC: Mask byte control These bits are mask control bits for comparison of each of the MAC address3 bytes. When these bits are set high, the MAC core does not compare the corresponding byte of received DA/SA with the contents of the MAC address 3 registers. Each bit controls the masking of the bytes as follows: – Bit 29: ETH_MACA3HR [15:8] – Bit 28: ETH_MACA3HR [7:0] – Bit 27: ETH_MACA3LR [31:24] … – Bit 24: ETH_MACA3LR [7:0] Bits 23:16 Reserved, must be kept at reset value. Bits 15:0 MACA3H: MAC address3 high [47:32] This field contains the upper 16 bits (47:32) of the 6-byte MAC address3. Ethernet MAC address 3 low register (ETH_MACA3LR) Address offset: 0x005C Reset value: 0xFFFF FFFF The MAC address 3 low register holds the lower 32 bits of the 6-byte second MAC address of the station. RM0385 Rev 7 1603/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller 31 30 29 28 27 26 25 24 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 23 RM0385 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw MACA3L MACA3L rw rw rw rw rw rw rw rw rw Bits 31:0 MACA3L: MAC address3 low [31:0] This field contains the lower 32 bits of the 6-byte second MAC address3. The content of this field is undefined until loaded by the application after the initialization process. 1604/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 38.8.2 MMC register description Ethernet MMC control register (ETH_MMCCR) Address offset: 0x0100 Reset value: 0x0000 0000 The Ethernet MMC Control register establishes the operating mode of the management counters. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MCFHP MCP MCF ROR CSR CR rw rw rw rw rw rw Bits 31:6 Reserved, must be kept at reset value. MCFHP: MMC counter Full-Half preset When MCFHP is low and bit4 is set, all MMC counters get preset to almost-half value. All Bit 5 frame-counters get preset to 0x7FFF_FFF0 (half - 16) When MCFHP is high and bit4 is set, all MMC counters get preset to almost-full value. All frame-counters get preset to 0xFFFF_FFF0 (full - 16) MCP: MMC counter preset When set, all counters will be initialized or preset to almost full or almost half as per Bit 4 Bit5 above. This bit will be cleared automatically after 1 clock cycle. This bit along with bit5 is useful for debugging and testing the assertion of interrupts due to MMC counter becoming half-full or full. Bit 3 MCF: MMC counter freeze When set, this bit freezes all the MMC counters to their current value. (None of the MMC counters are updated due to any transmitted or received frame until this bit is cleared to 0. If any MMC counter is read with the Reset on Read bit set, then that counter is also cleared in this mode.) Bit 2 ROR: Reset on read When this bit is set, the MMC counters is reset to zero after read (self-clearing after reset). The counters are cleared when the least significant byte lane (bits [7:0]) is read. Bit 1 CSR: Counter stop rollover When this bit is set, the counter does not roll over to zero after it reaches the maximum value. Bit 0 CR: Counter reset When it is set, all counters are reset. This bit is cleared automatically after 1 clock cycle. Ethernet MMC receive interrupt register (ETH_MMCRIR) Address offset: 0x0104 Reset value: 0x0000 0000 The Ethernet MMC receive interrupt register maintains the interrupts generated when receive statistic counters reach half their maximum values. (MSB of the counter is set.) It is RM0385 Rev 7 1605/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 a 32-bit wide register. An interrupt bit is cleared when the respective MMC counter that caused the interrupt is read. The least significant byte lane (bits [7:0]) of the respective counter must be read in order to clear the interrupt bit. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RGUFS Res. rc_r 15 14 13 12 11 10 9 8 7 Res. Res. Res. Res. Res. Res. Res. Res. Res. 6 5 RFAES RFCES rc_r 4 3 2 1 0 Res. Res. Res. Res. Res. rc_r Bits 31:18 Reserved, must be kept at reset value. Bit 17 RGUFS: Received Good Unicast Frames Status This bit is set when the received, good unicast frames, counter reaches half the maximum value. Bits 16:7 Reserved, must be kept at reset value. Bit 6 RFAES: Received frames alignment error status This bit is set when the received frames, with alignment error, counter reaches half the maximum value. Bit 5 RFCES: Received frames CRC error status This bit is set when the received frames, with CRC error, counter reaches half the maximum value. Bits 4:0 Reserved, must be kept at reset value. Ethernet MMC transmit interrupt register (ETH_MMCTIR) Address offset: 0x0108 Reset value: 0x0000 0000 The Ethernet MMC transmit Interrupt register maintains the interrupts generated when transmit statistic counters reach half their maximum values. (MSB of the counter is set.) It is a 32-bit wide register. An interrupt bit is cleared when the respective MMC counter that caused the interrupt is read. The least significant byte lane (bits [7:0]) of the respective counter must be read in order to clear the interrupt bit. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TGFS Res. Res. Res. Res. Res. rc_r 15 14 TGFMSCS TGFSCS rc_r 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rc_r Bits 31:22 Reserved, must be kept at reset value. Bit 21 TGFS: Transmitted good frames status This bit is set when the transmitted, good frames, counter reaches half the maximum value. Bits 20:16 Reserved, must be kept at reset value. 1606/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bit 15 TGFMSCS: Transmitted good frames more single collision status This bit is set when the transmitted, good frames after more than a single collision, counter reaches half the maximum value. Bit 14 TGFSCS: Transmitted good frames single collision status This bit is set when the transmitted, good frames after a single collision, counter reaches half the maximum value. Bits 13:0 Reserved, must be kept at reset value. Ethernet MMC receive interrupt mask register (ETH_MMCRIMR) Address offset: 0x010C Reset value: 0x0000 0000 The Ethernet MMC receive interrupt mask register maintains the masks for interrupts generated when the receive statistic counters reach half their maximum value. (MSB of the counter is set.) It is a 32-bit wide register. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RGUFM Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw RFAEM RFCEM rw rw Bits 31:18 Reserved, must be kept at reset value. Bit 17 RGUFM: Received good unicast frames mask Setting this bit masks the interrupt when the received, good unicast frames, counter reaches half the maximum value. Bits 16:7 Reserved, must be kept at reset value. Bit 6 RFAEM: Received frames alignment error mask Setting this bit masks the interrupt when the received frames, with alignment error, counter reaches half the maximum value. Bit 5 RFCEM: Received frame CRC error mask Setting this bit masks the interrupt when the received frames, with CRC error, counter reaches half the maximum value. Bits 4:0 Reserved, must be kept at reset value. Ethernet MMC transmit interrupt mask register (ETH_MMCTIMR) Address offset: 0x0110 Reset value: 0x0000 0000 The Ethernet MMC transmit interrupt mask register maintains the masks for interrupts generated when the transmit statistic counters reach half their maximum value. (MSB of the counter is set). It is a 32-bit wide register. RM0385 Rev 7 1607/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TGFM Res. Res. Res. Res. Res. rw 15 14 TGFMSCM TGFSCM rw 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. rw Bits 31:22 Reserved, must be kept at reset value. Bit 21 TGFM: Transmitted good frames mask Setting this bit masks the interrupt when the transmitted, good frames, counter reaches half the maximum value. Bits 20:16 Reserved, must be kept at reset value. Bit 15 TGFMSCM: Transmitted good frames more single collision mask Setting this bit masks the interrupt when the transmitted good frames after more than a single collision counter reaches half the maximum value. Bit 14 TGFSCM: Transmitted good frames single collision mask Setting this bit masks the interrupt when the transmitted good frames after a single collision counter reaches half the maximum value. Bits 13:0 Reserved, must be kept at reset value. Ethernet MMC transmitted good frames after a single collision counter register (ETH_MMCTGFSCCR) Address offset: 0x014C Reset value: 0x0000 0000 This register contains the number of successfully transmitted frames after a single collision in Half-duplex mode. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 TGFSCC r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r r TGFSCC r Bits 31:0 TGFSCC: Transmitted good frames single collision counter Transmitted good frames after a single collision counter. Ethernet MMC transmitted good frames after more than a single collision counter register (ETH_MMCTGFMSCCR) Address offset: 0x0150 Reset value: 0x0000 0000 This register contains the number of successfully transmitted frames after more than a single collision in Half-duplex mode. 1608/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r TGFMSCC TGFMSCC r r r r r r r r r Bits 31:0 TGFMSCC: Transmitted good frames more single collision counter Transmitted good frames after more than a single collision counter Ethernet MMC transmitted good frames counter register (ETH_MMCTGFCR) Address offset: 0x0168 Reset value: 0x0000 0000 This register contains the number of good frames transmitted. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r 18 17 16 TGFC TGFC r r r r r r r r Bits 31:0 TGFC: Transmitted good frames counter Ethernet MMC received frames with CRC error counter register (ETH_MMCRFCECR) Address offset: 0x0194 Reset value: 0x0000 0000 This register contains the number of frames received with CRC error. 31 30 29 28 27 26 25 24 23 22 21 20 19 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r RFCEC RFCEC r r r r r r r r Bits 31:0 RFCEC: Received frames CRC error counter Received frames with CRC error counter Ethernet MMC received frames with alignment error counter register (ETH_MMCRFAECR) Address offset: 0x0198 Reset value: 0x0000 0000 This register contains the number of frames received with alignment (dribble) error. RM0385 Rev 7 1609/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller 23 22 21 RM0385 31 30 29 28 27 26 25 24 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r RFAEC RFAEC r r r r r r r r Bits 31:0 RFAEC: Received frames alignment error counter Received frames with alignment error counter MMC received good unicast frames counter register (ETH_MMCRGUFCR) Address offset: 0x01C4 Reset value: 0x0000 0000 This register contains the number of good unicast frames received. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r 17 16 RGUFC RGUFC r r r r r r r r Bits 31:0 RGUFC: Received good unicast frames counter 38.8.3 IEEE 1588 time stamp registers This section describes the registers required to support precision network clock synchronization functions under the IEEE 1588 standard. Ethernet PTP time stamp control register (ETH_PTPTSCR) Address offset: 0x0700 Reset value: 0x0000 2000 This register controls the time stamp generation and update logic. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TSPFF MAE 15 14 13 12 11 10 9 8 7 6 5 4 3 Res. Res. TSCNT rw TSSMR TSSIPV TSSIPV TSSPT TSPTP TSSAR TSSEME TSSSR ME 4FE 6FE POEFE PSV2E FE rw rw 1610/1709 rw rw rw rw rw rw RM0385 Rev 7 TTSARU TSITE TSSTU rw rw rw rw 2 1 0 TSSTI TSFCU TSE rw rw rw RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bits 31:19 Reserved, must be kept at reset value. Bit 18 TSPFFMAE: Time stamp PTP frame filtering MAC address enable When set, this bit uses the MAC address (except for MAC address 0) to filter the PTP frames when PTP is sent directly over Ethernet. Bits 17:16 TSCNT: Time stamp clock node type The following are the available types of clock node: 00: Ordinary clock 01: Boundary clock 10: End-to-end transparent clock 11: Peer-to-peer transparent clock Bit 15 TSSMRME: Time stamp snapshot for message relevant to master enable When this bit is set, the snapshot is taken for messages relevant to the master node only. When this bit is cleared the snapshot is taken for messages relevant to the slave node only. This is valid only for the ordinary clock and boundary clock nodes. Bit 14 TSSEME: Time stamp snapshot for event message enable When this bit is set, the time stamp snapshot is taken for event messages only (SYNC, Delay_Req, Pdelay_Req or Pdelay_Resp). When this bit is cleared the snapshot is taken for all other messages except for Announce, Management and Signaling. Bit 13 TSSIPV4FE: Time stamp snapshot for IPv4 frames enable When this bit is set, the time stamp snapshot is taken for IPv4 frames. Bit 12 TSSIPV6FE: Time stamp snapshot for IPv6 frames enable When this bit is set, the time stamp snapshot is taken for IPv6 frames. Bit 11 TSSPTPOEFE: Time stamp snapshot for PTP over ethernet frames enable When this bit is set, the time stamp snapshot is taken for frames which have PTP messages in Ethernet frames (PTP over Ethernet) also. By default snapshots are taken for UDPIPEthernet PTP packets. Bit 10 TSPTPPSV2E: Time stamp PTP packet snooping for version2 format enable When this bit is set, the PTP packets are snooped using the version 2 format. When the bit is cleared, the PTP packets are snooped using the version 1 format. Note: IEEE 1588 Version 1 and Version 2 formats as indicated in IEEE standard 1588-2008 (Revision of IEEE STD. 1588-2002). Bit 9 TSSSR: Time stamp subsecond rollover: digital or binary rollover control When this bit is set, the Time stamp low register rolls over when the subsecond counter reaches the value 0x3B9A C9FF (999 999 999 in decimal), and increments the Time Stamp (high) seconds. When this bit is cleared, the rollover value of the subsecond register reaches 0x7FFF FFFF. The subsecond increment has to be programmed correctly depending on the PTP’s reference clock frequency and this bit value. Bit 8 TSSARFE: Time stamp snapshot for all received frames enable When this bit is set, the time stamp snapshot is enabled for all frames received by the core. Bits 7:6 Reserved, must be kept at reset value. Bit 5 TSARU: Time stamp addend register update When this bit is set, the Time stamp addend register’s contents are updated to the PTP block for fine correction. This bit is cleared when the update is complete. This register bit must be read as zero before you can set it. RM0385 Rev 7 1611/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bit 4 TSITE: Time stamp interrupt trigger enable When this bit is set, a time stamp interrupt is generated when the system time becomes greater than the value written in the Target time register. When the Time stamp trigger interrupt is generated, this bit is cleared. Bit 3 TSSTU: Time stamp system time update When this bit is set, the system time is updated (added to or subtracted from) with the value specified in the Time stamp high update and Time stamp low update registers. Both the TSSTU and TSSTI bits must be read as zero before you can set this bit. Once the update is completed in hardware, this bit is cleared. Bit 2 TSSTI: Time stamp system time initialize When this bit is set, the system time is initialized (overwritten) with the value specified in the Time stamp high update and Time stamp low update registers. This bit must be read as zero before you can set it. When initialization is complete, this bit is cleared. Bit 1 TSFCU: Time stamp fine or coarse update When set, this bit indicates that the system time stamp is to be updated using the Fine Update method. When cleared, it indicates the system time stamp is to be updated using the Coarse method. Bit 0 TSE: Time stamp enable When this bit is set, time stamping is enabled for transmit and receive frames. When this bit is cleared, the time stamp function is suspended and time stamps are not added for transmit and receive frames. Because the maintained system time is suspended, you must always initialize the time stamp feature (system time) after setting this bit high. The table below indicates the messages for which a snapshot is taken depending on the clock, enable master and enable snapshot for event message register settings. Table 279. Time stamp snapshot dependency on registers bits TSCNT (bits 17:16) TSSMRME (bit 15)(1) TSSEME (bit 14) 00 or 01 X(2) 0 SYNC, Follow_Up, Delay_Req, Delay_Resp 00 or 01 1 1 Delay_Req 00 or 01 0 1 SYNC 10 N/A 0 SYNC, Follow_Up, Delay_Req, Delay_Resp 10 N/A 1 SYNC, Follow_Up 11 N/A 0 SYNC, Follow_Up, Delay_Req, Delay_Resp, Pdelay_Req, Pdelay_Resp 11 N/A 1 SYNC, Pdelay_Req, Pdelay_Resp Messages for which snapshots are taken 1. N/A = not applicable. 2. X = don’t care. Ethernet PTP subsecond increment register (ETH_PTPSSIR) Address offset: 0x0704 Reset value: 0x0000 0000 This register contains the 8-bit value by which the subsecond register is incremented. In Coarse update mode (TSFCU bit in ETH_PTPTSCR), the value in this register is added to 1612/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller the system time every clock cycle of HCLK. In Fine update mode, the value in this register is added to the system time whenever the accumulator gets an overflow. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw rw 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. STSSI rw rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 STSSI: System time subsecond increment The value programmed in this register is added to the contents of the subsecond value of the system time in every update. For example, to achieve 20 ns accuracy, the value is: 20 / 0.467 = ~ 43 (or 0x2A). Ethernet PTP time stamp high register (ETH_PTPTSHR) Address offset: 0x0708 Reset value: 0x0000 0000 This register contains the most significant (higher) 32 time bits. This read-only register contains the seconds system time value. The Time stamp high register, along with Time stamp low register, indicates the current value of the system time maintained by the MAC. Though it is updated on a continuous basis. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 STS r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r r r STS Bits 31:0 STS: System time second The value in this field indicates the current value in seconds of the System Time maintained by the core. Ethernet PTP time stamp low register (ETH_PTPTSLR) Address offset: 0x070C Reset value: 0x0000 0000 This register contains the least significant (lower) 32 time bits. This read-only register contains the subsecond system time value. RM0385 Rev 7 1613/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller 31 30 29 28 27 26 25 24 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r STPNS 23 22 21 RM0385 20 19 18 17 16 STSS STSS r r r r r r r r Bit 31 STPNS: System time positive or negative sign This bit indicates a positive or negative time value. When set, the bit indicates that time representation is negative. When cleared, it indicates that time representation is positive. Because the system time should always be positive, this bit is normally zero. Bits 30:0 STSS: System time subseconds The value in this field has the subsecond time representation, with 0.46 ns accuracy. Ethernet PTP time stamp high update register (ETH_PTPTSHUR) Address offset: 0x0710 Reset value: 0x0000 0000 This register contains the most significant (higher) 32 bits of the time to be written to, added to, or subtracted from the System Time value. The Time stamp high update register, along with the Time stamp update low register, initializes or updates the system time maintained by the MAC. You have to write both of these registers before setting the TSSTI or TSSTU bits in the Time stamp control register. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw TSUS TSUS rw rw rw rw rw rw rw rw Bits 31:0 TSUS: Time stamp update second The value in this field indicates the time, in seconds, to be initialized or added to the system time. 1614/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Ethernet PTP time stamp low update register (ETH_PTPTSLUR) Address offset: 0x0714 Reset value: 0x0000 0000 This register contains the least significant (lower) 32 bits of the time to be written to, added to, or subtracted from the System Time value. 31 30 29 28 27 26 25 24 TSUPNS 23 22 21 20 19 18 17 16 TSUSS rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw TSUSS rw rw rw rw rw rw rw rw Bit 31 TSUPNS: Time stamp update positive or negative sign This bit indicates positive or negative time value. When set, the bit indicates that time representation is negative. When cleared, it indicates that time representation is positive. When TSSTI is set (system time initialization) this bit should be zero. If this bit is set when TSSTU is set, the value in the Time stamp update registers is subtracted from the system time. Otherwise it is added to the system time. Bits 30:0 TSUSS: Time stamp update subseconds The value in this field indicates the subsecond time to be initialized or added to the system time. This value has an accuracy of 0.46 ns (in other words, a value of 0x0000_0001 is 0.46 ns). Ethernet PTP time stamp addend register (ETH_PTPTSAR) Address offset: 0x0718 Reset value: 0x0000 0000 This register is used by the software to readjust the clock frequency linearly to match the master clock frequency. This register value is used only when the system time is configured for Fine update mode (TSFCU bit in ETH_PTPTSCR). This register content is added to a 32-bit accumulator in every clock cycle and the system time is updated whenever the accumulator overflows. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw TSA rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 TSA rw rw rw rw rw rw rw rw Bits 31:0 TSA: Time stamp addend This register indicates the 32-bit time value to be added to the Accumulator register to achieve time synchronization. RM0385 Rev 7 1615/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Ethernet PTP target time high register (ETH_PTPTTHR) Address offset: 0x071C Reset value: 0x0000 0000 This register contains the higher 32 bits of time to be compared with the system time for interrupt event generation. The Target time high register, along with Target time low register, is used to schedule an interrupt event (TSARU bit in ETH_PTPTSCR) when the system time exceeds the value programmed in these registers. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw TTSH rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 TTSH rw rw rw rw rw rw rw rw Bits 31:0 TTSH: Target time stamp high This register stores the time in seconds. When the time stamp value matches or exceeds both Target time stamp registers, the MAC, if enabled, generates an interrupt. Ethernet PTP target time low register (ETH_PTPTTLR) Address offset: 0x0720 Reset value: 0x0000 0000 This register contains the lower 32 bits of time to be compared with the system time for interrupt event generation. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 TTSL rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw TTSL Bits 31:0 TTSL: Target time stamp low This register stores the time in (signed) nanoseconds. When the value of the time stamp matches or exceeds both Target time stamp registers, the MAC, if enabled, generates an interrupt. Ethernet PTP time stamp status register (ETH_PTPTSSR) Address offset: 0x0728 Reset value: 0x0000 0000 This register contains the time stamp status register. 1616/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TSTTR TSSO ro ro Bits 31:2 Reserved, must be kept at reset value. Bit 1 TSTTR: Time stamp target time reached When set, this bit indicates that the value of the system time is greater than or equal to the value specified in the Target time high and low registers. This bit is cleared when the ETH_PTPTSSR register is read. Bit 0 TSSO: Time stamp second overflow When set, this bit indicates that the second value of the time stamp has overflowed beyond 0xFFFF FFFF. Ethernet PTP PPS control register (ETH_PTPPPSCR) Address offset: 0x072C Reset value: 0x0000 0000 This register controls the frequency of the PPS output. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PPSFREQ rw rw rw rw Bits 31:4 Reserved, must be kept at reset value. Bits 3:0 PPSFREQ: PPS frequency selection The PPS output frequency is set to 2PPSFREQ Hz. 0000: 1 Hz with a pulse width of 125 ms for binary rollover and, of 100 ms for digital rollover 0001: 2 Hz with 50% duty cycle for binary rollover (digital rollover not recommended) 0010: 4 Hz with 50% duty cycle for binary rollover (digital rollover not recommended) 0011: 8 Hz with 50% duty cycle for binary rollover (digital rollover not recommended) 0100: 16 Hz with 50% duty cycle for binary rollover (digital rollover not recommended) ... 1111: 32768 Hz with 50% duty cycle for binary rollover (digital rollover not recommended) Note: If digital rollover is used (TSSSR=1, bit 9 in ETH_PTPTSCR), it is recommended not to use the PPS output with a frequency other than 1 Hz. Otherwise, with digital rollover, the PPS output has irregular waveforms at higher frequencies (though its average frequency will always be correct during any one-second window). RM0385 Rev 7 1617/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller 38.8.4 RM0385 DMA register description This section defines the bits for each DMA register. Non-32 bit accesses are allowed as long as the address is word-aligned. Ethernet DMA bus mode register (ETH_DMABMR) Address offset: 0x1000 Reset value: 0x0002 0101 The bus mode register establishes the bus operating modes for the DMA. 31 30 29 28 27 26 25 24 23 Res. Res. Res. Res. Res. MB AAB FPM USP rw rw rw rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DA SR rw rw rw rw rw rw rw rw rw rw rw rw rs PM rw PBL 22 21 19 18 17 RDP EDFE rw 20 DSL rw 16 FB Bits 31:27 Reserved, must be kept at reset value. Bit 26 MB: Mixed burst When this bit is set high and the FB bit is low, the AHB master interface starts all bursts of a length greater than 16 with INCR (undefined burst). When this bit is cleared, it reverts to fixed burst transfers (INCRx and SINGLE) for burst lengths of 16 and below. Bit 25 AAB: Address-aligned beats When this bit is set high and the FB bit equals 1, the AHB interface generates all bursts aligned to the start address LS bits. If the FB bit equals 0, the first burst (accessing the data buffer’s start address) is not aligned, but subsequent bursts are aligned to the address. Bit 24 FPM: 4xPBL mode When set high, this bit multiplies the PBL value programmed (bits [22:17] and bits [13:8]) four times. Thus the DMA transfers data in a maximum of 4, 8, 16, 32, 64 and 128 beats depending on the PBL value. Bit 23 USP: Use separate PBL When set high, it configures the RxDMA to use the value configured in bits [22:17] as PBL while the PBL value in bits [13:8] is applicable to TxDMA operations only. When this bit is cleared, the PBL value in bits [13:8] is applicable for both DMA engines. Bits 22:17 RDP: Rx DMA PBL These bits indicate the maximum number of beats to be transferred in one RxDMA transaction. This is the maximum value that is used in a single block read/write operation. The RxDMA always attempts to burst as specified in RDP each time it starts a burst transfer on the host bus. RDP can be programmed with permissible values of 1, 2, 4, 8, 16, and 32. Any other value results in undefined behavior. These bits are valid and applicable only when USP is set high. Bit 16 FB: Fixed burst This bit controls whether the AHB Master interface performs fixed burst transfers or not. When set, the AHB uses only SINGLE, INCR4, INCR8 or INCR16 during start of normal burst transfers. When reset, the AHB uses SINGLE and INCR burst transfer operations. 1618/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bits 15:14 PM: Rx Tx priority ratio RxDMA requests are given priority over TxDMA requests in the following ratio: 00: 1:1 01: 2:1 10: 3:1 11: 4:1 This is valid only when the DA bit is cleared. Bits 13:8 PBL: Programmable burst length These bits indicate the maximum number of beats to be transferred in one DMA transaction. This is the maximum value that is used in a single block read/write operation. The DMA always attempts to burst as specified in PBL each time it starts a burst transfer on the host bus. PBL can be programmed with permissible values of 1, 2, 4, 8, 16, and 32. Any other value results in undefined behavior. When USP is set, this PBL value is applicable for TxDMA transactions only. The PBL values have the following limitations: – The maximum number of beats (PBL) possible is limited by the size of the Tx FIFO and Rx FIFO. – The FIFO has a constraint that the maximum beat supported is half the depth of the FIFO. – If the PBL is common for both transmit and receive DMA, the minimum Rx FIFO and Tx FIFO depths must be considered. – Do not program out-of-range PBL values, because the system may not behave properly. Bit 7 EDFE: Enhanced descriptor format enable When this bit is set, the enhanced descriptor format is enabled and the descriptor size is increased to 32 bytes (8 DWORDS). This is required when time stamping is activated (TSE=1, ETH_PTPTSCR bit 0) or if IPv4 checksum offload is activated (IPCO=1, ETH_MACCR bit 10). Bits 6:2 DSL: Descriptor skip length This bit specifies the number of words to skip between two unchained descriptors. The address skipping starts from the end of current descriptor to the start of next descriptor. When DSL value equals zero, the descriptor table is taken as contiguous by the DMA, in Ring mode. Bit 1 DA: DMA Arbitration 0: Round-robin with Rx:Tx priority given in bits [15:14] 1: Rx has priority over Tx Bit 0 SR: Software reset When this bit is set, the MAC DMA controller resets all MAC Subsystem internal registers and logic. It is cleared automatically after the reset operation has completed in all of the core clock domains. Read a 0 value in this bit before re-programming any register of the core. Ethernet DMA transmit poll demand register (ETH_DMATPDR) Address offset: 0x1004 Reset value: 0x0000 0000 This register is used by the application to instruct the DMA to poll the transmit descriptor list. The transmit poll demand register enables the Transmit DMA to check whether or not the current descriptor is owned by DMA. The Transmit Poll Demand command is given to wake up the TxDMA if it is in Suspend mode. The TxDMA can go into Suspend mode due to an underflow error in a transmitted frame or due to the unavailability of descriptors owned by RM0385 Rev 7 1619/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 transmit DMA. User can issue this command anytime and the TxDMA resets it once it starts re-fetching the current descriptor from host memory. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 TPD rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt TPD rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt Bits 31:0 TPD: Transmit poll demand When these bits are written with any value, the DMA reads the current descriptor pointed to by the ETH_DMACHTDR register. If that descriptor is not available (owned by Host), transmission returns to the Suspend state and ETH_DMASR register bit 2 is asserted. If the descriptor is available, transmission resumes. EHERNET DMA receive poll demand register (ETH_DMARPDR) Address offset: 0x1008 Reset value: 0x0000 0000 This register is used by the application to instruct the DMA to poll the receive descriptor list. The Receive poll demand register enables the receive DMA to check for new descriptors. This command is given to wake up the RxDMA from Suspend state. The RxDMA can go into Suspend state only due to the unavailability of descriptors owned by it. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RPD rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt RPD rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt rw_wt Bits 31:0 RPD: Receive poll demand When these bits are written with any value, the DMA reads the current descriptor pointed to by the ETH_DMACHRDR register. If that descriptor is not available (owned by Host), reception returns to the Suspended state and ETH_DMASR register bit 7 is not asserted. If the descriptor is available, the Receive DMA returns to active state. Ethernet DMA receive descriptor list address register (ETH_DMARDLAR) Address offset: 0x100C Reset value: 0x0000 0000 The Receive descriptor list address register points to the start of the receive descriptor list. The descriptor list resides in the STM32F75xxx and STM32F74xxx physical memory space and must be word-aligned. The DMA internally converts it to bus-width aligned address by making the corresponding LS bits low. Writing to the ETH_DMARDLAR register is permitted only when reception is stopped. When stopped, the ETH_DMARDLAR register must be written to before the receive Start command is given. 1620/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 rw rw rw rw rw rw rw rw 8 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw SRL SRL rw rw rw rw rw rw rw rw Bits 31:0 SRL: Start of receive list This field contains the base address of the first descriptor in the receive descriptor list. The LSB bits [1/2/3:0] for 32/64/128-bit bus width) are internally ignored and taken as all-zero by the DMA. Hence these LSB bits are read only. Ethernet DMA transmit descriptor list address register (ETH_DMATDLAR) Address offset: 0x1010 Reset value: 0x0000 0000 The Transmit descriptor list address register points to the start of the transmit descriptor list. The descriptor list resides in the STM32F75xxx and STM32F74xxx physical memory space and must be word-aligned. The DMA internally converts it to bus-width-aligned address by taking the corresponding LSB to low. Writing to the ETH_DMATDLAR register is permitted only when transmission has stopped. Once transmission has stopped, the ETH_DMATDLAR register can be written before the transmission Start command is given. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw rw 7 6 5 4 3 2 1 0 rw rw rw rw rw rw rw rw STL rw rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 STL rw rw rw rw rw rw rw rw Bits 31:0 STL: Start of transmit list This field contains the base address of the first descriptor in the transmit descriptor list. The LSB bits [1/2/3:0] for 32/64/128-bit bus width) are internally ignored and taken as all-zero by the DMA. Hence these LSB bits are read-only. Ethernet DMA status register (ETH_DMASR) Address offset: 0x1014 Reset value: 0x0000 0000 The Status register contains all the status bits that the DMA reports to the application. The ETH_DMASR register is usually read by the software driver during an interrupt service routine or polling. Most of the fields in this register cause the host to be interrupted. The ETH_DMASR register bits are not cleared when read. Writing 1 to (unreserved) bits in ETH_DMASR register[16:0] clears them and writing 0 has no effect. Each field (bits [16:0]) can be masked by masking the appropriate bit in the ETH_DMAIER register. RM0385 Rev 7 1621/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller 31 30 29 28 27 26 Res. Res. TSTS PMTS MMCS Res. r r r 25 24 23 22 r r EBS r 21 RM0385 20 19 r r TPS r r 18 17 16 r rc-w1 RPS r NIS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AIS ERS FBES Res. Res. ETS RWTS RPSS RBUS RS TUS ROS TJTS TBUS TPSS TS rc-w1 rc-w1 rc-w1 rc-w1 rc-w1 rc-w1 rc-w1 rc-w1 rc-w1 rc-w1 rc-w1 rc-w1 rc-w1 rc-w1 Bits 31:30 Reserved, must be kept at reset value. Bit 29 TSTS: Time stamp trigger status This bit indicates an interrupt event in the MAC core's Time stamp generator block. The software must read the MAC core’s status register, clearing its source (bit 9), to reset this bit to 0. When this bit is high an interrupt is generated if enabled. Bit 28 PMTS: PMT status This bit indicates an event in the MAC core’s PMT. The software must read the corresponding registers in the MAC core to get the exact cause of interrupt and clear its source to reset this bit to 0. The interrupt is generated when this bit is high if enabled. Bit 27 MMCS: MMC status This bit reflects an event in the MMC of the MAC core. The software must read the corresponding registers in the MAC core to get the exact cause of interrupt and clear the source of interrupt to make this bit as 0. The interrupt is generated when this bit is high if enabled. Bit 26 Reserved, must be kept at reset value. Bits 25:23 EBS: Error bits status These bits indicate the type of error that caused a bus error (error response on the AHB interface). Valid only with the fatal bus error bit (ETH_DMASR register [13]) set. This field does not generate an interrupt. Bit 231 Error during data transfer by TxDMA 0 Error during data transfer by RxDMA Bit 24 1 Error during read transfer 0 Error during write transfer Bit 25 1 Error during descriptor access 0 Error during data buffer access Bits 22:20 TPS: Transmit process state These bits indicate the Transmit DMA FSM state. This field does not generate an interrupt. 000: Stopped; Reset or Stop Transmit Command issued 001: Running; Fetching transmit transfer descriptor 010: Running; Waiting for status 011: Running; Reading Data from host memory buffer and queuing it to transmit buffer (Tx FIFO) 100, 101: Reserved for future use 110: Suspended; Transmit descriptor unavailable or transmit buffer underflow 111: Running; Closing transmit descriptor 1622/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bits 19:17 RPS: Receive process state These bits indicate the Receive DMA FSM state. This field does not generate an interrupt. 000: Stopped: Reset or Stop Receive Command issued 001: Running: Fetching receive transfer descriptor 010: Reserved for future use 011: Running: Waiting for receive packet 100: Suspended: Receive descriptor unavailable 101: Running: Closing receive descriptor 110: Reserved for future use 111: Running: Transferring the receive packet data from receive buffer to host memory Bit 16 NIS: Normal interrupt summary The normal interrupt summary bit value is the logical OR of the following when the corresponding interrupt bits are enabled in the ETH_DMAIER register: – ETH_DMASR [0]: Transmit interrupt – ETH_DMASR [2]: Transmit buffer unavailable – ETH_DMASR [6]: Receive interrupt – ETH_DMASR [14]: Early receive interrupt Only unmasked bits affect the normal interrupt summary bit. This is a sticky bit and it must be cleared (by writing a 1 to this bit) each time a corresponding bit that causes NIS to be set is cleared. Bit 15 AIS: Abnormal interrupt summary The abnormal interrupt summary bit value is the logical OR of the following when the corresponding interrupt bits are enabled in the ETH_DMAIER register: – ETH_DMASR [1]:Transmit process stopped – ETH_DMASR [3]:Transmit jabber timeout – ETH_DMASR [4]: Receive FIFO overflow – ETH_DMASR [5]: Transmit underflow – ETH_DMASR [7]: Receive buffer unavailable – ETH_DMASR [8]: Receive process stopped – ETH_DMASR [9]: Receive watchdog timeout – ETH_DMASR [10]: Early transmit interrupt – ETH_DMASR [13]: Fatal bus error Only unmasked bits affect the abnormal interrupt summary bit. This is a sticky bit and it must be cleared each time a corresponding bit that causes AIS to be set is cleared. Bit 14 ERS: Early receive status This bit indicates that the DMA had filled the first data buffer of the packet. Receive Interrupt ETH_DMASR [6] automatically clears this bit. Bit 13 FBES: Fatal bus error status This bit indicates that a bus error occurred, as detailed in [25:23]. When this bit is set, the corresponding DMA engine disables all its bus accesses. Bits 12:11 Reserved, must be kept at reset value. Bit 10 ETS: Early transmit status This bit indicates that the frame to be transmitted was fully transferred to the Transmit FIFO. Bit 9 RWTS: Receive watchdog timeout status This bit is asserted when a frame with a length greater than 2 048 bytes is received. RM0385 Rev 7 1623/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bit 8 RPSS: Receive process stopped status This bit is asserted when the receive process enters the Stopped state. Bit 7 RBUS: Receive buffer unavailable status This bit indicates that the next descriptor in the receive list is owned by the host and cannot be acquired by the DMA. Receive process is suspended. To resume processing receive descriptors, the host should change the ownership of the descriptor and issue a Receive Poll Demand command. If no Receive Poll Demand is issued, receive process resumes when the next recognized incoming frame is received. ETH_DMASR [7] is set only when the previous receive descriptor was owned by the DMA. Bit 6 RS: Receive status This bit indicates the completion of the frame reception. Specific frame status information has been posted in the descriptor. Reception remains in the Running state. Bit 5 TUS: Transmit underflow status This bit indicates that the transmit buffer had an underflow during frame transmission. Transmission is suspended and an underflow error TDES0[1] is set. Bit 4 ROS: Receive overflow status This bit indicates that the receive buffer had an overflow during frame reception. If the partial frame is transferred to the application, the overflow status is set in RDES0[11]. Bit 3 TJTS: Transmit jabber timeout status This bit indicates that the transmit jabber timer expired, meaning that the transmitter had been excessively active. The transmission process is aborted and placed in the Stopped state. This causes the transmit jabber timeout TDES0[14] flag to be asserted. Bit 2 TBUS: Transmit buffer unavailable status This bit indicates that the next descriptor in the transmit list is owned by the host and cannot be acquired by the DMA. Transmission is suspended. Bits [22:20] explain the transmit process state transitions. To resume processing transmit descriptors, the host should change the ownership of the bit of the descriptor and then issue a Transmit Poll Demand command. Bit 1 TPSS: Transmit process stopped status This bit is set when the transmission is stopped. Bit 0 TS: Transmit status This bit indicates that frame transmission is finished and TDES1[31] is set in the first descriptor. Ethernet DMA operation mode register (ETH_DMAOMR) Address offset: 0x1018 Reset value: 0x0000 0000 The operation mode register establishes the Transmit and Receive operating modes and commands. The ETH_DMAOMR register should be the last CSR to be written as part of DMA initialization. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. DTCEFD RSF DFRF Res. Res. TSF FTF Res. Res. Res. TTC rw rw rw rw rs 4 15 14 TTC rw rw 1624/1709 13 12 11 10 9 8 7 6 5 ST Res. Res. Res. Res. Res. FEF FUGF Res. rw rw rw RM0385 Rev 7 rw 3 RTC rw rw 2 1 0 OSF SR Res. rw rw RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bits 31:27 Reserved, must be kept at reset value. Bit 26 DTCEFD: Dropping of TCP/IP checksum error frames disable When this bit is set, the core does not drop frames that only have errors detected by the receive checksum offload engine. Such frames do not have any errors (including FCS error) in the Ethernet frame received by the MAC but have errors in the encapsulated payload only. When this bit is cleared, all error frames are dropped if the FEF bit is reset. Bit 25 RSF: Receive store and forward When this bit is set, a frame is read from the Rx FIFO after the complete frame has been written to it, ignoring RTC bits. When this bit is cleared, the Rx FIFO operates in Cut-through mode, subject to the threshold specified by the RTC bits. Bit 24 DFRF: Disable flushing of received frames When this bit is set, the RxDMA does not flush any frames due to the unavailability of receive descriptors/buffers as it does normally when this bit is cleared. (See Receive process suspended on page 1574) Bits 23:22 Reserved, must be kept at reset value. Bit 21 TSF: Transmit store and forward When this bit is set, transmission starts when a full frame resides in the Transmit FIFO. When this bit is set, the TTC values specified by the ETH_DMAOMR register bits [16:14] are ignored. When this bit is cleared, the TTC values specified by the ETH_DMAOMR register bits [16:14] are taken into account. This bit should be changed only when transmission is stopped. Bit 20 FTF: Flush transmit FIFO When this bit is set, the transmit FIFO controller logic is reset to its default values and thus all data in the Tx FIFO are lost/flushed. This bit is cleared internally when the flushing operation is complete. The Operation mode register should not be written to until this bit is cleared. Bits 19:17 Reserved, must be kept at reset value. Bits 16:14 TTC: Transmit threshold control These three bits control the threshold level of the Transmit FIFO. Transmission starts when the frame size within the Transmit FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are also transmitted. These bits are used only when the TSF bit (Bit 21) is cleared. 000: 64 001: 128 010: 192 011: 256 100: 40 101: 32 110: 24 111: 16 RM0385 Rev 7 1625/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bit 13 ST: Start/stop transmission When this bit is set, transmission is placed in the Running state, and the DMA checks the transmit list at the current position for a frame to be transmitted. Descriptor acquisition is attempted either from the current position in the list, which is the transmit list base address set by the ETH_DMATDLAR register, or from the position retained when transmission was stopped previously. If the current descriptor is not owned by the DMA, transmission enters the Suspended state and the transmit buffer unavailable bit (ETH_DMASR [2]) is set. The Start Transmission command is effective only when transmission is stopped. If the command is issued before setting the DMA ETH_DMATDLAR register, the DMA behavior is unpredictable. When this bit is cleared, the transmission process is placed in the Stopped state after completing the transmission of the current frame. The next descriptor position in the transmit list is saved, and becomes the current position when transmission is restarted. The Stop Transmission command is effective only when the transmission of the current frame is complete or when the transmission is in the Suspended state. Bits 12:8 Reserved, must be kept at reset value. Bit 7 FEF: Forward error frames When this bit is set, all frames except runt error frames are forwarded to the DMA. When this bit is cleared, the Rx FIFO drops frames with error status (CRC error, collision error, giant frame, watchdog timeout, overflow). However, if the frame’s start byte (write) pointer is already transferred to the read controller side (in Threshold mode), then the frames are not dropped. The Rx FIFO drops the error frames if that frame's start byte is not transferred (output) on the ARI bus. Bit 6 FUGF: Forward undersized good frames When this bit is set, the Rx FIFO forwards undersized frames (frames with no error and length less than 64 bytes) including pad-bytes and CRC). When this bit is cleared, the Rx FIFO drops all frames of less than 64 bytes, unless such a frame has already been transferred due to lower value of receive threshold (e.g., RTC = 01). Bit 5 Reserved, must be kept at reset value. Bits 4:3 RTC: Receive threshold control These two bits control the threshold level of the Receive FIFO. Transfer (request) to DMA starts when the frame size within the Receive FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are transferred automatically. Note: Note that value of 11 is not applicable if the configured Receive FIFO size is 128 bytes. Note: These bits are valid only when the RSF bit is zero, and are ignored when the RSF bit is set to 1. 00: 64 01: 32 10: 96 11: 128 Bit 2 OSF: Operate on second frame When this bit is set, this bit instructs the DMA to process a second frame of Transmit data even before status for first frame is obtained. 1626/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bit 1 SR: Start/stop receive When this bit is set, the receive process is placed in the Running state. The DMA attempts to acquire the descriptor from the receive list and processes incoming frames. Descriptor acquisition is attempted from the current position in the list, which is the address set by the DMA ETH_DMARDLAR register or the position retained when the receive process was previously stopped. If no descriptor is owned by the DMA, reception is suspended and the receive buffer unavailable bit (ETH_DMASR [7]) is set. The Start Receive command is effective only when reception has stopped. If the command was issued before setting the DMA ETH_DMARDLAR register, the DMA behavior is unpredictable. When this bit is cleared, RxDMA operation is stopped after the transfer of the current frame. The next descriptor position in the receive list is saved and becomes the current position when the receive process is restarted. The Stop Receive command is effective only when the Receive process is in either the Running (waiting for receive packet) or the Suspended state. Bit 0 Reserved, must be kept at reset value. Ethernet DMA interrupt enable register (ETH_DMAIER) Address offset: 0x101C Reset value: 0x0000 0000 The Interrupt enable register enables the interrupts reported by ETH_DMASR. Setting a bit to 1 enables a corresponding interrupt. After a hardware or software reset, all interrupts are disabled. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. NISE rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AISE ERIE FBEIE Res. Res. ETIE RWTIE RPSIE RBUIE RIE TUIE ROIE TJTIE TBUIE TPSIE TIE rw rw rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:17 Reserved, must be kept at reset value. Bit 16 NISE: Normal interrupt summary enable When this bit is set, a normal interrupt is enabled. When this bit is cleared, a normal interrupt is disabled. This bit enables the following bits: – ETH_DMASR [0]: Transmit Interrupt – ETH_DMASR [2]: Transmit buffer unavailable – ETH_DMASR [6]: Receive interrupt – ETH_DMASR [14]: Early receive interrupt RM0385 Rev 7 1627/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bit 15 AISE: Abnormal interrupt summary enable When this bit is set, an abnormal interrupt is enabled. When this bit is cleared, an abnormal interrupt is disabled. This bit enables the following bits: – ETH_DMASR [1]: Transmit process stopped – ETH_DMASR [3]: Transmit jabber timeout – ETH_DMASR [4]: Receive overflow – ETH_DMASR [5]: Transmit underflow – ETH_DMASR [7]: Receive buffer unavailable – ETH_DMASR [8]: Receive process stopped – ETH_DMASR [9]: Receive watchdog timeout – ETH_DMASR [10]: Early transmit interrupt – ETH_DMASR [13]: Fatal bus error Bit 14 ERIE: Early receive interrupt enable When this bit is set with the normal interrupt summary enable bit (ETH_DMAIER register[16]), the early receive interrupt is enabled. When this bit is cleared, the early receive interrupt is disabled. Bit 13 FBEIE: Fatal bus error interrupt enable When this bit is set with the abnormal interrupt summary enable bit (ETH_DMAIER register[15]), the fatal bus error interrupt is enabled. When this bit is cleared, the fatal bus error enable interrupt is disabled. Bits 12:11 Reserved, must be kept at reset value. Bit 10 ETIE: Early transmit interrupt enable When this bit is set with the abnormal interrupt summary enable bit (ETH_DMAIER register [15]), the early transmit interrupt is enabled. When this bit is cleared, the early transmit interrupt is disabled. Bit 9 RWTIE: receive watchdog timeout interrupt enable When this bit is set with the abnormal interrupt summary enable bit (ETH_DMAIER register[15]), the receive watchdog timeout interrupt is enabled. When this bit is cleared, the receive watchdog timeout interrupt is disabled. Bit 8 RPSIE: Receive process stopped interrupt enable When this bit is set with the abnormal interrupt summary enable bit (ETH_DMAIER register[15]), the receive stopped interrupt is enabled. When this bit is cleared, the receive stopped interrupt is disabled. Bit 7 RBUIE: Receive buffer unavailable interrupt enable When this bit is set with the abnormal interrupt summary enable bit (ETH_DMAIER register[15]), the receive buffer unavailable interrupt is enabled. When this bit is cleared, the receive buffer unavailable interrupt is disabled. Bit 6 RIE: Receive interrupt enable When this bit is set with the normal interrupt summary enable bit (ETH_DMAIER register[16]), the receive interrupt is enabled. When this bit is cleared, the receive interrupt is disabled. Bit 5 TUIE: Underflow interrupt enable When this bit is set with the abnormal interrupt summary enable bit (ETH_DMAIER register[15]), the transmit underflow interrupt is enabled. When this bit is cleared, the underflow interrupt is disabled. 1628/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Bit 4 ROIE: Overflow interrupt enable When this bit is set with the abnormal interrupt summary enable bit (ETH_DMAIER register[15]), the receive overflow interrupt is enabled. When this bit is cleared, the overflow interrupt is disabled. Bit 3 TJTIE: Transmit jabber timeout interrupt enable When this bit is set with the abnormal interrupt summary enable bit (ETH_DMAIER register[15]), the transmit jabber timeout interrupt is enabled. When this bit is cleared, the transmit jabber timeout interrupt is disabled. Bit 2 TBUIE: Transmit buffer unavailable interrupt enable When this bit is set with the normal interrupt summary enable bit (ETH_DMAIER register[16]), the transmit buffer unavailable interrupt is enabled. When this bit is cleared, the transmit buffer unavailable interrupt is disabled. Bit 1 TPSIE: Transmit process stopped interrupt enable When this bit is set with the abnormal interrupt summary enable bit (ETH_DMAIER register[15]), the transmission stopped interrupt is enabled. When this bit is cleared, the transmission stopped interrupt is disabled. Bit 0 TIE: Transmit interrupt enable When this bit is set with the normal interrupt summary enable bit (ETH_DMAIER register[16]), the transmit interrupt is enabled. When this bit is cleared, the transmit interrupt is disabled. The Ethernet interrupt is generated only when the TSTS or PMTS bits of the DMA Status register is asserted with their corresponding interrupt are unmasked, or when the NIS/AIS Status bit is asserted and the corresponding Interrupt Enable bits (NISE/AISE) are enabled. Ethernet DMA missed frame and buffer overflow counter register (ETH_DMAMFBOCR) Address offset: 0x1020 Reset value: 0x0000 0000 The DMA maintains two counters to track the number of missed frames during reception. This register reports the current value of the counter. The counter is used for diagnostic purposes. Bits [15:0] indicate missed frames due to the STM32F75xxx and STM32F74xxx buffer being unavailable (no receive descriptor was available). Bits [27:17] indicate missed frames due to Rx FIFO overflow conditions and runt frames (good frames of less than 64 bytes). 31 30 29 28 Res. Res. Res. OFOC 15 14 13 27 26 25 24 23 22 21 20 19 18 17 MFA 16 OMFC rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r 12 11 10 9 8 7 6 5 4 3 2 1 0 rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r MFC rc_r rc_r rc_r rc_r rc_r rc_r rc_r rc_r Bits 31:29 Reserved, must be kept at reset value. Bit 28 OFOC: Overflow bit for FIFO overflow counter Bits 27:17 MFA: Missed frames by the application Indicates the number of frames missed by the application RM0385 Rev 7 1629/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bit 16 OMFC: Overflow bit for missed frame counter Bits 15:0 MFC: Missed frames by the controller Indicates the number of frames missed by the Controller due to the host receive buffer being unavailable. This counter is incremented each time the DMA discards an incoming frame. Ethernet DMA receive status watchdog timer register (ETH_DMARSWTR) Address offset: 0x1024 Reset value: 0x0000 0000 This register, when written with a non-zero value, enables the watchdog timer for the receive status (RS, ETH_DMASR[6]). 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 rw rw rw 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. RSWTC rw rw rw rw rw Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 RSWTC: Receive status (RS) watchdog timer count Indicates the number of HCLK clock cycles multiplied by 256 for which the watchdog timer is set. The watchdog timer gets triggered with the programmed value after the RxDMA completes the transfer of a frame for which the RS status bit is not set due to the setting of RDES1[31] in the corresponding descriptor. When the watchdog timer runs out, the RS bit is set and the timer is stopped. The watchdog timer is reset when the RS bit is set high due to automatic setting of RS as per RDES1[31] of any received frame. Ethernet DMA current host transmit descriptor register (ETH_DMACHTDR) Address offset: 0x1048 Reset value: 0x0000 0000 The Current host transmit descriptor register points to the start address of the current transmit descriptor read by the DMA. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r HTDAP HTDAP r r r r r r r r Bits 31:0 HTDAP: Host transmit descriptor address pointer Cleared . Pointer updated by DMA during operation. Ethernet DMA current host receive descriptor register (ETH_DMACHRDR) Address offset: 0x104C 1630/1709 RM0385 Rev 7 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Reset value: 0x0000 0000 The Current host receive descriptor register points to the start address of the current receive descriptor read by the DMA. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r HRDAP HRDAP r r r r r r r r Bits 31:0 HRDAP: Host receive descriptor address pointer Cleared On Reset. Pointer updated by DMA during operation. Ethernet DMA current host transmit buffer address register (ETH_DMACHTBAR) Address offset: 0x1050 Reset value: 0x0000 0000 The Current host transmit buffer address register points to the current transmit buffer address being read by the DMA. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 HTBAP r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r r r r r r r HTBAP Bits 31:0 HTBAP: Host transmit buffer address pointer Cleared On Reset. Pointer updated by DMA during operation. Ethernet DMA current host receive buffer address register (ETH_DMACHRBAR) Address offset: 0x1054 Reset value: 0x0000 0000 The current host receive buffer address register points to the current receive buffer address being read by the DMA. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r 7 6 5 4 3 2 1 0 r r r r r r r r HRBAP r r r r r r r r 15 14 13 12 11 10 9 8 HRBAP r r r r r r r r RM0385 Rev 7 1631/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 Bits 31:0 HRBAP: Host receive buffer address pointer Cleared On Reset. Pointer updated by DMA during operation. 38.8.5 Ethernet register maps Table 280 gives the ETH register map and reset values. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BL PCF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. MR Res. PA Res. 0 0 0 0 0 0 0 0 0 0 0 ETH_MACVLANT R Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. VLANTC 0 0 0 0 0 0 0 0 0 0 0 MD TFCE 0 0 FCB/BPA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PD 0 0 MPE 0 0 RFCE 0 0 WFE Reset value Res. PT M MB W UPFD Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 CR 0 Res. 0 ZQPD 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 ETH_MACFCR 0 0 0 PLT 0 VLANTI 0 0 0 0 0 0 0 0 0 0 0 Frame filter reg0\Frame filter reg1\Frame filter reg2\Frame filter reg3\Frame filter reg4\...\Frame filter reg7 MMRPEA MSFRWCS Res. Res. Res. Res. PMTS 0 1 1 1 0 MACA0H 1 RM0385 Rev 7 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 1 Res. MO Reset value Res. Res. MMCS Res. Res. 0 MMCTS 0 Res. Res. Res. Res. 0 0 0 ETH_MACA0HR Res. Reset value TSTIM Res. Res. Res. Res. - ETH_MACIMR 0 PMTIM 0 MMCRS 0 Res. 0 Res. RFRCS Res. RFFL 0 0 Res. Reset value 0 Res. Res. Res. - Res. 0 TSTS Res. Res. Res. Res. Res. MMTEA 0 Res. 0 Res. 0 MTFCS MTP 0 Res. 0 Res. ETH_MACSR 0 TFRS 0 TFWA TFNEGU 0 Res. TFF Res. Res. Res. Reset value Res. 0 RFWRA MPR Res. WFR Res. GU Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 Res. ETH_MACDBGR Res. WFFRPR 0 Res. Reset value Res. 0 - 1632/1709 TE 0 RE 0 DC Res. RD HU IPCO Res. PM 0 Reset value ETH_MACPMTC SR 0x40 APCS LM DM Res. HM 0 Res. 0 Res. 0 0x2C 0x3C Res. FES ROD Res. Res. Res. CSD Res. Res. Res. PAM 0 Reset value 0x38 0 0 HTL[31:0] ETH_MACRWUF FR 0x28 Reset value 0x34 0 DAIF 0 Res. 0x1C 0 BFD 0 Res. 0x18 ETH_MACMIIDR 0 SAIF 0 Reset value 0x14 0 SAF 0 Res. ETH_MACMIIAR 0 HPF 0 ETH_MACHTLR Reset value 0 Res. Reset value 0 Res. Res. Res. Res. JD Res. Res. WD Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 HTH[31:0] Res. 0x10 0 0 Res. 0x0C 0 ETH_MACHTHR Res. 0x08 0 IFG Res. Reset value Res. ETH_MACFFR RA Res. 0x04 0 0 Res. Reset value CSTF Res. Res. Res. ETH_MACCR Res. 0x00 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 280. Ethernet register map and reset values 1 1 1 1 1 1 1 1 1 1 1 1 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller 0 0 0 0 0 0 0 1 1 1 1 1 1 1 Res. Res. Res. Res. Res. Res. MBC[6:0] 1 Res. 1 Res. 1 0 MBC 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 1 1 1 1 1 1 1 1 1 1 1 1 MACA1H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 MACA2H 1 1 1 1 1 1 1 1 1 0 1 Res. Res. Res. Res. Res. Res. 0 1 1 1 1 1 1 1 1 1 1 MACA3H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ETH_MMCCR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RFCEM Res. Res. RFAEM Res. ETH_MMCRFCE CR 0x194 Reset value 0 ETH_MMCRFAE CR 0x198 Reset value 0 RFCES Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. Res. TGFSCS Res. Res. Res. 0 Res. ETH_MMCTGFC R 0x168 Reset value 0 0 Res. ETH_MMCTGFM SCCR 0x150 Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TGFMSCM TGFSCM Res. Res. Res. Reset value ETH_MMCTGFS CCR 0x14C Reset value 0 0 Res. TGFMSCS 0 RFAES Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RGUFM Res. Res. Res. Res. TGFM Res. Res. Res. Res. Res. Res. Res. Res. Res. ETH_MMCTIMR 0 0 Res. Reset value 0x110 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ETH_MMCRIMR Res. 0x10C 0 Res. Reset value TGFS Res. Res. Res. Res. Res. Res. Res. Res. ETH_MMCTIR Res. 0x108 0 Res. Reset value RGUFS Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ETH_MMCRIR Res. 0x104 Res. Reset value Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. 1 Res. Reset value Res. MACA3L Res. ETH_MACA3LR CR 0 1 CSR 0 1 MCF 0 1 ROR 0 1 MCP 0 1 Res. 0 MBC 1 Res. ETH_MACA3HR AE SA Reset value 1 MACA2L 1 Res. ETH_MACA2LR Reset value 1 MACA1L ETH_MACA2HR AE SA Reset value 1 1 ETH_MACA1LR Reset value 1 MCFHP Reset value 1 Res. 0x100 ETH_MACA1HR AE SA 1 Res. 0x5C 1 Res. 0x58 1 Res. 0x54 1 Res. 0x50 MACA0L 1 Res. 0x4C Reset value Res. 0x48 ETH_MACA0LR Res. 0x44 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 280. Ethernet register map and reset values (continued) 0 0 TGFSCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TGFMSCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TGFC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RFCEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RFAEC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 Rev 7 0 0 1633/1709 1635 Ethernet (ETH): media access control (MAC) with DMA controller RM0385 0 0 ETH_PTPTSLR Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 STSSI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 STSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ETH_PTPTSHUR 0 TSUS Reset value 0 ETH_PTPTSLUR Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TSUSS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ETH_PTPTSAR 0 TSA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ETH_PTPTTHR 0 TTSH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ETH_PTPTSSR Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 Rev 7 0 0 TS 0 0 0 0 0 0 0 0 RTC 0 Res. 0 0 TPSS 0 0 TBUS 0 0 SR 0 0 OSF 0 ROS 0 TJTS 0 TUS 0 Res. 0 RS 0 RBUS Res. 0 FEF Res. 0 0 FUGF Res. 0 0 RPSS FTF 0 0 Res. TSF 0 0 ETS Res. 0 0 RWTS 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 Res. 0 0 FBES 0 0 AIS 0 0 0 ERS 0 NIS 0 RPS 0 TPS 0 Res. 0 0 EBS 0 0 DFRF Res. Res. Res. 0 0 RSF ETH_DMASR 0 DTCEFD 0 MMCS 0 Res. 0 TSTS 0 PMTS 0 Res. STL 0 1634/1709 0 SRL Reset value Reset value 0 RPD ETH_DMATDLAR ETH_DMAOMR 0 ST Reset value 0 DSL SR 0 PBL 0 DA 0 EDFE USP 0 FB FPM 0 TTC Reset value Reset value 0x1018 0 Res. 0x1014 0 ETH_DMARPDR ETH_DMARDLA R 0x100C Reset value 0 0x1010 0 PM 0 TPD Res. 0x1008 0 RDP ETH_DMATPDR Res. 0x1004 AAB Reset value MB Res. Res. Res. ETH_DMABMR Res. 0x1000 Res. Reset value TSSO Reset value Res. TTSL Res. ETH_PTPTTLR TSTTR Reset value 0 Res. 0 Reset value 0 STS[31:0] Reset value STPNS ETH_PTPTSHR 0 TSE 0 0 TSSTI 0 0 TSFCU 0 0 TSITE 1 0 TSSTU 0 0 Res. 0 0 TTSARU Res. Res. TSSSR Res. TSSARFE Res. Res. 0 Res. Res. Res. TSPTPPSV2E Res. Res. 0 Res. Res. Res. 0 Res. Res. Res. 0 TSSIPV6FE Res. Res. Res. Res. Res. Res. Res. 0 Res. 0x728 0 Res. 0x720 0 Res. 0x71C 0 Res. 0x718 0 Res. 0x714 0 Res. 0x710 0 Reset value TSUPNS 0x70C 0 Res. 0x708 ETH_PTPSSIR 0 Res. 0x704 Res. Reset value 0 TSSPTPOEFE Res. 0 Res. ETH_PTPTSCR 0 Res. 0 TSSEME 0 TSSIPV4FE 0 Res. 0 TSSMRME 0 Res. 0 Res. 0 TSCNT 0 Res. 0 Res. 0 Res. 0 TSPFFMAE 0 Res. Reset value Res. RGUFC Res. 0x700 ETH_MMCRGUF CR Res. 0x1C4 Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 280. Ethernet register map and reset values (continued) 0 0 RM0385 Ethernet (ETH): media access control (MAC) with DMA controller Reset value 0x104C 0x1050 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0x1054 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RSWTC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HRDAP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 HTBAP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ETH_ DMACHRBAR Reset value 0 HTDAP ETH_ DMACHTBAR Reset value TIE 0 ETH_ DMACHRDR Reset value TPSIE 0 ETH_ DMACHTDR 0 MFC Reset value 0x1048 TBUIE 0 ROIE 0 TJTIE 0 RIE RPSIE RBUIE 0 TUIE RWTIE Res. ETIE Res. FBEIE 0 OMFC 0 Res. MFA OFOC Res. Res. 0 Res. Res. Res. Res. 0x1024 ETH_ DMARSWTR Res. Reset value AISE 0 Reset value ETH_DMAMFBO CR 0x1020 ERIE Res. NISE Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ETH_DMAIER Res. 0x101C Register Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Table 280. Ethernet register map and reset values (continued) 0 0 HRBAP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Refer to Section 2.2.2 on page 69 for the register boundary addresses. RM0385 Rev 7 1635/1709 1635 HDMI-CEC controller (HDMI-CEC) RM0385 39 HDMI-CEC controller (HDMI-CEC) 39.1 Introduction Consumer electronics control (CEC) is part of HDMI (high-definition multimedia interface) standard as appendix supplement 1. It contains a protocol that provides high-level control functions between various audiovisual products. CEC operates at low speeds, with minimum processing and memory overhead. The HDMI-CEC controller provides hardware support for this protocol. 39.2 HDMI-CEC controller main features • Complies with HDMI-CEC v1.4 specification • 32 kHz CEC kernel with 2 clock source options – HSI RC oscillator with fixed prescaler (HSI/488) – LSE oscillator • Works in Stop mode for ultra-low-power applications • Configurable signal-free time before start of transmission – Automatic by hardware, according to CEC state and transmission history – Fixed by software (7 timing options) • Configurable peripheral address (OAR) • Supports Listen mode – • • • Configurable Rx-tolerance margin – Standard tolerance – Extended tolerance Receive-error detection – Bit rising error (BRE), with optional stop of reception (BRESTP) – Short bit period error (SBPE) – Long bit period error (LBPE) Configurable error-bit generation – on BRE detection (BREGEN) – on LBPE detection (LBPEGEN) – always generated on SBPE detection • Transmission error detection (TXERR) • Arbitration lost detection (ARBLST) – 1636/1709 Enables reception of CEC messages sent to destination address different from OAR without interfering with the CEC line With automatic transmission retry • Transmission underrun detection (TXUDR) • Reception overrun detection (RXOVR) RM0385 Rev 7 RM0385 HDMI-CEC controller (HDMI-CEC) 39.3 HDMI-CEC functional description 39.3.1 HDMI-CEC pin The CEC bus consists of a single bidirectional line that is used to transfer data in and out of the device. It is connected to a +3.3 V supply voltage via a 27 kΩ pull-up resistor. The output stage of the device must have an open-drain or open-collector to allow a wired-AND connection. The HDMI-CEC controller manages the CEC bidirectional line as an alternate function of a standard GPIO, assuming that it is configured as alternate function open drain. The 27 kΩ pull-up must be added externally to the microcontroller. To not interfere with the CEC bus when the application power is removed, it is mandatory to isolate the CEC pin from the bus in such conditions. This can be done by using a MOS transistor, as shown on Figure 527. Table 281. HDMI pin Name CEC 39.3.2 Signal type Remarks Two states: – 1 = high impedance – 0 = low impedance A 27 kΩ resistor must be added externally. Bidirectional HDMI-CEC block diagram Figure 527. HDMI-CEC block diagram STM32 HDMI_CEC controller CEC interrupt Cortex Core AHB CEC ITF APB 3.3V 27 kΩ HSI LSE RCC Event control CLK 3.3V G RX 32 kHz CEC TX Kernel Wake-int CEC PAD CEC line S D Remote CEC device MSv35920V2 39.3.3 Message description All transactions on the CEC line consist of an initiator and one or more followers. The initiator is responsible for sending the message structure and the data. The follower is the recipient of any data and is responsible for setting any acknowledgment bits. A message is conveyed in a single frame that consists of a start bit followed by a header block and optionally an opcode and a variable number of operand blocks. RM0385 Rev 7 1637/1709 1654 HDMI-CEC controller (HDMI-CEC) RM0385 All these blocks are made of a 8-bit payload - most significant bit is transmitted first followed by an end of message (EOM) bit and an acknowledge (ACK) bit. The EOM bit is set in the last block of a message and kept reset in all others. In case a message contains additional blocks after an EOM is indicated, those additional blocks must be ignored. The EOM bit may be set in the header block to ‘ping’ other devices, to make sure they are active. The acknowledge bit is always set to high impedance by the initiator so that it can be driven low either by the follower that has read its own address in the header, or by the follower that needs to reject a broadcast message. The header consists of the source logical address field, and the destination logical address field. Note that the special address 0xF is used for broadcast messages. Figure 528. Message structure 0 to 14 operands high START impedance BIT OPCODE HEADER OPERAND OPERAND high impedance MS31004V1 Figure 529. Blocks 0 HEADER BLOCK INITIATOR[3:0] DESTINATION[3:0] EOM ACK 0 OPCODE/OPERAND BLOCK DATA[7:0] EOM ACK MS31005V1 39.3.4 Bit timing The format of the start bit is unique and identifies the start of a message. It must be validated by its low duration and its total duration. All remaining data bits in the message, after the start bit, have consistent timing. The highto-low transition at the end of the data bit is the start of the next data bit except for the final bit where the CEC line remains high. 1638/1709 RM0385 Rev 7 RM0385 HDMI-CEC controller (HDMI-CEC) Figure 530. Bit timings 4.5 ms +/-0.2 ms START BIT 3.7 ms +/-0.2 ms high impedance low impedance 2.4 ms +/-0.35 ms DATA BIT INITIATOR LOGICAL 0 1.5 ms +/-0.2 ms high impedance low impedance 2.4 ms +/-0.35 ms DATA BIT INITIATOR LOGICAL 1 0.6 ms +/-0.2 ms high impedance low impedance 2.4 ms +/-0.35 ms DATA BIT 1.5 ms +/-0.2 ms FOLLOWER LOGICAL 0 0.35 ms max high impedance low impedance MS31006V1 39.4 Arbitration All devices transmitting - or retransmitting - a message onto the CEC line must ensure that it has been inactive for a number of bit periods. This signal-free time is defined as the time starting from the final bit of the previous frame and depends on the initiating device and the current status as shown in the table below. Figure 531. Signal free time Signal free time PREVIOUS MESSAGE NEW MESSAGE MS31007V1 Since only one initiator is allowed at any one time, an arbitration mechanism is provided to avoid conflict when more than one initiator begins transmitting at the same time. CEC line arbitration starts with the leading edge of the start bit and continues until the end of the initiator address bits within the header block. During this period, the initiator must monitor the CEC line, if whilst driving the line to high impedance it reads it back to 0. Assuming then it has lost arbitration, it stops transmitting and becomes a follower. RM0385 Rev 7 1639/1709 1654 HDMI-CEC controller (HDMI-CEC) RM0385 Figure 532. Arbitration phase Arbitration phase high impedance START BIT INITIATOR[3:0] DESTINATION[3:0] EOM ACK MS31008V1 Figure 533 shows an example for a SFT of three nominal bit periods Figure 533. SFT of three nominal bit periods last bit of previous frame Start bit MS31009V1 A configurable time window is counted before starting the transmission. In the SFT = 0 configuration, HDMI-CEC performs automatic SFT calculation ensuring compliance with the HDMI-CEC standard: • 2.5 data bit periods if the CEC is the last bus initiator with unsuccessful transmission • 4 data bit periods if the CEC is the new bus initiator • 6 data bit periods if the CEC is the last bus initiator with successful transmission This is done to guarantee the maximum priority to a failed transmission and the lowest one to the last initiator that completed successfully its transmission. Otherwise there is the possibility to configure the SFT bits to count a fixed timing value. Possible values are 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5 data bit periods. 39.4.1 SFT option bit In case of SFTOPT = 0 configuration, SFT starts being counted when the start-oftransmission command is set by software (TXSOM=1). In case of SFTOPT=1, SFT starts automatically being counted by the HDMI-CEC device when a bus-idle or line error condition is detected. If the SFT timer is completed at the time TXSOM command is set then transmission starts immediately without latency. If the SFT timer is still running instead, the system waits until the timer elapses before transmission can start. 1640/1709 RM0385 Rev 7 RM0385 HDMI-CEC controller (HDMI-CEC) In case of SFTOPT = 1 a bus-event condition starting the SFT timer is detected in the following cases: • In case of a regular end of transmission/reception, when TXEND/RXEND bits are set at the minimum nominal data bit duration of the last bit in the message (ACK bit). • In case of a transmission error detection, SFT timer starts when the TXERR transmission error is detected (TXERR=1). • In case of a missing acknowledge from the CEC follower, the SFT timer starts when the TXACKE bit is set, that is at the nominal sampling time of the ACK bit. • In case of a transmission underrun error, the SFT timer starts when the TXUDR bit is set at the end of the ACK bit. • In case of a receive error detection implying reception abort, the SFT timer starts at the same time the error is detected. If an error bit is generated, then SFT starts being counted at the end of the error bit. • In case of a wrong start bit or of any uncodified low impedance bus state from idle, the SFT timer is restarted as soon as the bus comes back to hi-impedance idleness. 39.5 Error handling 39.5.1 Bit error If a data bit - excluding the start bit - is considered invalid, the follower is expected to notify such error by generating a low bit period on the CEC line of 1.4 to 1.6 times the nominal data bit period, i.e. 3.6 ms nominally. Figure 534. Error bit timing ERROR BIT 3.6 ms +/-0.24 ms high impedance low impedance MS31010V1 39.5.2 Message error A message is considered lost and therefore may be retransmitted under the following conditions: • a message is not acknowledged in a directly addressed message • a message is negatively acknowledged in a broadcast message • a low impedance is detected on the CEC line while it is not expected (line error) Three kinds of error flag can be detected when the CEC interface is receiving a data bit: 39.5.3 Bit Rising Error (BRE) BRE (bit rising error): is set when a bit rising edge is detected outside the windows where it is expected (see Figure 535). BRE flag also generates a CEC interrupt if the BREIE=1. RM0385 Rev 7 1641/1709 1654 HDMI-CEC controller (HDMI-CEC) RM0385 In the case of a BRE detection, the message reception can be stopped according to the BRESTP bit value and an error bit can be generated if BREGEN bit is set. When BRE is detected in a broadcast message with BRESTP=1 an error bit is generated even if BREGEN=0 to enforce initiator’s retry of the failed transmission. Error bit generation can be disabled by configuring BREGEN=0, BRDNOGEN=1. 39.5.4 Short Bit Period Error (SBPE) SBPE is set when a bit falling edge is detected earlier than expected (see Figure 535). SBPE flag also generates a CEC interrupt if the SBPEIE=1. An error bit is always generated on the line in case of a SBPE error detection. An Error Bit is not generated upon SBPE detection only when Listen mode is set (LSTN=1) and the following conditions are met: 39.5.5 • A directly addressed message is received containing SBPE • A broadcast message is received containing SBPE AND BRDNOGEN=1 Long Bit Period Error (LBPE) LBPE is set when a bit falling edge is not detected in a valid window (see Figure 535). LBPE flag also generates a CEC interrupt if the LBPEIE=1. LBPE always stops the reception, an error bit is generated on the line when LBPEGEN bit is set. When LBPE is detected in a broadcast message an error bit is generated even if LBPEGEN=0 to enforce initiator’s retry of the failed transmission. Error bit generation can be disabled by configuring LBPEGEN=0, BRDNOGEN=1. Note: The BREGEN=1, BRESTP=0 configuration must be avoided Figure 535. Error handling Legend: BRE Checking Window BRE Tolerance margins CEC initiator bit-timing BRE LBPE SBPE Ts T1 Tn1 T2 Tns T3 Tn0 T4 T5 Tnf T6 MS31011V1 1642/1709 RM0385 Rev 7 RM0385 HDMI-CEC controller (HDMI-CEC) Table 282. Error handling timing parameters Time RXTOL ms Ts x 0 1 0.3 0 0.4 x 0.6 0 0.8 1 0.9 The latest time for a low - high transition when indicating a logical 1. x 1.05 Nominal sampling time. 1 1.2 0 1.3 The earliest time a device is permitted return to a high impedance state (logical 0). x 1.5 0 1.7 1 1.8 1 1.85 0 2.05 x 2.4 0 2.75 1 2.95 T1 Tn1 T2 Tns T3 Tn0 T4 T5 Tnf T6 Description Bit start event. The earliest time for a low - high transition when indicating a logical 1. The nominal time for a low - high transition when indicating a logical 1. The nominal time a device is permitted return to a high impedance state (logical 0). The latest time a device is permitted return to a high impedance state (logical 0). The earliest time for the start of a following bit. The nominal data bit period. The latest time for the start of a following bit. RM0385 Rev 7 1643/1709 1654 HDMI-CEC controller (HDMI-CEC) 39.5.6 RM0385 Transmission Error Detection (TXERR) The CEC initiator sets the TXERR flag if detecting low impedance on the CEC line when it is transmitting high impedance and is not expecting a follower asserted bit. TXERR flag also generates a CEC interrupt if the TXERRIE=1. TXERR assertion stops the message transmission. Application is in charge to retry the failed transmission up to 5 times. TXERR checks are performed differently depending on the different states of the CEC line and on the RX tolerance configuration. Figure 536. TXERR detection Legend: TXERR Checking Window CEC initiator bit-timing Tolerance margins Tx acknowledge Tx arbitration bit-1 Tx data bit-1 Ts T1 Tn1 T2 Tns T3 Tn0 T4 T5 Tnf T6 Tx arbitration bit-0 Tx data bit-0 MS31012V1 Table 283. TXERR timing parameters Time RXTOL ms Ts x 0 1 0.3 0 0.4 x 0.6 0 0.8 1 0.9 The latest time for a low - high transition when indicating a logical 1. x 1.05 Nominal sampling time. 1 1.2 0 1.3 The earliest time a device is permitted return to a high impedance state (logical 0). T1 Tn1 T2 Tns T3 1644/1709 Description Bit start event. The earliest time for a low - high transition when indicating a logical 1. The nominal time for a low - high transition when indicating a logical 1. RM0385 Rev 7 RM0385 HDMI-CEC controller (HDMI-CEC) Table 283. TXERR timing parameters (continued) Time RXTOL ms Tn0 x 1.5 0 1.7 1 1.8 1 1.85 0 2.05 x 2.4 0 2.75 1 2.95 T4 T5 Tnf T6 39.6 Description The nominal time a device is permitted return to a high impedance state (logical 0). The latest time a device is permitted return to a high impedance state (logical 0). The earliest time for the start of a following bit. The nominal data bit period. The latest time for the start of a following bit. HDMI-CEC interrupts An interrupt can be produced: • during reception if a Receive Block Transfer is finished or if a Receive Error occurs. • during transmission if a Transmit Block Transfer is finished or if a Transmit Error occurs. Table 284. HDMI-CEC interrupts Interrupt event Event flag Enable Control bit RXBR RXBRIE End of reception RXEND RXENDIE Rx-Overrun RXOVR RXOVRIE BRE BREIE Rx-Short Bit Period Error SBPE SBPEIE Rx-Long Bit Period Error LBPE LBPEIE Rx-Missing Acknowledge Error RXACKE RXACKEIE Arbitration lost ARBLST ARBLSTIE TXBR TXBRIE End of transmission TXEND TXENDIE Tx-Buffer Underrun TXUDR TXUDRIE Tx-Error TXERR TXERRIE TXACKE TXACKEIE Rx-Byte Received RxBit Rising Error Tx-Byte Request Tx-Missing Acknowledge Error RM0385 Rev 7 1645/1709 1654 HDMI-CEC controller (HDMI-CEC) 39.7 RM0385 HDMI-CEC registers Refer to Section 1.1 on page 62 for a list of abbreviations used in register descriptions. 39.7.1 CEC control register (CEC_CR) Address offset: 0x00 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. TXE OM TXS OM CECEN rs rs rw Res. Res. Res. Res. Res. Res. Res. Res. Res. Bits 31:3 Reserved, must be kept at reset value. 1646/1709 RM0385 Rev 7 Res. Res. Res. RM0385 HDMI-CEC controller (HDMI-CEC) Bit 2 TXEOM: Tx End Of Message The TXEOM bit is set by software to command transmission of the last byte of a CEC message. TXEOM is cleared by hardware at the same time and under the same conditions as for TXSOM. 0: TXDR data byte is transmitted with EOM=0 1: TXDR data byte is transmitted with EOM=1 Note: TXEOM must be set when CECEN=1. TXEOM must be set before writing transmission data to TXDR. If TXEOM is set when TXSOM=0, transmitted message will consist of 1 byte (HEADER) only (PING message) Bit 1 TXSOM: Tx Start Of Message TXSOM is set by software to command transmission of the first byte of a CEC message. If the CEC message consists of only one byte, TXEOM must be set before of TXSOM. Start-Bit is effectively started on the CEC line after SFT is counted. If TXSOM is set while a message reception is ongoing, transmission will start after the end of reception. TXSOM is cleared by hardware after the last byte of the message is sent with a positive acknowledge (TXEND=1), in case of transmission underrun (TXUDR=1), negative acknowledge (TXACKE=1), and transmission error (TXERR=1). It is also cleared by CECEN=0. It is not cleared and transmission is automatically retried in case of arbitration lost (ARBLST=1). TXSOM can be also used as a status bit informing application whether any transmission request is pending or under execution. The application can abort a transmission request at any time by clearing the CECEN bit. 0: No CEC transmission is on-going 1: CEC transmission command Note: TXSOM must be set when CECEN=1. TXSOM must be set when transmission data is available into TXDR. HEADER first four bits containing own peripheral address are taken from TXDR[7:4], not from CEC_CFGR.OAR which is used only for reception. Bit 0 CECEN: CEC enable The CECEN bit is set and cleared by software. CECEN=1 starts message reception and enables the TXSOM control. CECEN=0 disables the CEC peripheral, clears all bits of CEC_CR register and aborts any on-going reception or transmission. 0: CEC peripheral is off 1: CEC peripheral is on 39.7.2 CEC configuration register (CEC_CFGR) This register is used to configure the HDMI-CEC controller. Address offset: 0x04 Reset value: 0x0000 0000 Caution: It is mandatory to write CEC_CFGR only when CECEN=0. 31 30 29 28 27 26 25 24 LSTN 23 22 21 20 19 18 17 16 rw rw rw rw rw rw rw 2 1 0 OAR[14:0] rw rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 Res. SFT OP BRDN OGEN LBPE GEN BRE GEN BRE STP RX TOL rw rw rw rw rw rw Res. Res. Res. Res. Res. Res. rw rw RM0385 Rev 7 SFT[2:0] rw rw rw 1647/1709 1654 HDMI-CEC controller (HDMI-CEC) RM0385 Bit 31 LSTN: Listen mode LSTN bit is set and cleared by software. 0: CEC peripheral receives only message addressed to its own address (OAR). Messages addressed to different destination are ignored. Broadcast messages are always received. 1: CEC peripheral receives messages addressed to its own address (OAR) with positive acknowledge. Messages addressed to different destination are received, but without interfering with the CEC bus: no acknowledge sent. Bits 30:16 OAR[14:0]: Own addresses configuration The OAR bits are set by software to select which destination logical addresses has to be considered in receive mode. Each bit, when set, enables the CEC logical address identified by the given bit position. At the end of HEADER reception, the received destination address is compared with the enabled addresses. In case of matching address, the incoming message is acknowledged and received. In case of non-matching address, the incoming message is received only in listen mode (LSTN=1), but without acknowledge sent. Broadcast messages are always received. Example: OAR = 0b000 0000 0010 0001 means that CEC acknowledges addresses 0x0 and 0x5. Consequently, each message directed to one of these addresses is received. Bits 15:9 Reserved, must be kept at reset value. Bit 8 SFTOP: SFT Option Bit The SFTOPT bit is set and cleared by software. 0: SFT timer starts when TXSOM is set by software 1: SFT timer starts automatically at the end of message transmission/reception. Bit 7 BRDNOGEN: Avoid Error-Bit Generation in Broadcast The BRDNOGEN bit is set and cleared by software. 0: BRE detection with BRESTP=1 and BREGEN=0 on a broadcast message generates an Error-Bit on the CEC line. LBPE detection with LBPEGEN=0 on a broadcast message generates an Error-Bit on the CEC line 1: Error-Bit is not generated in the same condition as above. An Error-Bit is not generated even in case of an SBPE detection in a broadcast message if listen mode is set. Bit 6 LBPEGEN: Generate Error-Bit on Long Bit Period Error The LBPEGEN bit is set and cleared by software. 0: LBPE detection does not generate an Error-Bit on the CEC line 1: LBPE detection generates an Error-Bit on the CEC line Note: If BRDNOGEN=0, an Error-bit is generated upon LBPE detection in broadcast even if LBPEGEN=0 Bit 5 BREGEN: Generate Error-Bit on Bit Rising Error The BREGEN bit is set and cleared by software. 0: BRE detection does not generate an Error-Bit on the CEC line 1: BRE detection generates an Error-Bit on the CEC line (if BRESTP is set) Note: If BRDNOGEN=0, an Error-bit is generated upon BRE detection with BRESTP=1 in broadcast even if BREGEN=0 1648/1709 RM0385 Rev 7 RM0385 HDMI-CEC controller (HDMI-CEC) Bit 4 BRESTP: Rx-Stop on Bit Rising Error The BRESTP bit is set and cleared by software. 0: BRE detection does not stop reception of the CEC message. Data bit is sampled at 1.05 ms. 1: BRE detection stops message reception Bit 3 RXTOL: Rx-Tolerance The RXTOL bit is set and cleared by software. 0: Standard tolerance margin: – Start-Bit, +/- 200 µs rise, +/- 200 µs fall. – Data-Bit: +/- 200 µs rise. +/- 350 µs fall. 1: Extended Tolerance – Start-Bit: +/- 400 µs rise, +/- 400 µs fall – Data-Bit: +/-300 µs rise, +/- 500 µs fall Bits 2:0 SFT[2:0]: Signal Free Time SFT bits are set by software. In the SFT=0x0 configuration the number of nominal data bit periods waited before transmission is ruled by hardware according to the transmission history. In all the other configurations the SFT number is determined by software. ″ 0x0 – 2.5 Data-Bit periods if CEC is the last bus initiator with unsuccessful transmission (ARBLST=1, TXERR=1, TXUDR=1 or TXACKE= 1) – 4 Data-Bit periods if CEC is the new bus initiator – 6 Data-Bit periods if CEC is the last bus initiator with successful transmission (TXEOM=1) ″ 0x1: 0.5 nominal data bit periods ″ 0x2: 1.5 nominal data bit periods ″ 0x3: 2.5 nominal data bit periods ″ 0x4: 3.5 nominal data bit periods ″ 0x5: 4.5 nominal data bit periods ″ 0x6: 5.5 nominal data bit periods ″ 0x7: 6.5 nominal data bit periods RM0385 Rev 7 1649/1709 1654 HDMI-CEC controller (HDMI-CEC) 39.7.3 RM0385 CEC Tx data register (CEC_TXDR) Address offset: 0x8 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. w w w w w w w TXD[7:0] w Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 TXD[7:0]: Tx data TXD is a write-only register containing the data byte to be transmitted. 39.7.4 CEC Rx data register (CEC_RXDR) Address offset: 0xC Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 7 6 5 4 3 2 1 0 r r r 15 14 13 12 11 10 9 8 Res. Res. Res. Res. Res. Res. Res. Res. RXD[7:0] r r r r r Bits 31:8 Reserved, must be kept at reset value. Bits 7:0 RXD[7:0]: Rx data RXD is read-only and contains the last data byte which has been received from the CEC line. 39.7.5 CEC Interrupt and Status Register (CEC_ISR) Address offset: 0x10 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. TX ACKE TX ERR TX UDR TX END TXBR ARB LST RX ACKE LBPE SBPE BRE RX OVR RX END RXBR rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 1650/1709 RM0385 Rev 7 RM0385 HDMI-CEC controller (HDMI-CEC) Bits 31:13 Reserved, must be kept at reset value. Bit 12 TXACKE: Tx-Missing Acknowledge Error In transmission mode, TXACKE is set by hardware to inform application that no acknowledge was received. In case of broadcast transmission, TXACKE informs application that a negative acknowledge was received. TXACKE aborts message transmission and clears TXSOM and TXEOM controls. TXACKE is cleared by software write at 1. Bit 11 TXERR: Tx-Error In transmission mode, TXERR is set by hardware if the CEC initiator detects low impedance on the CEC line while it is released. TXERR aborts message transmission and clears TXSOM and TXEOM controls. TXERR is cleared by software write at 1. Bit 10 TXUDR: Tx-Buffer Underrun In transmission mode, TXUDR is set by hardware if application was not in time to load TXDR before of next byte transmission. TXUDR aborts message transmission and clears TXSOM and TXEOM control bits. TXUDR is cleared by software write at 1 Bit 9 TXEND: End of Transmission TXEND is set by hardware to inform application that the last byte of the CEC message has been successfully transmitted. TXEND clears the TXSOM and TXEOM control bits. TXEND is cleared by software write at 1. Bit 8 TXBR: Tx-Byte Request TXBR is set by hardware to inform application that the next transmission data has to be written to TXDR. TXBR is set when the 4th bit of currently transmitted byte is sent. Application must write the next byte to TXDR within 6 nominal data-bit periods before transmission underrun error occurs (TXUDR). TXBR is cleared by software write at 1. Bit 7 ARBLST: Arbitration Lost ARBLST is set by hardware to inform application that CEC device is switching to reception due to arbitration lost event following the TXSOM command. ARBLST can be due either to a contending CEC device starting earlier or starting at the same time but with higher HEADER priority. After ARBLST assertion TXSOM bit keeps pending for next transmission attempt. ARBLST is cleared by software write at 1. Bit 6 RXACKE: Rx-Missing Acknowledge In receive mode, RXACKE is set by hardware to inform application that no acknowledge was seen on the CEC line. RXACKE applies only for broadcast messages and in listen mode also for not directly addressed messages (destination address not enabled in OAR). RXACKE aborts message reception. RXACKE is cleared by software write at 1. Bit 5 LBPE: Rx-Long Bit Period Error LBPE is set by hardware in case a Data-Bit waveform is detected with Long Bit Period Error. LBPE is set at the end of the maximum bit-extension tolerance allowed by RXTOL, in case falling edge is still longing. LBPE always stops reception of the CEC message. LBPE generates an Error-Bit on the CEC line if LBPEGEN=1. In case of broadcast, Error-Bit is generated even in case of LBPEGEN=0. LBPE is cleared by software write at 1. Bit 4 SBPE: Rx-Short Bit Period Error SBPE is set by hardware in case a Data-Bit waveform is detected with Short Bit Period Error. SBPE is set at the time the anticipated falling edge occurs. SBPE generates an Error-Bit on the CEC line. SBPE is cleared by software write at 1. RM0385 Rev 7 1651/1709 1654 HDMI-CEC controller (HDMI-CEC) RM0385 Bit 3 BRE: Rx-Bit Rising Error BRE is set by hardware in case a Data-Bit waveform is detected with Bit Rising Error. BRE is set either at the time the misplaced rising edge occurs, or at the end of the maximum BRE tolerance allowed by RXTOL, in case rising edge is still longing. BRE stops message reception if BRESTP=1. BRE generates an Error-Bit on the CEC line if BREGEN=1. BRE is cleared by software write at 1. Bit 2 RXOVR: Rx-Overrun RXOVR is set by hardware if RXBR is not yet cleared at the time a new byte is received on the CEC line and stored into RXD. RXOVR assertion stops message reception so that no acknowledge is sent. In case of broadcast, a negative acknowledge is sent. RXOVR is cleared by software write at 1. Bit 1 RXEND: End Of Reception RXEND is set by hardware to inform application that the last byte of a CEC message is received from the CEC line and stored into the RXD buffer. RXEND is set at the same time of RXBR. RXEND is cleared by software write at 1. Bit 0 RXBR: Rx-Byte Received The RXBR bit is set by hardware to inform application that a new byte has been received from the CEC line and stored into the RXD buffer. RXBR is cleared by software write at 1. 39.7.6 CEC interrupt enable register (CEC_IER) Address offset: 0x14 Reset value: 0x0000 0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 3 2 1 0 Res. Res. Res. TXACK TXERR TX TXEND IE IE UDRIE IE rw rw rw rw 8 7 6 5 4 TXBR IE ARBLST IE RXACK IE LBPE IE SBPE IE rw rw rw rw rw Bits 31:13 Reserved, must be kept at reset value. Bit 12 TXACKIE: Tx-Missing Acknowledge Error Interrupt Enable The TXACKEIE bit is set and cleared by software. 0: TXACKE interrupt disabled 1: TXACKE interrupt enabled Bit 11 TXERRIE: Tx-Error Interrupt Enable The TXERRIE bit is set and cleared by software. 0: TXERR interrupt disabled 1: TXERR interrupt enabled Bit 10 TXUDRIE: Tx-Underrun Interrupt Enable The TXUDRIE bit is set and cleared by software. 0: TXUDR interrupt disabled 1: TXUDR interrupt enabled 1652/1709 RM0385 Rev 7 RXOVR RXEND RXBR BREIE IE IE IE rw rw rw rw RM0385 HDMI-CEC controller (HDMI-CEC) Bit 9 TXENDIE: Tx-End Of Message Interrupt Enable The TXENDIE bit is set and cleared by software. 0: TXEND interrupt disabled 1: TXEND interrupt enabled Bit 8 TXBRIE: Tx-Byte Request Interrupt Enable The TXBRIE bit is set and cleared by software. 0: TXBR interrupt disabled 1: TXBR interrupt enabled Bit 7 ARBLSTIE: Arbitration Lost Interrupt Enable The ARBLSTIE bit is set and cleared by software. 0: ARBLST interrupt disabled 1: ARBLST interrupt enabled Bit 6 RXACKIE: Rx-Missing Acknowledge Error Interrupt Enable The RXACKIE bit is set and cleared by software. 0: RXACKE interrupt disabled 1: RXACKE interrupt enabled Bit 5 LBPEIE: Long Bit Period Error Interrupt Enable The LBPEIE bit is set and cleared by software. 0: LBPE interrupt disabled 1: LBPE interrupt enabled Bit 4 SBPEIE: Short Bit Period Error Interrupt Enable The SBPEIE bit is set and cleared by software. 0: SBPE interrupt disabled 1: SBPE interrupt enabled Bit 3 BREIE: Bit Rising Error Interrupt Enable The BREIE bit is set and cleared by software. 0: BRE interrupt disabled 1: BRE interrupt enabled Bit 2 RXOVRIE: Rx-Buffer Overrun Interrupt Enable The RXOVRIE bit is set and cleared by software. 0: RXOVR interrupt disabled 1: RXOVR interrupt enabled Bit 1 RXENDIE: End Of Reception Interrupt Enable The RXENDIE bit is set and cleared by software. 0: RXEND interrupt disabled 1: RXEND interrupt enabled Bit 0 RXBRIE: Rx-Byte Received Interrupt Enable The RXBRIE bit is set and cleared by software. 0: RXBR interrupt disabled 1: RXBR interrupt enabled Caution: (*) It is mandatory to write CEC_IER only when CECEN=0 RM0385 Rev 7 1653/1709 1654 0x14 CEC_IER 1654/1709 RM0385 Rev 7 TXEND TXBR ARBLST RXACKE LBPE SBPE BRE RXOVR RXEND RXBR 0 0 0 0 0 0 0 0 0 0 0 0 0 TXBRIE ARBLSTIE RXACKIE LBPEIE SBPEIE BREIE RXOVRIE RXENDIE RXBRIE Reset value TXENDIE Res. Res. CEC_TXDR Res. 0 TXUDR 0 TXUDRIE 0 Res. 0 TXERR 0 TXERRIE 0 Res. 0 TXACKE 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LSTN Reset value SFTOPT BRDNOGEN LBPEGEN BREGEN BRESTP RXTOL Res. Res. Res. Res. Res. Res. Res. OAR[14:0] Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CEC_CFGR TXACKIE Reset value Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CEC_ISR Res. 0x10 Res. CEC_RXDR Res. 0x0C Res. 0x08 Res. 0x04 Reset value 0 Reset value Refer to Section 2.2.2 on page 69 for the register boundary addresses. 0 0 0 0 0 0 0 0 0 TXSOM CECEN Reset value TXEOM Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CEC_CR Res. 0x00 Res. Offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register name Res. 39.7.7 Res. HDMI-CEC controller (HDMI-CEC) RM0385 HDMI-CEC register map The following table summarizes the HDMI-CEC registers. Table 285. HDMI-CEC register map and reset values 0 0 0 SFT[2:0] TXD[7:0] 0 0 0 0 0 0 0 RXD[7:0] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM0385 Debug support (DBG) 40 Debug support (DBG) 40.1 Overview The STM32F75xxx and STM32F74xxx are built around a Cortex®-M7 with FPU core which contains hardware extensions for advanced debugging features. The debug extensions allow the core to be stopped either on a given instruction fetch (breakpoint) or data access (watchpoint). When stopped, the core’s internal state and the system’s external state may be examined. Once examination is complete, the core and the system may be restored and program execution resumed. The debug features are used by the debugger host when connecting to and debugging the STM32F75xxx and STM32F74xxx MCUs. Two interfaces for debug are available: • Serial wire • JTAG debug port Figure 537. Block diagram of STM32 MCU and Cortex®-M7 with FPU -level debug support STM32F7xx debug support Cortex-M7 debug support Bus matrix D Dcode interface Cortex-M7 core Data System interface JTMS/ SWDIO External private Peripheral bus (PPB) JTDI Bridge JTDO NJTRST SWJ-DP DAP TRACESWO Trace port TPIU AHB-AP TRACECK TRACED[3:0] Internal private Peripheral bus (PPB) NVIC JTCK/ SWCLK DWT DBGMCU FPB ETM ITM MSv34190V1 Note: ® The debug features embedded in the Cortex -M7 with FPU core are a subset of the Arm® CoreSight Components Technical Reference Manual. RM0385 Rev 7 1655/1709 1687 Debug support (DBG) RM0385 The Arm® Cortex®-M7 with FPU core provides integrated on-chip debug support. It is comprised of: • SWJ-DP: Serial wire / JTAG debug port • AHP-AP: AHB access port • ITM: Instrumentation trace macrocell • FPB: Flash patch breakpoint • DWT: Data watchpoint trigger • TPIU: Trace port unit interface (available on larger packages, where the corresponding pins are mapped) • ETM: Embedded Trace Macrocell (available on larger packages, where the corresponding pins are mapped) It also includes debug features dedicated to the STM32F75xxx and STM32F74xxx: • Flexible debug pinout assignment • MCU debug box (support for low-power modes, control over peripheral clocks, etc.) Note: For further information on debug functionality supported by the Arm® Cortex®-M7 with FPU core, refer to the Cortex®-M7 with FPU technical reference manual and to the CoreSight Components Technical Reference Manual (see Section 40.2: Reference Arm® documentation). 40.2 Reference Arm® documentation • Cortex®-M7 with FPU technical reference manual (TRM) (see Related documents on page 1) 40.3 • Arm® Debug Interface V5 architecture specification • Arm® CoreSight Components Technical Reference Manual SWJ debug port (serial wire and JTAG) The core of the STM32F75xxx and STM32F74xxx integrates the Serial Wire / JTAG Debug Port (SWJ-DP). It is an Arm® standard CoreSight debug port that combines a JTAG-DP (5pin) interface and a SW-DP (2-pin) interface. • The JTAG Debug Port (JTAG-DP) provides a 5-pin standard JTAG interface to the AHP-AP port. • The Serial Wire Debug Port (SW-DP) provides a 2-pin (clock + data) interface to the AHP-AP port. In the SWJ-DP, the two JTAG pins of the SW-DP are multiplexed with some of the five JTAG pins of the JTAG-DP. 1656/1709 RM0385 Rev 7 RM0385 Debug support (DBG) Figure 538. SWJ debug port Figure 538 shows that the asynchronous TRACE output (TRACESWO) is multiplexed with TDO. This means that the asynchronous trace can only be used with SW-DP, not JTAG-DP. 40.3.1 Mechanism to select the JTAG-DP or the SW-DP By default, the JTAG-Debug Port is active. If the debugger host wants to switch to the SW-DP, it must provide a dedicated JTAG sequence on TMS/TCK (respectively mapped to SWDIO and SWCLK) which disables the JTAG-DP and enables the SW-DP. This way it is possible to activate the SWDP using only the SWCLK and SWDIO pins. This sequence is: 40.4 1. Send more than 50 TCK cycles with TMS (SWDIO) =1 2. Send the 16-bit sequence on TMS (SWDIO) = 0111100111100111 (MSB transmitted first) 3. Send more than 50 TCK cycles with TMS (SWDIO) =1 Pinout and debug port pins The STM32F75xxx and STM32F74xxx MCUs are available in various packages with different numbers of available pins. As a result, some functionality related to pin availability (TPIU parallel output interface) may differ between packages. RM0385 Rev 7 1657/1709 1687 Debug support (DBG) 40.4.1 RM0385 SWJ debug port pins Five pins are used as outputs from the STM32F75xxx and STM32F74xxx for the SWJ-DP as alternate functions of general-purpose I/Os. These pins are available on all packages. Table 286. SWJ debug port pins JTAG debug port SW debug port SWJ-DP pin name Type 40.4.2 Description Type Debug assignment Pin assign ment JTMS/SWDIO I JTAG Test Mode Selection IO Serial Wire Data Input/Output PA13 JTCK/SWCLK I JTAG Test Clock I Serial Wire Clock PA14 JTDI I JTAG Test Data Input - JTDO/TRACESWO O JTAG Test Data Output - NJTRST I JTAG Test nReset - - PA15 TRACESWO if async trace is enabled - PB3 PB4 Flexible SWJ-DP pin assignment After RESET (SYSRESETn or PORESETn), all five pins used for the SWJ-DP are assigned as dedicated pins immediately usable by the debugger host (note that the trace outputs are not assigned except if explicitly programmed by the debugger host). However, the STM32F75xxx and STM32F74xxx MCUs offer the possibility of disabling some or all of the SWJ-DP ports and so, of releasing (in gray in the table below) the associated pins for general-purpose IO (GPIO) usage. For more details on how to disable SWJ-DP port pins, refer to Section 6.3.2: I/O pin alternate function multiplexer and mapping. Table 287. Flexible SWJ-DP pin assignment SWJ IO pin assigned Available debug ports Note: 1658/1709 PA13 / PA14 / PA15 / JTMS / JTCK / JTDI SWDIO SWCLK PB3 / JTDO PB4 / NJTRST X Full SWJ (JTAG-DP + SW-DP) - Reset State X X X X Full SWJ (JTAG-DP + SW-DP) but without NJTRST X X X X JTAG-DP Disabled and SW-DP Enabled X X - JTAG-DP Disabled and SW-DP Disabled - - Released - When the APB bridge write buffer is full, it takes one extra APB cycle when writing the GPIO_AFR register. This is because the deactivation of the JTAGSW pins is done in two cycles to guarantee a clean level on the nTRST and TCK input signals of the core. • Cycle 1: the JTAGSW input signals to the core are tied to 1 or 0 (to 1 for TRST, TDI and TMS, to 0 for TCK) • Cycle 2: the GPIO controller takes the control signals of the SWJTAG IO pins (like controls of direction, pull-up/down, Schmitt trigger activation, etc.). RM0385 Rev 7 RM0385 40.4.3 Debug support (DBG) Internal pull-up and pull-down on JTAG pins It is necessary to ensure that the JTAG input pins are not floating since they are directly connected to flip-flops to control the debug mode features. Special care must be taken with the SWCLK/TCK pin which is directly connected to the clock of some of these flip-flops. To avoid any uncontrolled IO levels, the device embeds internal pull-ups and pull-downs on the JTAG input pins: • NJTRST: Internal pull-up • JTDI: Internal pull-up • JTMS/SWDIO: Internal pull-up • TCK/SWCLK: Internal pull-down Once a JTAG IO is released by the user software, the GPIO controller takes control again. The reset states of the GPIO control registers put the I/Os in the equivalent state: • NJTRST: AF input pull-up • JTDI: AF input pull-up • JTMS/SWDIO: AF input pull-up • JTCK/SWCLK: AF input pull-down • JTDO: AF output floating The software can then use these I/Os as standard GPIOs. Note: The JTAG IEEE standard recommends to add pull-ups on TDI, TMS and nTRST but there is no special recommendation for TCK. However, for JTCK, the device needs an integrated pull-down. Having embedded pull-ups and pull-downs removes the need to add external resistors. RM0385 Rev 7 1659/1709 1687 Debug support (DBG) 40.4.4 RM0385 Using serial wire and releasing the unused debug pins as GPIOs To use the serial wire DP to release some GPIOs, the user software must change the GPIO (PA15, PB3 and PB4) configuration mode in the GPIO_MODER register. This releases PA15, PB3 and PB4 which now become available as GPIOs. When debugging, the host performs the following actions: Note: • Under system reset, all SWJ pins are assigned (JTAG-DP + SW-DP). • Under system reset, the debugger host sends the JTAG sequence to switch from the JTAG-DP to the SW-DP. • Still under system reset, the debugger sets a breakpoint on vector reset. • The system reset is released and the Core halts. • All the debug communications from this point are done using the SW-DP. The other JTAG pins can then be reassigned as GPIOs by the user software. For user software designs, note that: To release the debug pins, remember that they will be first configured either in input-pull-up (nTRST, TMS, TDI) or pull-down (TCK) or output tristate (TDO) for a certain duration after reset until the instant when the user software releases the pins. When debug pins (JTAG or SW or TRACE) are mapped, changing the corresponding IO pin configuration in the IOPORT controller has no effect. 40.5 STM32F75xxx and STM32F74xxx JTAG Debug Port connection The STM32F75xxx and STM32F74xxx MCUs integrate two serially connected JTAG Debug Ports, the boundary scan Debug Port (IR is 5-bit wide) and the Cortex®-M7 with FPU Debug Port (IR is 4-bit wide). To access the Debug Port of the Cortex®-M7 with FPU for debug purposes: Note: 1660/1709 1. First, it is necessary to shift the BYPASS instruction of the boundary scan Debug Port. 2. Then, for each IR shift, the scan chain contains 9 bits (=5+4) and the unused Debug Port instruction must be shifted in using the BYPASS instruction. 3. For each data shift, the unused Debug Port, which is in BYPASS mode, adds 1 extra data bit in the data scan chain. Important: Once Serial-Wire is selected using the dedicated Arm® JTAG sequence, the boundary scan Debug Port is automatically disabled (JTMS forced high). RM0385 Rev 7 RM0385 Debug support (DBG) Figure 539. JTAG Debug Port connections STM32F7xx NJTRST JTMS SW-DP Selected TMS JTDI TDI nTRST TDO Boundary scan TAP IR is 5-bit wide TMS TDI nTRST TDO Cortex-M7 DP IR is 4-bit wide JTDO MSv36635V1 RM0385 Rev 7 1661/1709 1687 Debug support (DBG) 40.6 RM0385 ID codes and locking mechanism There are several ID codes inside the STM32F75xxx and STM32F74xxx MCUs. ST strongly recommends tools designers to lock their debuggers using the MCU DEVICE ID code located in the external PPB memory map at address 0xE0042000. 40.6.1 MCU device ID code The STM32F75xxx and STM32F74xxx MCUs integrate an MCU ID code. This ID identifies the ST MCU part-number and the die revision. It is part of the DBG_MCU component and is mapped on the external PPB bus (see Section 40.16 on page 1675). This code is accessible using the JTAG debug port (4 to 5 pins) or the SW debug port (two pins) or by the user software. It is even accessible while the MCU is under system reset. Only the DEV_ID(11:0) should be used for identification by the debugger/programmer tools. DBGMCU_IDCODE Address: 0xE004 2000 Only 32-bits access supported. Read-only. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r 5 4 3 2 1 0 r r r r r REV_ID r r r r r r r r r r 11 10 9 8 7 6 15 14 13 12 Res. Res. Res. Res. DEV_ID r r r r r r r Bits 31:16 REV_ID[15:0] Revision identifier This field indicates the revision of the device: 0x1000 = Revision A 0x1001 = Revision Z Bits 15:12 Reserved, must be kept at reset value. Bits 11:0 DEV_ID[11:0]: Device identifier The device ID is 0x449. 40.6.2 Boundary scan Debug Port JTAG ID code The Debug Port of the STM32F75xxx and STM32F74xxx BSC (boundary scan) integrates a JTAG ID code equal to 0x06449041. 40.6.3 Cortex®-M7 with FPU Debug Port The Debug Port of the Arm® Cortex®-M7 with FPU integrates a JTAG ID code. This ID code is the Arm® default one and has not been modified. This code is only accessible by the JTAG Debug Port. This code is 0x5BA00477 (corresponds to Cortex®-M7 with FPU, see Section 40.2: Reference Arm® documentation). 1662/1709 RM0385 Rev 7 RM0385 40.6.4 Debug support (DBG) Cortex®-M7 with FPU JEDEC-106 ID code The Arm® Cortex®-M7 with FPU integrates a JEDEC-106 ID code. It is located in the 4KB ROM table mapped on the internal PPB bus at address 0xE00FF000_0xE00FFFFF. This code is accessible by the JTAG Debug Port (4 to 5 pins) or by the SW Debug Port (two pins) or by the user software. 40.7 JTAG debug port A standard JTAG state machine is implemented with a 4-bit instruction register (IR) and five data registers (for full details, refer to the Cortex®-M7 with FPU technical reference manual (TRM), for references, see Section 40.2: Reference Arm® documentation). Table 288. JTAG debug port data registers IR(3:0) Data register Details 1111 BYPASS [1 bit] - 1110 IDCODE [32 bits] ID CODE 0x06449041 (Arm® Cortex®-M7 with FPU ID Code) DPACC [35 bits] Debug port access register This initiates a debug port and allows access to a debug port register. – When transferring data IN: Bits 34:3 = DATA[31:0] = 32-bit data to transfer for a write request Bits 2:1 = A[3:2] = 2-bit address of a debug port register. Bit 0 = RnW = Read request (1) or write request (0). – When transferring data OUT: Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read request Bits 2:0 = ACK[2:0] = 3-bit Acknowledge: 010 = OK/FAULT 001 = WAIT OTHER = reserved Refer to Table 289 for a description of the A(3:2) bits 1010 RM0385 Rev 7 1663/1709 1687 Debug support (DBG) RM0385 Table 288. JTAG debug port data registers (continued) IR(3:0) 1664/1709 Data register Details 1011 APACC [35 bits] Access port access register Initiates an access port and allows access to an access port register. – When transferring data IN: Bits 34:3 = DATA[31:0] = 32-bit data to shift in for a write request Bits 2:1 = A[3:2] = 2-bit address (sub-address AP registers). Bit 0 = RnW= Read request (1) or write request (0). – When transferring data OUT: Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read request Bits 2:0 = ACK[2:0] = 3-bit Acknowledge: 010 = OK/FAULT 001 = WAIT OTHER = reserved There are many AP Registers (see AHB-AP) addressed as the combination of: – The shifted value A[3:2] – The current value of the DP SELECT register 1000 ABORT [35 bits] Abort register – Bits 31:1 = Reserved – Bit 0 = DAPABORT: write 1 to generate a DAP abort. RM0385 Rev 7 RM0385 Debug support (DBG) Table 289. 32-bit debug port registers addressed through the shifted value A[3:2] Address A(3:2) value 0x0 Description 00 Reserved, must be kept at reset value. 01 DP CTRL/STAT register. Used to: – Request a system or debug power-up – Configure the transfer operation for AP accesses – Control the pushed compare and pushed verify operations. – Read some status flags (overrun, power-up acknowledges) 0x8 10 DP SELECT register: Used to select the current access port and the active 4-words register window. – Bits 31:24: APSEL: select the current AP – Bits 23:8: reserved – Bits 7:4: APBANKSEL: select the active 4-words register window on the current AP – Bits 3:0: reserved 0xC 11 DP RDBUFF register: Used to allow the debugger to get the final result after a sequence of operations (without requesting new JTAG-DP operation) 0x4 40.8 SW debug port 40.8.1 SW protocol introduction This synchronous serial protocol uses two pins: • SWCLK: clock from host to target • SWDIO: bidirectional The protocol allows two banks of registers (DPACC registers and APACC registers) to be read and written to. Bits are transferred LSB-first on the wire. For SWDIO bidirectional management, the line must be pulled-up on the board (100 kΩ recommended by Arm®). Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted where the line is not driven by the host nor the target. By default, this turnaround time is one bit time, however this can be adjusted by configuring the SWCLK frequency. 40.8.2 SW protocol sequence Each sequence consist of three phases: 1. Packet request (8 bits) transmitted by the host 2. Acknowledge response (3 bits) transmitted by the target 3. Data transfer phase (33 bits) transmitted by the host or the target RM0385 Rev 7 1665/1709 1687 Debug support (DBG) RM0385 Table 290. Packet request (8-bits) Bit Name Description 0 Start Must be “1” 1 APnDP 0: DP Access 1: AP Access 2 RnW 0: Write Request 1: Read Request 4:3 A(3:2) Address field of the DP or AP registers (refer to Table 289) 5 Parity Single bit parity of preceding bits 6 Stop 0 7 Park Not driven by the host. Must be read as “1” by the target because of the pull-up Refer to the Cortex®-M7 with FPU TRM for a detailed description of DPACC and APACC registers. The packet request is always followed by the turnaround time (default 1 bit) where neither the host nor target drive the line. Table 291. ACK response (3 bits) Bit 0..2 Name Description 001: FAULT 010: WAIT 100: OK ACK The ACK Response must be followed by a turnaround time only if it is a READ transaction or if a WAIT or FAULT acknowledge has been received. Table 292. DATA transfer (33 bits) Bit 0..31 32 Name Description WDATA or RDATA Write or Read data Parity Single parity of the 32 data bits The DATA transfer must be followed by a turnaround time only if it is a READ transaction. 40.8.3 SW-DP state machine (reset, idle states, ID code) The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It follows the JEP-106 standard. This ID code is the default Arm® one and is set to 0x5BA02477 (corresponding to Cortex®-M7 with FPU). 1666/1709 RM0385 Rev 7 RM0385 Note: Debug support (DBG) Note that the SW-DP state machine is inactive until the target reads this ID code. • The SW-DP state machine is in RESET STATE either after power-on reset, or after the DP has switched from JTAG to SWD or after the line is high for more than 50 cycles • The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles after RESET state. • After RESET state, it is mandatory to first enter into an IDLE state AND to perform a READ access of the DP-SW ID CODE register. Otherwise, the target will issue a FAULT acknowledge response on another transactions. Further details of the SW-DP state machine can be found in the Cortex®-M7 with FPU TRM and the CoreSight Components Technical Reference Manual. 40.8.4 40.8.5 DP and AP read/write accesses • Read accesses to the DP are not posted: the target response can be immediate (if ACK=OK) or can be delayed (if ACK=WAIT). • Read accesses to the AP are posted. This means that the result of the access is returned on the next transfer. If the next access to be done is NOT an AP access, then the DP-RDBUFF register must be read to obtain the result. The READOK flag of the DP-CTRL/STAT register is updated on every AP read access or RDBUFF read request to know if the AP read access was successful. • The SW-DP implements a write buffer (for both DP or AP writes), that enables it to accept a write operation even when other transactions are still outstanding. If the write buffer is full, the target acknowledge response is “WAIT”. With the exception of IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write buffer is full. • Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK cycles are needed after a write transaction (after the parity bit) to make the write effective internally. These cycles should be applied while driving the line low (IDLE state) This is particularly important when writing the CTRL/STAT for a power-up request. If the next transaction (requiring a power-up) occurs immediately, it will fail. SW-DP registers Access to these registers are initiated when APnDP=0 Table 293. SW-DP registers A(3:2) R/W CTRLSEL bit of SELECT register Register 00 Read - IDCODE 00 Write - ABORT RM0385 Rev 7 Notes The manufacturer code is not set to ST code. 0x5BA02477 (identifies the SW-DP) - 1667/1709 1687 Debug support (DBG) RM0385 Table 293. SW-DP registers (continued) A(3:2) CTRLSEL bit of SELECT register Register Notes 01 Read/Write 0 DPCTRL/STAT Purpose is to: – request a system or debug power-up – configure the transfer operation for AP accesses – control the pushed compare and pushed verify operations. – read some status flags (overrun, powerup acknowledges) 01 Read/Write 1 WIRE CONTROL Purpose is to configure the physical serial port protocol (like the duration of the turnaround time) 10 Read - READ RESEND Enables recovery of the read data from a corrupted debugger transfer, without repeating the original AP transfer. 10 Write - SELECT The purpose is to select the current access port and the active 4-words register window READ BUFFER This read buffer is useful because AP accesses are posted (the result of a read AP request is available on the next AP transaction). This read buffer captures data from the AP, presented as the result of a previous read, without initiating a new transaction 11 40.8.6 R/W Read/Write - SW-AP registers Access to these registers are initiated when APnDP=1 There are many AP Registers (see AHB-AP) addressed as the combination of: 1668/1709 • The shifted value A[3:2] • The current value of the DP SELECT register RM0385 Rev 7 RM0385 40.9 Debug support (DBG) AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP Features: • System access is independent of the processor status. • Either SW-DP or JTAG-DP accesses AHB-AP. • The AHB-AP is an AHB master into the Bus Matrix. Consequently, it can access all the data buses (Dcode Bus, System Bus, internal and external PPB bus) but the ICode bus. • Bitband transactions are supported. • AHB-AP transactions bypass the FPB. The address of the 32-bits AHP-AP registers are 6-bits wide (up to 64 words or 256 bytes) and consists of: c) Bits [7:4] = the bits [7:4] APBANKSEL of the DP SELECT register d) Bits [3:2] = the 2 address bits of A(3:2) of the 35-bit packet request for SW-DP. The AHB-AP of the Cortex®-M7 with FPU includes 9 x 32-bits registers: Table 294. Cortex®-M7 with FPU AHB-AP registers Address offset Register name Notes Configures and controls transfers through the AHB interface (size, hprot, status on current transfer, address increment type 0x00 AHB-AP Control and Status Word 0x04 AHB-AP Transfer Address - 0x0C AHB-AP Data Read/Write - 0x10 AHB-AP Banked Data 0 0x14 AHB-AP Banked Data 1 0x18 AHB-AP Banked Data 2 0x1C AHB-AP Banked Data 3 0xF8 AHB-AP Debug ROM Address Base Address of the debug interface 0xFC AHB-AP ID Register Directly maps the 4 aligned data words without rewriting the Transfer Address Register. - Refer to the Cortex®-M7 with FPU TRM for further details. RM0385 Rev 7 1669/1709 1687 Debug support (DBG) 40.10 RM0385 Core debug Core debug is accessed through the core debug registers. Debug access to these registers is by means of the Advanced High-performance Bus (AHB-AP) port. The processor can access these registers directly over the internal Private Peripheral Bus (PPB). It consists of 4 registers: Table 295. Core debug registers Note: Register Description DHCSR The 32-bit Debug Halting Control and Status Register This provides status information about the state of the processor enable core debug halt and step the processor DCRSR The 17-bit Debug Core Register Selector Register: This selects the processor register to transfer data to or from. DCRDR The 32-bit Debug Core Register Data Register: This holds data for reading and writing registers to and from the processor selected by the DCRSR (Selector) register. DEMCR The 32-bit Debug Exception and Monitor Control Register: This provides Vector Catching and Debug Monitor Control. This register contains a bit named TRCENA which enable the use of a TRACE. Important: these registers are not reset by a system reset. They are only reset by a poweron reset. Refer to the Cortex®-M7 with FPU TRM for further details. To Halt on reset, it is necessary to: 1670/1709 • enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control Register • enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status Register. RM0385 Rev 7 RM0385 40.11 Debug support (DBG) Capability of the debugger host to connect under system reset The reset system of the STM32F75xxx and STM32F74xxx MCU comprises the following reset sources: • POR (power-on reset) which asserts a RESET at each power-up. • Internal watchdog reset • Software reset • External reset The Cortex®-M7 with FPU differentiates the reset of the debug part (generally PORRESETn) and the other one (SYSRESETn) This way, it is possible for the debugger to connect under System Reset, programming the Core Debug Registers to halt the core when fetching the reset vector. Then the host can release the system reset and the core will immediately halt without having executed any instructions. In addition, it is possible to program any debug features under System Reset. Note: It is highly recommended for the debugger host to connect (set a breakpoint in the reset vector) under system reset. 40.12 FPB (Flash patch breakpoint) Typically in Cortex-M architecture the FPB unit allows to: • implement hardware breakpoints • patch code and data from code space to system space. This feature gives the possibility to correct software bugs located in the Code Memory Space. Where the use of a Software Patch or a Hardware Breakpoint is exclusive. But there are some major changes in Pelican FPB: • Flash patching is no more supported (there is no FP_REMAP register) • All comparators are for instruction addresses (up to 8 instruction breakpoints) • Programmer’s model for breakpoint comparators is enhanced to allow hardware breakpoint in full address range. RM0385 Rev 7 1671/1709 1687 Debug support (DBG) 40.13 RM0385 DWT (data watchpoint trigger) The DWT unit consists of four comparators. They are configurable as: • a hardware watchpoint or • a trigger to an ETM or • a PC sampler or • a data address sampler The DWT also provides some means to give some profiling informations. For this, some counters are accessible to give the number of: • Clock cycle • Folded instructions • Load store unit (LSU) operations • Sleep cycles • CPI (clock per instructions) • Interrupt overhead 40.14 ITM (instrumentation trace macrocell) 40.14.1 General description The ITM is an application-driven trace source that supports printf style debugging to trace Operating System (OS) and application events, and emits diagnostic system information. The ITM emits trace information as packets which can be generated as: • Software trace. Software can write directly to the ITM stimulus registers to emit packets. • Hardware trace. The DWT generates these packets, and the ITM emits them. • Time stamping. Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate the timestamp. The Cortex®-M7 with FPU clock or the bit clock rate of the Serial Wire Viewer (SWV) output clocks the counter. The packets emitted by the ITM are output to the TPIU (Trace Port Interface Unit). The formatter of the TPIU adds some extra packets (refer to TPIU) and then output the complete packets sequence to the debugger host. The bit TRCEN of the Debug Exception and Monitor Control Register must be enabled before you program or use the ITM. 40.14.2 Time stamp packets, synchronization and overflow packets Time stamp packets encode time stamp information, generic control and synchronization. It uses a 21-bit timestamp counter (with possible prescalers) which is reset at each time stamp packet emission. This counter can be either clocked by the CPU clock or the SWV clock. A synchronization packet consists of 6 bytes equal to 0x80_00_00_00_00_00 which is emitted to the TPIU as 00 00 00 00 00 80 (LSB emitted first). A synchronization packet is a timestamp packet control. It is emitted at each DWT trigger. 1672/1709 RM0385 Rev 7 RM0385 Debug support (DBG) For this, the DWT must be configured to trigger the ITM: the bit CYCCNTENA (bit0) of the DWT Control Register must be set. In addition, the bit2 (SYNCENA) of the ITM Trace Control Register must be set. Note: If the SYNENA bit is not set, the DWT generates Synchronization triggers to the TPIU which will send only TPIU synchronization packets and not ITM synchronization packets. An overflow packet consists is a special timestamp packets which indicates that data has been written but the FIFO was full. Table 296. Main ITM registers Address @E0000FB0 Register ITM lock access Details Write 0xC5ACCE55 to unlock Write Access to the other ITM registers Bits 31-24 = Always 0 Bits 23 = Busy Bits 22-16 = 7-bits ATB ID which identifies the source of the trace data. Bits 15-10 = Always 0 Bits 9:8 = TSPrescale = Time Stamp Prescaler Bits 7-5 = Reserved @E0000E80 ITM trace control Bit 4 = SWOENA = Enable SWV behavior (to clock the timestamp counter by the SWV clock). Bit 3 = DWTENA: Enable the DWT Stimulus Bit 2 = SYNCENA: this bit must be to 1 to enable the DWT to generate synchronization triggers so that the TPIU can then emit the synchronization packets. Bit 1 = TSENA (Timestamp Enable) Bit 0 = ITMENA: Global Enable Bit of the ITM Bit 3: mask to enable tracing ports31:24 @E0000E40 ITM trace privilege Bit 2: mask to enable tracing ports23:16 Bit 1: mask to enable tracing ports15:8 Bit 0: mask to enable tracing ports7:0 @E0000E00 ITM trace enable @E0000000- Stimulus port E000007C registers 0-31 Each bit enables the corresponding Stimulus port to generate trace. Write the 32-bits data on the selected Stimulus Port (32 available) to be traced out. RM0385 Rev 7 1673/1709 1687 Debug support (DBG) RM0385 Example of configuration To output a simple value to the TPIU: • Configure the TPIU and assign TRACE I/Os by configuring the DBGMCU_CR (refer to Section 40.17.2: TRACE pin assignment and Section 40.16.3: Debug MCU configuration register) • Write 0xC5ACCE55 to the ITM Lock Access Register to unlock the write access to the ITM registers • Write 0x00010005 to the ITM Trace Control Register to enable the ITM with Sync enabled and an ATB ID different from 0x00 • Write 0x1 to the ITM Trace Enable Register to enable the Stimulus Port 0 • Write 0x1 to the ITM Trace Privilege Register to unmask stimulus ports 7:0 • Write the value to output in the Stimulus Port Register 0: this can be done by software (using a printf function) 40.15 ETM (Embedded trace macrocell) 40.15.1 General description The ETM enables the reconstruction of program execution. Data are traced using the Data Watchpoint and Trace (DWT) component or the Instruction Trace Macrocell (ITM) whereas instructions are traced using the Embedded Trace Macrocell (ETM). The ETM transmits information as packets and is triggered by embedded resources. These resources must be programmed independently and the trigger source is selected using the Trigger Event Register (0xE0041008). An event could be a simple event (address match from an address comparator) or a logic equation between 2 events. The trigger source is one of the fourth comparators of the DWT module, The following events can be monitored: • Clock cycle matching • Data address matching For more informations on the trigger resources refer to Section 40.13: DWT (data watchpoint trigger). The packets transmitted by the ETM are output to the TPIU (Trace Port Interface Unit). The formatter of the TPIU adds some extra packets (refer to Section 40.17: Pelican TPIU (trace port interface unit)) and then outputs the complete packet sequence to the debugger host. Note: N.B: Cortex-M7 ETM is compliant with Arm ETM architecture v4, which programming model is not backward compatible with Cortex-M4 ETM one (ETM architecture v3.5). 40.15.2 Signal protocol, packet types This part is described in the chapter 6 ETM v4 architecture specification (IHI0064B). 1674/1709 RM0385 Rev 7 RM0385 40.15.3 Debug support (DBG) Main ETM registers For more information on registers refer to the Pelican ETM technical reference manual (DDI0494-2a) and the ETM v4 architecture specification (IHI0064B). 40.15.4 Configuration example To output a simple value to the TPIU: • Configure trace I/Os: enable TRACE_CLKINEN in the STM32F75xxx and STM32F74xxx debug configuration register (DBGMCU_CR). • Write @ E000EDFC 01000000; SCS: set TRCENA, otherwise trace registers are not accessible. • Write @ E00400F0 00000000; TPIU: select SYNC PORT Mode Write @ E0040004 00000008; TPIU: select TPIU PORT SIZE=4 Write @ E0001020 002002CA; WT: PC MATCH Comparator (PC=0x2002CA) Write @ E0001024 00000000; DWT: No mask apply on comparator Write @ E0001028 00000008; DWT: ETM trig on PC on match • • • • ETM: • Write @ E0041004 00000000; Disable ETM • Read @ E004100C 00000003; ETM should be in Idle state • Write @ E0041040 00000002; Instruction trace source ID = 0x2 • Write @ E0041080 00000001; Resource for ViewInst enabling event is “always TRUE” 40.16 • Write @ E004108C 000000FF; Processor comparator selection for Start: • Write @ E0041004 00000001; Enable ETM pc_match0 (=>DWT match) MCU debug component (DBGMCU) The MCU debug component helps the debugger provide support for: 40.16.1 • Low-power modes • Clock control for timers, watchdog, I2C and bxCAN during a breakpoint • Control of the trace pins assignment Debug support for low-power modes To enter low-power mode, the instruction WFI or WFE must be executed. The MCU implements several low-power modes which can either deactivate the CPU clock or reduce the power of the CPU. The core does not allow FCLK or HCLK to be turned off during a debug session. As these are required for the debugger connection, during a debug, they must remain active. The MCU integrates special means to allow the user to debug software in low-power modes. RM0385 Rev 7 1675/1709 1687 Debug support (DBG) RM0385 For this, the debugger host must first set some debug configuration registers to change the low-power mode behavior: 40.16.2 • In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by the debugger. This will feed HCLK with the same clock that is provided to FCLK (system clock previously configured by the software). • In Stop mode, the bit DBG_STOP must be previously set by the debugger. This will enable the internal RC oscillator clock to feed FCLK and HCLK in STOP mode. Debug support for timers, watchdog, bxCAN and I2C During a breakpoint, it is necessary to choose how the counter of timers and watchdog should behave: • They can continue to count inside a breakpoint. This is usually required when a PWM is controlling a motor, for example. • They can stop to count inside a breakpoint. This is required for watchdog purposes. For the bxCAN, the user can choose to block the update of the receive register during a breakpoint. For the I2C, the user can choose to block the SMBUS timeout during a breakpoint. For timers having complementary outputs, when the counter is stopped (DBG_TIMx_STOP=1), the outputs are disabled (as if the MOE bit was reset) for safety purposes. 40.16.3 Debug MCU configuration register This register allows the configuration of the MCU under DEBUG. This concerns: • Low-power mode support • Timer and watchdog counter support • bxCAN communication support • Trace pin assignment This DBGMCU_CR is mapped on the External PPB bus at address 0xE0042004 It is asynchronously reset by the PORESET (and not the system reset). It can be written by the debugger under system reset. If the debugger host does not support these features, it is still possible for the user software to write to these registers. 1676/1709 RM0385 Rev 7 RM0385 Debug support (DBG) 40.16.4 DBGMCU_CR register Address: 0xE004 2004 Only 32-bit access supported POR Reset: 0x0000 0000 (not reset by system reset) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. DBG_ STAND BY DBG_ STOP DBG_ SLEEP rw rw rw Res. Res. Res. Res. Res. Res. Res. Res. TRACE_ MODE [1:0] rw rw TRACE _CLKIN EN rw Res. Bits 31:8 Reserved, must be kept at reset value. Bits 7:5 TRACE_MODE[1:0] and TRACE_CLKINEN: Trace clock and pin assignment control – With TRACE_CLKINEN=0: TRACE_MODE=xx: TRACE output disabled (both synchronous and asynchronous) – With TRACE_CLKINEN=1: – TRACE_MODE[1:0]=00: Aynchronous trace interface enabled at pad level (TRACESWO available only on TDO pad when using Serial Wire mode) / Synchronous trace interface enabled – TRACE_MODE[1:0] different to =00: Asynchronous trace interface disabled / Synchronous trace interface enabled Bits 4:3 Reserved, must be kept at reset value. RM0385 Rev 7 1677/1709 1687 Debug support (DBG) RM0385 Bit 2 DBG_STANDBY: Debug Standby mode 0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered. From software point of view, exiting from Standby is identical than fetching reset vector (except a few status bit indicated that the MCU is resuming from Standby) 1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU generate a system reset during Standby mode so that exiting from Standby is identical than fetching from reset Bit 1 DBG_STOP: Debug Stop mode 0: (FCLK=Off, HCLK=Off) In STOP mode, the clock controller disables all clocks (including HCLK and FCLK). When exiting from STOP mode, the clock configuration is identical to the one after RESET (CPU clocked by the 8 MHz internal RC oscillator (HSI)). Consequently, the software must reprogram the clock controller to enable the PLL, the Xtal, etc. 1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are provided by the internal RC oscillator which remains active in STOP mode. When exiting STOP mode, the software must reprogram the clock controller to enable the PLL, the Xtal, etc. (in the same way it would do in case of DBG_STOP=0) Bit 0 DBG_SLEEP: Debug Sleep mode 0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is clocked by the system clock as previously configured by the software while HCLK is disabled. In Sleep mode, the clock controller configuration is not reset and remains in the previously programmed state. Consequently, when exiting from Sleep mode, the software does not need to reconfigure the clock controller. 1: (FCLK=On, HCLK=On) In this case, when entering Sleep mode, HCLK is fed by the same clock that is provided to FCLK (system clock as previously configured by the software). 40.16.5 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) The DBGMCU_APB1_FZ register is used to configure the MCU under DEBUG. It concerns APB2 peripherals. It is mapped on the external PPB bus at address 0xE004 2008 It is asynchronously reset by the POR (and not the system reset). It can be written by the debugger under system reset. Address: 0xE004 2008 Only 32-bit access is supported. Power-on-reset (POR): 0x0000 0000 (not reset by system reset) 1678/1709 RM0385 Rev 7 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Res. Res. Res. Res. Res. DBG_CAN2_STOP DBG_CAN1_STOP DBG_I2C4_SMBUS_TIMEOUT DBG_I2C3_SMBUS_TIMEOUT DBG_I2C2_SMBUS_TIMEOUT DBG_I2C1_SMBUS_TIMEOUT Res. Res. Res. Res. Res. rw rw rw rw rw rw 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Res. Res. Res. DBG_WWDG_STOP DBG_RTC_STOP DBG_LPTIM1_STOP DBG_TIM14_STOP DBG_TIM13_STOP DBG_TIM12_STOP DBG_TIM7_STOP DBG_TIM6_STOP DBG_TIM5_STOP DBG_TIM4_STOP DBG_TIM3_STOP DBG_TIM2_STOP Debug support (DBG) DBG_IWDG_STOP RM0385 rw rw rw rw rw rw rw rw rw rw rw rw Bits 31:27 Reserved, must be kept at reset value. Bit 26 DBG_CAN2_STOP: Debug CAN2 stopped when Core is halted 0: Same behavior as in normal mode 1: The CAN2 receive registers are frozen Bit 25 DBG_CAN1_STOP: Debug CAN2 stopped when Core is halted 0: Same behavior as in normal mode 1: The CAN2 receive registers are frozen Bit 24 DBG_I2C4_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bit 23 DBG_I2C3_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bit 22 DBG_I2C2_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bit 21 DBG_I2C1_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted 0: Same behavior as in normal mode 1: The SMBUS timeout is frozen Bits 20:13 Reserved, must be kept at reset value. Bit 12 DBG_IWDG_STOP: Debug independent watchdog stopped when core is halted 0: The independent watchdog counter clock continues even if the core is halted 1: The independent watchdog counter clock is stopped when the core is halted Bit 11 DBG_WWDG_STOP: Debug Window Watchdog stopped when Core is halted 0: The window watchdog counter clock continues even if the core is halted 1: The window watchdog counter clock is stopped when the core is halted RM0385 Rev 7 1679/1709 1687 Debug support (DBG) RM0385 Bit 10 DBG_RTC_STOP: RTC stopped when Core is halted 0: The RTC counter clock continues even if the core is halted 1: The RTC counter clock is stopped when the core is halted Bit 9 DBG_LPTIM1_STOP: LPTMI1 counter stopped when core is halted 0: The clock of LPTIM1 counter is fed even if the core is halted 1: The clock of LPTIM1 counter is stopped when the core is halted Bits 8:0 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=2..7, 12..14) 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped and the outputs are disabled when the core is halted 40.16.6 Debug MCU APB2 Freeze register (DBGMCU_APB2_FZ) The DBGMCU_APB2_FZ register is used to configure the MCU under Debug. It concerns APB2 peripherals. This register is mapped on the external PPB bus at address 0xE004 200C It is asynchronously reset by the POR (and not the system reset). It can be written by the debugger under system reset. Address: 0xE004 200C Only 32-bit access is supported. POR: 0x0000 0000 (not reset by system reset) 31 Res. 30 29 Res. Res. 28 Res. 27 Res. 26 Res. 25 Res. 24 Res. 23 Res. 22 Res. 21 Res. 20 Res. 19 Res. 18 rw 15 Res. 14 13 Res. Res. 12 Res. 11 Res. 10 Res. 9 Res. 8 Res. 7 Res. 6 Res. 5 Res. 4 Res. 3 Res. 17 2 Res. rw rw 1 0 DBG_TIM8_ DBG_TIM1_ STOP STOP rw Bits 31:19 16 DBG_TIM11 DBG_TIM10 DBG_TIM9_ _STOP _STOP STOP rw Reserved, must be kept at reset value. Bits 18:16 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=9..11) 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped and the outputs are disabled when the core is halted Bits 15:2 Reserved, must be kept at reset value. Bit 1 DBG_TIM8_STOP: TIM8 counter stopped when core is halted 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped and the output is disabled when the core is halted Bit 0 DBG_TIM1_STOP: TIM1 counter stopped when core is halted 0: The clock of the involved Timer Counter is fed even if the core is halted 1: The clock of the involved Timer counter is stopped and the output is disabled when the core is halted 1680/1709 RM0385 Rev 7 RM0385 Debug support (DBG) 40.17 Pelican TPIU (trace port interface unit) 40.17.1 Introduction The TPIU acts as a bridge between the on-chip trace data from the ITM, the ETM and the external trace capture device. The output data stream encapsulates the trace source ID, that is then captured by a trace port analyzer (TPA). The core embeds a simple TPIU, especially designed for low-cost debug (consisting of a special version of the CoreSight TPIU). Figure 540. TPIU block diagram RM0385 Rev 7 1681/1709 1687 Debug support (DBG) 40.17.2 RM0385 TRACE pin assignment • Asynchronous mode The asynchronous mode requires 1 extra pin and is available on all packages. It is only available if using Serial Wire mode (not in JTAG mode). Table 297. Asynchronous TRACE pin assignment Trace synchronous mode TPIU pin name Type TRACESWO • O Description TRACE Async Data Output Synchronous mode The synchronous mode requires from 2 to 6 extra pins depending on the data trace size and is only available in the larger packages. In addition it is available in JTAG mode and in Serial Wire mode and provides better bandwidth output capabilities than asynchronous trace. Table 298. Synchronous TRACE pin assignment Trace synchronous mode TPIU pin name Type Description TRACECK O TRACE Clock TRACED[3:0] O TRACE Sync Data Outputs Can be 1, 2 or 4. TPIU TRACE pin assignment By default, these pins are NOT assigned. They can be assigned by setting the TRACE_CLKINEN and TRACE_MODE bits in the MCU Debug component configuration register. This configuration has to be done by the debugger host. In addition, the number of pins to assign depends on the trace configuration (asynchronous or synchronous). • Asynchronous mode: 1 extra pin is needed • Synchronous mode: from 2 to 5 extra pins are needed depending on the size of the data trace port register (1, 2 or 4): – TRACECK – TRACED(0) if port size is configured to 1, 2 or 4 – TRACED(1) if port size is configured to 2 or 4 – TRACED(2) if port size is configured to 4 – TRACED(3) if port size is configured to 4 To assign the TRACE pin, the debugger host must program the bits TRACE_CLKINEN and TRACE_MODE[1:0] of the Debug MCU configuration register (DBGMCU_CR). By default the TRACE pins are not assigned. This register is mapped on the external PPB and is reset by the PORESET (and not by the SYSTEM reset). It can be written by the debugger under SYSTEM reset. 1682/1709 RM0385 Rev 7 RM0385 Debug support (DBG) Table 299. Flexible TRACE pin assignment DBGMCU_CR register TRACE IO pin assigned Pins TRAC TRACE assigned for: JTDO/ E_CL _MODE TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3] TRACESWO KINEN [1:0] 0 XX No Trace (default state) 1 00 Asynchronous TRACESWO Trace 1 different Synchronous of 00 Trace 1 bit(2) 1 different Synchronous of 00 Trace 2 bit(2) 1 different Synchronous of 00 Trace 4 bit(2) Released (1) - TRACECK TRACED[0] Released (1) Released (usable as GPIO) - TRACECK TRACED[0] TRACED[1] - - - - TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3] 1. When Serial Wire mode is used, it is released. But when JTAG is used, it is assigned to JTDO. 2. Selected with Bit[3:0] Current port size from TPIU register. Note: By default, the TRACECLKIN input clock of the TPIU is tied to GND. It is assigned to HCLK two clock cycles after the bit TRACE_CLKINEN has been set. The debugger must then program the Trace Mode by writing the PROTOCOL[1:0] bits in the SPP_R (Selected Pin Protocol) register of the TPIU. • PROTOCOL=00: Trace Port Mode (synchronous) • PROTOCOL=01 or 10: Serial Wire (Manchester or NRZ) Mode (asynchronous mode). Default state is 01 It then also configures the TRACE port size by writing the bits [3:0] in the CPSPS_R (Current Sync Port Size Register) of the TPIU: • 0x1 for 1 pin (default state) • 0x2 for 2 pins • 0x8 for 4 pins RM0385 Rev 7 1683/1709 1687 Debug support (DBG) 40.17.3 RM0385 TPIU formatter The purpose of this formatter is to build 128 bit frames containing trace data from, potentially, both the ETM and the ITM, and to allow at a trace analyzer level a correlation between trace packets and emitters. The formatter protocol outputs data in 16-byte frames: • seven bytes of data • eight bytes of mixed-use bytes consisting of: • – 1 bit (LSB) to indicate it is a DATA byte (‘0) or an ID byte (‘1). – 7 bits (MSB) which can be data or change of source ID trace. one byte of auxiliary bits where each bit corresponds to one of the eight mixed-use bytes: – if the corresponding byte was a data, this bit gives bit0 of the data. – if the corresponding byte was an ID change, this bit indicates when that ID change takes effect. Note: Refer to the Arm® CoreSight Architecture Specification v1.0 (Arm® IHI 0029B) for further information 40.17.4 TPIU frame synchronization packets The TPIU can generate two types of synchronization packets: • The Frame Synchronization packet (or Full Word Synchronization packet) It consists of the word: 0x7F_FF_FF_FF (LSB emitted first). This sequence can not occur at any other time provided that the ID source code 0x7F has not been used. It is output periodically between frames. In continuous mode, the TPA must discard all these frames once a synchronization frame has been found. • The Half-Word Synchronization packet It consists of the half word: 0x7F_FF (LSB emitted first). It is output periodically between or within frames. These packets are only generated in continuous mode and enable the TPA to detect that the TRACE port is in IDLE mode (no TRACE to be captured). When detected by the TPA, it must be discarded. 40.17.5 Transmission of the synchronization frame packet There is no Synchronization Counter register implemented in the TPIU of the core. Consequently, the synchronization trigger can only be generated by the DWT. Refer to the registers DWT Control Register (bits SYNCTAP[11:10]) and the DWT Current PC Sampler Cycle Count Register. The TPIU Frame synchronization packet (0x7F_FF_FF_FF) is emitted: • 1684/1709 after each TPIU reset release. This reset is synchronously released with the rising edge of the TRACECLKIN clock. This means that this packet is transmitted when the RM0385 Rev 7 RM0385 Debug support (DBG) TRACE_CLKINEN bit in the DBGMCU_CFG register is set. In this case, the word 0x7F_FF_FF_FF is not followed by any formatted packet. • 40.17.6 at each DWT trigger (assuming DWT has been previously configured). Two cases occur: – If the bit SYNENA of the ITM is reset, only the word 0x7F_FF_FF_FF is emitted without any formatted stream which follows. – If the bit SYNENA of the ITM is set, then the ITM synchronization packets will follow (0x80_00_00_00_00_00), formatted by the TPIU (trace source ID added). Synchronous mode The trace data output size can be configured to 4, 2 or 1 pin: TRACED(3:0) The output clock is output to the debugger (TRACECK) Here, TRACECLKIN is driven internally and is connected to HCLK only when TRACE is used. Note: In this synchronous mode, it is not required to provide a stable clock frequency. The TRACE I/Os (including TRACECK) are driven by the rising edge of TRACLKIN (equal to HCLK). Consequently, the output frequency of TRACECK is equal to HCLK/2. 40.17.7 Asynchronous mode This is a low cost alternative to output the trace using only 1 pin: this is the asynchronous output pin TRACESWO. Obviously there is a limited bandwidth. Single IO trace mode is typically suitable for ITM trace output. Also, formatter is disabled in case of asynchronous trace, so merging of ETM and ITM trace streams is not possible. TRACESWO is multiplexed with JTDO when using the SW-DP pin. This way, this functionality is available in all STM32F75xxx and STM32F74xxx packages. This asynchronous mode requires a constant frequency for TRACECLKIN. For the standard UART (NRZ) capture mechanism, 5% accuracy is needed. The Manchester encoded version is tolerant up to 10%. 40.17.8 TRACECLKIN connection inside the STM32F75xxx and STM32F74xxx In the STM32F75xxx and STM32F74xxx, this TRACECLKIN input is internally connected to HCLK. This means that when in asynchronous trace mode, the application is restricted to use time frames where the CPU frequency is stable. Note: Important: when using asynchronous trace: it is important to be aware that: The default clock of the STM32F75xxx and STM32F74xxx MCUs is the internal RC oscillator. Its frequency under reset is different from the one after reset release. This is because the RC calibration is the default one under system reset and is updated at each system reset release. Consequently, the trace port analyzer (TPA) should not enable the trace (with the TRACE_CLKINEN bit) under system reset, because a Synchronization Frame Packet will be issued with a different bit time than trace packets which will be transmitted after reset release. RM0385 Rev 7 1685/1709 1687 Debug support (DBG) 40.17.9 RM0385 TPIU registers The TPIU APB registers can be read and written only if the bit TRCENA of the Debug Exception and Monitor Control Register (DEMCR) is set. Otherwise, the registers are read as zero (the output of this bit enables the PCLK of the TPIU). Table 300. Important TPIU registers Address Register Description Allows the trace port size to be selected: Bit 0: Port size = 1 Bit 1: Port size = 2 Bit 2: Port size = 3, not supported Bit 3: Port Size = 4 Only 1 bit must be set. By default, the port size is one bit. (0x00000001) 0xE0040004 Current port size 0xE00400F0 Allows the Trace Port Protocol to be selected: Bit1:0= 00: Sync Trace Port Mode Selected pin protocol 01: Serial Wire Output - manchester (default value) 10: Serial Wire Output - NRZ 11: reserved 0xE0040304 Formatter and flush control Bits 31-9 = always ‘0 Bit 8 = TrigIn = always ‘1 to indicate that triggers are indicated Bits 7-4 = always 0 Bits 3-2 = always 0 Bit 1 = EnFCont. In Sync Trace mode (Select_Pin_Protocol register bit1:0=00), this bit is forced to ‘1: the formatter is automatically enabled in continuous mode. In asynchronous mode (Select_Pin_Protocol register bit1:0 <> 00), this bit can be written to activate or not the formatter. Bit 0 = always 0 The resulting default value is 0x102 Note: In synchronous mode, because the TRACECTL pin is not mapped outside the chip, the formatter is always enabled in continuous mode -this way the formatter inserts some control packets to identify the source of the trace packets). 0xE0040300 Formatter and flush status Not used in Cortex®-M7 with FPU, always read as 0x00000008 40.17.10 Example of configuration 1686/1709 • Set the bit TRCENA in the Debug Exception and Monitor Control Register (DEMCR) • Write the TPIU Current Port Size Register to the desired value (default is 0x1 for a 1-bit port size) • Write TPIU Formatter and Flush Control Register to 0x102 (default value) • Write the TPIU Select Pin Protocol to select the sync or async mode. Example: 0x2 for async NRZ mode (UART like) • Write the DBGMCU control register to 0x20 (bit IO_TRACEN) to assign TRACE I/Os for async mode. A TPIU Sync packet is emitted at this time (FF_FF_FF_7F) • Configure the ITM and write the ITM Stimulus register to output a value RM0385 Rev 7 0xE004 200C DBGMCU_ APB2_FZ Res. 0 0 0 0 0 RM0385 Rev 7 DBG_IWDG_STOP DBG_WWDG_STOP DBG_LPTIM1_STOP DBG_RTC_STOP DBG_TIM14_STOP DBG_TIM13_STOP DBG_TIM12_STOP DBG_TIM7_STOP DBG_TIM6_STOP DBG_TIM5_STOP DBG_TIM4_STOP DBG_TIM3_STOP DBG_TIM2_STOP 0 0 0 0 0 0 0 0 0 0 0 0 0 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. DBG_TIM8_STOP DBG_TIM1_STOP Res. Res. X X X X X X X Res. Res. Res. TRACE_ MODE [1:0] TRACE_ Res. X X 0 0 0 DBG_STOP X DBG_SLEEP X Res. DBG_STANDBY X Res. Res. Res. Res. Res. 0 Res. 0 Res. Res. 0 Res. Res. DBG_TIM8_STOP X DBG_I2C2_SMBUS_TIMEOUT X Res. X Res. Res. Res. Res. Res. REV_ID Res. DBG_TIM9_STOP X DBG_TIM5_STOP X Res. 0 DBG_TIM10_STOP X DBG_TIM6_STOP X Res. 0 Res. X Res. DBG_I2C1_SMBUS_TIMEOUT 0 Res. X Res. DBG_TIM7_STOP DBG_I2C2_SMBUS_TIMEOUT 0 Res. X Res. DBG_I2C3_SMBUS_TIMEOUT 0 Res. Reset value Res. DBG_CAN1_STOP DBG_I2C4_SMBUS_TIMEOUT 0 Res. Reset value Res. Res. X Res. Res. X Res.. DBGMCU_CR DBG_CAN2_STOP X Res. X Res. X Res. Res. Res. X Res. DBGMCU _IDCODE DBG_TIM11_STOP Reset value Res. DBGMCU_ APB1_FZ Res. 0xE004 2008 Reset value(1) Res. 0xE004 2004 Res. 0xE004 2000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Register Res. Addr. Res. 40.18 Res. RM0385 Debug support (DBG) DBG register map The following table summarizes the Debug registers. Table 301. DBG register map and reset values DEV_ID 0 0 0 0 0 1. The reset value is product dependent. For more information, refer to Section 40.6.1: MCU device ID code. 1687/1709 1687 Device electronic signature 41 RM0385 Device electronic signature The electronic signature is stored in the Flash memory area. It can be read using the JTAG/SWD or the CPU. It contains factory-programmed identification data that allow the user firmware or other external devices to automatically match its interface to the characteristics of the STM32F75xxx and STM32F74xxx microcontrollers. 41.1 Unique device ID register (96 bits) The unique device identifier is ideally suited: • for use as serial numbers (for example USB string serial numbers or other end applications) • for use as security keys in order to increase the security of code in Flash memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal Flash memory • to activate secure boot processes, etc. The 96-bit unique device identifier provides a reference number which is unique for any device and in any context. These bits can never be altered by the user. The 96-bit unique device identifier can also be read in single bytes/half-words/words in different ways and then be concatenated using a custom algorithm. Base address: 0x1FF0 F420 Address offset: 0x00 Read only = 0xXXXX XXXX where X is factory-programmed 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r r r UID[31:0] r r r r r r r r r r r r r r r r r r r r Bits 31:0 UID[31:0]: X and Y coordinates on the wafer 1688/1709 RM0385 Rev 7 r r RM0385 Device electronic signature Address offset: 0x04 Read only = 0xXXXX XXXX where X is factory-programmed 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 r r r r r r r r r r r r r r r r 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r UID[63:48] UID[47:32] r r r r r r r r r Bits 31:8 UID[63:40]: LOT_NUM[23:0] Lot number (ASCII encoded). Bots 7:0 UID[39:32]: WAF_NUM[7:0] Wafer number (8-bit unsigned number). Address offset: 0x08 Read only = 0xXXXX XXXX where X is factory-programmed 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 UID[95:80] r r r r r r r 15 14 13 12 11 10 9 r r r r r r r r r 8 7 6 5 4 3 2 1 0 r r r r r r r UID[79:64] r r r r r r r r r Bits 31:0 UID[95:64]: LOT_NUM[55:24] Lot number (ASCII encoded). 41.2 Flash size Base address: 0x1FF0 F442 Address offset: 0x00 Read only = 0xXXXX where X is factory-programmed 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 r r r r r r r r F_SIZE r r r r r r r r Bits 15:0 F_ID(15:0): Flash memory size This bitfield indicates the size of the device Flash memory expressed in Kbytes. As an example, 0x0400 corresponds to 1024 Kbytes. RM0385 Rev 7 1689/1709 1690 Device electronic signature 41.3 RM0385 Package data register Base address: 0x1FFF 7BF0 Address offset: 0x00 Read only = 0xXXXX where X is factory-programmed 15 14 13 12 11 Res. Res. Res. Res. Res. 10 9 8 PKG[2:0] rw rw 7 6 5 4 3 2 1 0 Res. Res. Res. Res. Res. Res. Res. Res. rw Bits 15:11 Reserved, must be kept at reset value. Bits 10:8 PGK[2:0]: Package type 0x1xx: LQFP208 and TFBGA216 package 0x011: LQFP176 and UFBGA176 package 0x010: WLCSP143 and LQFP144 package 0x001: LQFP100 package 0x000: Reserved Bits 7:0 Reserved, must be kept at reset value. 1690/1709 RM0385 Rev 7 RM0385 42 Revision history Revision history Table 302. Document revision history Date Revision 21-May-2015 1 Initial release. 2 Updated FMC Section: Updated Table 82: Programmable NAND Flash access parameters memory setup time, memory hold max value. Updated c7amba_fmc_V2_UserSpec: - Updated Section : Common memory space timing register 2..4 (FMC_PMEM) MEMSEY, MEMHOLD, MEMHIZ registers. - Updated Section : Attribute memory space timing registers (FMC_PATT) ATTSET, ATTHOLD, ATTHIZ register. - Updated Table 88: FMC register map and the bitfield description adding [x:x]. and FMC_SDCR2 Bit 13 to bit 31 reserved. - Updated Section : SRAM/NOR-Flash chip-select control registers 1..4 (FMC_BCR1..4) CPSIZE[2:0] bits description adding 011 configuration. Updated SYSARCHI section: - Updated Section 2.1.8: DMA memory bus and Section 2.1.9: DMA peripheral bus adding ‘internal Flash memory’. - Updated Section 2.1.6: CPU AHBS bus. Updated Flash memory section: - Updated Section 3.3.1: Flash memory organization. - Updated Section 3.3.8: Flash Interrupts replacing FLASH_SR by FLASH_CR register. Updated c7amba_ioport_UserSpec removing GPIO port bit reset register (GPIOx_BRR) (x = A..K) in the bit field and in Table 22: GPIO register map and reset values. Updated c7amba_spi2s1_v3_x_UserSpec Section 32.1: Introduction hidding “full duplex and”. Updated LTDC section: - All registers updated, adding [x:x] in the register bit description, register map and putting bold character format. - Updated Section 18.4.2: Layer programmable parameters. - Updated Section 18.7.4: LTDC Total Width Configuration Register (LTDC_TWCR) TOTALW[11:0] bit field. - Updated Section 18.7.5: LTDC Global Control Register (LTDC_GCR) bit 29 description. Updated USART section: -Updated note in Section 31.5.13: USART Smartcard mode about the RTO counter start. - Updated Table 178: USART interrupt requests removing error in the line receiver timeout error. 21-Jul-2015 Changes RM0385 Rev 7 1691/1709 1702 Revision history RM0385 Table 302. Document revision history (continued) Date 1692/1709 Revision Changes 21-Jul-2015 Updated PWR section: Updated: Table 14, Table 15, Table 17 and Table 18 adding ‘No interrupt (for WFI) or event (for WFE) is pending’. Update RTC section: 2 - Updated Section : Programming the wakeup timer point 3: Program the (continued) wakeup auto-reload value. - Updated Section 29.6.4: RTC initialization and status register (RTC_ISR) bit 2 ‘WUTWF: wakeup timer write flag’ description. Updated DCMI section: Updated Section 17.1: DCMI introduction. Output mode not supported. 03-Nov-2015 Updated RCC (Reset and Clock Control) section: - Updated Section 5.3.23: RCC PLLI2S configuration register (RCC_PLLI2SCFGR) PLLI2S[2:0] by PLLI2SR[2:0]. - Updated Section 5.3.2: RCC PLL configuration register (RCC_PLLCFGR) PLLN[8:0]. - Updated Section 5.3.23: RCC PLLI2S configuration register (RCC_PLLI2SCFGR) PLLI2SN[8:0]. - Updated Section 5.3.24: RCC PLLSAI configuration register (RCC_PLLSAICFGR) PLLSAIN[8:0]. Updated RTC2 section: Updated Figure 284: RTC block diagram. Updated GPIO section: Updated Section 6.4.3: GPIO port output speed register (GPIOx_OSPEEDR) (x = A..K) OSPEEDRy[1:0] definition. Updated general-purpose timer: - Updated Table 150: TIMx internal trigger connection TIM2 ITR1 and TIM3_ITR2. - Updated Section 23.4.19: TIM2 option register (TIM2_OR) PTP by ETH_PTP. - Updated Section 23.3.13: One-pulse mode replacing by “Map TI2FP2 on TI2 by writing CC2S=01 in the TIMx_CCMR1 register”. - Removed TIM3_OR register in the bit shield and in the register map. Updated Lptimer1 section: - Updated Section 26.3: LPTIM implementation removing LPTIM2 in the description, removing LPTIM2 option register (LPTIM2_OR) in the bit field and in the register map. - Updated Table 159: STM32F75xxx and STM32F74xxx LPTIM features removing LPTIM2 column. Updated ethernet section: Updated Section 38.3: Ethernet pins on page 1518 removing the column port at the alternate function mapping table and adding reference to the mapping of the datasheet. Updated lcdtft section: Updated Section 18.7.26: LTDC register map fixing AHBP[11:0], AAV[11:0], TOTALW[11:0] and HSW[11:0] at 12 bits. 3 RM0385 Rev 7 RM0385 Revision history Table 302. Document revision history (continued) Date Revision Changes Updated SPI2S section: - Updated Section 32.5.2: Communications between one master and one slave and Section 32.5.3: Standard multi-slave communication figures 340, 341, 342 and 343. - Notes updated and added below the figures. - Added Section 32.5.4: Multi-master communication. Updated FMC section: - Updated Section 13.4.3: SDRAM address mapping. - Updated Section 13.8: FMC register map. - Changed figures for Mode1, ModeA, Mode2, ModeB, ModeC and Muxed write access waveforms (from FSMC to FMC). - Updated Section 13.5.4: NOR Flash/PSRAM controller asynchronous transactions. 3 03-Nov-2015 (continued) - Updated Section : FIFO status and interrupt register (FMC_SR) adding note for Bit0 (IRS) and Bit2 (IFS). - Updated Section : SRAM/NOR-Flash chip-select timing registers 1..4 (FMC_BTR1..4). Updated Section : SRAM/NOR-Flash write timing registers 1..4 (FMC_BWTR1..4). Updated MMAP section: - Updated Section 2.5: Boot configuration embedded bootloader description. Updated I2C2 section: - Updated : I2C timings and Figure 305: Setup and hold timings. Update USB_OTG section: - Updated Section 37: USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS). 21-Dec-2015 4 Updated USART section: Replaced nCTS by CTS - nRTS by RTS - SCLK by CK everywhere in the document. Replaced "w" by "rc_w1" in Section 31.8.9: Interrupt flag clear register (USARTx_ICR). Updated RTOF bit description in USARTx_ISR. Update Low-power timer section: Removed LPTIM1 option register (LPTIM1_OR). Updated advanced control timer section: Updated Section 22.3.16: Using the break function description. Updated BxCan section: Dual can IP implemented. Updated USB section: Updated Section : Choosing the value of TRDT in OTG_GUSBCFG. Updated TRDT bit description in Section 37.15.4: OTG USB configuration register (OTG_GUSBCFG). Added Table 234: TRDT values (FS) and Table 235: TRDT values (HS). Updated Section 37.15.4: OTG USB configuration register (OTG_GUSBCFG) PHYSEL bit “r” to “rw” and PHYSEL description for USB OTG_HS. RM0385 Rev 7 1693/1709 1702 Revision history RM0385 Table 302. Document revision history (continued) Date Revision Changes Updated RTC section: Updated reference to TAMPTS bit in Section 29.3.13: Time-stamp function. Updated ADC section: Added note in Section 15.13.7: ADC watchdog higher threshold register (ADC_HTR) and Section 15.13.8: ADC watchdog lower threshold register (ADC_LTR). Updated LTDC section: Updated Section 18.3.2: LTDC reset and clocks. Updated SDMMC section: Updated limit from 48 to 50 MHz in Section 35.1: SDMMC main features, Section 35.3: SDMMC functional description, Section 35.8.1: SDMMC power control register (SDMMC_POWER), Section 35.8.2: SDMMC clock control register (SDMMC_CLKCR) and in Section 35.8.4: SDMMC command register (SDMMC_CMD). Updated general purpose timer section: Updated reset value to 0xFFFF in Section 23.4.12: TIMx auto-reload register (TIMx_ARR). Updated CC1IF bit description in Section 23.4.5: TIMx status register (TIMx_SR). 4 Added Section 23.3.14: Retriggerable one pulse mode (OPM). 21-Dec-2015 (continued) Update PWR power controller section: Updated Section 4.4.2: PWR power control/status register (PWR_CSR1) ‘EIWUP’ bit 8 introduced in the register field and register map. Updated Table 17 and Table 18 PPDS bit is cleared in Power Control register (PWR_CR1). Updated Table 18: Standby mode entry and exit WUIF bit is cleared in PWR_CSR1, EIWUP bit is set in PWR_CSR1. Updated Section : RTC alternate functions to wake up the device from the Standby mode adding new “c” bullet for the three cases. Updated USART section: Updated Section 31.8.3: Control register 3 (USARTx_CR3) ‘ONEBIT’ bit 11 description adding a note. Updated Electronic signature section: Updated Section 41.1: Unique device ID register (96 bits) UID[31:0] bits used for X,Y coordinates on the wafer, Lot number and Wafer number. Updated interrupts section: Updated Section 11.9.1: Interrupt mask register (EXTI_IMR) MRx to IMx bit description in the bit field and register map. Updated Section 11.9.2: Event mask register (EXTI_EMR) MRx to EMx bit description in the bit field and register map. 1694/1709 RM0385 Rev 7 RM0385 Revision history Table 302. Document revision history (continued) Date Revision Changes Updated FMC section: Updated BUSTURN bit description in Section : SRAM/NOR-Flash chipselect timing registers 1..4 (FMC_BTR1..4). Updated Section 13.7.3: SDRAM controller functional description. Updated Figure 53: NAND Flash controller waveforms for common memory access adding note 2. Updated Section 13.6.5: NAND Flash prewait functionality. Updated Common memory space timing register 2..4 (FMC_PMEM) 4 21-Dec-2015 (continued) MEMHOLD[7:0] description. Updated Attribute memory space timing registers (FMC_PATT) ATTHOLD[7:0] description. Updated Section 13.3: AHB interface. Updated Table 62: FMC_BCRx bit fields bit 10 and 11 description. Updated Flash memory section: Updated Section 3.5: FLASH memory protection read protection (RDP) description and note added. 26-Apr-2016 5 Updated PWR section: – Updated Table 13: Features over all modes cryptographic processor (CRYP), USB OTG_FS, USB OTG_HS and Ethernet rows. Updated DMA section: – Updated Section 8.5.5: DMA stream x configuration register (DMA_SxCR) bit 18 “DBM or reserved” by “DBM” and “rw or r” by “rw”. Updated DMA2D1 section: – Updated Section 9.3.12: DMA2D transfer control (start, suspend, abort and completion) putting “automatic CLUT transfers can also be aborted or suspended by using the ABORT or the SUSP bit of the DMA2D_CR register”. – Updated Section 9.5.8: DMA2D foreground PFC control register (DMA2D_FGPFCCR) START bit property in the table by “rs”. – Updated Section 9.5.10: DMA2D background PFC control register (DMA2D_BGPFCCR) START bit property in the table by “rs”. and START bit description putting “data transfer or automatic foreground CLUT transfer”. Updated RTC section: – Added case of RTC clocked by LSE in Section 29.3.9: Resetting the RTC. Updated RCC section: – Updated Section 5.2.8: RTC/AWU clock adding “the RTC remains clocked and functional under system reset” when the RTC clock is LSE. – Updated Section 5.3.26: RCC dedicated clocks configuration register (DCKCFGR2) and Section 5.3.27: RCC register map bit28 renamed SDMMC1SEL. Updated HASH section: – Updated Figure 146: Message data swapping feature. RM0385 Rev 7 1695/1709 1702 Revision history RM0385 Table 302. Document revision history (continued) Date Revision Changes Updated TIMER section: – Updated Section 25.4.7: TIM6/TIM7 prescaler (TIMx_PSC) PSC[15:0] bits description. – Updated Section 24.4.9: TIM9/TIM12 prescaler (TIMx_PSC) PSC[15:0] bits description. – Updated Section 24.5.1: TIM10/TIM11/TIM13/TIM14 control register 1 (TIMx_CR1) adding OPM bit-field. – Updated Section 24.5.12: TIM10/TIM11/TIM13/TIM14 register map adding OPM bit. – Updated Section 22.4.5: TIM1/TIM8 status register (TIMx_SR) and Section 22.4.25: TIM8 register map CC5IF and CC6IF bit names. – Updated Section 26: Low-power timer (LPTIM) changing register name LPTIMx_regname in LPTIM_regname. Updated FMC section: – Updated Section : SRAM/NOR-Flash chip-select timing registers 1..4 (FMC_BTR1..4) busturn bits description. – Updated Figure 47: Muxed write access waveforms NWE signal negative edge. 5 26-Apr-2016 – Updated Figure 53: NAND Flash controller waveforms for common (continued) memory access replacing ‘MEMxHIZ’ by ‘MEMxHIZ+1’. – Updated Section : Common memory space timing register 2..4 (FMC_PMEM) MEMHOLD[7:0] and Section : Attribute memory space timing registers (FMC_PATT) ATTHOLD[7:0] replacing 257 HCLK by 256 HCLK. – Updated Section : SDRAM Control registers 1,2 (FMC_SDCR1,2) adding RPIPE[1:0] description. Updated I2C2 section: – Updated Section 30.4.4: I2C initialization, Section 30.4.8: I2C master mode and Section 30.7.5: Timing register (I2C_TIMINGR). Updated cover adding the PM0253 programming manual in the related document list. Updated system configuration: – Updated Section 2.1.12: LCD-TFT controller DMA bus description. Updated USART section: – Updated Section 31: Universal synchronous asynchronous receiver transmitter (USART) changing register name USARTx_regname in USART_regname. 1696/1709 RM0385 Rev 7 RM0385 Revision history Table 302. Document revision history (continued) Date Revision Changes Updated LDC-TFT section: – Updated Section 18: LCD-TFT display controller (LTDC). – Updated Section 18.7.15: LTDC layer x window horizontal position configuration register (LTDC_LxWHPCR) removing “all values within this range are allowed” and updating the WHSPPOS[11:0] and WHSTPOS[11:0] bit description. – Updated Section 18.7.15: LTDC layer x window horizontal position configuration register (LTDC_LxWHPCR) removing “all values within this range are allowed” and updating the WVSPPOS[10:0] and WVSTPOS[10:0] bit description. – Updated Table 115: LTDC pins and signal interface modifying ‘Data 5 Enable’ by ‘Not Data Enable’. 26-Apr-2016 (continued) Updated Power Controller (PWR) section: – Updated Section 4.1.4: Voltage regulator removing low voltage mode in under-drive mode. – Updated Section : Entering low-power mode removing low voltage. Updated Flash memory section: – Updated Section 3.3.7: Flash programming sequences adding note about the FLASH_CR register. – Updated Section 3.3.7: Flash programming sequences adding a note in Section : Standard programming. – Updated Section : Modifying user option bytes adding a note about the FLASH_OPTCR register. RM0385 Rev 7 1697/1709 1702 Revision history RM0385 Table 302. Document revision history (continued) Date 05-Oct-2016 1698/1709 Revision Changes 6 Updated RCC section: – Updated Section 5.3.3: RCC clock configuration register (RCC_CFGR) two cautions replacing 90 MHz by 108 MHz and 45 MHz by 54 MHz. – Updated Section 5.3.2: RCC PLL configuration register (RCC_PLLCFGR) PLLP[1:0] bit description replacing ‘180 MHz’ by ‘216 MHz’. Updated RTC section: – Updated Figure 284: RTC block diagram RTC_WUTR ‘ck_spre’ input. – Updated ADD1H and SUB1H bit descriptions in Section 29.6.3: RTC control register (RTC_CR). – Updated Section : RTC backup registers and Section 29.6.20: RTC backup registers (RTC_BKPxR) RTC_BKPxR registers cannot be reset when the Flash readout protection is disabled. – Added caution at the end of Section 29.6.3: RTC control register (RTC_CR). – Updated caution at the end of Section 29.6.16: RTC tamper configuration register (RTC_TAMPCR). Updated FMC section: – Updated Section : SDRAM Control registers 1,2 (FMC_SDCR1,2) replacing ‘KCK_FMC’ by ‘HCLK’ in RPIPE[1:0] description. – Updated Section : SRAM/NOR-Flash chip-select timing registers 1..4 (FMC_BTR1..4) and Section : SRAM/NOR-Flash write timing registers 1..4 (FMC_BWTR1..4) BUSTURN[3:0] bit description replacing ‘FMC’ by ‘HCLK’ clock cycle. Updated LCD-TFT section: – Updated Section 18.4.2: Layer programmable parameters modifying configuring ‘WHSTPOS[10:0] and WHSPPOS[10:0]’ by ‘WVSTPOS[10:0] and WVSPPOS[10:0]’ in the LTDC_LxWVPCR register. – Updated Figure 113: Layer window programmable parameters. – Updated Section : Example of synchronous timings configuration LTDC_SSCR register. Updated USART section: – Updated Section 31.8.8: Interrupt and status register (USART_ISR) RWU bit available independently of the wakeup from stop feature availability. – Updated Section 31.8.12: USART register map. – Updated Table 192: Error calculation for programmed baud rates at fCK = 216 MHz in both cases of oversampling by 8 (OVER8 = 1). Updated I2C2 section: – Updated Section 30.4.8: I2C master mode note in Master communication initialization (address phase) paragraph. – Updated Section 30.7.2: Control register 2 (I2C_CR2) completing the note of bit 13 ‘START’ description. RM0385 Rev 7 RM0385 Revision history Table 302. Document revision history (continued) Date Revision Changes Updated DEBUG section: – Updated Section 40.16.2: Debug support for timers, watchdog, bxCAN and I2C adding a paragraph for timers having complementary outputs. – Updated Section 40.16.5: Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) and Section 40.16.6: Debug MCU APB2 Freeze register (DBGMCU_APB2_FZ) DBG_TIMx_STOP bit description. Updated TIMER section: – Updated Section 22.3.27: DMA burst mode adding note ‘reserved registers can be written with a null value’. – Updated Section 22.3.28: Debug mode adding ‘for safety purposes’ paragraph. – Updated Table 146: Output control bits for complementary OCx and OCxN channels with break feature in Section 22: Advanced-control 6 05-Oct-2016 timers (TIM1/TIM8). (continued) – Updated Section 23.4.13: TIMx capture/compare register 1 (TIMx_CCR1), Section 23.4.14: TIMx capture/compare register 2 (TIMx_CCR2), Section 23.4.15: TIMx capture/compare register 3 (TIMx_CCR3) and Section 23.4.16: TIMx capture/compare register 4 (TIMx_CCR4) bit description adding ‘the CCRx register is read-only and cannot written’ and putting rw/r for all the bits. Updated ADC section: Updated all ‘CCx’ by ‘CHx’ references and removing ‘event’ in: – Figure 70: Single ADC block diagram. – Table 95: External trigger for regular channels. – Table 96: External trigger for injected channels. – Section 15.13.3: ADC control register 2 (ADC_CR2) EXTSEL[3:0] and JEXTSEL[3:0] bit description. RM0385 Rev 7 1699/1709 1702 Revision history RM0385 Table 302. Document revision history (continued) Date 07-Mar-2018 Revision 7 Changes Updated Arm word and added logo. Updated USB section: – Complete re-mastering of the section – Added Section 37.4.2: USB OTG pin and internal signals. – Updated Section 37.15.13: OTG core ID register (OTG_CID). – Updated Section 37.15.38: OTG all endpoints interrupt mask register (OTG_DAINTMSK) replacing bit 18 by bit 19 in OEPM bit description. Updated memory organization section Added Figure 2: Memory map. Updated SPDIRX section: – All reference to spdifrx_ck_symb removed. – Updated Figure 413: SPDIFRX block diagram. – Removed ‘symbol clock generation’ paragraph. Updated general-purpose timer section: – Updated Section 24.5.11: TIM11 option register 1 (TIM11_OR) TI1_RMP[1:0] bits 1/0 description by SPDIFRX_FRAME_SYNC .... SPDIF frames. – Updated Section 23.4.3: TIMx slave mode control register (TIMx_SMCR) Bits 6:4 TS: Trigger selection description removing ‘reserved’. – Updated Section : SDRAM Control registers 1,2 (FMC_SDCR1,2) bits [1:0] ‘01’ description for SPDIFRX_FRAME_SYNC’. – Added Section 24.3.12: Retriggerable one pulse mode (OPM) (TIM12 only). – Added Section 24.3.13: UIF bit remapping. – Added Section 24.3.14: Timer input XOR function. Updated RCC section – Updated Figure 13: Clock tree OTG_HS_SCL renamed by OTG_HS_ULPI_CK. – Updated Section 5.3.21: RCC clock control & status register (RCC_CSR) bit RMVF put in read/write. – Updated Section 5.3.27: RCC register map PADRSTF in PINRSTF. – Updated Section 5.3.20: RCC backup domain control register (RCC_BDCR) adding LSEDRV[1:0] in the description. – Updated Section 5.3.14: RCC APB2 peripheral clock enable register (RCC_APB2ENR) ADC1EN, ADC2EN and ADC2EN are enabled when bit set to ‘1’. Updated Document conventions section: – Updated Section 1.1: List of abbreviations for registers Updated PWR section: – Updated Section 4.1.5: Battery backup domain note removing ‘only one I/O at a time can be used as an output’ sentence. – Updated Section 4.4.2: PWR power control/status register (PWR_CSR1) bits[19:18] UDRDY[1:0] description. – Updated Section 4.1.3: Battery backup domain step 3 of ‘Access to the backup SRAM’ paragraph. 1700/1709 RM0385 Rev 7 RM0385 Revision history Table 302. Document revision history (continued) Date Revision Changes Updated Flash memory section: – Updated Section 3.7.7: Flash option control register (FLASH_OPTCR1) and Section 3.7.8: Flash interface register map reset value at ‘0x0040 0000. Updated FMC section: – Updated Section : SDRAM Control registers 1,2 (FMC_SDCR1,2) replacing ‘KCK_FMC’ by ‘HCLK’ in RPIPE[1:0] description.080’. – Updated SDRAM controller read cycle: CAS latency = 3, RPIPE delay = 0 to 2: Five data. Updated RTC section:. – Updated Section 29.6.3: RTC control register (RTC_CR) WUTE bit description adding note. – Updated Figure 302: RTC block diagram WUCKSEL dividers for /2,4,8,16. Updated ETHERNET section: – Updated Section : Ethernet MAC MII address register (ETH_MACMIIAR) bits[4:2] clock range of setting 100 is valid for 150216 MHz. Updated QUADSPI section: – Added Table 89: QUADSPI pins. 7 07-Mar-2018 (continued) – Updated Section 14.5.1: QUADSPI control register (QUADSPI_CR) PRESCALER[7:0] bit description. Updated DCMI section: – Section DCMI pins merged with Section 17.4.3: DCMI physical interface. – External signals HSYNC, VSYNC and PIXCLK standardized to DCMI_HSYNC, DCMI_VSYNC and DCIM_PIXCLK in the whole document. Updated LTDC section: – Updated Section 18.3.3: LTDC reset and clocks. – Updated CFBP bitfield size in LTDC_LxCFBLR. Updated RNG section: – Updated Section 19: True random number generator (RNG). Updated CRYP section: – Updated Section 20: Cryptographic processor (CRYP). Updated HASH section. – Updated Section 21: Hash processor (HASH). Updated LPTIM section: – Added Section 26.4.2: LPTIM trigger mapping. – Added Table 163: Interrupt events. RM0385 Rev 7 1701/1709 1702 Revision history RM0385 Table 302. Document revision history (continued) Date Revision Changes Updated I2C2 section: – Updated Figure 305: Setup and hold timings. Updated Serial audio section: – Updated Section 33.5.10: SAI register map MCJDIV by MCKDIV bit name. – Added Section 33.3.2: SAI pins and internal signals. Updated USART section: – Updated Table 190: STM32F75xxx and STM32F74xxx USART features adding note 2. Updated SPI2S section: 7 07-Mar-2018 (continued) – Removed text note ‘When the SPI is in slave mode ....the clock is stable in steady state’. – Updated Section 32.5.9: Data transmission and reception procedures cross reference ‘communication using DMA’. – Updated Section 32.7.2: I2S full duplex – Updated Section 32.1: Introduction. – Updated Section 32.9.9: SPIx_I2S prescaler register (SPIx_I2SPR) removing example. Updated SDMMC section: – Updated Section 35.8.8: SDMMC data length register (SDMMC_DLEN) note. 1702/1709 RM0385 Rev 7 Index RM0385 Index A ADC_CCR . . . . . . . . . . . . . . . . . . . . . . . . . . .455 ADC_CDR . . . . . . . . . . . . . . . . . . . . . . . . . . .458 ADC_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . .444 ADC_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .446 ADC_CSR . . . . . . . . . . . . . . . . . . . . . . . . . . .454 ADC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . .454 ADC_HTR . . . . . . . . . . . . . . . . . . . . . . . . . . .449 ADC_JDRx . . . . . . . . . . . . . . . . . . . . . . . . . . .453 ADC_JOFRx . . . . . . . . . . . . . . . . . . . . . . . . .449 ADC_JSQR . . . . . . . . . . . . . . . . . . . . . . . . . .453 ADC_LTR . . . . . . . . . . . . . . . . . . . . . . . . . . . .450 ADC_SMPR1 . . . . . . . . . . . . . . . . . . . . . . . . .448 ADC_SMPR2 . . . . . . . . . . . . . . . . . . . . . . . . .449 ADC_SQR1 . . . . . . . . . . . . . . . . . . . . . . . . . .450 ADC_SQR2 . . . . . . . . . . . . . . . . . . . . . . . . . .451 ADC_SQR3 . . . . . . . . . . . . . . . . . . . . . . . . . .452 ADC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .443 C CAN_BTR . . . . . . . . . . . . . . . . . . . . . . . . . .1310 CAN_ESR . . . . . . . . . . . . . . . . . . . . . . . . . .1309 CAN_FA1R . . . . . . . . . . . . . . . . . . . . . . . . .1320 CAN_FFA1R . . . . . . . . . . . . . . . . . . . . . . . .1319 CAN_FiRx . . . . . . . . . . . . . . . . . . . . . . . . . .1321 CAN_FM1R . . . . . . . . . . . . . . . . . . . . . . . . .1318 CAN_FMR . . . . . . . . . . . . . . . . . . . . . . . . . .1318 CAN_FS1R . . . . . . . . . . . . . . . . . . . . . . . . .1319 CAN_IER . . . . . . . . . . . . . . . . . . . . . . . . . . .1308 CAN_MCR . . . . . . . . . . . . . . . . . . . . . . . . . .1301 CAN_MSR . . . . . . . . . . . . . . . . . . . . . . . . . .1303 CAN_RDHxR . . . . . . . . . . . . . . . . . . . . . . . .1317 CAN_RDLxR . . . . . . . . . . . . . . . . . . . . . . . .1317 CAN_RDTxR . . . . . . . . . . . . . . . . . . . . . . . .1316 CAN_RF0R . . . . . . . . . . . . . . . . . . . . . . . . .1306 CAN_RF1R . . . . . . . . . . . . . . . . . . . . . . . . .1307 CAN_RIxR . . . . . . . . . . . . . . . . . . . . . . . . . .1315 CAN_TDHxR . . . . . . . . . . . . . . . . . . . . . . . .1314 CAN_TDLxR . . . . . . . . . . . . . . . . . . . . . . . .1314 CAN_TDTxR . . . . . . . . . . . . . . . . . . . . . . . .1313 CAN_TIxR . . . . . . . . . . . . . . . . . . . . . . . . . .1312 CAN_TSR . . . . . . . . . . . . . . . . . . . . . . . . . .1304 CEC_CFGR . . . . . . . . . . . . . . . . . . . . . . . . .1647 CEC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . .1646 CEC_IER . . . . . . . . . . . . . . . . . . . . . . . . . . .1652 CEC_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . .1650 CEC_RXDR . . . . . . . . . . . . . . . . . . . . . . . . .1650 1703/1709 CEC_TXDR . . . . . . . . . . . . . . . . . . . . . . . . . 1650 CRC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 CRC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 CRC_IDR . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 CRC_INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 CRC_POL . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 CRYP_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . 609 CRYP_DIN . . . . . . . . . . . . . . . . . . . . . . . . . . 611 CRYP_DMACR . . . . . . . . . . . . . . . . . . . . . . . 613 CRYP_DOUT . . . . . . . . . . . . . . . . . . . . . . . . 612 CRYP_IMSCR . . . . . . . . . . . . . . . . . . . . . . . . 613 CRYP_IV0LR . . . . . . . . . . . . . . . . . . . . . . . . 618 CRYP_IV0RR . . . . . . . . . . . . . . . . . . . . . . . . 619 CRYP_IV1LR . . . . . . . . . . . . . . . . . . . . . . . . 619 CRYP_IV1RR . . . . . . . . . . . . . . . . . . . . . . . . 619 CRYP_K0LR . . . . . . . . . . . . . . . . . . . . . . . . . 615 CRYP_K0RR . . . . . . . . . . . . . . . . . . . . . . . . . 616 CRYP_K1LR . . . . . . . . . . . . . . . . . . . . . . . . . 616 CRYP_K1RR . . . . . . . . . . . . . . . . . . . . . . . . . 616 CRYP_K2LR . . . . . . . . . . . . . . . . . . . . . . . . . 617 CRYP_K2RR . . . . . . . . . . . . . . . . . . . . . . . . . 617 CRYP_K3LR . . . . . . . . . . . . . . . . . . . . . . . . . 618 CRYP_K3RR . . . . . . . . . . . . . . . . . . . . . . . . . 618 CRYP_MISR . . . . . . . . . . . . . . . . . . . . . . . . . 614 CRYP_RISR . . . . . . . . . . . . . . . . . . . . . . . . . 614 CRYP_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 D DAC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 DAC_DHR12L1 . . . . . . . . . . . . . . . . . . . . . . . 477 DAC_DHR12L2 . . . . . . . . . . . . . . . . . . . . . . . 478 DAC_DHR12LD . . . . . . . . . . . . . . . . . . . . . . 479 DAC_DHR12R1 . . . . . . . . . . . . . . . . . . . . . . 476 DAC_DHR12R2 . . . . . . . . . . . . . . . . . . . . . . 478 DAC_DHR12RD . . . . . . . . . . . . . . . . . . . . . . 479 DAC_DHR8R1 . . . . . . . . . . . . . . . . . . . . . . . 477 DAC_DHR8R2 . . . . . . . . . . . . . . . . . . . . . . . 478 DAC_DHR8RD . . . . . . . . . . . . . . . . . . . . . . . 480 DAC_DOR1 . . . . . . . . . . . . . . . . . . . . . . . . . . 480 DAC_DOR2 . . . . . . . . . . . . . . . . . . . . . . . . . . 480 DAC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 DAC_SWTRIGR . . . . . . . . . . . . . . . . . . . . . . 476 DBGMCU_APB2_FZ . . . . . . . . . . . . . 1678, 1680 DBGMCU_CR . . . . . . . . . . . . . . . . . . . . . . . 1677 DBGMCU_IDCODE . . . . . . . . . . . . . . . . . . 1662 DCMI_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . 494 DCMI_CWSIZE . . . . . . . . . . . . . . . . . . . . . . . 505 DCMI_CWSTRT . . . . . . . . . . . . . . . . . . . . . . 505 RM0385 Rev 7 RM0385 Index DCMI_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . .506 DCMI_ESCR . . . . . . . . . . . . . . . . . . . . . . . . .503 DCMI_ESUR . . . . . . . . . . . . . . . . . . . . . . . . .504 DCMI_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . .502 DCMI_IER . . . . . . . . . . . . . . . . . . . . . . . . . . .500 DCMI_MIS . . . . . . . . . . . . . . . . . . . . . . . . . . .501 DCMI_RIS . . . . . . . . . . . . . . . . . . . . . . . . . . .499 DCMI_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . .498 DMA_HIFCR . . . . . . . . . . . . . . . . . . . . . . . . .245 DMA_HISR . . . . . . . . . . . . . . . . . . . . . . . . . . .244 DMA_LIFCR . . . . . . . . . . . . . . . . . . . . . . . . . .245 DMA_LISR . . . . . . . . . . . . . . . . . . . . . . . . . . .243 DMA_SxCR . . . . . . . . . . . . . . . . . . . . . . . . . .246 DMA_SxFCR . . . . . . . . . . . . . . . . . . . . . . . . .251 DMA_SxM0AR . . . . . . . . . . . . . . . . . . . . . . . .250 DMA_SxM1AR . . . . . . . . . . . . . . . . . . . . . . . .250 DMA_SxNDTR . . . . . . . . . . . . . . . . . . . . . . . .249 DMA_SxPAR . . . . . . . . . . . . . . . . . . . . . . . . .250 E ETH_DMABMR . . . . . . . . . . . . . . . . . . . . . .1618 ETH_DMACHRBAR . . . . . . . . . . . . . . . . . . .1631 ETH_DMACHRDR . . . . . . . . . . . . . . . . . . . .1630 ETH_DMACHTBAR . . . . . . . . . . . . . . . . . . .1631 ETH_DMACHTDR . . . . . . . . . . . . . . . . . . . .1630 ETH_DMAIER . . . . . . . . . . . . . . . . . . . . . . .1627 ETH_DMAMFBOCR . . . . . . . . . . . . . . . . . .1629 ETH_DMAOMR . . . . . . . . . . . . . . . . . . . . . .1624 ETH_DMARDLAR . . . . . . . . . . . . . . . . . . . .1620 ETH_DMARPDR . . . . . . . . . . . . . . . . . . . . .1620 ETH_DMARSWTR . . . . . . . . . . . . . . . . . . . .1630 ETH_DMASR . . . . . . . . . . . . . . . . . . . . . . . .1621 ETH_DMATDLAR . . . . . . . . . . . . . . . . . . . .1621 ETH_DMATPDR . . . . . . . . . . . . . . . . . . . . .1619 ETH_MACA0HR . . . . . . . . . . . . . . . . . . . . .1599 ETH_MACA0LR . . . . . . . . . . . . . . . . . . . . . .1600 ETH_MACA1HR . . . . . . . . . . . . . . . . . . . . .1600 ETH_MACA1LR . . . . . . . . . . . . . . . . . . . . . .1601 ETH_MACA2HR . . . . . . . . . . . . . . . . . . . . .1601 ETH_MACA2LR . . . . . . . . . . . . . . . . . . . . . .1602 ETH_MACA3HR . . . . . . . . . . . . . . . . . . . . .1603 ETH_MACA3LR . . . . . . . . . . . . . . . . . . . . . .1603 ETH_MACCR . . . . . . . . . . . . . . . . . . . . . . . .1585 ETH_MACDBGR . . . . . . . . . . . . . . . . . . . . .1597 ETH_MACFCR . . . . . . . . . . . . . . . . . . . . . . .1592 ETH_MACFFR . . . . . . . . . . . . . . . . . . . . . . .1588 ETH_MACHTHR . . . . . . . . . . . . . . . . . . . . .1589 ETH_MACHTLR . . . . . . . . . . . . . . . . . . . . . .1590 ETH_MACIMR . . . . . . . . . . . . . . . . . . . . . . .1599 ETH_MACMIIAR . . . . . . . . . . . . . . . . . . . . .1590 ETH_MACMIIDR . . . . . . . . . . . . . . . . . . . . .1591 ETH_MACPMTCSR . . . . . . . . . . . . . . . . . . 1596 ETH_MACRWUFFR . . . . . . . . . . . . . . . . . . 1594 ETH_MACSR . . . . . . . . . . . . . . . . . . . . . . . 1598 ETH_MACVLANTR . . . . . . . . . . . . . . . . . . . 1593 ETH_MMCCR . . . . . . . . . . . . . . . . . . . . . . . 1605 ETH_MMCRFAECR . . . . . . . . . . . . . . . . . . 1609 ETH_MMCRFCECR . . . . . . . . . . . . . . . . . . 1609 ETH_MMCRGUFCR . . . . . . . . . . . . . . . . . . 1610 ETH_MMCRIMR . . . . . . . . . . . . . . . . . . . . . 1607 ETH_MMCRIR . . . . . . . . . . . . . . . . . . . . . . 1605 ETH_MMCTGFCR . . . . . . . . . . . . . . . . . . . 1609 ETH_MMCTGFMSCCR . . . . . . . . . . . . . . . 1608 ETH_MMCTGFSCCR . . . . . . . . . . . . . . . . . 1608 ETH_MMCTIMR . . . . . . . . . . . . . . . . . . . . . 1607 ETH_MMCTIR . . . . . . . . . . . . . . . . . . . . . . . 1606 ETH_PTPPPSCR . . . . . . . . . . . . . . . . . . . . 1617 ETH_PTPSSIR . . . . . . . . . . . . . . . . . . . . . . 1612 ETH_PTPTSAR . . . . . . . . . . . . . . . . . . . . . . 1615 ETH_PTPTSCR . . . . . . . . . . . . . . . . . . . . . 1610 ETH_PTPTSHR . . . . . . . . . . . . . . . . . . . . . 1613 ETH_PTPTSHUR . . . . . . . . . . . . . . . . . . . . 1614 ETH_PTPTSLR . . . . . . . . . . . . . . . . . . . . . . 1613 ETH_PTPTSLUR . . . . . . . . . . . . . . . . . . . . 1615 ETH_PTPTSSR . . . . . . . . . . . . . . . . . . . . . . 1616 ETH_PTPTTHR . . . . . . . . . . . . . . . . . . . . . . 1616 ETH_PTPTTLR . . . . . . . . . . . . . . . . . . . . . . 1616 EXTI_EMR . . . . . . . . . . . . . . . . . . . . . . . . . . 297 EXTI_FTSR . . . . . . . . . . . . . . . . . . . . . . . . . . 298 EXTI_IMR . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 EXTI_PR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 EXTI_RTSR . . . . . . . . . . . . . . . . . . . . . . . . . . 298 EXTI_SWIER . . . . . . . . . . . . . . . . . . . . . . . . . 299 F FLITF_FCR . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 FLITF_FKEYR . . . . . . . . . . . . . . . . . . . . . . . . . 92 FLITF_FOPTCR . . . . . . . . . . . . . . . . . . . . 95-96 FLITF_FOPTKEYR . . . . . . . . . . . . . . . . . . . . . 92 FLITF_FSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 FMC_BCR1..4 . . . . . . . . . . . . . . . . . . . . . . . . 345 FMC_BTR1..4 . . . . . . . . . . . . . . . . . . . . . . . . 347 FMC_BWTR1..4 . . . . . . . . . . . . . . . . . . . . . . 350 FMC_ECCR . . . . . . . . . . . . . . . . . . . . . . . . . 363 FMC_PATT . . . . . . . . . . . . . . . . . . . . . . . . . . 361 FMC_PCR . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 FMC_PMEM . . . . . . . . . . . . . . . . . . . . . . . . . 360 FMC_SDCMR . . . . . . . . . . . . . . . . . . . . . . . . 378 FMC_SDCR1,2 . . . . . . . . . . . . . . . . . . . . . . . 374 FMC_SDRTR . . . . . . . . . . . . . . . . . . . . . . . . 379 FMC_SDSR . . . . . . . . . . . . . . . . . . . . . . . . . . 380 FMC_SDTR1,2 . . . . . . . . . . . . . . . . . . . . . . . 376 RM0385 Rev 7 1704/1709 Index RM0385 FMC_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 G GPIOx_AFRH . . . . . . . . . . . . . . . . . . . . . . . . .213 GPIOx_AFRL . . . . . . . . . . . . . . . . . . . . . . . . .212 GPIOx_BSRR . . . . . . . . . . . . . . . . . . . . . . . .210 GPIOx_IDR . . . . . . . . . . . . . . . . . . . . . . . . . .210 GPIOx_LCKR . . . . . . . . . . . . . . . . . . . . . . . . .211 GPIOx_MODER . . . . . . . . . . . . . . . . . . . . . . .208 GPIOx_ODR . . . . . . . . . . . . . . . . . . . . . . . . .210 GPIOx_OSPEEDR . . . . . . . . . . . . . . . . . . . . .209 GPIOx_OTYPER . . . . . . . . . . . . . . . . . . . . . .208 GPIOx_PUPDR . . . . . . . . . . . . . . . . . . . . . . .209 H HASH_CR . . . . . . . . . . . . . . . . . . . . . . . . . . .635 HASH_CSR0 . . . . . . . . . . . . . . . . . . . . . . . . .644 HASH_CSRx . . . . . . . . . . . . . . . . . . . . . . . . .644 HASH_DIN . . . . . . . . . . . . . . . . . . . . . . . . . . .638 HASH_HR0 . . . . . . . . . . . . . . . . . . . . . . . . . .640 HASH_HR1 . . . . . . . . . . . . . . . . . . . . . . . . . .640 HASH_HR2 . . . . . . . . . . . . . . . . . . . . . . . . . .641 HASH_HR3 . . . . . . . . . . . . . . . . . . . . . . . . . .641 HASH_HR4 . . . . . . . . . . . . . . . . . . . . . . . . . .641 HASH_HR5 . . . . . . . . . . . . . . . . . . . . . . . . . .641 HASH_HR6 . . . . . . . . . . . . . . . . . . . . . . . . . .642 HASH_HR7 . . . . . . . . . . . . . . . . . . . . . . . . . .642 HASH_IMR . . . . . . . . . . . . . . . . . . . . . . . . . . .642 HASH_SR . . . . . . . . . . . . . . . . . . . . . . . . . . .643 HASH_STR . . . . . . . . . . . . . . . . . . . . . . . . . .639 I I2C_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . . .1004 I2C_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .1007 I2C_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . . .1016 I2C_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . .1014 I2C_OAR1 . . . . . . . . . . . . . . . . . . . . . . . . . .1010 I2C_OAR2 . . . . . . . . . . . . . . . . . . . . . . . . . .1011 I2C_PECR . . . . . . . . . . . . . . . . . . . . . . . . . .1017 I2C_RXDR . . . . . . . . . . . . . . . . . . . . . . . . . .1018 I2C_TIMEOUTR . . . . . . . . . . . . . . . . . . . . . .1013 I2C_TIMINGR . . . . . . . . . . . . . . . . . . . . . . .1012 I2C_TXDR . . . . . . . . . . . . . . . . . . . . . . . . . .1018 I2Cx_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . . .1007 IWDG_KR . . . . . . . . . . . . . . . . . . . . . . . . . . .896 IWDG_PR . . . . . . . . . . . . . . . . . . . . . . . . . . .897 IWDG_RLR . . . . . . . . . . . . . . . . . . . . . . . . . .898 IWDG_SR . . . . . . . . . . . . . . . . . . . . . . . . . . .899 IWDG_WINR . . . . . . . . . . . . . . . . . . . . . . . . .900 1705/1709 L LPTIM_ARR . . . . . . . . . . . . . . . . . . . . . . . . . 891 LPTIM_CFGR . . . . . . . . . . . . . . . . . . . . . . . . 887 LPTIM_CMP . . . . . . . . . . . . . . . . . . . . . . . . . 890 LPTIM_CNT . . . . . . . . . . . . . . . . . . . . . . . . . 891 LPTIM_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . 889 LPTIM_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . 885 LPTIM_IER . . . . . . . . . . . . . . . . . . . . . . . . . . 886 LPTIM_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . 884 LTDC_AWCR . . . . . . . . . . . . . . . . . . . . . . . . 522 LTDC_BCCR . . . . . . . . . . . . . . . . . . . . . . . . . 525 LTDC_BPCR . . . . . . . . . . . . . . . . . . . . . . . . . 521 LTDC_CDSR . . . . . . . . . . . . . . . . . . . . . . . . . 529 LTDC_CPSR . . . . . . . . . . . . . . . . . . . . . . . . . 528 LTDC_GCR . . . . . . . . . . . . . . . . . . . . . . . . . . 523 LTDC_ICR . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 LTDC_IER . . . . . . . . . . . . . . . . . . . . . . . . . . . 526 LTDC_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . 527 LTDC_LIPCR . . . . . . . . . . . . . . . . . . . . . . . . 528 LTDC_LxBFCR . . . . . . . . . . . . . . . . . . . . . . . 536 LTDC_LxCACR . . . . . . . . . . . . . . . . . . . . . . . 534 LTDC_LxCFBAR . . . . . . . . . . . . . . . . . . . . . . 537 LTDC_LxCFBLNR . . . . . . . . . . . . . . . . . . . . . 538 LTDC_LxCFBLR . . . . . . . . . . . . . . . . . . . . . . 537 LTDC_LxCKCR . . . . . . . . . . . . . . . . . . . . . . . 533 LTDC_LxCLUTWR . . . . . . . . . . . . . . . . . . . . 539 LTDC_LxCR . . . . . . . . . . . . . . . . . . . . . . . . . 530 LTDC_LxDCCR . . . . . . . . . . . . . . . . . . . . . . . 535 LTDC_LxPFCR . . . . . . . . . . . . . . . . . . . . . . . 533 LTDC_LxWHPCR . . . . . . . . . . . . . . . . . . . . . 531 LTDC_LxWVPCR . . . . . . . . . . . . . . . . . . . . . 532 LTDC_SRCR . . . . . . . . . . . . . . . . . . . . . . . . . 525 LTDC_SSCR . . . . . . . . . . . . . . . . . . . . . . . . . 521 LTDC_TWCR . . . . . . . . . . . . . . . . . . . . . . . . 523 O OTG_CID . . . . . . . . . . . . . . . . . . . . . . . . . . 1387 OTG_DAINT . . . . . . . . . . . . . . . . . . . . . . . . 1415 OTG_DAINTMSK . . . . . . . . . . . . . . . . . . . . 1415 OTG_DCFG . . . . . . . . . . . . . . . . . . . . . . . . 1407 OTG_DCTL . . . . . . . . . . . . . . . . . . . . . . . . . 1409 OTG_DEACHINT . . . . . . . . . . . . . . . . . . . . 1419 OTG_DEACHINTMSK . . . . . . . . . . . . . . . . 1419 OTG_DIEPCTL0 . . . . . . . . . . . . . . . . . . . . . 1422 OTG_DIEPCTLx . . . . . . . . . . . . . . . . . . . . . 1424 OTG_DIEPDMAx . . . . . . . . . . . . . . . . . . . . 1429 OTG_DIEPEMPMSK . . . . . . . . . . . . . . . . . . 1418 OTG_DIEPINTx . . . . . . . . . . . . . . . . . . . . . . 1426 OTG_DIEPMSK . . . . . . . . . . . . . . . . . . . . . 1412 OTG_DIEPTSIZ0 . . . . . . . . . . . . . . . . . . . . 1428 OTG_DIEPTSIZx . . . . . . . . . . . . . . . . . . . . . 1430 RM0385 Rev 7 RM0385 Index OTG_DIEPTXF0 . . . . . . . . . . . . . . . . . . . . .1384 OTG_DIEPTXFx . . . . . . . . . . . . . . . . . . . . .1392 OTG_DOEPCTL0 . . . . . . . . . . . . . . . . . . . .1431 OTG_DOEPCTLx . . . . . . . . . . . . . . . . . . . . .1436 OTG_DOEPDMAx . . . . . . . . . . . . . . . . . . . .1435 OTG_DOEPINTx . . . . . . . . . . . . . . . . . . . . .1432 OTG_DOEPMSK . . . . . . . . . . . . . . . . . . . . .1413 OTG_DOEPTSIZ0 . . . . . . . . . . . . . . . . . . . .1434 OTG_DOEPTSIZx . . . . . . . . . . . . . . . . . . . .1438 OTG_DSTS . . . . . . . . . . . . . . . . . . . . . . . . .1411 OTG_DTHRCTL . . . . . . . . . . . . . . . . . . . . . .1417 OTG_DTXFSTSx . . . . . . . . . . . . . . . . . . . . .1429 OTG_DVBUSDIS . . . . . . . . . . . . . . . . . . . . .1416 OTG_DVBUSPULSE . . . . . . . . . . . . . . . . . .1416 OTG_GAHBCFG . . . . . . . . . . . . . . . . . . . . .1365 OTG_GCCFG . . . . . . . . . . . . . . . . . . . . . . .1386 OTG_GINTMSK . . . . . . . . . . . . . . . . . . . . . .1378 OTG_GINTSTS . . . . . . . . . . . . . . . . . . . . . .1373 OTG_GLPMCFG . . . . . . . . . . . . . . . . . . . . .1387 OTG_GOTGCTL . . . . . . . . . . . . . . . . . . . . .1360 OTG_GOTGINT . . . . . . . . . . . . . . . . . . . . . .1363 OTG_GRSTCTL . . . . . . . . . . . . . . . . . . . . . .1370 OTG_GRXFSIZ . . . . . . . . . . . . . . . . . . . . . .1384 OTG_GRXSTSP . . . . . . . . . . . . . . . . . . . . .1381 OTG_GRXSTSR . . . . . . . . . . . . . . . . . . . . .1381 OTG_GUSBCFG . . . . . . . . . . . . . . . . . . . . .1367 OTG_HAINT . . . . . . . . . . . . . . . . . . . . . . . . .1396 OTG_HAINTMSK . . . . . . . . . . . . . . . . . . . . .1397 OTG_HCCHARx . . . . . . . . . . . . . . . . . . . . .1400 OTG_HCDMAx . . . . . . . . . . . . . . . . . . . . . .1406 OTG_HCFG . . . . . . . . . . . . . . . . . . . . . . . . .1393 OTG_HCINTMSKx . . . . . . . . . . . . . . . . . . . .1404 OTG_HCINTx . . . . . . . . . . . . . . . . . . . . . . . .1402 OTG_HCSPLTx . . . . . . . . . . . . . . . . . . . . . .1401 OTG_HCTSIZx . . . . . . . . . . . . . . . . . . . . . . .1405 OTG_HFIR . . . . . . . . . . . . . . . . . . . . . . . . . .1394 OTG_HFNUM . . . . . . . . . . . . . . . . . . . . . . .1395 OTG_HNPTXFSIZ . . . . . . . . . . . . . . . . . . . .1384 OTG_HNPTXSTS . . . . . . . . . . . . . . . . . . . .1385 OTG_HPRT . . . . . . . . . . . . . . . . . . . . . . . . .1398 OTG_HPTXFSIZ . . . . . . . . . . . . . . . . . . . . .1392 OTG_HPTXSTS . . . . . . . . . . . . . . . . . . . . . .1395 OTG_HS_DIEPEACHMSK1 . . . . . . . . . . . .1420 OTG_HS_DOEPEACHMSK1 . . . . . . . . . . .1421 OTG_PCGCCTL . . . . . . . . . . . . . . . . . . . . .1439 P PWR_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 PWR_CSR . . . . . . . . . . . . . . . . . . 125, 127, 129 Q QUADSPI _PIR . . . . . . . . . . . . . . . . . . . . . . . 411 QUADSPI _PSMAR . . . . . . . . . . . . . . . . . . . 410 QUADSPI _PSMKR . . . . . . . . . . . . . . . . . . . 410 QUADSPI_ABR . . . . . . . . . . . . . . . . . . . . . . . 409 QUADSPI_AR . . . . . . . . . . . . . . . . . . . . . . . . 408 QUADSPI_CCR . . . . . . . . . . . . . . . . . . . . . . 406 QUADSPI_CR . . . . . . . . . . . . . . . . . . . . . . . . 400 QUADSPI_DCR . . . . . . . . . . . . . . . . . . . . . . 403 QUADSPI_DLR . . . . . . . . . . . . . . . . . . . . . . . 405 QUADSPI_DR . . . . . . . . . . . . . . . . . . . . . . . . 409 QUADSPI_FCR . . . . . . . . . . . . . . . . . . . . . . . 405 QUADSPI_LPTR . . . . . . . . . . . . . . . . . . . . . . 411 QUADSPI_SR . . . . . . . . . . . . . . . . . . . . . . . . 404 R RCC_AHB1ENR . . . . . . . . . . . . . . . . . . . . . . 163 RCC_AHB1LPENR . . . . . . . . . . . . . . . . . . . . 173 RCC_AHB1RSTR . . . . . . . . . . . . . . . . . . . . . 153 RCC_AHB2ENR . . . . . . . . . . . . . . . . . . . . . . 165 RCC_AHB2LPENR . . . . . . . . . . . . . . . . . . . . 175 RCC_AHB2RSTR . . . . . . . . . . . . . . . . . . . . . 156 RCC_AHB3ENR . . . . . . . . . . . . . . . . . . . . . . 166 RCC_AHB3LPENR . . . . . . . . . . . . . . . . . . . . 176 RCC_AHB3RSTR . . . . . . . . . . . . . . . . . . . . . 157 RCC_APB1ENR . . . . . . . . . . . . . . . . . . . . . . 166 RCC_APB1LPENR . . . . . . . . . . . . . . . . . . . . 177 RCC_APB1RSTR . . . . . . . . . . . . . . . . . . . . . 157 RCC_APB2ENR . . . . . . . . . . . . . . . . . . . . . . 170 RCC_APB2LPENR . . . . . . . . . . . . . . . . . . . . 181 RCC_APB2RSTR . . . . . . . . . . . . . . . . . . . . . 161 RCC_BDCR . . . . . . . . . . . . . . . . . . . . . . . . . 183 RCC_CFGR . . . . . . . . . . . . . . . . . . . . . . . . . 148 RCC_CIR . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 RCC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 RCC_CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 RCC_PLLCFGR . . . . . . . . . . . . . . 146, 187, 190 RCC_SSCGR . . . . . . . . . . . . . . . . . . . . . . . . 186 RNG_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551 RNG_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 RNG_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 RTC_ALRMAR . . . . . . . . . . . . . . . . . . . . . . . 938 RTC_ALRMBR . . . . . . . . . . . . . . . . . . . . . . . 939 RTC_ALRMBSSR . . . . . . . . . . . . . . . . . . . . . 950 RTC_BKPxR . . . . . . . . . . . . . . . . . . . . . . . . . 951 RTC_CALR . . . . . . . . . . . . . . . . . . . . . . . . . . 945 RTC_CR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930 RTC_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929 RTC_ISR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933 RTC_OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951 RTC_PRER . . . . . . . . . . . . . . . . . . . . . . . . . . 936 RM0385 Rev 7 1706/1709 Index RM0385 RTC_SHIFTR . . . . . . . . . . . . . . . . . . . . . . . . .941 RTC_SSR . . . . . . . . . . . . . . . . . . . . . . . . . . .940 RTC_TR . . . . . . . . . . . . . . . . . . . . . . . . . . . . .928 RTC_TSDR . . . . . . . . . . . . . . . . . . . . . . . . . .943 RTC_TSSSR . . . . . . . . . . . . . . . . . . . . . . . . .944 RTC_TSTR . . . . . . . . . . . . . . . . . . . . . . . . . .942 RTC_WPR . . . . . . . . . . . . . . . . . . . . . . . . . . .940 RTC_WUTR . . . . . . . . . . . . . . . . . . . . . . . . . .937 S SAI_ACLRFR . . . . . . . . . . . . . . . . . . . . . . . .1185 SAI_ACR1 . . . . . . . . . . . . . . . . . . . . . . . . . .1174 SAI_ACR2 . . . . . . . . . . . . . . . . . . . . . . . . . .1177 SAI_ADR . . . . . . . . . . . . . . . . . . . . . . . . . . .1186 SAI_AFRCR . . . . . . . . . . . . . . . . . . . . . . . . .1179 SAI_AIM . . . . . . . . . . . . . . . . . . . . . . . . . . . .1182 SAI_ASLOTR . . . . . . . . . . . . . . . . . . . . . . . .1181 SAI_ASR . . . . . . . . . . . . . . . . . . . . . . . . . . .1183 SAI_BCLRFR . . . . . . . . . . . . . . . . . . . . . . . .1185 SAI_BCR1 . . . . . . . . . . . . . . . . . . . . . . . . . .1174 SAI_BCR2 . . . . . . . . . . . . . . . . . . . . . . . . . .1177 SAI_BDR . . . . . . . . . . . . . . . . . . . . . . . . . . .1186 SAI_BFRCR . . . . . . . . . . . . . . . . . . . . . . . . .1179 SAI_BIM . . . . . . . . . . . . . . . . . . . . . . . . . . . .1182 SAI_BSLOTR . . . . . . . . . . . . . . . . . . . . . . . .1181 SAI_BSR . . . . . . . . . . . . . . . . . . . . . . . . . . .1183 SAI_GCR . . . . . . . . . . . . . . . . . . . . . . . . . . .1174 SDMMC_ARG . . . . . . . . . . . . . . . . . . . . . . .1266 SDMMC_CLKCR . . . . . . . . . . . . . . . . . . . . .1264 SDMMC_DCOUNT . . . . . . . . . . . . . . . . . . .1272 SDMMC_DCTRL . . . . . . . . . . . . . . . . . . . . .1269 SDMMC_DLEN . . . . . . . . . . . . . . . . . . . . . .1269 SDMMC_DTIMER . . . . . . . . . . . . . . . . . . . .1268 SDMMC_FIFO . . . . . . . . . . . . . . . . . . . . . . .1278 SDMMC_ICR . . . . . . . . . . . . . . . . . . . . . . . .1273 SDMMC_MASK . . . . . . . . . . . . . . . . . . . . . .1275 SDMMC_POWER . . . . . . . . . . . . . . . . . . . .1264 SDMMC_RESPCMD . . . . . . . . . . . . . . . . . .1267 SDMMC_RESPx . . . . . . . . . . . . . . . . . . . . .1267 SDMMC_STA . . . . . . . . . . . . . . . . . . . . . . . .1272 SPDIFRX_CR . . . . . . . . . . . . . . . . . . . . . . .1210 SPDIFRX_CSR . . . . . . . . . . . . . . . . . . . . . .1219 SPDIFRX_DIR . . . . . . . . . . . . . . . . . . . . . . .1219 SPDIFRX_DR . . . . . . . . . . . . . . . . . . . . . . .1216 SPDIFRX_FMT1_DR . . . . . . . . . . . . . . . . . .1217 SPDIFRX_FMT2_DR . . . . . . . . . . . . . . . . . .1218 SPDIFRX_IFCR . . . . . . . . . . . . . . . . . . . . . .1215 SPDIFRX_IMR . . . . . . . . . . . . . . . . . . . . . . .1212 SPDIFRX_SR . . . . . . . . . . . . . . . . . . . . . . . .1213 SPIx_CR1 . . . . . . . . . . . . . . . . . . . . . . . . . .1132 SPIx_CR2 . . . . . . . . . . . . . . . . . . . . . . . . . .1134 1707/1709 SPIx_CRCPR . . . . . . . . . . . . . . . . . . . . . . . 1138 SPIx_DR . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138 SPIx_I2SCFGR . . . . . . . . . . . . . . . . . . . . . . 1141 SPIx_I2SPR . . . . . . . . . . . . . . . . . . . . . . . . 1143 SPIx_RXCRCR . . . . . . . . . . . . . . . . . . . . . . 1140 SPIx_SR . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137 SPIx_TXCRCR . . . . . . . . . . . . . . . . . . . . . . 1140 SYSCFG_EXTICR1 . . . . . . . . . . . . . . . . . . . 218 SYSCFG_EXTICR2 . . . . . . . . . . . . . . . . . . . 218 SYSCFG_EXTICR3 . . . . . . . . . . . . . . . . . . . 219 SYSCFG_EXTICR4 . . . . . . . . . . . . . . . . . . . 220 SYSCFG_MEMRMP . . . . . . . . . . . . . . . . . . . 216 T TIM2_OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 TIM5_OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807 TIMx_ARR . . . . . . . . . . .726, 803, 846, 857, 871 TIMx_BDTR . . . . . . . . . . . . . . . . . . . . . . . . . . 729 TIMx_CCER . . . . . . . . . . . . . 722, 801, 844, 855 TIMx_CCMR1 . . . . . . . . . . . . 716, 795, 840, 853 TIMx_CCMR2 . . . . . . . . . . . . . . . . . . . . 720, 799 TIMx_CCMR3 . . . . . . . . . . . . . . . . . . . . . . . . 734 TIMx_CCR1 . . . . . . . . . . 727, 803, 846, 857-858 TIMx_CCR2 . . . . . . . . . . . . . . . . . . 728, 804, 846 TIMx_CCR3 . . . . . . . . . . . . . . . . . . . . . . 728, 804 TIMx_CCR4 . . . . . . . . . . . . . . . . . . . . . . 729, 805 TIMx_CCR5 . . . . . . . . . . . . . . . . . . . . . . . . . . 735 TIMx_CCR6 . . . . . . . . . . . . . . . . . . . . . . . . . . 736 TIMx_CNT . . . . . . . . . . .726, 802, 845, 856, 870 TIMx_CR1 . . . . . . . . . . .705, 786, 835, 850, 867 TIMx_CR2 . . . . . . . . . . . . . . . . . . . 706, 787, 869 TIMx_DCR . . . . . . . . . . . . . . . . . . . . . . . 732, 806 TIMx_DIER . . . . . . . . . .711, 792, 838, 851, 869 TIMx_DMAR . . . . . . . . . . . . . . . . . . . . . 733, 806 TIMx_EGR . . . . . . . . . . .715, 794, 839, 852, 870 TIMx_PSC . . . . . . . . . . .726, 803, 845, 857, 871 TIMx_RCR . . . . . . . . . . . . . . . . . . . . . . . . . . . 727 TIMx_SMCR . . . . . . . . . . . . . . . . . 709, 789, 836 TIMx_SR . . . . . . . . . . . .713, 793, 838, 851, 870 U USART_BRR . . . . . . . . . . . . . . . . . . . . . . . . 1073 USART_CR1 . . . . . . . . . . . . . . . . . . . . . . . . 1064 USART_CR2 . . . . . . . . . . . . . . . . . . . . . . . . 1067 USART_CR3 . . . . . . . . . . . . . . . . . . . . . . . . 1070 USART_GTPR . . . . . . . . . . . . . . . . . . . . . . 1074 USART_ICR . . . . . . . . . . . . . . . . . . . . . . . . 1081 USART_ISR . . . . . . . . . . . . . . . . . . . . . . . . 1077 USART_RDR . . . . . . . . . . . . . . . . . . . . . . . 1082 USART_RQR . . . . . . . . . . . . . . . . . . . . . . . 1076 USART_RTOR . . . . . . . . . . . . . . . . . . . . . . 1075 RM0385 Rev 7 RM0385 Index USART_TDR . . . . . . . . . . . . . . . . . . . . . . . .1083 W WWDG_CFR . . . . . . . . . . . . . . . . . . . . . . . . .906 WWDG_CR . . . . . . . . . . . . . . . . . . . . . . . . . .906 WWDG_SR . . . . . . . . . . . . . . . . . . . . . . . . . .907 RM0385 Rev 7 1708/1709 RM0385 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2018 STMicroelectronics – All rights reserved RM0385 Rev 7 1709/1709 1709
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No Page Layout : SinglePage Page Mode : UseNone Page Count : 1709 Producer : Acrobat Distiller 11.0 (Windows); modified using iText 2.1.7 by 1T3XT Keywords : Technical Literature, 026670, Product Development, Specification, Reference manual, STM32F745IE, STM32F745IG, STM32F745VE, STM32F745VG, STM32F745ZE, STM32F745ZG, STM32F746BE, STM32F746BG, STM32F746IE, STM32F746IG, STM32F746NE, STM32F746NG, STM32F746VE, STM32F746VG, STM32F746ZE, STM32F746ZG, STM32F756BG, STM32F756IG, STM32F756NG, STM32F756VG, STM32F756ZG Modify Date : 2018:03:09 11:08:09+01:00 Subject : - Creator : C2 v4.2.0220 build 670 - c2_rendition_config : Techlit_Active Revision : 7 Title : STM32F75xxx and STM32F74xxx advanced Arm®-based 32-bit MCUs Alternate Name : RM0385 Classification : Unclassified Doc ID : RM0385 Document Type : Reference manual Create Date : 2018:03:07 11:29:41Z Author : STMICROELECTRONICSEXIF Metadata provided by EXIF.tools