ISM_T12_PRE_VII Solution Manual

User Manual:

Open the PDF directly: View PDF PDF.
Page Count: 439

DownloadISM_T12_PRE_VII Solution Manual
Open PDF In BrowserView PDF
INSTRUCTOR’S
SOLUTIONS MANUAL
MULTIVARIABLE
WILLIAM ARDIS
Collin County Community College

THOMAS’ CALCULUS
TWELFTH EDITION
BASED ON THE ORIGINAL WORK BY

George B. Thomas, Jr.
Massachusetts Institute of Technology

AS REVISED BY

Maurice D. Weir
Naval Postgraduate School

Joel Hass
University of California, Davis

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The author and publisher shall not be liable in
any event for incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.
Reproduced by Addison-Wesley from electronic files supplied by the author.
Copyright © 2010, 2005, 2001 Pearson Education, Inc.
Publishing as Pearson Addison-Wesley, 75 Arlington Street, Boston, MA 02116.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United States of America.
ISBN-13: 978-0-321-60072-1
ISBN-10: 0-321-60072-X
1 2 3 4 5 6 BB 14 13 12 11 10

PREFACE TO THE INSTRUCTOR
This Instructor's Solutions Manual contains the solutions to every exercise in the 12th Edition of THOMAS' CALCULUS
by Maurice Weir and Joel Hass, including the Computer Algebra System (CAS) exercises. The corresponding Student's
Solutions Manual omits the solutions to the even-numbered exercises as well as the solutions to the CAS exercises (because
the CAS command templates would give them all away).
In addition to including the solutions to all of the new exercises in this edition of Thomas, we have carefully revised or
rewritten every solution which appeared in previous solutions manuals to ensure that each solution
ì conforms exactly to the methods, procedures and steps presented in the text
ì is mathematically correct
ì includes all of the steps necessary so a typical calculus student can follow the logical argument and algebra
ì includes a graph or figure whenever called for by the exercise, or if needed to help with the explanation
ì is formatted in an appropriate style to aid in its understanding
Every CAS exercise is solved in both the MAPLE and MATHEMATICA computer algebra systems. A template showing
an example of the CAS commands needed to execute the solution is provided for each exercise type. Similar exercises within
the text grouping require a change only in the input function or other numerical input parameters associated with the problem
(such as the interval endpoints or the number of iterations).
For more information about other resources available with Thomas' Calculus, visit http://pearsonhighered.com.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

TABLE OF CONTENTS
10 Infinite Sequences and Series 569
10.1 Sequences 569
10.2 Infinite Series 577
10.3 The Integral Test 583
10.4 Comparison Tests 590
10.5 The Ratio and Root Tests 597
10.6 Alternating Series, Absolute and Conditional Convergence 602
10.7 Power Series 608
10.8 Taylor and Maclaurin Series 617
10.9 Convergence of Taylor Series 621
10.10 The Binomial Series and Applications of Taylor Series 627
Practice Exercises 634
Additional and Advanced Exercises 642

11 Parametric Equations and Polar Coordinates 647
11.1
11.2
11.3
11.4
11.5
11.6
11.7

Parametrizations of Plane Curves 647
Calculus with Parametric Curves 654
Polar Coordinates 662
Graphing in Polar Coordinates 667
Areas and Lengths in Polar Coordinates 674
Conic Sections 679
Conics in Polar Coordinates 689
Practice Exercises 699
Additional and Advanced Exercises 709

12 Vectors and the Geometry of Space 715
12.1
12.2
12.3
12.4
12.5
12.6

Three-Dimensional Coordinate Systems 715
Vectors 718
The Dot Product 723
The Cross Product 728
Lines and Planes in Space 734
Cylinders and Quadric Surfaces 741
Practice Exercises 746
Additional Exercises 754

13 Vector-Valued Functions and Motion in Space 759
13.1
13.2
13.3
13.4
13.5
13.6

Curves in Space and Their Tangents 759
Integrals of Vector Functions; Projectile Motion 764
Arc Length in Space 770
Curvature and Normal Vectors of a Curve 773
Tangential and Normal Components of Acceleration 778
Velocity and Acceleration in Polar Coordinates 784
Practice Exercises 785
Additional Exercises 791

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

14 Partial Derivatives 795
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

Functions of Several Variables 795
Limits and Continuity in Higher Dimensions 804
Partial Derivatives 810
The Chain Rule 816
Directional Derivatives and Gradient Vectors 824
Tangent Planes and Differentials 829
Extreme Values and Saddle Points 836
Lagrange Multipliers 849
Taylor's Formula for Two Variables 857
Partial Derivatives with Constrained Variables 859
Practice Exercises 862
Additional Exercises 876

15 Multiple Integrals 881
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

Double and Iterated Integrals over Rectangles 881
Double Integrals over General Regions 882
Area by Double Integration 896
Double Integrals in Polar Form 900
Triple Integrals in Rectangular Coordinates 904
Moments and Centers of Mass 909
Triple Integrals in Cylindrical and Spherical Coordinates 914
Substitutions in Multiple Integrals 922
Practice Exercises 927
Additional Exercises 933

16 Integration in Vector Fields 939
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Line Integrals 939
Vector Fields and Line Integrals; Work, Circulation, and Flux 944
Path Independence, Potential Functions, and Conservative Fields 952
Green's Theorem in the Plane 957
Surfaces and Area 963
Surface Integrals 972
Stokes's Theorem 980
The Divergence Theorem and a Unified Theory 984
Practice Exercises 989
Additional Exercises 997

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

CHAPTER 10 INFINITE SEQUENCES AND SERIES
10.1 SEQUENCES
1. a" œ

1 1
1#

2. a" œ

1
1!

3.

a" œ

"2
##

œ 0, a# œ

œ 1, a# œ
(1)#
#1

"
#!

œ

œ 1, a# œ

œ  4" , a$ œ

13
3#

"
2

1
6

, a$ œ

(")$
41

œ

1
3!

, a% œ

œ  "3 , a$ œ

14
4#

œ  92 , a% œ
œ

1
4!

(1)%
61

œ

"
5

3
œ  16

1
24
(1)&
81

, a% œ

œ  7"

4. a" œ 2  (1)" œ 1, a# œ 2  (1)# œ 3, a$ œ 2  (1)$ œ 1, a% œ 2  (1)% œ 3
5. a" œ

2
##

6. a" œ

2"
#

"
#

œ

, a# œ

œ

"
#

a( œ

, a) œ

8. a" œ 1, a# œ
a* œ

"
362,880

"
#

œ

"
#
255
128

"
#

œ

3
#

œ

511
256

, a$ œ
3
#



"
#

œ

"
##

, a"! œ

ˆ #" ‰
"
3 œ 6
"
3,628,800

, a$ œ

, a"! œ

3
4

, a$ œ

, a* œ

2$
#%

, a$ œ

2#  1
2#

, a# œ

7. a" œ 1, a# œ 1 
127
64

2#
2$

, a% œ

, a% œ

2$  1
2$

œ

7
4

œ

2%
2&
7
8

œ

"
#

, a% œ

, a% œ

7
4



2%  "
2%

"
#$

œ

a' œ

,

15
8

ˆ "6 ‰
4

œ

"
#4

, a& œ

ˆ #"4 ‰
5

œ

$
(1)% ˆ "# ‰
(1)# (2)
œ 1, a$ œ (1)2 (1) œ  "# , a% œ
#
#
"
"
a( œ  3"# , a) œ  64
, a* œ 1#"8 , a"! œ 256

1†(2)
œ 1, a$ œ 2†(31) œ  32 , a%
#
a) œ  "4 , a* œ  29 , a"! œ  "5

10. a" œ 2, a# œ
a( œ  27 ,

15
16

, a& œ



15
8

"
#%

œ

œ

31
16 , a'

63
32

,

1023
512

9. a" œ 2, a# œ
"
16

œ

œ

3†ˆ 23 ‰
4

"
1 #0

, a' œ

"
7 #0

œ  4" , a& œ

œ  "# , a& œ

, a( œ

"
5040

(1)& ˆ "4 ‰
#

4†ˆ "# ‰
5

, a) œ

œ

"
8

"
40,320

,

,

œ  52 , a' œ  3" ,

11. a" œ 1, a# œ 1, a$ œ 1  1 œ 2, a% œ 2  1 œ 3, a& œ 3  2 œ 5, a' œ 8, a( œ 13, a) œ 21, a* œ 34, a"! œ 55
12. a" œ 2, a# œ 1, a$ œ  "# , a% œ

ˆ "# ‰
1

œ

"
#

, a& œ

ˆ "# ‰
ˆ "# ‰

œ 1, a' œ 2, a( œ 2, a) œ 1, a* œ  "# , a"! œ

13. an œ (1)n1 , n œ 1, 2, á

14. an œ (1)n , n œ 1, 2, á

15. an œ (1)n1 n# , n œ 1, 2, á

16. an œ

(")n
n#

1

, n œ 1, 2, á

18. an œ

2n  5
nan  1b

, n œ 1, 2, á

17. an œ

2n  1
3an  2b ,

n œ 1, 2, á

19. an œ n#  1, n œ 1, 2, á

20. an œ n  4 , n œ 1, 2, á

21. an œ 4n  3, n œ 1, 2, á

22. an œ 4n  2 , n œ 1, 2, á

23. an œ

3n  2
n! ,

n œ 1, 2, á

24. an œ

n3
5n 1

, n œ 1, 2, á

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

"
#

570

Chapter 10 Infinite Sequences and Series

25. an œ

1  (1)n
#

1

, n œ 1, 2, á

26. an œ

27. n lim
2  (0.1)n œ 2 Ê converges
Ä_
n  (")n
n

29. n lim
Ä_

"  2n
1  #n

30. n lim
Ä_

2n  "
1  3È n

œ n lim
Ä_

31. n lim
Ä_

"  5n%
n%  8n$

œ n lim
Ä_

32. n lim
Ä_

n3
n#  5n  6

œ n lim
Ä_

n3
(n  3)(n  2)

œ n lim
Ä_

33. n lim
Ä_

n#  2n  1
n1

œ n lim
Ä_

(n  1)(n  1)
n1

œ n lim
(n  1) œ _ Ê diverges
Ä_

34 n lim
Ä_

"  n$
70  4n#

ˆ "n ‰  2
ˆ "n ‰  2

œ n lim
Ä_

œ 1 Ê converges

2Èn  Š È"n ‹
Š È"n  3‹

1  ˆ 8n ‰

"
‹n
n#
70
Š #‹4
n

Š

œ n lim
Ä_

2
#

œ n lim
Ä_

Š n"% ‹  5

œ 1 Ê converges

œ _ Ê diverges

œ 5 Ê converges
"
n#

œ 0 Ê converges

œ _ Ê diverges
36. n lim
(1)n ˆ1  "n ‰ does not exist Ê diverges
Ä_

35. n lim
a1  (1)n b does not exist Ê diverges
Ä_
ˆ n #n " ‰ ˆ1  "n ‰ œ lim ˆ "# 
37. n lim
Ä_
nÄ_
ˆ2 
38. n lim
Ä_

" ‰ˆ
3
#n



"‰
#n

ˆ "# ‰n œ lim
40. n lim
Ä_
nÄ_

É n 2n
41. n lim
 1 œ É n lim
Ä_
Ä_
42. n lim
Ä_

"
(0.9)n

" ‰ˆ
1
#n

 n" ‰ œ

œ 6 Ê converges

(")n
#n

œ Ú n# Û, n œ 1, 2, á

(Theorem 5, #4)

28. n lim
Ä_

œ n lim
1
Ä_

(1)n
n

n  "#  (1)n ˆ "# ‰
#

"
#

Ê converges
39. n lim
Ä_

(")nb1
#n  1

œ 0 Ê converges

œ 0 Ê converges

2n
n1

œ Ên lim
Š 2 ‹ œ È2 Ê converges
Ä _ 1 "
n

ˆ "0 ‰n œ _ Ê diverges
œ n lim
Ä_ 9

ˆ 1  n" ‰‹ œ sin
43. n lim
sin ˆ 1#  n" ‰ œ sin Šn lim
Ä_
Ä_ #

1
#

œ 1 Ê converges

44. n lim
n1 cos (n1) œ n lim
(n1)(1)n does not exist Ê diverges
Ä_
Ä_
45. n lim
Ä_

sin n
n

46. n lim
Ä_

sin# n
#n

47. n lim
Ä_

n
#n

œ 0 because  n" Ÿ
œ 0 because 0 Ÿ

œ n lim
Ä_

"
#n ln 2

sin n
n

sin# n
#n

Ÿ

Ÿ

"
n

"
#n

Ê converges by the Sandwich Theorem for sequences
Ê converges by the Sandwich Theorem for sequences

^
œ 0 Ê converges (using l'Hopital's
rule)

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.1 Sequences
48. n lim
Ä_

3n
n$

49. n lim
Ä_

ln (n  ")
Èn

50. n lim
Ä_

ln n
ln 2n

œ n lim
Ä_

3n ln 3
3n#

œ n lim
Ä_

œ n lim
Ä_

œ n lim
Ä_
ˆn " 1‰

" ‹
Š #È
n

ˆ "n ‰
2 ‰
ˆ 2n

3n (ln 3)#
6n

œ n lim
Ä_

œ n lim
Ä_

2È n
n1

3n (ln 3)$
6

œ n lim
Ä_

^
œ _ Ê diverges (using l'Hopital's
rule)

Š È2n ‹

1  Š n" ‹

œ 0 Ê converges

œ 1 Ê converges

51. n lim
81În œ 1 Ê converges
Ä_

(Theorem 5, #3)

52. n lim
(0.03)1În œ 1 Ê converges
Ä_

(Theorem 5, #3)

ˆ1  7n ‰n œ e( Ê converges
53. n lim
Ä_
ˆ1  "n ‰n œ lim ’1 
54. n lim
Ä_
nÄ_

(")
n “

(Theorem 5, #5)
n

œ e" Ê converges

(Theorem 5, #5)

n
È
55. n lim
10n œ n lim
101În † n1În œ 1 † 1 œ 1 Ê converges
Ä_
Ä_

#
n
n
È
ˆÈ
56. n lim
n# œ n lim
n‰ œ 1# œ 1 Ê converges
Ä_
Ä_

ˆ 3 ‰1În œ nÄ_ 1În œ
57. n lim
lim n
Ä_ n
nÄ_
lim 31În

"
1

œ 1 Ê converges

(Theorem 5, #3 and #2)

(Theorem 5, #2)

(Theorem 5, #3 and #2)

58. n lim
(n  4)1ÎÐn4Ñ œ x lim
x1Îx œ 1 Ê converges; (let x œ n  4, then use Theorem 5, #2)
Ä_
Ä_
59. n lim
Ä_

ln n
n1În

lim
Ä_ ln1Înn œ
œ nlim
n
n

Ä_

_
1

œ _ Ê diverges

(Theorem 5, #2)

60. n lim
cln n  ln (n  1)d œ n lim
ln ˆ n n 1 ‰ œ ln Šn lim
Ä_
Ä_
Ä_
n
n
È
61. n lim
4n n œ n lim
4È
n œ 4 † 1 œ 4 Ê converges
Ä_
Ä_

n
n1‹

œ ln 1 œ 0 Ê converges

(Theorem 5, #2)

n
È
62. n lim
32n1 œ n lim
32 a1Înb œ n lim
3# † 31În œ 9 † 1 œ 9 Ê converges
Ä_
Ä_
Ä_

œ n lim
Ä_

"†2†3â(n  1)(n)
n†n†nân†n

63. n lim
Ä_

n!
nn

64. n lim
Ä_

(4)n
n!

65. n lim
Ä_

n!
106n

œ n lim
Ä_

"
'n
Š (10n! ) ‹

66. n lim
Ä_

n!
2n 3n

œ n lim
Ä_

"
ˆ 6n!n ‰

œ 0 Ê converges

ˆ " ‰ œ 0 and
Ÿ n lim
Ä_ n

n!
nn

0 Ê n lim
Ä_

n!
nn

(Theorem 5, #3)

œ 0 Ê converges

(Theorem 5, #6)

œ _ Ê diverges

œ _ Ê diverges

(Theorem 5, #6)

(Theorem 5, #6)

ˆ " ‰1ÎÐln nÑ œ lim exp ˆ ln"n ln ˆ n" ‰‰ œ lim exp ˆ ln 1lnnln n ‰ œ e" Ê converges
67. n lim
Ä_ n
nÄ_
nÄ_

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

571

572

Chapter 10 Infinite Sequences and Series

n
ˆ1  n" ‰n ‹ œ ln e œ 1 Ê converges
68. n lim
ln ˆ1  "n ‰ œ ln Šn lim
Ä_
Ä_

(Theorem 5, #5)

 " ‰‰
ˆ 3n  " ‰n œ lim exp ˆn ln ˆ 3n
69. n lim
œ n lim
exp Š ln (3n  1) " ln (3n  1) ‹
3n  1
Ä _ 3n  1
nÄ_
Ä_
n
3



3

6n
#Î$
ˆ6‰
œ n lim
exp  3n 1 "3n  1  œ n lim
exp Š (3n  1)(3n
Ê converges
 1) ‹ œ exp 9 œ e
Ä_
Ä_
Š ‹
#

n#

"

"



ˆ n ‰n œ lim exp ˆn ln ˆ n n 1 ‰‰ œ lim exp Š ln n  ln" (n  1) ‹ œ lim exp  n n 1 
70. n lim
ˆn‰
Ä _ n1
nÄ_
nÄ_
nÄ_
Š "# ‹
n

œ n lim
exp Š
Ä_

n#
n(n  1) ‹

"

œe

Ê converges

 1)
ˆ x ‰1În œ lim x ˆ #n " 1 ‰1În œ x lim exp ˆ "n ln ˆ #n " 1 ‰‰ œ x lim exp Š  ln (2n
71. n lim
‹
n
Ä _ 2n  1
nÄ_
nÄ_
nÄ_

2
!
œ x n lim
exp ˆ 2n1 ‰ œ xe œ x, x  0 Ê converges
Ä_
n

ˆ1 
72. n lim
Ä_

" ‰n
n#

œ n lim
exp ˆn ln ˆ1 
Ä_

" ‰‰
n#

œ n lim
exp 
Ä_

ln Š1  n"# ‹

exp –
 œ n lim
Ä_

ˆ n" ‰

Š n2$ ‹‚Š1  n"# ‹
Š n"# ‹

—

œ n lim
exp ˆ n# 2n1 ‰ œ e! œ 1 Ê converges
Ä_
73. n lim
Ä_

3 n †6 n
2cn †n!

œ n lim
Ä_

36n
n!

œ 0 Ê converges

ˆ 10 ‰n

ˆ 12
‰n ˆ 10
‰n
11
11
12 ‰n ˆ 9 ‰n
12 ‰n ˆ 11 ‰n
ˆ 11
ˆ
 11
10
12

11
74. n lim
lim
n
11 ‰n œ
Ä _ ˆ 109 ‰  ˆ 12
nÄ_
(Theorem 5, #4)

75. n lim
tanh n œ n lim
Ä_
Ä_

en  e
en  e

76. n lim
sinh (ln n) œ n lim
Ä_
Ä_

77. n lim
Ä_

n# sin ˆ n" ‰
2n  1

œ n lim
Ä_

(Theorem 5, #6)

n
n

œ n lim
Ä_

eln n  e
2

ln n

sin ˆ "n ‰

Èn sinŠ È1 ‹ œ lim
79. n lim
n
Ä_
nÄ_

ˆ"  cos "n ‰
ˆ "n ‰

sinŠ È1n ‹

Èn
1

œ n lim
Ä_
n  ˆ n" ‰
#

œ n lim
Ä_

œ n lim
Ä_

Š 2n  n"# ‹

78. n lim
n ˆ1  cos "n ‰ œ n lim
Ä_
Ä_

e2n  "
e2n  1

ˆ 120
‰n
121
n
ˆ 108
‰
1
110

œ n lim
Ä_

2e2n
2e2n

Š n2#  n2$ ‹

œ n lim
Ä_

œ n lim
" œ 1 Ê converges
Ä_

œ _ Ê diverges

 ˆcos ˆ "n ‰‰ Š n"# ‹

œ n lim
Ä_

œ 0 Ê converges

œ n lim
Ä_

sin ˆ "n ‰‘ Š "# ‹
n
Š n"# ‹

cos Š È1n ‹Š


1
2n3Î2

1
‹
2n3Î2

 cos ˆ n" ‰
#  ˆ 2n ‰

œ

"
#

Ê converges

œ n lim
sin ˆ "n ‰ œ 0 Ê converges
Ä_

œ n lim
cos Š È1n ‹ œ cos 0 œ 1 Ê converges
Ä_

80. n lim
a3n  5n b1În œ n lim
exp’lna3n  5n b1În “ œ n lim
exp’ lna3 n 5 b “ œ n lim
exp–
Ä_
Ä_
Ä_
Ä_
n

n

œ n lim
exp’
Ä_

Š 35n ‹ln 3  ln 5

81. n lim
tan" n œ
Ä_

ˆ 35nn ‰  1
1
#

exp’
“ œ n lim
Ä_

Ê converges

ˆ 35 ‰n ln 3  ln 5
ˆ 35 ‰n  1 “

n

3n ln 3 b 5n ln 5
3n b 5n

1

—

œ expaln 5b œ 5
82. n lim
Ä_

"
Èn

tan" n œ 0 †

1
#

œ 0 Ê converges

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.1 Sequences
ˆ " ‰n 
83. n lim
Ä_ 3

"
È 2n

573

n

n
œ n lim
Šˆ 3" ‰  Š È"2 ‹ ‹ œ 0 Ê converges
Ä_

(Theorem 5, #4)

#

n
1‰
!
È
84. n lim
n#  n œ n lim
exp ’ ln ann  nb “ œ n lim
exp ˆ 2n
n#  n œ e œ 1 Ê converges
Ä_
Ä_
Ä_

85. n lim
Ä_

(ln n)#!!
n

86. n lim
Ä_

(ln n)&
Èn

œ n lim
Ä_

200 (ln n)"**
n

œ n lim
Ä_

200†199 (ln n)"*)
n

œ á œ n lim
Ä_

200!
n

œ 0 Ê converges

%

œ n lim
Ä_ –

Š 5(lnnn) ‹
"

Š #Èn ‹

— œ n lim
Ä_

10(ln n)%
Èn

œ n lim
Ä_
È

80(ln n)$
Èn

œ á œ n lim
Ä_

#

87. n lim
Šn  Èn#  n‹ œ n lim
Šn  Èn#  n‹ Š n  Èn#  n ‹ œ n lim
Ä_
Ä_
Ä_
n n n
œ

"
#

88. n lim
Ä_

œ 0 Ê converges

œ n lim
Ä_

"
1  É1 

"
n

Ê converges
"
È n#  1  È n#  n

œ n lim
Š
Ä_ È

É1  n"#  É1  "n

œ n lim
Ä_
89. n lim
Ä_

n
n  È n#  n

3840
Èn

ˆ n"  1‰

'
90. n lim
Ä_ 1

n

"
xp

œ n lim
Ä_

È n#  1  È n#  n
1  n

œ 2 Ê converges

'1n x" dx œ n lim
Ä_

"
n

È #
È #
"
‹ Š Èn#  1  Èn#  n ‹
n#  1  È n#  n
n 1 n n

ln n
n

dx œ n lim
’ "
Ä _ 1 p

œ n lim
Ä_
n

"
xpc1 “ 1

"
n

œ 0 Ê converges

œ n lim
Ä_

"
1 p

ˆ np"c1  1‰ œ

(Theorem 5, #1)
"
p 1

if p  1 Ê converges

72
91. Since an converges Ê n lim
a œ L Ê n lim
a
œ n lim
ÊLœ
Ä_ n
Ä _ n1
Ä _ 1  an
Ê L œ 9 or L œ 8; since an  0 for n 1 Ê L œ 8

72
1L

Ê La1  Lb œ 72 Ê L2  L  72 œ 0

an  6
92. Since an converges Ê n lim
a œ L Ê n lim
a
œ n lim
ÊLœ
Ä_ n
Ä _ n1
Ä _ an  2
Ê L œ 3 or L œ 2; since an  0 for n 2 Ê L œ 2

L6
L2

Ê LaL  2b œ L  6 Ê L2  L  6 œ 0

È8  2an Ê L œ È8  2L Ê L2  2L  8 œ 0 Ê L œ 2
93. Since an converges Ê n lim
a œ L Ê n lim
a
œ n lim
Ä_ n
Ä _ n1
Ä_
or L œ 4; since an  0 for n 3 Ê L œ 4
È8  2an Ê L œ È8  2L Ê L2  2L  8 œ 0 Ê L œ 2
94. Since an converges Ê n lim
a œ L Ê n lim
a
œ n lim
Ä_ n
Ä _ n1
Ä_
or L œ 4; since an  0 for n 2 Ê L œ 4
È5an Ê L œ È5L Ê L2  5L œ 0 Ê L œ 0 or L œ 5; since
95. Since an converges Ê n lim
a œ L Ê n lim
a
œ n lim
Ä_ n
Ä _ n1
Ä_
an  0 for n 1 Ê L œ 5
ˆ12  Èan ‰ Ê L œ Š12  ÈL‹ Ê L2  25L  144 œ 0
96. Since an converges Ê n lim
a œ L Ê n lim
a
œ n lim
Ä_ n
Ä _ n1
Ä_
Ê L œ 9 or L œ 16; since 12  Èan  12 for n 1 Ê L œ 9
97. an  1 œ 2 

1, a1 œ 2. Since an converges Ê n lim
a œ L Ê n lim
a
œ n lim
Š2 
Ä_ n
Ä _ n1
Ä_
Ê L2  2L  1 œ 0 Ê L œ 1 „ È2; since an  0 for n 1 Ê L œ 1  È2
1
an ,

n

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

1
an ‹

ÊLœ2

1
L

574

Chapter 10 Infinite Sequences and Series

98. an  1 œ È1  an , n

È1  an Ê L œ È1  L
1, a1 œ È1. Since an converges Ê n lim
a œ L Ê n lim
a
œ n lim
Ä_ n
Ä _ n1
Ä_
1 „ È5
2 ;

Ê L2  L  1 œ 0 Ê L œ

since an  0 for n

1ÊLœ

1  È5
2

99. 1, 1, 2, 4, 8, 16, 32, á œ 1, 2! , 2" , 2# , 2$ , 2% , 2& , á Ê x" œ 1 and xn œ 2nc2 for n

2

100. (a) 1#  2(1)# œ 1, 3#  2(2)# œ 1; let f(aß b) œ (a  2b)#  2(a  b)# œ a#  4ab  4b#  2a#  4ab  2b#
œ 2b#  a# ; a#  2b# œ 1 Ê f(aß b) œ 2b#  a# œ 1; a#  2b# œ 1 Ê f(aß b) œ 2b#  a# œ 1
#

‰ 2œ
(b) r#n  2 œ ˆ aa2b
b

a#  4ab  4b#  2a#  4ab  2b#
(a  b)#

In the first and second fractions, yn
for n a positive integer
lim rn œ È2.

n. Let

a
b

œ

 aa#  2b# b
(a  b)#

œ

„"
y#n

#

Ê rn œ Ê2 „ Š y"n ‹

represent the (n  1)th fraction where

3. Now the nth fraction is

a  2b
ab

and a  b

2b

a
b

2n  2

1 and b
n Ê yn

n1
n. Thus,

nÄ_

101. (a) f(x) œ x#  2; the sequence converges to 1.414213562 ¸ È2
(b) f(x) œ tan (x)  1; the sequence converges to 0.7853981635 ¸

1
4

(c) f(x) œ ex ; the sequence 1, 0, 1, 2, 3, 4, 5, á diverges
102. (a) n lim
nf ˆ n" ‰ œ lim b f(??xx) œ lim b f(0??x)x f(0) œ f w (0), where ?x œ
Ä_
?x Ä !
?x Ä !
"
" ˆ " ‰
w
"
(b) n lim
n
tan
œ
f
(0)
œ
x
# œ 1, f(x) œ tan

n
1
0
Ä_

"
n

(c) n lim
n ae1În  1b œ f w (0) œ e! œ 1, f(x) œ ex  1
Ä_
(d) n lim
n ln ˆ1  2n ‰ œ f w (0) œ 1 22(0) œ 2, f(x) œ ln (1  2x)
Ä_
#

103. (a) If a œ 2n  1, then b œ Ú a# Û œ Ú 4n

#

 4n  1
Û
#
#

#

œ Ú2n#  2n  "# Û œ 2n#  2n, c œ Ü a# Ý œ Ü2n#  2n  "# Ý
#

œ 2n#  2n  1 and a#  b# œ (2n  1)  a2n#  2nb œ 4n#  4n  1  4n%  8n$  4n#
#

œ 4n%  8n$  8n#  4n  1 œ a2n#  2n  1b œ c# .
(b) a lim
Ä_

#
Ú a# Û
#
Ü a# Ý

œ a lim
Ä_

2n#  2n
2n#  2n  1

œ 1 or a lim
Ä_

#

Ú a# Û
#

Ü a# Ý

œ a lim
sin ) œ
Ä_

2n1 ‰
104. (a) n lim
(2n1)1Î a2nb œ n lim
exp ˆ ln2n
œ n lim
exp 
Ä_
Ä_
Ä_

21
Š 2n
1‹

#

(b)

n
40
50
60

15.76852702
19.48325423
23.19189561

sin ) œ 1

exp ˆ #"n ‰ œ e! œ 1;
 œ n lim
Ä_

n
n
n! ¸ ˆ ne ‰ È
2n1 , Stirlings approximation Ê È
n! ¸ ˆ ne ‰ (2n1)1Î a2nb ¸
n
È
n!

lim

) Ä 1 Î2

n
e

for large values of n

n
e

14.71517765
18.39397206
22.07276647

ˆ"‰

ln n
"
n
105. (a) n lim
œ n lim
œ n lim
œ0
Ä _ nc
Ä _ cncc1
Ä _ cnc
Ðln %ÑÎc
(b) For all %  0, there exists an N œ e
such that n  eÐln %ÑÎc Ê ln n   lnc % Ê ln nc  ln ˆ "% ‰
Ê nc  "% Ê n"c  % Ê ¸ n"c  0¸  % Ê lim n"c œ 0
nÄ_

106. Let {an } and {bn } be sequences both converging to L. Define {cn } by c2n œ bn and c2nc1 œ an , where
n œ 1, 2, 3, á . For all %  0 there exists N" such that when n  N" then kan  Lk  % and there exists N#
such that when n  N# then kbn  Lk  %. If n  1  2max{N" ß N# }, then kcn  Lk  %, so {cn } converges to L.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.1 Sequences

575

107. n lim
n1În œ n lim
exp ˆ "n ln n‰ œ n lim
exp ˆ n" ‰ œ e! œ 1
Ä_
Ä_
Ä_
108. n lim
x1În œ n lim
exp ˆ "n ln x‰ œ e! œ 1, because x remains fixed while n gets large
Ä_
Ä_
109. Assume the hypotheses of the theorem and let % be a positive number. For all % there exists a N" such that
when n  N" then kan  Lk  % Ê %  an  L  % Ê L  %  an , and there exists a N# such that when
n  N# then kcn  Lk  % Ê %  cn  L  % Ê cn  L  %. If n  max{N" ß N# }, then
L  %  an Ÿ bn Ÿ cn  L  % Ê kbn  Lk  % Ê n lim
b œ L.
Ä_ n
110. Let %  !. We have f continuous at L Ê there exists $ so that kx  Lk  $ Ê kf(x)  f(L)k  %. Also, an Ä L Ê there
exists N so that for n  N kan  Lk  $ . Thus for n  N, kf(an )  f(L)k  % Ê f(an ) Ä f(L).
an Ê

111. an1

3(n  1)  1
(n  1)  1



3n  1
n1

3n  4
n#

Ê



3n  1
n1

Ê 3n#  3n  4n  4  3n#  6n  n  2

Ê 4  2; the steps are reversible so the sequence is nondecreasing;

3n  "
n1

 3 Ê 3n  1  3n  3

Ê 1  3; the steps are reversible so the sequence is bounded above by 3
an Ê

112. an1

(2(n  1)  3)!
((n  1)  1)!



(2n  3)!
(n  1)!

Ê

(2n  5)!
(n  2)!



(2n  3)!
(n  1)!

Ê

(2n  5)!
(2n  3)!



(n  2)!
(n  1)!

Ê (2n  5)(2n  4)  n  2; the steps are reversible so the sequence is nondecreasing; the sequence is not
bounded since
113. an1 Ÿ an Ê

(2n  3)!
(n  1)!

œ (2n  3)(2n  2)â(n  2) can become as large as we please

2nb1 3nb1
(n  1)!

Ÿ

2n 3n
n!

2nb1 3nb1
2n 3n

Ê

(n  1)!
n!

Ÿ

Ê 2 † 3 Ÿ n  1 which is true for n

5; the steps are

reversible so the sequence is decreasing after a& , but it is not nondecreasing for all its terms; a" œ 6, a# œ 18,
a$ œ 36, a% œ 54, a& œ 324
5 œ 64.8 Ê the sequence is bounded from above by 64.8
an Ê 2 

114. an1

2
n 1



"
#nb1

2

2
n



"
#n

Ê

reversible so the sequence is nondecreasing; 2 
115. an œ 1 

"
n

converges because

116. an œ n 

"
n

diverges because n Ä _ and

117. an œ

2 n 1
2n

œ1

"
#n

and 0 

"
#n

"
n

2
n
2
n




2
n 1
"
#n Ÿ

"
#nb1



"
#n

Ê

2
n(n  1)

 #n"b1 ; the steps are

2 Ê the sequence is bounded from above

Ä 0 by Example 1; also it is a nondecreasing sequence bounded above by 1



"
n

; since

"
n
"
n

Ä 0 by Example 1, so the sequence is unbounded
Ä 0 (by Example 1) Ê

"
#n

Ä 0, the sequence converges; also it is

a nondecreasing sequence bounded above by 1
118. an œ

2 n 1
3n

n

œ ˆ 23 ‰ 

"
3n

; the sequence converges to ! by Theorem 5, #4

119. an œ a(1)n  1b ˆ nn 1 ‰ diverges because an œ 0 for n odd, while for n even an œ 2 ˆ1  n" ‰ converges to 2; it
diverges by definition of divergence
120. xn œ max {cos 1ß cos 2ß cos 3ß á ß cos n} and xn1 œ max {cos 1ß cos 2ß cos 3ß á ß cos (n  1)}
so the sequence is nondecreasing and bounded above by 1 Ê the sequence converges.
121. an
and

an1 Í
1  È2n
Èn

1  È2n
Èn

"  È2(n  1)
Èn  1

Í Èn  1  È2n#  2n

xn with xn Ÿ 1

Èn  È2n#  2n Í Èn  1

È2 ; thus the sequence is nonincreasing and bounded below by È2 Ê it converges

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Èn

576

Chapter 10 Infinite Sequences and Series

122. an

a n 1 Í

n1
n

(n  1)  "
n1

Í n#  2n  1

n#  2n Í 1

0 and

n1
n

1; thus the sequence is

nonincreasing and bounded below by 1 Ê it converges
123.

4nb1  3n
œ
4n
3 ‰n
ˆ
4 4

n

4  ˆ 34 ‰ so an

an1 Í 4  ˆ 34 ‰

n

4  ˆ 34 ‰

n"

n
Í ˆ 34 ‰

ˆ 34 ‰n1 Í 1

3
4

and

4; thus the sequence is nonincreasing and bounded below by 4 Ê it converges

124. a" œ 1, a# œ 2  3, a$ œ 2(2  3)  3 œ 2#  a22  "b † 3, a% œ 2 a2#  a22  "b † 3b  3 œ 2$  a2$  1b 3,
a& œ 2 c2$  a2$  1b 3d  3 œ 2%  a2%  1b 3, á , an œ 2n"  a2n"  1b 3 œ 2n"  3 † 2n1  3
œ 2n1 (1  3)  3 œ 2n  3; an an1 Í 2n  3 2n1  3 Í 2n 2n1 Í 1 Ÿ 2
so the sequence is nonincreasing but not bounded below and therefore diverges
125. Let 0  M  1 and let N be an integer greater than
Ê n  M  nM Ê n  M(n  1) Ê

n
n1

M
1M

. Then n  N Ê n 

 M.

M
1M

Ê n  nM  M

126. Since M" is a least upper bound and M# is an upper bound, M" Ÿ M# . Since M# is a least upper bound and M"
is an upper bound, M# Ÿ M" . We conclude that M" œ M# so the least upper bound is unique.
127. The sequence an œ 1 

(")n
#

is the sequence

"
#

,

3
#

,

"
#

,

3
#

, á . This sequence is bounded above by

3
#

,

but it clearly does not converge, by definition of convergence.
128. Let L be the limit of the convergent sequence {an }. Then by definition of convergence, for
corresponds an N such that for all m and n, m  N Ê kam  Lk 
kam  an k œ kam  L  L  an k Ÿ kam  Lk  kL  an k 

%
#



%
#

%
#

%
#

there

and n  N Ê kan  Lk  #% . Now

œ % whenever m  N and n  N.

129. Given an %  0, by definition of convergence there corresponds an N such that for all n  N,
kL"  an k  % and kL#  an k  %. Now kL#  L" k œ kL#  an  an  L" k Ÿ kL#  an k  kan  L" k  %  % œ 2%.
kL#  L" k  2% says that the difference between two fixed values is smaller than any positive number 2%.
The only nonnegative number smaller than every positive number is 0, so kL"  L# k œ 0 or L" œ L# .
130. Let k(n) and i(n) be two order-preserving functions whose domains are the set of positive integers and whose
ranges are a subset of the positive integers. Consider the two subsequences akÐnÑ and aiÐnÑ , where akÐnÑ Ä L" ,
aiÐnÑ Ä L# and L" Á L# . Thus ¸akÐnÑ  aiÐnÑ ¸ Ä kL"  L# k  0. So there does not exist N such that for all m, n  N
Ê kam  an k  %. So by Exercise 128, the sequence Öan × is not convergent and hence diverges.
131. a2k Ä L Í given an %  0 there corresponds an N" such that c2k  N" Ê ka2k  Lk  %d . Similarly,
a2k1 Ä L Í c2k  1  N# Ê ka2k1  Lk  %d . Let N œ max{N" ß N# }. Then n  N Ê kan  Lk  % whether
n is even or odd, and hence an Ä L.
132. Assume an Ä 0. This implies that given an %  0 there corresponds an N such that n  N Ê kan  0k  %
Ê kan k  % Ê kkan kk  % Ê kkan k  0k  % Ê kan k Ä 0. On the other hand, assume kan k Ä 0. This implies that
given an %  0 there corresponds an N such that for n  N, kkan k  0k  % Ê kkan kk  % Ê kan k  %
Ê kan  0k  % Ê an Ä 0.
133. (a) f(x) œ x#  a Ê f w (x) œ 2x Ê xn1 œ xn 

x#n  a
#xn

Ê x n 1 œ

2x#n  ax#n  ab
2xn

œ

x#n  a
2xn

œ

ˆxn  xa ‰
n
#

(b) x" œ 2, x# œ 1.75, x$ œ 1.732142857, x% œ 1.73205081, x& œ 1.732050808; we are finding the positive
number where x#  3 œ 0; that is, where x# œ 3, x  0, or where x œ È3 .

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.2 Infinite Series

577

134. x" œ 1, x# œ 1  cos (1) œ 1.540302306, x$ œ 1.540302306  cos (1  cos (1)) œ 1.570791601,
x% œ 1.570791601  cos (1.570791601) œ 1.570796327 œ 1# to 9 decimal places. After a few steps, the
arc axnc1 b and line segment cos axnc1 b are nearly the same as the quarter circle.
135-146. Example CAS Commands:
Mathematica: (sequence functions may vary):
Clear[a, n]
a[n_]; = n1 / n
first25= Table[N[a[n]],{n, 1, 25}]
Limit[a[n], n Ä 8]
Mathematica: (sequence functions may vary):
Clear[a, n]
a[n_]; = n1 / n
first25= Table[N[a[n]],{n, 1, 25}]
Limit[a[n], n Ä 8]
The last command (Limit) will not always work in Mathematica. You could also explore the limit by enlarging your table
to more than the first 25 values.
If you know the limit (1 in the above example), to determine how far to go to have all further terms within 0.01 of the
limit, do the following.
Clear[minN, lim]
lim= 1
Do[{diff=Abs[a[n]  lim], If[diff < .01, {minN= n, Abort[]}]}, {n, 2, 1000}]
minN
For sequences that are given recursively, the following code is suggested. The portion of the command a[n_]:=a[n] stores
the elements of the sequence and helps to streamline computation.
Clear[a, n]
a[1]= 1;
a[n_]; = a[n]= a[n  1]  (1/5)(n1)
first25= Table[N[a[n]], {n, 1, 25}]
The limit command does not work in this case, but the limit can be observed as 1.25.
Clear[minN, lim]
lim= 1.25
Do[{diff=Abs[a[n]  lim], If[diff < .01, {minN= n, Abort[]}]}, {n, 2, 1000}]
minN
10.2 INFINITE SERIES
1. sn œ

a a 1  rn b
(1  r)

œ

n
2 ˆ1  ˆ "3 ‰ ‰
"
1  ˆ3‰

2. sn œ

a a 1  rn b
(1  r)

œ

" ‰n ‰
9 ‰ˆ
ˆ 100
1  ˆ 100
"
1  ˆ 100 ‰

3. sn œ

a a 1  rn b
(1  r)

œ

1  ˆ "# ‰
1  ˆ "# ‰

4. sn œ

1  (2)n
1  (2)

, a geometric series where krk  1 Ê divergence

5.

"
(n  1)(n  #)

œ

"
n1

n



Ê n lim
s œ
Ä_ n

Ê n lim
s œ
Ä_ n

Ê n lim
s œ
Ä_ n

"
n#

2
1  ˆ "3 ‰

"
ˆ #3 ‰

œ3
9 ‰
ˆ 100

" ‰
1  ˆ 100

œ

œ

"
11

2
3

Ê sn œ ˆ #"  3" ‰  ˆ 3"  4" ‰  á  ˆ n " 1 

" ‰
n#

œ

"
#



"
n#

Ê n lim
s œ
Ä_ n

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

"
#

578
6.

Chapter 10 Infinite Sequences and Series
œ

5
n(n  1)



5
n

5
n1

Ê sn œ ˆ5  25 ‰  ˆ 25  35 ‰  ˆ 35  45 ‰  á  ˆ n 5 1  n5 ‰  ˆ n5 

5 ‰
n1

œ 5

5
n1

Ê n lim
s œ5
Ä_ n
7. 1 

8.

"
16

9.

7
4

"
4





10. 5 

"
16


"
64

7
16

5
4

"
256







"
64



7
64

5
16

 á , the sum of this geometric series is

 á , the sum of this geometric series is

 á , the sum of this geometric series is



5
64

5
1  ˆ "# ‰

"
1  ˆ "3 ‰



œ 10 

œ

3
#

"
1  ˆ "3 ‰



œ 10 

œ

3
#

14. 2 

4
5

"
1  ˆ "5 ‰




8
25



œ2

16
125

5
6

" ‰
25
œ 17
6

œ

4
5

"
1#

7
3

5
1  ˆ "4 ‰

œ4

" ‰
#7

 á , is the sum of two geometric series; the sum is

" ‰
#7

 á , is the difference of two geometric series; the sum is

 ˆ 18 

 á œ 2 ˆ1 

15. Series is geometric with r œ

œ

"
1  ˆ "4 ‰

17
#

13. (1  1)  ˆ 1#  "5 ‰  ˆ 14 
1
1  ˆ "# ‰

ˆ 74 ‰

1  ˆ "4 ‰

œ

œ

23
#

12. (5  1)  ˆ 5#  "3 ‰  ˆ 54  9" ‰  ˆ 58 
5
1  ˆ "# ‰

" ‰
ˆ 16
1  ˆ "4 ‰

 á , the sum of this geometric series is

11. (5  1)  ˆ 5#  "3 ‰  ˆ 54  9" ‰  ˆ 58 

"
1  ˆ "4 ‰

2
5



" ‰
1#5

4
25



 á , is the sum of two geometric series; the sum is

8
125

 á ‰ ; the sum of this geometric series is 2 Š 1 "ˆ 2 ‰ ‹ œ
5

Ê ¹ 25 ¹  1 Ê Converges to

2
5

1
1  25

œ

5
3

1
8

œ

1
7

16. Series is geometric with r œ 3 Ê ¹3¹  1 Ê Diverges
17. Series is geometric with r œ

Ê ¹ 18 ¹  1 Ê Converges to

1
8

1  18

18. Series is geometric with r œ  23 Ê ¹ 23 ¹  1 Ê Converges to
_

19. 0.23 œ !

n œ0

_

21. 0.7 œ !

nœ0

23
100

7
10

ˆ 10" # ‰n œ

" ‰n
ˆ 10
œ

23
Š 100
‹

"

1  ˆ 100 ‰

7
Š 10
‹

1

"
Š 10
‹

œ

œ

_

nœ0

n œ0

_

n œ0

414
1000

n œ0

22. 0.d œ !

"
1  Š 10
‹

24. 1.414 œ 1  !

_

7
9

6
Š 100
‹

ˆ 10" $ ‰n œ 1 

œ  25

20. 0.234 œ !

23
99

_

1 ‰ ˆ 6 ‰ ˆ " ‰n
23. 0.06 œ ! ˆ 10
œ
10
10

 23
1  ˆ 23 ‰

œ

6
90

414
Š 1000
‹

"
1  Š 1000
‹

œ

d
10

234
1000

ˆ 10" $ ‰n œ

" ‰n
ˆ 10
œ

234
Š 1000
‹

"
1  Š 1000
‹

d
Š 10
‹

"
1  Š 10
‹

œ

d
9

"
15

œ1

414
999

œ

"413
999

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

œ

234
999

10
3

Section 10.2 Infinite Series
25. 1.24123 œ

124
100

_

!

123
10&

n œ0

_

26. 3.142857 œ 3  !

n œ0

œ lim

124
100

28.

lim nan  1b
nÄ_ an  2ban  3b

29.

lim 1
nÄ_ n  4

œ 0 Ê test inconclusive

30.

lim 2 n
nÄ_ n  3

œ lim

33.
34.

10

1Š

"
‹
10$

Š 142,857
' ‹
10

1Š

"
‹
10'

œ

124
100

œ3



123
10&  10#

142,857
10'  1

œ

œ

124
100

3,142,854
999,999



123
99,900

œ

œ

123,999
99,900

œ

41,333
33,300

116,402
37,037

œ 1 Á 0 Ê diverges

lim n
nÄ_ n  10

32.

Š 123& ‹



ˆ 10" ' ‰n œ 3 

142,857
10'

27.

31.

1
nÄ_ 1

ˆ 10" $ ‰n œ

579

n2  n
2
nÄ_ n  5n  6

2n  1
nÄ_ 2n  5

œ lim

œ lim

œ lim

2
nÄ_ 2

œ 1 Á 0 Ê diverges

œ 0 Ê test inconclusive

1
nÄ_ 2n

lim cos 1n œ cos 0 œ 1 Á 0 Ê diverges

nÄ_

n
lim ne
nÄ_ e  n

œ

n
lim n e
nÄ_ e  1

en
n
nÄ_ e

œ lim

œ lim

1
nÄ_ 1

œ 1 Á 0 Ê diverges

lim ln 1n œ _ Á 0 Ê diverges

nÄ_

lim cos n 1 œ does not exist Ê diverges

nÄ_

35. sk œ ˆ1  "2 ‰  ˆ "2  "3 ‰  ˆ "3  "4 ‰  á  ˆ k " 1  k" ‰  ˆ k" 
œ lim ˆ1 
kÄ_

" ‰
k1

kÄ_

œ 1

"
k1

Ê

œ 1, series converges to 1

36. sk œ ˆ 31  34 ‰  ˆ 34  39 ‰  ˆ 39 
œ lim Š3 

" ‰
k1

3
‹
ak  1b2

3 ‰
16

 á  Š ak 3 1b2 

3
k2 ‹

 Š k32 

3
‹
ak  1b2

œ 3

lim sk

kÄ_

3
ak  1b2

Ê

lim sk

kÄ_

œ 3, series converges to 3

37. sk œ ŠlnÈ2  lnÈ1‹  ŠlnÈ3  lnÈ2‹  ŠlnÈ4  lnÈ3‹  á  ŠlnÈk  lnÈk  1‹  ŠlnÈk  1  lnÈk‹
œ lnÈk  1  lnÈ1 œ lnÈk  1 Ê

lim sk œ lim lnÈk  1 œ _; series diverges

kÄ_

kÄ_

38. sk œ atan 1  tan 0b  atan 2  tan 1b  atan 3  tan 2b  á  atan k  tan ak  1bb  atan ak  1b  tan kb
œ tan ak  1b  tan 0 œ tan ak  1b Ê lim sk œ lim tan ak  1b œ does not exist; series diverges
kÄ_

kÄ_

39. sk œ ˆcos1 ˆ 12 ‰  cos1 ˆ 13 ‰‰  ˆcos1 ˆ 13 ‰  cos1 ˆ 14 ‰‰  ˆcos1 ˆ 14 ‰  cos1 ˆ 15 ‰‰  á
 ˆcos1 ˆ 1k ‰  cos1 ˆ k 1 1 ‰‰  ˆcos1 ˆ k 1 1 ‰  cos1 ˆ k 1 # ‰‰ œ 13  cos1 ˆ k 1 # ‰
Ê

lim sk œ lim ’ 13  cos1 ˆ k 1 # ‰“ œ

kÄ_

kÄ_

1
3



1
2

œ 16 , series converges to

1
6

40. sk œ ŠÈ5  È4‹  ŠÈ6  È5‹  ŠÈ7  È6‹  á  ŠÈk  3  Èk  2‹  ŠÈk  4  Èk  3‹
œ Èk  4  2 Ê

lim sk œ lim ’Èk  4  2“ œ _; series diverges

kÄ_

kÄ_

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

580
41.

42.

Chapter 10 Infinite Sequences and Series
4
"
"
"‰
" ‰
ˆ
ˆ" "‰ ˆ"
(4n  3)(4n  1) œ 4n  3  4n  1 Ê sk œ 1  5  5  9  9  13 
 ˆ 4k " 3  4k " 1 ‰ œ 1  4k " 1 Ê lim sk œ lim ˆ1  4k " 1 ‰ œ 1
kÄ_
kÄ_

œ

6
(2n  1)(2n  1)

A
2n  1



A(2n  1)  B(2n  1)
(2n  1)(2n  1)

œ

B
2n  1

á  ˆ 4k " 7 

" ‰
4k  3

Ê A(2n  1)  B(2n  1) œ 6 Ê (2A  2B)n  (A  B) œ 6

k
k
2A  2B œ 0
ABœ0
6
Ê œ
ʜ
Ê 2A œ 6 Ê A œ 3 and B œ 3. Hence, ! (2n  1)(2n
œ 3 ! ˆ #n " 1 

1)
A Bœ6
ABœ6
n œ1
nœ1

œ 3 Š "1 

"
3



lim 3 ˆ1 

kÄ_

43.

40n
(2n1)# (2n1)#

"
3



"
5

" ‰
#k  1

œ

A
(2n1)

"
5





"
7

á 

"
#(k  1)  1



"
2k  1

"
#k  1 ‹





œ

A(2n1)(2n1)#  B(2n1)#  C(2n1)(2n1)#  D(2n1)#
(2n1)# (2n1)#
#
#



œ 3 ˆ1 

" ‰
#k  1

" ‰
#n  1

Ê the sum is

œ3


B
(2n1)#

C
(2n1)
#

D
(2n1)#

Ê A(2n  1)(2n  1)#  B(2n  1)  C(2n  1)(2n  1)  D(2n  1) œ 40n
Ê A a8n$  4n#  2n  1b  B a4n#  4n  1b  C a8n$  4n#  2n  1b œ D a4n#  4n  1b œ 40n
Ê (8A  8C)n$  (4A  4B  4C  4D)n#  (2A  4B  2C  4D)n  (A  B  C  D) œ 40n
Ú
Ú
8A  8C œ 0
8A  8C œ 0
Ý
Ý
Ý
Ý
B Dœ 0
4A  4B  4C  4D œ 0
A BC Dœ 0
Ê œ
Ê 4B œ 20 Ê B œ 5
Ê Û
Ê Û




œ




œ
 2D œ 20
2A
4B
2C
4D
40
A
2
B
C
2D
20
2B
Ý
Ý
Ý
Ý
Ü A  B  C  D œ 0
Ü A  B  C  D œ 0
k
ACœ0
Ê C œ 0 and A œ 0. Hence, ! ’ (#n1)40n
and D œ 5 Ê œ
# (2n1)# “
A  5  C  5 œ 0
n œ1
k

œ 5 ! ’ (#n" 1)# 
n œ1

44.

"
(#n1)# “

œ 5 Š1 

"
(2k1)# ‹

2n  1
n# (n  1)#

"
n#

Ê

œ

45. sk œ Š1 
Ê

 Š È"2 
kÄ_

" ‰
#"Î#

"
 ˆ #"Î#


lim sk œ

kÄ_

47. sk œ ˆ ln"3 
œ  ln"# 

" ‰
ln #

"
#



"
1

œ

"
9



"
#5



"
#5

á 

"
(2k1)# ‹

Ê



"
(#k1)#



"
(#k1)# ‹

œ5
" ‰
16

 á  ’ (k " 1)# 

"
k# “

 ’ k"# 

"
(k  1)# “

"
È4 ‹

 á  ŠÈ "

k1



"
Èk ‹

 Š È" 
k

"
Èk  1 ‹

œ1

"
Èk  1

œ1

"
 ˆ #"Î$


" ‰
ln 3

"
(2(k1)  1)#

œ1

 Š È"3 

"
Èk  1 ‹

" ‰
#"Î$
 "#

 ˆ ln"4 

"
ln (k  2)

"
(k  1)# “

"
È3 ‹

lim sk œ lim Š1 

kÄ_

46. sk œ ˆ "# 
Ê

kÄ_

"
È2 ‹



Ê sk œ ˆ1  4" ‰  ˆ 4"  9" ‰  ˆ 9" 

lim sk œ lim ’1 

kÄ_

"
9

Ê the sum is n lim
5 Š1 
Ä_

"
(n  1)#



œ 5 Š 1" 

" ‰
#"Î%

 ˆ ln"5 

 á  ˆ #1ÎÐ"k

" ‰
ln 4

1Ñ



" ‰
#1Îk

 á  Š ln (k" 1) 

 ˆ #1"Îk 

"
ln k ‹

" ‰
#1ÎÐk1Ñ

 Š ln (k" 2) 

œ

"
#



"
#1ÎÐk1Ñ

"
ln (k  1) ‹

lim sk œ  ln"#

kÄ_

48. sk œ ctan" (1)  tan" (2)d  ctan" (2)  tan" (3)d  á  ctan" (k  1)  tan" (k)d
 ctan" (k)  tan" (k  1)d œ tan" (1)  tan" (k  1) Ê lim sk œ tan" (1) 
kÄ_

49. convergent geometric series with sum

"
1  Š È" ‹
2

50. divergent geometric series with krk œ È2  1

œ

È2
È 2 1

1
#

œ

1
4



1
#

œ  14

œ 2  È2

51. convergent geometric series with sum

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Š 3# ‹
1  Š "# ‹

œ1

Section 10.2 Infinite Series
52. n lim
(1)n1 n Á 0 Ê diverges
Ä_

53. n lim
cos (n1) œ n lim
(1)n Á 0 Ê diverges
Ä_
Ä_

54. cos (n1) œ (1)n Ê convergent geometric series with sum
"
1Š

55. convergent geometric series with sum

56. n lim
ln
Ä_

"
3n

"
‹
e#

2
"
1  Š 10
‹

58. convergent geometric series with sum

"
1  Š "x ‹

59. difference of two geometric series with sum
ˆ1  "n ‰n œ lim ˆ1 
60. n lim
Ä_
nÄ_

_

63. !
n œ1

n!
1000n

2n  3n
4n

since r œ
_

!
n œ1

64.

2n  3n
4n

_

n œ1

5
6

" ‰n
n

2œ
œ

Ê

2n
4n

_

!

¹ 12 ¹

nœ1

3n
4n

_

20
9



œ

18
9

2
9

x
x1

"
1  Š 23 ‹



"
1  Š 3" ‹

œ3

œ

3
#

3
#

œ e" Á 0 Ê diverges
62. n lim
Ä_
_

n

_

n

nn
n!

œ n lim
Ä_
_

n

n †n â n
1†#ân

 n lim
n œ _ Ê diverges
Ä_

n

œ ! ˆ 21 ‰  ! ˆ 43 ‰ ; both œ ! ˆ 21 ‰ and ! ˆ 43 ‰ are geometric series, and both converge
nœ1

 1 and r œ

nœ1

3
4

Ê

¹ 34 ¹

n œ1

 1, respectivley Ê

n œ1

_

! ˆ 1 ‰n
2

n œ1

œ

1
2

1  12

_

n

œ 1 and ! ˆ 34 ‰ œ
nœ1

3
4

1  34

œ3Ê

œ 1  3 œ 4 by Theorem 8, part (1)

2n  4n
n
n
nÄ_ 3  4

lim

œ

e#
e # 1

œ _ Á 0 Ê diverges

œ!
1
2

œ

"
1  Š "5 ‹

œ _ Á 0 Ê diverges

57. convergent geometric series with sum

61. n lim
Ä_

581

œ

lim

nÄ_

_

_

n œ1

n œ1

2n
4n
3n
4n

"
"

ˆ 12 ‰n  "
3 n
nÄ_ ˆ 4 ‰  "

œ lim

œ

1
1

œ 1 Á 0 Ê diverges by nth term test for divergence

65. ! ln ˆ n n 1 ‰ œ ! cln (n)  ln (n  1)d Ê sk œ cln (1)  ln (2)d  cln (2)  ln (3)d  cln (3)  ln (4)d  á
 cln (k  1)  ln (k)d  cln (k)  ln (k  1)d œ  ln (k  1) Ê

lim sk œ _, Ê diverges

kÄ_

66. n lim
a œ n lim
ln ˆ 2n n 1 ‰ œ ln ˆ "# ‰ Á 0 Ê diverges
Ä_ n
Ä_
67. convergent geometric series with sum
68. divergent geometric series with krk œ
_

_

n œ0

n œ0

"
1  ˆ 1e ‰
e1
1e

¸

œ

23.141
22.459

1
1e

1

69. ! (1)n xn œ ! (x)n ; a œ 1, r œ x; converges to
_

_

n œ0

n œ0

"
1  (x)

n
70. ! (1)n x2n œ ! ax# b ; a œ 1, r œ x# ; converges to

œ

"
1  x#

"
1x

for kxk  1

for kxk  1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

582

Chapter 10 Infinite Sequences and Series

71. a œ 3, r œ
_

72. !
n œ0

œ

(1)n
#

x1
#

; converges to
_

ˆ 3  "sin x ‰n œ !

n œ0

3  sin x
2(4  sin x)

œ

3  sin x
8  2 sin x

3
1  Šx

ˆ 3 "sin x ‰n ; a œ

"
#

"
1  2x

74. a œ 1, r œ  x"# ; converges to

for k2xk  1 or kxk 

"
#

; converges to

77. a œ 1, r œ sin x; converges to

_

79. (a) !
nœ2
_

80. (a) !
nœ1

"
1  (x  1)

"
1  Š3

x
# ‹

"
1  sin x

œ

œ

"
#x

for kx  1k  1 or 2  x  0

for kln xk  1 or e"  x  e
_

5
(n  2)(n  3)

(b) !

n œ0
_

n œ3



"
4

(b) one example is  3# 
(c) one example is 1 

"
#

for all x‰

for x Á (2k  1) 1# , k an integer

(b) !

"
#

" ‹
1  Š 3  sin
x

for ¸ 3 # x ¸  1 or 1  x  5

2
x1

"
(n  4)(n  5)

81. (a) one example is

ˆ "# ‰

#

"
1  ln x

78. a œ 1, r œ ln x; converges to

"
3  sin x

Ÿ

; converges to

x
¸1¸
" ‹ œ x#  1 for x#  1 or kxk  1.
#
x

75. a œ 1, r œ (x  1)n ; converges to
3x
#

"
3  sin x

,rœ

"
#

"
1Š

"
4

"
#

Ÿ

for all x ˆsince

73. a œ 1, r œ 2x; converges to

76. a œ 1, r œ

6
x"
" œ 3  x for 1  #  1 or 1  x  3
# ‹



"
8



"
16

á œ

3
4



3
8



3
16



"
4



"
8



Š "# ‹
1  Š "# ‹

á œ
"
16

_

"
(n  2)(n  3)

(c) !

5
(n  2)(n  1)

(c) !

n œ5
_

nœ20

"
(n  3)(n  #)

5
(n  19)(n  18)

œ1

Š 3# ‹
1  Š "# ‹

á œ 1

œ 3
Š "# ‹
1  Š "# ‹

œ 0.

_

Š k# ‹

n œ0

1  Š "# ‹

n 1
82. The series ! kˆ 12 ‰
is a geometric series whose sum is

œ k where k can be any positive or negative number.

_

_

_

_

_

nœ1

nœ1

nœ1

nœ1

nœ1

_

_

_

_

_

nœ1

nœ1

nœ1

nœ1

nœ1

n
n
83. Let an œ bn œ ˆ "# ‰ . Then ! an œ ! bn œ ! ˆ "# ‰ œ 1, while ! Š bann ‹ œ ! (1) diverges.

n
n
n
84. Let an œ bn œ ˆ "# ‰ . Then ! an œ ! bn œ ! ˆ "# ‰ œ 1, while ! aan bn b œ ! ˆ 4" ‰ œ

n

n

_

85. Let an œ ˆ 4" ‰ and bn œ ˆ "# ‰ . Then A œ ! an œ
n œ1

"
3

_

_

_

nœ1

nœ1

nœ1

"
3

Á AB.

n
, B œ ! bn œ 1 and ! Š bann ‹ œ ! ˆ "# ‰ œ 1 Á

86. Yes: ! Š a"n ‹ diverges. The reasoning: ! an converges Ê an Ä 0 Ê

"
an

A
B

.

Ä _ Ê ! Š a"n ‹ diverges by the

nth-Term Test.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.3 The Integral Test
87. Since the sum of a finite number of terms is finite, adding or subtracting a finite number of terms from a series
that diverges does not change the divergence of the series.
88. Let An œ a"  a#  á  an and n lim
A œ A. Assume ! aan  bn b converges to S. Let
Ä_ n
Sn œ (a"  b" )  (a#  b# )  á  (an  bn ) Ê Sn œ (a"  a#  á  an )  (b"  b#  á  bn )
Ê b"  b#  á  bn œ Sn  An Ê n lim
ab"  b#  á  bn b œ S  A Ê ! bn converges. This
Ä_
contradicts the assumption that ! bn diverges; therefore, ! aan  bn b diverges.
89. (a)
(b)

2
1r

œ5 Ê

Š 13
2 ‹
1r

2
5

œ5 Ê

œ1r Ê rœ

13
10

90. 1  eb  e2b  á œ

#

; 2  2 ˆ 35 ‰  2 ˆ 35 ‰  á

3
5

3
œ 1  r Ê r œ  10
;
"
1 e b

"
9

œ9 Ê

13
2



13
#

3 ‰
ˆ 10


œ 1  eb Ê eb œ

13
#

3 ‰#
ˆ 10


13
#

3 ‰$
ˆ 10
á

Ê b œ ln ˆ 89 ‰

8
9

91. sn œ 1  2r  r#  2r$  r%  2r&  á  r2n  2r2n1 , n œ 0, 1, á
Ê sn œ a1  r#  r%  á  r2n b  a2r  2r$  2r&  á  2r2n1 b Ê n lim
s œ
Ä_ n
1  2r
œ 1  r# , if kr# k  1 or krk  1
92. L  sn œ

a
1r



a a1  rn b
1r

œ

#

#

#

94. (a) L" œ 3, L# œ 3 ˆ 43 ‰ , L$ œ 3 ˆ 43 ‰ , á , Ln œ 3 ˆ 43 ‰

nc1

"
#

á œ

4
1

"
#

An œ
lim

È3
4

È3
ˆ " ‰2
4 ‹ 3

nÄ_

 ! 3a4bk2 Š

È3 8
ˆ5‰
4

œ

kœ2

An œ

È3
4

œ

È3
ˆ " ‰2
4 ‹ 33

n

2r
1  r#



È3
1#

, A$ œ A#  3a4bŠ

, A5 œ A4  3a4b3 Š

È3
ˆ " ‰k1
4 ‹ 32

È3
lim
nÄ_ Œ 4

œ

n

 3 È 3 Œ!
kœ2

È3
4

È3
ˆ " ‰2
4 ‹ 32

È3
ˆ " ‰2
4 ‹ 34 ,

œ

n

k 1

œ

œ_

È3 2
4 s , we see that
È3
È3
È3
4  12  #7 ,

È3
4 ,

A" œ

n

4kc$
.
9k 1 

œ

È3
4

 3È3Œ!

 3È 3Œ 1  4  œ

È3
4

1 ‰
 3È3ˆ 20
œ

kœ2

È3
4

nc1

...,

 ! 3È3a4bk$ ˆ "9 ‰

4kc$
9k 1 

œ 8 m#

Ê n lim
L œ n lim
3 ˆ 43 ‰
Ä_ n
Ä_

(b) Using the fact that the area of an equilateral triangle of side length s is

A% œ A$  3a4b2 Š



arn
1 r

93. area œ 2#  ŠÈ2‹  (1)#  Š È"2 ‹  á œ 4  2  1 

A# œ A"  3Š

"
1  r#

1
36

9

kœ2

È3
ˆ
4 1

 53 ‰

œ 85 A"

10.3 THE INTEGRAL TEST
1. faxb œ

1
x2

œ lim

bÄ_

2. faxb œ

1
x0.2

œ lim

bÄ_

_1

1; '1

is positive, continuous, and decreasing for x

_1

ˆ 1b  1‰ œ 1 Ê '
1

_

x2

dx converges Ê !

n œ1

1
n2

_

ˆ 54 b0.8  54 ‰ œ _ Ê '
1

1
x0.2

_

dx œ lim

bÄ_

'1b x1

2

dx œ lim

bÄ_

b

’ 1x “

1

converges
1; '1

is positive, continuous, and decreasing for x

_

x2

1
x0.2

dx œ lim

bÄ_

'1b x1

0.2

dx œ lim

bÄ_

dx diverges Ê ! n10.2 diverges
n œ1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

b

’ 54 x0.8 “

1

583

584

Chapter 10 Infinite Sequences and Series

3. faxb œ
œ

1
x2  4

lim ˆ 1 tan1 b2
bÄ_ 2

4. faxb œ

1
x4

_

1; '1

is positive, continuous, and decreasing for x
1
1 1 ‰
2 tan
2



œ

1
4

_

2

_

1; '1

is positive, continuous, and decreasing for x

œ lim

ˆ 2e12b 

bÄ_

1
xaln xb2

œ lim

_

'3

x
x2  4

x
x2  4

_

œ

1 ‰
2e2

1
2e2

_

œ

1 ‰
ln 2

1
ln 2

_ ln x2

'3

dx œ lim

bÄ_

ln x2
x

_

Ê '2

'3

x
x2  4

dx converges Ê !

n œ3

n œ1

bÄ_

'3

ln x
x

2

_

'7

2

x
exÎ3

n œ3

n œ2

2

n
enÎ3

n œ1

10. faxb œ

œ

1
e1Î3

x4
x2  2x  1

decreasing for x
œ lim

bÄ_
_

Ê !

nœ8

2

x
exÎ3

 18b
Š 3a6b
‹
ebÎ3

bÄ_

Ê !

'7

b

1



œ



4
e2Î3

x4
a x  1 b2

_

8; '8

’lnlx  1l 

bÄ_

9
e1

bÄ_



n4
n2  2n  1 diverges

16
e4Î3



x4
ax  1b2

_

Ê !

nœ2

36
e2

bÄ_

18x
exÎ3

 !

n œ7

"
10

’ ln1x “

bÄ_

2

converges

3;

_

ˆ 12 lnab2  4b  12 lna13b‰ œ _ Ê '
3

_ ln x2

a2aln bb  2aln 3bb œ _ Ê '3

b

x
x2  4

dx

x

3;

dx

54
“
exÎ3 7
327
e7Î3

2

n
enÎ3

 0 for x  6, thus f is decreasing for x

œ lim

bÄ_

_

Ê '7

x2
exÎ3

Š 3b

2

 18b  54
ebÎ3

b

x1
ax  1b2

œ 2 

1
4

b

dx converges Ê !

n œ7

13. diverges; by the nth-Term Test for Divergence, n lim
Ä_

3
ax  1b2

œ

n2
converges
enÎ3

1
16



2
25



3
36

7x
ax  1 b 3

dx• œ lim ”'8
bÄ_

b

_

 ln 7  37 ‰ œ _ Ê '8

0

1

327
‹
e7Î3

7;

converges

dx  '8

3
b1



_

2, f is positive for x  4, and f w axb œ

ˆlnlb  1l 

n4
n2  2n  1

b

dx œ lim

2

 0 for x  e, thus f is decreasing for x

x a x  6 b
3exÎ3



œ

_

”'8
bÄ_

dx œ lim

11. converges; a geometric series with r œ

2  ln x2
x2

bÄ_

3

327
e7Î3

e



bÄ_

'2b xaln1xb

n œ3

1, f w axb œ

’ e3xxÎ3 

25
e5Î3

œ lim

_

dx œ lim

n œ3

is continuous for x

b

1

2
 ! lnnn diverges

ln 4
2

ˆ b54
‰
Î3

œ lim

3
x  1 “8

b

’ 12 e2x “

lim

 ! n2 n 4 diverges

_

2

dx œ lim

327
e7Î3

2
8

2, f w axb œ

is positive and continuous for x
bÄ_

œ lim



1
5

’2aln xb“ œ lim

bÄ_

_

dx œ lim

_

bÄ_

b

’lnlx  4l“

lim

 0 for x  2, thus f is decreasing for x

bÄ_

3

b

dx œ lim

_

4  x2
ax2  4b2

’ 21 lnax2  4b“ œ lim

is positive and continuous for x
b

1
naln nb2

n œ2

1, f w axb œ

1
xaln xb2

b

dx œ lim
_

bÄ_

x2
exÎ3

_

2; '2
_

1
xaln xb2

2
2
diverges Ê ! lnnn diverges Ê ! lnnn œ

9. faxb œ

1

n œ1

_

dx œ lim

x

'1b e2x dx œ

Ê '1 e2x dx converges Ê ! e2n converges

is positive and continuous for x
b

bÄ_

_

diverges Ê ! n2 n 4 diverges Ê ! n2 n 4 œ
8. faxb œ

bÄ_

bÄ_

1; '1 e2x dx œ lim

is positive, continuous, and decreasing for x

ˆ ln1b 

bÄ_

7. faxb œ

’ 21 tan1 x2 “

n œ1

5. faxb œ e2x is positive, continuous, and decreasing for x

6. faxb œ

bÄ_

'1b x 1 4 dx œ

dx œ lim

1
x4

b

lim

2

n œ1

_

bÄ_

2

bÄ_

_
alnlb  4l  ln 5b œ _ Ê '1 x 1 4 dx diverges Ê ! n 1 4 diverges

œ lim

'1b x 1 4 dx œ

dx œ lim

_
Ê '1 x 1 4 dx converges Ê ! n 1 4 converges

1
1 1
2 tan
2



1
x2  4

_

 !

n œ8

x4
ax  1b2

n4
n2  2n  1

 0 for x  7, thus f is

1
x1

dx  '8

3
ax  1b2

dx diverges

diverges

12. converges; a geometric series with r œ
n
n1

b

œ1Á0

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

"
e

1

dx•

Section 10.3 The Integral Test
14. diverges by the Integral Test; '1

n

_

15. diverges; !
n œ1

3
Èn

_

16. converges; !
n œ1

_

"
Èn

œ3!

nœ1

2
nÈ n

_

dx œ 5 ln (n  1)  5 ln 2 Ê '1

5
x1

_

n œ1

8
n

_

œ 2 !

n œ1

_

œ 8 !

nœ1

dx Ä _

, which is a divergent p-series (p œ #" )
"
n$Î#

, which is a convergent p-series (p œ 3# )

17. converges; a geometric series with r œ
18. diverges; !

5
x1

"
8

1
_

and since !

1
n

nœ1

19. diverges by the Integral Test:

_

"
n

diverges, 8 !

n œ1

'2n lnxx dx œ "# aln# n  ln 2b

Ê

t œ ln x ×
dt œ dx
Ä
x
Õ dx œ et dt Ø
œ lim 2ebÎ2 (b  2)  2eÐln 2ÑÎ2 (ln 2  2)‘ œ _

20. diverges by the Integral Test:

'2_ lnÈxx dx; Ô

1
n

diverges

'2_ lnxx dx

'ln_2 tetÎ2 dt œ

Ä _

b

lim 2tetÎ2  4etÎ2 ‘ ln 2

bÄ_

bÄ_

21. converges; a geometric series with r œ
22. diverges; n lim
Ä_
_

23. diverges; !
n œ0

2
n 1

5n
4n  3

_

œ 2 !

n œ0

"
n1

1

ˆ ln 5 ‰ ˆ 54 ‰n œ _ Á 0
œ n lim
Ä _ ln 4

5n ln 5
4n ln 4

œ n lim
Ä_

2
3

, which diverges by the Integral Test

24. diverges by the Integral Test:

'1n 2xdx 1 œ "# ln (2n  1)

25. diverges; n lim
a œ n lim
Ä_ n
Ä_

2n
n1

26. diverges by the Integral Test:

'1n Èx ˆÈdxx  1‰ ; – u œ

27. diverges; n lim
Ä_

Èn
ln n

œ n lim
Ä_

œ n lim
Ä_

2n ln 2
1

œ_Á0
Èx  "

du œ

"
Š 2È
‹
n

Š "n ‹

œ n lim
Ä_

Èn
#

Ä _ as n Ä _

dx
Èx

Ènb1 du

'
—Ä 2

u

œ ln ˆÈn  1‰  ln 2 Ä _ as n Ä _

œ_Á0

ˆ1  n" ‰n œ e Á 0
28. diverges; n lim
a œ n lim
Ä_ n
Ä_
29. diverges; a geometric series with r œ

"
ln #

30. converges; a geometric series with r œ

31. converges by the Integral Test:

¸ 1.44  1

"
ln 3

¸ 0.91  1

'3_ (ln x) ÈŠ(ln‹x)  1 dx; ”
"
x

#

u œ ln x
Ä
du œ "x dx •

'ln_3

"
uÈ u#  1

du

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

585

586

Chapter 10 Infinite Sequences and Series
b
œ lim csec" kukd ln 3 œ lim csec" b  sec" (ln 3)d œ lim cos" ˆ "b ‰  sec" (ln 3)‘

bÄ_

bÄ_

œ cos" (0)  sec" (ln 3) œ

1
#

32. converges by the Integral Test:

'1_ x a1 "ln xb dx œ '1_ 1 Š(ln‹x)
"
x

#

œ lim ctan" ud 0 œ lim atan" b  tan" 0b œ
b

bÄ_

bÄ_

 sec" (ln 3) ¸ 1.1439

bÄ_

1
#

0œ

dx; ”

#

'0_ 1"u

u œ ln x
Ä
du œ "x dx •

#

du

1
#

33. diverges by the nth-Term Test for divergence; n lim
n sin ˆ "n ‰ œ n lim
Ä_
Ä_

sin ˆ "n ‰
ˆ "n ‰

œ lim

34. diverges by the nth-Term Test for divergence; n lim
n tan ˆ "n ‰ œ n lim
Ä_
Ä_

tan ˆ "n ‰
ˆ "n ‰

œ n lim
Ä_

xÄ0

œ1Á0

sin x
x

Š n"# ‹ sec# ˆ n" ‰
Š n"# ‹

œ n lim
sec# ˆ "n ‰ œ sec# 0 œ 1 Á 0
Ä_
35. converges by the Integral Test:

'1_ 1 e e
x

1
#

œ lim atan" b  tan" eb œ
bÄ_

36. converges by the Integral Test:
œ lim 2 ln
bÄ_

u ‘b
u1 e

dx; ”

2x

'e_

u œ ex
Ä
du œ ex dx •

"
1  u#

ctan" ud e
du œ n lim
Ä_

b

 tan" e ¸ 0.35

_

'1

u œ ex ×
_
_
dx; du œ ex dx Ä 'e u(1 2 u) du œ 'e ˆ 2u 
Õ dx œ " du Ø
u
Ô

2
1  ex

2 ‰
u1

du

œ lim 2 ln ˆ b b 1 ‰  2 ln ˆ e e 1 ‰ œ 2 ln 1  2 ln ˆ e e 1 ‰ œ 2 ln ˆ e e 1 ‰ ¸ 0.63
bÄ_

37. converges by the Integral Test:

38. diverges by the Integral Test:

'1_ 81tancx x dx; ” u œ tan dx x •
"

"

#

du œ

1  x#

'1_ x x1 dx; ” u œ x

39. converges by the Integral Test:

#

#

1
Ä
du œ 2x dx •

'1_ sech x dx œ 2

Ä

x

x #

bÄ_

#

'2_ du4 œ

"
#

'1b 1 eae b

lim

'11ÎÎ42 8u du œ c4u# d 11ÎÎ24 œ 4 Š 14



b
lim  #" ln u‘ 2 œ lim

1#
16 ‹

"

bÄ_ #

bÄ_

œ

31 #
4

(ln b  ln 2) œ _

dx œ 2 lim ctan" ex d 1
b

bÄ_

œ 2 lim atan" eb  tan" eb œ 1  2 tan" e ¸ 0.71
bÄ_

40. converges by the Integral Test:

'1_ sech# x dx œ

œ 1  tanh 1 ¸ 0.76
41.

'1_ ˆ x a 2  x " 4 ‰ dx œ
a
lim (bb2)4
bÄ_

lim

bÄ_

'1b sech# x dx œ

lim ca ln kx  2k  ln kx  4kd 1 œ lim ln
b

bÄ_

œ a lim (b  2)
bÄ_

bÄ_

a 1

lim ctanh xd b1 œ lim (tanh b  tanh 1)

bÄ_

(b  2)a
b4

bÄ_

 ln ˆ 35 ‰ ;
a

_, a  1
œœ
Ê the series converges to ln ˆ 53 ‰ if a œ 1 and diverges to _ if
1, a œ 1

a  1. If a  1, the terms of the series eventually become negative and the Integral Test does not apply. From
that point on, however, the series behaves like a negative multiple of the harmonic series, and so it diverges.
42.

'3_ ˆ x " 1  x 2a 1 ‰ dx œ
"
2ac1
b Ä _ #a(b  1)

œ lim

b

lim ’ln ¹ (xx1)12a ¹“ œ lim ln

bÄ_

œ

3

bÄ_

b1
(b  1)2a

b"

 ln ˆ 422a ‰ ; lim

2a
b Ä _ (b  1)

1, a œ "#
Ê the series converges to ln ˆ #4 ‰ œ ln 2 if a œ
_, a  "#

"
#

and diverges to _ if

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.3 The Integral Test
if a 

"
#

. If a 

"
#

587

, the terms of the series eventually become negative and the Integral Test does not apply.

From that point on, however, the series behaves like a negative multiple of the harmonic series, and so it diverges.
43. (a)

(b) There are (13)(365)(24)(60)(60) a10* b seconds in 13 billion years; by part (a) sn Ÿ 1  ln n where
n œ (13)(365)(24)(60)(60) a10* b Ê sn Ÿ 1  ln a(13)(365)(24)(60)(60) a10* bb
œ 1  ln (13)  ln (365)  ln (24)  2 ln (60)  9 ln (10) ¸ 41.55
_

44. No, because !
n œ1

"
nx

œ

"
x

_

!
n œ1

"
n

_

and !
n œ1

"
n

diverges

_

_

_

nœ1

nœ1

nœ1

45. Yes. If ! an is a divergent series of positive numbers, then ˆ "# ‰ ! an œ ! ˆ a#n ‰ also diverges and

an
#

 an .

_

There is no “smallest" divergent series of positive numbers: for any divergent series ! an of positive numbers
n œ1

_

! ˆ an ‰ has smaller terms and still diverges.
#

n œ1

_

_

_

nœ1

nœ1

nœ1

46. No, if ! an is a convergent series of positive numbers, then 2 ! an œ ! 2an also converges, and 2an

an .

There is no “largest" convergent series of positive numbers.
47. (a) Both integrals can represent the area under the curve faxb œ

1
Èx  1 ,

and the sum s50 can be considered an
50

approximation of either integral using rectangles with ?x œ 1. The sum s50 œ !

n œ1

integral

1
Èn  1

is an overestimate of the

'151 Èx1 1 dx. The sum s50 represents a left-hand sum (that is, the we are choosing the left-hand endpoint of

each subinterval for ci ) and because f is a decreasing function, the value of f is a maximum at the left-hand endpoint of
each sub interval. The area of each rectangle overestimates the true area, thus '1

51

manner, s50 underestimates the integral '0

50

1
Èx  1 dx.

1
Èx  1 dx

50

!

n œ1

1
Èn  1 .

In a similar

In this case, the sum s50 represents a right-hand sum and because

f is a decreasing function, the value of f is aminimum at the right-hand endpoint of each subinterval. The area of each
50

rectangle underestimates the true area, thus !
n œ1

1
Èn  1

œ ’2Èx  1“ œ 2È52  2È2 ¸ 11.6 and '0
51

50

1

50

11.6  !

n œ1

1
Èn  1

Ên

1
Èx  1 dx

50

1
Èx  1 dx.

Evaluating the integrals we find '1

51

1
Èx  1 dx

50

œ ’2Èx  1“ œ 2È51  2È1 ¸ 12.3. Thus,
0

 12.3.

nb1

(b) sn  1000 Ê '1

 '0

1
Èx  1 dx

nb1

œ ’2Èx  1“

1

2

œ 2Èn  1  2È2  1000 Ê n  Š500  2È2‹  ¸ 251414.2

251415.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

588

Chapter 10 Infinite Sequences and Series
30

48. (a) Since we are using s30 œ !

n œ1

1
n4

_

to estimate !
n œ1

of the area under the curve faxb œ

1
x4

_

the error is given by !

1
n4 ,

nœ31

1
n4 .

We can consider this sum as an estimate

30 using rectangles with ?x œ 1 and ci is the right-hand endpoint of

when x

each subinterval. Since f is a decreasing function, the value of f is a minimum at the right-hand endpoint of each
_

subinterval, thus !
nœ31

 '30

_

1
n4

1
x4 dx

œ lim '30

b

bÄ_

1
x4 dx

b

œ lim ’ 3x1 3 “ œ lim Š 3b1 3 
bÄ_

bÄ_

30

1
‹
3a30b3

¸ 1.23 ‚ 105 .

Thus the error  1.23 ‚ 105 Þ
(b) We want S  sn  0.000001 Ê 'n

_

œ

lim ˆ 3b1 3
bÄ_



1 ‰
3n3

œ

1
3n3

49. We want S  sn  0.01 Ê 'n

_

œ

1
2n2

_

1
x3 dx

1
x2  4 dx

bÄ_

n œ1

1
n2  4

_

10
n0.1



b

bÄ_

1
x2  4 dx

1
x4 dx

b

œ lim ’ 3x1 3 “
bÄ_

n

70.
b

œ lim ’ 2x1 2 “ œ lim ˆ 2b1 2 
bÄ_

bÄ_

n

1 ‰
2n2

¸ 1.195

1
n3

n œ1

bÄ_
1
1 ˆ n ‰
2 tan
2

1
x3 dx

bÄ_
8

b

1
4

œ lim 'n

8 Ê S ¸ s8 œ !

 0.1 Ê lim 'n

b

¸ 69.336 Ê n

É 1000000
3
3

1
x3 dx

œ lim 'n

b

œ lim ’ 21 tan1 ˆ 2x ‰“
bÄ_

n

 0.1 Ê n  2tanˆ 12  0.2‰ ¸ 9.867 Ê n

10 Ê S ¸ s10

1
x1.1 dx

 0.00001 Ê 'n

_

1
x1.1 dx

œ lim 'n

b

bÄ_

1
x1.1 dx

b

œ lim ’ x10
lim ˆ b10
0.1 “ œ
0.1 
bÄ_

bÄ_

n

10 ‰
n0.1

 0.00001 Ê n  100000010 Ê n  1060

52. S  sn  0.01 Ê 'n

_

œ

_

1
x4 dx

¸ 0.57

51. S  sn  0.00001 Ê 'n
œ

_

 0.01 Ê 'n

œ lim ˆ 12 tan1 ˆ b2 ‰  12 tan1 ˆ n2 ‰‰ œ
10

 0.000001 Ê 'n

 0.000001 Ê n 

 0.01 Ê n  È50 ¸ 7.071 Ê n

50. We want S  sn  0.1 Ê 'n

œ!

1
x4 dx

lim Š 2aln1bb2
bÄ_



1
dx
xaln xb3

1
‹
2aln nb2

n

n

k œ1

k œ1

 0.01 Ê 'n

_

œ

1
2aln nb2

œ lim 'n

b

1
dx
xaln xb3

bÄ_

È50

 0.01 Ê n  e

1
dx
xaln xb3

b

œ lim ’ 2aln1xb2 “
bÄ_

¸ 1177.405 Ê n

n

1178

53. Let An œ ! ak and Bn œ ! 2k aa2k b , where {ak } is a nonincreasing sequence of positive terms converging to
0. Note that {An } and {Bn } are nondecreasing sequences of positive terms. Now,
Bn œ 2a#  4a%  8a)  á  2n aa2n b œ 2a#  a2a%  2a% b  a2a)  2a)  2a)  2a) b  á
ˆ2aa2n b  2aa2n b  á  2aa2n b ‰ Ÿ 2a"  2a#  a2a$  2a% b  a2a&  2a'  2a(  2a) b  á
 ðóóóóóóóóóóóóóóñóóóóóóóóóóóóóóò
2n1 terms
_

 ˆ2aa2nc1 b  2aa2nc1 1b  á  2aa2n b ‰ œ 2Aa2n b Ÿ 2 ! ak . Therefore if ! ak converges,
k œ1

then {Bn } is bounded above Ê ! 2k aa2k b converges. Conversely,
_

An œ a"  aa#  a$ b  aa%  a&  a'  a( b  á  an  a"  2a#  4a%  á  2n aa2n b œ a"  Bn  a"  ! 2k aa2k b .
k œ1

_

Therefore, if ! 2 aa2k b converges, then {An } is bounded above and hence converges.
k

k œ1

54. (a) aa2n b œ
_

Ê !

n œ2

"
2n ln a2n b
"
n ln n

œ

"
2n †n(ln 2)

_

_

n œ2

n œ2

Ê ! 2 n a a2 n b œ ! 2 n

"
#n †n(ln 2)

œ

"
ln #

_

!
n œ2

"
n

, which diverges

diverges.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.3 The Integral Test
"
#np

(b) aa2n b œ

55. (a)

_

_

n œ1

nœ1

Ê ! 2 n a a2 n b œ ! 2 n †
"

#pc1

'2_ x(lndxx)

u œ ln x
• Ä
du œ dx
x

œœ

;”

_

n
œ ! ˆ #p"c1 ‰ , a geometric series that
nœ1

'2_ x dxln x œ

p œ 1.

cpb1

lim ’ up  1 “

bÄ_

b
ln 2

œ lim Š 1 " p ‹ cbp1  (ln 2)p1 d
bÄ_

Ê the improper integral converges if p  1 and diverges if p  1.

_, p  "

For p œ 1:

"
a2n bpc1

nœ1

'ln_2 ucp du œ

(ln 2)cpb1 , p  1

"
p1

_

œ!

 1 or p  1, but diverges if p Ÿ 1.

converges if

p

"
#np

589

lim cln (ln x)d b2 œ lim cln (ln b)  ln (ln 2)d œ _, so the improper integral diverges if

bÄ_

bÄ_

_

"
n(ln n)p

(b) Since the series and the integral converge or diverge together, !
n œ2

converges if and only if p  1.

56. (a) p œ 1 Ê the series diverges
(b) p œ 1.01 Ê the series converges
_

(c) !
n œ2

"
n aln n$ b

"
3

œ

_

"
n(ln n)

!
n œ2

; p œ 1 Ê the series diverges

(d) p œ 3 Ê the series converges
57. (a) From Fig. 10.11(a) in the text with f(x) œ
Ÿ 1  '1 f(x) dx Ê ln (n  1) Ÿ 1 
n

Ÿ ˆ1 

"
#

"
3



á 

"‰
n

"
#

"
x

and ak œ



"
3

á 

(b) From the graph in Fig. 10.11(b) with f(x) œ
Ê 0

 cln (n  1)  ln nd œ ˆ1 

If we define an œ 1 

"
#

œ

nb1

, we have '1
"
n

"
3



"
n

"
x

"
n1
"
"
#  3 

,

"
x

dx Ÿ 1 

"
#



"
3

á 

"
n

Ÿ 1  ln n Ê 0 Ÿ ln (n  1)  ln n

 ln n Ÿ 1. Therefore the sequence ˜ˆ1 

1 and below by 0.
"
n1

"
k

nb1

 'n

"
x

á

"
n 1

"
#



"
3

 á  n" ‰  ln n™ is bounded above by

dx œ ln (n  1)  ln n
 ln (n  1)‰  ˆ1 

"
#



"
3

á 

"
n

 ln n‰ .

 ln n, then 0  an1  an Ê an1  an Ê {an } is a decreasing sequence of

nonnegative terms.

_

_

#
b
1, and '1 ecx dx œ lim cex d " œ lim ˆeb  e1 ‰ œ ec1 Ê '1 ecx dx converges by

#

58. ex Ÿ ex for x

bÄ_

bÄ_

_

n#

the Comparison Test for improper integrals Ê ! e
n œ0

10

59. (a) s10 œ !

'10_ x1

n œ1

"
n3

dx œ lim

3

bÄ_

Ê 1.97531986 
_

(b) s œ !

n œ1

"
n3

10

60. (a) s10 œ !

'10_ x1

nœ1

4

¸

"
n4

(b) s œ !

n œ1

"
n4

¸

c2 b

lim ’ x2 “

bÄ_

'11_ x1

'10b x4 dx œ
1
3993

10

4

dx œ lim
c3 b

bÄ_

c2 b

lim ’ x2 “

bÄ_

œ lim ˆ 2b1 2 
bÄ_

bÄ_
10

 s  1.082036583 

1.08229  1.08237
2

'11b x3 dx œ

1 ‰
200

œ

11

œ lim ˆ 2b1 2 
bÄ_

1 ‰
242

œ

1
242

and

1
200

Ê 1.20166  s  1.20253

1
200

lim ’ x3 “

#

nœ1

œ 1.202095; error Ÿ

œ 1.082036583;

Ê 1.082036583 

bÄ_

 s  1.97531986 

1.20166  1.20253
2

bÄ_

dx œ lim

3

'10b x3 dx œ

1
242

dx œ lim

_

'11_ x1

œ 1.97531986;

_

œ 1  ! en converges by the Integral Test.

1.20253  1.20166
2

'11b x4 dx œ

c3 b

lim ’ x3 “

bÄ_

œ lim ˆ 3b1 3 
bÄ_

1
3000

œ 1.08233; error Ÿ

œ 0.000435

1 ‰
3000

œ

11

œ lim ˆ 3b1 3 
bÄ_

1
3000

Ê 1.08229  s  1.08237

1.08237  1.08229
2

œ 0.00004

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

1 ‰
3993

œ

1
3993

and

590

Chapter 10 Infinite Sequences and Series

10.4 COMPARISON TESTS
_

1. Compare with !
n œ1

n

which is a convergent p-series, since p œ 2  1. Both series have nonnegative terms for n

1, we have n2 Ÿ n2  30 Ê
_

2. Compare with !
n œ1

n

"
n2 ,

"
n3 ,

1
n2

1
n2  30 .

_

Then by Comparison Test, !

1
n2  30

n œ1

1. For

converges.

which is a convergent p-series, since p œ 3  1. Both series have nonnegative terms for n

1, we have n4 Ÿ n4  2 Ê

1
n4

Ê

1
n 4 2

n
n4

Ê

n
n 4 2

1
n3

n
n 4 2

_

n1
n 4 2 .

Then by Comparison Test, !
n œ1

1. For

n1
n 4 2

converges.
_

3. Compare with !
n œ2

n

_

n œ2

"
n,

_

n œ1

For n

1
Èn  1

"
,
n3Î2

n2

1
n

_

n œ1

1. For n

œ È5 !

n œ1

1
n3Î2

"
3n ,

Ê

cos2 n
n3Î2

n œ2

1
Èn  1

n2

n
n

n
n2

œ

1
n

Ê

Ÿ

1
.
n3Î2

n2
n2  n

3
2

n2

n
n

1
n.

diverges.

_

Thus !
n œ2

n2
n2  n

n 3 an  4 b
n4  4

_

_

È5
.
n3Î2

_

cos2 n
n3Î2

Then by Comparison Test, !
n œ1

_

8. Compare with !
n œ1

n

The series !
nœ1

n4
n4  4

"
Èn ,

1, we have Èn

Ê n2  2 nÈn  n
Ê

Èn  1
È n2  3

1
Èn .

diverges.

1.

converges.

1
n †3 n

1
n3Î2

Ÿ

1
3n .

_

Then by Comparison Test, !
n œ1

is a convergent p-series, since p œ

3
2

1
n †3 n

converges.
_

Ÿ

5
n3

Ê É nn444 Ÿ É n53 œ

È5
n3Î2

nœ1

1. For n

_

n2  3 Ê

2 Ê 2È n  1
n ˆn  2 È n  1 ‰
n2  3

1Ê

"
#

Ÿ 5.

Ÿ 1. Both series have nonnegative terms for n

3 Ê nˆ2Èn  1‰
n  2È n  1
n2  3

Èn  1
È n2  3
n œ1

n4  4n3
n4  4

n œ1

1
n

Ê

3 Ê 2 nÈ n  n

3n
ˆÈ n  1 ‰
n2  3

2

1
n

ÊÊ

ˆÈ n  1 ‰
n2  3

_

Then by Comparison Test, !

1, we have

Then by Comparison Test, ! É nn444 converges.

which is a divergent p-series, since p œ
1 Ê 2È n

È5
n3Î2

 1, and the series !

converges by Theorem 8 part 3. Both series have nonnegative terms for n

Ÿ5Ê

2. For

 1. Both series have nonnegative terms for n

n3 Ÿ n4 Ê 4n3 Ÿ 4n4 Ê n4  4n3 Ÿ n4  4n4 œ 5n4 Ê n4  4n3 Ÿ 5n4  20 œ 5an4  4b Ê
Ê

2. For

which is a convergent geometric series, since lrl œ ¹ 13 ¹  1. Both series have nonnegative terms for
3n Ê

nœ1
_

_

which is a convergent p-series, since p œ

1, we have n † 3n

7. Compare with !

Ÿ 1. Both series have nonnegative terms for n

Then by Comparison Test, !

1
Èn .

1
n2

1, we have 0 Ÿ cos2 n Ÿ 1 Ê

6. Compare with !

"
#

which is a divergent p-series, since p œ 1 Ÿ 1. Both series have nonnegative terms for n

2, we have n2  n Ÿ n2 Ê

5. Compare with !

n

which is a divergent p-series, since p œ

2, we have Èn  1 Ÿ Èn Ê

4. Compare with !
n

"
Èn ,

diverges.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

3
2

É 1n

1. For

Section 10.4 Comparison Tests
_

"
n2 ,

9. Compare with !
nc2
n3 c n2 b 3
1 În 2

œ lim
_

!
n œ1

n œ1

nÄ_

n2
n3  n2  3

n3  2n2
3
2
nÄ_ n  n  3

œ lim

3n2  4n
2
nÄ_ 3n  2n

œ lim

6n  4
nÄ_ 6n  2

œ lim

œ lim

6
nÄ_ 6

an
nÄ_ bn

1. lim

œ 1  0. Then by Limit Comparison Test,

converges.
_

"
Èn ,

10. Compare with !
n œ1

É nn2bb12

œ lim

which is a convergent p-series, since p œ 2  1. Both series have positive terms for n

591

which is a divergent p-series, since p œ

n
œ lim É nn2 
 2 œ É lim

n2  n
2
nÄ_ n  2

2

nÄ_ 1ÎÈn

nÄ_

œ É lim

nÄ_

"
#

2n  1
2n

Ÿ 1. Both series have positive terms for n

œ É lim

2
nÄ_ 2

an
nÄ_ bn

1. lim

œ È1 œ 1  0. Then by Limit Comparison

_

Test, ! É nn212 diverges.
n œ1

_

"
n,

11. Compare with !
nan b 1b
Šn2

œ lim

n œ2

b 1‹an c 1b

n3 + n2
3
2
nÄ_ n  n  n  1

œ lim

1 În

nÄ_

_

Test, !
n œ2

n an  1 b
an2  1ban  1b

_

n œ1

lim an
nÄ_ bn

1.

nÄ_

_

n œ1
5n

È n 4n

œ lim

†

nÄ_ 1ÎÈn

6n  2
nÄ_ 6n  2

œ lim

œ lim

6
nÄ_ 6

œ 1  0. Then by Limit Comparison

which is a convergent geometric series, since lrl œ ¹ 12 ¹  1. Both series have positive terms for

œ lim

13. Compare with !

3n2  2n
2
nÄ_ 3n  2n  1

œ lim

an
nÄ_ bn

2. lim

diverges.

"
2n ,

12. Compare with !
n

which is a divergent p-series, since p œ 1 Ÿ 1. Both series have positive terms for n

"
Èn ,

2n
3 b 4n
1Î2 n

4n
3

4n
nÄ_

œ lim

4n ln 4
n
nÄ_ 4 ln 4

œ lim

_

œ 1  0. Then by Limit Comparison Test, !

which is a divergent p-series, since p œ

n œ1

1
2

_

nÄ_

converges.

Ÿ 1. Both series have positive terms for n

n
œ lim ˆ 54 ‰ œ _. Then by Limit Comparison Test, !

5n
n
nÄ_ 4

œ lim

2n
3  4n

n œ1

5n
Èn†4n

an
nÄ_ bn

1. lim

diverges.

_

n
14. Compare with ! ˆ 25 ‰ , which is a convergent geometric series, since lrl œ ¹ 25 ¹  1. Both series have positive terms for
n œ1

n

1.

œ exp

b 3 ‰n
ˆ 2n
5n b 4

n
 15 ‰n
 15 ‰
lim ˆ 10n  15 ‰ œ exp lim lnˆ 10n
œ exp lim n lnˆ 10n
n œ
10n  8
10n  8
nÄ_ a2Î5b
nÄ_ 10n  8
nÄ_
nÄ_
b 15 ‰
10
lnˆ 10n
 10b 8
70n2
70n2
10n b 8
lim
œ exp lim 10n b151În10n
œ exp lim a10n  15
2
2
1 În
ba10n  8b œ exp nlim
nÄ_
nÄ_
nÄ_
Ä_ 100n  230n  120

lim an
nÄ_ bn

œ lim

œ exp lim

œ exp lim

140n
nÄ_ 200n  230
_

15. Compare with !
n œ2

œ lim

"
ln n

nÄ_ 1În

n œ1

lnŠ1  n"2 ‹
1În2

_

 3 ‰n
œ e7Î10  0. Then by Limit Comparison Test, ! ˆ 2n
converges.
5n  4
n œ1

which is a divergent p-series, since p œ 1 Ÿ 1. Both series have positive terms for n

n
nÄ_ ln n
_

nÄ_

"
n,

œ lim

16. Compare with !
œ lim

140
nÄ_ 200

"
n2 ,

œ lim

1
nÄ_ 1În

_

œ lim n œ _. Then by Limit Comparison Test, !
nÄ_

n œ2

"
ln n

an
nÄ_ bn

2. lim

diverges.

which is a convergent p-series, since p œ 2  1. Both series have positive terms for n
1

œ lim

nÄ_

1

2
" Š n3 ‹

n2

Š n23 ‹

œ lim

1
"
nÄ_ 1  n2

_

œ 1  0. Then by Limit Comparison Test, ! lnˆ1 
n œ1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

"‰
n2

an
nÄ_ bn

1. lim

converges.

592

Chapter 10 Infinite Sequences and Series
_

"
Èn

17. diverges by the Limit Comparison Test (part 1) when compared with !
n œ1

, a divergent p-series:

"

lim

Œ #Èn È
$ n
Š È"n ‹

nÄ_

Èn
$ n
2È n  È

œ n lim
Ä_

ˆ "
œ n lim
Ä _ #n

1Î6

‰œ

"
#

18. diverges by the Direct Comparison Test since n  n  n  n  Èn  0 Ê

_

"
n

term of the divergent series !
nœ1

3
n  Èn



"
n

, which is the nth

"
n

or use Limit Comparison Test with bn œ

19. converges by the Direct Comparison Test;

sin# n
2n

Ÿ

"
#n

, which is the nth term of a convergent geometric series

20. converges by the Direct Comparison Test;

1  cos n
n#

Ÿ

2
n#

2n
3n  1

21. diverges since n lim
Ä_

œ

2
3

Š nn# È"n ‹

"
n#

converges

Á0

22. converges by the Limit Comparison Test (part 1) with
lim
nÄ_

and the p-series !

"
n$Î#

, the nth term of a convergent p-series:

ˆ n n " ‰ œ 1
œ n lim
Ä_

" ‹
Š $Î#
n

23. converges by the Limit Comparison Test (part 1) with
lim

Š n(n 10n1)(n" 2) ‹
Š n"# ‹

nÄ_

10n#  n
n#  3n  2

œ n lim
Ä_

œ n lim
Ä_

20n  1
2n  3

24. converges by the Limit Comparison Test (part 1) with
lim

 n# (n

"
n#

, the nth term of a convergent p-series:

œ n lim
Ä_

"
n#

œ 10

20
2

, the nth term of a convergent p-series:

5n$

3n
2) Šn#  5‹ 

Š n"# ‹

nÄ_

œ n lim
Ä_

5n$  3n
n$  2n#  5n  10

15n#  3
3n#  4n  5

œ n lim
Ä_
n

œ n lim
Ä_

30n
6n  4

œ5

n

n

n ‰
25. converges by the Direct Comparison Test; ˆ 3n n 1 ‰  ˆ 3n
œ ˆ "3 ‰ , the nth term of a convergent geometric series

26. converges by the Limit Comparison Test (part 1) with
"

Š $Î# ‹
n

lim
nÄ_ Š "
È$
n

2

$

‹

É n n$ 2 œ lim É1 
œ n lim
Ä_
nÄ_

"
n$Î#

, the nth term of a convergent p-series:

œ1

2
n$

27. diverges by the Direct Comparison Test; n  ln n Ê ln n  ln ln n Ê

"
n

_

28. converges by the Limit Comparison Test (part 2) when compared with !
n œ1
#

lim
nÄ_

’ (lnn$n) “
Š n"# ‹

œ n lim
Ä_

(ln n)#
n

œ n lim
Ä_

2(ln n) Š n" ‹
1

œ 2 n lim
Ä_

29. diverges by the Limit Comparison Test (part 3) with
lim

nÄ_

’È

1
“
n ln n
ˆ n" ‰

œ n lim
Ä_

Èn
ln n

"
n

Š 2È n ‹
ˆ n" ‰

"
n#

"
ln n



"
ln (ln n)

_

and !
n œ3

"
n

, a convergent p-series:

œ0

, the nth term of the divergent harmonic series:

"

œ n lim
Ä_

ln n
n



œ n lim
Ä_

Èn
2

œ_

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

diverges

Section 10.4 Comparison Tests
"
n&Î%

30. converges by the Limit Comparison Test (part 2) with
lim

n)#
’ (ln$Î#
“
n

nÄ_ Š

"
‹
n&Î%

(ln n)#
n"Î%

œ n lim
Ä_

œ n lim
Ä_

ˆ 2 lnn n ‰

"
n

31. diverges by the Limit Comparison Test (part 3) with
lim

nÄ_

ˆ 1 "ln n ‰
ˆ "n ‰

œ n lim
Ä_

n
1  ln n

32. diverges by the Integral Test:

"
Š "n ‹

œ n lim
Ä_

, the nth term of a convergent p-series:

œ 8 n lim
Ä_

"
Š $Î%
‹
4n

ln n
n"Î%

œ 8 n lim
Ä_

ˆ n" ‰
Š

"
‹
4n$Î%

œ 32 n lÄ
im_

"
n"Î%

œ 32 † 0 œ 0

, the nth term of the divergent harmonic series:

œ n lim
nœ_
Ä_

'2_ lnx(x11) dx œ 'ln_3 u du œ

 " u# ‘ b œ lim
ln 3

lim
bÄ_ 2

"

bÄ_ #

ab#  ln# 3b œ _

"
33. converges by the Direct Comparison Test with n$Î#
, the nth term of a convergent p-series: n#  1  n for
"
"
n 2 Ê n# an#  1b  n$ Ê nÈn#  1  n$Î# Ê $Î#

or use Limit Comparison Test with
nÈ n#  1

n

"
n$Î#
Èn
n#  1

34. converges by the Direct Comparison Test with
n#  1
Èn

Ê n#  1  Ènn$Î# Ê
_

35. converges because !
n œ1
_

!
nœ1

"
n2n

"n
n2n

 n$Î# Ê

_

œ!

n œ1

"
n2n

_

"
#n

!

n œ1

593

, the nth term of a convergent p-series: n#  1  n#
"
n$Î#



_

n œ1

or use Limit Comparison Test with

"
.
n$Î#

which is the sum of two convergent series:

converges by the Direct Comparison Test since

36. converges by the Direct Comparison Test: !

1
n# .

"
n #n



"
#n

_

n  2n
n# 2n

_

, and !

œ ! ˆ n2" n 
nœ1

nœ1

"‰
n#

"
2n

and

is a convergent geometric series

"
n2n



"
n#

Ÿ

"
#n



"
n#

, the sum of

the nth terms of a convergent geometric series and a convergent p-series
37. converges by the Direct Comparison Test:
38. diverges; n lim
Š3
Ä_

nc1

"
3n ‹

ˆ" 
œ n lim
Ä_ 3

"
3nc1  1
"‰
3n

"
3

œ

"
3nc1



, which is the nth term of a convergent geometric series

Á0
_

n
39. converges by Limit Comparison Test: compare with ! ˆ 15 ‰ , which is a convergent geometric series with lrl œ
n œ1

lim
nÄ_

1
1
Š n2n b
b 3n † 5n ‹

a 1 Î5 b n

œ n lim
Ä_

n1
n2  3n

œ n lim
Ä_

1
2n  3

_

n œ1

3
Š 23n b
b 4n ‹
n

n

a 3 Î4 b n

œ n lim
Ä_

8n  12n
9n  12n

œ n lim
Ä_

8 ‰n
ˆ 12
1
9 ‰n
ˆ 12
1

œ

1
1

_

n œ1

œ

œ

2
n
lim 2 aln 2b
n Ä _ 2n aln 2b2

1
5

 1,

œ 1  0.

41. diverges by Limit Comparison Test: compare with !
n
lim 2 ln 2  1
n Ä _ 2n ln 2

 1,

œ 0.

n
40. converges by Limit Comparison Test: compare with ! ˆ 34 ‰ , which is a convergent geometric series with lrl œ

lim
nÄ_

1
5

Š 2n 2cnn ‹
n

1
n,

which is a divergent p-series, n lim
Ä_

†

1 În

2 n
œ n lim
Ä _ 2n
n

œ 1  0.
_

_

n œ1

n œ1

42. diverges by the definition of an infinite series: ! lnˆ n n 1 ‰ œ ! ln n  ln an  1b‘, sk œ aln 1  ln 2b  aln 2  ln 3b
 Þ Þ Þ  alnak  1b  ln kb  aln k  ln ak  1bb œ ln ak  1b Ê lim sk œ _
kÄ_

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

594

Chapter 10 Infinite Sequences and Series
_

43. converges by Comparison Test with !
n œ2

sk œ ˆ1  12 ‰  ˆ 12  13 ‰  Þ Þ Þ  ˆ k 1 2 
Ê nan  1ban  2b!

_

which converges since !

1
nan  1b

nan  1b Ê n!

n œ2

1 ‰
k1

 ˆ k 1 1  k1 ‰ œ 1 

nan  1b Ê

1
n!

_

1
n3 ,

n œ1

œ

œ

n2
lim
n Ä _ n2 3n  2

œ n lim
Ä_

45. diverges by the Limit Comparison Test (part 1) with
"‰
n

ˆsin
lim
n Ä _ ˆ "n ‰

œ lim

xÄ0

sin x
x

nœ2

Ê lim sk œ 1; for n

1
k

2, an  2b!

kÄ_

1
nan1b

an

which is a convergent p-series, n lim
Ä_

2n
2n 3

œ n lim
Ä_

c 1bx
2bx

1 În 3

œ10

2
2

"
n

, the nth term of the divergent harmonic series:

"
n

, the nth term of the divergent harmonic series:

œ1

46. diverges by the Limit Comparison Test (part 1) with
ˆtan "n ‰
lim
n Ä _ ˆ "n ‰

Ÿ

_

œ ! ’ n 1 1  n1 “, and

an

44. converges by Limit Comparison Test: compare with !
n 3 a n  1 bx
lim
n Ä _ an  2ban  1bnan  1bx

1
nan  1b

œ n lim
Š " ‹
Ä _ cos "
n

ˆsin n" ‰
ˆ "n ‰

œ lim ˆ cos" x ‰ ˆ sinx x ‰ œ 1 † 1 œ 1
xÄ0

tanc" n
n1.1

47. converges by the Direct Comparison Test:



_

1
#

n1.1

1

and !
n œ1

1
#

œ

#

n1.1

_

!
nœ1

"
n1.1

is the product of a

convergent p-series and a nonzero constant
48. converges by the Direct Comparison Test: sec" n 

1
#

Ê

secc" n
n1 3
Þ



ˆ 1# ‰
n1 3
Þ

_

and !
n œ1

ˆ 1# ‰
n1 3
Þ

œ

1
#

_

!
n œ1

"
n1 3
Þ

is the

product of a convergent p-series and a nonzero constant

49. converges by the Limit Comparison Test (part 1) with
œ n lim
Ä_

"  ec2n
1  ec2n

"  ec2n
1  ec2n

: n lim
Ä_

"
n#

: n lim
Ä_

52. converges by the Limit Comparison Test (part 1) with
"
123án

lim
nÄ_
54.

œ

Š nan 2b 1b ‹
Š n"# ‹

"
1  2#  3#  á  n#

Š n"# ‹

œ n lim
coth n œ n lim
Ä_
Ä_

en  ecn
en  ecn

n
Š tanh
‹
n#

Š n"# ‹

œ n lim
tanh n œ n lim
Ä_
Ä_

en  e
en  e

n
n

œ1

51. diverges by the Limit Comparison Test (part 1) with 1n : n lim
Ä_

53.

n
Š coth
‹
n#

œ1

50. converges by the Limit Comparison Test (part 1) with
œ n lim
Ä_

"
n#

"
ˆ n(n #

1) ‰

œ

œ n lim
Ä_
œ

"

2
n(n  1) .

2n#
n#  n

n(n b 1)(2n b 1)
6

œ

1
Š nÈ
n n‹

ˆ 1n ‰

"
n# : n lim
Ä_

Š

œ n lim
Ä_

Èn n ‹
n#

Š n"# ‹

1
n n
È

œ 1.

n
È
œ n lim
nœ1
Ä_

The series converges by the Limit Comparison Test (part 1) with

œ n lim
Ä_

4n
2n  1

6
n(n  1)(2n  1)

Ÿ

œ n lim
Ä_
6
n$

4
2

"
n# :

œ 2.

Ê the series converges by the Direct Comparison Test

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

1

Section 10.4 Comparison Tests

595

an
55. (a) If n lim
œ 0, then there exists an integer N such that for all n  N, ¹ bann  0¹  1 Ê 1  bann  1
Ä _ bn
Ê an  bn . Thus, if ! bn converges, then ! an converges by the Direct Comparison Test.
an
(b) If n lim
œ _, then there exists an integer N such that for all n  N, bann  1 Ê an  bn . Thus, if
Ä _ bn
! bn diverges, then ! an diverges by the Direct Comparison Test.
_

56. Yes, !
n œ1

an
n

converges by the Direct Comparison Test because

an
n

 an

an
57. n lim
œ _ Ê there exists an integer N such that for all n  N,
Ä _ bn
!
then
bn converges by the Direct Comparison Test

an
bn

 1 Ê an  bn . If ! an converges,

58. ! an converges Ê n lim
a œ 0 Ê there exists an integer N such that for all n  N, 0 Ÿ an  1 Ê an#  an
Ä_ n
Ê ! a#n converges by the Direct Comparison Test
59. Since an  0 and n lim
a œ _ Á 0, by nth term test for divergence, ! an diverges.
Ä_ n
60. Since an  0 and n lim
a n2 † an b œ 0, compare !an with ! n"# , which is a convergent p-series; n lim
Ä_
Ä_

an
1 În 2

œ n lim
a n2 † an b œ 0 Ê !an converges by Limit Comparison Test
Ä_
_

61. Let _  q  _ and p  1. If q œ 0, then !

n œ2

_

!
n œ2

1
nr

where 1  r  p, then n lim
Ä_

œ n lim
Ä_

1
aln nbcq npcr

qc1
lim qaln nb
n Ä _ ap  rbnpcr

aln nbq
np
1 În r

œ 0. If q  0, n lim
Ä_

œ n lim
Ä_
qc2

q
ap  rbnpcr aln nb1cq

aln nbq
np

œ n lim
Ä_
aln nbq
npcr

_

œ!

nœ2

aln nbq
npcr ,

œ n lim
Ä_

1
np ,

which is a convergent p-series. If q Á 0, compare with

and p  r  0. If q  0 Ê q  0 and n lim
Ä_

qaln nbqc1 ˆ 1n ‰
ap  rbnpcrc1

œ n lim
Ä_

qaln nbqc1
ap  rbnpcr .

aln nbq
npcr

If q  1 Ÿ 0 Ê 1  q

œ 0, otherwise, we apply L'Hopital's Rule again. n lim
Ä_
qc2

0 and

qaq  1baln nbqc2 ˆ 1n ‰
ap  rb2 npcrc1

qaq  1baln nb
qaq  1baln nb
q aq  1 b
œ n lim
. If q  2 Ÿ 0 Ê 2  q 0 and n lim
œ n lim
œ 0; otherwise, we
Ä _ ap  rb2 npcr
Ä _ ap  rb2 npcr
Ä _ ap  rb2 npcr aln nb2cq
apply L'Hopital's Rule again. Since q is finite, there is a positive integer k such that q  k Ÿ 0 Ê k  q 0. Thus, after k
qaq  1bâaq  k  1baln nbqck
q a q  1 bâa q  k  1 b
œ n lim
Ä _ ap  rbk npcr aln nbkcq
ap  rbk npcr
_
q
series ! alnnnpb converges.
n œ1

applications of L'Hopital's Rule we obtain n lim
Ä_
0 in every case, by Limit Comparison Test, the

_

62. Let _  q  _ and p Ÿ 1. If q œ 0, then !

n œ2

_

!
nœ2

1
np ,

aln nbq

np

which is a divergent p-series. Then n lim
Ä_

where 0  p  r Ÿ 1. n lim
Ä_
lim

aln nbq
np

ar  pbn

rcpc1

n Ä _ aqbaln nbcqc1 ˆ 1n ‰

œ n lim
Ä_

aln nbq

np

1 În r

œ

q
lim aln nb
n Ä _ npcr
rcp

ar  pbn
.
aqbaln nbcqc1

1 În p

œ

_

œ!

nœ2

1
np ,

which is a divergent p-series. If q  0, compare with
_

œ n lim
aln nbq œ _. If q  0 Ê q  0, compare with !
Ä_

nœ2

nrcp
lim
cq
n Ä _ aln nb

otherwise, we apply L'Hopital's Rule again to obtain n lim
Ä_

0 and n lim
Ä_

2 rcpc1

a r  pb n
aqbaq  1baln nbcqc2 ˆ 1n ‰
2 rcp

ar  pbnrcp aln nbqb1
aqb

œ n lim
Ä_

qb2

œ _,

a r  pb2 nrcp
.
aqbaq  1baln nbcqc2

a r  pb n aln nb
œ n lim
œ _, otherwise, we
aqbaq  1b
Ä_
apply L'Hopital's Rule again. Since q is finite, there is a positive integer k such that q  k Ÿ 0 Ê q  k

q  2 Ÿ 0 Ê q  2

0 and n lim
Ä_

k applications of L'Hopital's Rule we obtain n lim
Ä_

1
nr ,

since r  p  0. Apply L'Hopital's to obtain

If q  1 Ÿ 0 Ê q  1

a r  pb2 nrcp
aqbaq  1baln nbcqc2

œ 0. Since the limit is

k rcp

a r  pb n
aqbaq  1bâaq  k  1baln nbcqck

œ n lim
Ä_

k rcp

If

0. Thus, after

qbk

a r  pb n aln nb
aqbaq  1bâaq  k  1b

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

œ _.

596

Chapter 10 Infinite Sequences and Series
_

q

Since the limit is _ if q  0 or if q  0 and p  1, by Limit comparison test, the series ! alnnpncbr diverges. Finally if q  0
_

and p œ 1 then !

nœ2

Ê aln nbq
_

1Ê

aln nb
np

q

_

œ !

aln nbq
n

nœ2

1
n.

aln nb
n

q

_

. Compare with !
nœ2
_

Thus !
n œ2

aln nbq
n

nœ1

1
n,

which is a divergent p-series. For n

q

nœ1

63. Converges by Exercise 61 with q œ 3 and p œ 4.
1
2

and p œ 12 .

65. Converges by Exercise 61 with q œ 1000 and p œ 1.001.
66. Diverges by Exercise 62 with q œ

1
5

1

diverges by Comparison Test. Thus, if _  q  _ and p Ÿ 1,

the series ! alnnpncbr diverges.

64. Diverges by Exercise 62 with q œ

3, ln n

and p œ 0.99.

67. Converges by Exercise 61 with q œ 3 and p œ 1.1.
68. Diverges by Exercise 62 with q œ  12 and p œ 12 .
69. Example CAS commands:
Maple:
a := n -> 1./n^3/sin(n)^2;
s := k -> sum( a(n), n=1..k );
# (a)]
limit( s(k), k=infinity );
pts := [seq( [k,s(k)], k=1..100 )]:
# (b)
plot( pts, style=point, title="#69(b) (Section 10.4)" );
pts := [seq( [k,s(k)], k=1..200 )]:
# (c)
plot( pts, style=point, title="#69(c) (Section 10.4)" );
pts := [seq( [k,s(k)], k=1..400 )]:
# (d)
plot( pts, style=point, title="#69(d) (Section 10.4)" );
evalf( 355/113 );
Mathematica:
Clear[a, n, s, k, p]
a[n_]:= 1 / ( n3 Sin[n]2 )
s[k_]= Sum[ a[n], {n, 1, k}]
points[p_]:= Table[{k, N[s[k]]}, {k, 1, p}]
points[100]
ListPlot[points[100]]
points[200]
ListPlot[points[200]
points[400]
ListPlot[points[400], PlotRange Ä All]
To investigate what is happening around k = 355, you could do the following.
N[355/113]
N[1  355/113]
Sin[355]//N
a[355]//N
N[s[354]]

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.5 The Ratio and Root Tests

597

N[s[355]]
N[s[356]]
_

_

70. (a) Let S œ ! n12 , which is a convergent p-series. By Example 5 in Section 10.2, ! nan 1 1b converges to 1. By Theorem 8,
n œ1

_

Sœ!

n œ1
_

1
n2

n œ1

_

œ!

_

!

1
nan  1b

n œ1

_

!

1
n2

n œ1

_

œ!

1
nan  1b

nœ1

nœ1

1
n an  1 b

_

!

nœ1

Š n12



1
nan  1b ‹

also converges.

_

(b) Since ! nan 1 1b converges to 1 (from Example 5 in Section 10.2), S œ 1  ! Š n12 
n œ1

n œ1

_

(c) The new series is comparible to

! 13 ,
n

n œ1

1
nan  1b ‹

_

œ 1  ! n2 an1 1b
n œ1

_

so it will converge faster because its terms Ä 0 faster than the terms of ! n12 .
n œ1

1000

1000

(d) The series 1  ! n2 an1 1b gives a better approximation. Using Mathematica, 1  ! n2 an1 1b œ 1.644933568, while
nœ1

1000000

!

n œ1

1
n2

nœ1

œ 1.644933067. Note that

1
6

œ 1.644934067. The error is 4.99 ‚ 107 compared with 1 ‚ 106 .

2

10.5 THE RATIO AND ROOT TESTS

1.

2.

3.

2n
n!

2nb"

 0 for all n

n2
3n

1; lim Œ
nÄ_

"b !

2n
n!

an

 0 for all n

an  1 b!
an  1b2

an

1; lim Œ
nÄ_

2 †2
lim Š an"
b†n! †
n

œ

nÄ_

b1b b 2
3nb1
nb2 
n
3

3
lim ˆ n3
n †3 †

œ

nÄ_

b1bc1b!
b1bb1b2

anc1b!
anb1b2

aan

 0 for all n

1; lim Œ
nÄ_

aan

_

n!
2n ‹

œ

_

n

œ lim ˆ n 2 " ‰ œ 0  1 Ê ! 2n! converges
nÄ_

3n ‰
n2

n3 ‰
ˆ1‰
œ lim ˆ 3n
 6 œ lim 3 œ
nÄ_

lim Š na†nan21b2b! †

nÄ_

nœ1

nÄ_

an  "b2
an  1b! ‹

_

 1 Ê ! n 3n 2 converges

1
3

nœ1

n
3n  4n  1
œ lim Š nn22n
4n  4 ‹ œ lim Š 2n  4 ‹
3

2

2

nÄ_

nÄ_

 1b!
œ lim ˆ 6n 2 4 ‰ œ _  1 Ê ! aann 
diverges
1 b2
nÄ_

4.

2nb1
n†3n 1

n œ1

 0 for all n

_

1; lim 
nÄ_

an

2an1b1
1b†3an1b
2n1
n†3n 1

1

nb1

lim Š an21b†3†n2 1 †3 †

œ

nÄ_

n †3 n 1
2n1 ‹

œ lim ˆ 3n2n 3 ‰ œ lim ˆ 23 ‰ œ
nÄ_

nÄ_

2
3

1

nb1

Ê ! n2†3nc1 converges
nœ1

5.

n4
4n

œ lim ˆ 14 
nÄ_

6.

3nb2
ln n

1
n

b1b4
4nb1
n4
4n

an

 0 for all n

1; lim Œ
nÄ_


 0 for all n

3
2n2



1
n3



1 ‰
4n4

2; lim Œ
nÄ_
_

œ
œ

3anb1bb2
ln anb1b
3nb2
ln n

1
4

4

lim Š an4n †14b †

4n
n4 ‹

nÄ_

_

œ lim Š n

4

nÄ_

 4n3  6n2  4n  1
‹
4n4

4

 1 Ê ! n4n converges

œ

n œ1

nb2

lim Š ln3an †31b †

nÄ_

ln n
3nb2 ‹

œ lim Š ln 3anlnn1b ‹ œ lim Š
nÄ_

nÄ_

3
n
1

nb1

‹ œ lim ˆ 3n n 3 ‰
nÄ_

nb2

œ lim ˆ 31 ‰ œ 3  1 Ê ! 3ln n diverges
nÄ_

7.

n 2 a n  2 b!
nx32n

n œ2

an

 0 for all n

1; lim 
nÄ_

b 1b2aan b 1b b 2b!
b 1bx32an 1b

an

n2 an 2b!
nx32n

œ

7
ˆ 6n  15 ‰
ˆ6‰
œ lim Š 3n27n2 15n
 18n ‹ œ lim 54n  18 œ lim 54 œ
2

nÄ_

nÄ_

nÄ_

2

3ban  2b!
lim Š an an1ba1nb
†
†nx32n †32

nÄ_
1
9

_

nx32n
n 2 an  2 b! ‹

œ lim Š n
nÄ_

 1 Ê ! n annx32n2b! converges
2

n œ1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

3

 5n2  7n  3
‹
9n3  9n2

598
8.

Chapter 10 Infinite Sequences and Series
n †5 n
a2n  3b lnan  1b

 0 for all n

1b†a2n  3b
lim Š 5an 
†
na2n  5b

œ

1;

lim Œ

nÄ_

lnan  1b
lnan  2b ‹

nÄ_

a2an

an b 1b†5n 1
1b 3b lnaan 1b
n†5n
a2n 3b lnan 1b

n  1b†5 †5
lim Š a2na
5b lnan  2b †
n

œ

1b

nÄ_

a2n  3b lnan  1b
‹
n †5 n

lnan  1b
 15
 25 ‰
lim Š 10n 2n2 25n
† lim Š
‹ † lim Š lnan  2b ‹ œ lim ˆ 20n
 5n
4n  5
2

œ

nÄ_

nÄ_
_

nÄ_

nÄ_

1
nb1
1
nb2

‹

n †5
!
‰
ˆ n2‰
ˆ 1‰
œ lim ˆ 20
4 † lim n  1 œ 5 † lim 1 œ 5 † 1 œ 5  1 Ê
a2n  3b lnan  1b diverges
nÄ_

9.

10.

nÄ_

7
a2n  5bn

nÄ_

4n
a3n bn

nÄ_

n 1

12. ’lnˆe2  1n ‰“
_

nÄ_

nÄ_

n

n œ1

n

n
3‰
ˆ 4n
2; lim É
œ
3n  5

3‰
lim ˆ 4n
3n  5 œ

nÄ_

n 1

nÄ_

Ê ! ’lnˆe2  1n ‰“

diverges

8
ˆ3  1n ‰2n

8
n
1; lim É
œ
ˆ3  1 ‰2n
nÄ_

lim ˆ 43 ‰ œ

nÄ_

n
1; lim Ê’lnˆe2  1n ‰“

0 for all n
n 1

n œ1

4 ‰
lim ˆ 3n
œ 0  1 Ê ! a3n4 bn converges

n

0 for all n

_

n
È

lim Š 2n 7 5 ‹ œ 0  1 Ê ! a2n 7 5bn converges

nÄ_

_

4
n
1; lim É
œ
a3n bn

0 for all n

 3 ‰n
11. ˆ 4n
3n  5

n œ2

7
n
1; lim É
œ
a2n  5bn

0 for all n

n

œ

4
3

nÄ_

_

n

3‰
 1 Ê ! ˆ 4n
diverges
3n  5
n œ1

1 1 În

lim ’lnˆe2  1n ‰“

nÄ_

œ lnae2 b œ 2  1

n œ1

13.

0 for all n

n

16.

"

n1bn

nÄ_

n

14. ’sinŠ È1n ‹“
n
15. ˆ1  n1 ‰

lim Œ ˆ

n
È
8

3  1n ‰

0 for all n

0 for all n

1;

17. converges by the Ratio Test:

converges

nÄ_

n

n œ1

nÄ_

2

nœ1

n
È

nÄ_

”

œ n lim
Ä_

nÄ_

È

(n b 1) 2
2 n b1 •

”

_

n
È

1
! 1"bn converges
lim Š n È
n n‹ œ 0  1 Ê
n

lim Š n1În 1 1 ‹ œ

lim anb1
n Ä _ an

8
1 ‰2n
n œ1 3  n

n
n
lim ˆ1  n1 ‰ œ e1  1 Ê ! ˆ1  n1 ‰ converges

nÄ_

nÄ_

_

 1Ê !ˆ

_

2

n
n
lim Ɉ1  n1 ‰ œ

"
n
2; lim É
n1bn œ

1
9

lim sinŠ È1n ‹ œ sina0b œ 0  1 Ê ! ’sinŠ È1n ‹“ converges

nÄ_

2

œ

_

n

n
1; lim Ê
’sinŠ È1n ‹“ œ

0 for all n

2

È
n 2
#n

•

Š (nenbb1)1 ‹

n œ2

È
È
n
(n  1) 2
ˆ1  n" ‰ 2 ˆ "# ‰ œ
œ n lim
† 2È2 œ n lim
Ä _ #nb1
Ä_
n

"
#

1

2

18. converges by the Ratio Test:

lim anb1
n Ä _ an

œ n lim
Ä_

19. diverges by the Ratio Test: n lim
Ä_

anb1
an

œ n lim
Ä_

20. diverges by the Ratio Test: n lim
Ä_

anb1
an

œ n lim
Ä_

#
Š nen ‹

Š (nenbb1)!
1 ‹
ˆ en!n ‰

b 1)! ‹
Š (n
10nb1
ˆ 10n!n ‰

œ n lim
Ä_

21. converges by the Ratio Test:

œ n lim
Ä_

(n  ")!
enb1

†

en
n!

œ n lim
Ä_

(n  ")!
10nb1

†

10n
n!

Š (n10bn1)1 ‹

"!

Š n10n ‹

†

œ n lim
Ä_

"!

lim anb1
n Ä _ an

(n  1)2
enb1

œ n lim
Ä_

(n  ")"!
10n 1

†

en
lim
n2 œ n Ä
_

œ n lim
Ä_

œ n lim
Ä_

10n
n"!

ˆ1  n" ‰# ˆ "e ‰ œ

n"
e

n
10

"
e

1

œ_

œ_

ˆ1  n" ‰"! ˆ 1"0 ‰ œ
œ n lim
Ä_

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

"
10

1

Section 10.5 The Ratio and Root Tests
ˆ nn 2 ‰n œ lim ˆ1 
22. diverges; n lim
a œ n lim
Ä_ n
Ä_
nÄ_
23. converges by the Direct Comparison Test:

2(1)n
(1.25)n

2 ‰ n
n

599

œ e# Á 0
n

n

œ ˆ 45 ‰ c2  (1)n d Ÿ ˆ 45 ‰ (3) which is the nth term of a convergent

geometric series
24. converges; a geometric series with krk œ ¸ 23 ¸  1
ˆ1  3n ‰n œ lim ˆ1 
25. diverges; n lim
a œ n lim
Ä_ n
Ä_
nÄ_
ˆ1 
26. diverges; n lim
a œ n lim
Ä_ n
Ä_

" ‰n
3n

3 ‰ n
n

œ n lim
1
Ä_ 

27. converges by the Direct Comparison Test:

ln n
n$



n
n$

œ

œ e$ ¸ 0.05 Á 0

Š "3 ‹
n

"
n#

n
"Î$
¸ 0.72 Á 0
 œe

2, the nth term of a convergent p-series.

for n
n

n (ln n)
n
È
É
28. converges by the nth-Root Test: n lim
an œ n lim
nn œ n lim
Ä_
Ä_
Ä_

29. diverges by the Direct Comparison Test:
with "n .

"
n



"
n#

œ

n1
n#

ln n
n



"
n

for n

" ‰n
n#

ˆˆ n" 
œ n lim
Ä_

anb1
an

œ n lim
Ä_

(n  1) ln (n  1)
#nb1

†

33. converges by the Ratio Test: n lim
Ä_

anb1
an

œ n lim
Ä_

(n  2)(n  3)
(n  1)!

†

n!
(n  1)(n  2)

34. converges by the Ratio Test: n lim
Ä_

anb1
an

œ n lim
Ä_

(n  1)$
en 1

œ

35. converges by the Ratio Test: n lim
Ä_

anb1
an

œ n lim
Ä_

(n  4)!
3! (n  1)! 3nb1

anb1
an

œ n lim
Ä_

†

anb1
an

œ n lim
Ä_

(n  1)!
(2n  3)!

38. converges by the Ratio Test: n lim
Ä_

anb1
an

œ n lim
Ä_

(n  1)!
(n  1)nb1

"

ˆ1  "n ‰n

œ

"
e

en
n$

†

(n  1)2nb1 (n  2)!
3nb1 (n  1)!

37. converges by the Ratio Test: n lim
Ä_

œ n lim
Ä_

ln n
n

œ n lim
Ä_

Š "n ‹
1

œ01

" ‰n ‰1În
n#

ˆ" 
œ n lim
Ä_ n

"‰
n#

3

32. converges by the Ratio Test: n lim
Ä_

36. converges by the Ratio Test: n lim
Ä_

œ n lim
Ä_

 "# ˆ "n ‰ for n  2 or by the Limit Comparison Test (part 1)

n
n
ˆ n" 
È
É
30. converges by the nth-Root Test: n lim
an œ n lim
Ä_
Ä_

31. diverges by the Direct Comparison Test:

a(ln n)n b1În
ann b1În

2n
n ln (n)

"
e

†

nn
n!

1

œ01

œ n lim
Ä_

3n n!
n2n (n  1)!

(2n  1)!
n!

†

"
#

1

3! n! 3n
(n  3)!

†

œ

n4
3(n  1)

"
3

œ

1

2‰
ˆ n n 1 ‰ ˆ 32 ‰ ˆ nn 
œ n lim
1 œ
Ä_

œ n lim
Ä_

n"
(2n  3)(2n  2)

œ01

ˆ n ‰n œ lim
œ n lim
Ä _ n1
nÄ_

"

ˆ n bn " ‰n

1

n
n
n
È
39. converges by the Root Test: n lim
an œ n lim
œ n lim
Ä_
Ä _ É (ln n)n
Ä_

n n
È
ln n

œ n lim
Ä_

"
ln n

œ01

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

2
3

1

œ01

600

Chapter 10 Infinite Sequences and Series
n n
È
Èln n

n
n
n
È
40. converges by the Root Test: n lim
an œ n lim
œ n lim
Ä_
Ä _ É (ln n)nÎ2
Ä_

Ä_
Ä_

n n
lim È
n
Èln n
lim
n

œ

œ01

n
È
n œ 1‹
Šn lim
Ä_

41. converges by the Direct Comparison Test:

œ

n! ln n
n(n  2)!

ln n
n(n  1)(n  2)



"
(n  1)(n  #)

œ

n
n(n  1)(n  2)



"
n#

which is the nth-term of a convergent p-series
an 1
an

42. diverges by the Ratio Test: n lim
Ä_

œ n lim
Ä_

3n 1
(n  1)$ 2n

1

†

n$ 2n
3n

†

a2nbx
nx‘2

43. converges by the Ratio Test: n lim
Ä_

anb1
an

œ n lim
Ä_

an1bx‘2
2(n  1)‘x

44. converges by the Ratio Test: n lim
Ä_

anb1
an

œ n lim
Ä_

a2n  5bˆ2nb1  3‰
3nb1  2

œ n lim
’ 2n  5 “ † n lim
’ 2 † 6  4 † 2  3† 3  6 “ œ 1 †
Ä _ 2n  3
Ä _ 3 † 6 n  9 † 3 n  2† 2 n  6
n

n

n

45. converges by the Ratio Test: n lim
Ä_

anb1
an

œ n lim
Ä_

2
3

œ

ˆ 1 b nsin n ‰ an
an

"n

Š 1 b tan
n

47. diverges by the Ratio Test: n lim
Ä_

anb1
an

œ n lim
Ä_

œ n lim
Ä_
†

ˆ #3 ‰ œ

an1b2
(2n  2)(2n  1)

3n  2
a2n  3ba2n  3b

3
#

1

œ n lim
Ä_

œ n lim
’ 2n  5 †
Ä _ 2n  3

n2  2n  1
4n2  6n  2

œ

œ n lim
Ä_

3n  1
2n  5

œ n lim
Ä_

"  tan " n
n

œ

3
#

œ 0 since the numerator

1

2
‰
48. diverges; an1 œ n n 1 an Ê an1 œ ˆ n n 1 ‰ ˆ n n 1 an1 ‰ Ê an1 œ ˆ n n 1 ‰ ˆ n n 1 ‰ ˆ nn 
1 an2
a


"
n
n
1
n
2
3
"
Ê an1 œ ˆ n  1 ‰ ˆ n ‰ ˆ n  1 ‰ â ˆ # ‰ a" Ê an1 œ n  1 Ê an1 œ n  1 , which is a constant times the

general term of the diverging harmonic series

49. converges by the Ratio Test: n lim
Ä_

50. converges by the Ratio Test:

n  ln n
n  10

 0 and a" œ

Ê an1 œ

n  ln n
n  10

"
#

œ n lim
Ä_

lim anb1
n Ä _ an

œ n lim
Ä_

anb1
an

œ n lim
Ä_

51. converges by the Ratio Test: n lim
Ä_
52.

anb1
an

Š 2n ‹ an
an

Œ

Èn n
#

œ n lim
Ä_

 an

an

œ n lim
Ä_

Š 1 bnln n ‹ an
an

2
n

œ01
n n
È

œ n lim
Ä_

n

œ

"ln n
n

"
#

1

œ n lim
Ä_

Ê an  0; ln n  10 for n  e"! Ê n  ln n  n  10 Ê

an  an ; thus an1  an

53. diverges by the nth-Term Test: a" œ

"
3

"
#

"
n

œ01

n  ln n
n  10

1

Ê n lim
a Á 0, so the series diverges by the nth-Term Test
Ä_ n

3
3
6 "
%! "
2 "
2 "
2 "
É
É
É
É
, a# œ É
3 , a$ œ Ê
3 œ
3 , a% œ ËÊ
3 œ
3 ,á ,

%

n! "
n! "
n "
É
an œ É
a œ 1 because šÉ
3 Ê n lim
3 › is a subsequence of š
3 › whose limit is 1 by Table 8.1
Ä_ n

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

1
4

1

2†6n  4†2n  3†3n  6
3 †6 n  9 † 3 n  2 † 2 n  6 “

œ01

‹ an

an

c1‰
ˆ 3n
2n b 5 an
an

n3
(n  1)3

1

2
3

anb1
46. converges by the Ratio Test: n lim
œ n lim
Ä _ an
Ä_
1
approaches 1  # while the denominator tends to _

œ n lim
Ä_

Section 10.5 The Ratio and Root Tests
54. converges by the Direct Comparison Test: a" œ
n!

"
#

# $

#

' %

'

#%

, a# œ ˆ "# ‰ , a$ œ Šˆ "# ‰ ‹ œ ˆ "# ‰ , a% œ Šˆ "# ‰ ‹ œ ˆ "# ‰ , á

n

Ê an œ ˆ "# ‰  ˆ "# ‰ which is the nth-term of a convergent geometric series
anb1
an

55. converges by the Ratio Test: n lim
Ä_
n"
"
œ n lim
œ

1
#
Ä _ 2n  1

2nb1 (n  1)! (n  1)!
(2n  2)!

œ n lim
Ä_

†

(2n)!
2n n! n!

2(n  1)(n  1)
(2n  #)(2n  1)

œ n lim
Ä_

(3n  3)!
1)! (n  2)!
anb1
56. diverges by the Ratio Test: n lim
œ n lim
† n! (n (3n)!
Ä _ an
Ä _ (n  1)! (n  2)! (n  3)!
(3n  3)(3  2)(3n  1)
 2 ‰ ˆ 3n  1 ‰
œ n lim
œ n lim
3 ˆ 3n
n#
n  3 œ 3 † 3 † 3 œ 27  1
Ä _ (n  1)(n  2)(n  3)
Ä_
n

n (n!)
n
È
57. diverges by the Root Test: n lim
an ´ n lim
œ n lim
Ä_
Ä _ É an n b#
Ä_

n

œ_1

n!
n#

n

n (n!)
n (n!)
É
58. converges by the Root Test: n lim
œ n lim
œ n lim
É
ann bn
Ä_
Ä_
Ä_
nn#
"
Ÿ n lim
œ01
Ä_ n

n!
nn

ˆ " ‰ ˆ 2n ‰ ˆ 3n ‰ â ˆ n n 1 ‰ ˆ nn ‰
œ n lim
Ä_ n

"
#n ln 2

n n
n
È
59. converges by the Root Test: n lim
an œ n lim
œ n lim
Ä_
Ä _ É 2 n#
Ä_

n
#n

œ n lim
Ä_

n
n
n
È
60. diverges by the Root Test: n lim
an œ n lim
œ n lim
Ä_
Ä _ É a#n b#
Ä_

n
4

œ_1

n

n

anb1
an

61. converges by the Ratio Test: n lim
Ä_

1†3 â (2n  1)
(2†4 â #n) a3n  1b

62. converges by the Ratio Test: an œ
Ê n lim
Ä_

(2n  2)!
c2nb1 (n  1)!d# a3nb1  1b
#

œ n lim
Š 4n  6n  2 ‹
Ä _ 4n#  8n  4
63. Ratio: n lim
Ä_

anb1
an

†

a1  3cn b
a3  3cn b

œ n lim
Ä_

œ n lim
Ä_

a2n n!b# a3n  1b
(2n)!

œ1†

"
(n  1)p

†

"
3

np
1

œ

"
3

anb1
an

œ n lim
Ä_

"
(ln (n  1))p

†

†

1†2†3†4 â (2n  1)(2n)
(2†4 â 2n)# a3n  1b

œ

œ n lim
Ä_

4n 2n n!
1†3† â †(2n  1)

œ

œ n lim
Ä_

2n  "
(4†#)(n  1)

(2n)!
a2n n!b# a3n  1b

(2n  ")(2n  2) a3n  1b
2# (n  1)# a3n 1  1b

1

(ln n)p
1

"
n n ‰p
ˆÈ

"
(1)p

œ

œ ’n lim
Ä_

œ 1 Ê no conclusion

ln n
ln (n  1) “

p

œ ”n lim
Ä_

ˆ "n ‰

p

ˆ n b 1 ‰ • œ Šn lim
Ä_
"

n"
n ‹

œ (1)p œ 1 Ê no conclusion
"
n
n
È
Root: n lim
an œ n lim
É
(ln n)p œ
Ä_
Ä_

"

p

lim (ln n)1În ‹
ŠnÄ_
ˆ

"

‰

; let f(n) œ (ln n)1În , then ln f(n) œ

ln (ln n)
n ln n
Ê n lim
ln f(n) œ n lim
œ n lim
œ n lim
n
1
Ä_
Ä_
Ä_
Ä_
"
ln fÐnÑ
!
n
È an œ
œ n lim
e
œ
e
œ
1;
therefore
lim
Ä_
nÄ_

"
n ln n
p

lim (ln n)1În ‹
ŠnÄ_

65. an Ÿ

n
2n

_

_

for every n and the series !
nœ1

n
#n

œ

ˆ n ‰p œ 1p œ 1 Ê no conclusion
œ n lim
Ä_ n1

n "
n
È
É
Root: n lim
an œ n lim
np œ n lim
Ä_
Ä_
Ä_

64. Ratio: n lim
Ä_

1†3† â †(2n  1)(2n  1)
4nb1 2nb1 (n  1)!

œ01

ln (ln n)
n

œ 0 Ê n lim
(ln n)1În
Ä_
œ (1)" p œ 1 Ê no conclusion

converges by the Ratio Test since n lim
Ä_

(n  ")
2nb1

†

2n
n

œ

"
#

Ê ! an converges by the Direct Comparison Test
nœ1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

1

p

"
4

1

601

602

Chapter 10 Infinite Sequences and Series
2

66.

2n
n!

 0 for all n

1; lim 
nÄ_

_

2
2anb1b
anb1b!
2
2n
n!

n2 b2nb1

œ

lim Š a2n1b†n! †

nÄ_

n!
‹
2n2

2nb1

†4 ‰
ˆ 2†4 1ln 4 ‰
œ lim Š 2n1 ‹ œ lim ˆ n2
1 œ lim
n

nÄ_

n

nÄ_

nÄ_

n2

œ _  1 Ê ! 2n! diverges
n œ1

10.6 ALTERNATING SERIES, ABSOLUTE AND CONDITIONAL CONVERGENCE
1.

converges by the Alternating Convergence Test since: un œ
Ê

1
Èn1

Ÿ

1
Èn

Ê un1 Ÿ un ;

lim un œ

lim 1
nÄ_ Èn

nÄ_

1
Èn

 0 for all n

1; n

1Ê n1

_

_

n œ1

n œ1

n Ê Èn  1

Èn

œ 0.

2. converges absolutely Ê converges by the Alternating Convergence Test since ! kan k œ !

"
n$Î#

which is a

convergent p-series
3. converges Ê converges by Alternating Series Test since: un œ
Ê an  1b3n1

n 3n Ê

1
an1b3nb1

Ÿ

1
n 3n

Ê un1 Ÿ un ;

1
n3n

 0 for all n

lim un œ

4. converges Ê converges by Alternating Series Test since: un œ

n Ê 3n  1

4
aln nb2

 0 for all n

2; n

2Ên1

Ÿ

1
aln nb2

Ê

4
aln nb2

Ê un  1 Ÿ u n ;

5. converges Ê converges by Alternating Series Test since: un œ

n
n2  1

 0 for all n

Ê ln an  1b
lim un œ

nÄ_

ln n Ê aln an  1bb2
lim 4 2
nÄ_ aln nb

Ê n3  2n2  2n
Ê

n
n 2 1

aln nb2 Ê

1
aln an1bb2

Ÿ

4
aln an1bb2

Ê un1 Ÿ un ;

lim un œ

nÄ_

lim 2 n
nÄ_ n  1

1 Ê 2n2  2n

1; n

n3  n2  n  1 Ê nŠan  1b2  1‹

2
lim n2  5
nÄ_ n  4

7. diverges Ê diverges by nth Term Test for Divergence since:

2n
2
nÄ_ n

lim

œ1Ê

œ

lim 10
nÄ_ n  2

œ_Ê

5
lim a1bn1 nn2 
 4 œ does not exist
2

lim a1bn1 2n2 œ does not exist
n

nÄ_

_

_

n œ1

n œ1

10n
a n  1 bx ,

n
10

_

n ‰n
ˆ n ‰n Á 0 Ê ! (1)n1 ˆ 10
 1 Ê n lim
diverges
Ä _ 10
n œ1

10. converges by the Alternating Series Test because f(x) œ ln x is an increasing function of x Ê
un1 for n

1; also un

0 for n

1 and

"
lim
n Ä _ ln n

11. converges by the Alternating Series Test since f(x) œ
Ê un

un1 ; also un

0 for n

which converges by the

œ01

9. diverges by the nth-Term Test since for n  10 Ê

Ê un

an2  1ban  1b

nÄ_

8. converges absolutely Ê converges by the Absolute Convergence Test since ! kan k œ !
anb1
nÄ_ an

n2  n  1

œ 0.

6. diverges Ê diverges by nth Term Test for Divergence since:

Ratio Test, since lim

n

œ 0.

n3  n2  n  1 Ê nan2  2n  2b

n 1
an1b2 1

3n

œ 0.

lim 1 n
nÄ_ n 3

nÄ_

1Ên1

1; n

ln x
x

is decreasing

œ0

Ê f w (x) œ

1 and n lim
u œ n lim
Ä_ n
Ä_

"
ln x

ln n
n

1  ln x
x#

œ n lim
Ä_

 0 when x  e Ê f(x) is decreasing
Š "n ‹
1

œ0

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.6 Alternating Series, Absolute and Conditional Convergence
12. converges by the Alternating Series Test since f(x) œ ln a1  x" b Ê f w (x) œ
Ê un

un1 ; also un

unb1 ; also un

 0 for x  0 Ê f(x) is decreasing

ˆ1  n" ‰‹ œ ln 1 œ 0
1 and n lim
u œ n lim
ln ˆ1  "n ‰ œ ln Šn lim
Ä_ n
Ä_
Ä_

0 for n

13. converges by the Alternating Series Test since f(x) œ
Ê un

"
x(x  1)

1 and n lim
u œ
Ä_ n

0 for n

3È n  1
Èn  1

14. diverges by the nth-Term Test since n lim
Ä_

_

_

nœ1

nœ1

Èx  "
x1

1  x  2È x
2Èx (x  1)#

Ê f w (x) œ

Èn  "
lim
n Ä _ n1

 0 Ê f(x) is decreasing

œ0

3É 1 

œ n lim
Ä_

"
n

"

1  Š Èn ‹

œ3Á0

" ‰n
15. converges absolutely since ! kan k œ ! ˆ 10
a convergent geometric series

16. converges absolutely by the Direct Comparison Test since ¹ (1)

nb1

(0.1)n

n

¹œ

"
(10)n n

n

" ‰
 ˆ 10
which is the nth term

of a convergent geometric series
17. converges conditionally since

"
Èn



"
Èn  1

"
Èn

 0 and n lim
Ä_

_

_

n œ1

n œ1

œ 0 Ê convergence; but ! kan k œ !

"
n"Î#

is a divergent p-series
18. converges conditionally since
_

_

! kan k œ !

nœ1

nœ1

"
1  Èn

"
1  Èn



"
1  Èn  1

is a divergent series since
_

_

n œ1

nœ1

19. converges absolutely since ! kan k œ !

n
n $ 1

n!
#n

20. diverges by the nth-Term Test since n lim
Ä_
21. converges conditionally since
_

œ!

n œ1

"
n3

diverges because

"
n3



"
n3

"
(n  1)  3
"
4n

"
1  Èn

 0 and n lim
Ä_

"
1 È n

and

n
n $ 1

"
#È n



_

and !

"
n#

nœ1

"
n"Î#

œ 0 Ê convergence; but
is a divergent p-series

which is the nth-term of a converging p-series

œ_
 0 and n lim
Ä_

_

and !
n œ1

"
n

"
n 3

_

œ 0 Ê convergence; but ! kan k
n œ1

is a divergent series

_

22. converges absolutely because the series ! ¸ sinn# n ¸ converges by the Direct Comparison Test since ¸ sinn# n ¸ Ÿ
n œ1

3n
5n

23. diverges by the nth-Term Test since n lim
Ä_

œ1Á0
nb1

24. converges absolutely by the Direct Comparison Test since ¹ (n2)5n ¹ œ

2nb1
n 5 n

n

 2 ˆ 25 ‰ which is the nth term

of a convergent geometric series
25. converges conditionally since f(x) œ
un  unb1  0 for n
_

œ!

n œ1

"
n#

_

!

nœ1

"
n

"
x#



"
x

Ê f w (x) œ  ˆ x2$ 

"‰
x#

 0 Ê f(x) is decreasing and hence
_

_

n œ1

n œ1

ˆ "  "n ‰ œ 0 Ê convergence; but ! kan k œ !
1 and n lim
Ä _ n#

603

1 n
n#

is the sum of a convergent and divergent series, and hence diverges

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

"
n#

604

Chapter 10 Infinite Sequences and Series

26. diverges by the nth-Term Test since n lim
a œ n lim
101În œ 1 Á 0
Ä_ n
Ä_
27. converges absolutely by the Ratio Test: n lim
Š uunbn 1 ‹ œ n lim
Ä_
Ä_ ”
28. converges conditionally since f(x) œ
Ê un  unb1  0 for n

'2_ x dxln x œ

lim

Š "x ‹

bÄ_

_

_

n œ1

n œ1

Ê ! kan k œ !

'2b  ln x  dx œ
"
n ln n

n 1

•œ

2
3

1

 1d
Ê f w (x) œ  cln(x(x)
ln x)#  0 Ê f(x) is decreasing

"
x ln x

"
n ln n

2 and n lim
Ä_

(n")# ˆ 23 ‰
n
n# ˆ 23 ‰

œ 0 Ê convergence; but by the Integral Test,

lim cln (ln x)d b2 œ lim cln (ln b)  ln (ln 2)d œ _

bÄ_

bÄ_

diverges

_

" xb#

29. converges absolutely by the Integral Test since '1 atan" xb ˆ 1 " x# ‰ dx œ lim ’ atan #
bÄ_

œ lim ’atan
bÄ_

"

#

"

bb  atan

#

1b “ œ

30. converges conditionally since f(x) œ
œ

1  Š lnxx ‹  ln

x  Š lnxx ‹

(x  ln x)#

œ n lim
Ä_

Š "n ‹
1  Š n" ‹

_

_

n œ1

nœ1

! kan k œ !

œ

"
#

1  ln x
(x  ln x)#

#
#
’ˆ 1# ‰  ˆ 14 ‰ “ œ

ln x
x  ln x

Ê f w (x) œ

 0 Ê un

1

31 #
32

Š "x ‹ (x  ln x)  (ln x) Š1  x" ‹
(x  ln x)#

un1  0 when n  e and n lim
Ä_

œ 0 Ê convergence; but n  ln n  n Ê

ln n
n  ln n

b

“

"
nln n

"
n



Ê

ln n
n  ln n

ln n
nln n



"
n

so that

diverges by the Direct Comparison Test

31. diverges by the nth-Term Test since n lim
Ä_
_

_

n œ1

nœ1

n
n1

œ1Á0

n
32. converges absolutely since ! kan k œ ! ˆ "5 ‰ is a convergent geometric series

33. converges absolutely by the Ratio Test: n lim
Š uunbn 1 ‹ œ n lim
Ä_
Ä_

("00)nb1
(n1)!

_

_

n œ1

n œ1

34. converges absolutely by the Direct Comparison Test since ! kan k œ !

†

n!
(100)n

œ n lim
Ä_

"
n#  2n  1

and

"00
n1

œ01

"
n#  2n  1



"
n#

nth-term of a convergent p-series
_

_

n œ1

n œ1

_

35. converges absolutely since ! kan k œ ! ¹ (nÈ1)n ¹ œ !
_

36. converges conditionally since !
n œ1
_

_

n œ1

n œ1

! kan k œ !

"
n

cos n1
n

n

n œ1

_

œ!

nœ1

(1)n
n

"
n$Î#

is a convergent p-series

is the convergent alternating harmonic series, but

diverges

 1)
n
È
kan k œ n lim
37. converges absolutely by the Root Test: n lim
Š (n(2n)
n ‹
Ä_
Ä_
n

1 În

œ n lim
Ä_

n"
#n

œ

"
#

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

1

which is the

Section 10.6 Alternating Series, Absolute and Conditional Convergence
38. converges absolutely by the Ratio Test: n lim
¹ anb1 ¹ œ n lim
Ä _ an
Ä_

a(n  1)!b#
((2n  2)!)

39. diverges by the nth-Term Test since n lim
kan k œ n lim
Ä_
Ä_

œ n lim
Ä_

ˆ n # 1 ‰n1 œ _ Á 0
 n lim
Ä_

(n  1)(n  2)â(n  (n  1))
#nc1

œ n lim
Ä_

(2n)!
2n n! n

(n  1)# 3
(2n  2)(2n  3)

œ

3
4

Èn  1  Èn
1

†

Èn  1  Èn
Èn  1  Èn

œ

"
Èn  1  Èn
_

decreasing sequence of positive terms which converges to 0 Ê !

n œ1

_

_

n œ1

nœ1

"
Èn  1  Èn

Èn

lim
nÄ_ 

"
1

Èn

"

Èn

(n  1)#
(2n  2)(2n  1)

œ n lim
Ä_

œ

"
4

1

(n  ")(n  2)â(2n)
2n n

†

(2n  1)!
n! n! 3n

1

41. converges conditionally since

! kan k œ !

(2n)!
(n!)#

(n  1)! (n  1)! 3nb1
(2n  3)!

40. converges absolutely by the Ratio Test: n lim
¹ anabn 1 ¹ œ n lim
Ä_
Ä_
œ n lim
Ä_

†

605

and š Èn  1"  Èn › is a
(")n
Èn  1  Èn

diverges by the Limit Comparison Test (part 1) with

 œ n lim
Ä_

Èn
Èn  1  Èn

œ n lim
Ä_

1
É1  1n 1

œ

converges; but
"
Èn ;

a divergent p-series:

"
#

È

#

n n
42. diverges by the nth-Term Test since n lim
ŠÈn#  n  n‹ œ n lim
ŠÈn#  n  n‹ † Š Ènn# 
‹
Ä_
Ä_
 n n

œ n lim
Ä_

n
Èn# nn

œ n lim
Ä_

"
É1 "n 1

"
#

œ

Á0

É n  Èn  Èn

43. diverges by the nth-Term Test since n lim
ŠÉn  Èn  Èn‹ œ n lim
ŠÉ n  È n  È n ‹ 
Ä_
Ä_ –
Én  Èn  Èn —
Èn

œ n lim
Ä_

É n  Èn  Èn

œ n lim
Ä_

"
É1 

"

Èn  1

"
#

œ

Á0

44. converges conditionally since š Èn  "Èn  1 › is a decreasing sequence of positive terms converging to 0
_

(")n
Èn  Èn  1

Ê !

n œ1

_

so that !
nœ1

converges; but n lim
Ä_

"
Èn  Èn  1

"

Èn
Š È"n ‹

Š Èn

1

‹

Èn
È n È n 1

œ n lim
Ä_

_

diverges by the Limit Comparison Test with !
nœ1

45. converges absolutely by the Direct Comparison Test since sech (n) œ

"
Èn

œ n lim
Ä_

"
1É1 "n

"
#

œ

which is a divergent p-series

2
en  ecn

œ

2en
e2n  1



2en
e2n

œ

2
en

which is the

nth term of a convergent geometric series
_

_

n œ1

nœ1

46. converges absolutely by the Limit Comparison Test (part 1): ! kan k œ !
Apply the Limit Comparison Test with
lim

nÄ_

47.

1
4



1
6

n2

Œ



2
en c ecn
1
en

1
8



1
10

 œ n lim
Ä_


1
12



1
14

n  1 Ê 2 an  2 b

2en
en  ecn

1
en ,

the n-th term of a convergent geometric series:

œ n lim
Ä_
_

 ÞÞÞ œ !

n œ1

2
1  ec2n

(")nb1
2 an  1 b ;

2an  1b Ê

2
en ecn

œ2

converges by Alternating Series Test since: un œ

1
2aan  1b  1b

Ÿ

1
2 an 1 b

Ê u n  1 Ÿ un ;

lim un œ

nÄ_

1
2 an  1 b

lim 1
nÄ_ 2an1b

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

 0 for all n

œ 0.

1;

606

Chapter 10 Infinite Sequences and Series

48. 1 

1
4





1
9



1
16

1
25



1
36





1
49

1
64

_

_

_

n œ1

n œ1

n œ1

 Þ Þ Þ œ ! an ; converges by the Absolute Convergence Test since ! kan k œ !

"
n#

which is a convergent p-series
49. kerrork  ¸(1)' ˆ "5 ‰¸ œ 0.2
51. kerrork  ¹(1)'

(0.01)&
5 ¹

50. kerrork  ¸(1)' ˆ 10" & ‰¸ œ 0.00001

œ 2 ‚ 10""

52. kerrork  k(1)% t% k œ t%  1

53. kerrork  0.001 Ê un1  0.001 Ê

1
an  1b2  3

 0.001 Ê an  1b2  3  1000 Ê n  1  È997 ¸ 30.5753 Ê n

54. kerrork  0.001 Ê un1  0.001 Ê

n1
an  1b2  1

 0.001 Ê an  1b2  1  1000an  1b Ê n 

¸ 998.9999 Ê n

31

998È9982  4a998b
2

999

55. kerrork  0.001 Ê un1  0.001 Ê

1
3
ˆan  1b  3Èn  1‰

3

 0.001 Ê Šan  1b  3Èn  1‹  1000

2

È
Ê ŠÈn  1‹  3Èn  1  10  0 Ê Èn  1 œ  3  29  40 œ 2 Ê n œ 3 Ê n

56. kerrork  0.001 Ê un1  0.001 Ê

1
lnalnan  3bb

4

 0.001 Ê lnalnan  3bb  1000 Ê n  3  ee

1000

¸ 5.297 ‚ 10323228467

which is the maximum arbitrary-precision number represented by Mathematica on the particular computer solving this
problem..
57.

"
(2n)!

58.

"
n!





Ê (2n)! 

5
10'

10'
5

Ê

5
10'

59. (a) an

10'
5

œ 200,000 Ê n

 n! Ê n

an1 fails since
_

_

nœ1

nœ1

"
3

9 Ê 11



"
#

"
#!

5 Ê 1
"
#!



"
3!



"
4!





_

_

nœ1

nœ1

"
4!

"
5!

"
6!


"
6!







"
7!

"
8!



¸ 0.54030
"
8!

¸ 0.367881944

n
n
n
n
(b) Since ! kan k œ ! ˆ 3" ‰  ˆ "# ‰ ‘ œ ! ˆ "3 ‰  ! ˆ "# ‰ is the sum of two absolutely convergent

series, we can rearrange the terms of the original series to find its sum:
ˆ "3 

"
9



"
27

60. s#! œ 1 

"
#



"
3

 á ‰  ˆ "# 


"
4

á 

"
19

"
4





"
20

"
8

 በœ

ˆ "3 ‰

1  ˆ 3" ‰



ˆ "# ‰

1  ˆ "# ‰

œ

"
#

 1 œ  #"

"
#

†

"
#1

¸ 0.6687714032 Ê s#! 

¸ 0.692580927

_

61. The unused terms are ! (1)j 1 aj œ (1)n 1 aan 1  an 2 b  (1)n 3 aan 3  an 4 b  á
jœn 1

œ (1)n 1 caan 1  an 2 b  aan 3  an 4 b  á d . Each grouped term is positive, so the remainder
has the same sign as (1)n 1 , which is the sign of the first unused term.
62. sn œ

"
1 †2



"
#†3



"
3 †4

á 

"
n(n  1)

n

œ!

k œ1

"
k(k  1)

n

œ ! ˆ k" 
k œ1

œ ˆ1  "# ‰  ˆ "#  3" ‰  ˆ 3"  4" ‰  ˆ 4"  5" ‰  á  ˆ n" 

" ‰
k1

" ‰
n1

which are the first 2n terms

of the first series, hence the two series are the same. Yes, for
n

sn œ ! ˆ k" 
k œ1

" ‰
k1

œ ˆ1  "# ‰  ˆ "#  3" ‰  ˆ 3"  4" ‰  ˆ 4"  5" ‰  á  ˆ n " 1  n" ‰  ˆ n" 

" ‰
n1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

œ 1

"
n1

Section 10.6 Alternating Series, Absolute and Conditional Convergence

607

ˆ1  n " 1 ‰ œ 1 Ê both series converge to 1. The sum of the first 2n  1 terms of the first
Ê n lim
s œ n lim
Ä_ n
Ä_
ˆ1  n " 1 ‰ œ 1.
series is ˆ1  n " 1 ‰  n " 1 œ 1. Their sum is n lim
s œ n lim
Ä_ n
Ä_
_

_

_

_

n œ1

n œ1

n œ1

n œ1

63. Theorem 16 states that ! kan k converges Ê ! an converges. But this is equivalent to ! an diverges Ê ! kan k diverges
_

_

n œ1

n œ1

64. ka"  a#  á  an k Ÿ ka" k  ka# k  á  kan k for all n; then ! kan k converges Ê ! an converges and these imply that
_

_

n œ1

n œ1

º ! an º Ÿ ! kan k
_

65. (a) ! kan  bn k converges by the Direct Comparison Test since kan  bn k Ÿ kan k  kbn k and hence
n œ1
_

! aan  bn b converges absolutely

n œ1
_

_

_

(b) ! kbn k converges Ê ! bn converges absolutely; since ! an converges absolutely and
nœ1
_

nœ1

nœ1
_

_

! bn converges absolutely, we have ! can  (bn )d œ ! aan  bn b converges absolutely by part (a)

nœ1
_

_

_

nœ1

n œ1

nœ1

nœ1

nœ1
_

(c) ! kan k converges Ê kkk ! kan k œ ! kkan k converges Ê ! kan converges absolutely

66. If an œ bn œ (1)n

"
Èn

_

, then ! (1)n
nœ1

67. s" œ  "# , s# œ  "#  1 œ
"
#

s$ œ   1 
s% œ s$ 
s& œ s% 
s' œ s& 
s( œ s' 

"
4



"
6



"
8

"
3 ¸ 0.1766,
"
"
"
#4  #6  #8 
"
5 ¸ 0.312,
"
"
"
46  48  50 

"
#

"
Èn

nœ1

_

_

nœ1

nœ1

converges, but ! an bn œ !

"
n

diverges

,



"
10



"
1#



"
14



"
16



"
18



"
#0



"
2#

¸ 0.5099,

"
30



"
3#



"
34



"
36



"
38



"
40



"
42



"
44

¸ 0.512,

"
52



"
54



"
56



"
58



"
60



"
62



"
64



"
66

¸ 0.51106

N" 1

68. (a) Since ! kan k converges, say to M, for %  0 there is an integer N" such that º ! kan k  Mº 
nœ1

N" 1

N" 1

_

nœ1

nœ1

nœN"

Í » ! kan k   ! kan k  ! kan k » 

%
#

_

Í »  ! k an k » 
nœN"

%
#

_

Í ! kan k 
nœN"

%
#

%
#

. Also, ! an

converges to L Í for %  0 there is an integer N# (which we can choose greater than or equal to N" ) such
that ksN#  Lk 

%
#

_

. Therefore, ! kan k 
nœN"

%
#

and ksN#  Lk 

%
#

.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

608

Chapter 10 Infinite Sequences and Series
_

k

nœ1

nœ1

(b) The series ! kan k converges absolutely, say to M. Thus, there exists N" such that º ! kan k  Mº  %
whenever k  N" . Now all of the terms in the sequence ekbn kf appear in ekan kf. Sum together all of the
N
terms in ekbn kf, in order, until you include all of the terms ekan kf nœ" 1 , and let N# be the largest index in the
N#

N#

_

n œ1

nœ1

n œ1

sum ! kbn k so obtained. Then º ! kbn k  Mº  % as well Ê ! kbn k converges to M.
10.7 POWER SERIES
_

nb1
1. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ xxn ¹  1 Ê kxk  1 Ê 1  x  1; when x œ 1 we have ! (1)n , a divergent
Ä_
Ä_
n œ1

_

series; when x œ 1 we have ! 1, a divergent series
n œ1

(a) the radius is 1; the interval of convergence is 1  x  1
(b) the interval of absolute convergence is 1  x  1
(c) there are no values for which the series converges conditionally
nb1

2. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (x(x5)5)n ¹  1 Ê kx  5k  1 Ê 6  x  4; when x œ 6 we have
Ä_
Ä_
_

_

n œ1

nœ1

! (1)n , a divergent series; when x œ 4 we have ! 1, a divergent series

(a) the radius is 1; the interval of convergence is 6  x  4
(b) the interval of absolute convergence is 6  x  4
(c) there are no values for which the series converges conditionally
nb1

 1)
"
"
3. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (4x
(4x  1)n ¹  1 Ê k4x  1k  1 Ê 1  4x  1  1 Ê  #  x  0; when x œ  # we
Ä_
Ä_
_

_

_

_

_

n œ1

n œ1

n œ1

n œ1

n œ1

have ! (1)n (1)n œ ! (1)2n œ ! 1n , a divergent series; when x œ 0 we have ! (1)n (1)n œ ! (1)n ,
a divergent series
(a) the radius is "4 ; the interval of convergence is  "#  x  0
(b) the interval of absolute convergence is  "#  x  0

(c) there are no values for which the series converges conditionally
nb1

4. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (3xn2)1
Ä_
Ä_
Ê 1  3x  2  1 Ê

"
3

†

n
(3x  2)n ¹

ˆ n ‰  1 Ê k3x  2k  1
 1 Ê k3x  2k n lim
Ä _ n1

 x  1; when x œ

"
3

_

n œ1

(b) the interval of absolute convergence is

"
3

(c) the series converges conditionally at x œ
nb1

 2)
5. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹ (x 10
nb1
Ä_
Ä_

n œ1

"
n

conditionally convergent; when x œ 1 we have !
(a) the radius is "3 ; the interval of convergence is

_

we have !

"
3

(")n
n

which is the alternating harmonic series and is

, the divergent harmonic series

Ÿx1

x1
"
3

10n
(x  2)n ¹

1 Ê

kx  2 k
10

 1 Ê kx  2k  10 Ê 10  x  2  10

_

_

nœ1

nœ1

Ê 8  x  12; when x œ 8 we have ! (")n , a divergent series; when x œ 12 we have ! 1, a divergent series
(a) the radius is "0; the interval of convergence is 8  x  12
(b) the interval of absolute convergence is 8  x  12
(c) there are no values for which the series converges conditionally

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.7 Power Series
nb1

6. n lim
k2xk  1 Ê k2xk  1 Ê  "#  x 
¹ uunbn 1 ¹  1 Ê n lim
¹ (2x)
(2x)n ¹  1 Ê n lim
Ä_
Ä_
Ä_
_

! (")n , a divergent series; when x œ

n œ1

"
#

"
#

; when x œ  "# we have

_

we have ! 1, a divergent series
n œ1

(a) the radius is "# ; the interval of convergence is  "#  x 
(b) the interval of absolute convergence is  "#  x 

"
#

"
#

(c) there are no values for which the series converges conditionally
nb1

 1)x
7. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (n (n
 3) †
Ä_
Ä_

(n  2)
nxn ¹

 1 Ê kxk n lim
Ä_

_

Ê 1  x  1; when x œ 1 we have ! (")n
n œ1

_

have !
n œ1

n
n#,

n
n#

(n  1)(n  2)
(n  3)(n)

 1 Ê kxk  1

, a divergent series by the nth-term Test; when x œ " we

a divergent series

(a) the radius is "; the interval of convergence is "  x  "
(b) the interval of absolute convergence is "  x  "
(c) there are no values for which the series converges conditionally
nb1

8. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (x n2)1
Ä_
Ä_

†

n
(x  2)n ¹

ˆ
 1 Ê kx  2k n lim
Ä_
_

Ê 1  x  2  1 Ê 3  x  1; when x œ 3 we have !

n œ1

_

!
n œ1

(1)n
n ,

"
n,

n ‰
n1

 1 Ê kx  2k  1

a divergent series; when x œ " we have

a convergent series

(a) the radius is "; the interval of convergence is 3  x Ÿ "
(b) the interval of absolute convergence is 3  x  "
(c) the series converges conditionally at x œ 1
nb1

x
9. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹
Ä_
Ä _ (n  1)Èn  1 3nb1

Ê

kx k
3

nÈ n 3n
xn ¹

1 Ê

kxk
3

n
n
‹
n  1 ‹ ŠÉ n lim
Ä _ n1

Šn lim
Ä_
_

(1)(1)  1 Ê kxk  3 Ê 3  x  3; when x œ 3 we have !

n œ1

_

when x œ 3 we have !

n œ1

1
,
n$Î#

(")n
,
n$Î#

1

an absolutely convergent series;

a convergent p-series

(a) the radius is 3; the interval of convergence is 3 Ÿ x Ÿ 3
(b) the interval of absolute convergence is 3 Ÿ x Ÿ 3
(c) there are no values for which the series converges conditionally
nb1

10. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (xÈn1) 1 †
Ä_
Ä_

Èn
(x  1)n ¹

 1 Ê kx  1k Én lim
Ä_
_

Ê 1  x  1  1 Ê 0  x  2; when x œ 0 we have !

n œ1

_

we have !
n œ1

1
,
n"Î#

(")n
,
n"Î#

n
n1

609

 1 Ê kx  1k  1

a conditionally convergent series; when x œ 2

a divergent series

(a) the radius is 1; the interval of convergence is 0 Ÿ x  2
(b) the interval of absolute convergence is 0  x  2
(c) the series converges conditionally at x œ 0
nb1

ˆ " ‰  1 for all x
11. n lim
† n! ¹  1 Ê kxk n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ x
Ä_
Ä _ (n  1)! xn
Ä _ n1
(a) the radius is _; the series converges for all x

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

610

Chapter 10 Infinite Sequences and Series

(b) the series converges absolutely for all x
(c) there are no values for which the series converges conditionally
nb1

nb1

ˆ " ‰  1 for all x
12. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ 3 x † 3nn!xn ¹  1 Ê 3 kxk n lim
Ä_
Ä _ (n  1)!
Ä _ n1
(a) the radius is _; the series converges for all x
(b) the series converges absolutely for all x
(c) there are no values for which the series converges conditionally
13. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹4
Ä_
Ä_

nb1 2nb2

x
n1

†

n
4n x2n ¹

ˆ 4n ‰ œ 4x#  1 Ê x# 
 1 Ê x# n lim
Ä _ n1

_

_

n œ1

nœ1

n
2n
Ê  12  x  12 ; when x œ  12 we have ! 4n ˆ 12 ‰ œ !

_

!
n œ1

4n ˆ 1 ‰2n
n 2

_

œ!

n œ1

1
n,

1
n

1
4

, a divergent p-series; when x œ

1
2

we have

a divergent p-series

(a) the radius is 12 ; the interval of convergence is  12  x 
(b) the interval of absolute convergence is  12  x 

1
2

1
2

(c) there are no values for which the series converges conditionally
nb1

14. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹ (x  1)
Ä_
Ä _ an  1b2 3nb1

n2 3n
(x  1)n ¹

_

2

 1 Ê lx  1l n lim
Š n ‹ œ 13 lx  1l  1
Ä _ 3an  1b2
_

Ê 2  x  4; when x œ 2 we have ! (n2 3)3n œ ! (n1)
, an absolutely convergent series; when x œ 4 we have
2
n

n œ1

_

n

nœ1

_

n

! (3)
! 12 , an absolutely convergent series.
n2 3n œ
n

n œ1

n œ1

(a) the radius is 3; the interval of convergence is 2 Ÿ x Ÿ 4
(b) the interval of absolute convergence is 2 Ÿ x Ÿ 4
(c) there are no values for which the series converges conditionally
nb1

x
15. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹
Ä_
Ä _ È(n  1)#  3

È n#  3
¹
xn

_

Ê 1  x  1; when x œ 1 we have !

n œ1

_

!
n œ1

"
È n#  3

 1 Ê kxk Én lim
Ä_

(")n
È n#  3

n#  3
n#  2n  4

 " Ê kxk  1

, a conditionally convergent series; when x œ 1 we have

, a divergent series

(a) the radius is 1; the interval of convergence is 1 Ÿ x  1
(b) the interval of absolute convergence is 1  x  1
(c) the series converges conditionally at x œ 1
n 1

x
16. n lim
†
¹ uun n 1 ¹  1 Ê n lim
¹
Ä_
Ä _ È(n  1)#  3

È n#  3
¹
xn

_

Ê 1  x  1; when x œ 1 we have !

nœ1

 1 Ê kxk Én lim
Ä_

"
È n#  3

n#  3
n#  2n  4

 " Ê kxk  1
_

, a divergent series; when x œ 1 we have !

nœ1

a conditionally convergent series
(a) the radius is 1; the interval of convergence is 1  x Ÿ 1
(b) the interval of absolute convergence is 1  x  1
(c) the series converges conditionally at x œ 1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

(")n
È n#  3

,

Section 10.7 Power Series
 3)
17. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (n  1)(x
5nb1
Ä_
Ä_

nb1

†

5n
n(x  3)n ¹

1 Ê

kx  3 k
lim
5
nÄ_

ˆ n n " ‰  1 Ê
_

Ê kx  3k  5 Ê 5  x  3  5 Ê 8  x  2; when x œ 8 we have !

n œ1

_

series; when x œ 2 we have !

n œ1

n5n
5n

n(5)n
5n

kx  3 k
5

611

1

_

œ ! (1)n n, a divergent
n œ1

_

œ ! n, a divergent series
n œ1

(a) the radius is 5; the interval of convergence is 8  x  2
(b) the interval of absolute convergence is 8  x  2
(c) there are no values for which the series converges conditionally
nb1

18. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹ (n  1)x
Ä_
Ä _ 4nb1 an#  2n  2b
_

Ê 4  x  4; when x œ 4 we have !

n œ1

4 n an #  1 b
¹
nxn
n(1)n
n#  1

1 Ê

kx k
4 n lim
Ä_

#

(n 1) n
1
¹ n an# a2n  2bb ¹  1 Ê kxk  4
_

, a conditionally convergent series; when x œ 4 we have !

n œ1

n
n#  1

,

a divergent series
(a) the radius is 4; the interval of convergence is 4 Ÿ x  4
(b) the interval of absolute convergence is 4  x  4
(c) the series converges conditionally at x œ 4
19. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹
Ä_
Ä_

Èn  1 xnb1
3nb1

†

3n
È n xn ¹

1 Ê

kx k
3

ˆ n n 1 ‰  1 Ê
Én lim
Ä_

kx k
3

 1 Ê kxk  3

_

_

n œ1

n œ1

Ê 3  x  3; when x œ 3 we have ! (1)n Èn , a divergent series; when x œ 3 we have ! Èn, a divergent series
(a) the radius is 3; the interval of convergence is 3  x  3
(b) the interval of absolute convergence is 3  x  3
(c) there are no values for which the series converges conditionally
20. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹
Ä_
Ä_

nbÈ
1

n  1 (2x5)nb1
¹
n n (2x5)n
È

 1 Ê k2x  5k n lim
Š
Ä_

nbÈ
1

n1
‹
n n
È

1

t
È

lim
t
Ä_
Ê k2x  5k Œ tlim
n n   1 Ê k2x  5k  1 Ê 1  2x  5  1 Ê 3  x  2; when x œ 3 we have
È
n

_

Ä_

_

n
n
n
! (1) È
È
n, a divergent series since n lim
n œ 1; when x œ 2 we have ! È
n, a divergent series
Ä_
n œ1
n œ1

(a) the radius is "# ; the interval of convergence is 3  x  2

(b) the interval of absolute convergence is 3  x  2
(c) there are no values for which the series converges conditionally
_

_

_

n œ1

n œ1

21. First, rewrite the series as ! a2  (1)n bax  1bn1 œ ! 2ax  1bn1  ! (1)n ax  1bn1 . For the series
n œ1

_

n

! 2ax  1bn1 : lim ¹ unb1 ¹  1 Ê lim ¹ 2ax1nbc1 ¹  1 Ê lx  1l lim 1 œ lx  1l  1 Ê 2  x  0; For the
un
nÄ_
n Ä _ 2 ax  1 b
nÄ_
n œ1
_

nb1

n

(1) ax1b
series ! (1)n ax  1bn1 : n lim
1 œ lx  1l  1
¹ uunbn 1 ¹  1 Ê n lim
¹
¹  1 Ê lx  1ln lim
Ä_
Ä _ (1)n ax1bnc1
Ä_
n œ1
_

Ê 2  x  0; when x œ 2 we have ! a2  (1)n ba1bn1 , a divergent series; when x œ 0 we have
n œ1

_

! a2  (1)n b, a divergent series

n œ1

(a) the radius is 1; the interval of convergence is 2  x  0
(b) the interval of absolute convergence is 2  x  0
(c) there are no values for which the series converges conditionally

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

612

Chapter 10 Infinite Sequences and Series

( 1)
22. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹
Ä_
Ä_

Ê
_

!
n œ1

17
9

x

19
9 ;

(1)n 32n ˆ 1 ‰n
3n
9

when x œ
_

œ!

n œ1

(1)n
3n ,

17
9

3
ax  2bnb1
3an  1b

nb1 2nb2

_

we have !
n œ1

†

(1)n 32n ˆ 1 ‰n
9
3n

(b) the interval of absolute convergence is

17
9

(c) the series converges conditionally at x œ

23.

_

œ!

nœ1

1
3n ,

9n
n1

œ 9lx  2l  1

a divergent series; when x œ

19
9

we have

a conditionally convergent series.

(a) the radius is 19 ; the interval of convergence is

lim ¹ uunbn 1 ¹
nÄ_

 1 Ê lx  2ln lim
Ä_

3n
¹
(1)n 32n ax  2bn

 1 Ê n lim
Ä_ »

Š1 

n

"

nb1

1‹

xnb1

Š1  "n ‹ xn
n

17
9

x

xŸ

19
9

19
9

19
9
"

t

lim Š1  t ‹
e
Ä_
»  1 Ê kxk  lim Š1  " ‹n   1 Ê kxk ˆ e ‰  1 Ê kxk  1
n
nÄ_
t

_

n
Ê 1  x  1; when x œ 1 we have ! (1)n ˆ1  "n ‰ , a divergent series by the nth-Term Test since
n œ1

lim ˆ1 
nÄ_

" ‰n
n

_

n
œ e Á 0; when x œ 1 we have ! ˆ1  n" ‰ , a divergent series
n œ1

(a) the radius is "; the interval of convergence is 1  x  1
(b) the interval of absolute convergence is 1  x  1
(c) there are no values for which the series converges conditionally
24. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ ln (nxnln1)xn
Ä_
Ä_

nb1

¹  1 Ê kxk n lim
Ä_ º

ˆn " 1‰
ˆ n" ‰ º

ˆ n ‰  1 Ê kxk  1
 1 Ê kxk n lim
Ä _ n1

_

Ê 1  x  1; when x œ 1 we have ! (1)n ln n, a divergent series by the nth-Term Test since n lim
ln n Á 0;
Ä_
n œ1

_

when x œ 1 we have ! ln n, a divergent series
n œ1

(a) the radius is 1; the interval of convergence is 1  x  1
(b) the interval of absolute convergence is 1  x  1
(c) there are no values for which the series converges conditionally
nb1 nb1

x
ˆ1  n" ‰n ‹ Š lim (n  1)‹  1
25. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (n  1)
¹  1 Ê kxk Šn lim
nn xn
Ä_
Ä_
Ä_
nÄ_
Ê e kxk n lim
(n  1)  1 Ê only x œ 0 satisfies this inequality
Ä_

(a) the radius is 0; the series converges only for x œ 0
(b) the series converges absolutely only for x œ 0
(c) there are no values for which the series converges conditionally
nb1

26. n lim
(n  1)  1 Ê only x œ 4 satisfies this inequality
¹ uunbn 1 ¹  1 Ê n lim
¹ (n n!1)!(x(x4)4)n ¹  1 Ê kx  4k n lim
Ä_
Ä_
Ä_
(a) the radius is 0; the series converges only for x œ 4
(b) the series converges absolutely only for x œ 4
(c) there are no values for which the series converges conditionally
nb1

27. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹ (x  2)
Ä_
Ä _ (n  1) 2nb1

n2n
(x  2)n ¹

1 Ê

kx  2 k
lim
#
nÄ_

ˆ n n 1 ‰  1 Ê

kx  2 k
#

 1 Ê kx  2k  2

_

_

n œ1

n œ1

! (1)
Ê 2  x  2  2 Ê 4  x  0; when x œ 4 we have ! "
n , a divergent series; when x œ 0 we have
n
the alternating harmonic series which converges conditionally
(a) the radius is 2; the interval of convergence is 4  x Ÿ 0
(b) the interval of absolute convergence is 4  x  0
(c) the series converges conditionally at x œ 0

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

nb1

,

Section 10.7 Power Series
nb1

613

nb1

(n  2)(x  1)
ˆ n  2 ‰  1 Ê 2 kx  1k  1
28. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ ((2)2)n (n
 1)(x  1)n ¹  1 Ê 2 kx  1k n lim
Ä_
Ä_
Ä _ n1

Ê kx  1k 
_

"
#

Ê  "#  x  1 

"
#

"
#

Ê

 x  3# ; when x œ

"
#

_

we have ! (n  1) , a divergent series; when x œ
n œ1

we have ! (1) (n  1), a divergent series
n

n œ1

(a) the radius is "# ; the interval of convergence is
(b) the interval of absolute convergence is

"
#

"
#

x

x

3
#

3
#

(c) there are no values for which the series converges conditionally
nb1

x
29. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹
Ä_
Ä _ (n  1) aln (n  1)b#

Ê kxk (1) Œn lim
Ä_
_

!
nœ1

(1)n
n(ln n)#

ˆ "n ‰
ˆ nb" 1 ‰ 

#

n(ln n)#
xn ¹

 1 Ê kxk Šn lim
Ä_

n1
n ‹

 1 Ê kxk Šn lim
Ä_

#

n
ln n
‹
n  1 ‹ Šn lim
Ä _ ln (n  1)

#

1

 1 Ê kxk  1 Ê 1  x  1; when x œ 1 we have
_

which converges absolutely; when x œ 1 we have !

nœ1

"
n(ln n)#

which converges

(a) the radius is "; the interval of convergence is 1 Ÿ x Ÿ 1
(b) the interval of absolute convergence is 1 Ÿ x Ÿ 1
(c) there are no values for which the series converges conditionally
nb1

x
30. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹
Ä_
Ä _ (n  1) ln (n  1)

n ln (n)
xn ¹

 1 Ê kxk Šn lim
Ä_

ln (n)
n
‹
n  1 ‹ Šn lim
Ä _ ln (n  1)
_

(1)n
n ln n

Ê kxk (1)(1)  1 Ê kxk  1 Ê 1  x  1; when x œ 1 we have !

n œ2

_

when x œ 1 we have !

n œ2

"
n ln n

1

, a convergent alternating series;

which diverges by Exercise 38, Section 9.3

(a) the radius is "; the interval of convergence is 1 Ÿ x  1
(b) the interval of absolute convergence is 1  x  1
(c) the series converges conditionally at x œ 1
2nb3

 5)
31. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹ (4x
(n  1)$Î#
Ä_
Ä_

n$Î#
(4x  5)2n

1

¹  1 Ê (4x  5)# Šn lim
Ä_

Ê k4x  5k  1 Ê 1  4x  5  1 Ê 1  x 
absolutely convergent; when x œ

3
#

_

we have !
n œ1

(")2nb1
n$Î#

3
#

_

; when x œ 1 we have !

n œ1

$Î#

 1 Ê (4x  5)#  1

(1)2nb1
n$Î#

_

œ!

n œ1

"
n$Î#

which is

, a convergent p-series

(a) the radius is "4 ; the interval of convergence is 1 Ÿ x Ÿ
(b) the interval of absolute convergence is 1 Ÿ x Ÿ

n
n1‹

3
#

3
#

(c) there are no values for which the series converges conditionally
nb2

32. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (3x2n1)4
Ä_
Ä_

†

2n  2
(3x  1)nb1 ¹

ˆ 2n  2 ‰  1 Ê k3x  1k  1
 1 Ê k3x  1k n lim
Ä _ 2n  4
_

Ê 1  3x  1  1 Ê  23  x  0; when x œ  23 we have !

n œ1

_

when x œ 0 we have !

n œ1

(")nb1
2n  1

_

œ!

nœ1

"
#n  1

(1)nb1
2n  1

, a conditionally convergent series;

, a divergent series

(a) the radius is "3 ; the interval of convergence is  32 Ÿ x  0
(b) the interval of absolute convergence is  23  x  0
(c) the series converges conditionally at x œ  23

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

3
#

614

Chapter 10 Infinite Sequences and Series
nb1

x
ˆ 1 ‰  1 for all x
33. n lim
† 2†4†6xân a2nb ¹  1 Ê kxk n lim
¹ uunbn 1 ¹  1 Ê n lim
¹
Ä_
Ä _ 2†4†6âa2nba2an  1bb
Ä _ 2n  2
(a) the radius is _; the series converges for all x
(b) the series converges absolutely for all x
(c) there are no values for which the series converges conditionally
nb2

3 5 7 2n 1 2 n 1
1x
2n 3 n
34. n lim
† 3†5†7âan2n2 1bxnb1 ¹  1 Ê kxk n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ † † âa an ba1ba2 2nb1 b  b
Š a2an 1bb2 ‹  1 Ê only
Ä_
Ä_
Ä_
x œ 0 satisfies this inequality
(a) the radius is 0; the series converges only for x œ 0
(b) the series converges absolutely only for x œ 0
(c) there are no values for which the series converges conditionally
_

35. For the series !
n œ1

12ân n
12  22  â  n2 x ,

recall 1  2  â  n œ

nan b 1b

_

2

2 n

nan  1b
2

and 12  22  â  n2 œ

nan  1ba2n  1b
6

_

nb1
rewrite the series as ! Œ n n b 1 2 2n b 1 xn œ ! ˆ 2n 3 1 ‰xn ; then n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ a2an3x
1 b  1 b †
Ä
_
Ä
_
6
n œ1
nœ1
a

ba

b

so that we can

a2n  1b
3xn ¹

1

_

Ê kxk n lim
¹ a2n  1b ¹  1 Ê kxk  1 Ê 1  x  1; when x œ 1 we have ! ˆ 2n 3 1 ‰a1bn , a conditionally
Ä _ a2n  3b
n œ1
_

convergent series; when x œ 1 we have ! ˆ 2n 3 1 ‰, a divergent series.
n œ1

(a) the radius is 1; the interval of convergence is 1 Ÿ x  1
(b) the interval of absolute convergence is 1  x  1
(c) the series converges conditionally at x œ  1
_

36. For the series ! ŠÈn  1  Èn‹ax  3bn , note that Èn  1  Èn œ
n œ1

_

can rewrite the series as !
n œ1

Ê lx  3ln lim
Ä_

a x  3 bn
Èn  1  Èn ;

Èn  1  Èn
Èn  2  Èn  1

Èn  1  Èn
1

†

nb1

Èn  1  Èn
Èn  1  Èn

then n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹ ax  3 b
Ä_
Ä _ Èn  2  Èn  1

ax  3bn

_

n œ1

1
Èn  1  Èn ,

so that we

¹1

a 1 b n
Èn  1  Èn ,

n œ1

_

1
Èn  1  Èn

Èn  1  Èn

 1 Ê lx  3l  1 Ê 2  x  4; when x œ 2 we have !

convergent series; when x œ 4 we have !

œ

a conditionally

a divergent series;

(a) the radius is 1; the interval of convergence is 2 Ÿ x  4
(b) the interval of absolute convergence is 2  x  4
(c) the series converges conditionally at x œ 2
nb1

an  1bxx
37. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹
Ä_
Ä _ 3†6†9âa3nba3an  1bb

3†6†9âa3nb
¹
nx xn
2 nb1

2 4 6 2n 2 n 1
x
38. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹ a † † âa ba a  bbb
Ä_
Ä _ a2†5†8âa3n  1ba3an  1b  1bb2
9
9
Ê lxl  4 Ê R œ 4
2 nb1

n 1 x
39. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹ aa  bxb
Ä_
Ä _ 2nb1 a2an  1bbx

2n a2nbx
¹
an x b 2 x n

an  1 b
 1 Ê lxln lim
¹
¹1Ê
Ä _ 3 an  1 b

a2†5†8âa3n  1bb2
¹
a2†4†6âa2nbb2 xn

lx l
3

 1 Ê lxl  3 Ê R œ 3
2

 1 Ê lxln lim
¹ a2n  2b ¹  1 Ê
Ä _ a3n  2b2

2

an  1 b
 1 Ê lxln lim
¹
¹1Ê
Ä _ 2a2n  2ba2n  1b

lx l
8

4 lx l
9

1

 1 Ê lxl  8 Ê R œ 8

2

n
n ‰n n
n
Ɉ
ˆ n ‰n  1 Ê lxle1  1 Ê lxl  e Ê R œ e
È
40. n lim
un  1 Ê n lim
x  1 Ê lxl n lim
n1
Ä_
Ä_
Ä _ n1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.7 Power Series
nb1

nb1

41. n lim
3  1 Ê lxl 
¹ uunbn 1 ¹  1 Ê n lim
¹ 3 3n xxn ¹  1 Ê lxl n lim
Ä_
Ä_
Ä_
_

_

! 3n ˆ 1 ‰n œ ! a1bn , which diverges; at x œ
3

n œ0

n œ0

1
3

1
3

_

_

n œ0

nœ0

615

Ê  31  x  31 ; at x œ  31 we have
_

n
we have ! 3n ˆ 13 ‰ œ ! 1 , which diverges. The series ! 3n xn

_

œ ! a3xbn is a convergent geometric series when  13  x 
n œ0

1
3

and the sum is

nœ0

1
1  3x .

nb1

e
4
42. n lim
1  1 Ê lex  4l  1 Ê 3  ex  5 Ê ln 3  x  ln 5;
¹ uunbn 1 ¹  1 Ê n lim
¹ a aex 4b bn ¹  1 Ê lex  4l n lim
Ä_
Ä_
Ä_
x

_

_

_

_

nœ0
_

nœ0

nœ0

nœ0

n
n
at x œ ln 3 we have ! ˆeln 3  4‰ œ ! a1bn , which diverges; at x œ ln 5 we have ! ˆeln 5  4‰ œ ! 1, which

diverges. The series ! aex  4bn is a convergent geometric series when ln 3  x  ln 5 and the sum is
n œ0

2nb2

43. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (x 4n1)1
Ä_
Ä_

4n
(x  1)2n ¹

†

1 Ê

(x  1)#
lim
4
nÄ_
_

Ê 2  x  1  2 Ê 1  x  3; at x œ 1 we have !

n œ0

_

we have !
n œ0
_

!
n œ0

(x  ")2n
4n
"

#

4
4n

nœ0

œ!

nœ0
4

(x
4

9n
(x  1)2n ¹

†

1 Ê

(x  1)#
lim
9
nÄ_

n œ0

!

n œ0

nœ0

n œ0

k1k  1 Ê (x  1)#  9 Ê kx  1k  3

(3)2n
9n

_

œ ! 1 which diverges; at x œ 2 we have
n œ0

_

œ ! " which also diverges; the interval of convergence is 4  x  2; the series

(x  1)
9n
"

_

4
4
")# “ œ 4  x#  2x  1 œ 3  2x  x#

_

!

_

n
œ ! 44n œ ! 1, which diverges; at x œ 3

is a convergent geometric series when 1  x  3 and the sum is

Ê 3  x  1  3 Ê 4  x  2; when x œ  4 we have !

n œ0
_

k1k  1 Ê (x  1)#  4 Ê kx  1k  2

nœ0

2nb2

32n
9n

1
5  ex .

œ ! 1, a divergent series; the interval of convergence is 1  x  3; the series

44. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (x 9n1)1
Ä_
Ä_

_

œ

_

# n
Šˆ x # 1 ‰ ‹
"

’

n

œ!

2
4n

_

œ

"
1  Šxc
# ‹

_

2n

(2)2n
4n

1
1  ae x 4 b

nœ0

2n

_

n

#
œ ! Šˆ x3 1 ‰ ‹ is a convergent geometric series when 4  x  2 and the sum is
n œ0

1
1  Šxb
3 ‹

#

œ

"

’

9

(x  1)#
“
9

œ

9
9  x#  2x  1

45. n lim
¹ uunbn 1 ¹  1 Ê n lim
Ä_
Ä_ º

œ

9
8  2x  x#

ˆÈx  2‰nb1
2nb1

†

2n
ˆÈ x  2 ‰ n º

 1 Ê ¸Èx  2¸  2 Ê 2  Èx  2  2 Ê 0  Èx  4

_

_

Ê 0  x  16; when x œ 0 we have ! (1)n , a divergent series; when x œ 16 we have ! (1)n , a divergent
nœ0

nœ0

_

series; the interval of convergence is 0  x  16; the series !

n œ0

0  x  16 and its sum is

1Œ

"
Èx c 2 œ

# 

Œ

2c

"

Èx
#

2

œ


Èx  2 n
Š # ‹

is a convergent geometric series when

2
4  Èx

nb1

46. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (ln(lnx)x)n ¹  1 Ê kln xk  1 Ê 1  ln x  1 Ê e"  x  e; when x œ e" or e we
Ä_
Ä_
_

_

_

nœ0

nœ0

nœ0

obtain the series ! 1n and ! (1)n which both diverge; the interval of convergence is e"  x  e; ! (ln x)n œ
when e"  x  e

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

"
1  ln x

616

Chapter 10 Infinite Sequences and Series

47. n lim
¹ uunbn 1 ¹  1 Ê n lim
Šx
Ä_
Ä_ º

#

1
3 ‹

n1

n
† ˆ x# 3 1 ‰ º  1 Ê

ax#  1b
lim
3
nÄ_

x#  "
3

k1k  1 Ê

 1 Ê x#  2

_

Ê kxk  È2 Ê È2  x  È2 ; at x œ „ È2 we have ! (1)n which diverges; the interval of convergence is
n œ0

_

È2  x  È2 ; the series !

n œ0

"
#
1  Š x 3b 1 ‹

œ

"
#
Š 3 c x3 c 1 ‹

œ

#
Š x 3 1 ‹

n

is a convergent geometric series when È2  x  È2 and its sum is

3
#  x#

ax
48. n lim
¹ uun n 1 ¹  1 Ê n lim
¹
Ä_
Ä_

#  1 bn
2n

1

2n
¹
a x #  1 bn

†

1

 1 Ê kx#  1k  2 Ê È3  x  È3 ; when x œ „ È3 we

_

_

n œ0

n œ0

have ! 1n , a divergent series; the interval of convergence is È3  x  È3 ; the series ! Š x
convergent geometric series when È3  x  È3 and its sum is

nb1

49. n lim
¹ (x #n3)
b1
Ä_

†

2n
(x  3)n ¹

"
#
1  Šx 2 1‹

"

œ

2

œ

Šx# 1 ‹

#



#

n
1
‹
2

is a

2
3  x#



_

 1 Ê kx  3k  2 Ê 1  x  5; when x œ 1 we have ! (1)n which diverges;
nœ1

_

when x œ 5 we have ! (1) which also diverges; the interval of convergence is 1  x  5; the sum of this
n

n œ1

convergent geometric series is
œ

2
x1

"
3
1  Šxc
# ‹

œ

2
x1

n

. If f(x) œ 1  #" (x  3)  4" (x  3)#  á  ˆ #" ‰ (x  3)n  á
n

then f w (x) œ  #"  "# (x  3)  á  ˆ #" ‰ n(x  3)n1  á is convergent when 1  x  5, and diverges
2
(x  1)#

when x œ 1 or 5. The sum for f w (x) is

, the derivative of

2
x1

.

n

50. If f(x) œ 1  "# (x  3)  4" (x  3)#  á  ˆ "# ‰ (x  3)n  á œ
œx

(x  3)#
4

(x  3)$
12



_

n (x  3)n
n 1

1

 á  ˆ "# ‰

2
x1

then ' f(x) dx
_

 á . At x œ 1 the series ! n21 diverges; at x œ 5
n œ1

2
the series ! (n1)
1 converges. Therefore the interval of convergence is 1  x Ÿ 5 and the sum is
n

n œ1

2 ln kx  1k  (3  ln 4), since '

dx œ 2 ln kx  1k  C, where C œ 3  ln 4 when x œ 3.

2
x1

51. (a) Differentiate the series for sin x to get cos x œ 1 
œ

x#
#!

x%
4!

x'
6!

)
x"!
1     x8!  10!
á .
2nb2
a
b
#
n
!
lim ¹ x
† x#8 ¹ œ x2 n lim
n Ä _ (2n  2)!
Ä_

(b) sin 2x œ 2x 

2$ x$
3!

2& x&
5!

2( x(
7!

"
6!

œ 2x 
52. (a)
(b)

d
x





5x%
5!



7x'
7!



9x)
9!



11x"!
11!

á

The series converges for all values of x since
Š a2n  1ba" 2n  2b ‹ œ 0  1 for all x.

1†00†

"
4!

$ $

( (

2 x
3!

aex b œ 1 

& &



2 x
5!



2x
2!



3x#
3!

2 x
7!



0†


4x$
4!

' ex dx œ ex  C œ x  x#

#

#

(c) ex œ 1  x  x#! 
 ˆ1 † 3!"  1 † #"! 
 ˆ1 † 5!"  1 † 4!" 

x$
3!
"
#!
"
#!

"
3!

* *

2 x
9!





2* x*
9!



2"" x""
11!

"
#

0†

"" ""

á

0†


5x%
5!

2 x
11!

 á œ 2x 

8x$
3!

&

(

*

""

128x
512x
2048x
 32x
5!  7!  9!  11!  á
"
"‰ $
‰ # ˆ
(c) 2 sin x cos x œ 2 (0 † 1)  (0 † 0  1 † 1)x  ˆ0 † "
#  1 † 0  0 † 1 x  0 † 0  1 † #  0 † 0  1 † 3! x
 ˆ0 † 4!"  1 † 0  0 † #"  0 † 3!"  0 † 1‰ x%  ˆ0 † 0  1 † 4!"  0 † 0  #" † 3!"  0 † 0  1 † 5!" ‰ x&

 ˆ0 †



3x#
3!

"
5!

 0 † 1‰ x'  á ‘ œ 2 ’x 

á œ1x

x#
#!



x$
3!



x%
4!

4x$
3!



16x&
5!

á“

 á œ ex ; thus the derivative of ex is ex itself

x$
x%
x&
x
3!  4!  5!  á  C, which is the general antiderivative of e
%
&
 x4!  x5!  á ; ecx † ex œ 1 † 1  (1 † 1  1 † 1)x  ˆ1 † #"!  1 † 1  #"!
† 1  3!" † 1‰ x$  ˆ1 † 4!"  1 † 3!"  #"! † #"!  3!" † 1  4!" † 1‰ x%
† 3!"  3!" † #"!  4!" † 1  5!" † 1‰ x&  á œ 1  0  0  0  0  0  á



Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

† 1‰ x#

Section 10.8 Taylor and Maclaurin Series
53. (a) ln ksec xk  C œ ' tan x dx œ ' Šx 
#

œ

x
#



%



x
1#

'

)



x
45

17x
2520
1
# 

converges when 
#

(b) sec x œ

d(tan x)
dx

œ

when  1#  x 

d
dx


x

x$
3

œ1x 

x$
6

œx

$

x
6



x&
24



&

x
24

(b) sec x tan x œ
when 

1
#

17x'
45



61x(
5040



(



"
4
62x)
315

x#
#



17x(
315





5x%
24

5 ‰ %
24 x



62x*
2835

61x'
720



62x*
2835

 á ‹ dx

 á ‹ œ 1  x# 

d(sec x)
dx

*



œ

277x
72,576

d
dx

 á ‹ Š1 

61
 ˆ 720


á ,

277x*
72,576



61x
5040

2x%
3



x#
#

17x'
45

x%
12




62x)
315



x'
45

17x)
2520





31x"!
14,175

á ,

 á , converges

1
#

x
x#
2



5
48
1
#



5
48

5x%
24





x#
#



5x%
24

61 ‰ '
720 x

61x'
720



61x'
720

 á‹

á

 á ‹ dx

 á  C; x œ 0 Ê C œ 0 Ê ln ksec x  tan xk
 á , converges when  1#  x 

Š1 

x#
#



5x%
24



61x'
720

5x$
6

 á‹ œ x 

1
#



61x&
120



277x(
1008

 á , converges

1
#

(c) (sec x)(tan x) œ Š1 

x#
#



2
œ x  ˆ "3  #" ‰ x$  ˆ 15


 1#  x 



1
#



x

17x(
315

2x&
15

54. (a) ln ksec x  tan xk  C œ ' sec x dx œ ' Š1 
œx





5
œ 1  ˆ "#  "# ‰ x#  ˆ 24

2x%
3

2x&
15

 á  C; x œ 0 Ê C œ 0 Ê ln ksec xk œ

(c) sec# x œ (sec x)(sec x) œ Š1 
#



"!

31x
14,175
 1#

Šx 

x$
3

617

1
#

5x%
24
"
6

_





61x'
720

 á ‹ Šx 

5 ‰ &
24 x

17
 ˆ 315


"
15

x$
3





5
72

2x&
15





17x(
315

61 ‰ (
720 x

á‹
á œ x

5x$
6



61x&
120



277x(
1008

á ,

_

55. (a) If f(x) œ ! an xn , then f ÐkÑ (x) œ ! n(n  1)(n  2)â(n  (k  1)) an xnk and f ÐkÑ (0) œ k!ak
n œ0

Ê ak œ

f ÐkÑ (0)
k!

n œk
_

; likewise if f(x) œ ! bn xn , then bk œ
n œ0

f ÐkÑ (0)
k!

Ê ak œ bk for every nonnegative integer k

_

(b) If f(x) œ ! an xn œ 0 for all x, then f ÐkÑ (x) œ 0 for all x Ê from part (a) that ak œ 0 for every nonnegative integer k
n œ0

10.8 TAYLOR AND MACLAURIN SERIES
1. f(x) œ e2x , f w (x) œ 2e2x , f ww (x) œ 4e2x , f www (x) œ 8e2x ; f(0) œ e2a0b œ ", f w (0) œ 2, f ww (0) œ 4, f www (0) œ 8 Ê P! (x) œ 1,
P" (x) œ 1  2x, P# (x) œ 1  x  2x# , P$ (x) œ 1  x  2x#  43 x3
2. f(x) œ sin x, f w (x) œ cos x , f ww (x) œ sin x , f www (x) œ cos x; f(0) œ sin 0 œ 0, f w (0) œ 1, f ww (0) œ 0, f www (0) œ 1
Ê P! (x) œ 0, P" (x) œ x, P# (x) œ x, P$ (x) œ x  16 x3
3. f(x) œ ln x, f w (x) œ

"
x

, f ww (x) œ  x"# , f www (x) œ

2
x$ ;

f(1) œ ln 1 œ 0, f w (1) œ 1, f ww (1) œ 1, f www (1) œ 2 Ê P! (x) œ 0,

P" (x) œ (x  1), P# (x) œ (x  1)  "# (x  1)# , P$ (x) œ (x  1)  "# (x  1)#  3" (x  1)$
4. f(x) œ ln (1  x), f w (x) œ
f w (0) œ
5. f(x) œ

œ 1, f ww (0) œ (1)

1
1
"
x

(1  x)" , f ww (x) œ (1  x)# , f www (x) œ 2(1  x)$ ; f(0) œ ln 1 œ 0,

œ 1, f www (0) œ 2(1)$ œ 2 Ê P! (x) œ 0, P" (x) œ x, P# (x) œ x 

œ x" , f w (x) œ x# , f ww (x) œ 2x$ , f www (x) œ 6x% ; f(2) œ

Ê P! (x) œ
P$ (x) œ

"
1x œ
#

"
#



"
"
"
"
# , P" (x) œ #  4 (x  2), P# (x) œ #
"
"
"
#
$
4 (x  2)  8 (x  2)  16 (x  2)

"
#

x#
#,

P$ (x) œ x 

, f w (2) œ  4" , f ww (2) œ 4" , f www (x) œ  83

 "4 (x  2)  "8 (x  2)# ,

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

x#
#



x$
3

618

Chapter 10 Infinite Sequences and Series

6. f(x) œ (x  2)" , f w (x) œ (x  2)# , f ww (x) œ 2(x  2)$ , f www (x) œ 6(x  2)% ; f(0) œ (2)" œ
œ  4" , f ww (0) œ 2(2)$ œ
P$ (x) œ

"
#



x
4



x#
8



"
4

, f www (0) œ 6(2)% œ  38 Ê P! (x) œ

x$
16

"
#

, P" (x) œ

f ww ˆ 14 ‰ œ  sin
P# (x) œ

È2
#



1
4 œ
È2
ˆx 
#

È
, f www ˆ 14 ‰ œ  cos 14 œ  #2 Ê
È2
È
1‰
ˆx  14 ‰# , P$ (x) œ #2 
4  4

 x4 , P# (x) œ

"
#

, f w (0) œ (2)#



x
4



È2
È2
1
w ˆ1‰
# ,f
4 œ cos 4 œ #
È
È
È
P! œ #2 , P" (x) œ #2  #2 ˆx  14 ‰ ,
È2
È
È
ˆx  14 ‰  42 ˆx  14 ‰#  1#2 ˆx  14 ‰$
#

7. f(x) œ sin x, f w (x) œ cos x, f ww (x) œ  sin x, f www (x) œ  cos x; f ˆ 14 ‰ œ sin
È2
#

"
#

"
#

1
4

œ

x#
8

,

,

8. f(x) œ tan x, f w (x) œ sec2 x, f ww (x) œ 2sec2 x tan x, f www (x) œ 2sec4 x  4sec2 x tan2 x; f ˆ 14 ‰ œ tan 14 œ 1 ,
f w ˆ 14 ‰ œ sec2 ˆ 14 ‰ œ 2 , f ww ˆ 14 ‰ œ 2sec2 ˆ 14 ‰ tan ˆ 14 ‰ œ 4 , f www ˆ 14 ‰ œ 2sec4 ˆ 14 ‰  4sec2 ˆ 14 ‰ tan2 ˆ 14 ‰ œ 16 Ê P! (x) œ 1 ,
2
2
3
P" (x) œ 1  2 ˆx  14 ‰ , P# (x) œ 1  2 ˆx  14 ‰  2 ˆx  14 ‰ , P$ (x) œ 1  2 ˆx  14 ‰  2 ˆx  14 ‰  83 ˆx  14 ‰

9. f(x) œ Èx œ x"Î# , f w (x) œ ˆ "# ‰ x"Î# , f ww (x) œ ˆ 4" ‰ x$Î# , f www (x) œ ˆ 83 ‰ x&Î# ; f(4) œ È4 œ 2,
"
3
f w (4) œ ˆ "# ‰ 4"Î# œ "4 , f ww (4) œ ˆ "4 ‰ 4$Î# œ  32
,f www (4) œ ˆ 38 ‰ 4&Î# œ 256
Ê P! (x) œ 2, P" (x) œ 2  "4 (x  4),
P# (x) œ 2  4" (x  4) 

"
64

(x  4)# , P$ (x) œ 2  "4 (x  4) 

"
64

(x  4)# 

"
51#

(x  4)$

10. f(x) œ (1  x)"Î# , f w (x) œ  "# (1  x)"Î# , f ww (x) œ  "4 (1  x)$Î# , f www (x) œ  38 (1  x)&Î# ; f(0) œ (1)"Î# œ 1,
f w (0) œ  "# (1)"Î# œ  "# , f ww (0) œ  "4 (1)$Î# œ  "4 , f www (0) œ  83 (1)&Î# œ  83 Ê P! (x) œ 1,
P" (x) œ 1  2" x, P# (x) œ 1  2" x  8" x# , P$ (x) œ 1  2" x  8" x# 

1
16

x$

11. f(x) œ ex , f w (x) œ ex , f ww (x) œ ex , f www (x) œ ex Ê á f ÐkÑ (x) œ a1bk ex ; f(0) œ ea0b œ ", f w (0) œ 1,
_

f ww (0) œ 1, f www (0) œ 1, á ß f ÐkÑ (0) œ (1)k Ê ex œ 1  x  12 x#  16 x3  á œ !

n œ0

(1)n n
n! x

12. f(x) œ x ex , f w (x) œ x ex  ex , f ww (x) œ x ex  2ex , f www (x) œ x ex  3ex Ê á f ÐkÑ (x) œ x ex  k ex ; f(0) œ a0bea0b œ 0,
_

f w (0) œ 1, f ww (0) œ 2, f www (0) œ 3, á ß f ÐkÑ (0) œ k Ê x  x#  12 x3  á œ !

n œ0

1
n
a n  1 b! x

13. f(x) œ (1  x)" Ê f w (x) œ (1  x)# , f ww (x) œ 2(1  x)$ , f www (x) œ 3!(1  x)% Ê á f ÐkÑ (x)
œ (1)k k!(1  x)k1 ; f(0) œ 1, f w (0) œ 1, f ww (0) œ 2, f www (0) œ 3!, á ß f ÐkÑ (0) œ (1)k k!
_

_

n œ0

nœ0

Ê 1  x  x#  x$  á œ ! (x)n œ ! (1)n xn
14. f(x) œ

2x
1x

Ê f w (x) œ

œ 6(1  x)$ , f www (x) œ 18(1  x)% Ê á f ÐkÑ (x) œ 3ak!b(1  x)

3
ww
(1  x)# , f (x)

_

f w (0) œ 3, f ww (0) œ 6, f www (0) œ 18, á ß f ÐkÑ (0) œ 3ak!b Ê 2  3x  3x#  3x$  á œ 2  ! 3xn
n œ1

_

15. sin x œ !

n œ0
_

16. sin x œ !

nœ0

_

(")n x2nb1
(#n1)!

Ê sin 3x œ !

(")n x2nb1
(#n1)!

Ê sin

n œ0

_

17. 7 cos (x) œ 7 cos x œ 7 !

n œ0

x
#

_

œ!

nœ0

(")n x2n
(2n)!

(")n (3x)2nb1
(#n1)!

2n 1

(")n ˆ x# ‰
(#n1)!

œ7

7x#
#!

_

(")n 32nb1 x2nb1
(#n1)!

œ 3x 

(")n x2nb1
#2n 1 (2n1)!

x
#

œ!

n œ0

_

œ!

nœ0



7x%
4!



7x'
6!

œ



3$ x$
3!

x$
2$ †3!





3& x&
5!

x&
2& †5!

á

á

 á , since the cosine is an even function

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

k 1

; f(0) œ 2,

Section 10.8 Taylor and Maclaurin Series
_

18. cos x œ !

n œ0

19. cosh x œ
_

œ!

n œ0

œ!

n œ0

ex  ecx
#

Ê 5 cos 1x œ 5 !

nœ0

œ

"
#

’Š1  x# 

œ

"
#

’Š1  x 

x#
#!



x$
3!

(1)n (1x)2n
(#n)!



x%
4!

œ5

51 # x#
2!

51 % x%
4!



 á ‹  Š1  x 

x#
#!

5 1 ' x'
6!





x$
3!



á

x%
4!

 á ‹“ œ 1 

x#
#!



x%
4!



x'
6!

á

x2n
(2n)!

20. sinh x œ
_

_

(1)n x2n
(2n)!

619

ex  ecx
#

x#
#!



x$
3!



x%
4!

 á ‹  Š1  x 

x#
#!



x$
3!



x%
4!

 á ‹“ œ x 

x$
3!



x&
5!



x'
6!

á

x2n 1
(2n  1)!

21. f(x) œ x%  2x$  5x  4 Ê f w (x) œ 4x$  6x#  5, f ww (x) œ 12x#  12x, f www (x) œ 24x  12, f Ð4Ñ (x) œ 24
Ê f ÐnÑ (x) œ 0 if n 5; f(0) œ 4, f w (0) œ 5, f ww (0) œ 0, f www (0) œ 12, f Ð4Ñ (0) œ 24, f ÐnÑ (0) œ 0 if n 5
24 %
$
%
$
Ê x%  2x$  5x  4 œ 4  5x  12
3! x  4! x œ x  2x  5x  4
22. f(x) œ

x#
x1

Ê f w (x) œ

2x  x#
; f ww (x)
ax  1b2

f www (0) œ 6, f ÐnÑ (0) œ a1bn nx if n

œ

2
;
ax  1 b 3

f www (x) œ

6
ax  1 b 4

Ê f ÐnÑ (x) œ

a1bn nx
;
ax  1bnb1

f(0) œ 0, f w (0) œ 0, f ww (0) œ 2,

_

2 Ê x#  x3  x4  x5  Þ Þ Þ œ ! a1bn xn
n œ2

23. f(x) œ x$  2x  4 Ê f w (x) œ 3x#  2, f ww (x) œ 6x, f www (x) œ 6 Ê f ÐnÑ (x) œ 0 if n 4; f(2) œ 8, f w (2) œ 10,
6
#
$
f ww (2) œ 12, f www (2) œ 6, f ÐnÑ (2) œ 0 if n 4 Ê x$  2x  4 œ 8  10(x  2)  12
2! (x  2)  3! (x  2)
œ 8  10(x  2)  6(x  2)#  (x  2)$

24. f(x) œ 2x$  x#  3x  8 Ê f w (x) œ 6x#  2x  3, f ww (x) œ 12x  2, f www (x) œ 12 Ê f ÐnÑ (x) œ 0 if n
f w (1) œ 11, f ww (1) œ 14, f www (1) œ 12, f ÐnÑ (1) œ 0 if n 4 Ê 2x$  x#  3x  8
12
#
$
#
$
œ 2  11(x  1)  14
2! (x  1)  3! (x  1) œ 2  11(x  1)  7(x  1)  2(x  1)

4; f(1) œ 2,

25. f(x) œ x%  x#  1 Ê f w (x) œ 4x$  2x, f ww (x) œ 12x#  2, f www (x) œ 24x, f Ð4Ñ (x) œ 24, f ÐnÑ (x) œ 0 if n 5;
f(2) œ 21, f w (2) œ 36, f ww (2) œ 50, f www (2) œ 48, f Ð4Ñ (2) œ 24, f ÐnÑ (2) œ 0 if n 5 Ê x%  x#  1
48
24
#
$
%
#
$
%
œ 21  36(x  2)  50
2! (x  2)  3! (x  2)  4! (x  2) œ 21  36(x  2)  25(x  2)  8(x  2)  (x  2)
26. f(x) œ 3x&  x%  2x$  x#  2 Ê f w (x) œ 15x%  4x$  6x#  2x, f ww (x) œ 60x$  12x#  12x  2,
f www (x) œ 180x#  24x  12, f Ð4Ñ (x) œ 360x  24, f Ð5Ñ (x) œ 360, f ÐnÑ (x) œ 0 if n 6; f(1) œ 7,
f w (1) œ 23, f ww (1) œ 82, f www (1) œ 216, f Ð4Ñ (1) œ 384, f Ð5Ñ (1) œ 360, f ÐnÑ (1) œ 0 if n 6
216
384
360
#
$
%
&
Ê 3x&  x%  2x$  x#  2 œ 7  23(x  1)  82
2! (x  1)  3! (x  1)  4! (x  1)  5! (x  1)
œ 7  23(x  1)  41(x  1)#  36(x  1)$  16(x  1)%  3(x  1)&
27. f(x) œ x# Ê f w (x) œ 2x$ , f ww (x) œ 3! x% , f www (x) œ 4! x& Ê f ÐnÑ (x) œ (1)n (n  1)! xn2 ;
f(1) œ 1, f w (1) œ 2, f ww (1) œ 3!, f www (1) œ 4!, f ÐnÑ (1) œ (1)n (n  1)! Ê x"#
_

œ 1  2(x  1)  3(x  1)#  4(x  1)$  á œ ! (1)n (n  1)(x  1)n
n œ0

28. f(x) œ

1
a1  xb3

Ê f w (x) œ 3(1  x)4 , f ww (x) œ 12(1  x)5 , f www (x) œ 60 (1  x)6 Ê f ÐnÑ (x) œ

fa0b œ 1, f w a0b œ 3, f ww a0b œ 12, f www a0b œ 60, á , f ÐnÑ a0b œ
_

œ!

n œ0

an  2b!
2

Ê

1
a1  xb3

an  2b!
2

(1  x)n3 ;

œ 1  3x  6x#  10x3  á

an  2ban  1b n
x
2

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

620

Chapter 10 Infinite Sequences and Series

29. f(x) œ ex Ê f w (x) œ ex , f ww (x) œ ex Ê f ÐnÑ (x) œ ex ; f(2) œ e# , f w (2) œ e# , á f ÐnÑ (2) œ e#
Ê ex œ e#  e# (x  2) 

e#
#

(x  2)# 

e$
3!

_

(x  2)$  á œ !

n œ0

e#
n!

(x  2)n

30. f(x) œ 2x Ê f w (x) œ 2x ln 2, f ww (x) œ 2x (ln 2)# , f www (x) œ 2x (ln 2)3 Ê f ÐnÑ (x) œ 2x (ln 2)n ; f(1) œ 2, f w (1) œ 2 ln 2,
f ww (1) œ 2(ln 2)# , f www (1) œ 2(ln 2)$ , á , f ÐnÑ (1) œ 2(ln 2)n
2(ln 2)#
#

Ê 2x œ 2  (2 ln 2)(x  1) 

(x  1)# 

2(ln 2)3
3!

_

(x  1)3  á œ !

n œ0

2(ln 2)n (x1)n
n!

31. f(x) œ cosˆ2x  12 ‰, f w (x) œ 2 sinˆ2x  12 ‰, f ww (x) œ 4 cosˆ2x  12 ‰, f www (x) œ 8 sinˆ2x  12 ‰,
f a4b axb œ 24 cosˆ2x  12 ‰ß f a5b axb œ 25 sinˆ2x  12 ‰ß . . ; fˆ 14 ‰ œ 1, f w ˆ 14 ‰ œ 0, f ww ˆ 14 ‰ œ 4, f www ˆ 14 ‰ œ 0, f a4b ˆ 14 ‰ œ 24 ,
2
4
f a5b ˆ 14 ‰ œ 0, . . ., f Ð2nÑ ˆ 14 ‰ œ a1bn 22n Ê cosˆ2x  12 ‰ œ 1  2ˆx  14 ‰  32 ˆx  14 ‰  . . .
_

œ!

n œ0

a1bn 22n ˆ
x
a2nbx

2n
 14 ‰

7 Î2
32. f(x) œ Èx  1, f w (x) œ 12 ax  1b1Î2 , f ww (x) œ  14 ax  1b3Î2 , f www (x) œ 38 ax  1b5Î2 , f a4b (x) œ  15
, . . .;
16 ax  1b
1
1
3
15
1
1
1
5
f(0) œ 1, f w (0) œ , f ww (0) œ  , f www (0) œ , f a4b (0) œ  , . . . Ê Èx  1 œ 1  x  x2  x3 
x4  Þ Þ Þ
2

4

8

16

_

a1bn 2n
a2nbx x

33. The Maclaurin series generated by cos x is !
n œ0

by
_

!
n œ0

2
1x

2

8

16

which converges on a_, _b and the Maclaurin series generated

_

is 2 ! xn which converges on a1, 1b. Thus the Maclaurin series generated by faxb œ cos x 
n œ0

a1bn 2n
a2nbx x

128

2
1x

is given by

_

 2 ! xn œ 1  2x  25 x2  Þ Þ Þ Þ which converges on the intersection of a_, _b and a1, 1b, so the
nœ0

interval of convergence is a1, 1b.
_

34. The Maclaurin series generated by ex is !
n œ0

xn
nx

which converges on a_, _b. The Maclaurin series generated by
_

faxb œ a1  x  x2 bex is given by a1  x  x2 b !

n œ0

_

35. The Maclaurin series generated by sin x is !
n œ0
_

generated by lna1  xb is !

n œ1

a1bnc1 n
x
n

xn
nx

œ 1  12 x2  23 x3 Þ Þ Þ Þ which converges on a_, _bÞ

a1bn
2n1
a2n  1bx x

which converges on a_, _b and the Maclaurin series

which converges on a1, 1b. Thus the Maclaurin series genereated by

_

faxb œ sin x † lna1  xb is given by Œ !

n œ0

_

a1bn
a1bnc1 n
2n1
Œ ! n x 
a2n  1bx x
n œ1

œ x2  12 x3  61 x4  Þ Þ Þ Þ which converges on

the intersection of a_, _b and a1, 1b, so the interval of convergence is a1, 1b.
_

36. The Maclaurin series generated by sin x is !
n œ0

a1bn
2n1
a2n  1bx x

_

genereated by faxb œ x sin2 x is given by xŒ !

n œ0

œ x3  13 x5 
_

37. If ex œ !

n œ0

f ÐnÑ (a)
n!

2 7
45 x

which converges on a_, _b. The Maclaurin series

2
a 1 b n
2n1

a2n  1bx x

_

œ xŒ !

nœ0

_

a 1 b n
a 1 b n
2n1
2n1
Œ ! a2n  1bx x

a2n  1bx x
n œ0

 . . . which converges on a_, _bÞ

(x  a)n and f(x) œ ex , we have f ÐnÑ (a) œ ea f or all n œ 0, 1, 2, 3, á
!

Ê ex œ ea ’ (x 0!a) 

(x  a)"
1!



(x  a)#
2!

 á “ œ ea ’1  (x  a) 

(x  a)#
2!

 á “ at x œ a

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.9 Convergence of Taylor Series

621

38. f(x) œ ex Ê f ÐnÑ (x) œ ex for all n Ê f ÐnÑ (1) œ e for all n œ 0, 1, 2, á
Ê ex œ e  e(x  1) 

e
#!

(x  1)# 

e
3!

(x  1)$  á œ e ’1  (x  1) 

f ww (a)
f www (a)
#
$
w
# (x  a)  3! (x  a)  á Ê f (x)
www
œ f w (a)  f ww (a)(x  a)  f 3!(a) 3(x  a)#  á Ê f ww (x) œ f ww (a)  f www (a)(x
Ðn 2Ñ
Ê f ÐnÑ (x) œ f ÐnÑ (a)  f Ðn1Ñ (a)(x  a)  f # (a) (x  a)#  á
w
w
Ðn Ñ
Ðn Ñ

(x  1)#
2!

39. f(x) œ f(a)  f w (a)(x  a) 

Ê f(a) œ f(a)  0, f (a) œ f (a)  0, á , f

(a) œ f

 a) 



(x  1)$
3!

f Ð4Ñ (a)
4!

á“

4 † 3(x  a)#  á

(a)  0

40. E(x) œ f(x)  b!  b" (x  a)  b# (x  a)#  b$ (x  a)$  á  bn (x  a)n
Ê 0 œ E(a) œ f(a)  b! Ê b! œ f(a); from condition (b),
lim

xÄa

Ê
Ê

f(x)  f(a)  b" (x  a)  b# (x  a)#  b$ (x  a)$  á  bn (x  a)n
(x  a)n

œ0

w
a)#  á  nbn (x  a)n 1
lim f (x)  b"  2b# (x  a) n(x3b$ (xa)
œ0
n 1
xÄa
f ww (x)  2b#  3! b$ (x  a)  á  n(n  ")bn (x  a)n
w
b" œ f (a) Ê xlim
n(n  1)(x  a)n 2
Äa
"
#

f ww (a) Ê xlim
Äa
" www
œ b$ œ 3! f (a) Ê xlim
Äa
Ê b# œ

g(x) œ f(a)  f w (a)(x  a) 

f www (x)  3! b$  á  n(n  1)(n  2)bn (x  a)n
n(n  1)(n  #)(x  a)n

f

ÐnÑ

(x)  n! bn
n!

f ww (a)
2!

œ 0 Ê bn œ

(x  a)#  á 

3

3

"
n!

f ÐnÑ (a)
n!

2

œ0

œ0

f ÐnÑ (a); therefore,
(x  a)n œ Pn (x)
#

41. f(x) œ ln (cos x) Ê f w (x) œ  tan x and f ww (x) œ  sec# x; f(0) œ 0, f w (0) œ 0, f ww (0) œ 1 Ê L(x) œ 0 and Q(x) œ  x2
42. f(x) œ esin x Ê f w (x) œ (cos x)esin x and f ww (x) œ ( sin x)esin x  (cos x)# esin x ; f(0) œ 1, f w (0) œ 1, f ww (0) œ 1
Ê L(x) œ 1  x and Q(x) œ 1  x 
"Î#

43. f(x) œ a1  x# b

x#
#

Ê f w (x) œ x a1  x# b

f ww (0) œ 1 Ê L(x) œ 1 and Q(x) œ 1 

$Î#

and f ww (x) œ a1  x# b

$Î#

 3x# a1  x# b

&Î#

; f(0) œ 1, f w (0) œ 0,

x#
#

44. f(x) œ cosh x Ê f w (x) œ sinh x and f ww (x) œ cosh x; f(0) œ 1, f w (0) œ 0, f ww (0) œ 1 Ê L(x) œ 1 and Q(x) œ 1 
45. f(x) œ sin x Ê f w (x) œ cos x and f ww (x) œ  sin x; f(0) œ 0, f w (0) œ 1, f ww (0) œ 0 Ê L(x) œ x and Q(x) œ x
46. f(x) œ tan x Ê f w (x) œ sec# x and f ww (x) œ 2 sec# x tan x; f(0) œ 0, f w (0) œ 1, f ww œ 0 Ê L(x) œ x and Q(x) œ x
10.9 CONVERGENCE OF TAYLOR SERIES
_

1. ex œ 1  x 

x#
#!

á œ !

2. ex œ 1  x 

x#
#!

á œ !

nœ0
_

nœ0

xn
n!

Ê e5x œ 1  (5x) 

(5x)#
#!

 á œ 1  5x 

xn
n!

Ê exÎ2 œ 1  ˆ #x ‰ 

ˆ x# ‰#
#!

á œ1

_

3. sin x œ x 

x$
3!



x&
5!

á œ!

4. sin x œ x 

x$
3!



x&
5!

á œ!

n œ0
_

nœ0

(1)n x2n 1
(#n1)!

Ê 5 sin (x) œ 5 ’(x) 

(1)n x2n 1
(#n1)!

Ê sin

1x
#

œ

1x
#



ˆ 1#x ‰$
3!



(x)$
3!

ˆ 1#x ‰&
5!

x
#







x#
2# #!

(x)&
5!

ˆ 1#x ‰(
7!

5# x#
#!





_

5$ x$
3!

x$
2$ 3!

á œ!

nœ0

_

á œ !

nœ0

_

(1)n xn
2n n!

x
 á “ œ ! 5((1)
#n1)!

n 1 2n 1

n œ0

_

1
x
 á œ ! (21)
2n 1 (#n1)!
nœ0

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

(1)n 5n xn
n!

n 2n 1 2n 1

x#
#

622

Chapter 10 Infinite Sequences and Series
_

5. cos x œ !

n œ0

_

6. cos x œ !

n œ0

x$
2†2!

œ1

Ê cos 5x2 œ !

a1bn x2n
(2n)!

$Î#
cos Š xÈ ‹
2

x'
2# †4!



_

7. lna1  xb œ !

n œ1

_

nœ0

10.

Ê

x*
2$ †6!



1
1x

œ ! xn Ê
_

n œ0

n œ0

_

nœ0
_

(1)n x2n
(2n)!

13. cos x œ !

n œ0

œ

x%
4!



x'
6!



_

(1)n x2nb1
(2n1)!

14. sin x œ !

n œ0

œ Šx 

x$
3!

_

n œ0
_

16. cos x œ !

n œ0

œ1

"
#



œ!

n œ1

nœ0

nœ0

_

xnb1
n!

œ!

n œ0

nœ0

x"!
10!

x#
#

 1  cos x œ

x(
7!

_

x#
#

_

a1bn 32nb1 x8nb4
n

œ!

nœ0

x4
2

x$
#!

œ x  x# 

_

(1)n x2nb1
(#n1)! 

nœ0

_

(1)n x2n
(#n)!

n œ0

x&
4!



(1)n x2nb3
(2n1)!

œ!

1!

 14 x  18 x2 

x%
3!



x#
#

œ



x8
4

œ 3x4  9x12 

n

"
#

x6
3





9 6
16 x

...

243 20
5 x

27 9
64 x

1 3
16 x

...

x(
5!

x*
7!



2187 28
7 x

...

á

œ x$ 

x&
3!

11



x#
2





x%
4!



á

x'
6!

x)
8!





x"!
10!

á

n œ2



x*
9!



x""
11!

x$
3!

_

œ Œ!

n œ0

 á‹ x
_

(1)n x2n
(2n)!

Ê x# cos ax# b œ x# !

nœ0

n œ0

_

"
#

(2x)%
2†4!



(2x)'
2†6!



"
#

"
#

_

œ!

nœ1





"
#

! (1) (2x) œ
(2n)!

œ

n

2n

n œ0

(2x))
2†8!

(1)n x2nb1
(#n1)! 
x$
3!

(1)n (1x)2n
(#n)!

_

cos 2x
#

(1)nb1 (2x)2n
#†(2n)!

nœ1

œ x2 

n 2n

Ê x cos 1x œ x !



á

x
 á œ ! ((1)
#n)!

Ê sin x  x 

2x ‰
18. sin# x œ ˆ 1cos
œ
#
_

_

(1)n x2n
(2n)!



(2x)#
2†2!



x&
5!



15. cos x œ !

17. cos# x œ

x)
8!

_

Ê x# sin x œ x# Œ !

Ê

15625x12
6!



(1)n x3n
2n (2n)!

nœ0

_

(1)n x2nb1
(2n1)!

_

œ!

nœ0

a1bnc1 x2n
n

œ!

n
n 1
œ #" ! ˆ #" x‰ œ ! ˆ #" ‰ xn œ

xn
n! 

Ê xex œ x Œ !

12. sin x œ !

_

n

_

n

nœ0

_

xn
n!

11. ex œ !

(#n)!

nœ0

2nb1
a1bn ˆ3x4 ‰
2n  1

_

" 1
# 1  "# x

œ

1
2x



œ ! a1bn ˆ 34 x3 ‰ œ ! a1bn ˆ 34 ‰ x3n œ 1  34 x3 

1
1  34 x3

n œ0

n œ0

nœ1

nœ0

_

œ!

625x8
4!



2n

"Î#

$

a1bn ŒŠ x# ‹

_

a1bnc1 ˆx2 ‰
n

Ê lna1  x2 b œ !
_

œ ! a1bn xn Ê

n œ0

25x4
#!

œ1

á

Ê tan1 a3x4 b œ !

1
1x

_

œ

(1)n 52n x4n
(2n)!

œ!

"Î#
$
cos ŒŠ x# ‹ 

_

a1bnc1 xn
n

_

2n

(1)n  5x2 ‘
(2n)!

n œ0

a1bn x2nb1
2n  1

8. tan1 x œ !

9.

_

(1)n x2n
(2n)!

cos 2x œ

_

n œ1

"
#

_

nœ0

2n

 "# Š1 

x(
7!

_

n œ0

(2x)#
2!

(1)n (2x)2n
2†(2n)!

(2x)#
#!



x*
9!

x$
3!



(")n 12n x2nb1
(#n)!

œ!

 "# ’1 

á œ1!



œ!

(1)n ax# b
(#n)!

"
#

x&
5!

œ

x



(")n x4n
(#n)!



(2x)%
4!

x""
11!

œx

2

(2x)'
6!


_

n œ1



(2x)'
6!

n œ2

1 # x$
2!

œ x# 

œ1!

(2x)%
4!

_

á œ!



x'
2!





(2x))
8!

(1)n x2n 1
(2n1)!

1 % x&
4!



1 ' x(
6!

x"!
4!



x"%
6!

á

á

 á“

(1)n 22n 1 x2n
(2n)!

 á‹ œ

(2x)#
2†2!



(2x)%
2†4!



(2x)'
2†6!

(1)n 22n 1 x2n
(2n)!

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

á

...

Section 10.9 Convergence of Taylor Series
19.

x#
12x

_

n œ1

22.

"
1x

_

n œ0

n œ0

(1)nc1 (2x)n
n

20. x ln (1  2x) œ x !

21.

_

œ x# ˆ 1"2x ‰ œ x# ! (2x)n œ ! 2n xn2 œ x#  2x$  2# x%  2$ x&  á
_

(1)nc1 2n xn
n

œ!

n œ1

_

œ ! xn œ 1  x  x#  x$  á Ê

2
a 1  x b$

d
dx

nœ0

œ

d#
dx#

ˆ 1" x ‰ œ

d
dx

Š (1"x)# ‹ œ

d
dx

1

œ 2x# 

ˆ 1" x ‰ œ

2# x$
#

"
(1x)#



2$ x%
4



2% x&
5

á
_

_

nœ1

nœ0

œ 1  2x  3x#  á œ ! nxn1 œ ! (n  1)xn
_

a1  2x  3x#  á b œ 2  6x  12x#  á œ ! n(n  1)xn2
n œ2

_

œ ! (n  2)(n  1)xn
n œ0

3

5

7

23. tan1 x œ x  13 x3  15 x5  17 x7  Þ Þ Þ Ê x tan1 x2 œ xŠx2  13 ax2 b  15 ax2 b  17 ax2 b  Þ Þ Þ ‹
_

œ x3  13 x7  15 x11  17 x15  Þ Þ Þ œ !

n œ1

x3
3!

24. sin x œ x 
œx

4 x3
3!

16 x5
5!



x2
2!

25. ex œ 1  x 
œ Š1  x 
26. sin x œ x 
œ Š1 
_

2

x
2!

x5
5!



x2
2!

x3
3!





4

1) x
œ ! Š ((2n)!

n œ0

x3
3!



x
4!

n 2n

x3
3!

x5
5!

x7
7!

64 x7
7!









a1bn x4nc1
2n  1

 á Ê sin x † cos x œ "# sin 2x œ "# Š2x 
á œx

 á and

1
1x

2 x3
3



2x5
15

4 x7
315



_

á œ!

n œ0

a2xb3
3!



x7
7!

œ 1  x  x2  x3  á Ê ex 

6

x
6!

 á and cos x œ 1 

 á ‹  Šx 

3

x
3!



x2
2!

x4
4!



x6
6!

a2xb7
7!

 á‹

1
1x
25 4
24 x

_

 á œ ! ˆ n!1  a1bn ‰xn
n œ0

 á Ê cos x  sin x

5



x
3

lna1  x2 b œ x3 Šx2  12 ax2 b  13 ax2 b  14 ax2 b  á ‹

x
5!

7





(1)n 22n x2nb1
(#n1)!

 á ‹  a1  x  x2  x3  á b œ 2  32 x2  56 x3 



a2xb5
5!

x
7!

á‹ œ 1 x

x2
2!



x3
3!



x4
4!



x5
5!



x6
6!



x7
7!

á

(1)n x2nb1
(#n1)! ‹

27. lna1  xb œ x  12 x2  13 x3  14 x4  á Ê
œ 13 x3  16 x5  19 x7 

1 9
12 x

_

2

3

4

nc1

 á œ ! a13nb x2n1
n œ1

28. lna1  xb œ x  12 x2  13 x3  14 x4  á and lna1  xb œ x  12 x2  13 x3  14 x4  á Ê lna1  xb  lna1  xb
_

œ ˆx  12 x2  13 x3  14 x4  á ‰  ˆx  12 x2  13 x3  14 x4  á ‰ œ 2x  23 x3  25 x5  á œ ! 2n 2 1 x2n1
n œ0

29. ex œ 1  x 
œ Š1  x 

x2
2!
x2
2!




x3
3!
x3
3!

 á and sin x œ x 
 á ‹Šx 

x3
3!



x5
5!



x3
3!



x5
5!

x7
7!

 á ‹ œ x  x2  13 x3 



x7
7!

 á Ê ex † sin x
1 5
30 x

 ÞÞÞÞ

30. lna1  xb œ x  12 x2  31 x3  41 x4  á and 1 " x œ 1  x  x#  x$  á Ê ln1a1xxb œ lna1  xb †
7 4
œ ˆx  12 x2  13 x3  14 x4  á ‰a1  x  x#  x$  á b œ x  12 x2  56 x3  12
x  ÞÞÞÞ

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

"
1x

623

624

Chapter 10 Infinite Sequences and Series
2

31. tan1 x œ x  13 x3  15 x5  17 x7  Þ Þ Þ Ê atan1 xb œ atan1 xbatan1 xb
44 8
6
œ ˆx  13 x3  15 x5  17 x7  Þ Þ Þ‰ˆx  13 x3  15 x5  17 x7  Þ Þ Þ‰ œ x2  23 x4  23
45 x  105 x  Þ Þ Þ Þ
32. sin x œ x 

x3
3!

x5
5!



x7
7!



 á and cos x œ 1 

œ cos x † "# sin 2x œ "# Š1 
33. sin x œ x 

x3
3!

x5
5!



x7
7!



3

Ê esin x œ 1  Šx 

x
3!

x2
2!



x4
4!



x6
6!

x2
2!





x
5!

7

x
7!

x2
2!

 á ‹  12 Šx 

x6
6!


a2xb
3!

 á ‹Š2x 

 á and ex œ 1  x 
5

x4
4!



3

 á Ê cos2 x † sin x œ cos x † cos x † sin x



x3
3!

á

3



x5
5!

x
3!

a2xb5
5!





x7
7!



a2xb7
7!

 á ‹ œ x  76 x3 

2

 á ‹  16 Šx 

x3
3!



x5
5!



x7
7!

61 5
120 x



1247 7
5040 x

 ÞÞÞ

3

á‹ á

œ 1  x  12 x2  18 x4  Þ Þ Þ Þ
x3
x5
x7
1 3
1 5
1 7
1 3
1 5
1
1
ˆ
3!  5!  7!  á and tan x œ x  3 x  5 x  7 x  Þ Þ Þ Ê sinatan xb œ x  3 x  5 x
3
5
1 ˆ
1 ˆ
 16 ˆx  31 x3  51 x5  71 x7  Þ Þ Þ‰  120
x  13 x3  15 x5  17 x7  Þ Þ Þ‰  5040
x  13 x3  15 x5  17 x7 
5 7
x  12 x3  38 x5  16
x  ÞÞÞ

34. sin x œ x 
œ

 71 x7  Þ Þ Þ‰
7

Þ Þ Þ‰  á

35. Since n œ 3, then f a4b axb œ sin x, lf a4b axbl Ÿ M on Ò0, 0.1Ó Ê lsin xl Ÿ 1 on Ò0, 0.1Ó Ê M œ 1. Then lR3 a0.1bl Ÿ 1 l0.14x 0l

4

œ 4.2 ‚ 106 Ê error Ÿ 4.2 ‚ 106

36. Since n œ 4, then f a5b axb œ ex , lf a5b axbl Ÿ M on Ò0, 0.5Ó Ê lex l Ÿ Èe on Ò0, 0.5Ó Ê M œ 2.7. Then
lR4 a0.5bl Ÿ 2.7 l0.55x 0l œ 7.03 ‚ 104 Ê error Ÿ 7.03 ‚ 104
5

kxk&
5!

37. By the Alternating Series Estimation Theorem, the error is less than
5
Ê kxk  È
6 ‚ 10# ¸ 0.56968
38. If cos x œ 1 

Ê kxk&  a5!b a5 ‚ 10% b Ê kxk&  600 ‚ 10%

%

x#
#

and kxk  0.5, then the error is less than ¹ (.5)
24 ¹ œ 0.0026, by Alternating Series Estimation Theorem;

since the next term in the series is positive, the approximation 1 

x#
#

is too small, by the Alternating Series Estimation

Theorem
39. If sin x œ x and kxk  10$ , then the error is less than

a10c$ b
3!

$

¸ 1.67 ‚ 1010 , by Alternating Series Estimation Theorem;
$

The Alternating Series Estimation Theorem says R# (x) has the same sign as  x3! . Moreover, x  sin x
Ê 0  sin x  x œ R# (x) Ê x  0 Ê 10$  x  0.

40. È1  x œ 1 

x
#



x#
8



x$
16

#

 á . By the Alternating Series Estimation Theorem the kerrork  ¹ 8x ¹ 

œ 1.25 ‚ 10&
c $

3Ð0Þ1Ñ (0.1)$
3!

c $

(0.1)$
3!

41. kR# (x)k œ ¹ e3!x ¹ 
42. kR# (x)k œ ¹ e3!x ¹ 

2x ‰
43. sin# x œ ˆ 1  cos
œ
#

Ê

d
dx

asin# xb œ

œ 2x 

(2x)$
3!



d
dx

(2x)&
5!

"
#

 1.87 ‚ 104 , where c is between 0 and x

œ 1.67 ‚ 10% , where c is between 0 and x

#

"
#

Š 2x
2! 


(2x)(
7!

cos 2x œ
2$ x%
4!



2& x'
6!

"
#

 "# Š1 

(2x)#
2!

 á ‹ œ 2x 



(2x)%
4!

(2x)$
3!





(2x)'
6!

(2x)&
5!



 á‹ œ
(2x)(
7!

2x#
#!



2$ x%
4!



2& x'
6!

á

 á Ê 2 sin x cos x

 á œ sin 2x, which checks

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

(0.01)#
8

Section 10.9 Convergence of Taylor Series
44. cos# x œ cos 2x  sin# x œ Š1 
œ1

#

2x
#!



$ %

2 x
4!



& '

2 x
6!

(2x)#
#!



(2x)%
4!



(2x)'
6!

 á œ 1  x#  "3 x% 

2
45



(2x))
8!

x' 

#

 á ‹  Š 2x
#! 

"
315

2$ x%
4!



2& x'
6!



2( x)
8!

625

 á‹

x)  á

45. A special case of Taylor's Theorem is f(b) œ f(a)  f w (c)(b  a), where c is between a and b Ê f(b)  f(a) œ f w (c)(b  a),
the Mean Value Theorem.
46. If f(x) is twice differentiable and at x œ a there is a point of inflection, then f ww (a) œ 0. Therefore,
L(x) œ Q(x) œ f(a)  f w (a)(x  a).
47. (a) f ww Ÿ 0, f w (a) œ 0 and x œ a interior to the interval I Ê f(x)  f(a) œ
Ê f(x) Ÿ f(a) throughout I Ê f has a local maximum at x œ a
(b) similar reasoning gives f(x)  f(a) œ
local minimum at x œ a

f ww (c# )
#

(x  a)#

f ww (c# )
#

(x  a)# Ÿ 0 throughout I

0 throughout I Ê f(x)

f(a) throughout I Ê f has a

48. f(x) œ (1  x)" Ê f w (x) œ (1  x)# Ê f ww (x) œ 2(1  x)$ Ê f Ð3Ñ (x) œ 6(1  x)%
Ê f Ð4Ñ (x) œ 24(1  x)& ; therefore

"
1 x

¸ 1  x  x#  x$ . kxk  0.1 Ê

&

%

Ð4Ñ

10
11



"
1 x



10
9

‰
Ê ¹ (1"x)& ¹  ˆ 10
9

&

%

‰ Ê the error e$ Ÿ ¹ max f 4! (x) x ¹  (0.1)% ˆ 10
‰ œ 0.00016935  0.00017, since ¹ f
Ê ¹ (1x x)& ¹  x% ˆ 10
9
9

Ð4Ñ

&

(x)
4! ¹

œ ¹ (1"x)& ¹ .

49. (a) f(x) œ (1  x)k Ê f w (x) œ k(1  x)k1 Ê f ww (x) œ k(k  1)(1  x)k2 ; f(0) œ 1, f w (0) œ k, and f ww (0) œ k(k  1)
Ê Q(x) œ 1  kx  k(k # ") x#
"
(b) kR# (x)k œ ¸ 3†3!2†" x$ ¸  100
Ê kx$ k 

"
100

Ê 0x

"
100"Î$

or 0  x  .21544

50. (a) Let P œ x  1 Ê kxk œ kP  1k  .5 ‚ 10n since P approximates 1 accurate to n decimals. Then,
P  sin P œ (1  x)  sin (1  x) œ (1  x)  sin x œ 1  (x  sin x) Ê k(P  sin P)  1k
œ ksin x  xk Ÿ

kxk$
3!



0.125
3!

‚ 103n  .5 ‚ 103n Ê P  sin P gives an approximation to 1 correct to 3n decimals.

_

_

n œ0

n œk

51. If f(x) œ ! an xn , then f ÐkÑ (x) œ ! n(n  1)(n  2)â(n  k  1)an xnk and f ÐkÑ (0) œ k! ak
Ê ak œ

f ÐkÑ (0)
k!

for k a nonnegative integer. Therefore, the coefficients of f(x) are identical with the corresponding

coefficients in the Maclaurin series of f(x) and the statement follows.
52. Note: f even Ê f(x) œ f(x) Ê f w (x) œ f w (x) Ê f w (x) œ f w (x) Ê f w odd;
f odd Ê f(x) œ f(x) Ê f w (x) œ f w (x) Ê f w (x) œ f w (x) Ê f w even;
also, f odd Ê f(0) œ f(0) Ê 2f(0) œ 0 Ê f(0) œ 0
(a) If f(x) is even, then any odd-order derivative is odd and equal to 0 at x œ 0. Therefore,
a" œ a$ œ a& œ á œ 0; that is, the Maclaurin series for f contains only even powers.
(b) If f(x) is odd, then any even-order derivative is odd and equal to 0 at x œ 0. Therefore,
a! œ a# œ a% œ á œ 0; that is, the Maclaurin series for f contains only odd powers.
53-58. Example CAS commands:
Maple:
f := x -> 1/sqrt(1+x);
x0 := -3/4;
x1 := 3/4;
# Step 1:
plot( f(x), x=x0..x1, title="Step 1: #53 (Section 10.9)" );

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

626

Chapter 10 Infinite Sequences and Series

# Step 2:
P1 := unapply( TaylorApproximation(f(x), x = 0, order=1), x );
P2 := unapply( TaylorApproximation(f(x), x = 0, order=2), x );
P3 := unapply( TaylorApproximation(f(x), x = 0, order=3), x );
# Step 3:
D2f := D(D(f));
D3f := D(D(D(f)));
D4f := D(D(D(D(f))));
plot( [D2f(x),D3f(x),D4f(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green], title="Step 3: #57 (Section 9.9)" );
c1 := x0;
M1 := abs( D2f(c1) );
c2 := x0;
M2 := abs( D3f(c2) );
c3 := x0;
M3 := abs( D4f(c3) );
# Step 4:
R1 := unapply( abs(M1/2!*(x-0)^2), x );
R2 := unapply( abs(M2/3!*(x-0)^3), x );
R3 := unapply( abs(M3/4!*(x-0)^4), x );
plot( [R1(x),R2(x),R3(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green], title="Step 4: #53 (Section 10.9)" );
# Step 5:
E1 := unapply( abs(f(x)-P1(x)), x );
E2 := unapply( abs(f(x)-P2(x)), x );
E3 := unapply( abs(f(x)-P3(x)), x );
plot( [E1(x),E2(x),E3(x),R1(x),R2(x),R3(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green],
linestyle=[1,1,1,3,3,3], title="Step 5: #53 (Section 10.9)" );
# Step 6:
TaylorApproximation( f(x), view=[x0..x1,DEFAULT], x=0, output=animation, order=1..3 );
L1 := fsolve( abs(f(x)-P1(x))=0.01, x=x0/2 );
# (a)
R1 := fsolve( abs(f(x)-P1(x))=0.01, x=x1/2 );
L2 := fsolve( abs(f(x)-P2(x))=0.01, x=x0/2 );
R2 := fsolve( abs(f(x)-P2(x))=0.01, x=x1/2 );
L3 := fsolve( abs(f(x)-P3(x))=0.01, x=x0/2 );
R3 := fsolve( abs(f(x)-P3(x))=0.01, x=x1/2 );
plot( [E1(x),E2(x),E3(x),0.01], x=min(L1,L2,L3)..max(R1,R2,R3), thickness=[0,2,4,0], linestyle=[0,0,0,2],
color=[red,blue,green,black], view=[DEFAULT,0..0.01], title="#53(a) (Section 10.9)" );
abs(`f(x)`-`P`[1](x) ) <= evalf( E1(x0) );
# (b)
abs(`f(x)`-`P`[2](x) ) <= evalf( E2(x0) );
abs(`f(x)`-`P`[3](x) ) <= evalf( E3(x0) );
Mathematica: (assigned function and values for a, b, c, and n may vary)
Clear[x, f, c]
f[x_]= (1  x)3/2
{a, b}= {1/2, 2};
pf=Plot[ f[x], {x, a, b}];
poly1[x_]=Series[f[x], {x,0,1}]//Normal
poly2[x_]=Series[f[x], {x,0,2}]//Normal
poly3[x_]=Series[f[x], {x,0,3}]//Normal
Plot[{f[x], poly1[x], poly2[x], poly3[x]}, {x, a, b},
PlotStyle Ä {RGBColor[1,0,0], RGBColor[0,1,0], RGBColor[0,0,1], RGBColor[0,.5,.5]}];

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.10 The Binomial Series

627

The above defines the approximations. The following analyzes the derivatives to determine their maximum values.
f''[c]
Plot[f''[x], {x, a, b}];
f'''[c]
Plot[f'''[x], {x, a, b}];
f''''[c]
Plot[f''''[x], {x, a, b}];
Noting the upper bound for each of the above derivatives occurs at x = a, the upper bounds m1, m2, and m3 can be defined
and bounds for remainders viewed as functions of x.
m1=f''[a]
m2=-f'''[a]
m3=f''''[a]
r1[x_]=m1 x2 /2!
Plot[r1[x], {x, a, b}];
r2[x_]=m2 x3 /3!
Plot[r2[x], {x, a, b}];
r3[x_]=m3 x4 /4!
Plot[r3[x], {x, a, b}];
A three dimensional look at the error functions, allowing both c and x to vary can also be viewed. Recall that c must be a
value between 0 and x, so some points on the surfaces where c is not in that interval are meaningless.
Plot3D[f''[c] x2 /2!, {x, a, b}, {c, a, b}, PlotRange Ä All]
Plot3D[f'''[c] x3 /3!, {x, a, b}, {c, a, b}, PlotRange Ä All]
Plot3D[f''''[c] x4 /4!, {x, a, b}, {c, a, b}, PlotRange Ä All]
10.10 THE BINOMIAL SERIES
1. (1  x)"Î# œ 1  "# x 

ˆ "# ‰ ˆ "# ‰ x#

2. (1  x)"Î$ œ 1  "3 x 

ˆ "3 ‰ ˆ 23 ‰ x#

"Î#

8. a1  x# b

"Î$

œ 1  "# x$ 
œ 1  "3 x# 

"Î#
9. ˆ1  1x ‰ œ 1  "# ˆ x1 ‰ 

"
16

x$  á

ˆ 3" ‰ ˆ 32 ‰ ˆ 53 ‰ x$

 á œ 1  3" x  9" x# 

5
81

x$  á

3!

#!



ˆ "# ‰ ˆ "# ‰ (2x)#
#!

(2)(3) ˆ x# ‰

4
6. ˆ1  x3 ‰ œ 1  4 ˆ x3 ‰ 

 á œ 1  "# x  "8 x# 

ˆ "# ‰ ˆ 3# ‰ (x)#

4. (1  2x)"Î# œ 1  "# (2x) 
#
5. ˆ1  x# ‰ œ 1  # ˆ x# ‰ 

ˆ "# ‰ ˆ "# ‰ ˆ 3# ‰ x$
3!



#!

3. (1  x)"Î# œ 1  "# (x) 

7. a1  x$ b



#!

#

#!

(4)(3) ˆ x3 ‰
#!

#




Š "# ‹ Š "# ‹ Š #3 ‹ (2x)$
3!
$

3!

(4)(3)(2) ˆ x3 ‰

#!

ˆ "3 ‰ ˆ 43 ‰ ax# b#
#!

#!

3!

(2)(3)(4) ˆ x# ‰

ˆ "# ‰ ˆ 3# ‰ ax$ b#

ˆ "# ‰ ˆ "# ‰ ˆ 1x ‰#



ˆ "# ‰ ˆ 3# ‰ ˆ 5# ‰ (x)$



3!




$



5
16

x$  á

 á œ 1  x  12 x#  12 x$  á

 á œ 1  x  34 x#  "# x$
(4)(3)(2)(1) ˆ x3 ‰

3!

ˆ 3" ‰ ˆ 43 ‰ ˆ 73 ‰ ax# b$
3!

ˆ "# ‰ ˆ "# ‰ ˆ 3# ‰ ˆ 1x ‰$

4

4!

ˆ #" ‰ ˆ #3 ‰ ˆ #5 ‰ ax$ b$

3!

 á œ 1  "# x  38 x# 

 0  á œ 1  34 x  32 x2 

 á œ 1  "# x$  38 x' 
 á œ 1  "3 x#  29 x% 

á œ1

"
#x



1
8x#



"
16x$

x*  á

5
16

14
81

x'  á

á

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

4
27

x3 

1 4
81 x

628
10.

Chapter 10 Infinite Sequences and Series
x
3
È
1x

(4)(3)x#
#!

11. (1  x)% œ 1  4x 
$

12. a1  x# b œ 1  3x# 

(4)(3)(2)x$
3!



#

(3)(2) ax# b
#!

$

(3)(2)(1) ax# b
3!



(3)(2)(2x)#
#!



%
14. ˆ1  #x ‰ œ 1  4 ˆ #x ‰ 

(4)(3) ˆ x# ‰

#

'00 2 sin x# dx œ '00 2 Šx#  x3!  x5!
Þ

Þ

kE k Ÿ

(

Þ

x

x#
4

'00 1 È "



x$
18

Š1  x 

 á“

kE k Ÿ

(0.1)&
10

œ 0.000001

'!!Þ#&

$È

1  x# dx œ '0

0Þ25

&

(0.25)
45

œ 1  3x#  3x%  x'
œ 1  6x  12x#  8x$

(4)(3)(2) ˆ x# ‰
3!

$

(4)(3)(2)(1) ˆ x# ‰



$

 á ‹ dx œ ’ x3 

%

4!

x(
7†3!

!Þ#

 á“

œ 1  2x  23 x#  "# x$ 
$

¸ ’ x3 “

!

!Þ#
!

"
16

x%

¸ 0.00267 with error

x#
#!



x$
3!



x%
4!

 á  1‹ dx œ '0 Š1 
0 Þ2

¸ 0.19044 with error kEk Ÿ

(0.2)%
96

x%
2

 á“



3x)
8

x#
3

Š1 

 á ‹ dx œ ’x 



x%
9

x&
10

 á ‹ dx œ ’x 

x$
9

x#
6



x
#



x$
24

 á ‹ dx

¸ 0.00002



!Þ"

¸ [x]!Þ"
! ¸ 0.1 with error

!

x&
45

á“

!Þ#&
!

¸ ’x 

!Þ#&
x$
9 “!

¸ 0.25174 with error

'00 1 sinx x dx œ '00 1 Š1  x3!  x5!  x7!  á ‹ dx œ ’x  3x†3!  5x†5!  7x†7!  á “ !Þ" ¸ ’x  3x†3!  5x†5! “ !Þ"
Þ

#

%

'

$

&

(

$

&

!

(0.1)7
7†7!

Þ

%

(0.1)9
216

¸ 0.0996676643, kEk Ÿ
21. a1  x% b

Ê

"Î#

œ (1)"Î# 

ˆ "# ‰ ˆ "# ‰ ˆ 3# ‰ ˆ 5# ‰
4!

'0

0Þ1

Š1 

x%
#



x)
8

Š "# ‹
1

'

)

ˆ "# ‰ ˆ "# ‰

(1)"Î# ax% b 

#!

%

x"#
16

$



x&
10



x(
42

á“

!Þ"
!

¸ ’x 

x$
3



x&
10



¸ 4.6 ‚ 1012

(1)(Î# ax% b  á œ 1 


!

¸ 2.8 ‚ 1012

'00 1 exp ax# b dx œ '00 1 Š1  x#  x2!  x3!  x4!  á ‹ dx œ ’x  x3
Þ



5x"'
128

x%
#

#

(1)$Î# ax% b 


 á ‹ dx ¸ ’x 

x)
8

x"#
16
!Þ"



x&
10 “ !



ˆ "# ‰ ˆ "# ‰ ˆ 3# ‰
3!

5x"'
128

(1)&Î# ax% b

$

á

¸ 0.100001, kEk Ÿ

(0.1)9
72

¸ 1.39 ‚ 1011

"
x
'01 ˆ 1 xcos x ‰ dx œ '01 Š "#  x4!  x6!  x8!  10!
 á ‹ dx ¸ ’ x#  3x†4!  5x†6!  7x†8!  9†x10! “
#

%

'

)

$

&

(

#

¸ 0.4863853764, kEk Ÿ
23.

á

¸ 0.0000217

¸ 0.0999444611, kEk Ÿ

22.

!

0Þ1

Þ

20.

!Þ#

dx œ '0 Š1 

kEk Ÿ
19.

"
x

1  x%

Þ

18.

"!

14 4
81 x

œ 1  4x  6x#  4x$  x%

(3)(2)(1)(2x)$
3!



 á  œ x  31 x#  92 x3 

3!

¸ 0.0000003

(.2)
7†3!

œ ’x 

17.

'

'00 2 ec x " dx œ '00 2
Þ

16.

#!

ˆ "3 ‰ ˆ 43 ‰ ˆ 73 ‰ x$



#!

(4)(3)(2)x%
4!



13. (1  2x)$ œ 1  3(2x) 

15.

ˆ "3 ‰ ˆ 43 ‰ x#

œ xa1  xb"Î3 œ xŒ1  ˆc "3 ‰x 

1
11†12!

!

10

¸ 1.9 ‚ 10

'01 cos t# dt œ '01 Š1  t#  4!t  t6!  á ‹ dt œ ’t  10t  9t†4!  13t †6!  á “ "
%

)

*

"#

&

*

"$

!

Ê kerrork 

"
13†6!

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

¸ .00011

!Þ"
x(
42 “ !

Section 10.10 The Binomial Series
24.

'01 cos Èt dt œ '01 Š1  #t  4!t  6!t  8!t  á ‹ dt œ ’t  t4  3t†4!  4t†6!  5t†8!  á “ "
#

Ê kerrork 
x

Ê kerrork 

t'
3!

"
15†7!

t"!
5!





x&
5



x(
7†2!



x*
9†3!



x""
11†4!

"
33†34

t$
3

aex  (1  x)b œ

"
t%

2x%
5!

"
)&

t#
6!

)
7!

ay  tan" yb œ

"
t%

œ

9!

t#
#

’1 

t%
8!

)%

"
y$

x#
#

$

%

&

t"&
15†7!



x

á“

x$
3

¸

!



x(
7†3!



t&
5

#



x
#

x#
##

t(
7†2!



t*
9†3!





t""
11†4!



t"$
13†5!

x""
11†5!

á“

x

!

¸ 0.00064
t%
1#





'

%

x
3†4



x

t'
30

x
5†6

x#
#

á“ ¸



t#
2 †2



t$
3 †3

x$
3#



x%
4#

!

)

x
7†8

x%
1#

Ê kerrork 



t&
5 †5

(0.5)'
30

¸ .00052

$#

 á  (1)"&

t%
4 †4





x
31†32

x

 á“ ¸ x 
!

x#
##



x$
3#



x%
4#



x&
5#

x$"
31#

 á  (1)$"



x$
3!

 á ‹  1  x‹ œ

"
#



x
3!



x#
4!

 á Ê lim



x%
4!

 á ‹  Š1  x 

x#
#!



x$
3!



x%
4!

 á ‹“ œ

2x%
5!



2x'
7!

ex  (1  x)
x#

xÄ0

"
#
x$
3!



xÄ0





x#
#!

"
13†5!

F(x) ¸ x 

 á Ê lim

 sin )‹ œ

)Ä0

"
y$

2x'
7!



#

$

 á ‹ dt œ ’t 

 á‹ œ

#

)$
6

t$
4

x#
4!

Š1  cos t  t# ‹ œ

Š) 

t""
11†5!



 á ‹ dt œ ’ t3 

#

ŠŠ1  x 

’Š1  x 



t(
7†3!

 á ‹ dt œ ’ t2 

"
x#

"
x

aex  ex b œ
2x#
3!

t(
7



"
x

œ lim Š 5!" 

34.

t#
3



tÄ0

33.



t
2

x
3!

œ lim Š 4!" 

32.



œ lim Š "# 

œ2

31.

t&
5

t"#
5!



Ê kerrork 

(0.5)'
6# ¸ .00043
"
32# ¸ .00097 when

xÄ0

30.



t"!
4!



¸ .00089 when F(x) ¸

x

"
x#

$

 á ‹ dt œ ’ t3 

t)
3!

28. (a) F(x) œ '0 Š1 
(b) kerrork 

t"%
7!



x

Ê kerrork 



t'
2!

27. (a) F(x) œ '0 Št 
(b) kerrork 

#

¸ 0.000013

x

x$
3

%

¸ 0.000004960

26. F(x) œ '0 Št#  t% 
¸

$

!

"
5†8!

25. F(x) œ '0 Št# 

29.

629

ex  e
x

x

t#
#

t%
4!

 Š1 



œ x lim
Š2 
Ä_


t'
6!

2x#
3!



 á ‹“ œ  4!" 

t#
6!



"
x

Š2x 

2x$
3!



2x&
5!



2x(
7!

 á‹



y%
7

 á‹ œ 2

t%
8!

#

 á Ê lim

"  cos t  Š t# ‹
t%

tÄ0

"
 á ‹ œ  24

"
)&

)$
6

Š) 

 á‹ œ

’y  Šy 

)

)$
3!



)&
5!

 á‹ œ

"
5!



)#
7!



)%
9!

$

 á Ê lim

sin )  )  Š )6 ‹
)&

)Ä0

"
1 #0

y$
3



y&
5

 á ‹“ œ

"
3



y#
5



y%
7

 á Ê lim

yÄ0

y  tan " y
y$

œ lim Š 3" 
yÄ0

y#
5

"
3

tanc" y  sin y
y$ cos y

Ê lim

yÄ0

œ

Œy 

y$
3



y&
5

 á  Œy 
y$

tanc" y  sin y
y$ cos y

œ lim

Œ

"
6

35. x# Š1  e1Îx ‹ œ x# ˆ1  1 
ˆ1 
œ x lim
Ä_

"
#x#



"
6x%



y&
5!

 á

cos y

yÄ0

#

y$
3!



23y#
5!

 á

cos y

"
x#



"
#x%



œ

Œ

y$
6



23y&
5!

y$

cos y

 á

œ

"
Œ 6 

23y#
5!

 á

cos y

œ  6"
"
6x'

 á ‰ œ 1 

"
#x#



"
6x%

#

x# Še1Îx  1‹
 á Ê x lim
Ä_

 á ‰ œ 1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

á‹

630

Chapter 10 Infinite Sequences and Series

36. (x  1) sin ˆ x " 1 ‰ œ (x  1) Š x " 1 

"
3!(x  1)$



Ê x lim
(x  1) sin ˆ x " 1 ‰ œ x lim
Š1 
Ä_
Ä_
%

37.

ln a1  x# b
1  cos x

38.

x#  4
ln (x  1)

'

x
x
#
Œx  #  3  á

œ

x#
#!

1  Š1 

x%
4!



 á‹

(x c 2)#

’(x  2) 

#

x 2

œ lim

x Ä 2 ’1  x c# 2  (x

2)#
3

39. sin 3x2 œ 3x2  92 x6 



(x c 2)$
3

 á“

81 10
40 x

10
3x2  92 x6  81
40 x  . . .
2  2 x4  4 x6  . . .
2x
xÄ0
3
45

œ lim

40. lna1  x3 b œ x3 

41. 1  1 

x6
2

6

xÄ0



Š #"! 

x#
4!

(x  2)(x  2)

œ

œ lim

œ

x#
#

Œ1 

x3

1
2x


9

x9
3

 á“



1
3x

1
4x

"
3!(x  1)#

 á

 á‹

x2
’1 

x

#

2



(x c 2)#
3



"
5!(x  1)%

á

 á‹ œ 1
x#
#



Š #"! 

x#
4!

Œ1 

œ lim

xÄ0

x%
3

 á

 á‹

x Ä 2 ln (x  1)

8
3  92 x4  81
40 x  . . .
2 2
4 4
2

x

x
. . .
xÄ0
3
45

x12
4

œ

 . . . and x sin x2 œ x3  16 x7 

12

3

6

9

1  x2  x3  x4  . . .
1 8
1
 120
x  5040
x12  Þ Þ Þ
x Ä 0 1

œ lim

4 6
45 x

sin 3x2

 . . . Ê lim

x Ä 0 1  cos 2x

3
2

1 4
6x

1 11
120 x



1
15
5040 x

 Þ Þ Þ Ê lim

xÄ0

œ1

 Þ Þ Þ œ e1 œ e

3
4
5
3
2
42. ˆ 14 ‰  ˆ 14 ‰  ˆ 14 ‰  Þ Þ Þ œ ˆ 14 ‰ ”1  ˆ 14 ‰  ˆ 14 ‰  Þ Þ Þ • œ

43. 1 

32
42 2x



34
44 4x



36
4 6 6x

 ÞÞÞ œ 1 

1 ˆ 3 ‰2
2x 4



1 ˆ 3 ‰4
4x 4

1 ˆ 3 ‰6
6x 4



1
1
64 1  1Î4

œ

1 4
64 3

œ

1
48

 Þ Þ Þ œ cosˆ 34 ‰

44.

1
2



1
2†22



1
3†23



1
4†24

2
3
4
 Þ Þ Þ œ ˆ 21 ‰  21 ˆ #1 ‰  31 ˆ #1 ‰  41 ˆ #1 ‰  Þ Þ Þ œ lnˆ1  21 ‰ œ lnˆ 23 ‰

45.

1
3



13
33 3x



15
35 5x



17
37 7x

 ÞÞÞ œ

46.

2
3



23
33 †3



25
35 †5



27
37 †7

3
5
7
 Þ Þ Þ œ ˆ 32 ‰  31 ˆ 32 ‰  51 ˆ 32 ‰  71 ˆ 32 ‰  Þ Þ Þ œ tan1 ˆ 23 ‰

1
3



1 ˆ 1 ‰3
3x 3

1 ˆ 1 ‰5
5x 3





1 ˆ 1 ‰7
7x 3

 Þ Þ Þ œ sinˆ 13 ‰ œ

47. x3  x4  x5  x6  Þ Þ Þ œ x3 a1  x  x2  x3  Þ Þ Þ b œ x3 ˆ 1 1 x ‰ œ
48. 1 

32 x2
2x



34 x4
4x



36 x6
6x

 ÞÞÞ œ 1 

2
1
2x a3xb



4
1
4x a3xb

2



6
1
6x a3xb

22 x4
2x



23 x5
3x



24 x6
4x

 Þ Þ Þ œ cosa3xb

3

 Þ Þ Þ œ x2 Š1  2x 

51. 1  2x  3x2  4x3  5x4  Þ Þ Þ œ
52. 1 

x
2



x2
3



x3
4



x4
5

d
dx a1

 Þ Þ œ  1x Šx 

a2xb2
2x



a2xb3
3x



a2xb4
4x



x3
3



x4
4



x5
5

x3
1 + x2

 Þ Þ Þ ‹ œ x2 e2x

 x  x2  x3  x4  x5  Þ Þ Þ b œ

x2
2

È3
2

x3
1x

49. x3  x5  x7  x9  Þ Þ Þ œ x3 Š1  x2  ax2 b  ax2 b  Þ Þ Þ ‹ œ x3 ˆ 1 +1x2 ‰ œ
50. x2  2x3 

œ 2! œ 2

x#  4

Ê lim

 á“

 . . . and 1  cos 2x œ 2x2  23 x4 

œ lim



"
5!(x  1)%



#
lim ln a1  x b
x Ä 0 1  cos x

Ê

"
3!(x  1)#

 á‹ œ 1 

œ4

x3  x2  x3  x4  . . .
1 11
1
 16 x7  120
x  5040
x15  Þ Þ Þ



œ

x%
3

"
5!(x  1)&

d ˆ 1 ‰
dx 1  x

œ

 Þ Þ ‹ œ  1x lna1  xb œ 

1
a1  x b 2
lna1xb
x

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

lnˆ1  x3 ‰
x sin x2

Section 10.10 The Binomial Series
x‰
53. ln ˆ 11 
 x œ ln (1  x)  ln (1  x) œ Šx 

54. ln (1  x) œ x 
"
n10n



"
10)





x$
3



x%
4

á 

Ê n10n  10) when n

55. tan" x œ x 
"
#n1

x#
#

"
10$

x$
3



x&
5

Ê n

56. tan" x œ x 

x$
3







x*
9



(1)n 1 xn
n

x$
3



x%
4

 á ‹  Šx 

 á Ê kerrork œ ¹ (")n

n 1 n

á 

(")n 1 x2n
2n1

1

n œ1

¹œ



"
n10n

n 1 2n 1



x(
7



x*
9

á 

(1)n1 x2n1
2n1

x%
4

 á ‹ œ 2 Šx 

x$
3



x&
5

á‹

when x œ 0.1;

¹œ

2n  1
x2n1 ¹

2n 1

 á and n lim
†
¹x
Ä _ 2n  1
(1)n
2n1

n œ1

(1)nc1
2n1

x$
3

 á Ê kerrork œ ¹ (1)2nx1

_

_

x



8 Ê 7 terms

Ê tan" x converges for kxk  1; when x œ 1 we have !
we have !

x#
#

"
#n  1

when x œ 1;

œ 500.5 Ê the first term not used is the 501st Ê we must use 500 terms

1001
#
x&
5

x(
7

x#
#

631

¸ 2n  1 ¸ œ x#
œ x# n lim
Ä _ #n  1

which is a convergent series; when x œ 1

which is a convergent series Ê the series representing tan" x diverges for kxk  1

(1)n 1 x2n 1
x$
x&
x(
x*
 á and when the series representing 48
3  5  7  9 á 
2n  1
"
'
error less than 3 † 10 , then the series representing the sum
" ‰
" ‰
48 tan" ˆ 18
 32 tan" ˆ 57
 20 tan" ˆ #"39 ‰ also has an error of magnitude less than 10' ;

" ‰
tan" ˆ 18
has an

57. tan" x œ x 

thus

2nc1

kerrork œ 48

"
Š 18
‹



#n  1

"
3†10'

Ê n

4 using a calculator Ê 4 terms

58. ln (sec x) œ '0 tan t dt œ '0 Št 
x

"Î#

x

t$
3

x#
3x%
#  8 
2nb3
lim ¹ 1†3†5â(2n  1)(2n  1)x
†
n Ä _ 2†4†6â(2n)(2n  2)(2n  3)

59. (a) a1  x# b

¸1



2t&
15

 á ‹ dt ¸

x#
#



x%
12

$
5x'
"
x ¸ x  x6
16 Ê sin
2†4†6â(2n)(2n  ")
1†3†5â(2n  1)x2nb1 ¹  1 Ê





x'
45

3x&
40

á



5x(
112

; Using the Ratio Test:
(2n  1)(2n1)

x# n lim
¹
¹1
Ä _ (2n  2)(2n  3)

Ê kxk  1 Ê the radius of convergence is 1. See Exercise 69.
d
dx

(b)

acos" xb œ  a1  x# b

60. (a) a1  t# b
œ1

"Î#
t#
#



term,
61.

"
1x

5x
112

Ê cos" x œ

¸ (1)"Î#  ˆ "# ‰ (1)$Î# at# b 
3t%
2# †2!

(b) sinh" ˆ 4" ‰ ¸
(

"Î#

"
4





3†5t'
2$ †3!

"
384



1
#

 sin" x ¸

x

, evaluated at t œ

"
4

 Šx 

ˆ "# ‰ ˆ #3 ‰ (1) &Î# at# b#
#!

Ê sinh" x ¸ '0 Š1 

3
40,960

1
#

t#
#



3t%
8



5t'
16 ‹



x$
6



3x&
40



5x(
112 ‹

¸

1
#

x

x$
6



3x&
40

ˆ #" ‰ ˆ #3 ‰ ˆ #5 ‰ (1) (Î# at# b$
3!

dt œ x 

x$
6



3x&
40



5x(
112

œ 0.24746908; the error is less than the absolute value of the first unused

since the series is alternating Ê kerrork 

œ  1  "(x) œ 1  x  x#  x$  á Ê

d
dx

ˆ 11x ‰ œ

"
1  x#

œ

d
dx

5 ˆ 4" ‰
112

(

¸ 2.725 ‚ 10'

a1  x  x#  x$  á b

œ 1  2x  3x#  4x$  á
62.

"
1  x#

œ 1  x#  x%  x'  á Ê

d
dx

ˆ 1 " x# ‰ œ

2x
a1  x# b#

œ

d
dx

a1  x#  x%  x'  á b œ 2x  4x$  6x&  á

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.



5x(
112

632

Chapter 10 Infinite Sequences and Series

8â(2n  2)†(2n)
63. Wallis' formula gives the approximation 1 ¸ 4 ’ 3†23††45††45††67††67†â
(2n  1)†(2n  1) “ to produce the table

n
µ1
10
3.221088998
20
3.181104886
30
3.167880758
80
3.151425420
90
3.150331383
93
3.150049112
94
3.149959030
95
3.149870848
100
3.149456425
At n œ 1929 we obtain the first approximation accurate to 3 decimals: 3.141999845. At n œ 30,000 we still do
not obtain accuracy to 4 decimals: 3.141617732, so the convergence to 1 is very slow. Here is a Maple CAS
procedure to produce these approximations:
pie :=
proc(n)
local i,j;
a(2) := evalf(8/9);
for i from 3 to n do a(i) := evalf(2*(2*i2)*i/(2*i1)^2*a(i1)) od;
[[j,4*a(j)] $ (j = n5 .. n)]
end
_

_

_

64. (a) faxb œ 1  !ˆ mk ‰xk Ê f w axb œ !ˆ mk ‰k xk1 Ê a1  xb † f w axb œ a1  xb!ˆ mk ‰k xk1
kœ1

kœ1

_

_

kœ1

_

_

_

_

kœ2

kœ1

œ !ˆ mk ‰k xk  1  x † !ˆ mk ‰k xk1 œ !ˆ mk ‰k xk  1  !ˆ mk ‰k xk œ ˆ m1 ‰a1b x0  !ˆ mk ‰k xk1  !ˆ mk ‰k xk
kœ1

kœ1

_

œ m!

kœ2

ˆ mk ‰k xk  1

kœ1

_

!

kœ1

ˆ mk ‰k xk

kœ1

_

ˆ mk ‰k xk  1

Note that: !
kœ2

_

_

œ!

kœ1

_

ˆkm
‰
 1 ak

 1b xk .

_

_

k
! ˆ m ‰k xk
‰
Thus, a1  xb † f w axb œ m  ! ˆ mk ‰k xk  1  ! ˆ mk ‰k xk œ m  ! ˆ k m
 1 ak  1b x 
k
kœ2

_

œ m!

kœ1

‰
’ˆ k m
 1 ak

 1 b xk 

kœ1

ˆ mk ‰k xk “

kœ1

_

œ m!

kœ1

m ‰
’ˆˆ k 
1 ak

kœ1

 1b 

ˆ mk ‰k ‰xk “.

m†am  "bâam  ak  1b  1b
ak  1b  m†am  "bâk!am  k  1b k
ak1b!
m†am  "bâam  k  1b
k œ m†am  "bâk!am  k  1b aam  kb  kb œ m m†am  "bâk!am  k  1b
k!

m ‰
ˆm‰
Note that: ˆ k 
1 ak  1b  k k œ

œ

m†am  "bâam kb
k!



_

_

_

kœ1

kœ1

kœ1

œ mˆ mk ‰.

! ’ˆmˆ m ‰ ‰xk “ œ m  m!ˆ m ‰xk
‰
ˆm‰ ‰ k
Thus, a1  xb † f w axb œ m  ! ’ˆˆ k m
 1 ak  1b  k k x “ œ m 
k
k
_

œ mŒ1  !ˆ mk ‰xk  œ m † faxb Ê f w axb œ
kœ1

m†faxb
a1  x b

if "  x  1.

(b) Let gaxb œ a1  xbm faxb Ê gw axb œ ma1  xbm1 faxb  a1  xbm f w axb
œ ma1  xbm1 faxb  a1  xbm †

m†faxb
a1xb

œ ma1  xbm1 faxb  a1  xbm1 † m † faxb œ 0.

(c) gw axb œ 0 Ê gaxb œ c Ê a1  xbm faxb œ c Ê faxb œ
Ê fa0b œ 1 

65. a1  x# b


"Î#

_

!ˆ m ‰a0bk
k

kœ1

œ a1  ax# bb
3!

_

œ ca1  xbm . Since faxb œ 1  !ˆ mk ‰xk
kœ1

m

m

œ 1  0 œ 1 Ê ca1  0b œ 1 Ê c œ 1 Ê faxb œ a1  xb .

"Î#

ˆ "# ‰ ˆ 3# ‰ ˆ 5# ‰ (1) (Î# ax# b$

c
a1xbcm

œ (1)"Î#  ˆ "# ‰ (1)$Î# ax# b 

á œ1

#

x
#



%

1†3x
2# †#!



1†3†5x
2$ †3!

'

ˆ "# ‰ ˆ 3# ‰ (1)c&Î# ax# b#
_

á œ 1!

n œ1

#!

1†3†5â(2n1)x2n
#n †n!

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 10.10 The Binomial Series
Ê sin" x œ '0 a1  t# b
x

dt œ '0 Œ1  !
_

x

"Î#

1†3†5â(2n  1)x2n

#n †n!

n œ1

_

dt œ x  !

nœ1

1†3†5â(2n  1)x2nb1
#†4â(2n)(2n  1)

633

,

where kxk  1

_

œ 'x ˆ t"# 

 tan" x œ 'x

"
t%


1
#

Ê tan" x œ
œ

lim

b Ä _

_

1
#

_

66. ctan" td x œ

"
t'



"
t)


"
x

 "t 

"
3t$

_

t#

bÄ_



_

Š 1# ‹

œ 'x – t " — dt œ 'x
1Š ‹

 á ‰ dt œ lim
"
3x$



dt
1  t#

 "t 

"
3t$



"
5t&



"
t#

ˆ1 

"
7t(

"
t#



b

 á ‘x œ

"
" x
td c_ œ tan" x  1#
5x&  á , x  1; ctan
"
"
"
"
"
"
‘x
5t&  7t(  á b œ  x  3x$  5x&  7x(  á



œ

"
t%



"
t'

"
x



"
3x$

'

x

_

 á ‰ dt


"
5x&



"
7x(

dt
1  t#
"

Ê tan

x œ  1# 

á

"
x



"
3x$

"
30

x&  á ;



"
5x&

á ,

x  1

67. (a) ei1 œ cos (1)  i sin (1) œ 1  i(0) œ 1
(b) ei1Î4 œ cos ˆ 14 ‰  i sin ˆ 14 ‰ œ

"
È2



i
È2

œ Š È" ‹ (1  i)
2

(c) ei1Î2 œ cos ˆ 1# ‰  i sin ˆ 1# ‰ œ 0  i(1) œ i
68. ei) œ cos )  i sin ) Ê ei) œ ei()) œ cos ())  i sin ()) œ cos )  i sin );
ei)  eci)
;
#
ei)  eci)
œ #i

ei)  ei) œ cos )  i sin )  cos )  i sin ) œ 2 cos ) Ê cos ) œ
ei)  ei) œ cos )  i sin )  (cos )  i sin )) œ 2i sin ) Ê sin )
69. ex œ 1  x 

x#
#!

x$
3!
(i))#
2!



ei) œ 1  i) 
Ê
œ

ei)  eci)
œ
#
%
)#
1  #!  )4!

ei)  eci)
#i

œ)

œ
)$
3!

)&
5!



Š1  i) 



)'
6!

Š1  i) 







(i))#
#!



(i))$
3!



(i))%
4!

œ 1  i) 

(i))#
2!

á œ 1  i) 

 á‹  Š1  i) 

(i))#
#!



(i))$
3!





(i))$
3!

(i))#
#!



(i))$
3!



(i))%
4!

(i))%
4!



 á and
(i))%
4!

á

 á‹

#

 á œ cos );

(i))#
#!

)(
7!

x%
i)
4!  á Ê e
(i))$
(i))%
3!  4! 

$

%

#

$

%

))
))
))
))
 (i3!
 (i4!
 á‹  Š1  i)  (i#)!)  (i3!
 (i4!
 á‹

#i

 á œ sin )

70. ei) œ cos )  i sin ) Ê ei) œ eiÐ)Ñ œ cos ())  i sin ()) œ cos )  i sin )

ei)  eci)
œ cosh i)
#
i)
c
i)
œ e 2e œ sinh i)

(a) ei)  ei) œ (cos )  i sin ))  (cos )  i sin )) œ 2 cos ) Ê cos ) œ
(b) ei)  ei) œ (cos )  i sin ))  (cos )  i sin )) œ 2i sin ) Ê i sin )
71. ex sin x œ Š1  x 

x#
#!
"
6

#



œ (1)x  (1)x  ˆ 

x$
3!



x%
4!

"‰ $
# x

 á ‹ Šx 
"
6

 ˆ 

x$
3!

"‰ %
6 x





x&
5!



x(
7!

 á‹

ˆ 1#"0  1"#
x



" ‰ &
#4 x
x

 á œ x  x#  "3 x$ 

ex † eix œ eÐ1iÑx œ ex (cos x  i sin x) œ ex cos x  i ae sin xb Ê e sin x is the series of the imaginary part
_

of eÐ1iÑx which we calculate next; eÐ1iÑx œ !

n œ0

œ 1  x  ix 
Ð1iÑx

of e

is x 

(xix)n
n!

œ 1  (x  ix) 

(x  ix)#
#!



(x  ix)$
3!



(x  ix)%
4!

"
"
"
"
"
#
$
$
%
&
&
'
#! a2ix b  3! a2ix  2x b  4! a4x b  5! a4x  4ix b  6! a8ix b  á Ê the imaginary
2 #
2 $
4 &
8 '
" $
" &
" '
#
#! x  3! x  5! x  6! x  á œ x  x  3 x  30 x  90 x  á in agreement with our
x

product calculation. The series for e sin x converges for all values of x.
72.

d
dx

ˆeÐaibÑ ‰ œ

á

d
dx

ceax (cos bx  i sin bx)d œ aeax (cos bx  i sin bx)  eax (b sin bx  bi cos bx)

œ aeax (cos bx  i sin bx)  bieax (cos bx  i sin bx) œ aeÐaibÑx  ibeÐaibÑx œ (a  ib)eÐaibÑx

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

part

634

Chapter 10 Infinite Sequences and Series

73. (a) ei)" ei)# œ (cos )"  i sin )" )(cos )#  i sin )# ) œ (cos )" cos )#  sin )" sin )# )  i(sin )" cos )#  sin )# cos )" )
œ cos()"  )# )  i sin()"  )# ) œ eiÐ)" )# Ñ
)  i sin ) ‰
"
"
(b) ei) œ cos())  i sin()) œ cos )  i sin ) œ (cos )  i sin )) ˆ cos
cos )  i sin ) œ cos )  i sin ) œ ei)
74.

a  bi ÐabiÑx
 C"  iC# œ ˆ aa# bib# ‰ eax (cos bx  i sin bx)  C"  iC#
a#  b# e
ax
œ a# e b# (a cos bx  ia sin bx  ib cos bx  b sin bx)  C"  iC#
ax
œ a# e b# [(a cos bx  b sin bx)  (a sin bx  b cos bx)i]  C"  iC#
ax
ax
œ e (a cosa#bxb#b sin bx)  C"  ie (a sina#bxb#b cos bx)  iC# ;
ÐabiÑx
ax ibx
ax
ax
ax

e

'e

œe e

ÐabiÑx

dx œ

œ e (cos bx  i sin bx) œ e cos bx  ie sin bx, so that given

a  bi
a#  b#

eÐabiÑx  C"  iC# we conclude that ' eax cos bx dx œ

and ' eax sin bx dx œ

e (a sin bx  b cos bx)
a#  b#
ax

eax (a cos bx  b sin bx)
a#  b#

 C"

 C#

CHAPTER 10 PRACTICE EXERCISES
1. converges to 1, since n lim
a œ n lim
Š1 
Ä_ n
Ä_
2. converges to 0, since 0 Ÿ an Ÿ

2
Èn

(1)n
n ‹

œ1

, n lim
0 œ 0, n lim
Ä_
Ä_

œ 0 using the Sandwich Theorem for Sequences

2
Èn

ˆ 1 2n2 ‰ œ lim ˆ #"n  1‰ œ 1
3. converges to 1, since n lim
a œ n lim
Ä_ n
Ä_
nÄ_
n

4. converges to 1, since n lim
a œ n lim
c1  (0.9)n d œ 1  0 œ 1
Ä_ n
Ä_
5. diverges, since ˜sin

n1 ™
#

œ e0ß 1ß 0ß 1ß 0ß 1ß á f

6. converges to 0, since {sin n1} œ {0ß 0ß 0ß á }
7. converges to 0, since n lim
a œ n lim
Ä_ n
Ä_

ln n#
n

8. converges to 0, since n lim
a œ n lim
Ä_ n
Ä_

ln (2n")
n

œ 2 n lim
Ä_

Š "n ‹
1

Š 2n 2b 1 ‹

œ n lim
Ä_

1

ˆ n nln n ‰ œ lim
9. converges to 1, since n lim
a œ n lim
Ä_ n
Ä_
nÄ_
10. converges to 0, since n lim
a œ n lim
Ä_ n
Ä_

ln a2n$  1b
n

œ0

1Š "n ‹

œ n lim
Ä_

1

Š

"
e

ˆ1  "n ‰cn œ lim
, since n lim
a œ n lim
Ä_ n
Ä_
nÄ_

œ1

6n#
‹
2n$ 1

1

ˆ n n 5 ‰n œ lim Š1 
11. converges to ec5 , since n lim
a œ n lim
Ä_ n
Ä_
nÄ_
12. converges to

œ0

œ n lim
Ä_
n

(5)
n ‹

"
ˆ1  "n ‰n

œ

12n
6n#

œ n lim
Ä_

œ0

œ ec5 by Theorem 5
"
e

by Theorem 5

ˆ 3 ‰1În œ lim
13. converges to 3, since n lim
a œ n lim
Ä_ n
Ä_ n
nÄ_

3
n1În

œ

3
1

œ 3 by Theorem 5

ˆ 3 ‰1În œ lim
14. converges to 1, since n lim
a œ n lim
Ä_ n
Ä_ n
nÄ_

31În
n1În

œ

1
1

œ 1 by Theorem 5

n

2
n

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Chapter 10 Practice Exercises

21În  1
Š "n ‹

15. converges to ln 2, since n lim
a œ n lim
n a21În  1b œ n lim
Ä_ n
Ä_
Ä_

œ n lim
Ä_

–

Š 21În ln 2‹
n#

—

635

œ n lim
21În ln 2
Ä_

Š n#" ‹

œ 2! † ln 2 œ ln 2
2

n
È
16. converges to 1, since n lim
a œ n lim
2n  1 œ n lim
exp Š ln (2nn  1) ‹ œ n lim
exp Œ 2n1b 1  œ e! œ 1
Ä_ n
Ä_
Ä_
Ä_

17. diverges, since n lim
a œ n lim
Ä_ n
Ä_

(n  1)!
n!

œ n lim
(n  1) œ _
Ä_

18. converges to 0, since n lim
a œ n lim
Ä_ n
Ä_

(4)n
n!

Š "# ‹

Š "# ‹

19.

"
(2n  3)(2n  1)

œ

#n  3



Š "# ‹

Ê sn œ –

2n  1

Š "# ‹

"
Ê n lim
s œ n lim

Ä_ n
Ä _ –6

20.

2
n(n  1)

œ

2
n



2
n1

ˆ1 
œ n lim
Ä_
21.

22.

9
(3n  1)(3n  2)
œ 3#  3n3#

œ

_

_

n œ0

nœ0

_

n œ1

ˆ 34 ‰
1ˆ c4" ‰

3
4n

"
en



3
3n  2

_

n œ1

—–

Š "# ‹
5



Š "# ‹

Ê sn œ ˆ #3  53 ‰  ˆ 53  83 ‰  ˆ 83 
3 ‰
3n  2

œ

7

Š "‹

#
—  á  – #n  3 

Š "# ‹

2n  1 —

œ

Š "# ‹
3



Š "# ‹

2n  1

2 ‰
n1

œ  #2 

2
n1

Ê n lim
s
Ä_ n

Ê sn œ ˆ 92 
ˆ
œ n lim
Ä_

3 ‰
11

 á  ˆ 3n 3 1 

3 ‰
3n  2

3
#

2 ‰
2 ‰
ˆ 2
13  13  17
2
2 ‰
2
9  4n1 œ  9

, a convergent geometric series with r œ

"
e

 ˆ 172 

2 ‰
21

 á  ˆ 4n2 3 

and a œ 1 Ê the sum is

_

‰n a convergent geometric series with r œ  4" and a œ
œ ! ˆ 43 ‰ ˆ "
4
n œ0

"
1  Š "e ‹

3
4

œ

2 ‰
4n  1

e
e1

Ê the sum is

œ  35

25. diverges, a p-series with p œ
26. !

5

"
6

ˆ3 
Ê n lim
s œ n lim
Ä_ n
Ä_ #

23. ! en œ !

Š "# ‹

œ 1

8
2
2
(4n  3)(4n  1) œ 4n  3  4n  1
œ  29  4n21 Ê n lim
s
Ä_ n

24. ! (1)n

œ



Ê sn œ ˆ #2  32 ‰  ˆ 32  42 ‰  á  ˆ n2 

2 ‰
n1

3
3n  1

2n  1 —

3

œ 0 by Theorem 5

5
n

_

œ 5 !

nœ1

"
x"Î#

27. Since f(x) œ
_

"
n,

"
#

diverges since it is a nonzero multiple of the divergent harmonic series

Ê f w (x) œ  #x"$Î#  0 Ê f(x) is decreasing Ê an1  an , and
_

lim a œ lim
nÄ_ n nÄ_

1
Èn

œ 0, the

)
! È" diverges, the given series converges conditionally.
series ! ("
Èn converges by the Alternating Series Test. Since
n
n

nœ1

nœ1

28. converges absolutely by the Direct Comparison Test since

"
#n$



"
n$

for n

1, which is the nth term of a convergent

p-series

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

636

Chapter 10 Infinite Sequences and Series

29. The given series does not converge absolutely by the Direct Comparison Test since
the nth term of a divergent series. Since f(x) œ
Ê an1  an , and n lim
a œ
Ä_ n

"
lim
n Ä _ ln (n  1)

"
ln (x  1)

"
ln (n  1)

"
(ln (x  1))# (x  1)

w

Ê f (x) œ 



"
n1

, which is

 0 Ê f(x) is decreasing

œ 0, the given series converges conditionally by the Alternating

Series Test.
30.

'2_ x(ln" x)

#

dx œ lim

bÄ_

'2b

"
x(ln x)#

b
dx œ lim c(ln x)" d 2 œ  lim ˆ ln"b 

bÄ_

bÄ_

" ‰
ln 2

œ

"
ln #

Ê the series

converges absolutely by the Integral Test
31. converges absolutely by the Direct Comparison Test since

ln n
n$



n
n$

"
n#

œ

, the nth term of a convergent p-series

n
n
32. diverges by the Direct Comparison Test for en  n Ê ln ˆen ‰  ln n Ê nn  ln n Ê ln nn  ln (ln n)

Ê n ln n  ln (ln n) Ê

33. n lim
Ä_

Š

"

n

È n#

Š n"# ‹

34. Since f(x) œ

1

‹

ln n
ln (ln n)

œ Én lim
Ä_

3x#
x$  1



n#
n#  1

Ê f w (x) œ

"
n

, the nth term of the divergent harmonic series

œ È1 œ 1 Ê converges absolutely by the Limit Comparison Test

3x a2  x$ b
ax$  1b#

 0 when x

2 Ê an1  an for n

2 and n lim
Ä_

3n#
n$  1

œ 0, the

series converges by the Alternating Series Test. The series does not converge absolutely: By the Limit
#

Comparison Test, n lim
Ä_

Š n$3n 1 ‹
ˆ n" ‰

œ n lim
Ä_

3n$
n$  1

œ 3. Therefore the convergence is conditional.

35. converges absolutely by the Ratio Test since n lim
’ n 2 †
Ä _ (n  1)!
36. diverges since n lim
a œ n lim
Ä_ n
Ä_

(")n an#  1b
2n#  n  1

n!
n1“

œ n lim
Ä_

n2
(n  1)#

does not exist
nb1

37. converges absolutely by the Ratio Test since n lim
†
’ 3
Ä _ (n  1)!

n!
3n “

œ n lim
Ä_

3
n1

œ01

n 2 3
n
È
É
38. converges absolutely by the Root Test since n lim
an œ n lim
nn œ n lim
Ä_
Ä_
Ä_
n n

39. converges absolutely by the Limit Comparison Test since n lim
Ä_

40. converges absolutely by the Limit Comparison Test since n lim
Ä_
nb1

41. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (x  4) †
Ä_
Ä _ (n  1)3nb1

œ01

n3n
(x  4)n ¹

1 Ê

"
Š $Î#
‹
n

Š Èn(n "1)(n
Š n"# ‹

Š È "#
n n

kx  4 k
lim
3
nÄ_

1

‹

‹
2)

ˆ n n 1 ‰  1 Ê

n œ1

n

3
n3n

n(n  1)(n  2)
n$

n # an #  1 b
n%

œ Én lim
Ä_

_

harmonic series, which converges conditionally; at x œ 1 we have!

œ01

œ Én lim
Ä_

Ê kx  4k  3 Ê 3  x  4  3 Ê 7  x  1; at x œ 7 we have !
_

6
n

n œ1
_

œ!

n œ1

kx  4 k
3

(1)n 3n
n3n
"
n

œ1

œ1

1

_

œ ! ("n ) , the alternating
n

n œ1

, the divergent harmonic series

(a) the radius is 3; the interval of convergence is 7 Ÿ x  1
(b) the interval of absolute convergence is 7  x  1
(c) the series converges conditionally at x œ 7

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Chapter 10 Practice Exercises
42. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (x1) † (2n1)! ¹  1 Ê (x  1)# n lim
Ä_
Ä _ (2n1)! (x1)2nc2
Ä_
(a) the radius is _; the series converges for all x
(b) the series converges absolutely for all x
(c) there are no values for which the series converges conditionally
2n

nb1

43. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (3x(n1)1)# †
Ä_
Ä_

n#
(3x  1)n ¹

 1 Ê k3x  1k n lim
Ä_

Ê 1  3x  1  1 Ê 0  3x  2 Ê 0  x 
_

"
n#

œ !

n œ1
_

have !
n œ1

"
(#n)(2n1)

2
3

n#
(n  1)#
_

œ 0  1, which holds for all x

 1 Ê k3x  1k  1
nc1

_

2nc1

; at x œ 0 we have ! (1) n# (1) œ ! ("n)#
n

n œ1

n œ1

, a nonzero constant multiple of a convergent p-series, which is absolutely convergent; at x œ
_

(1)n 1 (1)n
n#

(a) the radius is

œ ! ("n)#

n 1

2
3

we

, which converges absolutely

nœ1

"
3

; the interval of convergence is 0 Ÿ x Ÿ

(b) the interval of absolute convergence is 0 Ÿ x Ÿ

2
3

2
3

(c) there are no values for which the series converges conditionally
44. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ n2 †
Ä_
Ä _ 2n  3
Ê
_

!
n œ1

k2x  1k
#

n1
2n  1

†

(2x  1)nb1
2nb1

†

2n  1
n1

†

2n
(2x  1)n ¹

1 Ê

k2x  1k
lim
2
nÄ_

n2
¸ 2n
3 †

2n  " ¸
n1

(1)  1 Ê k2x  1k  2 Ê 2  2x  1  2 Ê 3  2x  1 Ê  #3  x 

(2)n
#n

_

œ!

lim ˆ n  1 ‰ œ
n Ä _ 2n  1

n œ1

"
#

(")n (n1)
2n  1

"
#

1

; at x œ  #3 we have

which diverges by the nth-Term Test for Divergence since

Á 0; at x œ

"
#

_

n1
we have ! 2n
1 †
n œ1

2n
#n

_

n"
œ ! 2n
 1 , which diverges by the nth-Term Test
n œ1

(a) the radius is 1; the interval of convergence is  3#  x 
(b) the interval of absolute convergence is  3#  x 

"
#

"
#

(c) there are no values for which the series converges conditionally
nb1

45. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹ x
Ä_
Ä _ (n  1)nb1
Ê

kx k
e

nn
xn ¹

¸ˆ n ‰n ˆ n " 1 ‰¸  1 Ê
 1 Ê kxk n lim
Ä _ n1

kx k
e n lim
Ä_

ˆ n " 1 ‰  1

† 0  1, which holds for all x

(a) the radius is _; the series converges for all x
(b) the series converges absolutely for all x
(c) there are no values for which the series converges conditionally
nb1

46. n lim
†
¹ uunbn 1 ¹  1 Ê n lim
¹ x
Ä_
Ä _ Èn  1
_

Èn
xn ¹

n
 1 Ê kxk n lim
 1 Ê kxk  1; when x œ 1 we have
Ä _ Én1

_

! (È1) , which converges by the Alternating Series Test; when x œ 1 we have !
n
n

nœ1

n œ1

"
Èn

, a divergent p-series

(a) the radius is 1; the interval of convergence is 1 Ÿ x  1
(b) the interval of absolute convergence is 1  x  1
(c) the series converges conditionally at x œ 1
2nb1

47. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (n 32)x
nb1
Ä_
Ä_
_

_

n œ1

n œ1

the series !  nÈ31 and !

n1
È3

†

3n
(n  1)x2n

1

¹1 Ê

x#
3 n lim
Ä_

2‰
È
È3;
ˆ nn 
1  1 Ê  3  x 

, obtained with x œ „ È3, both diverge

(a) the radius is È3; the interval of convergence is È3  x  È3
(b) the interval of absolute convergence is È3  x  È3
(c) there are no values for which the series converges conditionally

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

637

638

Chapter 10 Infinite Sequences and Series
2nb3

48. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ (x 2n1)x
3
Ä_
Ä_

2n  1
(x  1)2nb1 ¹

†

ˆ 2n  1 ‰  1 Ê (x  1)# (1)  1
 1 Ê (x  1)# n lim
Ä _ 2n  3
_

Ê (x  1)#  1 Ê kx  1k  1 Ê 1  x  1  1 Ê 0  x  2; at x œ 0 we have ! (1)#n(1)1
n

2nb1

n œ1

_

œ!

n œ1
_

(1)3nb1
2n  1

that !
n œ1

"
2n  1

_

œ!

n œ1

(1)nc1
2n  1

which converges conditionally by the Alternating Series Test and the fact
_

(1)n (1)2nb1
2n  1

diverges; at x œ 2 we have !

nœ1

_

œ!

nœ1

(1)n
2n  1

, which also converges conditionally

(a) the radius is 1; the interval of convergence is 0 Ÿ x Ÿ 2
(b) the interval of absolute convergence is 0  x  2
(c) the series converges conditionally at x œ 0 and x œ 2
(n  1)x
49. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹ cschcsch
(n)xn
Ä_
Ä_

c"

Ê kxk n lim
¹ e1 ee 2n
Ä_

2n 1
2

¹1 Ê

nb1

¹  1 Ê kxk n lim
Ä_ »

Š enb1 c2ecnc1 ‹
ˆ en c2ecn ‰

»1

_

kx k
e

 1 Ê e  x  e; the series ! a „ ebn csch n, obtained with x œ „ e,
n œ1

both diverge since n lim
a „ e) csch n Á 0
Ä_
n

(a) the radius is e; the interval of convergence is e  x  e
(b) the interval of absolute convergence is e  x  e
(c) there are no values for which the series converges conditionally
50. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹x
Ä_
Ä_

nb1

coth (n  1)
xn coth (n) ¹

c2nc2

 1 Ê kxk n lim
†
¹1e
Ä _ 1  ec2nc2

1  ec2n
1  ec2n ¹

 1 Ê kxk  1

_

Ê 1  x  1; the series ! a „ 1bn coth n, obtained with x œ „ 1, both diverge since n lim
a „ 1bn coth n Á 0
Ä_
n œ1

(a) the radius is 1; the interval of convergence is 1  x  1
(b) the interval of absolute convergence is 1  x  1
(c) there are no values for which the series converges conditionally
51. The given series has the form 1  x  x#  x$  á  (x)n  á œ
52. The given series has the form x 
ln ˆ 53 ‰ ¸ 0.510825624

x#
#



x$
3

 á  (1)n1

53. The given series has the form x 

x$
3!



x&
5!

 á  (1)n

x2n 1
(2n  1)!

54. The given series has the form 1 

x#
2!



x%
4!

 á  (1)n

x2n
(2n)!

55. The given series has the form 1  x 
56. The given series has the form x 
tan" Š È"3 ‹ œ
57. Consider

"
1  2x

x$
3

x#
2!





x&
5

x#
3!

á 

xn
n!

 á  (1)n

xn
n

"
1x

, where x œ

"
4

; the sum is

 á œ ln (1  x), where x œ

2
3

n œ0

nœ0

1
3

 á œ ex , where x œ ln 2; the sum is eln Ð2Ñ œ 2
 á œ tan" x, where x œ

as the sum of a convergent geometric series with a œ 1 and r œ 2x Ê
_

4
5

 á œ sin x, where x œ 1; the sum is sin 1 œ 0

 á œ cos x, where x œ 13 ; the sum is cos

x2n 1
(2n  1)

œ

; the sum is

"
È3

1
6

_

"
1  ˆ "4 ‰

œ 1  (2x)  (2x)#  (2x)$  á œ ! (2x)n œ ! 2n xn where k2xk  1 Ê kxk 

"
1  2x

"
#

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

; the sum is

œ

"
#

Chapter 10 Practice Exercises
"
1  x$

58. Consider

"
1  x$

as the sum of a convergent geometric series with a œ 1 and r œ x$ Ê

œ

639

"
1  ax$ b

_

#
$
œ 1  ax$ b  ax$ b  ax$ b  á œ ! (1)n x3n where kx$ k  1 Ê kx$ k  1 Ê kxk  1
n œ0

_

59. sin x œ !

nœ0

_

60. sin x œ !

nœ0
_

61. cos x œ !

n œ0

_

62. cos x œ !

n œ0

_

63. ex œ !

n œ0
_

64. ex œ !

n œ0

_

(1)n x2nb1
(2n  1)!

nœ0

Ê sin

_

(1)n x2n
(2n)!

3
Ê cosŠ Èx 5 ‹ œ !

_ ˆ 1 x ‰n

Ê eÐ1xÎ2Ñ œ !

xn
n!

#
Ê ex œ !

#

n!

n œ0

_

a x # b
n!

nœ0

œ

3
8

69.

"
x1 œ
œ  4"# ,

n œ0

1 n xn
#n n!

(1)n x2n
n!

Ê f w (x) œ x a3  x# b



9
32

2†1!

"
1x

"

#% †4

¸

"
#



"
9 †2 $

 a3  x# b

2 †2!

"
#

œ

"Î#

3
8

,

2 †3!

(x  1)" Ê f w (x) œ (x  1)# Ê f ww (x) œ 2(x  1)$ Ê f www (x) œ 6(x  1)% ; f(3) œ
ww

f (3) œ

Ê



x""
11†3!

tanc" x
x

$Î#

œ 1  (x  2)  (x  2)#  (x  2)$  á

2
4$

6
4%

www

, f (2) œ

"
x

"
a

œ



"
a#

"
x 1

Ê

"
a$

(x  a) 

"

#( †7†2!



"

2"! †10†3!

"



"
4

œ

(x  a)# 



x"(
17†5!



x#$
23†7!

dx œ '1 Š1 
1Î2



"
5# †#&



"
7# †#(

x#
3







*

2"$ †13†4!

*

'11Î2

Ê f ww (x) œ x# a3  x# b

$Î#

'01 x sin ax$ b dx œ '01 x Šx$  x3!  x5!
&

"Î#

 3x a3  x# b
; f(1) œ 2, f w (1) œ  "# , f ww (1) œ  8" 
#
$
Ê È3  x# œ 2  (x  1)  3(x$ 1)  9(x& 1)  á

'

"
#

(1)n x6n
5n (#n)!



"
4#

(x  3) 

"
4$

"
4%

#

(x  3) 

œ x" Ê f w (x) œ x# Ê f ww (x) œ 2x$ Ê f www (x) œ 6x% ; f(a) œ
6
a%

œ ’ x5 

71.

_

œ!

nœ0

'01Î2 exp ax$ b dx œ '01Î2 Š1  x$  x2!  x3!  x4!
¸

70.

_

œ!

n œ0

n

_

œ!

(2n)!

(1)n x10nÎ3
(#n)!

œ (1  x)" Ê f w (x) œ (1  x)# Ê f ww (x) œ 2(1  x)$ Ê f www (x) œ 6(1  x)% ; f(2) œ 1, f w (2) œ 1,

67. f(x) œ

f www (a) œ

nœ0

5

&Î#

f ww (2) œ 2, f www (2) œ 6 Ê

"
x

œ!

_ (1)n Š x3 ‹
È

nœ0

(1)n 22nb1 x2nb1
32nb1 (#n  1)!

_

2n

2n

3
f www (1) œ  32


68. f(x) œ

nœ0

(1)n ˆx5Î3 ‰
(2n)!

nœ0

Ê f www (x) œ 3x$ a3  x# b

f (3)

nœ0

Ê cos ˆx5Î3 ‰ œ !

"Î#

w

_

œ!

(2n  1)!

(1)n x2n
(2n)!

xn
n!

"
1x

nœ0

_ (1)n Š 2x ‹
3

œ!

2x
3

(1)n 12nb1 x2nb1
(#n  1)!

œ!

2nb1

(1)n x2nb1
(2n  1)!

65. f(x) œ È3  x# œ a3  x# b

66. f(x) œ

_

(1)n (1x)2nb1
(2n  1)!

Ê sin 1x œ !

"&

x#*
29†9!

x%
5

"
9# †2*



"

x#"
7!



x#(
9!

x%
4



, f w (a) œ  a"# , f ww (a) œ

x(
7†2!



x"!
10†3!

x"!
3!



x"'
5!



x##
7!

x&
25



x(
49



x*
81



"
21# †##"



x"$
13†4!

á“

"Î#
!

¸ 0.484917143
 á ‹ dx œ '0 Šx% 
1



x#)
9!

 á ‹ dx

"
!

x'
7



"
11# †2""

x)
9





x"!
11

"
13# †2"$

 á ‹ dx œ ’x 


"
15# †2"&



"
17# †#"(

x$
9





"
19# †#"*

2
a$

,

(x  3)  á

(x  a)$  á

 á ‹ dx œ ’x 

2"' †16†5!

"
a

,

$

 á “ ¸ 0.185330149







"#

"
a%

"
4



x""
121

 á“

"Î#
!

¸ 0.4872223583

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

640
72.

Chapter 10 Infinite Sequences and Series

'01Î64

dx œ '0

1Î64

tan " x
Èx

œ  23 x$Î# 

2
#1

x(Î# 

"
Èx
2
55

x$
3

Šx 

x""Î# 

2
105

$

7 sin x
2x
x Ä 0 e 1

73. lim

74.

x Ä 0 Š2x 

œ lim

5!
#

 á ‹ dx œ '0

1Î64

"Î'%

&

2$ x $
3!



œ ˆ 3†28$ 
#

 á‹

x Ä 0 Š2 

2# x
#!

 á‹

75.

œ lim

tÄ0

76. lim



"‰
t#

œ

#
"
2 Š 4!
 t6!  á‹
#
Š1  2t4!  á‹

Š sinh h ‹  cos h

#



h#
Œ #!

$

œ lim





h%
5!



#
lim t # 2  2 cos t
t Ä 0 2t (1  cos t)

"  cos# z
z Ä 0 ln (1  z)  sin z

77. lim

2
105†8"&

 á ‰ ¸ 0.0013020379

œ

7
#

$

&

$

&

2 Š )3!  )5!  á‹

œ lim

$

&

Š )3!  )5!  á‹

)Ä0

œ lim

h%
4!

%

t
 á
t#  2  2 Œ1 t#  4!

t Ä 0 2t# Š1  1 

t#
#



t%
4!

 á‹

%

t'
6!

2 Œ t4! 

œ lim

tÄ0

Št% 

2t'
4!

 á
 á‹

"
1#

œ

Œ1 

h#
3!

%

#



%

 h5!  á  Œ1  h#!  h4!  á
h#

h'
6!



h'
7!

 á

h#

hÄ0



2
55†8""

œ2

hÄ0

h#
3!

 á‹

)  Š)  )3!  )5!  á‹

œ lim

h#

hÄ0



2
21†8(

%

2$ x #
3!

#

lim ˆ "
t Ä 0 #  2 cos t

ˆx"Î#  "3 x&Î#  "5 x*Î#  7" x"$Î#  á ‰ dx

7 Š1  x3!  x5!  á‹

œ lim

$

)Ä0

Š 3!"  )5!  á‹

)Ä0

2# x #
2!

x(
7

Š1  )  )#!  )3!  á‹ Š1  )  )#!  )3!  á‹  2)

œ lim
)#



x"&Î#  á ‘ !

#

)
c)
lim e )e sin)2)
)Ä0

x&
5

7 Šx  x3!  x5!  á‹

œ lim

2 Š 3!" 



œ lim

hÄ0

1  Š1  z # 

œ lim

#

z%
3

Š #"! 

"
3!



h#
5!

$

h#
4!



h%
6!



h%
7!

 á‹ œ

"
3

%

 á‹

$



&

z Ä 0 Šz  z#  z3  á‹  Šz  z3!  z5!  á‹

Šz#  z3  á‹

œ lim

#

$

%

z Ä 0 Š z#  2z3  z4  á‹

#

Š1  z3  á‹

œ lim

#

z
z Ä 0 Š "#  2z
3  4  á‹

y#

cos
y
cosh y
yÄ0

78. lim

"

œ lim

œ 2
y#

œ lim

y Ä 0 Œ1 

y Ä 0 Œ1  2y%  á
6!

y#
#



y%
4!



y'
6!

 á  Œ1 

xÄ0

Ê

r
x#



3
x#

r
x#



y%
4!



y'
6!

 á

y#

œ lim

y Ä 0 Œ

2y#
#

'

 2y6!  á

œ 1

$

79. lim ˆ sinx$3x 

y#
#!

 s‰ œ lim –
xÄ0

œ 0 and s 

9
#

80. The approximation sin x ¸

&

(3x)
Š3x  (3x)
6  120  á‹

x$



œ 0 Ê r œ 3 and s œ
6x
6  x#

r
x#

 s— œ lim Š x3# 
xÄ0

9
#



81x#
40

á 

9
#

is better than sin x ¸ x.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

r
x#

 s‹ œ 0

Chapter 10 Practice Exercises
nb1

(3n  1)(3n  2)x
â(2n)
¸ 3n  2 ¸  1 Ê kxk 
81. n lim
† #†52†8†4â†6(3n
¹ 2†5†8#â
†4†6â(2n)(2n  2)
 1)xn ¹  1 Ê kxk n lim
Ä_
Ä _ 2n  2
Ê the radius of convergence is 23

2
3

nb1

(2n1)(2n3)(x1)
¸ 2n  3 ¸  1 Ê kxk 
82. n lim
† 34††59††714ââ(2n(5n1)x1)n ¹  1 Ê kxk n lim
¹ 3†5†47†â
9†14â(5n1)(5n4)
Ä_
Ä _ 5n  4
Ê the radius of convergence is 52
n

"‰
k#

83. ! ln ˆ1 
kœ2

n

n

kœ2

kœ2

5
2

œ ! ln ˆ1  "k ‰  ln ˆ1  "k ‰‘ œ ! cln (k  1)  ln k  ln (k  1)  ln kd

œ cln 3  ln 2  ln 1  ln 2d  cln 4  ln 3  ln 2  ln 3d  cln 5  ln 4  ln 3  ln 4d  cln 6  ln 5  ln 4  ln 5d
 á  cln (n  1)  ln n  ln (n  1)  ln nd œ cln 1  ln 2d  cln (n  1)  ln nd
after cancellation
n

"‰
k#

Ê ! ln ˆ1 
k œ2

n

84. !
k œ2

"
k#  1 -

 ˆ n " 1 

_

Ê !

k œ2

"
#

œ

n

!ˆ
k œ2

" ‰‘
n1

"
k # 1

_

1 ‰
œ ln ˆ n2n
Ê ! ln ˆ1 

"‰
k#

k œ2

"
k1

œ

"
#

" ‰
k1



ˆ 1" 

"
#

"ˆ3
œ n lim

Ä_ # 2

œ


1
n

"
n



"
#

1‰
œ n lim
ln ˆ n 2n
œ ln
Ä_



" ‰
n1

1 ‰
n1

œ

œ

"
#

ˆ #3 

"
n



" ‰
n1

œ

"
#

 2(n  1)  2n
’ 3n(n  1)2n(n
“œ
 1)

1†4†7â(3n  2)
(3n)!

n œ1
_

dy
dx

_

œ!

n œ1
_

1†4†7â(3n  2)
(3n  1)!

x3nc1

1†4†7â(3n5)
(3n3)!

x3nc2

(3n  ")
(3n  1)(3n  2)(3n  3)

1†4†7â(3n  2)
(3n  2)!

x3nc2 œ x  !

œ x Œ1  !

1†4†7â(3n 2)
(3n)!

x  œ xy  0 Ê a œ 1 and b œ 0

x#
1x

œ x#  x# (x)  x# (x)#  x# (x)$  á œ x#  x$  x%  x&  á œ ! (1)n xn which

Ê

d# y
dx#

œ!

n œ1
_

n œ1

86. (a)

x3n Ê

3n#  n  2
4n(n  1)

3
4

3nb3

_

is the sum

ˆ 11  3" ‰  ˆ #"  4" ‰  ˆ "3  5" ‰  ˆ 4"  6" ‰  á  ˆ n " #  n" ‰

1)x
$
85. (a) n lim
† 1†4†7â(3n)!
¹ 1†4†7â(3n(3n2)(3n
3)!
(3n  2)x3n ¹  1 Ê kx k n lim
Ä_
Ä_
œ kx$ k † 0  1 Ê the radius of convergence is _

(b) y œ 1  !

"
#

œ

x#
1  (x)

nœ2

3n

_

n œ2

converges absolutely for kxk  1
_

_

n œ2

nœ2

(b) x œ 1 Ê ! (1)n xn œ ! (1)n which diverges
_

_

87. Yes, the series ! an bn converges as we now show. Since ! an converges it follows that an Ä 0 Ê an  1
n œ1

nœ1

_

_

n œ1

n œ1

for n  some index N Ê an bn  bn for n  N Ê ! an bn converges by the Direct Comparison Test with ! bn
_

88. No, the series ! an bn might diverge (as it would if an and bn both equaled n) or it might converge (as it would if
n œ1

an and bn both equaled "n ).
_

_

n œ1

k œ1

!(xk1  xk ) œ lim (xn1  x" ) œ lim (xn1 )  x" Ê both the series and
89. ! (xn1  xn ) œ n lim
Ä_
nÄ_
nÄ_
sequence must either converge or diverge.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

641

642

Chapter 10 Infinite Sequences and Series
Š 1 banan ‹

90. It converges by the Limit Comparison Test since n lim
Ä_

an

"
1 a n

œ n lim
Ä_

_

œ 1 because ! an converges
n œ1

and so an Ä 0.
_

91. !
n œ1

œ a" 

an
n

 ˆ 9" 
92. an œ
œ

"
10

"
ln n

"
ln #



a#
#



"
11

á 

"
#

a%
4

"
3



a"  ˆ #" ‰ a#  ˆ "3  "4 ‰ a%  ˆ "5 

á

" ‰
16 a"'

2 Ê a#

for n

ˆ1 



a$
3

"
#

á

a$

"
7



 "8 ‰ a)

(a#  a%  a)  a"'  á ) which is a divergent series

á , and

a%

"
6

"
ln #



"
ln 4

_

 á ‰ which diverges so that 1  !

n œ2

"
ln 8



"
n ln n

á œ

"
ln #



"
# ln 2

"
3 ln 2



á

diverges by the Integral Test.

CHAPTER 10 ADDITIONAL AND ADVANCED EXERCISES
1. converges since

"
(3n  #)Ð2n 1ÑÎ2

"
Š $Î#
‹
n

lim
nÄ_

Š

"

(3n

‹
2)$Î#



"
(3n  2)$Î#

$

1$
192 ‹

œ

n œ1

"
(3n  2)$Î#

converges by the Limit Comparison Test:

ˆ 3n n 2 ‰$Î# œ 3$Î#
œ n lim
Ä_

2. converges by the Integral Test:
1
œ Š 24


_

and !

'1_ atan" xb# x dx1 œ
#

" x b$

lim ’ atan 3

bÄ_

" bb$

b

tan
“ œ lim ’ a 3

bÄ_

"



1$
192 “

71 $
192

c2n

e
3. diverges by the nth-Term Test since n lim
a œ n lim
(1)n tanh n œ lim (1)n Š 11 
(1)n
 ec2n ‹ œ n lim
Ä_ n
Ä_
Ä_
bÄ_
does not exist

4. converges by the Direct Comparison Test: n!  nn Ê ln (n!)  n ln (n) Ê
Ê logn (n!)  n Ê

logn (n!)
n$



"
n#

12
(3)(5)(4)#

, a% œ ˆ 35††64 ‰ ˆ 24††53 ‰ ˆ 13††24 ‰ œ

given series and

12
(n  1)(n  3)(n  2)#



6. converges by the Ratio Test: n lim
Ä_

"2
(4)(6)(5)#

12
n%

12
(1)(3)(2)#

, a# œ

_

,á Ê 1!

n œ1

1†2
3†4

_

n œ1

"
32nb1

cos x œ

"
#



È3
#

1
3

12
(2)(4)(3)#

, a$ œ ˆ 42††53 ‰ ˆ 31††42 ‰

represents the

, which is the nth-term of a convergent p-series

anb1
an

œ n lim
Ä_

n
(n  1)(n  1)

_

and !
n œ1

2n
32n

œ01

È3
1#

ˆx 

n
n n
È
2È

È3
ww
# ,f
1 ‰$
á
3

Ê f ˆ 13 ‰ œ 0.5, f w ˆ 13 ‰ œ 

ˆx  13 ‰  4" ˆx  13 ‰# 

"
1L

Ê L#  L  1 œ 0 Ê L œ

; the first subseries is a convergent geometric series and the

n 2n
É
second converges by the Root Test: n lim
32n œ n lim
Ä_
Ä_

9. f(x) œ cos x with a œ

œ

12
(n  1)(n  3)(n  2)#

7. diverges by the nth-Term Test since if an Ä L as n Ä _, then L œ
8. Split the given series into !

n

, which is the nth-term of a convergent p-series

5. converges by the Direct Comparison Test: a" œ 1 œ
œ

ln (n!)
ln (n)

9

œ

"†1
9

œ

"
9

1

ˆ 13 ‰ œ 0.5, f www ˆ 13 ‰ œ

È3
#

, f Ð4Ñ ˆ 13 ‰ œ 0.5;

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

1 „ È5
#

Á0

Chapter 10 Additional and Advanced Exercises

643

10. f(x) œ sin x with a œ 21 Ê f(21) œ 0, f w (21) œ 1, f ww (21) œ 0, f www (21) œ 1, f Ð4Ñ (21) œ 0, f Ð5Ñ (21) œ 1,
f Ð6Ñ (21) œ 0, f Ð7Ñ (21) œ 1; sin x œ (x  21) 
11. ex œ 1  x 

x#
#!



x$
3!

(x  21)$
3!



(x  21)&
5!

(x  21)(
7!



á

 á with a œ 0

12. f(x) œ ln x with a œ 1 Ê f(1) œ 0, f w (1) œ 1, f ww (1) œ 1,f www (1) œ 2, f Ð4Ñ (1) œ 6;
(x  1)#
#

ln x œ (x  1) 

(x  1)$
3





(x  1)%
4

á

13. f(x) œ cos x with a œ 221 Ê f(221) œ 1, f w (221) œ 0, f ww (221) œ 1, f www (221) œ 0, f Ð4Ñ (221) œ ",
f Ð5Ñ (221) œ 0, f Ð6Ñ (221) œ 1; cos x œ 1  "# (x  221)#  4!" (x  221)%  6!" (x  221)'  á
14. f(x) œ tan" x with a œ 1 Ê f(1) œ
tan

"

1
4

xœ

(x  1)
2





(x  1)#
4

1
4

(x  1)$
12



, f w (1) œ

"
#

, f ww (1) œ  "# , f www (1) œ

ˆ ba ‰n ln ˆ ba ‰
a n
nÄ_ ˆ b ‰  1

16. 1 

2
10



3
10#

_

œ1!

n œ0

œ1

200
999

n 1

17. sn œ !

k œ0



7
10$

'kkb1

2
10%

_

2

103n1





!

30
999

dx
1  x#



7
999

3
10&



7
10'

_

3

103n2

n œ0



0†ln ˆ ba ‰
01

œ ln b 

!

999237
999

œ

Ê sn œ '0

1

_

á œ1!

n œ1

7

œ

1 În

n

lnˆˆ ba ‰ 1‰
n
nÄ_

Ê n lim
c œ ln b  lim
Ä_ n

œ ln b since 0  a  b. Thus, n lim
c œ eln b œ b.
Ä_ n

103n3

n œ0

;

á

n
15. Yes, the sequence converges: cn œ aan  bn b1În Ê cn œ b ˆˆ ba ‰  1‰

œ ln b  lim

"
#

œ1

2 ‰
ˆ 10

2
103n

$
1ˆ " ‰



10

_

2

!

n œ1

Š 103# ‹

$
1ˆ " ‰

3
103n

_

1

!

n œ1

Š 107$ ‹



"‰
1  ˆ 10

10

7
103n

$

412
333

dx
1  x#

 '1

2

dx
1  x#

Ê n lim
s œ n lim
atan" n  tan" 0b œ
Ä_ n
Ä_
nb1

 á  'nc1 1 dxx# Ê sn œ '0
n

n

dx
1  x#

1
#

#

 1)
18. n lim
† (n  1)(2x
¹ uunbn 1 ¹ œ n lim
¹ (n  1)x
¹ œ n lim
¹ x † (n  1) ¹ œ ¸ 2x x 1 ¸  1
nxn
Ä_
Ä _ (n  2)(2x  1)n 1
Ä _ 2x  1 n(n  2)
Ê kxk  k2x  1k ; if x  0, kxk  k2x  1k Ê x  2x  1 Ê x  1; if  "#  x  0, kxk  k2x  1k
n

Ê x  2x  1 Ê 3x  1 Ê x   "3 ; if x   #" , kxk  k2x  1k Ê x  2x  1 Ê x  1. Therefore,

the series converges absolutely for x  1 and x   "3 .

19. (a) No, the limit does not appear to depend on the value of the constant a
(b) Yes, the limit depends on the value of b
(c) s œ Š1 
œ n lim
Ä_

cos ˆ na ‰ n
n ‹
a
n

lim Š1 

nÄ_

Ê ln s œ

sin ˆ na ‰  cos ˆ na ‰
1

cos ˆ na ‰
n

cos ˆ na ‰ n
bn ‹

œ

ln Œ1 

cos ˆ na ‰

n

ˆ n" ‰
01
10

Ê n lim
ln s œ
Ä_

"
cos ˆ na ‰  Œ
n

Š

a
a
a
n sin ˆ n ‰  cos ˆ n ‰

n#

"‹

n#

œ e1Îb
1În

_

"
#

1

œ 1 Ê n lim
s œ e" ¸ 0.3678794412; similarly,
Ä_

an ‰n
20. ! an converges Ê n lim
a œ 0; n lim
’ˆ 1  sin
“
#
Ä_ n
Ä_
n œ1

œ



an ‰
ˆ 1sin
œ n lim
œ
#
Ä_

Ä_

1sin Šnlim an ‹
#

Ê the series converges by the nth-Root Test

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

œ

1sin 0
#

644

Chapter 10 Infinite Sequences and Series
nb1 nb1

21. n lim
¹ uunbn 1 ¹  1 Ê n lim
¹b x †
Ä_
Ä _ ln (n  1)

ln n
bn xn ¹

 1 Ê kbxk  1 Ê  b"  x 

"
b

œ5 Ê bœ „

"
5

22. A polynomial has only a finite number of nonzero terms in its Taylor series, but the functions sin x, ln x and
ex have infinitely many nonzero terms in their Taylor expansions.
sin (ax)  sin xx
x$
xÄ0

Šax 

œ lim

23. lim

a$ x$
3!

 á‹  Šx 

xÄ0
xÄ0

24.

25. (a)
(b)

26.

un
unb1

un
unb1

œ

(n  1)#
n#

un
unb1

œ

n1
n

œ

2n(2n  1)
(2n  1)#

Ê Cœ

3
#

Œ1

œ 1 Ê lim

œ1

œ1

œ

a# x#
#

1
n



œ lim ’ a x# 2 

4n#  2n
4n#  4n  1

 á  b

"
n#

n œ1
_

"
n

n œ1



n

5n#
4n#  4n  1

œ

Š4 

5


4
n

_

_

_

n œ1

n œ1

nœ1

&

 Š a5! 

"
#
5! ‹ x

 á“

a#
4



a# x#
48

 á ‹ œ 1

converges

diverges

œ1

5
4n#  4n  1

"
3!



œ  76

xÄ0

_

Š 64 ‹

"
3!

a$
3!

œ 1 Ê lim Š "2x#b 

Ê C œ 2  1 and !

œ1

 1 and kf(n)k œ

œ  23! 

Ê C œ 1 Ÿ 1 and !

0
n#

xÄ0

$

#x#

"
n#



2
n

a% x%
4!



xÄ0

Ê b œ 1 and a œ „ 2

 á‹  x

sin 2x  sin x  x
x$

is finite if a  2 œ 0 Ê a œ 2; lim

lim cos#axx# b
xÄ0

x$
3!

x$

Š 3# ‹
n

5n#



– Š4n# c 4n b 1‹ —
n#

after long division

_

"
‹
n#

Ÿ 5 Ê ! un converges by Raabe's Test
n œ1

27. (a) ! an œ L Ê an# Ÿ an ! an œ an L Ê ! an# converges by the Direct Comparison Test
(b) converges by the Limit Comparison Test: n lim
Ä_

an
Š1c
an ‹

an

œ n lim
Ä_

"
1  an

_

œ 1 since ! an converges and
n œ1

therefore x lim
a œ0
Ä_ n
28. If 0  an  1 then kln (1  an )k œ  ln (1  an ) œ an 

a#n
#



an$
3

 á  an  an#  an$  á œ

an
1  an

,

a positive term of a convergent series, by the Limit Comparison Test and Exercise 27b
_

29. (1  x)" œ 1  ! xn where kxk  1 Ê
n œ1

#

"
(1x)#

$

4 œ 1  2 ˆ "# ‰  3 ˆ "# ‰  4 ˆ "# ‰  á  n ˆ "# ‰
_

30. (a) ! xn1 œ
nœ1

_

Ê !

n œ1
_

(b) x œ !

n œ1

x#
1 x

n(n  1)
xn
n(n  ")
xn

_

Ê ! (n  1)xn œ
nœ1

œ

2
x

$

Š1  x" ‹

Ê xœ

œ

2x#
(x  1)$

2x#
(x  1)$

2xx#
(1x)#

œ

n 1

d
dx

_

(1  x)" œ ! nxn1 and when x œ
nœ1

"
#

we have

á
_

Ê ! n(n  1)xn1 œ
nœ1

2
(1x)$

_

Ê ! n(n  1)xn œ
nœ1

, kxk  1

Ê x$  3x#  x  1 œ 0 Ê x œ 1  Š1 

È57 "Î$
9 ‹

 Š1 

¸ 2.769292, using a CAS or calculator
31. (a)

"
(1x)#

œ

d
dx

ˆ 1" x ‰ œ

d
dx

(b) from part (a) we have

_

a1  x  x#  x$  á b œ 1  2x  3x#  4x$  á œ ! nxn1

_

! n ˆ 5 ‰n1
6

n œ1

2x
(1x)$

n œ1

ˆ "6 ‰ œ ˆ "6 ‰ ’

2

"
“
1  ˆ 56 ‰

œ6

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

È57 "Î$
9 ‹

Chapter 10 Additional and Advanced Exercises
_

(c) from part (a) we have ! npn1 q œ
n œ1

_

_

32. (a) ! pk œ ! 2k œ
k œ1

k œ1

ˆ "# ‰

1ˆ "# ‰

q
(1  p)#

œ

q
q#

"
q

œ

_

_

k œ1

kœ1

œ 1 and E(x) œ ! kpk œ ! k2k œ

"
#

_

! k21k œ ˆ " ‰
#

kœ1

"
1ˆ "# ‰‘#

œ2

by Exercise 31(a)
_

_

k œ1

k œ1

(b) ! pk œ !
œ ˆ "6 ‰

"
1ˆ 56 ‰‘#

_

_

(c) ! pk œ !
kœ1

kœ1

_

"
k1

œ!

k œ1

5kc1
6k

œ

_

5

e

"
k(k1)

k œ1

6

_

œ ! ˆ k" 
kœ1

" ‰
k1

œ

lim ˆ1 
kÄ_

C! e

kt!

" ‰
k1

ˆ1  e
1e kt!

kœ1

"
6

œ

_

_

kœ1

kœ1

nkt! ‰

Ê Rœ

lim R œ
nÄ_ n
¸ 0.58195028;

e " a1  e "! b
1e "
R  R"!
 0.0001
R

C! e kt!
1  e kt!

"
e1 ¸ 0.58197671; R  R"! ¸ 0.00002643 Ê
Þ1n
e Þ1 ˆ1  e Þ1n ‰ R
Rn œ
, # œ #" ˆ eÞ1 " 1 ‰ ¸ 4.7541659; Rn  R# Ê 1eÞ1 e 1  ˆ #" ‰ ˆ eÞ1 " 1 ‰
1  e Þ1
n
n
Ê 1  enÎ10  "# Ê enÎ10  "# Ê  10
 ln ˆ "# ‰ Ê 10
  ln ˆ "# ‰ Ê n  6.93

34. (a) R œ
(b) t! œ

C!
ekt!  1
"
0.05

_

! k ˆ 5 ‰k1
6

k œ1

œ 1 and E(x) œ ! kpk œ ! k Š k(k " 1) ‹

Ê R" œ e" ¸ 0.36787944 and R"! œ

Rœ

(c)

k œ1

5kc1
6k

, a divergent series so that E(x) does not exist

a1  e n b
1e "

1

_

œ6

33. (a) Rn œ C! ekt!  C! e2kt!  á  C! enkt! œ
(b) Rn œ

_

! ˆ 5 ‰k œ ˆ " ‰ ’ ˆ 6 ‰5 “ œ 1 and E(x) œ ! kpk œ ! k
6
5
1ˆ ‰

"
5

Ê Rekt! œ R  C! œ CH Ê ekt! œ

CH
CL

Ê t! œ

"
k

œ

C!
ekt!  1

Ê nœ7

ln Š CCHL ‹

ln e œ 20 hrs

(c) Give an initial dose that produces a concentration of 2 mg/ml followed every t! œ

"
0.0#

2 ‰
ln ˆ 0.5
¸ 69.31 hrs

by a dose that raises the concentration by 1.5 mg/ml
0.1 ‰
"
‰
(d) t! œ 0.2
ln ˆ 0.03
œ 5 ln ˆ 10
3 ¸ 6 hrs

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

645

646

Chapter 10 Infinite Sequences and Series

NOTES:

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

CHAPTER 11 PARAMETRIC EQUATIONS AND
POLAR COORDINATES
11.1 PARAMETRIZATIONS OF PLANE CURVES
1. x œ 3t, y œ 9t# , _  t  _ Ê y œ x#

2. x œ Èt , y œ t, t

0 Ê x œ È y

#

or y œ x , x Ÿ 0

3. x œ 2t  5, y œ 4t  7, _  t  _
Ê x  5 œ 2t Ê 2(x  5) œ 4t
Ê y œ 2(x  5)  7 Ê y œ 2x  3

5. x œ cos 2t, y œ sin 2t, 0 Ÿ t Ÿ 1
Ê cos# 2t  sin# 2t œ 1 Ê x#  y# œ 1

4. x œ 3  3t, y œ 2t, 0 Ÿ t Ÿ 1 Ê y# œ t
Ê x œ 3  3 ˆ y# ‰ Ê 2x œ 6  3y
Ê y œ 2  23 x, ! Ÿ x Ÿ $

6. x œ cos (1  t), y œ sin (1  t), 0 Ÿ t Ÿ 1
Ê cos# (1  t)  sin# (1  t) œ 1
Ê x#  y# œ 1, y !

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

648

Chapter 11 Parametric Equations and Polar Coordinates

7. x œ 4 cos t, y œ 2 sin t, 0 Ÿ t Ÿ 21
Ê

16 cos# t
16



4 sin# t
4

œ1 Ê

x#
16



9. x œ sin t, y œ cos 2t,  12 Ÿ t Ÿ

y#
4

8. x œ 4 sin t, y œ 5 cos t, 0 Ÿ t Ÿ 21
œ1

1
2

Ê y œ cos 2t œ 1  2sin# t Ê y œ 1  2x2

11. x œ t2 , y œ t6  2t4 , _  t  _
2 3

2 2

Ê y œ at b  2at b Ê y œ x3  2x2

13. x œ t, y œ È1  t# , 1 Ÿ t Ÿ 0
Ê y œ È1  x#

Ê

16 sin# t
16



25 cos# t
25

œ1 Ê

x#
16



y#
#5

œ1

10. x œ 1  sin t, y œ cos t  2, 0 Ÿ t Ÿ 1
Ê sin# t  cos# t œ 1 Ê ax  1b#  ay  2b# œ 1

12. x œ

t
t1,

Ê tœ

yœ

x
x1

t2
t1,

1  t  1

Êyœ

2x
2x  1

14. x œ Èt  1, y œ Èt, t 0
Ê y# œ t Ê x œ Èy#  1, y

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

0

Section 11.1 Parametrizations of Plane Curves
15. x œ sec# t  1, y œ tan t,  1#  t 
Ê sec# t  1 œ tan# t Ê x œ y#

1
#

16. x œ  sec t, y œ tan t,  1#  t 

649

1
#
#

Ê sec# t  tan# t œ 1 Ê x#  y œ 1

17. x œ  cosh t, y œ sinh t, _  1  _
Ê cosh# t  sinh# t œ 1 Ê x#  y# œ 1

18. x œ 2 sinh t, y œ 2 cosh t, _  t  _
Ê 4 cosh# t  4 sinh# t œ 4 Ê y#  x# œ 4

19. (a) x œ a cos t, y œ a sin t, 0 Ÿ t Ÿ 21

20. (a) x œ a sin t, y œ b cos t,

(b) x œ a cos t, y œ a sin t, 0 Ÿ t Ÿ 21
(c) x œ a cos t, y œ a sin t, 0 Ÿ t Ÿ 41
(d) x œ a cos t, y œ a sin t, 0 Ÿ t Ÿ 41

1
#

ŸtŸ

51
#

(b) x œ a cos t, y œ b sin t, 0 Ÿ t Ÿ 21
(c) x œ a sin t, y œ b cos t, 1# Ÿ t Ÿ 9#1
(d) x œ a cos t, y œ b sin t, 0 Ÿ t Ÿ 41

21. Using a"ß $b we create the parametric equations x œ "  at and y œ $  bt, representing a line which goes
through a"ß $b at t œ !. We determine a and b so that the line goes through a%ß "b when t œ ".
Since % œ "  a Ê a œ &. Since " œ $  b Ê b œ %. Therefore, one possible parameterization is x œ "  &t,
y œ $  %t, 0 Ÿ t Ÿ ".
22. Using a"ß $b we create the parametric equations x œ "  at and y œ $  bt, representing a line which goes through
a"ß $b at t œ !. We determine a and b so that the line goes through a$ß #b when t œ ". Since $ œ "  a Ê a œ %.
Since # œ $  b Ê b œ &. Therefore, one possible parameterization is x œ "  %t, y œ $  &t, 0 Ÿ t Ÿ ".
23. The lower half of the parabola is given by x œ y#  " for y Ÿ !. Substituting t for y, we obtain one possible
parameterization x œ t#  ", y œ t, t Ÿ 0Þ
24. The vertex of the parabola is at a"ß "b, so the left half of the parabola is given by y œ x#  #x for x Ÿ ". Substituting
t for x, we obtain one possible parametrization: x œ t, y œ t#  #t, t Ÿ ".
25. For simplicity, we assume that x and y are linear functions of t and that the pointax, yb starts at a#ß $b for t œ ! and passes
through a"ß "b at t œ ". Then x œ fatb, where fa!b œ # and fa"b œ ".
Since slope œ ??xt œ "#
"! œ $, x œ fatb œ $t  # œ #  $t. Also, y œ gatb, where ga!b œ $ and ga"b œ ".
Since slope œ

?y
?t

œ

"3
"!

œ 4. y œ gatb œ %t  $ œ $  %t.

One possible parameterization is: x œ #  $t, y œ $  %t, t

!.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

650

Chapter 11 Parametric Equations and Polar Coordinates

26. For simplicity, we assume that x and y are linear functions of t and that the pointax, yb starts at a"ß #b for t œ ! and
passes through a!ß !b at t œ ". Then x œ fatb, where fa!b œ " and fa"b œ !.
Since slope œ
Since slope œ

?x
?t
?y
?t

œ
œ

!  a"b
"!
!#
"! œ

œ ", x œ fatb œ "t  a"b œ "  t. Also, y œ gatb, where ga!b œ # and ga"b œ !.
#. y œ gatb œ #t  # œ #  #t.

One possible parameterization is: x œ "  t, y œ #  #t, t
27. Since we only want the top half of a circle, y

!.

0, so let x œ 2cos t, y œ 2lsin tl, 0 Ÿ t Ÿ 41

28. Since we want x to stay between 3 and 3, let x œ 3 sin t, then y œ a3 sin tb2 œ 9sin# t, thus x œ 3 sin t, y œ 9sin# t,
0Ÿt_
29. x#  y# œ a# Ê 2x  2y
y# t#  y# œ a# Ê y œ

dy
dx œ 0
a
È1t# and

Ê
x

dy
dy
x
dx œ  y ; let t œ dx Ê
œ È1att , _  t  _

 xy œ t Ê x œ yt. Substitution yields

30. In terms of ), parametric equations for the circle are x œ a cos ), y œ a sin ), 0 Ÿ )  21. Since ) œ as , the arc
length parametrizations are: x œ a cos as , y œ a sin as , and 0 Ÿ

s
a

 21 Ê 0 Ÿ s Ÿ 21a is the interval for s.

31. Drop a vertical line from the point ax, yb to the x-axis, then ) is an angle in a right triangle, and from trigonometry we
know that tan ) œ yx Ê y œ x tan ). The equation of the line through a0, 2b and a4, 0b is given by y œ  12 x  2. Thus
x tan ) œ  12 x  2 Ê x œ

4
2 tan )  1

and y œ

4 tan )
2 tan )  1

where 0 Ÿ )  12 .

32. Drop a vertical line from the point ax, yb to the x-axis, then ) is an angle in a right triangle, and from trigonometry we
know that tan ) œ yx Ê y œ x tan ). Since y œ Èx Ê y2 œ x Ê ax tan )b2 œ x Ê x œ cot2 ) Ê y œ cot ) where
0  ) Ÿ 12 .

33. The equation of the circle is given by ax  2b2  y2 œ 1. Drop a vertical line from the point ax, yb on the circle to the
x-axis, then ) is an angle in a right triangle. So that we can start at a1, 0b and rotate in a clockwise direction, let
x œ 2  cos ), y œ sin ), 0 Ÿ ) Ÿ 21.
34. Drop a vertical line from the point ax, yb to the x-axis, then ) is an angle in a right triangle, whose height is y and whose
base is x  2. By trigonometry we have tan ) œ x y 2 Ê y œ ax  2b tan ). The equation of the circle is given by
x2  y2 œ 1 Ê x2  aax  2btan )b2 œ 1 Ê x2 sec2 )  4x tan2 )  4tan2 )  1 œ 0. Solving for x we obtain
xœ

4tan2 ) „ Éa4tan2 )b2  4 sec2 ) a4tan2 )  1b
2 sec2 )

œ

4tan2 ) „ 2È1  3tan2 )
2 sec2 )

œ 2sin2 ) „ cos )Ècos2 )  3sin2 )

œ 2  2cos2 ) „ cos )È4cos2 )  3 and y œ Š2  2cos2 ) „ cos )È4cos2 )  3  2‹ tan )
œ 2sin ) cos ) „ sin )È4cos2 )  3. Since we only need to go from a1, 0b to a0, 1b, let
x œ 2  2cos2 )  cos )È4cos2 )  3, y œ 2sin ) cos )  sin )È4cos2 )  3, 0 Ÿ ) Ÿ tan1 ˆ 1 ‰.
2

To obtain the upper limit for ), note that x œ 0 and y œ 1, using y œ ax  2b tan ) Ê 1 œ 2 tan ) Ê ) œ tan1 ˆ 12 ‰.
35. Extend the vertical line through A to the x-axis and let C be the point of intersection. Then OC œ AQ œ x
2
2
and tan t œ OC
œ x2 Ê x œ tan2 t œ 2 cot t; sin t œ OA
Ê OA œ sin2 t ; and (AB)(OA) œ (AQ)# Ê AB ˆ sin2 t ‰ œ x#
#
2
2
2
sin
t
Ê AB ˆ sin t ‰ œ ˆ tan t ‰ Ê AB œ tan# t . Next y œ 2  AB sin t Ê y œ 2  ˆ 2tansin# tt ‰ sin t œ
2

2 sin# t
tan# t

œ 2  2 cos# t œ 2 sin# t. Therefore let x œ 2 cot t and y œ 2 sin# t, 0  t  1.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.1 Parametrizations of Plane Curves
36. Arc PF œ Arc AF since each is the distance rolled and
Arc PF
œ nFCP Ê Arc PF œ b(nFCP); ArcaAF œ )
b
Ê Arc AF œ a) Ê a) œ b(nFCP) Ê nFCP œ
nOCG œ

1
#

a
b

);

 ); nOCG œ nOCP  nPCE
œ nOCP  ˆ 1#  !‰ . Now nOCP œ 1  nFCP

œ 1  ba ). Thus nOCG œ 1  ba ) 
œ 1  ba ) 

1
#

1
#

! Ê

 ! Ê ! œ 1  ba )  ) œ 1 

1
# )
ˆ ab b )‰ .

Then x œ OG  BG œ OG  PE œ (a  b) cos )  b cos ! œ (a  b) cos )  b cos ˆ1 
œ (a  b) cos )  b cos ˆ a b b )‰ . Also y œ EG œ CG  CE œ (a  b) sin )  b sin !

ab
b

)‰

œ (a  b) sin )  b sin ˆ1  a b b )‰ œ (a  b) sin )  b sin ˆ a b b )‰ . Therefore
x œ (a  b) cos )  b cos ˆ a b b )‰ and y œ (a  b) sin )  b sin ˆ a b b )‰ .
If b œ 4a , then x œ ˆa  4a ‰ cos ) 
œ
œ
œ
œ

3a
4
3a
4
3a
4
3a
4

cos ) 

œ
œ
œ

3a
4
3a
4
3a
4
3a
4

cos 3) œ

3a
4

cos Š

a  ˆ 4a ‰
ˆ 4a ‰

)‹

cos )  4a (cos ) cos 2)  sin ) sin 2))

cos )  a(cos )) acos# )  sin# )b  (sin ))(2 sin ) cos ))b
a
2a
#
#
4 cos ) sin )  4 sin ) cos )
#
$
)  cos$ )  3a
4 (cos )) a1  cos )b œ a cos );
a
a  ˆ4‰
a‰
a
3a
a
3a
4 sin )  4 sin Š ˆ 4a ‰ )‹ œ 4 sin )  4 sin 3) œ 4

cos ) 
cos

y œ ˆa 
œ

a
4
a
4
a
4
a
4

a
4

cos$ ) 

sin )  4a (sin ) cos 2)  cos ) sin 2))

sin )  4a a(sin )) acos# )  sin# )b  (cos ))(2 sin ) cos ))b
sin ) 
sin ) 
sin ) 

a
4
3a
4
3a
4

sin ) cos# ) 
sin ) cos# ) 

a
4
a
4
#

sin$ ) 

2a
4

cos# ) sin )

sin$ )

(sin )) a1  sin )b 

a
4

sin$ ) œ a sin$ ).

37. Draw line AM in the figure and note that nAMO is a right
angle since it is an inscribed angle which spans the diameter
of a circle. Then AN# œ MN#  AM# . Now, OA œ a,
AN
AM
a œ tan t, and a œ sin t. Next MN œ OP
Ê OP# œ AN#  AM# œ a# tan# t  a# sin# t
Ê OP œ Èa# tan# t  a# sin# t
œ (a sin t)Èsec# t  1 œ
x œ OP sin t œ

a sin$ t
cos t œ
#

a sin# t
cos t
#

. In triangle BPO,

a sin t tan t and

y œ OP cos t œ a sin t Ê x œ a sin# t tan t and y œ a sin# t.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

651

652

Chapter 11 Parametric Equations and Polar Coordinates

38. Let the x-axis be the line the wheel rolls along with the y-axis through a low point of the trochoid
(see the accompanying figure).

Let ) denote the angle through which the wheel turns. Then h œ a) and k œ a. Next introduce xw yw -axes
parallel to the xy-axes and having their origin at the center C of the wheel. Then xw œ b cos ! and
yw œ b sin !, where ! œ 3#1  ). It follows that xw œ b cos ˆ 3#1  )‰ œ b sin ) and yw œ b sin ˆ 3#1  )‰

œ b cos ) Ê x œ h  xw œ a)  b sin ) and y œ k  yw œ a  b cos ) are parametric equations of the trochoid.

#
#
#
39. D œ É(x  2)#  ˆy  "# ‰ Ê D# œ (x  2)#  ˆy  "# ‰ œ (t  2)#  ˆt#  "# ‰ Ê D# œ t%  4t 

Ê

d aD # b
dt

17
4

œ 4t$  4 œ 0 Ê t œ 1. The second derivative is always positive for t Á 0 Ê t œ 1 gives a local

minimum for D# (and hence D) which is an absolute minimum since it is the only extremum Ê the closest
point on the parabola is (1ß 1).
#
#
40. D œ Ɉ2 cos t  34 ‰  (sin t  0)# Ê D# œ ˆ2 cos t  34 ‰  sin# t Ê

d aD # b
dt

œ 2 ˆ2 cos t  34 ‰ (2 sin t)  2 sin t cos t œ (2 sin t) ˆ3 cos t  3# ‰ œ 0 Ê 2 sin t œ 0 or 3 cos t 
Ê t œ 0, 1 or t œ

1
3

,

51
3

. Now

#

#

d aD b
dt#

#

#

œ 6 cos t  3 cos t  6 sin t so that

#

#

d aD b
dt#

3
#

œ0

(0) œ 3 Ê relative

#
#
#
#
maximum, d dtaD# b (1) œ 9 Ê relative maximum, d dtaD# b ˆ 13 ‰ œ 92 Ê relative minimum, and
d # aD # b ˆ 5 1 ‰
œ 9# Ê relative minimum. Therefore both t œ 13 and t œ 531 give points on the ellipse
dt#
3
È
È
the point ˆ 34 ß !‰ Ê Š1ß #3 ‹ and Š1ß  #3 ‹ are the desired points.

41. (a)

(b)

(c)

42. (a)

(b)

(c)

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

closest to

Section 11.1 Parametrizations of Plane Curves
43.

44. (a)

(b)

(c)

45. (a)

(b)

46. (a)

(b)

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

653

654

Chapter 11 Parametric Equations and Polar Coordinates

47. (a)

(b)

(c)

48. (a)

(b)

(c)

(d)

11.2 CALCULUS WITH PARAMETRIC CURVES
1. t œ
Ê

1
4 Ê
dy
dx ¹ tœ 1

x œ 2 cos

d# y
dx#

dyw /dt
dx/dt

œ  cot

1
4

1
4

œ È2, y œ 2 sin

1
4

œ È2;

dx
dt

œ 2 sin t,

dy
dt

œ 2 cos t Ê

œ 1; tangent line is y  È2 œ 1 Šx  È2‹ or y œ x 

dy
dx

œ

œ

dy/dt
dx/dt
w
2È2 ; dy
dt

2 cos t
2 sin t

œ  cot t

œ csc# t

4

Ê

œ

œ

csc# t
2 sin t

"
œ  2 sin
$t Ê

d# y
dx# ¹ tœ 1

œ È 2

4

2. t œ  6" Ê x œ sin ˆ21 ˆ 6" ‰‰ œ sin ˆ 13 ‰ œ 
dy
dt

œ 21 sin 21t Ê

tangent line is y 
œ  cos$"21t Ê

"
#

dy
dx

œ

21 sin 21t
21 cos 21t

œ È3 ’x  Š

d# y
dx# ¹ tœc 1

È3
#

œ  tan 21t Ê

, y œ cos ˆ21 ˆ 6" ‰‰ œ cos ˆ 13 ‰ œ
dy
dx ¹ tœc 1

œ  tan ˆ21 ˆ

" ‰‰
6

"
#

;

dx
dt

œ  tan ˆ

œ 21 cos 21t,

1‰
3

œ È3;

6

È3
# ‹“

or y œ È3x  2;

dyw
dt

œ 21 sec# 21t Ê

d# y
dx#

œ

21 sec# 21t
21 cos 21t

œ 8

6

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.2 Calculus With Parametric Curves
1
4

3. t œ

œ  "# tan t Ê
dyw
dt

1
4

Ê x œ 4 sin

21
3 Ê
dy
dx ¹ tœ 21

4. t œ
Ê

œ  "# tan

dy
dx ¹ tœ 1
4

d# y
dx#

œ  "# sec# t Ê

dyw /dt
dx/dt

œ

1
4

 "# sec# t
4 cos t

œ

œ 4 cos t,

dx
dt

œ 2 sin t Ê

dy
dt

dy
dx

œ

dy/dt
dx/dt

œ

2 sin t
4 cos t

d# y
dx# ¹ tœ 1

"
œ  8 cos
$t Ê

œ

È2
4

4

21
3

x œ cos

È3 dx
21
3 œ  # ; dt
È3
È 3 x 
# ‹œ

œ  "# , y œ È3 cos

œ È3 ; tangent line is y  Š

d# y
dx# ¹ tœ 21

œ È2;

œ  "# ; tangent line is y  È2 œ  "# Šx  2È2‹ or y œ  "# x  2È2 ;

3

Ê

1
4

œ 2È2, y œ 2 cos

œ  sin t,

dy
dt

œ È3 sin t Ê

dy
dx

œ

È3 sin t
 sin t

œ È3

d# y
dx#

œ

œ0

dyw
dt

œ0 Ê

"

œ 1; tangent line is

ˆ #" ‰‘ or y œ È3 x;

0
 sin t

œ0

3

5. t œ

Ê xœ

1
4

y

"
#

1
4

,yœ

"
#

œ 1,

dx
dt

;

dy
dt

œ 1 † ˆx  4" ‰ or y œ x  4" ;

"
#Èt

œ

dyw
dt

Ê

œ

dy
dx

œ

dy/dt
dx/dt
d# y
dx#

œ  "4 t$Î# Ê

#É "4

d# y
dx# ¹ tœ 1

œ  4" t$Î# Ê

œ 2

4

dy
dx

œ

sec# t
2 sec# t tan t

"
2 tan t

œ

"
#

œ

cot t Ê

d# y
dx# ¹ tœc 1

œ

œ

dy
dx ¹ tœc 1
4

y  (1) œ  "# (x  1) or y œ  "# x  "# ;
Ê

œ

dy
dx ¹ tœ 1
4

dyw /dt
dx/dt

œ

6. t œ  14 Ê x œ sec# ˆ 14 ‰  1 œ 1, y œ tan ˆ 14 ‰ œ 1;
Ê

Ê

1
2È t

dyw
dt

"
#

œ 2 sec# t tan t,

dx
dt

œ sec# t

dy
dt

cot ˆ 14 ‰ œ  "# ; tangent line is
d# y
dx#

œ  "# csc# t Ê

œ

 "# csc# t
2 sec# t tan t

œ  "4 cot$ t

"
4

4

7. t œ
œ

1
6

Ê x œ sec

sec# t
sec t tan t

1
6

y œ tan

1
6

œ

dy
dx ¹ tœ 1

œ csc

1
6

œ 2; tangent line is y 

d# y
dx#

dyw /dt
dx/dt

œ

œ csc t Ê

2
È3 ,

"
È3

;

dx
dt

œ sec t tan t,

6

dyw
dt

œ  csc t cot t Ê

œ

 csc t cot t
sec t tan t

œ

dy
dt

œ sec# t Ê

"
È3

œ 2 Šx 

d# y
dx# ¹ tœ 1

œ  cot$ t Ê

œ

dy
dx

2
È3 ‹

dy/dt
dx/dt

or y œ 2x  È3 ;

œ 3È3

6

8. t œ 3 Ê x œ È3  1 œ 2, y œ È3(3) œ 3;
È

œ  3 Èt3t 1 œ
dyw
dt

Ê

œ

dy
dx ¹ tœ3

3 È 3  1
È3(3)

œ

dx
dt

œ 4t,

y  1 œ 1 † (x  5) or y œ x  4;
10. t œ 1 Ê x œ 1, y œ 2;

œ

dx
dt

dy
dt

œ

Ê xœ

sin t
1  cos t

d# y
dx#

œ

dy/dt
dx/dt

œ

Ê

3
2tÈ3t Èt1

dyw
dt

œ  t"# ,

œ 4t$ Ê

œ 2t Ê
dy
dt

y  (2) œ 1(x  1) or y œ x  1;

1
3

œ

3
#

(3t)"Î# Ê

dy
dx

œ

ˆ 3# ‰ (3t) "Î#
ˆ "# ‰ (t1) "Î#

Š 2tÈ3t3Èt  1 ‹
Š 2Èt1 1 ‹

œ  tÈ33t

œ  "3

9. t œ 1 Ê x œ 5, y œ 1;

11. t œ

dy
dt

œ 2; tangent line is y  3 œ 2[x  (2)] or y œ 2x  1;

È3t  3 (t  1) "Î# ‘3Èt  1  3 (3t) "Î# ‘
#
#
3t

d# y
dx# ¹ tœ3

œ  "# (t  1)"Î# ,

dx
dt

Ê

1
3

 sin

dy
dx ¹ tœ 1
3

œ

1
3

œ

1
3



sin ˆ 13 ‰
1cos ˆ 13 ‰

œ

dyw
dt

"
t

dy
dx

d# y
dx#

Ê

œ

œ

dyw /dt
dx/dt

dy
dx

œ

œ 1 Ê

œ

ˆ "t ‰
Š t"# ‹

d# y
dx#

œ

4t$
4t
2t
4t

œ t# Ê

œ

"
#

Ê

œ t Ê

1
Š t"# ‹

dy
dx ¹ tœc1

d# y
dx# ¹ tœc1
dy
dx ¹ tœ1

œ t# Ê

œ (1)# œ 1; tangent line is

œ

"
#

œ 1; tangent line is

d# y
dx# ¹ tœ1

œ1

È3
#

dy
, y œ 1  cos 13 œ 1  #" œ #" ; dx
dt œ 1  cos t, dt œ sin t Ê
È
Š #3 ‹
È
œ ˆ " ‰ œ È3 ; tangent line is y  "# œ È3 Šx  13  #3 ‹
#

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

dy
dx

œ

dy/dt
dx/dt

655

656

Chapter 11 Parametric Equations and Polar Coordinates
1È3
3

Ê y œ È3x 
1
(1  cos t)#

œ
12. t œ
Ê

1
2 Ê
dy
dx ¹ tœ 1

 2;

d# y
dx# ¹ tœ 1

Ê

dyw
dt

(1  cos t)(cos t)  (sin t)(sin t)
(1cos t)#

œ

1
1  cos t

œ

d# y
dx#

Ê

œ

dyw /dt
dx/dt

œ

œ

cos t
 sin t

1 ‰
ˆ 1 cos
t
1  cos t

œ 4

3

1
2

x œ cos
œ  cot

2

13. t œ 2 Ê x œ

œ 0, y œ 1  sin

1
#

œ 2;

œ  sin t,

dx
dt

w

œ 0; tangent line is y œ 2;

œ 31 , y œ

1
21

1
2

tangent line is y œ 9x  1;

œ 2;

2
21

dyw
dt

œ

dx
dt

14. t œ 0 Ê x œ 0  e0 œ 1, y œ 1  e0 œ 0;
dyw
dt

dx
dt

2y$  3t# œ 4 Ê 6y#

œ csc t Ê

œ

4 at  1 b3
a t  1b 3

œ 1  et ,

dx
dt

d# y
dx#

 4t œ 0 Ê 3x2

dx
dt

œ 4t Ê

œ

6t
6y#

 6t œ 0 Ê

dy
dt

dy
dt

e t
a 1  e t b3

œ

œ

t
y#

csc t
 sin t

d# y
dx# ¹ tœ2

œ

4a 2  1b3
a 2  1b 3

d# y
dx# ¹ tœ0

Ê

dx
dt

œ

4t
3x2

;

; thus

dy
dx

œ

dy/dt
dx/dt

œ

œ

œ 1

œ

a2  1b2
a2  1 b2

œ 9;

œ

e 0
1  e0

2

at  1b2
at  1 b 2

Ê

e t
1  et

œ

d# y
dx# ¹ tœ 1

œ  csc t Ê

œ

dy
dx

œ  cot t

$

dy
dx

Ê

Ê

dy
dx
#

œ

d y
dx#

œ  et Ê

dy
dt

Ê

œ

1
at  1b2

œ

et
a 1  e t b2

tangent line is y œ  12 x  12 ;
15. x3  2t# œ 9 Ê 3x2

d# y
dx#

#

#

dy
dt

1
, dy
at  1b2 dt

t  1b
œ  4ata
Ê
1 b3

œ cos t Ê

dy
dt

œ 108
Ê

e 0
a 1  e 0 b3

Š yt# ‹

dy
dx ¹ tœ0

œ  12 ;

œ  18

œ

Š c4t ‹

dy
dx ¹ tœ2

3x2

t(3x2 )
y# (4t)

œ

3x2
4y#

;tœ2

Ê x3  2(2)# œ 9 Ê x3  8 œ 9 Ê x3 œ 1 Ê x œ 1; t œ 2 Ê 2y$  3(2)# œ 4
Ê 2y$ œ 16 Ê y$ œ 8 Ê y œ 2; therefore
16. x œ É5  Èt Ê
Ê at  1b

dy
dt

œ

"
#È t

therefore,

dy
dx ¹ tœ4

œ

dy
dt

dy
dt

"Î#

"

Èt  y
œ #at 
1b œ

"  #yÈt
#tÈt  2Èt

œ

œ

"4
dx
dt

dy
t
Èy ‹ dt

 3x"Î#

œ

y
2Èt1

Œ 2Èy (t b 1) b 2tÈt b 1 
Š

"

2t b 1
‹
1 b 3x"Î#

dx
dt

œ 2t  1 Ê ˆ1  3x"Î# ‰

 2Èy Ê

œ

dy
dt

dy
dt

dx
dt

1
#

; therefore

Èt É5 Èt

"  #yÈt
#Ètat" b

sin t  x cos t  2

dy
dx ¹ tœ1

œ

†

4Èt É5  Èt
"

2
3

Š 2Èct yb 1  2Èy‹
ŠÈt  1  Èy ‹
t

dy
dt

œ

dx
dt

Èt  1 

œ

2t1
13x"Î#

y
2È t  1

yÈ y  4yÈt  1
2È y (t  1)  2tÈt  1

; yÈt  1  2tÈy œ 4

 2Èy  Š Èt y ‹

; thus

; t œ 0 Ê x  2x$Î# œ 0 Ê x ˆ1  2x"Î# ‰ œ 0 Ê x œ 0; t œ 0

t sin t  2t œ y Ê sin t  t cos t  2 œ
Ê xœ

4

œ 2t  1 Ê

œ0 Ê

dx
dt
dy
dt ;

sin 1  1 cos 1  2

–

1

Š 1# ‹ cos 1

sin 1  2

dy
dx ¹ tœ0

œ

œ 1 Ê (sin t  2)
thus
œ

dy
dx

œ

4 1  8
21

È4

È0  1

Œ 2È4(0  1)  2(0)È0  1 
4

dx
dt

" #yÈt

È È
œ #t t "2 t œ

dy
dt
dx
dt

œ

dy
dx

10È3
9

œ

Ê yÈ0  1  2(0)Èy œ 4 Ê y œ 4; therefore

18. x sin t  2x œ t Ê

" "Î#
; y(t  1) œ Èt Ê y  (t  1) dy
dt œ # t

t œ 4 Ê x œ É5  È4 œ È3; t œ 4 Ê y † 3 œ È4 Ê y œ

cyÈy c 4yÈt b 1

dy/dt
dx/dt

3
œ  16

4È t É 5  È t

; thus

Èt  1  y ˆ " ‰ (t  1)"Î#  2Èy  2t ˆ " y"Î# ‰
#
#

Ê ŠÈt  1 
dy
dx

3a"b2
4a#b#

œ

ˆ "# t"Î# ‰ œ 

2Š"  2a 23 bÈ4‹É&  È4

17. x  2x$Î# œ t#  t Ê
Ê

ˆ5  Èt‰

y Ê

#ˆ"  #yÈt‰É&  Èt
;
"t

œ

"
#

œ

dx
dt

dy
dx ¹ tœ2

4(4)

2(0)  1

Œ 1  3(0)"Î# 
dx
dt

œ 6

œ 1  x cos t Ê

sin t  t cos t  2
c x cos t ‰
ˆ 1sin
tb2

dx
dt

œ

1  x cos t
sin t2

; t œ 1 Ê x sin 1  2x œ 1

œ 4

—

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

;

dy
dt

œ0

Section 11.2 Calculus With Parametric Curves
19. x œ t3  t, y  2t3 œ 2x  t2 Ê
Ê

œ

dy
dx

2t  2
3t2 1

Ê

dy
dx ¹ tœ1

œ

dx
2
dt œ 3t
2 a1 b  2
œ1
3 a1 b2  1

20. t œ lnax  tb, y œ t et Ê 1 œ
Ê

œ

dy
dx

21. A œ '0

21

t et  et
xt1;

1 ˆ dx
x  t dt

 1,

 6t2 œ 2 dx
dt  2t Ê

dy
dt

 1‰ Ê x  t œ

t œ 0 Ê 0 œ lnax  0b Ê x œ 1 Ê

dx
dx
dt  1 Ê dt œ
a0be0  e0
dy
dx ¹ tœ0 œ 1  0  1

dy
dt

œ 2a3t2  1b  2t  6t2 œ 2t  2

x  t  1,
œ

657

dy
dt

œ t et  et ;

1
2

y dx œ '0 aa1  cos tbaa1  cos tbdt œ a2 '0 a1  cos tb2 dt œ a2 '0 a1  2cos t  cos2 tbdt
21

œ a2 '0 ˆ1  2cos t 
21

21

1  cos 2t ‰
dt
2

21

œ a2 '0 ˆ 23  2cos t  12 cos 2t‰dt œ a2 ” 23 t  2sin t  14 sin 2t•
21

21
0

œ a2 a31  0  0b  0 œ 31 a2
22. A œ '0 x dy œ '0 at  t2 baet bdt ”u œ t  t2 Ê du œ a1  2tbdt; dv œ aet bdt Ê v œ et •
1

1

1

œ et at  t2 bº  '0 et a1  2tbdt
1

t
t
”u œ 1  2t Ê du œ 2dt; dv œ e dt Ê v œ e •

0

1

1

0

0

œ et at  t2 bº  ”et a1  2tbº  '0 2et dt• œ ”et at  t2 b  et a1  2tb  2et •º
1

0

œ ae1 a0b  e1 a1b  2e1 b  ae0 a0b  e0 a1b  2e0 b œ 1  3e1 œ 1 
23. A œ 2'1 y dx œ 2'1 ab sin tbaa sin tbdt œ 2ab'0 sin2 t dt œ 2ab'0
0

1

1

0

1

1

3
e

1  cos 2t
2

dt œ ab'0 a1  cos 2tb dt
1

œ ab’t  12 sin 2t“ œ abaa1  0b  !b œ 1 ab
0

24. (a) x œ t2 , y œ t6 , 0 Ÿ t Ÿ 1 Ê A œ '0 y dx œ '0 at6 b2t dt œ '0 2t7 dt œ ’ 14 t8 “ œ
1

1

1

1

0

1
4

0œ

(b) x œ t3 , y œ t9 , 0 Ÿ t Ÿ 1 Ê A œ '0 y dx œ '0 at9 b3t2 dt œ '0 3t11 dt œ ’ 14 t12 “ œ
1

1

1

1

0

25.

dx
dt

œ  sin t and

dy
dt

1
4

1
4

0œ

1
4

#

#

‰  Š dy
Éasin tb#  a1  cos tb# œ È2  2 cos t
œ 1  cos t Ê Êˆ dx
dt
dt ‹ œ

cos t ‰
È2 ' É sin# t dt
Ê Length œ '0 È2  2 cos t dt œ È2 '0 Ɉ 11 
 cos t (1  cos t) dt œ
1  cos t
0
1

œ È2 '0

1

sin t
È1  cos t

1

dt (since sin t

1

0 on [0ß 1]); [u œ 1  cos t Ê du œ sin t dt; t œ 0 Ê u œ 0,

#
t œ 1 Ê u œ 2] Ä È2 '0 u"Î# du œ È2 2u"Î# ‘ ! œ 4
2

26.

dx
dt

œ 3t# and

dy
dt

È3

Ê Length œ '0
Ä '1

4

27.

dx
dt

3
#

#

#

‰  Š dy
Éa3t# b#  (3t)# œ È9t%  9t# œ 3tÈt#  1 Šsince t
œ 3t Ê Êˆ dx
dt
dt ‹ œ
3tÈt#  1 dt; ’u œ t#  1 Ê

3
#

0 on ’0ß È3“‹

du œ 3t dt; t œ 0 Ê u œ 1, t œ È3 Ê u œ 4“

%

u"Î# du œ u$Î# ‘ " œ (8  1) œ 7

œ t and

dy
dt

#

#

Èt#  a2t  1b œ Éat  1b# œ kt  1k œ t  1 since 0 Ÿ t Ÿ 4
‰  Š dy
œ (2t  1)"Î# Ê Êˆ dx
dt
dt ‹ œ

Ê Length œ '0 at  1b dt œ ’ t2  t“ œ a8  4b œ 12
4

#

%
!

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

658
28.

Chapter 11 Parametric Equations and Polar Coordinates
dx
dt

œ a2t  3b"Î# and

dy
dt

#

#

‰  Š dy
Éa2t  3b  a1  tb# œ Èt#  4t  4 œ kt  2k œ t  2
œ 1  t Ê Êˆ dx
dt
dt ‹ œ

since 0 Ÿ t Ÿ 3 Ê Length œ '0 (t  2) dt œ ’ t2  2t“ œ
3

3

#

!

29.

dx
dt

œ 8t cos t and

dy
dt

dx
dt

#

#

‰  Š dy
Éa8t cos tb#  a8t sin tb# œ È64t# cos# t  64t# sin# t
œ 8t sin t Ê Êˆ dx
dt
dt ‹ œ
1
#

œ k8tk œ 8t since 0 Ÿ t Ÿ

30.

21
#

Ê Length œ '0

1Î2

1Î#

8t dt œ c4t# d !

œ ˆ sec t" tan t ‰ asec t tan t  sec# tb  cos t œ sec t  cos t and

œ 1#

œ Éasec t  cos tb#  asin tb# œ Èsec# t  1 œ Ètan# t œ ktan tk œ tan t since 0 Ÿ t Ÿ
Ê Length œ '0

1Î3

31.

dx
dt

œ  sin t and

dy
dt

tan t dt œ '0

1Î3

1Î$

dt œ c ln kcos tkd !

sin t
cos t

#

#

‰  Š dy
œ  sin t Ê Êˆ dx
dt
dt ‹

dy
dt

"
#

œ  ln

1
3

 ln 1 œ ln 2

‰  Š dy
Éasin tb#  acos tb# œ 1 Ê Area œ ' 21y ds
œ cos t Ê Êˆ dx
dt
dt ‹ œ
#

#

œ '0 21a2  sin tba1bdt œ 21 c2t  cos td #!1 œ 21[a41  1b  a0  1b] œ 81#
21

32.

dx
dt

œ t"Î# and

È3

œ '0

dy
dt

#

21 ˆ 23 t$Î# ‰ É t

"
t

È3

'0

#

21 ˆ 23 t$Î# ‰ É t
#

fatb œ 21 ˆ 23 t$Î# ‰ É t
Ê

33.

dx
dt

È3

'0

281
9

Fatb dt œ

œ 1 and

È2

dy
dt

#

"
t

dt œ

41
3

È3

'0

1
t

Ê Area œ ' 21x ds

tÈt#  1 dt; cu œ t#  1 Ê du œ 2t dt; t œ 0 Ê u œ 1,

'14 231 Èu du œ  491 u$Î# ‘ %" œ 2891

’t œ È3 Ê u œ 4“ Ä
Note:

#

#

Èt  t" œ É t
‰  Š dy
œ t"Î# Ê Êˆ dx
dt
dt ‹ œ

1
t

dt is an improper integral but limb fatb exists and is equal to 0, where
tÄ!

. Thus the discontinuity is removable: define Fatb œ fatb for t  0 and Fa0b œ 0

.
#

#

#
È2‹ œ Ét#  2È2 t  3 Ê Area œ ' 21x ds
‰#  Š dy
œ t  È2 Ê Êˆ dx
dt
dt ‹ œ Ê1  Št 

œ 'cÈ2 21 Št  È2‹ Ét#  2È2 t  3 dt; ’u œ t#  2È2 t  3 Ê du œ Š2t  2È2‹ dt; t œ È2 Ê u œ 1,

’t œ È2 Ê u œ 9“ Ä '1 1Èu du œ  23 1u$Î# ‘ " œ
9

*

21
3

a27  1b œ

521
3

' 21y ds œ '0
‰  Š dy
34. From Exercise 30, ʈ dx
dt
dt ‹ œ tan t Ê Area œ
#

#

1Î$

œ 21 c cos td !
35.

dx
dt

œ 2 and

dy
dt
#

1 Î3

21 cos t tan t dt œ 21 '0

1 Î3

sin t dt

œ 21  "#  (1)‘ œ 1

È2#  1# œ È5 Ê Area œ ' 21y ds œ ' 21at  1bÈ5 dt
‰  Š dy
œ 1 Ê Êˆ dx
dt
dt ‹ œ
0
#

#

1

"

œ 21È5 ’ t2  t“ œ 31È5. Check: slant height is È5 Ê Area is 1a1  2bÈ5 œ 31È5 .
!

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.2 Calculus With Parametric Curves
36.

dx
dt

œ h and

659

Èh#  r# Ê Area œ ' 21y ds œ ' 21rtÈh#  r# dt
‰  Š dy
œ r Ê Êˆ dx
dt
dt ‹ œ
0
#

#

dy
dt

œ 2 1 r È h#  r #

1

'01 t dt œ 21rÈh#  r# ’ t2 “ " œ 1rÈh#  r# .
#

!

Check: slant height is Èh#  r# Ê Area is

1rÈh#  r# .
37. Let the density be $ œ 1. Then x œ cos t  t sin t Ê

dx
dt

œ t cos t, and y œ sin t  t cos t Ê

dy
dt

#

#

1
#

È(t cos t)#  (t sin t)# œ ktk dt œ t dt since 0 Ÿ t Ÿ
‰  Š dy
Ê dm œ 1 † ds œ ʈ dx
dt
dt ‹ dt œ
M œ ' dm œ '0

1Î2

1Î#

œ csin t  t cos td !
yœ

Mx
M

œ

1#

Š3 

4

‹

œ

#

Š 18 ‹

xœ

My
M

œ

 3‰
#

Š 18 ‹

1Î#

 ct# sin t  2 sin t  2t cos td !
24
1#

1Î#

 ct# cos t  2 cos t  2t sin td !

œ

12
1

Therefore axß yb œ ˆ 12
1 

38. Let the density be $ œ 1. Then x œ et cos t Ê

dx
dt

1 Î2

œ
24
1#

, where we integrated by parts. Therefore,

acos t  t sin tb t dt œ '0

1 Î2

24
1# .

1#
4

œ 3

 2. Next, My œ ' µ
x dm œ '0



. The curve's mass is

1Î2
1Î2
1Î2
. Also Mx œ ' µ
y dm œ '0 asin t  t cos tb t dt œ '0 t sin t dt  '0 t# cos t dt

1Î#

œ ccos t  t sin td !
ˆ 3#1

1#
8

t dt œ

œ t sin t

31
#

t cos t dt  '0

1 Î2

t# sin t dt

 3, again integrating by parts. Hence

‰
ß 24
1#  2 .

œ et cos t  et sin t, and y œ et sin t Ê

dy
dt

œ et sin t  et cos t

#

#

‰  Š dy
Éaet cos t  et sin tb#  aet sin t  et cos tb# dt œ È2e2t dt œ È2 et dt.
Ê dm œ 1 † ds œ ʈ dx
dt
dt ‹ dt œ
1
1
The curve's mass is M œ ' dm œ '0 È2 et dt œ È2 e1  È2 . Also Mx œ ' µ
y dm œ '0 aet sin tb ŠÈ2 et ‹ dt
2t
21
œ '0 È2 e2t sin t dt œ È2 ’ e5 (2 sin t  cos t)“ œ È2 Š e5  5" ‹ Ê y œ

1

1

!

Mx
M

œ

È2 Š e21  " ‹
5
5
È 2 e1  È 2

œ

e21  "
5 ae1  1b

.

2t
21
Next My œ ' µ
x dm œ '0 aet cos tb ŠÈ2 et ‹ dt œ '0 È2 e2t cos t dt œ È2 ’ e5 a2 cos t  sin tb“ œ È2 Š 2e5  52 ‹

1

My
M

œ

1
!

21

Ê xœ

1

È2 Š 2e5  25 ‹
È 2 e1  È 2

21

21

21

œ  52eae1  12b . Therefore axß yb œ Š 52eae1  12b ß 5 eae1 11b ‹.

39. Let the density be $ œ 1. Then x œ cos t Ê

dx
dt

œ  sin t, and y œ t  sin t Ê

dy
dt

œ 1  cos t

#

#

‰  Š dy
Éasin tb#  a1  cos tb# dt œ È2  2 cos t dt. The curve's mass
Ê dm œ 1 † ds œ ʈ dx
dt
dt ‹ dt œ
is M œ ' dm œ '0 È2  2 cos t dt œ È2'0 È1  cos t dt œ È2 '0 É2 cos# ˆ #t ‰ dt œ 2 '0 ¸cos ˆ #t ‰¸ dt
1

1

œ 2 '0 cos ˆ #t ‰ dt ˆsince 0 Ÿ t Ÿ 1 Ê 0 Ÿ
1

t
#

1

1

1
Ÿ 1# ‰ œ 2 2 sin ˆ 2t ‰‘ ! œ 4. Also Mx œ ' µ
y dm

œ '0 at  sin tb ˆ2 cos #t ‰ dt œ '0 2t cos ˆ #t ‰ dt  '0 2 sin t cos ˆ #t ‰ dt
1

1

1

1
1
œ 2 4 cos ˆ 2t ‰  2t sin ˆ #t ‰‘ !  2  "3 cos ˆ #3 t‰  cos ˆ "# t‰‘ ! œ 41 

16
3

Ê yœ

Next My œ ' µ
x dm œ '0 acos tbˆ2 cos #t ‰ dt œ '0 cos t cos ˆ #t ‰ dt œ 2 ’sin ˆ 2t ‰ 
1

œ

4
3

Ê xœ

My
M

ˆ 43 ‰
4

œ

œ

1

"
3

ˆ41  16
‰
Mx
3
œ1
M œ
4
sin ˆ 3# t‰ 1
“ œ 2  23
3
!

 43 .

. Therefore axß yb œ ˆ 3" ß 1  43 ‰.

40. Let the density be $ œ 1. Then x œ t$ Ê

dx
dt

œ 3t# , and y œ

3t#
#

Ê

dy
dt

œ 3t Ê dm œ 1 † ds

#

#

‰  Š dy
Éa3t# b#  (3t)# dt œ 3 ktk Èt#  1 dt œ 3tÈt#  1 dt since 0 Ÿ t Ÿ È3. The curve's mass
œ ʈ dx
dt
dt ‹ dt œ

È3

is M œ ' dm œ '0
œ

9
#

È3

'0

$Î#
3tÈt#  1 dt œ ’at#  1b “

t$ Èt#  1 dt œ

87
5

È3
!

È3

œ 7. Also Mx œ ' µ
y dm œ '0

œ 17.4 (by computer) Ê y œ

Mx
M

œ

17.4
7

3t#
#

Š3tÈt#  1‹ dt

¸ 2.49. Next My œ ' µ
x dm

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

660

Chapter 11 Parametric Equations and Polar Coordinates
È3

È3

œ '0 t$ † 3t Èat#  1b dt œ 3 '0 t% Èt#  1 dt ¸ 16.4849 (by computer) Ê x œ

My
M

œ

¸ 2.35.

16.4849
7

Therefore, axß yb ¸ a2.35ß 2.49b.
œ 2 sin 2t and

dx
dt

41. (a)

Ê Length œ '0

1Î2

œ 1 cos 1t and

dx
dt

(b)

#

#

#

#

‰  Š dy
Éa2 sin 2tb#  a2 cos 2tb# œ 2
œ 2 cos 2t Ê Êˆ dx
dt
dt ‹ œ

dy
dt

1Î#

2 dt œ c2td !

œ1

‰  Š dy
Éa1 cos 1tb#  a1 sin 1tb# œ 1
œ 1 sin 1t Ê Êˆ dx
dt
dt ‹ œ

dy
dt

Ê Length œ '1Î2 1 dt œ c1td "Î# œ 1
1 Î2

"Î#

42. (a) x œ gayb has the parametrization x œ gayb and y œ y for c Ÿ y Ÿ d Ê

dx
dy

œ gw ayb and

œ 1; then

dy
dy

dx
dx
'
' È1  [gw ayb]# dy
Length œ 'c ÊŠ dy
dy ‹  Š dy ‹ dy œ c Ê1  Š dy ‹ dy œ c
#

d

(b) x œ y3Î2 , 0 Ÿ y Ÿ
œ

3 Î2
8
27 a4b



4
3

#

Ê

3 Î2
8
27 a1b

(c) x œ 23 y2Î3 , 0 Ÿ y Ÿ 1 Ê
œ lim

3
2

a Ä0

œ 32 y1Î2 Ê L œ '0

4 Î3

dx
dy

œ

#

d

56
27
dx
dy

d

É1  ˆ 32 y1Î2 ‰# dy œ '

0

1

1

Ê

œ

œ

œ

1 

È œ
2
3
2

2È 3  1
È3  2

 2 sin )b,

dy
dx º
)œ0

(b) x œ ˆ1  2 sinˆ 1# ‰‰cosˆ 1# ‰ œ 0, y œ ˆ1  2 sinˆ 1# ‰‰sinˆ 1# ‰ œ 3;

È3  1

œ

y œ ˆ1  2 sinˆ 431 ‰‰sinˆ 431 ‰ œ

45.

dy
d)

œ

œ

01
20

2 sinˆ2ˆ 1# ‰‰  cosˆ 1# ‰
2 cosˆ2ˆ 1# ‰‰  sinˆ 1# ‰

3  È3
2

;

dy
dx º

)œ41/3

œ

dx
dt

œ 1,

dy
dt

œ sin t Ê

dy
dx

œ

sin t
1

œ sin t Ê

or t œ

31
2

d2 y
dx2

Ê

dy
dx ,

d dy
dt Š dx ‹

(a) the minimum slope is

dy
dx º
tœ31Î2

œ sinˆ 321 ‰ œ 1, which occurs at x œ

œ 2 cos 2t Ê

dy
dx

Ê 2 cos# t  1 œ 0 Ê cos t œ „
y œ sin 2 ˆ 14 ‰ œ 1 Ê Š

00
2  1

œ0

È2
# ß 1‹

œ

d2 y
dx2

œ

œ cos t. The

cos t
1

d2 y
dx2

œ0

œ  ±    ± 
31Î2
1 Î2

œ sinˆ 12 ‰ œ 1, which occurs at x œ 12 , y œ 1  cosˆ 12 ‰ œ 1

dy
dt

œ

1
2

in other words, points where

dy
dx º
tœ1Î2

œ cos t and

œ

2 sinˆ2ˆ 431 ‰‰  cosˆ 431 ‰
2 cosˆ2ˆ 431 ‰‰  sinˆ 431 ‰

œ cos t Ê

(a) the maximum slope is

dx
dt

2 3

œ 2cos ) sin )  cos )a1  2 sin )b

2 sina2a0bb  cosa0b
2 cosa2a0bb  sina0b

dy
dx º
)œ1/2

maximum and minimum slope will occur at points that maximize/minimize
Ê cos t œ 0 Ê t œ

2 3

a Ä0

œ  Š 4  3È 3 ‹

44. x œ t, y œ 1  cos t, 0 Ÿ t Ÿ 21 Ê
1
2

'a1 É y yÎ Î 1 dy

dy œ lim

a

(a) x œ a1  2 sina0bbcosa0b œ 1, y œ a1  2 sina0bbsina0b œ 0;

È3  1
,
2

0

3 Î2
3 Î2
lim ” 32 † 23 ˆy2Î3  1‰ • œ lim Ša2b3Î2  ˆa2Î3  1‰ ‹ œ 2È2  1
a Ä0

a Ä0

dx
2
d) œ 2cos )  sin )a1
4cos ) sin )  cos )
2 sin 2)  cos )
2cos2 )  2sin2 )  sin ) œ 2 cos 2)  sin )

(c) x œ ˆ1  2 sinˆ 431 ‰‰cosˆ 431 ‰ œ

1
y2Î3

4Î3

1

'a1 ˆy2Î3  1‰1Î2 ˆ 23 y1Î3 ‰ dy œ

2cos ) sin )  cos )a1  2 sin )b
2cos2 )  sin )a1  2 sin )b

3Î2
É1  94 y dy œ ” 49 † 23 ˆ1  94 y‰ •

#
œ y1Î3 Ê L œ '0 É1  ay1Î3 b dy œ '0 É1 

43. x œ a1  2 sin )bcos ), y œ a1  2 sin )bsin ) Ê
dy
dx

4Î3

dy/dt
dx/dt

"
È2

œ

2 cos 2t
cos t

Ê tœ

1
4

,

œ
31
4

,

2 a2 cos# t  1b
cos t
51
4

,

71
4

; then

31
2 ,

dy
dx

y œ 1  cosˆ 321 ‰ œ 1

œ0 Ê

2 a2 cos# t  1b
cos t

. In the 1st quadrant: t œ

1
4

œ0

Ê x œ sin

1
4

œ

È2
#

is the point where the tangent line is horizontal. At the origin: x œ 0 and y œ 0

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

and

Section 11.2 Calculus With Parametric Curves
Ê sin t œ 0 Ê t œ 0 or t œ 1 and sin 2t œ 0 Ê t œ 0,
the origin. Tangents at origin:
46.

dx
dt

œ
dy
dx

œ 2 cos 2t and

dy
dt

œ 3 cos 3t Ê

3 ca2 cos# t  1b (cos t)  2 sin t cos t sin td
2 a2 cos# t  1b
(3 cos t) a4 cos# t3b
2 a2 cos# t  1b

œ0 Ê

œ 2 Ê y œ 2x and

dy
dx ¹ tœ0

œ

dy
dx

œ

œ

dy/dt
dx/dt

and y œ sin 3 ˆ 16 ‰ œ 1 Ê Š

3(cos 2t cos t  sin 2t sin t)
2 a2 cos# t1b

(3 cos t) a2 cos# t  1  2 sin# tb
2 a2 cos# t  1b

È3
#

È3
# ß 1‹

Ê tœ

1
6

,

51
6

,

œ

(3 cos t) a4 cos# t  3b
2 a2 cos# t  1b

; then

71
6

,

111
6

. In the 1st quadrant: t œ

1
6

1
#

,

31
#

and

Ê x œ sin 2 ˆ 16 ‰ œ

È3
#

is the point where the graph has a horizontal tangent. At the origin: x œ 0

and y œ 0 Ê sin 2t œ 0 and sin 3t œ 0 Ê t œ 0,

1
#

, 1,

the tangent lines at the origin. Tangents at the origin:
3 cos (31)
2 cos (21)

œ

3 cos 3t
2 cos 2t

1 give the tangent lines at

œ 0 Ê 3 cos t œ 0 or 4 cos# t  3 œ 0: 3 cos t œ 0 Ê t œ

4 cos# t  3 œ 0 Ê cos t œ „

œ

1
31
# , 1, # ; thus t œ 0 and t œ
dy
dx ¹ tœ1 œ 2 Ê y œ 2x

661

31
#

and t œ 0,

dy
dx ¹ tœ0

œ

3 cos 0
2 cos 0

1
3

œ

,

21
3

, 1,

41
3

,

51
3

3
#

x, and

Ê t œ 0 and t œ 1 give

3
#

Ê yœ

dy
dt

œ a sin t Ê Length

dy
dx ¹ tœ1

œ  3# Ê y œ  3# x

47. (a) x œ aat  sin tb, y œ aa1  cos tb, 0 Ÿ t Ÿ 21 Ê

dx
dt

œ aa1  cos tb,

œ '0 Éaaa1  cos tbb#  aa sin tb# dt œ '0 Èa#  2a# cos t  a# cos# t  a# sin# t dt
21

21

œ aÈ2'0 È1  cos t dt œ aÈ2'0 É2 sin2 ˆ 2t ‰ dt œ 2a'0 sinˆ 2t ‰ dt œ ’4a cosˆ 2t ‰“
21

21

21

21

0

œ 4a cos 1  4a cosa0b œ 8a
(b) a œ 1 Ê x œ t  sin t, y œ 1  cos t, 0 Ÿ t Ÿ 21 Ê

dx
dt
21

œ 1  cos t,

dy
dt

œ sin t Ê Surface area œ

œ '0 21a1  cos tbÉa1  cos tb#  asin tb# dt œ '0 21a1  cos tbÈ1  2 cos t  cos# t  sin# t dt
21

3Î2
œ 21'0 a1  cos tbÈ2  2 cos t dt œ 2È21'0 a1  cos tb3Î2 dt œ 2È21'0 ˆ1  cos ˆ2 † 2t ‰‰ dt
21

21

21

3 Î2
œ 2È21'0 ˆ2 sin2 ˆ 2t ‰‰ dt œ 81'0 sin3 ˆ 2t ‰ dt
21

21

’u œ

t
2

Ê du œ 21 dt Ê dt œ 2 du; t œ 0 Ê u œ 0, t œ 21 Ê u œ 1“

œ 161'0 sin3 u du œ 161'0 sin2 u sin u du œ 161'0 a1  cos2 u bsin u du œ 161'0 sin u du  161'0 cos2 u sin u du
1

œ ’161cos u 

1

1
161
3
3 cos u“0

1

œ ˆ161 

161 ‰
3

1

 ˆ161 

161 ‰
3

œ

641
3

48. x œ t  sin t, y œ 1  cos t, 0 Ÿ t Ÿ 21; Volume œ '0 1 y2 dx œ '0 1a1  cos tb2 a1  cos tbdt
21

21

2t ‰
œ 1'0 a1  3cos t  3cos2 t  cos3 tbdt œ 1'0 ˆ1  3cos t  3ˆ 1  cos
 cos2 t cos t‰dt
2
21

21

œ 1'0 ˆ 52  3cos t  32 cos 2t  a1  sin2 tb cos t‰dt œ 1'0 ˆ 52  4cos t  32 cos 2t  sin2 t cos t‰dt
21

21

21

œ 1’ 52 t  4sin t  34 sin 2t  31 sin3 t “

0

œ 1a51  0  0  0b  0 œ 512

47-50. Example CAS commands:
Maple:
with( plots );
with( student );
x := t -> t^3/3;
y := t -> t^2/2;
a := 0;
b := 1;
N := [2, 4, 8 ];
for n in N do
Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

1

662

Chapter 11 Parametric Equations and Polar Coordinates
tt := [seq( a+i*(b-a)/n, i=0..n )];
pts := [seq([x(t),y(t)],t=tt)];
L := simplify(add( student[distance](pts[i+1],pts[i]), i=1..n ));
# (b)
T := sprintf("#47(a) (Section 11.2)\nn=%3d L=%8.5f\n", n, L );
P[n] := plot( [[x(t),y(t),t=a..b],pts], title=T ):
# (a)
end do:
display( [seq(P[n],n=N)], insequence=true );
ds := t ->sqrt( simplify(D(x)(t)^2 + D(y)(t)^2) ):
# (c)
L := Int( ds(t), t=a..b ):
L = evalf(L);

11.3 POLAR COORDINATES
1. a, e; b, g; c, h; d, f

2. a, f; b, h; c, g; d, e

3. (a) ˆ2ß 1#  2n1‰ and ˆ2ß 1#  (2n  1)1‰ , n an integer

(b) (#ß 2n1) and (#ß (2n  1)1), n an integer
(c) ˆ2ß 3#1  2n1‰ and ˆ2ß 3#1  (2n  1)1‰ , n an integer
(d) (#ß (2n  1)1) and (#ß 2n1), n an integer

4. (a) ˆ3ß 14  2n1‰ and ˆ3ß 541  2n1‰ , n an integer
(b) ˆ3ß 14  2n1‰ and ˆ3ß 541  2n1‰ , n an integer
(c) ˆ3ß  14  2n1‰ and ˆ3ß 341  2n1‰ , n an integer
(d) ˆ3ß  14  2n1‰ and ˆ3ß 341  2n1‰ , n an integer

5. (a) x œ r cos ) œ 3 cos 0 œ 3, y œ r sin ) œ 3 sin 0 œ 0 Ê Cartesian coordinates are ($ß 0)
(b) x œ r cos ) œ 3 cos 0 œ 3, y œ r sin ) œ 3 sin 0 œ 0 Ê Cartesian coordinates are ($ß 0)
(c) x œ r cos ) œ 2 cos 21 œ 1, y œ r sin ) œ 2 sin 21 œ È3 Ê Cartesian coordinates are Š1ß È3‹
3

(d) x œ r cos ) œ 2 cos

71
3

3

œ 1, y œ r sin ) œ 2 sin

71
3

œ È3 Ê Cartesian coordinates are Š1ß È3‹

(e) x œ r cos ) œ 3 cos 1 œ 3, y œ r sin ) œ 3 sin 1 œ 0 Ê Cartesian coordinates are (3ß 0)
(f) x œ r cos ) œ 2 cos 1 œ 1, y œ r sin ) œ 2 sin 1 œ È3 Ê Cartesian coordinates are Š1ß È3‹
3

3

(g) x œ r cos ) œ 3 cos 21 œ 3, y œ r sin ) œ 3 sin 21 œ 0 Ê Cartesian coordinates are (3ß 0)
(h) x œ r cos ) œ 2 cos ˆ 1 ‰ œ 1, y œ r sin ) œ 2 sin ˆ 1 ‰ œ È3 Ê Cartesian coordinates are Š1ß È3‹
3

6. (a) x œ È2 cos

1
4

œ 1, y œ È2 sin

3

1
4

œ 1 Ê Cartesian coordinates are (1ß 1)

(b) x œ 1 cos 0 œ 1, y œ 1 sin 0 œ 0 Ê Cartesian coordinates are (1ß 0)
(c) x œ 0 cos 1# œ 0, y œ 0 sin 1# œ 0 Ê Cartesian coordinates are (!ß 0)
(d) x œ È2 cos ˆ 1 ‰ œ 1, y œ È2 sin ˆ 1 ‰ œ 1 Ê Cartesian coordinates are (1ß 1)
4

(e) x œ 3 cos

51
6

œ

4

3È 3
2

, y œ 3 sin

51
6

È

œ  3# Ê Cartesian coordinates are Š 3 # 3 ß  3# ‹

(f) x œ 5 cos ˆtan" 43 ‰ œ 3, y œ 5 sin ˆtan" 43 ‰ œ 4 Ê Cartesian coordinates are ($ß 4)

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.3 Polar Coordinates

663

(g) x œ 1 cos 71 œ 1, y œ 1 sin 71 œ 0 Ê Cartesian coordinates are (1ß 0)
(h) x œ 2È3 cos 231 œ È3, y œ 2È3 sin 231 œ 3 Ê Cartesian coordinates are ŠÈ3ß 3‹
7. (a) a1, 1b Ê r œ È12  12 œ È2, sin ) œ

1
È2

and cos ) œ

1
È2

1
4

Ê)œ

Ê Polar coordinates are ŠÈ2, 14 ‹

(b) a3, 0b Ê r œ Éa3b2  02 œ 3, sin ) œ 0 and cos ) œ 1 Ê ) œ 1 Ê Polar coordinates are a3, 1b
2

(c) ŠÈ3, 1‹ Ê r œ ÊŠÈ3‹  a1b2 œ 2, sin ) œ  12 and cos ) œ
(d) a3, 4b Ê r œ Éa3b2  42 œ 5, sin ) œ

4
5

È3
2

111
6

Ê)œ

Ê Polar coordinates are ˆ2,

111 ‰
6

and cos ) œ  35 Ê ) œ 1  arctanˆ 43 ‰ Ê Polar coordinates are

ˆ5, 1  arctanˆ 43 ‰‰
8. (a) a2, 2b Ê r œ Éa2b2  a2b2 œ 2È2, sin ) œ  È12 and cos ) œ  È12 Ê ) œ  341 Ê Polar coordinates are
Š2È2,  341 ‹
(b) a0, 3b Ê r œ È02  32 œ 3, sin ) œ 1 and cos ) œ 0 Ê ) œ
2

(c) ŠÈ3, 1‹ Ê r œ ÊŠÈ3‹  12 œ 2, sin ) œ

1
2

1
2

Ê Polar coordinates are ˆ3, 12 ‰

and cos ) œ 

(d) a5, 12b Ê r œ É52  a12b2 œ 13, sin ) œ  12
13 and cos ) œ

5
12

È3
2

Ê)œ

51
6

Ê Polar coordinates are ˆ2,

51 ‰
6

‰
Ê ) œ arctanˆ 12
5 Ê Polar coordinates are

ˆ13, arctanˆ 12
‰‰
5
9. (a) a3, 3b Ê r œ È32  32 œ 3È2, sin ) œ  È12 and cos ) œ  È12 Ê ) œ
Š3È2,

51
4

Ê Polar coordinates are

51
4 ‹

(b) a1, 0b Ê r œ Éa1b2  02 œ 1, sin ) œ 0 and cos ) œ 1 Ê ) œ 0 Ê Polar coordinates are a1, 0b
2

(c) Š1, È3‹ Ê r œ Êa1b2  ŠÈ3‹ œ 2, sin ) œ 
ˆ2,

È3
2

and cos ) œ

1
2

Ê)œ

51
3

Ê Polar coordinates are

51 ‰
3

(d) a4, 3b Ê r œ É42  a3b2 œ 5, sin ) œ

3
5

and cos ) œ  45 Ê ) œ 1  arctanˆ 34 ‰ Ê Polar coordinates are

ˆ5, 1  arctanˆ 43 ‰‰
10. (a) a2, 0b Ê r œ Éa2b2  02 œ 2, sin ) œ 0 and cos ) œ 1 Ê ) œ 0 Ê Polar coordinates are a2, 0b
(b) a1, 0b Ê r œ È12  02 œ 1, sin ) œ 0 and cos ) œ 1 Ê ) œ 1 or ) œ 1 Ê Polar coordinates are a1, 1b or
a1, 1b
(c) a0, 3b Ê r œ É02  a3b2 œ 3, sin ) œ 1 and cos ) œ 0 Ê ) œ
(d) Š

È3 1
2 , 2‹

are ˆ1,

Ê r œ ÊŠ
71 ‰
6

È3 2
2 ‹

2

 ˆ 21 ‰ œ 1, sin ) œ  12 and cos ) œ 

1
2

Ê Polar coordinates are ˆ3, 12 ‰

È3
2

Ê)œ

71
6

or ) œ  561 Ê Polar coordinates

or ˆ1,  561 ‰

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

664

Chapter 11 Parametric Equations and Polar Coordinates

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.3 Polar Coordinates

665

26.

27. r cos ) œ 2 Ê x œ 2, vertical line through (#ß 0)

28. r sin ) œ 1 Ê y œ 1, horizontal line through (0ß 1)

29. r sin ) œ 0 Ê y œ 0, the x-axis

30. r cos ) œ 0 Ê x œ 0, the y-axis

31. r œ 4 csc ) Ê r œ

4
sin )

32. r œ 3 sec ) Ê r œ

Ê r sin ) œ 4 Ê y œ 4, a horizontal line through (0ß 4)

3
cos )

Ê r cos ) œ 3 Ê x œ 3, a vertical line through (3ß 0)

33. r cos )  r sin ) œ 1 Ê x  y œ 1, line with slope m œ 1 and intercept b œ 1
34. r sin ) œ r cos ) Ê y œ x, line with slope m œ 1 and intercept b œ 0
35. r# œ 1 Ê x#  y# œ 1, circle with center C œ (!ß 0) and radius 1
36. r# œ 4r sin ) Ê x#  y# œ 4y Ê x#  y#  4y  4 œ 4 Ê x#  (y  2)# œ 4, circle with center C œ (0ß 2) and radius 2
37. r œ

5
sin )2 cos )

Ê r sin )  2r cos ) œ 5 Ê y  2x œ 5, line with slope m œ 2 and intercept b œ 5

38. r# sin 2) œ 2 Ê 2r# sin ) cos ) œ 2 Ê (r sin ))(r cos )) œ 1 Ê xy œ 1, hyperbola with focal axis y œ x
)‰ˆ " ‰
39. r œ cot ) csc ) œ ˆ cos
Ê r sin# ) œ cos ) Ê r# sin# ) œ r cos ) Ê y# œ x, parabola with vertex (0ß 0)
sin )
sin )

which opens to the right
sin ) ‰
40. r œ 4 tan ) sec ) Ê r œ 4 ˆ cos
Ê r cos# ) œ 4 sin ) Ê r# cos# ) œ 4r sin ) Ê x# œ 4y, parabola with
#)

vertex œ (!ß 0) which opens upward

41. r œ (csc )) er cos ) Ê r sin ) œ er cos ) Ê y œ ex , graph of the natural exponential function
42. r sin ) œ ln r  ln cos ) œ ln (r cos )) Ê y œ ln x, graph of the natural logarithm function
43. r#  2r# cos ) sin ) œ 1 Ê x#  y#  2xy œ 1 Ê x#  2xy  y# œ 1 Ê (x  y)# œ 1 Ê x  y œ „ 1, two parallel
straight lines of slope 1 and y-intercepts b œ „ 1
44. cos# ) œ sin# ) Ê r# cos# ) œ r# sin# ) Ê x# œ y# Ê kxk œ kyk Ê „ x œ y, two perpendicular
lines through the origin with slopes 1 and 1, respectively.
45. r# œ 4r cos ) Ê x#  y# œ 4x Ê x#  4x  y# œ 0 Ê x#  4x  4  y# œ 4 Ê (x  2)#  y# œ 4, a circle with
center C(2ß 0) and radius 2

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

666

Chapter 11 Parametric Equations and Polar Coordinates

46. r# œ 6r sin ) Ê x#  y# œ 6y Ê x#  y#  6y œ 0 Ê x#  y#  6y  9 œ 9 Ê x#  (y  3)# œ 9, a circle with
center C(0ß 3) and radius 3
47. r œ 8 sin ) Ê r# œ 8r sin ) Ê x#  y# œ 8y Ê x#  y#  8y œ 0 Ê x#  y#  8y  16 œ 16 Ê x#  (y  4)# œ 16, a
circle with center C(0ß 4) and radius 4
48. r œ 3 cos ) Ê r# œ 3r cos ) Ê x#  y# œ 3x Ê x#  y#  3x œ 0 Ê x#  3x 
#
Ê ˆx  3# ‰  y# œ

9
4

, a circle with center C ˆ 3# ß !‰ and radius

9
4

 y# œ

9
4

3
#

49. r œ 2 cos )  2 sin ) Ê r# œ 2r cos )  2r sin ) Ê x#  y# œ 2x  2y Ê x#  2x  y#  2y œ 0
Ê (x  1)#  (y  1)# œ 2, a circle with center C(1ß 1) and radius È2
50. r œ 2 cos )  sin ) Ê r# œ 2r cos )  r sin ) Ê x#  y# œ 2x  y Ê x#  2x  y#  y œ 0
#
Ê (x  1)#  ˆy  "# ‰ œ 54 , a circle with center C ˆ1ß  "# ‰ and radius

È5
#

È

51. r sin ˆ)  16 ‰ œ 2 Ê r ˆsin ) cos 16  cos ) sin 16 ‰ œ 2 Ê #3 r sin )  "# r cos ) œ 2 Ê
Ê È3 y  x œ 4, line with slope m œ  " and intercept b œ 4
È3

È3
#

È3

È

52. r sin ˆ 231  )‰ œ 5 Ê r ˆsin 231 cos )  cos 231 sin )‰ œ 5 Ê #3 r cos )  "# r sin ) œ 5 Ê
Ê È3 x  y œ 10, line with slope m œ È3 and intercept b œ 10
53. x œ 7 Ê r cos ) œ 7
55. x œ y Ê r cos ) œ r sin ) Ê ) œ

y  "# x œ 2

È3
#

x  "# y œ 5

54. y œ 1 Ê r sin ) œ 1
1
4

56. x  y œ 3 Ê r cos )  r sin ) œ 3

57. x#  y# œ 4 Ê r# œ 4 Ê r œ 2 or r œ 2
58. x#  y# œ 1 Ê r# cos# )  r# sin# ) œ 1 Ê r# acos# )  sin# )b œ 1 Ê r# cos 2) œ 1
59.

x#
9



y#
4

œ 1 Ê 4x#  9y# œ 36 Ê 4r# cos# )  9r# sin# ) œ 36

60. xy œ 2 Ê (r cos ))(r sin )) œ 2 Ê r# cos ) sin ) œ 2 Ê 2r# cos ) sin ) œ 4 Ê r# sin 2) œ 4
61. y# œ 4x Ê r# sin# ) œ 4r cos ) Ê r sin# ) œ 4 cos )
62. x#  xy  y# œ 1 Ê x#  y#  xy œ 1 Ê r#  r# sin ) cos ) œ 1 Ê r# (1  sin ) cos )) œ 1
63. x#  (y  2)# œ 4 Ê x#  y#  4y  4 œ 4 Ê x#  y# œ 4y Ê r# œ 4r sin ) Ê r œ 4 sin )
64. (x  5)#  y# œ 25 Ê x#  10x  25  y# œ 25 Ê x#  y# œ 10x Ê r# œ 10r cos ) Ê r œ 10 cos )
65. (x  3)#  (y  1)# œ 4 Ê x#  6x  9  y#  2y  1 œ 4 Ê x#  y# œ 6x  2y  6 Ê r# œ 6r cos )  2r sin )  6
66. (x  2)#  (y  5)# œ 16 Ê x#  4x  4  y#  10y  25 œ 16 Ê x#  y# œ 4x  10y  13
Ê r# œ 4r cos )  10r sin )  13

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.4 Graphing in Polar Coordinates
67. (!ß )) where ) is any angle
68. (a) x œ a Ê r cos ) œ a Ê r œ
(b) y œ b Ê r sin ) œ b Ê r œ

a
cos )
b
sin )

Ê r œ a sec )
Ê r œ b csc )

11.4 GRAPHING IN POLAR COORDINATES
1. 1  cos ()) œ 1  cos ) œ r Ê symmetric about the
x-axis; 1  cos ()) Á r and 1  cos (1  ))
œ 1  cos ) Á r Ê not symmetric about the y-axis;
therefore not symmetric about the origin

2. 2  2 cos ()) œ 2  2 cos ) œ r Ê symmetric about the
x-axis; 2  # cos ()) Á r and 2  2 cos (1  ))
œ 2  2 cos ) Á r Ê not symmetric about the y-axis;
therefore not symmetric about the origin

3. 1  sin ()) œ 1  sin ) Á r and 1  sin (1  ))
œ 1  sin ) Á r Ê not symmetric about the x-axis;
1  sin (1  )) œ 1  sin ) œ r Ê symmetric about
the y-axis; therefore not symmetric about the origin

4. 1  sin ()) œ 1  sin ) Á r and 1  sin (1  ))
œ 1  sin ) Á r Ê not symmetric about the x-axis;
1  sin (1  )) œ 1  sin ) œ r Ê symmetric about the
y-axis; therefore not symmetric about the origin

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

667

668

Chapter 11 Parametric Equatins and Polar Coordinates

5. 2  sin ()) œ 2  sin ) Á r and 2  sin (1  ))
œ 2  sin ) Á r Ê not symmetric about the x-axis;
2  sin (1  )) œ 2  sin ) œ r Ê symmetric about the
y-axis; therefore not symmetric about the origin

6. 1  2 sin ()) œ 1  2 sin ) Á r and 1  2 sin (1  ))
œ 1  2 sin ) Á r Ê not symmetric about the x-axis;
1  2 sin (1  )) œ 1  2 sin ) œ r Ê symmetric about the
y-axis; therefore not symmetric about the origin

7. sin ˆ #) ‰ œ  sin ˆ #) ‰ œ r Ê symmetric about the y-axis;
sin ˆ 21#) ‰ œ sin ˆ 2) ‰ , so the graph is symmetric about the
x-axis, and hence the origin.

8. cos ˆ #) ‰ œ cos ˆ #) ‰ œ r Ê symmetric about the x-axis;
cos ˆ 21#) ‰ œ cos ˆ 2) ‰ , so the graph is symmetric about the
y-axis, and hence the origin.

9. cos ()) œ cos ) œ r# Ê (rß )) and (rß )) are on the
graph when (rß )) is on the graph Ê symmetric about the
x-axis and the y-axis; therefore symmetric about the origin

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.4 Graphing in Polar Coordinates
10. sin (1  )) œ sin ) œ r# Ê (rß 1  )) and (rß 1  )) are on
the graph when (rß )) is on the graph Ê symmetric about
the y-axis and the x-axis; therefore symmetric about the
origin

11.  sin (1  )) œ  sin ) œ r# Ê (rß 1  )) and (rß 1  ))
are on the graph when (rß )) is on the graph Ê symmetric
about the y-axis and the x-axis; therefore symmetric about
the origin

12.  cos ()) œ  cos ) œ r# Ê (rß )) and (rß )) are on
the graph when (rß )) is on the graph Ê symmetric about
the x-axis and the y-axis; therefore symmetric about the
origin

13. Since a „ rß )b are on the graph when (rß )) is on the graph
ˆa „ rb# œ 4 cos 2( )) Ê r# œ 4 cos 2)‰ , the graph is
symmetric about the x-axis and the y-axis Ê the graph is
symmetric about the origin

14. Since (rß )) on the graph Ê (rß )) is on the graph
ˆa „ rb# œ 4 sin 2) Ê r# œ 4 sin 2)‰ , the graph is
symmetric about the origin. But 4 sin 2()) œ 4 sin 2)
Á r# and 4 sin 2(1  )) œ 4 sin (21  2)) œ 4 sin (2))
œ 4 sin 2) Á r# Ê the graph is not symmetric about
the x-axis; therefore the graph is not symmetric about
the y-axis
15. Since (rß )) on the graph Ê (rß )) is on the graph
ˆa „ rb# œ  sin 2) Ê r# œ  sin 2)‰ , the graph is
symmetric about the origin. But  sin 2()) œ ( sin 2))
sin 2) Á r# and  sin 2(1  )) œ  sin (21  2))
œ  sin (2)) œ ( sin 2)) œ sin 2) Á r# Ê the graph
is not symmetric about the x-axis; therefore the graph is
not symmetric about the y-axis

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

669

670

Chapter 11 Parametric Equatins and Polar Coordinates

16. Sincea „ rß )b are on the graph when (rß )) is on the
graph ˆa „ rb# œ  cos 2()) Ê r# œ  cos 2)‰, the
graph is symmetric about the x-axis and the y-axis Ê the
graph is symmetric about the origin.

Ê r œ 1 Ê ˆ1ß 1# ‰ , and ) œ  1# Ê r œ 1
w
)r cos )
Ê ˆ1ß  1# ‰ ; rw œ ddr) œ  sin ); Slope œ rrw sin
cos )r sin )

17. ) œ

1
#

 sin# )r cos )
 sin ) cos )r sin )
 sin# ˆ 1# ‰(1) cos 1#
 sin 1# cos 1# (1) sin 1#

œ

Ê Slope at ˆ1ß 1# ‰ is
œ 1; Slope at ˆ1ß  1# ‰ is

 sin# ˆ 1# ‰(1) cos ˆ 1# ‰
 sin ˆ 1# ‰ cos ˆ 1# ‰(1) sin ˆ 1# ‰

œ1

18. ) œ 0 Ê r œ 1 Ê ("ß 0), and ) œ 1 Ê r œ 1
dr
Ê ("ß 1); rw œ d)
œ cos );

rw sin )r cos )
cos ) sin )r cos )
rw cos )r sin ) œ cos ) cos )r sin )
0 sin 0(1) cos 0
cos ) sin )r cos )
Ê Slope at ("ß 0) is coscos
# 0(1) sin 0
cos# )r sin )
cos 1 sin 1(1) cos 1
1; Slope at ("ß 1) is cos# 1(1) sin 1 œ 1

Slope œ
œ
œ

Ê r œ 1 Ê ˆ"ß 14 ‰ ; ) œ  14 Ê r œ 1
Ê ˆ1ß  14 ‰ ; ) œ 341 Ê r œ 1 Ê ˆ"ß 341 ‰ ;
) œ  341 Ê r œ 1 Ê ˆ1ß  341 ‰ ;

19. ) œ

rw œ

1
4

dr
d)

œ 2 cos 2);

Slope œ

r sin )r cos )
r cos )r sin )
w
w

Ê Slope at ˆ1ß 14 ‰ is
Slope at ˆ1ß  14 ‰ is
Slope at ˆ1ß 341 ‰ is
Slope at ˆ1ß  341 ‰ is

2 cos 2) sin )r cos )
2 cos 2) cos )r sin )
2 cos ˆ 1# ‰ sin ˆ 14 ‰(1) cos ˆ 14 ‰
2 cos ˆ 1 ‰ cos ˆ 1 ‰(1) sin ˆ 1 ‰

œ

#

4

4

œ 1;

2 cos ˆ 1# ‰ sin ˆ 14 ‰(1) cos ˆ 14 ‰
2 cos ˆ 1# ‰ cos ˆ 14 ‰(1) sin ˆ 14 ‰

2 cos Š 3#1 ‹ sin Š 341 ‹(1) cos Š 341 ‹
2 cos Š 3#1 ‹ cos Š 341 ‹(1) sin Š 341 ‹

œ 1;

œ 1;

2 cos Š 3#1 ‹ sin Š 341 ‹(1) cos Š 341 ‹
2 cos Š 3#1 ‹ cos Š 341 ‹(1) sin Š 341 ‹

œ 1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.4 Graphing in Polar Coordinates
20. ) œ 0 Ê r œ 1 Ê (1ß 0); ) œ 12 Ê r œ 1 Ê ˆ1ß 12 ‰ ;
) œ  1# Ê r œ 1 Ê ˆ"ß  12 ‰ ; ) œ 1 Ê r œ 1
Ê (1ß 1); rw œ

dr
d) œ 2 sin 2);
)r cos )
2 sin 2) sin )r cos )
Slope œ rr sin
cos )r sin ) œ 2 sin 2) cos )r sin )
2 sin 0 sin 0cos 0
Ê Slope at (1ß 0) is 
2 sin 0 cos 0sin 0 , which is undefined;
2 sin 2 ˆ 1 ‰ sin ˆ 1 ‰(1) cos ˆ 1 ‰
Slope at ˆ1ß 12 ‰ is 2 sin 2 ˆ 12 ‰ cos ˆ21 ‰(1) sin ˆ 21 ‰ œ 0;
w
w

2

Slope at ˆ1ß  12 ‰ is
Slope at ("ß 1) is

2

2

2 sin 2 ˆ 1# ‰ sin ˆ 1# ‰(1) cos ˆ 1# ‰
2 sin 2 ˆ 1 ‰ cos ˆ 1 ‰(1) sin ˆ 1 ‰
#

2 sin 21 sin 1cos 1
2 sin 21 cos 1sin 1

#

#

œ 0;

, which is undefined

21. (a)

(b)

22. (a)

(b)

23. (a)

(b)

24. (a)

(b)

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

671

672

Chapter 11 Parametric Equatins and Polar Coordinates

25.

26. r œ 2 sec ) Ê r œ

27.

2
cos )

Ê r cos ) œ 2 Ê x œ 2

28.

29. Note that (rß )) and (rß )  1) describe the same point in the plane. Then r œ 1  cos ) Í 1  cos ()  1)
œ 1  (cos ) cos 1  sin ) sin 1) œ 1  cos ) œ (1  cos )) œ r; therefore (rß )) is on the graph of
r œ 1  cos ) Í (rß )  1) is on the graph of r œ 1  cos ) Ê the answer is (a).

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.4 Graphing in Polar Coordinates
30. Note that (rß )) and (rß )  1) describe the same point in the plane. Then r œ cos 2) Í  sin ˆ2()  1))  1# ‰
œ  sin ˆ2)  5#1 ‰ œ  sin (2)) cos ˆ 5#1 ‰  cos (2)) sin ˆ 5#1 ‰ œ  cos 2) œ r; therefore (rß )) is on the graph of
r œ  sin ˆ2)  1# ‰ Ê the answer is (a).

31.

33. (a)

34. (a)

32.

(b)

(c)

(b)

(d)

(c)

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

673

674

Chapter 11 Parametric Equatins and Polar Coordinates

(d)

(e)

11.5 AREA AND LENGTHS IN POLAR COORDINATES
1. A œ '0 "# )# d) œ  16 )3 ‘ ! œ
1

1

13
6

2. A œ '1Î4 "# a2 sin )b# d) œ 2'1Î4 sin2 ) d) œ 2'1Î4
1Î2

1Î2

œ ˆ 12  0‰  ˆ 14  12 ‰ œ
3. A œ '0

21

"
#

1
4



1Î2

4. A œ '0

21

(4  2 cos ))# d) œ '0

21

œ

"
#

a#

œ '0

"
#

21

"
#
# [a(1  cos ))] d)
21
ˆ #3  2 cos )  #"
0

'

5. A œ 2 '0

1Î4

6. A œ '1Î6
1 Î6

œ "4 ) 
7. A œ '0

1Î2

"
#

"
#

1Î4

1
‘ 1 Î6
6 sin 6) 1Î6

"
#

1Î2

1Î6

"
#

"
#

#1

"
2

sin 2)‘ ! œ 181

a# a1  2 cos )  cos# )b d) œ
"
#

"
4

a#  #3 )  2 sin ) 

d) œ

"
#

cos2 3) d) œ

) 
"
#

sin 4) ‘ 1Î%
4
!

'11ÎÎ66

œ "4 ˆ 16  0‰  "4 ˆ 16  0‰ œ

(4 sin 2)) d) œ '0

8. A œ (6)(2)'0

1Î2

21

1  cos 4)
#

' 11ÎÎ66

"
#

1Î2

2 ) ‰‘
a16  16 cos )  4 cos# )b d) œ '0 8  8 cos )  2 ˆ 1  cos
d)
#

cos 2)‰ d) œ

cos# 2) d) œ '0

acos 3)b2 d) œ

d) œ '1Î4 a1  cos 2)bd) œ )  12 sin 2)‘1Î4

1
2

œ '0 (9  8 cos )  cos 2)) d) œ 9)  8 sin ) 
21

1  cos 2)
2

œ

1  cos 6)
2

a#

2) ‰
'021 ˆ1  2 cos )  1  cos
d)
#
#1

sin 2)‘ ! œ

3
#

1a#

1
8

d) œ

"
4

'11ÎÎ66

a1  cos 6)b d)

1
12

1Î#

2 sin 2) d) œ c cos 2)d !

œ2

(2 sin 3)) d) œ 12 '0 sin 3) d) œ 12  cos3 3) ‘ !
1Î6

"
#

1Î'

œ4

9. r œ 2 cos ) and r œ 2 sin ) Ê 2 cos ) œ 2 sin )
Ê cos ) œ sin ) Ê ) œ 14 ; therefore
A œ 2 '0

1Î4

œ '0

1Î4

"
#

(2 sin ))# d) œ '0

1Î4

2) ‰
4 ˆ 1  cos
d) œ '0
#

œ c2)  sin

1Î4

1Î%
2) d !

œ

1
#

4 sin# ) d)

(2  2 cos 2)) d)

1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.5 Area and Lengths in Polar Coordinates
10. r œ 1 and r œ 2 sin ) Ê 2 sin ) œ 1 Ê sin ) œ
1
6

Ê )œ

or

51
6

"
#

; therefore

A œ 1(1)#  '1Î6

51Î6

"
#

c(2 sin ))#  1# d d)

œ 1  '1Î6 ˆ2 sin# )  "# ‰ d)
51Î6

œ 1  '1Î6 ˆ1  cos 2)  "# ‰ d)
51Î6

œ 1  '1Î6 ˆ "#  cos 2)‰ d) œ 1   "2 ) 

sin 2) ‘ &1Î'
#
1Î'

œ 1  ˆ 511# 

41  3È 3
6

51Î6

"
#

sin

51 ‰
3

1
 ˆ 12


"
#

sin 13 ‰ œ

11. r œ 2 and r œ 2(1  cos )) Ê 2 œ 2(1  cos ))
Ê cos ) œ 0 Ê ) œ „ 1# ; therefore
A œ 2 '0

1Î2

œ '0

1Î2

œ '0

1Î2

œ '0

1Î2

"
#

[2(1  cos ))]# d)  "# area of the circle

4 a1  2 cos )  cos# )b d)  ˆ "# 1‰ (2)#
4 ˆ1  2 cos ) 

1  cos 2) ‰
#

d)  21

(4  8 cos )  2  2 cos 2)) d)  21
1Î#

œ c6)  8 sin )  sin 2)d !

 2 1 œ 51  8

12. r œ 2(1  cos )) and r œ 2(1  cos )) Ê 1  cos )
œ 1  cos ) Ê cos ) œ 0 Ê ) œ 1# or 3#1 ; the graph also
gives the point of intersection (0ß 0); therefore

A œ 2 '0

1Î2

"
#

[2(1  cos ))]# d)  2 '1Î2 "# [2(1  cos ))]# d)
1

œ '0 4a1  2cos )  cos# )bd)
1Î2

 '1Î2 4 a1  2 cos )  cos# )bd)
1

œ '0

4 ˆ1  2 cos ) 

œ '0

(6  8 cos )  2 cos 2)) d)  '1Î2 (6  8 cos )  2 cos 2)) d)

1Î2
1Î2

1  cos 2) ‰
#

d)  '1Î2 4 ˆ1  2 cos ) 
1

1  cos 2) ‰
#

d)

1

1Î#

œ c6)  8 sin )  sin 2)d !

 c6)  8 sin )  sin 2)d 11Î# œ 61  16

13. r œ È3 and r# œ 6 cos 2) Ê 3 œ 6 cos 2) Ê cos 2) œ
1
6

Ê )œ

"
#

(in the 1st quadrant); we use symmetry of the

graph to find the area, so
A œ 4 '0 ” "# (6 cos 2))  "# ŠÈ3‹ • d)
1Î6

#

œ 2 '0 (6 cos 2)  3) d) œ 2 c3 sin 2)  3)d !
1Î6

1Î'

œ 3È 3  1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

675

676

Chapter 11 Parametric Equatins and Polar Coordinates

14. r œ 3a cos ) and r œ a(1  cos )) Ê 3a cos ) œ a(1  cos ))
Ê 3 cos ) œ 1  cos ) Ê cos ) œ "# Ê ) œ 13 or  13 ;
the graph also gives the point of intersection (0ß 0); therefore

A œ 2 '0

1Î3

"
#

c(3a cos ))#  a# (1  cos ))# d d)

œ '0 a9a# cos# )  a#  2a# cos )  a# cos# )b d)
1Î3

œ '0

1Î3

a8a# cos# )  2a# cos )  a# b d)

œ '0 c4a# (1  cos 2))  2a# cos )  a# d d)
1Î3

œ '0 a3a#  4a# cos 2)  2a# cos )b d)
1Î3

1Î$

œ c3a# )  2a# sin 2)  2a# sin )d !

œ 1a#  2a# ˆ "# ‰  2a# Š

È3
# ‹

œ a# Š1  1  È3‹

15. r œ 1 and r œ 2 cos ) Ê 1 œ 2 cos ) Ê cos ) œ  "#
Ê )œ

A œ 2'

1

21
3

in quadrant II; therefore

"
21Î3 #

c(2 cos ))#  1# d d) œ '21Î3 a4 cos# )  1b d)
1

œ '21Î3 [2(1  cos 2))  1] d) œ '21Î3 (1  2 cos 2)) d)
1

1

œ c)  sin 2)d 1#1Î$ œ

1
3



È3
#

16. r œ 6 and r œ 3 csc ) Ê 6 sin ) œ 3 Ê sin ) œ
Ê )œ

1
6

or

51
6

œ '1Î6 ˆ18 
51Î6

9
#

; therefore A œ '1Î6

51Î6

csc# )‰ d) œ 18) 

"
#

"
#

a6#  9 csc# )b d)

9
#

cot )‘ 1Î'

&1Î'

œ Š151  9# È3‹  Š31  9# È3‹ œ 121  9È3

17. r œ sec ) and r œ 4 cos ) Ê 4 cos ) œ sec ) Ê cos2 ) œ
Ê ) œ 13 , 231 , 431 , or 531 ; therefore
1Î3
A œ 2 0 "# a16 cos# )  sec# )b d)
1Î3
œ 0 a8  8 cos 2)  sec# )b d)
1Î3
œ c8)  4 sin 2)  tan )d0

1
4

'

'

œ Š 831  2È3  È3‹  a0  0  0b œ

81
3

 È3

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.5 Area and Lengths in Polar Coordinates
18. r œ 3 csc ) and r œ 4 sin ) Ê 4 sin ) œ 3 csc ) Ê sin2 ) œ
Ê ) œ 13 ,

21 41
51
3 , 3 , or 3 ; therefore
1 Î2
"
a16 sin# )  9 csc#
1 Î3 #

A œ 41  2'

677

3
4

)b d)

œ 41  '1Î3 a8  8 cos 2)  9 csc# )b d)
1Î2

1Î2

œ 41  c8)  4 sin 2)  9 cot )d1Î3
œ 41  ’a41  0  0b  Š 831  2È3  3È3‹“
œ

81
3

 È3

19. (a) r œ tan ) and r œ Š
Ê sin# ) œ Š
Ê cos# )  Š
È2
#

È2
# ‹

È2
# ‹

csc ) Ê tan ) œ Š

È2
# ‹

cos ) Ê 1  cos# ) œ Š

È2
# ‹cos

csc )

È2
# ‹

cos )

)  1 œ 0 Ê cos ) œ È2 or

(use the quadratic formula) Ê ) œ

1
4

(the solution

in the first quadrant); therefore the area of R" is
A" œ '0

1Î4

È2
#

œ

"
#

and OB œ Š

'01Î4 asec# )  1b d) œ "# ctan )  )d 1! Î% œ "# ˆtan 14  14 ‰ œ "#  18 ; AO œ Š È#2 ‹ csc 1#

"
#

tan# ) d) œ
È2
# ‹

1
4

csc

œ 1 Ê AB œ Ê1#  Š

È2 #
# ‹

therefore the area of the region shaded in the text is 2 ˆ "# 

1
8

œ

È2
#

Ê the area of R# is A# œ

 "4 ‰ œ



3
#

1
4

but does not generate the segment AB of the liner œ
_ on the line r œ
(b)

lim

) Ä 1Î2

œ

lim

È2
#

sin )
ˆ cos
) 

r œ sec ) as ) Ä

œ

"
4

;

1
4

generates the arc OB of r œ tan )

csc ).

" ‰
cos )

1c
#

È2
È2
# ‹Š # ‹

csc ). Instead the interval generates the half-line from B to

tan ) œ _ and the line x œ 1 is r œ sec ) in polar coordinates; then

) Ä 1Î2c

Š

. Note: The area must be found this way

since no common interval generates the region. For example, the interval 0 Ÿ ) Ÿ
È2
#

"
#

œ

lim

) Ä 1 Î2 c

ˆ sincos) ) 1 ‰ œ

lim

) Ä 1Î2c

(tan )  sec ))

) ‰
ˆ cos
sin ) œ 0 Ê r œ tan ) approaches

lim

) Ä 1 Î2 c

Ê r œ sec ) (or x œ 1) is a vertical asymptote of r œ tan ). Similarly, r œ  sec ) (or x œ 1)

is a vertical asymptote of r œ tan ).
20. It is not because the circle is generated twice from ) œ 0 to 21. The area of the cardioid is
A œ 2 '0

1

œ  32) 

"
#

2)
(cos )  1)# d) œ '0 acos# )  2 cos )  1b d) œ '0 ˆ 1  cos
 2 cos )  1‰ d)
#

sin 2)
4

1

1

 2 sin )‘ ! œ

21. r œ )# , 0 Ÿ ) Ÿ È5 Ê

#

. The area of the circle is A œ 1 ˆ "# ‰ œ

È5

œ 2); therefore Length œ '0

dr
d)

È5

31
#

œ '0 k)k È)#  4 d) œ (since )

) œ È5 Ê u œ 9“ Ä '4

9

22. r œ

e)
È2

,0Ÿ)Ÿ1 Ê

dr
d)

1

"
#

œ

Èu du œ

e)
È2

È5

0) '0

1
4

Ê the area requested is actually 3#1 

È5

Éa)# b#  (2))# d) œ ' È)%  4)# d)
0

) È ) #  4 d ) ; u œ ) #  4 Ê

"  2 $Î# ‘ *
# 3 u
%

œ

"
#

du œ ) d); ) œ 0 Ê u œ 4,

19
3

; therefore Length œ '0 ÊŠ Èe 2 ‹  Š Èe 2 ‹ d) œ '0 Ê2 Š e# ‹ d)
1

)

#

)

#

1

œ '0 e) d) œ e) ‘ ! œ e1  1
1

1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

2)

1
4

œ

51
4

678

Chapter 11 Parametric Equatins and Polar Coordinates

23. r œ 1  cos ) Ê

dr
d)

œ  sin ); therefore Length œ '0 È(1  cos ))#  ( sin ))# d)
21

1
œ 2 '0 È2  2 cos ) d) œ 2'0 É 4(1 #cos )) d) œ 4 '0 É 1  #cos ) d) œ 4 '0 cos ˆ #) ‰ d) œ 4 2 sin 2) ‘ ! œ 8
1

1

24. r œ a sin#

)
#

1

, 0 Ÿ ) Ÿ 1, a  0 Ê

œ '0 Éa# sin%
1

)
#

)
#

 a# sin#

dr
d)
)
#

cos#

œ a sin

)
#

cos

)
#

1

#
; therefore Length œ '0 Ɉa sin# #) ‰  ˆa sin
1

d) œ '0 a ¸sin #) ¸ Ésin#
1

)
#

)
#

 cos#

1

6
1  cos )

œ '0

1Î2

,0Ÿ)Ÿ

1
#

"
1  cos )

dr
d)

œ

; therefore Length œ '0

1Î2

6 sin )
(1  cos ))#

d) œ 6 '0

1Î2

36 sin# )
a1  cos )b%

É (1  36
cos ))# 

œ ˆsince

Ê

"
¸ 1cos
¸
) É1 

0

1Î2

)
#

sin# )
(1  cos ))#

d)

cos# )  sin# )
 0 on 0 Ÿ ) Ÿ 1# ‰ 6 '0 ˆ 1  "cos ) ‰ É 1  2 cos(1)cos
d)
) )#

1Î2

1Î2

#

#

6 sin )
ʈ 1  6cos ) ‰  Š (1 
cos ))# ‹ d)

1Î2

cos )
È '
œ 6 '0 ˆ 1  "cos ) ‰ É (12 2cos
) ) # d) œ 6 2 0

œ 3'0 sec$

#
cos #) ‰ d)

d) œ (since 0 Ÿ ) Ÿ 1) a ' sin ˆ #) ‰ d)

1
œ 2a cos 2) ‘ ! œ 2a

25. r œ

)
#

d) œ 6'0

1Î4

d)
(1  cos ))$Î#

œ 6È2 '0

1Î2

1Î%

sec$ u du œ (use tables) 6 Œ sec u2tan u ‘ !



d)
ˆ2 cos# #) ‰$Î#
"
#

'01Î4

œ 3'0

1Î2

¸sec$ #) ¸ d)

sec u du

1Î%
œ 6 Š È"2   2" ln ksec u  tan uk‘ ! ‹ œ 3 ’È2  ln Š1  È2‹“

26. r œ

2
1  cos )

1
#

,

Ÿ)Ÿ1 Ê

4
œ '1Î2 Ê (1  cos
) ) # Š1 
1

œ ˆsince 1  cos )

œ

dr
d)

2 sin )
(1  cos ))#

sin# )
‹
a1  cos )b#

0 on

1
#

sin )
; therefore Length œ '1Î2 ʈ 1  2cos ) ‰  Š (12cos
) )# ‹ d )
1

)  sin
d) œ '1Î2 ¸ 1  2cos ) ¸ É (1 (1cos )cos
) )#
1

#

1

œ '1Î2 csc$ ˆ #) ‰ d) œ ˆsince csc
1

1Î#

"
#

'11ÎÎ42

)

d)

#

1

2Œ csc u2cot u ‘ 1Î% 

#

cos )  sin
Ÿ ) Ÿ 1‰ 2 '1Î2 ˆ 1  "cos ) ‰ É 1  2 cos(1)cos
))#

cos )
d)
È '
È '
œ 2 '1Î2 ˆ 1  "cos ) ‰ É (12 2cos
))# d) œ 2 2 1Î2 (1  cos ))$Î# œ 2 2 1Î2
1

)
#

#

d)
ˆ2 sin# )# ‰$Î#

)

d)

œ '1Î2 ¸csc$ #) ¸ d)
1

Ÿ ) Ÿ 1‰ 2 '1Î4 csc$ u du œ (use tables)
1Î2

1
#

0 on

1

#

#

1Î#

csc u du œ 2 Š È"   2" ln kcsc u  cot uk‘ 1Î% ‹ œ 2 ’ È" 
2

2

"
#

ln ŠÈ2  1‹“

œ È2  ln Š1  È2‹
27. r œ cos$
œ '0

1Î4

œ '0

)
3

Ê

dr
d)

œ  sin

)
3

cos#

)
3

; therefore Length œ '0

Écos' ˆ 3) ‰  sin# ˆ 3) ‰ cos% ˆ 3) ‰ d) œ '0

1Î4

1Î4 1cos ˆ 2) ‰
3

#

d) œ

"
#

) 

3
2

sin

28. r œ È1  sin 2) , 0 Ÿ ) Ÿ 1È2 Ê
Length œ '0

È

1 2

œ '0

È

1 2

1Î4

É(1  sin 2)) 

sin 2)
'
É 212sin
2 ) d) œ 0

È

1 2

2) ‘ 1Î%
3 !
dr
d)

œ

cos# 2)
(1  sin 2))

œ
"
#

1
8

Ɉcos$ 3) ‰#  ˆ sin

)
3

#
cos# 3) ‰ d)

ˆcos# 3) ‰ Écos# ˆ 3) ‰  sin# ˆ 3) ‰ d) œ '

1Î4

0



cos# ˆ 3) ‰ d)

3
8

(1  sin 2))"Î# (2 cos 2)) œ (cos 2))(1  sin 2))"Î# ; therefore

d) œ '0

È2 d) œ ’È2 )“

È

1 2

1È#
!

#

sin 2)  cos
É 1  2 sin 2)1 
 sin 2)

#

2)

d)

œ 21

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.6 Conic Sections
29. Let r œ f()). Then x œ f()) cos ) Ê

dx
d)

679

‰# œ cf w ()) cos )  f()) sin )d#
œ f w ()) cos )  f()) sin ) Ê ˆ dx
d)

œ cf w ())d# cos# )  2f w ()) f()) sin ) cos )  [f())]# sin# ); y œ f()) sin ) Ê
#

dy
d)

œ f w ()) sin )  f()) cos )

#
#
w
w
#
w
#
#
Ê Š dy
d) ‹ œ cf ()) sin )  f()) cos )d œ cf ())d sin )  2f ())f()) sin ) cos )  [f())] cos ). Therefore
#

#
#
w
#
#
#
#
#
w
#
#
ˆ dx
‰#  Š dy
ˆ dr ‰#
d)
d) ‹ œ cf ())d acos )  sin )b  [f())] acos )  sin )b œ cf ())d  [f())] œ r  d) .

' Ér#  ˆ ddr) ‰# d).
‰#  Š dy
Thus, L œ '! ʈ dx
d)
d) ‹ d) œ !
"

30. (a) r œ a Ê

"

#

œ 0; Length œ '0 Èa#  0# d) œ '0 kak d) œ ca)d #!1 œ 21a
21

dr
d)

(b) r œ a cos ) Ê

dr
d)

œ a sin ); Length œ '0 È(a cos ))#  (a sin ))# d) œ '0 Èa# acos# )  sin# )b d)

dr
d)

œ a cos ); Length œ '0 È(a cos ))#  (a sin ))# d) œ '0 Èa# acos# )  sin# )b d)

1

œ '0 kak d) œ ca)d 1! œ 1a
1

(c) r œ a sin ) Ê

21

1

1

1

œ '0 kak d) œ ca)d 1! œ 1a
1

'021 a(1  cos )) d) œ 2a1 c)  sin )d #!1 œ a
21
rav œ 21"0 '0 a d) œ #"1 ca)d #!1 œ a
1Î2
1Î#
rav œ ˆ 1 ‰"ˆ 1 ‰ 'c1Î2 a cos ) d) œ 1" ca sin )d 1Î# œ 2a
1

31. (a) rav œ
(b)
(c)

"
210

#

#

32. r œ 2f()), ! Ÿ ) Ÿ " Ê

dr
d)

œ 2f w ()) Ê r#  ˆ ddr) ‰ œ [2f())]#  c2f w ())d# Ê Length œ '! É4[f())]#  4 cf w ())d# d)
"

#

œ 2 '! É[f())]#  cf w ())d# d) which is twice the length of the curve r œ f()) for ! Ÿ ) Ÿ " .
"

11.6 CONIC SECTIONS
1. x œ

y#
8

Ê 4p œ 8 Ê p œ 2; focus is (2ß 0), directrix is x œ 2
#

2. x œ  y4 Ê 4p œ 4 Ê p œ 1; focus is (1ß 0), directrix is x œ 1
#

3. y œ  x6 Ê 4p œ 6 Ê p œ
4. y œ

x#
2

Ê 4p œ 2 Ê p œ

1
#

3
#

; focus is ˆ!ß  3# ‰ , directrix is y œ

3
#

; focus is ˆ!ß #1 ‰ , directrix is y œ  1#

5.

x#
4



y#
9

œ 1 Ê c œ È4  9 œ È13 Ê foci are Š „ È13ß !‹ ; vertices are a „ 2ß 0b ; asymptotes are y œ „ 3# x

6.

x#
4



y#
9

œ 1 Ê c œ È9  4 œ È5 Ê foci are Š0ß „ È5‹ ; vertices are a0ß „ 3b

7.

x#
2

 y# œ 1 Ê c œ È2  1 œ 1 Ê foci are a „ 1ß 0b ; vertices are Š „ È2ß !‹

8.

y#
4

 x# œ 1 Ê c œ È4  1 œ È5 Ê foci are Š0ß „ È5‹ ; vertices are a!ß „ 2b ; asymptotes are y œ „ 2x

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

680

Chapter 11 Parametric Equatins and Polar Coordinates

9. y# œ 12x Ê x œ

y#
1#

#

10. x# œ 6y Ê y œ x6 Ê 4p œ 6 Ê p œ
focus is ˆ!ß 3# ‰ , directrix is y œ  3#

Ê 4p œ 12 Ê p œ 3;

focus is ($ß !), directrix is x œ 3

11. x# œ 8y Ê y œ

x#
8

focus is ˆ!ß

" ‰
16 ,

x#
ˆ 4" ‰

Ê 4p œ

"
4

Ê pœ

directrix is y œ 

#

#

focus is ˆ

"
‰
1# ß ! ,

directrix is x œ

#

14. y œ 8x# Ê y œ  ˆx" ‰ Ê 4p œ

;

8

"
16

15. x œ 3y# Ê x œ  ˆy" ‰ Ê 4p œ
3

"
16

"
3

"
1#

focus is ˆ!ß 

Ê pœ

;

y
12. y# œ 2x Ê x œ #
Ê 4p œ 2 Ê p œ
"
ˆ
‰
focus is  # ß ! , directrix is x œ "#

Ê 4p œ 8 Ê p œ 2;

focus is (!ß 2), directrix is y œ 2

13. y œ 4x# Ê y œ

3
#

"
1#

;

" ‰
32 ,

16. x œ 2y# Ê x œ
focus is

ˆ "8 ß !‰ ,

Ê 4p œ

"
#

directrix is x œ 

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Ê pœ
"
8

;

Ê pœ

"
3#

directrix is y œ

y#
ˆ "# ‰

"
8

"
#

"
8

;

"
32

;

Section 11.6 Conic Sections
#

#

y
17. 16x#  25y# œ 400 Ê #x5  16
œ1
Ê c œ Èa#  b# œ È25  16 œ 3

#

19. 2x#  y# œ 2 Ê x#  y# œ 1
Ê c œ Èa#  b# œ È2  1 œ 1

#

#

21. 3x#  2y# œ 6 Ê x#  y3 œ 1
Ê c œ Èa#  b# œ È3  2 œ 1

#

#

x
18. 7x#  16y# œ 112 Ê 16
 y7 œ 1
Ê c œ Èa#  b# œ È16  7 œ 3

#

#

20. 2x#  y# œ 4 Ê x#  y4 œ 1
Ê c œ Èa#  b# œ È4  2 œ È2

#

#

x
22. 9x#  10y# œ 90 Ê 10
 y9 œ 1
Ê c œ Èa#  b# œ È10  9 œ 1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

681

682

Chapter 11 Parametric Equations and Polar Coordinates
#

#

23. 6x#  9y# œ 54 Ê x9  y6 œ 1
Ê c œ Èa#  b# œ È9  6 œ È3

#

#

y
x
24. 169x#  25y# œ 4225 Ê 25
 169
œ1
Ê c œ Èa#  b# œ È169  25 œ 12

#

25. Foci: Š „ È2ß !‹ , Vertices: a „ 2ß 0b Ê a œ 2, c œ È2 Ê b# œ a#  c# œ 4  ŠÈ2‹ œ 2 Ê
26. Foci: a!ß „ 4b , Vertices: a0ß „ 5b Ê a œ 5, c œ 4 Ê b# œ 25  16 œ 9 Ê
27. x#  y# œ 1 Ê c œ Èa#  b# œ È1  1 œ È2 ;
asymptotes are y œ „ x

#
#
29. y#  x# œ 8 Ê y8  x8 œ 1 Ê c œ Èa#  b#
œ È8  8 œ 4; asymptotes are y œ „ x

x#
9


#

y#
#5

x#
4



y#
#

œ1
#

x
28. 9x#  16y# œ 144 Ê 16
 y9 œ 1
Ê c œ Èa#  b# œ È16  9 œ 5;
asymptotes are y œ „ 34 x

#
#
30. y#  x# œ 4 Ê y4  x4 œ 1 Ê c œ Èa#  b#
œ È4  4 œ 2È2; asymptotes are y œ „ x

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

œ1

Section 11.6 Conic Sections

683

31. 8x#  2y# œ 16 Ê x#  y8 œ 1 Ê c œ Èa#  b#
œ È2  8 œ È10 ; asymptotes are y œ „ 2x

32. y#  3x# œ 3 Ê y3  x# œ 1 Ê c œ Èa#  b#
œ È3  1 œ 2; asymptotes are y œ „ È3x

#
#
33. 8y#  2x# œ 16 Ê y#  x8 œ 1 Ê c œ Èa#  b#
œ È2  8 œ È10 ; asymptotes are y œ „ x

y
x
34. 64x#  36y# œ 2304 Ê 36
 64
œ 1 Ê c œ È a#  b #
œ È36  64 œ 10; asymptotes are y œ „ 4

#

#

#

#

#

#

3

35. Foci: Š!ß „ È2‹ , Asymptotes: y œ „ x Ê c œ È2 and

a
b

œ 1 Ê a œ b Ê c# œ a#  b# œ 2a# Ê 2 œ 2a#

Ê a œ 1 Ê b œ 1 Ê y#  x# œ 1
36. Foci: a „ 2ß !b , Asymptotes: y œ „
Ê 4œ

4a#
3

"
È3

x Ê c œ 2 and

Ê a# œ 3 Ê a œ È3 Ê b œ 1 Ê

x#
3

b
a

œ

"
È3

Ê bœ

a
È3

4
3

Ê c# œ a#  b# œ a# 

 y# œ 1

37. Vertices: a „ 3ß 0b , Asymptotes: y œ „ 43 x Ê a œ 3 and

b
a

œ

4
3

Ê bœ

(3) œ 4 Ê

38. Vertices: a!ß „ 2b , Asymptotes: y œ „ 12 x Ê a œ 2 and

a
b

œ

1
2

Ê b œ 2(2) œ 4 Ê

x#
9
y#
4




39. (a) y# œ 8x Ê 4p œ 8 Ê p œ 2 Ê directrix is x œ 2,
focus is (#ß !), and vertex is (!ß 0); therefore the new
directrix is x œ 1, the new focus is (3ß 2), and the
new vertex is (1ß 2)

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

y#
16
x#
16

œ1
œ1

a#
3

œ

4a#
3

684

Chapter 11 Parametric Equations and Polar Coordinates

40. (a) x# œ 4y Ê 4p œ 4 Ê p œ 1 Ê directrix is y œ 1,
focus is (!ß 1), and vertex is (!ß 0); therefore the new
directrix is y œ 4, the new focus is (1ß 2), and the
new vertex is (1ß 3)

41. (a)

x#
16



y#
9

œ 1 Ê center is (!ß 0), vertices are (4ß 0)

(b)

(b)

and (%ß !); c œ Èa#  b# œ È7 Ê foci are ŠÈ7ß 0‹
and ŠÈ7ß !‹ ; therefore the new center is (%ß $), the
new vertices are (!ß 3) and (8ß 3), and the new foci are
Š4 „ È7ß $‹

42. (a)

x#
9



y#
25

œ 1 Ê center is (!ß 0), vertices are (0ß 5)
and (0ß 5); c œ Èa#  b# œ È16 œ 4 Ê foci are

(b)

(!ß 4) and (!ß 4) ; therefore the new center is (3ß 2),
the new vertices are (3ß 3) and (3ß 7), and the new
foci are (3ß 2) and (3ß 6)

43. (a)

x#
16



y#
9

œ 1 Ê center is (!ß 0), vertices are (4ß 0)

(b)

and (4ß 0), and the asymptotes are œ „ or
Èa#  b# œ È25 œ 5 Ê foci are
y œ „ 3x
4 ;cœ
x
4

y
3

(5ß 0) and (5ß 0) ; therefore the new center is (2ß 0), the
new vertices are (2ß 0) and (6ß 0), the new foci
are (3ß 0) and (7ß 0), and the new asymptotes are
yœ „

3(x  2)
4

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.6 Conic Sections
y#
4

44. (a)



x#
5

œ 1 Ê center is (!ß 0), vertices are (0ß 2)

and (0ß 2), and the asymptotes are
yœ „

2x
È5

y
2

œ „

x
È5

685

(b)

or

; c œ Èa#  b# œ È9 œ 3 Ê foci are

(0ß 3) and (0ß 3) ; therefore the new center is (0ß 2),
the new vertices are (0ß 4) and (0ß 0), the new foci
are (0ß 1) and (0ß 5), and the new asymptotes are
2x
y2œ „ È
5

45. y# œ 4x Ê 4p œ 4 Ê p œ 1 Ê focus is ("ß 0), directrix is x œ 1, and vertex is (0ß 0); therefore the new
vertex is (2ß 3), the new focus is (1ß 3), and the new directrix is x œ 3; the new equation is
(y  3)# œ 4(x  2)
46. y# œ 12x Ê 4p œ 12 Ê p œ 3 Ê focus is (3ß 0), directrix is x œ 3, and vertex is (0ß 0); therefore the new
vertex is (4ß 3), the new focus is (1ß 3), and the new directrix is x œ 7; the new equation is (y  3)# œ 12(x  4)
47. x# œ 8y Ê 4p œ 8 Ê p œ 2 Ê focus is (0ß 2), directrix is y œ 2, and vertex is (0ß 0); therefore the new
vertex is (1ß 7), the new focus is (1ß 5), and the new directrix is y œ 9; the new equation is
(x  1)# œ 8(y  7)
Ê focus is ˆ!ß #3 ‰ , directrix is y œ  #3 , and vertex is (0ß 0); therefore the new
vertex is (3ß 2), the new focus is ˆ3ß  "# ‰ , and the new directrix is y œ  7# ; the new equation is

48. x# œ 6y Ê 4p œ 6 Ê p œ

3
#

(x  3)# œ 6(y  2)

49.

x#
6



y#
9

œ 1 Ê center is (!ß 0), vertices are (0ß 3) and (!ß 3); c œ Èa#  b# œ È9  6 œ È3 Ê foci are Š!ß È3‹

and Š!ß È3‹ ; therefore the new center is (#ß 1), the new vertices are (2ß 2) and (#ß 4), and the new foci
are Š#ß 1 „ È3‹ ; the new equation is
50.

x#
2

(x  2)#
6

(y  1)#
9



œ1

 y# œ 1 Ê center is (!ß 0), vertices are ŠÈ2ß !‹ and ŠÈ2ß !‹ ; c œ Èa#  b# œ È2  1 œ 1 Ê foci are

(1ß 0) and ("ß !); therefore the new center is (3ß 4), the new vertices are Š3 „ È2ß 4‹ , and the new foci are (2ß 4)
and (4ß 4); the new equation is
51.

x#
3



y#
#

(x  3)#
#

 (y  4)# œ 1

œ 1 Ê center is (!ß 0), vertices are ŠÈ3ß !‹ and ŠÈ3ß !‹ ; c œ Èa#  b# œ È3  2 œ 1 Ê foci are

(1ß 0) and ("ß !); therefore the new center is (2ß 3), the new vertices are Š2 „ È3ß 3‹ , and the new foci are (1ß 3)
and (3ß 3); the new equation is
52.

x#
16



y#
#5

(x  2)#
3



(y  3)#
#

œ1

œ 1 Ê center is (!ß 0), vertices are (!ß &) and (!ß 5); c œ Èa#  b# œ È25  16 œ 3 Ê foci are

(0ß 3) and (0ß 3); therefore the new center is (4ß 5), the new vertices are (4ß 0) and (4ß 10), and the new
foci are (4ß 2) and (4ß 8); the new equation is
53.

x#
4



y#
5

(x  4)#
16



(y  5)#
#5

œ1

œ 1 Ê center is (!ß 0), vertices are (2ß 0) and (2ß 0); c œ Èa#  b# œ È4  5 œ 3 Ê foci are ($ß !) and

(3ß 0); the asymptotes are „

x
#

œ

y
È5

Ê yœ „

È5x
#

; therefore the new center is (2ß 2), the new vertices are

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

686

Chapter 11 Parametric Equations and Polar Coordinates

(4ß 2) and (0ß 2), and the new foci are (5ß 2) and (1ß 2); the new asymptotes are y  2 œ „
equation is
54.

x#
16



y#
9

(x  2)#
4

(y  2)#
5



È5 (x  2)
#

; the new

œ1

œ 1 Ê center is (!ß 0), vertices are (4ß 0) and (4ß 0); c œ Èa#  b# œ È16  9 œ 5 Ê foci are (5ß !)

and (5ß 0); the asymptotes are „

œ

x
4

Ê yœ „

y
3

3x
4

; therefore the new center is (5ß 1), the new vertices are

(1ß 1) and (9ß 1), and the new foci are (10ß 1) and (0ß 1); the new asymptotes are y  1 œ „
the new equation is

(x  5)
16

#



#

(y  1)
9

3(x  5)
4

;

œ1

55. y#  x# œ 1 Ê center is (!ß 0), vertices are (0ß 1) and (0ß 1); c œ Èa#  b# œ È1  1 œ È2 Ê foci are
Š!ß „ È2‹ ; the asymptotes are y œ „ x; therefore the new center is (1ß 1), the new vertices are (1ß 0) and
(1ß 2), and the new foci are Š1ß 1 „ È2‹ ; the new asymptotes are y  1 œ „ (x  1); the new equation is
(y  1)#  (x  1)# œ 1
56.

y#
3

 x# œ 1 Ê center is (!ß 0), vertices are Š0ß È3‹ and Š!ß È3‹ ; c œ Èa#  b# œ È3  1 œ 2 Ê foci are (!ß #)

and (!ß 2); the asymptotes are „ x œ

y
È3

Ê y œ „ È3x; therefore the new center is (1ß 3), the new vertices are

Š"ß $ „ È3‹ , and the new foci are ("ß &) and (1ß 1); the new asymptotes are y  3 œ „ È3 (x  1); the new equation is
(y  3)#
3

 (x  1)# œ 1

57. x#  4x  y# œ 12 Ê x#  4x  4  y# œ 12  4 Ê (x  2)#  y# œ 16; this is a circle: center at C(2ß 0), a œ 4
58. 2x#  2y#  28x  12y  114 œ 0 Ê x#  14x  49  y#  6y  9 œ 57  49  9 Ê (x  7)#  (y  3)# œ 1;
this is a circle: center at C(7ß 3), a œ 1
59. x#  2x  4y  3 œ 0 Ê x#  2x  1 œ 4y  3  1 Ê (x  1)# œ 4(y  1); this is a parabola: V(1ß 1), F(1ß 0)
60. y#  4y  8x  12 œ 0 Ê y#  4y  4 œ 8x  12  4 Ê (y  2)# œ 8(x  2); this is a parabola: V(#ß 2), F(!ß #)
61. x#  5y#  4x œ 1 Ê x#  4x  4  5y# œ 5 Ê (x  2)#  5y# œ 5 Ê

(x  2)#
5

 y# œ 1; this is an ellipse: the

center is (2ß 0), the vertices are Š2 „ È5ß 0‹ ; c œ Èa#  b# œ È5  1 œ 2 Ê the foci are (4ß 0) and (!ß 0)
62. 9x#  6y#  36y œ 0 Ê 9x#  6 ay#  6y  9b œ 54 Ê 9x#  6(y  3)# œ 54 Ê

x#
6



(y  3)#
9

œ 1; this is an ellipse:

the center is (0ß 3), the vertices are (!ß 0) and (!ß 6); c œ Èa#  b# œ È9  6 œ È3 Ê the foci are Š0ß 3 „ È3‹
63. x#  2y#  2x  4y œ 1 Ê x#  2x  1  2 ay#  2y  1b œ 2 Ê (x  1)#  2(y  1)# œ 2
#
Ê (x1)  (y  1)# œ 1; this is an ellipse: the center is (1ß 1), the vertices are Š" „ È2ß "‹ ;
2

c œ Èa#  b# œ È2  1 œ 1 Ê the foci are (2ß 1) and (0ß 1)
64. 4x#  y#  8x  2y œ 1 Ê 4 ax#  2x  1b  y#  2y  1 œ 4 Ê 4(x  1)#  (y  1)# œ 4
Ê (x  1)# 

(y1)#
4

œ 1; this is an ellipse: the center is (1ß 1), the vertices are (1ß 3) and

(1ß 1); c œ Èa#  b# œ È4  1 œ È3 Ê the foci are Š1ß " „ È3‹

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.6 Conic Sections
65. x#  y#  2x  4y œ 4 Ê x#  2x  1  ay#  4y  4b œ 1 Ê (x  1)#  (y  2)# œ 1; this is a hyperbola:
the center is (1ß 2), the vertices are (2ß 2) and (!ß 2); c œ Èa#  b# œ È1  1 œ È2 Ê the foci are Š1 „ È2ß #‹ ;
the asymptotes are y  2 œ „ (x  1)
66. x#  y#  4x  6y œ 6 Ê x#  4x  4  ay#  6y  9b œ 1 Ê (x  2)#  (y  3)# œ 1; this is a hyperbola:
the center is (2ß 3), the vertices are (1ß 3) and (3ß 3); c œ Èa#  b# œ È1  1 œ È2 Ê the foci are
Š2 „ È2ß 3‹ ; the asymptotes are y  3 œ „ (x  2)
(y  3)#
6

67. 2x#  y#  6y œ 3 Ê 2x#  ay#  6y  9b œ 6 Ê



x#
3

œ 1; this is a hyperbola: the center is (!ß $),

the vertices are Š!ß 3 „ È6‹ ; c œ Èa#  b# œ È6  3 œ 3 Ê the foci are (0ß 6) and (!ß 0); the asymptotes are
y 3
È6

œ „

x
È3

Ê y œ „ È2x  3

68. y#  4x#  16x œ 24 Ê y#  4 ax#  4x  4b œ 8 Ê

y#
8



(x  2)#
2

œ 1; this is a hyperbola: the center is (2ß 0),

the vertices are Š2ß „ È8‹ ; c œ Èa#  b# œ È8  2 œ È10 Ê the foci are Š2ß „ È10‹ ; the asymptotes are
y
È8

x 2
È2

œ „

Ê y œ „ 2(x  2)
y#
k

69. (a) y# œ kx Ê x œ

; the volume of the solid formed by

Èkx

revolving R" about the y-axis is V" œ '0
œ

1
k#

Èkx

'0

y% dy œ

1x# Èkx
5

#

#

1 Š yk ‹ dy

; the volume of the right

circular cylinder formed by revolving PQ about the
y-axis is V# œ 1x# Èkx Ê the volume of the solid
formed by revolving R# about the y-axis is
V$ œ V#  V" œ

41x# Èkx
5

. Therefore we can see the

ratio of V$ to V" is 4:1.

(b) The volume of the solid formed by revolving R# about the x-axis is V" œ '0 1 ŠÈkt‹ dt œ 1k'0 t dt
x

œ

1kx#
#

#

x

. The volume of the right circular cylinder formed by revolving PS about the x-axis is
#

V# œ 1 ŠÈkx‹ x œ 1kx# Ê the volume of the solid formed by revolving R" about the x-axis is
V$ œ V#  V" œ 1kx# 
70. y œ '

w
H

x dx œ

w
H

#

1kx#
#

Š x# ‹  C œ

wx#
2H

œ

1kx#
#

. Therefore the ratio of V$ to V" is 1:1.

 C; y œ 0 when x œ 0 Ê 0 œ

w(0)#
2H

 C Ê C œ 0; therefore y œ

wx#
2H

is the

equation of the cable's curve
71. x# œ 4py and y œ p Ê x# œ 4p# Ê x œ „ 2p. Therefore the line y œ p cuts the parabola at points (2pß p) and
(2pß p), and these points are È[2p  (2p)]#  (p  p)# œ 4p units apart.
72. x lim
Š b x  ba Èx#  a# ‹ œ
Ä_ a
œ

b
a x lim
Ä_

 ax#  a# b
“
x  È x#  a#

’x

#

œ

b
a x lim
Ä_

b
a x lim
Ä_

’

Šx  È x #  a# ‹ œ

a#
“
x  È x#  a#

b
a x lim
Ä_

–

Šx  Èx#  a# ‹ Šx  Èx#  a# ‹
x  È x #  a#

œ0

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

—

687

688

Chapter 11 Parametric Equations and Polar Coordinates

73. Let y œ É1 

x#
4

on the interval 0 Ÿ x Ÿ 2. The area of the inscribed rectangle is given by
x#
4‹

A(x) œ 2x Š2É1 
Ê Aw (x) œ 4É1 

x#
4

œ 4xÉ1 



x#
É1 x4#

x#
4

(since the length is 2x and the height is 2y)
x#
4

. Thus Aw (x) œ 0 Ê 4É1 



x#
É1 x4#

œ 0 Ê 4 Š1 

x#
4‹

 x# œ 0 Ê x# œ 2

Ê x œ È2 (only the positive square root lies in the interval). Since A(0) œ A(2) œ 0 we have that A ŠÈ2‹ œ 4
is the maximum area when the length is 2È2 and the height is È2.
74. (a) Around the x-axis: 9x#  4y# œ 36 Ê y# œ 9  94 x# Ê y œ „ É9  94 x# and we use the positive root
#

Ê V œ 2 '0 1 ŠÉ9  94 x# ‹ dx œ 2 '0 1 ˆ9  94 x# ‰ dx œ 21 9x  34 x$ ‘ ! œ 241
2

2

#

(b) Around the y-axis: 9x#  4y# œ 36 Ê x# œ 4  49 y# Ê x œ „ É4  49 y# and we use the positive root
#

Ê V œ 2'0 1 ŠÉ4  49 y# ‹ dy œ 2 '0 1 ˆ4  49 y# ‰ dy œ 21 4y 
3

75. 9x#  4y# œ 36 Ê y# œ
œ

91
4

9x#  36
4

'24 ax#  4b dx œ 941 ’ x3

$

3

4
27

$

y$ ‘ ! œ 161

Ê y œ „ 3# Èx#  4 on the interval 2 Ÿ x Ÿ 4 Ê V œ '2 1 Š #3 Èx#  4‹ dx
#

4

%

 4x“ œ
#

91
4

ˆ 64
‰ ˆ8
‰‘ œ
3  16  3  8

91
4

ˆ 56
‰
3 8 œ

31
4

(56  24) œ 241

76. Let P" (pß y" ) be any point on x œ p, and let P(xß y) be a point where a tangent intersects y# œ 4px. Now
y# œ 4px Ê 2y

dy
dx

œ 4p Ê

dy
dx

œ

2p
y

Ê y#  yy" œ 2px  2p# . Since x œ
Ê

"
#

y#  yy"  2p# œ 0 Ê y œ

tangents from P" are m" œ

; then the slope of a tangent line from P" is
y#
4p

œ

dy
dx

#

œ

y
, we have y#  yy" œ 2p Š 4p
‹  2p# Ê y#  yy" œ

2y" „ È4y#"  16p#
#

2p
y"  Èy#"  4p#

y  y"
x  (p)

and m# œ

"
#

2p
y

y#  2p#

œ y" „ Èy"#  4p# . Therefore the slopes of the two
Ê m" m# œ

2p
y" Èy#"  4p#

4p#
y#"  ay#"  4p# b

œ 1

Ê the lines are perpendicular
77. (x  2)#  (y  1)# œ 5 Ê 2(x  2)  2(y  1)

dy
dx

œ0 Ê

dy
dx

2
#
#
œ  xy
1 ; y œ 0 Ê (x  2)  (0  1) œ 5

Ê (x  2)# œ 4 Ê x œ 4 or x œ 0 Ê the circle crosses the x-axis at (4ß 0) and (!ß 0); x œ 0
Ê (0  2)#  (y  1)# œ 5 Ê (y  1)# œ 1 Ê y œ 2 or y œ 0 Ê the circle crosses the y-axis at (!ß 2) and (!ß !).
At (4ß 0):
At (!ß !):
At (!ß #):

2
œ  40
1 œ 2 Ê the tangent line is y œ 2(x  4) or y œ 2x  8

dy
dx
dy
dx
dy
dx

2
œ  00
1 œ 2 Ê the tangent line is y œ 2x

2
œ  02
1 œ 2 Ê the tangent line is y  2 œ 2x or y œ 2x  2

78. x#  y# œ 1 Ê x œ „ È1  y# on the interval 3 Ÿ y Ÿ 3 Ê V œ 'c3 1 ˆÈ1  y# ‰ dy œ 2'0 1 ˆÈ1  y# ‰ dy
3

œ 21'0 a1  y# b dy œ 21 ’y 
3

79. Let y œ É16 
vertical strip:

16
9

$
y$
3 “!

É16 
aµ
x ßµ
y b œ xß
#

#
É16  16
9 x

#

#

3

œ 241

x# on the interval 3 Ÿ x Ÿ 3. Since the plate is symmetric about the y-axis, x œ 0. For a

Ê mass œ dm œ $ dA œ $É16 
µ
y dm œ

#

Š$ É16 

16
9

16
9

16
9

x#

 , length œ É16 

16
9

x# , width œ dx Ê area œ dA œ É16 

x# dx. Moment of the strip about the x-axis:

x# ‹ dx œ $ ˆ8  98 x# ‰ dx so the moment of the plate about the x-axis is

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

16
9

x# dx

Section 11.7 Conics in Polar Coordinates
Mx œ ' µ
y dm œ 'c3 $ ˆ8  89 x# ‰ dx œ $ 8x 
3

M œ 'c3 $ É16 
3

16
9

8
27

$

x$ ‘ $ œ 32$ ; also the mass of the plate is

x# dx œ 'c3 4$ É1  ˆ "3 x‰ dx œ 4$ 'c1 3È1  u# du where u œ
3

689

1

#

x
3

Ê 3 du œ dx; x œ 3

Ê u œ 1 and x œ 3 Ê u œ 1. Hence, 4$ 'c1 3È1  u# du œ 12$ 'c1 È1  u# du
1

œ 12$ ’ "2 ŠuÈ1  u#  sin" u‹“
80. y œ Èx#  1 Ê

dy
dx

"
#

œ

È2

1
'
œ É 2x
x#  1 Ê S œ 0
#

–

u œ È2x
— Ä
du œ È2 dx

21
È2

ax#  1b

"

"

1

œ 61$ Ê y œ

"Î#

(2x) œ

x
È x#  1

Mx
M

œ

32$
61$

#

œ

Ê Š dy
dx ‹ œ

È2

16
31

. Therefore the center of mass is ˆ!ß 3161 ‰ .

x#
x # 1

#

É1 
Ê Ê1  Š dy
dx ‹ œ

È2

1
È #
È #
'
'
É 2x
21yÊ1  Š dy
dx ‹ dx œ 0 21 x  1
x#  1 dx œ 0 21 2x  1 dx ;
#

'02 Èu#  1 du œ È21

2

#

#

’ 2" ŠuÈu#  1  ln Šu  Èu#  1‹‹“ œ
!

1
È2

81. (a) tan " œ mL Ê tan " œ f w (x! ) where f(x) œ È4px ;
f w (x) œ
œ

2p
y!

"
#

(4px)"Î# (4p) œ

(c) tan ! œ
œ

2p
È4px

Ê f w (x! ) œ

2p
È4px!

Ê tan " œ

(b) tan 9 œ mFP œ

2p
y! .
y!  0
y!
x!  p œ x!  p

tan 9  tan "
1  tan 9 tan "

y#!  2p(x!  p)
y! (x!  p  2p)

œ

œ

y
Š x ! p c y2p ‹

!

!

y
1 b Š x ! p ‹ Š y2p ‹

!

!

4px!  2px!  2p#
y! (x!  p)

œ

2p(x!  p)
y! (x!  p)

œ

2p
y!

11.7 CONICS IN POLAR COORDINATES
#
y#
1. 16x#  25y# œ 400 Ê #x5  16
œ 1 Ê c œ È a#  b #
œ È25  16 œ 3 Ê e œ ca œ 35 ; F a „ 3ß 0b ;

directrices are x œ 0 „

a
e

œ „

5
ˆ 35 ‰

œ „

25
3

#
x#
2. 7x#  16y# œ 112 Ê 16
 y7 œ 1 Ê c œ Èa#  b#
œ È16  7 œ 3 Ê e œ ca œ 34 ; F a „ 3ß 0b ;

directrices are x œ 0 „

a
e

x#
x#  1

œ „

4
ˆ 34 ‰

œ „

16
3

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

’2È5  ln Š2  È5‹“

690

Chapter 11 Parametric Equations and Polar Coordinates

3. 2x#  y# œ 2 Ê x#  y2 œ 1 Ê c œ Èa#  b#
œ È2  1 œ 1 Ê e œ ca œ È1 ; F a0ß „ 1b ;
#

directrices are y œ 0 „

4. 2x#  y# œ 4 Ê

x#
#



a
e

œ „

a
e

œ „2

Š È12 ‹

œ 1 Ê c œ Èa#  b#

y#
4

œ È4  2 œ È2 Ê e œ
directrices are y œ 0 „

2
È2

c
a

œ

È2
2

; F Š0ß „ È2‹ ;

œ „ È22 œ „ 2È2
Š ‹
2

#
#
5. 3x#  2y# œ 6 Ê x#  y3 œ 1 Ê c œ Èa#  b#
œ È3  2 œ 1 Ê e œ ca œ È13 ; F a0ß „ 1b ;

directrices are y œ 0 „

a
e

œ „

È3

œ „3

Š È13 ‹

#
x#
6. 9x#  10y# œ 90 Ê 10
 y9 œ 1 Ê c œ Èa#  b#
œ È10  9 œ 1 Ê e œ ca œ È110 ; F a „ 1ß 0b ;

directrices are x œ 0 „

7. 6x#  9y# œ 54 Ê

x#
9

a
e

œ „



y#
6

œ È9  6 œ È3 Ê e œ
directrices are x œ 0 „

a
e

È10
Š È110 ‹

œ „ 10

œ 1 Ê c œ Èa#  b#
c
a

œ

È3
3

; F Š „ È3ß 0‹ ;

œ „ È33 œ „ 3È3
Š ‹
3

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.7 Conics in Polar Coordinates

691

y#
x#
8. 169x#  25y# œ 4225 Ê 25
 169
œ 1 Ê c œ Èa#  b#
œ È169  25 œ 12 Ê e œ c œ 12 ; F a0ß „ 12b ;
a

directrices are y œ 0 „

a
e

œ „

13

13
ˆ 12
‰
13

œ „

169
12

x#
#7

y#
36

9. Foci: a0ß „ 3b , e œ 0.5 Ê c œ 3 and a œ

c
e

œ

3
0.5

œ 6 Ê b# œ 36  9 œ 27 Ê

10. Foci: a „ 8ß 0b , e œ 0.2 Ê c œ 8 and a œ

c
e

œ

8
0.#

œ 40 Ê b# œ 1600  64 œ 1536 Ê



œ1
x#
1600



y#
1536

11. Vertices: a0ß „ 70b , e œ 0.1 Ê a œ 70 and c œ ae œ 70(0.1) œ 7 Ê b# œ 4900  49 œ 4851 Ê

œ1

x#
4851

12. Vertices: a „ 10ß 0b , e œ 0.24 Ê a œ 10 and c œ ae œ 10(0.24) œ 2.4 Ê b# œ 100  5.76 œ 94.24 Ê
13. Focus: ŠÈ5ß !‹ , Directrix: x œ
Ê eœ

È5
3

. Then PF œ

È5
3

Ê x#  2È5 x  5  y# œ
14. Focus: (%ß 0), Directrix: x œ
PF
œ

È
œ #3 PD
3 ˆ #
32
4 x  3

9
È5

Ê c œ ae œ È5 and

256 ‰
9

Ê

"
4

œ

#

5
9

Šx# 

16
3

18
È5

x

Ê

81
5 ‹

Ê c œ ae œ 4 and

x#  y# œ

16
3

È3
#

¸x 

Ê

#

x
ˆ 64
‰
3

4
9

a
e

È5
3



16
3

Ê

œ

ae
e#

16
3

œ

ae
e#

¹x 

x#  y# œ 4 Ê

œ

16 ¸
3

Ê

9
È5

PD Ê ÊŠx  È5‹  (y  0)# œ

Ê È(x  4)#  (y  0)# œ
x

a
e

9
È5 ¹

x#
9



Ê

Ê (x  4)#  y# œ
#

y
ˆ 16
‰
3

9
È5

y#
4

4
e#
3
4

Ê

È5
e#

œ



x#
100

Ê e# œ

9
È5
#

Ê Šx  È5‹  y# œ

5
9

y#
4900

y#
94.24



#

1
4

#

ax#  32x  256b Ê

3
4

x#  y# œ 48 Ê

Šx 

œ

"
#

1
È2

. Then PF œ
#

1
È2

#

œ1
œ

16
3

ˆx 

Ê e# œ

16 ‰#
3

Ê eœ

3
4

È3
#

. Then

Ê x#  8x  16  y#

1
#

. Then

4

x#
64



y#
48

œ1

#

PD Ê ÊŠx  È2‹  (y  0)# œ

Šx  2È2‹ Ê x#  2È2 x  2  y# œ

9
È5 ‹

œ1

16. Focus: ŠÈ2ß !‹ , Directrix: x œ 2È2 Ê c œ ae œ È2 and
Ê eœ

œ1

5
9

"
4
#
15. Focus: (%ß 0), Directrix: x œ 16 Ê c œ ae œ 4 and ae œ 16 Ê ae
e# œ 16 Ê e# œ 16 Ê e œ 4 Ê e œ
PF œ 1 PD Ê È(x  4)#  (y  0)# œ 1 kx  16k Ê (x  4)#  y# œ 1 (x  16)# Ê x#  8x  16  y#

œ

œ1

"
#

a
e

œ 2È 2 Ê

1
È2

ae
e#

œ 2È 2 Ê

È2
e#

œ 2 È 2 Ê e# œ

#

¹x  2È2¹ Ê Šx  È2‹  y#

Šx#  4È2 x  8‹ Ê

"
#

x#  y# œ 2 Ê

x#
4

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.



y#
#

œ1

"
#

692

Chapter 11 Parametric Equations and Polar Coordinates

17. x#  y# œ 1 Ê c œ Èa#  b# œ È1  1 œ È2 Ê e œ
œ

È2
1

c
a

œ È2 ; asymptotes are y œ „ x; F Š „ È2 ß !‹ ;

directrices are x œ 0 „

a
e

œ „

"
È2

#
x#
18. 9x#  16y# œ 144 Ê 16
 y9 œ 1 Ê c œ Èa#  b#
œ È16  9 œ 5 Ê e œ ca œ 54 ; asymptotes are

y œ „ 34 x; F a „ 5ß !b ; directrices are x œ 0 „
œ „

a
e

"6
5

#
#
19. y#  x# œ 8 Ê y8  x8 œ 1 Ê c œ Èa#  b#
œ È8  8 œ 4 Ê e œ ca œ È48 œ È2 ; asymptotes are

y œ „ x; F a0ß „ 4b ; directrices are y œ 0 „
œ „

È8
È2

a
e

œ „2

20. y#  x# œ 4 Ê

y#
4



x#
4

œ 1 Ê c œ Èa#  b#

œ È 4  4 œ 2È 2 Ê e œ

c
a

œ

2È 2
2

œ È2 ; asymptotes

are y œ „ x; F Š0ß „ 2È2‹ ; directrices are y œ 0 „
œ „

2
È2

a
e

œ „ È2

21. 8x#  2y# œ 16 Ê

x#
2



y#
8

œ È2  8 œ È10 Ê e œ

œ 1 Ê c œ Èa#  b#
c
a

œ

È10
È2

œ È5 ; asymptotes

are y œ „ 2x; F Š „ È10ß !‹ ; directrices are x œ 0 „
œ „

È2
È5

œ „

a
e

2
È10

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.7 Conics in Polar Coordinates

693

#
22. y#  3x# œ 3 Ê y3  x# œ 1 Ê c œ Èa#  b#
œ È3  1 œ 2 Ê e œ ca œ È23 ; asymptotes are

y œ „ È3 x; F a0ß „ 2b ; directrices are y œ 0 „
œ „

È3
Š È23 ‹

œ „

a
e

3
#

23. 8y#  2x# œ 16 Ê

y#
2



x#
8

œ È2  8 œ È10 Ê e œ

œ 1 Ê c œ Èa#  b#
c
a

È10
È2

œ

œ È5 ; asymptotes

are y œ „ x# ; F Š0ß „ È10‹ ; directrices are y œ 0 „
œ „

È2
È5

œ „

a
e

2
È10

y#
x#
24. 64x#  36y# œ 2304 Ê 36
 64
œ 1 Ê c œ È a#  b #
5
œ È36  64 œ 10 Ê e œ ca œ 10
6 œ 3 ; asymptotes are

y œ „ 43 x; F a „ 10ß !b ; directrices are x œ 0 „
œ „

6
ˆ 53 ‰

œ „

a
e

18
5

25. Vertices a!ß „ 1b and e œ 3 Ê a œ 1 and e œ

c
a

œ 3 Ê c œ 3a œ 3 Ê b# œ c#  a# œ 9  1 œ 8 Ê y# 

x#
8

œ1

26. Vertices a „ 2ß !b and e œ 2 Ê a œ 2 and e œ

c
a

œ 2 Ê c œ 2a œ 4 Ê b# œ c#  a# œ 16  4 œ 12 Ê

x#
4



y#
1#

œ1

œ 3 Ê c œ 3a Ê a œ 1 Ê b# œ c#  a# œ 9  1 œ 8 Ê x# 

y#
8

œ1

27. Foci a „ 3ß !b and e œ 3 Ê c œ 3 and e œ

c
a

28. Foci a!ß „ 5b and e œ 1.25 Ê c œ 5 and e œ
œ 25  16 œ 9 Ê

#

y
16



#

x
9

c
a

œ 1.25 œ

5
4

Ê cœ

5
4

a Ê 5œ

5
4

a Ê a œ 4 Ê b# œ c#  a#

œ1

29. e œ 1, x œ 2 Ê k œ 2 Ê r œ

2(1)
1  (1) cos )

œ

2
1cos )

30. e œ 1, y œ 2 Ê k œ 2 Ê r œ

2(1)
1  (1) sin )

œ

2
1sin )

31. e œ 5, y œ 6 Ê k œ 6 Ê r œ

6(5)
1  5 sin )

32. e œ 2, x œ 4 Ê k œ 4 Ê r œ

4(2)
1  2 cos )

33. e œ "# , x œ 1 Ê k œ 1 Ê r œ

ˆ "# ‰ (1)
1  ˆ "# ‰ cos )

œ

œ

30
15 sin )

8
12 cos )

œ

1
2cos )

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

694

Chapter 11 Parametric Equations and Polar Coordinates
ˆ "4 ‰ (2)
1  ˆ "4 ‰ cos )

34. e œ "4 , x œ 2 Ê k œ 2 Ê r œ

35. e œ 5" , y œ 10 Ê k œ 10 Ê r œ
36. e œ "3 , y œ 6 Ê k œ 6 Ê r œ
37. r œ

"
1  cos )

38. r œ

6
2  cos )

œ

ˆ "5 ‰ (10)
1  ˆ "5 ‰ sin )

ˆ "3 ‰ (6)
1  ˆ 3" ‰ sin )

œ

2
4cos )

œ

10
5sin )

6
3sin )

Ê e œ 1, k œ 1 Ê x œ 1

œ

3
1  ˆ "# ‰ cos )

Ê eœ

"
#

, k œ 6 Ê x œ 6;

#

a a1  e# b œ ke Ê a ’1  ˆ "# ‰ “ œ 3 Ê

3
4

aœ3

Ê a œ 4 Ê ea œ 2

39. r œ

25
10  5 cos )

Ê eœ

"
#

Ê rœ
#

40. r œ

4
22 cos )

41. r œ

400
16  8 sin )
"
#

œ

ˆ 5# ‰

1  ˆ "# ‰ cos )

, k œ 5 Ê x œ 5; a a1  e# b œ ke

Ê a ’1  ˆ "# ‰ “ œ

eœ

ˆ 25
‰
10

5 ‰
1  ˆ 10
cos )

Ê rœ

5
#

Ê

2
1cos )

Ê rœ

3
4

aœ

5
#

Ê aœ

10
3

Ê ea œ

5
3

Ê e œ 1, k œ 2 Ê x œ 2

ˆ 400
‰
16

8 ‰
1  ˆ 16
sin )

Ê rœ

25
1  ˆ "# ‰ sin )

, k œ 50 Ê y œ 50; a a1  e# b œ ke
#

Ê a ’1  ˆ "# ‰ “ œ 25 Ê
Ê ea œ

3
4

a œ 25 Ê a œ

100
3

50
3

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Section 11.7 Conics in Polar Coordinates
42. r œ

12
3  3 sin )

Ê rœ

4
1  sin )

Ê e œ 1,

43. r œ

kœ4 Ê yœ4

44. r œ

4
2  sin )

8
2  2 sin )

Ê rœ

4
1  sin )

Ê e œ 1,

k œ 4 Ê y œ 4

Ê rœ

2
1  ˆ "# ‰ sin )

Ê eœ

"
#

,kœ4
#

Ê y œ 4; a a1  e# b œ ke Ê a ’1  ˆ "# ‰ “ œ 2
Ê

3
4

aœ2 Ê aœ

8
3

Ê ea œ

4
3

45. r cos ˆ)  14 ‰ œ È2 Ê r ˆcos ) cos 14  sin ) sin 14 ‰
œ È2 Ê " r cos )  " r sin ) œ È2 Ê " x 
È2

È2

È2

"
È2

y

œ È2 Ê x  y œ 2 Ê y œ 2  x

46. r cos ˆ) 
Ê 

31 ‰
4

œ 1 Ê r ˆcos ) cos

È2
2

r cos ) 
Ê y œ x  È 2

47. r cos ˆ) 

21 ‰
3

È3
2

 sin ) sin

31 ‰
4

œ1

r sin ) œ 1 Ê x  y œ È2

œ 3 Ê r ˆcos ) cos

Ê  r cos ) 
1
2

È2
2

31
4

21
3

 sin ) sin
"
#

r sin ) œ 3 Ê  x 

Ê x  È 3 y œ 6 Ê y œ

È3
3

È3
#

21 ‰
3

œ3

yœ3

x  2È 3

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

695

696

Chapter 11 Parametric Equations and Polar Coordinates

48. r cos ˆ)  13 ‰ œ 2 Ê r ˆcos ) cos
Ê

1
2

r cos ) 

È3
2

r sin ) œ 2 Ê

Ê x  È3 y œ 4 Ê y œ

È3
3

1
3

 sin ) sin 13 ‰ œ 2

"
#

x

x

4È 3
3

È3
#

yœ2

È
49. È2 x  È2 y œ 6 Ê È2 r cos )  È2 r sin ) œ 6 Ê r Š #2 cos ) 

È2
#

sin )‹ œ 3 Ê r ˆcos

1
4

cos )  sin

œ 3 Ê r cos ˆ)  14 ‰ œ 3
È
50. È3 x  y œ 1 Ê È3 r cos )  r sin ) œ 1 Ê r Š #3 cos ) 

œ

"
#

Ê r cos ˆ)  16 ‰ œ

1
#

sin )‹ œ

"
#

Ê r ˆcos

1
6

cos )  sin

1
6

sin )‰

"
#

51. y œ 5 Ê r sin ) œ 5 Ê r sin ) œ 5 Ê r sin ()) œ 5 Ê r cos ˆ 1#  ())‰ œ 5 Ê r cos ˆ)  1# ‰ œ 5
52. x œ 4 Ê r cos ) œ 4 Ê r cos ) œ 4 Ê r cos ()  1) œ 4
53.

54.

55.

56.

57. (x  6)#  y# œ 36 Ê C œ (6ß 0), a œ 6
Ê r œ 12 cos ) is the polar equation

58. (x  2)#  y# œ 4 Ê C œ (2ß 0), a œ 2
Ê r œ 4 cos ) is the polar equation

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

1
4

sin )‰

Section 11.7 Conics in Polar Coordinates
59. x#  (y  5)# œ 25 Ê C œ (!ß 5), a œ 5
Ê r œ 10 sin ) is the polar equation

60. x#  (y  7)# œ 49 Ê C œ (!ß 7), a œ 7
Ê r œ 14 sin ) is the polar equation

61. x#  2x  y# œ 0 Ê (x  1)#  y# œ 1
Ê C œ (1ß 0), a œ 1 Ê r œ 2 cos ) is
the polar equation

62. x#  16x  y# œ 0 Ê (x  8)#  y# œ 64
Ê C œ (8ß 0), a œ 8 Ê r œ 16 cos ) is the
polar equation

#
63. x#  y#  y œ 0 Ê x#  ˆy  "# ‰ œ 4"
Ê C œ ˆ!ß  "# ‰ , a œ "# Ê r œ sin ) is the

#
64. x#  y#  34 y œ 0 Ê x#  ˆy  32 ‰ œ 49
Ê C œ ˆ0ß 23 ‰ , a œ 23 Ê r œ 43 sin ) is the

polar equation

65.

polar equation

66.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

697

698

Chapter 11 Parametric Equations and Polar Coordinates

67.

68.

69.

70.

71.

72.

73.

74.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Chapter 11 Practice Exercises
75. (a) Perihelion œ a  ae œ a(1  e), Aphelion œ ea  a œ a(1  e)
(b)
Planet
Perihelion
Aphelion
Mercury
0.3075 AU
0.4667 AU
Venus
0.7184 AU
0.7282 AU
Earth
0.9833 AU
1.0167 AU
Mars
1.3817 AU
1.6663 AU
Jupiter
4.9512 AU
5.4548 AU
Saturn
9.0210 AU
10.0570 AU
Uranus
18.2977 AU
20.0623 AU
Neptune
29.8135 AU
30.3065 AU
(0.3871) a1  0.2056# b
0.3707
œ 1  0.2056
1  0.2056 cos )
cos )
(0.7233) a1  0.0068# b
0.7233
Venus: r œ 1  0.0068 cos ) œ 1  0.0068 cos )
 0.0167# b
0.9997
Earth: r œ 11a10.0167
cos ) œ 1  0.0617 cos )
a1  0.0934# b
1.511
Mars: r œ (1.524)
œ 1  0.0934
1  0.0934 cos )
cos )
#
a1  0.0484 b
5.191
Jupiter: r œ (5.203)
œ
1  0.0484 cos )
1  0.0484 cos )
(9.539) a1  0.0543# b
9.511
Saturn: r œ 1  0.0543 cos ) œ 1  0.0543
cos )
a1  0.0460# b
19.14
Uranus: r œ (19.18)
œ
1  0.0460 cos )
1  0.0460 cos )
(30.06) a1  0.0082# b
30.06
Neptune: r œ 1  0.0082 cos ) œ 1  0.0082
cos )

76. Mercury: r œ

CHAPTER 11 PRACTICE EXERCISES
1. x œ

t
#

and y œ t  1 Ê 2x œ t Ê y œ 2x  1

"
# tan t
and y# œ "4
#
#

3. x œ

and y œ

"
#

sec t Ê x# œ

"
4

tan# t

sec# t Ê 4x# œ tan# t and

4y œ sec t Ê 4x#  1 œ 4y# Ê 4y#  4x# œ 1

2. x œ Èt and y œ 1  Èt Ê y œ 1  x

4. x œ 2 cos t and y œ 2 sin t Ê x# œ 4 cos# t and
y# œ 4 sin# t Ê x#  y# œ 4

699

700

Chapter 11 Parametric Equations and Polar Coordinates

5. x œ  cos t and y œ cos# t Ê y œ (x)# œ x#

6. x œ 4 cos t and y œ 9 sin t Ê x# œ 6 cos# t and
x#
16

y# œ 81 sin# t Ê

x#
9

7. 16x#  9y# œ 144 Ê

y#
16





y#
81

œ1

œ 1 Ê a œ 3 and b œ 4 Ê x œ 3 cos t and y œ 4 sin t, 0 Ÿ t Ÿ 21

8. x#  y# œ 4 Ê x œ 2 cos t and y œ 2 sin t, 0 Ÿ t Ÿ 61
9. x œ

"
#

"
#

tan t, y œ

Ê xœ

"
#

tan

1
3

sec t Ê

œ

œ 2 cos3 ˆ 13 ‰ œ

È3
#

dy
dx

œ

dy/dt
dx/dt

œ

"
#

sec

1
3

and y œ

"
#

sec t tan t
"
#
# sec t

œ

tan t
sec t

œ sin t Ê

œ1 Ê yœ

È3
#

x  4" ;

d# y
dx#

dy
dx ¹ tœ1Î3

œ

dyw /dt
dx/dt

œ sin

œ

"
#

1
3

cos t
sec# t

œ

È3
#

;tœ

1
3

œ 2 cos3 t Ê

d# y
dx# ¹ tœ1Î3

"
4

10. x œ " 

"
t#

,yœ"

yœ1

3
#

œ  #" Ê y œ 3x 

Ê

3
t

dy
dx

œ

11. (a) x œ 4t2 , y œ t3  1 Ê t œ „
(b) x œ cos t, y œ tan t Ê sec t œ

"3
4

;

Èx
2
1
x

Š t3# ‹

œ

dy/dt
dx/dt

Š t2$ ‹

d# y
dx#

œ

œ  32 t Ê

dyw /dt
dx/dt

œ

ÊyœŠ„

ˆ 3# ‰
Š t2$ ‹

Èx 3
2 ‹

dy
dx ¹ tœ2

œ

œ  3# (2) œ 3; t œ 2 Ê x œ 1 

3 $
4 t

Ê

1œ „

d# y
dx# ¹ tœ2

x3Î2
8

1

1
x2

1œ

Ê tan2 t  1 œ sec2 t Ê y2 œ

œ

3
4

1  x2
x2

"
##

œ

5
4

and

(2)$ œ 6

È 1  x2
x

Êyœ „

12. (a) The line through a1, 2b with slope 3 is y œ 3x  5 Ê x œ t, y œ 3t  5, _  t  _
(b) ax  1b2  ay  2b2 œ 9 Ê x  1 œ 3 cos t, y  2 œ 3 sin t Ê x œ 1  3 cos t, y œ 2  3 sin t, 0 Ÿ t Ÿ 21
(c) y œ 4x2  x Ê x œ t, y œ 4t2  t, _  t  _
(d) 9x2  4y2 œ 36 Ê
13. y œ x"Î# 

x$Î#
3

Ê

dy
dx

x2
4

œ


"
#

y2
9

œ 1 Ê x œ 2 cos t, y œ 3 sin t, 0 Ÿ t Ÿ 21
#

x"Î#  #" x"Î# Ê Š dy
dx ‹ œ

"
4

ˆ x"  2  x‰ Ê L œ ' É1  4" ˆ x"  2  x‰ dx
1
4

#
Ê L œ '1 É 4" ˆ x"  2  x‰ dx œ '1 É 4" ax"Î#  x"Î# b dx œ '1
4

œ

"
#

ˆ4 

2
3

14. x œ y#Î$ Ê
œ '1

8

4

† 8‰  ˆ2  32 ‰‘ œ
dx
dy

È9x#Î$  4
3x"Î$

œ

5
12

ˆ2 
#

14 ‰
3

x"Î$ Ê Š dx
dy ‹ œ

œ

4x #Î$
9

"
#

ˆx"Î#  x"Î# ‰ dx œ

"
#

2x"Î#  23 x$Î# ‘ %
"

10
3

' É1 
Ê L œ '1 Ê1  Š dx
dy ‹ dy œ 1
#

8

8

4
9x#Î$

dy

'18 È9x#Î$  4 ˆx"Î$ ‰ dx; u œ 9x#Î$  4 Ê du œ 6y"Î$ dy; x œ 1
40
" '
"  2 $Î# ‘ %!
Ä L œ 18
u"Î# du œ 18
œ #"7 40$Î#  13$Î# ‘ ¸ 7.634
3 u
"$
13

dx œ

x œ 8 Ê u œ 40d
15. y œ

2
3

"
#

4

"
3

x'Î&  58 x%Î& Ê

dy
dx

œ

"
#

#

x"Î&  "# x"Î& Ê Š dy
dx ‹ œ

"
4

Ê u œ 13,

ˆx#Î&  2  x#Î& ‰

#
Ê L œ '1 É1  "4 ax#Î&  2  x#Î& b dx Ê L œ '1 É 4" ax#Î&  2  x#Î& b dx œ ' É "4 ax"Î&  x"Î& b dx
32

32

32

1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Chapter 11 Practice Exercises
œ '1

32

œ

"
48

16. x œ

"
#

ˆx"Î&  x"Î& ‰ dx œ

(1260  450) œ

"
1#

y$ 

"
y

Ê

" %
œ '1 É 16
y 
2

"
#

œ

1710
48

dx
dt

$#

x'Î&  54 x%Î& ‘ " œ

#

dx
dy

œ

"
4

"
y#



"
y%

dy œ '1 ÊŠ 4" y# 

y# 

8
œ ˆ 12
 "# ‰  ˆ 1"#  1‰ œ

17.

" 5
# 6
285
8

Ê Š dx
dy ‹ œ

œ 5 sin t  5 sin 5t and

"
#



œ

ˆ 56 † 2' 

y% 

"
#



5
4

† 2% ‰  ˆ 56  54 ‰‘ œ

"
#

ˆ 315
6 

" %
Ê L œ '1 Ê1  Š 16
y 
2

"
y%

dy œ '1 Š 4" y# 

#
"
y# ‹

2

7
1#

"
16

"
#

2

"
y# ‹

dy œ ’ 1"# y$  y" “

"
#



75 ‰
4

"
y% ‹

dy

#
"

13
12
#

#

‰  Š dy
œ 5 cos t  5 cos 5t Ê Êˆ dx
dt
dt ‹

dy
dt

œ Éa5 sin t  5 sin 5tb#  a5 cos t  5 cos 5tb#
œ 5Èsin# 5t  #sin t sin 5t  sin# t  cos# t  #cos t cos 5t  cos# 5t œ &È#  #asin t sin 5t  cos t cos 5 tb
œ 5È#a"  cos %tb œ 5É%ˆ "# ‰a"  cos %tb œ "!Èsin# #t œ "!lsin #tl œ "!sin #t (since ! Ÿ t Ÿ 1# )
Ê Length œ '!

1 Î2

18.

dx
dt

1Î#

"!sin #t dt œ c5 cos #td !

œ 3t2  12t and

dy
dt

œ a&ba"b  a&ba"b œ "!
#

#

‰  Š dy
Éa3t2  12tb#  a3t2  12tb# œ È288t#  "8t4
œ 3t2  12t Ê Êˆ dx
dt
dt ‹ œ

œ 3È2 ktkÈ16  t2 Ê Length œ '! 3È2 ktkÈ16  t2 dt œ 3È2'! t È16  t2 dt; ’u œ 16  t2 Ê du œ 2t dt
"

"

Ê "# du œ t dt; t œ 0 Ê u œ 16; t œ 1 Ê u œ 17“;
œ

19.

dx
d)

3È 2
2

œ $ sin ) and

#

20. x œ t and y œ

t$
3

$ d) œ $'!

$1Î2

d) œ $ˆ $#1  !‰ œ

 t, È3 Ÿ t Ÿ È3 Ê

È3

Èt%  #t#  " dt œ

È3

#

#

‰  Š dy
Éa$ sin )b#  a$ cos )b# œ È$asin# )  cos# )b œ $
œ $ cos ) Ê Êˆ dx
d)
d) ‹ œ

dy
d)

$1Î2

'

'16"7 Èu du œ 3È2 2  23 u3/2 ‘1617 œ 3È2 2 Š 23 a17b3/2  23 a16b3/2 ‹

† 23 Ša17b3/2  64‹ œ È2Ša17b3/2  64‹ ¸ 8.617.

Ê Length œ '!

œ

3È 2
2

'

dx
dt

*1
#

œ 2t and

È3

Èt%  2t#  " dt œ

È 3

œt

dy
dt

'

#

 " Ê Length œ '

È3

È 3

È3

È 3

Éat#  "b# dt œ

Éa2tb#  at#  "b# dt

È

'È33 at#  "b dt œ ’ t3  t“
3

È3
È3

œ 4È 3
21. x œ

t#
#

and y œ 2t, 0 Ÿ t Ÿ È5 Ê
*

œ 21  23 u$Î# ‘ % œ
22. x œ t# 

"
2t

761
3

dx
dt

"
È2

ŸtŸ1 Ê

Ê Surface Area œ '1ÎÈ2 21 ˆt# 
1

1

œ 21 Š2 

dy
dt

È5

œ 2 Ê Surface Area œ '0

21(2t)Èt#  4 dt œ '4 21u"Î# du
9

, where u œ t#  4 Ê du œ 2t dt; t œ 0 Ê u œ 4, t œ È5 Ê u œ 9

and y œ 4Èt ,

œ 21 '1ÎÈ2 ˆt# 

œ t and

" ‰ˆ
2t
2t



" ‰
2t#

"‰
#t

dx
dt

œ 2t 

ʈ2t 

" ‰#
2t#

"
2t#

dy
dt

œ

2
Èt

 Š È2 t ‹ dt œ 21 '1ÎÈ2 ˆt# 

dt œ 21 '1ÎÈ2 ˆ2t$ 
1

and

#

3
#

1

" ‰ Ɉ
2t
#t


"

" ‰#
#t#

 "4 t$ ‰ dt œ 21  "2 t%  3# t  8" t# ‘ "ÎÈ#

3È 2
4 ‹

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

dt

701

702

Chapter 11 Parametric Equations and Polar Coordinates

23. r cos ˆ)  13 ‰ œ 2È3 Ê r ˆcos ) cos

1
3

 sin ) sin 13 ‰

È
r cos )  #3 r sin ) œ 2È3
Ê r cos )  È3 r sin ) œ 4È3 Ê x  È3 y œ 4È3
"
#

œ 2È 3 Ê
Ê yœ

È3
3

24. r cos ˆ) 
œ

È2
#

x4

31 ‰
4

Ê 

œ
È2
#

È2
#

Ê r ˆcos ) cos

r cos ) 

Ê yœx1

25. r œ 2 sec ) Ê r œ

2
cos )

È2
#

31
4

r sin ) œ

 sin ) sin
È2
#

31 ‰
4

Ê x  y œ 1

Ê r cos ) œ 2 Ê x œ 2

26. r œ È2 sec ) Ê r cos ) œ È2 Ê x œ È2

27. r œ  3# csc ) Ê r sin ) œ  3# Ê y œ  3#

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Chapter 11 Practice Exercises
28. r œ 3È3 csc ) Ê r sin ) œ 3È3 Ê y œ 3È3

29. r œ 4 sin ) Ê r# œ 4r sin ) Ê x#  y#  4y œ 0
Ê x#  (y  2)# œ 4; circle with center (!ß 2) and
radius 2.

30. r œ 3È3 sin ) Ê r# œ 3È3 r sin )
Ê x#  y#  3È3 y œ 0 Ê x#  Šy 
circle with center Š!ß

3È 3
# ‹

and radius

3È 3
# ‹

#

œ

27
4

;

3È 3
#

31. r œ 2È2 cos ) Ê r# œ 2È2 r cos )
#

Ê x#  y#  2È2 x œ 0 Ê Šx  È2‹  y# œ 2;
circle with center ŠÈ2ß 0‹ and radius È2

32. r œ 6 cos ) Ê r# œ 6r cos ) Ê x#  y#  6x œ 0
Ê (x  3)#  y# œ 9; circle with center (3ß 0) and
radius 3

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

703

704

Chapter 11 Parametric Equations and Polar Coordinates

#
33. x#  y#  5y œ 0 Ê x#  ˆy  #5 ‰ œ

and a œ

5
#

25
4

Ê C œ ˆ!ß  #5 ‰

; r#  5r sin ) œ 0 Ê r œ 5 sin )

34. x#  y#  2y œ 0 Ê x#  (y  1)# œ 1 Ê C œ (!ß 1) and
a œ 1; r#  2r sin ) œ 0 Ê r œ 2 sin )

#
35. x#  y#  3x œ 0 Ê ˆx  3# ‰  y# œ

and a œ

3
#

9
4

Ê C œ ˆ 3# ß !‰

; r#  3r cos ) œ 0 Ê r œ 3 cos )

36. x#  y#  4x œ 0 Ê (x  2)#  y# œ 4 Ê C œ (2ß 0)
and a œ 2; r#  4r cos ) œ 0 Ê r œ 4 cos )

37.

38.

39. d

40.

e

41.

l

42.

f

43. k

44.

h

45.

i

46.

j

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Chapter 11 Practice Exercises
47. A œ 2'0

1

" #
# r

d) œ '0 (2  cos ))# d) œ '0 a4  4 cos )  cos# )b d) œ '0 ˆ4  4 cos ) 
1

œ '0 ˆ 9#  4 cos ) 
1

48. A œ '0

1Î3

"
#

1

cos 2) ‰
#

1

sin 2) ‘ 1
4
!

d) œ  92 )  4 sin ) 

asin# 3)b d) œ '0

1Î3

6) ‰
ˆ 1  cos
d) œ
#

"
4

) 

"
6

œ

9
#

A œ 4'0

"
#

1Î$

sin 6)‘ !

œ

1
12
1
#

1
4

Ê )œ

c(1  cos 2))#  1# d d) œ 2 '0 a1  2 cos 2)  cos# 2)  1b d)
1Î4

œ 2'0 ˆ2 cos 2) 
1Î4

"
#



cos 4) ‰
#

d) œ 2 sin 2) 

"
2

)

d)

1

49. r œ 1  cos 2) and r œ 1 Ê 1 œ 1  cos 2) Ê 0 œ cos 2) Ê 2) œ
1Î4

1  cos 2) ‰
#

sin 4) ‘ 1Î%
8
!

œ 2 ˆ1 

1
8

; therefore

 0‰ œ 2 

1
4

50. The circle lies interior to the cardioid. Thus,
1Î2

A œ 2 ' 1Î2
1Î2

"
#

[2(1  sin ))]# d)  1 (the integral is the area of the cardioid minus the area of the circle)
1Î2

œ ' 1Î2 4 a1  2 sin )  sin# )b d)  1 œ ' 1Î2 (6  8 sin )  2 cos 2)) d)  1 œ c6)  8 cos )  sin 2)d 1Î#  1
œ c31  (31)d  1 œ 51

51. r œ 1  cos ) Ê

dr
d)

œ  sin ); Length œ '0 È(1  cos ))#  ( sin ))# d) œ '0 È2  2 cos ) d)
21

œ '0 É 4(1 #cos )) d) œ '0 2 sin
21

1Î#

21

52. r œ 2 sin )  2 cos ), 0 Ÿ ) Ÿ

1
#

53. r œ 8 sin$ ˆ 3) ‰ , 0 Ÿ ) Ÿ

1
4

Ê

dr
d)

#1
d) œ 4 cos 2) ‘ ! œ (4)(1)  (4)(1) œ 8

)
#

Ê

œ 8 asin# )  cos# )b œ 8 Ê L œ

21

dr
d)

#

œ 2 cos )  2 sin ); r#  ˆ ddr) ‰ œ (2 sin )  2 cos ))#  (2 cos )  2 sin ))#

'01Î2 È8 d) œ ’2È2 )“ 1Î# œ 2È2 ˆ 1# ‰ œ 1È2
!

#

œ 64 sin% ˆ 3) ‰ Ê L œ '0 É64 sin% ˆ 3) ‰ d) œ '0
1Î4

#

œ 8 sin# ˆ 3) ‰ cos ˆ 3) ‰ ; r#  ˆ ddr) ‰ œ 8 sin$ ˆ 3) ‰‘  8 sin# ˆ 3) ‰ cos ˆ 3) ‰‘
1Î4

8 sin# ˆ 3) ‰ d) œ '0 8 ’
1Î4

1cos ˆ 23) ‰
“
#

d)

1Î%
œ '0 4  4 cos ˆ 23) ‰‘ d) œ 4)  6 sin ˆ 23) ‰‘ ! œ 4 ˆ 14 ‰  6 sin ˆ 16 ‰  0 œ 1  3
1Î4

54. r œ È1  cos 2) Ê

dr
d)

œ

"
#

(1  cos 2))"Î# (2 sin 2)) œ

#

Ê r#  ˆ ddr) ‰ œ 1  cos 2) 
œ

2  2 cos 2)
1  cos 2)

1Î2

sin# 2)
1  cos 2)

œ

(1  cos 2))#  sin# 2)
1  cos 2)

 sin 2)
È1  cos 2)

œ

#
Ê ˆ ddr) ‰ œ

sin# 2)
1  cos 2)

1  2 cos 2)  cos# 2)  sin# 2)
1cos 2)

œ 2 Ê L œ ' 1Î2 È2 d) œ È2  1#  ˆ 1# ‰‘ œ È2 1
#

55. x# œ 4y Ê y œ  x4 Ê 4p œ 4 Ê p œ 1;
therefore Focus is (0ß 1), Directrix is y œ 1

x#
#

œ y Ê 4p œ 2 Ê p œ "# ;
therefore Focus is ˆ!ß "# ‰; Directrix is y œ  "#

56. x# œ 2y Ê

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

#

705

706

Chapter 11 Parametric Equations and Polar Coordinates

57. y# œ 3x Ê x œ

y#
3

Ê 4p œ 3 Ê p œ

3
4

#

58. y# œ  38 x Ê x œ  ˆy8 ‰ Ê 4p œ

;

3

therefore Focus is ˆ 34 ß 0‰ , Directrix is x œ  34

x#
7

59. 16x#  7y# œ 112 Ê



y#
16

61. 3x#  y# œ 3 Ê x# 
Ê c œ 2; e œ

c
a

œ

2
1

y#
3

x#
4



c
a

œ

62. 5y#  4x# œ 20 Ê

y#
4
3
# ;

60. x#  2y# œ 4 Ê
c
a

œ

Ê pœ

therefore Focus is ˆ 23 ß !‰ , Directrix is x œ

œ1

Ê c# œ 16  7 œ 9 Ê c œ 3; e œ

8
3

Ê c œ È2 ; e œ

3
4

œ 1 Ê c# œ 1  3 œ 4

œ 2; the asymptotes are

Ê c œ 3, e œ

c
a

œ

y#
# œ
È2
#



x#
5

2
3

;

2
3

1 Ê c# œ 4  2 œ 2

œ 1 Ê c# œ 4  5 œ 9

the asymptotes are y œ „

2
È5

x

y œ „ È3 x

#

63. x# œ 12y Ê  1x# œ y Ê 4p œ 12 Ê p œ 3 Ê focus is (!ß 3), directrix is y œ 3, vertex is (0ß 0); therefore new
vertex is (2ß 3), new focus is (2ß 0), new directrix is y œ 6, and the new equation is (x  2)# œ 12(y  3)
#

y
64. y# œ 10x Ê 10
œ x Ê 4p œ 10 Ê p œ 5# Ê focus is ˆ 5# ß 0‰ , directrix is x œ  5# , vertex is (0ß 0); therefore new
vertex is ˆ "# ß 1‰ , new focus is (2ß 1), new directrix is x œ 3, and the new equation is (y  1)# œ 10 ˆx  "# ‰

65.

x#
9



y#
#5

œ 1 Ê a œ 5 and b œ 3 Ê c œ È25  9 œ 4 Ê foci are a!ß „ 4b , vertices are a!ß „ 5b , center is

(0ß 0); therefore the new center is ($ß 5), new foci are (3ß 1) and (3ß 9), new vertices are ($ß 10) and
($ß 0), and the new equation is

(x  3)#
9



(y  5)#
#5

œ1

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Chapter 11 Practice Exercises
66.

x#
169



y#
144

707

œ 1 Ê a œ 13 and b œ 12 Ê c œ È169  144 œ 5 Ê foci are a „ 5ß 0b , vertices are a „ 13ß 0b , center

is (0ß 0); therefore the new center is (5ß 12), new foci are (10ß 12) and (0ß 12), new vertices are (18ß 12) and
(8ß 12), and the new equation is
67.

y#
8



x#
2

(x  5)#
169



(y  12)#
144

œ1

œ 1 Ê a œ 2È2 and b œ È2 Ê c œ È8  2 œ È10 Ê foci are Š0ß „ È10‹ , vertices are

Š0ß „ 2È2‹ , center is (0ß 0), and the asymptotes are y œ „ 2x; therefore the new center is Š2ß 2È2‹, new foci are
Š2ß 2È2 „ È10‹ , new vertices are Š2ß 4È2‹ and (#ß 0), the new asymptotes are y œ 2x  4  2È2 and
#

y œ 2x  4  2È2; the new equation is
68.

x#
36



y#
64

Šy  2È2‹
8



(x  2)#
#

œ1

œ 1 Ê a œ 6 and b œ 8 Ê c œ È36  64 œ 10 Ê foci are a „ 10ß 0b , vertices are a „ 6ß 0b , the center

is (0ß 0) and the asymptotes are

y
8

œ „

x
6

or y œ „ 43 x; therefore the new center is (10ß 3), the new foci are

(20ß 3) and (0ß 3), the new vertices are (16ß 3) and (4ß 3), the new asymptotes are y œ
y œ  43 x 

49
3

; the new equation is

(x  10)#
36



(y  3)#
64

4
3

x

31
3

and

œ1

69. x#  4x  4y# œ 0 Ê x#  4x  4  4y# œ 4 Ê (x  2)#  4y# œ 4 Ê

(x  2)#
4

 y# œ 1, a hyperbola; a œ 2 and

b œ 1 Ê c œ È1  4 œ È5 ; the center is (2ß 0), the vertices are (!ß 0) and (4ß 0); the foci are Š2 „ È5 ß 0‹ and
the asymptotes are y œ „

x 2
#

70. 4x#  y#  4y œ 8 Ê 4x#  y#  4y  4 œ 4 Ê 4x#  (y  2)# œ 4 Ê x# 

(y  2)#
4

œ 1, a hyperbola; a œ 1 and

b œ 2 Ê c œ È1  4 œ È5 ; the center is (!ß 2), the vertices are (1ß 2) and ("ß 2), the foci are Š „ È5ß 2‹ and
the asymptotes are y œ „ 2x  2
71. y#  2y  16x œ 49 Ê y#  2y  1 œ 16x  48 Ê (y  1)# œ 16(x  3), a parabola; the vertex is ($ß 1);
4p œ 16 Ê p œ 4 Ê the focus is (7ß 1) and the directrix is x œ 1
72. x#  2x  8y œ 17 Ê x#  2x  1 œ 8y  16 Ê (x  1)# œ 8(y  2), a parabola; the vertex is (1ß 2);
4p œ 8 Ê p œ 2 Ê the focus is (1ß 4) and the directrix is y œ 0
73. 9x#  16y#  54x  64y œ 1 Ê 9 ax#  6xb  16 ay#  4yb œ 1 Ê 9 ax#  6x  9b  16 ay#  4y  4b œ 144
Ê 9(x  3)#  16(y  2)# œ 144 Ê

(x  3)#
16



(y  2)#
9

œ 1, an ellipse; the center is (3ß 2); a œ 4 and b œ 3

Ê c œ È16  9 œ È7 ; the foci are Š$ „ È7ß 2‹ ; the vertices are (1ß 2) and (7ß 2)
74. 25x#  9y#  100x  54y œ 44 Ê 25 ax#  4xb  9 ay#  6yb œ 44 Ê 25 ax#  4x  4b  9 ay#  6y  9b œ 225
#
#
Ê (x  2)  (y  3) œ 1, an ellipse; the center is (2ß 3); a œ 5 and b œ 3 Ê c œ È25  9 œ 4; the foci are
9

25

(2ß 1) and (2ß 7); the vertices are (2ß 2) and (2ß 8)
75. x#  y#  2x  2y œ 0 Ê x#  2x  1  y#  2y  1 œ 2 Ê (x  1)#  (y  1)# œ 2, a circle with center (1ß 1) and
radius œ È2
76. x#  y#  4x  2y œ 1 Ê x#  4x  4  y#  2y  1 œ 6 Ê (x  2)#  (y  1)# œ 6, a circle with center (2ß 1)
and radius œ È6

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

708

Chapter 11 Parametric Equations and Polar Coordinates

77. r œ

2
1  cos )

Ê e œ 1 Ê parabola with vertex at (1ß 0)

78. r œ

8
2  cos )

Ê rœ

ke œ 4 Ê

"
#

4
1  ˆ "# ‰ cos )

Ê eœ

k œ 4 Ê k œ 8; k œ

a
e

"
#

Ê ellipse;

 ea Ê 8 œ

a
ˆ "# ‰

 "# a

ˆ " ‰ ˆ 16
‰ 8
Ê a œ 16
3 Ê ea œ #
3 œ 3 ; therefore the center is
ˆ 83 ß 1‰ ; vertices are ()ß 1) and ˆ 83 ß 0‰

79. r œ

6
1  2 cos )

Ê e œ 2 Ê hyperbola; ke œ 6 Ê 2k œ 6

Ê k œ 3 Ê vertices are (2ß 1) and (6ß 1)

80. r œ
Ê

12
3  sin )
"
3

Ê rœ

4
1  ˆ "3 ‰ sin )

Ê eœ

"
3

; ke œ 4
#

k œ 4 Ê k œ 12; a a1  e# b œ 4 Ê a ’1  ˆ 3" ‰ “

œ 4 Ê a œ 9# Ê ea œ ˆ "3 ‰ ˆ 9# ‰ œ 3# ; therefore the
center is ˆ 3# ß 3#1 ‰ ; vertices are ˆ3ß 1# ‰ and ˆ6ß 3#1 ‰

81. e œ 2 and r cos ) œ 2 Ê x œ 2 is directrix Ê k œ 2; the conic is a hyperbola; r œ
Ê rœ

ke
1  e cos )

83. e œ

"
#

84. e œ

"
3

85.

ke
1  e sin )

Ê rœ

(4)(1)
1  cos )

Ê rœ

(2) ˆ "# ‰
1  ˆ "# ‰ sin )

2
2  sin )

and r sin ) œ 6 Ê y œ 6 is directrix Ê k œ 6; the conic is an ellipse; r œ

Ê rœ

ke
1  e cos )

4
1  cos )

and r sin ) œ 2 Ê y œ 2 is directrix Ê k œ 2; the conic is an ellipse; r œ

Ê rœ

(2)(2)
1  # cos )

4
1  # cos )

82. e œ 1 and r cos ) œ 4 Ê x œ 4 is directrix Ê k œ 4; the conic is a parabola; r œ
Ê rœ

Ê rœ

ke
1  e sin )

Ê rœ

(6) ˆ "3 ‰
1  ˆ 3" ‰ sin )

6
3  sin )

(a) Around the x-axis: 9x#  4y# œ 36 Ê y# œ 9  94 x# Ê y œ „ É9  94 x# and we use the positive root:
#

V œ 2 '0 1 ŠÉ9  94 x# ‹ dx œ 2 '0 1 ˆ9  94 x# ‰ dx œ 21 9x  34 x$ ‘ ! œ 241
2

2

#

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

Chapter 11 Additional and Advanced Exercises

709

(b) Around the y-axis: 9x#  4y# œ 36 Ê x# œ 4  49 y# Ê x œ „ É4  49 y# and we use the positive root:
#

V œ 2 '0 1 ŠÉ4  49 y# ‹ dy œ 2'0 1 ˆ4  49 y# ‰ dy œ 21 4y 
3

86.

9x#  4y# œ 36, x œ 4 Ê y# œ
œ

87.

91
4

%

$

’ x3  4x“ œ
#

(a) r œ

k
1  e cos )
#

91
4

3

9x#  36
4

Ê yœ

ˆ 64
‰ ˆ8
‰‘ œ
3  16  3  8

3
#

91
4

4
27

$

y$ ‘ ! œ 161

Èx#  4 ; V œ ' 1 Š 3 Èx#  4‹ dx œ
#
2
4

ˆ 56
3 

24 ‰
3

œ

31
4

#

91
4

'24 ax#  4b dx

(32) œ 241

Ê r  er cos ) œ k Ê Èx#  y#  ex œ k Ê Èx#  y# œ k  ex Ê x#  y#

œ k  2kex  e# x# Ê x#  e# x#  y#  2kex  k# œ 0 Ê a1  e# b x#  y#  2kex  k# œ 0
(b) e œ 0 Ê x#  y#  k# œ 0 Ê x#  y# œ k# Ê circle;
0  e  1 Ê e#  1 Ê e#  1  0 Ê B#  4AC œ 0#  4 a1  e# b (1) œ 4 ae#  1b  0 Ê ellipse;
e œ 1 Ê B#  4AC œ 0#  4(0)(1) œ 0 Ê parabola;
e  1 Ê e#  1 Ê B#  4AC œ 0#  4 a1  e# b (1) œ 4e#  4  0 Ê hyperbola
88.

Let (r" ß )" ) be a point on the graph where r" œ a)" . Let (r# ß )# ) be on the graph where r# œ a)# and
)# œ )"  21. Then r" and r# lie on the same ray on consecutive turns of the spiral and the distance between
the two points is r#  r" œ a)#  a)" œ a()#  )" ) œ 21a, which is constant.

CHAPTER 11 ADDITIONAL AND ADVANCED EXERCISES
1. Directrix x œ 3 and focus (4ß 0) Ê vertex is ˆ 7# ß !‰
Ê pœ

"
#

Ê the equation is x 

7
#

œ

y#
#

2. x#  6x  12y  9 œ 0 Ê x#  6x  9 œ 12y Ê

(x3)#
12

œ y Ê vertex is (3ß 0) and p œ 3 Ê focus is (3ß 3) and the

directrix is y œ 3
3. x# œ 4y Ê vertex is (!ß 0) and p œ 1 Ê focus is (!ß 1); thus the distance from P(xß y) to the vertex is Èx#  y#
and the distance from P to the focus is Èx#  (y  1)# Ê Èx#  y# œ 2Èx#  (y  1)#
Ê x#  y# œ 4 cx#  (y  1)# d Ê x#  y# œ 4x#  4y#  8y  4 Ê 3x#  3y#  8y  4 œ 0, which is a circle
4. Let the segment a  b intersect the y-axis in point A and
intersect the x-axis in point B so that PB œ b and PA œ a
(see figure). Draw the horizontal line through P and let it
intersect the y-axis in point C. Let nPBO œ )
Ê nAPC œ ). Then sin ) œ yb and cos ) œ xa
Ê

x#
a#



y#
b#

œ cos# )  sin# ) œ 1.

5. Vertices are a!ß „ 2b Ê a œ 2; e œ

c
a

Ê 0.5 œ

c
#

Ê c œ 1 Ê foci are a0ß „ 1b

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

710

Chapter 11 Parametric Equations and Polar Coordinates

6. Let the center of the ellipse be (xß 0); directrix x œ 2, focus (4ß 0), and e œ 23 Ê ae  c œ 2 Ê ae œ 2  c
a
Ê a œ 32 (2  c). Also c œ ae œ 32 a Ê a œ 32 ˆ2  32 a‰ Ê a œ 34  94 a Ê 95 a œ 34 Ê a œ 12
5 ;x2œ e
28
28
8
#
#
#
‰ ˆ 3# ‰ œ 18
ˆ 28 ‰
Ê x  2 œ ˆ 12
5
5 Ê x œ 5 Ê the center is 5 ß 0 ; x  4 œ c Ê c œ 5  4 œ 5 so that c œ a  b
#

#

‰  ˆ 58 ‰ œ
œ ˆ 12
5

80
25

; therefore the equation is

ˆx  28
‰#
5
ˆ 144
‰
25



y#
ˆ 80
‰
25

œ 1 or

7. Let the center of the hyperbola be (0ß y).
(a) Directrix y œ 1, focus (0ß 7) and e œ 2 Ê c  ae œ 6 Ê
Ê a œ 2(2a)  12 Ê a œ
Ê b# œ c#  a# œ 64  16
(b) e œ 5 Ê c 
Ê cœ
œ

625
16



25
4
25
16

a
e

œ6 Ê

; y  (1) œ
œ

75
#

a
e
a
e

a
e

‰
25 ˆx  28
5
144

#

Ê



144
a4  a # b
#

5y#
16

œ1

œ c  6 Ê a œ 2c  12. Also c œ ae œ 2a

4 Ê c œ 8; y  (1) œ œ #4 œ 2
#
œ 48; therefore the equation is (y161)
a
e

Ê y œ 1 Ê the center is (0ß 1); c# œ a#  b#


x#
48

œ1

œ c  6 Ê a œ 5c  30. Also, c œ ae œ 5a Ê a œ 5(5a)  30 Ê 24a œ 30 Ê a œ
ˆ 54 ‰
5

œ

œ

"
4

Ê y œ  43 Ê the center is ˆ!ß  43 ‰ ; c# œ a#  b# Ê b# œ c#  a#

; therefore the equation is

ˆy  34 ‰#
ˆ 25
‰
16



x#

ˆ 75
‰
#

œ 1 or

16 ˆy  34 ‰
25

#

#

#

#

#

2x#
75



8. The center is (0ß 0) and c œ 2 Ê 4 œ a#  b# Ê b# œ 4  a# . The equation is
49
a#



y#
a#

#

œ1



x#
b#

#

œ1 Ê
#

%

49
a#



144
b#

œ1

%

œ 1 Ê 49 a4  a b  144a œ a a4  a b Ê 196  49a  144a œ 4a  a Ê a  197a#  196

œ 0 Ê aa  196b aa#  1b œ 0 Ê a œ 14 or a œ 1; a œ 14 Ê b# œ 4  (14)#  0 which is impossible; a œ 1
Ê b# œ 4  1 œ 3; therefore the equation is y# 
9. b# x#  a# y# œ a# b# Ê

dy
dx

x#
3

œ1
#

#

œ  ba# yx ; at (x" ß y" ) the tangent line is y  y" œ Š ba# yx"" ‹ (x  x" )

Ê a# yy"  b# xx" œ b# x"#  a# y"# œ a# b# Ê b# xx"  a# yy"  a# b# œ 0
10. b# x#  a# y# œ a# b# Ê

dy
dx

œ

b# x
a# y

#

; at (x" ß y" ) the tangent line is y  y" œ Š ba# yx"" ‹ (x  x" )

Ê b# xx"  a# yy" œ b# x"#  a# y"# œ a# b# Ê b# xx"  a# yy"  a# b# œ 0
11.

12.

13.

14.

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

5
4

Chapter 11 Additional and Advanced Exercises
15. a9x#  4y#  36b a4x#  9y#  16b Ÿ 0
Ê 9x#  4y#  36 Ÿ 0 and 4x#  9y#  16 0
or 9x#  4y#  36 0 and 4x#  9y#  16 Ÿ 0

16. a9x#  4y#  36b a4x#  9y#  16b  0, which is the
complement of the set in Exercise 15

sin t
17. (a) x œ e2t cos t and y œ e2t sin t Ê x#  y# œ e4t cos# t  e4t sin# t œ e4t . Also yx œ ee2t cos
t œ tan t
" ˆ y ‰
#
#
% tan " ayÎxb
#
#
Ê t œ tan
Ê x y œe
is the Cartesian equation. Since r œ x  y# and
x
2t

) œ tan" ˆ yx ‰ , the polar equation is r# œ e4) or r œ e2) for r  0
(b) ds# œ r# d)#  dr# ; r œ e2) Ê dr œ 2e2) d)
#
#
Ê ds# œ r# d)#  ˆ2e2) d)‰ œ ˆe2) ‰ d)#  4e4) d)#
œ 5e4) d)# Ê ds œ È5 e2) d) Ê L œ '0 È5 e2) d)
21

œ’

È5 e2) #1
2 “!

œ

È5
#

ae41  1b

#
#
18. r œ 2 sin$ ˆ 3) ‰ Ê dr œ 2 sin# ˆ 3) ‰ cos ˆ 3) ‰ d) Ê ds# œ r# d)#  dr# œ 2 sin$ ˆ 3) ‰‘ d)#  2 sin# ˆ 3) ‰ cos ˆ 3) ‰ d)‘
œ 4 sin' ˆ 3) ‰ d)#  4 sin% ˆ 3) ‰ cos# ˆ 3) ‰ d)# œ 4 sin% ˆ 3) ‰‘ sin# ˆ 3) ‰  cos# ˆ 3) ‰‘ d)# œ 4 sin% ˆ 3) ‰ d)#

Ê ds œ 2 sin# ˆ 3) ‰ d). Then L œ '0 2 sin# ˆ 3) ‰ d) œ '0 1  cos ˆ 23) ‰‘ d) œ ) 
31

31

3
2

$1

sin ˆ 23) ‰‘ ! œ 31

19. e œ 2 and r cos ) œ 2 Ê x œ 2 is the directrix Ê k œ 2; the conic is a hyperbola with r œ
Ê rœ

(2)(2)
1  2 cos )

œ

ke
1  e cos )

4
1  2 cos )

20. e œ 1 and r cos ) œ 4 Ê x œ 4 is the directrix Ê k œ 4; the conic is a parabola with r œ
Ê rœ
21. e œ

"
#

"
3

œ

4
1  cos )

and r sin ) œ 2 Ê y œ 2 is the directrix Ê k œ 2; the conic is an ellipse with r œ

Ê rœ
22. e œ

(4)(1)
1  cos )

2 ˆ "# ‰
1  ˆ "# ‰ sin

)

œ

ke
1  e sin )

2
2  sin )

and r sin ) œ 6 Ê y œ 6 is the directrix Ê k œ 6; the conic is an ellipse with r œ

Ê rœ

6 ˆ "3 ‰
1  ˆ 3" ‰ sin

)

ke
1  e cos )

œ

ke
1  e sin )

6
3  sin )

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

711

712

Chapter 11 Parametric Equations and Polar Coordinates

23. Arc PF œ Arc AF since each is the distance rolled;
nPCF œ Arcb PF Ê Arc PF œ b(nPCF); ) œ ArcaAF
Ê Arc AF œ a) Ê a) œ b(nPCF) Ê nPCF œ ˆ ba ‰ );
nOCB œ

1
#

 ) and nOCB œ nPCF  nPCE
œ nPCF  ˆ 1#  !‰ œ ˆ ba ‰ )  ˆ 1#  !‰ Ê 1#  )
œ ˆ ba ‰ )  ˆ 1#  !‰ Ê 1#  ) œ ˆ ba ‰ )  1#  !
Ê ! œ 1  )  ˆ ba ‰ ) Ê ! œ 1  ˆ ab b ‰ ).

Now x œ OB  BD œ OB  EP œ (a  b) cos )  b cos ! œ (a  b) cos )  b cos ˆ1  ˆ a b b ‰ )‰
œ (a  b) cos )  b cos 1 cos ˆˆ a b b ‰ )‰  b sin 1 sin ˆˆ a b b ‰ )‰ œ (a  b) cos )  b cos ˆˆ a b b ‰ )‰ and
y œ PD œ CB  CE œ (a  b) sin )  b sin ! œ (a  b) sin )  b sin ˆˆ a b b ‰ )‰
œ (a  b) sin )  b sin 1 cos ˆˆ a b b ‰ )‰  b cos 1 sin ˆˆ a b b ‰ )‰ œ (a  b) sin )  b sin ˆˆ a b b ‰ )‰ ;
therefore x œ (a  b) cos )  b cos ˆˆ a b b ‰ )‰ and y œ (a  b) sin )  b sin ˆˆ a b b ‰ )‰
24. x œ a(t  sin t) Ê

‰
œ a(1  cos t) and let $ œ 1 Ê dm œ dA œ y dx œ y ˆ dx
dt dt

dx
dt

œ a(1  cos t) a (1  cos t) dt œ a# (1  cos t)# dt; then A œ '0 a# (1  cos t)# dt
21

'021 a1  2 cos t  cos# tb dt œ a# '021 ˆ1  2 cos t  "#  "# cos 2t‰ dt œ a#  32 t  2 sin t  sin4 2t ‘ #!1
œ 31a# ; µ
x = x œ a(t  sin t) and µ
y = "# y œ "# a(1  cos t) Ê Mx œ ' µ
y dm œ ' µ
y $ dA
21
21
21
œ '0 "# a(1  cos t) a# (1  cos t)# dt œ "# a$ '0 (1  cos t)$ dt œ a# '0 a1  3 cos t  3 cos# t  cos$ tb dt
œ a#

$

œ
œ

a$
#

'021 1  3 cos t  #3  3 cos# 2t  a1  sin# tb (cos t)‘ dt œ a# ’ 25 t  3 sin t  3 sin4 2t  sin t  sin3 t “ #1
$

51 a
#

$

!

$

. Therefore y œ

Mx
M

œ

$

Š 51#a ‹

œ

31 a#

5
6

a. Also, My œ ' µ
x dm œ ' µ
x $ dA

œ '0 a(t  sin t) a# (1  cos t)# dt œ a$ '0 at  2t cos t  t cos# t  sin t  2 sin t cos t  sin t cos# tb dt
21

21

#

œ a$ ’ t2  2 cos t  2t sin t  4" t# 
xœ
25.

My
M

œ

31 # a$
31 a#

œ 1a Ê ˆ1aß

5
6

"
8

cos 2t 

t
4

sin 2t  cos t  sin# t 

#1
cos$ t
3 “!

œ 31# a$ . Thus

a‰ is the center of mass.

" œ <#  <" Ê tan " œ tan (<#  <" ) œ

tan <#  tan <"
1  tan <# tan <"

;

the curves will be orthogonal when tan " is undefined, or
when tan <# œ tan"<" Ê g (r)) œ "
r
w

’ f ()) “
w

#

w

w

Ê r œ f ( ) ) g ( ) )

26.

r œ sin% ˆ 4) ‰ Ê

27.

r œ 2a sin 3) Ê

œ sin$ ˆ 4) ‰ cos ˆ 4) ‰ Ê tan < œ

dr
d)

dr
d)

œ 6a cos 3) Ê tan < œ

r
ˆ ddr) ‰

œ

sin% ˆ )4 ‰
sin$ ˆ 4) ‰ cos ˆ )4 ‰
2a sin 3)
6a cos 3)

œ

"
3

œ tan ˆ 4) ‰
tan 3); when ) œ

1
6

, tan < œ

Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley.

"
3

tan

1
#

Ê<œ

1
#

Chapter 11 Additional and Advanced Exercises
28.

(b) r) œ 1 Ê r œ )" Ê

(a)

œ

) "
) #

œ ) Ê

Ê < Ä

1
#

dr
d)

œ )# Ê tan 

Navigation menu