ISM_T12_PRE_VII Solution Manual
User Manual:
Open the PDF directly: View PDF .
Page Count: 439
Download | |
Open PDF In Browser | View PDF |
INSTRUCTOR’S SOLUTIONS MANUAL MULTIVARIABLE WILLIAM ARDIS Collin County Community College THOMAS’ CALCULUS TWELFTH EDITION BASED ON THE ORIGINAL WORK BY George B. Thomas, Jr. Massachusetts Institute of Technology AS REVISED BY Maurice D. Weir Naval Postgraduate School Joel Hass University of California, Davis The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs. Reproduced by Addison-Wesley from electronic files supplied by the author. Copyright © 2010, 2005, 2001 Pearson Education, Inc. Publishing as Pearson Addison-Wesley, 75 Arlington Street, Boston, MA 02116. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. ISBN-13: 978-0-321-60072-1 ISBN-10: 0-321-60072-X 1 2 3 4 5 6 BB 14 13 12 11 10 PREFACE TO THE INSTRUCTOR This Instructor's Solutions Manual contains the solutions to every exercise in the 12th Edition of THOMAS' CALCULUS by Maurice Weir and Joel Hass, including the Computer Algebra System (CAS) exercises. The corresponding Student's Solutions Manual omits the solutions to the even-numbered exercises as well as the solutions to the CAS exercises (because the CAS command templates would give them all away). In addition to including the solutions to all of the new exercises in this edition of Thomas, we have carefully revised or rewritten every solution which appeared in previous solutions manuals to ensure that each solution ì conforms exactly to the methods, procedures and steps presented in the text ì is mathematically correct ì includes all of the steps necessary so a typical calculus student can follow the logical argument and algebra ì includes a graph or figure whenever called for by the exercise, or if needed to help with the explanation ì is formatted in an appropriate style to aid in its understanding Every CAS exercise is solved in both the MAPLE and MATHEMATICA computer algebra systems. A template showing an example of the CAS commands needed to execute the solution is provided for each exercise type. Similar exercises within the text grouping require a change only in the input function or other numerical input parameters associated with the problem (such as the interval endpoints or the number of iterations). For more information about other resources available with Thomas' Calculus, visit http://pearsonhighered.com. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. TABLE OF CONTENTS 10 Infinite Sequences and Series 569 10.1 Sequences 569 10.2 Infinite Series 577 10.3 The Integral Test 583 10.4 Comparison Tests 590 10.5 The Ratio and Root Tests 597 10.6 Alternating Series, Absolute and Conditional Convergence 602 10.7 Power Series 608 10.8 Taylor and Maclaurin Series 617 10.9 Convergence of Taylor Series 621 10.10 The Binomial Series and Applications of Taylor Series 627 Practice Exercises 634 Additional and Advanced Exercises 642 11 Parametric Equations and Polar Coordinates 647 11.1 11.2 11.3 11.4 11.5 11.6 11.7 Parametrizations of Plane Curves 647 Calculus with Parametric Curves 654 Polar Coordinates 662 Graphing in Polar Coordinates 667 Areas and Lengths in Polar Coordinates 674 Conic Sections 679 Conics in Polar Coordinates 689 Practice Exercises 699 Additional and Advanced Exercises 709 12 Vectors and the Geometry of Space 715 12.1 12.2 12.3 12.4 12.5 12.6 Three-Dimensional Coordinate Systems 715 Vectors 718 The Dot Product 723 The Cross Product 728 Lines and Planes in Space 734 Cylinders and Quadric Surfaces 741 Practice Exercises 746 Additional Exercises 754 13 Vector-Valued Functions and Motion in Space 759 13.1 13.2 13.3 13.4 13.5 13.6 Curves in Space and Their Tangents 759 Integrals of Vector Functions; Projectile Motion 764 Arc Length in Space 770 Curvature and Normal Vectors of a Curve 773 Tangential and Normal Components of Acceleration 778 Velocity and Acceleration in Polar Coordinates 784 Practice Exercises 785 Additional Exercises 791 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 14 Partial Derivatives 795 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 14.10 Functions of Several Variables 795 Limits and Continuity in Higher Dimensions 804 Partial Derivatives 810 The Chain Rule 816 Directional Derivatives and Gradient Vectors 824 Tangent Planes and Differentials 829 Extreme Values and Saddle Points 836 Lagrange Multipliers 849 Taylor's Formula for Two Variables 857 Partial Derivatives with Constrained Variables 859 Practice Exercises 862 Additional Exercises 876 15 Multiple Integrals 881 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 Double and Iterated Integrals over Rectangles 881 Double Integrals over General Regions 882 Area by Double Integration 896 Double Integrals in Polar Form 900 Triple Integrals in Rectangular Coordinates 904 Moments and Centers of Mass 909 Triple Integrals in Cylindrical and Spherical Coordinates 914 Substitutions in Multiple Integrals 922 Practice Exercises 927 Additional Exercises 933 16 Integration in Vector Fields 939 16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 Line Integrals 939 Vector Fields and Line Integrals; Work, Circulation, and Flux 944 Path Independence, Potential Functions, and Conservative Fields 952 Green's Theorem in the Plane 957 Surfaces and Area 963 Surface Integrals 972 Stokes's Theorem 980 The Divergence Theorem and a Unified Theory 984 Practice Exercises 989 Additional Exercises 997 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 SEQUENCES 1. a" œ 1 1 1# 2. a" œ 1 1! 3. a" œ "2 ## œ 0, a# œ œ 1, a# œ (1)# #1 " #! œ œ 1, a# œ œ 4" , a$ œ 13 3# " 2 1 6 , a$ œ (")$ 41 œ 1 3! , a% œ œ "3 , a$ œ 14 4# œ 92 , a% œ œ 1 4! (1)% 61 œ " 5 3 œ 16 1 24 (1)& 81 , a% œ œ 7" 4. a" œ 2 (1)" œ 1, a# œ 2 (1)# œ 3, a$ œ 2 (1)$ œ 1, a% œ 2 (1)% œ 3 5. a" œ 2 ## 6. a" œ 2" # " # œ , a# œ œ " # a( œ , a) œ 8. a" œ 1, a# œ a* œ " 362,880 " # œ " # 255 128 " # œ 3 # œ 511 256 , a$ œ 3 # " # œ " ## , a"! œ ˆ #" ‰ " 3 œ 6 " 3,628,800 , a$ œ , a"! œ 3 4 , a$ œ , a* œ 2$ #% , a$ œ 2# 1 2# , a# œ 7. a" œ 1, a# œ 1 127 64 2# 2$ , a% œ , a% œ 2$ 1 2$ œ 7 4 œ 2% 2& 7 8 œ " # , a% œ , a% œ 7 4 2% " 2% " #$ œ a' œ , 15 8 ˆ "6 ‰ 4 œ " #4 , a& œ ˆ #"4 ‰ 5 œ $ (1)% ˆ "# ‰ (1)# (2) œ 1, a$ œ (1)2 (1) œ "# , a% œ # # " " a( œ 3"# , a) œ 64 , a* œ 1#"8 , a"! œ 256 1†(2) œ 1, a$ œ 2†(31) œ 32 , a% # a) œ "4 , a* œ 29 , a"! œ "5 10. a" œ 2, a# œ a( œ 27 , 15 16 , a& œ 15 8 " #% œ œ 31 16 , a' 63 32 , 1023 512 9. a" œ 2, a# œ " 16 œ œ 3†ˆ 23 ‰ 4 " 1 #0 , a' œ " 7 #0 œ 4" , a& œ œ "# , a& œ , a( œ " 5040 (1)& ˆ "4 ‰ # 4†ˆ "# ‰ 5 , a) œ œ " 8 " 40,320 , , œ 52 , a' œ 3" , 11. a" œ 1, a# œ 1, a$ œ 1 1 œ 2, a% œ 2 1 œ 3, a& œ 3 2 œ 5, a' œ 8, a( œ 13, a) œ 21, a* œ 34, a"! œ 55 12. a" œ 2, a# œ 1, a$ œ "# , a% œ ˆ "# ‰ 1 œ " # , a& œ ˆ "# ‰ ˆ "# ‰ œ 1, a' œ 2, a( œ 2, a) œ 1, a* œ "# , a"! œ 13. an œ (1)n1 , n œ 1, 2, á 14. an œ (1)n , n œ 1, 2, á 15. an œ (1)n1 n# , n œ 1, 2, á 16. an œ (")n n# 1 , n œ 1, 2, á 18. an œ 2n 5 nan 1b , n œ 1, 2, á 17. an œ 2n 1 3an 2b , n œ 1, 2, á 19. an œ n# 1, n œ 1, 2, á 20. an œ n 4 , n œ 1, 2, á 21. an œ 4n 3, n œ 1, 2, á 22. an œ 4n 2 , n œ 1, 2, á 23. an œ 3n 2 n! , n œ 1, 2, á 24. an œ n3 5n 1 , n œ 1, 2, á Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " # 570 Chapter 10 Infinite Sequences and Series 25. an œ 1 (1)n # 1 , n œ 1, 2, á 26. an œ 27. n lim 2 (0.1)n œ 2 Ê converges Ä_ n (")n n 29. n lim Ä_ " 2n 1 #n 30. n lim Ä_ 2n " 1 3È n œ n lim Ä_ 31. n lim Ä_ " 5n% n% 8n$ œ n lim Ä_ 32. n lim Ä_ n3 n# 5n 6 œ n lim Ä_ n3 (n 3)(n 2) œ n lim Ä_ 33. n lim Ä_ n# 2n 1 n1 œ n lim Ä_ (n 1)(n 1) n1 œ n lim (n 1) œ _ Ê diverges Ä_ 34 n lim Ä_ " n$ 70 4n# ˆ "n ‰ 2 ˆ "n ‰ 2 œ n lim Ä_ œ 1 Ê converges 2Èn Š È"n ‹ Š È"n 3‹ 1 ˆ 8n ‰ " ‹n n# 70 Š #‹4 n Š œ n lim Ä_ 2 # œ n lim Ä_ Š n"% ‹ 5 œ 1 Ê converges œ _ Ê diverges œ 5 Ê converges " n# œ 0 Ê converges œ _ Ê diverges 36. n lim (1)n ˆ1 "n ‰ does not exist Ê diverges Ä_ 35. n lim a1 (1)n b does not exist Ê diverges Ä_ ˆ n #n " ‰ ˆ1 "n ‰ œ lim ˆ "# 37. n lim Ä_ nÄ_ ˆ2 38. n lim Ä_ " ‰ˆ 3 #n "‰ #n ˆ "# ‰n œ lim 40. n lim Ä_ nÄ_ É n 2n 41. n lim 1 œ É n lim Ä_ Ä_ 42. n lim Ä_ " (0.9)n " ‰ˆ 1 #n n" ‰ œ œ 6 Ê converges (")n #n œ Ú n# Û, n œ 1, 2, á (Theorem 5, #4) 28. n lim Ä_ œ n lim 1 Ä_ (1)n n n "# (1)n ˆ "# ‰ # " # Ê converges 39. n lim Ä_ (")nb1 #n 1 œ 0 Ê converges œ 0 Ê converges 2n n1 œ Ên lim Š 2 ‹ œ È2 Ê converges Ä _ 1 " n ˆ "0 ‰n œ _ Ê diverges œ n lim Ä_ 9 ˆ 1 n" ‰‹ œ sin 43. n lim sin ˆ 1# n" ‰ œ sin Šn lim Ä_ Ä_ # 1 # œ 1 Ê converges 44. n lim n1 cos (n1) œ n lim (n1)(1)n does not exist Ê diverges Ä_ Ä_ 45. n lim Ä_ sin n n 46. n lim Ä_ sin# n #n 47. n lim Ä_ n #n œ 0 because n" Ÿ œ 0 because 0 Ÿ œ n lim Ä_ " #n ln 2 sin n n sin# n #n Ÿ Ÿ " n " #n Ê converges by the Sandwich Theorem for sequences Ê converges by the Sandwich Theorem for sequences ^ œ 0 Ê converges (using l'Hopital's rule) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.1 Sequences 48. n lim Ä_ 3n n$ 49. n lim Ä_ ln (n ") Èn 50. n lim Ä_ ln n ln 2n œ n lim Ä_ 3n ln 3 3n# œ n lim Ä_ œ n lim Ä_ œ n lim Ä_ ˆn " 1‰ " ‹ Š #È n ˆ "n ‰ 2 ‰ ˆ 2n 3n (ln 3)# 6n œ n lim Ä_ œ n lim Ä_ 2È n n1 3n (ln 3)$ 6 œ n lim Ä_ ^ œ _ Ê diverges (using l'Hopital's rule) Š È2n ‹ 1 Š n" ‹ œ 0 Ê converges œ 1 Ê converges 51. n lim 81În œ 1 Ê converges Ä_ (Theorem 5, #3) 52. n lim (0.03)1În œ 1 Ê converges Ä_ (Theorem 5, #3) ˆ1 7n ‰n œ e( Ê converges 53. n lim Ä_ ˆ1 "n ‰n œ lim ’1 54. n lim Ä_ nÄ_ (") n “ (Theorem 5, #5) n œ e" Ê converges (Theorem 5, #5) n È 55. n lim 10n œ n lim 101În † n1În œ 1 † 1 œ 1 Ê converges Ä_ Ä_ # n n È ˆÈ 56. n lim n# œ n lim n‰ œ 1# œ 1 Ê converges Ä_ Ä_ ˆ 3 ‰1În œ nÄ_ 1În œ 57. n lim lim n Ä_ n nÄ_ lim 31În " 1 œ 1 Ê converges (Theorem 5, #3 and #2) (Theorem 5, #2) (Theorem 5, #3 and #2) 58. n lim (n 4)1ÎÐn4Ñ œ x lim x1Îx œ 1 Ê converges; (let x œ n 4, then use Theorem 5, #2) Ä_ Ä_ 59. n lim Ä_ ln n n1În lim Ä_ ln1Înn œ œ nlim n n Ä_ _ 1 œ _ Ê diverges (Theorem 5, #2) 60. n lim cln n ln (n 1)d œ n lim ln ˆ n n 1 ‰ œ ln Šn lim Ä_ Ä_ Ä_ n n È 61. n lim 4n n œ n lim 4È n œ 4 † 1 œ 4 Ê converges Ä_ Ä_ n n1‹ œ ln 1 œ 0 Ê converges (Theorem 5, #2) n È 62. n lim 32n1 œ n lim 32 a1Înb œ n lim 3# † 31În œ 9 † 1 œ 9 Ê converges Ä_ Ä_ Ä_ œ n lim Ä_ "†2†3â(n 1)(n) n†n†nân†n 63. n lim Ä_ n! nn 64. n lim Ä_ (4)n n! 65. n lim Ä_ n! 106n œ n lim Ä_ " 'n Š (10n! ) ‹ 66. n lim Ä_ n! 2n 3n œ n lim Ä_ " ˆ 6n!n ‰ œ 0 Ê converges ˆ " ‰ œ 0 and Ÿ n lim Ä_ n n! nn 0 Ê n lim Ä_ n! nn (Theorem 5, #3) œ 0 Ê converges (Theorem 5, #6) œ _ Ê diverges œ _ Ê diverges (Theorem 5, #6) (Theorem 5, #6) ˆ " ‰1ÎÐln nÑ œ lim exp ˆ ln"n ln ˆ n" ‰‰ œ lim exp ˆ ln 1lnnln n ‰ œ e" Ê converges 67. n lim Ä_ n nÄ_ nÄ_ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 571 572 Chapter 10 Infinite Sequences and Series n ˆ1 n" ‰n ‹ œ ln e œ 1 Ê converges 68. n lim ln ˆ1 "n ‰ œ ln Šn lim Ä_ Ä_ (Theorem 5, #5) " ‰‰ ˆ 3n " ‰n œ lim exp ˆn ln ˆ 3n 69. n lim œ n lim exp Š ln (3n 1) " ln (3n 1) ‹ 3n 1 Ä _ 3n 1 nÄ_ Ä_ n 3 3 6n #Î$ ˆ6‰ œ n lim exp 3n 1 "3n 1 œ n lim exp Š (3n 1)(3n Ê converges 1) ‹ œ exp 9 œ e Ä_ Ä_ Š ‹ # n# " " ˆ n ‰n œ lim exp ˆn ln ˆ n n 1 ‰‰ œ lim exp Š ln n ln" (n 1) ‹ œ lim exp n n 1 70. n lim ˆn‰ Ä _ n1 nÄ_ nÄ_ nÄ_ Š "# ‹ n œ n lim exp Š Ä_ n# n(n 1) ‹ " œe Ê converges 1) ˆ x ‰1În œ lim x ˆ #n " 1 ‰1În œ x lim exp ˆ "n ln ˆ #n " 1 ‰‰ œ x lim exp Š ln (2n 71. n lim ‹ n Ä _ 2n 1 nÄ_ nÄ_ nÄ_ 2 ! œ x n lim exp ˆ 2n1 ‰ œ xe œ x, x 0 Ê converges Ä_ n ˆ1 72. n lim Ä_ " ‰n n# œ n lim exp ˆn ln ˆ1 Ä_ " ‰‰ n# œ n lim exp Ä_ ln Š1 n"# ‹ exp – œ n lim Ä_ ˆ n" ‰ Š n2$ ‹‚Š1 n"# ‹ Š n"# ‹ — œ n lim exp ˆ n# 2n1 ‰ œ e! œ 1 Ê converges Ä_ 73. n lim Ä_ 3 n †6 n 2cn †n! œ n lim Ä_ 36n n! œ 0 Ê converges ˆ 10 ‰n ˆ 12 ‰n ˆ 10 ‰n 11 11 12 ‰n ˆ 9 ‰n 12 ‰n ˆ 11 ‰n ˆ 11 ˆ 11 10 12 11 74. n lim lim n 11 ‰n œ Ä _ ˆ 109 ‰ ˆ 12 nÄ_ (Theorem 5, #4) 75. n lim tanh n œ n lim Ä_ Ä_ en e en e 76. n lim sinh (ln n) œ n lim Ä_ Ä_ 77. n lim Ä_ n# sin ˆ n" ‰ 2n 1 œ n lim Ä_ (Theorem 5, #6) n n œ n lim Ä_ eln n e 2 ln n sin ˆ "n ‰ Èn sinŠ È1 ‹ œ lim 79. n lim n Ä_ nÄ_ ˆ" cos "n ‰ ˆ "n ‰ sinŠ È1n ‹ Èn 1 œ n lim Ä_ n ˆ n" ‰ # œ n lim Ä_ œ n lim Ä_ Š 2n n"# ‹ 78. n lim n ˆ1 cos "n ‰ œ n lim Ä_ Ä_ e2n " e2n 1 ˆ 120 ‰n 121 n ˆ 108 ‰ 1 110 œ n lim Ä_ 2e2n 2e2n Š n2# n2$ ‹ œ n lim Ä_ œ n lim " œ 1 Ê converges Ä_ œ _ Ê diverges ˆcos ˆ "n ‰‰ Š n"# ‹ œ n lim Ä_ œ 0 Ê converges œ n lim Ä_ sin ˆ "n ‰‘ Š "# ‹ n Š n"# ‹ cos Š È1n ‹Š 1 2n3Î2 1 ‹ 2n3Î2 cos ˆ n" ‰ # ˆ 2n ‰ œ " # Ê converges œ n lim sin ˆ "n ‰ œ 0 Ê converges Ä_ œ n lim cos Š È1n ‹ œ cos 0 œ 1 Ê converges Ä_ 80. n lim a3n 5n b1În œ n lim exp’lna3n 5n b1În “ œ n lim exp’ lna3 n 5 b “ œ n lim exp– Ä_ Ä_ Ä_ Ä_ n n œ n lim exp’ Ä_ Š 35n ‹ln 3 ln 5 81. n lim tan" n œ Ä_ ˆ 35nn ‰ 1 1 # exp’ “ œ n lim Ä_ Ê converges ˆ 35 ‰n ln 3 ln 5 ˆ 35 ‰n 1 “ n 3n ln 3 b 5n ln 5 3n b 5n 1 — œ expaln 5b œ 5 82. n lim Ä_ " Èn tan" n œ 0 † 1 # œ 0 Ê converges Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.1 Sequences ˆ " ‰n 83. n lim Ä_ 3 " È 2n 573 n n œ n lim Šˆ 3" ‰ Š È"2 ‹ ‹ œ 0 Ê converges Ä_ (Theorem 5, #4) # n 1‰ ! È 84. n lim n# n œ n lim exp ’ ln ann nb “ œ n lim exp ˆ 2n n# n œ e œ 1 Ê converges Ä_ Ä_ Ä_ 85. n lim Ä_ (ln n)#!! n 86. n lim Ä_ (ln n)& Èn œ n lim Ä_ 200 (ln n)"** n œ n lim Ä_ 200†199 (ln n)"*) n œ á œ n lim Ä_ 200! n œ 0 Ê converges % œ n lim Ä_ – Š 5(lnnn) ‹ " Š #Èn ‹ — œ n lim Ä_ 10(ln n)% Èn œ n lim Ä_ È 80(ln n)$ Èn œ á œ n lim Ä_ # 87. n lim Šn Èn# n‹ œ n lim Šn Èn# n‹ Š n Èn# n ‹ œ n lim Ä_ Ä_ Ä_ n n n œ " # 88. n lim Ä_ œ 0 Ê converges œ n lim Ä_ " 1 É1 " n Ê converges " È n# 1 È n# n œ n lim Š Ä_ È É1 n"# É1 "n œ n lim Ä_ 89. n lim Ä_ n n È n# n 3840 Èn ˆ n" 1‰ ' 90. n lim Ä_ 1 n " xp œ n lim Ä_ È n# 1 È n# n 1 n œ 2 Ê converges '1n x" dx œ n lim Ä_ " n È # È # " ‹ Š Èn# 1 Èn# n ‹ n# 1 È n# n n 1 n n ln n n dx œ n lim ’ " Ä _ 1 p œ n lim Ä_ n " xpc1 “ 1 " n œ 0 Ê converges œ n lim Ä_ " 1 p ˆ np"c1 1‰ œ (Theorem 5, #1) " p 1 if p 1 Ê converges 72 91. Since an converges Ê n lim a œ L Ê n lim a œ n lim ÊLœ Ä_ n Ä _ n1 Ä _ 1 an Ê L œ 9 or L œ 8; since an 0 for n 1 Ê L œ 8 72 1L Ê La1 Lb œ 72 Ê L2 L 72 œ 0 an 6 92. Since an converges Ê n lim a œ L Ê n lim a œ n lim ÊLœ Ä_ n Ä _ n1 Ä _ an 2 Ê L œ 3 or L œ 2; since an 0 for n 2 Ê L œ 2 L6 L2 Ê LaL 2b œ L 6 Ê L2 L 6 œ 0 È8 2an Ê L œ È8 2L Ê L2 2L 8 œ 0 Ê L œ 2 93. Since an converges Ê n lim a œ L Ê n lim a œ n lim Ä_ n Ä _ n1 Ä_ or L œ 4; since an 0 for n 3 Ê L œ 4 È8 2an Ê L œ È8 2L Ê L2 2L 8 œ 0 Ê L œ 2 94. Since an converges Ê n lim a œ L Ê n lim a œ n lim Ä_ n Ä _ n1 Ä_ or L œ 4; since an 0 for n 2 Ê L œ 4 È5an Ê L œ È5L Ê L2 5L œ 0 Ê L œ 0 or L œ 5; since 95. Since an converges Ê n lim a œ L Ê n lim a œ n lim Ä_ n Ä _ n1 Ä_ an 0 for n 1 Ê L œ 5 ˆ12 Èan ‰ Ê L œ Š12 ÈL‹ Ê L2 25L 144 œ 0 96. Since an converges Ê n lim a œ L Ê n lim a œ n lim Ä_ n Ä _ n1 Ä_ Ê L œ 9 or L œ 16; since 12 Èan 12 for n 1 Ê L œ 9 97. an 1 œ 2 1, a1 œ 2. Since an converges Ê n lim a œ L Ê n lim a œ n lim Š2 Ä_ n Ä _ n1 Ä_ Ê L2 2L 1 œ 0 Ê L œ 1 „ È2; since an 0 for n 1 Ê L œ 1 È2 1 an , n Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 an ‹ ÊLœ2 1 L 574 Chapter 10 Infinite Sequences and Series 98. an 1 œ È1 an , n È1 an Ê L œ È1 L 1, a1 œ È1. Since an converges Ê n lim a œ L Ê n lim a œ n lim Ä_ n Ä _ n1 Ä_ 1 „ È5 2 ; Ê L2 L 1 œ 0 Ê L œ since an 0 for n 1ÊLœ 1 È5 2 99. 1, 1, 2, 4, 8, 16, 32, á œ 1, 2! , 2" , 2# , 2$ , 2% , 2& , á Ê x" œ 1 and xn œ 2nc2 for n 2 100. (a) 1# 2(1)# œ 1, 3# 2(2)# œ 1; let f(aß b) œ (a 2b)# 2(a b)# œ a# 4ab 4b# 2a# 4ab 2b# œ 2b# a# ; a# 2b# œ 1 Ê f(aß b) œ 2b# a# œ 1; a# 2b# œ 1 Ê f(aß b) œ 2b# a# œ 1 # ‰ 2œ (b) r#n 2 œ ˆ aa2b b a# 4ab 4b# 2a# 4ab 2b# (a b)# In the first and second fractions, yn for n a positive integer lim rn œ È2. n. Let a b œ aa# 2b# b (a b)# œ „" y#n # Ê rn œ Ê2 „ Š y"n ‹ represent the (n 1)th fraction where 3. Now the nth fraction is a 2b ab and a b 2b a b 2n 2 1 and b n Ê yn n1 n. Thus, nÄ_ 101. (a) f(x) œ x# 2; the sequence converges to 1.414213562 ¸ È2 (b) f(x) œ tan (x) 1; the sequence converges to 0.7853981635 ¸ 1 4 (c) f(x) œ ex ; the sequence 1, 0, 1, 2, 3, 4, 5, á diverges 102. (a) n lim nf ˆ n" ‰ œ lim b f(??xx) œ lim b f(0??x)x f(0) œ f w (0), where ?x œ Ä_ ?x Ä ! ?x Ä ! " " ˆ " ‰ w " (b) n lim n tan œ f (0) œ x # œ 1, f(x) œ tan n 1 0 Ä_ " n (c) n lim n ae1În 1b œ f w (0) œ e! œ 1, f(x) œ ex 1 Ä_ (d) n lim n ln ˆ1 2n ‰ œ f w (0) œ 1 22(0) œ 2, f(x) œ ln (1 2x) Ä_ # 103. (a) If a œ 2n 1, then b œ Ú a# Û œ Ú 4n # 4n 1 Û # # # œ Ú2n# 2n "# Û œ 2n# 2n, c œ Ü a# Ý œ Ü2n# 2n "# Ý # œ 2n# 2n 1 and a# b# œ (2n 1) a2n# 2nb œ 4n# 4n 1 4n% 8n$ 4n# # œ 4n% 8n$ 8n# 4n 1 œ a2n# 2n 1b œ c# . (b) a lim Ä_ # Ú a# Û # Ü a# Ý œ a lim Ä_ 2n# 2n 2n# 2n 1 œ 1 or a lim Ä_ # Ú a# Û # Ü a# Ý œ a lim sin ) œ Ä_ 2n1 ‰ 104. (a) n lim (2n1)1Î a2nb œ n lim exp ˆ ln2n œ n lim exp Ä_ Ä_ Ä_ 21 Š 2n 1‹ # (b) n 40 50 60 15.76852702 19.48325423 23.19189561 sin ) œ 1 exp ˆ #"n ‰ œ e! œ 1; œ n lim Ä_ n n n! ¸ ˆ ne ‰ È 2n1 , Stirlings approximation Ê È n! ¸ ˆ ne ‰ (2n1)1Î a2nb ¸ n È n! lim ) Ä 1 Î2 n e for large values of n n e 14.71517765 18.39397206 22.07276647 ˆ"‰ ln n " n 105. (a) n lim œ n lim œ n lim œ0 Ä _ nc Ä _ cncc1 Ä _ cnc Ðln %ÑÎc (b) For all % 0, there exists an N œ e such that n eÐln %ÑÎc Ê ln n lnc % Ê ln nc ln ˆ "% ‰ Ê nc "% Ê n"c % Ê ¸ n"c 0¸ % Ê lim n"c œ 0 nÄ_ 106. Let {an } and {bn } be sequences both converging to L. Define {cn } by c2n œ bn and c2nc1 œ an , where n œ 1, 2, 3, á . For all % 0 there exists N" such that when n N" then kan Lk % and there exists N# such that when n N# then kbn Lk %. If n 1 2max{N" ß N# }, then kcn Lk %, so {cn } converges to L. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.1 Sequences 575 107. n lim n1În œ n lim exp ˆ "n ln n‰ œ n lim exp ˆ n" ‰ œ e! œ 1 Ä_ Ä_ Ä_ 108. n lim x1În œ n lim exp ˆ "n ln x‰ œ e! œ 1, because x remains fixed while n gets large Ä_ Ä_ 109. Assume the hypotheses of the theorem and let % be a positive number. For all % there exists a N" such that when n N" then kan Lk % Ê % an L % Ê L % an , and there exists a N# such that when n N# then kcn Lk % Ê % cn L % Ê cn L %. If n max{N" ß N# }, then L % an Ÿ bn Ÿ cn L % Ê kbn Lk % Ê n lim b œ L. Ä_ n 110. Let % !. We have f continuous at L Ê there exists $ so that kx Lk $ Ê kf(x) f(L)k %. Also, an Ä L Ê there exists N so that for n N kan Lk $ . Thus for n N, kf(an ) f(L)k % Ê f(an ) Ä f(L). an Ê 111. an1 3(n 1) 1 (n 1) 1 3n 1 n1 3n 4 n# Ê 3n 1 n1 Ê 3n# 3n 4n 4 3n# 6n n 2 Ê 4 2; the steps are reversible so the sequence is nondecreasing; 3n " n1 3 Ê 3n 1 3n 3 Ê 1 3; the steps are reversible so the sequence is bounded above by 3 an Ê 112. an1 (2(n 1) 3)! ((n 1) 1)! (2n 3)! (n 1)! Ê (2n 5)! (n 2)! (2n 3)! (n 1)! Ê (2n 5)! (2n 3)! (n 2)! (n 1)! Ê (2n 5)(2n 4) n 2; the steps are reversible so the sequence is nondecreasing; the sequence is not bounded since 113. an1 Ÿ an Ê (2n 3)! (n 1)! œ (2n 3)(2n 2)â(n 2) can become as large as we please 2nb1 3nb1 (n 1)! Ÿ 2n 3n n! 2nb1 3nb1 2n 3n Ê (n 1)! n! Ÿ Ê 2 † 3 Ÿ n 1 which is true for n 5; the steps are reversible so the sequence is decreasing after a& , but it is not nondecreasing for all its terms; a" œ 6, a# œ 18, a$ œ 36, a% œ 54, a& œ 324 5 œ 64.8 Ê the sequence is bounded from above by 64.8 an Ê 2 114. an1 2 n 1 " #nb1 2 2 n " #n Ê reversible so the sequence is nondecreasing; 2 115. an œ 1 " n converges because 116. an œ n " n diverges because n Ä _ and 117. an œ 2 n 1 2n œ1 " #n and 0 " #n " n 2 n 2 n 2 n 1 " #n Ÿ " #nb1 " #n Ê 2 n(n 1) #n"b1 ; the steps are 2 Ê the sequence is bounded from above Ä 0 by Example 1; also it is a nondecreasing sequence bounded above by 1 " n ; since " n " n Ä 0 by Example 1, so the sequence is unbounded Ä 0 (by Example 1) Ê " #n Ä 0, the sequence converges; also it is a nondecreasing sequence bounded above by 1 118. an œ 2 n 1 3n n œ ˆ 23 ‰ " 3n ; the sequence converges to ! by Theorem 5, #4 119. an œ a(1)n 1b ˆ nn 1 ‰ diverges because an œ 0 for n odd, while for n even an œ 2 ˆ1 n" ‰ converges to 2; it diverges by definition of divergence 120. xn œ max {cos 1ß cos 2ß cos 3ß á ß cos n} and xn1 œ max {cos 1ß cos 2ß cos 3ß á ß cos (n 1)} so the sequence is nondecreasing and bounded above by 1 Ê the sequence converges. 121. an and an1 Í 1 È2n Èn 1 È2n Èn " È2(n 1) Èn 1 Í Èn 1 È2n# 2n xn with xn Ÿ 1 Èn È2n# 2n Í Èn 1 È2 ; thus the sequence is nonincreasing and bounded below by È2 Ê it converges Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Èn 576 Chapter 10 Infinite Sequences and Series 122. an a n 1 Í n1 n (n 1) " n1 Í n# 2n 1 n# 2n Í 1 0 and n1 n 1; thus the sequence is nonincreasing and bounded below by 1 Ê it converges 123. 4nb1 3n œ 4n 3 ‰n ˆ 4 4 n 4 ˆ 34 ‰ so an an1 Í 4 ˆ 34 ‰ n 4 ˆ 34 ‰ n" n Í ˆ 34 ‰ ˆ 34 ‰n1 Í 1 3 4 and 4; thus the sequence is nonincreasing and bounded below by 4 Ê it converges 124. a" œ 1, a# œ 2 3, a$ œ 2(2 3) 3 œ 2# a22 "b † 3, a% œ 2 a2# a22 "b † 3b 3 œ 2$ a2$ 1b 3, a& œ 2 c2$ a2$ 1b 3d 3 œ 2% a2% 1b 3, á , an œ 2n" a2n" 1b 3 œ 2n" 3 † 2n1 3 œ 2n1 (1 3) 3 œ 2n 3; an an1 Í 2n 3 2n1 3 Í 2n 2n1 Í 1 Ÿ 2 so the sequence is nonincreasing but not bounded below and therefore diverges 125. Let 0 M 1 and let N be an integer greater than Ê n M nM Ê n M(n 1) Ê n n1 M 1M . Then n N Ê n M. M 1M Ê n nM M 126. Since M" is a least upper bound and M# is an upper bound, M" Ÿ M# . Since M# is a least upper bound and M" is an upper bound, M# Ÿ M" . We conclude that M" œ M# so the least upper bound is unique. 127. The sequence an œ 1 (")n # is the sequence " # , 3 # , " # , 3 # , á . This sequence is bounded above by 3 # , but it clearly does not converge, by definition of convergence. 128. Let L be the limit of the convergent sequence {an }. Then by definition of convergence, for corresponds an N such that for all m and n, m N Ê kam Lk kam an k œ kam L L an k Ÿ kam Lk kL an k % # % # % # % # there and n N Ê kan Lk #% . Now œ % whenever m N and n N. 129. Given an % 0, by definition of convergence there corresponds an N such that for all n N, kL" an k % and kL# an k %. Now kL# L" k œ kL# an an L" k Ÿ kL# an k kan L" k % % œ 2%. kL# L" k 2% says that the difference between two fixed values is smaller than any positive number 2%. The only nonnegative number smaller than every positive number is 0, so kL" L# k œ 0 or L" œ L# . 130. Let k(n) and i(n) be two order-preserving functions whose domains are the set of positive integers and whose ranges are a subset of the positive integers. Consider the two subsequences akÐnÑ and aiÐnÑ , where akÐnÑ Ä L" , aiÐnÑ Ä L# and L" Á L# . Thus ¸akÐnÑ aiÐnÑ ¸ Ä kL" L# k 0. So there does not exist N such that for all m, n N Ê kam an k %. So by Exercise 128, the sequence Öan × is not convergent and hence diverges. 131. a2k Ä L Í given an % 0 there corresponds an N" such that c2k N" Ê ka2k Lk %d . Similarly, a2k1 Ä L Í c2k 1 N# Ê ka2k1 Lk %d . Let N œ max{N" ß N# }. Then n N Ê kan Lk % whether n is even or odd, and hence an Ä L. 132. Assume an Ä 0. This implies that given an % 0 there corresponds an N such that n N Ê kan 0k % Ê kan k % Ê kkan kk % Ê kkan k 0k % Ê kan k Ä 0. On the other hand, assume kan k Ä 0. This implies that given an % 0 there corresponds an N such that for n N, kkan k 0k % Ê kkan kk % Ê kan k % Ê kan 0k % Ê an Ä 0. 133. (a) f(x) œ x# a Ê f w (x) œ 2x Ê xn1 œ xn x#n a #xn Ê x n 1 œ 2x#n ax#n ab 2xn œ x#n a 2xn œ ˆxn xa ‰ n # (b) x" œ 2, x# œ 1.75, x$ œ 1.732142857, x% œ 1.73205081, x& œ 1.732050808; we are finding the positive number where x# 3 œ 0; that is, where x# œ 3, x 0, or where x œ È3 . Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.2 Infinite Series 577 134. x" œ 1, x# œ 1 cos (1) œ 1.540302306, x$ œ 1.540302306 cos (1 cos (1)) œ 1.570791601, x% œ 1.570791601 cos (1.570791601) œ 1.570796327 œ 1# to 9 decimal places. After a few steps, the arc axnc1 b and line segment cos axnc1 b are nearly the same as the quarter circle. 135-146. Example CAS Commands: Mathematica: (sequence functions may vary): Clear[a, n] a[n_]; = n1 / n first25= Table[N[a[n]],{n, 1, 25}] Limit[a[n], n Ä 8] Mathematica: (sequence functions may vary): Clear[a, n] a[n_]; = n1 / n first25= Table[N[a[n]],{n, 1, 25}] Limit[a[n], n Ä 8] The last command (Limit) will not always work in Mathematica. You could also explore the limit by enlarging your table to more than the first 25 values. If you know the limit (1 in the above example), to determine how far to go to have all further terms within 0.01 of the limit, do the following. Clear[minN, lim] lim= 1 Do[{diff=Abs[a[n] lim], If[diff < .01, {minN= n, Abort[]}]}, {n, 2, 1000}] minN For sequences that are given recursively, the following code is suggested. The portion of the command a[n_]:=a[n] stores the elements of the sequence and helps to streamline computation. Clear[a, n] a[1]= 1; a[n_]; = a[n]= a[n 1] (1/5)(n1) first25= Table[N[a[n]], {n, 1, 25}] The limit command does not work in this case, but the limit can be observed as 1.25. Clear[minN, lim] lim= 1.25 Do[{diff=Abs[a[n] lim], If[diff < .01, {minN= n, Abort[]}]}, {n, 2, 1000}] minN 10.2 INFINITE SERIES 1. sn œ a a 1 rn b (1 r) œ n 2 ˆ1 ˆ "3 ‰ ‰ " 1 ˆ3‰ 2. sn œ a a 1 rn b (1 r) œ " ‰n ‰ 9 ‰ˆ ˆ 100 1 ˆ 100 " 1 ˆ 100 ‰ 3. sn œ a a 1 rn b (1 r) œ 1 ˆ "# ‰ 1 ˆ "# ‰ 4. sn œ 1 (2)n 1 (2) , a geometric series where krk 1 Ê divergence 5. " (n 1)(n #) œ " n1 n Ê n lim s œ Ä_ n Ê n lim s œ Ä_ n Ê n lim s œ Ä_ n " n# 2 1 ˆ "3 ‰ " ˆ #3 ‰ œ3 9 ‰ ˆ 100 " ‰ 1 ˆ 100 œ œ " 11 2 3 Ê sn œ ˆ #" 3" ‰ ˆ 3" 4" ‰ á ˆ n " 1 " ‰ n# œ " # " n# Ê n lim s œ Ä_ n Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " # 578 6. Chapter 10 Infinite Sequences and Series œ 5 n(n 1) 5 n 5 n1 Ê sn œ ˆ5 25 ‰ ˆ 25 35 ‰ ˆ 35 45 ‰ á ˆ n 5 1 n5 ‰ ˆ n5 5 ‰ n1 œ 5 5 n1 Ê n lim s œ5 Ä_ n 7. 1 8. " 16 9. 7 4 " 4 10. 5 " 16 " 64 7 16 5 4 " 256 " 64 7 64 5 16 á , the sum of this geometric series is á , the sum of this geometric series is á , the sum of this geometric series is 5 64 5 1 ˆ "# ‰ " 1 ˆ "3 ‰ œ 10 œ 3 # " 1 ˆ "3 ‰ œ 10 œ 3 # 14. 2 4 5 " 1 ˆ "5 ‰ 8 25 œ2 16 125 5 6 " ‰ 25 œ 17 6 œ 4 5 " 1# 7 3 5 1 ˆ "4 ‰ œ4 " ‰ #7 á , is the sum of two geometric series; the sum is " ‰ #7 á , is the difference of two geometric series; the sum is ˆ 18 á œ 2 ˆ1 15. Series is geometric with r œ œ " 1 ˆ "4 ‰ 17 # 13. (1 1) ˆ 1# "5 ‰ ˆ 14 1 1 ˆ "# ‰ ˆ 74 ‰ 1 ˆ "4 ‰ œ œ 23 # 12. (5 1) ˆ 5# "3 ‰ ˆ 54 9" ‰ ˆ 58 5 1 ˆ "# ‰ " ‰ ˆ 16 1 ˆ "4 ‰ á , the sum of this geometric series is 11. (5 1) ˆ 5# "3 ‰ ˆ 54 9" ‰ ˆ 58 " 1 ˆ "4 ‰ 2 5 " ‰ 1#5 4 25 á , is the sum of two geometric series; the sum is 8 125 á ‰ ; the sum of this geometric series is 2 Š 1 "ˆ 2 ‰ ‹ œ 5 Ê ¹ 25 ¹ 1 Ê Converges to 2 5 1 1 25 œ 5 3 1 8 œ 1 7 16. Series is geometric with r œ 3 Ê ¹3¹ 1 Ê Diverges 17. Series is geometric with r œ Ê ¹ 18 ¹ 1 Ê Converges to 1 8 1 18 18. Series is geometric with r œ 23 Ê ¹ 23 ¹ 1 Ê Converges to _ 19. 0.23 œ ! n œ0 _ 21. 0.7 œ ! nœ0 23 100 7 10 ˆ 10" # ‰n œ " ‰n ˆ 10 œ 23 Š 100 ‹ " 1 ˆ 100 ‰ 7 Š 10 ‹ 1 " Š 10 ‹ œ œ _ nœ0 n œ0 _ n œ0 414 1000 n œ0 22. 0.d œ ! " 1 Š 10 ‹ 24. 1.414 œ 1 ! _ 7 9 6 Š 100 ‹ ˆ 10" $ ‰n œ 1 œ 25 20. 0.234 œ ! 23 99 _ 1 ‰ ˆ 6 ‰ ˆ " ‰n 23. 0.06 œ ! ˆ 10 œ 10 10 23 1 ˆ 23 ‰ œ 6 90 414 Š 1000 ‹ " 1 Š 1000 ‹ œ d 10 234 1000 ˆ 10" $ ‰n œ " ‰n ˆ 10 œ 234 Š 1000 ‹ " 1 Š 1000 ‹ d Š 10 ‹ " 1 Š 10 ‹ œ d 9 " 15 œ1 414 999 œ "413 999 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. œ 234 999 10 3 Section 10.2 Infinite Series 25. 1.24123 œ 124 100 _ ! 123 10& n œ0 _ 26. 3.142857 œ 3 ! n œ0 œ lim 124 100 28. lim nan 1b nÄ_ an 2ban 3b 29. lim 1 nÄ_ n 4 œ 0 Ê test inconclusive 30. lim 2 n nÄ_ n 3 œ lim 33. 34. 10 1Š " ‹ 10$ Š 142,857 ' ‹ 10 1Š " ‹ 10' œ 124 100 œ3 123 10& 10# 142,857 10' 1 œ œ 124 100 3,142,854 999,999 123 99,900 œ œ 123,999 99,900 œ 41,333 33,300 116,402 37,037 œ 1 Á 0 Ê diverges lim n nÄ_ n 10 32. Š 123& ‹ ˆ 10" ' ‰n œ 3 142,857 10' 27. 31. 1 nÄ_ 1 ˆ 10" $ ‰n œ 579 n2 n 2 nÄ_ n 5n 6 2n 1 nÄ_ 2n 5 œ lim œ lim œ lim 2 nÄ_ 2 œ 1 Á 0 Ê diverges œ 0 Ê test inconclusive 1 nÄ_ 2n lim cos 1n œ cos 0 œ 1 Á 0 Ê diverges nÄ_ n lim ne nÄ_ e n œ n lim n e nÄ_ e 1 en n nÄ_ e œ lim œ lim 1 nÄ_ 1 œ 1 Á 0 Ê diverges lim ln 1n œ _ Á 0 Ê diverges nÄ_ lim cos n 1 œ does not exist Ê diverges nÄ_ 35. sk œ ˆ1 "2 ‰ ˆ "2 "3 ‰ ˆ "3 "4 ‰ á ˆ k " 1 k" ‰ ˆ k" œ lim ˆ1 kÄ_ " ‰ k1 kÄ_ œ 1 " k1 Ê œ 1, series converges to 1 36. sk œ ˆ 31 34 ‰ ˆ 34 39 ‰ ˆ 39 œ lim Š3 " ‰ k1 3 ‹ ak 1b2 3 ‰ 16 á Š ak 3 1b2 3 k2 ‹ Š k32 3 ‹ ak 1b2 œ 3 lim sk kÄ_ 3 ak 1b2 Ê lim sk kÄ_ œ 3, series converges to 3 37. sk œ ŠlnÈ2 lnÈ1‹ ŠlnÈ3 lnÈ2‹ ŠlnÈ4 lnÈ3‹ á ŠlnÈk lnÈk 1‹ ŠlnÈk 1 lnÈk‹ œ lnÈk 1 lnÈ1 œ lnÈk 1 Ê lim sk œ lim lnÈk 1 œ _; series diverges kÄ_ kÄ_ 38. sk œ atan 1 tan 0b atan 2 tan 1b atan 3 tan 2b á atan k tan ak 1bb atan ak 1b tan kb œ tan ak 1b tan 0 œ tan ak 1b Ê lim sk œ lim tan ak 1b œ does not exist; series diverges kÄ_ kÄ_ 39. sk œ ˆcos1 ˆ 12 ‰ cos1 ˆ 13 ‰‰ ˆcos1 ˆ 13 ‰ cos1 ˆ 14 ‰‰ ˆcos1 ˆ 14 ‰ cos1 ˆ 15 ‰‰ á ˆcos1 ˆ 1k ‰ cos1 ˆ k 1 1 ‰‰ ˆcos1 ˆ k 1 1 ‰ cos1 ˆ k 1 # ‰‰ œ 13 cos1 ˆ k 1 # ‰ Ê lim sk œ lim ’ 13 cos1 ˆ k 1 # ‰“ œ kÄ_ kÄ_ 1 3 1 2 œ 16 , series converges to 1 6 40. sk œ ŠÈ5 È4‹ ŠÈ6 È5‹ ŠÈ7 È6‹ á ŠÈk 3 Èk 2‹ ŠÈk 4 Èk 3‹ œ Èk 4 2 Ê lim sk œ lim ’Èk 4 2“ œ _; series diverges kÄ_ kÄ_ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 580 41. 42. Chapter 10 Infinite Sequences and Series 4 " " "‰ " ‰ ˆ ˆ" "‰ ˆ" (4n 3)(4n 1) œ 4n 3 4n 1 Ê sk œ 1 5 5 9 9 13 ˆ 4k " 3 4k " 1 ‰ œ 1 4k " 1 Ê lim sk œ lim ˆ1 4k " 1 ‰ œ 1 kÄ_ kÄ_ œ 6 (2n 1)(2n 1) A 2n 1 A(2n 1) B(2n 1) (2n 1)(2n 1) œ B 2n 1 á ˆ 4k " 7 " ‰ 4k 3 Ê A(2n 1) B(2n 1) œ 6 Ê (2A 2B)n (A B) œ 6 k k 2A 2B œ 0 ABœ0 6 Ê œ Êœ Ê 2A œ 6 Ê A œ 3 and B œ 3. Hence, ! (2n 1)(2n œ 3 ! ˆ #n " 1 1) A Bœ6 ABœ6 n œ1 nœ1 œ 3 Š "1 " 3 lim 3 ˆ1 kÄ_ 43. 40n (2n1)# (2n1)# " 3 " 5 " ‰ #k 1 œ A (2n1) " 5 " 7 á " #(k 1) 1 " 2k 1 " #k 1 ‹ œ A(2n1)(2n1)# B(2n1)# C(2n1)(2n1)# D(2n1)# (2n1)# (2n1)# # # œ 3 ˆ1 " ‰ #k 1 " ‰ #n 1 Ê the sum is œ3 B (2n1)# C (2n1) # D (2n1)# Ê A(2n 1)(2n 1)# B(2n 1) C(2n 1)(2n 1) D(2n 1) œ 40n Ê A a8n$ 4n# 2n 1b B a4n# 4n 1b C a8n$ 4n# 2n 1b œ D a4n# 4n 1b œ 40n Ê (8A 8C)n$ (4A 4B 4C 4D)n# (2A 4B 2C 4D)n (A B C D) œ 40n Ú Ú 8A 8C œ 0 8A 8C œ 0 Ý Ý Ý Ý B Dœ 0 4A 4B 4C 4D œ 0 A BC Dœ 0 Ê œ Ê 4B œ 20 Ê B œ 5 Ê Û Ê Û œ œ 2D œ 20 2A 4B 2C 4D 40 A 2 B C 2D 20 2B Ý Ý Ý Ý Ü A B C D œ 0 Ü A B C D œ 0 k ACœ0 Ê C œ 0 and A œ 0. Hence, ! ’ (#n1)40n and D œ 5 Ê œ # (2n1)# “ A 5 C 5 œ 0 n œ1 k œ 5 ! ’ (#n" 1)# n œ1 44. " (#n1)# “ œ 5 Š1 " (2k1)# ‹ 2n 1 n# (n 1)# " n# Ê œ 45. sk œ Š1 Ê Š È"2 kÄ_ " ‰ #"Î# " ˆ #"Î# lim sk œ kÄ_ 47. sk œ ˆ ln"3 œ ln"# " ‰ ln # " # " 1 œ " 9 " #5 " #5 á " (2k1)# ‹ Ê " (#k1)# " (#k1)# ‹ œ5 " ‰ 16 á ’ (k " 1)# " k# “ ’ k"# " (k 1)# “ " È4 ‹ á ŠÈ " k1 " Èk ‹ Š È" k " Èk 1 ‹ œ1 " Èk 1 œ1 " ˆ #"Î$ " ‰ ln 3 " (2(k1) 1)# œ1 Š È"3 " Èk 1 ‹ " ‰ #"Î$ "# ˆ ln"4 " ln (k 2) " (k 1)# “ " È3 ‹ lim sk œ lim Š1 kÄ_ 46. sk œ ˆ "# Ê kÄ_ " È2 ‹ Ê sk œ ˆ1 4" ‰ ˆ 4" 9" ‰ ˆ 9" lim sk œ lim ’1 kÄ_ " 9 Ê the sum is n lim 5 Š1 Ä_ " (n 1)# œ 5 Š 1" " ‰ #"Î% ˆ ln"5 á ˆ #1ÎÐ"k " ‰ ln 4 1Ñ " ‰ #1Îk á Š ln (k" 1) ˆ #1"Îk " ln k ‹ " ‰ #1ÎÐk1Ñ Š ln (k" 2) œ " # " #1ÎÐk1Ñ " ln (k 1) ‹ lim sk œ ln"# kÄ_ 48. sk œ ctan" (1) tan" (2)d ctan" (2) tan" (3)d á ctan" (k 1) tan" (k)d ctan" (k) tan" (k 1)d œ tan" (1) tan" (k 1) Ê lim sk œ tan" (1) kÄ_ 49. convergent geometric series with sum " 1 Š È" ‹ 2 50. divergent geometric series with krk œ È2 1 œ È2 È 2 1 1 # œ 1 4 1 # œ 14 œ 2 È2 51. convergent geometric series with sum Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Š 3# ‹ 1 Š "# ‹ œ1 Section 10.2 Infinite Series 52. n lim (1)n1 n Á 0 Ê diverges Ä_ 53. n lim cos (n1) œ n lim (1)n Á 0 Ê diverges Ä_ Ä_ 54. cos (n1) œ (1)n Ê convergent geometric series with sum " 1Š 55. convergent geometric series with sum 56. n lim ln Ä_ " 3n " ‹ e# 2 " 1 Š 10 ‹ 58. convergent geometric series with sum " 1 Š "x ‹ 59. difference of two geometric series with sum ˆ1 "n ‰n œ lim ˆ1 60. n lim Ä_ nÄ_ _ 63. ! n œ1 n! 1000n 2n 3n 4n since r œ _ ! n œ1 64. 2n 3n 4n _ n œ1 5 6 " ‰n n 2œ œ Ê 2n 4n _ ! ¹ 12 ¹ nœ1 3n 4n _ 20 9 œ 18 9 2 9 x x1 " 1 Š 23 ‹ " 1 Š 3" ‹ œ3 œ 3 # 3 # œ e" Á 0 Ê diverges 62. n lim Ä_ _ n _ n nn n! œ n lim Ä_ _ n n †n â n 1†#ân n lim n œ _ Ê diverges Ä_ n œ ! ˆ 21 ‰ ! ˆ 43 ‰ ; both œ ! ˆ 21 ‰ and ! ˆ 43 ‰ are geometric series, and both converge nœ1 1 and r œ nœ1 3 4 Ê ¹ 34 ¹ n œ1 1, respectivley Ê n œ1 _ ! ˆ 1 ‰n 2 n œ1 œ 1 2 1 12 _ n œ 1 and ! ˆ 34 ‰ œ nœ1 3 4 1 34 œ3Ê œ 1 3 œ 4 by Theorem 8, part (1) 2n 4n n n nÄ_ 3 4 lim œ e# e # 1 œ _ Á 0 Ê diverges œ! 1 2 œ " 1 Š "5 ‹ œ _ Á 0 Ê diverges 57. convergent geometric series with sum 61. n lim Ä_ 581 œ lim nÄ_ _ _ n œ1 n œ1 2n 4n 3n 4n " " ˆ 12 ‰n " 3 n nÄ_ ˆ 4 ‰ " œ lim œ 1 1 œ 1 Á 0 Ê diverges by nth term test for divergence 65. ! ln ˆ n n 1 ‰ œ ! cln (n) ln (n 1)d Ê sk œ cln (1) ln (2)d cln (2) ln (3)d cln (3) ln (4)d á cln (k 1) ln (k)d cln (k) ln (k 1)d œ ln (k 1) Ê lim sk œ _, Ê diverges kÄ_ 66. n lim a œ n lim ln ˆ 2n n 1 ‰ œ ln ˆ "# ‰ Á 0 Ê diverges Ä_ n Ä_ 67. convergent geometric series with sum 68. divergent geometric series with krk œ _ _ n œ0 n œ0 " 1 ˆ 1e ‰ e1 1e ¸ œ 23.141 22.459 1 1e 1 69. ! (1)n xn œ ! (x)n ; a œ 1, r œ x; converges to _ _ n œ0 n œ0 " 1 (x) n 70. ! (1)n x2n œ ! ax# b ; a œ 1, r œ x# ; converges to œ " 1 x# " 1x for kxk 1 for kxk 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 582 Chapter 10 Infinite Sequences and Series 71. a œ 3, r œ _ 72. ! n œ0 œ (1)n # x1 # ; converges to _ ˆ 3 "sin x ‰n œ ! n œ0 3 sin x 2(4 sin x) œ 3 sin x 8 2 sin x 3 1 Šx ˆ 3 "sin x ‰n ; a œ " # " 1 2x 74. a œ 1, r œ x"# ; converges to for k2xk 1 or kxk " # ; converges to 77. a œ 1, r œ sin x; converges to _ 79. (a) ! nœ2 _ 80. (a) ! nœ1 " 1 (x 1) " 1 Š3 x # ‹ " 1 sin x œ œ " #x for kx 1k 1 or 2 x 0 for kln xk 1 or e" x e _ 5 (n 2)(n 3) (b) ! n œ0 _ n œ3 " 4 (b) one example is 3# (c) one example is 1 " # for all x‰ for x Á (2k 1) 1# , k an integer (b) ! " # " ‹ 1 Š 3 sin x for ¸ 3 # x ¸ 1 or 1 x 5 2 x1 " (n 4)(n 5) 81. (a) one example is ˆ "# ‰ # " 1 ln x 78. a œ 1, r œ ln x; converges to " 3 sin x Ÿ ; converges to x ¸1¸ " ‹ œ x# 1 for x# 1 or kxk 1. # x 75. a œ 1, r œ (x 1)n ; converges to 3x # " 3 sin x ,rœ " # " 1Š " 4 " # Ÿ for all x ˆsince 73. a œ 1, r œ 2x; converges to 76. a œ 1, r œ 6 x" " œ 3 x for 1 # 1 or 1 x 3 # ‹ " 8 " 16 á œ 3 4 3 8 3 16 " 4 " 8 Š "# ‹ 1 Š "# ‹ á œ " 16 _ " (n 2)(n 3) (c) ! 5 (n 2)(n 1) (c) ! n œ5 _ nœ20 " (n 3)(n #) 5 (n 19)(n 18) œ1 Š 3# ‹ 1 Š "# ‹ á œ 1 œ 3 Š "# ‹ 1 Š "# ‹ œ 0. _ Š k# ‹ n œ0 1 Š "# ‹ n 1 82. The series ! kˆ 12 ‰ is a geometric series whose sum is œ k where k can be any positive or negative number. _ _ _ _ _ nœ1 nœ1 nœ1 nœ1 nœ1 _ _ _ _ _ nœ1 nœ1 nœ1 nœ1 nœ1 n n 83. Let an œ bn œ ˆ "# ‰ . Then ! an œ ! bn œ ! ˆ "# ‰ œ 1, while ! Š bann ‹ œ ! (1) diverges. n n n 84. Let an œ bn œ ˆ "# ‰ . Then ! an œ ! bn œ ! ˆ "# ‰ œ 1, while ! aan bn b œ ! ˆ 4" ‰ œ n n _ 85. Let an œ ˆ 4" ‰ and bn œ ˆ "# ‰ . Then A œ ! an œ n œ1 " 3 _ _ _ nœ1 nœ1 nœ1 " 3 Á AB. n , B œ ! bn œ 1 and ! Š bann ‹ œ ! ˆ "# ‰ œ 1 Á 86. Yes: ! Š a"n ‹ diverges. The reasoning: ! an converges Ê an Ä 0 Ê " an A B . Ä _ Ê ! Š a"n ‹ diverges by the nth-Term Test. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.3 The Integral Test 87. Since the sum of a finite number of terms is finite, adding or subtracting a finite number of terms from a series that diverges does not change the divergence of the series. 88. Let An œ a" a# á an and n lim A œ A. Assume ! aan bn b converges to S. Let Ä_ n Sn œ (a" b" ) (a# b# ) á (an bn ) Ê Sn œ (a" a# á an ) (b" b# á bn ) Ê b" b# á bn œ Sn An Ê n lim ab" b# á bn b œ S A Ê ! bn converges. This Ä_ contradicts the assumption that ! bn diverges; therefore, ! aan bn b diverges. 89. (a) (b) 2 1r œ5 Ê Š 13 2 ‹ 1r 2 5 œ5 Ê œ1r Ê rœ 13 10 90. 1 eb e2b á œ # ; 2 2 ˆ 35 ‰ 2 ˆ 35 ‰ á 3 5 3 œ 1 r Ê r œ 10 ; " 1 e b " 9 œ9 Ê 13 2 13 # 3 ‰ ˆ 10 œ 1 eb Ê eb œ 13 # 3 ‰# ˆ 10 13 # 3 ‰$ ˆ 10 á Ê b œ ln ˆ 89 ‰ 8 9 91. sn œ 1 2r r# 2r$ r% 2r& á r2n 2r2n1 , n œ 0, 1, á Ê sn œ a1 r# r% á r2n b a2r 2r$ 2r& á 2r2n1 b Ê n lim s œ Ä_ n 1 2r œ 1 r# , if kr# k 1 or krk 1 92. L sn œ a 1r a a1 rn b 1r œ # # # 94. (a) L" œ 3, L# œ 3 ˆ 43 ‰ , L$ œ 3 ˆ 43 ‰ , á , Ln œ 3 ˆ 43 ‰ nc1 " # á œ 4 1 " # An œ lim È3 4 È3 ˆ " ‰2 4 ‹ 3 nÄ_ ! 3a4bk2 Š È3 8 ˆ5‰ 4 œ kœ2 An œ È3 4 œ È3 ˆ " ‰2 4 ‹ 33 n 2r 1 r# È3 1# , A$ œ A# 3a4bŠ , A5 œ A4 3a4b3 Š È3 ˆ " ‰k1 4 ‹ 32 È3 lim nÄ_ Œ 4 œ n 3 È 3 Œ! kœ2 È3 4 È3 ˆ " ‰2 4 ‹ 32 È3 ˆ " ‰2 4 ‹ 34 , œ n k 1 œ œ_ È3 2 4 s , we see that È3 È3 È3 4 12 #7 , È3 4 , A" œ n 4kc$ . 9k 1 œ È3 4 3È3Œ! 3È 3Œ 1 4 œ È3 4 1 ‰ 3È3ˆ 20 œ kœ2 È3 4 nc1 ..., ! 3È3a4bk$ ˆ "9 ‰ 4kc$ 9k 1 œ 8 m# Ê n lim L œ n lim 3 ˆ 43 ‰ Ä_ n Ä_ (b) Using the fact that the area of an equilateral triangle of side length s is A% œ A$ 3a4b2 Š arn 1 r 93. area œ 2# ŠÈ2‹ (1)# Š È"2 ‹ á œ 4 2 1 A# œ A" 3Š " 1 r# 1 36 9 kœ2 È3 ˆ 4 1 53 ‰ œ 85 A" 10.3 THE INTEGRAL TEST 1. faxb œ 1 x2 œ lim bÄ_ 2. faxb œ 1 x0.2 œ lim bÄ_ _1 1; '1 is positive, continuous, and decreasing for x _1 ˆ 1b 1‰ œ 1 Ê ' 1 _ x2 dx converges Ê ! n œ1 1 n2 _ ˆ 54 b0.8 54 ‰ œ _ Ê ' 1 1 x0.2 _ dx œ lim bÄ_ '1b x1 2 dx œ lim bÄ_ b ’ 1x “ 1 converges 1; '1 is positive, continuous, and decreasing for x _ x2 1 x0.2 dx œ lim bÄ_ '1b x1 0.2 dx œ lim bÄ_ dx diverges Ê ! n10.2 diverges n œ1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. b ’ 54 x0.8 “ 1 583 584 Chapter 10 Infinite Sequences and Series 3. faxb œ œ 1 x2 4 lim ˆ 1 tan1 b2 bÄ_ 2 4. faxb œ 1 x4 _ 1; '1 is positive, continuous, and decreasing for x 1 1 1 ‰ 2 tan 2 œ 1 4 _ 2 _ 1; '1 is positive, continuous, and decreasing for x œ lim ˆ 2e12b bÄ_ 1 xaln xb2 œ lim _ '3 x x2 4 x x2 4 _ œ 1 ‰ 2e2 1 2e2 _ œ 1 ‰ ln 2 1 ln 2 _ ln x2 '3 dx œ lim bÄ_ ln x2 x _ Ê '2 '3 x x2 4 dx converges Ê ! n œ3 n œ1 bÄ_ '3 ln x x 2 _ '7 2 x exÎ3 n œ3 n œ2 2 n enÎ3 n œ1 10. faxb œ œ 1 e1Î3 x4 x2 2x 1 decreasing for x œ lim bÄ_ _ Ê ! nœ8 2 x exÎ3 18b Š 3a6b ‹ ebÎ3 bÄ_ Ê ! '7 b 1 œ 4 e2Î3 x4 a x 1 b2 _ 8; '8 ’lnlx 1l bÄ_ 9 e1 bÄ_ n4 n2 2n 1 diverges 16 e4Î3 x4 ax 1b2 _ Ê ! nœ2 36 e2 bÄ_ 18x exÎ3 ! n œ7 " 10 ’ ln1x “ bÄ_ 2 converges 3; _ ˆ 12 lnab2 4b 12 lna13b‰ œ _ Ê ' 3 _ ln x2 a2aln bb 2aln 3bb œ _ Ê '3 b x x2 4 dx x 3; dx 54 “ exÎ3 7 327 e7Î3 2 n enÎ3 0 for x 6, thus f is decreasing for x œ lim bÄ_ _ Ê '7 x2 exÎ3 Š 3b 2 18b 54 ebÎ3 b x1 ax 1b2 œ 2 1 4 b dx converges Ê ! n œ7 13. diverges; by the nth-Term Test for Divergence, n lim Ä_ 3 ax 1b2 œ n2 converges enÎ3 1 16 2 25 3 36 7x ax 1 b 3 dx• œ lim ”'8 bÄ_ b _ ln 7 37 ‰ œ _ Ê '8 0 1 327 ‹ e7Î3 7; converges dx '8 3 b1 _ 2, f is positive for x 4, and f w axb œ ˆlnlb 1l n4 n2 2n 1 b dx œ lim 2 0 for x e, thus f is decreasing for x x a x 6 b 3exÎ3 œ _ ”'8 bÄ_ dx œ lim 11. converges; a geometric series with r œ 2 ln x2 x2 bÄ_ 3 327 e7Î3 e bÄ_ '2b xaln1xb n œ3 1, f w axb œ ’ e3xxÎ3 25 e5Î3 œ lim _ dx œ lim n œ3 is continuous for x b 1 2 ! lnnn diverges ln 4 2 ˆ b54 ‰ Î3 œ lim 3 x 1 “8 b ’ 12 e2x “ lim ! n2 n 4 diverges _ 2 dx œ lim 327 e7Î3 2 8 2, f w axb œ is positive and continuous for x bÄ_ œ lim 1 5 ’2aln xb“ œ lim bÄ_ _ dx œ lim _ bÄ_ b ’lnlx 4l“ lim 0 for x 2, thus f is decreasing for x bÄ_ 3 b dx œ lim _ 4 x2 ax2 4b2 ’ 21 lnax2 4b“ œ lim is positive and continuous for x b 1 naln nb2 n œ2 1, f w axb œ 1 xaln xb2 b dx œ lim _ bÄ_ x2 exÎ3 _ 2; '2 _ 1 xaln xb2 2 2 diverges Ê ! lnnn diverges Ê ! lnnn œ 9. faxb œ 1 n œ1 _ dx œ lim x '1b e2x dx œ Ê '1 e2x dx converges Ê ! e2n converges is positive and continuous for x b bÄ_ _ diverges Ê ! n2 n 4 diverges Ê ! n2 n 4 œ 8. faxb œ bÄ_ bÄ_ 1; '1 e2x dx œ lim is positive, continuous, and decreasing for x ˆ ln1b bÄ_ 7. faxb œ ’ 21 tan1 x2 “ n œ1 5. faxb œ e2x is positive, continuous, and decreasing for x 6. faxb œ bÄ_ '1b x 1 4 dx œ dx œ lim 1 x4 b lim 2 n œ1 _ bÄ_ 2 bÄ_ _ alnlb 4l ln 5b œ _ Ê '1 x 1 4 dx diverges Ê ! n 1 4 diverges œ lim '1b x 1 4 dx œ dx œ lim _ Ê '1 x 1 4 dx converges Ê ! n 1 4 converges 1 1 1 2 tan 2 1 x2 4 _ ! n œ8 x4 ax 1b2 n4 n2 2n 1 0 for x 7, thus f is 1 x1 dx '8 3 ax 1b2 dx diverges diverges 12. converges; a geometric series with r œ n n1 b œ1Á0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " e 1 dx• Section 10.3 The Integral Test 14. diverges by the Integral Test; '1 n _ 15. diverges; ! n œ1 3 Èn _ 16. converges; ! n œ1 _ " Èn œ3! nœ1 2 nÈ n _ dx œ 5 ln (n 1) 5 ln 2 Ê '1 5 x1 _ n œ1 8 n _ œ 2 ! n œ1 _ œ 8 ! nœ1 dx Ä _ , which is a divergent p-series (p œ #" ) " n$Î# , which is a convergent p-series (p œ 3# ) 17. converges; a geometric series with r œ 18. diverges; ! 5 x1 " 8 1 _ and since ! 1 n nœ1 19. diverges by the Integral Test: _ " n diverges, 8 ! n œ1 '2n lnxx dx œ "# aln# n ln 2b Ê t œ ln x × dt œ dx Ä x Õ dx œ et dt Ø œ lim 2ebÎ2 (b 2) 2eÐln 2ÑÎ2 (ln 2 2)‘ œ _ 20. diverges by the Integral Test: '2_ lnÈxx dx; Ô 1 n diverges '2_ lnxx dx 'ln_2 tetÎ2 dt œ Ä _ b lim 2tetÎ2 4etÎ2 ‘ ln 2 bÄ_ bÄ_ 21. converges; a geometric series with r œ 22. diverges; n lim Ä_ _ 23. diverges; ! n œ0 2 n 1 5n 4n 3 _ œ 2 ! n œ0 " n1 1 ˆ ln 5 ‰ ˆ 54 ‰n œ _ Á 0 œ n lim Ä _ ln 4 5n ln 5 4n ln 4 œ n lim Ä_ 2 3 , which diverges by the Integral Test 24. diverges by the Integral Test: '1n 2xdx 1 œ "# ln (2n 1) 25. diverges; n lim a œ n lim Ä_ n Ä_ 2n n1 26. diverges by the Integral Test: '1n Èx ˆÈdxx 1‰ ; – u œ 27. diverges; n lim Ä_ Èn ln n œ n lim Ä_ œ n lim Ä_ 2n ln 2 1 œ_Á0 Èx " du œ " Š 2È ‹ n Š "n ‹ œ n lim Ä_ Èn # Ä _ as n Ä _ dx Èx Ènb1 du ' —Ä 2 u œ ln ˆÈn 1‰ ln 2 Ä _ as n Ä _ œ_Á0 ˆ1 n" ‰n œ e Á 0 28. diverges; n lim a œ n lim Ä_ n Ä_ 29. diverges; a geometric series with r œ " ln # 30. converges; a geometric series with r œ 31. converges by the Integral Test: ¸ 1.44 1 " ln 3 ¸ 0.91 1 '3_ (ln x) ÈŠ(ln‹x) 1 dx; ” " x # u œ ln x Ä du œ "x dx • 'ln_3 " uÈ u# 1 du Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 585 586 Chapter 10 Infinite Sequences and Series b œ lim csec" kukd ln 3 œ lim csec" b sec" (ln 3)d œ lim cos" ˆ "b ‰ sec" (ln 3)‘ bÄ_ bÄ_ œ cos" (0) sec" (ln 3) œ 1 # 32. converges by the Integral Test: '1_ x a1 "ln xb dx œ '1_ 1 Š(ln‹x) " x # œ lim ctan" ud 0 œ lim atan" b tan" 0b œ b bÄ_ bÄ_ sec" (ln 3) ¸ 1.1439 bÄ_ 1 # 0œ dx; ” # '0_ 1"u u œ ln x Ä du œ "x dx • # du 1 # 33. diverges by the nth-Term Test for divergence; n lim n sin ˆ "n ‰ œ n lim Ä_ Ä_ sin ˆ "n ‰ ˆ "n ‰ œ lim 34. diverges by the nth-Term Test for divergence; n lim n tan ˆ "n ‰ œ n lim Ä_ Ä_ tan ˆ "n ‰ ˆ "n ‰ œ n lim Ä_ xÄ0 œ1Á0 sin x x Š n"# ‹ sec# ˆ n" ‰ Š n"# ‹ œ n lim sec# ˆ "n ‰ œ sec# 0 œ 1 Á 0 Ä_ 35. converges by the Integral Test: '1_ 1 e e x 1 # œ lim atan" b tan" eb œ bÄ_ 36. converges by the Integral Test: œ lim 2 ln bÄ_ u ‘b u1 e dx; ” 2x 'e_ u œ ex Ä du œ ex dx • " 1 u# ctan" ud e du œ n lim Ä_ b tan" e ¸ 0.35 _ '1 u œ ex × _ _ dx; du œ ex dx Ä 'e u(1 2 u) du œ 'e ˆ 2u Õ dx œ " du Ø u Ô 2 1 ex 2 ‰ u1 du œ lim 2 ln ˆ b b 1 ‰ 2 ln ˆ e e 1 ‰ œ 2 ln 1 2 ln ˆ e e 1 ‰ œ 2 ln ˆ e e 1 ‰ ¸ 0.63 bÄ_ 37. converges by the Integral Test: 38. diverges by the Integral Test: '1_ 81tancx x dx; ” u œ tan dx x • " " # du œ 1 x# '1_ x x1 dx; ” u œ x 39. converges by the Integral Test: # # 1 Ä du œ 2x dx • '1_ sech x dx œ 2 Ä x x # bÄ_ # '2_ du4 œ " # '1b 1 eae b lim '11ÎÎ42 8u du œ c4u# d 11ÎÎ24 œ 4 Š 14 b lim #" ln u‘ 2 œ lim 1# 16 ‹ " bÄ_ # bÄ_ œ 31 # 4 (ln b ln 2) œ _ dx œ 2 lim ctan" ex d 1 b bÄ_ œ 2 lim atan" eb tan" eb œ 1 2 tan" e ¸ 0.71 bÄ_ 40. converges by the Integral Test: '1_ sech# x dx œ œ 1 tanh 1 ¸ 0.76 41. '1_ ˆ x a 2 x " 4 ‰ dx œ a lim (bb2)4 bÄ_ lim bÄ_ '1b sech# x dx œ lim ca ln kx 2k ln kx 4kd 1 œ lim ln b bÄ_ œ a lim (b 2) bÄ_ bÄ_ a 1 lim ctanh xd b1 œ lim (tanh b tanh 1) bÄ_ (b 2)a b4 bÄ_ ln ˆ 35 ‰ ; a _, a 1 œœ Ê the series converges to ln ˆ 53 ‰ if a œ 1 and diverges to _ if 1, a œ 1 a 1. If a 1, the terms of the series eventually become negative and the Integral Test does not apply. From that point on, however, the series behaves like a negative multiple of the harmonic series, and so it diverges. 42. '3_ ˆ x " 1 x 2a 1 ‰ dx œ " 2ac1 b Ä _ #a(b 1) œ lim b lim ’ln ¹ (xx1)12a ¹“ œ lim ln bÄ_ œ 3 bÄ_ b1 (b 1)2a b" ln ˆ 422a ‰ ; lim 2a b Ä _ (b 1) 1, a œ "# Ê the series converges to ln ˆ #4 ‰ œ ln 2 if a œ _, a "# " # and diverges to _ if Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.3 The Integral Test if a " # . If a " # 587 , the terms of the series eventually become negative and the Integral Test does not apply. From that point on, however, the series behaves like a negative multiple of the harmonic series, and so it diverges. 43. (a) (b) There are (13)(365)(24)(60)(60) a10* b seconds in 13 billion years; by part (a) sn Ÿ 1 ln n where n œ (13)(365)(24)(60)(60) a10* b Ê sn Ÿ 1 ln a(13)(365)(24)(60)(60) a10* bb œ 1 ln (13) ln (365) ln (24) 2 ln (60) 9 ln (10) ¸ 41.55 _ 44. No, because ! n œ1 " nx œ " x _ ! n œ1 " n _ and ! n œ1 " n diverges _ _ _ nœ1 nœ1 nœ1 45. Yes. If ! an is a divergent series of positive numbers, then ˆ "# ‰ ! an œ ! ˆ a#n ‰ also diverges and an # an . _ There is no “smallest" divergent series of positive numbers: for any divergent series ! an of positive numbers n œ1 _ ! ˆ an ‰ has smaller terms and still diverges. # n œ1 _ _ _ nœ1 nœ1 nœ1 46. No, if ! an is a convergent series of positive numbers, then 2 ! an œ ! 2an also converges, and 2an an . There is no “largest" convergent series of positive numbers. 47. (a) Both integrals can represent the area under the curve faxb œ 1 Èx 1 , and the sum s50 can be considered an 50 approximation of either integral using rectangles with ?x œ 1. The sum s50 œ ! n œ1 integral 1 Èn 1 is an overestimate of the '151 Èx1 1 dx. The sum s50 represents a left-hand sum (that is, the we are choosing the left-hand endpoint of each subinterval for ci ) and because f is a decreasing function, the value of f is a maximum at the left-hand endpoint of each sub interval. The area of each rectangle overestimates the true area, thus '1 51 manner, s50 underestimates the integral '0 50 1 Èx 1 dx. 1 Èx 1 dx 50 ! n œ1 1 Èn 1 . In a similar In this case, the sum s50 represents a right-hand sum and because f is a decreasing function, the value of f is aminimum at the right-hand endpoint of each subinterval. The area of each 50 rectangle underestimates the true area, thus ! n œ1 1 Èn 1 œ ’2Èx 1“ œ 2È52 2È2 ¸ 11.6 and '0 51 50 1 50 11.6 ! n œ1 1 Èn 1 Ên 1 Èx 1 dx 50 1 Èx 1 dx. Evaluating the integrals we find '1 51 1 Èx 1 dx 50 œ ’2Èx 1“ œ 2È51 2È1 ¸ 12.3. Thus, 0 12.3. nb1 (b) sn 1000 Ê '1 '0 1 Èx 1 dx nb1 œ ’2Èx 1“ 1 2 œ 2Èn 1 2È2 1000 Ê n Š500 2È2‹ ¸ 251414.2 251415. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 588 Chapter 10 Infinite Sequences and Series 30 48. (a) Since we are using s30 œ ! n œ1 1 n4 _ to estimate ! n œ1 of the area under the curve faxb œ 1 x4 _ the error is given by ! 1 n4 , nœ31 1 n4 . We can consider this sum as an estimate 30 using rectangles with ?x œ 1 and ci is the right-hand endpoint of when x each subinterval. Since f is a decreasing function, the value of f is a minimum at the right-hand endpoint of each _ subinterval, thus ! nœ31 '30 _ 1 n4 1 x4 dx œ lim '30 b bÄ_ 1 x4 dx b œ lim ’ 3x1 3 “ œ lim Š 3b1 3 bÄ_ bÄ_ 30 1 ‹ 3a30b3 ¸ 1.23 ‚ 105 . Thus the error 1.23 ‚ 105 Þ (b) We want S sn 0.000001 Ê 'n _ œ lim ˆ 3b1 3 bÄ_ 1 ‰ 3n3 œ 1 3n3 49. We want S sn 0.01 Ê 'n _ œ 1 2n2 _ 1 x3 dx 1 x2 4 dx bÄ_ n œ1 1 n2 4 _ 10 n0.1 b bÄ_ 1 x2 4 dx 1 x4 dx b œ lim ’ 3x1 3 “ bÄ_ n 70. b œ lim ’ 2x1 2 “ œ lim ˆ 2b1 2 bÄ_ bÄ_ n 1 ‰ 2n2 ¸ 1.195 1 n3 n œ1 bÄ_ 1 1 ˆ n ‰ 2 tan 2 1 x3 dx bÄ_ 8 b 1 4 œ lim 'n 8 Ê S ¸ s8 œ ! 0.1 Ê lim 'n b ¸ 69.336 Ê n É 1000000 3 3 1 x3 dx œ lim 'n b œ lim ’ 21 tan1 ˆ 2x ‰“ bÄ_ n 0.1 Ê n 2tanˆ 12 0.2‰ ¸ 9.867 Ê n 10 Ê S ¸ s10 1 x1.1 dx 0.00001 Ê 'n _ 1 x1.1 dx œ lim 'n b bÄ_ 1 x1.1 dx b œ lim ’ x10 lim ˆ b10 0.1 “ œ 0.1 bÄ_ bÄ_ n 10 ‰ n0.1 0.00001 Ê n 100000010 Ê n 1060 52. S sn 0.01 Ê 'n _ œ _ 1 x4 dx ¸ 0.57 51. S sn 0.00001 Ê 'n œ _ 0.01 Ê 'n œ lim ˆ 12 tan1 ˆ b2 ‰ 12 tan1 ˆ n2 ‰‰ œ 10 0.000001 Ê 'n 0.000001 Ê n 0.01 Ê n È50 ¸ 7.071 Ê n 50. We want S sn 0.1 Ê 'n œ! 1 x4 dx lim Š 2aln1bb2 bÄ_ 1 dx xaln xb3 1 ‹ 2aln nb2 n n k œ1 k œ1 0.01 Ê 'n _ œ 1 2aln nb2 œ lim 'n b 1 dx xaln xb3 bÄ_ È50 0.01 Ê n e 1 dx xaln xb3 b œ lim ’ 2aln1xb2 “ bÄ_ ¸ 1177.405 Ê n n 1178 53. Let An œ ! ak and Bn œ ! 2k aa2k b , where {ak } is a nonincreasing sequence of positive terms converging to 0. Note that {An } and {Bn } are nondecreasing sequences of positive terms. Now, Bn œ 2a# 4a% 8a) á 2n aa2n b œ 2a# a2a% 2a% b a2a) 2a) 2a) 2a) b á ˆ2aa2n b 2aa2n b á 2aa2n b ‰ Ÿ 2a" 2a# a2a$ 2a% b a2a& 2a' 2a( 2a) b á ðóóóóóóóóóóóóóóñóóóóóóóóóóóóóóò 2n1 terms _ ˆ2aa2nc1 b 2aa2nc1 1b á 2aa2n b ‰ œ 2Aa2n b Ÿ 2 ! ak . Therefore if ! ak converges, k œ1 then {Bn } is bounded above Ê ! 2k aa2k b converges. Conversely, _ An œ a" aa# a$ b aa% a& a' a( b á an a" 2a# 4a% á 2n aa2n b œ a" Bn a" ! 2k aa2k b . k œ1 _ Therefore, if ! 2 aa2k b converges, then {An } is bounded above and hence converges. k k œ1 54. (a) aa2n b œ _ Ê ! n œ2 " 2n ln a2n b " n ln n œ " 2n †n(ln 2) _ _ n œ2 n œ2 Ê ! 2 n a a2 n b œ ! 2 n " #n †n(ln 2) œ " ln # _ ! n œ2 " n , which diverges diverges. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.3 The Integral Test " #np (b) aa2n b œ 55. (a) _ _ n œ1 nœ1 Ê ! 2 n a a2 n b œ ! 2 n † " #pc1 '2_ x(lndxx) u œ ln x • Ä du œ dx x œœ ;” _ n œ ! ˆ #p"c1 ‰ , a geometric series that nœ1 '2_ x dxln x œ p œ 1. cpb1 lim ’ up 1 “ bÄ_ b ln 2 œ lim Š 1 " p ‹ cbp1 (ln 2)p1 d bÄ_ Ê the improper integral converges if p 1 and diverges if p 1. _, p " For p œ 1: " a2n bpc1 nœ1 'ln_2 ucp du œ (ln 2)cpb1 , p 1 " p1 _ œ! 1 or p 1, but diverges if p Ÿ 1. converges if p " #np 589 lim cln (ln x)d b2 œ lim cln (ln b) ln (ln 2)d œ _, so the improper integral diverges if bÄ_ bÄ_ _ " n(ln n)p (b) Since the series and the integral converge or diverge together, ! n œ2 converges if and only if p 1. 56. (a) p œ 1 Ê the series diverges (b) p œ 1.01 Ê the series converges _ (c) ! n œ2 " n aln n$ b " 3 œ _ " n(ln n) ! n œ2 ; p œ 1 Ê the series diverges (d) p œ 3 Ê the series converges 57. (a) From Fig. 10.11(a) in the text with f(x) œ Ÿ 1 '1 f(x) dx Ê ln (n 1) Ÿ 1 n Ÿ ˆ1 " # " 3 á "‰ n " # " x and ak œ " 3 á (b) From the graph in Fig. 10.11(b) with f(x) œ Ê 0 cln (n 1) ln nd œ ˆ1 If we define an œ 1 " # œ nb1 , we have '1 " n " 3 " n " x " n1 " " # 3 , " x dx Ÿ 1 " # " 3 á " n Ÿ 1 ln n Ê 0 Ÿ ln (n 1) ln n ln n Ÿ 1. Therefore the sequence ˜ˆ1 1 and below by 0. " n1 " k nb1 'n " x á " n 1 " # " 3 á n" ‰ ln n™ is bounded above by dx œ ln (n 1) ln n ln (n 1)‰ ˆ1 " # " 3 á " n ln n‰ . ln n, then 0 an1 an Ê an1 an Ê {an } is a decreasing sequence of nonnegative terms. _ _ # b 1, and '1 ecx dx œ lim cex d " œ lim ˆeb e1 ‰ œ ec1 Ê '1 ecx dx converges by # 58. ex Ÿ ex for x bÄ_ bÄ_ _ n# the Comparison Test for improper integrals Ê ! e n œ0 10 59. (a) s10 œ ! '10_ x1 n œ1 " n3 dx œ lim 3 bÄ_ Ê 1.97531986 _ (b) s œ ! n œ1 " n3 10 60. (a) s10 œ ! '10_ x1 nœ1 4 ¸ " n4 (b) s œ ! n œ1 " n4 ¸ c2 b lim ’ x2 “ bÄ_ '11_ x1 '10b x4 dx œ 1 3993 10 4 dx œ lim c3 b bÄ_ c2 b lim ’ x2 “ bÄ_ œ lim ˆ 2b1 2 bÄ_ bÄ_ 10 s 1.082036583 1.08229 1.08237 2 '11b x3 dx œ 1 ‰ 200 œ 11 œ lim ˆ 2b1 2 bÄ_ 1 ‰ 242 œ 1 242 and 1 200 Ê 1.20166 s 1.20253 1 200 lim ’ x3 “ # nœ1 œ 1.202095; error Ÿ œ 1.082036583; Ê 1.082036583 bÄ_ s 1.97531986 1.20166 1.20253 2 bÄ_ dx œ lim 3 '10b x3 dx œ 1 242 dx œ lim _ '11_ x1 œ 1.97531986; _ œ 1 ! en converges by the Integral Test. 1.20253 1.20166 2 '11b x4 dx œ c3 b lim ’ x3 “ bÄ_ œ lim ˆ 3b1 3 bÄ_ 1 3000 œ 1.08233; error Ÿ œ 0.000435 1 ‰ 3000 œ 11 œ lim ˆ 3b1 3 bÄ_ 1 3000 Ê 1.08229 s 1.08237 1.08237 1.08229 2 œ 0.00004 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 ‰ 3993 œ 1 3993 and 590 Chapter 10 Infinite Sequences and Series 10.4 COMPARISON TESTS _ 1. Compare with ! n œ1 n which is a convergent p-series, since p œ 2 1. Both series have nonnegative terms for n 1, we have n2 Ÿ n2 30 Ê _ 2. Compare with ! n œ1 n " n2 , " n3 , 1 n2 1 n2 30 . _ Then by Comparison Test, ! 1 n2 30 n œ1 1. For converges. which is a convergent p-series, since p œ 3 1. Both series have nonnegative terms for n 1, we have n4 Ÿ n4 2 Ê 1 n4 Ê 1 n 4 2 n n4 Ê n n 4 2 1 n3 n n 4 2 _ n1 n 4 2 . Then by Comparison Test, ! n œ1 1. For n1 n 4 2 converges. _ 3. Compare with ! n œ2 n _ n œ2 " n, _ n œ1 For n 1 Èn 1 " , n3Î2 n2 1 n _ n œ1 1. For n œ È5 ! n œ1 1 n3Î2 " 3n , Ê cos2 n n3Î2 n œ2 1 Èn 1 n2 n n n n2 œ 1 n Ê Ÿ 1 . n3Î2 n2 n2 n 3 2 n2 n n 1 n. diverges. _ Thus ! n œ2 n2 n2 n n 3 an 4 b n4 4 _ _ È5 . n3Î2 _ cos2 n n3Î2 Then by Comparison Test, ! n œ1 _ 8. Compare with ! n œ1 n The series ! nœ1 n4 n4 4 " Èn , 1, we have Èn Ê n2 2 nÈn n Ê Èn 1 È n2 3 1 Èn . diverges. 1. converges. 1 n †3 n 1 n3Î2 Ÿ 1 3n . _ Then by Comparison Test, ! n œ1 is a convergent p-series, since p œ 3 2 1 n †3 n converges. _ Ÿ 5 n3 Ê É nn444 Ÿ É n53 œ È5 n3Î2 nœ1 1. For n _ n2 3 Ê 2 Ê 2È n 1 n ˆn 2 È n 1 ‰ n2 3 1Ê " # Ÿ 5. Ÿ 1. Both series have nonnegative terms for n 3 Ê nˆ2Èn 1‰ n 2È n 1 n2 3 Èn 1 È n2 3 n œ1 n4 4n3 n4 4 n œ1 1 n Ê 3 Ê 2 nÈ n n 3n ˆÈ n 1 ‰ n2 3 2 1 n ÊÊ ˆÈ n 1 ‰ n2 3 _ Then by Comparison Test, ! 1, we have Then by Comparison Test, ! É nn444 converges. which is a divergent p-series, since p œ 1 Ê 2È n È5 n3Î2 1, and the series ! converges by Theorem 8 part 3. Both series have nonnegative terms for n Ÿ5Ê 2. For 1. Both series have nonnegative terms for n n3 Ÿ n4 Ê 4n3 Ÿ 4n4 Ê n4 4n3 Ÿ n4 4n4 œ 5n4 Ê n4 4n3 Ÿ 5n4 20 œ 5an4 4b Ê Ê 2. For which is a convergent geometric series, since lrl œ ¹ 13 ¹ 1. Both series have nonnegative terms for 3n Ê nœ1 _ _ which is a convergent p-series, since p œ 1, we have n † 3n 7. Compare with ! Ÿ 1. Both series have nonnegative terms for n Then by Comparison Test, ! 1 Èn . 1 n2 1, we have 0 Ÿ cos2 n Ÿ 1 Ê 6. Compare with ! " # which is a divergent p-series, since p œ 1 Ÿ 1. Both series have nonnegative terms for n 2, we have n2 n Ÿ n2 Ê 5. Compare with ! n which is a divergent p-series, since p œ 2, we have Èn 1 Ÿ Èn Ê 4. Compare with ! n " Èn , diverges. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 3 2 É 1n 1. For Section 10.4 Comparison Tests _ " n2 , 9. Compare with ! nc2 n3 c n2 b 3 1 În 2 œ lim _ ! n œ1 n œ1 nÄ_ n2 n3 n2 3 n3 2n2 3 2 nÄ_ n n 3 œ lim 3n2 4n 2 nÄ_ 3n 2n œ lim 6n 4 nÄ_ 6n 2 œ lim œ lim 6 nÄ_ 6 an nÄ_ bn 1. lim œ 1 0. Then by Limit Comparison Test, converges. _ " Èn , 10. Compare with ! n œ1 É nn2bb12 œ lim which is a convergent p-series, since p œ 2 1. Both series have positive terms for n 591 which is a divergent p-series, since p œ n œ lim É nn2 2 œ É lim n2 n 2 nÄ_ n 2 2 nÄ_ 1ÎÈn nÄ_ œ É lim nÄ_ " # 2n 1 2n Ÿ 1. Both series have positive terms for n œ É lim 2 nÄ_ 2 an nÄ_ bn 1. lim œ È1 œ 1 0. Then by Limit Comparison _ Test, ! É nn212 diverges. n œ1 _ " n, 11. Compare with ! nan b 1b Šn2 œ lim n œ2 b 1‹an c 1b n3 + n2 3 2 nÄ_ n n n 1 œ lim 1 În nÄ_ _ Test, ! n œ2 n an 1 b an2 1ban 1b _ n œ1 lim an nÄ_ bn 1. nÄ_ _ n œ1 5n È n 4n œ lim † nÄ_ 1ÎÈn 6n 2 nÄ_ 6n 2 œ lim œ lim 6 nÄ_ 6 œ 1 0. Then by Limit Comparison which is a convergent geometric series, since lrl œ ¹ 12 ¹ 1. Both series have positive terms for œ lim 13. Compare with ! 3n2 2n 2 nÄ_ 3n 2n 1 œ lim an nÄ_ bn 2. lim diverges. " 2n , 12. Compare with ! n which is a divergent p-series, since p œ 1 Ÿ 1. Both series have positive terms for n " Èn , 2n 3 b 4n 1Î2 n 4n 3 4n nÄ_ œ lim 4n ln 4 n nÄ_ 4 ln 4 œ lim _ œ 1 0. Then by Limit Comparison Test, ! which is a divergent p-series, since p œ n œ1 1 2 _ nÄ_ converges. Ÿ 1. Both series have positive terms for n n œ lim ˆ 54 ‰ œ _. Then by Limit Comparison Test, ! 5n n nÄ_ 4 œ lim 2n 3 4n n œ1 5n Èn†4n an nÄ_ bn 1. lim diverges. _ n 14. Compare with ! ˆ 25 ‰ , which is a convergent geometric series, since lrl œ ¹ 25 ¹ 1. Both series have positive terms for n œ1 n 1. œ exp b 3 ‰n ˆ 2n 5n b 4 n 15 ‰n 15 ‰ lim ˆ 10n 15 ‰ œ exp lim lnˆ 10n œ exp lim n lnˆ 10n n œ 10n 8 10n 8 nÄ_ a2Î5b nÄ_ 10n 8 nÄ_ nÄ_ b 15 ‰ 10 lnˆ 10n 10b 8 70n2 70n2 10n b 8 lim œ exp lim 10n b151În10n œ exp lim a10n 15 2 2 1 În ba10n 8b œ exp nlim nÄ_ nÄ_ nÄ_ Ä_ 100n 230n 120 lim an nÄ_ bn œ lim œ exp lim œ exp lim 140n nÄ_ 200n 230 _ 15. Compare with ! n œ2 œ lim " ln n nÄ_ 1În n œ1 lnŠ1 n"2 ‹ 1În2 _ 3 ‰n œ e7Î10 0. Then by Limit Comparison Test, ! ˆ 2n converges. 5n 4 n œ1 which is a divergent p-series, since p œ 1 Ÿ 1. Both series have positive terms for n n nÄ_ ln n _ nÄ_ " n, œ lim 16. Compare with ! œ lim 140 nÄ_ 200 " n2 , œ lim 1 nÄ_ 1În _ œ lim n œ _. Then by Limit Comparison Test, ! nÄ_ n œ2 " ln n an nÄ_ bn 2. lim diverges. which is a convergent p-series, since p œ 2 1. Both series have positive terms for n 1 œ lim nÄ_ 1 2 " Š n3 ‹ n2 Š n23 ‹ œ lim 1 " nÄ_ 1 n2 _ œ 1 0. Then by Limit Comparison Test, ! lnˆ1 n œ1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. "‰ n2 an nÄ_ bn 1. lim converges. 592 Chapter 10 Infinite Sequences and Series _ " Èn 17. diverges by the Limit Comparison Test (part 1) when compared with ! n œ1 , a divergent p-series: " lim Œ #Èn È $ n Š È"n ‹ nÄ_ Èn $ n 2È n È œ n lim Ä_ ˆ " œ n lim Ä _ #n 1Î6 ‰œ " # 18. diverges by the Direct Comparison Test since n n n n Èn 0 Ê _ " n term of the divergent series ! nœ1 3 n Èn " n , which is the nth " n or use Limit Comparison Test with bn œ 19. converges by the Direct Comparison Test; sin# n 2n Ÿ " #n , which is the nth term of a convergent geometric series 20. converges by the Direct Comparison Test; 1 cos n n# Ÿ 2 n# 2n 3n 1 21. diverges since n lim Ä_ œ 2 3 Š nn# È"n ‹ " n# converges Á0 22. converges by the Limit Comparison Test (part 1) with lim nÄ_ and the p-series ! " n$Î# , the nth term of a convergent p-series: ˆ n n " ‰ œ 1 œ n lim Ä_ " ‹ Š $Î# n 23. converges by the Limit Comparison Test (part 1) with lim Š n(n 10n1)(n" 2) ‹ Š n"# ‹ nÄ_ 10n# n n# 3n 2 œ n lim Ä_ œ n lim Ä_ 20n 1 2n 3 24. converges by the Limit Comparison Test (part 1) with lim n# (n " n# , the nth term of a convergent p-series: œ n lim Ä_ " n# œ 10 20 2 , the nth term of a convergent p-series: 5n$ 3n 2) Šn# 5‹ Š n"# ‹ nÄ_ œ n lim Ä_ 5n$ 3n n$ 2n# 5n 10 15n# 3 3n# 4n 5 œ n lim Ä_ n œ n lim Ä_ 30n 6n 4 œ5 n n n ‰ 25. converges by the Direct Comparison Test; ˆ 3n n 1 ‰ ˆ 3n œ ˆ "3 ‰ , the nth term of a convergent geometric series 26. converges by the Limit Comparison Test (part 1) with " Š $Î# ‹ n lim nÄ_ Š " È$ n 2 $ ‹ É n n$ 2 œ lim É1 œ n lim Ä_ nÄ_ " n$Î# , the nth term of a convergent p-series: œ1 2 n$ 27. diverges by the Direct Comparison Test; n ln n Ê ln n ln ln n Ê " n _ 28. converges by the Limit Comparison Test (part 2) when compared with ! n œ1 # lim nÄ_ ’ (lnn$n) “ Š n"# ‹ œ n lim Ä_ (ln n)# n œ n lim Ä_ 2(ln n) Š n" ‹ 1 œ 2 n lim Ä_ 29. diverges by the Limit Comparison Test (part 3) with lim nÄ_ ’È 1 “ n ln n ˆ n" ‰ œ n lim Ä_ Èn ln n " n Š 2È n ‹ ˆ n" ‰ " n# " ln n " ln (ln n) _ and ! n œ3 " n , a convergent p-series: œ0 , the nth term of the divergent harmonic series: " œ n lim Ä_ ln n n œ n lim Ä_ Èn 2 œ_ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. diverges Section 10.4 Comparison Tests " n&Î% 30. converges by the Limit Comparison Test (part 2) with lim n)# ’ (ln$Î# “ n nÄ_ Š " ‹ n&Î% (ln n)# n"Î% œ n lim Ä_ œ n lim Ä_ ˆ 2 lnn n ‰ " n 31. diverges by the Limit Comparison Test (part 3) with lim nÄ_ ˆ 1 "ln n ‰ ˆ "n ‰ œ n lim Ä_ n 1 ln n 32. diverges by the Integral Test: " Š "n ‹ œ n lim Ä_ , the nth term of a convergent p-series: œ 8 n lim Ä_ " Š $Î% ‹ 4n ln n n"Î% œ 8 n lim Ä_ ˆ n" ‰ Š " ‹ 4n$Î% œ 32 n lÄ im_ " n"Î% œ 32 † 0 œ 0 , the nth term of the divergent harmonic series: œ n lim nœ_ Ä_ '2_ lnx(x11) dx œ 'ln_3 u du œ " u# ‘ b œ lim ln 3 lim bÄ_ 2 " bÄ_ # ab# ln# 3b œ _ " 33. converges by the Direct Comparison Test with n$Î# , the nth term of a convergent p-series: n# 1 n for " " n 2 Ê n# an# 1b n$ Ê nÈn# 1 n$Î# Ê $Î# or use Limit Comparison Test with nÈ n# 1 n " n$Î# Èn n# 1 34. converges by the Direct Comparison Test with n# 1 Èn Ê n# 1 Ènn$Î# Ê _ 35. converges because ! n œ1 _ ! nœ1 " n2n "n n2n n$Î# Ê _ œ! n œ1 " n2n _ " #n ! n œ1 593 , the nth term of a convergent p-series: n# 1 n# " n$Î# _ n œ1 or use Limit Comparison Test with " . n$Î# which is the sum of two convergent series: converges by the Direct Comparison Test since 36. converges by the Direct Comparison Test: ! 1 n# . " n #n " #n _ n 2n n# 2n _ , and ! œ ! ˆ n2" n nœ1 nœ1 "‰ n# " 2n and is a convergent geometric series " n2n " n# Ÿ " #n " n# , the sum of the nth terms of a convergent geometric series and a convergent p-series 37. converges by the Direct Comparison Test: 38. diverges; n lim Š3 Ä_ nc1 " 3n ‹ ˆ" œ n lim Ä_ 3 " 3nc1 1 "‰ 3n " 3 œ " 3nc1 , which is the nth term of a convergent geometric series Á0 _ n 39. converges by Limit Comparison Test: compare with ! ˆ 15 ‰ , which is a convergent geometric series with lrl œ n œ1 lim nÄ_ 1 1 Š n2n b b 3n † 5n ‹ a 1 Î5 b n œ n lim Ä_ n1 n2 3n œ n lim Ä_ 1 2n 3 _ n œ1 3 Š 23n b b 4n ‹ n n a 3 Î4 b n œ n lim Ä_ 8n 12n 9n 12n œ n lim Ä_ 8 ‰n ˆ 12 1 9 ‰n ˆ 12 1 œ 1 1 _ n œ1 œ œ 2 n lim 2 aln 2b n Ä _ 2n aln 2b2 1 5 1, œ 1 0. 41. diverges by Limit Comparison Test: compare with ! n lim 2 ln 2 1 n Ä _ 2n ln 2 1, œ 0. n 40. converges by Limit Comparison Test: compare with ! ˆ 34 ‰ , which is a convergent geometric series with lrl œ lim nÄ_ 1 5 Š 2n 2cnn ‹ n 1 n, which is a divergent p-series, n lim Ä_ † 1 În 2 n œ n lim Ä _ 2n n œ 1 0. _ _ n œ1 n œ1 42. diverges by the definition of an infinite series: ! lnˆ n n 1 ‰ œ ! ln n ln an 1b‘, sk œ aln 1 ln 2b aln 2 ln 3b Þ Þ Þ alnak 1b ln kb aln k ln ak 1bb œ ln ak 1b Ê lim sk œ _ kÄ_ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 594 Chapter 10 Infinite Sequences and Series _ 43. converges by Comparison Test with ! n œ2 sk œ ˆ1 12 ‰ ˆ 12 13 ‰ Þ Þ Þ ˆ k 1 2 Ê nan 1ban 2b! _ which converges since ! 1 nan 1b nan 1b Ê n! n œ2 1 ‰ k1 ˆ k 1 1 k1 ‰ œ 1 nan 1b Ê 1 n! _ 1 n3 , n œ1 œ œ n2 lim n Ä _ n2 3n 2 œ n lim Ä_ 45. diverges by the Limit Comparison Test (part 1) with "‰ n ˆsin lim n Ä _ ˆ "n ‰ œ lim xÄ0 sin x x nœ2 Ê lim sk œ 1; for n 1 k 2, an 2b! kÄ_ 1 nan1b an which is a convergent p-series, n lim Ä_ 2n 2n 3 œ n lim Ä_ c 1bx 2bx 1 În 3 œ10 2 2 " n , the nth term of the divergent harmonic series: " n , the nth term of the divergent harmonic series: œ1 46. diverges by the Limit Comparison Test (part 1) with ˆtan "n ‰ lim n Ä _ ˆ "n ‰ Ÿ _ œ ! ’ n 1 1 n1 “, and an 44. converges by Limit Comparison Test: compare with ! n 3 a n 1 bx lim n Ä _ an 2ban 1bnan 1bx 1 nan 1b œ n lim Š " ‹ Ä _ cos " n ˆsin n" ‰ ˆ "n ‰ œ lim ˆ cos" x ‰ ˆ sinx x ‰ œ 1 † 1 œ 1 xÄ0 tanc" n n1.1 47. converges by the Direct Comparison Test: _ 1 # n1.1 1 and ! n œ1 1 # œ # n1.1 _ ! nœ1 " n1.1 is the product of a convergent p-series and a nonzero constant 48. converges by the Direct Comparison Test: sec" n 1 # Ê secc" n n1 3 Þ ˆ 1# ‰ n1 3 Þ _ and ! n œ1 ˆ 1# ‰ n1 3 Þ œ 1 # _ ! n œ1 " n1 3 Þ is the product of a convergent p-series and a nonzero constant 49. converges by the Limit Comparison Test (part 1) with œ n lim Ä_ " ec2n 1 ec2n " ec2n 1 ec2n : n lim Ä_ " n# : n lim Ä_ 52. converges by the Limit Comparison Test (part 1) with " 123án lim nÄ_ 54. œ Š nan 2b 1b ‹ Š n"# ‹ " 1 2# 3# á n# Š n"# ‹ œ n lim coth n œ n lim Ä_ Ä_ en ecn en ecn n Š tanh ‹ n# Š n"# ‹ œ n lim tanh n œ n lim Ä_ Ä_ en e en e n n œ1 51. diverges by the Limit Comparison Test (part 1) with 1n : n lim Ä_ 53. n Š coth ‹ n# œ1 50. converges by the Limit Comparison Test (part 1) with œ n lim Ä_ " n# " ˆ n(n # 1) ‰ œ œ n lim Ä_ œ " 2 n(n 1) . 2n# n# n n(n b 1)(2n b 1) 6 œ 1 Š nÈ n n‹ ˆ 1n ‰ " n# : n lim Ä_ Š œ n lim Ä_ Èn n ‹ n# Š n"# ‹ 1 n n È œ 1. n È œ n lim nœ1 Ä_ The series converges by the Limit Comparison Test (part 1) with œ n lim Ä_ 4n 2n 1 6 n(n 1)(2n 1) Ÿ œ n lim Ä_ 6 n$ 4 2 " n# : œ 2. Ê the series converges by the Direct Comparison Test Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 Section 10.4 Comparison Tests 595 an 55. (a) If n lim œ 0, then there exists an integer N such that for all n N, ¹ bann 0¹ 1 Ê 1 bann 1 Ä _ bn Ê an bn . Thus, if ! bn converges, then ! an converges by the Direct Comparison Test. an (b) If n lim œ _, then there exists an integer N such that for all n N, bann 1 Ê an bn . Thus, if Ä _ bn ! bn diverges, then ! an diverges by the Direct Comparison Test. _ 56. Yes, ! n œ1 an n converges by the Direct Comparison Test because an n an an 57. n lim œ _ Ê there exists an integer N such that for all n N, Ä _ bn ! then bn converges by the Direct Comparison Test an bn 1 Ê an bn . If ! an converges, 58. ! an converges Ê n lim a œ 0 Ê there exists an integer N such that for all n N, 0 Ÿ an 1 Ê an# an Ä_ n Ê ! a#n converges by the Direct Comparison Test 59. Since an 0 and n lim a œ _ Á 0, by nth term test for divergence, ! an diverges. Ä_ n 60. Since an 0 and n lim a n2 † an b œ 0, compare !an with ! n"# , which is a convergent p-series; n lim Ä_ Ä_ an 1 În 2 œ n lim a n2 † an b œ 0 Ê !an converges by Limit Comparison Test Ä_ _ 61. Let _ q _ and p 1. If q œ 0, then ! n œ2 _ ! n œ2 1 nr where 1 r p, then n lim Ä_ œ n lim Ä_ 1 aln nbcq npcr qc1 lim qaln nb n Ä _ ap rbnpcr aln nbq np 1 În r œ 0. If q 0, n lim Ä_ œ n lim Ä_ qc2 q ap rbnpcr aln nb1cq aln nbq np œ n lim Ä_ aln nbq npcr _ œ! nœ2 aln nbq npcr , œ n lim Ä_ 1 np , which is a convergent p-series. If q Á 0, compare with and p r 0. If q 0 Ê q 0 and n lim Ä_ qaln nbqc1 ˆ 1n ‰ ap rbnpcrc1 œ n lim Ä_ qaln nbqc1 ap rbnpcr . aln nbq npcr If q 1 Ÿ 0 Ê 1 q œ 0, otherwise, we apply L'Hopital's Rule again. n lim Ä_ qc2 0 and qaq 1baln nbqc2 ˆ 1n ‰ ap rb2 npcrc1 qaq 1baln nb qaq 1baln nb q aq 1 b œ n lim . If q 2 Ÿ 0 Ê 2 q 0 and n lim œ n lim œ 0; otherwise, we Ä _ ap rb2 npcr Ä _ ap rb2 npcr Ä _ ap rb2 npcr aln nb2cq apply L'Hopital's Rule again. Since q is finite, there is a positive integer k such that q k Ÿ 0 Ê k q 0. Thus, after k qaq 1bâaq k 1baln nbqck q a q 1 bâa q k 1 b œ n lim Ä _ ap rbk npcr aln nbkcq ap rbk npcr _ q series ! alnnnpb converges. n œ1 applications of L'Hopital's Rule we obtain n lim Ä_ 0 in every case, by Limit Comparison Test, the _ 62. Let _ q _ and p Ÿ 1. If q œ 0, then ! n œ2 _ ! nœ2 1 np , aln nbq np which is a divergent p-series. Then n lim Ä_ where 0 p r Ÿ 1. n lim Ä_ lim aln nbq np ar pbn rcpc1 n Ä _ aqbaln nbcqc1 ˆ 1n ‰ œ n lim Ä_ aln nbq np 1 În r œ q lim aln nb n Ä _ npcr rcp ar pbn . aqbaln nbcqc1 1 În p œ _ œ! nœ2 1 np , which is a divergent p-series. If q 0, compare with _ œ n lim aln nbq œ _. If q 0 Ê q 0, compare with ! Ä_ nœ2 nrcp lim cq n Ä _ aln nb otherwise, we apply L'Hopital's Rule again to obtain n lim Ä_ 0 and n lim Ä_ 2 rcpc1 a r pb n aqbaq 1baln nbcqc2 ˆ 1n ‰ 2 rcp ar pbnrcp aln nbqb1 aqb œ n lim Ä_ qb2 œ _, a r pb2 nrcp . aqbaq 1baln nbcqc2 a r pb n aln nb œ n lim œ _, otherwise, we aqbaq 1b Ä_ apply L'Hopital's Rule again. Since q is finite, there is a positive integer k such that q k Ÿ 0 Ê q k q 2 Ÿ 0 Ê q 2 0 and n lim Ä_ k applications of L'Hopital's Rule we obtain n lim Ä_ 1 nr , since r p 0. Apply L'Hopital's to obtain If q 1 Ÿ 0 Ê q 1 a r pb2 nrcp aqbaq 1baln nbcqc2 œ 0. Since the limit is k rcp a r pb n aqbaq 1bâaq k 1baln nbcqck œ n lim Ä_ k rcp If 0. Thus, after qbk a r pb n aln nb aqbaq 1bâaq k 1b Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. œ _. 596 Chapter 10 Infinite Sequences and Series _ q Since the limit is _ if q 0 or if q 0 and p 1, by Limit comparison test, the series ! alnnpncbr diverges. Finally if q 0 _ and p œ 1 then ! nœ2 Ê aln nbq _ 1Ê aln nb np q _ œ ! aln nbq n nœ2 1 n. aln nb n q _ . Compare with ! nœ2 _ Thus ! n œ2 aln nbq n nœ1 1 n, which is a divergent p-series. For n q nœ1 63. Converges by Exercise 61 with q œ 3 and p œ 4. 1 2 and p œ 12 . 65. Converges by Exercise 61 with q œ 1000 and p œ 1.001. 66. Diverges by Exercise 62 with q œ 1 5 1 diverges by Comparison Test. Thus, if _ q _ and p Ÿ 1, the series ! alnnpncbr diverges. 64. Diverges by Exercise 62 with q œ 3, ln n and p œ 0.99. 67. Converges by Exercise 61 with q œ 3 and p œ 1.1. 68. Diverges by Exercise 62 with q œ 12 and p œ 12 . 69. Example CAS commands: Maple: a := n -> 1./n^3/sin(n)^2; s := k -> sum( a(n), n=1..k ); # (a)] limit( s(k), k=infinity ); pts := [seq( [k,s(k)], k=1..100 )]: # (b) plot( pts, style=point, title="#69(b) (Section 10.4)" ); pts := [seq( [k,s(k)], k=1..200 )]: # (c) plot( pts, style=point, title="#69(c) (Section 10.4)" ); pts := [seq( [k,s(k)], k=1..400 )]: # (d) plot( pts, style=point, title="#69(d) (Section 10.4)" ); evalf( 355/113 ); Mathematica: Clear[a, n, s, k, p] a[n_]:= 1 / ( n3 Sin[n]2 ) s[k_]= Sum[ a[n], {n, 1, k}] points[p_]:= Table[{k, N[s[k]]}, {k, 1, p}] points[100] ListPlot[points[100]] points[200] ListPlot[points[200] points[400] ListPlot[points[400], PlotRange Ä All] To investigate what is happening around k = 355, you could do the following. N[355/113] N[1 355/113] Sin[355]//N a[355]//N N[s[354]] Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.5 The Ratio and Root Tests 597 N[s[355]] N[s[356]] _ _ 70. (a) Let S œ ! n12 , which is a convergent p-series. By Example 5 in Section 10.2, ! nan 1 1b converges to 1. By Theorem 8, n œ1 _ Sœ! n œ1 _ 1 n2 n œ1 _ œ! _ ! 1 nan 1b n œ1 _ ! 1 n2 n œ1 _ œ! 1 nan 1b nœ1 nœ1 1 n an 1 b _ ! nœ1 Š n12 1 nan 1b ‹ also converges. _ (b) Since ! nan 1 1b converges to 1 (from Example 5 in Section 10.2), S œ 1 ! Š n12 n œ1 n œ1 _ (c) The new series is comparible to ! 13 , n n œ1 1 nan 1b ‹ _ œ 1 ! n2 an1 1b n œ1 _ so it will converge faster because its terms Ä 0 faster than the terms of ! n12 . n œ1 1000 1000 (d) The series 1 ! n2 an1 1b gives a better approximation. Using Mathematica, 1 ! n2 an1 1b œ 1.644933568, while nœ1 1000000 ! n œ1 1 n2 nœ1 œ 1.644933067. Note that 1 6 œ 1.644934067. The error is 4.99 ‚ 107 compared with 1 ‚ 106 . 2 10.5 THE RATIO AND ROOT TESTS 1. 2. 3. 2n n! 2nb" 0 for all n n2 3n 1; lim Œ nÄ_ "b ! 2n n! an 0 for all n an 1 b! an 1b2 an 1; lim Œ nÄ_ 2 †2 lim Š an" b†n! † n œ nÄ_ b1b b 2 3nb1 nb2 n 3 3 lim ˆ n3 n †3 † œ nÄ_ b1bc1b! b1bb1b2 anc1b! anb1b2 aan 0 for all n 1; lim Œ nÄ_ aan _ n! 2n ‹ œ _ n œ lim ˆ n 2 " ‰ œ 0 1 Ê ! 2n! converges nÄ_ 3n ‰ n2 n3 ‰ ˆ1‰ œ lim ˆ 3n 6 œ lim 3 œ nÄ_ lim Š na†nan21b2b! † nÄ_ nœ1 nÄ_ an "b2 an 1b! ‹ _ 1 Ê ! n 3n 2 converges 1 3 nœ1 n 3n 4n 1 œ lim Š nn22n 4n 4 ‹ œ lim Š 2n 4 ‹ 3 2 2 nÄ_ nÄ_ 1b! œ lim ˆ 6n 2 4 ‰ œ _ 1 Ê ! aann diverges 1 b2 nÄ_ 4. 2nb1 n†3n 1 n œ1 0 for all n _ 1; lim nÄ_ an 2an1b1 1b†3an1b 2n1 n†3n 1 1 nb1 lim Š an21b†3†n2 1 †3 † œ nÄ_ n †3 n 1 2n1 ‹ œ lim ˆ 3n2n 3 ‰ œ lim ˆ 23 ‰ œ nÄ_ nÄ_ 2 3 1 nb1 Ê ! n2†3nc1 converges nœ1 5. n4 4n œ lim ˆ 14 nÄ_ 6. 3nb2 ln n 1 n b1b4 4nb1 n4 4n an 0 for all n 1; lim Œ nÄ_ 0 for all n 3 2n2 1 n3 1 ‰ 4n4 2; lim Œ nÄ_ _ œ œ 3anb1bb2 ln anb1b 3nb2 ln n 1 4 4 lim Š an4n †14b † 4n n4 ‹ nÄ_ _ œ lim Š n 4 nÄ_ 4n3 6n2 4n 1 ‹ 4n4 4 1 Ê ! n4n converges œ n œ1 nb2 lim Š ln3an †31b † nÄ_ ln n 3nb2 ‹ œ lim Š ln 3anlnn1b ‹ œ lim Š nÄ_ nÄ_ 3 n 1 nb1 ‹ œ lim ˆ 3n n 3 ‰ nÄ_ nb2 œ lim ˆ 31 ‰ œ 3 1 Ê ! 3ln n diverges nÄ_ 7. n 2 a n 2 b! nx32n n œ2 an 0 for all n 1; lim nÄ_ b 1b2aan b 1b b 2b! b 1bx32an 1b an n2 an 2b! nx32n œ 7 ˆ 6n 15 ‰ ˆ6‰ œ lim Š 3n27n2 15n 18n ‹ œ lim 54n 18 œ lim 54 œ 2 nÄ_ nÄ_ nÄ_ 2 3ban 2b! lim Š an an1ba1nb † †nx32n †32 nÄ_ 1 9 _ nx32n n 2 an 2 b! ‹ œ lim Š n nÄ_ 1 Ê ! n annx32n2b! converges 2 n œ1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 3 5n2 7n 3 ‹ 9n3 9n2 598 8. Chapter 10 Infinite Sequences and Series n †5 n a2n 3b lnan 1b 0 for all n 1b†a2n 3b lim Š 5an † na2n 5b œ 1; lim Œ nÄ_ lnan 1b lnan 2b ‹ nÄ_ a2an an b 1b†5n 1 1b 3b lnaan 1b n†5n a2n 3b lnan 1b n 1b†5 †5 lim Š a2na 5b lnan 2b † n œ 1b nÄ_ a2n 3b lnan 1b ‹ n †5 n lnan 1b 15 25 ‰ lim Š 10n 2n2 25n † lim Š ‹ † lim Š lnan 2b ‹ œ lim ˆ 20n 5n 4n 5 2 œ nÄ_ nÄ_ _ nÄ_ nÄ_ 1 nb1 1 nb2 ‹ n †5 ! ‰ ˆ n2‰ ˆ 1‰ œ lim ˆ 20 4 † lim n 1 œ 5 † lim 1 œ 5 † 1 œ 5 1 Ê a2n 3b lnan 1b diverges nÄ_ 9. 10. nÄ_ 7 a2n 5bn nÄ_ 4n a3n bn nÄ_ n 1 12. ’lnˆe2 1n ‰“ _ nÄ_ nÄ_ n n œ1 n n 3‰ ˆ 4n 2; lim É œ 3n 5 3‰ lim ˆ 4n 3n 5 œ nÄ_ n 1 nÄ_ Ê ! ’lnˆe2 1n ‰“ diverges 8 ˆ3 1n ‰2n 8 n 1; lim É œ ˆ3 1 ‰2n nÄ_ lim ˆ 43 ‰ œ nÄ_ n 1; lim Ê’lnˆe2 1n ‰“ 0 for all n n 1 n œ1 4 ‰ lim ˆ 3n œ 0 1 Ê ! a3n4 bn converges n 0 for all n _ n È lim Š 2n 7 5 ‹ œ 0 1 Ê ! a2n 7 5bn converges nÄ_ _ 4 n 1; lim É œ a3n bn 0 for all n 3 ‰n 11. ˆ 4n 3n 5 n œ2 7 n 1; lim É œ a2n 5bn 0 for all n n œ 4 3 nÄ_ _ n 3‰ 1 Ê ! ˆ 4n diverges 3n 5 n œ1 1 1 În lim ’lnˆe2 1n ‰“ nÄ_ œ lnae2 b œ 2 1 n œ1 13. 0 for all n n 16. " n1bn nÄ_ n 14. ’sinŠ È1n ‹“ n 15. ˆ1 n1 ‰ lim Œ ˆ n È 8 3 1n ‰ 0 for all n 0 for all n 1; 17. converges by the Ratio Test: converges nÄ_ n n œ1 nÄ_ 2 nœ1 n È nÄ_ ” œ n lim Ä_ nÄ_ È (n b 1) 2 2 n b1 • ” _ n È 1 ! 1"bn converges lim Š n È n n‹ œ 0 1 Ê n lim Š n1În 1 1 ‹ œ lim anb1 n Ä _ an 8 1 ‰2n n œ1 3 n n n lim ˆ1 n1 ‰ œ e1 1 Ê ! ˆ1 n1 ‰ converges nÄ_ nÄ_ _ 1Ê !ˆ _ 2 n n lim Ɉ1 n1 ‰ œ " n 2; lim É n1bn œ 1 9 lim sinŠ È1n ‹ œ sina0b œ 0 1 Ê ! ’sinŠ È1n ‹“ converges nÄ_ 2 œ _ n n 1; lim Ê ’sinŠ È1n ‹“ œ 0 for all n 2 È n 2 #n • Š (nenbb1)1 ‹ n œ2 È È n (n 1) 2 ˆ1 n" ‰ 2 ˆ "# ‰ œ œ n lim † 2È2 œ n lim Ä _ #nb1 Ä_ n " # 1 2 18. converges by the Ratio Test: lim anb1 n Ä _ an œ n lim Ä_ 19. diverges by the Ratio Test: n lim Ä_ anb1 an œ n lim Ä_ 20. diverges by the Ratio Test: n lim Ä_ anb1 an œ n lim Ä_ # Š nen ‹ Š (nenbb1)! 1 ‹ ˆ en!n ‰ b 1)! ‹ Š (n 10nb1 ˆ 10n!n ‰ œ n lim Ä_ 21. converges by the Ratio Test: œ n lim Ä_ (n ")! enb1 † en n! œ n lim Ä_ (n ")! 10nb1 † 10n n! Š (n10bn1)1 ‹ "! Š n10n ‹ † œ n lim Ä_ "! lim anb1 n Ä _ an (n 1)2 enb1 œ n lim Ä_ (n ")"! 10n 1 † en lim n2 œ n Ä _ œ n lim Ä_ œ n lim Ä_ 10n n"! ˆ1 n" ‰# ˆ "e ‰ œ n" e n 10 " e 1 œ_ œ_ ˆ1 n" ‰"! ˆ 1"0 ‰ œ œ n lim Ä_ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " 10 1 Section 10.5 The Ratio and Root Tests ˆ nn 2 ‰n œ lim ˆ1 22. diverges; n lim a œ n lim Ä_ n Ä_ nÄ_ 23. converges by the Direct Comparison Test: 2(1)n (1.25)n 2 ‰ n n 599 œ e# Á 0 n n œ ˆ 45 ‰ c2 (1)n d Ÿ ˆ 45 ‰ (3) which is the nth term of a convergent geometric series 24. converges; a geometric series with krk œ ¸ 23 ¸ 1 ˆ1 3n ‰n œ lim ˆ1 25. diverges; n lim a œ n lim Ä_ n Ä_ nÄ_ ˆ1 26. diverges; n lim a œ n lim Ä_ n Ä_ " ‰n 3n 3 ‰ n n œ n lim 1 Ä_ 27. converges by the Direct Comparison Test: ln n n$ n n$ œ œ e$ ¸ 0.05 Á 0 Š "3 ‹ n " n# n "Î$ ¸ 0.72 Á 0 œe 2, the nth term of a convergent p-series. for n n n (ln n) n È É 28. converges by the nth-Root Test: n lim an œ n lim nn œ n lim Ä_ Ä_ Ä_ 29. diverges by the Direct Comparison Test: with "n . " n " n# œ n1 n# ln n n " n for n " ‰n n# ˆˆ n" œ n lim Ä_ anb1 an œ n lim Ä_ (n 1) ln (n 1) #nb1 † 33. converges by the Ratio Test: n lim Ä_ anb1 an œ n lim Ä_ (n 2)(n 3) (n 1)! † n! (n 1)(n 2) 34. converges by the Ratio Test: n lim Ä_ anb1 an œ n lim Ä_ (n 1)$ en 1 œ 35. converges by the Ratio Test: n lim Ä_ anb1 an œ n lim Ä_ (n 4)! 3! (n 1)! 3nb1 anb1 an œ n lim Ä_ † anb1 an œ n lim Ä_ (n 1)! (2n 3)! 38. converges by the Ratio Test: n lim Ä_ anb1 an œ n lim Ä_ (n 1)! (n 1)nb1 " ˆ1 "n ‰n œ " e en n$ † (n 1)2nb1 (n 2)! 3nb1 (n 1)! 37. converges by the Ratio Test: n lim Ä_ œ n lim Ä_ ln n n œ n lim Ä_ Š "n ‹ 1 œ01 " ‰n ‰1În n# ˆ" œ n lim Ä_ n "‰ n# 3 32. converges by the Ratio Test: n lim Ä_ 36. converges by the Ratio Test: n lim Ä_ œ n lim Ä_ "# ˆ "n ‰ for n 2 or by the Limit Comparison Test (part 1) n n ˆ n" È É 30. converges by the nth-Root Test: n lim an œ n lim Ä_ Ä_ 31. diverges by the Direct Comparison Test: a(ln n)n b1În ann b1În 2n n ln (n) " e † nn n! 1 œ01 œ n lim Ä_ 3n n! n2n (n 1)! (2n 1)! n! † " # 1 3! n! 3n (n 3)! † œ n4 3(n 1) " 3 œ 1 2‰ ˆ n n 1 ‰ ˆ 32 ‰ ˆ nn œ n lim 1 œ Ä_ œ n lim Ä_ n" (2n 3)(2n 2) œ01 ˆ n ‰n œ lim œ n lim Ä _ n1 nÄ_ " ˆ n bn " ‰n 1 n n n È 39. converges by the Root Test: n lim an œ n lim œ n lim Ä_ Ä _ É (ln n)n Ä_ n n È ln n œ n lim Ä_ " ln n œ01 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 2 3 1 œ01 600 Chapter 10 Infinite Sequences and Series n n È Èln n n n n È 40. converges by the Root Test: n lim an œ n lim œ n lim Ä_ Ä _ É (ln n)nÎ2 Ä_ Ä_ Ä_ n n lim È n Èln n lim n œ œ01 n È n œ 1‹ Šn lim Ä_ 41. converges by the Direct Comparison Test: œ n! ln n n(n 2)! ln n n(n 1)(n 2) " (n 1)(n #) œ n n(n 1)(n 2) " n# which is the nth-term of a convergent p-series an 1 an 42. diverges by the Ratio Test: n lim Ä_ œ n lim Ä_ 3n 1 (n 1)$ 2n 1 † n$ 2n 3n † a2nbx nx‘2 43. converges by the Ratio Test: n lim Ä_ anb1 an œ n lim Ä_ an1bx‘2 2(n 1)‘x 44. converges by the Ratio Test: n lim Ä_ anb1 an œ n lim Ä_ a2n 5bˆ2nb1 3‰ 3nb1 2 œ n lim ’ 2n 5 “ † n lim ’ 2 † 6 4 † 2 3† 3 6 “ œ 1 † Ä _ 2n 3 Ä _ 3 † 6 n 9 † 3 n 2† 2 n 6 n n n 45. converges by the Ratio Test: n lim Ä_ anb1 an œ n lim Ä_ 2 3 œ ˆ 1 b nsin n ‰ an an "n Š 1 b tan n 47. diverges by the Ratio Test: n lim Ä_ anb1 an œ n lim Ä_ œ n lim Ä_ † ˆ #3 ‰ œ an1b2 (2n 2)(2n 1) 3n 2 a2n 3ba2n 3b 3 # 1 œ n lim Ä_ œ n lim ’ 2n 5 † Ä _ 2n 3 n2 2n 1 4n2 6n 2 œ œ n lim Ä_ 3n 1 2n 5 œ n lim Ä_ " tan " n n œ 3 # œ 0 since the numerator 1 2 ‰ 48. diverges; an1 œ n n 1 an Ê an1 œ ˆ n n 1 ‰ ˆ n n 1 an1 ‰ Ê an1 œ ˆ n n 1 ‰ ˆ n n 1 ‰ ˆ nn 1 an2 a " n n 1 n 2 3 " Ê an1 œ ˆ n 1 ‰ ˆ n ‰ ˆ n 1 ‰ â ˆ # ‰ a" Ê an1 œ n 1 Ê an1 œ n 1 , which is a constant times the general term of the diverging harmonic series 49. converges by the Ratio Test: n lim Ä_ 50. converges by the Ratio Test: n ln n n 10 0 and a" œ Ê an1 œ n ln n n 10 " # œ n lim Ä_ lim anb1 n Ä _ an œ n lim Ä_ anb1 an œ n lim Ä_ 51. converges by the Ratio Test: n lim Ä_ 52. anb1 an Š 2n ‹ an an Œ Èn n # œ n lim Ä_ an an œ n lim Ä_ Š 1 bnln n ‹ an an 2 n œ01 n n È œ n lim Ä_ n œ "ln n n " # 1 œ n lim Ä_ Ê an 0; ln n 10 for n e"! Ê n ln n n 10 Ê an an ; thus an1 an 53. diverges by the nth-Term Test: a" œ " 3 " # " n œ01 n ln n n 10 1 Ê n lim a Á 0, so the series diverges by the nth-Term Test Ä_ n 3 3 6 " %! " 2 " 2 " 2 " É É É É , a# œ É 3 , a$ œ Ê 3 œ 3 , a% œ ËÊ 3 œ 3 ,á , % n! " n! " n " É an œ É a œ 1 because šÉ 3 Ê n lim 3 › is a subsequence of š 3 › whose limit is 1 by Table 8.1 Ä_ n Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 4 1 2†6n 4†2n 3†3n 6 3 †6 n 9 † 3 n 2 † 2 n 6 “ œ01 ‹ an an c1‰ ˆ 3n 2n b 5 an an n3 (n 1)3 1 2 3 anb1 46. converges by the Ratio Test: n lim œ n lim Ä _ an Ä_ 1 approaches 1 # while the denominator tends to _ œ n lim Ä_ Section 10.5 The Ratio and Root Tests 54. converges by the Direct Comparison Test: a" œ n! " # # $ # ' % ' #% , a# œ ˆ "# ‰ , a$ œ Šˆ "# ‰ ‹ œ ˆ "# ‰ , a% œ Šˆ "# ‰ ‹ œ ˆ "# ‰ , á n Ê an œ ˆ "# ‰ ˆ "# ‰ which is the nth-term of a convergent geometric series anb1 an 55. converges by the Ratio Test: n lim Ä_ n" " œ n lim œ 1 # Ä _ 2n 1 2nb1 (n 1)! (n 1)! (2n 2)! œ n lim Ä_ † (2n)! 2n n! n! 2(n 1)(n 1) (2n #)(2n 1) œ n lim Ä_ (3n 3)! 1)! (n 2)! anb1 56. diverges by the Ratio Test: n lim œ n lim † n! (n (3n)! Ä _ an Ä _ (n 1)! (n 2)! (n 3)! (3n 3)(3 2)(3n 1) 2 ‰ ˆ 3n 1 ‰ œ n lim œ n lim 3 ˆ 3n n# n 3 œ 3 † 3 † 3 œ 27 1 Ä _ (n 1)(n 2)(n 3) Ä_ n n (n!) n È 57. diverges by the Root Test: n lim an ´ n lim œ n lim Ä_ Ä _ É an n b# Ä_ n œ_1 n! n# n n (n!) n (n!) É 58. converges by the Root Test: n lim œ n lim œ n lim É ann bn Ä_ Ä_ Ä_ nn# " Ÿ n lim œ01 Ä_ n n! nn ˆ " ‰ ˆ 2n ‰ ˆ 3n ‰ â ˆ n n 1 ‰ ˆ nn ‰ œ n lim Ä_ n " #n ln 2 n n n È 59. converges by the Root Test: n lim an œ n lim œ n lim Ä_ Ä _ É 2 n# Ä_ n #n œ n lim Ä_ n n n È 60. diverges by the Root Test: n lim an œ n lim œ n lim Ä_ Ä _ É a#n b# Ä_ n 4 œ_1 n n anb1 an 61. converges by the Ratio Test: n lim Ä_ 1†3 â (2n 1) (2†4 â #n) a3n 1b 62. converges by the Ratio Test: an œ Ê n lim Ä_ (2n 2)! c2nb1 (n 1)!d# a3nb1 1b # œ n lim Š 4n 6n 2 ‹ Ä _ 4n# 8n 4 63. Ratio: n lim Ä_ anb1 an † a1 3cn b a3 3cn b œ n lim Ä_ œ n lim Ä_ a2n n!b# a3n 1b (2n)! œ1† " (n 1)p † " 3 np 1 œ " 3 anb1 an œ n lim Ä_ " (ln (n 1))p † † 1†2†3†4 â (2n 1)(2n) (2†4 â 2n)# a3n 1b œ œ n lim Ä_ 4n 2n n! 1†3† â †(2n 1) œ œ n lim Ä_ 2n " (4†#)(n 1) (2n)! a2n n!b# a3n 1b (2n ")(2n 2) a3n 1b 2# (n 1)# a3n 1 1b 1 (ln n)p 1 " n n ‰p ˆÈ " (1)p œ œ ’n lim Ä_ œ 1 Ê no conclusion ln n ln (n 1) “ p œ ”n lim Ä_ ˆ "n ‰ p ˆ n b 1 ‰ • œ Šn lim Ä_ " n" n ‹ œ (1)p œ 1 Ê no conclusion " n n È Root: n lim an œ n lim É (ln n)p œ Ä_ Ä_ " p lim (ln n)1În ‹ ŠnÄ_ ˆ " ‰ ; let f(n) œ (ln n)1În , then ln f(n) œ ln (ln n) n ln n Ê n lim ln f(n) œ n lim œ n lim œ n lim n 1 Ä_ Ä_ Ä_ Ä_ " ln fÐnÑ ! n È an œ œ n lim e œ e œ 1; therefore lim Ä_ nÄ_ " n ln n p lim (ln n)1În ‹ ŠnÄ_ 65. an Ÿ n 2n _ _ for every n and the series ! nœ1 n #n œ ˆ n ‰p œ 1p œ 1 Ê no conclusion œ n lim Ä_ n1 n " n È É Root: n lim an œ n lim np œ n lim Ä_ Ä_ Ä_ 64. Ratio: n lim Ä_ 1†3† â †(2n 1)(2n 1) 4nb1 2nb1 (n 1)! œ01 ln (ln n) n œ 0 Ê n lim (ln n)1În Ä_ œ (1)" p œ 1 Ê no conclusion converges by the Ratio Test since n lim Ä_ (n ") 2nb1 † 2n n œ " # Ê ! an converges by the Direct Comparison Test nœ1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 p " 4 1 601 602 Chapter 10 Infinite Sequences and Series 2 66. 2n n! 0 for all n 1; lim nÄ_ _ 2 2anb1b anb1b! 2 2n n! n2 b2nb1 œ lim Š a2n1b†n! † nÄ_ n! ‹ 2n2 2nb1 †4 ‰ ˆ 2†4 1ln 4 ‰ œ lim Š 2n1 ‹ œ lim ˆ n2 1 œ lim n nÄ_ n nÄ_ nÄ_ n2 œ _ 1 Ê ! 2n! diverges n œ1 10.6 ALTERNATING SERIES, ABSOLUTE AND CONDITIONAL CONVERGENCE 1. converges by the Alternating Convergence Test since: un œ Ê 1 Èn1 Ÿ 1 Èn Ê un1 Ÿ un ; lim un œ lim 1 nÄ_ Èn nÄ_ 1 Èn 0 for all n 1; n 1Ê n1 _ _ n œ1 n œ1 n Ê Èn 1 Èn œ 0. 2. converges absolutely Ê converges by the Alternating Convergence Test since ! kan k œ ! " n$Î# which is a convergent p-series 3. converges Ê converges by Alternating Series Test since: un œ Ê an 1b3n1 n 3n Ê 1 an1b3nb1 Ÿ 1 n 3n Ê un1 Ÿ un ; 1 n3n 0 for all n lim un œ 4. converges Ê converges by Alternating Series Test since: un œ n Ê 3n 1 4 aln nb2 0 for all n 2; n 2Ên1 Ÿ 1 aln nb2 Ê 4 aln nb2 Ê un 1 Ÿ u n ; 5. converges Ê converges by Alternating Series Test since: un œ n n2 1 0 for all n Ê ln an 1b lim un œ nÄ_ ln n Ê aln an 1bb2 lim 4 2 nÄ_ aln nb Ê n3 2n2 2n Ê n n 2 1 aln nb2 Ê 1 aln an1bb2 Ÿ 4 aln an1bb2 Ê un1 Ÿ un ; lim un œ nÄ_ lim 2 n nÄ_ n 1 1 Ê 2n2 2n 1; n n3 n2 n 1 Ê nŠan 1b2 1‹ 2 lim n2 5 nÄ_ n 4 7. diverges Ê diverges by nth Term Test for Divergence since: 2n 2 nÄ_ n lim œ1Ê œ lim 10 nÄ_ n 2 œ_Ê 5 lim a1bn1 nn2 4 œ does not exist 2 lim a1bn1 2n2 œ does not exist n nÄ_ _ _ n œ1 n œ1 10n a n 1 bx , n 10 _ n ‰n ˆ n ‰n Á 0 Ê ! (1)n1 ˆ 10 1 Ê n lim diverges Ä _ 10 n œ1 10. converges by the Alternating Series Test because f(x) œ ln x is an increasing function of x Ê un1 for n 1; also un 0 for n 1 and " lim n Ä _ ln n 11. converges by the Alternating Series Test since f(x) œ Ê un un1 ; also un 0 for n which converges by the œ01 9. diverges by the nth-Term Test since for n 10 Ê Ê un an2 1ban 1b nÄ_ 8. converges absolutely Ê converges by the Absolute Convergence Test since ! kan k œ ! anb1 nÄ_ an n2 n 1 œ 0. 6. diverges Ê diverges by nth Term Test for Divergence since: Ratio Test, since lim n œ 0. n3 n2 n 1 Ê nan2 2n 2b n 1 an1b2 1 3n œ 0. lim 1 n nÄ_ n 3 nÄ_ 1Ên1 1; n ln x x is decreasing œ0 Ê f w (x) œ 1 and n lim u œ n lim Ä_ n Ä_ " ln x ln n n 1 ln x x# œ n lim Ä_ 0 when x e Ê f(x) is decreasing Š "n ‹ 1 œ0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.6 Alternating Series, Absolute and Conditional Convergence 12. converges by the Alternating Series Test since f(x) œ ln a1 x" b Ê f w (x) œ Ê un un1 ; also un unb1 ; also un 0 for x 0 Ê f(x) is decreasing ˆ1 n" ‰‹ œ ln 1 œ 0 1 and n lim u œ n lim ln ˆ1 "n ‰ œ ln Šn lim Ä_ n Ä_ Ä_ 0 for n 13. converges by the Alternating Series Test since f(x) œ Ê un " x(x 1) 1 and n lim u œ Ä_ n 0 for n 3È n 1 Èn 1 14. diverges by the nth-Term Test since n lim Ä_ _ _ nœ1 nœ1 Èx " x1 1 x 2È x 2Èx (x 1)# Ê f w (x) œ Èn " lim n Ä _ n1 0 Ê f(x) is decreasing œ0 3É 1 œ n lim Ä_ " n " 1 Š Èn ‹ œ3Á0 " ‰n 15. converges absolutely since ! kan k œ ! ˆ 10 a convergent geometric series 16. converges absolutely by the Direct Comparison Test since ¹ (1) nb1 (0.1)n n ¹œ " (10)n n n " ‰ ˆ 10 which is the nth term of a convergent geometric series 17. converges conditionally since " Èn " Èn 1 " Èn 0 and n lim Ä_ _ _ n œ1 n œ1 œ 0 Ê convergence; but ! kan k œ ! " n"Î# is a divergent p-series 18. converges conditionally since _ _ ! kan k œ ! nœ1 nœ1 " 1 Èn " 1 Èn " 1 Èn 1 is a divergent series since _ _ n œ1 nœ1 19. converges absolutely since ! kan k œ ! n n $ 1 n! #n 20. diverges by the nth-Term Test since n lim Ä_ 21. converges conditionally since _ œ! n œ1 " n3 diverges because " n3 " n3 " (n 1) 3 " 4n " 1 Èn 0 and n lim Ä_ " 1 È n and n n $ 1 " #È n _ and ! " n# nœ1 " n"Î# œ 0 Ê convergence; but is a divergent p-series which is the nth-term of a converging p-series œ_ 0 and n lim Ä_ _ and ! n œ1 " n " n 3 _ œ 0 Ê convergence; but ! kan k n œ1 is a divergent series _ 22. converges absolutely because the series ! ¸ sinn# n ¸ converges by the Direct Comparison Test since ¸ sinn# n ¸ Ÿ n œ1 3n 5n 23. diverges by the nth-Term Test since n lim Ä_ œ1Á0 nb1 24. converges absolutely by the Direct Comparison Test since ¹ (n2)5n ¹ œ 2nb1 n 5 n n 2 ˆ 25 ‰ which is the nth term of a convergent geometric series 25. converges conditionally since f(x) œ un unb1 0 for n _ œ! n œ1 " n# _ ! nœ1 " n " x# " x Ê f w (x) œ ˆ x2$ "‰ x# 0 Ê f(x) is decreasing and hence _ _ n œ1 n œ1 ˆ " "n ‰ œ 0 Ê convergence; but ! kan k œ ! 1 and n lim Ä _ n# 603 1 n n# is the sum of a convergent and divergent series, and hence diverges Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " n# 604 Chapter 10 Infinite Sequences and Series 26. diverges by the nth-Term Test since n lim a œ n lim 101În œ 1 Á 0 Ä_ n Ä_ 27. converges absolutely by the Ratio Test: n lim Š uunbn 1 ‹ œ n lim Ä_ Ä_ ” 28. converges conditionally since f(x) œ Ê un unb1 0 for n '2_ x dxln x œ lim Š "x ‹ bÄ_ _ _ n œ1 n œ1 Ê ! kan k œ ! '2b ln x dx œ " n ln n n 1 •œ 2 3 1 1d Ê f w (x) œ cln(x(x) ln x)# 0 Ê f(x) is decreasing " x ln x " n ln n 2 and n lim Ä_ (n")# ˆ 23 ‰ n n# ˆ 23 ‰ œ 0 Ê convergence; but by the Integral Test, lim cln (ln x)d b2 œ lim cln (ln b) ln (ln 2)d œ _ bÄ_ bÄ_ diverges _ " xb# 29. converges absolutely by the Integral Test since '1 atan" xb ˆ 1 " x# ‰ dx œ lim ’ atan # bÄ_ œ lim ’atan bÄ_ " # " bb atan # 1b “ œ 30. converges conditionally since f(x) œ œ 1 Š lnxx ‹ ln x Š lnxx ‹ (x ln x)# œ n lim Ä_ Š "n ‹ 1 Š n" ‹ _ _ n œ1 nœ1 ! kan k œ ! œ " # 1 ln x (x ln x)# # # ’ˆ 1# ‰ ˆ 14 ‰ “ œ ln x x ln x Ê f w (x) œ 0 Ê un 1 31 # 32 Š "x ‹ (x ln x) (ln x) Š1 x" ‹ (x ln x)# un1 0 when n e and n lim Ä_ œ 0 Ê convergence; but n ln n n Ê ln n n ln n b “ " nln n " n Ê ln n n ln n ln n nln n " n so that diverges by the Direct Comparison Test 31. diverges by the nth-Term Test since n lim Ä_ _ _ n œ1 nœ1 n n1 œ1Á0 n 32. converges absolutely since ! kan k œ ! ˆ "5 ‰ is a convergent geometric series 33. converges absolutely by the Ratio Test: n lim Š uunbn 1 ‹ œ n lim Ä_ Ä_ ("00)nb1 (n1)! _ _ n œ1 n œ1 34. converges absolutely by the Direct Comparison Test since ! kan k œ ! † n! (100)n œ n lim Ä_ " n# 2n 1 and "00 n1 œ01 " n# 2n 1 " n# nth-term of a convergent p-series _ _ n œ1 n œ1 _ 35. converges absolutely since ! kan k œ ! ¹ (nÈ1)n ¹ œ ! _ 36. converges conditionally since ! n œ1 _ _ n œ1 n œ1 ! kan k œ ! " n cos n1 n n n œ1 _ œ! nœ1 (1)n n " n$Î# is a convergent p-series is the convergent alternating harmonic series, but diverges 1) n È kan k œ n lim 37. converges absolutely by the Root Test: n lim Š (n(2n) n ‹ Ä_ Ä_ n 1 În œ n lim Ä_ n" #n œ " # Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 which is the Section 10.6 Alternating Series, Absolute and Conditional Convergence 38. converges absolutely by the Ratio Test: n lim ¹ anb1 ¹ œ n lim Ä _ an Ä_ a(n 1)!b# ((2n 2)!) 39. diverges by the nth-Term Test since n lim kan k œ n lim Ä_ Ä_ œ n lim Ä_ ˆ n # 1 ‰n1 œ _ Á 0 n lim Ä_ (n 1)(n 2)â(n (n 1)) #nc1 œ n lim Ä_ (2n)! 2n n! n (n 1)# 3 (2n 2)(2n 3) œ 3 4 Èn 1 Èn 1 † Èn 1 Èn Èn 1 Èn œ " Èn 1 Èn _ decreasing sequence of positive terms which converges to 0 Ê ! n œ1 _ _ n œ1 nœ1 " Èn 1 Èn Èn lim nÄ_ " 1 Èn " Èn (n 1)# (2n 2)(2n 1) œ n lim Ä_ œ " 4 1 (n ")(n 2)â(2n) 2n n † (2n 1)! n! n! 3n 1 41. converges conditionally since ! kan k œ ! (2n)! (n!)# (n 1)! (n 1)! 3nb1 (2n 3)! 40. converges absolutely by the Ratio Test: n lim ¹ anabn 1 ¹ œ n lim Ä_ Ä_ œ n lim Ä_ † 605 and š Èn 1" Èn › is a (")n Èn 1 Èn diverges by the Limit Comparison Test (part 1) with œ n lim Ä_ Èn Èn 1 Èn œ n lim Ä_ 1 É1 1n 1 œ converges; but " Èn ; a divergent p-series: " # È # n n 42. diverges by the nth-Term Test since n lim ŠÈn# n n‹ œ n lim ŠÈn# n n‹ † Š Ènn# ‹ Ä_ Ä_ n n œ n lim Ä_ n Èn# nn œ n lim Ä_ " É1 "n 1 " # œ Á0 É n Èn Èn 43. diverges by the nth-Term Test since n lim ŠÉn Èn Èn‹ œ n lim ŠÉ n È n È n ‹ Ä_ Ä_ – Én Èn Èn — Èn œ n lim Ä_ É n Èn Èn œ n lim Ä_ " É1 " Èn 1 " # œ Á0 44. converges conditionally since š Èn "Èn 1 › is a decreasing sequence of positive terms converging to 0 _ (")n Èn Èn 1 Ê ! n œ1 _ so that ! nœ1 converges; but n lim Ä_ " Èn Èn 1 " Èn Š È"n ‹ Š Èn 1 ‹ Èn È n È n 1 œ n lim Ä_ _ diverges by the Limit Comparison Test with ! nœ1 45. converges absolutely by the Direct Comparison Test since sech (n) œ " Èn œ n lim Ä_ " 1É1 "n " # œ which is a divergent p-series 2 en ecn œ 2en e2n 1 2en e2n œ 2 en which is the nth term of a convergent geometric series _ _ n œ1 nœ1 46. converges absolutely by the Limit Comparison Test (part 1): ! kan k œ ! Apply the Limit Comparison Test with lim nÄ_ 47. 1 4 1 6 n2 Œ 2 en c ecn 1 en 1 8 1 10 œ n lim Ä_ 1 12 1 14 n 1 Ê 2 an 2 b 2en en ecn 1 en , the n-th term of a convergent geometric series: œ n lim Ä_ _ ÞÞÞ œ ! n œ1 2 1 ec2n (")nb1 2 an 1 b ; 2an 1b Ê 2 en ecn œ2 converges by Alternating Series Test since: un œ 1 2aan 1b 1b Ÿ 1 2 an 1 b Ê u n 1 Ÿ un ; lim un œ nÄ_ 1 2 an 1 b lim 1 nÄ_ 2an1b Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 0 for all n œ 0. 1; 606 Chapter 10 Infinite Sequences and Series 48. 1 1 4 1 9 1 16 1 25 1 36 1 49 1 64 _ _ _ n œ1 n œ1 n œ1 Þ Þ Þ œ ! an ; converges by the Absolute Convergence Test since ! kan k œ ! " n# which is a convergent p-series 49. kerrork ¸(1)' ˆ "5 ‰¸ œ 0.2 51. kerrork ¹(1)' (0.01)& 5 ¹ 50. kerrork ¸(1)' ˆ 10" & ‰¸ œ 0.00001 œ 2 ‚ 10"" 52. kerrork k(1)% t% k œ t% 1 53. kerrork 0.001 Ê un1 0.001 Ê 1 an 1b2 3 0.001 Ê an 1b2 3 1000 Ê n 1 È997 ¸ 30.5753 Ê n 54. kerrork 0.001 Ê un1 0.001 Ê n1 an 1b2 1 0.001 Ê an 1b2 1 1000an 1b Ê n ¸ 998.9999 Ê n 31 998È9982 4a998b 2 999 55. kerrork 0.001 Ê un1 0.001 Ê 1 3 ˆan 1b 3Èn 1‰ 3 0.001 Ê Šan 1b 3Èn 1‹ 1000 2 È Ê ŠÈn 1‹ 3Èn 1 10 0 Ê Èn 1 œ 3 29 40 œ 2 Ê n œ 3 Ê n 56. kerrork 0.001 Ê un1 0.001 Ê 1 lnalnan 3bb 4 0.001 Ê lnalnan 3bb 1000 Ê n 3 ee 1000 ¸ 5.297 ‚ 10323228467 which is the maximum arbitrary-precision number represented by Mathematica on the particular computer solving this problem.. 57. " (2n)! 58. " n! Ê (2n)! 5 10' 10' 5 Ê 5 10' 59. (a) an 10' 5 œ 200,000 Ê n n! Ê n an1 fails since _ _ nœ1 nœ1 " 3 9 Ê 11 " # " #! 5 Ê 1 " #! " 3! " 4! _ _ nœ1 nœ1 " 4! " 5! " 6! " 6! " 7! " 8! ¸ 0.54030 " 8! ¸ 0.367881944 n n n n (b) Since ! kan k œ ! ˆ 3" ‰ ˆ "# ‰ ‘ œ ! ˆ "3 ‰ ! ˆ "# ‰ is the sum of two absolutely convergent series, we can rearrange the terms of the original series to find its sum: ˆ "3 " 9 " 27 60. s#! œ 1 " # " 3 á ‰ ˆ "# " 4 á " 19 " 4 " 20 " 8 በœ ˆ "3 ‰ 1 ˆ 3" ‰ ˆ "# ‰ 1 ˆ "# ‰ œ " # 1 œ #" " # † " #1 ¸ 0.6687714032 Ê s#! ¸ 0.692580927 _ 61. The unused terms are ! (1)j 1 aj œ (1)n 1 aan 1 an 2 b (1)n 3 aan 3 an 4 b á jœn 1 œ (1)n 1 caan 1 an 2 b aan 3 an 4 b á d . Each grouped term is positive, so the remainder has the same sign as (1)n 1 , which is the sign of the first unused term. 62. sn œ " 1 †2 " #†3 " 3 †4 á " n(n 1) n œ! k œ1 " k(k 1) n œ ! ˆ k" k œ1 œ ˆ1 "# ‰ ˆ "# 3" ‰ ˆ 3" 4" ‰ ˆ 4" 5" ‰ á ˆ n" " ‰ k1 " ‰ n1 which are the first 2n terms of the first series, hence the two series are the same. Yes, for n sn œ ! ˆ k" k œ1 " ‰ k1 œ ˆ1 "# ‰ ˆ "# 3" ‰ ˆ 3" 4" ‰ ˆ 4" 5" ‰ á ˆ n " 1 n" ‰ ˆ n" " ‰ n1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. œ 1 " n1 Section 10.6 Alternating Series, Absolute and Conditional Convergence 607 ˆ1 n " 1 ‰ œ 1 Ê both series converge to 1. The sum of the first 2n 1 terms of the first Ê n lim s œ n lim Ä_ n Ä_ ˆ1 n " 1 ‰ œ 1. series is ˆ1 n " 1 ‰ n " 1 œ 1. Their sum is n lim s œ n lim Ä_ n Ä_ _ _ _ _ n œ1 n œ1 n œ1 n œ1 63. Theorem 16 states that ! kan k converges Ê ! an converges. But this is equivalent to ! an diverges Ê ! kan k diverges _ _ n œ1 n œ1 64. ka" a# á an k Ÿ ka" k ka# k á kan k for all n; then ! kan k converges Ê ! an converges and these imply that _ _ n œ1 n œ1 º ! an º Ÿ ! kan k _ 65. (a) ! kan bn k converges by the Direct Comparison Test since kan bn k Ÿ kan k kbn k and hence n œ1 _ ! aan bn b converges absolutely n œ1 _ _ _ (b) ! kbn k converges Ê ! bn converges absolutely; since ! an converges absolutely and nœ1 _ nœ1 nœ1 _ _ ! bn converges absolutely, we have ! can (bn )d œ ! aan bn b converges absolutely by part (a) nœ1 _ _ _ nœ1 n œ1 nœ1 nœ1 nœ1 _ (c) ! kan k converges Ê kkk ! kan k œ ! kkan k converges Ê ! kan converges absolutely 66. If an œ bn œ (1)n " Èn _ , then ! (1)n nœ1 67. s" œ "# , s# œ "# 1 œ " # s$ œ 1 s% œ s$ s& œ s% s' œ s& s( œ s' " 4 " 6 " 8 " 3 ¸ 0.1766, " " " #4 #6 #8 " 5 ¸ 0.312, " " " 46 48 50 " # " Èn nœ1 _ _ nœ1 nœ1 converges, but ! an bn œ ! " n diverges , " 10 " 1# " 14 " 16 " 18 " #0 " 2# ¸ 0.5099, " 30 " 3# " 34 " 36 " 38 " 40 " 42 " 44 ¸ 0.512, " 52 " 54 " 56 " 58 " 60 " 62 " 64 " 66 ¸ 0.51106 N" 1 68. (a) Since ! kan k converges, say to M, for % 0 there is an integer N" such that º ! kan k Mº nœ1 N" 1 N" 1 _ nœ1 nœ1 nœN" Í » ! kan k ! kan k ! kan k » % # _ Í » ! k an k » nœN" % # _ Í ! kan k nœN" % # % # . Also, ! an converges to L Í for % 0 there is an integer N# (which we can choose greater than or equal to N" ) such that ksN# Lk % # _ . Therefore, ! kan k nœN" % # and ksN# Lk % # . Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 608 Chapter 10 Infinite Sequences and Series _ k nœ1 nœ1 (b) The series ! kan k converges absolutely, say to M. Thus, there exists N" such that º ! kan k Mº % whenever k N" . Now all of the terms in the sequence ekbn kf appear in ekan kf. Sum together all of the N terms in ekbn kf, in order, until you include all of the terms ekan kf nœ" 1 , and let N# be the largest index in the N# N# _ n œ1 nœ1 n œ1 sum ! kbn k so obtained. Then º ! kbn k Mº % as well Ê ! kbn k converges to M. 10.7 POWER SERIES _ nb1 1. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ xxn ¹ 1 Ê kxk 1 Ê 1 x 1; when x œ 1 we have ! (1)n , a divergent Ä_ Ä_ n œ1 _ series; when x œ 1 we have ! 1, a divergent series n œ1 (a) the radius is 1; the interval of convergence is 1 x 1 (b) the interval of absolute convergence is 1 x 1 (c) there are no values for which the series converges conditionally nb1 2. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (x(x5)5)n ¹ 1 Ê kx 5k 1 Ê 6 x 4; when x œ 6 we have Ä_ Ä_ _ _ n œ1 nœ1 ! (1)n , a divergent series; when x œ 4 we have ! 1, a divergent series (a) the radius is 1; the interval of convergence is 6 x 4 (b) the interval of absolute convergence is 6 x 4 (c) there are no values for which the series converges conditionally nb1 1) " " 3. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (4x (4x 1)n ¹ 1 Ê k4x 1k 1 Ê 1 4x 1 1 Ê # x 0; when x œ # we Ä_ Ä_ _ _ _ _ _ n œ1 n œ1 n œ1 n œ1 n œ1 have ! (1)n (1)n œ ! (1)2n œ ! 1n , a divergent series; when x œ 0 we have ! (1)n (1)n œ ! (1)n , a divergent series (a) the radius is "4 ; the interval of convergence is "# x 0 (b) the interval of absolute convergence is "# x 0 (c) there are no values for which the series converges conditionally nb1 4. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (3xn2)1 Ä_ Ä_ Ê 1 3x 2 1 Ê " 3 † n (3x 2)n ¹ ˆ n ‰ 1 Ê k3x 2k 1 1 Ê k3x 2k n lim Ä _ n1 x 1; when x œ " 3 _ n œ1 (b) the interval of absolute convergence is " 3 (c) the series converges conditionally at x œ nb1 2) 5. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ (x 10 nb1 Ä_ Ä_ n œ1 " n conditionally convergent; when x œ 1 we have ! (a) the radius is "3 ; the interval of convergence is _ we have ! " 3 (")n n which is the alternating harmonic series and is , the divergent harmonic series Ÿx1 x1 " 3 10n (x 2)n ¹ 1 Ê kx 2 k 10 1 Ê kx 2k 10 Ê 10 x 2 10 _ _ nœ1 nœ1 Ê 8 x 12; when x œ 8 we have ! (")n , a divergent series; when x œ 12 we have ! 1, a divergent series (a) the radius is "0; the interval of convergence is 8 x 12 (b) the interval of absolute convergence is 8 x 12 (c) there are no values for which the series converges conditionally Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.7 Power Series nb1 6. n lim k2xk 1 Ê k2xk 1 Ê "# x ¹ uunbn 1 ¹ 1 Ê n lim ¹ (2x) (2x)n ¹ 1 Ê n lim Ä_ Ä_ Ä_ _ ! (")n , a divergent series; when x œ n œ1 " # " # ; when x œ "# we have _ we have ! 1, a divergent series n œ1 (a) the radius is "# ; the interval of convergence is "# x (b) the interval of absolute convergence is "# x " # " # (c) there are no values for which the series converges conditionally nb1 1)x 7. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (n (n 3) † Ä_ Ä_ (n 2) nxn ¹ 1 Ê kxk n lim Ä_ _ Ê 1 x 1; when x œ 1 we have ! (")n n œ1 _ have ! n œ1 n n#, n n# (n 1)(n 2) (n 3)(n) 1 Ê kxk 1 , a divergent series by the nth-term Test; when x œ " we a divergent series (a) the radius is "; the interval of convergence is " x " (b) the interval of absolute convergence is " x " (c) there are no values for which the series converges conditionally nb1 8. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (x n2)1 Ä_ Ä_ † n (x 2)n ¹ ˆ 1 Ê kx 2k n lim Ä_ _ Ê 1 x 2 1 Ê 3 x 1; when x œ 3 we have ! n œ1 _ ! n œ1 (1)n n , " n, n ‰ n1 1 Ê kx 2k 1 a divergent series; when x œ " we have a convergent series (a) the radius is "; the interval of convergence is 3 x Ÿ " (b) the interval of absolute convergence is 3 x " (c) the series converges conditionally at x œ 1 nb1 x 9. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ Ä_ Ä _ (n 1)Èn 1 3nb1 Ê kx k 3 nÈ n 3n xn ¹ 1 Ê kxk 3 n n ‹ n 1 ‹ ŠÉ n lim Ä _ n1 Šn lim Ä_ _ (1)(1) 1 Ê kxk 3 Ê 3 x 3; when x œ 3 we have ! n œ1 _ when x œ 3 we have ! n œ1 1 , n$Î# (")n , n$Î# 1 an absolutely convergent series; a convergent p-series (a) the radius is 3; the interval of convergence is 3 Ÿ x Ÿ 3 (b) the interval of absolute convergence is 3 Ÿ x Ÿ 3 (c) there are no values for which the series converges conditionally nb1 10. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (xÈn1) 1 † Ä_ Ä_ Èn (x 1)n ¹ 1 Ê kx 1k Én lim Ä_ _ Ê 1 x 1 1 Ê 0 x 2; when x œ 0 we have ! n œ1 _ we have ! n œ1 1 , n"Î# (")n , n"Î# n n1 609 1 Ê kx 1k 1 a conditionally convergent series; when x œ 2 a divergent series (a) the radius is 1; the interval of convergence is 0 Ÿ x 2 (b) the interval of absolute convergence is 0 x 2 (c) the series converges conditionally at x œ 0 nb1 ˆ " ‰ 1 for all x 11. n lim † n! ¹ 1 Ê kxk n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ x Ä_ Ä _ (n 1)! xn Ä _ n1 (a) the radius is _; the series converges for all x Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 610 Chapter 10 Infinite Sequences and Series (b) the series converges absolutely for all x (c) there are no values for which the series converges conditionally nb1 nb1 ˆ " ‰ 1 for all x 12. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ 3 x † 3nn!xn ¹ 1 Ê 3 kxk n lim Ä_ Ä _ (n 1)! Ä _ n1 (a) the radius is _; the series converges for all x (b) the series converges absolutely for all x (c) there are no values for which the series converges conditionally 13. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹4 Ä_ Ä_ nb1 2nb2 x n1 † n 4n x2n ¹ ˆ 4n ‰ œ 4x# 1 Ê x# 1 Ê x# n lim Ä _ n1 _ _ n œ1 nœ1 n 2n Ê 12 x 12 ; when x œ 12 we have ! 4n ˆ 12 ‰ œ ! _ ! n œ1 4n ˆ 1 ‰2n n 2 _ œ! n œ1 1 n, 1 n 1 4 , a divergent p-series; when x œ 1 2 we have a divergent p-series (a) the radius is 12 ; the interval of convergence is 12 x (b) the interval of absolute convergence is 12 x 1 2 1 2 (c) there are no values for which the series converges conditionally nb1 14. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ (x 1) Ä_ Ä _ an 1b2 3nb1 n2 3n (x 1)n ¹ _ 2 1 Ê lx 1l n lim Š n ‹ œ 13 lx 1l 1 Ä _ 3an 1b2 _ Ê 2 x 4; when x œ 2 we have ! (n2 3)3n œ ! (n1) , an absolutely convergent series; when x œ 4 we have 2 n n œ1 _ n nœ1 _ n ! (3) ! 12 , an absolutely convergent series. n2 3n œ n n œ1 n œ1 (a) the radius is 3; the interval of convergence is 2 Ÿ x Ÿ 4 (b) the interval of absolute convergence is 2 Ÿ x Ÿ 4 (c) there are no values for which the series converges conditionally nb1 x 15. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ Ä_ Ä _ È(n 1)# 3 È n# 3 ¹ xn _ Ê 1 x 1; when x œ 1 we have ! n œ1 _ ! n œ1 " È n# 3 1 Ê kxk Én lim Ä_ (")n È n# 3 n# 3 n# 2n 4 " Ê kxk 1 , a conditionally convergent series; when x œ 1 we have , a divergent series (a) the radius is 1; the interval of convergence is 1 Ÿ x 1 (b) the interval of absolute convergence is 1 x 1 (c) the series converges conditionally at x œ 1 n 1 x 16. n lim † ¹ uun n 1 ¹ 1 Ê n lim ¹ Ä_ Ä _ È(n 1)# 3 È n# 3 ¹ xn _ Ê 1 x 1; when x œ 1 we have ! nœ1 1 Ê kxk Én lim Ä_ " È n# 3 n# 3 n# 2n 4 " Ê kxk 1 _ , a divergent series; when x œ 1 we have ! nœ1 a conditionally convergent series (a) the radius is 1; the interval of convergence is 1 x Ÿ 1 (b) the interval of absolute convergence is 1 x 1 (c) the series converges conditionally at x œ 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. (")n È n# 3 , Section 10.7 Power Series 3) 17. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (n 1)(x 5nb1 Ä_ Ä_ nb1 † 5n n(x 3)n ¹ 1 Ê kx 3 k lim 5 nÄ_ ˆ n n " ‰ 1 Ê _ Ê kx 3k 5 Ê 5 x 3 5 Ê 8 x 2; when x œ 8 we have ! n œ1 _ series; when x œ 2 we have ! n œ1 n5n 5n n(5)n 5n kx 3 k 5 611 1 _ œ ! (1)n n, a divergent n œ1 _ œ ! n, a divergent series n œ1 (a) the radius is 5; the interval of convergence is 8 x 2 (b) the interval of absolute convergence is 8 x 2 (c) there are no values for which the series converges conditionally nb1 18. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ (n 1)x Ä_ Ä _ 4nb1 an# 2n 2b _ Ê 4 x 4; when x œ 4 we have ! n œ1 4 n an # 1 b ¹ nxn n(1)n n# 1 1 Ê kx k 4 n lim Ä_ # (n 1) n 1 ¹ n an# a2n 2bb ¹ 1 Ê kxk 4 _ , a conditionally convergent series; when x œ 4 we have ! n œ1 n n# 1 , a divergent series (a) the radius is 4; the interval of convergence is 4 Ÿ x 4 (b) the interval of absolute convergence is 4 x 4 (c) the series converges conditionally at x œ 4 19. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ Ä_ Ä_ Èn 1 xnb1 3nb1 † 3n È n xn ¹ 1 Ê kx k 3 ˆ n n 1 ‰ 1 Ê Én lim Ä_ kx k 3 1 Ê kxk 3 _ _ n œ1 n œ1 Ê 3 x 3; when x œ 3 we have ! (1)n Èn , a divergent series; when x œ 3 we have ! Èn, a divergent series (a) the radius is 3; the interval of convergence is 3 x 3 (b) the interval of absolute convergence is 3 x 3 (c) there are no values for which the series converges conditionally 20. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ Ä_ Ä_ nbÈ 1 n 1 (2x5)nb1 ¹ n n (2x5)n È 1 Ê k2x 5k n lim Š Ä_ nbÈ 1 n1 ‹ n n È 1 t È lim t Ä_ Ê k2x 5k Œ tlim n n 1 Ê k2x 5k 1 Ê 1 2x 5 1 Ê 3 x 2; when x œ 3 we have È n _ Ä_ _ n n n ! (1) È È n, a divergent series since n lim n œ 1; when x œ 2 we have ! È n, a divergent series Ä_ n œ1 n œ1 (a) the radius is "# ; the interval of convergence is 3 x 2 (b) the interval of absolute convergence is 3 x 2 (c) there are no values for which the series converges conditionally _ _ _ n œ1 n œ1 21. First, rewrite the series as ! a2 (1)n bax 1bn1 œ ! 2ax 1bn1 ! (1)n ax 1bn1 . For the series n œ1 _ n ! 2ax 1bn1 : lim ¹ unb1 ¹ 1 Ê lim ¹ 2ax1nbc1 ¹ 1 Ê lx 1l lim 1 œ lx 1l 1 Ê 2 x 0; For the un nÄ_ n Ä _ 2 ax 1 b nÄ_ n œ1 _ nb1 n (1) ax1b series ! (1)n ax 1bn1 : n lim 1 œ lx 1l 1 ¹ uunbn 1 ¹ 1 Ê n lim ¹ ¹ 1 Ê lx 1ln lim Ä_ Ä _ (1)n ax1bnc1 Ä_ n œ1 _ Ê 2 x 0; when x œ 2 we have ! a2 (1)n ba1bn1 , a divergent series; when x œ 0 we have n œ1 _ ! a2 (1)n b, a divergent series n œ1 (a) the radius is 1; the interval of convergence is 2 x 0 (b) the interval of absolute convergence is 2 x 0 (c) there are no values for which the series converges conditionally Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 612 Chapter 10 Infinite Sequences and Series ( 1) 22. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ Ä_ Ä_ Ê _ ! n œ1 17 9 x 19 9 ; (1)n 32n ˆ 1 ‰n 3n 9 when x œ _ œ! n œ1 (1)n 3n , 17 9 3 ax 2bnb1 3an 1b nb1 2nb2 _ we have ! n œ1 † (1)n 32n ˆ 1 ‰n 9 3n (b) the interval of absolute convergence is 17 9 (c) the series converges conditionally at x œ 23. _ œ! nœ1 1 3n , 9n n1 œ 9lx 2l 1 a divergent series; when x œ 19 9 we have a conditionally convergent series. (a) the radius is 19 ; the interval of convergence is lim ¹ uunbn 1 ¹ nÄ_ 1 Ê lx 2ln lim Ä_ 3n ¹ (1)n 32n ax 2bn 1 Ê n lim Ä_ » Š1 n " nb1 1‹ xnb1 Š1 "n ‹ xn n 17 9 x xŸ 19 9 19 9 19 9 " t lim Š1 t ‹ e Ä_ » 1 Ê kxk lim Š1 " ‹n 1 Ê kxk ˆ e ‰ 1 Ê kxk 1 n nÄ_ t _ n Ê 1 x 1; when x œ 1 we have ! (1)n ˆ1 "n ‰ , a divergent series by the nth-Term Test since n œ1 lim ˆ1 nÄ_ " ‰n n _ n œ e Á 0; when x œ 1 we have ! ˆ1 n" ‰ , a divergent series n œ1 (a) the radius is "; the interval of convergence is 1 x 1 (b) the interval of absolute convergence is 1 x 1 (c) there are no values for which the series converges conditionally 24. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ ln (nxnln1)xn Ä_ Ä_ nb1 ¹ 1 Ê kxk n lim Ä_ º ˆn " 1‰ ˆ n" ‰ º ˆ n ‰ 1 Ê kxk 1 1 Ê kxk n lim Ä _ n1 _ Ê 1 x 1; when x œ 1 we have ! (1)n ln n, a divergent series by the nth-Term Test since n lim ln n Á 0; Ä_ n œ1 _ when x œ 1 we have ! ln n, a divergent series n œ1 (a) the radius is 1; the interval of convergence is 1 x 1 (b) the interval of absolute convergence is 1 x 1 (c) there are no values for which the series converges conditionally nb1 nb1 x ˆ1 n" ‰n ‹ Š lim (n 1)‹ 1 25. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (n 1) ¹ 1 Ê kxk Šn lim nn xn Ä_ Ä_ Ä_ nÄ_ Ê e kxk n lim (n 1) 1 Ê only x œ 0 satisfies this inequality Ä_ (a) the radius is 0; the series converges only for x œ 0 (b) the series converges absolutely only for x œ 0 (c) there are no values for which the series converges conditionally nb1 26. n lim (n 1) 1 Ê only x œ 4 satisfies this inequality ¹ uunbn 1 ¹ 1 Ê n lim ¹ (n n!1)!(x(x4)4)n ¹ 1 Ê kx 4k n lim Ä_ Ä_ Ä_ (a) the radius is 0; the series converges only for x œ 4 (b) the series converges absolutely only for x œ 4 (c) there are no values for which the series converges conditionally nb1 27. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ (x 2) Ä_ Ä _ (n 1) 2nb1 n2n (x 2)n ¹ 1 Ê kx 2 k lim # nÄ_ ˆ n n 1 ‰ 1 Ê kx 2 k # 1 Ê kx 2k 2 _ _ n œ1 n œ1 ! (1) Ê 2 x 2 2 Ê 4 x 0; when x œ 4 we have ! " n , a divergent series; when x œ 0 we have n the alternating harmonic series which converges conditionally (a) the radius is 2; the interval of convergence is 4 x Ÿ 0 (b) the interval of absolute convergence is 4 x 0 (c) the series converges conditionally at x œ 0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. nb1 , Section 10.7 Power Series nb1 613 nb1 (n 2)(x 1) ˆ n 2 ‰ 1 Ê 2 kx 1k 1 28. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ ((2)2)n (n 1)(x 1)n ¹ 1 Ê 2 kx 1k n lim Ä_ Ä_ Ä _ n1 Ê kx 1k _ " # Ê "# x 1 " # " # Ê x 3# ; when x œ " # _ we have ! (n 1) , a divergent series; when x œ n œ1 we have ! (1) (n 1), a divergent series n n œ1 (a) the radius is "# ; the interval of convergence is (b) the interval of absolute convergence is " # " # x x 3 # 3 # (c) there are no values for which the series converges conditionally nb1 x 29. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ Ä_ Ä _ (n 1) aln (n 1)b# Ê kxk (1) Œn lim Ä_ _ ! nœ1 (1)n n(ln n)# ˆ "n ‰ ˆ nb" 1 ‰ # n(ln n)# xn ¹ 1 Ê kxk Šn lim Ä_ n1 n ‹ 1 Ê kxk Šn lim Ä_ # n ln n ‹ n 1 ‹ Šn lim Ä _ ln (n 1) # 1 1 Ê kxk 1 Ê 1 x 1; when x œ 1 we have _ which converges absolutely; when x œ 1 we have ! nœ1 " n(ln n)# which converges (a) the radius is "; the interval of convergence is 1 Ÿ x Ÿ 1 (b) the interval of absolute convergence is 1 Ÿ x Ÿ 1 (c) there are no values for which the series converges conditionally nb1 x 30. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ Ä_ Ä _ (n 1) ln (n 1) n ln (n) xn ¹ 1 Ê kxk Šn lim Ä_ ln (n) n ‹ n 1 ‹ Šn lim Ä _ ln (n 1) _ (1)n n ln n Ê kxk (1)(1) 1 Ê kxk 1 Ê 1 x 1; when x œ 1 we have ! n œ2 _ when x œ 1 we have ! n œ2 " n ln n 1 , a convergent alternating series; which diverges by Exercise 38, Section 9.3 (a) the radius is "; the interval of convergence is 1 Ÿ x 1 (b) the interval of absolute convergence is 1 x 1 (c) the series converges conditionally at x œ 1 2nb3 5) 31. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ (4x (n 1)$Î# Ä_ Ä_ n$Î# (4x 5)2n 1 ¹ 1 Ê (4x 5)# Šn lim Ä_ Ê k4x 5k 1 Ê 1 4x 5 1 Ê 1 x absolutely convergent; when x œ 3 # _ we have ! n œ1 (")2nb1 n$Î# 3 # _ ; when x œ 1 we have ! n œ1 $Î# 1 Ê (4x 5)# 1 (1)2nb1 n$Î# _ œ! n œ1 " n$Î# which is , a convergent p-series (a) the radius is "4 ; the interval of convergence is 1 Ÿ x Ÿ (b) the interval of absolute convergence is 1 Ÿ x Ÿ n n1‹ 3 # 3 # (c) there are no values for which the series converges conditionally nb2 32. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (3x2n1)4 Ä_ Ä_ † 2n 2 (3x 1)nb1 ¹ ˆ 2n 2 ‰ 1 Ê k3x 1k 1 1 Ê k3x 1k n lim Ä _ 2n 4 _ Ê 1 3x 1 1 Ê 23 x 0; when x œ 23 we have ! n œ1 _ when x œ 0 we have ! n œ1 (")nb1 2n 1 _ œ! nœ1 " #n 1 (1)nb1 2n 1 , a conditionally convergent series; , a divergent series (a) the radius is "3 ; the interval of convergence is 32 Ÿ x 0 (b) the interval of absolute convergence is 23 x 0 (c) the series converges conditionally at x œ 23 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 3 # 614 Chapter 10 Infinite Sequences and Series nb1 x ˆ 1 ‰ 1 for all x 33. n lim † 2†4†6xân a2nb ¹ 1 Ê kxk n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ Ä_ Ä _ 2†4†6âa2nba2an 1bb Ä _ 2n 2 (a) the radius is _; the series converges for all x (b) the series converges absolutely for all x (c) there are no values for which the series converges conditionally nb2 3 5 7 2n 1 2 n 1 1x 2n 3 n 34. n lim † 3†5†7âan2n2 1bxnb1 ¹ 1 Ê kxk n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ † † âa an ba1ba2 2nb1 b b Š a2an 1bb2 ‹ 1 Ê only Ä_ Ä_ Ä_ x œ 0 satisfies this inequality (a) the radius is 0; the series converges only for x œ 0 (b) the series converges absolutely only for x œ 0 (c) there are no values for which the series converges conditionally _ 35. For the series ! n œ1 12ân n 12 22 â n2 x , recall 1 2 â n œ nan b 1b _ 2 2 n nan 1b 2 and 12 22 â n2 œ nan 1ba2n 1b 6 _ nb1 rewrite the series as ! Œ n n b 1 2 2n b 1 xn œ ! ˆ 2n 3 1 ‰xn ; then n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ a2an3x 1 b 1 b † Ä _ Ä _ 6 n œ1 nœ1 a ba b so that we can a2n 1b 3xn ¹ 1 _ Ê kxk n lim ¹ a2n 1b ¹ 1 Ê kxk 1 Ê 1 x 1; when x œ 1 we have ! ˆ 2n 3 1 ‰a1bn , a conditionally Ä _ a2n 3b n œ1 _ convergent series; when x œ 1 we have ! ˆ 2n 3 1 ‰, a divergent series. n œ1 (a) the radius is 1; the interval of convergence is 1 Ÿ x 1 (b) the interval of absolute convergence is 1 x 1 (c) the series converges conditionally at x œ 1 _ 36. For the series ! ŠÈn 1 Èn‹ax 3bn , note that Èn 1 Èn œ n œ1 _ can rewrite the series as ! n œ1 Ê lx 3ln lim Ä_ a x 3 bn Èn 1 Èn ; Èn 1 Èn Èn 2 Èn 1 Èn 1 Èn 1 † nb1 Èn 1 Èn Èn 1 Èn then n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ ax 3 b Ä_ Ä _ Èn 2 Èn 1 ax 3bn _ n œ1 1 Èn 1 Èn , so that we ¹1 a 1 b n Èn 1 Èn , n œ1 _ 1 Èn 1 Èn Èn 1 Èn 1 Ê lx 3l 1 Ê 2 x 4; when x œ 2 we have ! convergent series; when x œ 4 we have ! œ a conditionally a divergent series; (a) the radius is 1; the interval of convergence is 2 Ÿ x 4 (b) the interval of absolute convergence is 2 x 4 (c) the series converges conditionally at x œ 2 nb1 an 1bxx 37. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ Ä_ Ä _ 3†6†9âa3nba3an 1bb 3†6†9âa3nb ¹ nx xn 2 nb1 2 4 6 2n 2 n 1 x 38. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ a † † âa ba a bbb Ä_ Ä _ a2†5†8âa3n 1ba3an 1b 1bb2 9 9 Ê lxl 4 Ê R œ 4 2 nb1 n 1 x 39. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ aa bxb Ä_ Ä _ 2nb1 a2an 1bbx 2n a2nbx ¹ an x b 2 x n an 1 b 1 Ê lxln lim ¹ ¹1Ê Ä _ 3 an 1 b a2†5†8âa3n 1bb2 ¹ a2†4†6âa2nbb2 xn lx l 3 1 Ê lxl 3 Ê R œ 3 2 1 Ê lxln lim ¹ a2n 2b ¹ 1 Ê Ä _ a3n 2b2 2 an 1 b 1 Ê lxln lim ¹ ¹1Ê Ä _ 2a2n 2ba2n 1b lx l 8 4 lx l 9 1 1 Ê lxl 8 Ê R œ 8 2 n n ‰n n n Ɉ ˆ n ‰n 1 Ê lxle1 1 Ê lxl e Ê R œ e È 40. n lim un 1 Ê n lim x 1 Ê lxl n lim n1 Ä_ Ä_ Ä _ n1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.7 Power Series nb1 nb1 41. n lim 3 1 Ê lxl ¹ uunbn 1 ¹ 1 Ê n lim ¹ 3 3n xxn ¹ 1 Ê lxl n lim Ä_ Ä_ Ä_ _ _ ! 3n ˆ 1 ‰n œ ! a1bn , which diverges; at x œ 3 n œ0 n œ0 1 3 1 3 _ _ n œ0 nœ0 615 Ê 31 x 31 ; at x œ 31 we have _ n we have ! 3n ˆ 13 ‰ œ ! 1 , which diverges. The series ! 3n xn _ œ ! a3xbn is a convergent geometric series when 13 x n œ0 1 3 and the sum is nœ0 1 1 3x . nb1 e 4 42. n lim 1 1 Ê lex 4l 1 Ê 3 ex 5 Ê ln 3 x ln 5; ¹ uunbn 1 ¹ 1 Ê n lim ¹ a aex 4b bn ¹ 1 Ê lex 4l n lim Ä_ Ä_ Ä_ x _ _ _ _ nœ0 _ nœ0 nœ0 nœ0 n n at x œ ln 3 we have ! ˆeln 3 4‰ œ ! a1bn , which diverges; at x œ ln 5 we have ! ˆeln 5 4‰ œ ! 1, which diverges. The series ! aex 4bn is a convergent geometric series when ln 3 x ln 5 and the sum is n œ0 2nb2 43. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (x 4n1)1 Ä_ Ä_ 4n (x 1)2n ¹ † 1 Ê (x 1)# lim 4 nÄ_ _ Ê 2 x 1 2 Ê 1 x 3; at x œ 1 we have ! n œ0 _ we have ! n œ0 _ ! n œ0 (x ")2n 4n " # 4 4n nœ0 œ! nœ0 4 (x 4 9n (x 1)2n ¹ † 1 Ê (x 1)# lim 9 nÄ_ n œ0 ! n œ0 nœ0 n œ0 k1k 1 Ê (x 1)# 9 Ê kx 1k 3 (3)2n 9n _ œ ! 1 which diverges; at x œ 2 we have n œ0 _ œ ! " which also diverges; the interval of convergence is 4 x 2; the series (x 1) 9n " _ 4 4 ")# “ œ 4 x# 2x 1 œ 3 2x x# _ ! _ n œ ! 44n œ ! 1, which diverges; at x œ 3 is a convergent geometric series when 1 x 3 and the sum is Ê 3 x 1 3 Ê 4 x 2; when x œ 4 we have ! n œ0 _ k1k 1 Ê (x 1)# 4 Ê kx 1k 2 nœ0 2nb2 32n 9n 1 5 ex . œ ! 1, a divergent series; the interval of convergence is 1 x 3; the series 44. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (x 9n1)1 Ä_ Ä_ _ œ _ # n Šˆ x # 1 ‰ ‹ " ’ n œ! 2 4n _ œ " 1 Šxc # ‹ _ 2n (2)2n 4n 1 1 ae x 4 b nœ0 2n _ n # œ ! Šˆ x3 1 ‰ ‹ is a convergent geometric series when 4 x 2 and the sum is n œ0 1 1 Šxb 3 ‹ # œ " ’ 9 (x 1)# “ 9 œ 9 9 x# 2x 1 45. n lim ¹ uunbn 1 ¹ 1 Ê n lim Ä_ Ä_ º œ 9 8 2x x# ˆÈx 2‰nb1 2nb1 † 2n ˆÈ x 2 ‰ n º 1 Ê ¸Èx 2¸ 2 Ê 2 Èx 2 2 Ê 0 Èx 4 _ _ Ê 0 x 16; when x œ 0 we have ! (1)n , a divergent series; when x œ 16 we have ! (1)n , a divergent nœ0 nœ0 _ series; the interval of convergence is 0 x 16; the series ! n œ0 0 x 16 and its sum is 1Œ " Èx c 2 œ # Œ 2c " Èx # 2 œ Èx 2 n Š # ‹ is a convergent geometric series when 2 4 Èx nb1 46. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (ln(lnx)x)n ¹ 1 Ê kln xk 1 Ê 1 ln x 1 Ê e" x e; when x œ e" or e we Ä_ Ä_ _ _ _ nœ0 nœ0 nœ0 obtain the series ! 1n and ! (1)n which both diverge; the interval of convergence is e" x e; ! (ln x)n œ when e" x e Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " 1 ln x 616 Chapter 10 Infinite Sequences and Series 47. n lim ¹ uunbn 1 ¹ 1 Ê n lim Šx Ä_ Ä_ º # 1 3 ‹ n1 n † ˆ x# 3 1 ‰ º 1 Ê ax# 1b lim 3 nÄ_ x# " 3 k1k 1 Ê 1 Ê x# 2 _ Ê kxk È2 Ê È2 x È2 ; at x œ „ È2 we have ! (1)n which diverges; the interval of convergence is n œ0 _ È2 x È2 ; the series ! n œ0 " # 1 Š x 3b 1 ‹ œ " # Š 3 c x3 c 1 ‹ œ # Š x 3 1 ‹ n is a convergent geometric series when È2 x È2 and its sum is 3 # x# ax 48. n lim ¹ uun n 1 ¹ 1 Ê n lim ¹ Ä_ Ä_ # 1 bn 2n 1 2n ¹ a x # 1 bn † 1 1 Ê kx# 1k 2 Ê È3 x È3 ; when x œ „ È3 we _ _ n œ0 n œ0 have ! 1n , a divergent series; the interval of convergence is È3 x È3 ; the series ! Š x convergent geometric series when È3 x È3 and its sum is nb1 49. n lim ¹ (x #n3) b1 Ä_ † 2n (x 3)n ¹ " # 1 Šx 2 1‹ " œ 2 œ Šx# 1 ‹ # # n 1 ‹ 2 is a 2 3 x# _ 1 Ê kx 3k 2 Ê 1 x 5; when x œ 1 we have ! (1)n which diverges; nœ1 _ when x œ 5 we have ! (1) which also diverges; the interval of convergence is 1 x 5; the sum of this n n œ1 convergent geometric series is œ 2 x1 " 3 1 Šxc # ‹ œ 2 x1 n . If f(x) œ 1 #" (x 3) 4" (x 3)# á ˆ #" ‰ (x 3)n á n then f w (x) œ #" "# (x 3) á ˆ #" ‰ n(x 3)n1 á is convergent when 1 x 5, and diverges 2 (x 1)# when x œ 1 or 5. The sum for f w (x) is , the derivative of 2 x1 . n 50. If f(x) œ 1 "# (x 3) 4" (x 3)# á ˆ "# ‰ (x 3)n á œ œx (x 3)# 4 (x 3)$ 12 _ n (x 3)n n 1 1 á ˆ "# ‰ 2 x1 then ' f(x) dx _ á . At x œ 1 the series ! n21 diverges; at x œ 5 n œ1 2 the series ! (n1) 1 converges. Therefore the interval of convergence is 1 x Ÿ 5 and the sum is n n œ1 2 ln kx 1k (3 ln 4), since ' dx œ 2 ln kx 1k C, where C œ 3 ln 4 when x œ 3. 2 x1 51. (a) Differentiate the series for sin x to get cos x œ 1 œ x# #! x% 4! x' 6! ) x"! 1 x8! 10! á . 2nb2 a b # n ! lim ¹ x † x#8 ¹ œ x2 n lim n Ä _ (2n 2)! Ä_ (b) sin 2x œ 2x 2$ x$ 3! 2& x& 5! 2( x( 7! " 6! œ 2x 52. (a) (b) d x 5x% 5! 7x' 7! 9x) 9! 11x"! 11! á The series converges for all values of x since Š a2n 1ba" 2n 2b ‹ œ 0 1 for all x. 1†00† " 4! $ $ ( ( 2 x 3! aex b œ 1 & & 2 x 5! 2x 2! 3x# 3! 2 x 7! 0† 4x$ 4! ' ex dx œ ex C œ x x# # # (c) ex œ 1 x x#! ˆ1 † 3!" 1 † #"! ˆ1 † 5!" 1 † 4!" x$ 3! " #! " #! " 3! * * 2 x 9! 2* x* 9! 2"" x"" 11! " # 0† "" "" á 0† 5x% 5! 2 x 11! á œ 2x 8x$ 3! & ( * "" 128x 512x 2048x 32x 5! 7! 9! 11! á " "‰ $ ‰ # ˆ (c) 2 sin x cos x œ 2 (0 † 1) (0 † 0 1 † 1)x ˆ0 † " # 1 † 0 0 † 1 x 0 † 0 1 † # 0 † 0 1 † 3! x ˆ0 † 4!" 1 † 0 0 † #" 0 † 3!" 0 † 1‰ x% ˆ0 † 0 1 † 4!" 0 † 0 #" † 3!" 0 † 0 1 † 5!" ‰ x& ˆ0 † 3x# 3! " 5! 0 † 1‰ x' á ‘ œ 2 ’x á œ1x x# #! x$ 3! x% 4! 4x$ 3! 16x& 5! á“ á œ ex ; thus the derivative of ex is ex itself x$ x% x& x 3! 4! 5! á C, which is the general antiderivative of e % & x4! x5! á ; ecx † ex œ 1 † 1 (1 † 1 1 † 1)x ˆ1 † #"! 1 † 1 #"! † 1 3!" † 1‰ x$ ˆ1 † 4!" 1 † 3!" #"! † #"! 3!" † 1 4!" † 1‰ x% † 3!" 3!" † #"! 4!" † 1 5!" † 1‰ x& á œ 1 0 0 0 0 0 á Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. † 1‰ x# Section 10.8 Taylor and Maclaurin Series 53. (a) ln ksec xk C œ ' tan x dx œ ' Šx # œ x # % x 1# ' ) x 45 17x 2520 1 # converges when # (b) sec x œ d(tan x) dx œ when 1# x d dx x x$ 3 œ1x x$ 6 œx $ x 6 x& 24 & x 24 (b) sec x tan x œ when 1 # 17x' 45 61x( 5040 ( " 4 62x) 315 x# # 17x( 315 5x% 24 5 ‰ % 24 x 62x* 2835 61x' 720 62x* 2835 á ‹ dx á ‹ œ 1 x# d(sec x) dx * œ 277x 72,576 d dx á ‹ Š1 61 ˆ 720 á , 277x* 72,576 61x 5040 2x% 3 x# # 17x' 45 x% 12 62x) 315 x' 45 17x) 2520 31x"! 14,175 á , á , converges 1 # x x# 2 5 48 1 # 5 48 5x% 24 x# # 5x% 24 61 ‰ ' 720 x 61x' 720 61x' 720 á‹ á á ‹ dx á C; x œ 0 Ê C œ 0 Ê ln ksec x tan xk á , converges when 1# x Š1 x# # 5x% 24 61x' 720 5x$ 6 á‹ œ x 1 # 61x& 120 277x( 1008 á , converges 1 # (c) (sec x)(tan x) œ Š1 x# # 2 œ x ˆ "3 #" ‰ x$ ˆ 15 1# x 1 # x 17x( 315 2x& 15 54. (a) ln ksec x tan xk C œ ' sec x dx œ ' Š1 œx 5 œ 1 ˆ "# "# ‰ x# ˆ 24 2x% 3 2x& 15 á C; x œ 0 Ê C œ 0 Ê ln ksec xk œ (c) sec# x œ (sec x)(sec x) œ Š1 # "! 31x 14,175 1# Šx x$ 3 617 1 # 5x% 24 " 6 _ 61x' 720 á ‹ Šx 5 ‰ & 24 x 17 ˆ 315 " 15 x$ 3 5 72 2x& 15 17x( 315 61 ‰ ( 720 x á‹ á œ x 5x$ 6 61x& 120 277x( 1008 á , _ 55. (a) If f(x) œ ! an xn , then f ÐkÑ (x) œ ! n(n 1)(n 2)â(n (k 1)) an xnk and f ÐkÑ (0) œ k!ak n œ0 Ê ak œ f ÐkÑ (0) k! n œk _ ; likewise if f(x) œ ! bn xn , then bk œ n œ0 f ÐkÑ (0) k! Ê ak œ bk for every nonnegative integer k _ (b) If f(x) œ ! an xn œ 0 for all x, then f ÐkÑ (x) œ 0 for all x Ê from part (a) that ak œ 0 for every nonnegative integer k n œ0 10.8 TAYLOR AND MACLAURIN SERIES 1. f(x) œ e2x , f w (x) œ 2e2x , f ww (x) œ 4e2x , f www (x) œ 8e2x ; f(0) œ e2a0b œ ", f w (0) œ 2, f ww (0) œ 4, f www (0) œ 8 Ê P! (x) œ 1, P" (x) œ 1 2x, P# (x) œ 1 x 2x# , P$ (x) œ 1 x 2x# 43 x3 2. f(x) œ sin x, f w (x) œ cos x , f ww (x) œ sin x , f www (x) œ cos x; f(0) œ sin 0 œ 0, f w (0) œ 1, f ww (0) œ 0, f www (0) œ 1 Ê P! (x) œ 0, P" (x) œ x, P# (x) œ x, P$ (x) œ x 16 x3 3. f(x) œ ln x, f w (x) œ " x , f ww (x) œ x"# , f www (x) œ 2 x$ ; f(1) œ ln 1 œ 0, f w (1) œ 1, f ww (1) œ 1, f www (1) œ 2 Ê P! (x) œ 0, P" (x) œ (x 1), P# (x) œ (x 1) "# (x 1)# , P$ (x) œ (x 1) "# (x 1)# 3" (x 1)$ 4. f(x) œ ln (1 x), f w (x) œ f w (0) œ 5. f(x) œ œ 1, f ww (0) œ (1) 1 1 " x (1 x)" , f ww (x) œ (1 x)# , f www (x) œ 2(1 x)$ ; f(0) œ ln 1 œ 0, œ 1, f www (0) œ 2(1)$ œ 2 Ê P! (x) œ 0, P" (x) œ x, P# (x) œ x œ x" , f w (x) œ x# , f ww (x) œ 2x$ , f www (x) œ 6x% ; f(2) œ Ê P! (x) œ P$ (x) œ " 1x œ # " # " " " " # , P" (x) œ # 4 (x 2), P# (x) œ # " " " # $ 4 (x 2) 8 (x 2) 16 (x 2) " # x# #, P$ (x) œ x , f w (2) œ 4" , f ww (2) œ 4" , f www (x) œ 83 "4 (x 2) "8 (x 2)# , Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. x# # x$ 3 618 Chapter 10 Infinite Sequences and Series 6. f(x) œ (x 2)" , f w (x) œ (x 2)# , f ww (x) œ 2(x 2)$ , f www (x) œ 6(x 2)% ; f(0) œ (2)" œ œ 4" , f ww (0) œ 2(2)$ œ P$ (x) œ " # x 4 x# 8 " 4 , f www (0) œ 6(2)% œ 38 Ê P! (x) œ x$ 16 " # , P" (x) œ f ww ˆ 14 ‰ œ sin P# (x) œ È2 # 1 4 œ È2 ˆx # È , f www ˆ 14 ‰ œ cos 14 œ #2 Ê È2 È 1‰ ˆx 14 ‰# , P$ (x) œ #2 4 4 x4 , P# (x) œ " # , f w (0) œ (2)# x 4 È2 È2 1 w ˆ1‰ # ,f 4 œ cos 4 œ # È È È P! œ #2 , P" (x) œ #2 #2 ˆx 14 ‰ , È2 È È ˆx 14 ‰ 42 ˆx 14 ‰# 1#2 ˆx 14 ‰$ # 7. f(x) œ sin x, f w (x) œ cos x, f ww (x) œ sin x, f www (x) œ cos x; f ˆ 14 ‰ œ sin È2 # " # " # 1 4 œ x# 8 , , 8. f(x) œ tan x, f w (x) œ sec2 x, f ww (x) œ 2sec2 x tan x, f www (x) œ 2sec4 x 4sec2 x tan2 x; f ˆ 14 ‰ œ tan 14 œ 1 , f w ˆ 14 ‰ œ sec2 ˆ 14 ‰ œ 2 , f ww ˆ 14 ‰ œ 2sec2 ˆ 14 ‰ tan ˆ 14 ‰ œ 4 , f www ˆ 14 ‰ œ 2sec4 ˆ 14 ‰ 4sec2 ˆ 14 ‰ tan2 ˆ 14 ‰ œ 16 Ê P! (x) œ 1 , 2 2 3 P" (x) œ 1 2 ˆx 14 ‰ , P# (x) œ 1 2 ˆx 14 ‰ 2 ˆx 14 ‰ , P$ (x) œ 1 2 ˆx 14 ‰ 2 ˆx 14 ‰ 83 ˆx 14 ‰ 9. f(x) œ Èx œ x"Î# , f w (x) œ ˆ "# ‰ x"Î# , f ww (x) œ ˆ 4" ‰ x$Î# , f www (x) œ ˆ 83 ‰ x&Î# ; f(4) œ È4 œ 2, " 3 f w (4) œ ˆ "# ‰ 4"Î# œ "4 , f ww (4) œ ˆ "4 ‰ 4$Î# œ 32 ,f www (4) œ ˆ 38 ‰ 4&Î# œ 256 Ê P! (x) œ 2, P" (x) œ 2 "4 (x 4), P# (x) œ 2 4" (x 4) " 64 (x 4)# , P$ (x) œ 2 "4 (x 4) " 64 (x 4)# " 51# (x 4)$ 10. f(x) œ (1 x)"Î# , f w (x) œ "# (1 x)"Î# , f ww (x) œ "4 (1 x)$Î# , f www (x) œ 38 (1 x)&Î# ; f(0) œ (1)"Î# œ 1, f w (0) œ "# (1)"Î# œ "# , f ww (0) œ "4 (1)$Î# œ "4 , f www (0) œ 83 (1)&Î# œ 83 Ê P! (x) œ 1, P" (x) œ 1 2" x, P# (x) œ 1 2" x 8" x# , P$ (x) œ 1 2" x 8" x# 1 16 x$ 11. f(x) œ ex , f w (x) œ ex , f ww (x) œ ex , f www (x) œ ex Ê á f ÐkÑ (x) œ a1bk ex ; f(0) œ ea0b œ ", f w (0) œ 1, _ f ww (0) œ 1, f www (0) œ 1, á ß f ÐkÑ (0) œ (1)k Ê ex œ 1 x 12 x# 16 x3 á œ ! n œ0 (1)n n n! x 12. f(x) œ x ex , f w (x) œ x ex ex , f ww (x) œ x ex 2ex , f www (x) œ x ex 3ex Ê á f ÐkÑ (x) œ x ex k ex ; f(0) œ a0bea0b œ 0, _ f w (0) œ 1, f ww (0) œ 2, f www (0) œ 3, á ß f ÐkÑ (0) œ k Ê x x# 12 x3 á œ ! n œ0 1 n a n 1 b! x 13. f(x) œ (1 x)" Ê f w (x) œ (1 x)# , f ww (x) œ 2(1 x)$ , f www (x) œ 3!(1 x)% Ê á f ÐkÑ (x) œ (1)k k!(1 x)k1 ; f(0) œ 1, f w (0) œ 1, f ww (0) œ 2, f www (0) œ 3!, á ß f ÐkÑ (0) œ (1)k k! _ _ n œ0 nœ0 Ê 1 x x# x$ á œ ! (x)n œ ! (1)n xn 14. f(x) œ 2x 1x Ê f w (x) œ œ 6(1 x)$ , f www (x) œ 18(1 x)% Ê á f ÐkÑ (x) œ 3ak!b(1 x) 3 ww (1 x)# , f (x) _ f w (0) œ 3, f ww (0) œ 6, f www (0) œ 18, á ß f ÐkÑ (0) œ 3ak!b Ê 2 3x 3x# 3x$ á œ 2 ! 3xn n œ1 _ 15. sin x œ ! n œ0 _ 16. sin x œ ! nœ0 _ (")n x2nb1 (#n1)! Ê sin 3x œ ! (")n x2nb1 (#n1)! Ê sin n œ0 _ 17. 7 cos (x) œ 7 cos x œ 7 ! n œ0 x # _ œ! nœ0 (")n x2n (2n)! (")n (3x)2nb1 (#n1)! 2n 1 (")n ˆ x# ‰ (#n1)! œ7 7x# #! _ (")n 32nb1 x2nb1 (#n1)! œ 3x (")n x2nb1 #2n 1 (2n1)! x # œ! n œ0 _ œ! nœ0 7x% 4! 7x' 6! œ 3$ x$ 3! x$ 2$ †3! 3& x& 5! x& 2& †5! á á á , since the cosine is an even function Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. k 1 ; f(0) œ 2, Section 10.8 Taylor and Maclaurin Series _ 18. cos x œ ! n œ0 19. cosh x œ _ œ! n œ0 œ! n œ0 ex ecx # Ê 5 cos 1x œ 5 ! nœ0 œ " # ’Š1 x# œ " # ’Š1 x x# #! x$ 3! (1)n (1x)2n (#n)! x% 4! œ5 51 # x# 2! 51 % x% 4! á ‹ Š1 x x# #! 5 1 ' x' 6! x$ 3! á x% 4! á ‹“ œ 1 x# #! x% 4! x' 6! á x2n (2n)! 20. sinh x œ _ _ (1)n x2n (2n)! 619 ex ecx # x# #! x$ 3! x% 4! á ‹ Š1 x x# #! x$ 3! x% 4! á ‹“ œ x x$ 3! x& 5! x' 6! á x2n 1 (2n 1)! 21. f(x) œ x% 2x$ 5x 4 Ê f w (x) œ 4x$ 6x# 5, f ww (x) œ 12x# 12x, f www (x) œ 24x 12, f Ð4Ñ (x) œ 24 Ê f ÐnÑ (x) œ 0 if n 5; f(0) œ 4, f w (0) œ 5, f ww (0) œ 0, f www (0) œ 12, f Ð4Ñ (0) œ 24, f ÐnÑ (0) œ 0 if n 5 24 % $ % $ Ê x% 2x$ 5x 4 œ 4 5x 12 3! x 4! x œ x 2x 5x 4 22. f(x) œ x# x1 Ê f w (x) œ 2x x# ; f ww (x) ax 1b2 f www (0) œ 6, f ÐnÑ (0) œ a1bn nx if n œ 2 ; ax 1 b 3 f www (x) œ 6 ax 1 b 4 Ê f ÐnÑ (x) œ a1bn nx ; ax 1bnb1 f(0) œ 0, f w (0) œ 0, f ww (0) œ 2, _ 2 Ê x# x3 x4 x5 Þ Þ Þ œ ! a1bn xn n œ2 23. f(x) œ x$ 2x 4 Ê f w (x) œ 3x# 2, f ww (x) œ 6x, f www (x) œ 6 Ê f ÐnÑ (x) œ 0 if n 4; f(2) œ 8, f w (2) œ 10, 6 # $ f ww (2) œ 12, f www (2) œ 6, f ÐnÑ (2) œ 0 if n 4 Ê x$ 2x 4 œ 8 10(x 2) 12 2! (x 2) 3! (x 2) œ 8 10(x 2) 6(x 2)# (x 2)$ 24. f(x) œ 2x$ x# 3x 8 Ê f w (x) œ 6x# 2x 3, f ww (x) œ 12x 2, f www (x) œ 12 Ê f ÐnÑ (x) œ 0 if n f w (1) œ 11, f ww (1) œ 14, f www (1) œ 12, f ÐnÑ (1) œ 0 if n 4 Ê 2x$ x# 3x 8 12 # $ # $ œ 2 11(x 1) 14 2! (x 1) 3! (x 1) œ 2 11(x 1) 7(x 1) 2(x 1) 4; f(1) œ 2, 25. f(x) œ x% x# 1 Ê f w (x) œ 4x$ 2x, f ww (x) œ 12x# 2, f www (x) œ 24x, f Ð4Ñ (x) œ 24, f ÐnÑ (x) œ 0 if n 5; f(2) œ 21, f w (2) œ 36, f ww (2) œ 50, f www (2) œ 48, f Ð4Ñ (2) œ 24, f ÐnÑ (2) œ 0 if n 5 Ê x% x# 1 48 24 # $ % # $ % œ 21 36(x 2) 50 2! (x 2) 3! (x 2) 4! (x 2) œ 21 36(x 2) 25(x 2) 8(x 2) (x 2) 26. f(x) œ 3x& x% 2x$ x# 2 Ê f w (x) œ 15x% 4x$ 6x# 2x, f ww (x) œ 60x$ 12x# 12x 2, f www (x) œ 180x# 24x 12, f Ð4Ñ (x) œ 360x 24, f Ð5Ñ (x) œ 360, f ÐnÑ (x) œ 0 if n 6; f(1) œ 7, f w (1) œ 23, f ww (1) œ 82, f www (1) œ 216, f Ð4Ñ (1) œ 384, f Ð5Ñ (1) œ 360, f ÐnÑ (1) œ 0 if n 6 216 384 360 # $ % & Ê 3x& x% 2x$ x# 2 œ 7 23(x 1) 82 2! (x 1) 3! (x 1) 4! (x 1) 5! (x 1) œ 7 23(x 1) 41(x 1)# 36(x 1)$ 16(x 1)% 3(x 1)& 27. f(x) œ x# Ê f w (x) œ 2x$ , f ww (x) œ 3! x% , f www (x) œ 4! x& Ê f ÐnÑ (x) œ (1)n (n 1)! xn2 ; f(1) œ 1, f w (1) œ 2, f ww (1) œ 3!, f www (1) œ 4!, f ÐnÑ (1) œ (1)n (n 1)! Ê x"# _ œ 1 2(x 1) 3(x 1)# 4(x 1)$ á œ ! (1)n (n 1)(x 1)n n œ0 28. f(x) œ 1 a1 xb3 Ê f w (x) œ 3(1 x)4 , f ww (x) œ 12(1 x)5 , f www (x) œ 60 (1 x)6 Ê f ÐnÑ (x) œ fa0b œ 1, f w a0b œ 3, f ww a0b œ 12, f www a0b œ 60, á , f ÐnÑ a0b œ _ œ! n œ0 an 2b! 2 Ê 1 a1 xb3 an 2b! 2 (1 x)n3 ; œ 1 3x 6x# 10x3 á an 2ban 1b n x 2 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 620 Chapter 10 Infinite Sequences and Series 29. f(x) œ ex Ê f w (x) œ ex , f ww (x) œ ex Ê f ÐnÑ (x) œ ex ; f(2) œ e# , f w (2) œ e# , á f ÐnÑ (2) œ e# Ê ex œ e# e# (x 2) e# # (x 2)# e$ 3! _ (x 2)$ á œ ! n œ0 e# n! (x 2)n 30. f(x) œ 2x Ê f w (x) œ 2x ln 2, f ww (x) œ 2x (ln 2)# , f www (x) œ 2x (ln 2)3 Ê f ÐnÑ (x) œ 2x (ln 2)n ; f(1) œ 2, f w (1) œ 2 ln 2, f ww (1) œ 2(ln 2)# , f www (1) œ 2(ln 2)$ , á , f ÐnÑ (1) œ 2(ln 2)n 2(ln 2)# # Ê 2x œ 2 (2 ln 2)(x 1) (x 1)# 2(ln 2)3 3! _ (x 1)3 á œ ! n œ0 2(ln 2)n (x1)n n! 31. f(x) œ cosˆ2x 12 ‰, f w (x) œ 2 sinˆ2x 12 ‰, f ww (x) œ 4 cosˆ2x 12 ‰, f www (x) œ 8 sinˆ2x 12 ‰, f a4b axb œ 24 cosˆ2x 12 ‰ß f a5b axb œ 25 sinˆ2x 12 ‰ß . . ; fˆ 14 ‰ œ 1, f w ˆ 14 ‰ œ 0, f ww ˆ 14 ‰ œ 4, f www ˆ 14 ‰ œ 0, f a4b ˆ 14 ‰ œ 24 , 2 4 f a5b ˆ 14 ‰ œ 0, . . ., f Ð2nÑ ˆ 14 ‰ œ a1bn 22n Ê cosˆ2x 12 ‰ œ 1 2ˆx 14 ‰ 32 ˆx 14 ‰ . . . _ œ! n œ0 a1bn 22n ˆ x a2nbx 2n 14 ‰ 7 Î2 32. f(x) œ Èx 1, f w (x) œ 12 ax 1b1Î2 , f ww (x) œ 14 ax 1b3Î2 , f www (x) œ 38 ax 1b5Î2 , f a4b (x) œ 15 , . . .; 16 ax 1b 1 1 3 15 1 1 1 5 f(0) œ 1, f w (0) œ , f ww (0) œ , f www (0) œ , f a4b (0) œ , . . . Ê Èx 1 œ 1 x x2 x3 x4 Þ Þ Þ 2 4 8 16 _ a1bn 2n a2nbx x 33. The Maclaurin series generated by cos x is ! n œ0 by _ ! n œ0 2 1x 2 8 16 which converges on a_, _b and the Maclaurin series generated _ is 2 ! xn which converges on a1, 1b. Thus the Maclaurin series generated by faxb œ cos x n œ0 a1bn 2n a2nbx x 128 2 1x is given by _ 2 ! xn œ 1 2x 25 x2 Þ Þ Þ Þ which converges on the intersection of a_, _b and a1, 1b, so the nœ0 interval of convergence is a1, 1b. _ 34. The Maclaurin series generated by ex is ! n œ0 xn nx which converges on a_, _b. The Maclaurin series generated by _ faxb œ a1 x x2 bex is given by a1 x x2 b ! n œ0 _ 35. The Maclaurin series generated by sin x is ! n œ0 _ generated by lna1 xb is ! n œ1 a1bnc1 n x n xn nx œ 1 12 x2 23 x3 Þ Þ Þ Þ which converges on a_, _bÞ a1bn 2n1 a2n 1bx x which converges on a_, _b and the Maclaurin series which converges on a1, 1b. Thus the Maclaurin series genereated by _ faxb œ sin x † lna1 xb is given by Œ ! n œ0 _ a1bn a1bnc1 n 2n1 Œ ! n x a2n 1bx x n œ1 œ x2 12 x3 61 x4 Þ Þ Þ Þ which converges on the intersection of a_, _b and a1, 1b, so the interval of convergence is a1, 1b. _ 36. The Maclaurin series generated by sin x is ! n œ0 a1bn 2n1 a2n 1bx x _ genereated by faxb œ x sin2 x is given by xŒ ! n œ0 œ x3 13 x5 _ 37. If ex œ ! n œ0 f ÐnÑ (a) n! 2 7 45 x which converges on a_, _b. The Maclaurin series 2 a 1 b n 2n1 a2n 1bx x _ œ xŒ ! nœ0 _ a 1 b n a 1 b n 2n1 2n1 Œ ! a2n 1bx x a2n 1bx x n œ0 . . . which converges on a_, _bÞ (x a)n and f(x) œ ex , we have f ÐnÑ (a) œ ea f or all n œ 0, 1, 2, 3, á ! Ê ex œ ea ’ (x 0!a) (x a)" 1! (x a)# 2! á “ œ ea ’1 (x a) (x a)# 2! á “ at x œ a Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.9 Convergence of Taylor Series 621 38. f(x) œ ex Ê f ÐnÑ (x) œ ex for all n Ê f ÐnÑ (1) œ e for all n œ 0, 1, 2, á Ê ex œ e e(x 1) e #! (x 1)# e 3! (x 1)$ á œ e ’1 (x 1) f ww (a) f www (a) # $ w # (x a) 3! (x a) á Ê f (x) www œ f w (a) f ww (a)(x a) f 3!(a) 3(x a)# á Ê f ww (x) œ f ww (a) f www (a)(x Ðn 2Ñ Ê f ÐnÑ (x) œ f ÐnÑ (a) f Ðn1Ñ (a)(x a) f # (a) (x a)# á w w Ðn Ñ Ðn Ñ (x 1)# 2! 39. f(x) œ f(a) f w (a)(x a) Ê f(a) œ f(a) 0, f (a) œ f (a) 0, á , f (a) œ f a) (x 1)$ 3! f Ð4Ñ (a) 4! á“ 4 † 3(x a)# á (a) 0 40. E(x) œ f(x) b! b" (x a) b# (x a)# b$ (x a)$ á bn (x a)n Ê 0 œ E(a) œ f(a) b! Ê b! œ f(a); from condition (b), lim xÄa Ê Ê f(x) f(a) b" (x a) b# (x a)# b$ (x a)$ á bn (x a)n (x a)n œ0 w a)# á nbn (x a)n 1 lim f (x) b" 2b# (x a) n(x3b$ (xa) œ0 n 1 xÄa f ww (x) 2b# 3! b$ (x a) á n(n ")bn (x a)n w b" œ f (a) Ê xlim n(n 1)(x a)n 2 Äa " # f ww (a) Ê xlim Äa " www œ b$ œ 3! f (a) Ê xlim Äa Ê b# œ g(x) œ f(a) f w (a)(x a) f www (x) 3! b$ á n(n 1)(n 2)bn (x a)n n(n 1)(n #)(x a)n f ÐnÑ (x) n! bn n! f ww (a) 2! œ 0 Ê bn œ (x a)# á 3 3 " n! f ÐnÑ (a) n! 2 œ0 œ0 f ÐnÑ (a); therefore, (x a)n œ Pn (x) # 41. f(x) œ ln (cos x) Ê f w (x) œ tan x and f ww (x) œ sec# x; f(0) œ 0, f w (0) œ 0, f ww (0) œ 1 Ê L(x) œ 0 and Q(x) œ x2 42. f(x) œ esin x Ê f w (x) œ (cos x)esin x and f ww (x) œ ( sin x)esin x (cos x)# esin x ; f(0) œ 1, f w (0) œ 1, f ww (0) œ 1 Ê L(x) œ 1 x and Q(x) œ 1 x "Î# 43. f(x) œ a1 x# b x# # Ê f w (x) œ x a1 x# b f ww (0) œ 1 Ê L(x) œ 1 and Q(x) œ 1 $Î# and f ww (x) œ a1 x# b $Î# 3x# a1 x# b &Î# ; f(0) œ 1, f w (0) œ 0, x# # 44. f(x) œ cosh x Ê f w (x) œ sinh x and f ww (x) œ cosh x; f(0) œ 1, f w (0) œ 0, f ww (0) œ 1 Ê L(x) œ 1 and Q(x) œ 1 45. f(x) œ sin x Ê f w (x) œ cos x and f ww (x) œ sin x; f(0) œ 0, f w (0) œ 1, f ww (0) œ 0 Ê L(x) œ x and Q(x) œ x 46. f(x) œ tan x Ê f w (x) œ sec# x and f ww (x) œ 2 sec# x tan x; f(0) œ 0, f w (0) œ 1, f ww œ 0 Ê L(x) œ x and Q(x) œ x 10.9 CONVERGENCE OF TAYLOR SERIES _ 1. ex œ 1 x x# #! á œ ! 2. ex œ 1 x x# #! á œ ! nœ0 _ nœ0 xn n! Ê e5x œ 1 (5x) (5x)# #! á œ 1 5x xn n! Ê exÎ2 œ 1 ˆ #x ‰ ˆ x# ‰# #! á œ1 _ 3. sin x œ x x$ 3! x& 5! á œ! 4. sin x œ x x$ 3! x& 5! á œ! n œ0 _ nœ0 (1)n x2n 1 (#n1)! Ê 5 sin (x) œ 5 ’(x) (1)n x2n 1 (#n1)! Ê sin 1x # œ 1x # ˆ 1#x ‰$ 3! (x)$ 3! ˆ 1#x ‰& 5! x # x# 2# #! (x)& 5! ˆ 1#x ‰( 7! 5# x# #! _ 5$ x$ 3! x$ 2$ 3! á œ! nœ0 _ á œ ! nœ0 _ (1)n xn 2n n! x á “ œ ! 5((1) #n1)! n 1 2n 1 n œ0 _ 1 x á œ ! (21) 2n 1 (#n1)! nœ0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. (1)n 5n xn n! n 2n 1 2n 1 x# # 622 Chapter 10 Infinite Sequences and Series _ 5. cos x œ ! n œ0 _ 6. cos x œ ! n œ0 x$ 2†2! œ1 Ê cos 5x2 œ ! a1bn x2n (2n)! $Î# cos Š xÈ ‹ 2 x' 2# †4! _ 7. lna1 xb œ ! n œ1 _ nœ0 10. Ê x* 2$ †6! 1 1x œ ! xn Ê _ n œ0 n œ0 _ nœ0 _ (1)n x2n (2n)! 13. cos x œ ! n œ0 œ x% 4! x' 6! _ (1)n x2nb1 (2n1)! 14. sin x œ ! n œ0 œ Šx x$ 3! _ n œ0 _ 16. cos x œ ! n œ0 œ1 " # œ! n œ1 nœ0 nœ0 _ xnb1 n! œ! n œ0 nœ0 x"! 10! x# # 1 cos x œ x( 7! _ x# # _ a1bn 32nb1 x8nb4 n œ! nœ0 x4 2 x$ #! œ x x# _ (1)n x2nb1 (#n1)! nœ0 _ (1)n x2n (#n)! n œ0 x& 4! (1)n x2nb3 (2n1)! œ! 1! 14 x 18 x2 x% 3! x# # œ x8 4 œ 3x4 9x12 n " # x6 3 9 6 16 x ... 243 20 5 x 27 9 64 x 1 3 16 x ... x( 5! x* 7! 2187 28 7 x ... á œ x$ x& 3! 11 x# 2 x% 4! á x' 6! x) 8! x"! 10! á n œ2 x* 9! x"" 11! x$ 3! _ œ Œ! n œ0 á‹ x _ (1)n x2n (2n)! Ê x# cos ax# b œ x# ! nœ0 n œ0 _ " # (2x)% 2†4! (2x)' 2†6! " # " # _ œ! nœ1 " # ! (1) (2x) œ (2n)! œ n 2n n œ0 (2x)) 2†8! (1)n x2nb1 (#n1)! x$ 3! (1)n (1x)2n (#n)! _ cos 2x # (1)nb1 (2x)2n #†(2n)! nœ1 œ x2 n 2n Ê x cos 1x œ x ! á x á œ ! ((1) #n)! Ê sin x x 2x ‰ 18. sin# x œ ˆ 1cos œ # _ _ (1)n x2n (2n)! (2x)# 2†2! x& 5! 15. cos x œ ! 17. cos# x œ x) 8! _ Ê x# sin x œ x# Œ ! Ê 15625x12 6! (1)n x3n 2n (2n)! nœ0 _ (1)n x2nb1 (2n1)! _ œ! nœ0 a1bnc1 x2n n œ! n n 1 œ #" ! ˆ #" x‰ œ ! ˆ #" ‰ xn œ xn n! Ê xex œ x Œ ! 12. sin x œ ! _ n _ n nœ0 _ xn n! 11. ex œ ! (#n)! nœ0 2nb1 a1bn ˆ3x4 ‰ 2n 1 _ " 1 # 1 "# x œ 1 2x œ ! a1bn ˆ 34 x3 ‰ œ ! a1bn ˆ 34 ‰ x3n œ 1 34 x3 1 1 34 x3 n œ0 n œ0 nœ1 nœ0 _ œ! 625x8 4! 2n "Î# $ a1bn ŒŠ x# ‹ _ a1bnc1 ˆx2 ‰ n Ê lna1 x2 b œ ! _ œ ! a1bn xn Ê n œ0 25x4 #! œ1 á Ê tan1 a3x4 b œ ! 1 1x _ œ (1)n 52n x4n (2n)! œ! "Î# $ cos ŒŠ x# ‹ _ a1bnc1 xn n _ 2n (1)n 5x2 ‘ (2n)! n œ0 a1bn x2nb1 2n 1 8. tan1 x œ ! 9. _ (1)n x2n (2n)! cos 2x œ _ n œ1 " # _ nœ0 2n "# Š1 x( 7! _ n œ0 (2x)# 2! (1)n (2x)2n 2†(2n)! (2x)# #! x* 9! x$ 3! (")n 12n x2nb1 (#n)! œ! "# ’1 á œ1! œ! (1)n ax# b (#n)! " # x& 5! œ x (")n x4n (#n)! (2x)% 4! x"" 11! œx 2 (2x)' 6! _ n œ1 (2x)' 6! n œ2 1 # x$ 2! œ x# œ1! (2x)% 4! _ á œ! x' 2! (2x)) 8! (1)n x2n 1 (2n1)! 1 % x& 4! 1 ' x( 6! x"! 4! x"% 6! á á á“ (1)n 22n 1 x2n (2n)! á‹ œ (2x)# 2†2! (2x)% 2†4! (2x)' 2†6! (1)n 22n 1 x2n (2n)! Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. á ... Section 10.9 Convergence of Taylor Series 19. x# 12x _ n œ1 22. " 1x _ n œ0 n œ0 (1)nc1 (2x)n n 20. x ln (1 2x) œ x ! 21. _ œ x# ˆ 1"2x ‰ œ x# ! (2x)n œ ! 2n xn2 œ x# 2x$ 2# x% 2$ x& á _ (1)nc1 2n xn n œ! n œ1 _ œ ! xn œ 1 x x# x$ á Ê 2 a 1 x b$ d dx nœ0 œ d# dx# ˆ 1" x ‰ œ d dx Š (1"x)# ‹ œ d dx 1 œ 2x# ˆ 1" x ‰ œ 2# x$ # " (1x)# 2$ x% 4 2% x& 5 á _ _ nœ1 nœ0 œ 1 2x 3x# á œ ! nxn1 œ ! (n 1)xn _ a1 2x 3x# á b œ 2 6x 12x# á œ ! n(n 1)xn2 n œ2 _ œ ! (n 2)(n 1)xn n œ0 3 5 7 23. tan1 x œ x 13 x3 15 x5 17 x7 Þ Þ Þ Ê x tan1 x2 œ xŠx2 13 ax2 b 15 ax2 b 17 ax2 b Þ Þ Þ ‹ _ œ x3 13 x7 15 x11 17 x15 Þ Þ Þ œ ! n œ1 x3 3! 24. sin x œ x œx 4 x3 3! 16 x5 5! x2 2! 25. ex œ 1 x œ Š1 x 26. sin x œ x œ Š1 _ 2 x 2! x5 5! x2 2! x3 3! 4 1) x œ ! Š ((2n)! n œ0 x3 3! x 4! n 2n x3 3! x5 5! x7 7! 64 x7 7! a1bn x4nc1 2n 1 á Ê sin x † cos x œ "# sin 2x œ "# Š2x á œx á and 1 1x 2 x3 3 2x5 15 4 x7 315 _ á œ! n œ0 a2xb3 3! x7 7! œ 1 x x2 x3 á Ê ex 6 x 6! á and cos x œ 1 á ‹ Šx 3 x 3! x2 2! x4 4! x6 6! a2xb7 7! á‹ 1 1x 25 4 24 x _ á œ ! ˆ n!1 a1bn ‰xn n œ0 á Ê cos x sin x 5 x 3 lna1 x2 b œ x3 Šx2 12 ax2 b 13 ax2 b 14 ax2 b á ‹ x 5! 7 (1)n 22n x2nb1 (#n1)! á ‹ a1 x x2 x3 á b œ 2 32 x2 56 x3 a2xb5 5! x 7! á‹ œ 1 x x2 2! x3 3! x4 4! x5 5! x6 6! x7 7! á (1)n x2nb1 (#n1)! ‹ 27. lna1 xb œ x 12 x2 13 x3 14 x4 á Ê œ 13 x3 16 x5 19 x7 1 9 12 x _ 2 3 4 nc1 á œ ! a13nb x2n1 n œ1 28. lna1 xb œ x 12 x2 13 x3 14 x4 á and lna1 xb œ x 12 x2 13 x3 14 x4 á Ê lna1 xb lna1 xb _ œ ˆx 12 x2 13 x3 14 x4 á ‰ ˆx 12 x2 13 x3 14 x4 á ‰ œ 2x 23 x3 25 x5 á œ ! 2n 2 1 x2n1 n œ0 29. ex œ 1 x œ Š1 x x2 2! x2 2! x3 3! x3 3! á and sin x œ x á ‹Šx x3 3! x5 5! x3 3! x5 5! x7 7! á ‹ œ x x2 13 x3 x7 7! á Ê ex † sin x 1 5 30 x ÞÞÞÞ 30. lna1 xb œ x 12 x2 31 x3 41 x4 á and 1 " x œ 1 x x# x$ á Ê ln1a1xxb œ lna1 xb † 7 4 œ ˆx 12 x2 13 x3 14 x4 á ‰a1 x x# x$ á b œ x 12 x2 56 x3 12 x ÞÞÞÞ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " 1x 623 624 Chapter 10 Infinite Sequences and Series 2 31. tan1 x œ x 13 x3 15 x5 17 x7 Þ Þ Þ Ê atan1 xb œ atan1 xbatan1 xb 44 8 6 œ ˆx 13 x3 15 x5 17 x7 Þ Þ Þ‰ˆx 13 x3 15 x5 17 x7 Þ Þ Þ‰ œ x2 23 x4 23 45 x 105 x Þ Þ Þ Þ 32. sin x œ x x3 3! x5 5! x7 7! á and cos x œ 1 œ cos x † "# sin 2x œ "# Š1 33. sin x œ x x3 3! x5 5! x7 7! 3 Ê esin x œ 1 Šx x 3! x2 2! x4 4! x6 6! x2 2! x 5! 7 x 7! x2 2! á ‹ 12 Šx x6 6! a2xb 3! á ‹Š2x á and ex œ 1 x 5 x4 4! 3 á Ê cos2 x † sin x œ cos x † cos x † sin x x3 3! á 3 x5 5! x 3! a2xb5 5! x7 7! a2xb7 7! á ‹ œ x 76 x3 2 á ‹ 16 Šx x3 3! x5 5! x7 7! 61 5 120 x 1247 7 5040 x ÞÞÞ 3 á‹ á œ 1 x 12 x2 18 x4 Þ Þ Þ Þ x3 x5 x7 1 3 1 5 1 7 1 3 1 5 1 1 ˆ 3! 5! 7! á and tan x œ x 3 x 5 x 7 x Þ Þ Þ Ê sinatan xb œ x 3 x 5 x 3 5 1 ˆ 1 ˆ 16 ˆx 31 x3 51 x5 71 x7 Þ Þ Þ‰ 120 x 13 x3 15 x5 17 x7 Þ Þ Þ‰ 5040 x 13 x3 15 x5 17 x7 5 7 x 12 x3 38 x5 16 x ÞÞÞ 34. sin x œ x œ 71 x7 Þ Þ Þ‰ 7 Þ Þ Þ‰ á 35. Since n œ 3, then f a4b axb œ sin x, lf a4b axbl Ÿ M on Ò0, 0.1Ó Ê lsin xl Ÿ 1 on Ò0, 0.1Ó Ê M œ 1. Then lR3 a0.1bl Ÿ 1 l0.14x 0l 4 œ 4.2 ‚ 106 Ê error Ÿ 4.2 ‚ 106 36. Since n œ 4, then f a5b axb œ ex , lf a5b axbl Ÿ M on Ò0, 0.5Ó Ê lex l Ÿ Èe on Ò0, 0.5Ó Ê M œ 2.7. Then lR4 a0.5bl Ÿ 2.7 l0.55x 0l œ 7.03 ‚ 104 Ê error Ÿ 7.03 ‚ 104 5 kxk& 5! 37. By the Alternating Series Estimation Theorem, the error is less than 5 Ê kxk È 6 ‚ 10# ¸ 0.56968 38. If cos x œ 1 Ê kxk& a5!b a5 ‚ 10% b Ê kxk& 600 ‚ 10% % x# # and kxk 0.5, then the error is less than ¹ (.5) 24 ¹ œ 0.0026, by Alternating Series Estimation Theorem; since the next term in the series is positive, the approximation 1 x# # is too small, by the Alternating Series Estimation Theorem 39. If sin x œ x and kxk 10$ , then the error is less than a10c$ b 3! $ ¸ 1.67 ‚ 1010 , by Alternating Series Estimation Theorem; $ The Alternating Series Estimation Theorem says R# (x) has the same sign as x3! . Moreover, x sin x Ê 0 sin x x œ R# (x) Ê x 0 Ê 10$ x 0. 40. È1 x œ 1 x # x# 8 x$ 16 # á . By the Alternating Series Estimation Theorem the kerrork ¹ 8x ¹ œ 1.25 ‚ 10& c $ 3Ð0Þ1Ñ (0.1)$ 3! c $ (0.1)$ 3! 41. kR# (x)k œ ¹ e3!x ¹ 42. kR# (x)k œ ¹ e3!x ¹ 2x ‰ 43. sin# x œ ˆ 1 cos œ # Ê d dx asin# xb œ œ 2x (2x)$ 3! d dx (2x)& 5! " # 1.87 ‚ 104 , where c is between 0 and x œ 1.67 ‚ 10% , where c is between 0 and x # " # Š 2x 2! (2x)( 7! cos 2x œ 2$ x% 4! 2& x' 6! " # "# Š1 (2x)# 2! á ‹ œ 2x (2x)% 4! (2x)$ 3! (2x)' 6! (2x)& 5! á‹ œ (2x)( 7! 2x# #! 2$ x% 4! 2& x' 6! á á Ê 2 sin x cos x á œ sin 2x, which checks Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. (0.01)# 8 Section 10.9 Convergence of Taylor Series 44. cos# x œ cos 2x sin# x œ Š1 œ1 # 2x #! $ % 2 x 4! & ' 2 x 6! (2x)# #! (2x)% 4! (2x)' 6! á œ 1 x# "3 x% 2 45 (2x)) 8! x' # á ‹ Š 2x #! " 315 2$ x% 4! 2& x' 6! 2( x) 8! 625 á‹ x) á 45. A special case of Taylor's Theorem is f(b) œ f(a) f w (c)(b a), where c is between a and b Ê f(b) f(a) œ f w (c)(b a), the Mean Value Theorem. 46. If f(x) is twice differentiable and at x œ a there is a point of inflection, then f ww (a) œ 0. Therefore, L(x) œ Q(x) œ f(a) f w (a)(x a). 47. (a) f ww Ÿ 0, f w (a) œ 0 and x œ a interior to the interval I Ê f(x) f(a) œ Ê f(x) Ÿ f(a) throughout I Ê f has a local maximum at x œ a (b) similar reasoning gives f(x) f(a) œ local minimum at x œ a f ww (c# ) # (x a)# f ww (c# ) # (x a)# Ÿ 0 throughout I 0 throughout I Ê f(x) f(a) throughout I Ê f has a 48. f(x) œ (1 x)" Ê f w (x) œ (1 x)# Ê f ww (x) œ 2(1 x)$ Ê f Ð3Ñ (x) œ 6(1 x)% Ê f Ð4Ñ (x) œ 24(1 x)& ; therefore " 1 x ¸ 1 x x# x$ . kxk 0.1 Ê & % Ð4Ñ 10 11 " 1 x 10 9 ‰ Ê ¹ (1"x)& ¹ ˆ 10 9 & % ‰ Ê the error e$ Ÿ ¹ max f 4! (x) x ¹ (0.1)% ˆ 10 ‰ œ 0.00016935 0.00017, since ¹ f Ê ¹ (1x x)& ¹ x% ˆ 10 9 9 Ð4Ñ & (x) 4! ¹ œ ¹ (1"x)& ¹ . 49. (a) f(x) œ (1 x)k Ê f w (x) œ k(1 x)k1 Ê f ww (x) œ k(k 1)(1 x)k2 ; f(0) œ 1, f w (0) œ k, and f ww (0) œ k(k 1) Ê Q(x) œ 1 kx k(k # ") x# " (b) kR# (x)k œ ¸ 3†3!2†" x$ ¸ 100 Ê kx$ k " 100 Ê 0x " 100"Î$ or 0 x .21544 50. (a) Let P œ x 1 Ê kxk œ kP 1k .5 ‚ 10n since P approximates 1 accurate to n decimals. Then, P sin P œ (1 x) sin (1 x) œ (1 x) sin x œ 1 (x sin x) Ê k(P sin P) 1k œ ksin x xk Ÿ kxk$ 3! 0.125 3! ‚ 103n .5 ‚ 103n Ê P sin P gives an approximation to 1 correct to 3n decimals. _ _ n œ0 n œk 51. If f(x) œ ! an xn , then f ÐkÑ (x) œ ! n(n 1)(n 2)â(n k 1)an xnk and f ÐkÑ (0) œ k! ak Ê ak œ f ÐkÑ (0) k! for k a nonnegative integer. Therefore, the coefficients of f(x) are identical with the corresponding coefficients in the Maclaurin series of f(x) and the statement follows. 52. Note: f even Ê f(x) œ f(x) Ê f w (x) œ f w (x) Ê f w (x) œ f w (x) Ê f w odd; f odd Ê f(x) œ f(x) Ê f w (x) œ f w (x) Ê f w (x) œ f w (x) Ê f w even; also, f odd Ê f(0) œ f(0) Ê 2f(0) œ 0 Ê f(0) œ 0 (a) If f(x) is even, then any odd-order derivative is odd and equal to 0 at x œ 0. Therefore, a" œ a$ œ a& œ á œ 0; that is, the Maclaurin series for f contains only even powers. (b) If f(x) is odd, then any even-order derivative is odd and equal to 0 at x œ 0. Therefore, a! œ a# œ a% œ á œ 0; that is, the Maclaurin series for f contains only odd powers. 53-58. Example CAS commands: Maple: f := x -> 1/sqrt(1+x); x0 := -3/4; x1 := 3/4; # Step 1: plot( f(x), x=x0..x1, title="Step 1: #53 (Section 10.9)" ); Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 626 Chapter 10 Infinite Sequences and Series # Step 2: P1 := unapply( TaylorApproximation(f(x), x = 0, order=1), x ); P2 := unapply( TaylorApproximation(f(x), x = 0, order=2), x ); P3 := unapply( TaylorApproximation(f(x), x = 0, order=3), x ); # Step 3: D2f := D(D(f)); D3f := D(D(D(f))); D4f := D(D(D(D(f)))); plot( [D2f(x),D3f(x),D4f(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green], title="Step 3: #57 (Section 9.9)" ); c1 := x0; M1 := abs( D2f(c1) ); c2 := x0; M2 := abs( D3f(c2) ); c3 := x0; M3 := abs( D4f(c3) ); # Step 4: R1 := unapply( abs(M1/2!*(x-0)^2), x ); R2 := unapply( abs(M2/3!*(x-0)^3), x ); R3 := unapply( abs(M3/4!*(x-0)^4), x ); plot( [R1(x),R2(x),R3(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green], title="Step 4: #53 (Section 10.9)" ); # Step 5: E1 := unapply( abs(f(x)-P1(x)), x ); E2 := unapply( abs(f(x)-P2(x)), x ); E3 := unapply( abs(f(x)-P3(x)), x ); plot( [E1(x),E2(x),E3(x),R1(x),R2(x),R3(x)], x=x0..x1, thickness=[0,2,4], color=[red,blue,green], linestyle=[1,1,1,3,3,3], title="Step 5: #53 (Section 10.9)" ); # Step 6: TaylorApproximation( f(x), view=[x0..x1,DEFAULT], x=0, output=animation, order=1..3 ); L1 := fsolve( abs(f(x)-P1(x))=0.01, x=x0/2 ); # (a) R1 := fsolve( abs(f(x)-P1(x))=0.01, x=x1/2 ); L2 := fsolve( abs(f(x)-P2(x))=0.01, x=x0/2 ); R2 := fsolve( abs(f(x)-P2(x))=0.01, x=x1/2 ); L3 := fsolve( abs(f(x)-P3(x))=0.01, x=x0/2 ); R3 := fsolve( abs(f(x)-P3(x))=0.01, x=x1/2 ); plot( [E1(x),E2(x),E3(x),0.01], x=min(L1,L2,L3)..max(R1,R2,R3), thickness=[0,2,4,0], linestyle=[0,0,0,2], color=[red,blue,green,black], view=[DEFAULT,0..0.01], title="#53(a) (Section 10.9)" ); abs(`f(x)`-`P`[1](x) ) <= evalf( E1(x0) ); # (b) abs(`f(x)`-`P`[2](x) ) <= evalf( E2(x0) ); abs(`f(x)`-`P`[3](x) ) <= evalf( E3(x0) ); Mathematica: (assigned function and values for a, b, c, and n may vary) Clear[x, f, c] f[x_]= (1 x)3/2 {a, b}= {1/2, 2}; pf=Plot[ f[x], {x, a, b}]; poly1[x_]=Series[f[x], {x,0,1}]//Normal poly2[x_]=Series[f[x], {x,0,2}]//Normal poly3[x_]=Series[f[x], {x,0,3}]//Normal Plot[{f[x], poly1[x], poly2[x], poly3[x]}, {x, a, b}, PlotStyle Ä {RGBColor[1,0,0], RGBColor[0,1,0], RGBColor[0,0,1], RGBColor[0,.5,.5]}]; Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.10 The Binomial Series 627 The above defines the approximations. The following analyzes the derivatives to determine their maximum values. f''[c] Plot[f''[x], {x, a, b}]; f'''[c] Plot[f'''[x], {x, a, b}]; f''''[c] Plot[f''''[x], {x, a, b}]; Noting the upper bound for each of the above derivatives occurs at x = a, the upper bounds m1, m2, and m3 can be defined and bounds for remainders viewed as functions of x. m1=f''[a] m2=-f'''[a] m3=f''''[a] r1[x_]=m1 x2 /2! Plot[r1[x], {x, a, b}]; r2[x_]=m2 x3 /3! Plot[r2[x], {x, a, b}]; r3[x_]=m3 x4 /4! Plot[r3[x], {x, a, b}]; A three dimensional look at the error functions, allowing both c and x to vary can also be viewed. Recall that c must be a value between 0 and x, so some points on the surfaces where c is not in that interval are meaningless. Plot3D[f''[c] x2 /2!, {x, a, b}, {c, a, b}, PlotRange Ä All] Plot3D[f'''[c] x3 /3!, {x, a, b}, {c, a, b}, PlotRange Ä All] Plot3D[f''''[c] x4 /4!, {x, a, b}, {c, a, b}, PlotRange Ä All] 10.10 THE BINOMIAL SERIES 1. (1 x)"Î# œ 1 "# x ˆ "# ‰ ˆ "# ‰ x# 2. (1 x)"Î$ œ 1 "3 x ˆ "3 ‰ ˆ 23 ‰ x# "Î# 8. a1 x# b "Î$ œ 1 "# x$ œ 1 "3 x# "Î# 9. ˆ1 1x ‰ œ 1 "# ˆ x1 ‰ " 16 x$ á ˆ 3" ‰ ˆ 32 ‰ ˆ 53 ‰ x$ á œ 1 3" x 9" x# 5 81 x$ á 3! #! ˆ "# ‰ ˆ "# ‰ (2x)# #! (2)(3) ˆ x# ‰ 4 6. ˆ1 x3 ‰ œ 1 4 ˆ x3 ‰ á œ 1 "# x "8 x# ˆ "# ‰ ˆ 3# ‰ (x)# 4. (1 2x)"Î# œ 1 "# (2x) # 5. ˆ1 x# ‰ œ 1 # ˆ x# ‰ ˆ "# ‰ ˆ "# ‰ ˆ 3# ‰ x$ 3! #! 3. (1 x)"Î# œ 1 "# (x) 7. a1 x$ b #! # #! (4)(3) ˆ x3 ‰ #! # Š "# ‹ Š "# ‹ Š #3 ‹ (2x)$ 3! $ 3! (4)(3)(2) ˆ x3 ‰ #! ˆ "3 ‰ ˆ 43 ‰ ax# b# #! #! 3! (2)(3)(4) ˆ x# ‰ ˆ "# ‰ ˆ 3# ‰ ax$ b# ˆ "# ‰ ˆ "# ‰ ˆ 1x ‰# ˆ "# ‰ ˆ 3# ‰ ˆ 5# ‰ (x)$ 3! $ 5 16 x$ á á œ 1 x 12 x# 12 x$ á á œ 1 x 34 x# "# x$ (4)(3)(2)(1) ˆ x3 ‰ 3! ˆ 3" ‰ ˆ 43 ‰ ˆ 73 ‰ ax# b$ 3! ˆ "# ‰ ˆ "# ‰ ˆ 3# ‰ ˆ 1x ‰$ 4 4! ˆ #" ‰ ˆ #3 ‰ ˆ #5 ‰ ax$ b$ 3! á œ 1 "# x 38 x# 0 á œ 1 34 x 32 x2 á œ 1 "# x$ 38 x' á œ 1 "3 x# 29 x% á œ1 " #x 1 8x# " 16x$ x* á 5 16 14 81 x' á á Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 4 27 x3 1 4 81 x 628 10. Chapter 10 Infinite Sequences and Series x 3 È 1x (4)(3)x# #! 11. (1 x)% œ 1 4x $ 12. a1 x# b œ 1 3x# (4)(3)(2)x$ 3! # (3)(2) ax# b #! $ (3)(2)(1) ax# b 3! (3)(2)(2x)# #! % 14. ˆ1 #x ‰ œ 1 4 ˆ #x ‰ (4)(3) ˆ x# ‰ # '00 2 sin x# dx œ '00 2 Šx# x3! x5! Þ Þ kE k Ÿ ( Þ x x# 4 '00 1 È " x$ 18 Š1 x á“ kE k Ÿ (0.1)& 10 œ 0.000001 '!!Þ#& $È 1 x# dx œ '0 0Þ25 & (0.25) 45 œ 1 3x# 3x% x' œ 1 6x 12x# 8x$ (4)(3)(2) ˆ x# ‰ 3! $ (4)(3)(2)(1) ˆ x# ‰ $ á ‹ dx œ ’ x3 % 4! x( 7†3! !Þ# á“ œ 1 2x 23 x# "# x$ $ ¸ ’ x3 “ ! !Þ# ! " 16 x% ¸ 0.00267 with error x# #! x$ 3! x% 4! á 1‹ dx œ '0 Š1 0 Þ2 ¸ 0.19044 with error kEk Ÿ (0.2)% 96 x% 2 á“ 3x) 8 x# 3 Š1 á ‹ dx œ ’x x% 9 x& 10 á ‹ dx œ ’x x$ 9 x# 6 x # x$ 24 á ‹ dx ¸ 0.00002 !Þ" ¸ [x]!Þ" ! ¸ 0.1 with error ! x& 45 á“ !Þ#& ! ¸ ’x !Þ#& x$ 9 “! ¸ 0.25174 with error '00 1 sinx x dx œ '00 1 Š1 x3! x5! x7! á ‹ dx œ ’x 3x†3! 5x†5! 7x†7! á “ !Þ" ¸ ’x 3x†3! 5x†5! “ !Þ" Þ # % ' $ & ( $ & ! (0.1)7 7†7! Þ % (0.1)9 216 ¸ 0.0996676643, kEk Ÿ 21. a1 x% b Ê "Î# œ (1)"Î# ˆ "# ‰ ˆ "# ‰ ˆ 3# ‰ ˆ 5# ‰ 4! '0 0Þ1 Š1 x% # x) 8 Š "# ‹ 1 ' ) ˆ "# ‰ ˆ "# ‰ (1)"Î# ax% b #! % x"# 16 $ x& 10 x( 42 á“ !Þ" ! ¸ ’x x$ 3 x& 10 ¸ 4.6 ‚ 1012 (1)(Î# ax% b á œ 1 ! ¸ 2.8 ‚ 1012 '00 1 exp ax# b dx œ '00 1 Š1 x# x2! x3! x4! á ‹ dx œ ’x x3 Þ 5x"' 128 x% # # (1)$Î# ax% b á ‹ dx ¸ ’x x) 8 x"# 16 !Þ" x& 10 “ ! ˆ "# ‰ ˆ "# ‰ ˆ 3# ‰ 3! 5x"' 128 (1)&Î# ax% b $ á ¸ 0.100001, kEk Ÿ (0.1)9 72 ¸ 1.39 ‚ 1011 " x '01 ˆ 1 xcos x ‰ dx œ '01 Š "# x4! x6! x8! 10! á ‹ dx ¸ ’ x# 3x†4! 5x†6! 7x†8! 9†x10! “ # % ' ) $ & ( # ¸ 0.4863853764, kEk Ÿ 23. á ¸ 0.0000217 ¸ 0.0999444611, kEk Ÿ 22. ! 0Þ1 Þ 20. !Þ# dx œ '0 Š1 kEk Ÿ 19. " x 1 x% Þ 18. "! 14 4 81 x œ 1 4x 6x# 4x$ x% (3)(2)(1)(2x)$ 3! á œ x 31 x# 92 x3 3! ¸ 0.0000003 (.2) 7†3! œ ’x 17. ' '00 2 ec x " dx œ '00 2 Þ 16. #! ˆ "3 ‰ ˆ 43 ‰ ˆ 73 ‰ x$ #! (4)(3)(2)x% 4! 13. (1 2x)$ œ 1 3(2x) 15. ˆ "3 ‰ ˆ 43 ‰ x# œ xa1 xb"Î3 œ xŒ1 ˆc "3 ‰x 1 11†12! ! 10 ¸ 1.9 ‚ 10 '01 cos t# dt œ '01 Š1 t# 4!t t6! á ‹ dt œ ’t 10t 9t†4! 13t †6! á “ " % ) * "# & * "$ ! Ê kerrork " 13†6! Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ¸ .00011 !Þ" x( 42 “ ! Section 10.10 The Binomial Series 24. '01 cos Èt dt œ '01 Š1 #t 4!t 6!t 8!t á ‹ dt œ ’t t4 3t†4! 4t†6! 5t†8! á “ " # Ê kerrork x Ê kerrork t' 3! " 15†7! t"! 5! x& 5 x( 7†2! x* 9†3! x"" 11†4! " 33†34 t$ 3 aex (1 x)b œ " t% 2x% 5! " )& t# 6! ) 7! ay tan" yb œ " t% œ 9! t# # ’1 t% 8! )% " y$ x# # $ % & t"& 15†7! x á“ x$ 3 ¸ ! x( 7†3! t& 5 # x # x# ## t( 7†2! t* 9†3! t"" 11†4! t"$ 13†5! x"" 11†5! á“ x ! ¸ 0.00064 t% 1# ' % x 3†4 x t' 30 x 5†6 x# # á“ ¸ t# 2 †2 t$ 3 †3 x$ 3# x% 4# ! ) x 7†8 x% 1# Ê kerrork t& 5 †5 (0.5)' 30 ¸ .00052 $# á (1)"& t% 4 †4 x 31†32 x á“ ¸ x ! x# ## x$ 3# x% 4# x& 5# x$" 31# á (1)$" x$ 3! á ‹ 1 x‹ œ " # x 3! x# 4! á Ê lim x% 4! á ‹ Š1 x x# #! x$ 3! x% 4! á ‹“ œ 2x% 5! 2x' 7! ex (1 x) x# xÄ0 " # x$ 3! xÄ0 x# #! " 13†5! F(x) ¸ x á Ê lim sin )‹ œ )Ä0 " y$ 2x' 7! # $ á ‹ dt œ ’t á‹ œ # )$ 6 t$ 4 x# 4! Š1 cos t t# ‹ œ Š) t"" 11†5! á ‹ dt œ ’ t3 # ŠŠ1 x ’Š1 x t( 7†3! á ‹ dt œ ’ t2 " x# " x aex ex b œ 2x# 3! t( 7 " x œ lim Š 5!" 34. t# 3 tÄ0 33. t 2 x 3! œ lim Š 4!" 32. œ lim Š "# œ2 31. t& 5 t"# 5! Ê kerrork (0.5)' 6# ¸ .00043 " 32# ¸ .00097 when xÄ0 30. t"! 4! ¸ .00089 when F(x) ¸ x " x# $ á ‹ dt œ ’ t3 t) 3! 28. (a) F(x) œ '0 Š1 (b) kerrork t"% 7! x Ê kerrork t' 2! 27. (a) F(x) œ '0 Št (b) kerrork # ¸ 0.000013 x x$ 3 % ¸ 0.000004960 26. F(x) œ '0 Št# t% ¸ $ ! " 5†8! 25. F(x) œ '0 Št# 29. 629 ex e x x t# # t% 4! Š1 œ x lim Š2 Ä_ t' 6! 2x# 3! á ‹“ œ 4!" t# 6! " x Š2x 2x$ 3! 2x& 5! 2x( 7! á‹ y% 7 á‹ œ 2 t% 8! # á Ê lim " cos t Š t# ‹ t% tÄ0 " á ‹ œ 24 " )& )$ 6 Š) á‹ œ ’y Šy ) )$ 3! )& 5! á‹ œ " 5! )# 7! )% 9! $ á Ê lim sin ) ) Š )6 ‹ )& )Ä0 " 1 #0 y$ 3 y& 5 á ‹“ œ " 3 y# 5 y% 7 á Ê lim yÄ0 y tan " y y$ œ lim Š 3" yÄ0 y# 5 " 3 tanc" y sin y y$ cos y Ê lim yÄ0 œ Œy y$ 3 y& 5 á Œy y$ tanc" y sin y y$ cos y œ lim Œ " 6 35. x# Š1 e1Îx ‹ œ x# ˆ1 1 ˆ1 œ x lim Ä_ " #x# " 6x% y& 5! á cos y yÄ0 # y$ 3! 23y# 5! á cos y " x# " #x% œ Œ y$ 6 23y& 5! y$ cos y á œ " Œ 6 23y# 5! á cos y œ 6" " 6x' á ‰ œ 1 " #x# " 6x% # x# Še1Îx 1‹ á Ê x lim Ä_ á ‰ œ 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. á‹ 630 Chapter 10 Infinite Sequences and Series 36. (x 1) sin ˆ x " 1 ‰ œ (x 1) Š x " 1 " 3!(x 1)$ Ê x lim (x 1) sin ˆ x " 1 ‰ œ x lim Š1 Ä_ Ä_ % 37. ln a1 x# b 1 cos x 38. x# 4 ln (x 1) ' x x # Œx # 3 á œ x# #! 1 Š1 x% 4! á‹ (x c 2)# ’(x 2) # x 2 œ lim x Ä 2 ’1 x c# 2 (x 2)# 3 39. sin 3x2 œ 3x2 92 x6 (x c 2)$ 3 á“ 81 10 40 x 10 3x2 92 x6 81 40 x . . . 2 2 x4 4 x6 . . . 2x xÄ0 3 45 œ lim 40. lna1 x3 b œ x3 41. 1 1 x6 2 6 xÄ0 Š #"! x# 4! (x 2)(x 2) œ œ lim œ x# # Œ1 x3 1 2x 9 x9 3 á“ 1 3x 1 4x " 3!(x 1)# á á‹ x2 ’1 x # 2 (x c 2)# 3 " 5!(x 1)% á á‹ œ 1 x# # Š #"! x# 4! Œ1 œ lim xÄ0 x% 3 á á‹ x Ä 2 ln (x 1) 8 3 92 x4 81 40 x . . . 2 2 4 4 2 x x . . . xÄ0 3 45 x12 4 œ . . . and x sin x2 œ x3 16 x7 12 3 6 9 1 x2 x3 x4 . . . 1 8 1 120 x 5040 x12 Þ Þ Þ x Ä 0 1 œ lim 4 6 45 x sin 3x2 . . . Ê lim x Ä 0 1 cos 2x 3 2 1 4 6x 1 11 120 x 1 15 5040 x Þ Þ Þ Ê lim xÄ0 œ1 Þ Þ Þ œ e1 œ e 3 4 5 3 2 42. ˆ 14 ‰ ˆ 14 ‰ ˆ 14 ‰ Þ Þ Þ œ ˆ 14 ‰ ”1 ˆ 14 ‰ ˆ 14 ‰ Þ Þ Þ • œ 43. 1 32 42 2x 34 44 4x 36 4 6 6x ÞÞÞ œ 1 1 ˆ 3 ‰2 2x 4 1 ˆ 3 ‰4 4x 4 1 ˆ 3 ‰6 6x 4 1 1 64 1 1Î4 œ 1 4 64 3 œ 1 48 Þ Þ Þ œ cosˆ 34 ‰ 44. 1 2 1 2†22 1 3†23 1 4†24 2 3 4 Þ Þ Þ œ ˆ 21 ‰ 21 ˆ #1 ‰ 31 ˆ #1 ‰ 41 ˆ #1 ‰ Þ Þ Þ œ lnˆ1 21 ‰ œ lnˆ 23 ‰ 45. 1 3 13 33 3x 15 35 5x 17 37 7x ÞÞÞ œ 46. 2 3 23 33 †3 25 35 †5 27 37 †7 3 5 7 Þ Þ Þ œ ˆ 32 ‰ 31 ˆ 32 ‰ 51 ˆ 32 ‰ 71 ˆ 32 ‰ Þ Þ Þ œ tan1 ˆ 23 ‰ 1 3 1 ˆ 1 ‰3 3x 3 1 ˆ 1 ‰5 5x 3 1 ˆ 1 ‰7 7x 3 Þ Þ Þ œ sinˆ 13 ‰ œ 47. x3 x4 x5 x6 Þ Þ Þ œ x3 a1 x x2 x3 Þ Þ Þ b œ x3 ˆ 1 1 x ‰ œ 48. 1 32 x2 2x 34 x4 4x 36 x6 6x ÞÞÞ œ 1 2 1 2x a3xb 4 1 4x a3xb 2 6 1 6x a3xb 22 x4 2x 23 x5 3x 24 x6 4x Þ Þ Þ œ cosa3xb 3 Þ Þ Þ œ x2 Š1 2x 51. 1 2x 3x2 4x3 5x4 Þ Þ Þ œ 52. 1 x 2 x2 3 x3 4 x4 5 d dx a1 Þ Þ œ 1x Šx a2xb2 2x a2xb3 3x a2xb4 4x x3 3 x4 4 x5 5 x3 1 + x2 Þ Þ Þ ‹ œ x2 e2x x x2 x3 x4 x5 Þ Þ Þ b œ x2 2 È3 2 x3 1x 49. x3 x5 x7 x9 Þ Þ Þ œ x3 Š1 x2 ax2 b ax2 b Þ Þ Þ ‹ œ x3 ˆ 1 +1x2 ‰ œ 50. x2 2x3 œ 2! œ 2 x# 4 Ê lim á“ . . . and 1 cos 2x œ 2x2 23 x4 œ lim " 5!(x 1)% # lim ln a1 x b x Ä 0 1 cos x Ê " 3!(x 1)# á‹ œ 1 œ4 x3 x2 x3 x4 . . . 1 11 1 16 x7 120 x 5040 x15 Þ Þ Þ œ x% 3 " 5!(x 1)& d ˆ 1 ‰ dx 1 x œ Þ Þ ‹ œ 1x lna1 xb œ 1 a1 x b 2 lna1xb x Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. lnˆ1 x3 ‰ x sin x2 Section 10.10 The Binomial Series x‰ 53. ln ˆ 11 x œ ln (1 x) ln (1 x) œ Šx 54. ln (1 x) œ x " n10n " 10) x$ 3 x% 4 á Ê n10n 10) when n 55. tan" x œ x " #n1 x# # " 10$ x$ 3 x& 5 Ê n 56. tan" x œ x x$ 3 x* 9 (1)n 1 xn n x$ 3 x% 4 á ‹ Šx á Ê kerrork œ ¹ (")n n 1 n á (")n 1 x2n 2n1 1 n œ1 ¹œ " n10n n 1 2n 1 x( 7 x* 9 á (1)n1 x2n1 2n1 x% 4 á ‹ œ 2 Šx x$ 3 x& 5 á‹ when x œ 0.1; ¹œ 2n 1 x2n1 ¹ 2n 1 á and n lim † ¹x Ä _ 2n 1 (1)n 2n1 n œ1 (1)nc1 2n1 x$ 3 á Ê kerrork œ ¹ (1)2nx1 _ _ x 8 Ê 7 terms Ê tan" x converges for kxk 1; when x œ 1 we have ! we have ! x# # " #n 1 when x œ 1; œ 500.5 Ê the first term not used is the 501st Ê we must use 500 terms 1001 # x& 5 x( 7 x# # 631 ¸ 2n 1 ¸ œ x# œ x# n lim Ä _ #n 1 which is a convergent series; when x œ 1 which is a convergent series Ê the series representing tan" x diverges for kxk 1 (1)n 1 x2n 1 x$ x& x( x* á and when the series representing 48 3 5 7 9 á 2n 1 " ' error less than 3 † 10 , then the series representing the sum " ‰ " ‰ 48 tan" ˆ 18 32 tan" ˆ 57 20 tan" ˆ #"39 ‰ also has an error of magnitude less than 10' ; " ‰ tan" ˆ 18 has an 57. tan" x œ x thus 2nc1 kerrork œ 48 " Š 18 ‹ #n 1 " 3†10' Ê n 4 using a calculator Ê 4 terms 58. ln (sec x) œ '0 tan t dt œ '0 Št x "Î# x t$ 3 x# 3x% # 8 2nb3 lim ¹ 1†3†5â(2n 1)(2n 1)x † n Ä _ 2†4†6â(2n)(2n 2)(2n 3) 59. (a) a1 x# b ¸1 2t& 15 á ‹ dt ¸ x# # x% 12 $ 5x' " x ¸ x x6 16 Ê sin 2†4†6â(2n)(2n ") 1†3†5â(2n 1)x2nb1 ¹ 1 Ê x' 45 3x& 40 á 5x( 112 ; Using the Ratio Test: (2n 1)(2n1) x# n lim ¹ ¹1 Ä _ (2n 2)(2n 3) Ê kxk 1 Ê the radius of convergence is 1. See Exercise 69. d dx (b) acos" xb œ a1 x# b 60. (a) a1 t# b œ1 "Î# t# # term, 61. " 1x 5x 112 Ê cos" x œ ¸ (1)"Î# ˆ "# ‰ (1)$Î# at# b 3t% 2# †2! (b) sinh" ˆ 4" ‰ ¸ ( "Î# " 4 3†5t' 2$ †3! " 384 1 # sin" x ¸ x , evaluated at t œ " 4 Šx ˆ "# ‰ ˆ #3 ‰ (1) &Î# at# b# #! Ê sinh" x ¸ '0 Š1 3 40,960 1 # t# # 3t% 8 5t' 16 ‹ x$ 6 3x& 40 5x( 112 ‹ ¸ 1 # x x$ 6 3x& 40 ˆ #" ‰ ˆ #3 ‰ ˆ #5 ‰ (1) (Î# at# b$ 3! dt œ x x$ 6 3x& 40 5x( 112 œ 0.24746908; the error is less than the absolute value of the first unused since the series is alternating Ê kerrork œ 1 "(x) œ 1 x x# x$ á Ê d dx ˆ 11x ‰ œ " 1 x# œ d dx 5 ˆ 4" ‰ 112 ( ¸ 2.725 ‚ 10' a1 x x# x$ á b œ 1 2x 3x# 4x$ á 62. " 1 x# œ 1 x# x% x' á Ê d dx ˆ 1 " x# ‰ œ 2x a1 x# b# œ d dx a1 x# x% x' á b œ 2x 4x$ 6x& á Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 5x( 112 632 Chapter 10 Infinite Sequences and Series 8â(2n 2)†(2n) 63. Wallis' formula gives the approximation 1 ¸ 4 ’ 3†23††45††45††67††67†â (2n 1)†(2n 1) “ to produce the table n µ1 10 3.221088998 20 3.181104886 30 3.167880758 80 3.151425420 90 3.150331383 93 3.150049112 94 3.149959030 95 3.149870848 100 3.149456425 At n œ 1929 we obtain the first approximation accurate to 3 decimals: 3.141999845. At n œ 30,000 we still do not obtain accuracy to 4 decimals: 3.141617732, so the convergence to 1 is very slow. Here is a Maple CAS procedure to produce these approximations: pie := proc(n) local i,j; a(2) := evalf(8/9); for i from 3 to n do a(i) := evalf(2*(2*i2)*i/(2*i1)^2*a(i1)) od; [[j,4*a(j)] $ (j = n5 .. n)] end _ _ _ 64. (a) faxb œ 1 !ˆ mk ‰xk Ê f w axb œ !ˆ mk ‰k xk1 Ê a1 xb † f w axb œ a1 xb!ˆ mk ‰k xk1 kœ1 kœ1 _ _ kœ1 _ _ _ _ kœ2 kœ1 œ !ˆ mk ‰k xk 1 x † !ˆ mk ‰k xk1 œ !ˆ mk ‰k xk 1 !ˆ mk ‰k xk œ ˆ m1 ‰a1b x0 !ˆ mk ‰k xk1 !ˆ mk ‰k xk kœ1 kœ1 _ œ m! kœ2 ˆ mk ‰k xk 1 kœ1 _ ! kœ1 ˆ mk ‰k xk kœ1 _ ˆ mk ‰k xk 1 Note that: ! kœ2 _ _ œ! kœ1 _ ˆkm ‰ 1 ak 1b xk . _ _ k ! ˆ m ‰k xk ‰ Thus, a1 xb † f w axb œ m ! ˆ mk ‰k xk 1 ! ˆ mk ‰k xk œ m ! ˆ k m 1 ak 1b x k kœ2 _ œ m! kœ1 ‰ ’ˆ k m 1 ak 1 b xk kœ1 ˆ mk ‰k xk “ kœ1 _ œ m! kœ1 m ‰ ’ˆˆ k 1 ak kœ1 1b ˆ mk ‰k ‰xk “. m†am "bâam ak 1b 1b ak 1b m†am "bâk!am k 1b k ak1b! m†am "bâam k 1b k œ m†am "bâk!am k 1b aam kb kb œ m m†am "bâk!am k 1b k! m ‰ ˆm‰ Note that: ˆ k 1 ak 1b k k œ œ m†am "bâam kb k! _ _ _ kœ1 kœ1 kœ1 œ mˆ mk ‰. ! ’ˆmˆ m ‰ ‰xk “ œ m m!ˆ m ‰xk ‰ ˆm‰ ‰ k Thus, a1 xb † f w axb œ m ! ’ˆˆ k m 1 ak 1b k k x “ œ m k k _ œ mŒ1 !ˆ mk ‰xk œ m † faxb Ê f w axb œ kœ1 m†faxb a1 x b if " x 1. (b) Let gaxb œ a1 xbm faxb Ê gw axb œ ma1 xbm1 faxb a1 xbm f w axb œ ma1 xbm1 faxb a1 xbm † m†faxb a1xb œ ma1 xbm1 faxb a1 xbm1 † m † faxb œ 0. (c) gw axb œ 0 Ê gaxb œ c Ê a1 xbm faxb œ c Ê faxb œ Ê fa0b œ 1 65. a1 x# b "Î# _ !ˆ m ‰a0bk k kœ1 œ a1 ax# bb 3! _ œ ca1 xbm . Since faxb œ 1 !ˆ mk ‰xk kœ1 m m œ 1 0 œ 1 Ê ca1 0b œ 1 Ê c œ 1 Ê faxb œ a1 xb . "Î# ˆ "# ‰ ˆ 3# ‰ ˆ 5# ‰ (1) (Î# ax# b$ c a1xbcm œ (1)"Î# ˆ "# ‰ (1)$Î# ax# b á œ1 # x # % 1†3x 2# †#! 1†3†5x 2$ †3! ' ˆ "# ‰ ˆ 3# ‰ (1)c&Î# ax# b# _ á œ 1! n œ1 #! 1†3†5â(2n1)x2n #n †n! Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 10.10 The Binomial Series Ê sin" x œ '0 a1 t# b x dt œ '0 Œ1 ! _ x "Î# 1†3†5â(2n 1)x2n #n †n! n œ1 _ dt œ x ! nœ1 1†3†5â(2n 1)x2nb1 #†4â(2n)(2n 1) 633 , where kxk 1 _ œ 'x ˆ t"# tan" x œ 'x " t% 1 # Ê tan" x œ œ lim b Ä _ _ 1 # _ 66. ctan" td x œ " t' " t) " x "t " 3t$ _ t# bÄ_ _ Š 1# ‹ œ 'x – t " — dt œ 'x 1Š ‹ á ‰ dt œ lim " 3x$ dt 1 t# "t " 3t$ " 5t& " t# ˆ1 " 7t( " t# b á ‘x œ " " x td c_ œ tan" x 1# 5x& á , x 1; ctan " " " " " " ‘x 5t& 7t( á b œ x 3x$ 5x& 7x( á œ " t% " t' " x " 3x$ ' x _ á ‰ dt " 5x& " 7x( dt 1 t# " Ê tan x œ 1# á " x " 3x$ " 30 x& á ; " 5x& á , x 1 67. (a) ei1 œ cos (1) i sin (1) œ 1 i(0) œ 1 (b) ei1Î4 œ cos ˆ 14 ‰ i sin ˆ 14 ‰ œ " È2 i È2 œ Š È" ‹ (1 i) 2 (c) ei1Î2 œ cos ˆ 1# ‰ i sin ˆ 1# ‰ œ 0 i(1) œ i 68. ei) œ cos ) i sin ) Ê ei) œ ei()) œ cos ()) i sin ()) œ cos ) i sin ); ei) eci) ; # ei) eci) œ #i ei) ei) œ cos ) i sin ) cos ) i sin ) œ 2 cos ) Ê cos ) œ ei) ei) œ cos ) i sin ) (cos ) i sin )) œ 2i sin ) Ê sin ) 69. ex œ 1 x x# #! x$ 3! (i))# 2! ei) œ 1 i) Ê œ ei) eci) œ # % )# 1 #! )4! ei) eci) #i œ) œ )$ 3! )& 5! Š1 i) )' 6! Š1 i) (i))# #! (i))$ 3! (i))% 4! œ 1 i) (i))# 2! á œ 1 i) á‹ Š1 i) (i))# #! (i))$ 3! (i))$ 3! (i))# #! (i))$ 3! (i))% 4! (i))% 4! á and (i))% 4! á á‹ # á œ cos ); (i))# #! )( 7! x% i) 4! á Ê e (i))$ (i))% 3! 4! $ % # $ % )) )) )) )) (i3! (i4! á‹ Š1 i) (i#)!) (i3! (i4! á‹ #i á œ sin ) 70. ei) œ cos ) i sin ) Ê ei) œ eiÐ)Ñ œ cos ()) i sin ()) œ cos ) i sin ) ei) eci) œ cosh i) # i) c i) œ e 2e œ sinh i) (a) ei) ei) œ (cos ) i sin )) (cos ) i sin )) œ 2 cos ) Ê cos ) œ (b) ei) ei) œ (cos ) i sin )) (cos ) i sin )) œ 2i sin ) Ê i sin ) 71. ex sin x œ Š1 x x# #! " 6 # œ (1)x (1)x ˆ x$ 3! x% 4! "‰ $ # x á ‹ Šx " 6 ˆ x$ 3! "‰ % 6 x x& 5! x( 7! á‹ ˆ 1#"0 1"# x " ‰ & #4 x x á œ x x# "3 x$ ex † eix œ eÐ1iÑx œ ex (cos x i sin x) œ ex cos x i ae sin xb Ê e sin x is the series of the imaginary part _ of eÐ1iÑx which we calculate next; eÐ1iÑx œ ! n œ0 œ 1 x ix Ð1iÑx of e is x (xix)n n! œ 1 (x ix) (x ix)# #! (x ix)$ 3! (x ix)% 4! " " " " " # $ $ % & & ' #! a2ix b 3! a2ix 2x b 4! a4x b 5! a4x 4ix b 6! a8ix b á Ê the imaginary 2 # 2 $ 4 & 8 ' " $ " & " ' # #! x 3! x 5! x 6! x á œ x x 3 x 30 x 90 x á in agreement with our x product calculation. The series for e sin x converges for all values of x. 72. d dx ˆeÐaibÑ ‰ œ á d dx ceax (cos bx i sin bx)d œ aeax (cos bx i sin bx) eax (b sin bx bi cos bx) œ aeax (cos bx i sin bx) bieax (cos bx i sin bx) œ aeÐaibÑx ibeÐaibÑx œ (a ib)eÐaibÑx Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. part 634 Chapter 10 Infinite Sequences and Series 73. (a) ei)" ei)# œ (cos )" i sin )" )(cos )# i sin )# ) œ (cos )" cos )# sin )" sin )# ) i(sin )" cos )# sin )# cos )" ) œ cos()" )# ) i sin()" )# ) œ eiÐ)" )# Ñ ) i sin ) ‰ " " (b) ei) œ cos()) i sin()) œ cos ) i sin ) œ (cos ) i sin )) ˆ cos cos ) i sin ) œ cos ) i sin ) œ ei) 74. a bi ÐabiÑx C" iC# œ ˆ aa# bib# ‰ eax (cos bx i sin bx) C" iC# a# b# e ax œ a# e b# (a cos bx ia sin bx ib cos bx b sin bx) C" iC# ax œ a# e b# [(a cos bx b sin bx) (a sin bx b cos bx)i] C" iC# ax ax œ e (a cosa#bxb#b sin bx) C" ie (a sina#bxb#b cos bx) iC# ; ÐabiÑx ax ibx ax ax ax e 'e œe e ÐabiÑx dx œ œ e (cos bx i sin bx) œ e cos bx ie sin bx, so that given a bi a# b# eÐabiÑx C" iC# we conclude that ' eax cos bx dx œ and ' eax sin bx dx œ e (a sin bx b cos bx) a# b# ax eax (a cos bx b sin bx) a# b# C" C# CHAPTER 10 PRACTICE EXERCISES 1. converges to 1, since n lim a œ n lim Š1 Ä_ n Ä_ 2. converges to 0, since 0 Ÿ an Ÿ 2 Èn (1)n n ‹ œ1 , n lim 0 œ 0, n lim Ä_ Ä_ œ 0 using the Sandwich Theorem for Sequences 2 Èn ˆ 1 2n2 ‰ œ lim ˆ #"n 1‰ œ 1 3. converges to 1, since n lim a œ n lim Ä_ n Ä_ nÄ_ n 4. converges to 1, since n lim a œ n lim c1 (0.9)n d œ 1 0 œ 1 Ä_ n Ä_ 5. diverges, since ˜sin n1 ™ # œ e0ß 1ß 0ß 1ß 0ß 1ß á f 6. converges to 0, since {sin n1} œ {0ß 0ß 0ß á } 7. converges to 0, since n lim a œ n lim Ä_ n Ä_ ln n# n 8. converges to 0, since n lim a œ n lim Ä_ n Ä_ ln (2n") n œ 2 n lim Ä_ Š "n ‹ 1 Š 2n 2b 1 ‹ œ n lim Ä_ 1 ˆ n nln n ‰ œ lim 9. converges to 1, since n lim a œ n lim Ä_ n Ä_ nÄ_ 10. converges to 0, since n lim a œ n lim Ä_ n Ä_ ln a2n$ 1b n œ0 1Š "n ‹ œ n lim Ä_ 1 Š " e ˆ1 "n ‰cn œ lim , since n lim a œ n lim Ä_ n Ä_ nÄ_ œ1 6n# ‹ 2n$ 1 1 ˆ n n 5 ‰n œ lim Š1 11. converges to ec5 , since n lim a œ n lim Ä_ n Ä_ nÄ_ 12. converges to œ0 œ n lim Ä_ n (5) n ‹ " ˆ1 "n ‰n œ 12n 6n# œ n lim Ä_ œ0 œ ec5 by Theorem 5 " e by Theorem 5 ˆ 3 ‰1În œ lim 13. converges to 3, since n lim a œ n lim Ä_ n Ä_ n nÄ_ 3 n1În œ 3 1 œ 3 by Theorem 5 ˆ 3 ‰1În œ lim 14. converges to 1, since n lim a œ n lim Ä_ n Ä_ n nÄ_ 31În n1În œ 1 1 œ 1 by Theorem 5 n 2 n Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 10 Practice Exercises 21În 1 Š "n ‹ 15. converges to ln 2, since n lim a œ n lim n a21În 1b œ n lim Ä_ n Ä_ Ä_ œ n lim Ä_ – Š 21În ln 2‹ n# — 635 œ n lim 21În ln 2 Ä_ Š n#" ‹ œ 2! † ln 2 œ ln 2 2 n È 16. converges to 1, since n lim a œ n lim 2n 1 œ n lim exp Š ln (2nn 1) ‹ œ n lim exp Œ 2n1b 1 œ e! œ 1 Ä_ n Ä_ Ä_ Ä_ 17. diverges, since n lim a œ n lim Ä_ n Ä_ (n 1)! n! œ n lim (n 1) œ _ Ä_ 18. converges to 0, since n lim a œ n lim Ä_ n Ä_ (4)n n! Š "# ‹ Š "# ‹ 19. " (2n 3)(2n 1) œ #n 3 Š "# ‹ Ê sn œ – 2n 1 Š "# ‹ " Ê n lim s œ n lim Ä_ n Ä _ –6 20. 2 n(n 1) œ 2 n 2 n1 ˆ1 œ n lim Ä_ 21. 22. 9 (3n 1)(3n 2) œ 3# 3n3# œ _ _ n œ0 nœ0 _ n œ1 ˆ 34 ‰ 1ˆ c4" ‰ 3 4n " en 3 3n 2 _ n œ1 —– Š "# ‹ 5 Š "# ‹ Ê sn œ ˆ #3 53 ‰ ˆ 53 83 ‰ ˆ 83 3 ‰ 3n 2 œ 7 Š "‹ # — á – #n 3 Š "# ‹ 2n 1 — œ Š "# ‹ 3 Š "# ‹ 2n 1 2 ‰ n1 œ #2 2 n1 Ê n lim s Ä_ n Ê sn œ ˆ 92 ˆ œ n lim Ä_ 3 ‰ 11 á ˆ 3n 3 1 3 ‰ 3n 2 3 # 2 ‰ 2 ‰ ˆ 2 13 13 17 2 2 ‰ 2 9 4n1 œ 9 , a convergent geometric series with r œ " e ˆ 172 2 ‰ 21 á ˆ 4n2 3 and a œ 1 Ê the sum is _ ‰n a convergent geometric series with r œ 4" and a œ œ ! ˆ 43 ‰ ˆ " 4 n œ0 " 1 Š "e ‹ 3 4 œ 2 ‰ 4n 1 e e1 Ê the sum is œ 35 25. diverges, a p-series with p œ 26. ! 5 " 6 ˆ3 Ê n lim s œ n lim Ä_ n Ä_ # 23. ! en œ ! Š "# ‹ œ 1 8 2 2 (4n 3)(4n 1) œ 4n 3 4n 1 œ 29 4n21 Ê n lim s Ä_ n 24. ! (1)n œ Ê sn œ ˆ #2 32 ‰ ˆ 32 42 ‰ á ˆ n2 2 ‰ n1 3 3n 1 2n 1 — 3 œ 0 by Theorem 5 5 n _ œ 5 ! nœ1 " x"Î# 27. Since f(x) œ _ " n, " # diverges since it is a nonzero multiple of the divergent harmonic series Ê f w (x) œ #x"$Î# 0 Ê f(x) is decreasing Ê an1 an , and _ lim a œ lim nÄ_ n nÄ_ 1 Èn œ 0, the ) ! È" diverges, the given series converges conditionally. series ! (" Èn converges by the Alternating Series Test. Since n n nœ1 nœ1 28. converges absolutely by the Direct Comparison Test since " #n$ " n$ for n 1, which is the nth term of a convergent p-series Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 636 Chapter 10 Infinite Sequences and Series 29. The given series does not converge absolutely by the Direct Comparison Test since the nth term of a divergent series. Since f(x) œ Ê an1 an , and n lim a œ Ä_ n " lim n Ä _ ln (n 1) " ln (x 1) " ln (n 1) " (ln (x 1))# (x 1) w Ê f (x) œ " n1 , which is 0 Ê f(x) is decreasing œ 0, the given series converges conditionally by the Alternating Series Test. 30. '2_ x(ln" x) # dx œ lim bÄ_ '2b " x(ln x)# b dx œ lim c(ln x)" d 2 œ lim ˆ ln"b bÄ_ bÄ_ " ‰ ln 2 œ " ln # Ê the series converges absolutely by the Integral Test 31. converges absolutely by the Direct Comparison Test since ln n n$ n n$ " n# œ , the nth term of a convergent p-series n n 32. diverges by the Direct Comparison Test for en n Ê ln ˆen ‰ ln n Ê nn ln n Ê ln nn ln (ln n) Ê n ln n ln (ln n) Ê 33. n lim Ä_ Š " n È n# Š n"# ‹ 34. Since f(x) œ 1 ‹ ln n ln (ln n) œ Én lim Ä_ 3x# x$ 1 n# n# 1 Ê f w (x) œ " n , the nth term of the divergent harmonic series œ È1 œ 1 Ê converges absolutely by the Limit Comparison Test 3x a2 x$ b ax$ 1b# 0 when x 2 Ê an1 an for n 2 and n lim Ä_ 3n# n$ 1 œ 0, the series converges by the Alternating Series Test. The series does not converge absolutely: By the Limit # Comparison Test, n lim Ä_ Š n$3n 1 ‹ ˆ n" ‰ œ n lim Ä_ 3n$ n$ 1 œ 3. Therefore the convergence is conditional. 35. converges absolutely by the Ratio Test since n lim ’ n 2 † Ä _ (n 1)! 36. diverges since n lim a œ n lim Ä_ n Ä_ (")n an# 1b 2n# n 1 n! n1“ œ n lim Ä_ n2 (n 1)# does not exist nb1 37. converges absolutely by the Ratio Test since n lim † ’ 3 Ä _ (n 1)! n! 3n “ œ n lim Ä_ 3 n1 œ01 n 2 3 n È É 38. converges absolutely by the Root Test since n lim an œ n lim nn œ n lim Ä_ Ä_ Ä_ n n 39. converges absolutely by the Limit Comparison Test since n lim Ä_ 40. converges absolutely by the Limit Comparison Test since n lim Ä_ nb1 41. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (x 4) † Ä_ Ä _ (n 1)3nb1 œ01 n3n (x 4)n ¹ 1 Ê " Š $Î# ‹ n Š Èn(n "1)(n Š n"# ‹ Š È "# n n kx 4 k lim 3 nÄ_ 1 ‹ ‹ 2) ˆ n n 1 ‰ 1 Ê n œ1 n 3 n3n n(n 1)(n 2) n$ n # an # 1 b n% œ Én lim Ä_ _ harmonic series, which converges conditionally; at x œ 1 we have! œ01 œ Én lim Ä_ Ê kx 4k 3 Ê 3 x 4 3 Ê 7 x 1; at x œ 7 we have ! _ 6 n n œ1 _ œ! n œ1 kx 4 k 3 (1)n 3n n3n " n œ1 œ1 1 _ œ ! ("n ) , the alternating n n œ1 , the divergent harmonic series (a) the radius is 3; the interval of convergence is 7 Ÿ x 1 (b) the interval of absolute convergence is 7 x 1 (c) the series converges conditionally at x œ 7 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 10 Practice Exercises 42. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (x1) † (2n1)! ¹ 1 Ê (x 1)# n lim Ä_ Ä _ (2n1)! (x1)2nc2 Ä_ (a) the radius is _; the series converges for all x (b) the series converges absolutely for all x (c) there are no values for which the series converges conditionally 2n nb1 43. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (3x(n1)1)# † Ä_ Ä_ n# (3x 1)n ¹ 1 Ê k3x 1k n lim Ä_ Ê 1 3x 1 1 Ê 0 3x 2 Ê 0 x _ " n# œ ! n œ1 _ have ! n œ1 " (#n)(2n1) 2 3 n# (n 1)# _ œ 0 1, which holds for all x 1 Ê k3x 1k 1 nc1 _ 2nc1 ; at x œ 0 we have ! (1) n# (1) œ ! ("n)# n n œ1 n œ1 , a nonzero constant multiple of a convergent p-series, which is absolutely convergent; at x œ _ (1)n 1 (1)n n# (a) the radius is œ ! ("n)# n 1 2 3 we , which converges absolutely nœ1 " 3 ; the interval of convergence is 0 Ÿ x Ÿ (b) the interval of absolute convergence is 0 Ÿ x Ÿ 2 3 2 3 (c) there are no values for which the series converges conditionally 44. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ n2 † Ä_ Ä _ 2n 3 Ê _ ! n œ1 k2x 1k # n1 2n 1 † (2x 1)nb1 2nb1 † 2n 1 n1 † 2n (2x 1)n ¹ 1 Ê k2x 1k lim 2 nÄ_ n2 ¸ 2n 3 † 2n " ¸ n1 (1) 1 Ê k2x 1k 2 Ê 2 2x 1 2 Ê 3 2x 1 Ê #3 x (2)n #n _ œ! lim ˆ n 1 ‰ œ n Ä _ 2n 1 n œ1 " # (")n (n1) 2n 1 " # 1 ; at x œ #3 we have which diverges by the nth-Term Test for Divergence since Á 0; at x œ " # _ n1 we have ! 2n 1 † n œ1 2n #n _ n" œ ! 2n 1 , which diverges by the nth-Term Test n œ1 (a) the radius is 1; the interval of convergence is 3# x (b) the interval of absolute convergence is 3# x " # " # (c) there are no values for which the series converges conditionally nb1 45. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ x Ä_ Ä _ (n 1)nb1 Ê kx k e nn xn ¹ ¸ˆ n ‰n ˆ n " 1 ‰¸ 1 Ê 1 Ê kxk n lim Ä _ n1 kx k e n lim Ä_ ˆ n " 1 ‰ 1 † 0 1, which holds for all x (a) the radius is _; the series converges for all x (b) the series converges absolutely for all x (c) there are no values for which the series converges conditionally nb1 46. n lim † ¹ uunbn 1 ¹ 1 Ê n lim ¹ x Ä_ Ä _ Èn 1 _ Èn xn ¹ n 1 Ê kxk n lim 1 Ê kxk 1; when x œ 1 we have Ä _ Én1 _ ! (È1) , which converges by the Alternating Series Test; when x œ 1 we have ! n n nœ1 n œ1 " Èn , a divergent p-series (a) the radius is 1; the interval of convergence is 1 Ÿ x 1 (b) the interval of absolute convergence is 1 x 1 (c) the series converges conditionally at x œ 1 2nb1 47. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (n 32)x nb1 Ä_ Ä_ _ _ n œ1 n œ1 the series ! nÈ31 and ! n1 È3 † 3n (n 1)x2n 1 ¹1 Ê x# 3 n lim Ä_ 2‰ È È3; ˆ nn 1 1 Ê 3 x , obtained with x œ „ È3, both diverge (a) the radius is È3; the interval of convergence is È3 x È3 (b) the interval of absolute convergence is È3 x È3 (c) there are no values for which the series converges conditionally Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 637 638 Chapter 10 Infinite Sequences and Series 2nb3 48. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ (x 2n1)x 3 Ä_ Ä_ 2n 1 (x 1)2nb1 ¹ † ˆ 2n 1 ‰ 1 Ê (x 1)# (1) 1 1 Ê (x 1)# n lim Ä _ 2n 3 _ Ê (x 1)# 1 Ê kx 1k 1 Ê 1 x 1 1 Ê 0 x 2; at x œ 0 we have ! (1)#n(1)1 n 2nb1 n œ1 _ œ! n œ1 _ (1)3nb1 2n 1 that ! n œ1 " 2n 1 _ œ! n œ1 (1)nc1 2n 1 which converges conditionally by the Alternating Series Test and the fact _ (1)n (1)2nb1 2n 1 diverges; at x œ 2 we have ! nœ1 _ œ! nœ1 (1)n 2n 1 , which also converges conditionally (a) the radius is 1; the interval of convergence is 0 Ÿ x Ÿ 2 (b) the interval of absolute convergence is 0 x 2 (c) the series converges conditionally at x œ 0 and x œ 2 (n 1)x 49. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹ cschcsch (n)xn Ä_ Ä_ c" Ê kxk n lim ¹ e1 ee 2n Ä_ 2n 1 2 ¹1 Ê nb1 ¹ 1 Ê kxk n lim Ä_ » Š enb1 c2ecnc1 ‹ ˆ en c2ecn ‰ »1 _ kx k e 1 Ê e x e; the series ! a „ ebn csch n, obtained with x œ „ e, n œ1 both diverge since n lim a „ e) csch n Á 0 Ä_ n (a) the radius is e; the interval of convergence is e x e (b) the interval of absolute convergence is e x e (c) there are no values for which the series converges conditionally 50. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹x Ä_ Ä_ nb1 coth (n 1) xn coth (n) ¹ c2nc2 1 Ê kxk n lim † ¹1e Ä _ 1 ec2nc2 1 ec2n 1 ec2n ¹ 1 Ê kxk 1 _ Ê 1 x 1; the series ! a „ 1bn coth n, obtained with x œ „ 1, both diverge since n lim a „ 1bn coth n Á 0 Ä_ n œ1 (a) the radius is 1; the interval of convergence is 1 x 1 (b) the interval of absolute convergence is 1 x 1 (c) there are no values for which the series converges conditionally 51. The given series has the form 1 x x# x$ á (x)n á œ 52. The given series has the form x ln ˆ 53 ‰ ¸ 0.510825624 x# # x$ 3 á (1)n1 53. The given series has the form x x$ 3! x& 5! á (1)n x2n 1 (2n 1)! 54. The given series has the form 1 x# 2! x% 4! á (1)n x2n (2n)! 55. The given series has the form 1 x 56. The given series has the form x tan" Š È"3 ‹ œ 57. Consider " 1 2x x$ 3 x# 2! x& 5 x# 3! á xn n! á (1)n xn n " 1x , where x œ " 4 ; the sum is á œ ln (1 x), where x œ 2 3 n œ0 nœ0 1 3 á œ ex , where x œ ln 2; the sum is eln Ð2Ñ œ 2 á œ tan" x, where x œ as the sum of a convergent geometric series with a œ 1 and r œ 2x Ê _ 4 5 á œ sin x, where x œ 1; the sum is sin 1 œ 0 á œ cos x, where x œ 13 ; the sum is cos x2n 1 (2n 1) œ ; the sum is " È3 1 6 _ " 1 ˆ "4 ‰ œ 1 (2x) (2x)# (2x)$ á œ ! (2x)n œ ! 2n xn where k2xk 1 Ê kxk " 1 2x " # Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ; the sum is œ " # Chapter 10 Practice Exercises " 1 x$ 58. Consider " 1 x$ as the sum of a convergent geometric series with a œ 1 and r œ x$ Ê œ 639 " 1 ax$ b _ # $ œ 1 ax$ b ax$ b ax$ b á œ ! (1)n x3n where kx$ k 1 Ê kx$ k 1 Ê kxk 1 n œ0 _ 59. sin x œ ! nœ0 _ 60. sin x œ ! nœ0 _ 61. cos x œ ! n œ0 _ 62. cos x œ ! n œ0 _ 63. ex œ ! n œ0 _ 64. ex œ ! n œ0 _ (1)n x2nb1 (2n 1)! nœ0 Ê sin _ (1)n x2n (2n)! 3 Ê cosŠ Èx 5 ‹ œ ! _ ˆ 1 x ‰n Ê eÐ1xÎ2Ñ œ ! xn n! # Ê ex œ ! # n! n œ0 _ a x # b n! nœ0 œ 3 8 69. " x1 œ œ 4"# , n œ0 1 n xn #n n! (1)n x2n n! Ê f w (x) œ x a3 x# b 9 32 2†1! " 1x " #% †4 ¸ " # " 9 †2 $ a3 x# b 2 †2! " # œ "Î# 3 8 , 2 †3! (x 1)" Ê f w (x) œ (x 1)# Ê f ww (x) œ 2(x 1)$ Ê f www (x) œ 6(x 1)% ; f(3) œ ww f (3) œ Ê x"" 11†3! tanc" x x $Î# œ 1 (x 2) (x 2)# (x 2)$ á 2 4$ 6 4% www , f (2) œ " x " a œ " a# " x 1 Ê " a$ (x a) " #( †7†2! " 2"! †10†3! " " 4 œ (x a)# x"( 17†5! x#$ 23†7! dx œ '1 Š1 1Î2 " 5# †#& " 7# †#( x# 3 * 2"$ †13†4! * '11Î2 Ê f ww (x) œ x# a3 x# b $Î# '01 x sin ax$ b dx œ '01 x Šx$ x3! x5! & "Î# 3x a3 x# b ; f(1) œ 2, f w (1) œ "# , f ww (1) œ 8" # $ Ê È3 x# œ 2 (x 1) 3(x$ 1) 9(x& 1) á ' " # (1)n x6n 5n (#n)! " 4# (x 3) " 4$ " 4% # (x 3) œ x" Ê f w (x) œ x# Ê f ww (x) œ 2x$ Ê f www (x) œ 6x% ; f(a) œ 6 a% œ ’ x5 71. _ œ! nœ0 '01Î2 exp ax$ b dx œ '01Î2 Š1 x$ x2! x3! x4! ¸ 70. _ œ! n œ0 n _ œ! (2n)! (1)n x10nÎ3 (#n)! œ (1 x)" Ê f w (x) œ (1 x)# Ê f ww (x) œ 2(1 x)$ Ê f www (x) œ 6(1 x)% ; f(2) œ 1, f w (2) œ 1, 67. f(x) œ f www (a) œ nœ0 5 &Î# f ww (2) œ 2, f www (2) œ 6 Ê " x œ! _ (1)n Š x3 ‹ È nœ0 (1)n 22nb1 x2nb1 32nb1 (#n 1)! _ 2n 2n 3 f www (1) œ 32 68. f(x) œ nœ0 (1)n ˆx5Î3 ‰ (2n)! nœ0 Ê f www (x) œ 3x$ a3 x# b f (3) nœ0 Ê cos ˆx5Î3 ‰ œ ! "Î# w _ œ! (2n 1)! (1)n x2n (2n)! xn n! " 1x nœ0 _ (1)n Š 2x ‹ 3 œ! 2x 3 (1)n 12nb1 x2nb1 (#n 1)! œ! 2nb1 (1)n x2nb1 (2n 1)! 65. f(x) œ È3 x# œ a3 x# b 66. f(x) œ _ (1)n (1x)2nb1 (2n 1)! Ê sin 1x œ ! "& x#* 29†9! x% 5 " 9# †2* " x#" 7! x#( 9! x% 4 , f w (a) œ a"# , f ww (a) œ x( 7†2! x"! 10†3! x"! 3! x"' 5! x## 7! x& 25 x( 49 x* 81 " 21# †##" x"$ 13†4! á“ "Î# ! ¸ 0.484917143 á ‹ dx œ '0 Šx% 1 x#) 9! á ‹ dx " ! x' 7 " 11# †2"" x) 9 x"! 11 " 13# †2"$ á ‹ dx œ ’x " 15# †2"& " 17# †#"( x$ 9 " 19# †#"* 2 a$ , (x 3) á (x a)$ á á ‹ dx œ ’x 2"' †16†5! " a , $ á “ ¸ 0.185330149 "# " a% " 4 x"" 121 á“ "Î# ! ¸ 0.4872223583 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 640 72. Chapter 10 Infinite Sequences and Series '01Î64 dx œ '0 1Î64 tan " x Èx œ 23 x$Î# 2 #1 x(Î# " Èx 2 55 x$ 3 Šx x""Î# 2 105 $ 7 sin x 2x x Ä 0 e 1 73. lim 74. x Ä 0 Š2x œ lim 5! # á ‹ dx œ '0 1Î64 "Î'% & 2$ x $ 3! œ ˆ 3†28$ # á‹ x Ä 0 Š2 2# x #! á‹ 75. œ lim tÄ0 76. lim "‰ t# œ # " 2 Š 4! t6! á‹ # Š1 2t4! á‹ Š sinh h ‹ cos h # h# Œ #! $ œ lim h% 5! # lim t # 2 2 cos t t Ä 0 2t (1 cos t) " cos# z z Ä 0 ln (1 z) sin z 77. lim 2 105†8"& á ‰ ¸ 0.0013020379 œ 7 # $ & $ & 2 Š )3! )5! á‹ œ lim $ & Š )3! )5! á‹ )Ä0 œ lim h% 4! % t á t# 2 2 Œ1 t# 4! t Ä 0 2t# Š1 1 t# # t% 4! á‹ % t' 6! 2 Œ t4! œ lim tÄ0 Št% 2t' 4! á á‹ " 1# œ Œ1 h# 3! % # % h5! á Œ1 h#! h4! á h# h' 6! h' 7! á h# hÄ0 2 55†8"" œ2 hÄ0 h# 3! á‹ ) Š) )3! )5! á‹ œ lim h# hÄ0 2 21†8( % 2$ x # 3! # lim ˆ " t Ä 0 # 2 cos t ˆx"Î# "3 x&Î# "5 x*Î# 7" x"$Î# á ‰ dx 7 Š1 x3! x5! á‹ œ lim $ )Ä0 Š 3!" )5! á‹ )Ä0 2# x # 2! x( 7 Š1 ) )#! )3! á‹ Š1 ) )#! )3! á‹ 2) œ lim )# x"&Î# á ‘ ! # ) c) lim e )e sin)2) )Ä0 x& 5 7 Šx x3! x5! á‹ œ lim 2 Š 3!" œ lim hÄ0 1 Š1 z # œ lim # z% 3 Š #"! " 3! h# 5! $ h# 4! h% 6! h% 7! á‹ œ " 3 % á‹ $ & z Ä 0 Šz z# z3 á‹ Šz z3! z5! á‹ Šz# z3 á‹ œ lim # $ % z Ä 0 Š z# 2z3 z4 á‹ # Š1 z3 á‹ œ lim # z z Ä 0 Š "# 2z 3 4 á‹ y# cos y cosh y yÄ0 78. lim " œ lim œ 2 y# œ lim y Ä 0 Œ1 y Ä 0 Œ1 2y% á 6! y# # y% 4! y' 6! á Œ1 xÄ0 Ê r x# 3 x# r x# y% 4! y' 6! á y# œ lim y Ä 0 Œ 2y# # ' 2y6! á œ 1 $ 79. lim ˆ sinx$3x y# #! s‰ œ lim – xÄ0 œ 0 and s 9 # 80. The approximation sin x ¸ & (3x) Š3x (3x) 6 120 á‹ x$ œ 0 Ê r œ 3 and s œ 6x 6 x# r x# s— œ lim Š x3# xÄ0 9 # 81x# 40 á 9 # is better than sin x ¸ x. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. r x# s‹ œ 0 Chapter 10 Practice Exercises nb1 (3n 1)(3n 2)x â(2n) ¸ 3n 2 ¸ 1 Ê kxk 81. n lim † #†52†8†4â†6(3n ¹ 2†5†8#â †4†6â(2n)(2n 2) 1)xn ¹ 1 Ê kxk n lim Ä_ Ä _ 2n 2 Ê the radius of convergence is 23 2 3 nb1 (2n1)(2n3)(x1) ¸ 2n 3 ¸ 1 Ê kxk 82. n lim † 34††59††714ââ(2n(5n1)x1)n ¹ 1 Ê kxk n lim ¹ 3†5†47†â 9†14â(5n1)(5n4) Ä_ Ä _ 5n 4 Ê the radius of convergence is 52 n "‰ k# 83. ! ln ˆ1 kœ2 n n kœ2 kœ2 5 2 œ ! ln ˆ1 "k ‰ ln ˆ1 "k ‰‘ œ ! cln (k 1) ln k ln (k 1) ln kd œ cln 3 ln 2 ln 1 ln 2d cln 4 ln 3 ln 2 ln 3d cln 5 ln 4 ln 3 ln 4d cln 6 ln 5 ln 4 ln 5d á cln (n 1) ln n ln (n 1) ln nd œ cln 1 ln 2d cln (n 1) ln nd after cancellation n "‰ k# Ê ! ln ˆ1 k œ2 n 84. ! k œ2 " k# 1 - ˆ n " 1 _ Ê ! k œ2 " # œ n !ˆ k œ2 " ‰‘ n1 " k # 1 _ 1 ‰ œ ln ˆ n2n Ê ! ln ˆ1 "‰ k# k œ2 " k1 œ " # " ‰ k1 ˆ 1" " # "ˆ3 œ n lim Ä_ # 2 œ 1 n " n " # 1‰ œ n lim ln ˆ n 2n œ ln Ä_ " ‰ n1 1 ‰ n1 œ œ " # ˆ #3 " n " ‰ n1 œ " # 2(n 1) 2n ’ 3n(n 1)2n(n “œ 1) 1†4†7â(3n 2) (3n)! n œ1 _ dy dx _ œ! n œ1 _ 1†4†7â(3n 2) (3n 1)! x3nc1 1†4†7â(3n5) (3n3)! x3nc2 (3n ") (3n 1)(3n 2)(3n 3) 1†4†7â(3n 2) (3n 2)! x3nc2 œ x ! œ x Œ1 ! 1†4†7â(3n 2) (3n)! x œ xy 0 Ê a œ 1 and b œ 0 x# 1x œ x# x# (x) x# (x)# x# (x)$ á œ x# x$ x% x& á œ ! (1)n xn which Ê d# y dx# œ! n œ1 _ n œ1 86. (a) x3n Ê 3n# n 2 4n(n 1) 3 4 3nb3 _ is the sum ˆ 11 3" ‰ ˆ #" 4" ‰ ˆ "3 5" ‰ ˆ 4" 6" ‰ á ˆ n " # n" ‰ 1)x $ 85. (a) n lim † 1†4†7â(3n)! ¹ 1†4†7â(3n(3n2)(3n 3)! (3n 2)x3n ¹ 1 Ê kx k n lim Ä_ Ä_ œ kx$ k † 0 1 Ê the radius of convergence is _ (b) y œ 1 ! " # œ x# 1 (x) nœ2 3n _ n œ2 converges absolutely for kxk 1 _ _ n œ2 nœ2 (b) x œ 1 Ê ! (1)n xn œ ! (1)n which diverges _ _ 87. Yes, the series ! an bn converges as we now show. Since ! an converges it follows that an Ä 0 Ê an 1 n œ1 nœ1 _ _ n œ1 n œ1 for n some index N Ê an bn bn for n N Ê ! an bn converges by the Direct Comparison Test with ! bn _ 88. No, the series ! an bn might diverge (as it would if an and bn both equaled n) or it might converge (as it would if n œ1 an and bn both equaled "n ). _ _ n œ1 k œ1 !(xk1 xk ) œ lim (xn1 x" ) œ lim (xn1 ) x" Ê both the series and 89. ! (xn1 xn ) œ n lim Ä_ nÄ_ nÄ_ sequence must either converge or diverge. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 641 642 Chapter 10 Infinite Sequences and Series Š 1 banan ‹ 90. It converges by the Limit Comparison Test since n lim Ä_ an " 1 a n œ n lim Ä_ _ œ 1 because ! an converges n œ1 and so an Ä 0. _ 91. ! n œ1 œ a" an n ˆ 9" 92. an œ œ " 10 " ln n " ln # a# # " 11 á " # a% 4 " 3 a" ˆ #" ‰ a# ˆ "3 "4 ‰ a% ˆ "5 á " ‰ 16 a"' 2 Ê a# for n ˆ1 a$ 3 " # á a$ " 7 "8 ‰ a) (a# a% a) a"' á ) which is a divergent series á , and a% " 6 " ln # " ln 4 _ á ‰ which diverges so that 1 ! n œ2 " ln 8 " n ln n á œ " ln # " # ln 2 " 3 ln 2 á diverges by the Integral Test. CHAPTER 10 ADDITIONAL AND ADVANCED EXERCISES 1. converges since " (3n #)Ð2n 1ÑÎ2 " Š $Î# ‹ n lim nÄ_ Š " (3n ‹ 2)$Î# " (3n 2)$Î# $ 1$ 192 ‹ œ n œ1 " (3n 2)$Î# converges by the Limit Comparison Test: ˆ 3n n 2 ‰$Î# œ 3$Î# œ n lim Ä_ 2. converges by the Integral Test: 1 œ Š 24 _ and ! '1_ atan" xb# x dx1 œ # " x b$ lim ’ atan 3 bÄ_ " bb$ b tan “ œ lim ’ a 3 bÄ_ " 1$ 192 “ 71 $ 192 c2n e 3. diverges by the nth-Term Test since n lim a œ n lim (1)n tanh n œ lim (1)n Š 11 (1)n ec2n ‹ œ n lim Ä_ n Ä_ Ä_ bÄ_ does not exist 4. converges by the Direct Comparison Test: n! nn Ê ln (n!) n ln (n) Ê Ê logn (n!) n Ê logn (n!) n$ " n# 12 (3)(5)(4)# , a% œ ˆ 35††64 ‰ ˆ 24††53 ‰ ˆ 13††24 ‰ œ given series and 12 (n 1)(n 3)(n 2)# 6. converges by the Ratio Test: n lim Ä_ "2 (4)(6)(5)# 12 n% 12 (1)(3)(2)# , a# œ _ ,á Ê 1! n œ1 1†2 3†4 _ n œ1 " 32nb1 cos x œ " # È3 # 1 3 12 (2)(4)(3)# , a$ œ ˆ 42††53 ‰ ˆ 31††42 ‰ represents the , which is the nth-term of a convergent p-series anb1 an œ n lim Ä_ n (n 1)(n 1) _ and ! n œ1 2n 32n œ01 È3 1# ˆx n n n È 2È È3 ww # ,f 1 ‰$ á 3 Ê f ˆ 13 ‰ œ 0.5, f w ˆ 13 ‰ œ ˆx 13 ‰ 4" ˆx 13 ‰# " 1L Ê L# L 1 œ 0 Ê L œ ; the first subseries is a convergent geometric series and the n 2n É second converges by the Root Test: n lim 32n œ n lim Ä_ Ä_ 9. f(x) œ cos x with a œ œ 12 (n 1)(n 3)(n 2)# 7. diverges by the nth-Term Test since if an Ä L as n Ä _, then L œ 8. Split the given series into ! n , which is the nth-term of a convergent p-series 5. converges by the Direct Comparison Test: a" œ 1 œ œ ln (n!) ln (n) 9 œ "†1 9 œ " 9 1 ˆ 13 ‰ œ 0.5, f www ˆ 13 ‰ œ È3 # , f Ð4Ñ ˆ 13 ‰ œ 0.5; Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 „ È5 # Á0 Chapter 10 Additional and Advanced Exercises 643 10. f(x) œ sin x with a œ 21 Ê f(21) œ 0, f w (21) œ 1, f ww (21) œ 0, f www (21) œ 1, f Ð4Ñ (21) œ 0, f Ð5Ñ (21) œ 1, f Ð6Ñ (21) œ 0, f Ð7Ñ (21) œ 1; sin x œ (x 21) 11. ex œ 1 x x# #! x$ 3! (x 21)$ 3! (x 21)& 5! (x 21)( 7! á á with a œ 0 12. f(x) œ ln x with a œ 1 Ê f(1) œ 0, f w (1) œ 1, f ww (1) œ 1,f www (1) œ 2, f Ð4Ñ (1) œ 6; (x 1)# # ln x œ (x 1) (x 1)$ 3 (x 1)% 4 á 13. f(x) œ cos x with a œ 221 Ê f(221) œ 1, f w (221) œ 0, f ww (221) œ 1, f www (221) œ 0, f Ð4Ñ (221) œ ", f Ð5Ñ (221) œ 0, f Ð6Ñ (221) œ 1; cos x œ 1 "# (x 221)# 4!" (x 221)% 6!" (x 221)' á 14. f(x) œ tan" x with a œ 1 Ê f(1) œ tan " 1 4 xœ (x 1) 2 (x 1)# 4 1 4 (x 1)$ 12 , f w (1) œ " # , f ww (1) œ "# , f www (1) œ ˆ ba ‰n ln ˆ ba ‰ a n nÄ_ ˆ b ‰ 1 16. 1 2 10 3 10# _ œ1! n œ0 œ1 200 999 n 1 17. sn œ ! k œ0 7 10$ 'kkb1 2 10% _ 2 103n1 ! 30 999 dx 1 x# 7 999 3 10& 7 10' _ 3 103n2 n œ0 0†ln ˆ ba ‰ 01 œ ln b ! 999237 999 œ Ê sn œ '0 1 _ á œ1! n œ1 7 œ 1 În n lnˆˆ ba ‰ 1‰ n nÄ_ Ê n lim c œ ln b lim Ä_ n œ ln b since 0 a b. Thus, n lim c œ eln b œ b. Ä_ n 103n3 n œ0 ; á n 15. Yes, the sequence converges: cn œ aan bn b1În Ê cn œ b ˆˆ ba ‰ 1‰ œ ln b lim " # œ1 2 ‰ ˆ 10 2 103n $ 1ˆ " ‰ 10 _ 2 ! n œ1 Š 103# ‹ $ 1ˆ " ‰ 3 103n _ 1 ! n œ1 Š 107$ ‹ "‰ 1 ˆ 10 10 7 103n $ 412 333 dx 1 x# '1 2 dx 1 x# Ê n lim s œ n lim atan" n tan" 0b œ Ä_ n Ä_ nb1 á 'nc1 1 dxx# Ê sn œ '0 n n dx 1 x# 1 # # 1) 18. n lim † (n 1)(2x ¹ uunbn 1 ¹ œ n lim ¹ (n 1)x ¹ œ n lim ¹ x † (n 1) ¹ œ ¸ 2x x 1 ¸ 1 nxn Ä_ Ä _ (n 2)(2x 1)n 1 Ä _ 2x 1 n(n 2) Ê kxk k2x 1k ; if x 0, kxk k2x 1k Ê x 2x 1 Ê x 1; if "# x 0, kxk k2x 1k n Ê x 2x 1 Ê 3x 1 Ê x "3 ; if x #" , kxk k2x 1k Ê x 2x 1 Ê x 1. Therefore, the series converges absolutely for x 1 and x "3 . 19. (a) No, the limit does not appear to depend on the value of the constant a (b) Yes, the limit depends on the value of b (c) s œ Š1 œ n lim Ä_ cos ˆ na ‰ n n ‹ a n lim Š1 nÄ_ Ê ln s œ sin ˆ na ‰ cos ˆ na ‰ 1 cos ˆ na ‰ n cos ˆ na ‰ n bn ‹ œ ln Œ1 cos ˆ na ‰ n ˆ n" ‰ 01 10 Ê n lim ln s œ Ä_ " cos ˆ na ‰ Œ n Š a a a n sin ˆ n ‰ cos ˆ n ‰ n# "‹ n# œ e1Îb 1În _ " # 1 œ 1 Ê n lim s œ e" ¸ 0.3678794412; similarly, Ä_ an ‰n 20. ! an converges Ê n lim a œ 0; n lim ’ˆ 1 sin “ # Ä_ n Ä_ n œ1 œ an ‰ ˆ 1sin œ n lim œ # Ä_ Ä_ 1sin Šnlim an ‹ # Ê the series converges by the nth-Root Test Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. œ 1sin 0 # 644 Chapter 10 Infinite Sequences and Series nb1 nb1 21. n lim ¹ uunbn 1 ¹ 1 Ê n lim ¹b x † Ä_ Ä _ ln (n 1) ln n bn xn ¹ 1 Ê kbxk 1 Ê b" x " b œ5 Ê bœ „ " 5 22. A polynomial has only a finite number of nonzero terms in its Taylor series, but the functions sin x, ln x and ex have infinitely many nonzero terms in their Taylor expansions. sin (ax) sin xx x$ xÄ0 Šax œ lim 23. lim a$ x$ 3! á‹ Šx xÄ0 xÄ0 24. 25. (a) (b) 26. un unb1 un unb1 œ (n 1)# n# un unb1 œ n1 n œ 2n(2n 1) (2n 1)# Ê Cœ 3 # Œ1 œ 1 Ê lim œ1 œ1 œ a# x# # 1 n œ lim ’ a x# 2 4n# 2n 4n# 4n 1 á b " n# n œ1 _ " n n œ1 n 5n# 4n# 4n 1 œ Š4 5 4 n _ _ _ n œ1 n œ1 nœ1 & Š a5! " # 5! ‹ x á“ a# 4 a# x# 48 á ‹ œ 1 converges diverges œ1 5 4n# 4n 1 " 3! œ 76 xÄ0 _ Š 64 ‹ " 3! a$ 3! œ 1 Ê lim Š "2x#b Ê C œ 2 1 and ! œ1 1 and kf(n)k œ œ 23! Ê C œ 1 Ÿ 1 and ! 0 n# xÄ0 $ #x# " n# 2 n a% x% 4! xÄ0 Ê b œ 1 and a œ „ 2 á‹ x sin 2x sin x x x$ is finite if a 2 œ 0 Ê a œ 2; lim lim cos#axx# b xÄ0 x$ 3! x$ Š 3# ‹ n 5n# – Š4n# c 4n b 1‹ — n# after long division _ " ‹ n# Ÿ 5 Ê ! un converges by Raabe's Test n œ1 27. (a) ! an œ L Ê an# Ÿ an ! an œ an L Ê ! an# converges by the Direct Comparison Test (b) converges by the Limit Comparison Test: n lim Ä_ an Š1c an ‹ an œ n lim Ä_ " 1 an _ œ 1 since ! an converges and n œ1 therefore x lim a œ0 Ä_ n 28. If 0 an 1 then kln (1 an )k œ ln (1 an ) œ an a#n # an$ 3 á an an# an$ á œ an 1 an , a positive term of a convergent series, by the Limit Comparison Test and Exercise 27b _ 29. (1 x)" œ 1 ! xn where kxk 1 Ê n œ1 # " (1x)# $ 4 œ 1 2 ˆ "# ‰ 3 ˆ "# ‰ 4 ˆ "# ‰ á n ˆ "# ‰ _ 30. (a) ! xn1 œ nœ1 _ Ê ! n œ1 _ (b) x œ ! n œ1 x# 1 x n(n 1) xn n(n ") xn _ Ê ! (n 1)xn œ nœ1 œ 2 x $ Š1 x" ‹ Ê xœ œ 2x# (x 1)$ 2x# (x 1)$ 2xx# (1x)# œ n 1 d dx _ (1 x)" œ ! nxn1 and when x œ nœ1 " # we have á _ Ê ! n(n 1)xn1 œ nœ1 2 (1x)$ _ Ê ! n(n 1)xn œ nœ1 , kxk 1 Ê x$ 3x# x 1 œ 0 Ê x œ 1 Š1 È57 "Î$ 9 ‹ Š1 ¸ 2.769292, using a CAS or calculator 31. (a) " (1x)# œ d dx ˆ 1" x ‰ œ d dx (b) from part (a) we have _ a1 x x# x$ á b œ 1 2x 3x# 4x$ á œ ! nxn1 _ ! n ˆ 5 ‰n1 6 n œ1 2x (1x)$ n œ1 ˆ "6 ‰ œ ˆ "6 ‰ ’ 2 " “ 1 ˆ 56 ‰ œ6 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. È57 "Î$ 9 ‹ Chapter 10 Additional and Advanced Exercises _ (c) from part (a) we have ! npn1 q œ n œ1 _ _ 32. (a) ! pk œ ! 2k œ k œ1 k œ1 ˆ "# ‰ 1ˆ "# ‰ q (1 p)# œ q q# " q œ _ _ k œ1 kœ1 œ 1 and E(x) œ ! kpk œ ! k2k œ " # _ ! k21k œ ˆ " ‰ # kœ1 " 1ˆ "# ‰‘# œ2 by Exercise 31(a) _ _ k œ1 k œ1 (b) ! pk œ ! œ ˆ "6 ‰ " 1ˆ 56 ‰‘# _ _ (c) ! pk œ ! kœ1 kœ1 _ " k1 œ! k œ1 5kc1 6k œ _ 5 e " k(k1) k œ1 6 _ œ ! ˆ k" kœ1 " ‰ k1 œ lim ˆ1 kÄ_ C! e kt! " ‰ k1 ˆ1 e 1e kt! kœ1 " 6 œ _ _ kœ1 kœ1 nkt! ‰ Ê Rœ lim R œ nÄ_ n ¸ 0.58195028; e " a1 e "! b 1e " R R"! 0.0001 R C! e kt! 1 e kt! " e1 ¸ 0.58197671; R R"! ¸ 0.00002643 Ê Þ1n e Þ1 ˆ1 e Þ1n ‰ R Rn œ , # œ #" ˆ eÞ1 " 1 ‰ ¸ 4.7541659; Rn R# Ê 1eÞ1 e 1 ˆ #" ‰ ˆ eÞ1 " 1 ‰ 1 e Þ1 n n Ê 1 enÎ10 "# Ê enÎ10 "# Ê 10 ln ˆ "# ‰ Ê 10 ln ˆ "# ‰ Ê n 6.93 34. (a) R œ (b) t! œ C! ekt! 1 " 0.05 _ ! k ˆ 5 ‰k1 6 k œ1 œ 1 and E(x) œ ! kpk œ ! k Š k(k " 1) ‹ Ê R" œ e" ¸ 0.36787944 and R"! œ Rœ (c) k œ1 5kc1 6k , a divergent series so that E(x) does not exist a1 e n b 1e " 1 _ œ6 33. (a) Rn œ C! ekt! C! e2kt! á C! enkt! œ (b) Rn œ _ ! ˆ 5 ‰k œ ˆ " ‰ ’ ˆ 6 ‰5 “ œ 1 and E(x) œ ! kpk œ ! k 6 5 1ˆ ‰ " 5 Ê Rekt! œ R C! œ CH Ê ekt! œ CH CL Ê t! œ " k œ C! ekt! 1 Ê nœ7 ln Š CCHL ‹ ln e œ 20 hrs (c) Give an initial dose that produces a concentration of 2 mg/ml followed every t! œ " 0.0# 2 ‰ ln ˆ 0.5 ¸ 69.31 hrs by a dose that raises the concentration by 1.5 mg/ml 0.1 ‰ " ‰ (d) t! œ 0.2 ln ˆ 0.03 œ 5 ln ˆ 10 3 ¸ 6 hrs Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 645 646 Chapter 10 Infinite Sequences and Series NOTES: Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES 11.1 PARAMETRIZATIONS OF PLANE CURVES 1. x œ 3t, y œ 9t# , _ t _ Ê y œ x# 2. x œ Èt , y œ t, t 0 Ê x œ È y # or y œ x , x Ÿ 0 3. x œ 2t 5, y œ 4t 7, _ t _ Ê x 5 œ 2t Ê 2(x 5) œ 4t Ê y œ 2(x 5) 7 Ê y œ 2x 3 5. x œ cos 2t, y œ sin 2t, 0 Ÿ t Ÿ 1 Ê cos# 2t sin# 2t œ 1 Ê x# y# œ 1 4. x œ 3 3t, y œ 2t, 0 Ÿ t Ÿ 1 Ê y# œ t Ê x œ 3 3 ˆ y# ‰ Ê 2x œ 6 3y Ê y œ 2 23 x, ! Ÿ x Ÿ $ 6. x œ cos (1 t), y œ sin (1 t), 0 Ÿ t Ÿ 1 Ê cos# (1 t) sin# (1 t) œ 1 Ê x# y# œ 1, y ! Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 648 Chapter 11 Parametric Equations and Polar Coordinates 7. x œ 4 cos t, y œ 2 sin t, 0 Ÿ t Ÿ 21 Ê 16 cos# t 16 4 sin# t 4 œ1 Ê x# 16 9. x œ sin t, y œ cos 2t, 12 Ÿ t Ÿ y# 4 8. x œ 4 sin t, y œ 5 cos t, 0 Ÿ t Ÿ 21 œ1 1 2 Ê y œ cos 2t œ 1 2sin# t Ê y œ 1 2x2 11. x œ t2 , y œ t6 2t4 , _ t _ 2 3 2 2 Ê y œ at b 2at b Ê y œ x3 2x2 13. x œ t, y œ È1 t# , 1 Ÿ t Ÿ 0 Ê y œ È1 x# Ê 16 sin# t 16 25 cos# t 25 œ1 Ê x# 16 y# #5 œ1 10. x œ 1 sin t, y œ cos t 2, 0 Ÿ t Ÿ 1 Ê sin# t cos# t œ 1 Ê ax 1b# ay 2b# œ 1 12. x œ t t1, Ê tœ yœ x x1 t2 t1, 1 t 1 Êyœ 2x 2x 1 14. x œ Èt 1, y œ Èt, t 0 Ê y# œ t Ê x œ Èy# 1, y Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 0 Section 11.1 Parametrizations of Plane Curves 15. x œ sec# t 1, y œ tan t, 1# t Ê sec# t 1 œ tan# t Ê x œ y# 1 # 16. x œ sec t, y œ tan t, 1# t 649 1 # # Ê sec# t tan# t œ 1 Ê x# y œ 1 17. x œ cosh t, y œ sinh t, _ 1 _ Ê cosh# t sinh# t œ 1 Ê x# y# œ 1 18. x œ 2 sinh t, y œ 2 cosh t, _ t _ Ê 4 cosh# t 4 sinh# t œ 4 Ê y# x# œ 4 19. (a) x œ a cos t, y œ a sin t, 0 Ÿ t Ÿ 21 20. (a) x œ a sin t, y œ b cos t, (b) x œ a cos t, y œ a sin t, 0 Ÿ t Ÿ 21 (c) x œ a cos t, y œ a sin t, 0 Ÿ t Ÿ 41 (d) x œ a cos t, y œ a sin t, 0 Ÿ t Ÿ 41 1 # ŸtŸ 51 # (b) x œ a cos t, y œ b sin t, 0 Ÿ t Ÿ 21 (c) x œ a sin t, y œ b cos t, 1# Ÿ t Ÿ 9#1 (d) x œ a cos t, y œ b sin t, 0 Ÿ t Ÿ 41 21. Using a"ß $b we create the parametric equations x œ " at and y œ $ bt, representing a line which goes through a"ß $b at t œ !. We determine a and b so that the line goes through a%ß "b when t œ ". Since % œ " a Ê a œ &. Since " œ $ b Ê b œ %. Therefore, one possible parameterization is x œ " &t, y œ $ %t, 0 Ÿ t Ÿ ". 22. Using a"ß $b we create the parametric equations x œ " at and y œ $ bt, representing a line which goes through a"ß $b at t œ !. We determine a and b so that the line goes through a$ß #b when t œ ". Since $ œ " a Ê a œ %. Since # œ $ b Ê b œ &. Therefore, one possible parameterization is x œ " %t, y œ $ &t, 0 Ÿ t Ÿ ". 23. The lower half of the parabola is given by x œ y# " for y Ÿ !. Substituting t for y, we obtain one possible parameterization x œ t# ", y œ t, t Ÿ 0Þ 24. The vertex of the parabola is at a"ß "b, so the left half of the parabola is given by y œ x# #x for x Ÿ ". Substituting t for x, we obtain one possible parametrization: x œ t, y œ t# #t, t Ÿ ". 25. For simplicity, we assume that x and y are linear functions of t and that the pointax, yb starts at a#ß $b for t œ ! and passes through a"ß "b at t œ ". Then x œ fatb, where fa!b œ # and fa"b œ ". Since slope œ ??xt œ "# "! œ $, x œ fatb œ $t # œ # $t. Also, y œ gatb, where ga!b œ $ and ga"b œ ". Since slope œ ?y ?t œ "3 "! œ 4. y œ gatb œ %t $ œ $ %t. One possible parameterization is: x œ # $t, y œ $ %t, t !. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 650 Chapter 11 Parametric Equations and Polar Coordinates 26. For simplicity, we assume that x and y are linear functions of t and that the pointax, yb starts at a"ß #b for t œ ! and passes through a!ß !b at t œ ". Then x œ fatb, where fa!b œ " and fa"b œ !. Since slope œ Since slope œ ?x ?t ?y ?t œ œ ! a"b "! !# "! œ œ ", x œ fatb œ "t a"b œ " t. Also, y œ gatb, where ga!b œ # and ga"b œ !. #. y œ gatb œ #t # œ # #t. One possible parameterization is: x œ " t, y œ # #t, t 27. Since we only want the top half of a circle, y !. 0, so let x œ 2cos t, y œ 2lsin tl, 0 Ÿ t Ÿ 41 28. Since we want x to stay between 3 and 3, let x œ 3 sin t, then y œ a3 sin tb2 œ 9sin# t, thus x œ 3 sin t, y œ 9sin# t, 0Ÿt_ 29. x# y# œ a# Ê 2x 2y y# t# y# œ a# Ê y œ dy dx œ 0 a È1t# and Ê x dy dy x dx œ y ; let t œ dx Ê œ È1att , _ t _ xy œ t Ê x œ yt. Substitution yields 30. In terms of ), parametric equations for the circle are x œ a cos ), y œ a sin ), 0 Ÿ ) 21. Since ) œ as , the arc length parametrizations are: x œ a cos as , y œ a sin as , and 0 Ÿ s a 21 Ê 0 Ÿ s Ÿ 21a is the interval for s. 31. Drop a vertical line from the point ax, yb to the x-axis, then ) is an angle in a right triangle, and from trigonometry we know that tan ) œ yx Ê y œ x tan ). The equation of the line through a0, 2b and a4, 0b is given by y œ 12 x 2. Thus x tan ) œ 12 x 2 Ê x œ 4 2 tan ) 1 and y œ 4 tan ) 2 tan ) 1 where 0 Ÿ ) 12 . 32. Drop a vertical line from the point ax, yb to the x-axis, then ) is an angle in a right triangle, and from trigonometry we know that tan ) œ yx Ê y œ x tan ). Since y œ Èx Ê y2 œ x Ê ax tan )b2 œ x Ê x œ cot2 ) Ê y œ cot ) where 0 ) Ÿ 12 . 33. The equation of the circle is given by ax 2b2 y2 œ 1. Drop a vertical line from the point ax, yb on the circle to the x-axis, then ) is an angle in a right triangle. So that we can start at a1, 0b and rotate in a clockwise direction, let x œ 2 cos ), y œ sin ), 0 Ÿ ) Ÿ 21. 34. Drop a vertical line from the point ax, yb to the x-axis, then ) is an angle in a right triangle, whose height is y and whose base is x 2. By trigonometry we have tan ) œ x y 2 Ê y œ ax 2b tan ). The equation of the circle is given by x2 y2 œ 1 Ê x2 aax 2btan )b2 œ 1 Ê x2 sec2 ) 4x tan2 ) 4tan2 ) 1 œ 0. Solving for x we obtain xœ 4tan2 ) „ Éa4tan2 )b2 4 sec2 ) a4tan2 ) 1b 2 sec2 ) œ 4tan2 ) „ 2È1 3tan2 ) 2 sec2 ) œ 2sin2 ) „ cos )Ècos2 ) 3sin2 ) œ 2 2cos2 ) „ cos )È4cos2 ) 3 and y œ Š2 2cos2 ) „ cos )È4cos2 ) 3 2‹ tan ) œ 2sin ) cos ) „ sin )È4cos2 ) 3. Since we only need to go from a1, 0b to a0, 1b, let x œ 2 2cos2 ) cos )È4cos2 ) 3, y œ 2sin ) cos ) sin )È4cos2 ) 3, 0 Ÿ ) Ÿ tan1 ˆ 1 ‰. 2 To obtain the upper limit for ), note that x œ 0 and y œ 1, using y œ ax 2b tan ) Ê 1 œ 2 tan ) Ê ) œ tan1 ˆ 12 ‰. 35. Extend the vertical line through A to the x-axis and let C be the point of intersection. Then OC œ AQ œ x 2 2 and tan t œ OC œ x2 Ê x œ tan2 t œ 2 cot t; sin t œ OA Ê OA œ sin2 t ; and (AB)(OA) œ (AQ)# Ê AB ˆ sin2 t ‰ œ x# # 2 2 2 sin t Ê AB ˆ sin t ‰ œ ˆ tan t ‰ Ê AB œ tan# t . Next y œ 2 AB sin t Ê y œ 2 ˆ 2tansin# tt ‰ sin t œ 2 2 sin# t tan# t œ 2 2 cos# t œ 2 sin# t. Therefore let x œ 2 cot t and y œ 2 sin# t, 0 t 1. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.1 Parametrizations of Plane Curves 36. Arc PF œ Arc AF since each is the distance rolled and Arc PF œ nFCP Ê Arc PF œ b(nFCP); ArcaAF œ ) b Ê Arc AF œ a) Ê a) œ b(nFCP) Ê nFCP œ nOCG œ 1 # a b ); ); nOCG œ nOCP nPCE œ nOCP ˆ 1# !‰ . Now nOCP œ 1 nFCP œ 1 ba ). Thus nOCG œ 1 ba ) œ 1 ba ) 1 # 1 # ! Ê ! Ê ! œ 1 ba ) ) œ 1 1 # ) ˆ ab b )‰ . Then x œ OG BG œ OG PE œ (a b) cos ) b cos ! œ (a b) cos ) b cos ˆ1 œ (a b) cos ) b cos ˆ a b b )‰ . Also y œ EG œ CG CE œ (a b) sin ) b sin ! ab b )‰ œ (a b) sin ) b sin ˆ1 a b b )‰ œ (a b) sin ) b sin ˆ a b b )‰ . Therefore x œ (a b) cos ) b cos ˆ a b b )‰ and y œ (a b) sin ) b sin ˆ a b b )‰ . If b œ 4a , then x œ ˆa 4a ‰ cos ) œ œ œ œ 3a 4 3a 4 3a 4 3a 4 cos ) œ œ œ 3a 4 3a 4 3a 4 3a 4 cos 3) œ 3a 4 cos Š a ˆ 4a ‰ ˆ 4a ‰ )‹ cos ) 4a (cos ) cos 2) sin ) sin 2)) cos ) a(cos )) acos# ) sin# )b (sin ))(2 sin ) cos ))b a 2a # # 4 cos ) sin ) 4 sin ) cos ) # $ ) cos$ ) 3a 4 (cos )) a1 cos )b œ a cos ); a a ˆ4‰ a‰ a 3a a 3a 4 sin ) 4 sin Š ˆ 4a ‰ )‹ œ 4 sin ) 4 sin 3) œ 4 cos ) cos y œ ˆa œ a 4 a 4 a 4 a 4 a 4 cos$ ) sin ) 4a (sin ) cos 2) cos ) sin 2)) sin ) 4a a(sin )) acos# ) sin# )b (cos ))(2 sin ) cos ))b sin ) sin ) sin ) a 4 3a 4 3a 4 sin ) cos# ) sin ) cos# ) a 4 a 4 # sin$ ) 2a 4 cos# ) sin ) sin$ ) (sin )) a1 sin )b a 4 sin$ ) œ a sin$ ). 37. Draw line AM in the figure and note that nAMO is a right angle since it is an inscribed angle which spans the diameter of a circle. Then AN# œ MN# AM# . Now, OA œ a, AN AM a œ tan t, and a œ sin t. Next MN œ OP Ê OP# œ AN# AM# œ a# tan# t a# sin# t Ê OP œ Èa# tan# t a# sin# t œ (a sin t)Èsec# t 1 œ x œ OP sin t œ a sin$ t cos t œ # a sin# t cos t # . In triangle BPO, a sin t tan t and y œ OP cos t œ a sin t Ê x œ a sin# t tan t and y œ a sin# t. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 651 652 Chapter 11 Parametric Equations and Polar Coordinates 38. Let the x-axis be the line the wheel rolls along with the y-axis through a low point of the trochoid (see the accompanying figure). Let ) denote the angle through which the wheel turns. Then h œ a) and k œ a. Next introduce xw yw -axes parallel to the xy-axes and having their origin at the center C of the wheel. Then xw œ b cos ! and yw œ b sin !, where ! œ 3#1 ). It follows that xw œ b cos ˆ 3#1 )‰ œ b sin ) and yw œ b sin ˆ 3#1 )‰ œ b cos ) Ê x œ h xw œ a) b sin ) and y œ k yw œ a b cos ) are parametric equations of the trochoid. # # # 39. D œ É(x 2)# ˆy "# ‰ Ê D# œ (x 2)# ˆy "# ‰ œ (t 2)# ˆt# "# ‰ Ê D# œ t% 4t Ê d aD # b dt 17 4 œ 4t$ 4 œ 0 Ê t œ 1. The second derivative is always positive for t Á 0 Ê t œ 1 gives a local minimum for D# (and hence D) which is an absolute minimum since it is the only extremum Ê the closest point on the parabola is (1ß 1). # # 40. D œ Ɉ2 cos t 34 ‰ (sin t 0)# Ê D# œ ˆ2 cos t 34 ‰ sin# t Ê d aD # b dt œ 2 ˆ2 cos t 34 ‰ (2 sin t) 2 sin t cos t œ (2 sin t) ˆ3 cos t 3# ‰ œ 0 Ê 2 sin t œ 0 or 3 cos t Ê t œ 0, 1 or t œ 1 3 , 51 3 . Now # # d aD b dt# # # œ 6 cos t 3 cos t 6 sin t so that # # d aD b dt# 3 # œ0 (0) œ 3 Ê relative # # # # maximum, d dtaD# b (1) œ 9 Ê relative maximum, d dtaD# b ˆ 13 ‰ œ 92 Ê relative minimum, and d # aD # b ˆ 5 1 ‰ œ 9# Ê relative minimum. Therefore both t œ 13 and t œ 531 give points on the ellipse dt# 3 È È the point ˆ 34 ß !‰ Ê Š1ß #3 ‹ and Š1ß #3 ‹ are the desired points. 41. (a) (b) (c) 42. (a) (b) (c) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. closest to Section 11.1 Parametrizations of Plane Curves 43. 44. (a) (b) (c) 45. (a) (b) 46. (a) (b) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 653 654 Chapter 11 Parametric Equations and Polar Coordinates 47. (a) (b) (c) 48. (a) (b) (c) (d) 11.2 CALCULUS WITH PARAMETRIC CURVES 1. t œ Ê 1 4 Ê dy dx ¹ tœ 1 x œ 2 cos d# y dx# dyw /dt dx/dt œ cot 1 4 1 4 œ È2, y œ 2 sin 1 4 œ È2; dx dt œ 2 sin t, dy dt œ 2 cos t Ê œ 1; tangent line is y È2 œ 1 Šx È2‹ or y œ x dy dx œ œ dy/dt dx/dt w 2È2 ; dy dt 2 cos t 2 sin t œ cot t œ csc# t 4 Ê œ œ csc# t 2 sin t " œ 2 sin $t Ê d# y dx# ¹ tœ 1 œ È 2 4 2. t œ 6" Ê x œ sin ˆ21 ˆ 6" ‰‰ œ sin ˆ 13 ‰ œ dy dt œ 21 sin 21t Ê tangent line is y œ cos$"21t Ê " # dy dx œ 21 sin 21t 21 cos 21t œ È3 ’x Š d# y dx# ¹ tœc 1 È3 # œ tan 21t Ê , y œ cos ˆ21 ˆ 6" ‰‰ œ cos ˆ 13 ‰ œ dy dx ¹ tœc 1 œ tan ˆ21 ˆ " ‰‰ 6 " # ; dx dt œ tan ˆ œ 21 cos 21t, 1‰ 3 œ È3; 6 È3 # ‹“ or y œ È3x 2; dyw dt œ 21 sec# 21t Ê d# y dx# œ 21 sec# 21t 21 cos 21t œ 8 6 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.2 Calculus With Parametric Curves 1 4 3. t œ œ "# tan t Ê dyw dt 1 4 Ê x œ 4 sin 21 3 Ê dy dx ¹ tœ 21 4. t œ Ê œ "# tan dy dx ¹ tœ 1 4 d# y dx# œ "# sec# t Ê dyw /dt dx/dt œ 1 4 "# sec# t 4 cos t œ œ 4 cos t, dx dt œ 2 sin t Ê dy dt dy dx œ dy/dt dx/dt œ 2 sin t 4 cos t d# y dx# ¹ tœ 1 " œ 8 cos $t Ê œ È2 4 4 21 3 x œ cos È3 dx 21 3 œ # ; dt È3 È 3 x # ‹œ œ "# , y œ È3 cos œ È3 ; tangent line is y Š d# y dx# ¹ tœ 21 œ È2; œ "# ; tangent line is y È2 œ "# Šx 2È2‹ or y œ "# x 2È2 ; 3 Ê 1 4 œ 2È2, y œ 2 cos œ sin t, dy dt œ È3 sin t Ê dy dx œ È3 sin t sin t œ È3 d# y dx# œ œ0 dyw dt œ0 Ê " œ 1; tangent line is ˆ #" ‰‘ or y œ È3 x; 0 sin t œ0 3 5. t œ Ê xœ 1 4 y " # 1 4 ,yœ " # œ 1, dx dt ; dy dt œ 1 † ˆx 4" ‰ or y œ x 4" ; " #Èt œ dyw dt Ê œ dy dx œ dy/dt dx/dt d# y dx# œ "4 t$Î# Ê #É "4 d# y dx# ¹ tœ 1 œ 4" t$Î# Ê œ 2 4 dy dx œ sec# t 2 sec# t tan t " 2 tan t œ " # œ cot t Ê d# y dx# ¹ tœc 1 œ œ dy dx ¹ tœc 1 4 y (1) œ "# (x 1) or y œ "# x "# ; Ê œ dy dx ¹ tœ 1 4 dyw /dt dx/dt œ 6. t œ 14 Ê x œ sec# ˆ 14 ‰ 1 œ 1, y œ tan ˆ 14 ‰ œ 1; Ê Ê 1 2È t dyw dt " # œ 2 sec# t tan t, dx dt œ sec# t dy dt cot ˆ 14 ‰ œ "# ; tangent line is d# y dx# œ "# csc# t Ê œ "# csc# t 2 sec# t tan t œ "4 cot$ t " 4 4 7. t œ œ 1 6 Ê x œ sec sec# t sec t tan t 1 6 y œ tan 1 6 œ dy dx ¹ tœ 1 œ csc 1 6 œ 2; tangent line is y d# y dx# dyw /dt dx/dt œ œ csc t Ê 2 È3 , " È3 ; dx dt œ sec t tan t, 6 dyw dt œ csc t cot t Ê œ csc t cot t sec t tan t œ dy dt œ sec# t Ê " È3 œ 2 Šx d# y dx# ¹ tœ 1 œ cot$ t Ê œ dy dx 2 È3 ‹ dy/dt dx/dt or y œ 2x È3 ; œ 3È3 6 8. t œ 3 Ê x œ È3 1 œ 2, y œ È3(3) œ 3; È œ 3 Èt3t 1 œ dyw dt Ê œ dy dx ¹ tœ3 3 È 3 1 È3(3) œ dx dt œ 4t, y 1 œ 1 † (x 5) or y œ x 4; 10. t œ 1 Ê x œ 1, y œ 2; œ dx dt dy dt œ Ê xœ sin t 1 cos t d# y dx# œ dy/dt dx/dt œ Ê 3 2tÈ3t Èt1 dyw dt œ t"# , œ 4t$ Ê œ 2t Ê dy dt y (2) œ 1(x 1) or y œ x 1; 1 3 œ 3 # (3t)"Î# Ê dy dx œ ˆ 3# ‰ (3t) "Î# ˆ "# ‰ (t1) "Î# Š 2tÈ3t3Èt 1 ‹ Š 2Èt1 1 ‹ œ tÈ33t œ "3 9. t œ 1 Ê x œ 5, y œ 1; 11. t œ dy dt œ 2; tangent line is y 3 œ 2[x (2)] or y œ 2x 1; È3t 3 (t 1) "Î# ‘3Èt 1 3 (3t) "Î# ‘ # # 3t d# y dx# ¹ tœ3 œ "# (t 1)"Î# , dx dt Ê 1 3 sin dy dx ¹ tœ 1 3 œ 1 3 œ 1 3 sin ˆ 13 ‰ 1cos ˆ 13 ‰ œ dyw dt " t dy dx d# y dx# Ê œ œ dyw /dt dx/dt dy dx œ œ 1 Ê œ ˆ "t ‰ Š t"# ‹ d# y dx# œ 4t$ 4t 2t 4t œ t# Ê œ " # Ê œ t Ê 1 Š t"# ‹ dy dx ¹ tœc1 d# y dx# ¹ tœc1 dy dx ¹ tœ1 œ t# Ê œ (1)# œ 1; tangent line is œ " # œ 1; tangent line is d# y dx# ¹ tœ1 œ1 È3 # dy , y œ 1 cos 13 œ 1 #" œ #" ; dx dt œ 1 cos t, dt œ sin t Ê È Š #3 ‹ È œ ˆ " ‰ œ È3 ; tangent line is y "# œ È3 Šx 13 #3 ‹ # Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. dy dx œ dy/dt dx/dt 655 656 Chapter 11 Parametric Equations and Polar Coordinates 1È3 3 Ê y œ È3x 1 (1 cos t)# œ 12. t œ Ê 1 2 Ê dy dx ¹ tœ 1 2; d# y dx# ¹ tœ 1 Ê dyw dt (1 cos t)(cos t) (sin t)(sin t) (1cos t)# œ 1 1 cos t œ d# y dx# Ê œ dyw /dt dx/dt œ œ cos t sin t 1 ‰ ˆ 1 cos t 1 cos t œ 4 3 1 2 x œ cos œ cot 2 13. t œ 2 Ê x œ œ 0, y œ 1 sin 1 # œ 2; œ sin t, dx dt w œ 0; tangent line is y œ 2; œ 31 , y œ 1 21 1 2 tangent line is y œ 9x 1; œ 2; 2 21 dyw dt œ dx dt 14. t œ 0 Ê x œ 0 e0 œ 1, y œ 1 e0 œ 0; dyw dt dx dt 2y$ 3t# œ 4 Ê 6y# œ csc t Ê œ 4 at 1 b3 a t 1b 3 œ 1 et , dx dt d# y dx# 4t œ 0 Ê 3x2 dx dt œ 4t Ê œ 6t 6y# 6t œ 0 Ê dy dt dy dt e t a 1 e t b3 œ œ t y# csc t sin t d# y dx# ¹ tœ2 œ 4a 2 1b3 a 2 1b 3 d# y dx# ¹ tœ0 Ê dx dt œ 4t 3x2 ; ; thus dy dx œ dy/dt dx/dt œ œ œ 1 œ a2 1b2 a2 1 b2 œ 9; œ e 0 1 e0 2 at 1b2 at 1 b 2 Ê e t 1 et œ d# y dx# ¹ tœ 1 œ csc t Ê œ dy dx œ cot t $ dy dx Ê Ê dy dx # œ d y dx# œ et Ê dy dt Ê œ 1 at 1b2 œ et a 1 e t b2 tangent line is y œ 12 x 12 ; 15. x3 2t# œ 9 Ê 3x2 d# y dx# # # dy dt 1 , dy at 1b2 dt t 1b œ 4ata Ê 1 b3 œ cos t Ê dy dt œ 108 Ê e 0 a 1 e 0 b3 Š yt# ‹ dy dx ¹ tœ0 œ 12 ; œ 18 œ Š c4t ‹ dy dx ¹ tœ2 3x2 t(3x2 ) y# (4t) œ 3x2 4y# ;tœ2 Ê x3 2(2)# œ 9 Ê x3 8 œ 9 Ê x3 œ 1 Ê x œ 1; t œ 2 Ê 2y$ 3(2)# œ 4 Ê 2y$ œ 16 Ê y$ œ 8 Ê y œ 2; therefore 16. x œ É5 Èt Ê Ê at 1b dy dt œ " #È t therefore, dy dx ¹ tœ4 œ dy dt dy dt "Î# " Èt y œ #at 1b œ " #yÈt #tÈt 2Èt œ œ "4 dx dt dy t Èy ‹ dt 3x"Î# œ y 2Èt1 Œ 2Èy (t b 1) b 2tÈt b 1 Š " 2t b 1 ‹ 1 b 3x"Î# dx dt œ 2t 1 Ê ˆ1 3x"Î# ‰ 2Èy Ê œ dy dt dy dt dx dt 1 # ; therefore Èt É5 Èt " #yÈt #Ètat" b sin t x cos t 2 dy dx ¹ tœ1 œ † 4Èt É5 Èt " 2 3 Š 2Èct yb 1 2Èy‹ ŠÈt 1 Èy ‹ t dy dt œ dx dt Èt 1 œ 2t1 13x"Î# y 2È t 1 yÈ y 4yÈt 1 2È y (t 1) 2tÈt 1 ; yÈt 1 2tÈy œ 4 2Èy Š Èt y ‹ ; thus ; t œ 0 Ê x 2x$Î# œ 0 Ê x ˆ1 2x"Î# ‰ œ 0 Ê x œ 0; t œ 0 t sin t 2t œ y Ê sin t t cos t 2 œ Ê xœ 4 œ 2t 1 Ê œ0 Ê dx dt dy dt ; sin 1 1 cos 1 2 – 1 Š 1# ‹ cos 1 sin 1 2 dy dx ¹ tœ0 œ œ 1 Ê (sin t 2) thus œ dy dx œ 4 1 8 21 È4 È0 1 Œ 2È4(0 1) 2(0)È0 1 4 dx dt " #yÈt È È œ #t t "2 t œ dy dt dx dt œ dy dx 10È3 9 œ Ê yÈ0 1 2(0)Èy œ 4 Ê y œ 4; therefore 18. x sin t 2x œ t Ê " "Î# ; y(t 1) œ Èt Ê y (t 1) dy dt œ # t t œ 4 Ê x œ É5 È4 œ È3; t œ 4 Ê y † 3 œ È4 Ê y œ cyÈy c 4yÈt b 1 dy/dt dx/dt 3 œ 16 4È t É 5 È t ; thus Èt 1 y ˆ " ‰ (t 1)"Î# 2Èy 2t ˆ " y"Î# ‰ # # Ê ŠÈt 1 dy dx 3a"b2 4a#b# œ ˆ "# t"Î# ‰ œ 2Š" 2a 23 bÈ4‹É& È4 17. x 2x$Î# œ t# t Ê Ê ˆ5 Èt‰ y Ê #ˆ" #yÈt‰É& Èt ; "t œ " # œ dx dt dy dx ¹ tœ2 4(4) 2(0) 1 Œ 1 3(0)"Î# dx dt œ 6 œ 1 x cos t Ê sin t t cos t 2 c x cos t ‰ ˆ 1sin tb2 dx dt œ 1 x cos t sin t2 ; t œ 1 Ê x sin 1 2x œ 1 œ 4 — Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ; dy dt œ0 Section 11.2 Calculus With Parametric Curves 19. x œ t3 t, y 2t3 œ 2x t2 Ê Ê œ dy dx 2t 2 3t2 1 Ê dy dx ¹ tœ1 œ dx 2 dt œ 3t 2 a1 b 2 œ1 3 a1 b2 1 20. t œ lnax tb, y œ t et Ê 1 œ Ê œ dy dx 21. A œ '0 21 t et et xt1; 1 ˆ dx x t dt 1, 6t2 œ 2 dx dt 2t Ê dy dt 1‰ Ê x t œ t œ 0 Ê 0 œ lnax 0b Ê x œ 1 Ê dx dx dt 1 Ê dt œ a0be0 e0 dy dx ¹ tœ0 œ 1 0 1 dy dt œ 2a3t2 1b 2t 6t2 œ 2t 2 x t 1, œ 657 dy dt œ t et et ; 1 2 y dx œ '0 aa1 cos tbaa1 cos tbdt œ a2 '0 a1 cos tb2 dt œ a2 '0 a1 2cos t cos2 tbdt 21 œ a2 '0 ˆ1 2cos t 21 21 1 cos 2t ‰ dt 2 21 œ a2 '0 ˆ 23 2cos t 12 cos 2t‰dt œ a2 ” 23 t 2sin t 14 sin 2t• 21 21 0 œ a2 a31 0 0b 0 œ 31 a2 22. A œ '0 x dy œ '0 at t2 baet bdt ”u œ t t2 Ê du œ a1 2tbdt; dv œ aet bdt Ê v œ et • 1 1 1 œ et at t2 bº '0 et a1 2tbdt 1 t t ”u œ 1 2t Ê du œ 2dt; dv œ e dt Ê v œ e • 0 1 1 0 0 œ et at t2 bº ”et a1 2tbº '0 2et dt• œ ”et at t2 b et a1 2tb 2et •º 1 0 œ ae1 a0b e1 a1b 2e1 b ae0 a0b e0 a1b 2e0 b œ 1 3e1 œ 1 23. A œ 2'1 y dx œ 2'1 ab sin tbaa sin tbdt œ 2ab'0 sin2 t dt œ 2ab'0 0 1 1 0 1 1 3 e 1 cos 2t 2 dt œ ab'0 a1 cos 2tb dt 1 œ ab’t 12 sin 2t“ œ abaa1 0b !b œ 1 ab 0 24. (a) x œ t2 , y œ t6 , 0 Ÿ t Ÿ 1 Ê A œ '0 y dx œ '0 at6 b2t dt œ '0 2t7 dt œ ’ 14 t8 “ œ 1 1 1 1 0 1 4 0œ (b) x œ t3 , y œ t9 , 0 Ÿ t Ÿ 1 Ê A œ '0 y dx œ '0 at9 b3t2 dt œ '0 3t11 dt œ ’ 14 t12 “ œ 1 1 1 1 0 25. dx dt œ sin t and dy dt 1 4 1 4 0œ 1 4 # # ‰ Š dy Éasin tb# a1 cos tb# œ È2 2 cos t œ 1 cos t Ê Êˆ dx dt dt ‹ œ cos t ‰ È2 ' É sin# t dt Ê Length œ '0 È2 2 cos t dt œ È2 '0 Ɉ 11 cos t (1 cos t) dt œ 1 cos t 0 1 œ È2 '0 1 sin t È1 cos t 1 dt (since sin t 1 0 on [0ß 1]); [u œ 1 cos t Ê du œ sin t dt; t œ 0 Ê u œ 0, # t œ 1 Ê u œ 2] Ä È2 '0 u"Î# du œ È2 2u"Î# ‘ ! œ 4 2 26. dx dt œ 3t# and dy dt È3 Ê Length œ '0 Ä '1 4 27. dx dt 3 # # # ‰ Š dy Éa3t# b# (3t)# œ È9t% 9t# œ 3tÈt# 1 Šsince t œ 3t Ê Êˆ dx dt dt ‹ œ 3tÈt# 1 dt; ’u œ t# 1 Ê 3 # 0 on ’0ß È3“‹ du œ 3t dt; t œ 0 Ê u œ 1, t œ È3 Ê u œ 4“ % u"Î# du œ u$Î# ‘ " œ (8 1) œ 7 œ t and dy dt # # Èt# a2t 1b œ Éat 1b# œ kt 1k œ t 1 since 0 Ÿ t Ÿ 4 ‰ Š dy œ (2t 1)"Î# Ê Êˆ dx dt dt ‹ œ Ê Length œ '0 at 1b dt œ ’ t2 t“ œ a8 4b œ 12 4 # % ! Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 658 28. Chapter 11 Parametric Equations and Polar Coordinates dx dt œ a2t 3b"Î# and dy dt # # ‰ Š dy Éa2t 3b a1 tb# œ Èt# 4t 4 œ kt 2k œ t 2 œ 1 t Ê Êˆ dx dt dt ‹ œ since 0 Ÿ t Ÿ 3 Ê Length œ '0 (t 2) dt œ ’ t2 2t“ œ 3 3 # ! 29. dx dt œ 8t cos t and dy dt dx dt # # ‰ Š dy Éa8t cos tb# a8t sin tb# œ È64t# cos# t 64t# sin# t œ 8t sin t Ê Êˆ dx dt dt ‹ œ 1 # œ k8tk œ 8t since 0 Ÿ t Ÿ 30. 21 # Ê Length œ '0 1Î2 1Î# 8t dt œ c4t# d ! œ ˆ sec t" tan t ‰ asec t tan t sec# tb cos t œ sec t cos t and œ 1# œ Éasec t cos tb# asin tb# œ Èsec# t 1 œ Ètan# t œ ktan tk œ tan t since 0 Ÿ t Ÿ Ê Length œ '0 1Î3 31. dx dt œ sin t and dy dt tan t dt œ '0 1Î3 1Î$ dt œ c ln kcos tkd ! sin t cos t # # ‰ Š dy œ sin t Ê Êˆ dx dt dt ‹ dy dt " # œ ln 1 3 ln 1 œ ln 2 ‰ Š dy Éasin tb# acos tb# œ 1 Ê Area œ ' 21y ds œ cos t Ê Êˆ dx dt dt ‹ œ # # œ '0 21a2 sin tba1bdt œ 21 c2t cos td #!1 œ 21[a41 1b a0 1b] œ 81# 21 32. dx dt œ t"Î# and È3 œ '0 dy dt # 21 ˆ 23 t$Î# ‰ É t " t È3 '0 # 21 ˆ 23 t$Î# ‰ É t # fatb œ 21 ˆ 23 t$Î# ‰ É t Ê 33. dx dt È3 '0 281 9 Fatb dt œ œ 1 and È2 dy dt # " t dt œ 41 3 È3 '0 1 t Ê Area œ ' 21x ds tÈt# 1 dt; cu œ t# 1 Ê du œ 2t dt; t œ 0 Ê u œ 1, '14 231 Èu du œ 491 u$Î# ‘ %" œ 2891 ’t œ È3 Ê u œ 4“ Ä Note: # # Èt t" œ É t ‰ Š dy œ t"Î# Ê Êˆ dx dt dt ‹ œ 1 t dt is an improper integral but limb fatb exists and is equal to 0, where tÄ! . Thus the discontinuity is removable: define Fatb œ fatb for t 0 and Fa0b œ 0 . # # # È2‹ œ Ét# 2È2 t 3 Ê Area œ ' 21x ds ‰# Š dy œ t È2 Ê Êˆ dx dt dt ‹ œ Ê1 Št œ 'cÈ2 21 Št È2‹ Ét# 2È2 t 3 dt; ’u œ t# 2È2 t 3 Ê du œ Š2t 2È2‹ dt; t œ È2 Ê u œ 1, ’t œ È2 Ê u œ 9“ Ä '1 1Èu du œ 23 1u$Î# ‘ " œ 9 * 21 3 a27 1b œ 521 3 ' 21y ds œ '0 ‰ Š dy 34. From Exercise 30, ʈ dx dt dt ‹ œ tan t Ê Area œ # # 1Î$ œ 21 c cos td ! 35. dx dt œ 2 and dy dt # 1 Î3 21 cos t tan t dt œ 21 '0 1 Î3 sin t dt œ 21 "# (1)‘ œ 1 È2# 1# œ È5 Ê Area œ ' 21y ds œ ' 21at 1bÈ5 dt ‰ Š dy œ 1 Ê Êˆ dx dt dt ‹ œ 0 # # 1 " œ 21È5 ’ t2 t“ œ 31È5. Check: slant height is È5 Ê Area is 1a1 2bÈ5 œ 31È5 . ! Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.2 Calculus With Parametric Curves 36. dx dt œ h and 659 Èh# r# Ê Area œ ' 21y ds œ ' 21rtÈh# r# dt ‰ Š dy œ r Ê Êˆ dx dt dt ‹ œ 0 # # dy dt œ 2 1 r È h# r # 1 '01 t dt œ 21rÈh# r# ’ t2 “ " œ 1rÈh# r# . # ! Check: slant height is Èh# r# Ê Area is 1rÈh# r# . 37. Let the density be $ œ 1. Then x œ cos t t sin t Ê dx dt œ t cos t, and y œ sin t t cos t Ê dy dt # # 1 # È(t cos t)# (t sin t)# œ ktk dt œ t dt since 0 Ÿ t Ÿ ‰ Š dy Ê dm œ 1 † ds œ ʈ dx dt dt ‹ dt œ M œ ' dm œ '0 1Î2 1Î# œ csin t t cos td ! yœ Mx M œ 1# Š3 4 ‹ œ # Š 18 ‹ xœ My M œ 3‰ # Š 18 ‹ 1Î# ct# sin t 2 sin t 2t cos td ! 24 1# 1Î# ct# cos t 2 cos t 2t sin td ! œ 12 1 Therefore axß yb œ ˆ 12 1 38. Let the density be $ œ 1. Then x œ et cos t Ê dx dt 1 Î2 œ 24 1# , where we integrated by parts. Therefore, acos t t sin tb t dt œ '0 1 Î2 24 1# . 1# 4 œ 3 2. Next, My œ ' µ x dm œ '0 . The curve's mass is 1Î2 1Î2 1Î2 . Also Mx œ ' µ y dm œ '0 asin t t cos tb t dt œ '0 t sin t dt '0 t# cos t dt 1Î# œ ccos t t sin td ! ˆ 3#1 1# 8 t dt œ œ t sin t 31 # t cos t dt '0 1 Î2 t# sin t dt 3, again integrating by parts. Hence ‰ ß 24 1# 2 . œ et cos t et sin t, and y œ et sin t Ê dy dt œ et sin t et cos t # # ‰ Š dy Éaet cos t et sin tb# aet sin t et cos tb# dt œ È2e2t dt œ È2 et dt. Ê dm œ 1 † ds œ ʈ dx dt dt ‹ dt œ 1 1 The curve's mass is M œ ' dm œ '0 È2 et dt œ È2 e1 È2 . Also Mx œ ' µ y dm œ '0 aet sin tb ŠÈ2 et ‹ dt 2t 21 œ '0 È2 e2t sin t dt œ È2 ’ e5 (2 sin t cos t)“ œ È2 Š e5 5" ‹ Ê y œ 1 1 ! Mx M œ È2 Š e21 " ‹ 5 5 È 2 e1 È 2 œ e21 " 5 ae1 1b . 2t 21 Next My œ ' µ x dm œ '0 aet cos tb ŠÈ2 et ‹ dt œ '0 È2 e2t cos t dt œ È2 ’ e5 a2 cos t sin tb“ œ È2 Š 2e5 52 ‹ 1 My M œ 1 ! 21 Ê xœ 1 È2 Š 2e5 25 ‹ È 2 e1 È 2 21 21 21 œ 52eae1 12b . Therefore axß yb œ Š 52eae1 12b ß 5 eae1 11b ‹. 39. Let the density be $ œ 1. Then x œ cos t Ê dx dt œ sin t, and y œ t sin t Ê dy dt œ 1 cos t # # ‰ Š dy Éasin tb# a1 cos tb# dt œ È2 2 cos t dt. The curve's mass Ê dm œ 1 † ds œ ʈ dx dt dt ‹ dt œ is M œ ' dm œ '0 È2 2 cos t dt œ È2'0 È1 cos t dt œ È2 '0 É2 cos# ˆ #t ‰ dt œ 2 '0 ¸cos ˆ #t ‰¸ dt 1 1 œ 2 '0 cos ˆ #t ‰ dt ˆsince 0 Ÿ t Ÿ 1 Ê 0 Ÿ 1 t # 1 1 1 Ÿ 1# ‰ œ 2 2 sin ˆ 2t ‰‘ ! œ 4. Also Mx œ ' µ y dm œ '0 at sin tb ˆ2 cos #t ‰ dt œ '0 2t cos ˆ #t ‰ dt '0 2 sin t cos ˆ #t ‰ dt 1 1 1 1 1 œ 2 4 cos ˆ 2t ‰ 2t sin ˆ #t ‰‘ ! 2 "3 cos ˆ #3 t‰ cos ˆ "# t‰‘ ! œ 41 16 3 Ê yœ Next My œ ' µ x dm œ '0 acos tbˆ2 cos #t ‰ dt œ '0 cos t cos ˆ #t ‰ dt œ 2 ’sin ˆ 2t ‰ 1 œ 4 3 Ê xœ My M ˆ 43 ‰ 4 œ œ 1 " 3 ˆ41 16 ‰ Mx 3 œ1 M œ 4 sin ˆ 3# t‰ 1 “ œ 2 23 3 ! 43 . . Therefore axß yb œ ˆ 3" ß 1 43 ‰. 40. Let the density be $ œ 1. Then x œ t$ Ê dx dt œ 3t# , and y œ 3t# # Ê dy dt œ 3t Ê dm œ 1 † ds # # ‰ Š dy Éa3t# b# (3t)# dt œ 3 ktk Èt# 1 dt œ 3tÈt# 1 dt since 0 Ÿ t Ÿ È3. The curve's mass œ ʈ dx dt dt ‹ dt œ È3 is M œ ' dm œ '0 œ 9 # È3 '0 $Î# 3tÈt# 1 dt œ ’at# 1b “ t$ Èt# 1 dt œ 87 5 È3 ! È3 œ 7. Also Mx œ ' µ y dm œ '0 œ 17.4 (by computer) Ê y œ Mx M œ 17.4 7 3t# # Š3tÈt# 1‹ dt ¸ 2.49. Next My œ ' µ x dm Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 660 Chapter 11 Parametric Equations and Polar Coordinates È3 È3 œ '0 t$ † 3t Èat# 1b dt œ 3 '0 t% Èt# 1 dt ¸ 16.4849 (by computer) Ê x œ My M œ ¸ 2.35. 16.4849 7 Therefore, axß yb ¸ a2.35ß 2.49b. œ 2 sin 2t and dx dt 41. (a) Ê Length œ '0 1Î2 œ 1 cos 1t and dx dt (b) # # # # ‰ Š dy Éa2 sin 2tb# a2 cos 2tb# œ 2 œ 2 cos 2t Ê Êˆ dx dt dt ‹ œ dy dt 1Î# 2 dt œ c2td ! œ1 ‰ Š dy Éa1 cos 1tb# a1 sin 1tb# œ 1 œ 1 sin 1t Ê Êˆ dx dt dt ‹ œ dy dt Ê Length œ '1Î2 1 dt œ c1td "Î# œ 1 1 Î2 "Î# 42. (a) x œ gayb has the parametrization x œ gayb and y œ y for c Ÿ y Ÿ d Ê dx dy œ gw ayb and œ 1; then dy dy dx dx ' ' È1 [gw ayb]# dy Length œ 'c ÊŠ dy dy ‹ Š dy ‹ dy œ c Ê1 Š dy ‹ dy œ c # d (b) x œ y3Î2 , 0 Ÿ y Ÿ œ 3 Î2 8 27 a4b 4 3 # Ê 3 Î2 8 27 a1b (c) x œ 23 y2Î3 , 0 Ÿ y Ÿ 1 Ê œ lim 3 2 a Ä0 œ 32 y1Î2 Ê L œ '0 4 Î3 dx dy œ # d 56 27 dx dy d É1 ˆ 32 y1Î2 ‰# dy œ ' 0 1 1 Ê œ œ œ 1 È œ 2 3 2 2È 3 1 È3 2 2 sin )b, dy dx º )œ0 (b) x œ ˆ1 2 sinˆ 1# ‰‰cosˆ 1# ‰ œ 0, y œ ˆ1 2 sinˆ 1# ‰‰sinˆ 1# ‰ œ 3; È3 1 œ y œ ˆ1 2 sinˆ 431 ‰‰sinˆ 431 ‰ œ 45. dy d) œ œ 01 20 2 sinˆ2ˆ 1# ‰‰ cosˆ 1# ‰ 2 cosˆ2ˆ 1# ‰‰ sinˆ 1# ‰ 3 È3 2 ; dy dx º )œ41/3 œ dx dt œ 1, dy dt œ sin t Ê dy dx œ sin t 1 œ sin t Ê or t œ 31 2 d2 y dx2 Ê dy dx , d dy dt Š dx ‹ (a) the minimum slope is dy dx º tœ31Î2 œ sinˆ 321 ‰ œ 1, which occurs at x œ œ 2 cos 2t Ê dy dx Ê 2 cos# t 1 œ 0 Ê cos t œ „ y œ sin 2 ˆ 14 ‰ œ 1 Ê Š 00 2 1 œ0 È2 # ß 1‹ œ d2 y dx2 œ œ cos t. The cos t 1 d2 y dx2 œ0 œ ± ± 31Î2 1 Î2 œ sinˆ 12 ‰ œ 1, which occurs at x œ 12 , y œ 1 cosˆ 12 ‰ œ 1 dy dt œ 1 2 in other words, points where dy dx º tœ1Î2 œ cos t and œ 2 sinˆ2ˆ 431 ‰‰ cosˆ 431 ‰ 2 cosˆ2ˆ 431 ‰‰ sinˆ 431 ‰ œ cos t Ê (a) the maximum slope is dx dt 2 3 œ 2cos ) sin ) cos )a1 2 sin )b 2 sina2a0bb cosa0b 2 cosa2a0bb sina0b dy dx º )œ1/2 maximum and minimum slope will occur at points that maximize/minimize Ê cos t œ 0 Ê t œ 2 3 a Ä0 œ Š 4 3È 3 ‹ 44. x œ t, y œ 1 cos t, 0 Ÿ t Ÿ 21 Ê 1 2 'a1 É y yÎ Î 1 dy dy œ lim a (a) x œ a1 2 sina0bbcosa0b œ 1, y œ a1 2 sina0bbsina0b œ 0; È3 1 , 2 0 3 Î2 3 Î2 lim ” 32 † 23 ˆy2Î3 1‰ • œ lim Ša2b3Î2 ˆa2Î3 1‰ ‹ œ 2È2 1 a Ä0 a Ä0 dx 2 d) œ 2cos ) sin )a1 4cos ) sin ) cos ) 2 sin 2) cos ) 2cos2 ) 2sin2 ) sin ) œ 2 cos 2) sin ) (c) x œ ˆ1 2 sinˆ 431 ‰‰cosˆ 431 ‰ œ 1 y2Î3 4Î3 1 'a1 ˆy2Î3 1‰1Î2 ˆ 23 y1Î3 ‰ dy œ 2cos ) sin ) cos )a1 2 sin )b 2cos2 ) sin )a1 2 sin )b 3Î2 É1 94 y dy œ ” 49 † 23 ˆ1 94 y‰ • # œ y1Î3 Ê L œ '0 É1 ay1Î3 b dy œ '0 É1 43. x œ a1 2 sin )bcos ), y œ a1 2 sin )bsin ) Ê dy dx 4Î3 dy/dt dx/dt " È2 œ 2 cos 2t cos t Ê tœ 1 4 , œ 31 4 , 2 a2 cos# t 1b cos t 51 4 , 71 4 ; then 31 2 , dy dx y œ 1 cosˆ 321 ‰ œ 1 œ0 Ê 2 a2 cos# t 1b cos t . In the 1st quadrant: t œ 1 4 œ0 Ê x œ sin 1 4 œ È2 # is the point where the tangent line is horizontal. At the origin: x œ 0 and y œ 0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. and Section 11.2 Calculus With Parametric Curves Ê sin t œ 0 Ê t œ 0 or t œ 1 and sin 2t œ 0 Ê t œ 0, the origin. Tangents at origin: 46. dx dt œ dy dx œ 2 cos 2t and dy dt œ 3 cos 3t Ê 3 ca2 cos# t 1b (cos t) 2 sin t cos t sin td 2 a2 cos# t 1b (3 cos t) a4 cos# t3b 2 a2 cos# t 1b œ0 Ê œ 2 Ê y œ 2x and dy dx ¹ tœ0 œ dy dx œ œ dy/dt dx/dt and y œ sin 3 ˆ 16 ‰ œ 1 Ê Š 3(cos 2t cos t sin 2t sin t) 2 a2 cos# t1b (3 cos t) a2 cos# t 1 2 sin# tb 2 a2 cos# t 1b È3 # È3 # ß 1‹ Ê tœ 1 6 , 51 6 , œ (3 cos t) a4 cos# t 3b 2 a2 cos# t 1b ; then 71 6 , 111 6 . In the 1st quadrant: t œ 1 6 1 # , 31 # and Ê x œ sin 2 ˆ 16 ‰ œ È3 # is the point where the graph has a horizontal tangent. At the origin: x œ 0 and y œ 0 Ê sin 2t œ 0 and sin 3t œ 0 Ê t œ 0, 1 # , 1, the tangent lines at the origin. Tangents at the origin: 3 cos (31) 2 cos (21) œ 3 cos 3t 2 cos 2t 1 give the tangent lines at œ 0 Ê 3 cos t œ 0 or 4 cos# t 3 œ 0: 3 cos t œ 0 Ê t œ 4 cos# t 3 œ 0 Ê cos t œ „ œ 1 31 # , 1, # ; thus t œ 0 and t œ dy dx ¹ tœ1 œ 2 Ê y œ 2x 661 31 # and t œ 0, dy dx ¹ tœ0 œ 3 cos 0 2 cos 0 1 3 œ , 21 3 , 1, 41 3 , 51 3 3 # x, and Ê t œ 0 and t œ 1 give 3 # Ê yœ dy dt œ a sin t Ê Length dy dx ¹ tœ1 œ 3# Ê y œ 3# x 47. (a) x œ aat sin tb, y œ aa1 cos tb, 0 Ÿ t Ÿ 21 Ê dx dt œ aa1 cos tb, œ '0 Éaaa1 cos tbb# aa sin tb# dt œ '0 Èa# 2a# cos t a# cos# t a# sin# t dt 21 21 œ aÈ2'0 È1 cos t dt œ aÈ2'0 É2 sin2 ˆ 2t ‰ dt œ 2a'0 sinˆ 2t ‰ dt œ ’4a cosˆ 2t ‰“ 21 21 21 21 0 œ 4a cos 1 4a cosa0b œ 8a (b) a œ 1 Ê x œ t sin t, y œ 1 cos t, 0 Ÿ t Ÿ 21 Ê dx dt 21 œ 1 cos t, dy dt œ sin t Ê Surface area œ œ '0 21a1 cos tbÉa1 cos tb# asin tb# dt œ '0 21a1 cos tbÈ1 2 cos t cos# t sin# t dt 21 3Î2 œ 21'0 a1 cos tbÈ2 2 cos t dt œ 2È21'0 a1 cos tb3Î2 dt œ 2È21'0 ˆ1 cos ˆ2 † 2t ‰‰ dt 21 21 21 3 Î2 œ 2È21'0 ˆ2 sin2 ˆ 2t ‰‰ dt œ 81'0 sin3 ˆ 2t ‰ dt 21 21 ’u œ t 2 Ê du œ 21 dt Ê dt œ 2 du; t œ 0 Ê u œ 0, t œ 21 Ê u œ 1“ œ 161'0 sin3 u du œ 161'0 sin2 u sin u du œ 161'0 a1 cos2 u bsin u du œ 161'0 sin u du 161'0 cos2 u sin u du 1 œ ’161cos u 1 1 161 3 3 cos u“0 1 œ ˆ161 161 ‰ 3 1 ˆ161 161 ‰ 3 œ 641 3 48. x œ t sin t, y œ 1 cos t, 0 Ÿ t Ÿ 21; Volume œ '0 1 y2 dx œ '0 1a1 cos tb2 a1 cos tbdt 21 21 2t ‰ œ 1'0 a1 3cos t 3cos2 t cos3 tbdt œ 1'0 ˆ1 3cos t 3ˆ 1 cos cos2 t cos t‰dt 2 21 21 œ 1'0 ˆ 52 3cos t 32 cos 2t a1 sin2 tb cos t‰dt œ 1'0 ˆ 52 4cos t 32 cos 2t sin2 t cos t‰dt 21 21 21 œ 1’ 52 t 4sin t 34 sin 2t 31 sin3 t “ 0 œ 1a51 0 0 0b 0 œ 512 47-50. Example CAS commands: Maple: with( plots ); with( student ); x := t -> t^3/3; y := t -> t^2/2; a := 0; b := 1; N := [2, 4, 8 ]; for n in N do Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 662 Chapter 11 Parametric Equations and Polar Coordinates tt := [seq( a+i*(b-a)/n, i=0..n )]; pts := [seq([x(t),y(t)],t=tt)]; L := simplify(add( student[distance](pts[i+1],pts[i]), i=1..n )); # (b) T := sprintf("#47(a) (Section 11.2)\nn=%3d L=%8.5f\n", n, L ); P[n] := plot( [[x(t),y(t),t=a..b],pts], title=T ): # (a) end do: display( [seq(P[n],n=N)], insequence=true ); ds := t ->sqrt( simplify(D(x)(t)^2 + D(y)(t)^2) ): # (c) L := Int( ds(t), t=a..b ): L = evalf(L); 11.3 POLAR COORDINATES 1. a, e; b, g; c, h; d, f 2. a, f; b, h; c, g; d, e 3. (a) ˆ2ß 1# 2n1‰ and ˆ2ß 1# (2n 1)1‰ , n an integer (b) (#ß 2n1) and (#ß (2n 1)1), n an integer (c) ˆ2ß 3#1 2n1‰ and ˆ2ß 3#1 (2n 1)1‰ , n an integer (d) (#ß (2n 1)1) and (#ß 2n1), n an integer 4. (a) ˆ3ß 14 2n1‰ and ˆ3ß 541 2n1‰ , n an integer (b) ˆ3ß 14 2n1‰ and ˆ3ß 541 2n1‰ , n an integer (c) ˆ3ß 14 2n1‰ and ˆ3ß 341 2n1‰ , n an integer (d) ˆ3ß 14 2n1‰ and ˆ3ß 341 2n1‰ , n an integer 5. (a) x œ r cos ) œ 3 cos 0 œ 3, y œ r sin ) œ 3 sin 0 œ 0 Ê Cartesian coordinates are ($ß 0) (b) x œ r cos ) œ 3 cos 0 œ 3, y œ r sin ) œ 3 sin 0 œ 0 Ê Cartesian coordinates are ($ß 0) (c) x œ r cos ) œ 2 cos 21 œ 1, y œ r sin ) œ 2 sin 21 œ È3 Ê Cartesian coordinates are Š1ß È3‹ 3 (d) x œ r cos ) œ 2 cos 71 3 3 œ 1, y œ r sin ) œ 2 sin 71 3 œ È3 Ê Cartesian coordinates are Š1ß È3‹ (e) x œ r cos ) œ 3 cos 1 œ 3, y œ r sin ) œ 3 sin 1 œ 0 Ê Cartesian coordinates are (3ß 0) (f) x œ r cos ) œ 2 cos 1 œ 1, y œ r sin ) œ 2 sin 1 œ È3 Ê Cartesian coordinates are Š1ß È3‹ 3 3 (g) x œ r cos ) œ 3 cos 21 œ 3, y œ r sin ) œ 3 sin 21 œ 0 Ê Cartesian coordinates are (3ß 0) (h) x œ r cos ) œ 2 cos ˆ 1 ‰ œ 1, y œ r sin ) œ 2 sin ˆ 1 ‰ œ È3 Ê Cartesian coordinates are Š1ß È3‹ 3 6. (a) x œ È2 cos 1 4 œ 1, y œ È2 sin 3 1 4 œ 1 Ê Cartesian coordinates are (1ß 1) (b) x œ 1 cos 0 œ 1, y œ 1 sin 0 œ 0 Ê Cartesian coordinates are (1ß 0) (c) x œ 0 cos 1# œ 0, y œ 0 sin 1# œ 0 Ê Cartesian coordinates are (!ß 0) (d) x œ È2 cos ˆ 1 ‰ œ 1, y œ È2 sin ˆ 1 ‰ œ 1 Ê Cartesian coordinates are (1ß 1) 4 (e) x œ 3 cos 51 6 œ 4 3È 3 2 , y œ 3 sin 51 6 È œ 3# Ê Cartesian coordinates are Š 3 # 3 ß 3# ‹ (f) x œ 5 cos ˆtan" 43 ‰ œ 3, y œ 5 sin ˆtan" 43 ‰ œ 4 Ê Cartesian coordinates are ($ß 4) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.3 Polar Coordinates 663 (g) x œ 1 cos 71 œ 1, y œ 1 sin 71 œ 0 Ê Cartesian coordinates are (1ß 0) (h) x œ 2È3 cos 231 œ È3, y œ 2È3 sin 231 œ 3 Ê Cartesian coordinates are ŠÈ3ß 3‹ 7. (a) a1, 1b Ê r œ È12 12 œ È2, sin ) œ 1 È2 and cos ) œ 1 È2 1 4 Ê)œ Ê Polar coordinates are ŠÈ2, 14 ‹ (b) a3, 0b Ê r œ Éa3b2 02 œ 3, sin ) œ 0 and cos ) œ 1 Ê ) œ 1 Ê Polar coordinates are a3, 1b 2 (c) ŠÈ3, 1‹ Ê r œ ÊŠÈ3‹ a1b2 œ 2, sin ) œ 12 and cos ) œ (d) a3, 4b Ê r œ Éa3b2 42 œ 5, sin ) œ 4 5 È3 2 111 6 Ê)œ Ê Polar coordinates are ˆ2, 111 ‰ 6 and cos ) œ 35 Ê ) œ 1 arctanˆ 43 ‰ Ê Polar coordinates are ˆ5, 1 arctanˆ 43 ‰‰ 8. (a) a2, 2b Ê r œ Éa2b2 a2b2 œ 2È2, sin ) œ È12 and cos ) œ È12 Ê ) œ 341 Ê Polar coordinates are Š2È2, 341 ‹ (b) a0, 3b Ê r œ È02 32 œ 3, sin ) œ 1 and cos ) œ 0 Ê ) œ 2 (c) ŠÈ3, 1‹ Ê r œ ÊŠÈ3‹ 12 œ 2, sin ) œ 1 2 1 2 Ê Polar coordinates are ˆ3, 12 ‰ and cos ) œ (d) a5, 12b Ê r œ É52 a12b2 œ 13, sin ) œ 12 13 and cos ) œ 5 12 È3 2 Ê)œ 51 6 Ê Polar coordinates are ˆ2, 51 ‰ 6 ‰ Ê ) œ arctanˆ 12 5 Ê Polar coordinates are ˆ13, arctanˆ 12 ‰‰ 5 9. (a) a3, 3b Ê r œ È32 32 œ 3È2, sin ) œ È12 and cos ) œ È12 Ê ) œ Š3È2, 51 4 Ê Polar coordinates are 51 4 ‹ (b) a1, 0b Ê r œ Éa1b2 02 œ 1, sin ) œ 0 and cos ) œ 1 Ê ) œ 0 Ê Polar coordinates are a1, 0b 2 (c) Š1, È3‹ Ê r œ Êa1b2 ŠÈ3‹ œ 2, sin ) œ ˆ2, È3 2 and cos ) œ 1 2 Ê)œ 51 3 Ê Polar coordinates are 51 ‰ 3 (d) a4, 3b Ê r œ É42 a3b2 œ 5, sin ) œ 3 5 and cos ) œ 45 Ê ) œ 1 arctanˆ 34 ‰ Ê Polar coordinates are ˆ5, 1 arctanˆ 43 ‰‰ 10. (a) a2, 0b Ê r œ Éa2b2 02 œ 2, sin ) œ 0 and cos ) œ 1 Ê ) œ 0 Ê Polar coordinates are a2, 0b (b) a1, 0b Ê r œ È12 02 œ 1, sin ) œ 0 and cos ) œ 1 Ê ) œ 1 or ) œ 1 Ê Polar coordinates are a1, 1b or a1, 1b (c) a0, 3b Ê r œ É02 a3b2 œ 3, sin ) œ 1 and cos ) œ 0 Ê ) œ (d) Š È3 1 2 , 2‹ are ˆ1, Ê r œ ÊŠ 71 ‰ 6 È3 2 2 ‹ 2 ˆ 21 ‰ œ 1, sin ) œ 12 and cos ) œ 1 2 Ê Polar coordinates are ˆ3, 12 ‰ È3 2 Ê)œ 71 6 or ) œ 561 Ê Polar coordinates or ˆ1, 561 ‰ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 664 Chapter 11 Parametric Equations and Polar Coordinates 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.3 Polar Coordinates 665 26. 27. r cos ) œ 2 Ê x œ 2, vertical line through (#ß 0) 28. r sin ) œ 1 Ê y œ 1, horizontal line through (0ß 1) 29. r sin ) œ 0 Ê y œ 0, the x-axis 30. r cos ) œ 0 Ê x œ 0, the y-axis 31. r œ 4 csc ) Ê r œ 4 sin ) 32. r œ 3 sec ) Ê r œ Ê r sin ) œ 4 Ê y œ 4, a horizontal line through (0ß 4) 3 cos ) Ê r cos ) œ 3 Ê x œ 3, a vertical line through (3ß 0) 33. r cos ) r sin ) œ 1 Ê x y œ 1, line with slope m œ 1 and intercept b œ 1 34. r sin ) œ r cos ) Ê y œ x, line with slope m œ 1 and intercept b œ 0 35. r# œ 1 Ê x# y# œ 1, circle with center C œ (!ß 0) and radius 1 36. r# œ 4r sin ) Ê x# y# œ 4y Ê x# y# 4y 4 œ 4 Ê x# (y 2)# œ 4, circle with center C œ (0ß 2) and radius 2 37. r œ 5 sin )2 cos ) Ê r sin ) 2r cos ) œ 5 Ê y 2x œ 5, line with slope m œ 2 and intercept b œ 5 38. r# sin 2) œ 2 Ê 2r# sin ) cos ) œ 2 Ê (r sin ))(r cos )) œ 1 Ê xy œ 1, hyperbola with focal axis y œ x )‰ˆ " ‰ 39. r œ cot ) csc ) œ ˆ cos Ê r sin# ) œ cos ) Ê r# sin# ) œ r cos ) Ê y# œ x, parabola with vertex (0ß 0) sin ) sin ) which opens to the right sin ) ‰ 40. r œ 4 tan ) sec ) Ê r œ 4 ˆ cos Ê r cos# ) œ 4 sin ) Ê r# cos# ) œ 4r sin ) Ê x# œ 4y, parabola with #) vertex œ (!ß 0) which opens upward 41. r œ (csc )) er cos ) Ê r sin ) œ er cos ) Ê y œ ex , graph of the natural exponential function 42. r sin ) œ ln r ln cos ) œ ln (r cos )) Ê y œ ln x, graph of the natural logarithm function 43. r# 2r# cos ) sin ) œ 1 Ê x# y# 2xy œ 1 Ê x# 2xy y# œ 1 Ê (x y)# œ 1 Ê x y œ „ 1, two parallel straight lines of slope 1 and y-intercepts b œ „ 1 44. cos# ) œ sin# ) Ê r# cos# ) œ r# sin# ) Ê x# œ y# Ê kxk œ kyk Ê „ x œ y, two perpendicular lines through the origin with slopes 1 and 1, respectively. 45. r# œ 4r cos ) Ê x# y# œ 4x Ê x# 4x y# œ 0 Ê x# 4x 4 y# œ 4 Ê (x 2)# y# œ 4, a circle with center C(2ß 0) and radius 2 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 666 Chapter 11 Parametric Equations and Polar Coordinates 46. r# œ 6r sin ) Ê x# y# œ 6y Ê x# y# 6y œ 0 Ê x# y# 6y 9 œ 9 Ê x# (y 3)# œ 9, a circle with center C(0ß 3) and radius 3 47. r œ 8 sin ) Ê r# œ 8r sin ) Ê x# y# œ 8y Ê x# y# 8y œ 0 Ê x# y# 8y 16 œ 16 Ê x# (y 4)# œ 16, a circle with center C(0ß 4) and radius 4 48. r œ 3 cos ) Ê r# œ 3r cos ) Ê x# y# œ 3x Ê x# y# 3x œ 0 Ê x# 3x # Ê ˆx 3# ‰ y# œ 9 4 , a circle with center C ˆ 3# ß !‰ and radius 9 4 y# œ 9 4 3 # 49. r œ 2 cos ) 2 sin ) Ê r# œ 2r cos ) 2r sin ) Ê x# y# œ 2x 2y Ê x# 2x y# 2y œ 0 Ê (x 1)# (y 1)# œ 2, a circle with center C(1ß 1) and radius È2 50. r œ 2 cos ) sin ) Ê r# œ 2r cos ) r sin ) Ê x# y# œ 2x y Ê x# 2x y# y œ 0 # Ê (x 1)# ˆy "# ‰ œ 54 , a circle with center C ˆ1ß "# ‰ and radius È5 # È 51. r sin ˆ) 16 ‰ œ 2 Ê r ˆsin ) cos 16 cos ) sin 16 ‰ œ 2 Ê #3 r sin ) "# r cos ) œ 2 Ê Ê È3 y x œ 4, line with slope m œ " and intercept b œ 4 È3 È3 # È3 È 52. r sin ˆ 231 )‰ œ 5 Ê r ˆsin 231 cos ) cos 231 sin )‰ œ 5 Ê #3 r cos ) "# r sin ) œ 5 Ê Ê È3 x y œ 10, line with slope m œ È3 and intercept b œ 10 53. x œ 7 Ê r cos ) œ 7 55. x œ y Ê r cos ) œ r sin ) Ê ) œ y "# x œ 2 È3 # x "# y œ 5 54. y œ 1 Ê r sin ) œ 1 1 4 56. x y œ 3 Ê r cos ) r sin ) œ 3 57. x# y# œ 4 Ê r# œ 4 Ê r œ 2 or r œ 2 58. x# y# œ 1 Ê r# cos# ) r# sin# ) œ 1 Ê r# acos# ) sin# )b œ 1 Ê r# cos 2) œ 1 59. x# 9 y# 4 œ 1 Ê 4x# 9y# œ 36 Ê 4r# cos# ) 9r# sin# ) œ 36 60. xy œ 2 Ê (r cos ))(r sin )) œ 2 Ê r# cos ) sin ) œ 2 Ê 2r# cos ) sin ) œ 4 Ê r# sin 2) œ 4 61. y# œ 4x Ê r# sin# ) œ 4r cos ) Ê r sin# ) œ 4 cos ) 62. x# xy y# œ 1 Ê x# y# xy œ 1 Ê r# r# sin ) cos ) œ 1 Ê r# (1 sin ) cos )) œ 1 63. x# (y 2)# œ 4 Ê x# y# 4y 4 œ 4 Ê x# y# œ 4y Ê r# œ 4r sin ) Ê r œ 4 sin ) 64. (x 5)# y# œ 25 Ê x# 10x 25 y# œ 25 Ê x# y# œ 10x Ê r# œ 10r cos ) Ê r œ 10 cos ) 65. (x 3)# (y 1)# œ 4 Ê x# 6x 9 y# 2y 1 œ 4 Ê x# y# œ 6x 2y 6 Ê r# œ 6r cos ) 2r sin ) 6 66. (x 2)# (y 5)# œ 16 Ê x# 4x 4 y# 10y 25 œ 16 Ê x# y# œ 4x 10y 13 Ê r# œ 4r cos ) 10r sin ) 13 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.4 Graphing in Polar Coordinates 67. (!ß )) where ) is any angle 68. (a) x œ a Ê r cos ) œ a Ê r œ (b) y œ b Ê r sin ) œ b Ê r œ a cos ) b sin ) Ê r œ a sec ) Ê r œ b csc ) 11.4 GRAPHING IN POLAR COORDINATES 1. 1 cos ()) œ 1 cos ) œ r Ê symmetric about the x-axis; 1 cos ()) Á r and 1 cos (1 )) œ 1 cos ) Á r Ê not symmetric about the y-axis; therefore not symmetric about the origin 2. 2 2 cos ()) œ 2 2 cos ) œ r Ê symmetric about the x-axis; 2 # cos ()) Á r and 2 2 cos (1 )) œ 2 2 cos ) Á r Ê not symmetric about the y-axis; therefore not symmetric about the origin 3. 1 sin ()) œ 1 sin ) Á r and 1 sin (1 )) œ 1 sin ) Á r Ê not symmetric about the x-axis; 1 sin (1 )) œ 1 sin ) œ r Ê symmetric about the y-axis; therefore not symmetric about the origin 4. 1 sin ()) œ 1 sin ) Á r and 1 sin (1 )) œ 1 sin ) Á r Ê not symmetric about the x-axis; 1 sin (1 )) œ 1 sin ) œ r Ê symmetric about the y-axis; therefore not symmetric about the origin Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 667 668 Chapter 11 Parametric Equatins and Polar Coordinates 5. 2 sin ()) œ 2 sin ) Á r and 2 sin (1 )) œ 2 sin ) Á r Ê not symmetric about the x-axis; 2 sin (1 )) œ 2 sin ) œ r Ê symmetric about the y-axis; therefore not symmetric about the origin 6. 1 2 sin ()) œ 1 2 sin ) Á r and 1 2 sin (1 )) œ 1 2 sin ) Á r Ê not symmetric about the x-axis; 1 2 sin (1 )) œ 1 2 sin ) œ r Ê symmetric about the y-axis; therefore not symmetric about the origin 7. sin ˆ #) ‰ œ sin ˆ #) ‰ œ r Ê symmetric about the y-axis; sin ˆ 21#) ‰ œ sin ˆ 2) ‰ , so the graph is symmetric about the x-axis, and hence the origin. 8. cos ˆ #) ‰ œ cos ˆ #) ‰ œ r Ê symmetric about the x-axis; cos ˆ 21#) ‰ œ cos ˆ 2) ‰ , so the graph is symmetric about the y-axis, and hence the origin. 9. cos ()) œ cos ) œ r# Ê (rß )) and (rß )) are on the graph when (rß )) is on the graph Ê symmetric about the x-axis and the y-axis; therefore symmetric about the origin Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.4 Graphing in Polar Coordinates 10. sin (1 )) œ sin ) œ r# Ê (rß 1 )) and (rß 1 )) are on the graph when (rß )) is on the graph Ê symmetric about the y-axis and the x-axis; therefore symmetric about the origin 11. sin (1 )) œ sin ) œ r# Ê (rß 1 )) and (rß 1 )) are on the graph when (rß )) is on the graph Ê symmetric about the y-axis and the x-axis; therefore symmetric about the origin 12. cos ()) œ cos ) œ r# Ê (rß )) and (rß )) are on the graph when (rß )) is on the graph Ê symmetric about the x-axis and the y-axis; therefore symmetric about the origin 13. Since a „ rß )b are on the graph when (rß )) is on the graph ˆa „ rb# œ 4 cos 2( )) Ê r# œ 4 cos 2)‰ , the graph is symmetric about the x-axis and the y-axis Ê the graph is symmetric about the origin 14. Since (rß )) on the graph Ê (rß )) is on the graph ˆa „ rb# œ 4 sin 2) Ê r# œ 4 sin 2)‰ , the graph is symmetric about the origin. But 4 sin 2()) œ 4 sin 2) Á r# and 4 sin 2(1 )) œ 4 sin (21 2)) œ 4 sin (2)) œ 4 sin 2) Á r# Ê the graph is not symmetric about the x-axis; therefore the graph is not symmetric about the y-axis 15. Since (rß )) on the graph Ê (rß )) is on the graph ˆa „ rb# œ sin 2) Ê r# œ sin 2)‰ , the graph is symmetric about the origin. But sin 2()) œ ( sin 2)) sin 2) Á r# and sin 2(1 )) œ sin (21 2)) œ sin (2)) œ ( sin 2)) œ sin 2) Á r# Ê the graph is not symmetric about the x-axis; therefore the graph is not symmetric about the y-axis Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 669 670 Chapter 11 Parametric Equatins and Polar Coordinates 16. Sincea „ rß )b are on the graph when (rß )) is on the graph ˆa „ rb# œ cos 2()) Ê r# œ cos 2)‰, the graph is symmetric about the x-axis and the y-axis Ê the graph is symmetric about the origin. Ê r œ 1 Ê ˆ1ß 1# ‰ , and ) œ 1# Ê r œ 1 w )r cos ) Ê ˆ1ß 1# ‰ ; rw œ ddr) œ sin ); Slope œ rrw sin cos )r sin ) 17. ) œ 1 # sin# )r cos ) sin ) cos )r sin ) sin# ˆ 1# ‰(1) cos 1# sin 1# cos 1# (1) sin 1# œ Ê Slope at ˆ1ß 1# ‰ is œ 1; Slope at ˆ1ß 1# ‰ is sin# ˆ 1# ‰(1) cos ˆ 1# ‰ sin ˆ 1# ‰ cos ˆ 1# ‰(1) sin ˆ 1# ‰ œ1 18. ) œ 0 Ê r œ 1 Ê ("ß 0), and ) œ 1 Ê r œ 1 dr Ê ("ß 1); rw œ d) œ cos ); rw sin )r cos ) cos ) sin )r cos ) rw cos )r sin ) œ cos ) cos )r sin ) 0 sin 0(1) cos 0 cos ) sin )r cos ) Ê Slope at ("ß 0) is coscos # 0(1) sin 0 cos# )r sin ) cos 1 sin 1(1) cos 1 1; Slope at ("ß 1) is cos# 1(1) sin 1 œ 1 Slope œ œ œ Ê r œ 1 Ê ˆ"ß 14 ‰ ; ) œ 14 Ê r œ 1 Ê ˆ1ß 14 ‰ ; ) œ 341 Ê r œ 1 Ê ˆ"ß 341 ‰ ; ) œ 341 Ê r œ 1 Ê ˆ1ß 341 ‰ ; 19. ) œ rw œ 1 4 dr d) œ 2 cos 2); Slope œ r sin )r cos ) r cos )r sin ) w w Ê Slope at ˆ1ß 14 ‰ is Slope at ˆ1ß 14 ‰ is Slope at ˆ1ß 341 ‰ is Slope at ˆ1ß 341 ‰ is 2 cos 2) sin )r cos ) 2 cos 2) cos )r sin ) 2 cos ˆ 1# ‰ sin ˆ 14 ‰(1) cos ˆ 14 ‰ 2 cos ˆ 1 ‰ cos ˆ 1 ‰(1) sin ˆ 1 ‰ œ # 4 4 œ 1; 2 cos ˆ 1# ‰ sin ˆ 14 ‰(1) cos ˆ 14 ‰ 2 cos ˆ 1# ‰ cos ˆ 14 ‰(1) sin ˆ 14 ‰ 2 cos Š 3#1 ‹ sin Š 341 ‹(1) cos Š 341 ‹ 2 cos Š 3#1 ‹ cos Š 341 ‹(1) sin Š 341 ‹ œ 1; œ 1; 2 cos Š 3#1 ‹ sin Š 341 ‹(1) cos Š 341 ‹ 2 cos Š 3#1 ‹ cos Š 341 ‹(1) sin Š 341 ‹ œ 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.4 Graphing in Polar Coordinates 20. ) œ 0 Ê r œ 1 Ê (1ß 0); ) œ 12 Ê r œ 1 Ê ˆ1ß 12 ‰ ; ) œ 1# Ê r œ 1 Ê ˆ"ß 12 ‰ ; ) œ 1 Ê r œ 1 Ê (1ß 1); rw œ dr d) œ 2 sin 2); )r cos ) 2 sin 2) sin )r cos ) Slope œ rr sin cos )r sin ) œ 2 sin 2) cos )r sin ) 2 sin 0 sin 0cos 0 Ê Slope at (1ß 0) is 2 sin 0 cos 0sin 0 , which is undefined; 2 sin 2 ˆ 1 ‰ sin ˆ 1 ‰(1) cos ˆ 1 ‰ Slope at ˆ1ß 12 ‰ is 2 sin 2 ˆ 12 ‰ cos ˆ21 ‰(1) sin ˆ 21 ‰ œ 0; w w 2 Slope at ˆ1ß 12 ‰ is Slope at ("ß 1) is 2 2 2 sin 2 ˆ 1# ‰ sin ˆ 1# ‰(1) cos ˆ 1# ‰ 2 sin 2 ˆ 1 ‰ cos ˆ 1 ‰(1) sin ˆ 1 ‰ # 2 sin 21 sin 1cos 1 2 sin 21 cos 1sin 1 # # œ 0; , which is undefined 21. (a) (b) 22. (a) (b) 23. (a) (b) 24. (a) (b) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 671 672 Chapter 11 Parametric Equatins and Polar Coordinates 25. 26. r œ 2 sec ) Ê r œ 27. 2 cos ) Ê r cos ) œ 2 Ê x œ 2 28. 29. Note that (rß )) and (rß ) 1) describe the same point in the plane. Then r œ 1 cos ) Í 1 cos () 1) œ 1 (cos ) cos 1 sin ) sin 1) œ 1 cos ) œ (1 cos )) œ r; therefore (rß )) is on the graph of r œ 1 cos ) Í (rß ) 1) is on the graph of r œ 1 cos ) Ê the answer is (a). Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.4 Graphing in Polar Coordinates 30. Note that (rß )) and (rß ) 1) describe the same point in the plane. Then r œ cos 2) Í sin ˆ2() 1)) 1# ‰ œ sin ˆ2) 5#1 ‰ œ sin (2)) cos ˆ 5#1 ‰ cos (2)) sin ˆ 5#1 ‰ œ cos 2) œ r; therefore (rß )) is on the graph of r œ sin ˆ2) 1# ‰ Ê the answer is (a). 31. 33. (a) 34. (a) 32. (b) (c) (b) (d) (c) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 673 674 Chapter 11 Parametric Equatins and Polar Coordinates (d) (e) 11.5 AREA AND LENGTHS IN POLAR COORDINATES 1. A œ '0 "# )# d) œ 16 )3 ‘ ! œ 1 1 13 6 2. A œ '1Î4 "# a2 sin )b# d) œ 2'1Î4 sin2 ) d) œ 2'1Î4 1Î2 1Î2 œ ˆ 12 0‰ ˆ 14 12 ‰ œ 3. A œ '0 21 " # 1 4 1Î2 4. A œ '0 21 (4 2 cos ))# d) œ '0 21 œ " # a# œ '0 " # 21 " # # [a(1 cos ))] d) 21 ˆ #3 2 cos ) #" 0 ' 5. A œ 2 '0 1Î4 6. A œ '1Î6 1 Î6 œ "4 ) 7. A œ '0 1Î2 " # " # 1Î4 1 ‘ 1 Î6 6 sin 6) 1Î6 " # 1Î2 1Î6 " # " # #1 " 2 sin 2)‘ ! œ 181 a# a1 2 cos ) cos# )b d) œ " # " 4 a# #3 ) 2 sin ) d) œ " # cos2 3) d) œ ) " # sin 4) ‘ 1Î% 4 ! '11ÎÎ66 œ "4 ˆ 16 0‰ "4 ˆ 16 0‰ œ (4 sin 2)) d) œ '0 8. A œ (6)(2)'0 1Î2 21 1 cos 4) # ' 11ÎÎ66 " # 1Î2 2 ) ‰‘ a16 16 cos ) 4 cos# )b d) œ '0 8 8 cos ) 2 ˆ 1 cos d) # cos 2)‰ d) œ cos# 2) d) œ '0 acos 3)b2 d) œ d) œ '1Î4 a1 cos 2)bd) œ ) 12 sin 2)‘1Î4 1 2 œ '0 (9 8 cos ) cos 2)) d) œ 9) 8 sin ) 21 1 cos 2) 2 œ 1 cos 6) 2 a# 2) ‰ '021 ˆ1 2 cos ) 1 cos d) # #1 sin 2)‘ ! œ 3 # 1a# 1 8 d) œ " 4 '11ÎÎ66 a1 cos 6)b d) 1 12 1Î# 2 sin 2) d) œ c cos 2)d ! œ2 (2 sin 3)) d) œ 12 '0 sin 3) d) œ 12 cos3 3) ‘ ! 1Î6 " # 1Î' œ4 9. r œ 2 cos ) and r œ 2 sin ) Ê 2 cos ) œ 2 sin ) Ê cos ) œ sin ) Ê ) œ 14 ; therefore A œ 2 '0 1Î4 œ '0 1Î4 " # (2 sin ))# d) œ '0 1Î4 2) ‰ 4 ˆ 1 cos d) œ '0 # œ c2) sin 1Î4 1Î% 2) d ! œ 1 # 4 sin# ) d) (2 2 cos 2)) d) 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.5 Area and Lengths in Polar Coordinates 10. r œ 1 and r œ 2 sin ) Ê 2 sin ) œ 1 Ê sin ) œ 1 6 Ê )œ or 51 6 " # ; therefore A œ 1(1)# '1Î6 51Î6 " # c(2 sin ))# 1# d d) œ 1 '1Î6 ˆ2 sin# ) "# ‰ d) 51Î6 œ 1 '1Î6 ˆ1 cos 2) "# ‰ d) 51Î6 œ 1 '1Î6 ˆ "# cos 2)‰ d) œ 1 "2 ) sin 2) ‘ &1Î' # 1Î' œ 1 ˆ 511# 41 3È 3 6 51Î6 " # sin 51 ‰ 3 1 ˆ 12 " # sin 13 ‰ œ 11. r œ 2 and r œ 2(1 cos )) Ê 2 œ 2(1 cos )) Ê cos ) œ 0 Ê ) œ „ 1# ; therefore A œ 2 '0 1Î2 œ '0 1Î2 œ '0 1Î2 œ '0 1Î2 " # [2(1 cos ))]# d) "# area of the circle 4 a1 2 cos ) cos# )b d) ˆ "# 1‰ (2)# 4 ˆ1 2 cos ) 1 cos 2) ‰ # d) 21 (4 8 cos ) 2 2 cos 2)) d) 21 1Î# œ c6) 8 sin ) sin 2)d ! 2 1 œ 51 8 12. r œ 2(1 cos )) and r œ 2(1 cos )) Ê 1 cos ) œ 1 cos ) Ê cos ) œ 0 Ê ) œ 1# or 3#1 ; the graph also gives the point of intersection (0ß 0); therefore A œ 2 '0 1Î2 " # [2(1 cos ))]# d) 2 '1Î2 "# [2(1 cos ))]# d) 1 œ '0 4a1 2cos ) cos# )bd) 1Î2 '1Î2 4 a1 2 cos ) cos# )bd) 1 œ '0 4 ˆ1 2 cos ) œ '0 (6 8 cos ) 2 cos 2)) d) '1Î2 (6 8 cos ) 2 cos 2)) d) 1Î2 1Î2 1 cos 2) ‰ # d) '1Î2 4 ˆ1 2 cos ) 1 1 cos 2) ‰ # d) 1 1Î# œ c6) 8 sin ) sin 2)d ! c6) 8 sin ) sin 2)d 11Î# œ 61 16 13. r œ È3 and r# œ 6 cos 2) Ê 3 œ 6 cos 2) Ê cos 2) œ 1 6 Ê )œ " # (in the 1st quadrant); we use symmetry of the graph to find the area, so A œ 4 '0 ” "# (6 cos 2)) "# ŠÈ3‹ • d) 1Î6 # œ 2 '0 (6 cos 2) 3) d) œ 2 c3 sin 2) 3)d ! 1Î6 1Î' œ 3È 3 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 675 676 Chapter 11 Parametric Equatins and Polar Coordinates 14. r œ 3a cos ) and r œ a(1 cos )) Ê 3a cos ) œ a(1 cos )) Ê 3 cos ) œ 1 cos ) Ê cos ) œ "# Ê ) œ 13 or 13 ; the graph also gives the point of intersection (0ß 0); therefore A œ 2 '0 1Î3 " # c(3a cos ))# a# (1 cos ))# d d) œ '0 a9a# cos# ) a# 2a# cos ) a# cos# )b d) 1Î3 œ '0 1Î3 a8a# cos# ) 2a# cos ) a# b d) œ '0 c4a# (1 cos 2)) 2a# cos ) a# d d) 1Î3 œ '0 a3a# 4a# cos 2) 2a# cos )b d) 1Î3 1Î$ œ c3a# ) 2a# sin 2) 2a# sin )d ! œ 1a# 2a# ˆ "# ‰ 2a# Š È3 # ‹ œ a# Š1 1 È3‹ 15. r œ 1 and r œ 2 cos ) Ê 1 œ 2 cos ) Ê cos ) œ "# Ê )œ A œ 2' 1 21 3 in quadrant II; therefore " 21Î3 # c(2 cos ))# 1# d d) œ '21Î3 a4 cos# ) 1b d) 1 œ '21Î3 [2(1 cos 2)) 1] d) œ '21Î3 (1 2 cos 2)) d) 1 1 œ c) sin 2)d 1#1Î$ œ 1 3 È3 # 16. r œ 6 and r œ 3 csc ) Ê 6 sin ) œ 3 Ê sin ) œ Ê )œ 1 6 or 51 6 œ '1Î6 ˆ18 51Î6 9 # ; therefore A œ '1Î6 51Î6 csc# )‰ d) œ 18) " # " # a6# 9 csc# )b d) 9 # cot )‘ 1Î' &1Î' œ Š151 9# È3‹ Š31 9# È3‹ œ 121 9È3 17. r œ sec ) and r œ 4 cos ) Ê 4 cos ) œ sec ) Ê cos2 ) œ Ê ) œ 13 , 231 , 431 , or 531 ; therefore 1Î3 A œ 2 0 "# a16 cos# ) sec# )b d) 1Î3 œ 0 a8 8 cos 2) sec# )b d) 1Î3 œ c8) 4 sin 2) tan )d0 1 4 ' ' œ Š 831 2È3 È3‹ a0 0 0b œ 81 3 È3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.5 Area and Lengths in Polar Coordinates 18. r œ 3 csc ) and r œ 4 sin ) Ê 4 sin ) œ 3 csc ) Ê sin2 ) œ Ê ) œ 13 , 21 41 51 3 , 3 , or 3 ; therefore 1 Î2 " a16 sin# ) 9 csc# 1 Î3 # A œ 41 2' 677 3 4 )b d) œ 41 '1Î3 a8 8 cos 2) 9 csc# )b d) 1Î2 1Î2 œ 41 c8) 4 sin 2) 9 cot )d1Î3 œ 41 ’a41 0 0b Š 831 2È3 3È3‹“ œ 81 3 È3 19. (a) r œ tan ) and r œ Š Ê sin# ) œ Š Ê cos# ) Š È2 # È2 # ‹ È2 # ‹ csc ) Ê tan ) œ Š È2 # ‹ cos ) Ê 1 cos# ) œ Š È2 # ‹cos csc ) È2 # ‹ cos ) ) 1 œ 0 Ê cos ) œ È2 or (use the quadratic formula) Ê ) œ 1 4 (the solution in the first quadrant); therefore the area of R" is A" œ '0 1Î4 È2 # œ " # and OB œ Š '01Î4 asec# ) 1b d) œ "# ctan ) )d 1! Î% œ "# ˆtan 14 14 ‰ œ "# 18 ; AO œ Š È#2 ‹ csc 1# " # tan# ) d) œ È2 # ‹ 1 4 csc œ 1 Ê AB œ Ê1# Š È2 # # ‹ therefore the area of the region shaded in the text is 2 ˆ "# 1 8 œ È2 # Ê the area of R# is A# œ "4 ‰ œ 3 # 1 4 but does not generate the segment AB of the liner œ _ on the line r œ (b) lim ) Ä 1Î2 œ lim È2 # sin ) ˆ cos ) r œ sec ) as ) Ä œ " 4 ; 1 4 generates the arc OB of r œ tan ) csc ). " ‰ cos ) 1c # È2 È2 # ‹Š # ‹ csc ). Instead the interval generates the half-line from B to tan ) œ _ and the line x œ 1 is r œ sec ) in polar coordinates; then ) Ä 1Î2c Š . Note: The area must be found this way since no common interval generates the region. For example, the interval 0 Ÿ ) Ÿ È2 # " # œ lim ) Ä 1 Î2 c ˆ sincos) ) 1 ‰ œ lim ) Ä 1Î2c (tan ) sec )) ) ‰ ˆ cos sin ) œ 0 Ê r œ tan ) approaches lim ) Ä 1 Î2 c Ê r œ sec ) (or x œ 1) is a vertical asymptote of r œ tan ). Similarly, r œ sec ) (or x œ 1) is a vertical asymptote of r œ tan ). 20. It is not because the circle is generated twice from ) œ 0 to 21. The area of the cardioid is A œ 2 '0 1 œ 32) " # 2) (cos ) 1)# d) œ '0 acos# ) 2 cos ) 1b d) œ '0 ˆ 1 cos 2 cos ) 1‰ d) # sin 2) 4 1 1 2 sin )‘ ! œ 21. r œ )# , 0 Ÿ ) Ÿ È5 Ê # . The area of the circle is A œ 1 ˆ "# ‰ œ È5 œ 2); therefore Length œ '0 dr d) È5 31 # œ '0 k)k È)# 4 d) œ (since ) ) œ È5 Ê u œ 9“ Ä '4 9 22. r œ e) È2 ,0Ÿ)Ÿ1 Ê dr d) 1 " # œ Èu du œ e) È2 È5 0) '0 1 4 Ê the area requested is actually 3#1 È5 Éa)# b# (2))# d) œ ' È)% 4)# d) 0 ) È ) # 4 d ) ; u œ ) # 4 Ê " 2 $Î# ‘ * # 3 u % œ " # du œ ) d); ) œ 0 Ê u œ 4, 19 3 ; therefore Length œ '0 ÊŠ Èe 2 ‹ Š Èe 2 ‹ d) œ '0 Ê2 Š e# ‹ d) 1 ) # ) # 1 œ '0 e) d) œ e) ‘ ! œ e1 1 1 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 2) 1 4 œ 51 4 678 Chapter 11 Parametric Equatins and Polar Coordinates 23. r œ 1 cos ) Ê dr d) œ sin ); therefore Length œ '0 È(1 cos ))# ( sin ))# d) 21 1 œ 2 '0 È2 2 cos ) d) œ 2'0 É 4(1 #cos )) d) œ 4 '0 É 1 #cos ) d) œ 4 '0 cos ˆ #) ‰ d) œ 4 2 sin 2) ‘ ! œ 8 1 1 24. r œ a sin# ) # 1 , 0 Ÿ ) Ÿ 1, a 0 Ê œ '0 Éa# sin% 1 ) # ) # a# sin# dr d) ) # cos# œ a sin ) # cos ) # 1 # ; therefore Length œ '0 Ɉa sin# #) ‰ ˆa sin 1 d) œ '0 a ¸sin #) ¸ Ésin# 1 ) # ) # cos# 1 6 1 cos ) œ '0 1Î2 ,0Ÿ)Ÿ 1 # " 1 cos ) dr d) œ ; therefore Length œ '0 1Î2 6 sin ) (1 cos ))# d) œ 6 '0 1Î2 36 sin# ) a1 cos )b% É (1 36 cos ))# œ ˆsince Ê " ¸ 1cos ¸ ) É1 0 1Î2 ) # sin# ) (1 cos ))# d) cos# ) sin# ) 0 on 0 Ÿ ) Ÿ 1# ‰ 6 '0 ˆ 1 "cos ) ‰ É 1 2 cos(1)cos d) ) )# 1Î2 1Î2 # # 6 sin ) ʈ 1 6cos ) ‰ Š (1 cos ))# ‹ d) 1Î2 cos ) È ' œ 6 '0 ˆ 1 "cos ) ‰ É (12 2cos ) ) # d) œ 6 2 0 œ 3'0 sec$ # cos #) ‰ d) d) œ (since 0 Ÿ ) Ÿ 1) a ' sin ˆ #) ‰ d) 1 œ 2a cos 2) ‘ ! œ 2a 25. r œ ) # d) œ 6'0 1Î4 d) (1 cos ))$Î# œ 6È2 '0 1Î2 1Î% sec$ u du œ (use tables) 6 Œ sec u2tan u ‘ ! d) ˆ2 cos# #) ‰$Î# " # '01Î4 œ 3'0 1Î2 ¸sec$ #) ¸ d) sec u du 1Î% œ 6 Š È"2 2" ln ksec u tan uk‘ ! ‹ œ 3 ’È2 ln Š1 È2‹“ 26. r œ 2 1 cos ) 1 # , Ÿ)Ÿ1 Ê 4 œ '1Î2 Ê (1 cos ) ) # Š1 1 œ ˆsince 1 cos ) œ dr d) 2 sin ) (1 cos ))# sin# ) ‹ a1 cos )b# 0 on 1 # sin ) ; therefore Length œ '1Î2 ʈ 1 2cos ) ‰ Š (12cos ) )# ‹ d ) 1 ) sin d) œ '1Î2 ¸ 1 2cos ) ¸ É (1 (1cos )cos ) )# 1 # 1 œ '1Î2 csc$ ˆ #) ‰ d) œ ˆsince csc 1 1Î# " # '11ÎÎ42 ) d) # 1 2Œ csc u2cot u ‘ 1Î% # cos ) sin Ÿ ) Ÿ 1‰ 2 '1Î2 ˆ 1 "cos ) ‰ É 1 2 cos(1)cos ))# cos ) d) È ' È ' œ 2 '1Î2 ˆ 1 "cos ) ‰ É (12 2cos ))# d) œ 2 2 1Î2 (1 cos ))$Î# œ 2 2 1Î2 1 ) # # d) ˆ2 sin# )# ‰$Î# ) d) œ '1Î2 ¸csc$ #) ¸ d) 1 Ÿ ) Ÿ 1‰ 2 '1Î4 csc$ u du œ (use tables) 1Î2 1 # 0 on 1 # # 1Î# csc u du œ 2 Š È" 2" ln kcsc u cot uk‘ 1Î% ‹ œ 2 ’ È" 2 2 " # ln ŠÈ2 1‹“ œ È2 ln Š1 È2‹ 27. r œ cos$ œ '0 1Î4 œ '0 ) 3 Ê dr d) œ sin ) 3 cos# ) 3 ; therefore Length œ '0 Écos' ˆ 3) ‰ sin# ˆ 3) ‰ cos% ˆ 3) ‰ d) œ '0 1Î4 1Î4 1cos ˆ 2) ‰ 3 # d) œ " # ) 3 2 sin 28. r œ È1 sin 2) , 0 Ÿ ) Ÿ 1È2 Ê Length œ '0 È 1 2 œ '0 È 1 2 1Î4 É(1 sin 2)) sin 2) ' É 212sin 2 ) d) œ 0 È 1 2 2) ‘ 1Î% 3 ! dr d) œ cos# 2) (1 sin 2)) œ " # 1 8 Ɉcos$ 3) ‰# ˆ sin ) 3 # cos# 3) ‰ d) ˆcos# 3) ‰ Écos# ˆ 3) ‰ sin# ˆ 3) ‰ d) œ ' 1Î4 0 cos# ˆ 3) ‰ d) 3 8 (1 sin 2))"Î# (2 cos 2)) œ (cos 2))(1 sin 2))"Î# ; therefore d) œ '0 È2 d) œ ’È2 )“ È 1 2 1È# ! # sin 2) cos É 1 2 sin 2)1 sin 2) # 2) d) œ 21 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.6 Conic Sections 29. Let r œ f()). Then x œ f()) cos ) Ê dx d) 679 ‰# œ cf w ()) cos ) f()) sin )d# œ f w ()) cos ) f()) sin ) Ê ˆ dx d) œ cf w ())d# cos# ) 2f w ()) f()) sin ) cos ) [f())]# sin# ); y œ f()) sin ) Ê # dy d) œ f w ()) sin ) f()) cos ) # # w w # w # # Ê Š dy d) ‹ œ cf ()) sin ) f()) cos )d œ cf ())d sin ) 2f ())f()) sin ) cos ) [f())] cos ). Therefore # # # w # # # # # w # # ˆ dx ‰# Š dy ˆ dr ‰# d) d) ‹ œ cf ())d acos ) sin )b [f())] acos ) sin )b œ cf ())d [f())] œ r d) . ' Ér# ˆ ddr) ‰# d). ‰# Š dy Thus, L œ '! ʈ dx d) d) ‹ d) œ ! " 30. (a) r œ a Ê " # œ 0; Length œ '0 Èa# 0# d) œ '0 kak d) œ ca)d #!1 œ 21a 21 dr d) (b) r œ a cos ) Ê dr d) œ a sin ); Length œ '0 È(a cos ))# (a sin ))# d) œ '0 Èa# acos# ) sin# )b d) dr d) œ a cos ); Length œ '0 È(a cos ))# (a sin ))# d) œ '0 Èa# acos# ) sin# )b d) 1 œ '0 kak d) œ ca)d 1! œ 1a 1 (c) r œ a sin ) Ê 21 1 1 1 œ '0 kak d) œ ca)d 1! œ 1a 1 '021 a(1 cos )) d) œ 2a1 c) sin )d #!1 œ a 21 rav œ 21"0 '0 a d) œ #"1 ca)d #!1 œ a 1Î2 1Î# rav œ ˆ 1 ‰"ˆ 1 ‰ 'c1Î2 a cos ) d) œ 1" ca sin )d 1Î# œ 2a 1 31. (a) rav œ (b) (c) " 210 # # 32. r œ 2f()), ! Ÿ ) Ÿ " Ê dr d) œ 2f w ()) Ê r# ˆ ddr) ‰ œ [2f())]# c2f w ())d# Ê Length œ '! É4[f())]# 4 cf w ())d# d) " # œ 2 '! É[f())]# cf w ())d# d) which is twice the length of the curve r œ f()) for ! Ÿ ) Ÿ " . " 11.6 CONIC SECTIONS 1. x œ y# 8 Ê 4p œ 8 Ê p œ 2; focus is (2ß 0), directrix is x œ 2 # 2. x œ y4 Ê 4p œ 4 Ê p œ 1; focus is (1ß 0), directrix is x œ 1 # 3. y œ x6 Ê 4p œ 6 Ê p œ 4. y œ x# 2 Ê 4p œ 2 Ê p œ 1 # 3 # ; focus is ˆ!ß 3# ‰ , directrix is y œ 3 # ; focus is ˆ!ß #1 ‰ , directrix is y œ 1# 5. x# 4 y# 9 œ 1 Ê c œ È4 9 œ È13 Ê foci are Š „ È13ß !‹ ; vertices are a „ 2ß 0b ; asymptotes are y œ „ 3# x 6. x# 4 y# 9 œ 1 Ê c œ È9 4 œ È5 Ê foci are Š0ß „ È5‹ ; vertices are a0ß „ 3b 7. x# 2 y# œ 1 Ê c œ È2 1 œ 1 Ê foci are a „ 1ß 0b ; vertices are Š „ È2ß !‹ 8. y# 4 x# œ 1 Ê c œ È4 1 œ È5 Ê foci are Š0ß „ È5‹ ; vertices are a!ß „ 2b ; asymptotes are y œ „ 2x Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 680 Chapter 11 Parametric Equatins and Polar Coordinates 9. y# œ 12x Ê x œ y# 1# # 10. x# œ 6y Ê y œ x6 Ê 4p œ 6 Ê p œ focus is ˆ!ß 3# ‰ , directrix is y œ 3# Ê 4p œ 12 Ê p œ 3; focus is ($ß !), directrix is x œ 3 11. x# œ 8y Ê y œ x# 8 focus is ˆ!ß " ‰ 16 , x# ˆ 4" ‰ Ê 4p œ " 4 Ê pœ directrix is y œ # # focus is ˆ " ‰ 1# ß ! , directrix is x œ # 14. y œ 8x# Ê y œ ˆx" ‰ Ê 4p œ ; 8 " 16 15. x œ 3y# Ê x œ ˆy" ‰ Ê 4p œ 3 " 16 " 3 " 1# focus is ˆ!ß Ê pœ ; y 12. y# œ 2x Ê x œ # Ê 4p œ 2 Ê p œ " ˆ ‰ focus is # ß ! , directrix is x œ "# Ê 4p œ 8 Ê p œ 2; focus is (!ß 2), directrix is y œ 2 13. y œ 4x# Ê y œ 3 # " 1# ; " ‰ 32 , 16. x œ 2y# Ê x œ focus is ˆ "8 ß !‰ , Ê 4p œ " # directrix is x œ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Ê pœ " 8 ; Ê pœ " 3# directrix is y œ y# ˆ "# ‰ " 8 " # " 8 ; " 32 ; Section 11.6 Conic Sections # # y 17. 16x# 25y# œ 400 Ê #x5 16 œ1 Ê c œ Èa# b# œ È25 16 œ 3 # 19. 2x# y# œ 2 Ê x# y# œ 1 Ê c œ Èa# b# œ È2 1 œ 1 # # 21. 3x# 2y# œ 6 Ê x# y3 œ 1 Ê c œ Èa# b# œ È3 2 œ 1 # # x 18. 7x# 16y# œ 112 Ê 16 y7 œ 1 Ê c œ Èa# b# œ È16 7 œ 3 # # 20. 2x# y# œ 4 Ê x# y4 œ 1 Ê c œ Èa# b# œ È4 2 œ È2 # # x 22. 9x# 10y# œ 90 Ê 10 y9 œ 1 Ê c œ Èa# b# œ È10 9 œ 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 681 682 Chapter 11 Parametric Equations and Polar Coordinates # # 23. 6x# 9y# œ 54 Ê x9 y6 œ 1 Ê c œ Èa# b# œ È9 6 œ È3 # # y x 24. 169x# 25y# œ 4225 Ê 25 169 œ1 Ê c œ Èa# b# œ È169 25 œ 12 # 25. Foci: Š „ È2ß !‹ , Vertices: a „ 2ß 0b Ê a œ 2, c œ È2 Ê b# œ a# c# œ 4 ŠÈ2‹ œ 2 Ê 26. Foci: a!ß „ 4b , Vertices: a0ß „ 5b Ê a œ 5, c œ 4 Ê b# œ 25 16 œ 9 Ê 27. x# y# œ 1 Ê c œ Èa# b# œ È1 1 œ È2 ; asymptotes are y œ „ x # # 29. y# x# œ 8 Ê y8 x8 œ 1 Ê c œ Èa# b# œ È8 8 œ 4; asymptotes are y œ „ x x# 9 # y# #5 x# 4 y# # œ1 # x 28. 9x# 16y# œ 144 Ê 16 y9 œ 1 Ê c œ Èa# b# œ È16 9 œ 5; asymptotes are y œ „ 34 x # # 30. y# x# œ 4 Ê y4 x4 œ 1 Ê c œ Èa# b# œ È4 4 œ 2È2; asymptotes are y œ „ x Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. œ1 Section 11.6 Conic Sections 683 31. 8x# 2y# œ 16 Ê x# y8 œ 1 Ê c œ Èa# b# œ È2 8 œ È10 ; asymptotes are y œ „ 2x 32. y# 3x# œ 3 Ê y3 x# œ 1 Ê c œ Èa# b# œ È3 1 œ 2; asymptotes are y œ „ È3x # # 33. 8y# 2x# œ 16 Ê y# x8 œ 1 Ê c œ Èa# b# œ È2 8 œ È10 ; asymptotes are y œ „ x y x 34. 64x# 36y# œ 2304 Ê 36 64 œ 1 Ê c œ È a# b # œ È36 64 œ 10; asymptotes are y œ „ 4 # # # # # # 3 35. Foci: Š!ß „ È2‹ , Asymptotes: y œ „ x Ê c œ È2 and a b œ 1 Ê a œ b Ê c# œ a# b# œ 2a# Ê 2 œ 2a# Ê a œ 1 Ê b œ 1 Ê y# x# œ 1 36. Foci: a „ 2ß !b , Asymptotes: y œ „ Ê 4œ 4a# 3 " È3 x Ê c œ 2 and Ê a# œ 3 Ê a œ È3 Ê b œ 1 Ê x# 3 b a œ " È3 Ê bœ a È3 4 3 Ê c# œ a# b# œ a# y# œ 1 37. Vertices: a „ 3ß 0b , Asymptotes: y œ „ 43 x Ê a œ 3 and b a œ 4 3 Ê bœ (3) œ 4 Ê 38. Vertices: a!ß „ 2b , Asymptotes: y œ „ 12 x Ê a œ 2 and a b œ 1 2 Ê b œ 2(2) œ 4 Ê x# 9 y# 4 39. (a) y# œ 8x Ê 4p œ 8 Ê p œ 2 Ê directrix is x œ 2, focus is (#ß !), and vertex is (!ß 0); therefore the new directrix is x œ 1, the new focus is (3ß 2), and the new vertex is (1ß 2) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. y# 16 x# 16 œ1 œ1 a# 3 œ 4a# 3 684 Chapter 11 Parametric Equations and Polar Coordinates 40. (a) x# œ 4y Ê 4p œ 4 Ê p œ 1 Ê directrix is y œ 1, focus is (!ß 1), and vertex is (!ß 0); therefore the new directrix is y œ 4, the new focus is (1ß 2), and the new vertex is (1ß 3) 41. (a) x# 16 y# 9 œ 1 Ê center is (!ß 0), vertices are (4ß 0) (b) (b) and (%ß !); c œ Èa# b# œ È7 Ê foci are ŠÈ7ß 0‹ and ŠÈ7ß !‹ ; therefore the new center is (%ß $), the new vertices are (!ß 3) and (8ß 3), and the new foci are Š4 „ È7ß $‹ 42. (a) x# 9 y# 25 œ 1 Ê center is (!ß 0), vertices are (0ß 5) and (0ß 5); c œ Èa# b# œ È16 œ 4 Ê foci are (b) (!ß 4) and (!ß 4) ; therefore the new center is (3ß 2), the new vertices are (3ß 3) and (3ß 7), and the new foci are (3ß 2) and (3ß 6) 43. (a) x# 16 y# 9 œ 1 Ê center is (!ß 0), vertices are (4ß 0) (b) and (4ß 0), and the asymptotes are œ „ or Èa# b# œ È25 œ 5 Ê foci are y œ „ 3x 4 ;cœ x 4 y 3 (5ß 0) and (5ß 0) ; therefore the new center is (2ß 0), the new vertices are (2ß 0) and (6ß 0), the new foci are (3ß 0) and (7ß 0), and the new asymptotes are yœ „ 3(x 2) 4 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.6 Conic Sections y# 4 44. (a) x# 5 œ 1 Ê center is (!ß 0), vertices are (0ß 2) and (0ß 2), and the asymptotes are yœ „ 2x È5 y 2 œ „ x È5 685 (b) or ; c œ Èa# b# œ È9 œ 3 Ê foci are (0ß 3) and (0ß 3) ; therefore the new center is (0ß 2), the new vertices are (0ß 4) and (0ß 0), the new foci are (0ß 1) and (0ß 5), and the new asymptotes are 2x y2œ „ È 5 45. y# œ 4x Ê 4p œ 4 Ê p œ 1 Ê focus is ("ß 0), directrix is x œ 1, and vertex is (0ß 0); therefore the new vertex is (2ß 3), the new focus is (1ß 3), and the new directrix is x œ 3; the new equation is (y 3)# œ 4(x 2) 46. y# œ 12x Ê 4p œ 12 Ê p œ 3 Ê focus is (3ß 0), directrix is x œ 3, and vertex is (0ß 0); therefore the new vertex is (4ß 3), the new focus is (1ß 3), and the new directrix is x œ 7; the new equation is (y 3)# œ 12(x 4) 47. x# œ 8y Ê 4p œ 8 Ê p œ 2 Ê focus is (0ß 2), directrix is y œ 2, and vertex is (0ß 0); therefore the new vertex is (1ß 7), the new focus is (1ß 5), and the new directrix is y œ 9; the new equation is (x 1)# œ 8(y 7) Ê focus is ˆ!ß #3 ‰ , directrix is y œ #3 , and vertex is (0ß 0); therefore the new vertex is (3ß 2), the new focus is ˆ3ß "# ‰ , and the new directrix is y œ 7# ; the new equation is 48. x# œ 6y Ê 4p œ 6 Ê p œ 3 # (x 3)# œ 6(y 2) 49. x# 6 y# 9 œ 1 Ê center is (!ß 0), vertices are (0ß 3) and (!ß 3); c œ Èa# b# œ È9 6 œ È3 Ê foci are Š!ß È3‹ and Š!ß È3‹ ; therefore the new center is (#ß 1), the new vertices are (2ß 2) and (#ß 4), and the new foci are Š#ß 1 „ È3‹ ; the new equation is 50. x# 2 (x 2)# 6 (y 1)# 9 œ1 y# œ 1 Ê center is (!ß 0), vertices are ŠÈ2ß !‹ and ŠÈ2ß !‹ ; c œ Èa# b# œ È2 1 œ 1 Ê foci are (1ß 0) and ("ß !); therefore the new center is (3ß 4), the new vertices are Š3 „ È2ß 4‹ , and the new foci are (2ß 4) and (4ß 4); the new equation is 51. x# 3 y# # (x 3)# # (y 4)# œ 1 œ 1 Ê center is (!ß 0), vertices are ŠÈ3ß !‹ and ŠÈ3ß !‹ ; c œ Èa# b# œ È3 2 œ 1 Ê foci are (1ß 0) and ("ß !); therefore the new center is (2ß 3), the new vertices are Š2 „ È3ß 3‹ , and the new foci are (1ß 3) and (3ß 3); the new equation is 52. x# 16 y# #5 (x 2)# 3 (y 3)# # œ1 œ 1 Ê center is (!ß 0), vertices are (!ß &) and (!ß 5); c œ Èa# b# œ È25 16 œ 3 Ê foci are (0ß 3) and (0ß 3); therefore the new center is (4ß 5), the new vertices are (4ß 0) and (4ß 10), and the new foci are (4ß 2) and (4ß 8); the new equation is 53. x# 4 y# 5 (x 4)# 16 (y 5)# #5 œ1 œ 1 Ê center is (!ß 0), vertices are (2ß 0) and (2ß 0); c œ Èa# b# œ È4 5 œ 3 Ê foci are ($ß !) and (3ß 0); the asymptotes are „ x # œ y È5 Ê yœ „ È5x # ; therefore the new center is (2ß 2), the new vertices are Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 686 Chapter 11 Parametric Equations and Polar Coordinates (4ß 2) and (0ß 2), and the new foci are (5ß 2) and (1ß 2); the new asymptotes are y 2 œ „ equation is 54. x# 16 y# 9 (x 2)# 4 (y 2)# 5 È5 (x 2) # ; the new œ1 œ 1 Ê center is (!ß 0), vertices are (4ß 0) and (4ß 0); c œ Èa# b# œ È16 9 œ 5 Ê foci are (5ß !) and (5ß 0); the asymptotes are „ œ x 4 Ê yœ „ y 3 3x 4 ; therefore the new center is (5ß 1), the new vertices are (1ß 1) and (9ß 1), and the new foci are (10ß 1) and (0ß 1); the new asymptotes are y 1 œ „ the new equation is (x 5) 16 # # (y 1) 9 3(x 5) 4 ; œ1 55. y# x# œ 1 Ê center is (!ß 0), vertices are (0ß 1) and (0ß 1); c œ Èa# b# œ È1 1 œ È2 Ê foci are Š!ß „ È2‹ ; the asymptotes are y œ „ x; therefore the new center is (1ß 1), the new vertices are (1ß 0) and (1ß 2), and the new foci are Š1ß 1 „ È2‹ ; the new asymptotes are y 1 œ „ (x 1); the new equation is (y 1)# (x 1)# œ 1 56. y# 3 x# œ 1 Ê center is (!ß 0), vertices are Š0ß È3‹ and Š!ß È3‹ ; c œ Èa# b# œ È3 1 œ 2 Ê foci are (!ß #) and (!ß 2); the asymptotes are „ x œ y È3 Ê y œ „ È3x; therefore the new center is (1ß 3), the new vertices are Š"ß $ „ È3‹ , and the new foci are ("ß &) and (1ß 1); the new asymptotes are y 3 œ „ È3 (x 1); the new equation is (y 3)# 3 (x 1)# œ 1 57. x# 4x y# œ 12 Ê x# 4x 4 y# œ 12 4 Ê (x 2)# y# œ 16; this is a circle: center at C(2ß 0), a œ 4 58. 2x# 2y# 28x 12y 114 œ 0 Ê x# 14x 49 y# 6y 9 œ 57 49 9 Ê (x 7)# (y 3)# œ 1; this is a circle: center at C(7ß 3), a œ 1 59. x# 2x 4y 3 œ 0 Ê x# 2x 1 œ 4y 3 1 Ê (x 1)# œ 4(y 1); this is a parabola: V(1ß 1), F(1ß 0) 60. y# 4y 8x 12 œ 0 Ê y# 4y 4 œ 8x 12 4 Ê (y 2)# œ 8(x 2); this is a parabola: V(#ß 2), F(!ß #) 61. x# 5y# 4x œ 1 Ê x# 4x 4 5y# œ 5 Ê (x 2)# 5y# œ 5 Ê (x 2)# 5 y# œ 1; this is an ellipse: the center is (2ß 0), the vertices are Š2 „ È5ß 0‹ ; c œ Èa# b# œ È5 1 œ 2 Ê the foci are (4ß 0) and (!ß 0) 62. 9x# 6y# 36y œ 0 Ê 9x# 6 ay# 6y 9b œ 54 Ê 9x# 6(y 3)# œ 54 Ê x# 6 (y 3)# 9 œ 1; this is an ellipse: the center is (0ß 3), the vertices are (!ß 0) and (!ß 6); c œ Èa# b# œ È9 6 œ È3 Ê the foci are Š0ß 3 „ È3‹ 63. x# 2y# 2x 4y œ 1 Ê x# 2x 1 2 ay# 2y 1b œ 2 Ê (x 1)# 2(y 1)# œ 2 # Ê (x1) (y 1)# œ 1; this is an ellipse: the center is (1ß 1), the vertices are Š" „ È2ß "‹ ; 2 c œ Èa# b# œ È2 1 œ 1 Ê the foci are (2ß 1) and (0ß 1) 64. 4x# y# 8x 2y œ 1 Ê 4 ax# 2x 1b y# 2y 1 œ 4 Ê 4(x 1)# (y 1)# œ 4 Ê (x 1)# (y1)# 4 œ 1; this is an ellipse: the center is (1ß 1), the vertices are (1ß 3) and (1ß 1); c œ Èa# b# œ È4 1 œ È3 Ê the foci are Š1ß " „ È3‹ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.6 Conic Sections 65. x# y# 2x 4y œ 4 Ê x# 2x 1 ay# 4y 4b œ 1 Ê (x 1)# (y 2)# œ 1; this is a hyperbola: the center is (1ß 2), the vertices are (2ß 2) and (!ß 2); c œ Èa# b# œ È1 1 œ È2 Ê the foci are Š1 „ È2ß #‹ ; the asymptotes are y 2 œ „ (x 1) 66. x# y# 4x 6y œ 6 Ê x# 4x 4 ay# 6y 9b œ 1 Ê (x 2)# (y 3)# œ 1; this is a hyperbola: the center is (2ß 3), the vertices are (1ß 3) and (3ß 3); c œ Èa# b# œ È1 1 œ È2 Ê the foci are Š2 „ È2ß 3‹ ; the asymptotes are y 3 œ „ (x 2) (y 3)# 6 67. 2x# y# 6y œ 3 Ê 2x# ay# 6y 9b œ 6 Ê x# 3 œ 1; this is a hyperbola: the center is (!ß $), the vertices are Š!ß 3 „ È6‹ ; c œ Èa# b# œ È6 3 œ 3 Ê the foci are (0ß 6) and (!ß 0); the asymptotes are y 3 È6 œ „ x È3 Ê y œ „ È2x 3 68. y# 4x# 16x œ 24 Ê y# 4 ax# 4x 4b œ 8 Ê y# 8 (x 2)# 2 œ 1; this is a hyperbola: the center is (2ß 0), the vertices are Š2ß „ È8‹ ; c œ Èa# b# œ È8 2 œ È10 Ê the foci are Š2ß „ È10‹ ; the asymptotes are y È8 x 2 È2 œ „ Ê y œ „ 2(x 2) y# k 69. (a) y# œ kx Ê x œ ; the volume of the solid formed by Èkx revolving R" about the y-axis is V" œ '0 œ 1 k# Èkx '0 y% dy œ 1x# Èkx 5 # # 1 Š yk ‹ dy ; the volume of the right circular cylinder formed by revolving PQ about the y-axis is V# œ 1x# Èkx Ê the volume of the solid formed by revolving R# about the y-axis is V$ œ V# V" œ 41x# Èkx 5 . Therefore we can see the ratio of V$ to V" is 4:1. (b) The volume of the solid formed by revolving R# about the x-axis is V" œ '0 1 ŠÈkt‹ dt œ 1k'0 t dt x œ 1kx# # # x . The volume of the right circular cylinder formed by revolving PS about the x-axis is # V# œ 1 ŠÈkx‹ x œ 1kx# Ê the volume of the solid formed by revolving R" about the x-axis is V$ œ V# V" œ 1kx# 70. y œ ' w H x dx œ w H # 1kx# # Š x# ‹ C œ wx# 2H œ 1kx# # . Therefore the ratio of V$ to V" is 1:1. C; y œ 0 when x œ 0 Ê 0 œ w(0)# 2H C Ê C œ 0; therefore y œ wx# 2H is the equation of the cable's curve 71. x# œ 4py and y œ p Ê x# œ 4p# Ê x œ „ 2p. Therefore the line y œ p cuts the parabola at points (2pß p) and (2pß p), and these points are È[2p (2p)]# (p p)# œ 4p units apart. 72. x lim Š b x ba Èx# a# ‹ œ Ä_ a œ b a x lim Ä_ ax# a# b “ x È x# a# ’x # œ b a x lim Ä_ b a x lim Ä_ ’ Šx È x # a# ‹ œ a# “ x È x# a# b a x lim Ä_ – Šx Èx# a# ‹ Šx Èx# a# ‹ x È x # a# œ0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. — 687 688 Chapter 11 Parametric Equations and Polar Coordinates 73. Let y œ É1 x# 4 on the interval 0 Ÿ x Ÿ 2. The area of the inscribed rectangle is given by x# 4‹ A(x) œ 2x Š2É1 Ê Aw (x) œ 4É1 x# 4 œ 4xÉ1 x# É1 x4# x# 4 (since the length is 2x and the height is 2y) x# 4 . Thus Aw (x) œ 0 Ê 4É1 x# É1 x4# œ 0 Ê 4 Š1 x# 4‹ x# œ 0 Ê x# œ 2 Ê x œ È2 (only the positive square root lies in the interval). Since A(0) œ A(2) œ 0 we have that A ŠÈ2‹ œ 4 is the maximum area when the length is 2È2 and the height is È2. 74. (a) Around the x-axis: 9x# 4y# œ 36 Ê y# œ 9 94 x# Ê y œ „ É9 94 x# and we use the positive root # Ê V œ 2 '0 1 ŠÉ9 94 x# ‹ dx œ 2 '0 1 ˆ9 94 x# ‰ dx œ 21 9x 34 x$ ‘ ! œ 241 2 2 # (b) Around the y-axis: 9x# 4y# œ 36 Ê x# œ 4 49 y# Ê x œ „ É4 49 y# and we use the positive root # Ê V œ 2'0 1 ŠÉ4 49 y# ‹ dy œ 2 '0 1 ˆ4 49 y# ‰ dy œ 21 4y 3 75. 9x# 4y# œ 36 Ê y# œ œ 91 4 9x# 36 4 '24 ax# 4b dx œ 941 ’ x3 $ 3 4 27 $ y$ ‘ ! œ 161 Ê y œ „ 3# Èx# 4 on the interval 2 Ÿ x Ÿ 4 Ê V œ '2 1 Š #3 Èx# 4‹ dx # 4 % 4x“ œ # 91 4 ˆ 64 ‰ ˆ8 ‰‘ œ 3 16 3 8 91 4 ˆ 56 ‰ 3 8 œ 31 4 (56 24) œ 241 76. Let P" (pß y" ) be any point on x œ p, and let P(xß y) be a point where a tangent intersects y# œ 4px. Now y# œ 4px Ê 2y dy dx œ 4p Ê dy dx œ 2p y Ê y# yy" œ 2px 2p# . Since x œ Ê " # y# yy" 2p# œ 0 Ê y œ tangents from P" are m" œ ; then the slope of a tangent line from P" is y# 4p œ dy dx # œ y , we have y# yy" œ 2p Š 4p ‹ 2p# Ê y# yy" œ 2y" „ È4y#" 16p# # 2p y" Èy#" 4p# y y" x (p) and m# œ " # 2p y y# 2p# œ y" „ Èy"# 4p# . Therefore the slopes of the two Ê m" m# œ 2p y" Èy#" 4p# 4p# y#" ay#" 4p# b œ 1 Ê the lines are perpendicular 77. (x 2)# (y 1)# œ 5 Ê 2(x 2) 2(y 1) dy dx œ0 Ê dy dx 2 # # œ xy 1 ; y œ 0 Ê (x 2) (0 1) œ 5 Ê (x 2)# œ 4 Ê x œ 4 or x œ 0 Ê the circle crosses the x-axis at (4ß 0) and (!ß 0); x œ 0 Ê (0 2)# (y 1)# œ 5 Ê (y 1)# œ 1 Ê y œ 2 or y œ 0 Ê the circle crosses the y-axis at (!ß 2) and (!ß !). At (4ß 0): At (!ß !): At (!ß #): 2 œ 40 1 œ 2 Ê the tangent line is y œ 2(x 4) or y œ 2x 8 dy dx dy dx dy dx 2 œ 00 1 œ 2 Ê the tangent line is y œ 2x 2 œ 02 1 œ 2 Ê the tangent line is y 2 œ 2x or y œ 2x 2 78. x# y# œ 1 Ê x œ „ È1 y# on the interval 3 Ÿ y Ÿ 3 Ê V œ 'c3 1 ˆÈ1 y# ‰ dy œ 2'0 1 ˆÈ1 y# ‰ dy 3 œ 21'0 a1 y# b dy œ 21 ’y 3 79. Let y œ É16 vertical strip: 16 9 $ y$ 3 “! É16 aµ x ßµ y b œ xß # # É16 16 9 x # # 3 œ 241 x# on the interval 3 Ÿ x Ÿ 3. Since the plate is symmetric about the y-axis, x œ 0. For a Ê mass œ dm œ $ dA œ $É16 µ y dm œ # Š$ É16 16 9 16 9 16 9 x# , length œ É16 16 9 x# , width œ dx Ê area œ dA œ É16 x# dx. Moment of the strip about the x-axis: x# ‹ dx œ $ ˆ8 98 x# ‰ dx so the moment of the plate about the x-axis is Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 16 9 x# dx Section 11.7 Conics in Polar Coordinates Mx œ ' µ y dm œ 'c3 $ ˆ8 89 x# ‰ dx œ $ 8x 3 M œ 'c3 $ É16 3 16 9 8 27 $ x$ ‘ $ œ 32$ ; also the mass of the plate is x# dx œ 'c3 4$ É1 ˆ "3 x‰ dx œ 4$ 'c1 3È1 u# du where u œ 3 689 1 # x 3 Ê 3 du œ dx; x œ 3 Ê u œ 1 and x œ 3 Ê u œ 1. Hence, 4$ 'c1 3È1 u# du œ 12$ 'c1 È1 u# du 1 œ 12$ ’ "2 ŠuÈ1 u# sin" u‹“ 80. y œ Èx# 1 Ê dy dx " # œ È2 1 ' œ É 2x x# 1 Ê S œ 0 # – u œ È2x — Ä du œ È2 dx 21 È2 ax# 1b " " 1 œ 61$ Ê y œ "Î# (2x) œ x È x# 1 Mx M œ 32$ 61$ # œ Ê Š dy dx ‹ œ È2 16 31 . Therefore the center of mass is ˆ!ß 3161 ‰ . x# x # 1 # É1 Ê Ê1 Š dy dx ‹ œ È2 1 È # È # ' ' É 2x 21yÊ1 Š dy dx ‹ dx œ 0 21 x 1 x# 1 dx œ 0 21 2x 1 dx ; # '02 Èu# 1 du œ È21 2 # # ’ 2" ŠuÈu# 1 ln Šu Èu# 1‹‹“ œ ! 1 È2 81. (a) tan " œ mL Ê tan " œ f w (x! ) where f(x) œ È4px ; f w (x) œ œ 2p y! " # (4px)"Î# (4p) œ (c) tan ! œ œ 2p È4px Ê f w (x! ) œ 2p È4px! Ê tan " œ (b) tan 9 œ mFP œ 2p y! . y! 0 y! x! p œ x! p tan 9 tan " 1 tan 9 tan " y#! 2p(x! p) y! (x! p 2p) œ œ y Š x ! p c y2p ‹ ! ! y 1 b Š x ! p ‹ Š y2p ‹ ! ! 4px! 2px! 2p# y! (x! p) œ 2p(x! p) y! (x! p) œ 2p y! 11.7 CONICS IN POLAR COORDINATES # y# 1. 16x# 25y# œ 400 Ê #x5 16 œ 1 Ê c œ È a# b # œ È25 16 œ 3 Ê e œ ca œ 35 ; F a „ 3ß 0b ; directrices are x œ 0 „ a e œ „ 5 ˆ 35 ‰ œ „ 25 3 # x# 2. 7x# 16y# œ 112 Ê 16 y7 œ 1 Ê c œ Èa# b# œ È16 7 œ 3 Ê e œ ca œ 34 ; F a „ 3ß 0b ; directrices are x œ 0 „ a e x# x# 1 œ „ 4 ˆ 34 ‰ œ „ 16 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ’2È5 ln Š2 È5‹“ 690 Chapter 11 Parametric Equations and Polar Coordinates 3. 2x# y# œ 2 Ê x# y2 œ 1 Ê c œ Èa# b# œ È2 1 œ 1 Ê e œ ca œ È1 ; F a0ß „ 1b ; # directrices are y œ 0 „ 4. 2x# y# œ 4 Ê x# # a e œ „ a e œ „2 Š È12 ‹ œ 1 Ê c œ Èa# b# y# 4 œ È4 2 œ È2 Ê e œ directrices are y œ 0 „ 2 È2 c a œ È2 2 ; F Š0ß „ È2‹ ; œ „ È22 œ „ 2È2 Š ‹ 2 # # 5. 3x# 2y# œ 6 Ê x# y3 œ 1 Ê c œ Èa# b# œ È3 2 œ 1 Ê e œ ca œ È13 ; F a0ß „ 1b ; directrices are y œ 0 „ a e œ „ È3 œ „3 Š È13 ‹ # x# 6. 9x# 10y# œ 90 Ê 10 y9 œ 1 Ê c œ Èa# b# œ È10 9 œ 1 Ê e œ ca œ È110 ; F a „ 1ß 0b ; directrices are x œ 0 „ 7. 6x# 9y# œ 54 Ê x# 9 a e œ „ y# 6 œ È9 6 œ È3 Ê e œ directrices are x œ 0 „ a e È10 Š È110 ‹ œ „ 10 œ 1 Ê c œ Èa# b# c a œ È3 3 ; F Š „ È3ß 0‹ ; œ „ È33 œ „ 3È3 Š ‹ 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.7 Conics in Polar Coordinates 691 y# x# 8. 169x# 25y# œ 4225 Ê 25 169 œ 1 Ê c œ Èa# b# œ È169 25 œ 12 Ê e œ c œ 12 ; F a0ß „ 12b ; a directrices are y œ 0 „ a e œ „ 13 13 ˆ 12 ‰ 13 œ „ 169 12 x# #7 y# 36 9. Foci: a0ß „ 3b , e œ 0.5 Ê c œ 3 and a œ c e œ 3 0.5 œ 6 Ê b# œ 36 9 œ 27 Ê 10. Foci: a „ 8ß 0b , e œ 0.2 Ê c œ 8 and a œ c e œ 8 0.# œ 40 Ê b# œ 1600 64 œ 1536 Ê œ1 x# 1600 y# 1536 11. Vertices: a0ß „ 70b , e œ 0.1 Ê a œ 70 and c œ ae œ 70(0.1) œ 7 Ê b# œ 4900 49 œ 4851 Ê œ1 x# 4851 12. Vertices: a „ 10ß 0b , e œ 0.24 Ê a œ 10 and c œ ae œ 10(0.24) œ 2.4 Ê b# œ 100 5.76 œ 94.24 Ê 13. Focus: ŠÈ5ß !‹ , Directrix: x œ Ê eœ È5 3 . Then PF œ È5 3 Ê x# 2È5 x 5 y# œ 14. Focus: (%ß 0), Directrix: x œ PF œ È œ #3 PD 3 ˆ # 32 4 x 3 9 È5 Ê c œ ae œ È5 and 256 ‰ 9 Ê " 4 œ # 5 9 Šx# 16 3 18 È5 x Ê 81 5 ‹ Ê c œ ae œ 4 and x# y# œ 16 3 È3 # ¸x Ê # x ˆ 64 ‰ 3 4 9 a e È5 3 16 3 Ê œ ae e# 16 3 œ ae e# ¹x x# y# œ 4 Ê œ 16 ¸ 3 Ê 9 È5 PD Ê ÊŠx È5‹ (y 0)# œ Ê È(x 4)# (y 0)# œ x a e 9 È5 ¹ x# 9 Ê Ê (x 4)# y# œ # y ˆ 16 ‰ 3 9 È5 y# 4 4 e# 3 4 Ê È5 e# œ x# 100 Ê e# œ 9 È5 # Ê Šx È5‹ y# œ 5 9 y# 4900 y# 94.24 # 1 4 # ax# 32x 256b Ê 3 4 x# y# œ 48 Ê Šx œ " # 1 È2 . Then PF œ # 1 È2 # œ1 œ 16 3 ˆx Ê e# œ 16 ‰# 3 Ê eœ 3 4 È3 # . Then Ê x# 8x 16 y# 1 # . Then 4 x# 64 y# 48 œ1 # PD Ê ÊŠx È2‹ (y 0)# œ Šx 2È2‹ Ê x# 2È2 x 2 y# œ 9 È5 ‹ œ1 16. Focus: ŠÈ2ß !‹ , Directrix: x œ 2È2 Ê c œ ae œ È2 and Ê eœ œ1 5 9 " 4 # 15. Focus: (%ß 0), Directrix: x œ 16 Ê c œ ae œ 4 and ae œ 16 Ê ae e# œ 16 Ê e# œ 16 Ê e œ 4 Ê e œ PF œ 1 PD Ê È(x 4)# (y 0)# œ 1 kx 16k Ê (x 4)# y# œ 1 (x 16)# Ê x# 8x 16 y# œ œ1 " # a e œ 2È 2 Ê 1 È2 ae e# œ 2È 2 Ê È2 e# œ 2 È 2 Ê e# œ # ¹x 2È2¹ Ê Šx È2‹ y# Šx# 4È2 x 8‹ Ê " # x# y# œ 2 Ê x# 4 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. y# # œ1 " # 692 Chapter 11 Parametric Equations and Polar Coordinates 17. x# y# œ 1 Ê c œ Èa# b# œ È1 1 œ È2 Ê e œ œ È2 1 c a œ È2 ; asymptotes are y œ „ x; F Š „ È2 ß !‹ ; directrices are x œ 0 „ a e œ „ " È2 # x# 18. 9x# 16y# œ 144 Ê 16 y9 œ 1 Ê c œ Èa# b# œ È16 9 œ 5 Ê e œ ca œ 54 ; asymptotes are y œ „ 34 x; F a „ 5ß !b ; directrices are x œ 0 „ œ „ a e "6 5 # # 19. y# x# œ 8 Ê y8 x8 œ 1 Ê c œ Èa# b# œ È8 8 œ 4 Ê e œ ca œ È48 œ È2 ; asymptotes are y œ „ x; F a0ß „ 4b ; directrices are y œ 0 „ œ „ È8 È2 a e œ „2 20. y# x# œ 4 Ê y# 4 x# 4 œ 1 Ê c œ Èa# b# œ È 4 4 œ 2È 2 Ê e œ c a œ 2È 2 2 œ È2 ; asymptotes are y œ „ x; F Š0ß „ 2È2‹ ; directrices are y œ 0 „ œ „ 2 È2 a e œ „ È2 21. 8x# 2y# œ 16 Ê x# 2 y# 8 œ È2 8 œ È10 Ê e œ œ 1 Ê c œ Èa# b# c a œ È10 È2 œ È5 ; asymptotes are y œ „ 2x; F Š „ È10ß !‹ ; directrices are x œ 0 „ œ „ È2 È5 œ „ a e 2 È10 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.7 Conics in Polar Coordinates 693 # 22. y# 3x# œ 3 Ê y3 x# œ 1 Ê c œ Èa# b# œ È3 1 œ 2 Ê e œ ca œ È23 ; asymptotes are y œ „ È3 x; F a0ß „ 2b ; directrices are y œ 0 „ œ „ È3 Š È23 ‹ œ „ a e 3 # 23. 8y# 2x# œ 16 Ê y# 2 x# 8 œ È2 8 œ È10 Ê e œ œ 1 Ê c œ Èa# b# c a È10 È2 œ œ È5 ; asymptotes are y œ „ x# ; F Š0ß „ È10‹ ; directrices are y œ 0 „ œ „ È2 È5 œ „ a e 2 È10 y# x# 24. 64x# 36y# œ 2304 Ê 36 64 œ 1 Ê c œ È a# b # 5 œ È36 64 œ 10 Ê e œ ca œ 10 6 œ 3 ; asymptotes are y œ „ 43 x; F a „ 10ß !b ; directrices are x œ 0 „ œ „ 6 ˆ 53 ‰ œ „ a e 18 5 25. Vertices a!ß „ 1b and e œ 3 Ê a œ 1 and e œ c a œ 3 Ê c œ 3a œ 3 Ê b# œ c# a# œ 9 1 œ 8 Ê y# x# 8 œ1 26. Vertices a „ 2ß !b and e œ 2 Ê a œ 2 and e œ c a œ 2 Ê c œ 2a œ 4 Ê b# œ c# a# œ 16 4 œ 12 Ê x# 4 y# 1# œ1 œ 3 Ê c œ 3a Ê a œ 1 Ê b# œ c# a# œ 9 1 œ 8 Ê x# y# 8 œ1 27. Foci a „ 3ß !b and e œ 3 Ê c œ 3 and e œ c a 28. Foci a!ß „ 5b and e œ 1.25 Ê c œ 5 and e œ œ 25 16 œ 9 Ê # y 16 # x 9 c a œ 1.25 œ 5 4 Ê cœ 5 4 a Ê 5œ 5 4 a Ê a œ 4 Ê b# œ c# a# œ1 29. e œ 1, x œ 2 Ê k œ 2 Ê r œ 2(1) 1 (1) cos ) œ 2 1cos ) 30. e œ 1, y œ 2 Ê k œ 2 Ê r œ 2(1) 1 (1) sin ) œ 2 1sin ) 31. e œ 5, y œ 6 Ê k œ 6 Ê r œ 6(5) 1 5 sin ) 32. e œ 2, x œ 4 Ê k œ 4 Ê r œ 4(2) 1 2 cos ) 33. e œ "# , x œ 1 Ê k œ 1 Ê r œ ˆ "# ‰ (1) 1 ˆ "# ‰ cos ) œ œ 30 15 sin ) 8 12 cos ) œ 1 2cos ) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 694 Chapter 11 Parametric Equations and Polar Coordinates ˆ "4 ‰ (2) 1 ˆ "4 ‰ cos ) 34. e œ "4 , x œ 2 Ê k œ 2 Ê r œ 35. e œ 5" , y œ 10 Ê k œ 10 Ê r œ 36. e œ "3 , y œ 6 Ê k œ 6 Ê r œ 37. r œ " 1 cos ) 38. r œ 6 2 cos ) œ ˆ "5 ‰ (10) 1 ˆ "5 ‰ sin ) ˆ "3 ‰ (6) 1 ˆ 3" ‰ sin ) œ 2 4cos ) œ 10 5sin ) 6 3sin ) Ê e œ 1, k œ 1 Ê x œ 1 œ 3 1 ˆ "# ‰ cos ) Ê eœ " # , k œ 6 Ê x œ 6; # a a1 e# b œ ke Ê a ’1 ˆ "# ‰ “ œ 3 Ê 3 4 aœ3 Ê a œ 4 Ê ea œ 2 39. r œ 25 10 5 cos ) Ê eœ " # Ê rœ # 40. r œ 4 22 cos ) 41. r œ 400 16 8 sin ) " # œ ˆ 5# ‰ 1 ˆ "# ‰ cos ) , k œ 5 Ê x œ 5; a a1 e# b œ ke Ê a ’1 ˆ "# ‰ “ œ eœ ˆ 25 ‰ 10 5 ‰ 1 ˆ 10 cos ) Ê rœ 5 # Ê 2 1cos ) Ê rœ 3 4 aœ 5 # Ê aœ 10 3 Ê ea œ 5 3 Ê e œ 1, k œ 2 Ê x œ 2 ˆ 400 ‰ 16 8 ‰ 1 ˆ 16 sin ) Ê rœ 25 1 ˆ "# ‰ sin ) , k œ 50 Ê y œ 50; a a1 e# b œ ke # Ê a ’1 ˆ "# ‰ “ œ 25 Ê Ê ea œ 3 4 a œ 25 Ê a œ 100 3 50 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 11.7 Conics in Polar Coordinates 42. r œ 12 3 3 sin ) Ê rœ 4 1 sin ) Ê e œ 1, 43. r œ kœ4 Ê yœ4 44. r œ 4 2 sin ) 8 2 2 sin ) Ê rœ 4 1 sin ) Ê e œ 1, k œ 4 Ê y œ 4 Ê rœ 2 1 ˆ "# ‰ sin ) Ê eœ " # ,kœ4 # Ê y œ 4; a a1 e# b œ ke Ê a ’1 ˆ "# ‰ “ œ 2 Ê 3 4 aœ2 Ê aœ 8 3 Ê ea œ 4 3 45. r cos ˆ) 14 ‰ œ È2 Ê r ˆcos ) cos 14 sin ) sin 14 ‰ œ È2 Ê " r cos ) " r sin ) œ È2 Ê " x È2 È2 È2 " È2 y œ È2 Ê x y œ 2 Ê y œ 2 x 46. r cos ˆ) Ê 31 ‰ 4 œ 1 Ê r ˆcos ) cos È2 2 r cos ) Ê y œ x È 2 47. r cos ˆ) 21 ‰ 3 È3 2 sin ) sin 31 ‰ 4 œ1 r sin ) œ 1 Ê x y œ È2 œ 3 Ê r ˆcos ) cos Ê r cos ) 1 2 È2 2 31 4 21 3 sin ) sin " # r sin ) œ 3 Ê x Ê x È 3 y œ 6 Ê y œ È3 3 È3 # 21 ‰ 3 œ3 yœ3 x 2È 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 695 696 Chapter 11 Parametric Equations and Polar Coordinates 48. r cos ˆ) 13 ‰ œ 2 Ê r ˆcos ) cos Ê 1 2 r cos ) È3 2 r sin ) œ 2 Ê Ê x È3 y œ 4 Ê y œ È3 3 1 3 sin ) sin 13 ‰ œ 2 " # x x 4È 3 3 È3 # yœ2 È 49. È2 x È2 y œ 6 Ê È2 r cos ) È2 r sin ) œ 6 Ê r Š #2 cos ) È2 # sin )‹ œ 3 Ê r ˆcos 1 4 cos ) sin œ 3 Ê r cos ˆ) 14 ‰ œ 3 È 50. È3 x y œ 1 Ê È3 r cos ) r sin ) œ 1 Ê r Š #3 cos ) œ " # Ê r cos ˆ) 16 ‰ œ 1 # sin )‹ œ " # Ê r ˆcos 1 6 cos ) sin 1 6 sin )‰ " # 51. y œ 5 Ê r sin ) œ 5 Ê r sin ) œ 5 Ê r sin ()) œ 5 Ê r cos ˆ 1# ())‰ œ 5 Ê r cos ˆ) 1# ‰ œ 5 52. x œ 4 Ê r cos ) œ 4 Ê r cos ) œ 4 Ê r cos () 1) œ 4 53. 54. 55. 56. 57. (x 6)# y# œ 36 Ê C œ (6ß 0), a œ 6 Ê r œ 12 cos ) is the polar equation 58. (x 2)# y# œ 4 Ê C œ (2ß 0), a œ 2 Ê r œ 4 cos ) is the polar equation Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 4 sin )‰ Section 11.7 Conics in Polar Coordinates 59. x# (y 5)# œ 25 Ê C œ (!ß 5), a œ 5 Ê r œ 10 sin ) is the polar equation 60. x# (y 7)# œ 49 Ê C œ (!ß 7), a œ 7 Ê r œ 14 sin ) is the polar equation 61. x# 2x y# œ 0 Ê (x 1)# y# œ 1 Ê C œ (1ß 0), a œ 1 Ê r œ 2 cos ) is the polar equation 62. x# 16x y# œ 0 Ê (x 8)# y# œ 64 Ê C œ (8ß 0), a œ 8 Ê r œ 16 cos ) is the polar equation # 63. x# y# y œ 0 Ê x# ˆy "# ‰ œ 4" Ê C œ ˆ!ß "# ‰ , a œ "# Ê r œ sin ) is the # 64. x# y# 34 y œ 0 Ê x# ˆy 32 ‰ œ 49 Ê C œ ˆ0ß 23 ‰ , a œ 23 Ê r œ 43 sin ) is the polar equation 65. polar equation 66. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 697 698 Chapter 11 Parametric Equations and Polar Coordinates 67. 68. 69. 70. 71. 72. 73. 74. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 11 Practice Exercises 75. (a) Perihelion œ a ae œ a(1 e), Aphelion œ ea a œ a(1 e) (b) Planet Perihelion Aphelion Mercury 0.3075 AU 0.4667 AU Venus 0.7184 AU 0.7282 AU Earth 0.9833 AU 1.0167 AU Mars 1.3817 AU 1.6663 AU Jupiter 4.9512 AU 5.4548 AU Saturn 9.0210 AU 10.0570 AU Uranus 18.2977 AU 20.0623 AU Neptune 29.8135 AU 30.3065 AU (0.3871) a1 0.2056# b 0.3707 œ 1 0.2056 1 0.2056 cos ) cos ) (0.7233) a1 0.0068# b 0.7233 Venus: r œ 1 0.0068 cos ) œ 1 0.0068 cos ) 0.0167# b 0.9997 Earth: r œ 11a10.0167 cos ) œ 1 0.0617 cos ) a1 0.0934# b 1.511 Mars: r œ (1.524) œ 1 0.0934 1 0.0934 cos ) cos ) # a1 0.0484 b 5.191 Jupiter: r œ (5.203) œ 1 0.0484 cos ) 1 0.0484 cos ) (9.539) a1 0.0543# b 9.511 Saturn: r œ 1 0.0543 cos ) œ 1 0.0543 cos ) a1 0.0460# b 19.14 Uranus: r œ (19.18) œ 1 0.0460 cos ) 1 0.0460 cos ) (30.06) a1 0.0082# b 30.06 Neptune: r œ 1 0.0082 cos ) œ 1 0.0082 cos ) 76. Mercury: r œ CHAPTER 11 PRACTICE EXERCISES 1. x œ t # and y œ t 1 Ê 2x œ t Ê y œ 2x 1 " # tan t and y# œ "4 # # 3. x œ and y œ " # sec t Ê x# œ " 4 tan# t sec# t Ê 4x# œ tan# t and 4y œ sec t Ê 4x# 1 œ 4y# Ê 4y# 4x# œ 1 2. x œ Èt and y œ 1 Èt Ê y œ 1 x 4. x œ 2 cos t and y œ 2 sin t Ê x# œ 4 cos# t and y# œ 4 sin# t Ê x# y# œ 4 699 700 Chapter 11 Parametric Equations and Polar Coordinates 5. x œ cos t and y œ cos# t Ê y œ (x)# œ x# 6. x œ 4 cos t and y œ 9 sin t Ê x# œ 6 cos# t and x# 16 y# œ 81 sin# t Ê x# 9 7. 16x# 9y# œ 144 Ê y# 16 y# 81 œ1 œ 1 Ê a œ 3 and b œ 4 Ê x œ 3 cos t and y œ 4 sin t, 0 Ÿ t Ÿ 21 8. x# y# œ 4 Ê x œ 2 cos t and y œ 2 sin t, 0 Ÿ t Ÿ 61 9. x œ " # " # tan t, y œ Ê xœ " # tan 1 3 sec t Ê œ œ 2 cos3 ˆ 13 ‰ œ È3 # dy dx œ dy/dt dx/dt œ " # sec 1 3 and y œ " # sec t tan t " # # sec t œ tan t sec t œ sin t Ê œ1 Ê yœ È3 # x 4" ; d# y dx# dy dx ¹ tœ1Î3 œ dyw /dt dx/dt œ sin œ " # 1 3 cos t sec# t œ È3 # ;tœ 1 3 œ 2 cos3 t Ê d# y dx# ¹ tœ1Î3 " 4 10. x œ " " t# ,yœ" yœ1 3 # œ #" Ê y œ 3x Ê 3 t dy dx œ 11. (a) x œ 4t2 , y œ t3 1 Ê t œ „ (b) x œ cos t, y œ tan t Ê sec t œ "3 4 ; Èx 2 1 x Š t3# ‹ œ dy/dt dx/dt Š t2$ ‹ d# y dx# œ œ 32 t Ê dyw /dt dx/dt œ ÊyœŠ„ ˆ 3# ‰ Š t2$ ‹ Èx 3 2 ‹ dy dx ¹ tœ2 œ œ 3# (2) œ 3; t œ 2 Ê x œ 1 3 $ 4 t Ê 1œ „ d# y dx# ¹ tœ2 x3Î2 8 1 1 x2 1œ Ê tan2 t 1 œ sec2 t Ê y2 œ œ 3 4 1 x2 x2 " ## œ 5 4 and (2)$ œ 6 È 1 x2 x Êyœ „ 12. (a) The line through a1, 2b with slope 3 is y œ 3x 5 Ê x œ t, y œ 3t 5, _ t _ (b) ax 1b2 ay 2b2 œ 9 Ê x 1 œ 3 cos t, y 2 œ 3 sin t Ê x œ 1 3 cos t, y œ 2 3 sin t, 0 Ÿ t Ÿ 21 (c) y œ 4x2 x Ê x œ t, y œ 4t2 t, _ t _ (d) 9x2 4y2 œ 36 Ê 13. y œ x"Î# x$Î# 3 Ê dy dx x2 4 œ " # y2 9 œ 1 Ê x œ 2 cos t, y œ 3 sin t, 0 Ÿ t Ÿ 21 # x"Î# #" x"Î# Ê Š dy dx ‹ œ " 4 ˆ x" 2 x‰ Ê L œ ' É1 4" ˆ x" 2 x‰ dx 1 4 # Ê L œ '1 É 4" ˆ x" 2 x‰ dx œ '1 É 4" ax"Î# x"Î# b dx œ '1 4 œ " # ˆ4 2 3 14. x œ y#Î$ Ê œ '1 8 4 † 8‰ ˆ2 32 ‰‘ œ dx dy È9x#Î$ 4 3x"Î$ œ 5 12 ˆ2 # 14 ‰ 3 x"Î$ Ê Š dx dy ‹ œ œ 4x #Î$ 9 " # ˆx"Î# x"Î# ‰ dx œ " # 2x"Î# 23 x$Î# ‘ % " 10 3 ' É1 Ê L œ '1 Ê1 Š dx dy ‹ dy œ 1 # 8 8 4 9x#Î$ dy '18 È9x#Î$ 4 ˆx"Î$ ‰ dx; u œ 9x#Î$ 4 Ê du œ 6y"Î$ dy; x œ 1 40 " ' " 2 $Î# ‘ %! Ä L œ 18 u"Î# du œ 18 œ #"7 40$Î# 13$Î# ‘ ¸ 7.634 3 u "$ 13 dx œ x œ 8 Ê u œ 40d 15. y œ 2 3 " # 4 " 3 x'Î& 58 x%Î& Ê dy dx œ " # # x"Î& "# x"Î& Ê Š dy dx ‹ œ " 4 Ê u œ 13, ˆx#Î& 2 x#Î& ‰ # Ê L œ '1 É1 "4 ax#Î& 2 x#Î& b dx Ê L œ '1 É 4" ax#Î& 2 x#Î& b dx œ ' É "4 ax"Î& x"Î& b dx 32 32 32 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 11 Practice Exercises œ '1 32 œ " 48 16. x œ " # ˆx"Î& x"Î& ‰ dx œ (1260 450) œ " 1# y$ " y Ê " % œ '1 É 16 y 2 " # œ 1710 48 dx dt $# x'Î& 54 x%Î& ‘ " œ # dx dy œ " 4 " y# " y% dy œ '1 ÊŠ 4" y# y# 8 œ ˆ 12 "# ‰ ˆ 1"# 1‰ œ 17. " 5 # 6 285 8 Ê Š dx dy ‹ œ œ 5 sin t 5 sin 5t and " # œ ˆ 56 † 2' y% " # 5 4 † 2% ‰ ˆ 56 54 ‰‘ œ " # ˆ 315 6 " % Ê L œ '1 Ê1 Š 16 y 2 " y% dy œ '1 Š 4" y# # " y# ‹ 2 7 1# " 16 " # 2 " y# ‹ dy œ ’ 1"# y$ y" “ " # 75 ‰ 4 " y% ‹ dy # " 13 12 # # ‰ Š dy œ 5 cos t 5 cos 5t Ê Êˆ dx dt dt ‹ dy dt œ Éa5 sin t 5 sin 5tb# a5 cos t 5 cos 5tb# œ 5Èsin# 5t #sin t sin 5t sin# t cos# t #cos t cos 5t cos# 5t œ &È# #asin t sin 5t cos t cos 5 tb œ 5È#a" cos %tb œ 5É%ˆ "# ‰a" cos %tb œ "!Èsin# #t œ "!lsin #tl œ "!sin #t (since ! Ÿ t Ÿ 1# ) Ê Length œ '! 1 Î2 18. dx dt 1Î# "!sin #t dt œ c5 cos #td ! œ 3t2 12t and dy dt œ a&ba"b a&ba"b œ "! # # ‰ Š dy Éa3t2 12tb# a3t2 12tb# œ È288t# "8t4 œ 3t2 12t Ê Êˆ dx dt dt ‹ œ œ 3È2 ktkÈ16 t2 Ê Length œ '! 3È2 ktkÈ16 t2 dt œ 3È2'! t È16 t2 dt; ’u œ 16 t2 Ê du œ 2t dt " " Ê "# du œ t dt; t œ 0 Ê u œ 16; t œ 1 Ê u œ 17“; œ 19. dx d) 3È 2 2 œ $ sin ) and # 20. x œ t and y œ t$ 3 $ d) œ $'! $1Î2 d) œ $ˆ $#1 !‰ œ t, È3 Ÿ t Ÿ È3 Ê È3 Èt% #t# " dt œ È3 # # ‰ Š dy Éa$ sin )b# a$ cos )b# œ È$asin# ) cos# )b œ $ œ $ cos ) Ê Êˆ dx d) d) ‹ œ dy d) $1Î2 ' '16"7 Èu du œ 3È2 2 23 u3/2 ‘1617 œ 3È2 2 Š 23 a17b3/2 23 a16b3/2 ‹ † 23 Ša17b3/2 64‹ œ È2Ša17b3/2 64‹ ¸ 8.617. Ê Length œ '! œ 3È 2 2 ' dx dt *1 # œ 2t and È3 Èt% 2t# " dt œ È 3 œt dy dt ' # " Ê Length œ ' È3 È 3 È3 È 3 Éat# "b# dt œ Éa2tb# at# "b# dt È 'È33 at# "b dt œ ’ t3 t“ 3 È3 È3 œ 4È 3 21. x œ t# # and y œ 2t, 0 Ÿ t Ÿ È5 Ê * œ 21 23 u$Î# ‘ % œ 22. x œ t# " 2t 761 3 dx dt " È2 ŸtŸ1 Ê Ê Surface Area œ '1ÎÈ2 21 ˆt# 1 1 œ 21 Š2 dy dt È5 œ 2 Ê Surface Area œ '0 21(2t)Èt# 4 dt œ '4 21u"Î# du 9 , where u œ t# 4 Ê du œ 2t dt; t œ 0 Ê u œ 4, t œ È5 Ê u œ 9 and y œ 4Èt , œ 21 '1ÎÈ2 ˆt# œ t and " ‰ˆ 2t 2t " ‰ 2t# "‰ #t dx dt œ 2t ʈ2t " ‰# 2t# " 2t# dy dt œ 2 Èt Š È2 t ‹ dt œ 21 '1ÎÈ2 ˆt# dt œ 21 '1ÎÈ2 ˆ2t$ 1 and # 3 # 1 " ‰ Ɉ 2t #t " " ‰# #t# "4 t$ ‰ dt œ 21 "2 t% 3# t 8" t# ‘ "ÎÈ# 3È 2 4 ‹ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. dt 701 702 Chapter 11 Parametric Equations and Polar Coordinates 23. r cos ˆ) 13 ‰ œ 2È3 Ê r ˆcos ) cos 1 3 sin ) sin 13 ‰ È r cos ) #3 r sin ) œ 2È3 Ê r cos ) È3 r sin ) œ 4È3 Ê x È3 y œ 4È3 " # œ 2È 3 Ê Ê yœ È3 3 24. r cos ˆ) œ È2 # x4 31 ‰ 4 Ê œ È2 # È2 # Ê r ˆcos ) cos r cos ) Ê yœx1 25. r œ 2 sec ) Ê r œ 2 cos ) È2 # 31 4 r sin ) œ sin ) sin È2 # 31 ‰ 4 Ê x y œ 1 Ê r cos ) œ 2 Ê x œ 2 26. r œ È2 sec ) Ê r cos ) œ È2 Ê x œ È2 27. r œ 3# csc ) Ê r sin ) œ 3# Ê y œ 3# Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 11 Practice Exercises 28. r œ 3È3 csc ) Ê r sin ) œ 3È3 Ê y œ 3È3 29. r œ 4 sin ) Ê r# œ 4r sin ) Ê x# y# 4y œ 0 Ê x# (y 2)# œ 4; circle with center (!ß 2) and radius 2. 30. r œ 3È3 sin ) Ê r# œ 3È3 r sin ) Ê x# y# 3È3 y œ 0 Ê x# Šy circle with center Š!ß 3È 3 # ‹ and radius 3È 3 # ‹ # œ 27 4 ; 3È 3 # 31. r œ 2È2 cos ) Ê r# œ 2È2 r cos ) # Ê x# y# 2È2 x œ 0 Ê Šx È2‹ y# œ 2; circle with center ŠÈ2ß 0‹ and radius È2 32. r œ 6 cos ) Ê r# œ 6r cos ) Ê x# y# 6x œ 0 Ê (x 3)# y# œ 9; circle with center (3ß 0) and radius 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 703 704 Chapter 11 Parametric Equations and Polar Coordinates # 33. x# y# 5y œ 0 Ê x# ˆy #5 ‰ œ and a œ 5 # 25 4 Ê C œ ˆ!ß #5 ‰ ; r# 5r sin ) œ 0 Ê r œ 5 sin ) 34. x# y# 2y œ 0 Ê x# (y 1)# œ 1 Ê C œ (!ß 1) and a œ 1; r# 2r sin ) œ 0 Ê r œ 2 sin ) # 35. x# y# 3x œ 0 Ê ˆx 3# ‰ y# œ and a œ 3 # 9 4 Ê C œ ˆ 3# ß !‰ ; r# 3r cos ) œ 0 Ê r œ 3 cos ) 36. x# y# 4x œ 0 Ê (x 2)# y# œ 4 Ê C œ (2ß 0) and a œ 2; r# 4r cos ) œ 0 Ê r œ 4 cos ) 37. 38. 39. d 40. e 41. l 42. f 43. k 44. h 45. i 46. j Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 11 Practice Exercises 47. A œ 2'0 1 " # # r d) œ '0 (2 cos ))# d) œ '0 a4 4 cos ) cos# )b d) œ '0 ˆ4 4 cos ) 1 œ '0 ˆ 9# 4 cos ) 1 48. A œ '0 1Î3 " # 1 cos 2) ‰ # 1 sin 2) ‘ 1 4 ! d) œ 92 ) 4 sin ) asin# 3)b d) œ '0 1Î3 6) ‰ ˆ 1 cos d) œ # " 4 ) " 6 œ 9 # A œ 4'0 " # 1Î$ sin 6)‘ ! œ 1 12 1 # 1 4 Ê )œ c(1 cos 2))# 1# d d) œ 2 '0 a1 2 cos 2) cos# 2) 1b d) 1Î4 œ 2'0 ˆ2 cos 2) 1Î4 " # cos 4) ‰ # d) œ 2 sin 2) " 2 ) d) 1 49. r œ 1 cos 2) and r œ 1 Ê 1 œ 1 cos 2) Ê 0 œ cos 2) Ê 2) œ 1Î4 1 cos 2) ‰ # sin 4) ‘ 1Î% 8 ! œ 2 ˆ1 1 8 ; therefore 0‰ œ 2 1 4 50. The circle lies interior to the cardioid. Thus, 1Î2 A œ 2 ' 1Î2 1Î2 " # [2(1 sin ))]# d) 1 (the integral is the area of the cardioid minus the area of the circle) 1Î2 œ ' 1Î2 4 a1 2 sin ) sin# )b d) 1 œ ' 1Î2 (6 8 sin ) 2 cos 2)) d) 1 œ c6) 8 cos ) sin 2)d 1Î# 1 œ c31 (31)d 1 œ 51 51. r œ 1 cos ) Ê dr d) œ sin ); Length œ '0 È(1 cos ))# ( sin ))# d) œ '0 È2 2 cos ) d) 21 œ '0 É 4(1 #cos )) d) œ '0 2 sin 21 1Î# 21 52. r œ 2 sin ) 2 cos ), 0 Ÿ ) Ÿ 1 # 53. r œ 8 sin$ ˆ 3) ‰ , 0 Ÿ ) Ÿ 1 4 Ê dr d) #1 d) œ 4 cos 2) ‘ ! œ (4)(1) (4)(1) œ 8 ) # Ê œ 8 asin# ) cos# )b œ 8 Ê L œ 21 dr d) # œ 2 cos ) 2 sin ); r# ˆ ddr) ‰ œ (2 sin ) 2 cos ))# (2 cos ) 2 sin ))# '01Î2 È8 d) œ ’2È2 )“ 1Î# œ 2È2 ˆ 1# ‰ œ 1È2 ! # œ 64 sin% ˆ 3) ‰ Ê L œ '0 É64 sin% ˆ 3) ‰ d) œ '0 1Î4 # œ 8 sin# ˆ 3) ‰ cos ˆ 3) ‰ ; r# ˆ ddr) ‰ œ 8 sin$ ˆ 3) ‰‘ 8 sin# ˆ 3) ‰ cos ˆ 3) ‰‘ 1Î4 8 sin# ˆ 3) ‰ d) œ '0 8 ’ 1Î4 1cos ˆ 23) ‰ “ # d) 1Î% œ '0 4 4 cos ˆ 23) ‰‘ d) œ 4) 6 sin ˆ 23) ‰‘ ! œ 4 ˆ 14 ‰ 6 sin ˆ 16 ‰ 0 œ 1 3 1Î4 54. r œ È1 cos 2) Ê dr d) œ " # (1 cos 2))"Î# (2 sin 2)) œ # Ê r# ˆ ddr) ‰ œ 1 cos 2) œ 2 2 cos 2) 1 cos 2) 1Î2 sin# 2) 1 cos 2) œ (1 cos 2))# sin# 2) 1 cos 2) sin 2) È1 cos 2) œ # Ê ˆ ddr) ‰ œ sin# 2) 1 cos 2) 1 2 cos 2) cos# 2) sin# 2) 1cos 2) œ 2 Ê L œ ' 1Î2 È2 d) œ È2 1# ˆ 1# ‰‘ œ È2 1 # 55. x# œ 4y Ê y œ x4 Ê 4p œ 4 Ê p œ 1; therefore Focus is (0ß 1), Directrix is y œ 1 x# # œ y Ê 4p œ 2 Ê p œ "# ; therefore Focus is ˆ!ß "# ‰; Directrix is y œ "# 56. x# œ 2y Ê Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. # 705 706 Chapter 11 Parametric Equations and Polar Coordinates 57. y# œ 3x Ê x œ y# 3 Ê 4p œ 3 Ê p œ 3 4 # 58. y# œ 38 x Ê x œ ˆy8 ‰ Ê 4p œ ; 3 therefore Focus is ˆ 34 ß 0‰ , Directrix is x œ 34 x# 7 59. 16x# 7y# œ 112 Ê y# 16 61. 3x# y# œ 3 Ê x# Ê c œ 2; e œ c a œ 2 1 y# 3 x# 4 c a œ 62. 5y# 4x# œ 20 Ê y# 4 3 # ; 60. x# 2y# œ 4 Ê c a œ Ê pœ therefore Focus is ˆ 23 ß !‰ , Directrix is x œ œ1 Ê c# œ 16 7 œ 9 Ê c œ 3; e œ 8 3 Ê c œ È2 ; e œ 3 4 œ 1 Ê c# œ 1 3 œ 4 œ 2; the asymptotes are Ê c œ 3, e œ c a œ y# # œ È2 # x# 5 2 3 ; 2 3 1 Ê c# œ 4 2 œ 2 œ 1 Ê c# œ 4 5 œ 9 the asymptotes are y œ „ 2 È5 x y œ „ È3 x # 63. x# œ 12y Ê 1x# œ y Ê 4p œ 12 Ê p œ 3 Ê focus is (!ß 3), directrix is y œ 3, vertex is (0ß 0); therefore new vertex is (2ß 3), new focus is (2ß 0), new directrix is y œ 6, and the new equation is (x 2)# œ 12(y 3) # y 64. y# œ 10x Ê 10 œ x Ê 4p œ 10 Ê p œ 5# Ê focus is ˆ 5# ß 0‰ , directrix is x œ 5# , vertex is (0ß 0); therefore new vertex is ˆ "# ß 1‰ , new focus is (2ß 1), new directrix is x œ 3, and the new equation is (y 1)# œ 10 ˆx "# ‰ 65. x# 9 y# #5 œ 1 Ê a œ 5 and b œ 3 Ê c œ È25 9 œ 4 Ê foci are a!ß „ 4b , vertices are a!ß „ 5b , center is (0ß 0); therefore the new center is ($ß 5), new foci are (3ß 1) and (3ß 9), new vertices are ($ß 10) and ($ß 0), and the new equation is (x 3)# 9 (y 5)# #5 œ1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 11 Practice Exercises 66. x# 169 y# 144 707 œ 1 Ê a œ 13 and b œ 12 Ê c œ È169 144 œ 5 Ê foci are a „ 5ß 0b , vertices are a „ 13ß 0b , center is (0ß 0); therefore the new center is (5ß 12), new foci are (10ß 12) and (0ß 12), new vertices are (18ß 12) and (8ß 12), and the new equation is 67. y# 8 x# 2 (x 5)# 169 (y 12)# 144 œ1 œ 1 Ê a œ 2È2 and b œ È2 Ê c œ È8 2 œ È10 Ê foci are Š0ß „ È10‹ , vertices are Š0ß „ 2È2‹ , center is (0ß 0), and the asymptotes are y œ „ 2x; therefore the new center is Š2ß 2È2‹, new foci are Š2ß 2È2 „ È10‹ , new vertices are Š2ß 4È2‹ and (#ß 0), the new asymptotes are y œ 2x 4 2È2 and # y œ 2x 4 2È2; the new equation is 68. x# 36 y# 64 Šy 2È2‹ 8 (x 2)# # œ1 œ 1 Ê a œ 6 and b œ 8 Ê c œ È36 64 œ 10 Ê foci are a „ 10ß 0b , vertices are a „ 6ß 0b , the center is (0ß 0) and the asymptotes are y 8 œ „ x 6 or y œ „ 43 x; therefore the new center is (10ß 3), the new foci are (20ß 3) and (0ß 3), the new vertices are (16ß 3) and (4ß 3), the new asymptotes are y œ y œ 43 x 49 3 ; the new equation is (x 10)# 36 (y 3)# 64 4 3 x 31 3 and œ1 69. x# 4x 4y# œ 0 Ê x# 4x 4 4y# œ 4 Ê (x 2)# 4y# œ 4 Ê (x 2)# 4 y# œ 1, a hyperbola; a œ 2 and b œ 1 Ê c œ È1 4 œ È5 ; the center is (2ß 0), the vertices are (!ß 0) and (4ß 0); the foci are Š2 „ È5 ß 0‹ and the asymptotes are y œ „ x 2 # 70. 4x# y# 4y œ 8 Ê 4x# y# 4y 4 œ 4 Ê 4x# (y 2)# œ 4 Ê x# (y 2)# 4 œ 1, a hyperbola; a œ 1 and b œ 2 Ê c œ È1 4 œ È5 ; the center is (!ß 2), the vertices are (1ß 2) and ("ß 2), the foci are Š „ È5ß 2‹ and the asymptotes are y œ „ 2x 2 71. y# 2y 16x œ 49 Ê y# 2y 1 œ 16x 48 Ê (y 1)# œ 16(x 3), a parabola; the vertex is ($ß 1); 4p œ 16 Ê p œ 4 Ê the focus is (7ß 1) and the directrix is x œ 1 72. x# 2x 8y œ 17 Ê x# 2x 1 œ 8y 16 Ê (x 1)# œ 8(y 2), a parabola; the vertex is (1ß 2); 4p œ 8 Ê p œ 2 Ê the focus is (1ß 4) and the directrix is y œ 0 73. 9x# 16y# 54x 64y œ 1 Ê 9 ax# 6xb 16 ay# 4yb œ 1 Ê 9 ax# 6x 9b 16 ay# 4y 4b œ 144 Ê 9(x 3)# 16(y 2)# œ 144 Ê (x 3)# 16 (y 2)# 9 œ 1, an ellipse; the center is (3ß 2); a œ 4 and b œ 3 Ê c œ È16 9 œ È7 ; the foci are Š$ „ È7ß 2‹ ; the vertices are (1ß 2) and (7ß 2) 74. 25x# 9y# 100x 54y œ 44 Ê 25 ax# 4xb 9 ay# 6yb œ 44 Ê 25 ax# 4x 4b 9 ay# 6y 9b œ 225 # # Ê (x 2) (y 3) œ 1, an ellipse; the center is (2ß 3); a œ 5 and b œ 3 Ê c œ È25 9 œ 4; the foci are 9 25 (2ß 1) and (2ß 7); the vertices are (2ß 2) and (2ß 8) 75. x# y# 2x 2y œ 0 Ê x# 2x 1 y# 2y 1 œ 2 Ê (x 1)# (y 1)# œ 2, a circle with center (1ß 1) and radius œ È2 76. x# y# 4x 2y œ 1 Ê x# 4x 4 y# 2y 1 œ 6 Ê (x 2)# (y 1)# œ 6, a circle with center (2ß 1) and radius œ È6 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 708 Chapter 11 Parametric Equations and Polar Coordinates 77. r œ 2 1 cos ) Ê e œ 1 Ê parabola with vertex at (1ß 0) 78. r œ 8 2 cos ) Ê rœ ke œ 4 Ê " # 4 1 ˆ "# ‰ cos ) Ê eœ k œ 4 Ê k œ 8; k œ a e " # Ê ellipse; ea Ê 8 œ a ˆ "# ‰ "# a ˆ " ‰ ˆ 16 ‰ 8 Ê a œ 16 3 Ê ea œ # 3 œ 3 ; therefore the center is ˆ 83 ß 1‰ ; vertices are ()ß 1) and ˆ 83 ß 0‰ 79. r œ 6 1 2 cos ) Ê e œ 2 Ê hyperbola; ke œ 6 Ê 2k œ 6 Ê k œ 3 Ê vertices are (2ß 1) and (6ß 1) 80. r œ Ê 12 3 sin ) " 3 Ê rœ 4 1 ˆ "3 ‰ sin ) Ê eœ " 3 ; ke œ 4 # k œ 4 Ê k œ 12; a a1 e# b œ 4 Ê a ’1 ˆ 3" ‰ “ œ 4 Ê a œ 9# Ê ea œ ˆ "3 ‰ ˆ 9# ‰ œ 3# ; therefore the center is ˆ 3# ß 3#1 ‰ ; vertices are ˆ3ß 1# ‰ and ˆ6ß 3#1 ‰ 81. e œ 2 and r cos ) œ 2 Ê x œ 2 is directrix Ê k œ 2; the conic is a hyperbola; r œ Ê rœ ke 1 e cos ) 83. e œ " # 84. e œ " 3 85. ke 1 e sin ) Ê rœ (4)(1) 1 cos ) Ê rœ (2) ˆ "# ‰ 1 ˆ "# ‰ sin ) 2 2 sin ) and r sin ) œ 6 Ê y œ 6 is directrix Ê k œ 6; the conic is an ellipse; r œ Ê rœ ke 1 e cos ) 4 1 cos ) and r sin ) œ 2 Ê y œ 2 is directrix Ê k œ 2; the conic is an ellipse; r œ Ê rœ (2)(2) 1 # cos ) 4 1 # cos ) 82. e œ 1 and r cos ) œ 4 Ê x œ 4 is directrix Ê k œ 4; the conic is a parabola; r œ Ê rœ Ê rœ ke 1 e sin ) Ê rœ (6) ˆ "3 ‰ 1 ˆ 3" ‰ sin ) 6 3 sin ) (a) Around the x-axis: 9x# 4y# œ 36 Ê y# œ 9 94 x# Ê y œ „ É9 94 x# and we use the positive root: # V œ 2 '0 1 ŠÉ9 94 x# ‹ dx œ 2 '0 1 ˆ9 94 x# ‰ dx œ 21 9x 34 x$ ‘ ! œ 241 2 2 # Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 11 Additional and Advanced Exercises 709 (b) Around the y-axis: 9x# 4y# œ 36 Ê x# œ 4 49 y# Ê x œ „ É4 49 y# and we use the positive root: # V œ 2 '0 1 ŠÉ4 49 y# ‹ dy œ 2'0 1 ˆ4 49 y# ‰ dy œ 21 4y 3 86. 9x# 4y# œ 36, x œ 4 Ê y# œ œ 87. 91 4 % $ ’ x3 4x“ œ # (a) r œ k 1 e cos ) # 91 4 3 9x# 36 4 Ê yœ ˆ 64 ‰ ˆ8 ‰‘ œ 3 16 3 8 3 # 91 4 4 27 $ y$ ‘ ! œ 161 Èx# 4 ; V œ ' 1 Š 3 Èx# 4‹ dx œ # 2 4 ˆ 56 3 24 ‰ 3 œ 31 4 # 91 4 '24 ax# 4b dx (32) œ 241 Ê r er cos ) œ k Ê Èx# y# ex œ k Ê Èx# y# œ k ex Ê x# y# œ k 2kex e# x# Ê x# e# x# y# 2kex k# œ 0 Ê a1 e# b x# y# 2kex k# œ 0 (b) e œ 0 Ê x# y# k# œ 0 Ê x# y# œ k# Ê circle; 0 e 1 Ê e# 1 Ê e# 1 0 Ê B# 4AC œ 0# 4 a1 e# b (1) œ 4 ae# 1b 0 Ê ellipse; e œ 1 Ê B# 4AC œ 0# 4(0)(1) œ 0 Ê parabola; e 1 Ê e# 1 Ê B# 4AC œ 0# 4 a1 e# b (1) œ 4e# 4 0 Ê hyperbola 88. Let (r" ß )" ) be a point on the graph where r" œ a)" . Let (r# ß )# ) be on the graph where r# œ a)# and )# œ )" 21. Then r" and r# lie on the same ray on consecutive turns of the spiral and the distance between the two points is r# r" œ a)# a)" œ a()# )" ) œ 21a, which is constant. CHAPTER 11 ADDITIONAL AND ADVANCED EXERCISES 1. Directrix x œ 3 and focus (4ß 0) Ê vertex is ˆ 7# ß !‰ Ê pœ " # Ê the equation is x 7 # œ y# # 2. x# 6x 12y 9 œ 0 Ê x# 6x 9 œ 12y Ê (x3)# 12 œ y Ê vertex is (3ß 0) and p œ 3 Ê focus is (3ß 3) and the directrix is y œ 3 3. x# œ 4y Ê vertex is (!ß 0) and p œ 1 Ê focus is (!ß 1); thus the distance from P(xß y) to the vertex is Èx# y# and the distance from P to the focus is Èx# (y 1)# Ê Èx# y# œ 2Èx# (y 1)# Ê x# y# œ 4 cx# (y 1)# d Ê x# y# œ 4x# 4y# 8y 4 Ê 3x# 3y# 8y 4 œ 0, which is a circle 4. Let the segment a b intersect the y-axis in point A and intersect the x-axis in point B so that PB œ b and PA œ a (see figure). Draw the horizontal line through P and let it intersect the y-axis in point C. Let nPBO œ ) Ê nAPC œ ). Then sin ) œ yb and cos ) œ xa Ê x# a# y# b# œ cos# ) sin# ) œ 1. 5. Vertices are a!ß „ 2b Ê a œ 2; e œ c a Ê 0.5 œ c # Ê c œ 1 Ê foci are a0ß „ 1b Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 710 Chapter 11 Parametric Equations and Polar Coordinates 6. Let the center of the ellipse be (xß 0); directrix x œ 2, focus (4ß 0), and e œ 23 Ê ae c œ 2 Ê ae œ 2 c a Ê a œ 32 (2 c). Also c œ ae œ 32 a Ê a œ 32 ˆ2 32 a‰ Ê a œ 34 94 a Ê 95 a œ 34 Ê a œ 12 5 ;x2œ e 28 28 8 # # # ‰ ˆ 3# ‰ œ 18 ˆ 28 ‰ Ê x 2 œ ˆ 12 5 5 Ê x œ 5 Ê the center is 5 ß 0 ; x 4 œ c Ê c œ 5 4 œ 5 so that c œ a b # # ‰ ˆ 58 ‰ œ œ ˆ 12 5 80 25 ; therefore the equation is ˆx 28 ‰# 5 ˆ 144 ‰ 25 y# ˆ 80 ‰ 25 œ 1 or 7. Let the center of the hyperbola be (0ß y). (a) Directrix y œ 1, focus (0ß 7) and e œ 2 Ê c ae œ 6 Ê Ê a œ 2(2a) 12 Ê a œ Ê b# œ c# a# œ 64 16 (b) e œ 5 Ê c Ê cœ œ 625 16 25 4 25 16 a e œ6 Ê ; y (1) œ œ 75 # a e a e a e ‰ 25 ˆx 28 5 144 # Ê 144 a4 a # b # 5y# 16 œ1 œ c 6 Ê a œ 2c 12. Also c œ ae œ 2a 4 Ê c œ 8; y (1) œ œ #4 œ 2 # œ 48; therefore the equation is (y161) a e Ê y œ 1 Ê the center is (0ß 1); c# œ a# b# x# 48 œ1 œ c 6 Ê a œ 5c 30. Also, c œ ae œ 5a Ê a œ 5(5a) 30 Ê 24a œ 30 Ê a œ ˆ 54 ‰ 5 œ œ " 4 Ê y œ 43 Ê the center is ˆ!ß 43 ‰ ; c# œ a# b# Ê b# œ c# a# ; therefore the equation is ˆy 34 ‰# ˆ 25 ‰ 16 x# ˆ 75 ‰ # œ 1 or 16 ˆy 34 ‰ 25 # # # # # 2x# 75 8. The center is (0ß 0) and c œ 2 Ê 4 œ a# b# Ê b# œ 4 a# . The equation is 49 a# y# a# # œ1 x# b# # œ1 Ê # % 49 a# 144 b# œ1 % œ 1 Ê 49 a4 a b 144a œ a a4 a b Ê 196 49a 144a œ 4a a Ê a 197a# 196 œ 0 Ê aa 196b aa# 1b œ 0 Ê a œ 14 or a œ 1; a œ 14 Ê b# œ 4 (14)# 0 which is impossible; a œ 1 Ê b# œ 4 1 œ 3; therefore the equation is y# 9. b# x# a# y# œ a# b# Ê dy dx x# 3 œ1 # # œ ba# yx ; at (x" ß y" ) the tangent line is y y" œ Š ba# yx"" ‹ (x x" ) Ê a# yy" b# xx" œ b# x"# a# y"# œ a# b# Ê b# xx" a# yy" a# b# œ 0 10. b# x# a# y# œ a# b# Ê dy dx œ b# x a# y # ; at (x" ß y" ) the tangent line is y y" œ Š ba# yx"" ‹ (x x" ) Ê b# xx" a# yy" œ b# x"# a# y"# œ a# b# Ê b# xx" a# yy" a# b# œ 0 11. 12. 13. 14. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 5 4 Chapter 11 Additional and Advanced Exercises 15. a9x# 4y# 36b a4x# 9y# 16b Ÿ 0 Ê 9x# 4y# 36 Ÿ 0 and 4x# 9y# 16 0 or 9x# 4y# 36 0 and 4x# 9y# 16 Ÿ 0 16. a9x# 4y# 36b a4x# 9y# 16b 0, which is the complement of the set in Exercise 15 sin t 17. (a) x œ e2t cos t and y œ e2t sin t Ê x# y# œ e4t cos# t e4t sin# t œ e4t . Also yx œ ee2t cos t œ tan t " ˆ y ‰ # # % tan " ayÎxb # # Ê t œ tan Ê x y œe is the Cartesian equation. Since r œ x y# and x 2t ) œ tan" ˆ yx ‰ , the polar equation is r# œ e4) or r œ e2) for r 0 (b) ds# œ r# d)# dr# ; r œ e2) Ê dr œ 2e2) d) # # Ê ds# œ r# d)# ˆ2e2) d)‰ œ ˆe2) ‰ d)# 4e4) d)# œ 5e4) d)# Ê ds œ È5 e2) d) Ê L œ '0 È5 e2) d) 21 œ’ È5 e2) #1 2 “! œ È5 # ae41 1b # # 18. r œ 2 sin$ ˆ 3) ‰ Ê dr œ 2 sin# ˆ 3) ‰ cos ˆ 3) ‰ d) Ê ds# œ r# d)# dr# œ 2 sin$ ˆ 3) ‰‘ d)# 2 sin# ˆ 3) ‰ cos ˆ 3) ‰ d)‘ œ 4 sin' ˆ 3) ‰ d)# 4 sin% ˆ 3) ‰ cos# ˆ 3) ‰ d)# œ 4 sin% ˆ 3) ‰‘ sin# ˆ 3) ‰ cos# ˆ 3) ‰‘ d)# œ 4 sin% ˆ 3) ‰ d)# Ê ds œ 2 sin# ˆ 3) ‰ d). Then L œ '0 2 sin# ˆ 3) ‰ d) œ '0 1 cos ˆ 23) ‰‘ d) œ ) 31 31 3 2 $1 sin ˆ 23) ‰‘ ! œ 31 19. e œ 2 and r cos ) œ 2 Ê x œ 2 is the directrix Ê k œ 2; the conic is a hyperbola with r œ Ê rœ (2)(2) 1 2 cos ) œ ke 1 e cos ) 4 1 2 cos ) 20. e œ 1 and r cos ) œ 4 Ê x œ 4 is the directrix Ê k œ 4; the conic is a parabola with r œ Ê rœ 21. e œ " # " 3 œ 4 1 cos ) and r sin ) œ 2 Ê y œ 2 is the directrix Ê k œ 2; the conic is an ellipse with r œ Ê rœ 22. e œ (4)(1) 1 cos ) 2 ˆ "# ‰ 1 ˆ "# ‰ sin ) œ ke 1 e sin ) 2 2 sin ) and r sin ) œ 6 Ê y œ 6 is the directrix Ê k œ 6; the conic is an ellipse with r œ Ê rœ 6 ˆ "3 ‰ 1 ˆ 3" ‰ sin ) ke 1 e cos ) œ ke 1 e sin ) 6 3 sin ) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 711 712 Chapter 11 Parametric Equations and Polar Coordinates 23. Arc PF œ Arc AF since each is the distance rolled; nPCF œ Arcb PF Ê Arc PF œ b(nPCF); ) œ ArcaAF Ê Arc AF œ a) Ê a) œ b(nPCF) Ê nPCF œ ˆ ba ‰ ); nOCB œ 1 # ) and nOCB œ nPCF nPCE œ nPCF ˆ 1# !‰ œ ˆ ba ‰ ) ˆ 1# !‰ Ê 1# ) œ ˆ ba ‰ ) ˆ 1# !‰ Ê 1# ) œ ˆ ba ‰ ) 1# ! Ê ! œ 1 ) ˆ ba ‰ ) Ê ! œ 1 ˆ ab b ‰ ). Now x œ OB BD œ OB EP œ (a b) cos ) b cos ! œ (a b) cos ) b cos ˆ1 ˆ a b b ‰ )‰ œ (a b) cos ) b cos 1 cos ˆˆ a b b ‰ )‰ b sin 1 sin ˆˆ a b b ‰ )‰ œ (a b) cos ) b cos ˆˆ a b b ‰ )‰ and y œ PD œ CB CE œ (a b) sin ) b sin ! œ (a b) sin ) b sin ˆˆ a b b ‰ )‰ œ (a b) sin ) b sin 1 cos ˆˆ a b b ‰ )‰ b cos 1 sin ˆˆ a b b ‰ )‰ œ (a b) sin ) b sin ˆˆ a b b ‰ )‰ ; therefore x œ (a b) cos ) b cos ˆˆ a b b ‰ )‰ and y œ (a b) sin ) b sin ˆˆ a b b ‰ )‰ 24. x œ a(t sin t) Ê ‰ œ a(1 cos t) and let $ œ 1 Ê dm œ dA œ y dx œ y ˆ dx dt dt dx dt œ a(1 cos t) a (1 cos t) dt œ a# (1 cos t)# dt; then A œ '0 a# (1 cos t)# dt 21 '021 a1 2 cos t cos# tb dt œ a# '021 ˆ1 2 cos t "# "# cos 2t‰ dt œ a# 32 t 2 sin t sin4 2t ‘ #!1 œ 31a# ; µ x = x œ a(t sin t) and µ y = "# y œ "# a(1 cos t) Ê Mx œ ' µ y dm œ ' µ y $ dA 21 21 21 œ '0 "# a(1 cos t) a# (1 cos t)# dt œ "# a$ '0 (1 cos t)$ dt œ a# '0 a1 3 cos t 3 cos# t cos$ tb dt œ a# $ œ œ a$ # '021 1 3 cos t #3 3 cos# 2t a1 sin# tb (cos t)‘ dt œ a# ’ 25 t 3 sin t 3 sin4 2t sin t sin3 t “ #1 $ 51 a # $ ! $ . Therefore y œ Mx M œ $ Š 51#a ‹ œ 31 a# 5 6 a. Also, My œ ' µ x dm œ ' µ x $ dA œ '0 a(t sin t) a# (1 cos t)# dt œ a$ '0 at 2t cos t t cos# t sin t 2 sin t cos t sin t cos# tb dt 21 21 # œ a$ ’ t2 2 cos t 2t sin t 4" t# xœ 25. My M œ 31 # a$ 31 a# œ 1a Ê ˆ1aß 5 6 " 8 cos 2t t 4 sin 2t cos t sin# t #1 cos$ t 3 “! œ 31# a$ . Thus a‰ is the center of mass. " œ <# <" Ê tan " œ tan (<# <" ) œ tan <# tan <" 1 tan <# tan <" ; the curves will be orthogonal when tan " is undefined, or when tan <# œ tan"<" Ê g (r)) œ " r w ’ f ()) “ w # w w Ê r œ f ( ) ) g ( ) ) 26. r œ sin% ˆ 4) ‰ Ê 27. r œ 2a sin 3) Ê œ sin$ ˆ 4) ‰ cos ˆ 4) ‰ Ê tan < œ dr d) dr d) œ 6a cos 3) Ê tan < œ r ˆ ddr) ‰ œ sin% ˆ )4 ‰ sin$ ˆ 4) ‰ cos ˆ )4 ‰ 2a sin 3) 6a cos 3) œ " 3 œ tan ˆ 4) ‰ tan 3); when ) œ 1 6 , tan < œ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " 3 tan 1 # Ê<œ 1 # Chapter 11 Additional and Advanced Exercises 28. (b) r) œ 1 Ê r œ )" Ê (a) œ ) " ) # œ ) Ê Ê < Ä 1 # dr d) œ )# Ê tanwith( plots ); r := t -> [sin(t)-t*cos(t),cos(t)+t*sin(t),t^2]; t0 := 3*Pi/2; lo := 0; hi := 6*Pi; P1 := spacecurve( r(t), t=lo..hi, axes=boxed, thickness=3 ): display( P1, title="#35(a) (Section 13.1)" ); Dr := unapply( diff(r(t),t), t ); # (b) Dr(t0); # (c) q1 := expand( r(t0) + Dr(t0)*(t-t0) ); T := unapply( q1, t ); P2 := spacecurve( T(t), t=lo..hi, axes=boxed, thickness=3, color=black ): display( [P1,P2], title="#35(d) (Section 13.1)" ); 39-40. Example CAS commands: Maple: a := 'a'; b := 'b'; r := (a,b,t) -> [cos(a*t),sin(a*t),b*t]; Dr := unapply( diff(r(a,b,t),t), (a,b,t) ); t0 := 3*Pi/2; q1 := expand( r(a,b,t0) + Dr(a,b,t0)*(t-t0) ); T := unapply( q1, (a,b,t) ); lo := 0; hi := 4*Pi; P := NULL: for a in [ 1, 2, 4, 6 ] do P1 := spacecurve( r(a,1,t), t=lo..hi, thickness=3 ): P2 := spacecurve( T(a,1,t), t=lo..hi, thickness=3, color=black ): P := P, display( [P1,P2], axes=boxed, title=sprintf("#39 (Section 13.1)\n a=%a",a) ); end do: display( [P], insequence=true ); 35-40. Example CAS commands: Mathematica: (assigned functions, parameters, and intervals will vary) The x-y-z components for the curve are entered as a list of functions of t. The unit vectors i, j, k are not inserted. If a graph is too small, highlight it and drag out a corner or side to make it larger. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 763 764 Chapter 13 Vector-Valued Functions and Motion in Space Only the components of r[t] and values for t0, tmin, and tmax require alteration for each problem. Clear[r, v, t, x, y, z] r[t_]={ Sin[t] t Cos[t], Cos[t] t Sin[t], t^2} t0= 31 / 2; tmin= 0; tmax= 61; ParametricPlot3D[Evaluate[r[t]], {t, tmin, tmax}, AxesLabel Ä {x, y, z}]; v[t_]= r'[t] tanline[t_]= v[t0] t r[t0] ParametricPlot3D[Evaluate[{r[t], tanline[t]}], {t, tmin, tmax}, AxesLabel Ä {x, y, z}]; For 39 and 40, the curve can be defined as a function of t, a, and b. Leave a space between a and t and b and t. Clear[r, v, t, x, y, z, a, b] r[t_,a_,b_]:={Cos[a t], Sin[a t], b t} t0= 31 / 2; tmin= 0; tmax= 41; v[t_,a_,b_]= D[r[t, a, b], t] tanline[t_,a_,b_]=v[t0, a, b] t r[t0, a, b] pa1=ParametricPlot3D[Evaluate[{r[t, 1, 1], tanline[t, 1, 1]}], {t,tmin, tmax}, AxesLabel Ä {x, y, z}]; pa2=ParametricPlot3D[Evaluate[{r[t, 2, 1], tanline[t, 2, 1]}], {t,tmin, tmax}, AxesLabel Ä {x, y, z}]; pa4=ParametricPlot3D[Evaluate[{r[t, 4, 1], tanline[t, 4, 1]}], {t,tmin, tmax}, AxesLabel Ä {x, y, z}]; pa6=ParametricPlot3D[Evaluate[{r[t, 6, 1], tanline[t, 6, 1]}], {t,tmin, tmax}, AxesLabel Ä {x, y, z}]; Show[GraphicsRow[{pa1, pa2, pa4, pa6}]] 13.2 INTEGRALS OF VECTOR FUNCTIONS; PROJECTILE MOTION 1. '01 ct$ i 7j (t 1)kd dt œ ’ t4 “ " i [7t] !" j ’ t2 t“ " k œ 4" i 7j 3# k 2. '12 (6 6t)i 3Èt j ˆ t4 ‰ k‘ dt œ c6t 3t# d #" i 2t$Î# ‘ #" j c4t" d #" k œ 3i Š4È2 2‹ j 2k 3. ' 11Î%Î% c(sin t)i (1 cos t)j asec# tb kd dt œ c cos td 1Î%1Î% i ct sin td 1Î%1Î% j ctan td 1Î%1Î% k œ Š 1 #2È2 ‹ j 2k 4. '01Î3 casec t tan tbi atan tbj a2 sin t cos tb kd dt œ '01Î3 [asec t tan tbi atan tbj asin 2tbk] dt % # ! ! # 1Î$ 1Î$ 1Î$ œ csec td ! i c ln acos tbd ! j "# cos 2t‘ ! k œ i (ln 2)j 34 k 5. '14 ˆ "t i 5 " t j #"t k‰ dt œ 6. '01 Š È 2 7. '01 Štet 8. '1ln 3 atet i et j ln t kb dt œ ctet et d ln1 3 i cet d ln1 3 j ct ln t td 1ln 3 k 1 t# 2 i È3 1 t# % œ cln td %" i c ln (5 t)d %" j "# ln t‘ " k œ (ln 4)i (ln 4)j (ln 2)k " " k‹ dt œ c2 sin" td ! i ’È3 tan" t“ k œ 1i ! " " i et j k‹ dt œ ’ 12 et “ i cet d ! j ctd !" k œ 2 ! e1 2 i 1È3 4 e1 e i k k œ 3a ln 3 1bi a3 ebi aln 3alnaln 3b 1b 1b k 9. '01Î2 cacos tbi asin 2tbj asin2 tb kd dt œ '01Î2 acos tbi asin 2tbj ˆ 12 12 cos 2t‰ k‘ dt œ 1 Î2 1 Î2 1 Î2 œ csin td ! i 12 cos t‘ ! j 12 t 14 sin 2t‘ ! k œ i j 1 4 k Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 13.2 Integrals of Vector Functions; Projectile Motion 10. 765 '01/4 casec tbi atan2 tbj at sin tb kd dt œ '01/4 casec tbi asec2 t 1bj at sin tb kd dt œ clnasec t tan tbd 1!/4 i ctan t td 1!/4 j ct cos t sin td !1/4 k œ lnŠ1 È2‹i ˆ1 14 ‰j Š 11. r œ ' (ti tj tk) dt œ t# i # Ê r œ Š t# # 1‹ i Š t# # t# # j t# # 1 4È 2 1 È2 ‹k k C ; r(0) œ 0i 0j 0k C œ i 2j 3k Ê C œ i 2j 3k # 2‹ j Š t# 3‹ k $‰ # # 12. r œ ' c(180t)i a180t 16t# b jd dt œ 90t# i ˆ90t# 16 3 t j C ; r(0) œ 90(0) i 90(0) $ ‰ œ 100j Ê C œ 100j Ê r œ 90t# i ˆ90t# 16 3 t 100 j (0)$ ‘ j C 16 3 13. r œ ' ˆ 3# (t 1)"Î# ‰ i e t j ˆ t " 1 ‰ k‘ dt œ (t 1)$Î# i e t j ln (t 1)k C ; r(0) œ (0 1)$Î# i e ! j ln (0 1)k C œ k Ê C œ i j k Ê r œ (t 1)$Î# 1‘ i a1 e t b j [1 ln (t 1)]k 14. r œ ' cat$ 4tb i tj 2t# kd dt œ Š t4 2t# ‹ i % t# 2 j % 2t$ 3 % k C ; r(0) œ ’ 04 2(0)# “ i # œ i j Ê C œ i j Ê r œ Š t4 2t# 1‹ i Š t# 1‹ j 15. 0# 2 j 2(0)$ 3 kC 2t$ 3 k œ ' (32k) dt œ 32tk C" ; ddtr (0) œ 8i 8j Ê 32(0)k C" œ 8i 8j Ê C" œ 8i 8j Ê dr œ 8i 8j 32tk ; r œ ' (8i 8j 32tk) dt œ 8ti 8tj 16t# k C# ; r(0) œ 100k dr dt dt Ê 8(0)i 8(0)j 16(0)# k C# œ 100k Ê C# œ 100k Ê r œ 8ti 8tj a100 16t# b k 16. dr dt œ ' (i j k) dt œ (ti tj tk) C" ; Ê dr dt dr dt (0) œ 0 Ê (0i 0j 0k) C" œ 0 Ê C" œ 0 # t# # œ (ti tj tk) ; r œ ' (ti tj tk) dt œ Š t# i # Ê Š 0# i 0# # j 0# # # j t# # k‹ C# ; r(0) œ 10i 10j 10k k‹ C# œ 10i 10j 10k Ê C# œ 10i 10j 10k # # Ê r œ Š t# 10‹ i Š t# 10‹ j Š t# 10‹ k 17. dv dt œ a œ 3i j k Ê v(t) œ 3ti tj tk C" ; the particle travels in the direction of the vector (4 1)i (1 2)j (4 3)k œ 3i j k (since it travels in a straight line), and at time t œ 0 it has speed 2 Ê v(0) œ (3i j k) œ C" Ê Ê r(t) œ Š 3# t# 6 È11 t‹ i Š #" t# Ê r(t) œ Š 3# t# 6 È11 t 1‹ i Š "# t# œ Š "# t# 18. 2 È9 1 1 dv dt 2 È11 2 È11 dr dt œ v(t) œ Š3t t‹ j Š #" t# 2 È11 2 È11 6 È11 ‹ i Št 2 È11 ‹ j Št 2 È11 ‹ k t‹ k C# ; r(0) œ i 2j 3k œ C# t 2‹ j Š #" t# 2 È11 t 3‹ k t‹ (3i j k) (i 2j 3k) œ a œ 2i j k Ê v(t) œ 2ti tj tk C" ; the particle travels in the direction of the vector (3 1)i (0 (1))j (3 2)k œ 2i j k (since it travels in a straight line), and at time t œ 0 it has speed 2 Ê v(0) œ 2 È4 1 1 (2i j k) œ C" Ê Ê r(t) œ Št# 4 È6 t‹ i Š "# t# Ê r(t) œ Št# 4 È6 t 1‹ i Š "# t# 2 È6 dr dt œ v(t) œ Š2t t‹ j Š "# t# 2 È6 2 È6 4 È6 ‹ i Št 2 È6 ‹ j Št 2 È6 ‹ k t‹ k C# ; r(0) œ i j 2k œ C# t 1‹ j Š "# t# 2 È6 t 2‹ k œ Š "# t# 2 È6 t‹ (2i j k) (i j 2k) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 766 Chapter 13 Vector-Valued Functions and Motion in Space m‰ 19. x œ (v! cos !)t Ê (21 km)ˆ 1000 œ (840 m/s)(cos 60°)t Ê t œ 1 km 20. R œ v#! g 21,000 m (840 m/s)(cos 60°) œ 50 seconds v# ! sin 2! and maximum R occurs when ! œ 45° Ê 24.5 km œ Š 9.8 m/s # ‹ (sin 90°) Ê v! œ È(9.8)(24,500) m# /s# œ 490 m/s (b) (c) v#! g (500 m/s)# 9.8 m/s# (sin 90°) ¸ 25,510.2 m 5000 m x œ (v! cos !)t Ê 5000 m œ (500 m/s)(cos 45°)t Ê t œ (500 m/s)(cos 45°) ¸ 14.14 s; thus, y œ (v! sin !)t "# gt# Ê y ¸ (500 m/s)(sin 45°)(14.14 s) "# a9.8 m/s# b (14.14 s)# ¸ 4020 m !)# 45°))# ymax œ (v! sin œ ((5002 m/s)(sin ¸ 6378 m 2g a9.8 m/s# b 2v! sin ! g 21. (a) t œ œ 2(500 m/s)(sin 45°) 9.8 m/s# ¸ 72.2 seconds; R œ sin 2! œ 22. y œ y! (v! sin !)t "# gt# Ê y œ 32 ft (32 ft/sec)(sin 30°)t "# a32 ft/sec# b t# Ê y œ 32 16t 16t# ; the ball hits the ground when y œ 0 Ê 0 œ 32 16t 16t# Ê t œ 1 or t œ 2 Ê t œ 2 sec since t 0; thus, x œ (v! cos !) t Ê x œ (32 ft/sec)(cos 30°)t œ 32 Š 23. (a) R œ v#! g (b) 6m ¸ È3 # ‹ (2) ¸ 55.4 ft v# # # # ! sin 2! Ê 10 m œ Š 9.8 m/s Ê v! ¸ 9.9 m/s; # ‹ (sin 90°) Ê v! œ 98 m s (9.9 m/s)# 9.8 m/s# (sin 2!) Ê sin 2! ¸ 0.59999 Ê 2! ¸ 36.87° or 143.12° Ê ! ¸ 18.4° or 71.6° 24. v! œ 5 ‚ 10' m/s and x œ 40 cm œ 0.4 m; thus x œ (v! cos !)t Ê 0.4m œ a5 ‚ 10' m/sb (cos 0°)t Ê t œ 0.08 ‚ 10' s œ 8 ‚ 10) s; also, y œ y! (v! sin !)t "# gt# # Ê y œ a5 ‚ 10' m/sb (sin 0°) a8 ‚ 10) sb "# a9.8 m/s# b a8 ‚ 10) sb œ 3.136 ‚ 10"% m or 3.136 ‚ 10"# cm. Therefore, it drops 3.136 ‚ 10"# cm. 25. R œ v#! g sin 2! Ê 16,000 m œ (400 m/s)# 9.8 m/s# sin 2! Ê sin 2! œ 0.98 Ê 2! ¸ 78.5° or 2! ¸ 101.5° Ê ! ¸ 39.3° or 50.7° 26. (a) R œ (2v! )# g sin 2! œ 4v#! g v# sin 2! œ 4 Š g! sin !‹ or 4 times the original range. (b) Now, let the initial range be R œ Ê (pv! ) g # v#! g sin 2!. Then we want the factor p so that pv! will double the range v#! sin 2! œ 2 Š g sin 2!‹ Ê p# œ 2 Ê p œ È2 or about 141%. The same percentage will approximately double the height: apv0 sin !b2 2g œ 2av0 sin !b2 2g Ê p# œ 2 Ê p œ È2. 27. The projectile reaches its maximum height when its vertical component of velocity is zero Ê Êtœ v0 sin ! g 2 ! v0 sin ! " Ê ymax œ av0 sin !bŠ v0 sin g ‹ # gŠ g ‹ œ av0 sin !b g 2 av0 sin !b 2g 2 œ av0 sin !b 2g dy dt œ v0 sin ! gt œ 0 2 . To find the flight time we find the time when the projectile lands: av0 sin !bt "# g t2 œ 0 Ê tˆv0 sin ! "# g t‰ œ 0 Ê t œ 0 or t œ t œ 0 is the time when the projectile is fired, so t œ the value of the horizontal component when t œ 2v0 sin ! g 2v0 sin ! g 2v0 sin ! . g is the time when the projectile strikes the ground. The range is ! Ê R œ x œ av0 cos !bŠ 2v0 sin ‹œ g v02 g a2 sin !cos !b œ v02 g sin 2!. The range is largest when sin 2! œ 1 Ê ! œ 45‰ . 28. When marble A is located R units downrange, we have x œ (v! cos !)t Ê R œ (v! cos !)t Ê t œ R v! cos ! # R R " that time the height of marble A is y œ y! (v! sin !)t "# gt# œ (v! sin !) Š v! cos ! ‹ # g Š v! cos ! ‹ # R Ê y œ R tan ! "# g Š v# cos # ! ‹ . The height of marble B at the same time t œ ! R v! cos ! seconds is Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. . At Section 13.2 Integrals of Vector Functions; Projectile Motion 767 # R h œ R tan ! "# gt# œ R tan ! "# g Š v# cos # ! ‹ . Since the heights are the same, the marbles collide regardless ! of the initial velocity v! . 29. dr dt œ ' (gj) dt œ gtj C" and dr dt (0) œ (v! cos !)i (v! sin !)j Ê g(0)j C" œ (v! cos !)i (v! sin !)j Ê C" œ (v! cos !)i (v! sin !)j Ê ddtr œ (v! cos !)i (v! sin ! gt)j ; r œ ' [(v! cos !)i (v! sin ! gt)j] dt œ (v! t cos !)i ˆv! t sin ! "# gt# ‰ j C# and r(0) œ x! i y! j Ê [v! (0) cos !]i v! (0) sin ! "# g(0)# ‘ j C# œ x! i y! j Ê C# œ x! i y! j Ê r œ (x! v! t cos !)i ˆy! v! t sin ! "# gt# ‰ j Ê x œ x! v! t cos ! and y œ y! v! t sin ! "# gt# 30. The maximum height is y œ (v! sin !)# #g and this occurs for x œ v#! #g sin 2! œ v#! sin ! cos ! g . These equations describe parametrically the points on a curve in the xy-plane associated with the maximum heights on the parabolic trajectories in terms of the parameter (launch angle) !. Eliminating the parameter !, we have x# œ œ v%! sin# ! g# v%! sin% ! g# Ê x# 4 Šy œ v#! 4g ‹ # v#! g œ (2y) (2y)# Ê x# 4y# Š v!% 4g# , where x 2v#! g ‹y v%! sin# ! cos# ! g# v# œ 0 Ê x# 4 ’y# Š 2g! ‹ y œ ˆv%! sin# !‰ a1 sin# !b g# v%! 16g# “ œ v%! 4g# 0. 31. (a) At the time t when the projectile hits the line OR we have tan " œ yx ; x œ [v! cos (! " )]t and y œ [v! sin (! " )]t "# gt# 0 since R is below level ground. Therefore let kyk œ "# gt# [v! sin (! " )]t 0 "# gt# (v! sin (! " ))t‘ " gt v sin (! " )‘ œ # v! cos! (! ") [v! cos (! " )]t v! cos (! " ) tan " œ "# gt v! sin (! " ) t œ 2v! sin (! ") 2vg ! cos (! ") tan " , which is the time so that tan " œ Ê Ê when the projectile hits the downhill slope. Therefore, x œ [v! cos (! " )] ’ 2v! sin (! ") 2vg ! cos (! ") tan " “ œ maximized, then OR is maximized: dx d! œ 2v#! g 2v#! g ccos# (! " ) tan " sin (! " ) cos (! " )d . If x is [ sin 2(! " ) tan " cos 2(! " )] œ 0 Ê sin 2(! " ) tan " cos 2(! " ) œ 0 Ê tan " œ cot 2(! " ) Ê 2(! " ) œ 90° " Ê ! " œ "# (90° " ) Ê ! œ "# (90° " ) œ "# of nAOR. (b) At the time t when the projectile hits OR we have tan " œ yx ; x œ [v! cos (! " )]t and y œ [v! sin (! " )]t "# gt# v! sin (! " ) "# gt‘ v! cos (! " ) v! cos (! " ) tan " œ v! sin (! " ) "# gt t œ 2v! sin (! ") 2vg ! cos (! ") tan " , which is the Ê tan " œ Ê Ê cv! sin (! " )d t "# gt# [v! cos (! " )]t œ time when the projectile hits the uphill slope. Therefore, x œ [v! cos (! " )] ’ 2v! sin (! ") 2vg ! cos (! ") tan " “ œ maximized, then OR is maximized: ddx! œ 2v#! g 2v#! g csin (! " ) cos (! " ) cos# (! " ) tan " d . If x is [cos 2(! " ) sin 2(! " ) tan " ] œ 0 Ê cos 2(! " ) sin 2(! " ) tan " œ 0 Ê cot 2(! " ) tan " œ ! Ê cot 2(! " ) œ tan " œ tan (" ) Ê 2(! " ) œ 90° (" ) œ 90° " Ê ! œ "# (90° " ) œ "# of nAOR. Therefore v! would bisect nAOR for maximum range uphill. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 768 Chapter 13 Vector-Valued Functions and Motion in Space 32. v! œ 116 ft/sec, ! œ 45°, and x œ (v! cos !)t Ê 369 œ (116 cos 45°)t Ê t ¸ 4.50 sec; also y œ (v! sin !)t "# gt# Ê y œ (116 sin 45°)(4.50) "# (32)(4.50)# ¸ 45.11 ft. It will take the ball 4.50 sec to travel 369 ft. At that time the ball will be 45.11 ft in the air and will hit the green past the pin. 33. (a) (Assuming that "x" is zero at the point of impact:) ratb œ axatbbi ayatbbj; where xatb œ a35 cos 27‰ bt and yatb œ 4 a35 sin 27‰ bt 16t2 . (b) ymax œ av0 sin !b2 2g 4 œ a35sin 27‰ b2 64 4 ¸ 7.945 feet, which is reached at t œ ‰ v0 sin ! g œ 35sin 27‰ 32 ¸ 0.497 seconds. (c) For the time, solve y œ 4 a35 sin 27 bt 16t œ 0 for t, using the quadratic formula tœ 35 sin 27‰ Éa35 sin 27‰ b2 256 32 2 ¸ 1.201 sec. Then the range is about xa1.201b œ a35 cos 27‰ ba1.201b ¸ 37.453 feet. (d) For the time, solve y œ 4 a35 sin 27‰ bt 16t2 œ 7 for t, using the quadratic formula tœ 35 sin 27‰ Éa35 sin 27‰ b2 192 32 ‰ ¸ 0.254 and 0.740 seconds. At those times the ball is about xa0.254b œ a35 cos 27 ba0.254b ¸ 7.921 feet and xa0.740b œ a35 cos 27‰ ba0.740b ¸ 23.077 feet the impact point, or about 37.453 7.921 ¸ 29.532 feet and 37.453 23.077 ¸ 14.376 feet from the landing spot. (e) Yes. It changes things because the ball won't clear the net (ymax ¸ 7.945). 34. x œ x! (v! cos !)t œ 0 (v! cos 40°)t ¸ 0.766 v! t and y œ y! (v! sin !)t "# gt# œ 6.5 (v! sin 40°)t 16t# ¸ 6.5 0.643 v! t 16t# ; now the shot went 73.833 ft Ê 73.833 œ 0.766 v! t Ê t ¸ # Ê 0 œ 6.5 (0.643)(96.383) 16 Š 96.383 v! ‹ Ê 0 ¸ 68.474 148,635 v#! 96.383 v! sec; the shot lands when y œ 0 Ê v! ¸ É 148,635 68.474 ¸ 46.6 ft/sec, the shot's initial speed 35. Flight time œ 1 sec and the measure of the angle of elevation is about 64° (using a protractor) so that t œ Ê1œ 2v! sin 64° 32 Ê v! ¸ 17.80 ft/sec. Then ymax œ (17.80 sin 64°)# 2(32) ¸ 4.00 ft and R œ v#! g sin 2! Ê R œ 2v! sin ! g (17.80)# 32 sin 128° ¸ 7.80 ft Ê the engine traveled about 7.80 ft in 1 sec Ê the engine velocity was about 7.80 ft/sec 36. (a) ratb œ axatbbi ayatbbj; where xatb œ a145 cos 23‰ 14bt and yatb œ 2.5 a145 sin 23‰ bt 16t2 . (b) ymax œ av0 sin !b2 2g 2.5 œ a145sin 23‰ b2 64 2.5 ¸ 52.655 feet, which is reached at t œ ‰ v0 sin ! g œ 145sin 23‰ 32 ¸ 1.771 seconds. (c) For the time, solve y œ 2.5 a145 sin 23 bt 16t œ 0 for t, using the quadratic formula tœ 145 sin 23‰ Éa145 sin 23‰ b2 160 32 2 ¸ 3.585 sec. Then the range at t ¸ 3.585 is about x œ a145 cos 23‰ 14ba3.585b ¸ 428.311 feet. (d) For the time, solve y œ 2.5 a145 sin 23‰ bt 16t2 œ 20 for t, using the quadratic formula tœ 145 sin 23‰ Éa145 sin 23‰ b2 1120 32 ‰ ¸ 0.342 and 3.199 seconds. At those times the ball is about xa0.342b œ a145 cos 23 14ba0.342b ¸ 40.860 feet from home plate and xa3.199b œ a145 cos 23‰ 14ba3.199b ¸ 382.195 feet from home plate. (e) Yes. According to part (d), the ball is still 20 feet above the ground when it is 382 feet from home plate. 37. d2 r dt2 k ddtr œ gj Ê Patb œ k and Qatb œ gj Ê ' Patb dt œ kt Ê vatb œ e' Patb dt œ ekt Ê dr dt œ 1 vatb ' vatb Qatb dt œ gekt ' ekt j dt œ gekt ek j C1 ‘ œ gk j Cekt , where C œ gC1 ; apply the initial condition: kt dr dt ¹tœ0 œ av0 cos !bi av0 sin !bj œ gk j C Ê C œ av0 cos !bi ˆ kg v0 sin !‰j Ê œ ˆv0 ekt cos !‰i ˆ gk ekt ˆ gk v0 sin !‰‰j, r œ ' c ˆv0 ekt cos !‰i ˆ gk ekt ˆ gk v0 sin !‰‰j ddt dr dt Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 13.2 Integrals of Vector Functions; Projectile Motion gt v œ ˆ k0 ekt cos !‰i Š k eckt ˆ g k k v0 sin !‰‹j C2 ; apply the initial condition: v0 sin ! ‰ j C2 Ê C2 œ ˆ vk0 cos !‰i ˆ kg2 k ˆ vk0 ˆ1 ekt ‰sin ! kg2 ˆ1 kt ekt ‰‰j ra0b œ 0 œ ˆ vk0 cos !‰i ˆ kg2 Ê ratb œ ˆ vk0 ˆ1 ekt ‰cos !‰i 769 v0 sin ! ‰ j k 152 ‰ 38. (a) ratb œ axatbbi ayatbbj; where xatb œ ˆ 0.12 a1 e0.12t bacos 20‰ b and 152 ‰ 32 ‰ 0.12t yatb œ 3 ˆ 0.12 a1 e0.12t basin 20‰ b ˆ 0.12 b 2 a1 0.12t e (b) Solve graphically using a calculator or CAS: At t ¸ 1.484 seconds the ball reaches a maximum height of about 40.435 feet. (c) Use a graphing calculator or CAS to find that y œ 0 when the ball has traveled for ¸ 3.126 seconds. The range is 152 ‰ˆ about xa3.126b œ ˆ 0.12 1 e0.12a3.126b ‰acos 20‰ b ¸ 372.311 feet. (d) Use a graphing calculator or CAS to find that y œ 30 for t ¸ 0.689 and 2.305 seconds, at which times the ball is about xa0.689b ¸ 94.454 feet and xa2.305b ¸ 287.621 feet from home plate. (e) Yes, the batter has hit a home run since a graph of the trajectory shows that the ball is more than 14 feet above the ground when it passes over the fence. 39. (a) 'ab kr(t) dt œ 'ab [kf(t)i kg(t)j kh(t)k] dt œ 'ab [kf(t)] dt i 'a [kg(t)] dt j 'a [kh(t)] dt k b b œ k Œ'a f(t) dt i 'a g(t) dt j 'a h(t) dt k œ k 'a r(t) dt b (b) b b b 'ab [r" (t) „ r# (t)] dt œ 'ab acf" (t)i g" (t)j h" (t)kd „ cf# (t)i g# (t)j h# (t)kdb dt b œ 'a acf" (t) „ f# (t)d i [g" (t) „ g# (tb] j [h" (t) „ h# (t)] k) dt b b b œ 'a cf" (t) „ f# (t)d dt i 'a cg" (t) „ g# (t)d dt j 'a ch" (t) „ h# (t)d dt k œ ”'a f" (t) dt i „ 'a f# (t) dt i• ”'a g" (t) dt j „ 'a g# (t) dt j • ”'a h" (t) dt k „ 'a h# (t) dt k• b b b b b b œ 'a r" (t) dt „ 'a r# (t) dt b b (c) Let C œ c" i c# j c$ k. Then 'a C † r(t) dt œ 'a cc" f(t) c# g(t) c$ h(t)d dt b b 'ab f(t) dt c# 'ab g(t) dt c$ 'ab h(t) dt = C † 'ab r(t) dt; 'ab C ‚ r(t) dt œ 'ab cc# h(t) c$ g(t)d i cc$ f(t) c" h(t)d j cc" g(t) c# f(t)d k dt œ c" œ ”c# 'ab h(t) dt c$ 'ab g(t) dt• i ”c$ 'ab f(t) dt c" 'ab h(t) dt• j ”c" 'ab g(t) dt c# 'ab f(t) dt• k œ C ‚ 'a r(t) dt b 40. (a) Let u and r be continuous on [aß b]. Then lim u(t)r(t) œ lim [u(t)f(t)i u(t)g(t)j u(t)h(t)k] t Ä t! t Ä t! œ u(t! )f(t! )i u(t! )g(t! )j u(t! )h(t! )k œ u(t! )r(t! ) Ê ur is continuous for every t! in [aß b]. (b) Let u and r be differentiable. Then dtd (ur) œ dtd [u(t)f(t)i u(t)g(t)j u(t)h(t)k] dg df ‰ du dh ‰ ˆ du œ ˆ du dt f(t) u(t) dt i Š dt g(t) u(t) dt ‹j dt h(t) u(t) dt k df œ [f(t)i g(t)j h(t)k] du dt u(t) Š dt i dg dt j dh dt dr k‹ œ r du dt u dt 41. (a) If R" (t) and R# (t) have identical derivatives on I, then œ d R# dt Ê df" dt œ df# dt , dg" dt œ dg# dt , dh" dt œ dh# dt d R" dt œ df" dt i dg" dt j dh" dt kœ df# dt i dg# dt j dh# dt k Ê f" (t) œ f# (t) c" , g" (t) œ g# (t) c# , h" (t) œ h# (t) c$ Ê f" (t)i g" (t)j h" (t)k œ [f# (t) c" ]i [g# (t) c# ]j [h# (t) c$ ]k Ê R" (t) œ R# (t) C, where C œ c" i c# j c$ k. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 770 Chapter 13 Vector-Valued Functions and Motion in Space (b) Let R(t) be an antiderivative of r(t) on I. Then Rw (t) œ r(t). If U(t) is an antiderivative of r(t) on I, then Uw (t) œ r(t). Thus Uw (t) œ Rw (t) on I Ê U(t) œ R(t) C. 42. 'at r(7 ) d7 œ dtd 'at [f(7 )i g(7 )j h(7 )k] d7 œ dtd 'at f(7 ) d7 i dtd 'at g(7 ) d7 j dtd 'at h(7 ) d7 k t t œ f(t)i g(t)j h(t)k œ r(t). Since dtd 'a r(7 ) d7 œ r(t), we have that 'a r(7 ) d7 is an antiderivative of t a r. If R is any antiderivative of r, then R(t) œ 'a r(7 ) d7 C by Exercise 41(b). Then R(a) œ 'a r(7 ) d7 C t b œ 0 C Ê C œ R(a) Ê 'a r(7 ) d7 œ R(t) C œ R(t) R(a) Ê 'a r(7 ) d7 œ R(b) R(a). d dt 1 ‰ 43. (a) ratb œ axatbbi ayatbbj; where xatb œ ˆ 0.08 a1 e0.08t ba152 cos 20‰ 17.6b and 152 ‰ 32 ‰ 0.08t yatb œ 3 ˆ 0.08 a1 e0.08t basin 20‰ b ˆ 0.08 b 2 a1 0.08t e (b) Solve graphically using a calculator or CAS: At t ¸ 1.527 seconds the ball reaches a maximum height of about 41.893 feet. (c) Use a graphing calculator or CAS to find that y œ 0 when the ball has traveled for ¸ 3.181 seconds. The range is 1 ‰ˆ about xa3.181b œ ˆ 0.08 1 e0.08a3.181b ‰a152 cos 20‰ 17.6b ¸ 351.734 feet. (d) Use a graphing calculator or CAS to find that y œ 35 for t ¸ 0.877 and 2.190 seconds, at which times the ball is about xa0.877b ¸ 106.028 feet and xa2.190b ¸ 251.530 feet from home plate. (e) No; the range is less than 380 feet. To find the wind needed for a home run, first use the method of part (d) to find that 1 ‰ˆ y œ 20 at t ¸ 0.376 and 2.716 seconds. Then define xawb œ ˆ 0.08 1 e0.08a2.716b ‰a152 cos 20‰ wb, and solve xawb œ 380 to find w ¸ 12.846 ft/sec. 44. ymax œ (v! sin !)# 2g Ê 3 4 ymax œ 3(v! sin !)# and 8g # # y œ (v! sin !)t "# gt# Ê 3(v! sin !)# 8g œ (v! sin !)t "# gt# Ê 3(v! sin !)# œ (8gv! sin !)t 4g t Ê 4g# t# (8gv! sin !)t 3(v! sin !)# œ 0 Ê 2gt 3v! sin ! œ 0 or sin ! ! 2gt v! sin ! œ 0 Ê t œ 3v!2gsin ! or t œ v! 2g . Since the time it takes to reach ymax is tmax œ v! sin , g then the time it takes the projectile to reach 3 4 of ymax is the shorter time t œ v! sin ! 2g or half the time it takes to reach the maximum height. 13.3 ARC LENGTH IN SPACE 1. r œ (2 cos t)i (2 sin t)j È5tk Ê v œ (2 sin t)i (2 cos t)j È5k # Ê kvk œ Ê(2 sin t)# (2 cos t)# ŠÈ5‹ œ È4 sin# t 4 cos# t 5 œ 3; T œ œ ˆ 23 sin t‰ i ˆ 23 cos t‰ j È5 3 1 v kv k 1 k and Length œ '0 kvk dt œ '0 3 dt œ c3td 1! œ 31 2. r œ (6 sin 2t)i (6 cos 2t)j 5tk Ê v œ (12 cos 2t)i (12 sin 2t)j 5k Ê kvk œ È(12 cos 2t)# (12 sin 2t)# 5# œ È144 cos# 2t 144 sin# 2t 25 œ 13; T œ ‰ ˆ 12 ‰ œ ˆ 12 13 cos 2t i 13 sin 2t j 5 13 1 1 v kv k k and Length œ '0 kvk dt œ '0 13 dt œ c13td 1! œ 131 # 3. r œ ti 23 t$Î# k Ê v œ i t"Î# k Ê kvk œ É1# at"Î# b œ È1 t ; T œ ) and Length œ '0 È1 t dt œ 23 (1 t)$Î# ‘ ! œ 8 v kvk œ " È1 t i Èt È1 t 52 3 4. r œ (2 t)i (t 1)j tk Ê v œ i j k Ê kvk œ È1# (1)# 1# œ È3 ; T œ v kv k œ $ and Length œ '0 È3 dt œ ’È3t“ œ 3È3 3 k ! Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " È3 i 1 È3 j " È3 k Section 13.3 Arc Length in Space 771 5. r œ acos$ tb j asin$ tb k Ê v œ a3 cos# t sin tb j a3 sin# t cos tb k Ê kvk œ Éa3 cos# t sin tb# a3 sin# t cos tb# œ Èa9 cos# t sin# tb acos# t sin# tb œ 3 kcos t sin tk ; Tœ v kvk œ 3 cos# t sin t 3 kcos t sin tk 1Î2 Length œ '0 j 3 sin# t cos t 3 kcos t sin tk k œ ( cos t)j (sin t)k , if 0 Ÿ t Ÿ 1Î2 1Î2 3 kcos t sin tk dt œ '0 3 cos t sin t dt œ '0 3 # 1 # , and 1Î# sin 2t dt œ 34 cos 2t‘ ! œ 3 # 6. r œ 6t$ i 2t$ j 3t$ k Ê v œ 18t# i 6t# j 9t# k Ê kvk œ Éa18t# b# a6t# b# a9t# b# œ È441t% œ 21t# ; Tœ v kvk œ "8t# 21t# i 6t# 21t# j 7. r œ (t cos t)i (t sin t)j 9t# 21t# kœ 6 7 2È2 $Î# k 3 t i 27 j 37 k and Length œ '1 21t# dt œ c7t$ d " œ 49 2 # Ê v œ (cos t t sin t)i (sin t t cos t)j ŠÈ2 t"Î# ‹ k # Ê kvk œ Ê(cos t t sin t)# (sin t t cos t)# ŠÈ2 t‹ œ È1 t# 2t œ È(t 1)# œ kt 1k œ t 1, if t Tœ v kvk œ ˆ cos tt t1sin t ‰ i ˆ sin ttt1cos t ‰ j Š È2 t"Î# t1 ‹ k 1 1 and Length œ '0 (t 1) dt œ ’ t2 t“ œ # ! 1# 2 0; 1 8. r œ (t sin t cos t)i (t cos t sin t)j Ê v œ (sin t t cos t sin t)i (cos t t sin t cos t)j œ (t cos t)i (t sin t)j Ê kvk œ È(t cos t)# (t sin t)# œ Èt# œ ktk œ t if È2 Ÿ t Ÿ 2; T œ v kvk t‰ t‰ œ ˆ t cos i ˆ t sin j œ (cos t)i (sin t)j and Length œ 'È2 t dt œ ’ t2 “ t t 2 # # È# œ1 9. Let P(t! ) denote the point. Then v œ (5 cos t)i (5 sin t)j 12k and 261 œ '0 È25 cos# t 25 sin# t 144 dt t! œ '0 13 dt œ 13t! Ê t! œ 21, and the point is P(21) œ (5 sin 21ß 5 cos 21ß 241) œ (0ß 5ß 241) t! 10. Let P(t! ) denote the point. Then v œ (12 cos t)i (12 sin t)j 5k and 131 œ '0 È144 cos# t 144 sin# t 25 dt œ '0 13 dt œ 13t! Ê t! œ 1, and the point is t! t! P(1) œ (12 sin (1)ß 12 cos (1)ß 51) œ (0ß 12ß 51) 11. r œ (4 cos t)i (4 sin t)j 3tk Ê v œ (4 sin t)i (4 cos t)j 3k Ê kvk œ È(4 sin t)# (4 cos t)# 3# œ È25 œ 5 Ê s(t) œ '0 5 d7 œ 5t Ê Length œ s ˆ 1# ‰ œ t 51 # 12. r œ (cos t t sin t)i (sin t t cos t)j Ê v œ (sin t sin t t cos t)i (cos t cos t t sin t)j t œ (t cos t)i (t sin t)j Ê kvk œ È(t cos t)# (t cos t)# œ œ Èt# œ t, since 1# Ÿ t Ÿ 1 Ê s(t) œ '0 7 d7 œ Ê Length œ s(1) s ˆ 1# ‰ œ 1# # ˆ 1# ‰# # œ t# # 31 # 8 13. r œ aet cos tb i aet sin tb j et k Ê v œ aet cos t et sin tb i aet sin t et cos tb j et k Ê kvk œ Éaet cos t et sin tb# aet sin t et cos tb# aet b# œ œ È3e2t œ È3 et Ê s(t) œ '0 È3 e7 d7 t œ È3 et È3 Ê Length œ s(0) s( ln 4) œ 0 ŠÈ3 e ln 4 È3‹ œ 3È 3 4 14. r œ (1 2t)i (1 3t)j (6 6t)k Ê v œ 2i 3j 6k Ê kvk œ È2# 3# (6)# œ 7 Ê s(t) œ '0 7 d7 œ 7t t Ê Length œ s(0) s(1) œ 0 (7) œ 7 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 772 Chapter 13 Vector-Valued Functions and Motion in Space # # 15. r œ ŠÈ2t‹ i ŠÈ2t‹ j a1 t# b k Ê v œ È2i È2j 2tk Ê kvk œ ÊŠÈ2‹ ŠÈ2‹ (2t)# œ È4 4t# œ 2È1 t# Ê Length œ '0 2È1 t# dt œ ’2 Š 2t È1 t# 1 " # " ln Št È1 t# ‹‹“ œ È2 ln Š1 È2‹ ! 16. Let the helix make one complete turn from t œ 0 to t œ 21. Note that the radius of the cylinder is 1 Ê the circumference of the base is 21. When t œ 21, the point P is (cos 21ß sin 21ß 21) œ (1ß 0ß 21) Ê the cylinder is 21 units high. Cut the cylinder along PQ and flatten. The resulting rectangle has a width equal to the circumference of the cylinder œ 21 and a height equal to 21, the height of the cylinder. Therefore, the rectangle is a square and the portion of the helix from t œ 0 to t œ 21 is its diagonal. 17. (a) r œ (cos t)i (sin t)j (" cos t)k, 0 Ÿ t Ÿ 21 Ê x œ cos t, y œ sin t, z œ 1 cos t Ê x# y# œ cos# t sin# t œ 1, a right circular cylinder with the z-axis as the axis and radius œ 1. Therefore P(cos tß sin tß 1 cos t) lies on the cylinder x# y# œ 1; t œ 0 Ê P(1ß 0ß 0) is on the curve; t œ 1# Ê Q(!ß 1ß 1) Ä Ä is on the curve; t œ 1 Ê R(1ß 0ß 2) is on the curve. Then PQ œ i j k and PR œ 2i 2k j k× Ô i Ä Ä Ê PQ ‚ PR œ 1 " " œ 2i 2k is a vector normal to the plane of P, Q, and R. Then the Õ 2 0 2 Ø plane containing P, Q, and R has an equation 2x 2z œ 2(1) 2(0) or x z œ 1. Any point on the curve will satisfy this equation since x z œ cos t (1 cos t) œ 1. Therefore, any point on the curve lies on the intersection of the cylinder x# y# œ 1 and the plane x z œ 1 Ê the curve is an ellipse. (b) v œ ( sin t)i (cos t)j (sin t)k Ê kvk œ Èsin# t cos# t sin# t œ È1 sin# t Ê T œ kvvk œ ( sin t)i (cos t)j (sin t)k È1 sin# t Ê T(0) œ j , T ˆ 1# ‰ œ ik È2 , T(1) œ j , T ˆ 3#1 ‰ œ ik È2 (c) a œ ( cos t)i (sin t)j (cos t)k ; n œ i k is normal to the plane x z œ 1 Ê n † a œ cos t cos t œ 0 Ê a is orthogonal to n Ê a is parallel to the plane; a(0) œ i k , a ˆ 1# ‰ œ j , a a1b œ i k , ‰œj a ˆ 31 # 21 (d) kvk œ È1 sin# t (See part (b) Ê L œ '0 È1 sin# t dt (e) L ¸ 7.64 (by Mathematica) 18. (a) r œ (cos 4t)i (sin 4t)j 4tk Ê v œ (4 sin 4t)i (4 cos 4t)j 4k Ê kvk œ È(4 sin 4t)# (4 cos 4t)# 4# 1Î2 œ È32 œ 4È2 Ê Length œ '0 4È2 dt œ ’4È2 t“ 1Î# ! œ 21È2 (b) r œ ˆcos #t ‰ i ˆsin #t ‰ j #t k Ê v œ ˆ #" sin #t ‰ i ˆ #" cos #t ‰ j #" k # # # Ê kvk œ Ɉ "# sin #t ‰ ˆ #" cos #t ‰ ˆ #" ‰ œ É 4" " 4 œ È2 # 41 Ê Length œ '0 È2 # dt œ ’ È2 2 t“ %1 ! œ 21 È 2 (c) r œ (cos t)i (sin t)j tk Ê v œ ( sin t)i (cos t)j k Ê kvk œ È( sin t)# ( cos t)# (1)# œ È1 1 œ È2 Ê Length œ 'c21 È2 dt œ ’È2 t“ 0 ! #1 œ 21 È 2 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 13.4 Curvature and Normal Vectors of a Curve 773 19. nPQB œ nQOB œ t and PQ œ arc (AQ) œ t since PQ œ length of the unwound string œ length of arc (AQ); thus x œ OB BC œ OB DP œ cos t t sin t, and y œ PC œ QB QD œ sin t t cos t 20. r œ acos t t sin tbi asin t t cos tbj Ê v œ asin t t cos t sin tbi acos t atasin tb cos tbbj œ at cos tbi at sin tbj Ê kvk œ Éat cos tb2 at sin tb2 œ Èt2 œ ktk œ t, t 0ÊTœ v kvk œ t cos t t i t sin t t j œ cos t i sin t j 21. v œ d dt ax0 t u 1 bi d dt ay0 t u 2 bj d dt az0 t u3 bk œ u1 i u2 j u3 k œ u, so satb œ '0 lvldt œ '0 luld7 œ '0 1 d7 œ t t t t 22. ratb œ t i t2 j t3 k Ê vatb œ i 2t j 3t2 k Ê lvatbl œ Éa1b2 a2tb2 a3t2 b2 œ È1 4t2 9t4 . a0, 0, 0b Ê t œ 0 and a2, 4, 8b Ê t œ 2. Thus L œ '0 lvatbl dt œ '0 È1 4t2 9t4 dt. Using Simpson's rule with n œ 10 and 2 ?x œ 20 10 œ 0.2 Ê L ¸ 0.2 3 Šlva0bl 2 4lva0.2bl 2lva0.4bl 4lva0.6bl 2lva0.8bl 4lva1bl 2lva1.2bl 4lva1.4bl 2lva1.6bl 4lva1.8bl lva2bl‹ ¸ 0.2 3 Š1 4a1.0837b 2a1.3676b 4a1.8991b 2a2.6919b 4a3.7417b 2a5.0421b 4a6.5890b 2a8.3800b 4a10.4134b 12.6886‹ œ 0.2 3 a143.5594b ¸ 9.5706 13.4 CURVATURE AND NORMAL VECTORS OF A CURVE sin t ‰ È1# ( tan t)# œ Èsec# t œ ksec tk œ sec t, since 1. r œ ti ln (cos t)j Ê v œ i ˆ cos t j œ i (tan t)j Ê kvk œ tan t ‰ dT 1# t 1# Ê T œ kvvk œ ˆ sec" t ‰ i ˆ sec t j œ (cos t)i (sin t)j ; dt œ ( sin t)i (cos t)j Ê ¸ ddtT ¸ œ È( sin t)# ( cos t)# œ 1 Ê N œ ˆ ddtT ‰ ¸ ddtT ¸ œ ( sin t)i (cos t)j ; , œ 1 kv k † ¸ ddtT ¸ œ " sec t † 1 œ cos t. t tan t ‰ 2. r œ ln (sec t)i tj Ê v œ ˆ secsec i j œ (tan t)i j Ê kvk œ È( tan t)# 1# œ Èsec# t œ ksec tk œ sec t, t 1 1 v tan since # t # Ê T œ kvk œ ˆ sec tt ‰ i ˆ sec1 t ‰ j œ (sin t)i (cos t)j ; ddtT œ (cos t)i (sin t)j Ê ¸ ddtT ¸ œ È(cos t)# ( sin t)# œ 1 Ê N œ ˆ ddtT ‰ ¸ ddtT ¸ œ (cos t)i (sin t)j ; , œ 1 kv k † ¸ ddtT ¸ œ " sec t † 1 œ cos t. 3. r œ (2t 3)i a5 t# b j Ê v œ 2i 2tj Ê kvk œ È2# (2t)# œ 2È1 t# Ê T œ kvvk œ È 2 # i 2 1t Í # # Í Í " t " T " t dT d t ¸ dt ¸ œ œ È # i È # j ; dt œ $i $ j Ê $ $ 1 t 1 t ŠÈ1 t# ‹ ŠÈ1 t# ‹ ŠÈ1 t# ‹ Ì ŠÈ1 t# ‹ œ É a1 "t# b# œ " 1t# Ê Nœ ˆ ddtT ‰ ¸ ddtT ¸ œ t È1 t# i " È1 t# j; , œ 1 kvk † ¸ ddtT ¸ œ " #È1 t# † " 1 t# œ 2t 2È1 t# j " # a1 t# b3/2 4. r œ (cos t t sin t)i (sin t t cos t)j Ê v œ (t cos t)i (t sin t)j Ê kvk œ È( t cos t)# (t sin t)# œ Èt# œ ktk œ t, since t 0 Ê T œ kvvk œ (t cos t)it (t sin t)j œ (cos t)i (sin t)j ; ddtT œ ( sin t)i (cos t)j Ê ¸ ddtT ¸ œ È( sin t)# (cos t)# œ1ÊNœ ˆ ddtT ‰ ¸ ddtT ¸ œ ( sin t)i (cos t)j ; , œ 1 kv k † ¸ ddtT ¸ œ " t †1œ " t Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 774 Chapter 13 Vector-Valued Functions and Motion in Space 5. (a) ,axb œ 1 kvaxbk † ¹ dTdtaxb ¹. Now, v œ i f w axbj Ê kvaxbk œ É1 c f w axb d2 Ê T œ 1Î2 œ Š1 c f w axb d2 ‹ Ê Ta b ¹ d dtx ¹ w dT dt axb ww ww ww œ f axbf axb w ww Š1 c f axb d ‹ axb d2 Š1 c f axb d2 ‹ w 3 Î 2 Š1 c f axb d ‹ w w 1 a1 Òf axbÓ2 b1 w 2 Î † k f a x bk k1 Òf axbÓ2 k ww w œ cos x, since 1# x œ i f ax b ww 3Î2 2 Š1 c f axb d ‹ j w kf axbk ww 2 ¹1 c f axb d ¹ w kf axbk ww œ 3Î2 2 Š1 c f axb d ‹ w œ ˆ cos" x ‰ ( sin x) œ tan x Ê dy dx 3Î2 2 w Î w (b) y œ ln (cos x) Ê " sec x j. Thus Í 2 Í 2 f axbf axb cf Í f ax b œ ” Š1 c f axb d2 ‹3 2 • 3 2 œ Ë 2 Ì Š1 c f axb d ‹ Thus ,axb œ œ 1Î2 i f w axbŠ1 c f w axb d2 ‹ v kvk d# y dx# œ sec# x Ê , œ k sec# xk c1 ( tan x)# d$Î# œ sec# x ksec$ xk 1 # (c) Note that f ww (x) œ 0 at an inflection point. Þ Þ Þ Þ 6. (a) r œ f(t)i g(t)j œ xi yj Ê v œ xi yj Ê kvk œ Èx# y# Ê T œ dT dt œ Þ Þ ÞÞ Þ ÞÞ Þ Þ ÞÞ Þ ÞÞ yay x x yb xax y y x b dT Þ # Þ # 3/2 i Þ # Þ # 3/2 j Ê ¸ dt ¸ ax y b ax y b Þ ÞÞ Þ ÞÞ k y x x yk 1 1 dT Þ Þ ; , œ kvk † ¸ dt ¸ œ È Þ # Þ # kx# y# k x y œ Þ Þ ÞÞ Þ ÞÞ yay x x yb 2 Þ Þ 3/2 “ ’ ax# y# b Þ ÞÞ Þ ÞÞ Þ ÞÞ Þ ÞÞ k y x x yk lxyyx l Þ # Þ # œ Þ # Þ # 3/2 . kx y k ax y b œ Ê’ † v kv k Þ Þ ÞÞ Þ ÞÞ xax y y xb 2 Þ Þ 3/2 “ ax# y# b œ Þ Þ y x ÈxÞ # yÞ # i ÈxÞ # yÞ # j œÊ Þ Þ Þ ÞÞ Þ ÞÞ ay# x# bay x x yb2 Þ Þ 3 ax# y# b Þ ÞÞ Þ (b) r(t) œ ti ln (sin t)j , 0 t 1 Ê x œ t and y œ ln (sin t) Ê x œ 1, x œ 0; y œ Ê ,œ k csc# t 0k a1 cot# t)b$Î# " œ csc# t csc$ t cos t sin t ÞÞ œ cot t, y œ csc# t œ sin t Þ t " (sinh t)i ln (cosh t)j Ê x œ tan" (sinh t) and y œ ln (cosh t) Ê x œ 1 cosh sinh# t œ cosh t $ # ÞÞ Þ ÞÞ ksech t sech t tanh tk sinh t # œ sech t, x œ sech t tanh t; y œ cosh œ ksech tk œ sech t asech# t tanh# tb t œ tanh t, y œ sech t Ê , œ (c) r(t) œ tan 7. (a) r(t) œ f(t)i g(t)j Ê v œ f w (t)i gw (t)j is tangent to the curve at the point (f(t)ß g(t)); n † v œ c gw (t)i f w (t)jd † cf w (t)i gw (t)jd œ gw (t)f w (t) f w (t)gw (t) œ 0; n † v œ (n † v) œ 0; thus, n and n are both normal to the curve at the point (b) r(t) œ ti e2t j Ê v œ i 2e2t j Ê n œ 2e2t i j points toward the concave side of the curve; N œ knnk and knk œ È4e4t 1 Ê N œ 2e2t È1 4e4t (c) r(t) œ È4 t# i tj Ê v œ Nœ n knk and knk œ É1 t# 4 t# i t È4 t# œ " È1 4e4t j i j Ê n œ i Ê Nœ 2 È4 t# " # t È4 t# j points toward the concave side of the curve; ŠÈ4 t# i tj‹ 8. (a) r(t) œ ti "3 t$ j Ê v œ i t# j Ê n œ t# i j points toward the concave side of the curve when t 0 and n œ t# i j points toward the concave side when t 0 Ê N œ Nœ " È1 t% 2ktk ; 1 t% at# i jb for t 0 and at# i jb for t 0 (b) From part (a), kvk œ È1 t% Ê T œ œ " È1 t% Nœ ˆ ddtT ‰ ¸ ddtT ¸ œ 2t$ 1 t% 2ktk Š a1 t% b$Î# i " È1 t% i t# È1 t% j 2t $Î# j‹ a1 t% b œ Ê dT dt t$ i ktkÈ1 t% œ 2t$ $Î# i a1 t% b t j; ktkÈ1 t% ¸ ddsT ¸ œ ¸ ddtT dT ¸ dt tœ0 œ 0 so the curvature , œ œ "3 t$ Ê y œ 3" x$ , the curve is the curve has a point of inflection; undefined. Since x œ t and y 2t $Î# j a1 t% b 6 2 Ê ¸ ddtT ¸ œ É a4t1 t%4tb$ t Á 0. N does not exist at t œ 0, where the † dt ¸ ds œ 0 at t œ 0 Ê N œ " dT , ds is cubic power curve which is concave down for x œ t 0 and concave up for x œ t 0. 9. r œ (3 sin t)i (3 cos t)j 4tk Ê v œ (3 cos t)i (3 sin t)j 4k Ê kvk œ È(3 cos t)# (3 sin t)# 4# œ È25 œ 5 Ê T œ kvvk œ ˆ 35 cos t‰ i ˆ 35 sin t‰ j 45 k Ê ddtT œ ˆ 53 sin t‰ i ˆ 53 cos t‰ j Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 13.4 Curvature and Normal Vectors of a Curve # # Ê ¸ ddtT ¸ œ Ɉ 35 sin t‰ ˆ 35 cos t‰ œ Ê Nœ 3 5 ˆ ddtT ‰ ¸ ddtT ¸ œ ( sin t)i (cos t)j ; , œ 1 5 † 3 5 œ 775 3 25 10. r œ (cos t t sin t)i (sin t t cos t)j 3k Ê v œ (t cos t)i (t sin t)j Ê kvk œ È(t cos t)# (t sin t)# œ Èt# œ ktk œ t, if t 0 Ê T œ v kvk œ (cos t)i (sin t)j , t 0 Ê ˆ ddtT ‰ ¸ ddtT ¸ Ê ¸ ddtT ¸ œ È( sin t)# (cos t)# œ 1 Ê N œ œ ( sin t)i (cos t)j dT dt " t œ ( sin t)i (cos t)j ; , œ †1œ " t 11. r œ aet cos tb i aet sin tb j 2k Ê v œ aet cos t et sin tb i aet sin t et cos tb j Ê kvk œ Éaet cos t et sin tb# aet sin t et cos tb# œ È2e2t œ et È2 ; Tœ v kvk cos t t sin t œ Š cos È ‹ i Š sin tÈ ‹j Ê 2 2 # dT dt t sin t œ Š sinÈt 2 cos t ‹ i Š cos È ‹j 2 # t sin t Ê ¸ ddtT ¸ œ ÊŠ sinÈt cos t ‹ Š cos È ‹ œ1 Ê Nœ 2 ,œ 1 kvk † ¸ ddtT ¸ œ 2 †1œ 1 et È2 ˆ ddtT ‰ ¸ ddtT ¸ œ Š cosÈt sin t ‹ i Š sinÈt cos t ‹ j ; 2 2 1 et È2 12. r œ (6 sin 2t)i (6 cos 2t)j 5tk Ê v œ (12 cos 2t)i (12 sin 2t)j 5k Ê kvk œ È(12 cos 2t)# (12 sin 2t)# 5# 5 dT ‰ ˆ 12 ‰ ˆ 24 ‰ ˆ 24 ‰ œ È169 œ 13 Ê T œ kvvk œ ˆ 12 13 cos 2t i 13 sin 2t j 13 k Ê dt œ 13 sin 2t i 13 cos 2t j ‰# ˆ 24 ‰# œ Ê ¸ ddtT ¸ œ Ɉ 24 13 sin 2t 13 cos 2t ,œ 1 kvk † ¸ ddtT ¸ œ $ # † 1 13 24 13 œ 24 13 ˆ ddtT ‰ ¸ ddtT ¸ Ê Nœ œ ( sin 2t)i (cos 2t)j ; 24 169 . 13. r œ Š t3 ‹ i Š t# ‹ j , t 0 Ê v œ t# i tj Ê kvk œ Èt% t# œ tÈt# 1, since t 0 Ê T œ œ t Èt# t i 1 Èt# 1 # t œ É at1# œ 1 b$ j Ê " t# 1 œ dT dt Ê Nœ i 1 at# 1b$Î# ˆ ddtT ‰ ¸ ddtT ¸ 14. r œ acos$ tb i asin$ tb j , 0 t œ 1 # 1 Èt# 1 t at# 1b$Î# i j Ê ¸ ddtT ¸ œ ÊŠ t Èt# 1 j; , œ 1 kvk # " ‹ at# 1b$Î# † ¸ ddtT ¸ œ Š 1 tÈt# 1 † t ‹ at# 1b$Î# 1 t# 1 œ v kv k # " . t at# 1b$Î# Ê v œ a3 cos# t sin tb i a3 sin# t cos tb j Ê kvk œ Éa3 cos# t sin tb# a3 sin# t cos tb# œ È9 cos% t sin# t 9 sin% t cos# t œ 3 cos t sin t, since 0 t Ê Tœ v kv k œ ( cos t)i (sin t)j Ê œ (sin t)i (cos t)j; , œ 1 kvk † ¸ ddtT ¸ œ dT dt œ (sin t)i (cos t)j Ê ¸ ddtT ¸ œ Èsin# t cos# t œ 1 Ê N œ 1 3 cos t sin t †1œ v kv k œ ˆsech at ‰ i ˆtanh at ‰ j Ê Ê ¸ ddtT ¸ œ É a"# sech# ˆ at ‰ tanh# ˆ at ‰ ,œ 1 kv k † ¸ ddtT ¸ œ 1 cosh t a † " a sech ˆ at ‰ œ " a " a# dT dt ˆ ddtT ‰ ¸ ddtT ¸ 1 3 cos t sin t . 15. r œ ti ˆa cosh at ‰ j , a 0 Ê v œ i ˆsinh at ‰ j Ê kvk œ É1 sinh# ˆ at ‰ œ Écosh# ˆ at ‰ œ cosh Ê Tœ 1 # œ ˆ "a sech sech% ˆ at ‰ œ " a t a t a tanh at ‰ i ˆ "a sech# at ‰ j sech ˆ at ‰ Ê N œ ˆ ddtT ‰ ¸ ddtT ¸ œ ˆ tanh at ‰ i ˆsech at ‰ j ; sech# ˆ at ‰. 16. r œ (cosh t)i (sinh t)j tk Ê v œ (sinh t)i (cosh t)j k Ê kvk œ Èsinh# t ( cosh t)# 1 œ È2 cosh t Ê Tœ Ê ,œ ¸ ddtT ¸ 1 kv k v kv k œ œ Š È" tanh t‹ i 2 É "# † ¸ ddtT ¸ œ sech% t 1 È2 cosh t † " # " È2 j Š È" sech t‹ k Ê 2 sech# t tanh# t œ " È2 sech t œ " # " È2 dT dt œ Š È" sech# t‹ i Š È" sech t tanh t‹ k sech t Ê N œ 2 ˆ ddtT ‰ ¸ ddtT ¸ œ 2 (sech t)i (tanh t)k ; sech# t. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 776 Chapter 13 Vector-Valued Functions and Motion in Space 17. y œ ax# Ê yw œ 2ax Ê yww œ 2a; from Exercise 5(a), ,(x) œ Ê ,w (x) œ 3# k2ak a1 4a# x# b &Î# k2ak a1 4a# x# b$Î# œ k2ak a1 4a# x# b $Î# a8a# xb ; thus, ,w (x) œ 0 Ê x œ 0. Now, ,w (x) 0 for x 0 and ,w (x) 0 for x 0 so that ,(x) has an absolute maximum at x œ 0 which is the vertex of the parabola. Since x œ 0 is the only critical point for ,(x), the curvature has no minimum value. 18. r œ (a cos t)i (b sin t)j â i j â â œ â a sin t b cos t â â a cos t b sin t Ê v œ (a sin t)i (b cos t)j Ê a œ (a cos t)i (b sin t)j Ê v ‚ a â kâ â 0 â œ abk Ê kv ‚ ak œ kabk œ ab, since a b 0; , (t) œ kvkv‚k$ak â 0â $Î# œ ab aa# sin# t b# cos# tb &Î# ; ,w (t) œ #3 (ab) aa# sin# t b# cos# tb œ 3# (ab) aa# b# b (sin 2t) aa# sin# t b# cos# tb points on the major axis, or t œ 1# , 1 # 0t and for 1 t 31 # ; w 31 # &Î# a2a# sin t cos t 2b# sin t cos tb ; thus, ,w (t) œ 0 Ê sin 2t œ 0 Ê t œ 0, 1 identifying identifying points on the minor axis. Furthermore, ,w (t) 0 for , (t) 0 for 1 # t 1 and 31 # t 21. Therefore, the points associated with t œ 0 and t œ 1 on the major axis give absolute maximum curvature and the points associated with t œ and t œ 19. , œ 31 # on the minor axis give absolute minimum curvature. d, da Ê a a# b # a b and 1 # d, da a # b # a a # b # b# œ ; d, da œ 0 Ê a# b# œ 0 Ê a œ „ b Ê a œ b since a, b 0 if a b Ê , is at a maximum for a œ b and ,(b) œ b b# b# œ " 2b 0. Now, d, da 0 if is the maximum value of ,. 20. (a) From Example 5, the curvature of the helix r(t) œ (a cos t)i (a sin t)j btk, a, b 0 is , œ a# a b# ; also kvk œ Èa# b# . For the helix r(t) œ (3 cos t)i (3 sin t)j tk, 0 Ÿ t Ÿ 41, a œ 3 and b œ 1 Ê , œ 3# 3 1# œ 41 and kvk œ È10 Ê K œ '0 3 10 È10 dt œ ’ 3 È10 t“ %1 ! 3 10 121 È10 œ (b) y œ x# Ê x œ t and y œ t# , _ t _ Ê r(t) œ ti t# j Ê v œ i 2tj Ê kvk œ È1 4t# ; Tœ ,œ 1 È1 4t# i 1 È1 4t# œaÄ lim _ † 2t dT È1 4t# j; dt 2 1 4t# 'a0 œ 2 14t# œ 4t i a1 4t# b3/2 2 3. ŠÈ1 4t# ‹ dt lim bÄ_ œaÄ lim a tan" 2ab lim _ ¸ ddtT ¸ œ É _ Then K œ 'c_ '0b 1 24t bÄ_ 2 j; a1 4t# b3/2 # 2 $ ŠÈ1 4t# ‹ 16t2 4 a1 4t# b3 œ 2 1 4t# . ŠÈ1 4t# ‹ dt œ ' _ 124t# dt ! dt œ a Ä lim ctan" 2td a lim _ a tan" 2bb œ 1 # 1 # Thus _ bÄ_ œ1 ctan" 2td 0 b 21. r œ ti (sin t)j Ê v œ i (cos t)j Ê kvk œ È1# (cos t)# œ È1 cos# t Ê ¸v ˆ 1# ‰¸ œ É1 cos# ˆ 1# ‰ œ 1; T œ œ i cos t j È1 cos2 t Ê 3œ " 1 Ê dT dt œ sin t cos t i a1 cos2 tb3/2 sin t j a1 cos2 tb3/2 Ê ¸ ddtT ¸ œ ksin tk 1 cos2 t ; ¸ ddtT ¸ tœ 12 œ ¸sin 12 ¸ 1 cos2 ˆ 12 ‰ œ 1 1 œ 1. Thus ,ˆ 12 ‰ œ 1 1 †1œ1 # œ 1 and the center is ˆ 1# ß 0‰ Ê ˆx 1# ‰ y# œ 1 2 22. r œ (2 ln t)i ˆt "t ‰ j Ê v œ ˆ 2t ‰ i ˆ1 t"# ‰ j Ê kvk œ É t42 ˆ1 t12 ‰ œ dT dt œ 2ˆt2 1‰ i at2 1b2 œ " # Ê 3œ " , at2 4t j 1 b2 2 Ê ¸ ddtT ¸ œ Ê 4at 1b2 16t2 at2 1b4 œ 2 t2 1 . Thus , œ 1 kv k t2 1 t2 † ¸ ddtT ¸ œ ÊTœ t2 t2 1 † 2 t2 1 v kvk œ œ 2t2 at2 1b2 2t t2 1 i t2 1 t2 1 j; Ê ,a1b œ 2 22 œ 2. The circle of curvature is tangent to the curve at P(0ß 2) Ê circle has same tangent as the curve Ê v(1) œ 2i is tangent to the circle Ê the center lies on the y-axis. If t Á 1 (t 0), then (t 1)# 0 # Ê t# 2t 1 0 Ê t# 1 2t Ê t t 1 2 since t 0 Ê t "t 2 Ê ˆt "t ‰ 2 Ê y 2 on both sides of (0ß 2) Ê the curve is concave down Ê center of circle of curvature is (0ß 4) Ê x# (y 4)# œ 4 is an equation of the circle of curvature Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. v kvk Section 13.4 Curvature and Normal Vectors of a Curve 23. y œ x# Ê f w (x) œ 2x and f ww (x) œ 2 Ê ,œ 24. y œ x% 4 k2 k a1 (2x)# b$Î# œ 2 a1 4x# b$Î# Ê f w (x) œ x$ and f ww (x) œ 3x# Ê ,œ k3x# k # $Î# Š1 ax$ b ‹ œ 3x# a1 x' b$Î# 25. y œ sin x Ê f w (x) œ cos x and f ww (x) œ sin x Ê ,œ k sin xk a1 cos# xb$Î# œ ksin xk a1 cos# xb$Î# 26. y œ ex Ê f w (x) œ ex and f ww (x) œ ex Ê ,œ kex k # $Î# Š1 aex b ‹ œ ex ˆ1 e2x ‰$Î# 27-34. Example CAS commands: Maple: with( plots ); r := t -> [3*cos(t),5*sin(t)]; lo := 0; hi := 2*Pi; t0 := Pi/4; P1 := plot( [r(t)[], t=lo..hi] ): display( P1, scaling=constrained, title="#27(a) (Section 13.4)" ); CURVATURE := (x,y,t) ->simplify(abs(diff(x,t)*diff(y,t,t)-diff(y,t)*diff(x,t,t))/(diff(x,t)^2+diff(y,t)^2)^(3/2)); kappa := eval(CURVATURE(r(t)[],t),t=t0); UnitNormal := (x,y,t) ->expand( [-diff(y,t),diff(x,t)]/sqrt(diff(x,t)^2+diff(y,t)^2) ); N := eval( UnitNormal(r(t)[],t), t=t0 ); C := expand( r(t0) + N/kappa ); OscCircle := (x-C[1])^2+(y-C[2])^2 = 1/kappa^2; evalf( OscCircle ); Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 777 778 Chapter 13 Vector-Valued Functions and Motion in Space P2 := implicitplot( (x-C[1])^2+(y-C[2])^2 = 1/kappa^2, x=-7..4, y=-4..6, color=blue ): display( [P1,P2], scaling=constrained, title="#27(e) (Section 13.4)" ); Mathematica: (assigned functions and parameters may vary) In Mathematica, the dot product can be applied either with a period "." or with the word, "Dot". Similarly, the cross product can be applied either with a very small "x" (in the palette next to the arrow) or with the word, "Cross". However, the Cross command assumes the vectors are in three dimensions For the purposes of applying the cross product command, we will define the position vector r as a three dimensional vector with zero for its z-component. For graphing, we will use only the first two components. Clear[r, t, x, y] r[t_]={3 Cos[t], 5 Sin[t] } t0= 1 /4; tmin= 0; tmax= 21; r2[t_]= {r[t][[1]], r[t][[2]]} pp=ParametricPlot[r2[t], {t, tmin, tmax}]; mag[v_]=Sqrt[v.v] vel[t_]= r'[t] speed[t_]=mag[vel[t]] acc[t_]= vel'[t] curv[t_]= mag[Cross[vel[t],acc[t]]]/speed[t]3 //Simplify unittan[t_]= vel[t]/speed[t]//Simplify unitnorm[t_]= unittan'[t] / mag[unittan'[t]] ctr= r[t0] + (1 / curv[t0]) unitnorm[t0] //Simplify {a,b}= {ctr[[1]], ctr[[2]]} To plot the osculating circle, load a graphics package and then plot it, and show it together with the original curve. < ; t0 := sqrt(3); rr := eval( r, t=t0 ); v := map( diff, r, t ); vv := eval( v, t=t0 ); a := map( diff, v, t ); aa := eval( a, t=t0 ); s := simplify(Norm( v, 2 )) assuming t::real; ss := eval( s, t=t0 ); T := v/s; TT := vv/ss ; q1 := map( diff, simplify(T), t ): NN := simplify(eval( q1/Norm(q1,2), t=t0 )); BB := CrossProduct( TT, NN ); kappa := Norm(CrossProduct(vv,aa),2)/ss^3; tau := simplify( Determinant(< vv, aa, eval(map(diff,a,t),t=t0) >)/Norm(CrossProduct(vv,aa),2)^3 ); a_t := eval( diff( s, t ), t=t0 ); a_n := evalf[4]( kappa*ss^2 ); Mathematica: (assigned functions and value for t0 will vary) Clear[t, v, a, t] mag[vector_]:=Sqrt[vector.vector] Print["The position vector is ", r[t_]={t Cos[t], t Sin[t], t}] Print["The velocity vector is ", v[t_]= r'[t]] Print["The acceleration vector is ", a[t_]= v'[t]] Print["The speed is ", speed[t_]= mag[v[t]]//Simplify] Print["The unit tangent vector is ", utan[t_]= v[t]/speed[t] //Simplify] Print["The curvature is ", curv[t_]= mag[Cross[v[t],a[t]]] / speed[t]3 //Simplify] Print["The torsion is ", torsion[t_]= Det[{v[t], a[t], a'[t]}] / mag[Cross[v[t],a[t]]]2 //Simplify] Print["The unit normal vector is ", unorm[t_]= utan'[t] / mag[utan'[t]] //Simplify] Print["The unit binormal vector is ", ubinorm[t_]= Cross[utan[t],unorm[t]] //Simplify] Print["The tangential component of the acceleration is ", at[t_]=a[t].utan[t] //Simplify] Print["The normal component of the acceleration is ", an[t_]=a[t].unorm[t] //Simplify] You can evaluate any of these functions at a specified value of t. t0= Sqrt[3] {utan[t0], unorm[t0], ubinorm[t0]} N[{utan[t0], unorm[t0], ubinorm[t0]}] {curv[t0], torsion[t0]} N[{curv[t0], torsion[t0]}] {at[t0], an[t0]} N[{at[t0], an[t0]}] To verify that the tangential and normal components of the acceleration agree with the formulas in the book: at[t]== speed'[t] //Simplify an[t]==curv [t] speed[t]2 //Simplify Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 783 784 Chapter 13 Vector-Valued Functions and Motion in Space 13.6 VELOCITY AND ACCELERATION IN POLAR COORDINATES 1. d) dt Þ ÞÞ . .. œ 3 œ ) Ê ) œ 0, r œ aa1 cos )b Ê r œ a sin ) ddt) œ 3a sin ) Ê r œ 3a cos ) ddt) œ 9a cos ) v œ a3a sin )bur aaa1 cos )bba3bu) œ a3a sin )bur 3aa1 cos )bu) a œ Š9a cos ) aa1 cos )ba3b2 ‹ur aaa1 cos )b † 0 2a3a sin )ba3bbu) œ a9a cos ) 9a 9a cos )bur a18a sin )bu) œ 9aa2 cos ) 1bur a18a sin )bu) 2. d) dt Þ ÞÞ . .. œ 2t œ ) Ê ) œ 2, r œ a sin 2) Ê r œ a cos 2) † 2 ddt) œ 4ta cos 2) Ê r œ 4ta ˆsin 2) † 2 ddt) ‰ 4a cos 2) œ 16t2 a sin 2) 4a cos 2) v œ a4ta cos 2)bur aa sin 2)ba2tbu) œ a4ta cos 2)bur a2ta sin 2)bu) a œ ’a 16t2 a sin 2) 4a cos 2)b aa sin 2)ba2tb2 “ur aa sin 2)ba2b 2a4ta cos 2)ba2tb‘u) œ ’16t2 a sin 2) 4a cos 2) 4t2 a sin 2)“ur 2a sin 2) 16t2 a cos 2)‘u) œ ’20t2 a sin 2) 4a cos 2)“ur 2a sin 2) 16t2 a cos 2)‘u) œ 4aacos 2) 5t2 sin 2)bur 2aasin 2) 8t2 cos 2)bu) 3. Þ ÞÞ . .. œ 2 œ ) Ê ) œ 0, r œ ea ) Ê r œ ea ) † a ddt) œ 2a ea ) Ê r œ 2a ea ) † a ddt) œ 4a2 ea ) v œ ˆ2a ea ) ‰ur ˆea ) ‰a2bu) œ ˆ2a ea ) ‰ur ˆ2ea ) ‰u) d) dt a œ ’ˆ 4a2 ea ) ‰ ˆea ) ‰a2b2 “ur ’ˆea ) ‰a0b 2ˆ2a ea ) ‰a2b“u) œ ’4a2 ea ) 4ea ) “ur ’0 8a ea ) “u) œ 4ea ) aa2 1bur ˆ8a ea ) ‰u) Þ ÞÞ . .. 4. ) œ 1 et Ê ) œ et Ê ) œ et , r œ aa1 sin tb Ê r œ a cos t Ê r œ a sin t v œ aa cos tbur aaa1 sin tbbaet bu) œ aa cos tbur a et a1 sin tbu) a œ ’a a sin tb aaa1 sin tbbaet b “ur ’aaa1 sin tbbaet b 2aa cos tbaet b“u) 2 œ ’a sin t a e2t a1 sin tb“ur ’a et a1 sin tb 2a et cos t“u) œ aasin t e2t a1 sin tbbur a et aa1 sin tb 2cos tbu) œ aasin t e2t a1 sin tbbur a et a2cos t 1 sin tbu) Þ ÞÞ . .. 5. ) œ 2t Ê ) œ 2 Ê ) œ 0, r œ 2 cos 4t Ê r œ 8 sin 4t Ê r œ 32 cos 4t v œ a8 sin 4tbur a2 cos 4tba2bu) œ 8asin 4tbur 4acos 4tbu) a œ Ša32 cos 4tb a2 cos 4tba2b2 ‹ur aa2 cos 4tb † 0 2a8 sin 4tba2bbu) œ a32 cos 4t 8 cos 4tbur a0 32sin 4tbu) œ 40acos 4tbur 32asin 4tbu) 6. e œ r! v#! GM 1 Ê v#! œ GM(e 1) r! Ê v! œ É GM(er! 1) ; Circle: e œ 0 Ê v! œ É GM r! 2GM Ellipse: 0 e 1 Ê É GM r! v! É r! Parabola: e œ 1 Ê v! œ É 2GM r! Hyperbola: e 1 Ê v! É 2GM r! 7. r œ GM v# Ê v# œ GM r Ê v œ É GM r which is constant since G, M, and r (the radius of orbit) are constant Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 13 Practice Exercises 8. ?A œ " # kr(t ?t) ‚ r(t)k Ê œ " # ¹ r(t ??t)t r(t) ‚ r(t) œ " # ¸ ddtr ‚ r(t)¸ œ " # ?A ?t ?t) ‚ r(t)¹ œ ¹ r(t ?t " # œ " # r(t) r(t) ‚ r(t)¹ ¹ r(t ?t) ? t r(t) ‚ r(t)¹ œ #" ¹ r(t ??t)t r(t) ‚ r(t)¹ Ê ¸r(t) ‚ ddtr ¸ œ "# kr ‚ rÞ k " ?t # # % dA dt ?t Ä 0 # ¹ r(t ??t)t r(t) ‚ r(t)¹ # r v# # % " œ lim ! ! 9. T œ Š 2r!1va! ‹ È1 e# Ê T# œ Š 4r1# va# ‹ a1 e# b œ Š 4r1# va# ‹ ”1 Š GM 1‹ • (from Equation 5) ! ! ! ! r# v % # % r v# # % ! ! œ Š 4r1# va# ‹ ’ G!# M!# 2 Š GM ‹“ œ Š 4r1# va# ‹ ’ ! ! ! œ a41# a% b Š 2GM r! v#! ˆ 2 ‰ 2r! GM ‹ GM ! 2GMr! v!# r!# v!% “ G# M# œ ˆ41# a% ‰ a2GM r! v#! b r! G# M# " ‰ˆ 2 ‰ # œ a41# a% b ˆ 2a GM (from Equation 10) Ê T œ 4 1 # a$ GM Ê T# a$ œ 41 # GM minutes seconds 7 10. r œ 365.256 days œ 365.256 days ‚ 24 hours day ‚ 60 hour ‚ 60 minute œ 31,558,118.4 seconds ¸ 3.16 ‚ 10 , G œ 6.6726 ‚ 1011 Nkg†m# , and the mass of the sun M œ 1.99 ‚ 1030 kg. 2 Ê a3 œ a3.16 ‚ 107 b 2 ˆ6.6726‚10c11 ‰ˆ1.99‚1030 ‰ 41 2 T2 a3 œ 41 2 GM Ê a3 œ T2 GM 41 2 3 ¸ 3.35863335 ‚ 1033 Ê a œ È 3.35863335 ‚ 1033 ¸ 149757138111 m ¸ 149.757 billion km CHAPTER 13 PRACTICE EXERCISES 1. r(t) œ (4 cos t)i ŠÈ2 sin t‹ j Ê x œ 4 cos t and y œ È2 sin t Ê x# 16 y# # œ 1; v œ (4 sin t)i ŠÈ2 cos t‹ j and a œ (4 cos t)i ŠÈ2 sin t‹ j ; r(0) œ 4 i , v(0) œ È2j , a(0) œ 4i ; r ˆ 14 ‰ œ 2È2i j , v ˆ 14 ‰ œ 2È2i j , a ˆ 1 ‰ œ 2È2i j ; kvk œ È16 sin# t 2 cos# t 4 Ê aT œ d dt kvk œ 14 sin t cos t È16 sin# t2 cos# t ; at t œ 0: aT œ 0, aN œ Ékak# 0 œ 4, a œ 0T 4N œ 4N, , œ aN kv k # œ 4È 2 27 2. r(t) œ ŠÈ3 sec t‹ i ŠÈ3 tan t‹ j Ê x œ È3 sec t and y œ È3 tan t Ê x# 3 at t œ 14 : aT œ 7 È 8 1 œ 7 3 , aN œ É9 49 9 œ 4È 2 3 , a œ 37 T 4È 2 3 N, ,œ y# 3 and a œ ŠÈ3 sec t tan# t È3 sec$ t‹ i Š2È3 sec# t tan t‹ j ; r(0) œ È3i , v(0) œ È3j , a(0) œ È3i ; kvk œ È3 sec# t tan# t 3 sec% t d dt kvk œ 6 sec# t tan$ t 18 sec% t tan t 2È3 sec# t tan# t 3 sec% t ; at t œ 0: aT œ 0, aN œ Ékak# 0 œ È3, a œ 0T È3N œ È3N, , œ aN kvk# œ È3 3 œ œ œ sec# t tan# t œ 1; Ê x# y# œ 3; v œ ŠÈ3 sec t tan t‹ i ŠÈ3 sec# t‹ j Ê aT œ aN kv k # " È3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 4 2 œ 2; 785 786 Chapter 13 Vector-Valued Functions and Motion in Space " È1 t# 3. r œ œ " 1 t# t 0, i t È1 t# j Ê v œ t a1 t # b d kvk dt . We want to maximize kvk : 2t a1 t# b# $Î# œ i a 1 t# b 2t a1 t# b# and $Î# d kv k dt # # j Ê kvk œ Ê’t a1 t# b$Î# “ ’a1 t# b$Î# “ œ0 Ê 2t a1 t# b# œ 0 Ê t œ 0. For t 0, 2t a1 t# b# 0; for 0 Ê kvk max occurs when t œ 0 Ê kvk max œ 1 4. r œ aet cos tb i aet sin tb j Ê v œ aet cos t et sin tb i aet sin t et cos tb j Ê a œ aet cos t et sin t et sin t et cos tb i aet sin t et cos t et cos t et sin tb j œ a2et sin tb i a2et cos tb j . Let ) be the angle between r and a . Then ) œ cos" Š krrk†kaak ‹ œ cos" 2e2t sin t cos t2e2t sin t cos t Éaet cos tb# aet sin tb# Éa2et sin tb# a2et cos tb# 1 # œ cos" Š 2e02t ‹ œ cos" 0 œ for all t â â â i j kâ â â 5. v œ 3i 4j and a œ 5i 15j Ê v ‚ a œ â 3 4 0 â œ 25k Ê kv ‚ ak œ 25; kvk œ È3# 4# œ 5 â â â 5 "5 0 â Ê ,œ 6. , œ kv‚ak kv k $ kyww k $Î# 1 ayw b# ‘ œ ex a1 e2x b d, dx œ 25 5$ œ " 5 œ ex a1 e2x b $Î# $Î# 3e3x a1 e2x b 7. r œ xi yj Ê v œ # &Î# œ 0 Ê a1 2e2x b œ 0 Ê e2x œ maximum at the point Š ln È2ß # x y œ 1, 2x dx dt dx dt i 2y dy dt dy dt d, dx Ê œ ex a1 e2x b œ ex a1 e2x b $Î# ex ’ 3# a1 e2x b &Î# &Î# a2e2x b“ &Î# ca1 e2x b 3e2x d œ ex a1 e2x b a1 2e2x b ; Ê 2x œ ln 2 Ê x œ "# ln 2 œ ln È2 Ê y œ È" ; therefore , is at a " # 2 " È2 ‹ j and v † i œ y Ê œ0 Ê dy dt œ x dx y dt dx dt œ y. Since the particle moves around the unit circle Ê dy dt œ xy (y) œ x. Since dx dt œ y and dy dt œ x, we have v œ yi xj Ê at (1ß 0), v œ j and the motion is clockwise. dy dy " # dx # dx dt œ 3x dt Ê dt œ 3 x dt . If r œ xi yj , where x and y are differentiable functions of dy dy dx " # dx " # then v œ dx dt i dt j. Hence v † i œ 4 Ê dt œ 4 and v † j œ dt œ 3 x dt œ 3 (3) (4) œ 12 at (3ß 3). Also, # # # # # # ‰ ˆ 3" x# ‰ ddt#x . Hence a † i œ 2 Ê ddt#x œ 2 and a œ ddt#x i ddt#y j and ddt#y œ ˆ 32 x‰ ˆ dx dt # a † j œ ddt#y œ 23 (3)(4)# "3 (3)# (2) œ 26 at the point (xß y) œ (3ß 3). 8. 9y œ x$ Ê 9 9. dr dt orthogonal to r Ê 0 œ dr dt †rœ " dr # dt † r "# r † dr dt œ " d # dt # t, (r † r) Ê r † r œ K, a constant. If r œ xi yj , where x and y are differentiable functions of t, then r † r œ x# y Ê x# y# œ K, which is the equation of a circle centered at the origin. 10. (a) (b) v œ (1 1 cos 1t)i (1 sin 1t)j Ê a œ a1# sin 1tb i a1# cos 1tb j ; v(0) œ 0 and a(0) œ 1# j ; v(1) œ 21i and a(1) œ 1# j ; v(2) œ 0 and a(2) œ 1# j ; v(3) œ 21i and a(3) œ 1# j Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 13 Practice Exercises (c) Forward speed at the topmost point is kv(1)k œ kv(3)k œ 21 ft/sec; since the circle makes " # 787 revolution per second, the center moves 1 ft parallel to the x-axis each second Ê the forward speed of C is 1 ft/sec. 11. y œ y! (v! sin !)t "# gt# Ê y œ 6.5 (44 ft/sec)(sin 45°)(3 sec) "# a32 ft/sec# b (3 sec)# œ 6.5 66È2 144 ¸ 44.16 ft Ê the shot put is on the ground. Now, y œ 0 Ê 6.5 22È2t 16t# œ 0 Ê t ¸ 2.13 sec (the positive root) Ê x ¸ (44 ft/sec)(cos 45°)(2.13 sec) ¸ 66.27 ft or about 66 ft, 3 in. from the stopboard 12. ymax œ y! (v! sin !)# #g œ 7 ft [(80 ft/sec)(sin 45°)]# (2) a32 ft/sec# b ¸ 57 ft (v! sin !)t "# gt# (v sin !) " gt y œ ! v! cos ! # x œ (v! cos !)t 2v! sin ! 2v! cos ! tan 9 , which is the time when g 13. x œ (v! cos !)t and y œ (v! sin !)t "# gt# Ê tan 9 œ Ê v! cos ! tan 9 œ v! sin ! "# gt Ê t œ the golf ball hits the upward slope. At this time x œ (v! cos !) Š 2v! sin ! 2vg ! cos ! tan 9 ‹ œ Š g2 ‹ av#! sin ! cos ! v#! cos# ! tan 9b . Now OR œ x cos 9 Ê OR œ Š g2 ‹ Š v#! sin ! cos ! v#! cos# ! tan 9 ‹ cos 9 œŠ 2v#! cos ! sin ! ‹ Š cos g 9 œŠ 2v#! cos ! 9 cos ! sin 9 ‹ Š sin ! cos cos ‹ #9 g œŠ 2v#! cos ! g cos# 9 ‹ [sin (! cos ! tan 9 cos 9 ‹ 9)]. The distance OR is maximized when x is maximized: dx d! œŠ 2v#! g ‹(cos 2! sin 2! tan 9) œ 0 Ê (cos 2! sin 2! tan 9) œ 0 Ê cot 2! tan 9 œ 0 Ê cot 2! œ tan (9) Ê 2! œ 1 # 9 Ê!œ 9 # 1 4 5 14. (a) x œ v! (cos 40°)t and y œ 6.5 v! (sin 40°)t "# gt# œ 6.5 v! (sin 40°)t 16t# ; x œ 262 12 ft and y œ 0 ft 5 Ê 262 12 œ v! (cos 40°)t or v! œ 262.4167 # # and 0 œ 6.5 ’ (cos 40°)t “ (sin 40°)t 16t Ê t œ 14.1684 262.4167 (cos 40°)t Ê t ¸ 3.764 sec. Therefore, 262.4167 ¸ v! (cos 40°)(3.764 sec) Ê v! ¸ (b) ymax œ y! (v! sin !)# 2g ¸ 6.5 a(91)(sin 40°)b2 (2)(32) 262.4167 (cos 40°)(3.764 sec) Ê v! ¸ 91 ft/sec ¸ 60 ft 15. r œ (2 cos t)i (2 sin t)j t# k Ê v œ (2 sin t)i (2 cos t)j 2tk Ê kvk œ È(2 sin t)# (2 cos t)# (2t)# œ 2È1 t# Ê Length œ '0 2È1 t# dt œ ’tÈ1 t# ln ¹t È1 t# ¹“ 1Î4 1Î% ! œ 1 4 É1 1# 16 ln Š 14 É1 1# 16 ‹ 16. r œ (3 cos t)i (3 sin t)j 2t$Î# k Ê v œ (3 sin t)i (3 cos t)j 3t"Î# k Ê kvk œ É(3 sin t)# (3 cos t)# a3t"Î# b $ œ È9 9t œ 3È1 t Ê Length œ '0 3È1 t dt œ 2(1 t)$Î# ‘ ! œ 14 3 17. r œ 4 9 (1 t)$Î# i 49 (1 t)$Î# j "3 tk Ê v œ # 2 3 (1 t)"Î# i 32 (1 t)"Î# j 3" k # # Ê kvk œ É 23 (1 t)"Î# ‘ 23 (1 t)"Î# ‘ ˆ 3" ‰ œ 1 Ê T œ i 32 j 3" k ; " 3 (1 t)"Î# i â â â Ê N(0) œ È"2 i È"2 j ; B(0) œ T(0) ‚ N(0) œ ââ â â Ê T(0) œ aœ " 3 2 3 dT dt œ (1 t)"Î# i "3 (1 t)"Î# j Ê a(0) œ " 3 2 3 (1 t)"Î# i 32 (1 t)"Î# j 3" k " 3 (1 t)"Î# j Ê ddtT (0) œ 3" i 3" j Ê ¸ ddtT (0)¸ œ â i j kâ 2 " â " " 4 â 23 3 3 â œ È i È j È k; 3 2 3 2 3 2 " " 0 ââ È2 È2 i "3 j and v(0) œ 2 3 i 23 j "3 k Ê v(0) ‚ a(0) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. È2 3 # 788 Chapter 13 Vector-Valued Functions and Motion in Space â i â â œ â 23 â " â 3 k ââ " â 3 â œ â 0â j 23 " 3 " 9 i 9" j 94 k Ê kv ‚ ak œ È2 3 Ê ,(0) œ k v ‚a k kv k $ Þ Þ a œ "6 (1 t)$Î# i "6 (1 t)$Î# j Ê a(0) œ "6 i "6 j Ê 7 (0) œ œ â 2 â 3 â â " â 3 â " â 6 Š È2 ‹ 3 1$ 23 " 3 " 6 kv‚ak # œ " ââ 3 â 0 ââ 0 ââ È2 3 ; 2 ‰ ˆ 3" ‰ ˆ 18 œ Š È2 ‹# œ " 6 3 18. r œ aet sin 2tb i aet cos 2tb j 2et k Ê v œ aet sin 2t 2et cos 2tb i aet cos 2t 2et sin 2tb j 2et k Ê kvk œ Éaet sin 2t 2et cos 2tb# aet cos 2t 2et sin 2tb# a2et b# œ 3et Ê T œ œ ˆ "3 sin 2t dT dt 2 3 cos 2t‰ i ˆ 3" cos 2t œ ˆ 32 cos 2t Ê N(0) œ 2 3 sin 2t‰ j 23 k Ê T(0) œ sin 2t‰ i ˆ 32 sin 2t 4 3 4 3 cos 2t‰ j Ê dT dt È Š2 3 5‹ i 3" j 32 k ; i 34 j Ê ¸ ddtT (0)¸ œ 32 È5 â j kâ 1 2 â 4 2 5 â 3 3 â œ È i È j È k; 3 5 3 5 3 5 2 â È5 0 â (0) œ â â i â 2 " 2 œ È5 i È5 j ; B(0) œ T(0) ‚ N(0) œ ââ 3 â " â È5 ˆ 23 i 43 j‰ 2 3 2 3 v kvk a œ a4et cos 2t 3et sin 2tb i a3et cos 2t 4et sin 2tb j 2et k Ê a(0) œ 4i 3j 2k and v(0) œ 2i j 2k â â j kâ âi â â Ê v(0) ‚ a(0) œ â 2 " 2 â œ 8i 4j 10k Ê kv ‚ ak œ È64 16 100 œ 6È5 and kv(0)k œ 3 â â â 4 3 2 â Ê ,(0) œ 6È 5 3$ œ 2È 5 9 t â â 2 â â 4 â â 2 1 3 11 ; Þ t a œ a4e cos 2t 8e sin 2t 3et sin 2t 6et cos 2tb i a3et cos 2t 6et sin 2t 4et sin 2t 8et cos 2tb j 2et k Þ œ a2et cos 2t 11et sin 2tb i a11 et cos 2t 2et sin 2tb j 2et k Ê a(0) œ 2i 11j 2k Ê 7 (0) œ kv‚ak# â 2â â 2â â 2â œ 80 180 œ 49 19. r œ ti "# e2t j Ê v œ i e2t j Ê kvk œ È1 e4t Ê T œ dT dt œ 2 e ˆ1 e4t ‰$Î# 4t i 2t 2e ˆ1 e4t ‰$Î# j Ê dT dt (ln 2) œ 32 17È17 i 8 17È17 " È1 e4t i e2t È1 e4t j Ê T (ln 2) œ j Ê N (ln 2) œ È417 i " È17 " È17 i 4 È17 j; j; â i j k ââ â â " 4 0 ââ œ k ; a œ 2e2t j Ê a(ln 2) œ 8j and v(ln 2) œ i 4j È17 B (ln 2) œ T(ln 2) ‚ N(ln 2) œ ââ È17 â " â 4 â â È17 È17 0 â â â â i j kâ â â Þ 8 Ê v(ln 2) ‚ a(ln 2) œ â " 4 0 â œ 8k Ê kv ‚ ak œ 8 and kv(ln 2)k œ È17 Ê ,(ln 2) œ 17È ; a œ 4e2t j 17 â â â0 8 0â Þ Ê a(ln 2) œ 16j Ê 7 (ln 2) œ â â1 â â0 â â0 4 8 16 k v ‚a k # â 0â â 0â â 0â œ0 20. r œ (3 cosh 2t)i (3 sinh 2t)j 6tk Ê v œ (6 sinh 2t)i (6 cosh 2t)j 6k Ê kvk œ È36 sinh# 2t 36 cosh# 2t 36 œ 6È2 cosh 2t Ê T œ kvvk œ Š È"2 tanh 2t‹ i Ê T(ln 2) œ # 15 17È2 i " È2 j 8 17È2 k; 8 ‰ 8 ‰ ˆ 15 ‰ œ Š È22 ‹ ˆ 17 i Š È22 ‹ˆ 17 17 k œ dT dt œ Š È22 sech# 2t‹ i Š È22 sech 2t tanh 2t‹ k Ê 128 289È2 i 240 289È2 " È2 j Š È"2 sech 2t‹ k dT dt (ln 2) # # 128 240 k Ê ¸ ddtT (ln 2)¸ œ ÊŠ 289 È2 ‹ Š 289È2 ‹ œ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 8È 2 17 Chapter 13 Practice Exercises â j â i â 15 " 8 15 â Ê N(ln 2) œ 17 i 17 k ; B(ln 2) œ T(ln 2) ‚ N(ln 2) œ â 17È2 È2 â 8 0 â 17 ‰ ˆ 15 ‰ a œ (12 cosh 2t)i (12 sinh 2t)j Ê a(ln 2) œ 12 ˆ 17 8 i 12 8 j œ â k â 8 â 15 â 17È2 â œ 17È2 i 15 â 17 â i 45 # j and â i j â â 45 51 15 ‰ 17 ‰ 45 51 ˆ ˆ v(ln 2) œ 6 8 i 6 8 j 6k œ 4 i 4 j 6k Ê v(ln 2) ‚ a(ln 2) œ â 4 4 â 51 45 â 2 # œ 135i 153j 72k Ê kv ‚ ak œ 153È2 and kv(ln 2)k œ 51 4 51 # È2 Ê ,(ln 2) œ Þ Þ a œ (24 sinh 2t)i (24 cosh 2t)j Ê a(ln 2) œ 45i 51j Ê 7 (ln 2) œ â 45 â 4 â 5" â 2 â â 45 51 4 45 2 51 kv ‚a k # â 6â â 0â â 0â œ " È2 j 8 17È2 k; k ââ 6 ââ â 0â 153È2 $ È 2‹ Š 51 4 œ 32 867 ; 32 867 21. r œ a2 3t 3t# b i a4t 4t# b j (6 cos t)k Ê v œ (3 6t)i (4 8t)j (6 sin t)k Ê kvk œ È(3 6t)# (4 8t)# (6 sin t)# œ È25 100t 100t# 36 sin# t "Î# " # a25 100t 100t# 36 sin# tb (100 200t 72 sin t cos t) Ê aT (0) œ ddtkvk (0) œ 10; a œ 6i 8j (6 cos t)k Ê kak œ È6# 8# (6 cos t)# œ È100 36 cos# t Ê ka(0)k œ È136 Ê d kv k dt œ Ê aN œ Ékak# a#T œ È136 10# œ È36 œ 6 Ê a(0) œ 10T 6N 22. r œ (2 t)i at 2t# b j a1 t# b k Ê v œ i (1 4t)j 2tk Ê kvk œ È1# (1 4t)# (2t)# "Î# œ È2 8t 20t# Ê ddtkvk œ "# a2 8t 20t# b (8 40t) Ê aT œ ddtkvk (0) œ 2È2; a œ 4j 2k # Ê kak œ È4# 2# œ È20 Ê aN œ Ékak# a#T œ Ê20 Š2È2‹ œ È12 œ 2È3 Ê a(0) œ 2È2T 2È3N 23. r œ (sin t)i ŠÈ2 cos t‹ j (sin t)k Ê v œ (cos t)i ŠÈ2 sin t‹ j (cos t)k # Ê kvk œ Ê(cos t)# ŠÈ2 sin t‹ (cos t)# œ È2 Ê T œ v kvk œ Š È"2 cos t‹ i (sin t)j Š È"2 cos t‹ k ; # # œ Š È" sin t‹ i (cos t)j Š È" sin t‹ k Ê ¸ ddtT ¸ œ ÊŠ È" sin t‹ ( cos t)# Š È" sin t‹ œ 1 2 2 2 2 â â i j k â â â â d T " " ˆ dt ‰ cos t sin t cos t " " â â È È Ê N œ ¸ dT ¸ œ Š È sin t‹ i (cos t)j Š È sin t‹ k ; B œ T ‚ N œ â 2 2 â 2 2 dt â " sin t cos t " sin t â â È2 â È2 â i â j k â â â â " " È È œ È2 i È2 k ; a œ ( sin t)i Š 2 cos t‹ j (sin t)k Ê v ‚ a œ â cos t 2 sin t cos t â â â â sin t È2 cos t sin t â Þ œ È2 i È2 k Ê kv ‚ ak œ È4 œ 2 Ê , œ kvkv‚k$ak œ 2 $ œ È"2 ; a œ ( cos t)i ŠÈ2 sin t‹ j (cos t)k dT dt ŠÈ2‹ Ê 7œ â â cos t â â sin t â â â cos t â È2 sin t cos t ââ È 2 cos t sin t ââ È2 sin t cos t ââ k v ‚ a k# œ (cos t) ŠÈ2‹ ŠÈ2 sin t‹ (0) (cos t) ŠÈ2‹ 4 œ0 24. r œ i (5 cos t)j (3 sin t)k Ê v œ (5 sin t)j (3 cos t)k Ê a œ (5 cos t)j (3 sin t)k Ê v † a œ 25 sin t cos t 9 sin t cos t œ 16 sin t cos t; v † a œ 0 Ê 16 sin t cos t œ 0 Ê sin t œ 0 or cos t œ 0 Ê t œ 0, 1# or 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 789 790 Chapter 13 Vector-Valued Functions and Motion in Space 25. r œ 2i ˆ4 sin #t ‰ j ˆ3 1t ‰ k Ê 0 œ r † (i j) œ 2(1) ˆ4 sin #t ‰ (1) Ê 0 œ 2 4 sin Ê tœ 1 3 t # Ê sin t # œ " # Ê t # œ 1 6 (for the first time) 26. r(t) œ ti t# j t$ k Ê v œ i 2tj 3t# k Ê kvk œ È1 4t# 9t% Ê kv(1)k œ È14 Ê T(1) œ È"14 i È214 j È314 k , which is normal to the normal plane " È14 Ê (x 1) 2 È14 (y 1) 3 È14 (z 1) œ 0 or x 2y 3z œ 6 is an equation of the normal plane. Next we calculate N(1) which is normal to the rectifying plane. Now, a œ 2j 6tk Ê a(1) œ 2j 6k Ê v(1) ‚ a(1) â â â i j kâ # È76 È19 â â œ â " 2 3 â œ 6i 6j 2k Ê kv(1) ‚ a(1)k œ È76 Ê ,(1) œ œ kv(t)k Ê ddt#s ¹ ; ds $ œ È dt 7 14 È â â tœ1 Š 14‹ â0 2 6â œ " # œ 22 È14 a1 4t# 9t% b "Î# 2j3k Š iÈ ‹ 14 a8t 36t$ b¹ È19 7È14 # tœ1 œ 22 È14 ŠÈ14‹ N Ê N œ , so a œ È14 2È19 d# s dt# # ‰ N Ê 2j 6k T , ˆ ds dt 8 9 ‰ 11 8 9 ˆ 11 7 i 7 j 7 k Ê 7 (x 1) 7 (y 1) 7 (z 1) œ 0 or 11x 8y 9z œ 10 is an equation of the rectifying plane. Finally, B(1) œ T(1) ‚ N(1) â â j kâ â i È14 â â 2 3 â œ È" (3i 3j k) Ê 3(x 1) 3(y 1) (z 1) œ 0 or 3x 3y z œ Š 2È19 ‹ Š È" ‹ ˆ "7 ‰ â " 19 14 â â â 11 8 9 â œ 1 is an equation of the osculating plane. " ‰ 27. r œ et i (sin t)j ln (1 t)k Ê v œ et i (cos t)j ˆ 1 t k Ê v(0) œ i j k ; r(0) œ i Ê (1ß 0ß 0) is on the line Ê x œ 1 t, y œ t, and z œ t are parametric equations of the line 28. r œ ŠÈ2 cos t‹ i ŠÈ2 sin t‹ j tk Ê v œ ŠÈ2 sin t‹ i ŠÈ2 cos t‹ j k Ê v ˆ 14 ‰ œ ŠÈ2 sin 14 ‹ i ŠÈ2 cos 14 ‹ j k œ i j k is a vector tangent to the helix when t œ is parallel to v ˆ 14 ‰ ; also r ˆ 14 ‰ œ ŠÈ2 cos 14 ‹ i ŠÈ2 sin 14 ‹ j Ê x œ 1 t, y œ 1 t, and z œ 1 4 1 4 # 29. x# œ av#! cos# !b t# and ˆy "# gt# ‰ œ av#! sin# !b t# Ê x# ˆy "# gt# ‰ œ v#! t# Þ ÞÞ Þ ÞÞ ÞÞ# ÞÞ# ÞÞ# ÞÞ# ÞÞ# axÞ ÞÞx yÞ ÞÞyb# x x y y Ê x y s œ x y xÞ # yÞ # Þ Þ # # Èx y ÞÞ# ÞÞ# Þ # Þ # Þ # ÞÞ# Þ ÞÞ Þ ÞÞ Þ # ÞÞ# Þ ÞÞ Þ ÞÞ Þ ÞÞ Þ ÞÞ Þ ÞÞ Þ ÞÞ ax y b ax y b ax x 2x x y y y y b ax y y x b# x# y# y# x # 2x x y y œ œ œ Þ# Þ# Þ# Þ# Þ Þ x y x y x# y# Þ ÞÞ Þ ÞÞ Þ # Þ # $Î# Þ Þ # # kx y y xk ax y b ÞÞ ÞÞ ÞÞ x y Ê È x# y# s # œ È Þ # Þ # Ê ÈÞÞ# ÞÞ# ÞÞ# œ kxÞ ÞÞy yÞ ÞÞxk œ ," œ 3 x y x y s ÞÞ 30. s œ d dt ÈxÞ # yÞ # œ 31. s œ a) Ê ) œ s a Ê 9œ s a 1 # Ê d9 ds œ " a Ê , œ ¸ "a ¸ œ " a Ê the tangent line k Ê the point ˆ1ß 1ß 14 ‰ is on the line t are parametric equations of the line # 1 4 since a 0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 13 Additional and Advanced Exercises 32. (1) ?SOT ¸ ?TOD Ê Ê y! œ 6380# 6817 DO OT œ Ê OT SO œ y! 6380 6380 6380437 Ê y! ¸ 5971 km; (2) VA œ '5971 21x Ê1 Š dx dy ‹ dy # 6380 6380 œ 21'5971 È6380# y# Š È6380 # y# ‹ dy 6817 œ 21 '5971 6380 dy œ 21 c6380yd ')"( &*(" 6817 œ 16,395,469 km# ¸ 1.639 ‚ 10( km# ; (3) percentage visible ¸ 16,395,469 km# 41(6380 km)# ¸ 3.21% CHAPTER 13 ADDITIONAL AND ADVANCED EXERCISES 1. (a) r()) œ (a cos ))i (a sin ))j b)k Ê d) dt œ Èa# b# (b) d) dt Ê ) œ É a#2gb b# Ê d) dt d) È) dr dt œ [(a sin ))i (a cos ))j bk] ) É a#2gb œ É a#2gz b# œ b# Ê gbt# 2 aa# b# b ; z œ b) Ê z œ œ [(a sin ))i (a cos ))j bk] d) dt i (a cos ))j bk Ê v(t) œ ’ (a sin ))È “ Š È gbt # # # a b# a b d# r dt# d) ¸ dt )œ#1 d) dt ; kvk œ È2gz œ ¸ ddtr ¸ œ É a#41gbb# œ 2É a#1gbb# "Î# œ É a#2gb œ É a#2gb b# dt Ê 2) b# t C; t œ 0 Ê ) œ 0 Ê C œ 0 Ê 2)"Î# œ É a#2gb b# t Ê ) œ (c) v(t) œ dr dt gb# t# 2 aa# b# b œ [(a sin ))i (a cos ))j bk] Š a# gbt b# ‹ , from part (b) ‹œ gbt È a# b# T; # œ [(a cos ))i (a sin ))j] ˆ ddt) ‰ [(a sin ))i (a cos ))j bk] # d# ) dt# gb œ Š a# gbt b# ‹ [(a cos ))i (a sin ))j] [(a sin ))i (a cos ))j bk] Š a# b# ‹ i (a cos ))j bk œ ’ (a sin ))È “ ŠÈ # # a œ gb È a# b # b gb ‹ b# a# # a Š a# gbt b# ‹ [( cos ))i (sin ))j] # T a Š a# gbt b# ‹ N (there is no component in the direction of B). 2. (a) r()) œ (a) cos ))i (a) sin ))j b)k Ê kvk œ È2gz œ ¸ ddtr ¸ œ aa# a# )# b# b (b) s œ '0 kvk dt œ '0 aa# a# )# t t œ '0 aÉ ) a# a# (1 e)r! 1 e cos ) Ê dr d) "Î# "Î# b# b ddt) œ [(a cos ) a) sin ))i (a sin ) a) cos ))j bk] ˆ ddt) ‰ Ê d) dt œ œ c# # ) ln ¹u Èc# u# ¹“ œ (1 e)r! (e sin )) (1 e cos ))# ! ; dr d) œ0 Ê Ê sin ) œ 0 Ê ) œ 0 or 1. Note that dr d) a # "Î# d) œ '0 aa# a# u# b# b ) " # "Î# du È a# b # k ak Š)Èc# )# c# ln ¹) Èc# )# ¹ c# ln c‹ (1 e)r! (e sin )) (1 e cos ))# œ 0 Ê (1 e)r! (e sin )) œ 0 0 when sin ) 0 and dr d) 0 when sin ) 0. Since sin ) 0 on 1 ) 0 and sin ) 0 on 0 ) 1, r is a minimum when ) œ 0 and r(0) œ 4. (a) f(x) œ x 1 ; È a# a# ) # b# dt œ '0 aa# a# )# b# b u# du œ a '0 Èc# u# du, where c œ d) dt È2gb) t ) b# Ê s œ a ’ u# Èc# u# 3. r œ dr dt sin x œ 0 Ê f(0) œ 1 and f(2) œ 2 1 " # sin 2 " # (1 e)r! 1 e cos 0 œ r! since ksin 2k Ÿ 1; since f is continuous on [0ß 2], the Intermediate Value Theorem implies there is a root between 0 and 2 (b) Root ¸ 1.4987011335179 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 791 792 Chapter 13 Vector-Valued Functions and Motion in Space . . . . . . . 5. (a) v œ x i y j and v œ r ur r ) u) œ arb [(cos ))i (sin ))j] ˆr )‰ [( sin ))i (cos ))j] Ê v † i œ x and . . . . . . . . v † i œ r cos ) r ) sin ) Ê x œ r cos ) r ) sin ); v † j œ y and v † j œ r sin ) r ) cos ) . . . Ê y œ r sin ) r ) cos ) . . (b) ur œ (cos ))i (sin ))j Ê v † ur œ x cos ) y sin ) . . . . œ ˆr cos ) r ) sin )‰ (cos )) ˆr sin ) r ) cos )‰ (sin )) by part (a), . . . . Ê v † ur œ r ; therefore, r œ x cos ) y sin ); . . u) œ (sin ))i (cos ))j Ê v † u) œ x sin ) y cos ) . . . . . œ ˆr cos ) r ) sin )‰ ( sin )) ˆr sin ) r ) cos )‰ (cos )) by part (a) Ê v † u) œ r ) ; . . . therefore, r ) œ x sin ) y cos ) 6. r œ f()) Ê dr dt œ f w () ) d) dt Ê d# r dt# # œ f ww ()) ˆ ddt) ‰ f w ()) d# ) dt# ;vœ dr dt ur r d) dt u) "Î# "Î# d) ‰ ˆ dr ‰# r# ˆ ddt) ‰# “ œ ’af w b# f # “ r sin ) ddt) ‰ i ˆsin ) dr dt r cos ) dt j Ê kvk œ ’ dt Þ ÞÞ Þ ÞÞ d) dr kv ‚ ak œ kx y y xk , where x œ r cos ) and y œ r sin ). Then dx dt œ (r sin )) dt (cos )) dt œ ˆcos ) dr dt # # d) dr d) ˆ d) ‰# (r sin )) ddt#) (cos )) ddt#r ; dy dt dt (r cos )) dt dt œ (r cos )) dt (sin # # # ˆ d) ‰ (r cos )) ddt#) (sin )) ddt#r . Then kv ‚ ak Ê œ (2 cos )) ddt) dr dt (r sin )) dt # $ $ d) d# r d) ˆ dr ‰# œ (after much algebra) r# ˆ ddt) ‰ r ddt#) dr œ ˆ ddt) ‰ Šf 2 f † f ww 2af w b2 ‹ dt r dt dt# 2 dt dt Ê d# x dt# d# y dt# Ê ,œ œ (2 sin )) kv‚ak kvk œ dr dt dr dt f 2 f†f ww 2af w b2 $Î# af w b# f # ‘ 7. (a) Let r œ 2 t and ) œ 3t Ê vœ )) ˆ ddt) ‰ ; dr dt œ 1 and d) dt d# r dt# œ3 Ê # ur r ddt) u) Ê v(1) œ ur 3u) ; a œ ’ ddt#r œ d# ) dt# # r ˆ ddt) ‰ “ ur œ 0. The halfway point is (1ß 3) Ê t œ 1; # ’r ddt#) 2 dr dt d) dt “ u) Ê a(1) œ 9ur 6u) (b) It takes the beetle 2 min to crawl to the origin Ê the rod has revolved 6 radians # # Ê L œ '0 É[f())]# cf w ())d# d) œ '0 Ɉ2 3) ‰ ˆ 3" ‰ d) œ '0 É4 4) 3 œ '0 É 37 129 ) ) d) œ " # 6 6 6 œ È37 # " 6 " 3 '0 6 È() 6)# 1 d) œ 6 " 3 ’ ()#6) È() 6)# 1 )# 9 " 9 d) ln ¸) 6 È() 6)# 1¸“ ln ŠÈ37 6‹ ¸ 6.5 in. 8. (a) x œ r cos ) Ê dx œ cos ) dr r sin ) d); y œ r sin ) Ê dy œ sin ) dr r cos ) d); thus dx# œ cos# ) dr# 2r sin ) cos ) dr d) r# sin# ) d)# and dy# œ sin# ) dr# 2r sin ) cos ) dr d) r# cos# ) d)# Ê ds2 œ dx# dy# dz# œ dr# r# d)# dz# (b) (c) r œ e) Ê dr œ e) d) Ê L œ '0 ln 8 Èdr# r# d)# dz# œ '0 Èe#) e#) e#) d) ln 8 œ '0 È3e) d) œ ’È3 e) “ ln 8 ln 8 0 œ 8È3 È3 œ 7È3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ' ! Chapter 13 Additional and Advanced Exercises â â i â 9. (a) ur ‚ u) œ â cos ) â â sin ) j sin ) cos ) 793 â kâ â 0 â œ k Ê a right-handed frame of unit vectors â 0â œ ( sin ))i (cos ))j œ u) and ddu)) œ ( cos ))i (sin ))j œ ur Þ ÞÞ Þ Þ Þ ÞÞ ÞÞ ÞÞ Þ Þ ÞÞ (c) From Eq. (7), v œ rur r)u) zk Ê a œ v œ a r ur r ur b ˆr )u) r) u) r) u) ‰ z k Þ# ÞÞ ÞÞ ÞÞ ÞÞ œ Š r r) ‹ ur ˆr) 2r )‰ u) z k (b) dur d) 10. L(t) œ r(t) ‚ mv(t) Ê œ ma Ê dL dt dL dt œ ˆ ddtr ‚ mv‰ Šr ‚ m d# r dt# ‹ Ê dL dt œ (v ‚ mv) (r ‚ ma) œ r ‚ ma ; F œ ma Ê krck$ r œ r ‚ ma œ r ‚ Š krck$ r‹ œ krck$ (r ‚ r) œ 0 Ê L œ constant vector Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 794 Chapter 13 Vector-Valued Functions and Motion in Space NOTES: Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. CHAPTER 14 PARTIAL DERIVATIVES 14.1 FUNCTIONS OF SEVERAL VARIABLES 1. (a) fa0, 0b œ 0 (d) fa3, 2b œ 33 2. (a) fˆ2, 16 ‰ œ (b) fa1, 1b œ 0 È3 2 (b) fˆ3, 1‰ 12 (c) fa2, 3b œ 58 œ È12 (c) fˆ1, 14 ‰ œ 1 È2 (d) fˆ 12 , 7‰ œ 1 3. (a) fa3, 1, 2b œ (b) fˆ1, 12 , 14 ‰ œ 4 5 8 5 (c) fˆ0, 13 , 0‰ œ 3 (d) fa2, 2, 100b œ 0 4. (a) fa0, 0, 0b œ 7 (d) fŠ È42 , 5 6 È2 , È2 ‹ (b) fa2, 3, 6b œ 0 (c) fa1, 2, 3b œ È35 œ É 21 2 5. Domain: all points axß yb on or above the line yœx2 6. Domain: all points axß yb outside the circle x2 y2 œ 4 7. Domain: all points axß yb not liying on the graph of y œ x or y œ x3 8. Domain: all points axß yb not liying on the graph of x2 y2 œ 25 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 796 Chapter 14 Partial Derivatives 9. Domain: all points axß yb satisfying x2 1 Ÿ y Ÿ x2 1 10. Domain: all points axß yb satisfying ax 1bay 1b 0 11. Domain: all points axß yb satisfying ax 2bax 2bay 3bay 3b 0 12. Domain: all points axß yb inside the circle x2 y2 œ 4 such that x2 y2 Á 3 13. 14. 15. 16. 17. (a) Domain: all points in the xy-plane (b) Range: all real numbers Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.1 Functions of Several Variables (c) (d) (e) (f) 18. (a) (b) (c) (d) level curves are straight lines y x œ c parallel to the line y œ x no boundary points both open and closed unbounded Domain: set of all axß yb so that y x 0 Ê y x Range: z 0 level curves are straight lines of the form y x œ c where c boundary is Èy x œ 0 Ê y œ x, a straight line 0 (e) closed (f) unbounded 19. (a) Domain: all points in the xy-plane (b) Range: z 0 (c) level curves: for f(xß y) œ 0, the origin; for faxß yb œ c 0, ellipses with center a0ß 0b and major and minor axes along the x- and y-axes, respectively (d) no boundary points (e) both open and closed (f) unbounded 20. (a) Domain: all points in the xy-plane (b) Range: all real numbers (c) level curves: for faxß yb œ 0, the union of the lines y œ „ x; for faxß yb œ c Á 0, hyperbolas centered at a0ß 0b with foci on the x-axis if c 0 and on the y-axis if c 0 (d) no boundary points (e) both open and closed (f) unbounded 21. (a) Domain: all points in the xy-plane (b) Range: all real numbers (c) level curves are hyperbolas with the x- and y-axes as asymptotes when faxß yb Á 0, and the x- and y-axes when f(xß y) œ 0 (d) no boundary points (e) both open and closed (f) unbounded 22. (a) Domain: all axß yb Á a0ß yb (b) Range: all real numbers (c) level curves: for faxß yb œ 0, the x-axis minus the origin; for faxß yb œ c Á 0, the parabolas y œ c x# minus the origin (d) boundary is the line x œ 0 (e) open (f) unbounded 23. (a) Domain: all axß yb satisfying x# y# 16 (b) Range: z "4 (c) level curves are circles centered at the origin with radii r 4 (d) boundary is the circle x# y# œ 16 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 797 798 Chapter 14 Partial Derivatives (e) open (f) bounded 24. (a) (b) (c) (d) (e) (f) Domain: all axß yb satisfying x# y# Ÿ 9 Range: 0 Ÿ z Ÿ 3 level curves are circles centered at the origin with radii r Ÿ 3 boundary is the circle x# y# œ 9 closed bounded 25. (a) (b) (c) (d) (e) (f) Domain: axß yb Á a0ß 0b Range: all real numbers level curves are circles with center a0ß 0b and radii r 0 boundary is the single point a0ß 0b open unbounded 26. (a) (b) (c) (d) (e) (f) Domain: all points in the xy-plane Range: 0 z Ÿ 1 level curves are the origin itself and the circles with center a0ß 0b and radii r 0 no boundary points both open and closed unbounded 27. (a) Domain: all axß yb satisfying 1 Ÿ y x Ÿ 1 (b) Range: 1# Ÿ z Ÿ 1# (c) (d) (e) (f) level curves are straight lines of the form y x œ c where 1 Ÿ c Ÿ 1 boundary is the two straight lines y œ 1 x and y œ 1 x closed unbounded 28. (a) Domain: all axß yb, x Á 0 (b) Range: 1# z 1# (c) (d) (e) (f) level curves are the straight lines of the form y œ c x, c any real number and x Á 0 boundary is the line x œ 0 open unbounded 29. (a) (b) (c) (d) (e) (f) Domain: all points axß yb outside the circle x# y# œ 1 Range: all reals Circles centered ar the origin with radii r 1 Boundary: the cricle x# y# œ 1 open unbounded 30. (a) (b) (c) (d) Domain: all points axß yb inside the circle x# y# œ 9 Range: z ln 9 Circles centered ar the origin with radii r 9 Boundary: the cricle x# y# œ 9 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.1 Functions of Several Variables (e) open (f) bounded 31. f 32. e 33. a 34. c 35. d 36. b 37. (a) (b) 38. (a) (b) 39. (a) (b) 40. (a) (b) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 799 800 Chapter 14 Partial Derivatives 41. (a) (b) 42. (a) (b) 43. (a) (b) 44. (a) (b) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.1 Functions of Several Variables 45. (a) (b) 46. (a) (b) 47. (a) (b) 48. (a) (b) # # 801 49. faxß yb œ 16 x# y# and Š2È2ß È2‹ Ê z œ 16 Š2È2‹ ŠÈ2‹ œ 6 Ê 6 œ 16 x# y# Ê x# y# œ 10 50. faxß yb œ Èx# 1 and a1ß 0b Ê z œ È1# 1 œ 0 Ê x# 1 œ 0 Ê x œ 1 or x œ 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 802 Chapter 14 Partial Derivatives 51. faxß yb œ Èx y2 3 and a3, 1b Ê z œ É3 a1b2 3 œ 1 Ê x y2 3 œ 1 Ê x y2 œ 4 52. faxß yb œ 2y x xy1 and a1ß 1b Ê z œ #a 1 b a 1 b a1b 1 + 1 œ3 Ê 3œ 53. 54. 55. 56. 57. 58. 59. 60. 2y x xy1 Ê y œ 4x 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.1 Functions of Several Variables 803 61. faxß yß zb œ Èx y ln z at a3ß 1ß 1b Ê w œ Èx y ln z; at a3ß 1ß 1b Ê w œ È3 a1b ln 1 œ 2 Ê Èx y ln z œ 2 62. faxß yß zb œ ln ax# y z# b at a"ß #ß "b Ê w œ ln ax# y z# b ; at a"ß #ß "b Ê w œ ln a1 2 1b œ ln 4 Ê ln 4 œ ln ax# y z# b Ê x# y z# œ 4 63. gaxß yß zb œ Èx# y2 z# at Š1ß 1ß È2‹ Ê w œ Èx# y2 z# ; at Š1ß 1ß È2‹ Ê w œ Ê1# a1b2 ŠÈ2‹ # œ 2 Ê 2 œ Èx# y2 z# Ê x# y2 z# œ 4 xyz 2x y z 64. gaxß yß zb œ at a1ß 0ß 2b Ê w œ xyz 2x y z ; at a1ß 0ß 2b Ê w œ 1 0 a2b 2a1b 0 a2b œ 14 Ê 14 œ xyz 2x y z Ê 2x y z œ 0 _ n 65. faxß yb œ ! Š xy ‹ œ n œ0 1 1 Š xy ‹ œ y yx for ¹ xy ¹ 1 Ê Domain: all points ax, yb satisfying lxl lyl; at a1, 2b Ê since ¹ 12 ¹ 1 Ê z œ Ê y yx 2 21 œ2 œ 2 Ê y œ 2x _ 66. gaxß yß zb œ ! n œ0 (x b y)n n! zn œ eÐxyÑÎz Ê Domain: all points ax, y, zb satisfying z Á 0; at aln 4ß ln 9ß 2b Ê w œ eÐln 4 ln 9ÑÎ2 œ eÐln 36ÑÎ2 œ eln 6 œ 6 Ê 6 œ eÐxyÑÎz Ê 67. faxß yb œ 'x y d) È1 )# xy z œ ln 6 œ sin1 y sin1 x Ê Domain: all points ax, yb satisfying 1 Ÿ x Ÿ 1 and 1 Ÿ y Ÿ 1; at a0, 1b Ê sin1 1 sin1 0 œ 12 Ê sin1 y sin1 x œ 12 . Since 12 Ÿ sin1 y Ÿ 1 2 and 12 Ÿ sin1 x Ÿ 12 , in order for sin1 y sin1 x to equal 12 , 0 Ÿ sin1 y Ÿ 12 1 1 2 and Ÿ sin x Ÿ 0; that is 0 Ÿ y Ÿ 1 and 1 Ÿ x Ÿ 0. Thus y œ sinˆ 1 sin1 x‰ œ È1 x2 , x Ÿ 0 2 68. gaxß yß zb œ 'x y dt 1 t# '0 z d) È4 )# œ tan1 y tan1 x sin1 ˆ 2z ‰ Ê Domain: all points ax, y, zb satisfying 2 Ÿ z Ÿ 2; at Š0ß 1ß È3‹ Ê tan1 1 tan1 0 sin1 Š 1 12 Ÿ tan1 y tan1 x Ÿ 131 12 È3 2 ‹ œ 71 12 Ê tan1 y tan1 x sin1 ˆ 2z ‰ œ Ê z œ 2 sinˆ 7121 tan1 y tan1 x‰, 1 12 71 12 . Ÿ tan1 y tan1 x Ÿ Since 12 Ÿ sin1 ˆ 2z ‰ Ÿ 12 , 131 12 69-72. Example CAS commands: Maple: with( plots ); f := (x,y) -> x*sin(y/2) + y*sin(2*x); xdomain := x=0..5*Pi; ydomain := y=0..5*Pi; x0,y0 := 3*Pi,3*Pi; plot3d( f(x,y), xdomain, ydomain, axes=boxed, style=patch, shading=zhue, title="#69(a) (Section 14.1)" ); Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 804 Chapter 14 Partial Derivatives plot3d( f(x,y), xdomain, ydomain, grid=[50,50], axes=boxed, shading=zhue, style=patchcontour, orientation=[-90,0], title="#69(b) (Section 14.1)" ); # (b) L := evalf( f(x0,y0) ); # (c) plot3d( f(x,y), xdomain, ydomain, grid=[50,50], axes=boxed, shading=zhue, style=patchcontour, contours=[L], orientation=[-90,0], title="#45(c) (Section 13.1)" ); 73-76. Example CAS commands: Maple: eq := 4*ln(x^2+y^2+z^2)=1; implicitplot3d( eq, x=-2..2, y=-2..2, z=-2..2, grid=[30,30,30], axes=boxed, title="#73 (Section 14.1)" ); 77-80. Example CAS commands: Maple: x := (u,v) -> u*cos(v); y := (u,v) ->u*sin(v); z := (u,v) -> u; plot3d( [x(u,v),y(u,v),z(u,v)], u=0..2, v=0..2*Pi, axes=boxed, style=patchcontour, contours=[($0..4)/2], shading=zhue, title="#77 (Section 14.1)" ); 69-60. Example CAS commands: Mathematica: (assigned functions and bounds will vary) For 69 - 72, the command ContourPlot draws 2-dimensional contours that are z-level curves of surfaces z = f(x,y). Clear[x, y, f] f[x_, y_]:= x Sin[y/2] y Sin[2x] xmin= 0; xmax= 51; ymin= 0; ymax= 51; {x0, y0}={31, 31}; cp= ContourPlot[f[x,y], {x, xmin, xmax}, {y, ymin, ymax}, ContourShading Ä False]; cp0= ContourPlot[[f[x,y], {x, xmin, xmax}, {y, ymin, ymax}, Contours Ä {f[x0,y0]}, ContourShading Ä False, PlotStyle Ä {RGBColor[1,0,0]}]; Show[cp, cp0] For 73 - 76, the command ContourPlot3D will be used. Write the function f[x, y, z] so that when it is equated to zero, it represents the level surface given. For 73, the problem associated with Log[0] can be avoided by rewriting the function as x2 + y2 +z2 - e1/4 Clear[x, y, z, f] f[x_, y_, z_]:= x2 y2 z2 Exp[1/4] ContourPlot3D[f[x, y, z], {x, 5, 5}, {y, 5, 5}, {z, 5, 5}, PlotPoints Ä {7, 7}]; For 77 - 80, the command ParametricPlot3D will be used. To get the z-level curves here, we solve x and y in terms of z and either u or v (v here), create a table of level curves, then plot that table. Clear[x, y, z, u, v] ParametricPlot3D[{u Cos[v], u Sin[v], u}, {u, 0, 2}, {v, 0, 2p}]; zlevel= Table[{z Cos[v], z sin[v]}, {z, 0, 2, .1}]; ParametricPlot[Evaluate[zlevel],{v, 0, 21}]; 14.2 LIMITS AND CONTINUITY IN HIGHER DIMENSIONS 3x# y# 5 1. lim # # Ðxß yÑ Ä Ð0ß 0Ñ x y 2 2. lim Ðxß yÑ Ä Ð0ß 4Ñ Èy x œ 0 È4 œ 3(0)# 0# 5 0# 0# 2 œ 5 # œ0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.2 Limits and Continuity in Higher Dimensions 3. 4. 5. 6. 7. 8. 9. 10. lim Ðxß yÑ Ä Ð3ß 4Ñ Èx# y# 1 œ È3# 4# 1 œ È24 œ 2È6 # lim sec x tan y œ (sec 0) ˆtan 14 ‰ œ (1)(1) œ 1 lim cos Š xxy y 1 ‹ œ cos Š 000 0 1 ‹ œ cos 0 œ 1 Ðxß yÑ Ä Ð2ß 3Ñ Ðxß yÑ Ä ˆ0ß 14 ‰ Ðxß yÑ Ä Ð0ß 0Ñ lim # lim Ðxß yÑ Ä Ð1ß 1Ñ Ðxß yÑ Ä Ð1Î27ß 13 Ñ œ 12. lim y sin x Ðxß yÑ Ä ˆ 12 ß 0‰ 15. 16. 17. 1†sinˆ 16 ‰ 1# 1 x# 2xy y# xy lim x# y# xy lim xy y 2x 2 x1 œ œ œ œ lim Ðxß yÑ Ä Ð1ß 1Ñ œ œ (x y)(x y) xy œ lim Ðx ß y Ñ Ä Ð 1 ß 1Ñ xÁ1 y4 x y 2È x 2È y Èx Èy œ œ œ 2 (x y)# xy lim 1 2 1 4 11 1 Ðx ß y Ñ Ä Ð 1 ß 1Ñ lim # # Ðxß yÑ Ä Ð2ß 4Ñ x y xy 4x 4x # y Á 4, x Á x lim xÄ0 1Î2 2 œ acos 0b " 0 sin ˆ 1# ‰ œ lim Ðxß yÑ Ä Ð0ß 0Ñ xÁy " # aey b ˆ sinx x ‰ œ e! † lim ˆ sinx x ‰ œ 1 † 1 œ 1 lim Ðxß yÑ Ä Ð0ß 0Ñ œ cos y 1 Ðxß yÑ Ä Ð1ß 1Ñ xÁ1 $ 3 1 ‰ 3 3 xy œ cos É ˆ 27 cos È 1 œ cos ˆ 13 ‰ œ lim Ðxß yÑ Ä Ð1ß 1Ñ xÁy " 36 ln k1 x# y# k œ ln k1 (1)# (1)# k œ ln 2 ey sin x x Ðxß yÑ Ä Ð0ß 0Ñ Ðxß yÑ Ä Ð1ß 1Ñ xÁy # exy œ e0 ln 2 œ eln ˆ 2 ‰ œ lim lim $ 1 Ðxß yÑ Ä Ð0ß ln 2Ñ x sin y # Ðxß yÑ Ä Ð1ß 1Î6Ñ x 1 14. # Š x" y" ‹ œ #" ˆ "3 ‰‘ œ ˆ 6" ‰ œ 11. 13. # lim lim (x y) œ (" 1) œ 0 lim (x y) œ (1 1) œ 2 Ðxß yÑ Ä Ð1ß 1Ñ Ðxß yÑ Ä Ð1ß 1Ñ (x 1)(y 2) x1 œ lim Ðxß yÑ Ä Ð1ß 1Ñ y4 lim Ðxß yÑ Ä Ð2ß 4Ñ x(x 1)(y 4) y Á 4, x Á x# lim Ðx ß y Ñ Ä Ð 0 ß 0Ñ xÁy œ (y 2) œ (1 2) œ 1 1 lim Ðxß yÑ Ä Ð2ß 4Ñ x(x 1) x Á x# ˆÈ x È y ‰ ˆ È x È y 2 ‰ Èx Èy œ lim Ðxß yÑ Ä Ð0ß 0Ñ œ " #(2 1) Note: (xß y) must approach (0ß 0) through the first quadrant only with x Á y. xy4 lim Ðxß yÑ Ä Ð2ß 2Ñ Èx y 2 xyÁ4 œ lim Ðxß yÑ Ä Ð2ß 2Ñ xyÁ4 ˆÈx y 2‰ ˆÈx y 2‰ Èx y 2 œ lim Ðxß yÑ Ä Ð2ß 2Ñ xyÁ4 " # ˆÈ x È y 2 ‰ œ ŠÈ0 È0 2‹ œ 2 18. œ ˆÈ x y 2 ‰ œ ŠÈ2 2 2‹ œ 2 2 œ 4 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 805 806 Chapter 14 Partial Derivatives 19. lim œ 20. 22. 23. 24. 25. 26. 27. 28. 29. 30. " È(2)(2) 0 # " 22 œ " È4 È3 1 œ " 22 È2x y 2 œ lim Ðxß yÑ Ä Ð2ß 0Ñ ˆÈ2x y 2‰ ˆÈ2x y 2‰ 2x y Á 4 œ " 4 È x È y 1 xy1 lim Ðxß yÑ Ä Ð4ß 3Ñ xyÁ1 œ 21. È2x y 2 2x y 4 Ðxß yÑ Ä Ð2ß 0Ñ 2x y Á 4 œ œ Èx Èy 1 lim Ðxß yÑ Ä Ð4ß 3Ñ ˆÈx Èy 1‰ ˆÈx Èy 1‰ xyÁ1 sinax# y# b x# y# œ lim sinar# b r# lim 1 cosaxyb xy œ lim 1 cos u u Ðxß yÑ Ä Ð0ß 0Ñ x3 y3 Ðxß yÑ Ä Ð1ß "Ñ x y lim xy lim 4 4 Ðx ß y Ñ Ä Ð 2 ß 2 Ñ x y lim T Ä Ð1ß 3ß 4Ñ Š "x lim T Ä Ð 1 ß 1 ß 1Ñ lim T Ä Ð3ß 3ß 0Ñ lim lim lim œ uÄ0 œ lim rÄ0 œ lim 2r†cosar# b 2r uÄ0 sin u 1 rÄ0 œ0 ax ybˆx2 xy y2 ‰ xy Ðxß yÑ Ä Ð1ß "Ñ xy lim 2 2 Ðxß yÑ Ä Ð2ß 2Ñ ax ybax ybax y b œ " lim Ðxß yÑ Ä Ð4ß 3Ñ Èx Èy 1 œ lim cosar# b œ 1 œ lim "z ‹ œ 2xy yz x # z# œ " 1 " 3 " 4 œ 2(1)(1) (1)(1) 1# (1)# 12 4 3 12 œ 2 " 11 œ œ lim Ðxß yÑ Ä Ð1ß "Ñ ax2 xy y2 b œ Š12 a1ba1b a1b2 ‹ œ 3 1 lim 2 2 Ðxß yÑ Ä Ð2ß 2Ñ ax ybax y b œ 1 a2 2ba22 22 b œ 1 32 19 12 œ #" asin# x cos# y sec# zb œ asin# 3 cos# 3b sec# 0 œ 1 1# œ 2 T Ä ˆ 14 ß 12 ß 2‰ T Ä Ð1ß 0ß 3Ñ " y rÄ0 œ " lim Ðxß yÑ Ä Ð2ß 0Ñ È2x y # " 4 lim Ðxß yÑ Ä Ð0ß 0Ñ œ ze T Ä Ð2 ß 3 ß 6 Ñ tan" (xyz) œ tan" ˆ "4 † 2y 1 # † 2‰ œ tan" ˆ 14 ‰ cos 2x œ 3e 2Ð0Ñ cos 21 œ (3)(1)(1) œ 3 ln Èx# y# z# œ ln È2# (3)# 6# œ ln È49 œ ln 7 31. (a) All axß yb (b) All axß yb except a0ß 0b 32. (a) All axß yb so that x Á y (b) All axß yb 33. (a) All axß yb except where x œ 0 or y œ 0 (b) All axß yb 34. (a) All axß yb so that x# 3x 2 Á 0 Ê ax 2bax 1b Á 0 Ê x Á 2 and x Á 1 (b) All axß yb so that y Á x# 35. (a) All axß yß zb (b) All axß yß zb except the interior of the cylinder x# y# œ 1 36. (a) All axß yß zb so that xyz 0 (b) All axß yß zb 37. (a) All axß yß zb with z Á 0 (b) All axß yß zb with x# z# Á 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.2 Limits and Continuity in Higher Dimensions 38. (a) All axß yß zb except axß 0ß 0b (b) All axß yß zb except a0ß yß 0b or axß 0ß 0b 39. (a) All axß yß zb such that z x2 y2 1 (b) All axß yß zb such that z Á Èx2 y2 807 40. (a) All axß yß zb such that x2 y2 z2 Ÿ 4 (b) All axß yß zb such that x2 y2 z2 9 except when x2 y2 z2 œ 25 41. lim x È x# y# œ lim b Èx#x x# œ lim b È2x kxk œ lim b Èx2 x œ lim b È"2 œ È"2 ; xÄ0 xÄ0 xÄ0 xÄ0 lim x È x# y# œ lim c È2x kxk œ lim c È2(xx) œ lim c Ðxß yÑ Ä Ð0ß 0Ñ along y œ x x0 Ðxß yÑ Ä Ð0ß 0Ñ along y œ x x0 42. 43. 44. 45. 46. 47. 48. 49. 50. lim x% x% y# œ lim lim x% y# x% y# œ lim lim xy kxyk lim xy xy lim x2 y xy œ lim lim x# y y œ lim lim x# y x4 y2 œ lim lim xy2 1 y1 œ lim Ðxß yÑ Ä Ð0ß 0Ñ along y œ 0 Ðxß yÑ Ä Ð0ß 0Ñ along y œ kx# Ðxß yÑ Ä Ð0ß 0Ñ along y œ kx kÁ0 Ðx ß y Ñ Ä Ð 0 ß 0 Ñ along y œ kx k Á 1 Ðxß yÑ Ä Ð0ß 0Ñ along y œ kx kÁ1 Ðxß yÑ Ä Ð0ß 0Ñ along y œ kx# kÁ0 Ðxß yÑ Ä Ð0ß 0Ñ along y œ kx# Ðxß yÑ Ä Ð1ß 1Ñ along x œ 1 lim Ðxß yÑ Ä Ð1ß 1Ñ along y œ 1 œ xÄ0 xÄ0 x% œ 1; % # x Ä 0 x 0 x% akx# b # œ lim x(kx) x Ä 0 kx(kx)k œ lim x kx x Ä 0 x kx 1k 1k x# kx# kx# kx4 y2 1 y Ä 1 y1 xk œ k 1k # x Ä 0 x% ax# b " È2 œ lim x% % x Ä 0 2x œ " # Ê different limits for different values of k ; if k 0, the limit is 1; but if k 0, the limit is 1 k 1 k2 Ê different limits for different values of k yÄ1 1 x Ä 1 x1 œ lim Ê different limits for different values of k, k Á 1 Ê different limits for different values of k, k Á 0 œ lim ay 1b œ 2; x 1 2 x Ä 1 x 1 œ lim 1k k œ k x Ä 0 kkk x% œ lim 1 k# 1 k# œ œ lim x Ä 0 1k œ x% x% y# œ Ê different limits for different values of k, k Á 1 œ lim 4 2 4 x Ä 0 x k x xy 1 x2 y2 kx# # x Ä 0 kkx k œ x % k# x% % # % x Ä 0 x k x œ lim x2 kx x Ä 0 x kx xÄ0 lim Ðxß yÑ Ä Ð0ß 0Ñ along y œ x# œ lim # x Ä 0 x% akx# b " È2 xÄ0 lim Ðx ß y Ñ Ä Ð 1 ß 1Ñ along y œ x œ 21 ; lim xy2 1 y1 Ð x ß y Ñ Ä Ð 1 ß 1Ñ along y œ x2 y3 1 y Ä 1 y1 œ lim xy 1 x2 y2 œ lim ay2 y 1b œ 3 x 3 1 2 4 x Ä 1 x x œ lim 3 2 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. yÄ1 x2 x 1 a x 1bax2 1b xÄ1 œ lim 808 Chapter 14 Partial Derivatives Ú 1 if y x% 51. fax, yb œ Û 1 if y Ÿ 0 Ü 0 otherwise (a) (b) (c) fax, yb œ 1 since any path through a0, 1b that is close to a0, 1b satisfies y lim fax, yb œ 0 since any path through a2, 3b that is close to a2, 3b does not satisfiy either y lim fax, yb œ 1 and (b) (c) Ðx ß y Ñ Ä Ð 0 ß 0 Ñ along x œ 0 x2 x3 lim fax, yb œ 0 Ê lim Ðx ß y Ñ Ä Ð 0 ß 0Ñ along y œ x2 fax, yb does not exist lim Ðxß yÑ Ä Ð0ß 0Ñ if x 0 if x 0 fax, yb œ 32 œ 9 since any path through a3, 2b that is close to a3, 2b satisfies x 0 Ðxß yÑ Ä Ð3ß 2Ñ fax, yb œ a2b3 œ 8 since any path through a2, 1b that is close to a2, 1b satisfies x 0 lim Ðxß yÑ Ä Ð2ß 1Ñ fax, yb œ 0 since the limit is 0 along any path through a0, 0b with x 0 and the limit is also zero along lim Ðxß yÑ Ä Ð0ß 0Ñ any path through a0, 0b with x 0 53. First consider the vertical line x œ 0 Ê 2x2 y 4 y2 x Ðxß yÑ Ä Ð0ß 0Ñ lim 2a0b2 y a b4 y2 0 yÄ0 œ lim along x œ 0 œ lim 0 œ 0. Now consider any nonvertical yÄ0 through a0, 0b. The equation of any line through a0, 0b is of the form y œ mx Ê œ x% or y Ÿ 0 Ðxß yÑ Ä Ð2ß 3Ñ 52. fax, yb œ œ (a) x% lim Ðxß yÑ Ä Ð0ß 1Ñ 2 lim 2x amxb 2 x Ä 0 x4 amxb œ 3 lim 4 2mx 2 2 x Ä 0 x m x 54. If f is continuous at (x! ß y! ), then 3 lim 2 2mx 2 2 x Ä 0 x ax m b œ lim Ðxß yÑ Ä Ðx! ß y! Ñ œ lim Ðxß yÑ Ä Ð0ß 0Ñ along y œ mx œ 0. Thus lim 22mx 2 x Ä 0 ax m b faxß yb œ 2x2 y 4 y2 x Ðxß yÑ Ä Ð0ß 0Ñ lim along y lim Ðxß yÑ Ä Ð0ß 0Ñ any line though a0, 0b 2x2 y x4 y2 œ mx œ 0. f(xß y) must equal f(x! ß y! ) œ 3. If f is not continuous at (x! ß y! ), the limit could have any value different from 3, and need not even exist. 55. lim Ðxß yÑ Ä Ð0ß 0Ñ Š1 x# y# 3 ‹ œ 1 and lim Ðx ß y Ñ Ä Ð 0 ß 0Ñ 1œ1 Ê # # 56. If xy 0, 2 kxyk Š x 6y ‹ lim kxyk Ðx ß y Ñ Ä Ð 0 ß 0Ñ tan " xy xy lim Ðxß yÑ Ä Ð0ß 0Ñ œ 1, by the Sandwich Theorem # # œ 2xy Š x 6y ‹ lim xy Ðxß yÑ Ä Ð0ß 0Ñ œ lim Ðxß yÑ Ä Ð0ß 0Ñ ˆ2 xy ‰ 6 œ 2 and # # 2 kxyk Ðxß yÑ Ä Ð0ß 0Ñ kxyk lim œ lim Ðx ß y Ñ Ä Ð 0 ß 0 Ñ œ lim Ðxß yÑ Ä Ð0ß 0Ñ ˆ2 xy ‰ 6 2 œ 2; if xy 0, œ 2 and lim Ðx ß y Ñ Ä Ð 0 ß 0Ñ lim 2 kxyk Š x 6y ‹ kxyk Ðxß yÑ Ä Ð0ß 0Ñ 2 kxyk kxyk œ2 Ê lim Ðxß yÑ Ä Ð0ß 0Ñ # # œ 2xy Š x 6y ‹ lim xy Ðxß yÑ Ä Ð0ß 0Ñ 4 4 cos Èkxyk kxyk œ 2, by the Sandwich Theorem 57. The limit is 0 since ¸sin ˆ "x ‰¸ Ÿ 1 Ê 1 Ÿ sin ˆ x" ‰ Ÿ 1 Ê y Ÿ y sin ˆ x" ‰ Ÿ y for y 0, and y y sin ˆ "x ‰ y Ÿ 0. Thus as (xß y) Ä (!ß !), both y and y approach 0 Ê y sin ˆ "x ‰ Ä 0, by the Sandwich Theorem. 58. The limit is 0 since ¹cos Š "y ‹¹ Ÿ 1 Ê 1 Ÿ cos Š y" ‹ Ÿ 1 Ê x Ÿ x cos Š y" ‹ Ÿ x for x 0, and x x cos Š y" ‹ for x Ÿ 0. Thus as (xß y) Ä (!ß !), both x and x approach 0 Ê x cos Š "y ‹ Ä 0, by the Sandwich Theorem. 59. (a) f(xß y)k yœmx œ 2m 1 m# œ 2 tan ) 1 tan# ) œ sin 2). The value of f(xß y) œ sin 2) varies with ), which is the line's angle of inclination. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. y for x Section 14.2 Limits and Continuity in Higher Dimensions (b) Since f(xß y)k yœmx œ sin 2) and since 1 Ÿ sin 2) Ÿ 1 for every ), lim Ðxß yÑ Ä Ð0ß 0Ñ 809 f(xß y) varies from 1 to 1 along y œ mx. 60. kxy ax# y# bk œ kxyk kx# y# k Ÿ kxk kyk kx# y# k œ Èx# Èy# kx# y# k Ÿ Èx# y# Èx# y# kx# y# k # # # œ ax# y# b Ê ¹ xyxa#xy#y b ¹ Ÿ Ê 61. 62. 63. lim Ðxß yÑ Ä Ð0ß 0Ñ x$ xy# œ lim lim # # Ðxß yÑ Ä Ð0ß 0Ñ x y lim Ðxß yÑ Ä Ð0ß 0Ñ lim Ðxß yÑ Ä Ð0ß 0Ñ x# y# x# y# ‹ Šxy rÄ0 $ ax# y# b x# y# # œ x# y# Ê ax # y # b Ÿ œ 0 by the Sandwich Theorem, since r$ cos$ ) (r cos )) ar# sin# )b r# cos# ) r# sin# ) $ œ lim rÄ0 $ $ $ y# x# y# r# sin# ) r# rÄ0 œ lim lim Ðx ß y Ñ Ä Ð 0 ß 0Ñ r acos$ ) cos ) sin# )b 1 y r cos ) r sin ) cos Š xx# y# ‹ œ lim cos Š r# cos# ) r# sin# ) ‹ œ lim cos ’ $ rÄ0 xy ax# y# b x# y# rÄ0 Ÿ a x# y# b „ ax# y# b œ 0; thus, define fa0ß 0b œ 0 œ0 r acos$ ) sin$ )b “ 1 œ cos 0 œ 1 œ lim asin# )b œ sin# ); the limit does not exist since sin# ) is between rÄ0 0 and 1 depending on ) 64. 65. lim Ðxß yÑ Ä Ð0ß 0Ñ 2r cos ) œ lim 2x lim # # Ðxß yÑ Ä Ð0ß 0Ñ x x y # r Ä 0 r r cos ) œ lim 2 cos ) r Ä 0 r cos ) œ 2 cos ) cos ) ky k krk akcos )k ksin )kb " kr cos )k kr sin )k tan" ’ kxx#k ’ “ œ lim tan" ’ “; y# “ œ lim tan r# r# rÄ0 if r Ä 0 , then lim b rÄ! rÄ0 tan" ’ krk akcos )rk# ksin )kb “ œ lim b tan" ’ kcos )k r ksin )k “ œ rÄ! lim tan" ’ krk akcos )rk# ksin )kb “ œ lim c tan" Š kcos )kr ksin )k ‹ œ rÄ! r Ä !c 66. ; the limit does not exist for cos ) œ 0 x# y# œ lim lim # # Ðxß yÑ Ä Ð0ß 0Ñ x y rÄ0 r# cos# ) r# sin# ) r# 1 # 1 # Ê the limit is ; if r Ä 0 , then 1 # œ lim acos# ) sin# )b œ lim (cos 2)) which ranges between rÄ0 rÄ0 1 and 1 depending on ) Ê the limit does not exist 67. lim Ðx ß y Ñ Ä Ð 0 ß 0Ñ ln Š 3x # x# y# 3y# ‹ x# y# œ lim ln Š 3r rÄ0 # cos# ) r% cos# ) sin# ) 3r# sin# ) ‹ r# œ lim ln a3 r# cos# ) sin# )b œ ln 3 Ê define f(0ß 0) œ ln 3 rÄ0 68. lim Ðxß yÑ Ä Ð0ß 0Ñ 3xy# x# y# (3r cos )) ar# sin# )b r# rÄ0 œ lim œ lim 3r cos ) sin# ) œ 0 Ê define f(0ß 0) œ 0 rÄ0 69. Let $ œ 0.1. Then Èx# y# $ Ê Èx# y# 0.1 Ê x# y# 0.01 Ê kx# y# 0k 0.01 Ê kf(xß y) f(!ß !)k 0.01 œ %. 70. Let $ œ 0.05. Then kxk $ and kyk $ Ê kfaxß yb fa0ß 0bk œ ¸ x# y 1 0¸ œ ¸ x# y 1 ¸ Ÿ kyk 0.05 œ %. 71. Let $ œ 0.005. Then kxk $ and kyk $ Ê kfaxß yb fa0ß 0bk œ ¸ xx#y1 0¸ œ ¸ xx#y1 ¸ Ÿ kx yk kxk kyk 0.005 0.005 œ 0.01 œ %. kx yk " 72. Let $ œ 0.01. Since 1 Ÿ cos x Ÿ 1 Ê 1 Ÿ 2 cos x Ÿ 3 Ê "3 Ÿ #cos Ÿ ¸ 2 x cosy x ¸ Ÿ kx yk x Ÿ 1 Ê 3 Ÿ kxk kyk . Then kxk $ and kyk $ Ê kfaxß yb fa0ß 0bk œ ¸ 2 x cosy x 0¸ œ ¸ 2 x cosy x ¸ Ÿ kxk kyk 0.01 0.01 œ 0.02 œ %. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 810 Chapter 14 Partial Derivatives y2 x2 y2 73. Let $ œ 0.04. Since y2 Ÿ x2 y2 Ê Ÿ1Ê lxly2 x2 y2 Ÿ lxl œ Èx2 Ÿ Èx2 y2 $ Ê kfaxß yb fa0ß 0bk 2 œ ¹ x2xy y2 0¹ 0.04 œ %. 74. Let $ œ 0.01. If lyl Ÿ 1, then y2 Ÿ lyl œ Èy2 Ÿ Èx2 y2 , so lxl œ Èx2 Ÿ Èx2 y2 Ê lxl y2 Ÿ 2Èx2 y2 . Since x2 x2 y2 x2 Ÿ x 2 y 2 Ê Ÿ 1 and y2 Ÿ x2 y2 Ê y2 x2 y2 Ÿ 1. Then lx3 y4 l x2 y2 Ÿ x2 x2 y2 lxl y2 2 x2 y2 y Ÿ lxl y2 2$ y Ê kfaxß yb fa0ß 0bk œ ¹ xx2 y2 0¹ 2a0.01b œ 0.002 œ % . 3 4 75. Let $ œ È0.015. Then Èx# y# z# $ Ê kf(xß yß z) f(!ß 0ß 0)k œ kx# y# z# 0k œ kx# y# z# k # # œ ŠÈx# t# x# ‹ ŠÈ0.015‹ œ 0.015 œ %. 76. Let $ œ 0.2. Then kxk $ , kyk $ , and kzk $ Ê kf(xß yß z) f(!ß 0ß 0)k œ kxyz 0k œ kxyzk œ kxk kyk kzk (0.2)$ œ 0.008 œ %. 77. Let $ œ 0.005. Then kxk $ , kyk $ , and kzk $ Ê kf(xß yß z) f(!ß 0ß 0)k œ ¹ x# x y# yz#z 1 0¹ œ ¹ x# x y# yz#z 1 ¹ Ÿ kx y zk Ÿ kxk kyk kzk 0.005 0.005 0.005 œ 0.015 œ %. 78. Let $ œ tan" (0.1). Then kxk $ , kyk $ , and kzk $ Ê kf(xß yß z) f(!ß 0ß 0)k œ ktan# x tan# y tan# zk Ÿ ktan# xk ktan# yk ktan# zk œ tan# x tan# y tan# z tan# $ tan# $ tan# $ œ 0.01 0.01 0.01 œ 0.03 œ %. 79. f(xß yß z) œ lim Ðxß yß zÑ Ä Ðx! ß y! ß z! Ñ lim (x y z) œ x! y! z! œ f(x! ß y! ß z! ) Ê f is continuous at lim ax# y# z# b œ x!# y!# z!# œ f(x! ß y! ß z! ) Ê f is continuous at Ðxß yß zÑ Ä Ðx! ß y! ß z! Ñ every (x! ß y! ß z! ) 80. f(xß yß z) œ lim Ðxß yß zÑ Ä Ðx! ß y! ß z! Ñ Ðxß yß zÑ Ä Ðx! ß y! ß z! Ñ every point (x! ß y! ß z! ) 14.3 PARTIAL DERIVATIVES 1. `f `x œ 4x, `f `y 3. `f `x œ 2x(y 2), 5. `f `x œ 2y(xy 1), 7. `f `x œ 9. `f `x œ (x " y)# † 10. `f `x œ 11. `f `x œ œ 2. `f `x œ 2x y, 4. `f `x œ 5y 14x 3, œ 2x(xy 1) 6. `f `x œ 6(2x 3y)# , y È x# y# 8. `f `x œ œ 3 `f `y x `f È x# y# , ` y œ x# 1 `f `y œ ` `x (x y) œ (x " y)# , ax# y# b (1) x(2x) ax# y# b# œ y# x# ax# y# b# (xy 1)(1) (x y)(y) (xy 1)# œ , `f `y y# 1 (xy 1)# œ , `f `y œ (x " y)# † ax# y# b (0) x(2y) ax# y# b# `f `y œ ` `y 2x# $ $ É x ˆ #y ‰ `f `y , œ x 2y `f `y `f `y œ 5x 2y 6 `f `y œ 9(2x 3y)# œ " $ $ 3É x ˆ #y ‰ (x y) œ (x " y)# œ ax# 2xy y # b# (xy ")(1) (x y)(x) (xy 1)# œ x # " (xy 1)# Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.3 Partial Derivatives 12. `f `x œ 13. `f `x œ eÐxy1Ñ † 14. `f `x œ ex sin (x y) ex cos (x y), 15. `f `x œ 16. `f `x œ exy † `f `x `f `y œ 2 sin (x 3y) † `f `x œ 2 cos a3x y# b † 17. 18. " # 1 ˆ xy ‰ " xy † ` `x † ` `x ` `x ˆ yx ‰ œ ` `x œ x# y y# , y # x# ’1 ˆ xy ‰ “ (x y 1) œ eÐxy1Ñ , (x y) œ " xy , `f `y (xy) † ln y œ yexy ln y, ` `x ` `y œ 2 sin (x 3y) † " xy œ `f `y `f `y `f `y † `f `y " # 1 ˆ xy ‰ œ œ eÐxy1Ñ † ` `y † ` `y 1 # x ’1 ˆ xy ‰ “ œ x x# y# (x y 1) œ eÐxy1Ñ œ ex cos (x y) ` `y " xy (x y) œ œ exy † ` `y (xy) † ln y exy † sin (x 3y) œ 2 sin (x 3y) cos (x 3y) † sin (x 3y) œ 2 sin (x 3y) cos (x 3y) † ` `x ˆ yx ‰ œ " y œ xexy ln y ` `x ` `y (x 3y) œ 2 sin (x 3y) cos (x 3y), exy y (x 3y) œ 6 sin (x 3y) cos (x 3y) cos a3x y# b œ 2 cos a3x y# b sin a3x y# b † œ 6 cos a3x y# b sin a3x y# b , `f ` # # # # ` y œ 2 cos a3x y b † ` y cos a3x y b œ 2 cos a3x y b sin a3x y b † ` `x a3x y# b ` `y a3x y# b œ 4y cos a3x y# b sin a3x y# b 19. `f `x œ yxyc1 , 21. `f `x œ g(x), `f `y œ xy ln x `f `y 20. f(xß y) œ Ê `f `x " x ln y œ and `f `y œ ln x y(ln y)# œ g(y) _ 22. f(xß y) œ ! (xy)n , kxyk 1 Ê f(xß y) œ n œ0 `f `y ln x ln y œ (1 "xy)# † ` `y (1 xy) œ " 1 xy Ê `f `x œ (1 "xy)# † ` `x (1 xy) œ y (1 xy)# and x (1 xy)# 23. fx œ y# , fy œ 2xy, fz œ 4z 24. fx œ y z, fy œ x z, fz œ y x 25. fx œ 1, fy œ Èy#y z# , fz œ Èy#z z# 26. fx œ x ax# y# z# b 27. fx œ yz È 1 x # y# z# 28. fx œ " kx yzk È(x yz)# 1 29. fx œ " x 2y 3z 30. fx œ yz † " xy † , fy œ , fy œ ` `x xz È 1 x # y# z# , fy œ (xy) œ # , fy œ y ax# y# z# b # ` `z , fz œ (yz)(y) xy , fz œ œ yz x $Î# , fz œ z ax# y# z# b $Î# xy È 1 x# y# z# z kx yzk È(x yz)# 1 2 x 2y 3z fz œ y ln (xy) yz † # $Î# , fz œ y kx yzk È(x yz)# 1 3 x 2y 3z , fy œ z ln (xy) yz † ` `y ln (xy) œ z ln (xy) yz xy † ` `y (xy) œ z ln (xy) z, ln (xy) œ y ln (xy) # # # # # # 31. fx œ 2xe ax y z b , fy œ 2ye ax y z b , fz œ 2ze ax y z b 32. fx œ yzexyz , fy œ xzexyz , fz œ xyexyz Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 811 812 Chapter 14 Partial Derivatives 33. fx œ sech# (x 2y 3z), fy œ 2 sech# (x 2y 3z), fz œ 3 sech# (x 2y 3z) 34. fx œ y cosh axy z# b , fy œ x cosh axy z# b , fz œ 2z cosh axy z# b 35. `f `t œ 21 sin (21t !), 36. `g `u œ v# eÐ2uÎvÑ † 37. `h `3 œ sin 9 cos ), 38. `g `r œ 1 cos ), ` `u `f `! œ sin (21t !) `g `v Ð2uÎvÑ ˆ 2u ‰ , v œ 2ve `h `9 `g `) 39. Wp œ V, Wv œ P `h `) œ 3 cos 9 cos ), `g `z œ r sin ), $ v# 2g , W$ œ Vv# 2g m `A q , `m œ 2V$ v 2g , Wv œ # V$ v g , Wg œ V#$gv# `A `h œ q # 41. `f `x œ 1 y, `f `y œ 1 x, 42. `f `x œ y cos xy, 43. `g `x œ 2xy y cos x, 44. `h `x œ ey , 45. `r `x œ 46. `s `x œ” ` #s ` x# œ `w `x œ 2x tanaxyb x2 sec2 axyb † y œ 2x tanaxyb x2 y sec2 axyb, 47. ` #w ` x# `h `y `f `y œ x cos xy, `g `y œ xey 1, " `r x y , ` y " #• 1 ˆ xy ‰ y(2x) ax# y# b# † œ ` `x ` #f ` y# ` #f ` x# œ km q# ` #f ` y` x œ 0, ` #h ` x# œ 0, œ ` #h ` y# " (xy)# , ` #r ` y# ` #s ` y# , œ œ ` #f ` x` y ` #f ` y# œ ` #h ` x` y ` #w ` x# `w `x ` #w ` x# ` #w ` y# œ ` #w ` x` y œ yex 2 , ` #f ` x` y œ cos y, œ cos xy xy sin xy ` #g ` y` x œ ` #g ` x` y œ 2x cos x ` #r ` x` y `s `y œ ax# 2xy , y # b# œ " (xy)# œ” " #• 1 ˆ xy ‰ ` #s ` y` x œ ` #s ` x` y `w `y † ` `y ˆ xy ‰ œ ˆ 1x ‰ ” " #• 1 ˆ xy ‰ ax# y# b (1) y(2y) ax # y # b # œ œ œ x x # y# , y# x# ax # y # b # œ x2 sec2 axyb † x œ x3 sec2 axyb, œ x3 a2secaxybsecaxyb tanaxyb † xb œ 2x4 sec2 axyb tanaxyb † 2x œ 2xy ex y 2xyŠex ` #w ` y` x 2 2 y `w , `y y ` #w ` x` y 2 y 2 y œ a1bex † 2x‹ œ 2yex 2 y a1 2x2 b, † a1b œ ex ` #w ` y# œ Šex y œ sinax2 yb x cosax2 yb † 2xy œ sinax2 yb 2x2 ycosax2 yb, `w `y ay 2b, œ œ Šex 2 y yex 2 2 y 2 ` #w ` y# œ 3x2 sec2 axyb x3 a2secaxybsecaxyb tanaxyb † yb œ 3x2 sec2 axyb x3 y sec2 axyb tanaxyb y œ 2y ex œ ex 49. ` #g ` y# œ œ 2tanaxyb 2x sec2 axyb † y 2xy sec2 axyb x2 y a2secaxybsecaxyb tanaxyb † yb ` #w ` y` x `w `x ` #f ` y` x œ ey œ œ 2tanaxyb 4xy sec2 axyb 2x2 y2 sec2 axyb tanaxyb, 48. œ1 œ 2y y sin x, y x# y# œ h # œ x# sin xy, " ` #r (xy)# , ` y` x " #• 1 ˆ xy ‰ x(2y) ax # y # b# ` #g ` x# ` #h ` y` x œ xey , ˆ xy ‰ œ ˆ xy# ‰ ” 2xy ax # y # b # œ œ y# sin xy, œ x# sin y sin x, " ` #r x y , ` x # œ c, k q œ 0, `A `q œ œ m, ` #f ` x# Ð2uÎvÑ ˆ 2u ‰ 2ueÐ2uÎvÑ v œ 2ve œ 1 `A `c œ ` `v œ 3 sin 9 sin ) 40. , `A `k œ 2veÐ2uÎvÑ v# eÐ2uÎvÑ † † 2x‹a1 yb œ 2x ex 2 2 y y a1 yb , † a1b‹a1 yb ex 2 y a1b a1 yb œ x cosax2 yb † x2 œ x3 cosax2 yb, œ cosax2 yb † 2xy 4xy cosax2 yb 2x2 y sinax2 yb † 2xy œ 6xy cosax2 yb 4x3 y2 sinax2 yb, œ x3 sinax2 yb † x2 œ x5 sinax2 yb, ` #w ` y` x œ ` #w ` x` y œ 3x2 cosax2 yb x3 sinax2 yb † 2xy œ 3x2 cosax2 yb 2x4 y sinax2 yb Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.3 Partial Derivatives 50. `w `x ` #w ` x# ` #w ` y# œ œ œ ˆx2 y‰ ax yba2xb ax2 yb2 œ x2 2xy y ` w , `y ax 2 y b 2 œ ˆx2 y‰a1b ax yb ax2 yb2 ˆx2 y‰2 a2x 2yb ˆx2 2xy y‰2ˆx2 y‰a2xb 2 2 ’ax2 yb “ 2 ˆx y‰ † 0 ˆx x‰2ˆx2 y‰† 1 2 2 2 ’ax2 yb “ 2 œ œ 2x2 2x ` # w , ax 2 y b 3 ` y ` x œ ` #w ` x` y 2x3 3x2 2xy y ax2 yb3 51. `w `x œ 52. `w `x œ ex ln y yx , 53. `w `x œ y# 2xy$ 3x# y% , `w `y œ 2xy 3x# y# 4x$ y$ , 54. `w `x œ sin y y cos x y, `w `y œ x cos y sin x x, , `w `y œ 55. (a) x first 3 2x 3y `w `y ` #w ` y` x , œ x y 57. fx a1ß 2b œ lim hÄ0 hÄ0 ` #w ` y` x , and " y œ œ ` #w ` x` y œ hÄ0 2 ’ax2 yb “ ` #w ` x` y ` #w ` y` x ` #w ` y` x 2 " y œ " x # œ 2y 6xy# 12x# y$ , and ``x`wy œ 2y 6xy# 12x# y$ ` #w ` x` y œ cos y cos x 1 (e) y first (f) y first œ cos y cos x 1, and (d) x first (b) y first three times œ lim ˆx2 y‰2 a2x 1b ˆx2 2xy y‰2ˆx2 y‰† 1 6 (2x 3y)# œ x" , and (c) x first f(1 hß 2) f(1ß 2) h 13h 6h# h 6 (2x 3y)# ln x, (b) y first 56. (a) y first three times œ lim œ x 2 x , ax2 yb2 2ˆx3 3x2 y 3 xy y2 ‰ , ax 2 y b 3 œ 2 2x 3y œ (c) y first twice c1 (1 h) 2 6(1 h)# d (2 6) h (d) x first twice h 6 a1 2h h# b 6 h œ lim hÄ0 œ lim (13 6h) œ 13, hÄ0 f(1ß 2 h) f(1ß 2) h hÄ0 fy (1ß 2) œ lim œ lim (2) œ 2 c1 1 (2 h) 3(2 h)d (2 6) h œ lim hÄ0 (2 6 2h) (2 6) h œ lim hÄ0 hÄ0 58. fx a2ß 1b œ lim hÄ0 œ lim hÄ0 fa2 hß 1b fa2ß 1b h a2h 1 hb 1 h œ lim hÄ0 c4 2a2 hb 3 a2 hbd a3 2b h œ lim 1 œ 1, hÄ0 4 4 3a1 hb 2a1 hb# ‘ a3 2b fy a2ß 1b œ lim fa2ß 1 hhb fa2ß 1b œ lim h hÄ0 hÄ0 a3 3h 2 4h 2h# b 1 h 2h# œ lim œ lim œ lim a1 2hb œ 1 h h hÄ0 hÄ0 hÄ0 59. fx a2ß 3b œ lim hÄ0 fa2 hß 3b fa2ß 3b h È2h 4 2 h hÄ0 œ lim fy a2ß 3b œ lim hÄ0 œ lim hÄ0 œ lim Š hÄ0 œ lim Š hÄ0 hÄ0 œ lim œ lim fa0ß 0 hb fa0ß 0b h hÄ0 œ lim fy a0ß 0b œ lim hÄ0 hÄ0 hÄ0 œ lim 2 h Ä 0 È2h 4 2 œ 12 , È 4 3 a3 h b 1 È 4 9 1 h È3h 4 2 È3h 4 2 È3h 4 2 ‹ h fa0 hß 0b fa0ß 0b h hÄ0 60. fx a0ß 0b œ lim È 2 a 2 h b 9 1 È 4 9 1 h È2h 4 2 È2h 4 2 È2h 4 2 ‹ h fa2ß 3 hb fa2ß 3b h È3h 4 2 h œ lim sinŠh3 b 0‹ h2 b 0 0 sinŠ0 b h4 ‹ 0 b h2 0 h h œ lim 3 h Ä 0 È2h 4 2 œ 3 4 œ lim sin h3 h3 œ1 œ lim sin h4 h3 œ lim Šh † hÄ0 hÄ0 hÄ0 sin h4 h4 ‹ œ0†1œ0 61. (a) In the plane x œ 2 Ê fy axß yb œ 3 Ê fy a2ß 1b œ 3 Ê m œ 3 (b) In the plane y œ 1 Ê fx axß yb œ 2 Ê fy a2ß 1b œ 2 Ê m œ 2 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 813 814 Chapter 14 Partial Derivatives 62. (a) In the plane x œ 1 Ê fy axß yb œ 3y2 Ê fy a1ß 1b œ 3a1b2 œ 3 Ê m œ 3 (b) In the plane y œ 1 Ê fx axß yb œ 2x Ê fy a1ß 1b œ 2a1b œ 2 Ê m œ 2 63. fz ax! ß y! ß z! b œ lim hÄ0 fz a1ß 2ß 3b œ lim hÄ0 fax! ß y! ß z! hb fax! , y! ß z! b h fa1ß 2ß 3 hb fa1, 2ß 3b h 64. fy ax! ß y! ß z! b œ lim hÄ0 hÄ0 fax! ß y! hß z! b fax! , y! ß z! b h `z `x z$ 2y œ lim Ê 2c cos A 2b œ a2bc sin Ab ``Ab Ê Ê "2h 2h# h œ lim a12 2hb œ 12 hÄ0 œ lim a2h 9b œ 9 hÄ0 (sin A) ``Aa a cos A sin# A `A `b œ `A `a c cos A b bc sin A œ a bc sin A ba csc B cot Bb Ê œ 2 `x `z œ " 6 ; also 0 œ 2b 2c cos A a2bc sin Ab ``Ab œ 0 Ê asin Ab `` xa a cos A œ 0 Ê `a `B `z `x 2x‰ `` xz œ x Ê at (1ß 1ß 3) we have (3 1 2) `` xz œ 1 or y x 67. a# œ b# c# 2bc cos A Ê 2a œ a2bc sin Ab ``Aa Ê a b sin A œ sin B ˆ sin" A ‰ ``Ba œ hÄ0 œ 0 Ê a3xz# 2yb `` xz œ y z$ Ê at (1ß 1ß 1) we have (3 2) `` xz œ 1 1 or 66. ˆ `` xz ‰ z x ˆ yx ‰ `` xz 2x `` xz œ 0 Ê ˆz 68. œ lim ; a2h# 9hb 0 h hÄ0 fa1ß hß 3b fa1, 0ß 3b h hÄ0 `z ‰ `x x 2a3 hb# 2a9b h œ lim fy a1ß 0ß 3b œ lim 65. y ˆ3z# ; `a `A œ a cos A sin A ; also œ b csc B cot B sin A 69. Differentiating each equation implicitly gives 1 œ vx ln u ˆ vu ‰ ux and 0 œ ux ln v ˆ uv ‰ vx or " º0 aln ub vx ˆ vu ‰ ux œ 1 Ê vx œ ˆ uv ‰ vx aln vb ux œ 0 Ÿ º v u ln v º ln u u v œ v u ln v º ln v aln ubaln vb 1 70. Differentiating each equation implicitly gives 1 œ a2xbxu a2ybyu and 0 œ a2xbxu yu or a2xbxu a2ybyu œ 1 Ê xu œ a2xbxu yu œ 0 yu œ " 0º #x 4xy 2x º 2x œ 2x 2x 4xy œ 0 0 2y 1 º 2x 2y º 2x 1 º 2x 2x 4xy œ 2x Š 2x " 4xy ‹ 2y Š 1 " 2y ‹ œ 71. fx axß yb œ œ " º0 œ " 1 #y œ 1 1 2y 1 2x 4xy œ 1 2x 4xy and ; next s œ x# y# Ê 2y 1 2y œ `s `u œ 2x `x `u 2y `y `u 1 2y 1 2y if y 0 Ê fx axß yb œ 0 for all points ax, yb; at y œ 0, fy axß 0b œ lim fax, 0 hhb fax, 0b œ lim fax, hhb 0 if y 0 h Ä0 h Ä0 œ lim fax,h hb œ 0 because h Ä0 lim hÄ0c fax, hb h œ 3 lim h h Ä0 c h œ 0 and limb fax,h hb œ h Ä0 2 limb hh œ 0 Ê fy axß yb œ œ h Ä0 3y2 2y if y 0 ; if y 0 fyx axß yb œ fxy axß yb œ 0 for all points ax, yb 72. At x œ 0, fx a0ß yb œ lim fa0 h, yhb fa0, yb œ lim fah, yhb 0 œ lim fah,h yb which does not exist because h Ä0 œ 2 limc hh œ 0 and hÄ0 fy axß yb œ œ limb fah,h yb œ h Ä0 h Ä0 Èh h Ä0 h limb hÄ0 1 œ lim 1 œ _ Ê fx axß yb œ 2Èx h Ä0 b È h 2x if x 0 if x 0 lim hÄ0c fah, yb h ; 0 if x 0 Ê fy axß yb œ 0 for all points ax, yb; fyx axß yb œ 0 for all points ax, yb, while fxy axß yb œ 0 for all 0 if x 0 points ax, yb such that x Á 0. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.3 Partial Derivatives 73. `f `x œ 2x, `f `y 74. `f `x œ 6xz, œ 2y, `f `y `f `z œ 4z Ê `f `z œ 6yz, ` #f ` x# ` #f ` y# œ 2, œ 2, ` #f ` z# ` #f ` x# œ 6z# 3 ax# y# b , ` #f ` x# œ 4 Ê ` #f ` y# œ 6z, ` #f ` y# œ 6z, ` #f ` z# ` #f ` z# 815 œ 2 2 (4) œ 0 œ 12z Ê ` #f ` x# ` #f ` y# ` #f ` z# œ 6z 6z 12z œ 0 `f `x œ 2ec2y sin 2x, 76. `f `x œ 77. `f `x œ 3, 78. `f `x œ 75. `f `y œ 2ec2y cos 2x, œ 4ec2y cos 2x 4ec2y cos 2x œ 0 `f `x , `f `y `f `y œ # 1 Š xy ‹ œ œ 2, 1 Îy ` #f ` x# Ê 79. x x# y# ` #f ` y# y x# y# ` #f ` x# œ 0, y y# x# œ ` #f ` x# , , `f `y 2xy ay# x# b2 œ "# ax# y# z# b œ y# x# ax# y# b# œ 4ec2y cos 2x, ` #f ` x# ` #f ` y# , œ ` #f ` y# œ0 Ê ` #f ` x# œ x Îy 2 x y # x# 2xy ay# x# b2 $Î# œ # 1 Š xy ‹ ` #f ` y# x# y# ax# y# b# ` #f ` x# œ 4ec2y cos 2x Ê ` #f ` y# œ y# x# ax# y# b# ` #f ` x# x# y# ax# y# b# œ ay# x# b†0 y†2x ay# x# b2 œ 2xy ay# x# b2 , ` #f ` y# œ 80. `f `x $Î# ` f , `y $Î# # a2xb œ x ax# y# z# b 3x# ax# y# z# b $Î# 3z# ax# y# z# b `f `y œ 3e3x4y cos 5z, # &Î# œ 4e3x4y cos 5z, ` f ` z# œ 25e3x4y cos 5z Ê 81. `w `x œ cos (x ct), 82. `w `x œ 2 sin (2x 2ct), Ê 83. 84. 85. # ` w ` t# `w `t # ` f ` x# # ` f ` y# `f `z # ` f ` z# ` #w ` x# œ c cos (x ct); `w `t œ "# ax# y# z# b œ &Î# “ œ 3 ax# y# z# b œ 5e3x4y sin 5z; , `w `t œ c x ct ; ` #w ` x# œ 2xy ay # x # b 2 $Î# ` #f ` x# 1 (x ct)# a2yb ax # y # z # b &Î# œ sin (x ct), # ` #w ` t# , 3y# ax# y# z# b $Î# a3x# 3y# 3z# b ax# y# z# b œ 9e3x4y cos 5z, ` #f ` y# “ &Î# œ0 œ 16e3x4y cos 5z, ` #w ` x# ` #w ` t# œ c# sin (x ct) Ê œ 4 cos (2x 2ct), ` #w ` t# ` #w ` t# œ c# [ sin (x ct)] œ c# œ 4c# cos (2x 2ct) ` w ` x# , &Î# œ 9e3x4y cos 5z 16e3x4y cos 5z 25e3x4y cos 5z œ 0 œ 2c sin (2x 2ct); œ c# [4 cos (2x 2ct)] œ c# " x ct œ $Î# “ ’ ax# y# z# b `w `w ` x œ cos (x ct) 2 sin (2x 2ct), ` t œ c cos (x ct) 2c sin (2x ` #w ` #w # # ` x# œ sin (x ct) 4 cos (2x 2ct), ` t# œ c sin (x ct) 4c # # Ê `` tw# œ c# [ sin (x ct) 4 cos (2x 2ct)] œ c# `` xw# `w `x œ0 œ0 $Î# ’ ax# y# z# b ` #f ` y# ay# x# b†0 axb†2y ay# x# b2 $Î# ` f $Î# œ y ax# y# z# b , ` z œ "# ax# y# z b a2zb œ z ax# y# z# b ; ` #f # # # $Î# # # # # &Î# ` # f # # # $Î# 3x ax y z b , ` y # œ ax y z b 3y# ` x # œ ax y z b # # # &Î# ` #f # # # $Î# 3z# ax# y# z# b Ê `` xf# `` yf# `` zf# ` z # œ ax y z b œ ’ ax# y# z# b œ00œ 0 ` #f ` x# , Ê ` #f ` y# œ c# (x ct)# Ê ` #w ` t# 2ct); cos (2x 2ct) " # œ c# ’ (x ct)# “ œ c ` #w ` x# `w `w ` #w # # # ` x œ 2 sec (2x 2ct), ` t œ 2c sec (2x 2ct); ` x# œ 8 sec (2x 2ct) tan (2x 2ct), ` #w ` #w # # # # ` t# œ 8c sec (2x 2ct) tan (2x 2ct) Ê ux ` t# œ c [8 sec (2x 2ct) tan (2x 2ct)] œ c# Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ` #w ` x# ` #w ` x# 816 86. 87. Chapter 14 Partial Derivatives # `w xbct ` w , ` t œ 15c sin (3x 3ct) cexbct ; `` xw# œ 45 cos (3x ` x œ 15 sin (3x 3ct) e # # ` #w # # xbct Ê `` tw# œ c# c45 cos (3x 3ct) exbct d œ c# `` xw# ` t# œ 45c cos (3x 3ct) c e `w `t œ `f `u `u `t œ ` #f ` u# Ê œ a# `f `u (ac) Ê ` #w ` t# œ a# c# ` #w ` t# œ (ac) Š `` uf# ‹ (ac) œ a# c# # ` #f ` u# œ c# Ša# ` #f ` u# ‹ œ c# ` #f ` u# ; `w `x œ `f `u `u `x œ `f `u †a Ê 3ct) exbct , ` #w ` x# # œ Ša `` uf# ‹ † a ` #w ` x# 88. If the first partial derivatives are continuous throughout an open region R, then by Theorem 3 in this section of the text, f(xß y) œ f(x! ß y! ) fx (x! ß y! ) ?x fy (x! ß y! ) ?y %" ?x %# ?y, where %" , %# Ä 0 as ?x, ?y Ä 0. Then as (xß y) Ä (x! ß y! ), ?x Ä 0 and ?y Ä 0 Ê lim f(xß y) œ f(x! ß y! ) Ê f is continuous at every point (x! ß y! ) in R. Ðxß yÑ Ä Ðx! ß y! Ñ 89. Yes, since fxx , fyy , fxy , and fyx are all continuous on R, use the same reasoning as in Exercise 76 with fx (xß y) œ fx (x! ß y! ) fxx (x! ß y! ) ?x fxy (x! ß y! ) ?y %" ?x %# ?y and fy (xß y) œ fy (x! ß y! ) fyx (x! ß y! ) ?x fyy (x! ß y! ) ?y s%" ?x s%# ?y. Then lim fx (xß y) œ fx (x! ß y! ) Ðxß yÑ Ä Ðx! ß y! Ñ and lim Ðxß yÑ Ä Ðx! ß y! Ñ fy (xß y) œ fy (x! ß y! ). 90. To find ! and " so that ut œ uxx Ê ut œ " sina! xbe" t and ux œ ! cosa! xbe" t Ê uxx œ !2 sina! xbe" t ; then ut œ uxx Ê " sina! xbe" t œ !2 sina! xbe" t , thus ut œ uxx only if " œ !2 h†02 04 91. fx a0, 0b œ lim fa0 hß 0hb fa0ß 0b œ lim h2 h Ä0 lim Ðxß yÑ Ä Ð0ß 0Ñ along x œ ky2 f ax, yb œ values of k Ê 0 0†h2 h4 œ lim 0h œ 0; fy a0, 0b œ lim fa0ß 0 hhb fa0ß 0b œ lim 02 h hÄ0 hÄ0 4 ˆky2 ‰y2 lim œ lim k2 yky 2 4 y4 y Ä 0 aky2 b y4 yÄ0 lim Ðxß yÑ Ä Ð0ß 0Ñ hÄ0 œ lim 2 k y Ä 0 k 1 œ hÄ0 k k2 1 h 0 œ lim 0h œ 0; hÄ0 Ê different limits for different f ax, yb does not exist Ê f ax, yb is not continuous at a0, 0b Ê by Theorem 4, f ax, yb is not differentiable at a0, 0b. 92. fx a0, 0b œ lim fa0 hß 0hb fa0ß 0b œ lim fahß 0hb 1 œ lim 1 h 1 œ 0; fy a0, 0b œ lim fa0ß 0 hhb fa0ß 0b œ lim fa0ß hhb 1 œ lim 1 h 1 œ 0; h Ä0 lim Ðxß yÑ Ä Ð0ß 0Ñ along y œ x2 h Ä0 h Ä0 f ax, yb œ lim 0 œ 0 but yÄ0 lim Ðxß yÑ Ä Ð0ß 0Ñ along y œ 1.5x2 h Ä0 f ax, yb œ lim 1 œ 1 Ê yÄ0 h Ä0 lim Ðxß yÑ Ä Ð0ß 0Ñ h Ä0 f ax, yb does not exist Ê f ax, yb is not continuous at a0, 0b Ê by Theorem 4, f ax, yb is not differentiable at a0, 0b. 14.4 THE CHAIN RULE 1. (a) `w `x œ 2x, `w `y œ # 2y, dx dt # œ sin t, # dy dt # œ cos t Ê œ 0; w œ x y œ cos t sin t œ 1 Ê (b) dw dt (1 ) œ 0 2. (a) `w `x œ 2x, `w `y œ 2y, dx dt œ sin t cos t, dy dt dw dt dw dt œ 2x sin t 2y cos t œ 2 cos t sin t 2 sin t cos t œ0 œ sin t cos t Ê dw dt œ (2x)( sin t cos t) (2y)( sin t cos t) œ 2(cos t sin t)(cos t sin t) 2(cos t sin t)(sin t cos t) œ a2 cos# t 2 sin# tb a2 cos# t 2 sin# tb œ 0; w œ x# y# œ (cos t sin t)# (cos t sin t)# œ 2 cos# t 2 sin# t œ 2 Ê dw dt œ 0 (b) dw dt (0) œ 0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.4 The Chain Rule 3. (a) `w `x œ Ê " z dw dt , `w `y œ " z , `w `z œ (x y) z# œ 2z cos t sin t 2 z dx dt , œ 2 cos t sin t, sin t cos t x y z# t# dy dt œ 2 sin t cos t, cos# t sin# t Š "# ‹ at# b œ œ 1; w œ x z dz dt œ t"# y z œ t (b) dw dt (3) œ 1 4. (a) `w `x œ 2x x # y # z# `w `y , œ 2y x # y# z# 2y cos t dw 2x sin t dt œ x# y# z# x# y# z# œ 11616t ; w œ ln ax# y# z# b dw 16 dt (3) œ 49 Ê (b) 5. (a) `w `x œ 2yex , `w `y œ 2ex , `w `z , `w `z œ 2z x # y# z# 4zt "Î# x# y# z# # œ œ ln acos t œ "z , dx dt œ 2t t# 1 , , dx dt œ sin t, dy dt 6. (a) œ dy dt " t# 1 , œ et Ê dz dt # t (4t) atan " tb at# 1b 2 at#t 11b eet œ 4t tan" t 1; w œ 2yex ln t# 1 " ˆ 2 ‰ # Ê dw tb (2t) 1 œ 4t tan" t 1 dt œ t# 1 at 1b a2 tan dw ˆ1‰ dt (1) œ (4)(1) 4 1 œ 1 1 `w `x œ y cos xy, `w `y œ x cos xy, œ (ln t)[cos (t ln t)] tc1 œe sin (t ln t) Ê (b) (1) œ 1 (1 0)(1) œ 0 7. (a) `z `u œ `z `y `y `u œ 1, dx dt œ 1, dy dt œ " t , dz dt dw dt œ sin# t Š "t ‹ œt Ê x v ‰ 4e œ a4ex ln yb ˆ ucos cos v Š y ‹ (sin v) œ dw dt 4ytex t# 1 œ 16 1 16t 2ex t# 1 et z z œ a2 tan" tb at# 1b t œ etc1 Ê dw dt œ y cos xy 4ex ln y u x cos xy t xy 4ex sin v y œ 4(u cos v) ln (u sin v) v)(sin v) 4(u cos œ (4 cos v) ln (u sin v) 4 cos v; u u sin v `z `z `x `z `y 4ex x x ˆ u sin v ‰ ` v œ ` x ` v ` y ` v œ a4e ln yb u cos v Š y ‹ (u cos v) œ a4e ln yb (tan v) 4ex u cos v y 4(u cos v)(u cos v) cos# v œ (4u sin v) ln (u sin v) 4usin u sin v v ; `z sin x z œ 4e ln y œ 4(u cos v) ln (u sin v) Ê ` u œ (4 cos v) ln (u sin v) 4(u cos v) ˆ u sinvv ‰ v‰ œ (4 cos v) ln (u sin v) 4 cos v; also `` vz œ (4u sin v) ln (u sin v) 4(u cos v) ˆ uu cos sin v # cos v œ (4u sin v) ln (u sin v) 4usin v At ˆ2ß 14 ‰ : `` uz œ 4 cos 14 ln ˆ2 sin 14 ‰ 4 cos 14 œ 2È2 ln È2 2È2 œ È2 (ln 2 2); (4)(2) ˆcos# 14 ‰ `z 1 1‰ ˆ œ 4È2 ln È2 4È2 œ 2È2 ln 2 4È2 ˆsin 1 ‰ ` v œ (4)(2) sin 4 ln 2 sin 4 œ [4(u cos v) ln (u sin v)](tan v) (b) 4 8. (a) `z `u `z `v œ– œ– Š "y ‹ # Š xy ‹ Š Š xy ‹ y cos v x# y# x sin v x # y # œ (u sin v)(cos v) (u cos v)(sin v) u# Š x ‹ y# — (u sin v) – Š x ‹# 1 — u cos v œ 1 yu sin v x# y# (b) At xu cos v x# y# œ (u sin v)(u sin v) (u cos v)(u cos v) u# y œ sin# v cos# v œ 1; z œ tan" Š xy ‹ œ tan" (cot v) Ê œ œ 0; y Š "y ‹ # x ‹ y# — cos v – Š x ‹# 1 — sin v œ 1 " sin# v cos# v œ 1 ˆ1.3ß 16 ‰ : `` uz œ 0 and `z `v `z `u œ1 œ 2t"Î# t cos (t ln t) etc1 œ (ln t)[cos (t ln t)] cos (t ln t) etc1 ; w œ z sin t dw tc1 [cos (t ln t)] ln t t ˆ "t ‰‘ œ etc1 (1 ln t) cos (t ln t) dt œ e dw dt `z `x `x `u `w `z dz dt 2 cos t sin t 2 sin t cos t 4 ˆ4t"Î# ‰ t "Î# cos# t sin# t 16t # sin t 16tb œ ln (1 16t) Ê dw dt œ (b) œ cos t, cos# t Š "t ‹ œ 0 and `z `v " # ‰ œ ˆ 1 cot # v a csc vb œ 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. etc1 817 818 9. (a) Chapter 14 Partial Derivatives `w `u œ `w `x `x `u `w `y `y `u `w `z `z `u œ (y z)(1) (x z)(1) (y x)(v) œ x y 2z v(y x) œ (u v) (u v) 2uv v(2u) œ 2u 4uv; `w `v œ `w `x `x `v `w `y `y `v `w `z `z `v œ (y z)(1) (x z)(1) (y x)(u) œ y x (y x)u œ 2v (2u)u œ 2v 2u# ; w œ xy yz xz œ au# v# b au# v uv# b au# v uv# b œ u# v# 2u# v Ê ``wu œ 2u 4uv and `w `v œ 2v 2u# (b) At ˆ "# ß 1‰ : 10. (a) `w `u `w `u œ 2 ˆ "# ‰ 4 ˆ "# ‰ (1) œ 3 and `w `v # œ 2(1) 2 ˆ "# ‰ œ #3 2y 2z v v v v v œ Š x# 2x y# z# ‹ ae sin u ue cos ub Š x# y# z# ‹ ae cos u ue sin ub Š x# y# z# ‹ ae b v u ‰ aev sin u uev cos ub œ ˆ u# e2v sin# u 2ueu# esin 2v cos# u u# e2v v cos u v ‰ v ˆ u# e2v sin# u 2ue u# e2v cos# u u# e2v ae cos u ue sin ub v ‰ aev b œ 2u ; ˆ u# e2v sin# u u2ue # e2v cos# u u# e2v `w `v 2y 2z v v v œ Š x# 2x y# z# ‹ aue sin ub Š x# y# z# ‹ aue cos ub Š x# y# z# ‹ aue b v u ‰ auev sin ub œ ˆ u# e2v sin# u 2ueu# esin 2v cos# u u# e2v v cos u ‰ v ˆ u# e2v sin# u 2ue u# e2v cos# u u# e2v aue cos ub ‰ auev b œ 2; w œ ln au# e2v sin# u u# e2v cos# u u# e2v b œ ln a2u# e2v b ˆ u# e2v sin# u u2ue # e2v cos# u u# e2v v œ ln 2 2 ln u 2v Ê (b) At a2ß 0b: 11. (a) `w `u œ œ 1 and 2 `w u and ` v `w `v œ 2 œ2 rp pq qrrppq `u `p `u `q `u `r " œ 0; ` p ` x ` q ` x ` r ` x œ q r (q r)# (q r)# œ (q r)# rp pq qrrppq 2p 2r `u `u `p `u `q `u `r " œ (q ` y œ ` p ` y ` q ` y ` r ` y œ q r (q r)# (q r)# œ (q r)# r)# (2x 2y 2z) (2x 2y 2z) z `u `u `p `u `q `u `r œ œ (z y)# ; ` z œ ` p ` z ` q ` z ` r ` z (2z 2y)# rp pq ppq 2p 4y y " œ q r (q r)# (q r)# œ q r (qr œ 2q r)# (q r)# œ (2z 2y)# œ (z y)# ; y (z y) y(1) y(1) `u `u u œ pq qr œ 2z 2y œ (z z y)# , and `` uz œ (z (zy)(0) 2y œ z y Ê ` x œ 0, ` y œ (z y)# y)# œ (zyy)# `u `x œ (b) At ŠÈ3ß 2ß 1‹ : 12. (a) œ 2 # `w `u `u `x œ `u `y `u `z `u `x œ 0, œ " (1 2)# œ 1, and `u `z œ 2 (1 2)# œ 2 œ yz if 1# x eqr È 1 p# (cos x) areqr sin" pb (0) aqeqr sin" pb (0) œ œ eqr È 1 p# (0) areqr sin" pb Š zy ‹ aqeqr sin" pb (0) œ œ eqr È 1 p# (0) areqr sin" pb (2z ln y) aqeqr sin" pb ˆ z"# ‰ œ a2zreqr sin" pb (ln y) # œ (2z) ˆ "z ‰ ayz x ln yb `u `y `u `y œ xzyz1 , and (b) At ˆ 14 ß "# ß "# ‰ : `u `z `u `x az# ln yb ayz b x z# z eqr cos x È 1 p# œ z# reqr sin " p y ez ln y cos x È1 sin# x œ z# ˆ " ‰ y z x z y 1 # ; œ xzyz1 ; œ xyz ln y; u œ ez ln y sin" (sin x) œ xyz if 1# Ÿ x Ÿ qeqr sin " p z# 1 # Ê œ ˆ 14 ‰ ˆ "# ‰ "Î# `u `x œ yz , œ œ xy ln y from direct calculations œ ˆ "# ‰ "Î# œ È2, `u `y œ ˆ 14 ‰ ˆ "# ‰ ˆ "# ‰ Ð"Î#Ñ" È œ 14 2 , `u `z Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ln ˆ "# ‰ œ 1 È2 ln 2 4 Section 14.4 The Chain Rule œ ` z dx ` x dt ` z dy ` y dt ` z du ` u dt ` z dv ` v dt ` x dw ` w dt dz dt 15. `w `u œ `w `x `x `u `w `y `y `u `w `z `z `u `w `v œ `w `x `x `v `w `y `y `v `w `z `z `v 16. `w `x œ `w `r `r `x `w `s `s `x `w `t `t `x `w `y œ `w `r `r `y `w `s `s `y `w `t `t `y 17. `w `u œ `w `x `x `u `w `y `y `u `w `v œ `w `x `x `v `w `y `y `v 14. dz dt œ 13. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 819 820 Chapter 14 Partial Derivatives 18. `w `x œ `w `u `u `x 19. `z `t œ `z `x `x `t 20. `y `r œ dy ` u du ` r 22. `w `p œ `w `x `x `p `w `y `y `p `w `z `z `p 23. `w `r œ ` w dx ` x dr ` w dy ` y dr œ ` w dx ` x dr since `w `v `v `x `z `y `y `t 21. `w `y œ `w `u `u `y `z `s œ `z `x `x `s `w `s œ dw ` u du ` s `w `s œ ` w dx ` x ds `w `v `v `y `z `y `y `s `w `t œ dw ` u du ` t `w `v `v `p dy dr œ0 ` w dy ` y ds œ ` w dy ` y ds since Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. dx ds œ0 Section 14.4 The Chain Rule 24. `w `s œ `w `x `x `s 25. Let F(xß y) œ x$ 2y# xy œ 0 Ê Jx (xß y) œ 3x# y `w `y `y `s and Fy (xß y) œ 4y x Ê Ê dy dx (1ß 1) œ dy dx dy dx # œ FFxy œ (3x4yyx) 3 œ FFxy œ xy2y dy dx (1ß 1) œ 2 27. Let F(xß y) œ x# xy y# 7 œ 0 Ê Fx (xß y) œ 2x y and Fy (xß y) œ x 2y Ê Ê dy dx 4 3 26. Let F(xß y) œ xy y# 3x 3 œ 0 Ê Fx (xß y) œ y 3 and Fy (xß y) œ x 2y Ê Ê 821 dy dx y œ FFxy œ 2x x 2y (1ß 2) œ 45 28. Let F(xß y) œ xey sin xy y ln 2 œ 0 Ê Fx (xß y) œ ey y cos xy and Fy (xß y) œ xey x sin xy 1 Ê dy dx œ FFxy œ xeye xysincosxyxy 1 Ê y dy dx (!ß ln 2) œ (2 ln 2) 29. Let F(xß yß z) œ z$ xy yz y$ 2 œ 0 Ê Fx (xß yß z) œ y, Fy (xß yß z) œ x z 3y# , Fz (xß yß z) œ 3z# y Ê Ê Fx `z ` x œ Fz `z ` y (1ß 1ß 1) 30. Let F(xß yß z) œ Ê `z `x œ 3z# y y œ y 3z# y Ê `z `x (1ß 1ß 1) œ " 4 ; `z `y # œ Fyz œ x3z#zy3y œ F x z 3y# 3z# y œ 34 " x " y œ FFxz œ " z 1 œ 0 Ê Fx (xß yß z) œ x"# , Fy (xß yß z) œ y"# , Fz (xß yß z) œ z"# Š x"# ‹ Š z"# ‹ # œ xz# Ê `z `x (2ß 3ß 6) œ 9; `z `y F œ Fyz œ Š y"# ‹ Š z"# ‹ # œ yz# Ê `z `y (2ß 3ß 6) œ 4 31. Let F(xß yß z) œ sin (x y) sin (y z) sin (x z) œ 0 Ê Fx (xß yß z) œ cos (x y) cos (x z), Fy (xß yß z) œ cos (x y) cos (y z), Fz (xß yß z) œ cos (y z) cos (x z) Ê `` xz œ FFxz (x y) cos (x z) œ cos cos (y z) cos (x z) Ê `z `x (1ß 1ß 1) œ 1; `z `y (x y) cos (y z) œ Fyz œ cos cos (y z) cos (x z) Ê F `z `y (1 ß 1 ß 1 ) œ 1 32. Let F(xß yß z) œ xey yez 2 ln x 2 3 ln 2 œ 0 Ê Fx (xß yß z) œ ey 2x , Fy (xß yß z) œ xey ez , Fz (xß yß z) œ yez Ê 33. `w `r `z `x œ œ FFxz œ `w `x `x `r ˆey 2x ‰ yez `w `y `y `r Ê `w `z `z `r `z `x (1ß ln 2ß ln 3) œ 3 ln4 2 ; `z `y œ Fyz œ xeyez e Ê F y z `z `y (1ß ln 2ß ln 3) œ 3 ln5 2 œ 2(x y z)(1) 2(x y z)[ sin (r s)] 2(x y z)[cos (r s)] œ 2(x y z)[1 sin (r s) cos (r s)] œ 2[r s cos (r s) sin (r s)][1 sin (r s) cos (r s)] Ê ``wr ¸ rœ1ßsœ1 œ 2(3)(2) œ 12 34. `w `v œ `w `x `x `v `w `y `y `v 35. `w `v œ `w `x `x `v `w `y `y `v œ ˆ2x `w ¸ ` v uœ0ßvœ0 œ 7 Ê `w `z `z `v ‰ ˆ"‰ ˆ 2v ‰ œ y ˆ 2v u x(1) z (0) œ (u v) u y‰ x# (2) ˆ "x ‰ (1) œ ’2(u 2v 1) v# u Ê `w ¸ ` v uœ1ßvœ2 2u v 2 (u 2v 1)# “ (2) œ (1) ˆ 41 ‰ ˆ 41 ‰ œ 8 " u 2v 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 822 36. Chapter 14 Partial Derivatives `z `u œ `z `x `x `u `z `y `y `u œ (y cos xy sin y)(2u) (x cos xy x cos y)(v) $ œ cuv cos au v uv b sin uvd (2u) cau# v# b cos au$ v uv$ b au# v# b cos uvd (v) Ê `` uz ¸ uœ0ßvœ1 œ 0 (cos 0 cos 0)(1) œ 2 37. 38. $ `z `u œ dz ` x dx ` u œ ˆ 1 5 x# ‰ eu œ ’ 1 aeu 5 ln vb# “ eu Ê `z `v œ dz ` x dx ` v œ ˆ 1 5 x# ‰ ˆ "v ‰ œ ’ 1 aeu 5 ln vb# “ ˆ "v ‰ Ê `z `u œ dz ` q dq ` u œ Š q" ‹ Š `z `v œ Èv 3 1 u# ‹ dz ` q dq ` v œ Š "q ‹ Š 2Èv 3 ‹ œ `V `I 41. V œ IR Ê œ (600 ohms) 42. V œ abc Ê ¸ Ê dV dt ˆts2 ‰2 2 † 1 t œ 2s4 t s4 t 2 † ˆ ts2 ‰ œ s5 `V `R œ R and œ aœ1ßbœ2ßcœ3 œ ` V da ` a dt œ ’ 1 5(2)# “ (1) œ 1 " dw ` x dx ` s œ I; dV dt œ 5s4 t ` w 2 ; `t œ s5 2 `z ` V db ` b dt ` V dI ` I dt ` V dc ` c dt `w `s œ œ f w axb † 3s2 œ 3s2 es t , 3 `w `x `x `s œ `w `x `x `t `w `y `y `s `w `y `y `t 2 `w `t œ œ " atan " 1b a1 1# b dw ` x dx ` t œ 2 1 ; œ f w axb † 2t œ 2t es t 3 œ fx ax, yb † 2t s fy ax, yb † œ fx ax, yb † s2 fy ax, yb † 1 t s t2 s5 2 œ (0.04 amps)(0.5 ohms/sec) dI dt dV dt `w `s Ê w œ fˆt s2 ß st ‰ œ faxß yb Ê ˆts2 ‰2 2 œ at s2 bˆ st ‰ † 2t s œ at s2 bˆ st ‰ † s2 s t `z ¸ ` v uœln 2ßvœ1 ¸ " u ‹ Š 1 u# ‹ œ atan " ub a1 u# b Ê ` u uœ1ßvœ2 "u " `z ¸ " Š Èv 3"tan " u ‹ Š 2tan Èv 3 ‹ œ #(v 3) Ê ` v uœ1ßvœ2 œ # 39. Let x œ s3 t2 Ê w œ fas3 t2 b œ faxb Ê 40. Let x œ t s2 and y œ œ ’ 1 5(2)# “ (2) œ 2; Èv 3 œ Š Èv 3"tan tan " u `z ¸ ` u uœln 2ßvœ1 ` V dR dI dR ` R dt œ R dt I dt Ê 0.01 Ê dI dt œ 0.00005 amps/sec volts/sec db dc œ (bc) da dt (ac) dt (ab) dt œ (2 m)(3 m)(1 m/sec) (1 m)(3 m)(1 m/sec) (1 m)(2 m)(3 m/sec) œ 3 m$ /sec and the volume is increasing; S œ 2ab 2ac 2bc Ê db dc dS ¸ œ 2(b c) da dt 2(a c) dt 2(a b) dt Ê dt œ dS dt ` S da ` a dt ` S db ` b dt ` S dc ` c dt aœ1ßbœ2ßcœ3 œ 2(5 m)(1 m/sec) 2(4 m)(1 m/sec) 2(3 m)(3 m/sec) œ 0 m# /sec and the surface area is not changing; " ˆa da b db c dc ‰ Ê dD ¸ D œ Èa# b# c# Ê dD œ ` D da ` D db ` D dc œ dt œ " Š È14 ‹ [(1 m ` a dt ` b dt ` c dt È a# b# c# dt m)(1 m/sec) (2 m)(1 m/sec) (3 m)(3 m/sec)] œ dt 6 È14 dt dt aœ1ßbœ2ßcœ3 m/sec 0 Ê the diagonals are decreasing in length 43. `f `x `f `y `f `z 44. (a) (b) œ œ œ `f `u `f `u `f `u `w `r `w `r `u `x `u `y `u `z `f `v `f `v `f `v fy Ê fy œ (sin )) œ `f `w `f `w `f `w `w `x `w `y `w `z œ œ œ `f `u `f `u `f `u `f ` w (1) (1) `` vf (1) ``wf (0) (0) `` vf (1) ``wf (1) (1) `f `v (0) œ `f `u œ œ `f `w `f `u `f `v , `f `v , `f `w `y `r and Ê `f `x `f `y œ fx cos ) fy sin ) and ``w) œ fx (r sin )) fy (r cos )) Ê sin ) œ fx sin ) cos ) fy sin# ) and ˆ cosr ) ‰ ``w) œ fx sin ) cos ) fy cos# ) œ fx `x `r `v `x `v `y `v `z `w `r # asin# )b `w `r `w `r `f `z " `w r `) œ0 œ fx sin ) fy cos ) ˆ cosr ) ‰ ``w) ; then ``wr œ fx cos ) (sin )) ``wr ˆ cosr ) ‰ ``w) ‘ (sin )) Ê fx cos ) ˆ sin ) rcos ) ‰ ``w) œ a1 sin# )b ``wr ˆ sin ) rcos ) ‰ ``w) Ê fx œ (cos )) ``wr ˆ sinr ) ‰ # `w ‰ `) Š sinr# ) ‹ ˆ ``w) ‰ and # `w ‰ `) Š cosr# ) ‹ ˆ ``w) ‰ Ê afx b# afy b# œ ˆ ``wr ‰ (c) afx b œ acos# )b ˆ ``wr ‰ ˆ 2 sin )r cos ) ‰ ˆ ``wr afy b# œ asin# )b ˆ ``wr ‰ ˆ 2 sin )r cos ) ‰ ˆ ``wr # # # # # Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " r# ˆ ``w) ‰# `w `) 2 Section 14.4 The Chain Rule `w `x 45. wx œ œ `w `u `u `x # œ `w `u x Š `` uw# œ `w `u x# ` #w ` u# `w `v `v `x `u `x ` #w ` v ` v` u ` x ‹ 2xy ` #w ` v` u # Ê wyy œ ``wu y Š `` uw# `w `u œx # `w `v # y Š ``u`wv ` #w ` v# y# `u `y y `u `x ; wy œ ` #w ` v ` v` u ` y ‹ ` #w ` v ` v# ` x ‹ `w `y œ # `w `u `u `y x Š ``u`wv # `w `u Ê wxx œ # `u `y x œ `w `u ` `x ˆ ``wu ‰ y wxx wyy œ ax# y# b 46. `w `x `w `y ` w ` u# ax # y # b # ` w ` v# ˆ ``wv ‰ # # x Šx `` uw# y ``v`wu ‹ y Šx `w `v `v `y œ y `w `u x ` #w ` u` v # y `` vw# ‹ `w `v ` #w ` v ` v# ` y ‹ # œ ``wu y Šy `` uw# x ``v`wu ‹ x Šy ``u`wv x `` vw# ‹ œ ``wu y# # ` `x 823 ` #w ` u# 2xy ` #w ` v` u x# ` #w ` v# ; thus œ ax# y# b (wuu wvv ) œ 0, since wuu wvv œ 0 œ f w (u)(1) gw (v)(1) œ f w (u) gw (v) Ê wxx œ f ww (u)(1) gww (v)(1) œ f ww (u) gww (v); œ f w (u)(i) gw (v)(i) Ê wyy œ f ww (u) ai# b gww (v) ai# b œ f ww (u) gww (v) Ê wxx wyy œ 0 47. fx (xß yß z) œ cos t, fy (xß yß z) œ sin t, and fz (xß yß z) œ t# t 2 Ê œ (cos t)( sin t) (sin t)(cos t) at# t 2b(1) œ t# t 2; df dt df dt ` f dx ` x dt # œ ` f dy ` y dt ` f dz ` z dt œ 0 Ê t t 2 œ 0 Ê t œ 2 or t œ 1; t œ 2 Ê x œ cos (2), y œ sin (2), z œ 2 for the point (cos (2)ß sin (2)ß 2); t œ 1 Ê x œ cos 1, y œ sin 1, z œ 1 for the point (cos 1ß sin 1ß 1) 48. dw dt ` w dx ` x dt œ ` w dy ` y dt ` w dz ` z dt " ‰ œ a2xe2y cos 3zb ( sin t) a2x# e2y cos 3zb ˆ t# a3x# e2y sin 3zb (1) 2x# e2y cos 3z 3x# e2y t# 2(1)# (4)(1) 0œ4 # œ 2xe2y cos 3z sin t Ê 49. (a) dw ¸ dt Ð1ßln 2ß0Ñ `T `x œ0 œ 8x 4y and `T `y œ 8y 4x Ê dT dt sin 3z; at the point on the curve z œ 0 Ê t œ z œ 0 œ ` T dx ` x dt ` T dy ` y dt œ (8x 4y)( sin t) (8y 4x)(cos t) œ (8 cos t 4 sin t)( sin t) (8 sin t 4 cos t)(cos t) œ 4 sin# t 4 cos# t Ê dT dt d# T dt# œ 16 sin t cos t; œ 0 Ê 4 sin t 4 cos t œ 0 Ê sin t œ cos t Ê sin t œ cos t or sin t œ cos t Ê t œ 14 , # # # # 51 31 71 4 , 4 , 4 on the interval 0 Ÿ t Ÿ 21; d# T dt# ¹ tœ 1 1 4 œ 16 sin 1 4 cos 0 Ê T has a minimum at (xß y) œ Š 4 È2 # ß È2 # ‹; d# T dt# ¹ tœ 31 œ 16 sin 31 4 cos 31 4 0 Ê T has a maximum at (xß y) œ Š È2 # ß d# T dt# ¹ tœ 51 œ 16 sin 51 4 cos 51 4 0 Ê T has a minimum at (xß y) œ Š È2 # ß d# T dt# ¹ tœ 71 œ 16 sin 71 4 cos 71 4 0 Ê T has a maximum at (xß y) œ Š 4 4 4 `T `T ` x œ 8x 4y, and ` y œ 8y È2 È2 È2 È2 # ß # ‹ œ TŠ # ß # ‹ œ (b) T œ 4x# 4xy 4y# Ê found in part (a): T Š TŠ 50. (a) `T `x È2 # ß È2 # ‹ œ y and œ T Š `T `y È2 # œx Ê ß dT dt È2 # ‹ œ È2 # ß È2 # ‹; È2 # ‹; È2 # ‹ 4x so the extreme values occur at the four points 4 ˆ "# ‰ 4 ˆ "# ‰ 4 ˆ "# ‰ œ 6, the maximum and œ 4 ˆ #" ‰ 4 ˆ #" ‰ 4 ˆ #" ‰ œ 2, the minimum ` T dx ` x dt ` T dy ` y dt œ y Š2È2 sin t‹ x ŠÈ2 cos t‹ œ ŠÈ2 sin t‹ Š2È2 sin t‹ Š2È2 cos t‹ ŠÈ2 cos t‹ œ 4 sin# t 4 cos# t œ 4 sin# t 4 a1 sin# tb œ 4 8 sin# t Ê 31 51 71 4 , 4 , 4 # d T dt# ¹ tœ 1 d# T dt# œ 16 sin t cost t; dT dt œ 0 Ê 4 8 sin# t œ 0 Ê sin# t œ " # Ê sin t œ „ on the interval 0 Ÿ t Ÿ 21; œ 8 sin 2 ˆ 14 ‰ œ 8 Ê T has a maximum at (xß y) œ (2ß 1); 4 d# T dt# ¹ tœ 31 œ 8 sin 2 ˆ 341 ‰ œ 8 Ê T has a minimum at (xß y) œ (2ß 1); 4 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " È2 Ê t œ 14 , 824 Chapter 14 Partial Derivatives d# T dt# ¹ tœ 51 œ 8 sin 2 ˆ 541 ‰ œ 8 Ê T has a maximum at (xß y) œ (2ß 1); d# T dt# ¹ tœ 71 œ 8 sin 2 ˆ 741 ‰ œ 8 Ê T has a minimum at (xß y) œ (2ß 1) 4 4 (b) T œ xy 2 Ê `T `x œ y and `T `y œ x so the extreme values occur at the four points found in part (a): T(2ß 1) œ T(2ß 1) œ 0, the maximum and T(2ß 1) œ T(2ß 1) œ 4, the minimum 51. G(uß x) œ 'a g(tß x) dt where u œ f(x) Ê u dG dx œ ` G du ` u dx ` G dx ` x dx F(x) œ '0 Èt% x$ dt Ê Fw (x) œ Éax# b% x$ (2x) '0 x# x# ` `x œ g(uß x)f w (x) 'a gx (tß x) dt; thus u Èt% x$ dt œ 2xÈx) x$ ' 52. Using the result in Exercise 51, F(x) œ 'x# Èt$ x# dt œ '1 Èt$ x# dt Ê Fw (x) x# 1 œ ’ Éax# b$ x# x# ' x# ` 1 `x Èt$ x# dt “ œ x# Èx' x# ' # È $x # dt x t x 1 14.5 DIRECTIONAL DERIVATIVES AND GRADIENT VECTORS 1. `f `x œ 1, `f `y œ 1 Ê ™ f œ i j ; f(2ß 1) œ 1 Ê 1 œ y x is the level curve 2. `f `x œ Ê 2y 2x `f `f x# y# Ê ` x ("ß ") œ 1; ` y œ x# y# `f ` y ("ß ") œ 1 Ê ™ f œ i j ; f(1ß 1) # # # # œ ln 2 Ê ln 2 œ ln ax y b Ê 2 œ x y is the level curve 3. `g `x `g ` x a2ß 1b œ y2 Ê œ 1; `g `y œ 2x y Ê Ê ™ g œ i 4j ; ga2ß 1b œ 2 Ê x œ `g ` x a2ß 1b œ 4; 2 y# is the level curve 4. `g `x œx Ê Ê `g `y `g `x ŠÈ2ß "‹ œ È2; `g `y œ y ŠÈ2ß "‹ œ 1 Ê ™ g œ È2 i j ; g ŠÈ2ß "‹ œ " # Ê " # œ x# # y# # x# 0 or 1 œ x# y# is the level curve Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 3x# 2Èt% x$ dt Section 14.5 Directional Derivatives and Gradient Vectors 5. `f `x œ 1 È2x 3y `f `x Ê `f `x Ê `f `y (1ß 2) œ 21 ; œ 3 2È2x 3y (1ß 2) œ 43 ; Ê ™ f œ 12 i 34 j ; f(1ß 2) œ 2 Ê 4 œ 2x 3y is the level curve 6. `f `x œ `f `y œ 2y2 x Ê `f `x Ê y 2y2 Èx 2x3Î2 Èx `f `y 1 a4ß 2b œ 16 ; 1 a4ß 2b œ 14 Ê ™ f œ 16 i 41 j ; f a4ß 2b œ 14 Ê y œ Èx is the level curve 7. `f `x œ 2x z x Ê `f `x (1ß 1ß 1) œ 3; `f `y `f `y œ 2y Ê ("ß "ß ") œ 2; `f `z œ 4z ln x Ê `f `z ("ß "ß ") œ 4; thus ™ f œ 3i 2j 4k 8. `f `x œ 6xz Ê 9. 10. `f `x œ `f `z œ `f `x œ exy cos z `f `z x ax# y# z# b$Î# z ax# y# z# b$Î# A kAk œ 4i 3j È 4# 3# `f `y (1ß "ß ") œ 11 # ; `f `y œ 6yz Ê ("ß "ß ") œ 6; `f `z œ 6z# 3 ax# y# b x x # z# 1 " thus ™ f œ 11 # i 6j # k " x Ê `f `x (1ß 2ß 2) œ 26 27 ; " z Ê `f `z (1ß 2ß 2) œ 23 54 ; thus ™ y1 È 1 x# `f `z œ exy sin z Ê 11. u œ `f `x Ê z x # z# 1 `f " ` z ("ß "ß ") œ # ; œ Ê `f `x ˆ!ß !ß 16 ‰ œ È3 # 1; `f `y `f `y ˆ!ß !ß 16 ‰ œ #" ; thus ™ f œ œ y y" Ê `` yf ax# y# z# b$Î# 23 23 f œ 26 27 i 54 j 54 k œ exy cos z sin" x Ê È Š 3#2 ‹ i È3 # (1ß 2ß 2) œ `f `y ˆ0ß 0ß 16 ‰ œ 23 54 È3 # ; ; j "# k i 35 j ; fx (xß y) œ 2y Ê fx (5ß 5) œ 10; fy (xß y) œ 2x 6y Ê fy (5ß 5) œ 20 4 5 Ê ™ f œ 10i 20j Ê (Du f)P! œ ™ f † u œ 10 ˆ 45 ‰ 20 ˆ 35 ‰ œ 4 12. u œ A k Ak œ 3i 4j È3# (4)# œ 3 5 i 45 j ; fx (xß y) œ 4x Ê fx (1ß 1) œ 4; fy (xß y) œ 2y Ê fy (1ß 1) œ 2 Ê ™ f œ 4i 2j Ê (Du f)P! œ ™ f † u œ 12 5 13. u œ A kAk œ 12i 5j È12# 5# œ 12 13 i 5 13 A kAk œ hy (xß y) œ 3i 2j È3# (2)# ˆ "x ‰ y ˆ x ‰# 1 œ 3 È13 i ˆ #x ‰ È3 x# y# Ê1 Š 4 ‹ œ 4 y2 2 Ê gx a1ß 1b axy 2b2 15 21 œ 36 13 13 œ 13 j ; gx axß yb œ Ê ™ g œ 3i 3j Ê aDu gbP! œ ™ g † u 14. u œ 8 5 2 È13 j ; hx (xß y) œ Ê hy (1ß 1) œ 3 # Š x#y ‹ y ˆ x ‰# 1 x 2 œ 3; gy axß yb œ axy Ê gy a1ß 1b œ 3 2b2 ˆ #y ‰ È3 Ê1 Š Ê ™hœ " # x# y# 4 ‹ 2 Ê hx (1ß 1) œ "# ; i #3 j Ê (Du h)P! œ ™ h † u œ œ 2È313 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 3 2È13 6 2È13 825 826 Chapter 14 Partial Derivatives 15. u œ A k Ak œ 3 i 6 j #k È3# 6# (2)# œ i 67 j 27 k ; fx (xß yß z) œ y z Ê fx (1ß 1ß 2) œ 1; fy (xß yß z) œ x z 3 7 Ê fy (1ß 1ß 2) œ 3; fz (xß yß z) œ y x Ê fz (1ß 1ß 2) œ 0 Ê ™ f œ i 3j Ê (Du f)P! œ ™ f † u œ 16. u œ A kAk œ ijk È 1 # 1# 1# œ 1 È3 i 1 È3 j 1 È3 3 7 18 7 œ3 k ; fx (xß yß z) œ 2x Ê fx (1ß 1ß 1) œ 2; fy (xß yß z) œ 4y Ê fy (1ß 1ß 1) œ 4; fz (xß yß z) œ 6z Ê fz (1ß 1ß 1) œ 6 Ê ™ f œ 2i 4j 6k Ê (Du f)P! œ ™ f † u œ 2 Š È"3 ‹ 4 Š È"3 ‹ 6 Š È"3 ‹ œ 0 17. u œ A k Ak œ 2i j 2k È2# 1# (2)# œ i 13 j 23 k ; gx (xß yß z) œ 3ex cos yz Ê gx (0ß 0ß 0) œ 3; gy (xß yß z) œ 3zex sin yz 2 3 Ê gy (0ß 0ß 0) œ 0; gz (xß yß z) œ 3yex sin yz Ê gz (0ß 0ß 0) œ 0 Ê ™ g œ 3i Ê (Du g)P! œ ™ g † u œ 2 18. u œ A k Ak œ i 2j 2k È 1# 2# 2# œ 1 3 i 23 j 23 k ; hx (xß yß z) œ y sin xy " x Ê hx ˆ1ß 0ß "# ‰ œ 1; hy (xß yß z) œ x sin xy zeyz Ê hy ˆ"ß !ß #" ‰ œ #" ; hz (xß yß z) œ yeyz Ê (Du h)P! œ ™ h † u œ " 3 " 3 4 3 Ê hz ˆ"ß !ß #" ‰ œ 2 Ê ™ h œ i #" j 2k œ2 19. ™ f œ (2x y) i (x 2y) j Ê ™ f(1ß 1) œ i j Ê u œ most rapidly in the direction u œ " z " È2 i " È2 ™f k™f k œ i j È(1)# 1# œ È" i 2 " È2 j ; f increases " È2 j and decreases most rapidly in the direction u œ i " È2 j; (Du f)P! œ ™ f † u œ k ™ f k œ È2 and (Du f)P! œ È2 ™f k™ f k 20. ™ f œ a2xy yexy sin yb i ax# xexy sin y exy cos yb j Ê ™ f(1ß 0) œ 2j Ê u œ œ j ; f increases most rapidly in the direction u œ j and decreases most rapidly in the direction u œ j ; (Du f)P! œ ™ f † u œ k ™ f k œ 2 and (Du f)P! œ 2 21. ™ f œ " y i Š yx# z‹ j yk Ê ™ f(4ß "ß ") œ i 5j k Ê u œ " 3È 3 f increases most rapidly in the direction of u œ " u œ 3È i 3 5 3È 3 j " 3È 3 i 5 3È 3 j " 3È 3 ™f k™f k œ i 5j k È1# (5)# (1)# œ " 3È 3 i 5 3È 3 j " 3È 3 k and decreases most rapidly in the direction k ; (Du f)P! œ ™ f † u œ k ™ f k œ 3È3 and (Du f)P! œ 3È3 22. ™ g œ ey i xey j 2zk Ê ™ g ˆ1ß ln 2ß "# ‰ œ 2i 2j k Ê u œ g increases most rapidly in the direction u œ 2 3 ™g k™gk œ 2i 2j k È 2# 2# 1# œ 2 3 i 32 j 3" k ; i 23 j 3" k and decreases most rapidly in the direction u œ 23 i 23 j 3" k ; (Du g)P! œ ™ g † u œ k ™ gk œ 3 and (Du g)P! œ 3 23. ™ f œ ˆ "x x" ‰ i Š y" y" ‹ j ˆ "z "z ‰ k Ê ™ f("ß "ß ") œ 2i 2j 2k Ê u œ f increases most rapidly in the direction u œ u œ È"3 i " È3 j " È3 " È3 i " È3 j " È3 ™f k™f k 2 7 " È3 2 7 ™h k™hk œ j " È3 k; 2i 3 j 6k È 2# 3# 6# i 37 j 67 k and decreases most rapidly in the direction u œ i j k ; (Du h)P! œ ™ h † u œ k ™ hk œ 7 and (Du h)P! œ 7 3 7 " È3 k; (Du f)P! œ ™ f † u œ k ™ f k œ 2È3 and (Du f)P! œ 2È3 i 37 j 67 k ; h increases most rapidly in the direction u œ 2 7 i k and decreases most rapidly in the direction 2y 24. ™ h œ Š x# 2x y# 1 ‹ i Š x# y# 1 1‹ j 6k Ê ™ h("ß "ß 0) œ 2i 3j 6k Ê u œ œ œ 6 7 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. k; Section 14.5 Directional Derivatives and Gradient Vectors 827 25. ™ f œ 2xi 2yj Ê ™ f ŠÈ2ß È2‹ œ 2È2 i 2È2 j Ê Tangent line: 2È2 Šx È2‹ 2È2 Šy È2‹ œ 0 Ê È2x È2y œ 4 26. ™ f œ 2xi j Ê ™ f ŠÈ2ß 1‹ œ 2È2 i j Ê Tangent line: 2È2 Šx È2‹ (y 1) œ 0 Ê y œ 2È2x 3 27. ™ f œ yi xj Ê ™ f(2ß 2) œ 2i 2j Ê Tangent line: 2(x 2) 2(y 2) œ 0 Ê yœx4 28. ™ f œ (2x y)i (2y x)j Ê ™ f(1ß 2) œ 4i 5j Ê Tangent line: 4(x 1) 5(y 2) œ 0 Ê 4x 5y 14 œ 0 29. ™ f œ a2x ybi ax 2y 1bj (a) ™ fa1, 1b œ 3i 4j Ê l ™ fa1, 1bl œ 5 Ê Du fa1, 1b œ 5 in the direction of u œ 35 i 45 j (b) ™ fa1, 1b œ 3i 4j Ê l ™ fa1, 1bl œ 5 Ê Du fa1, 1b œ 5 in the direction of u œ 35 i 45 j (c) Du fa1, 1b œ 0 in the direction of u œ 45 i 35 j or u œ 45 i 35 j (d) Let u œ u1 i u2 j Ê lul œ Èu12 u22 œ 1 Ê u12 u22 œ 1; Du fa1, 1b œ ™ fa1, 1b † u œ a3i 4jb † au1 i u2 jb 2 œ 3u1 4u2 œ 4 Ê u2 œ 43 u1 1 Ê u12 ˆ 43 u1 1‰ œ 1 Ê 25 2 3 16 u1 2 u1 7 œ 24 25 i 25 j œ 0 Ê u1 œ 0 or u1 œ 24 25 ; 7 u1 œ 0 Ê u2 œ 1 Ê u œ j, or u1 œ 24 25 Ê u2 œ 25 Ê u (e) Let u œ u1 i u2 j Ê lul œ Èu12 u22 œ 1 Ê u12 u22 œ 1; Du fa1, 1b œ ™ fa1, 1b † u œ a3i 4jb † au1 i u2 jb 2 œ 3u1 4u2 œ 3 Ê u1 œ 43 u2 1 Ê ˆ 43 u2 1‰ u22 œ 1 Ê u2 œ 0 Ê u1 œ 1 Ê u œ i, or u2 œ 24 25 Ê u2 œ 7 25 Êuœ 25 2 8 9 u2 3 u2 7 24 25 i 25 j œ 0 Ê u2 œ 0 or u2 œ 24 25 ; . 30. ™ f œ 2y i ax yb2 2x j a x y b2 (a) ™ fˆ 21 , 23 ‰ œ 3i j Ê l ™ fˆ 21 , 23 ‰l œ È10 Ê Du fˆ 21 , 23 ‰ œ È10 in the direction of u œ 3 È10 i 1 È10 j (b) ™ fˆ 21 , 23 ‰ œ 3i j Ê l ™ fˆ 21 , 23 ‰l œ È10 Ê Du fa1, 1b œ È10 in the direction of u œ È310 i Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 È10 j 828 Chapter 14 Partial Derivatives (c) Du fˆ 12 , 23 ‰ œ 0 in the direction of u œ 1 È10 i 3 È10 j or u œ È110 i 3 È10 j (d) Let u œ u1 i u2 j Ê lul œ Èu12 u22 œ 1 Ê u12 u22 œ 1; Du fˆ 12 , 32 ‰ œ ™ fˆ 12 , 32 ‰ † u œ a3i jb † au1 i u2 jb œ 3u1 u2 œ 2 Ê u2 œ 3u1 2 Ê u12 a3u1 2b2 œ 1 Ê 10u12 12u1 3 œ 0 Ê u1 œ u1 œ Êu È 6 È 6 Ê u2 œ 2 103 6 10 È6 È œ 6 i 2 103 6 j 10 6 È 6 i 10 Êuœ 2 3È 6 j, 10 or u1 œ 6 È 6 10 Ê u2 œ 6 „ È 6 10 2 3È 6 10 (e) Let u œ u1 i u2 j Ê lul œ Èu12 u22 œ 1 Ê u12 u22 œ 1; Du fˆ 12 , 32 ‰ œ ™ fˆ 12 , 32 ‰ † u œ a3i jb † au1 i u2 jb œ 3u1 u2 œ 1 Ê u2 œ 1 3u1 Ê u12 a1 3u1 b2 œ 1 Ê 10u12 6u1 œ 0 Ê u1 œ 0 or u1 œ 35 ; u1 œ 0 Ê u2 œ 1 Ê u œ j, or u1 œ 3 5 Ê u2 œ 45 Ê u œ 35 i 45 j 31. ™ f œ yi (x 2y)j Ê ™ f(3ß 2) œ 2i 7j ; a vector orthogonal to ™ f is v œ 7i 2j Ê u œ œ 7 È53 32. ™ f œ i 4xy# a x # y # b# Ê uœ j and u œ È753 i 2 È53 v kv k 2 È53 v kvk œ 7i 2j È7# (2)# j are the directions where the derivative is zero 4x# y j Ê ™ f("ß ") œ i j ; a vector orthogonal to ™ f is v œ i j a x # y # b# ij 1 1 1 1 È1# 1# œ È2 i È2 j and u œ È2 i È2 j are the directions where the i œ derivative is zero 33. ™ f œ (2x 3y)i (3x 8y)j Ê ™ f(1ß 2) œ 4i 13j Ê k ™ f(1ß 2)k œ È(4)# (13)# œ È185 ; no, the maximum rate of change is È185 14 34. ™ T œ 2yi (2x z)j yk Ê ™ T(1ß 1ß 1) œ 2i j k Ê k ™ T(1ß 1ß 1)k œ È(2)# 1# 1# œ È6 ; no, the minimum rate of change is È6 3 35. ™ f œ fx ("ß #)i fy ("ß #)j and u" œ ij È 1# 1# œ " È2 i " È2 j Ê (Du" f)(1ß 2) œ fx (1ß 2) Š È"2 ‹ fy (1ß 2) Š È"2 ‹ œ 2È2 Ê fx (1ß 2) fy (1ß 2) œ 4; u# œ j Ê (Du# f)(1ß 2) œ fx (1ß 2)(0) fy (1ß 2)(1) œ 3 Ê fy (1ß 2) œ 3 Ê fy (1ß 2) œ 3; then fx (1ß 2) 3 œ 4 Ê fx (1ß 2) œ 1; thus ™ f(1ß 2) œ i 3j and u œ œ È15 i 2 È5 j Ê (Du f)P! œ ™ f † u œ È"5 36. (a) (Du f)P œ 2È3 Ê k ™ f k œ 2È3; u œ v kvk œ v kv k œ ij È 1# 1# œ " È2 i " È2 " È3 i 2j È(1)# (2)# œ œ È75 ijk È1# 1# (1)# Ê ™ f œ k ™ f k u Ê ™ f œ 2È3 Š È"3 i (b) v œ i j Ê u œ 6 È5 v kvk j " È3 œ 1 È3 i 1 È3 j " È3 k; thus u œ ™f k ™f k k‹ œ 2i 2j 2k j Ê (Du f)P! œ ™ f † u œ 2 Š È"2 ‹ 2 Š È"2 ‹ 2(0) œ 2È2 37. The directional derivative is the scalar component. With ™ f evaluated at P! , the scalar component of ™ f in the direction of u is ™ f † u œ (Du f)P! . 38. Di f œ ™ f † i œ (fx i fy j fz k) † i œ fx ; similarly, Dj f œ ™ f † j œ fy and Dk f œ ™ f † k œ fz 39. If (xß y) is a point on the line, then T(xß y) œ (x x! )i (y y! )j is a vector parallel to the line Ê T † N œ 0 Ê A(x x! ) B(y y! ) œ 0, as claimed. 40. (a) ™ (kf) œ ` (kf) `x i ` (kf) `y j ` (kf) `z k œ k ˆ `` xf ‰ i k Š `` yf ‹ j k ˆ `` zf ‰ k œ k Š `` xf i `f `y j `f `z k‹ œ k ™ f Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.6 Tangent Planes and Differentials ` (f g) `x (b) ™ (f g) œ œ `f `x i `g `x i `f `y i j ` (f g) `y `g `y j j `f `z ` (f g) `z k `g `z k œ Š `` xf k œ Š `` xf i `g `x ‹ i `f `y Š `` yf j `f `z `g `y ‹ j Š `` zf k‹ Š `` gx i `g `y 829 `g `z ‹ k j `g `z k‹ œ ™ f ™ g f ‹ j Š `` zf g `g `z f‹ k (c) ™ (f g) œ ™ f ™ g (Substitute g for g in part (b) above) ` (fg) `x (d) ™ (fg) œ i ` (fg) `y j ` (fg) `z `g `x k œ Š `` xf g f ‹ i Š `` yf g `g `y œ ˆ `` xf g‰ i Š `` xg f ‹ i Š `` yf g‹ j Š `` gy f ‹ j ˆ `` zf g‰ k Š `` gz f ‹ k œ f Š `` gx i (e) ™ Š gf ‹ œ œŒ œ `g `y j ` Š gf ‹ `x `g `z i k‹ g Š `` xf i ` Š gf ‹ `y g ``xf i g ``yf j g `` fz k g# g ™f g# f™g g# œ j Œ ` Š gf ‹ `z `f `y j kœŠ `f `z k‹ œ f ™ g g ™ f g ``xf f `` gx ‹i g# f `` gx i f `` gy j f ``gz k g# œ Œ g ``yf f `` gy j g# g Š ``xf i ``yf j `` fz k‹ g# Š g `` zf f ``gz ‹k g# f Š `` gx i `` gy j ``gz k‹ g# g™f f™g g# 14.6 TANGENT PLANES AND DIFFERENTIALS 1. (a) ™ f œ 2xi 2yj 2zk Ê ™ f(1ß 1ß 1) œ 2i 2j 2k Ê Tangent plane: 2(x 1) 2(y 1) 2(z 1) œ 0 Ê x y z œ 3; (b) Normal line: x œ 1 2t, y œ 1 2t, z œ 1 2t 2. (a) ™ f œ 2xi 2yj 2zk Ê ™ f(3ß 5ß 4) œ 6i 10j 8k Ê Tangent plane: 6(x 3) 10(y 5) 8(z 4) œ 0 Ê 3x 5y 4z œ 18; (b) Normal line: x œ 3 6t, y œ 5 10t, z œ 4 8t 3. (a) ™ f œ 2xi 2k Ê ™ f(2ß 0ß 2) œ 4i 2k Ê Tangent plane: 4(x 2) 2(z 2) œ 0 Ê 4x 2z 4 œ 0 Ê 2x z 2 œ 0; (b) Normal line: x œ 2 4t, y œ 0, z œ 2 2t 4. (a) ™ f œ (2x 2y)i (2x 2y)j 2zk Ê ™ f(1ß 1ß 3) œ 4j 6k Ê Tangent plane: 4(y 1) 6(z 3) œ 0 Ê 2y 3z œ 7; (b) Normal line: x œ 1, y œ 1 4t, z œ 3 6t 5. (a) ™ f œ a1 sin 1x 2xy zexz b i ax# zb j axexz yb k Ê ™ f(0ß 1ß 2) œ 2i 2j k Ê Tangent plane: 2(x 0) 2(y 1) 1(z 2) œ 0 Ê 2x 2y z 4 œ 0; (b) Normal line: x œ 2t, y œ 1 2t, z œ 2 t 6. (a) ™ f œ (2x y)i (x 2y)j k Ê ™ f(1ß 1ß 1) œ i 3j k Ê Tangent plane: 1(x 1) 3(y 1) 1(z 1) œ 0 Ê x 3y z œ 1; (b) Normal line: x œ 1 t, y œ 1 3t, z œ 1 t 7. (a) ™ f œ i j k for all points Ê ™ f(0ß 1ß 0) œ i j k Ê Tangent plane: 1(x 0) 1(y 1) 1(z 0) œ 0 Ê x y z 1 œ 0; (b) Normal line: x œ t, y œ 1 t, z œ t 8. (a) ™ f œ (2x 2y 1)i (2y 2x 3)j k Ê ™ f(2ß 3ß 18) œ 9i 7j k Ê Tangent plane: 9(x 2) 7(y 3) 1(z 18) œ 0 Ê 9x 7y z œ 21; (b) Normal line: x œ 2 9t, y œ 3 7t, z œ 18 t Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 830 Chapter 14 Partial Derivatives 9. z œ f(xß y) œ ln ax# y# b Ê fx (xß y) œ and fy (xß y) œ 2x x# y# 2y x# y# Ê fx (1ß 0) œ 2 and fy (1ß 0) œ 0 Ê from Eq. (4) the tangent plane at (1ß 0ß 0) is 2(x 1) z œ 0 or 2x z 2 œ 0 # # # # # # 10. z œ f(xß y) œ e ax y b Ê fx (xß y) œ 2xe ax y b and fy (xß y) œ 2ye ax y b Ê fx (0ß 0) œ 0 and fy (!ß !) œ 0 Ê from Eq. (4) the tangent plane at (0ß 0ß 1) is z 1 œ 0 or z œ 1 11. z œ f(Bß y) œ Èy x Ê fx (xß y) œ "# (y x)"Î# and fy (xß y) œ " # (y x)"Î# Ê fx (1ß 2) œ "# and fy ("ß #) œ Ê from Eq. (4) the tangent plane at (1ß 2ß 1) is "# (x 1) "# (y 2) (z 1) œ 0 Ê x y 2z 1 œ 0 " # 12. z œ f(Bß y) œ 4x# y# Ê fx (xß y) œ 8x and fy (xß y) œ #y Ê fx (1ß 1) œ 8 and fy ("ß 1) œ # Ê from Eq. (4) the tangent plane at (1ß 1ß 5) is 8(x 1) 2(y 1) (z 5) œ 0 or 8x 2y z 5 œ 0 13. ™ f œ i 2yj 2k Ê ™ f(1ß 1ß 1) œ i 2j 2k and ™ g œ i for all points; v œ ™ f ‚ ™ g â â â i j kâ â â Ê v œ â " 2 2 â œ 2j 2k Ê Tangent line: x œ 1, y œ 1 2t, z œ 1 2t â â â" 0 0â 14. ™ f œ yzi xzj xyk Ê ™ f(1ß 1ß 1) œ i j k; ™ g œ 2xi 4yj 6zk Ê ™ g(1ß 1ß 1) œ 2i 4j 6k ; â â â i j kâ â â Ê v œ ™ f ‚ ™ g Ê â " 1 1 â œ 2i 4j 2k Ê Tangent line: x œ 1 2t, y œ 1 4t, z œ 1 2t â â â2 4 6â 15. ™ f œ 2xi 2j 2k Ê ™ f ˆ1ß 1ß "# ‰ œ 2i 2j 2k and ™ g œ j for all points; v œ ™ f ‚ ™ g â â â i j kâ â â Ê v œ â 2 2 2 â œ 2i 2k Ê Tangent line: x œ 1 2t, y œ 1, z œ "# 2t â â â0 1 0â 16. ™ f œ i 2yj k Ê ™ f ˆ "# ß 1ß "# ‰ œ i 2j k and ™ g œ j for all points; v œ ™ f ‚ ™ g â â â i j kâ â â Ê v œ â 1 2 1 â œ i k Ê Tangent line: x œ "# t, y œ 1, z œ "# t â â â0 1 0â 17. ™ f œ a3x# 6xy# 4yb i a6x# y 3y# 4xb j 2zk Ê ™ f(1ß 1ß 3) œ 13i 13j 6k ; ™ g œ 2xi 2yj 2zk â â j k â â i â â Ê ™ g("ß "ß $) œ 2i 2j 6k ; v œ ™ f ‚ ™ g Ê v œ â "3 13 6 â œ 90i 90j Ê Tangent line: â â 2 6 â â 2 x œ 1 90t, y œ 1 90t, z œ 3 18. ™ f œ 2xi 2yj Ê ™ f ŠÈ2ß È2ß 4‹ œ 2È2 i 2È2 j ; ™ g œ 2xi 2yj k Ê ™ g ŠÈ2ß È2ß 4‹ â i j k ââ â â â œ 2È2i 2È2j k ; v œ ™ f ‚ ™ g Ê v œ â 2È2 2È2 0 â œ 2È2 i 2È2 j Ê Tangent line: â â â 2È2 2È2 1 â x œ È2 2È2 t, y œ È2 2È2 t, z œ 4 19. ™ f œ Š x# yx# z# ‹ i Š x# yy# z# ‹ j Š x# yz# z# ‹ k Ê ™ f(3ß 4ß 12) œ uœ v kvk œ 3i 6j 2k È3# 6# (2)# œ 3 7 i 76 j 27 k Ê ™ f † u œ 9 1183 3 169 i 4 169 j 12 169 k; 9 ‰ and df œ ( ™ f † u) ds œ ˆ 1183 (0.1) ¸ 0.0008 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.6 Tangent Planes and Differentials 20. ™ f œ aex cos yzb i azex sin yzb j ayex sin yzb k Ê ™ f(0ß 0ß 0) œ i ; u œ œ 1 È3 i 1 È3 j k Ê ™f†uœ 1 È3 1 È3 and df œ ( ™ f † u) ds œ v kvk œ 831 2i 2j 2k È2# 2# (2)# (0.1) ¸ 0.0577 1 È3 Ä 21. ™ g œ (1 cos z)i (1 sin z)j (x sin z y cos z)k Ê ™ g(2ß 1ß 0) œ 2i j k; A œ P! P" œ 2i 2j 2k Ê uœ v kvk œ 2 i 2 j 2 k È(2)# 2# 2# œ È13 i 1 È3 j 1 È3 k Ê ™ g † u œ 0 and dg œ ( ™ g † u) ds œ (0)(0.2) œ 0 22. ™ h œ c1y sin (1xy) z# d i c1x sin (1xy)d j 2xzk Ê ™ h(1ß 1ß 1) œ (1 sin 1 1)i (1 sin 1)j 2k Ä k œ i 2k ; v œ P! P" œ i j k where P" œ (!ß !ß !) Ê u œ kvvk œ È1i#j1# œ È13 i È13 j È13 k 1# Ê ™h†uœ œ È3 and dh œ ( ™ h † u) ds œ È3(0.1) ¸ 0.1732 3 È3 23. (a) The unit tangent vector at Š "# ß È3 # ‹ in the direction of motion is u œ ™ T œ (sin 2y)i (2x cos 2y)j Ê ™ T Š "# ß È3 # œ sin È3 " # È3 # ‹ È3 # i #" j ; œ Šsin È3‹ i Šcos È3‹ j Ê Du T Š "# ß œ ™T†vœŠ™T† dT dt œŠ È3 # œ ™T†u cos È3 ¸ 0.935° C/ft ` T dx ` x dt ` T dy ` y dt we have u œ È3 # i #" j from part (a) (b) r(t) œ (sin 2t)i (cos 2t)j Ê v(t) œ (2 cos 2t)i (2 sin 2t)j and kvk œ 2; Ê È3 # ‹ v kvk ‹ sin È3 " # kvk œ (Du T) kvk , where u œ v kv k ; at Š "# ß È3 # ‹ dT dt œ cos È3‹ † 2 œ È3 sin È3 cos È3 ¸ 1.87° C/sec 24. (a) ™ T œ (4x yz)i xzj xyk Ê ™ T(8ß 6ß 4) œ 56i 32j 48k ; r(t) œ 2t# i 3tj t# k Ê the particle is at the point P()ß 6ß 4) when t œ 2; v(t) œ 4ti 3j 2tk Ê v(2) œ 8i 3j 4k Ê u œ kvvk (b) œ 8 È89 dT dt œ i ` T dx ` x dt 3 È89 j ` T dy ` y dt 4 È89 k Ê Du T(8ß 6ß 4) œ ™ T † u œ " È89 œ ™ T † v œ ( ™ T † u) kvk Ê at t œ 2, [56 † 8 32 † 3 48 † (4)] œ dT dt 736 È89 ° C/m 736 œ Du T¸ tœ2 v(2) œ Š È ‹ È89 œ 736° C/sec 89 25. (a) f(!ß 0) œ 1, fx (xß y) œ 2x Ê fx (0ß 0) œ 0, fy (xß y) œ 2y Ê fy (0ß 0) œ 0 Ê L(xß y) œ 1 0(x 0) 0(y 0) œ 1 (b) f(1ß 1) œ 3, fx (1ß 1) œ 2, fy (1ß 1) œ 2 Ê L(xß y) œ 3 2(x 1) 2(y 1) œ 2x 2y 1 26. (a) f(!ß 0) œ 4, fx (xß y) œ 2(x y 2) Ê fx (0ß 0) œ 4, fy (xß y) œ 2(x y 2) Ê fy (0ß 0) œ 4 Ê L(xß y) œ 4 4(x 0) 4(y 0) œ 4x 4y 4 (b) f(1ß 2) œ 25, fx (1ß 2) œ 10, fy (1ß 2) œ 10 Ê L(xß y) œ 25 10(x 1) 10(y 2) œ 10x 10y 5 27. (a) f(0ß 0) œ 5, fx (xß y) œ 3 for all (xß y), fy (xß y) œ 4 for all (xß y) Ê L(xß y) œ 5 3(x 0) 4(y 0) œ 3x 4y 5 (b) f(1ß 1) œ 4, fx (1ß 1) œ 3, fy (1ß 1) œ 4 Ê L(xß y) œ 4 3(x 1) 4(y 1) œ 3x 4y 5 28. (a) f(1ß 1) œ 1, fx (xß y) œ 3x# y% Ê fx (1ß 1) œ 3, fy (xß y) œ 4x$ y$ Ê fy (1ß 1) œ 4 Ê L(xß y) œ 1 3(x 1) 4(y 1) œ 3x 4y 6 (b) f(0ß 0) œ 0, fx (!ß 0) œ 0, fy (0ß 0) œ 0 Ê L(xß y) œ 0 29. (a) f(0ß 0) œ 1, fx (xß y) œ ex cos y Ê fx (0ß 0) œ 1, fy (xß y) œ ex sin y Ê fy (0ß 0) œ 0 Ê L(xß y) œ 1 1(x 0) 0(y 0) œ x 1 (b) f ˆ0ß 1# ‰ œ 0, fx ˆ0ß 1# ‰ œ 0, fy ˆ0ß 1# ‰ œ 1 Ê L(xß y) œ 0 0(x 0) 1 ˆy 1# ‰ œ y Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 # 832 Chapter 14 Partial Derivatives 30. (a) f(0ß 0) œ 1, fx (xß y) œ e2yx Ê fx (!ß !) œ 1, fy (xß y) œ 2e2yx Ê fy (0ß 0) œ 2 Ê L(xß y) œ 1 1(x 0) 2(y 0) œ x 2y 1 (b) f(1ß 2) œ e$ , fx (1ß 2) œ e$ , fy (1ß 2) œ 2e$ Ê L(xß y) œ e$ e$ (x 1) 2e$ (y 2) œ e$ x 2e$ y 2e$ 31. (a) Wa20, 25b œ 11‰ F; Wa30, 10b œ 39‰ F; Wa15, 15b œ 0‰ F (b) Wa10, 40b œ 65.5‰ F; Wa50, 40b œ 88‰ F; Wa60, 30b œ 10.2‰ F; 5.72 0.0684t `W (c) Wa25, 5b œ 17.4088‰ F; ``W V œ v0.84 v0.84 Ê ` V a25, 5b œ 0.36; Ê `W ` T a25, `W `T œ 0.6215 0.4275v0.16 5b œ 1.3370 Ê LaV, Tb œ 17.4088 0.36aV 25b 1.337aT 5b œ 1.337T 0.36V 15.0938 (d) i) Wa24, 6b ¸ La24, 6b œ 15.7118 ¸ 15.7‰ F ii) Wa27, 2b ¸ La27, 2b œ 22.1398 ¸ 22.1‰ F ii) Wa5, 10b ¸ La5, 10b œ 30.2638 ¸ 30.2‰ F This value is very different because the point a5, 10b is not close to the point a25, 5b. 32. Wa50, 20b œ 59.5298‰ F; Ê `W ` T a50, `W `V œ v5.72 0.84 0.0684t v0.84 Ê `W ` V a50, 20b œ 0.2651; `W `T œ 0.6215 0.4275v0.16 20b œ 1.4209 Ê LaV, Tb œ 59.5298 0.2651aV 50b 1.4209aT 20b œ 1.4209T 0.2651V 17.8568 (a) Wa49, 22b ¸ La49, 22b œ 62.1065 ¸ 62.1‰ F (b) Wa53, 19b ¸ La53, 19b œ 58.9042 ¸ 58.9‰ F (c) Wa60, 30b ¸ La60, 30b œ 76.3898 ¸ 76.4‰ F 33. f(2ß 1) œ 3, fx (xß y) œ 2x 3y Ê fx (2ß 1) œ 1, fy (xß y) œ 3x Ê fy (2ß 1) œ 6 Ê L(xß y) œ 3 1(x 2) 6(y 1) œ 7 x 6y; fxx (xß y) œ 2, fyy (xß y) œ 0, fxy (xß y) œ 3 Ê M œ 3; thus kE(xß y)k Ÿ ˆ "# ‰ (3) akx 2k ky 1kb# Ÿ ˆ 3# ‰ (0.1 0.1)# œ 0.06 34. f(2ß 2) œ 11, fx (xß y) œ x y 3 Ê fx (2ß 2) œ 7, fy (xß y) œ x y # 3 Ê fy (2ß 2) œ 0 Ê L(xß y) œ 11 7(x 2) 0(y 2) œ 7x 3; fxx (xß y) œ 1, fyy (xß y) œ "# , fxy (xß y) œ 1 Ê M œ 1; thus kE(xß y)k Ÿ ˆ "# ‰ (1) akx 2k ky 2kb# Ÿ ˆ #1 ‰ (0.1 0.1)# œ 0.02 35. f(0ß 0) œ 1, fx (xß y) œ cos y Ê fx (0ß 0) œ 1, fy (xß y) œ 1 x sin y Ê fy (0ß 0) œ 1 Ê L(xß y) œ 1 1(x 0) 1(y 0) œ x y 1; fxx (xß y) œ 0, fyy (xß y) œ x cos y, fxy (xß y) œ sin y Ê Q œ 1; thus kE(xß y)k Ÿ ˆ "# ‰ (1) akxk kykb# Ÿ ˆ #1 ‰ (0.2 0.2)# œ 0.08 36. f("ß #) œ 6, fx (xß y) œ y# y sin (x 1) Ê fx (1ß 2) œ 4, fy (xß y) œ 2xy cos (x 1) Ê fy (1ß 2) œ 5 Ê L(xß y) œ 6 4(x 1) 5(y 2) œ 4x 5y 8; fxx (xß y) œ y cos (x 1), fyy (xß y) œ 2x, fxy (xß y) œ 2y sin (x 1); kx 1k Ÿ 0.1 Ê 0.9 Ÿ x Ÿ 1.1 and ky 2k Ÿ 0.1 Ê 1.9 Ÿ y Ÿ 2.1; thus the max of kfxx (xß y)k on R is 2.1, the max of kfyy (xß y)k on R is 2.2, and the max of kfxy (xß y)k on R is 2(2.1) sin (0.9 1) Ÿ 4.3 Ê M œ 4.3; thus kE(xß y)k Ÿ ˆ "# ‰ (4.3) akx 1k ky 2kb# Ÿ (2.15)(0.1 0.1)# œ 0.086 37. f(0ß 0) œ 1, fx (xß y) œ ex cos y Ê fx (0ß 0) œ 1, fy (xß y) œ ex sin y Ê fy (0ß 0) œ 0 Ê L(xß y) œ 1 1(x 0) 0(y 0) œ 1 x; fxx (xß y) œ ex cos y, fyy (xß y) œ ex cos y, fxy (xß y) œ ex sin y; kxk Ÿ 0.1 Ê 0.1 Ÿ x Ÿ 0.1 and kyk Ÿ 0.1 Ê 0.1 Ÿ y Ÿ 0.1; thus the max of kfxx (xß y)k on R is e0Þ1 cos (0.1) Ÿ 1.11, the max of kfyy (xß y)k on R is e0Þ1 cos (0.1) Ÿ 1.11, and the max of kfxy (xß y)k on R is e0Þ1 sin (0.1) Ÿ 0.12 Ê M œ 1.11; thus kE(xß y)k Ÿ ˆ "# ‰ (1.11) akxk kykb# Ÿ (0.555)(0.1 0.1)# œ 0.0222 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.6 Tangent Planes and Differentials 38. f(1ß 1) œ 0, fx (xß y) œ " x Ê fx (1ß 1) œ 1, fy (xß y) œ œ x y 2; fxx (xß y) œ " (0.98)# kfxx (xß y)k on R is " (0.98)# " x# , fyy (xß y) œ " y# " y 833 Ê fy (1ß 1) œ 1 Ê L(xß y) œ 0 1(x 1) 1(y 1) , fxy (xß y) œ 0; kx 1k Ÿ 0.2 Ê 0.98 Ÿ x Ÿ 1.2 so the max of Ÿ 1.04; ky 1k Ÿ 0.2 Ê 0.98 Ÿ y Ÿ 1.2 so the max of kfyy (xß y)k on R is Ÿ 1.04 Ê M œ 1.04; thus kE(xß y)k Ÿ ˆ #" ‰ (1.04) akx 1k ky 1kb# Ÿ (0.52)(0.2 0.2)# œ 0.0832 39. (a) f("ß "ß ") œ 3, fx (1ß 1ß 1) œ y zkÐ1ß1ß1Ñ œ 2, fy (1ß 1ß 1) œ x zkÐ1ß1ß1Ñ œ 2, fz (1ß 1ß 1) œ y xkÐ1ß1ß1Ñ œ 2 Ê L(xß yß z) œ 3 2(x 1) 2(y 1) 2(z 1) œ 2x 2y 2z 3 (b) f(1ß 0ß 0) œ 0, fx (1ß 0ß 0) œ 0, fy (1ß 0ß 0) œ 1, fz (1ß 0ß 0) œ 1 Ê L(xß yß z) œ 0 0(x 1) (y 0) (z 0) œ y z (c) f(0ß 0ß 0) œ 0, fx (0ß 0ß 0) œ 0, fy (0ß 0ß 0) œ 0, fz (0ß 0ß 0) œ 0 Ê L(xß yß z) œ 0 40. (a) f(1ß 1ß 1) œ 3, fx (1ß 1ß 1) œ 2xkÐ"ß"ß"Ñ œ 2, fy (1ß 1ß 1) œ 2ykÐ"ß"ß"Ñ œ 2, fz (1ß 1ß 1) œ 2zkÐ"ß"ß"Ñ œ 2 Ê L(xß yß z) œ 3 2(x 1) 2(y 1) 2(z 1) œ 2x 2y 2z 3 (b) f(0ß 1ß 0) œ 1, fx (0ß 1ß 0) œ 0, fy (!ß 1ß 0) œ 2, fz (0ß 1ß 0) œ 0 Ê L(xß yß z) œ 1 0(x 0) 2(y 1) 0(z 0) œ 2y 1 (c) f(1ß 0ß 0) œ 1, fx (1ß 0ß 0) œ 2, fy (1ß 0ß 0) œ 0, fz (1ß 0ß 0) œ 0 Ê L(xß yß z) œ 1 2(x 1) 0(y 0) 0(z 0) œ 2x 1 41. (a) f(1ß 0ß 0) œ 1, fx (1ß 0ß 0) œ fz (1ß 0ß 0) œ z È x # y# z# ¹ x È x # y # z# ¹ Ð1ß0ß0Ñ (b) f(1ß 1ß 0) œ È2, fx (1ß 1ß 0) œ Ê L(xß yß z) œ È2 " È2 Ð1ß0ß0Ñ œ 1, fy (1ß 0ß 0) œ " 3 Ð1 ß0 ß0 Ñ œ 0, œ 0 Ê L(xß yß z) œ 1 1(x 1) 0(y 0) 0(z 0) œ x " È2 , fy (1ß 1ß 0) œ (x 1) " È2 " È2 , fz (1ß 1ß 0) œ 0 (y 1) 0(z 0) œ (c) f(1ß 2ß 2) œ 3, fx (1ß 2ß 2) œ "3 , fy (1ß 2ß 2) œ 23 , fz (1ß 2ß 2) œ œ y È x # y # z# ¹ 2 3 " È2 x " È2 y Ê L(xß yß z) œ 3 "3 (x 1) 23 (y 2) 23 (z 2) x 32 y 32 z 42. (a) f ˆ 12 ß 1ß 1‰ œ 1, fx ˆ 1# ß 1ß 1‰ œ fz ˆ 1# ß 1ß 1‰ œ sin xy z# ¹ ˆ 1 ß"ß"‰ y cos xy ¸ ˆ 1# ß"ß"‰ z œ 0, fy ˆ 1# ß 1ß 1‰ œ x cos xy ¸ ˆ 1# ß"ß"‰ z œ 0, œ 1 Ê L(xß yß z) œ 1 0 ˆx 1# ‰ 0(y 1) 1(z 1) œ 2 z # (b) f(2ß 0ß 1) œ 0, fx (2ß 0ß 1) œ 0, fy (2ß 0ß 1) œ 2, fz (2ß 0ß 1) œ 0 Ê L(xß yß z) œ 0 0(x 2) 2(y 0) 0(z 1) œ 2y 43. (a) f(0ß 0ß 0) œ 2, fx (0ß 0ß 0) œ ex k Ð!ß!ß!Ñ œ 1, fy (0ß 0ß 0) œ sin (y z)k Ð!ß!ß!Ñ œ 0, fz (0ß 0ß 0) œ sin (y z)k Ð!ß!ß!Ñ œ 0 Ê L(xß yß z) œ 2 1(x 0) 0(y 0) 0(z 0) œ 2 x (b) f ˆ0ß 1# ß 0‰ œ 1, fx ˆ0ß 1# ß 0‰ œ 1, fy ˆ0ß 1# ß 0‰ œ 1, fz ˆ0ß 1# ß 0‰ œ 1 Ê L(xß yß z) œ 1 1(x 0) 1 ˆy 12 ‰ 1(z 0) œ x y z 1# 1 (c) f ˆ0ß 14 ß 14 ‰ œ 1, fx ˆ0ß 14 ß 14 ‰ œ 1, fy ˆ0ß 14 ß 14 ‰ œ 1, fz ˆ0ß 14 ß 14 ‰ œ 1 Ê L(xß yß z) œ 1 1(x 0) 1 ˆy 14 ‰ 1 ˆz 14 ‰ œ x y z 1# 1 44. (a) f(1ß 0ß 0) œ 0, fx (1ß 0ß 0) œ fz (1ß 0ß 0) œ xy (xyz)# 1 ¹ Ð"ß!ß!Ñ yz (xyz)# 1 ¹ Ð"ß!ß!Ñ œ 0, fy (1ß 0ß 0) œ xz (xyz)# 1 ¹ Ð"ß!ß!Ñ œ 0, œ 0 Ê L(xß yß z) œ 0 (b) f(1ß 1ß 0) œ 0, fx (1ß 1ß 0) œ 0, fy (1ß 1ß 0) œ 0, fz (1ß 1ß 0) œ 1 Ê L(xß yß z) œ 0 0(x 1) 0(y 1) 1(z 0) œ z (c) f(1ß 1ß 1) œ 14 , fx (1ß 1ß 1) œ "# , fy (1ß 1ß 1) œ "# , fz (1ß 1ß 1) œ "# Ê L(xß yß z) œ 14 "# (x 1) "# (y 1) "# (z 1) œ " # x "# y "# z 1 4 3 # Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 834 Chapter 14 Partial Derivatives 45. f(xß yß z) œ xz 3yz 2 at P! (1ß 1ß 2) Ê f(1ß 1ß 2) œ 2; fx œ z, fy œ 3z, fz œ x 3y Ê L(xß yß z) œ 2 2(x 1) 6(y 1) 2(z 2) œ 2x 6y 2z 6; fxx œ 0, fyy œ 0, fzz œ 0, fxy œ 0, fyz œ 3 Ê M œ 3; thus, kE(xß yß z)k Ÿ ˆ "# ‰ (3)(0.01 0.01 0.02)# œ 0.0024 46. f(xß yß z) œ x# xy yz "4 z# at P! (1ß 1ß 2) Ê f(1ß 1ß 2) œ 5; fx œ 2x y, fy œ x z, fz œ y "# z Ê L(xß yß z) œ 5 3(x 1) 3(y 1) 2(z 2) œ 3x 3y 2z 5; fxx œ 2, fyy œ 0, fzz œ "# , fxy œ 1, fxz œ 0, fyz œ 1 Ê M œ 2; thus kE(xß yß z)k Ÿ ˆ "# ‰ (2)(0.01 0.01 0.08)# œ 0.01 47. f(xß yß z) œ xy 2yz 3xz at P! (1ß 1ß 0) Ê f(1ß 1ß 0) œ 1; fx œ y 3z, fy œ x 2z, fz œ 2y 3x Ê L(xß yß z) œ 1 (x 1) (y 1) (z 0) œ x y z 1; fxx œ 0, fyy œ 0, fzz œ 0, fxy œ 1, fxz œ 3, fyz œ 2 Ê M œ 3; thus kE(xß yß z)k Ÿ ˆ "# ‰ (3)(0.01 0.01 0.01)# œ 0.00135 48. f(xß yß z) œ È2 cos x sin (y z) at P! ˆ0ß 0ß 14 ‰ Ê f ˆ0ß 0ß 14 ‰ œ 1; fx œ È2 sin x sin (y z), fy œ È2 cos x cos (y z), fz œ È2 cos x cos (y z) Ê L(xß yß z) œ 1 0(x 0) (y 0) ˆz 14 ‰ œ y z 14 1; fxx œ È2 cos x sin (y z), fyy œ È2 cos x sin (y z), fzz œ È2 cos x sin (y z), fxy œ È2 sin x cos (y z), fxz œ È2 sin x cos (y z), fyz œ È2 cos x sin (y z). The absolute value of each of these second partial derivatives is bounded above by È2 Ê M œ È2; thus kE(xß yß z)k Ÿ ˆ " ‰ ŠÈ2‹ (0.01 0.01 0.01)# œ 0.000636. # 49. Tx (xß y) œ ey ey and Ty (xß y) œ x aey ey b Ê dT œ Tx (xß y) dx Ty (xß y) dy œ aey ey b dx x aey ey b dy Ê dTkÐ#ßln 2Ñ œ 2.5 dx 3.0 dy. If kdxk Ÿ 0.1 and kdyk Ÿ 0.02, then the maximum possible error in the computed value of T is (2.5)(0.1) (3.0)(0.02) œ 0.31 in magnitude. # 21rh dr 1r dh 50. Vr œ 21rh and Vh œ 1r# Ê dV œ Vr dr Vh dh Ê dV œ 2r dr "h dh; now ¸ drr † 100¸ Ÿ 1 and 1 r# h V œ ¸ dh ¸ ¸ dV ¸ ¸ˆ2 drr ‰ (100) ˆ dh ‰ ¸ ¸ dr ¸ ¸ dh ¸ h † 100 Ÿ 1 Ê V † 100 Ÿ h (100) Ÿ 2 r † 100 h † 100 Ÿ 2(1) 1 œ 3 Ê 3% 51. dx x Ÿ 0.02, dy y Ÿ 0.03 dy 2 (a) S œ 2x2 4xy Ê dS œ a4x 4ybdx 4x dy œ a4x2 4xyb dx x 4xy y Ÿ a4x 4xyba0.02b a4xyba0.03b œ 0.04a2x2 b 0.05a4xyb Ÿ 0.05a2x2 b 0.05a4xyb œ a0.05ba2x2 4xyb œ 0.05S 2 dy 2 2 2 (b) V œ x2 y Ê dV œ 2xy dx x2 dy œ 2x2 y dx x x y y Ÿ a2x yba0.02b ax yba0.03b œ 0.07ax yb=0.07V 52. V œ 41 3 3 r 1 r2 h Ê dV œ a41 r2 21 rhbdr 1 r2 dh; r œ 10, h œ 15, dr œ 1 2 and dh œ 0 Ê dV œ Š41a10b2 21 a10ba15b‹ˆ 12 ‰ 1 a10b2 a0b œ 3501 cm3 53. Vr œ 21rh and Vh œ 1r# Ê dV œ Vr dr Vh dh Ê dV œ 21rh dr 1r# dh Ê dVkÐ5ß12Ñ œ 1201 dr 251 dh; kdrk Ÿ 0.1 cm and kdhk Ÿ 0.1 cm Ê dV Ÿ (1201)(0.1) (251)(0.1) œ 14.51 cm$ ; V(5ß 12) œ 3001 cm$ 1 Ê maximum percentage error is „ 14.5 3001 ‚ 100 œ „ 4.83% 54. (a) " R œ " R" " R# Ê R"# dR œ R"# dR" " " R## # " (b) dR œ R# ’Š R"# ‹ dR" Š R"# ‹ dR# “ Ê dRk Ð100 400Ñ œ R# ’ (100) # dR" " ß # sensitive to a variation in R" since " (100)# # dR# Ê dR œ Š RR" ‹ dR" Š RR# ‹ dR# " (400)# dR# “ Ê R will be more " (400)# Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.6 Tangent Planes and Differentials # 835 # (c) From part (a), dR œ Š RR" ‹ dR" Š RR# ‹ dR# so that R" changing from 20 to 20.1 ohms Ê dR" œ 0.1 ohm and R# changing from 25 to 24.9 ohms Ê dR# œ 0.1 ohms; Ê dRk Ð20 25Ñ œ ß œ 0.011 ˆ 100 ‰ 9 ˆ 100 ‰# 9 (20)# (0.1) ˆ 100 ‰# 9 (25)# " R œ " R" " R# Ê Rœ (0.1) ¸ 0.011 ohms Ê percentage change is 100 9 ohms dR ¸ R Ð20ß25Ñ ‚ 100 ‚ 100 ¸ 0.1% 55. A œ xy Ê dA œ x dy y dx; if x y then a 1-unit change in y gives a greater change in dA than a 1-unit change in x. Thus, pay more attention to y which is the smaller of the two dimensions. 56. (a) fx (xß y) œ 2x(y 1) Ê fx (1ß 0) œ 2 and fy (xß y) œ x# Ê fy (1ß 0) œ 1 Ê df œ 2 dx 1 dy Ê df is more sensitive to changes in x dx " (b) df œ 0 Ê 2 dx dy œ 0 Ê 2 dx dy 1 œ 0 Ê dy œ # 57. (a) r# œ x# y# Ê 2r dr œ 2x dx 2y dy Ê dr œ œ „ œ 0.07 5 y y# x# œ „ 0.014 Ê ¸ drr ‚ 100¸ œ ¸ „ dx x y# x# 0.014 5 x r dx y r dy Ê dr|Ð$ß%Ñ œ ˆ 35 ‰ a „ 0.01b ˆ 45 ‰ a „ 0.01b ‚ 100¸ œ 0.28%; d) œ 3 ‰ dy Ê d)|Ð$ß%Ñ œ ˆ 254 ‰ a „ 0.01b ˆ 25 a „ 0.01b œ y ‹ x# # y ˆ ‰ 1 x Š …0.04 25 dx Š x" ‹ y ˆ ‰# 1 x dy „0.03 #5 Ê maximum change in d) occurs when dx and dy have opposite signs (dx œ 0.01 and dy œ 0.01 or vice „0.0028 " ˆ 4 ‰ ¸ d)) ‚ 100¸ œ ¸ 0.927255218 versa) Ê d) œ „#0.07 ‚ 100¸ 5 ¸ „ 0.0028; ) œ tan 3 ¸ 0.927255218 Ê ¸ 0.30% (b) the radius r is more sensitive to changes in y, and the angle ) is more sensitive to changes in x 58. (a) V œ 1r# h Ê dV œ 21rh dr 1r# dh Ê at r œ 1 and h œ 5 we have dV œ 101 dr 1 dh Ê the volume is about 10 times more sensitive to a change in r " (b) dV œ 0 Ê 0 œ 21rh dr 1r# dh œ 2h dr r dh œ 10 dr dh Ê dr œ 10 dh; choose dh œ 1.5 Ê dr œ 0.15 Ê h œ 6.5 in. and r œ 0.85 in. is one solution for ?V ¸ dV œ 0 59. f(aß bß cß d) œ º a b œ ad bc Ê fa œ d, fb œ c, fc œ b, fd œ a Ê df œ d da c db b dc a dd; since c dº kak is much greater than kbk , kck , and kdk , the function f is most sensitive to a change in d. 60. ux œ ey , uy œ xey sin z, uz œ y cos z Ê du œ ey dx axey sin zb dy (y cos z) dz Ê duk ˆ2ßln 3ß 12 ‰ œ 3 dx 7 dy 0 dz œ 3 dx 7 dy Ê magnitude of the maximum possible error Ÿ 3(0.2) 7(0.6) œ 4.8 61. QK œ " # ˆ 2KM ‰"Î# ˆ 2M ‰ , QM œ h h " # ˆ 2KM ‰"Î# ˆ 2K ‰ h h , and Qh œ " # ˆ 2KM ‰"Î# ˆ 2KM ‰ h h# " ˆ 2KM ‰"Î# ˆ 2M ‰ ‰"Î# ˆ 2K ‰ dM "# ˆ 2KM ‰"Î# ˆ 2KM ‰ dh dK "# ˆ 2KM # h h h h h h# "Î# 2K 2KM ˆ 2KM ‰ 2M ‘ h h dK h dM h# dh Ê dQk Ð2ß20ß0Þ0.05Ñ "Î# (2)(2) (2)(2)(20) ’ (2)(2)(20) ’ (2)(20) 0.05 “ 0.05 dK 0.05 dM (0.05)# dh“ œ (0.0125)(800 dK 80 dM Ê dQ œ œ " # œ " # 32,000 dh) Ê Q is most sensitive to changes in h ab sin C Ê Aa œ "# b sin C, Ab œ "# a sin C, Ac œ "# ab cos C Ê dA œ ˆ "# b sin C‰ da ˆ "# a sin C‰ db ˆ "# ab cos C‰ dC; dC œ k2°k œ k0.0349k radians, da œ k0.5k ft, 62. A œ " # db œ k0.5k ft; at a œ 150 ft, b œ 200 ft, and C œ 60°, we see that the change is approximately dA œ "# (200)(sin 60°) k0.5k "# (150)(sin 60°) k0.5k "# (200)(150)(cos 60°) k0.0349k œ „ 338 ft# Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 836 Chapter 14 Partial Derivatives 63. z œ f(xß y) Ê g(xß yß z) œ f(xß y) z œ 0 Ê gx (xß yß z) œ fx (xß y), gy (xß yß z) œ fy (xß y) and gz (xß yß z) œ 1 Ê gx (x! ß y! ß f(x! ß y! )) œ fx (x! ß y! ), gy (x! ß y! ß f(x! ß y! )) œ fy (x! ß y! ) and gz (x! ß y! ß f(x! ß y! )) œ 1 Ê the tangent plane at the point P! is fx (x! ß y! )(x x! ) fy (x! ß y! )(y y! ) [z f(x! ß y! )] œ 0 or z œ fx (x! ß y! )(x x! ) fy (x! ß y! )(y y! ) f(x! ß y! ) 64. ™ f œ 2xi 2yj œ 2(cos t t sin t)i 2(sin t t cos t)j and v œ (t cos t)i (t sin t)j Ê u œ œ (t cos t)i (t sin t)j È(t cos t)# (t sin t)# v kvk œ (cos t)i (sin t)j since t 0 Ê (Du f)P! œ ™ f † u œ 2(cos t t sin t)(cos t) 2(sin t t cos t)(sin t) œ 2 65. ™ f œ 2xi 2yj 2zk œ (2 cos t)i (2 sin t)j 2tk and v œ ( sin t)i (cos t)j k Ê u œ œ ( sin t)i (cos t)j k È(sin t)# (cos t)# 1# t œ Š Èsin t ‹ i Š cos È ‹j 2 2 " È2 k Ê (Du f)P! œ ™ f † u t " œ (2 cos t) Š Èsin2 t ‹ (2 sin t) Š cos È2 ‹ (2t) Š È2 ‹ œ (Du f) ˆ 14 ‰ œ " # " "Î# i "# t"Î# j # t # # " "Î# i # t # # 67. r œ Èti Ètj (2t 1)k Ê v œ v(1) œ Ê (Du f) ˆ 41 ‰ œ 1 2È 2 , (Du f)(0) œ 0 and 4" k ; t œ 1 Ê x œ 1, y œ 1, z œ 1 Ê P! œ (1ß 1ß 1) i "# j "4 k ; f(xß yß z) œ x y z 3 œ 0 Ê ™ f œ 2xi 2yj k Ê ™ f(1ß 1ß 1) œ 2i 2j k ; therefore v œ " # 2t È2 1 2È 2 66. r œ Èti Ètj 4" (t 3)k Ê v œ and v(1) œ v kvk " # " 4 ( ™ f) Ê the curve is normal to the surface "# t"Î# j 2k ; t œ 1 Ê x œ 1, y œ 1, z œ 1 Ê P! œ (1ß 1ß 1) and i j 2k ; f(xß yß z) œ x y z 1 œ 0 Ê ™ f œ 2xi 2yj k Ê ™ f(1ß 1ß 1) œ 2i 2j k ; now va1b † ™ fa1ß 1ß 1b œ 0, thus the curve is tangent to the surface when t œ 1 14.7 EXTREME VALUES AND SADDLE POINTS 1. fx (xß y) œ 2x y 3 œ 0 and fy (xß y) œ x 2y 3 œ 0 Ê x œ 3 and y œ 3 Ê critical point is (3ß 3); # œ 3 0 and fxx 0 Ê local minimum of fxx (3ß 3) œ 2, fyy (3ß 3) œ 2, fxy (3ß 3) œ 1 Ê fxx fyy fxy f(3ß 3) œ 5 2. fx (xß y) œ 2y 10x 4 œ 0 and fy (xß y) œ 2x 4y 4 œ 0 Ê x œ 23 and y œ 43 Ê critical point is ˆ 23 ß 43 ‰ ; # œ 36 0 and fxx 0 Ê local maximum of fxx ˆ 23 ß 43 ‰ œ 10, fyy ˆ 23 ß 43 ‰ œ 4, fxy ˆ 23 ß 43 ‰ œ 2 Ê fxx fyy fxy f ˆ 23 ß 43 ‰ œ 0 3. fx (xß y) œ 2x y 3 œ 0 and fy (xß y) œ x 2 œ 0 Ê x œ 2 and y œ 1 Ê critical point is (2ß 1); # œ 1 0 Ê saddle point fxx (2ß 1) œ 2, fyy (2ß 1) œ 0, fxy (2ß 1) œ 1 Ê fxx fyy fxy ˆ 6 69 ‰ 4. fx (xß y) œ 5y 14x 3 œ 0 and fy (xß y) œ 5x 6 œ 0 Ê x œ 65 and y œ 69 #5 Ê critical point is 5 ß 25 ; # ‰ ˆ 6 69 ‰ ˆ 6 69 ‰ fxx ˆ 65 ß 69 25 œ 14, fyy 5 ß 25 œ 0, fxy 5 ß 25 œ 5 Ê fxx fyy fxy œ 25 0 Ê saddle point 5. fx (xß y) œ 2y 2x 3 œ 0 and fy (xß y) œ 2x 4y œ 0 Ê x œ 3 and y œ 3# Ê critical point is ˆ3ß 32 ‰ ; # œ 4 0 and fxx 0 Ê local maximum of fxx ˆ3ß 32 ‰ œ 2, fyy ˆ3ß 32 ‰ œ 4, fxy ˆ3ß 32 ‰ œ 2 Ê fxx fyy fxy f ˆ3ß 3# ‰ œ 17 # 6. fx (xß y) œ 2x 4y œ 0 and fy (xß y) œ 4x 2y 6 œ 0 Ê x œ 2 and y œ 1 Ê critical point is (2ß 1); # œ 12 0 Ê saddle point fxx (2ß 1) œ 2, fyy (2ß 1) œ 2, fxy (2ß 1) œ 4 Ê fxx fyy fxy Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.7 Extreme Values and Saddle Points 837 7. fx (xß y) œ 4x 3y 5 œ 0 and fy (xß y) œ 3x 8y 2 œ 0 Ê x œ 2 and y œ 1 Ê critical point is (2ß 1); # œ 23 0 and fxx 0 Ê local minimum of f(2ß 1) œ 6 fxx (2ß 1) œ 4, fyy (2ß 1) œ 8, fxy (2ß 1) œ 3 Ê fxx fyy fxy 8. fx (xß y) œ 2x 2y 2 œ 0 and fy (xß y) œ 2x 4y 2 œ 0 Ê x œ 1 and y œ 0 Ê critical point is (1ß 0); # œ 4 0 and fxx 0 Ê local minimum of f(1ß 0) œ 0 fxx (1ß 0) œ 2, fyy (1ß 0) œ 4, fxy (1ß 0) œ 2 Ê fxx fyy fxy 9. fx (xß y) œ 2x 2 œ 0 and fy (xß y) œ 2y 4 œ 0 Ê x œ 1 and y œ 2 Ê critical point is (1ß 2); fxx (1ß 2) œ 2, # œ 4 0 Ê saddle point fyy (1ß 2) œ 2, fxy (1ß 2) œ 0 Ê fxx fyy fxy 10. fx (xß y) œ 2x 2y œ 0 and fy (xß y) œ 2x œ 0 Ê x œ 0 and y œ 0 Ê critical point is (0ß 0); fxx (0ß 0) œ 2, # œ 4 0 Ê saddle point fyy (0ß 0) œ 0, fxy (0ß 0) œ 2 Ê fxx fyy fxy 11. fx axß yb œ 112x 8x È56x2 8y2 16x 31 8 œ 0 and fy axß yb œ 8y È56x2 8y2 16x 31 8 8 # ‰ ˆ 16 ‰ ˆ 16 ‰ fxx ˆ 16 7 ß 0 œ 15 , fyy 7 ß 0 œ 15 , fxy 7 ß 0 œ 0 Ê fxx fyy fxy œ 16 ‰ fˆ 16 7 ß0 œ 7 12. fx axß yb œ 2x 3ax2 y2 b2Î3 œ 0 and fy axß yb œ 2y 3ax2 y2 b2Î3 ‰ œ 0 Ê critical point is ˆ 16 7 ß0 ; 64 225 0 and fxx 0 Ê local maximum of œ 0 Ê there are no solutions to the system fx axß yb œ 0 and fy axß yb œ 0, however, we must also consider where the partials are undefined, and this occurs when x œ 0 and y œ 0 Ê critical point is a0ß 0b. Note that the partial derivatives are defined at every other point other than a0ß 0b. We cannot use the second derivative test, but this is the only possible local maximum, local minimum, or saddle point. faxß yb has a local 3 maximum of fa0ß 0b œ 1 at a0ß 0b since faxß yb œ 1 È x2 y2 Ÿ 1 for all axß yb other than a0ß 0b. 13. fx (xß y) œ 3x# 2y œ 0 and fy (xß y) œ 3y# 2x œ 0 Ê x œ 0 and y œ 0, or x œ 23 and y œ 23 Ê critical points are (0ß 0) and ˆ 23 ß 23 ‰ ; for (0ß 0): fxx (0ß 0) œ 6xk Ð0ß0Ñ œ 0, fyy (0ß 0) œ 6yk Ð0ß0Ñ œ 0, fxy (0ß 0) œ 2 # Ê fxx fyy fxy œ 4 0 Ê saddle point; for ˆ 32 ß 32 ‰ : fxx ˆ 32 ß 32 ‰ œ 4, fyy ˆ 32 ß 32 ‰ œ 4, fxy ˆ 32 ß 32 ‰ œ 2 # Ê fxx fyy fxy œ 12 0 and fxx 0 Ê local maximum of f ˆ 23 ß 32 ‰ œ 170 27 14. fx (xß y) œ 3x# 3y œ 0 and fy (xß y) œ 3x 3y# œ 0 Ê x œ 0 and y œ 0, or x œ 1 and y œ 1 Ê critical points # are (0ß 0) and (1ß 1); for (!ß !): fxx (0ß 0) œ 6xk Ð0ß0Ñ œ 0, fyy (0ß 0) œ 6yk Ð0ß0Ñ œ 0, fxy (0ß 0) œ 3 Ê fxx fyy fxy # œ 9 0 Ê saddle point; for (1ß 1): fxx (1ß 1) œ 6, fyy (1ß 1) œ 6, fxy (1ß 1) œ 3 Ê fxx fyy fxy œ 27 0 and fxx 0 Ê local maximum of f(1ß 1) œ 1 15. fx (xß y) œ 12x 6x# 6y œ 0 and fy (xß y) œ 6y 6x œ 0 Ê x œ 0 and y œ 0, or x œ 1 and y œ 1 Ê critical # points are (0ß 0) and (1ß 1); for (!ß !): fxx (0ß 0) œ 12 12xk Ð0ß0Ñ œ 12, fyy (0ß 0) œ 6, fxy (0ß 0) œ 6 Ê fxx fyy fxy œ 36 0 and fxx 0 Ê local minimum of f(0ß 0) œ 0; for (1ß 1): fxx (1ß 1) œ 0, fyy (1ß 1) œ 6, # fxy (1ß 1) œ 6 Ê fxx fyy fxy œ 36 0 Ê saddle point 16. fx (xß y) œ 3x# 6x œ 0 Ê x œ 0 or x œ 2; fy (xß y) œ 3y# 6y œ 0 Ê y œ 0 or y œ 2 Ê the critical points are (0ß 0), (0ß 2), (2ß 0), and (2ß 2); for (!ß !): fxx (0ß 0) œ 6x 6k Ð0ß0Ñ œ 6, fyy (0ß 0) œ 6y 6k Ð0ß0Ñ œ 6, # fxy (0ß 0) œ 0 Ê fxx fyy fxy œ 36 0 Ê saddle point; for (0ß 2): fxx (0ß 2) œ 6, fyy (0ß 2) œ 6, fxy (0ß 2) œ 0 # Ê fxx fyy fxy œ 36 0 and fxx 0 Ê local minimum of f(0ß 2) œ 12; for (2ß 0): fxx (2ß 0) œ 6, # fyy (2ß 0) œ 6, fxy (2ß 0) œ 0 Ê fxx fyy fxy œ 36 0 and fxx 0 Ê local maximum of f(2ß 0) œ 4; # for (2ß 2): fxx (2ß 2) œ 6, fyy (2ß 2) œ 6, fxy (2ß 2) œ 0 Ê fxx fyy fxy œ 36 0 Ê saddle point Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 838 Chapter 14 Partial Derivatives 17. fx axß yb œ 3x2 3y2 15 œ 0 and fy axß yb œ 6x y 3y2 15 œ 0 Ê critical points are a2ß 1b, a2ß 1b, Š0ß È5‹, and Š0ß È5‹; for a2ß 1b: fxx a2ß 1b œ 6xk a2ß1b œ 12, fyy a2ß 1b œ a6x 6ybk a2ß1b œ 18, fxy a2ß 1b œ 6yk a2ß1b œ 6 # Ê fxx fyy fxy œ 180 0 and fxx 0 Ê local minimum of fa2ß 1b œ 30; for a2ß 1b: fxx a2ß 1b œ 6xk a2ß1b # œ 12, fyy a2ß 1b œ a6x 6ybk a2ß1b œ 18, fxy a2ß 1b œ 6yk a2ß1b œ 6 Ê fxx fyy fxy œ 180 0 and fxx 0 Ê local maximum of fa2ß 1b œ 30; for Š0ß È5‹: fxx Š0ß È5‹ œ 6x¹ œ a6x 6ybk Š0ßÈ5‹ œ 6È5, fxy Š0ß È5‹ œ 6y¹ for Š0ß È5‹: fxx Š0ß È5‹ œ 6x¹ fxy Š0ß È5‹ œ 6y¹ Š0ßÈ5‹ Š0ßÈ5‹ Š0ßÈ5‹ Š0ßÈ5‹ œ 0, fyy Š0ß È5‹ # œ 6È5 Ê fxx fyy fxy œ 180 0 Ê saddle pointà œ 0, fyy Š0ß È5‹ œ a6x 6ybk Š0ßÈ5‹ œ 6È5, # œ 6È5 Ê fxx fyy fxy œ 180 0 Ê saddle point. 18. fx (xß y) œ 6x# 18x œ 0 Ê 6x(x 3) œ 0 Ê x œ 0 or x œ 3; fy (xß y) œ 6y# 6y 12 œ 0 Ê 6(y 2)(y 1) œ 0 Ê y œ 2 or y œ 1 Ê the critical points are (0ß 2), (0ß 1), (3ß 2), and (3ß 1); fxx (xß y) œ 12x 18, fyy (xß y) œ 12y 6, and fxy (xß y) œ 0; for (!ß 2): fxx (0ß 2) œ 18, fyy (0ß 2) œ 18, fxy (0ß 2) œ 0 # Ê fxx fyy fxy œ 324 0 and fxx 0 Ê local maximum of f(0ß 2) œ 20; for (0ß 1): fxx (0ß 1) œ 18, # fyy (0ß 1) œ 18, fxy (0ß 1) œ 0 Ê fxx fyy fxy œ 324 0 Ê saddle point; for (3ß 2): fxx (3ß 2) œ 18, # fyy (3ß 2) œ 18, fxy (3ß 2) œ 0 Ê fxx fyy fxy œ 324 0 Ê saddle point; for (3ß 1): fxx (3ß 1) œ 18, # fyy (3ß 1) œ 18, fxy (3ß 1) œ 0 Ê fxx fyy fxy œ 324 0 and fxx 0 Ê local minimum of f(3ß 1) œ 34 19. fx (xß y) œ 4y 4x$ œ 0 and fy (xß y) œ 4x 4y$ œ 0 Ê x œ y Ê x a1 x# b œ 0 Ê x œ 0, 1, 1 Ê the critical points are (0ß 0), (1ß 1), and (1ß 1); for (!ß !): fxx (0ß 0) œ 12x# k Ð0ß0Ñ œ 0, fyy (0ß 0) œ 12y# k Ð0ß0Ñ œ 0, # fxy (0ß 0) œ 4 Ê fxx fyy fxy œ 16 0 Ê saddle point; for (1ß 1): fxx (1ß 1) œ 12, fyy (1ß 1) œ 12, fxy (1ß 1) œ 4 # Ê fxx fyy fxy œ 128 0 and fxx 0 Ê local maximum of f(1ß 1) œ 2; for (1ß 1): fxx (1ß 1) œ 12, # fyy (1ß 1) œ 12, fxy (1ß 1) œ 4 Ê fxx fyy fxy œ 128 0 and fxx 0 Ê local maximum of f(1ß 1) œ 2 20. fx (xß y) œ 4x$ 4y œ 0 and fy (xß y) œ 4y$ 4x œ 0 Ê x œ y Ê x$ x œ 0 Ê x a1 x# b œ 0 Ê x œ 0, 1, 1 Ê the critical points are (0ß 0), (1ß 1), and (1ß 1); fxx (xß y) œ 12x# , fyy (xß y) œ 12y# , and fxy (xß y) œ 4; # for (!ß 0): fxx (0ß 0) œ 0, fyy (0ß 0) œ 0, fxy (0ß 0) œ 4 Ê fxx fyy fxy œ 16 0 Ê saddle point; for (1ß 1): # fxx (1ß 1) œ 12, fyy (1ß 1) œ 12, fxy (1ß 1) œ 4 Ê fxx fyy fxy œ 128 0 and fxx 0 Ê local minimum of # f("ß 1) œ 2; for (1ß 1): fxx (1ß 1) œ 12, fyy (1ß 1) œ 12, fxy (1ß 1) œ 4 Ê fxx fyy fxy œ 128 0 and fxx 0 Ê local minimum of f(1ß 1) œ 2 21. fx (xß y) œ 2x ax# y# 1b# œ 0 and fy (xß y) œ 2y ax# y# 1b# œ 0 Ê x œ 0 and y œ 0 Ê the critical point is (!ß 0); # # 4x# 2y# 2 , fyy œ ax2x# y#4y 1b$2 , fxy œ ax# 8xy ; fxx (!ß !) œ 2, fyy (0ß 0) y# 1b$ ax# y# 1b$ # fxx fyy fxy œ 4 0 and fxx 0 Ê local maximum of f(0ß 0) œ 1 fxx œ Ê 22. fx (xß y) œ x1# y œ 0 and fy (xß y) œ x 1 y# œ 2, fxy (0ß 0) œ 0 œ 0 Ê x œ 1 and y œ 1 Ê the critical point is (1ß 1); fxx œ fxy œ 1; fxx (1ß 1) œ 2, fyy (1ß 1) œ 2, fxy (1ß 1) œ 1 Ê fxx fyy # fxy 2 x$ , fyy œ 2 y$ œ 3 0 and fxx 2 Ê local minimum of f(1ß 1) œ 3 23. fx (xß y) œ y cos x œ 0 and fy (xß y) œ sin x œ 0 Ê x œ n1, n an integer, and y œ 0 Ê the critical points are (n1ß 0), n an integer (Note: cos x and sin x cannot both be 0 for the same x, so sin x must be 0 and y œ 0); fxx œ y sin x, fyy œ 0, fxy œ cos x; fxx (n1ß 0) œ 0, fyy (n1ß 0) œ 0, fxy (n1ß 0) œ 1 if n is even and fxy (n1ß 0) œ 1 # if n is odd Ê fxx fyy fxy œ 1 0 Ê saddle point. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. , Section 14.7 Extreme Values and Saddle Points 839 24. fx (xß y) œ 2e2x cos y œ 0 and fy (xß y) œ e2x sin y œ 0 Ê no solution since e2x Á 0 for any x and the functions cos y and sin y cannot equal 0 for the same y Ê no critical points Ê no extrema and no saddle points 25. fx axß yb œ a2x 4bex fyy a2ß 0b œ 2 e4 2 y2 4x Ê fxx fyy # fxy œ 0 and fy axß yb œ 2yex œ 4 e8 2 y2 4x œ 0 Ê critical point is a2ß 0b; fxx a2ß 0b œ 0 and fxx 0 Ê local mimimum of fa2ß 0b œ 2 e4 , fxy a2ß 0b œ 0, 1 e4 26. fx axß yb œ yex œ 0 and fy axß yb œ ey ex œ 0 Ê critical point is a0ß 0b; fxx a2ß 0b œ 0, fxy a2ß 0b œ 1, fyy a2ß 0b œ 1 # Ê fxx fyy fxy œ 1 0 Ê saddle point 27. fx axß yb œ 2xey œ 0 and fy axß yb œ 2yey ey ax2 y2 b œ 0 Ê critical points are a0ß 0b and a0ß 2b; for a0ß 0b: fxx a0ß 0b œ 2ey k a0ß0b œ 2, fyy a0ß 0b œ a2ey 4yey ey ax2 y2 bbk a0ß0b œ 2, fxy a0ß 0b œ 2xey k a0ß0b œ 0 # Ê fxx fyy fxy œ 4 0 and fxx 0 Ê local mimimum of fa0ß 0b œ 0; for a0ß 2b: fxx a0ß 2b œ 2ey k a0ß2b œ # fyy a0ß 2b œ a2ey 4yey ey ax2 y2 bbk a0ß2b œ e22 , fxy a0ß 2b œ 2xey k a0ß2b œ 0 Ê fxx fyy fxy œ 2 e2 , e44 0 Ê saddle point 28. fx axß yb œ ex ax2 2x y2 b œ 0 and fy axß yb œ 2yex œ 0 Ê critical points are a0ß 0b and a2ß 0b; for a0ß 0b: fxx a0ß 0b œ ex ax2 4x 2 y2 bk a0ß0b œ 2, fyy a0ß 0b œ 2ex k a0ß0b œ 2, fxy a0ß 0b œ 2yex k a0ß0b œ 0 # Ê fxx fyy fxy œ 4 0 and fxx 0 Ê saddle point; for a2ß 0b: fxx a2ß 0b œ ex ax2 4x 2 y2 bk a2ß0b œ e22 , # fyy a2ß 0b œ 2ex k a2ß0b œ e22 , fxy a2ß 0b œ 2yex k a2ß0b œ 0 Ê fxx fyy fxy œ of fa2ß 0b œ 4 e4 0 and fxx 0 Ê local maximum 4 e2 29. fx axß yb œ 4 2 x œ 0 and fy axß yb œ 1 1 y œ 0 Ê critical point is ˆ 21 , 1‰ ; fxx ˆ 21 , 1‰ œ 8, fyy ˆ 12 , 1‰ œ 1, # œ 8 0 and fxx 0 Ê local maximum of fˆ 12 , 1‰ œ 3 2ln 2 fxy ˆ 12 , 1‰ œ 0 Ê fxx fyy fxy 30. fx axß yb œ 2x 1 xy œ 0 and fy axß yb œ 1 1 xy œ 0 Ê critical point is ˆ 21 , 23 ‰ ; fxx ˆ 21 , 23 ‰ œ 1, fyy ˆ 12 , 32 ‰ œ 1, # œ 2 0 Ê saddle point fxy ˆ 12 , 32 ‰ œ 1 Ê fxx fyy fxy On OA, f(xß y) œ f(0ß y) œ y# 4y 1 on 0 Ÿ y Ÿ 2; f w (0ß y) œ 2y 4 œ 0 Ê y œ 2; f(0ß 0) œ 1 and f(!ß #) œ 3 (ii) On AB, f(xß y) œ f(xß 2) œ 2x# 4x 3 on 0 Ÿ x Ÿ 1; f w (xß 2) œ 4x 4 œ 0 Ê x œ 1; f(0ß 2) œ 3 and f(1ß #) œ 5 (iii) On OB, f(xß y) œ f(xß 2x) œ 6x# 12x 1 on 0 Ÿ x Ÿ 1; endpoint values have been found above; f w (xß 2x) œ 12x 12 œ 0 Ê x œ 1 and y œ 2, but ("ß #) is not an interior point of OB (iv) For interior points of the triangular region, fx (xß y) œ 4x 4 œ 0 and fy (xß y) œ 2y 4 œ 0 Ê x œ 1 and y œ 2, but (1ß 2) is not an interior point of the region. Therefore, the absolute maximum is 1 at (0ß 0) and the absolute minimum is 5 at ("ß #). 31. (i) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 840 Chapter 14 Partial Derivatives On OA, D(xß y) œ D(0ß y) œ y# 1 on 0 Ÿ y Ÿ 4; Dw (0ß y) œ 2y œ 0 Ê y œ 0; D(!ß !) œ 1 and D(!ß %) œ 17 (ii) On AB, D(xß y) œ D(xß 4) œ x# 4x 17 on 0 Ÿ x Ÿ 4; Dw (xß 4) œ 2x 4 œ 0 Ê x œ 2 and (2ß 4) is an interior point of AB; D(#ß %) œ 13 and D(%ß %) œ D(!ß %) œ 17 (iii) On OB, D(xß y) œ D(xß x) œ x# 1 on 0 Ÿ x Ÿ 4; Dw (xß x) œ 2x œ 0 Ê x œ 0 and y œ 0, which is not an interior point of OB; endpoint values have been found above (iv) For interior points of the triangular region, fx (xß y) œ 2x y œ 0 and fy (xß y) œ x 2y œ 0 Ê x œ 0 and y œ 0, which is not an interior point of the region. Therefore, the absolute maximum is 17 at (!ß %) and (%ß %), and the absolute minimum is 1 at (0ß 0). 32. (i) On OA, f(xß y) œ f(!ß y) œ y# on 0 Ÿ y Ÿ 2; f w (0ß y) œ 2y œ 0 Ê y œ 0 and x œ 0; f(0ß 0) œ 0 and f(0ß #) œ 4 (ii) On OB, f(xß y) œ f(xß 0) œ x# on 0 Ÿ x Ÿ 1; f w (xß 0) œ 2x œ 0 Ê x œ 0 and y œ 0; f(0ß 0) œ 0 and f(1ß 0) œ 1 (iii) On AB, f(xß y) œ f(xß 2x 2) œ 5x# 8x 4 on 0 Ÿ x Ÿ 1; f w (xß 2x 2) œ 10x 8 œ 0 Ê x œ 45 and y œ 25 ; f ˆ 45 ß 25 ‰ œ 45 ; endpoint values have been found above. 33. (i) (iv) For interior points of the triangular region, fx (xß y) œ 2x œ 0 and fy (xß y) œ 2y œ 0 Ê x œ 0 and y œ 0, but (!ß 0) is not an interior point of the region. Therefore the absolute maximum is 4 at (0ß 2) and the absolute minimum is 0 at (0ß 0). 34. (i) (ii) On AB, T(xß y) œ T(!ß y) œ y# on 3 Ÿ y Ÿ 3; Tw (0ß y) œ 2y œ 0 Ê y œ 0 and x œ 0; T(0ß 0) œ 0, T(!ß 3) œ 9, and T(!ß 3) œ 9 On BC, T(xß y) œ T(xß 3) œ x# 3x 9 on 0 Ÿ x Ÿ 5; Tw (xß 3) œ 2x 3 œ 0 Ê x œ 3# and y œ 3; T ˆ 3# ß 3‰ œ 27 4 and T(5ß 3) œ 19 (iii) On CD, T(xß y) œ T(5ß y) œ y# 5y 5 on 3 Ÿ y Ÿ 3;Tw (5ß y) œ 2y 5 œ 0 Ê y œ 5# and x œ 5;T ˆ5ß 5# ‰ œ 45 4 , T(&ß 3) œ 11 and T(5ß 3) œ 19 (iv) On AD, T(xß y) œ T(xß 3) œ x# 9x 9 on 0 Ÿ x Ÿ 5; Tw (xß 3) œ 2x 9 œ 0 Ê x œ T ˆ 9# ß 3‰ œ 45 4 , T(!ß 3) œ 9 and T(&ß 3) œ 11 (v) 9 # and y œ 3; For interior points of the rectangular region, Tx (xß y) œ 2x y 6 œ 0 and Ty (xß y) œ x 2y œ 0 Ê x œ 4 and y œ 2 Ê (4ß 2) is an interior critical point with T(4ß 2) œ 12. Therefore the absolute maximum is 19 at (5ß 3) and the absolute minimum is 12 at (4ß 2). Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.7 Extreme Values and Saddle Points 35. (i) (ii) 841 On OC, T(xß y) œ T(xß 0) œ x# 6x 2 on 0 Ÿ x Ÿ 5; Tw (xß 0) œ 2x 6 œ 0 Ê x œ 3 and y œ 0; T(3ß 0) œ 7, T(0ß 0) œ 2, and T(5ß 0) œ 3 On CB, T(xß y) œ T(5ß y) œ y# 5y 3 on 3 Ÿ y Ÿ 0; Tw (5ß y) œ 2y 5 œ 0 Ê y œ 5# and x œ 5; T ˆ5ß 5# ‰ œ 37 4 and T(5ß 3) œ 9 (iii) On AB, T(xß y) œ T(xß 3) œ x# 9x 11 on 0 Ÿ x Ÿ 5; Tw (xß 3) œ 2x 9 œ 0 Ê x œ 9# and y œ 3; T ˆ 9# ß 3‰ œ 37 4 and T(!ß 3) œ 11 (iv) On AO, T(xß y) œ T(!ß y) œ y# 2 on 3 Ÿ y Ÿ 0; Tw (0ß y) œ 2y œ 0 Ê y œ 0 and x œ 0, but (0ß 0) is not an interior point of AO (v) For interior points of the rectangular region, Tx (xß y) œ 2x y 6 œ 0 and Ty (xß y) œ x 2y œ 0 Ê x œ 4 and y œ 2, an interior critical point with T(%ß 2) œ 10. Therefore the absolute maximum is 11 at (!ß 3) and the absolute minimum is 10 at (4ß 2). 36. (i) (ii) On OA, f(xß y) œ f(!ß y) œ 24y# on 0 Ÿ y Ÿ 1; f w (0ß y) œ 48y œ 0 Ê y œ 0 and x œ 0, but (0ß 0) is not an interior point of OA; f(!ß 0) œ 0 and f(!ß 1) œ 24 On AB, f(xß y) œ f(xß 1) œ 48x 32x$ 24 on 0 Ÿ x Ÿ 1; f w (xß 1) œ 48 96x# œ 0 Ê x œ È"2 and y œ 1, or x œ È"2 and y œ 1, but Š È"2 ß 1‹ is not in the interior of AB; f Š È"2 ß 1‹ œ 16È2 24 and f(1ß 1) œ 8 (iii) On BC, f(xß y) œ f("ß y) œ 48y 32 24y# on 0 Ÿ y Ÿ 1; f w ("ß y) œ 48 48y œ 0 Ê y œ 1 and x œ 1, but ("ß ") is not an interior point of BC; f("ß 0) œ 32 and f("ß ") œ 8 (iv) On OC, f(xß y) œ f(xß 0) œ 32x$ on 0 Ÿ x Ÿ 1; f w (xß 0) œ 96x# œ 0 Ê x œ 0 and y œ 0, but (0ß 0) is not an interior point of OC; f(!ß 0) œ 0 and f("ß 0) œ 32 (v) For interior points of the rectangular region, fx (xß y) œ 48y 96x# œ 0 and fy (xß y) œ 48x 48y œ 0 Ê x œ 0 and y œ 0, or x œ "# and y œ "# , but (0ß 0) is not an interior point of the region; f ˆ "# ß "# ‰ œ 2. Therefore the absolute maximum is 2 at ˆ "# ß "# ‰ and the absolute minimum is 32 at (1ß 0). 37. (i) On AB, f(xß y) œ f(1ß y) œ 3 cos y on 14 Ÿ y Ÿ w 1 4 ; 1 4 ; f (1ß y) œ 3 sin y œ 0 Ê y œ 0 and x œ 1; f("ß 0) œ 3, f ˆ1ß 14 ‰ œ (ii) 3È 2 # , and f ˆ1ß 14 ‰ œ 3È 2 # On CD, f(xß y) œ f($ß y) œ 3 cos y on 14 Ÿ y Ÿ f w (3ß y) œ 3 sin y œ 0 Ê y œ 0 and x œ 3; È 3È 2 ˆ 1‰ 3 2 # and f 3ß 4 œ # È2 1‰ # 4 œ # a4x x b on f(3ß 0) œ 3, f ˆ3ß 14 ‰ œ (iii) On BC, f(xß y) œ f ˆxß 1 Ÿ x Ÿ 3; f w ˆxß 14 ‰ œ È2(2 x) œ 0 Ê x œ 2 and y œ f ˆ3ß 14 ‰ œ 3È 2 # ; f ˆ2ß 14 ‰ œ 2È2, f ˆ1ß 14 ‰ œ È2 # w # a4x x b on 1 Ÿ x Ÿ 3; f È È œ 3 # 2 , and f ˆ3ß 14 ‰ œ 3 # 2 (iv) On AD, f(xß y) œ f ˆxß 14 ‰ œ f ˆ2ß 14 ‰ œ 2È2, f ˆ1ß 14 ‰ 1 4 3È 2 # , and ˆxß 14 ‰ œ È2(2 x) œ 0 Ê x œ 2 and y œ 14 ; Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 842 Chapter 14 Partial Derivatives For interior points of the region, fx (xß y) œ (4 2x) cos y œ 0 and fy (xß y) œ a4x x# b sin y œ 0 Ê x œ 2 and y œ 0, which is an interior critical point with f(2ß 0) œ 4. Therefore the absolute maximum is 4 at (v) (2ß 0) and the absolute minimum is 3È 2 # at ˆ3ß 14 ‰ , ˆ3ß 14 ‰ , ˆ1ß 14 ‰ , and ˆ1ß 14 ‰ . On OA, f(xß y) œ f(!ß y) œ 2y 1 on 0 Ÿ y Ÿ 1; f w (0ß y) œ 2 Ê no interior critical points; f(0ß 0) œ 1 and f(0ß 1) œ 3 (ii) On OB, f(xß y) œ f(xß 0) œ 4x 1 on 0 Ÿ x Ÿ 1; f w (xß 0) œ 4 Ê no interior critical points; f(1ß 0) œ 5 (iii) On AB, f(xß y) œ f(xß x 1) œ 8x# 6x 3 on 0 Ÿ x Ÿ 1; f w (xß x 1) œ 16x 6 œ 0 Ê x œ 38 and y œ 58 ; f ˆ 38 ß 58 ‰ œ 15 8 , f(0ß 1) œ 3, and f("ß 0) œ 5 38. (i) (iv) For interior points of the triangular region, fx (xß y) œ 4 8y œ 0 and fy (xß y) œ 8x 2 œ 0 Ê y œ "# and x œ 4" which is an interior critical point with f ˆ 4" ß #" ‰ œ 2. Therefore the absolute maximum is 5 at (1ß 0) and the absolute minimum is 1 at (0ß 0). 39. Let F(aß b) œ 'a a6 x x# b dx where a Ÿ b. The boundary of the domain of F is the line a œ b in the ab-plane, and b F(aß a) œ 0, so F is identically 0 on the boundary of its domain. For interior critical points we have: `F `F # # ` a œ a6 a a b œ 0 Ê a œ 3, 2 and ` b œ a6 b b b œ 0 Ê b œ 3, 2. Since a Ÿ b, there is only one interior critical point (3ß 2) and F(3ß 2) œ 'c3 a6 x x# b dx gives the area under the parabola y œ 6 x x# that is 2 above the x-axis. Therefore, a œ 3 and b œ 2. 40. Let F(aß b) œ 'a a24 2x x# b b "Î$ dx where a Ÿ b. The boundary of the domain of F is the line a œ b and on this line F is identically 0. For interior critical points we have: `F `b # "Î$ œ a24 2b b b `F `a œ a24 2a a# b "Î$ œ 0 Ê a œ 4, 6 and œ 0 Ê b œ 4, 6. Since a Ÿ b, there is only one critical point (6ß 4) and F(6ß 4) œ 'c6 a24 2x x# b dx gives the area under the curve y œ a24 2x x# b 4 "Î$ that is above the x-axis. Therefore, a œ 6 and b œ 4. 41. Tx (xß y) œ 2x 1 œ 0 and Ty (xß y) œ 4y œ 0 Ê x œ " # and y œ 0 with T ˆ "# ß 0‰ œ 4" ; on the boundary x# y# œ 1: T(xß y) œ x# x 2 for 1 Ÿ x Ÿ 1 Ê Tw (xß y) œ 2x 1 œ 0 Ê x œ "# and y œ „ T Š " È3 #ß # ‹ Š "# ß œ È3 # ‹; 9 4 , T Š œ 2 ln " # œ 9 4 " 4 , T(1ß 0) œ 2, and T("ß 0) œ 0 Ê the hottest is 2 ° at Š " È3 #ß # ‹ 2 x " y# ¹ ˆ 1 ß2‰ œ 0 and fy (xß y) œ x œ 2 " 4 " y œ0 Ê xœ " # and y œ 2; fxx ˆ "# ß 2‰ œ 2¸ x# ˆ 12 ß2‰ œ 8, # , fxy ˆ "# ß 2‰ œ 1 Ê fxx fyy fxy œ 1 0 and fxx 0 Ê a local minimum of f ˆ "# ß 2‰ œ 2 ln 2 43. (a) fx (xß y) œ 2x 4y œ 0 and fy (xß y) œ 2y 4x œ 0 Ê x œ 0 and y œ 0; fxx (0ß 0) œ 2, fyy (0ß 0) œ 2, # œ 12 0 Ê saddle point at (0ß 0) fxy (0ß 0) œ 4 Ê fxx fyy fxy (b) fx (xß y) œ 2x 2 œ 0 and fy (xß y) œ 2y 4 œ 0 Ê x œ 1 and y œ 2; fxx (1ß 2) œ 2, fyy (1ß 2) œ 2, # œ 4 0 and fxx 0 Ê local minimum at ("ß #) fxy (1ß 2) œ 0 Ê fxx fyy fxy Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ; and the coldest is "4 ° at ˆ "# ß 0‰ . 42. fx (xß y) œ y 2 fyy ˆ #" ß 2‰ œ È3 " #ß # ‹ È3 # Section 14.7 Extreme Values and Saddle Points 843 (c) fx (xß y) œ 9x# 9 œ 0 and fy (xß y) œ 2y 4 œ 0 Ê x œ „ 1 and y œ 2; fxx (1ß 2) œ 18xk Ð1ß2Ñ œ 18, # œ 36 0 and fxx 0 Ê local minimum at ("ß #); fyy (1ß 2) œ 2, fxy (1ß 2) œ 0 Ê fxx fyy fxy # fxx (1ß 2) œ 18, fyy ("ß 2) œ 2, fxy ("ß 2) œ 0 Ê fxx fyy fxy œ 36 0 Ê saddle point at ("ß 2) 44. (a) (b) (c) (d) (e) (f) Minimum at (0ß 0) since f(xß y) 0 for all other (xß y) Maximum of 1 at (!ß !) since f(xß y) 1 for all other (xß y) Neither since f(xß y) 0 for x 0 and f(xß y) 0 for x 0 Neither since f(xß y) 0 for x 0 and f(xß y) 0 for x 0 Neither since f(xß y) 0 for x 0 and y 0, but f(xß y) 0 for x 0 and y 0 Minimum at (0ß 0) since f(xß y) 0 for all other (xß y) 45. If k œ 0, then f(xß y) œ x# y# Ê fx (xß y) œ 2x œ 0 and fy (xß y) œ 2y œ 0 Ê x œ 0 and y œ 0 Ê (0ß 0) is the only critical point. If k Á 0, fx (xß y) œ 2x ky œ 0 Ê y œ 2k x; fy (xß y) œ kx 2y œ 0 Ê kx 2 ˆ 2k x‰ œ 0 4‰ ˆ ˆ 2‰ Ê kx 4x k œ 0 Ê k k x œ 0 Ê x œ 0 or k œ „ 2 Ê y œ k (0) œ 0 or y œ „ x; in any case (0ß 0) is a critical point. # 46. (See Exercise 45 above): fxx (xß y) œ 2, fyy (xß y) œ 2, and fxy (xß y) œ k Ê fxx fyy fxy œ 4 k# ; f will have a saddle point at (0ß 0) if 4 k# 0 Ê k 2 or k 2; f will have a local minimum at (0ß 0) if 4 k# 0 Ê 2 k 2; the test is inconclusive if 4 k# œ 0 Ê k œ „ 2. 47. No; for example f(xß y) œ xy has a saddle point at (aß b) œ (0ß 0) where fx œ fy œ 0. # 48. If fxx (aß b) and fyy (aß b) differ in sign, then fxx (aß b) fyy (aß b) 0 so fxx fyy fxy 0. The surface must therefore have a saddle point at (aß b) by the second derivative test. 49. We want the point on z œ 10 x# y# where the tangent plane is parallel to the plane x 2y 3z œ 0. To find a normal vector to z œ 10 x# y# let w œ z x# y# 10. Then ™ w œ 2xi 2yj k is normal to z œ 10 x# y# at (xß y). The vector ™ w is parallel to i 2j 3k which is normal to the plane x 2y 3z œ 0 if " ‰ 6xi 6yj 3k œ i 2j 3k or x œ "6 and y œ "3 . Thus the point is ˆ "6 ß "3 ß 10 36 9" ‰ or ˆ 6" ß 3" ß 355 36 . 50. We want the point on z œ x# y# 10 where the tangent plane is parallel to the plane x 2y z œ 0. Let w œ z x# y# 10, then ™ w œ 2xi 2yj k is normal to z œ x# y# 10 at (xß y). The vector ™ w is parallel ‰ to i 2j k which is normal to the plane if x œ "# and y œ 1. Thus the point ˆ "# ß 1ß 4" 1 10‰ or ˆ #" ß 1ß 45 4 is the point on the surface z œ x# y# 10 nearest the plane x 2y z œ 0. 51. daxß yß zb œ Éax 0b2 ay 0b2 az 0b2 Ê we can minimize daxß yß zb by minimizing Daxß yß zb œ x2 y2 z2 ; 3x 2y z œ 6 Ê z œ 6 3x 2y Ê Daxß yb œ x2 y2 a6 3x 2yb2 Ê Dx axß yb œ 2x 6a6 3x 2yb œ 0 and Dy axß yb œ 2y 4a6 3x 2yb œ 0 Ê critical point is ˆ 97 , 67 ‰ Ê z œ 37 ; Dxx ˆ 97 , 67 ‰ œ 20, Dyy ˆ 12 , 1‰ œ 10, Dxy ˆ 12 , 1‰ œ 12 Ê Dxx Dyy D#xy œ 56 0 and Dxx 0 Ê local minimum of dˆ 97 , 67 , 37 ‰ œ 3È14 7 52. daxß yß zb œ Éax 2b2 ay 1b2 az 1b2 Ê we can minimize daxß yß zb by minimizing Daxß yß zb œ ax 2b2 ay 1b2 az 1b2 ; x y z œ 2 Ê z œ x y 2 Ê Daxß yb œ ax 2b2 ay 1b2 ax y 3b2 Ê Dx axß yb œ 2ax 2b 2ax y 3b œ 0 and Dy axß yb œ 2ay 1b 2ax y 3b œ 0 Ê critical point is ˆ 83 , 13 ‰ Ê z œ 13 ; Dxx ˆ 83 , 13 ‰ œ 4, Dyy ˆ 83 , 13 ‰ œ 4, Dxy ˆ 83 , 13 ‰ œ 2 Ê Dxx Dyy D#xy œ 12 0 and Dxx 0 Ê local minimum of dˆ 83 , 13 , 13 ‰ œ È2 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 844 Chapter 14 Partial Derivatives 53. saxß yß zb œ x2 y2 z2 ; x y z œ 9 Ê z œ 9 x y Ê saxß yb œ x2 y2 a9 x yb2 Ê sx axß yb œ 2x 2a9 x yb œ 0 and sy axß yb œ 2y 2a9 x yb œ 0 Ê critical point is a3, 3b Ê z œ 3; sxx a3, 3b œ 4, syy a3, 3b œ 4, sxy a3, 3b œ 2 Ê sxx syy s#xy œ 12 0 and sxx 0 Ê local minimum of sa3, 3, 3b œ 27 54. paxß yß zb œ xyz; x y z œ 3 Ê z œ 3 x y Ê paxß yb œ x ya3 x yb œ 3x y x2 y x y2 Ê px axß yb œ 3y 2xy y2 œ 0 and py axß yb œ 3x x2 2xy œ 0 Ê critical points are a0, 0b, a0, 3b, a3, 0b, and a1, 1b; for a0, 0b Ê z œ 3; pxx a0, 0b œ 0, pyy a0, 0b œ 0, pxy a0, 0b œ 3 Ê pxx pyy p#xy œ 9 0 Ê saddle point; for a0, 3b Ê z œ 0; pxx a0, 3b œ 6, pyy a0, 3b œ 0, pxy a0, 3b œ 3 Ê pxx pyy p#xy œ 9 0 Ê saddle point; for a3, 0b Ê z œ 0; pxx a3, 0b œ 0, pyy a3, 0b œ 6, pxy a3, 0b œ 3 Ê pxx pyy p#xy œ 9 0 Ê saddle point; for a1, 1b Ê z œ 1; pxx a1, 1b œ 2, pyy a1, 1b œ 2, pxy a1, 1b œ 1 Ê pxx pyy p#xy œ 3 0 and pxx 0 Ê local maximum of pa1, 1, 1b œ 1 55. saxß yß zb œ xy yz xz; x y z œ 6 Ê z œ 6 x y Ê saxß yb œ xy ya6 x yb xa6 x yb œ 6x 6y xy x2 y2 Ê sx axß yb œ 6 2x y œ 0 and sy axß yb œ 6 x 2y œ 0 Ê critical point is a2, 2b Ê z œ 2; sxx a2, 2b œ 2, syy a2, 2b œ 2, sxy a2, 2b œ 1 Ê sxx syy s#xy œ 3 0 and sxx 0 Ê local maximum of sa2, 2, 2b œ 12 56. daxß yß zb œ Éax 6b2 ay 4b2 az 0b2 Ê we can minimize daxß yß zb by minimizing Daxß yß zb œ ax 6b2 ay 4b2 z2 ; z œ Èx2 y2 Ê Daxß yb œ ax 6b2 ay 4b2 x2 y2 œ 2x2 2y2 12x 8y 52 Ê Dx axß yb œ 4x 12 œ 0 and Dy axß yb œ 4y 8 œ 0 Ê critical point is a3, 2b Ê z œ È13; Dxx a3, 2b œ 4, Dyy a3, 2b œ 4, Dxy a3, 2b œ 0 Ê Dxx Dyy D# œ 16 0 and Dxx 0 Ê local xy minimum of dŠ3, 2, È13‹ œ È26 57. Vaxß yß zb œ a2xba2yba2zb œ 8xyz; x2 y2 z2 œ 4 Ê z œ È4 x2 y2 Ê Vaxß yb œ 8xyÈ4 x2 y2 , x 0 and y a0, 0b, Š È#3 , 0 Ê Vx axß yb œ # È3 ‹, 32y 16x2 y 8y3 È 4 x2 y2 Š È#3 , È#3 ‹, Š È#3 , Va0ß 0b œ 0 and VŠ È#3 , # È3 ‹ œ 64 ; 3È 3 # È3 ‹, œ 0 and Vy axß yb œ 32x 16x y2 8x3 È 4 x2 y2 œ 0 Ê critical points are and Š È#3 , È#3 ‹. Only a0, 0b and Š È#3 , # È3 ‹ satisfy x 0 and y 0 On x œ 0, 0 Ÿ y Ÿ 2 Ê Va0ß yb œ 8a0byÈ4 02 y2 œ 0, no critical points, Va0ß 0b œ 0, Va0ß 2b œ 0; On y œ 0, 0 Ÿ x Ÿ 2 Ê Vaxß 0b œ 8xa0bÈ4 x2 02 œ 0, no critical points, Va0ß 0b œ 0, 2 Va0ß 2b œ 0; On y œ È4 x2 , 0 Ÿ x Ÿ 2 Ê VŠxß È4 x2 ‹ œ 8xÈ4 x2 Ê4 x2 ŠÈ4 x2 ‹ œ 0 no critical points, Va0ß 2b œ 0, Va2ß 0b œ 0. Thus, there is a maximum volume of 58. Saxß yß zb œ 2xy 2yz 2xz; xyz œ 27 Ê z œ y 0; Sx axß yb œ 2y 54 x2 27 xy Syy a3, 3b œ 4, Dxy a3, 3b œ 2 Ê Dxx Dyy if the box is # È3 ‚ 27 27 Ê Saxß yß zb œ 2xy 2yŠ xy ‹ 2xŠ xy ‹ œ 2xy œ 0 and Sy axß yb œ 2x D#xy 64 3È 3 54 y2 # È3 54 x ‚ 54 y , œ 0 Ê Critical point is a3, 3b Ê z œ 3; Sxx a3, 3b œ 4, œ 12 0 and Dxx 0 Ê local minimum of Sa3ß 3ß 3b œ 54 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. # È3 . x 0, Section 14.7 Extreme Values and Saddle Points 845 59. Let x œ height of the box, y œ width, and z œ length, cut out squares of length x from corner of the material See diagram at right. Fold along the dashed lines to form the box. From the diagram we see that the length of the material is 2x y and the width is 2x z. Thus a2x yba2x zb œ 12 2ˆ6 2 x2 xy‰ . Since Vax, y, zb œ x y z 2x y ˆ 2x y 6 2 x2 xy‰ Vax, yb œ , where x 0, y 2x y 2 3 2 2 ˆ 4 3y 4x y 4x y xy3 ‰ Êzœ Ê Vx ax, yb œ Vy ax, yb œ œ 0 and a2x yb2 2ˆ12x 4 x 4x y x y a2x yb2 2 4 0. 2 2‰ 3 œ 0 Ê critical points are ŠÈ3, 0‹, ŠÈ3, 0‹, Š È13 , and Š È13 , È43 ‹. Only ŠÈ3, 0‹ and Š È13 , 4 È3 ‹ 4 È3 ‹, satisfy x 0 and y 0. For ŠÈ3, 0‹: z œ 0; Vxx ŠÈ3, 0‹ œ 0, # Vyy ŠÈ3, 0‹ œ 2È3, Vxy ŠÈ3, 0‹ œ 4È3 Ê Vxx Vyy Vxy œ 48 0 Ê saddle point. For Š È13 , Vxx Š È13 , 4 È3 ‹ 1 œ 380 È3 , Vyy Š È3 , 4 È3 ‹ Vxx 0 Ê local maximum of VŠ È13 , 2 œ 3È , Vxy Š È13 , 3 4 4 È3 , È3 ‹ œ 4 È3 ‹ 4 # œ 3È Ê Vxx Vyy Vxy œ 3 16 3 4 È3 ‹: zœ 0 and 16 3È 3 60. (a) (i) On x œ 0, f(xß y) œ f(0ß y) œ y# y 1 for 0 Ÿ y Ÿ 1; f w (0ß y) œ 2y 1 œ 0 Ê y œ f ˆ0ß "# ‰ œ 34 , f(0ß 0) œ 1, and f(0ß 1) œ 1 " # and x œ 0; On y œ 1, f(xß y) œ f(xß 1) œ x# x 1 for 0 Ÿ x Ÿ 1; f w (xß 1) œ 2x 1 œ 0 Ê x œ "# and y œ 1, but ˆ "# ß 1‰ is outside the domain; f(0ß 1) œ 1 and f("ß ") œ 3 (ii) (iii) On x œ 1, f(xß y) œ f("ß y) œ y# y 1 for 0 Ÿ y Ÿ 1; f w (1ß y) œ 2y 1 œ 0 Ê y œ "# and x œ 1, but ˆ1ß "# ‰ is outside the domain; f(1ß 0) œ 1 and f("ß ") œ 3 (iv) On y œ 0, f(xß y) œ f(xß 0) œ x# x 1 for 0 Ÿ x Ÿ 1; f w (xß 0) œ 2x 1 œ 0 Ê x œ f ˆ "# ß 0‰ œ 34 ; f(0ß 0) œ 1, and f("ß 0) œ 1 " # and y œ 0; On the interior of the square, fx (xß y) œ 2x 2y 1 œ 0 and fy (xß y) œ 2y 2x 1 œ 0 Ê 2x 2y œ 1 Ê (x y) œ "# . Then f(xß y) œ x# y# 2xy x y 1 œ (x y)# (x y) 1 œ 34 is the absolute (v) minimum value when 2x 2y œ 1. (b) The absolute maximum is f("ß ") œ 3. 61. (a) df dt œ ` f dx ` x dt ` f dy ` y dt œ dx dt dy dt œ 2 sin t 2 cos t œ 0 Ê cos t œ sin t Ê x œ y On the semicircle x# y# œ 4, y (i) 0, we have t œ 1 4 and x œ y œ È2 Ê f ŠÈ2ß È2‹ œ 2È2. At the endpoints, f(2ß 0) œ 2 and f(#ß !) œ 2. Therefore the absolute minimum is f(2ß 0) œ 2 when t œ 1; the absolute maximum is f ŠÈ2ß È2‹ œ 2È2 when t œ 1 . 4 On the quartercircle x# y# œ 4, x 0 and y 0, the endpoints give f(!ß 2) œ 2 and f(#ß 0) œ 2. Therefore the absolute minimum is f(2ß 0) œ 2 and f(!ß 2) œ 2 when t œ 0, 1# respectively; the absolute (ii) maximum is f ŠÈ2ß È2‹ œ 2È2 when t œ (b) (i) dg dt œ ` g dx ` x dt ` g dy ` y dt œy dx dt x dy dt 31 4 . œ 4 sin# t 4 cos# t œ 0 Ê cos t œ „ sin t Ê x œ „ y. On the semicircle x# y# œ 4, y tœ 1 4 0, we obtain x œ y œ È2 at t œ 1 4 and x œ È2, y œ È2 at . Then g ŠÈ2ß È2‹ œ 2 and g ŠÈ2ß È2‹ œ 2. At the endpoints, g(2ß 0) œ g(#ß 0) œ 0. Therefore the absolute minimum is g ŠÈ2ß È2‹ œ 2 when t œ g ŠÈ2 ß È2‹ œ 2 when t œ 1 4 31 4 ; the absolute maximum is . Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 4 È3 ; 846 Chapter 14 Partial Derivatives On the quartercircle x# y# œ 4, x 0 and y 0, the endpoints give g(!ß 2) œ 0 and g(#ß 0) œ 0. Therefore the absolute minimum is g(2ß 0) œ 0 and g(!ß 2) œ 0 when t œ 0, 1# respectively; the absolute (ii) maximum is g ŠÈ2ß È2‹ œ 2 when t œ dh dt (c) œ ` h dx ` x dt ` h dy ` y dt 1 4 . dy œ 4x dx dt 2y dt œ (8 cos t)(2 sin t) (4 sin t)(2 cos t) œ 8 cos t sin t œ 0 Ê t œ 0, 1# , 1 yielding the points (2ß 0), (0ß 2) for 0 Ÿ t Ÿ 1. On the semicircle x# y# œ 4, y 0 we have h(2ß 0) œ 8, h(0ß 2) œ 4, and h(2ß 0) œ 8. Therefore, the absolute minimum is h(!ß 2) œ 4 when t œ 1# ; the absolute maximum is h(2ß 0) œ 8 and h(2ß 0) œ 8 (i) when t œ 0, 1 respectively. On the quartercircle x# y# œ 4, x (ii) 0 and y 0 the absolute minimum is h(0ß 2) œ 4 when t œ absolute maximum is h(2ß 0) œ 8 when t œ 0. df dt 62. (a) (i) œ ` f dx ` x dt ` f dy ` y dt 1 4 x# 9 y# 4 œ 1, y 0, f(xß y) œ 2x 3y œ 6 cos t 6 sin t œ È 1 4 . On the quarter ellipse, at the endpoints f(0ß 2) œ 6 and f(3ß 0) œ 6. The absolute minimum is f(3ß 0) œ 6 È and f(0ß 2) œ 6 when t œ 0, 1 respectively; the absolute maximum is f Š 3 2 ß È2‹ œ 6È2 when t œ 1 . (ii) # ` g dy dx œ `` gx dx dt ` y dt œ y dt Ê t œ 14 , 341 for 0 Ÿ t Ÿ dg dt x dy dt # 1. È 31 4 . At the endpoints, g(3ß 0) œ g($ß 0) œ 0. The absolute minimum is È 31 4 ; the absolute maximum is g Š 3 # 2 ß È2‹ œ 3 when t œ # dh dt œ ` h dx ` x dt Ê t œ 0, (i) (ii) œ (ii) , and È 1 4 . On the quarter ellipse, at the endpoints g(!ß 2) œ 0 and g($ß 0) œ 0. The absolute minimum is g(3ß 0) œ 0 È and g(0ß 2) œ 0 at t œ 0, 1 respectively; the absolute maximum is g Š 3 2 ß È2‹ œ 3 when t œ 1 . (ii) (i) 1 4 È g Š 3 # 2 ß È2‹ œ 3 when t œ df dt # œ (2 sin t)(3 sin t) (3 cos t)(2 cos t) œ 6 acos t sin tb œ 6 cos 2t œ 0 g Š 3 # 2 ß È2‹ œ 3 when t œ 63. 4 # On the semi-ellipse, g(xß y) œ xy œ 6 sin t cos t. Then g Š 3 # 2 ß È2‹ œ 3 when t œ (i) (c) œ 6È 2 . At the endpoints, f(3ß 0) œ 6 and f(3ß 0) œ 6. The absolute minimum is f(3ß 0) œ 6 when t œ 1; the absolute maximum is f Š 3 # 2 ß È2‹ œ 6È2 when t œ (b) 1 4 for 0 Ÿ t Ÿ 1. È È 6 Š #2 ‹ 6 Š #2 ‹ ; the dy œ 2 dx dt 3 dt œ 6 sin t 6 cos t œ 0 Ê sin t œ cos t Ê t œ On the semi-ellipse, at t œ 1 # 1 # ` h dy ` y dt œ 2x dx dt 6y # dy dt 4 œ (6 cos t)(3 sin t) (12 sin t)(2 cos t) œ 6 sin t cos t œ 0 , 1 for 0 Ÿ t Ÿ 1, yielding the points (3ß 0), (0ß 2), and (3ß 0). On the semi-ellipse, y 0 so that h(3ß 0) œ 9, h(0ß 2) œ 12, and h(3ß 0) œ 9. The absolute minimum is h(3ß 0) œ 9 and h(3ß 0) œ 9 when t œ 0, 1 respectively; the absolute maximum is h(!ß 2) œ 12 when t œ On the quarter ellipse, the absolute minimum is h(3ß 0) œ 9 when t œ 0; the absolute maximum is h(!ß 2) œ 12 when t œ 1# . ` f dx ` x dt ` f dy ` y dt 1 # dy œ y dx dt x dt " " x œ 2t and y œ t 1 Ê df dt œ (t 1)(2) (2t)(1) œ 4t 2 œ 0 Ê t œ # Ê x œ 1 and y œ # with f ˆ1ß "# ‰ œ "# . The absolute minimum is f ˆ1ß "# ‰ œ "# when t œ "# ; there is no absolute maximum. For the endpoints: t œ 1 Ê x œ 2 and y œ 0 with f(2ß 0) œ 0; t œ 0 Ê x œ 0 and y œ 1 with f(!ß 1) œ 0. The absolute minimum is f ˆ1ß "# ‰ œ "# when t œ "# ; the absolute maximum is f(0ß 1) œ 0 and f(#ß 0) œ 0 when t œ 1, 0 respectively. (iii) There are no interior critical points. For the endpoints: t œ 0 Ê x œ 0 and y œ 1 with f(0ß 1) œ 0; t œ 1 Ê x œ 2 and y œ 2 with f(2ß 2) œ 4. The absolute minimum is f(0ß 1) œ 0 when t œ 0; the absolute maximum is f(2ß 2) œ 4 when t œ 1. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. . Section 14.7 Extreme Values and Saddle Points df dt 64. (a) ` f dx ` x dt œ ` f dy ` y dt dy œ 2x dx dt 2y dt 4 4 x œ t and y œ 2 2t Ê df dt œ (2t)(1) 2(2 2t)(2) œ 10t 8 œ 0 Ê t œ 5 Ê x œ 5 and y œ 4 f ˆ 45 ß 25 ‰ œ "#65 25 œ 45 . The absolute minimum is f ˆ 45 ß 25 ‰ œ 45 when t œ 45 ; there is no absolute (i) 2 5 with maximum along the line. For the endpoints: t œ 0 Ê x œ 0 and y œ 2 with f(0ß 2) œ 4; t œ 1 Ê x œ 1 and y œ 0 with f(1ß 0) œ 1. The absolute minimum is f ˆ 45 ß 25 ‰ œ 45 at the interior critical point when t œ 45 ; the absolute maximum is (ii) f(0ß 2) œ 4 at the endpoint when t œ 0. œ dg dt (b) ` g dx ` x dt ` g dy ` y dt œ ’ ax#2xy# b# “ ’ ax#2yy# b# “ dx dt dy dt x œ t and y œ 2 2t Ê x# y# œ 5t# 8t 4 Ê (i) # œ a5t# 8t 4b (10t 8) œ 0 Ê t œ maximum is g ˆ 45 ß 25 ‰ œ 5 4 when t œ 4 5 4 5 dg dt # œ a5t# 8t 4b [(2t)(1) (2)(2 2t)(2)] Ê xœ 4 5 and y œ " 4 The absolute minimum is g(0ß 2) œ with g ˆ 45 ß 25 ‰ œ " ˆ 45 ‰ œ 5 4 . The absolute ; there is no absolute minimum along the line since x and y can be as large as we please. For the endpoints: t œ 0 Ê x œ 0 and y œ 2 with g(0ß 2) œ (ii) 2 5 " 4 ; t œ 1 Ê x œ 1 and y œ 0 with g(1ß 0) œ 1. when t œ 0; the absolute maximum is g ˆ 45 ß 52 ‰ œ 45 when t œ 54 . 65. w œ am x1 b y1 b2 am x2 b y2 b2 â am xn b yn b2 w Ê `` m œ 2am x1 b y1 bax1 b 2am x2 b y2 bax2 b â 2am xn b yn baxn b Ê `w `m `w `b œ 2am x1 b y1 ba1b 2am x2 b y2 ba1b â 2am xn b yn ba1b œ 0 Ê 2am x1 b y1 bax1 b am x2 b y2 bax2 b â am xn b yn baxn b‘ œ 0 Ê m x21 b x1 x1 y1 m x#2 b x2 x2 y2 â m xn2 b xn xn yn œ 0 Ê max21 x2# â xn2 b bax1 x2 â xn b ax1 y1 x2 y2 â xn yn b œ 0 n n n k œ1 k œ1 k œ1 Ê m! ax2k b b! xk ! axk yk b œ 0 `w `b œ 0 Ê 2am x1 b y1 b am x2 b y2 b â am xn b yn b‘ œ 0 Ê m x1 b y1 m x2 b y2 â m xn b yn œ 0 Ê max1 x2 â xn b ab b â bb ay1 y2 â yn b œ 0 n n n n n k œ1 k œ1 k œ1 k œ1 k œ1 n n kœ1 n kœ 1 n n n k œ1 k œ1 k œ1 Ê m ! xk b ! 1 ! yk œ 0 Ê m ! xk bn ! yk œ 0 Ê b œ 1n Œ ! yk m! xk . Substituting for b in the equation obtained for `w `m n we get m ! ax2k b 1n Œ ! yk m! xk ! xk ! axk yk b œ 0. n k œ1 n n k œ1 n n k œ1 kœ1 Multiply both sides by n to obtain m n ! ax2k b Œ ! yk m! xk ! xk n ! axk yk b œ 0 k œ1 n n k œ1 k œ1 k œ1 n 2 n k œ1 n Ê m n ! ax2k b Œ ! xk Œ ! yk mŒ ! xk n ! axk yk b œ 0 n k œ1 2 n k œ1 kœ1 n n n k œ1 k œ1 k œ1 n n n Ê m n ! ax2k b mŒ ! xk œ n ! axk yk b Œ ! xk Œ ! yk kœ1 kœ1 n 2 n Ê m–n! ax2k b Œ ! xk — œ n ! axk yk b Œ ! xk Œ ! yk k œ1 k œ1 n Êmœ k œ1 n n n ! axk yk bŒ ! xk Œ ! yk kœ1 kœ1 n n kœ1 kœ1 kœ1 2 n! ax2k bŒ ! xk k œ1 n œ n kœ1 n Œ ! xk Œ ! yk n ! axk yk b kœ1 kœ1 n kœ1 2 n 2 Œ ! x k n ! ax k b kœ1 kœ1 To show that these values for m and b minimize the sum of the squares of the distances, use second derivative test. ` 2w ` m2 n œ 2 x21 2 x#2 â 2 x2n œ 2 ! ax2k b; k œ1 ` 2w `m `b n œ 2 x1 2 x2 â 2 xn œ 2! xk ; k œ1 ` 2w ` b2 œ 2 2 â 2 œ 2n Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 847 848 Chapter 14 Partial Derivatives 2 n n kœ1 kœ1 # n n kœ1 k œ1 2 The discriminant is: Š `` mw2 ‹Š `` bw2 ‹ Š ``m w` b ‹ œ ”2 ! ax2k b•a2 nb ”2 ! xk • œ 4–n ! ax2k b Œ ! xk —. 2 n 2 2 2 n Now, n ! ax2k b Œ ! xk œ nax12 x#2 â x#n b ax1 x2 â xn bax1 x2 â xn b k œ1 kœ1 2 œ n x# â n x#n x21 x1 x2 â x1 xn x2 x1 x2# â x2 xn xn x1 xn x2 â x#n œ an 1b x21 an 1b x2# â an 1b x#n 2 x1 x2 2 x1 x3 â 2 x1 xn 2 x2 x3 â 2 x2 xn â 2 xn1 xn œ a x21 2 x1 x2 x#2 b a x12 2 x1 x3 x23 b â ax21 2 x1 xn xn# b ax2# 2 x2 x3 x23 b â a x#2 2 x2 xn xn# b â ax2n1 2 xn1 xn x#n b œ ax1 x2 b2 ax1 x3 b2 â ax1 xn b2 ax2 x3 b2 â ax2 xn b2 â axn1 xn b2 0. 2 n n 2 2 2 2 Thus we have : Š `` mw2 ‹Š `` bw2 ‹ Š ``m w` b ‹ œ 4–n ! ax2k b Œ ! xk — 4a0b œ 0. If x1 œ x2 œ â œ xn then kœ1 k œ1 n x21 2 Š `` mw2 ‹Š `` bw2 ‹ Š ``m w` b ‹ œ 0. Also, 2 2 2 ` 2w ` m2 n œ 2 ! ax2k b k œ1 ` 2w ` m2 0. If x1 œ x2 œ â œ xn œ 0, then œ 0. 2 Provided that at least one xi is nonzero and different from the rest of xj , j Á i, then Š `` mw2 ‹Š `` bw2 ‹ Š ``m w` b ‹ 0 and 2 ` 2w ` m2 bœ Ê 67. m œ bœ Ê 68. m œ Ê 2 0 Ê the values given above for m and b minimize w. 66. m œ bœ 2 (0)(5) 3(6) 3 (0)# 3(8) œ 4 and " 3 ‘ 5 3 5 4 (0) œ 3 y œ 34 x 53 ; y¸ xœ4 œ 14 3 (2)(1) 3("4) œ 20 (2)# 3(10) 13 and " 20 9 ˆ ‰ ‘ 3 1 13 (2) œ 13 9 ¸ y œ 20 13 x 13 ; y xœ4 œ (3)(5) 3(8) 3 (3)# 3(5) œ 2 and " 3 ‘ 1 3 5 2 (3) œ 6 y œ 32 x 16 ; y¸ xœ4 œ 37 6 71 13 k 1 2 3 D xk 2 0 2 0 yk 0 2 3 5 x#k 4 0 4 8 xk yk 0 0 6 6 k 1 2 3 D xk 1 0 3 2 yk 2 1 4 1 x#k 1 0 9 10 xk yk 2 0 12 14 k 1 2 3 D xk 0 1 2 3 yk 0 2 3 5 x#k 0 1 4 5 xk yk 0 2 6 8 69-74. Example CAS commands: Maple: f := (x,y) -> x^2+y^3-3*x*y; x0,x1 := -5,5; y0,y1 := -5,5; plot3d( f(x,y), x=x0..x1, y=y0..y1, axes=boxed, shading=zhue, title="#69(a) (Section 14.7)" ); plot3d( f(x,y), x=x0..x1, y=y0..y1, grid=[40,40], axes=boxed, shading=zhue, style=patchcontour, title="#69(b) (Section 14.7)" ); fx := D[1](f); # (c) fy := D[2](f); crit_pts := solve( {fx(x,y)=0,fy(x,y)=0}, {x,y} ); fxx := D[1](fx); # (d) fxy := D[2](fx); Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.8 Lagrange Multipliers 849 fyy := D[2](fy); discr := unapply( fxx(x,y)*fyy(x,y)-fxy(x,y)^2, (x,y) ); for CP in {crit_pts} do # (e) eval( [x,y,fxx(x,y),discr(x,y)], CP ); end do; # (0,0) is a saddle point # ( 9/4, 3/2) is a local minimum Mathematica: (assigned functions and bounds will vary) Clear[x,y,f] f[x_,y_]:= x2 y3 3x y xmin= 5; xmax= 5; ymin= 5; ymax= 5; Plot3D[f[x,y], {x, xmin, xmax}, {y, ymin, ymax}, AxesLabel Ä {x, y, z}] ContourPlot[f[x,y], {x, xmin, xmax}, {y, ymin, ymax}, ContourShading Ä False, Contours Ä 40] fx= D[f[x,y], x]; fy= D[f[x,y], y]; critical=Solve[{fx==0, fy==0},{x, y}] fxx= D[fx, x]; fxy= D[fx, y]; fyy= D[fy, y]; discriminant= fxx fyy fxy2 {{x, y}, f[x, y], discriminant, fxx} /.critical 14.8 LAGRANGE MULTIPLIERS 1. ™ f œ yi xj and ™ g œ 2xi 4yj so that ™ f œ - ™ g Ê yi xj œ -(2xi 4yj) Ê y œ 2x- and x œ 4yÊ x œ 8x-# Ê - œ „ È2 4 or x œ 0. CASE 1: If x œ 0, then y œ 0. But (0ß 0) is not on the ellipse so x Á 0. CASE 2: x Á 0 Ê - œ „ È2 4 Therefore f takes on its extreme values at Š „ are „ 2. È2 # # Ê x œ „ È2y Ê Š „ È2y‹ 2y# œ 1 Ê y œ „ "# . È2 " 2 ß #‹ and Š „ È2 " 2 ß #‹ . The extreme values of f on the ellipse . ™ f œ yi xj and ™ g œ 2xi 2yj so that ™ f œ - ™ g Ê yi xj œ -(2xi 2yj) Ê y œ 2x- and x œ 2yÊ x œ 4x-# Ê x œ 0 or - œ „ 12 . CASE 1: If x œ 0, then y œ 0. But (0ß 0) is not on the circle x# y# 10 œ 0 so x Á 0. CASE 2: x Á 0 Ê - œ „ 12 Ê y œ 2x ˆ „ "# ‰ œ „ x Ê x# a „ xb# 10 œ 0 Ê x œ „ È5 Ê y œ „ È5. Therefore f takes on its extreme values at Š „ È5ß È5‹ and Š „ È5ß È5‹ . The extreme values of f on the circle are 5 and 5. 3. ™ f œ 2xi 2yj and ™ g œ i 3j so that ™ f œ - ™ g Ê 2xi 2yj œ -(i 3j) Ê x œ -# and y œ 3#Ê ˆ -# ‰ 3 ˆ 3#- ‰ œ 10 Ê - œ 2 Ê x œ 1 and y œ 3 Ê f takes on its extreme value at (1ß 3) on the line. The extreme value is f("ß $) œ 49 1 9 œ 39. 4. ™ f œ 2xyi x# j and ™ g œ i j so that ™ f œ - ™ g Ê 2xyi x# j œ -(i j) Ê 2xy œ - and x# œ Ê 2xy œ x# Ê x œ 0 or 2y œ x. CASE 1: If x œ 0, then x y œ 3 Ê y œ 3. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 850 Chapter 14 Partial Derivatives CASE 2: If x Á 0, then 2y œ x so that x y œ 3 Ê 2y y œ 3 Ê y œ 1 Ê x œ 2. Therefore f takes on its extreme values at (!ß 3) and (2ß "). The extreme values of f are f(0ß 3) œ 0 and f(2ß 1) œ 4. 5. We optimize f(xß y) œ x# y# , the square of the distance to the origin, subject to the constraint g(xß y) œ xy# 54 œ 0. Thus ™ f œ 2xi 2yj and ™ g œ y# i 2xyj so that ™ f œ - ™ g Ê 2xi 2yj œ - ay# i 2xyjb Ê 2x œ -y# and 2y œ 2-xy. CASE 1: If y œ 0, then x œ 0. But (0ß 0) does not satisfy the constraint xy# œ 54 so y Á 0. CASE 2: If y Á 0, then 2 œ 2-x Ê x œ -" Ê 2 ˆ -" ‰ œ -y# Ê y# œ -2# . Then xy# œ 54 Ê ˆ -" ‰ ˆ -2# ‰ œ 54 Ê -$ œ " Ê - œ " Ê x œ 3 and y# œ 18 Ê x œ 3 and y œ „ 3È2. 27 3 Therefore Š$ß „ 3È2‹ are the points on the curve xy# œ 54 nearest the origin (since xy# œ 54 has points increasingly far away as y gets close to 0, no points are farthest away). 6. We optimize f(xß y) œ x# y# , the square of the distance to the origin subject to the constraint g(xß y) œ x# y 2 œ 0. Thus ™ f œ 2xi 2yj and ™ g œ 2xyi x# j so that ™ f œ - ™ g Ê 2x œ 2xy- and 2y œ x# - Ê - œ 2y x# , since 2y x œ 0 Ê y œ 0 (but g(0ß 0) Á 0). Thus x Á 0 and 2x œ 2xy ˆ x# ‰ Ê x# œ 2y# Ê a2y# b y 2 œ 0 Ê y œ 1 (since y 0) Ê x œ „ È2 . Therefore Š „ È2ß 1‹ are the points on the curve x# y œ 2 nearest the origin (since x# y œ 2 has points increasingly far away as x gets close to 0, no points are farthest away). 7. (a) ™ f œ i j and ™ g œ yi xj so that ™ f œ - ™ g Ê i j œ -(yi xj) Ê 1 œ -y and 1 œ -x Ê y œ xœ " - Ê " -# œ 16 Ê - œ „ " 4. Use - œ " 4 " - and since x 0 and y 0. Then x œ 4 and y œ 4 Ê the minimum value is 8 at the point (4ß 4). Now, xy œ 16, x 0, y 0 is a branch of a hyperbola in the first quadrant with the x-and y-axes as asymptotes. The equations x y œ c give a family of parallel lines with m œ 1. As these lines move away from the origin, the number c increases. Thus the minimum value of c occurs where x y œ c is tangent to the hyperbola's branch. (b) ™ f œ yi xj and ™ g œ i j so that ™ f œ - ™ g Ê yi xj œ -(i j) Ê y œ - œ x y y œ 16 Ê y œ 8 Ê x œ 8 Ê f()ß )) œ 64 is the maximum value. The equations xy œ c (x 0 and y 0 or x 0 and y 0 to get a maximum value) give a family of hyperbolas in the first and third quadrants with the x- and y-axes as asymptotes. The maximum value of c occurs where the hyperbola xy œ c is tangent to the line x y œ 16. 8. Let f(xß y) œ x# y# be the square of the distance from the origin. Then ™ f œ 2xi 2yj and ™ g œ (2x y)i (2y x)j so that ™ f œ - ™ g Ê 2x œ -(2x y) and 2y œ -(2y x) Ê 2y 2yx œ- Ê 2x œ Š 2y2yx ‹ (2x y) Ê x(2y x) œ y(2x y) Ê x# œ y# Ê y œ „ x. CASE 1: y œ x Ê x# x(x) x# 1 œ 0 Ê x œ „ " È3 and y œ x. CASE 2: y œ x Ê x# x(x) (x)# 1 œ 0 Ê x œ „ 1 and y œ x. Thus f Š È"3 ß È"3 ‹ œ 2 3 œ f Š È"3 ß È"3 ‹ and f(1ß 1) œ 2 œ f(1ß 1). Therefore the points (1ß 1) and (1ß 1) are the farthest away; Š È"3 ß È"3 ‹ and Š È"3 ß È"3 ‹ are the closest points to the origin. 9. V œ 1r# h Ê 161 œ 1r# h Ê 16 œ r# h Ê g(rß h) œ r# h 16; S œ 21rh 21r# Ê ™ S œ (21h 41r)i 21rj and ™ g œ 2rhi r# j so that ™ S œ - ™ g Ê (21rh 41r)i 21rj œ - a2rhi r# jb Ê 21rh 41r œ 2rh- and 21r œ -r# Ê r œ 0 or - œ 2r1 . But r œ 0 gives no physical can, so r Á 0 Ê - œ 2r1 Ê 21h 41r œ 2rh ˆ 2r1 ‰ Ê 2r œ h Ê 16 œ r# (2r) Ê r œ 2 Ê h œ 4; thus r œ 2 cm and h œ 4 cm give the only extreme surface area of 241 cm# . Since r œ 4 cm and h œ 1 cm Ê V œ 161 cm$ and S œ 401 cm# , which is a larger surface area, then 241 cm# must be the minimum surface area. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.8 Lagrange Multipliers 851 10. For a cylinder of radius r and height h we want to maximize the surface area S œ 21rh subject to the constraint # g(rß h) œ r# ˆ h# ‰ a# œ 0. Thus ™ S œ 21hi 21rj and ™ g œ 2ri h# j so that ™ S œ - ™ g Ê 21h œ 2-r and 21r œ -h # Ê 1h r 4r# 4 œ - and 21r œ ˆ 1rh ‰ ˆ #h ‰ Ê 4r# œ h# Ê h œ 2r Ê r# œ a# Ê 2r# œ a# Ê r œ a È2 Ê h œ aÈ2 Ê S œ 21 Š Èa2 ‹ ŠaÈ2‹ œ 21a# . # # x 11. A œ (2x)(2y) œ 4xy subject to g(xß y) œ 16 y9 1 œ 0; ™ A œ 4yi 4xj and ™ g œ x8 i 2y 9 j so that ™ A 2y 2y 32y x x ‰ ˆ 32y ‰ œ - ™ g Ê 4yi 4xj œ - ˆ 8 i 9 j‰ Ê 4y œ ˆ 8 ‰ - and 4x œ ˆ 9 ‰ - Ê - œ x and 4x œ ˆ 2y 9 x Ê y œ „ 34 x Ê Then y œ 3 4 x# 16 Š2È2‹ œ ˆ „43 x‰# œ 1 Ê x# 9 3È 2 # , so the length is 12. P œ 4x 4y subject to g(xß y) œ x# a# y# b# and height œ 2y œ 2b# È a# b# 2x œ 4È2 and the width is 2y œ 3È2. 1 œ 0; ™ P œ 4i 4j and ™ g œ ‰ ˆ 2y ‰ Ê 4 œ ˆ 2x a# - and 4 œ b# - Ê - œ œ 1 Ê aa# b# b x# œ a% Ê x œ œ 8 Ê x œ „ 2È2 . We use x œ 2È2 since x represents distance. 2a# x a# È a# b# # 2x a# i # b ‰ 2a and 4 œ ˆ 2y b# Š x ‹ Ê y œ Š a# ‹ x Ê # , since x 0 Ê y œ Š ba# ‹ x œ Ê perimeter is P œ 4x 4y œ 4a# 4b# È a# b# b# È a# b# 2y b# x# a# j so that ™ P œ - ™ g # # Š ba# ‹ x# b# œ1 Ê Ê width œ 2x œ x# a# b# x# a% 2a# È a# b# œ 4Èa# b# 13. ™ f œ 2xi 2yj and ™ g œ (2x 2)i (2y 4)j so that ™ f œ - ™ g œ 2xi 2yj œ -[(2x 2)i (2y 4)j] 2# # Ê 2x œ -(2x 2) and 2y œ -(2y 4) Ê x œ - 1 and y œ -1 , - Á 1 Ê y œ 2x Ê x 2x (2x) 4(2x) œ 0 Ê x œ 0 and y œ 0, or x œ 2 and y œ 4. Therefore f(0ß 0) œ 0 is the minimum value and f(2ß 4) œ 20 is the maximum value. (Note that - œ 1 gives 2x œ 2x 2 or ! œ 2, which is impossible.) 14. ™ f œ 3i j and ™ g œ 2xi 2yj so that ™ f œ - ™ g Ê 3 œ 2-x and 1 œ 2-y Ê - œ # Ê y œ x3 Ê x# ˆ x3 ‰ œ 4 Ê 10x# œ 36 Ê x œ „ yœ 2 È10 . Therefore f Š È610 ß È210 ‹ œ 20 È10 6 È10 Ê xœ 6 È10 3 2x 3 ‰ and 1 œ 2 ˆ 2x y and y œ È210 , or x œ È610 and 6 œ 2È10 6 ¸ 12.325 is the maximum value, and f Š È610 ß È210 ‹ œ 2È10 6 ¸ 0.325 is the minimum value. 15. ™ T œ (8x 4y)i (4x 2y)j and g(xß y) œ x# y# 25 œ 0 Ê ™ g œ 2xi 2yj so that ™ T œ - ™ g Ê (8x 4y)i (4x 2y)j œ -(2xi 2yj) Ê 8x 4y œ 2-x and 4x 2y œ 2-y Ê y œ -2x1 , - Á 1 Ê 8x 4 ˆ -2x1 ‰ œ 2-x Ê x œ 0, or - œ 0, or - œ 5. CASE 1: x œ 0 Ê y œ 0; but (0ß 0) is not on x# y# œ 25 so x Á 0. CASE 2: - œ 0 Ê y œ 2x Ê x# (2x)# œ 25 Ê x œ „ È5 and y œ 2x. CASE 3: - œ 5 Ê y œ and y œ È5 . 2x 4 # œ #x Ê x# ˆ #x ‰ œ 25 Ê x œ „ 2È5 Ê x œ 2È5 and y œ È5, or x œ 2È5 Therefore T ŠÈ5ß 2È5‹ œ 0° œ T ŠÈ5ß 2È5‹ is the minimum value and T Š2È5ß È5‹ œ 125° œ T Š2È5ß È5‹ is the maximum value. (Note: - œ 1 Ê x œ 0 from the equation 4x 2y œ 2-y; but we found x Á 0 in CASE 1.) 16. The surface area is given by S œ 41r# 21rh subject to the constraint V(rß h) œ # 4 3 1r$ 1r# h œ 8000. Thus # ™ S œ (81r 21h)i 21rj and ™ V œ a41r 21rhb i 1r j so that ™ S œ - ™ V œ (81r 21h)i 21rj œ - ca41r# 21rhb i 1r# jd Ê 81r 21h œ - a41r# 21rhb and 21r œ -1r# Ê r œ 0 or 2 œ r-. But r Á 0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 852 Chapter 14 Partial Derivatives so 2 œ r- Ê - œ 4 3 2 r Ê 4r h œ 1r$ œ 8000 Ê r œ 10 ˆ 16 ‰ "Î$ 2 r a2r# rhb Ê h œ 0 Ê the tank is a sphere (there is no cylindrical part) and . 17. Let f(xß yß z) œ (x 1)# (y 1)# (z 1)# be the square of the distance from (1ß 1ß 1). Then ™ f œ 2(x 1)i 2(y 1)j 2(z 1)k and ™ g œ i 2j 3k so that ™ f œ - ™ g Ê 2(x 1)i 2(y 1)j 2(z 1)k œ -(i 2j 3k) Ê 2(x 1) œ -, 2(y 1) œ 2-, 2(z 1) œ 3Ê 2(y 1) œ 2[2(x 1)] and 2(z 1) œ 3[2(x 1)] Ê x œ y # 1 Ê z 2 œ 3 ˆ y # 1 ‰ or z œ 3y # 1 ; thus y1 ˆ 3y # 1 ‰ 13 œ 0 Ê y œ 2 Ê x œ 3# and z œ #5 . Therefore the point ˆ #3 ß 2ß 5# ‰ is closest (since no # 2y 3 point on the plane is farthest from the point (1ß 1ß 1)). 18. Let f(xß yß z) œ (x 1)# (y 1)# (z 1)# be the square of the distance from (1ß 1ß 1). Then ™ f œ 2(x 1)i 2(y 1)j 2(z 1)k and ™ g œ 2xi 2yj 2zk so that ™ f œ - ™ g Ê x 1 œ -x, y 1 œ -y # ‰# ˆ 1 " - ‰# œ 4 and z 1 œ -z Ê x œ 1 " - , y œ 1 " - , and z œ 1" - for - Á 1 Ê ˆ 1 " - ‰ ˆ 1" Ê " "- œ „ 2 È3 Ê xœ 2 È3 , y œ È23 , z œ 2 È3 or x œ È23 , y œ 2 È3 , z œ È23 . The largest value of f occurs where x 0, y 0, and z 0 or at the point Š È23 ß È23 ß È23 ‹ on the sphere. 19. Let f(xß yß z) œ x# y# z# be the square of the distance from the origin. Then ™ f œ 2xi 2yj 2zk and ™ g œ 2xi 2yj 2zk so that ™ f œ - ™ g Ê 2xi 2yj 2zk œ -(2xi 2yj 2zk) Ê 2x œ 2x-, 2y œ 2y-, and 2z œ 2z- Ê x œ 0 or - œ 1. CASE 1: - œ 1 Ê 2y œ 2y Ê y œ 0; 2z œ 2z Ê z œ 0 Ê x# 1 œ 0 Ê x# 1 œ 0 Ê x œ „ 1 and y œ z œ 0. CASE 2: x œ 0 Ê y# z# œ 1, which has no solution. Therefore the points on the unit circle x# y# œ 1, are the points on the surface x# y# z# œ 1 closest to the originÞ The minimum distance is 1. 20. Let f(xß yß z) œ x# y# z# be the square of the distance to the origin. Then ™ f œ 2xi 2yj 2zk and ™ g œ yi xj k so that ™ f œ - ™ g Ê 2xi 2yj 2zk œ -(yi xj k) Ê 2x œ -y, 2y œ -x, and 2z œ Ê xœ -y # Ê 2y œ - Š -#y ‹ Ê y œ 0 or - œ „ 2. CASE 1: y œ 0 Ê x œ 0 Ê z 1 œ 0 Ê z œ 1. CASE 2: - œ 2 Ê x œ y and z œ 1 Ê x# (1) 1 œ 0 Ê x# 2 œ 0, so no solution. CASE 3: - œ 2 Ê x œ y and z œ 1 Ê (y)y 1 1 œ 0 Ê y œ 0, again. Therefore (0ß 0ß 1) is the point on the surface closest to the origin since this point gives the only extreme value and there is no maximum distance from the surface to the origin. 21. Let f(xß yß z) œ x# y# z# be the square of the distance to the origin. Then ™ f œ 2xi 2yj 2zk and ™ g œ yi xj 2zk so that ™ f œ - ™ g Ê 2xi 2yj 2zk œ -(yi xj 2zk) Ê 2x œ y-, 2y œ x-, and 2z œ 2z- Ê - œ 1 or z œ 0. CASE 1: - œ 1 Ê 2x œ y and 2y œ x Ê y œ 0 and x œ 0 Ê z# 4 œ 0 Ê z œ „ 2 and x œ y œ 0. CASE 2: z œ 0 Ê xy 4 œ 0 Ê y œ 4x . Then 2x œ 4 x - Ê -œ x# # # , and x8 œ x- Ê x8 œ x Š x# ‹ Ê x% œ 16 Ê x œ „ 2. Thus, x œ 2 and y œ 2, or x = 2 and y œ 2. Therefore we get four points: (#ß 2ß 0), (2ß 2ß 0), (0ß 0ß 2) and (!ß 0ß 2). But the points (!ß 0ß 2) and (!ß !ß 2) are closest to the origin since they are 2 units away and the others are 2È2 units away. 22. Let f(xß yß z) œ x# y# z# be the square of the distance to the origin. Then ™ f œ 2xi 2yj 2zk and ™ g œ yzi xzj xyk so that ™ f œ - ™ g Ê 2x œ -yz, 2y œ -xz, and 2z œ -xy Ê 2x# œ -xyz and 2y# œ -yxz Ê x# œ y# Ê y œ „ x Ê z œ „ x Ê x a „ xb a „ xb œ 1 Ê x œ „ 1 Ê the points are (1ß 1ß 1), ("ß 1ß 1), ("ß "ß "), and (1ß 1, 1). Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.8 Lagrange Multipliers 853 23. ™ f œ i 2j 5k and ™ g œ 2xi 2yj 2zk so that ™ f œ - ™ g Ê i 2j 5k œ -(2xi 2yj 2zk) Ê 1 œ 2x-, 2 œ 2y-, and 5 œ 2z- Ê x œ #"- , y œ -" œ 2x, and z œ #5- œ 5x Ê x# (2x)# (5x)# œ 30 Ê x œ „ 1. Thus, x œ 1, y œ 2, z œ 5 or x œ 1, y œ 2, z œ 5. Therefore f(1ß 2ß 5) œ 30 is the maximum value and f(1ß 2ß 5) œ 30 is the minimum value. 24. ™ f œ i 2j 3k and ™ g œ 2xi 2yj 2zk so that ™ f œ - ™ g Ê i 2j 3k œ -(2xi 2yj 2zk) Ê 1 œ 2x-, 2 œ 2y-, and 3 œ 2z- Ê x œ #"- , y œ -" œ 2x, and z œ #3- œ 3x Ê x# (2x)# (3x)# œ 25 Ê x œ „ È514 . Thus, x œ 5 È14 ,yœ 10 È14 ,zœ 15 È14 or x œ È514 , y œ È1014 , z œ È1514 . Therefore f Š È514 ß È1014 ß È1514 ‹ œ 5È14 is the maximum value and f Š È514 ß È1014 , È1514 ‹ œ 5È14 is the minimum value. 25. f(xß yß z) œ x# y# z# and g(xß yß z) œ x y z 9 œ 0 Ê ™ f œ 2xi 2yj 2zk and ™ g œ i j k so that ™ f œ - ™ g Ê 2xi 2yj 2zk œ -(i j k) Ê 2x œ -, 2y œ -, and 2z œ - Ê x œ y œ z Ê x x x 9 œ 0 Ê x œ 3, y œ 3, and z œ 3. 26. f(xß yß z) œ xyz and g(xß yß z) œ x y z# 16 œ 0 Ê ™ f œ yzi xzj xyk and ™ g œ i j 2zk so that ™ f œ - ™ g Ê yzi xzj xyk œ -(i j 2zk) Ê yz œ -, xz œ -, and xy œ 2z- Ê yz œ xz Ê z œ 0 or y œ x. But z 0 so that y œ x Ê x# œ 2z- and xz œ -. Then x# œ 2z(xz) Ê x œ 0 or x œ 2z# . But x 0 so that 32 x œ 2z# Ê y œ 2z# Ê 2z# 2z# z# œ 16 Ê z œ „ È45 . We use z œ È45 since z 0. Then x œ 32 5 and y œ 5 32 4 which yields f Š 32 5 ß 5 ß È5 ‹ œ 4096 25È5 . 27. V œ xyz and g(xß yß z) œ x# y# z# 1 œ 0 Ê ™ V œ yzi xzj xyk and ™ g œ 2xi 2yj 2zk so that ™ V œ - ™ g Ê yz œ -x, xz œ -y, and xy œ -z Ê xyz œ -x# and xyz œ -y# Ê y œ „ x Ê z œ „ x Ê x# x# x# œ 1 Ê x œ È"3 since x 0 Ê the dimensions of the box are È13 by È13 by È13 for maximum volume. (Note that there is no minimum volume since the box could be made arbitrarily thin.) 28. V œ xyz with xß yß z all positive and x a y b z c œ 1; thus V œ xyz and g(xß yß z) œ bcx acy abz abc œ 0 Ê ™ V œ yzi xzj xyk and ™ g œ bci acj abk so that ™ V œ - ™ g Ê yz œ -bc, xz œ -ac, and xy œ -ab Ê xyz œ -bcx, xyz œ -acy, and xyz œ -abz Ê - Á 0. Also, -bcx œ -acy œ -abz Ê bx œ ay, cy œ bz, and a cx œ az Ê y œ ba x and z œ ac x. Then xa by zc œ 1 Ê xa b" ˆ ba x‰ "c ˆ ca x‰ œ 1 Ê 3x a œ 1 Ê xœ 3 Ê y œ ˆ ba ‰ ˆ 3a ‰ œ b3 and z œ ˆ ca ‰ ˆ 3a ‰ œ 3c Ê V œ xyz œ ˆ 3a ‰ ˆ b3 ‰ ˆ 3c ‰ œ abc 27 is the maximum volume. (Note that there is no minimum volume since the box could be made arbitrarily thin.) 29. ™ T œ 16xi 4zj (4y 16)k and ™ g œ 8xi 2yj 8zk so that ™ T œ - ™ g Ê 16xi 4zj (4y 16)k œ -(8xi 2yj 8zk) Ê 16x œ 8x-, 4z œ 2y-, and 4y 16 œ 8z- Ê - œ 2 or x œ 0. CASE 1: - œ 2 Ê 4z œ 2y(2) Ê z œ y. Then 4z 16 œ 16z Ê z œ 43 Ê y œ 43 . Then # # 4x# ˆ 43 ‰ 4 ˆ 43 ‰ œ 16 Ê x œ „ 43 . CASE 2: x œ 0 Ê - œ 2z y # # # # # Ê 4y 16 œ 8z Š 2z y ‹ Ê y 4y œ 4z Ê 4(0) y ay 4yb 16 œ 0 Ê y# 2y 8 œ 0 Ê (y 4)(y 2) œ 0 Ê y œ 4 or y œ 2. Now y œ 4 Ê 4z# œ 4# 4(4) Ê z œ 0 and y œ 2 Ê 4z# œ (2)# 4(2) Ê z œ „ È3. ° ° The temperatures are T ˆ „ 43 ß 43 ß 43 ‰ œ 642 23 , T(0ß 4ß 0) œ 600°, T Š0ß 2ß È3‹ œ Š600 24È3‹ , and ° T Š0ß 2ß È3‹ œ Š600 24È3‹ ¸ 641.6°. Therefore ˆ „ 43 ß 43 ß 43 ‰ are the hottest points on the space probe. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 854 Chapter 14 Partial Derivatives 30. ™ T œ 400yz# i 400xz# j 800xyzk and ™ g œ 2xi 2yj 2zk so that ™ T œ - ™ g Ê 400yz# i 400xz# j 800xyzk œ -(2xi 2yj 2zk) Ê 400yz# œ 2x-, 400xz# œ 2y-, and 800xyz œ 2z-. Solving this system yields the points a!ß „ 1ß 0b , a „ 1ß 0ß 0b , and Š „ "# ß „ "# ß „ temperatures are T a!ß „ 1ß 0b œ 0, T a „ 1ß 0ß 0b œ 0, and T Š „ "# ß „ "# ß „ È2 # ‹ maximum temperature at Š "# ß "# ß „ Š "# ß "# ß „ È2 # ‹ and Š #" ß #" ß „ and Š "# ß "# ß „ È2 # ‹; È2 # ‹ È2 # ‹. The corresponding œ „ 50. Therefore 50 is the 50 is the minimum temperature at È2 # ‹. 31. ™ U œ (y 2)i xj and ™ g œ 2i j so that ™ U œ - ™ g Ê (y 2)i xj œ -(2i j) Ê y # œ 2- and x œ - Ê y 2 œ 2x Ê y œ 2x 2 Ê 2x (2x 2) œ 30 Ê x œ 8 and y œ 14. Therefore U(8ß 14) œ $128 is the maximum value of U under the constraint. 32. ™ M œ (6 z)i 2yj xk and ™ g œ 2xi 2yj 2zk so that ™ M œ - ™ g Ê (6 z)i 2yj xk œ -(2xi 2yj 2zk) Ê 6 z œ 2x-, 2y œ 2y-, x œ 2z- Ê - œ 1 or y œ 0. CASE 1: - œ 1 Ê 6 z œ 2x and x œ 2z Ê 6 z œ 2(2z) Ê z œ 2 and x œ 4. Then (4)# y# 2# 36 œ 0 Ê y œ „ 4. x x ‰ CASE 2: y œ 0, 6 z œ 2x-, and x œ 2z- Ê - œ 2z Ê 6 z œ 2x ˆ 2z Ê 6z z# œ x# Ê a6z z# b 0# z# œ 36 Ê z œ 6 or z œ 3. Now z œ 6 Ê x# œ 0 Ê x œ 0; z œ 3 Ê x# œ 27 Ê x œ „ 3È3. Therefore we have the points Š „ 3È3ß 0ß 3‹ , (0ß 0ß 6), and a4ß „ 4ß 2b . Then M Š3È3ß 0ß 3‹ œ 27È3 60 ¸ 106.8, M Š3È3ß 0ß 3‹ œ 60 27È3 ¸ 13.2, M(0ß 0ß 6) œ 60, and M(4ß 4ß 2) œ 12 œ M(4ß 4ß 2). Therefore, the weakest field is at a4ß „ 4ß 2b . 33. Let g" (xß yß z) œ 2x y œ 0 and g# (xß yß z) œ y z œ 0 Ê ™ g" œ 2i j , ™ g# œ j k , and ™ f œ 2xi 2j 2zk so that ™ f œ - ™ g" . ™ g# Ê 2xi 2j 2zk œ -(2i j) .(j k) Ê 2xi 2j 2zk œ 2-i (. -)j .k Ê 2x œ 2-, 2 œ . -, and 2z œ . Ê x œ -. Then 2 œ 2z x Ê x œ 2z 2 so that 2x y œ 0 Ê 2(2z 2) y œ 0 Ê 4z 4 y œ 0. This equation coupled with y z œ 0 implies z œ 43 and y œ 43 . Then xœ 2 3 # # so that ˆ 23 ß 43 ß 43 ‰ is the point that gives the maximum value f ˆ 23 ß 43 ß 43 ‰ œ ˆ 23 ‰ 2 ˆ 43 ‰ ˆ 43 ‰ œ 4 3 . 34. Let g" (xß yß z) œ x 2y 3z 6 œ 0 and g# (xß yß z) œ x 3y 9z 9 œ 0 Ê ™ g" œ i 2j 3k , ™ g# œ i 3j 9k , and ™ f œ 2xi 2yj 2zk so that ™ f œ - ™ g" . ™ g# Ê 2xi 2yj 2zk œ -(i 2j 3k) .(i 3j 9k) Ê 2x œ - ., 2y œ 2- 3., and 2z œ 3- 9.. Then 0 œ x 2y 3z 6 ‰ œ "# (- .) (2- 3.) ˆ 9# - 27 # . 6 Ê 7- 17. œ 6; 0 œ x 3y 9z 9 " 9 27 81 Ê # (- .) ˆ3- # .‰ ˆ # - # .‰ 9 Ê 34- 91. œ 18. Solving these two equations for - and . gives -. 2- 3. 3- 9. 78 81 9 - œ 240 œ 123 œ 59 . The minimum value is 59 and . œ 59 Ê x œ # œ 59 , y œ # 59 , and z œ # 21,771 81 123 9 369 f ˆ 59 ß 59 ß 59 ‰ œ 59# œ 59 . (Note that there is no maximum value of f subject to the constraints because at least one of the variables x, y, or z can be made arbitrary and assume a value as large as we please.) 35. Let f(xß yß z) œ x# y# z# be the square of the distance from the origin. We want to minimize f(xß yß z) subject to the constraints g" (xß yß z) œ y 2z 12 œ 0 and g# (xß yß z) œ x y 6 œ 0. Thus ™ f œ 2xi 2yj 2zk , ™ g" œ j 2k, and ™ g# œ i j so that ™ f œ - ™ g" . ™ g# Ê 2x œ ., 2y œ - ., and 2z œ 2-. Then 0 œ y 2z 12 œ ˆ -# .# ‰ 2- 12 Ê #5 - "# . œ 12 Ê 5- . œ 24; 0 œ x y 6 œ .# ˆ -# .# ‰ 6 Ê "# - . œ 6 Ê - #. œ 12. Solving these two equations for - and . gives - œ 4 and . œ 4 Ê x œ . # œ 2, y œ -. # œ 4, and z œ - œ 4. The point (2ß 4ß 4) on the line of intersection is closest to the origin. (There is no maximum distance from the origin since points on the line can be arbitrarily far away.) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.8 Lagrange Multipliers 36. The maximum value is f ˆ 23 ß 43 ß 43 ‰ œ 4 3 855 from Exercise 33 above. 37. Let g" (xß yß z) œ z 1 œ 0 and g# (xß yß z) œ x# y# z# 10 œ 0 Ê ™ g" œ k , ™ g# œ 2xi 2yj 2zk , and ™ f œ 2xyzi x# zj x# yk so that ™ f œ - ™ g" . ™ g# Ê 2xyzi x# zj x# yk œ -(k) .(2xi 2yj 2zk) Ê 2xyz œ 2x., x# z œ 2y., and x# y œ 2z. - Ê xyz œ x. Ê x œ 0 or yz œ . Ê . œ y since z œ 1. CASE 1: x œ 0 and z œ 1 Ê y# 9 œ 0 (from g# ) Ê y œ „ 3 yielding the points a0ß „ 3ß 1b. CASE 2: . œ y Ê x# z œ 2y# Ê x# œ 2y# (since z œ 1) Ê 2y# y# 1 10 œ 0 (from g# ) Ê 3y# 9 œ 0 # Ê y œ „ È3 Ê x# œ 2 Š „ È3‹ Ê x œ „ È6 yielding the points Š „ È6ß „ È3ß "‹ . Now f a!ß „ 3ß 1b œ 1 and f Š „ È6ß „ È3ß "‹ œ 6 Š „ È3‹ 1 œ 1 „ 6È3. Therefore the maximum of f is 1 6È3 at Š „ È6ß È3ß 1‹, and the minimum of f is 1 6È3 at Š „ È6ß È3ß "‹ . 38. (a) Let g" (xß yß z) œ x y z 40 œ 0 and g# (xß yß z) œ x y z œ 0 Ê ™ g" œ i j k , ™ g# œ i j k , and ™ w œ yzi xzj xyk so that ™ w œ - ™ g" . ™ g# Ê yzi xzj xyk œ -(i j k) .(i j k) Ê yz œ - ., xz œ - ., and xy œ - . Ê yz œ xz Ê z œ 0 or y œ x. CASE 1: z œ 0 Ê x y œ 40 and x y œ 0 Ê no solution. CASE 2: x œ y Ê 2x z 40 œ 0 and 2x z œ 0 Ê z œ 20 Ê x œ 10 and y œ 10 Ê w œ (10)(10)(20) œ 2000 â â âi j k â â â " â œ 2i 2j is parallel to the line of intersection Ê the line is x œ 2t 10, (b) n œ â " " â â â " " " â y œ 2t 10, z œ 20. Since z œ 20, we see that w œ xyz œ (2t 10)(2t 10)(20) œ a4t# 100b (20) which has its maximum when t œ 0 Ê x œ 10, y œ 10, and z œ 20. 39. Let g" (Bß yß z) œ y x œ 0 and g# (xß yß z) œ x# y# z# 4 œ 0. Then ™ f œ yi xj 2zk , ™ g" œ i j , and ™ g# œ 2xi 2yj 2zk so that ™ f œ - ™ g" . ™ g# Ê yi xj 2zk œ -(i j) .(2xi 2yj 2zk) Ê y œ - 2x., x œ - 2y., and 2z œ 2z. Ê z œ 0 or . œ 1. CASE 1: z œ 0 Ê x# y# 4 œ 0 Ê 2x# 4 œ 0 (since x œ y) Ê x œ „ È2 and y œ „ È2 yielding the points Š „ È2ß „ È2ß !‹ . CASE 2: . œ 1 Ê y œ - 2x and x œ - 2y Ê x y œ 2(x y) Ê 2x œ 2(2x) since x œ y Ê x œ 0 Ê y œ 0 Ê z# 4 œ 0 Ê z œ „ 2 yielding the points a!ß !ß „ 2b . Now, f a!ß !ß „ 2b œ 4 and f Š „ È2ß „ È2ß !‹ œ 2. Therefore the maximum value of f is 4 at a!ß !ß „ 2b and the minimum value of f is 2 at Š „ È2ß „ È2ß !‹ . 40. Let f(xß yß z) œ x# y# z# be the square of the distance from the origin. We want to minimize f(xß yß z) subject to the constraints g" (xß yß z) œ 2y 4z 5 œ 0 and g# (xß yß z) œ 4x# 4y# z# œ 0. Thus ™ f œ 2xi 2yj 2zk , ™ g" œ 2j 4k , and ™ g# œ 8xi 8yj 2zk so that ™ f œ - ™ g" . ™ g# Ê 2xi 2yj 2zk œ -(2j 4k) .(8xi 8yj 2zk) Ê 2x œ 8x., 2y œ 2- 8y., and 2z œ 4- 2z. Ê x œ 0 or . œ "4 . CASE 1: x œ 0 Ê 4(0)# 4y# z# œ 0 Ê z œ „ 2y Ê 2y 4(2y) 5 œ 0 Ê y œ Ê y œ 56 yielding the points ˆ!ß "# ß "‰ and ˆ!ß 56 ß 53 ‰ . CASE 2: . œ " 4 " # , or 2y 4(2y) 5 œ 0 Ê y œ - y Ê - œ 0 Ê 2z œ 4(0) 2z ˆ 4" ‰ Ê z œ 0 Ê 2y 4(0) œ 5 Ê y œ # 4 ˆ #5 ‰ (0)# œ 4x# Ê no solution. " Then f ˆ!ß "# ß 1‰ œ 54 and f ˆ!ß 56 ß 35 ‰ œ 25 ˆ 36 "9 ‰ œ 125 36 Ê the point ˆ!ß "# ß 1‰ is closest to the origin. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 5 # and 856 Chapter 14 Partial Derivatives 41. ™ f œ i j and ™ g œ yi xj so that ™ f œ - ™ g Ê i j œ -(yi xj) Ê 1 œ y- and 1 œ x- Ê y œ x Ê y# œ 16 Ê y œ „ 4 Ê (4ß 4) and (%ß 4) are candidates for the location of extreme values. But as x Ä _, y Ä _ and f(xß y) Ä _; as x Ä _, y Ä 0 and f(xß y) Ä _. Therefore no maximum or minimum value exists subject to the constraint. 4 42. Let f(Aß Bß C) œ ! (Axk Byk C zk )# œ C# (B C 1)# (A B C 1)# (A C 1)# . We want k œ1 to minimize f. Then fA (Aß Bß C) œ 4A 2B 4C, fB (Aß Bß C) œ 2A 4B 4C 4, and fC (Aß Bß C) œ 4A 4B 8C 2. Set each partial derivative equal to 0 and solve the system to get A œ "# , B œ 3# , and C œ "4 or the critical point of f is ˆ #" ß 3# ß "4 ‰ . 43. (a) Maximize f(aß bß c) œ a# b# c# subject to a# b# c# œ r# . Thus ™ f œ 2ab# c# i 2a# bc# j 2a# b# ck and ™ g œ 2ai 2bj 2ck so that ™ f œ - ™ g Ê 2ab# c# œ 2a-, 2a# bc# œ 2b-, and 2a# b# c œ 2cÊ 2a# b# c# œ 2a# - œ 2b# - œ 2c# - Ê - œ 0 or a# œ b# œ c# . CASE 1: - œ 0 Ê a# b# c# œ 0. # $ CASE 2: a# œ b# œ c# Ê f(aß bß c) œ a# a# a# and 3a# œ r# Ê f(aß bß c) œ Š r3 ‹ is the maximum value. (b) The point ŠÈaß Èbß Èc‹ is on the sphere if a b c œ r# . Moreover, by part (a), abc œ f ŠÈaß Èbß Èc‹ # $ Ÿ Š r3 ‹ Ê (abc)"Î$ Ÿ r# 3 œ abc 3 , as claimed. n 44. Let f(x" ß x# ß á ß xn ) œ ! ai xi œ a" x" a# x# á an xn and g(x" ß x# ß á ß xn ) œ x"# x## á xn# 1. Then we i œ1 want ™ f œ - ™ g Ê a" œ -(2x" ), a# œ -(2x# ), á , an œ -(2xn ), - Á 0 Ê xi œ n n iœ1 i œ1 "Î# Ê 4-# œ ! a#i Ê 2- œ Œ! a#i n n i œ1 i œ1 ai 2- Ê f(x" ß x# ß á ß xn ) œ ! ai xi œ ! ai ˆ #a-i ‰ œ Ê " #- a#" 4- # a## 4- # an# 4- # "Î# á n n i œ1 i œ1 ! a#i œ Œ! a#i the maximum value. 45-50. Example CAS commands: Maple: f := (x,y,z) -> x*y+y*z; g1 := (x,y,z) -> x^2+y^2-2; g2 := (x,y,z) -> x^2+z^2-2; h := unapply( f(x,y,z)-lambda[1]*g1(x,y,z)-lambda[2]*g2(x,y,z), (x,y,z,lambda[1],lambda[2]) ); hx := diff( h(x,y,z,lambda[1],lambda[2]), x ); hy := diff( h(x,y,z,lambda[1],lambda[2]), y ); hz := diff( h(x,y,z,lambda[1],lambda[2]), z ); hl1 := diff( h(x,y,z,lambda[1],lambda[2]), lambda[1] ); hl2 := diff( h(x,y,z,lambda[1],lambda[2]), lambda[2] ); sys := { hx=0, hy=0, hz=0, hl1=0, hl2=0 }; q1 := solve( sys, {x,y,z,lambda[1],lambda[2]} ); q2 := map(allvalues,{q1}); for p in q2 do eval( [x,y,z,f(x,y,z)], p ); ``=evalf(eval( [x,y,z,f(x,y,z)], p )); end do; Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. # (a) #(b) # (c) # (d) is œ1 Section 14.9 Taylor's Formula for Two Variables Mathematica: (assigned functions will vary) Clear[x, y, z, lambda1, lambda2] f[x_,y_,z_]:= x y y z g1[x_,y_,z_]:= x2 y2 2 g2[x_,y_,z_]:= x2 z2 2 h = f[x, y, z] lambda1 g1[x, y, z] lambda2 g2[x, y, z]; hx= D[h, x]; hy= D[h, y]; hz= D[h,z]; hL1=D[h, lambda1]; hL2= D[h, lambda2]; critical=Solve[{hx==0, hy==0, hz==0, hL1==0, hL2==0, g1[x,y,z]==0, g2[x,y,z]==0}, {x, y, z, lambda1, lambda2}]//N {{x, y, z}, f[x, y, z]}/.critical 14.9 TAYLOR'S FORMULA FOR TWO VARIABLES 1. f(xß y) œ xey Ê fx œ ey , fy œ xey , fxx œ 0, fxy œ ey , fyy œ xey Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 0 x † 1 y † 0 "# ax# † 0 2xy † 1 y# † 0b œ x xy quadratic approximation; fxxx œ 0, fxxy œ 0, fxyy œ ey , fyyy œ xey Ê f(xß y) ¸ quadratic "6 cx$ fxxx (!ß !) 3x# yfxxy (0ß 0) 3xy# fxyy (!ß !) y$ fyyy (0ß 0)d œ x xy "6 ax$ † 0 3x# y † 0 3xy# † 1 y$ † 0b œ x xy "# xy# , cubic approximation 2. f(xß y) œ ex cos y Ê fx œ ex cos y, fy œ ex sin y, fxx œ ex cos y, fxy œ ex sin y, fyy œ ex cos y Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (!ß 0) "# cx# fxx (!ß !) 2xyfxy (!ß !) y# fyy (0ß 0)d œ 1 x † 1 y † 0 "# cx# † 1 2xy † 0 y# † (1)d œ 1 x "# ax# y# b , quadratic approximation; fxxx œ ex cos y, fxxy œ ex sin y, fxyy œ ex cos y, fyyy œ ex sin y Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ 1 x "# ax# y# b 6" cx$ † 1 3x# y † 0 3xy# † (1) y$ † 0d œ 1 x "# ax# y# b 6" ax$ 3xy# b , cubic approximation 3. f(xß y) œ y sin x Ê fx œ y cos x, fy œ sin x, fxx œ y sin x, fxy œ cos x, fyy œ 0 Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (!ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 0 x † 0 y † 0 "# ax# † 0 2xy † 1 y# † 0b œ xy, quadratic approximation; fxxx œ y cos x, fxxy œ sin x, fxyy œ 0, fyyy œ 0 Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ xy "6 ax$ † 0 3x# y † 0 3xy# † 0 y$ † 0b œ xy, cubic approximation 4. f(xß y) œ sin x cos y Ê fx œ cos x cos y, fy œ sin x sin y, fxx œ sin x cos y, fxy œ cos x sin y, fyy œ sin x cos y Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 0 x † 1 y † 0 "# ax# † 0 2xy † 0 y# † 0b œ x, quadratic approximation; fxxx œ cos x cos y, fxxy œ sin x sin y, fxyy œ cos x cos y, fyyy œ sin x sin y Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ x "6 cx$ † (1) 3x# y † 0 3xy# † (1) y$ † 0d œ x 6" ax$ 3xy# b, cubic approximation 5. f(xß y) œ ex ln (1 y) Ê fx œ ex ln (1 y), fy œ ex 1y , fxx œ ex ln (1 y), fxy œ ex 1y Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 0 x † 0 y † 1 "# cx# † 0 2xy † 1 y# † (1)d œ y "# a2xy y# b , quadratic approximation; fxxx œ ex ln (1 y), fxxy œ ex 1y x , fxyy œ (1 e y)# , fyyy œ x , fyy œ (1 e y)# 2ex (1 y)$ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 857 858 Chapter 14 Partial Derivatives Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ y "2 a2xy y# b 6" cx$ † 0 3x# y † 1 3xy# † (1) y$ † 2d œ y "# a2xy y# b 6" a3x# y 3xy# 2y$ b , cubic approximation 4 2 (2x y 1)# , fxy œ (2x y 1)# , " # # fyy œ (2x " y 1)# Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) # cx fxx (0ß 0) 2xyfxy (0ß 0) y fyy (0ß 0)d œ 0 x † 2 y † 1 "# cx# † (4) 2xy † (2) y# † (1)d œ 2x y "# a4x# 4xy y# b œ (2x y) "# (2x y)# , quadratic approximation; fxxx œ (2x 16y 1)$ , fxxy œ (2x 8y 1)$ , fxyy œ (2x 4y 1)$ , fyyy œ (2x 2y 1)$ Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ (2x y) "# (2x y)# 6" ax$ † 16 3x# y † 8 3xy# † 4 y$ † 2b œ (2x y) "# (2x y)# 3" a8x$ 12x# y 6xy# y# b œ (2x y) "# (2x y)# 3" (2x y)$ , cubic approximation 6. f(xß y) œ ln (2x y 1) Ê fx œ 2 2x y 1 , fy œ " #x y 1 , fxx œ 7. f(xß y) œ sin ax# y# b Ê fx œ 2x cos ax# y# b , fy œ 2y cos ax# y# b , fxx œ 2 cos ax# y# b 4x# sin ax# y# b , fxy œ 4xy sin ax# y# b , fyy œ 2 cos ax# y# b 4y# sin ax# y# b Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 0 x † 0 y † 0 "# ax# † 2 2xy † 0 y# † 2b œ x# y# , quadratic approximation; fxxx œ 12x sin ax# y# b 8x$ cos ax# y# b , fxxy œ 4y sin ax# y# b 8x# y cos ax# y# b , fxyy œ 4x sin ax# y# b 8xy# cos ax# y# b , fyyy œ 12y sin ax# y# b 8y$ cos ax# y# b Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ x# y# "6 ax$ † 0 3x# y † 0 3xy# † 0 y$ † 0b œ x# y# , cubic approximation 8. f(xß y) œ cos ax# y# b Ê fx œ 2x sin ax# y# b , fy œ 2y sin ax# y# b , fxx œ 2 sin ax# y# b 4x# cos ax# y# b , fxy œ 4xy cos ax# y# b , fyy œ 2 sin ax# y# b 4y# cos ax# y# b Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 1 x † 0 y † 0 "# cx# † 0 2xy † 0 y# † 0d œ 1, quadratic approximation; fxxx œ 12x cos ax# y# b 8x$ sin ax# y# b , fxxy œ 4y cos ax# y# b 8x# y sin ax# y# b , fxyy œ 4x cos ax# y# b 8xy# sin ax# y# b , fyyy œ 12y cos ax# y# b 8y$ sin ax# y# b Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) y$ fyyy (0ß 0)d œ 1 "6 ax$ † 0 3x# y † 0 3xy# † 0 y$ † 0b œ 1, cubic approximation 9. f(xß y) œ " 1xy Ê fx œ " (1 x y)# œ fy , fxx œ Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) 2 (1 x y)$ " # # cx fxx (0ß 0) œ fxy œ fyy 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 1 x † 1 y † 1 "# ax# † 2 2xy † 2 y# † 2b œ 1 (x y) ax# 2xy y# b œ 1 (x y) (x y)# , quadratic approximation; fxxx œ Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 6 œ fxxy œ fxyy œ fyyy (1 x y)% # 3xy fxyy (0ß 0) y$ fyyy (0ß 0)d $ œ 1 (x y) (x y)# "6 ax$ † 6 3x# y † 6 3xy# † 6 y † 6b œ 1 (x y) (x y)# ax$ 3x# y 3xy# y$ b œ 1 (x y) (x y)# (x y)$ , cubic approximation 10. f(xß y) œ fxy œ " 1 x y xy 1 (" x y xy)# Ê fx œ , fyy œ 1y (1 x y xy)# , fy œ 1x (" x y xy)# , fxx œ 2(1 y)# (1 x y xy)$ , 2(" x)# (1 x y xy)$ Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 1 x † 1 y † 1 "# ax# † 2 2xy † 1 y# † 2b œ 1 x y x# xy y# , quadratic approximation; Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.10 Partial Derivatives with Constrained Variables fxxx œ 6(1 y)$ (1 x y xy)% , fxxy œ [4(1 x y xy) 6(1 y)(1 x)](1 y) (1 x y xy)% , $ [4(1 x y xy) 6(1 x)(1 y)](1 x) x) , fyyy œ (1 6(1 (1 x y xy)% x y xy)% Ê f(xß y) ¸ quadratic "6 cx$ fxxx (0ß 0) 3x# yfxxy (!ß 0) 3xy# fxyy (0ß 0) œ 1 x y x# xy y# "6 ax$ † 6 3x# y † 2 3xy# † 2 y$ † 6b # # $ # # $ fxyy œ y$ fyyy (0ß 0)d œ 1 x y x xy y x x y xy y , cubic approximation 11. f(xß y) œ cos x cos y Ê fx œ sin x cos y, fy œ cos x sin y, fxx œ cos x cos y, fxy œ sin x sin y, fyy œ cos x cos y Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 1 x † 0 y † 0 "# cx# † (1) 2xy † 0 y# † (1)d œ 1 x# # y# # , quadratic approximation. Since all partial derivatives of f are products of sines and cosines, the absolute value of these derivatives is less than or equal to 1 Ê E(xß y) Ÿ "6 c(0.1)$ 3(0.1)$ 3(0.1)$ 0.1)$ d Ÿ 0.00134. 12. f(xß y) œ ex sin y Ê fx œ ex sin y, fy œ ex cos y, fxx œ ex sin y, fxy œ ex cos y, fyy œ ex sin y Ê f(xß y) ¸ f(0ß 0) xfx (0ß 0) yfy (0ß 0) "# cx# fxx (0ß 0) 2xyfxy (0ß 0) y# fyy (0ß 0)d œ 0 x † 0 y † 1 "# ax# † 0 2xy † 1 y# † 0b œ y xy , quadratic approximation. Now, fxxx œ ex sin y, fxxy œ ex cos y, fxyy œ ex sin y, and fyyy œ ex cos y. Since kxk Ÿ 0.1, kex sin yk Ÿ ke0Þ1 sin 0.1k ¸ 0.11 and kex cos yk Ÿ ke0Þ1 cos 0.1k ¸ 1.11. Therefore, E(xß y) Ÿ "6 c(0.11)(0.1)$ 3(1.11)(0.1)$ 3(0.11)(0.1)$ (1.11)(0.1)$ d Ÿ 0.000814. 14.10 PARTIAL DERIVATIVES WITH CONSTRAINED VARIABLES 1. w œ x# y# z# and z œ x# y# : Î x œ x(yß z) Ñ y yœy Ä w Ê Š ``wy ‹ œ (a) Œ Ä z z Ï zœz Ò œ 2x `` xy 2y Ê 0 œ 2x `` xy 2y Ê `x `y œ " #y `x `z œ 1 2x `w `x `x `z `w `x `x `z œ 2x `` yx 2y `` yy `w `y `y `z `w `z `x `z `z ; `z œ 0 and `z `z œ 2x `` xz 2y `` yz `w `y `y `z `w `z `y `z `z ; `z œ 0 and `z `z œ 2x `` xz 2y `` yz Ê ˆ ``wz ‰y œ (2x) ˆ #"x ‰ (2y)(0) (2z)(1) œ 1 2z 2. w œ x# y z sin t and x y œ t: Î xœx Ñ ÎxÑ Ð yœy Ó y Ä Ð Ä w Ê Š ``wy ‹ œ (a) Ó zœz xz ÏzÒ Ït œ x yÒ ß `t `y `z `y œ 0 and " Ê ˆ ``wz ‰x œ (2x)(0) (2y) Š 2y ‹ (2z)(1) œ 1 2z Î x œ x(yß z) Ñ y yœy Ä w Ê ˆ ``wz ‰y œ (c) Œ Ä z Ï zœz Ò Ê 1 œ 2x `` xz Ê `w `z `z `z `y ; `y z xœx Ñ x y œ y(xß z) Ä w Ê ˆ ``wz ‰x œ (b) Œ Ä z Ï zœz Ò `y `z `w `y `y `y œ xy Ê Š ``wy ‹ œ (2x) ˆ xy ‰ (2y)(1) (2z)(0) œ 2y 2y œ 0 Î Ê 1 œ 2y `` yz Ê `w `x `x `y `w `x `x `y `w `y `y `y `w `z `z `y `w `t `x `t `y ; `y œ 0, `z `y œ 0, and œ 1 Ê Š ``wy ‹ œ (2x)(0) (1)(1) (1)(0) (cos t)(1) œ 1 cos t œ 1 cos (x y) xßt Îx œ t yÑ ÎyÑ Ð yœy Ó z Ä Ð Ä w Ê Š ``wy ‹ œ (b) Ó z z œ zt ÏtÒ Ï tœt Ò ß Ê `x `y œ `t `y `y `y `w `x `x `y `w `y `y `y `w `z `z `y `w `t `z `t `y ; `y œ 0 and `t `y œ0 œ 1 Ê Š ``wy ‹ œ (2x)(1) (1)(1) (1)(0) (cos t)(0) œ 1 2at yb œ 1 2y 2t zßt Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 859 860 Chapter 14 Partial Derivatives Î xœx Ñ ÎxÑ Ð yœy Ó y Ä Ð Ä w Ê ˆ ``wz ‰x y œ (c) Ó œ z z ÏzÒ Ït œ x yÒ ß `w `x `x `z `w `y `y `z `w `z `z `z `w `t `x `t `z ; `z œ 0 and `y `z œ0 `w `z `z `z `w `t `y `t `z ; `z œ 0 and `t `z œ0 `w `z `z `t `w `t `x `t `t ; `t œ 0 and `z `t œ0 `w `z `z `t `w `t `y `t `t ; `t œ 0 and `z `t œ0 Ê ˆ ``wz ‰x y œ (2x)(0) (1)(0) (1)(1) (cos t)(0) œ 1 ß Îx œ t yÑ ÎyÑ Ð yœy Ó z Ä Ð Ä w Ê ˆ ``wz ‰y t œ (d) Ó zœz ÏtÒ Ï tœt Ò ß `w `x `x `z `w `y `y `z Ê ˆ ``wz ‰y t œ (2x)(0) (1)(0) (1)(1) (cos t)(0) œ 1 ß Î xœx Ñ ÎxÑ Ð y œ t xÓ z Ä Ð Ä w Ê ˆ ``wt ‰x z œ (e) Ó zœz ÏtÒ Ï tœt Ò ß `w `x `x `t `w `y `y `t Ê ˆ ``wt ‰x z œ (2x)(0) (1)(1) (1)(0) (cos t)(1) œ 1 cos t ß Îx œ t yÑ ÎyÑ Ð yœy Ó z Ä Ð Ä w Ê ˆ ``wt ‰y z œ (f) Ó zœz ÏtÒ Ï tœt Ò ß `w `x `x `t `w `y `y `t Ê ˆ ``wt ‰y z œ (2x)(1) (1)(0) (1)(0) (cos t)(1) œ cos t 2x œ cos t 2(t y) ß 3. U œ f(Pß Vß T) and PV œ nRT Î PœP Ñ P VœV Ä U Ê ˆ ``UP ‰V œ (a) Œ Ä V PV ÏT œ Ò `U `P `P `P `U `V `V `P `U `T `T `P œ `U `P V ‰ ‰ ˆ ` U ‰ ˆ nR ˆ `` U V (0) ` T nR œ `U `P V ‰ ˆ ``UT ‰ ˆ nR nRT ÎP œ V Ñ V Ä U Ê ˆ ``UT ‰V œ (b) Œ Ä VœV T Ï TœT Ò ‰ `U œ ˆ ``UP ‰ ˆ nR V `T `U `P `P `T 4. w œ x# y# z# and y sin z z sin x œ 0 Î xœx Ñ x yœy Ä w Ê ˆ ``wx ‰y œ (a) Œ Ä y Ï z œ z(xß y) Ò (y cos z) Ê `z `x (sin x) ˆ ``wx ‰ yk (0ß1ß1) `z `x z cos x œ 0 Ê `z `x `x `z `w `x `x `x œ `U `V `V `T `w `y `y `x z cos x y cos z sin x . # `U `T `T `T ‰ ˆ `U ‰ œ ˆ ``UP ‰ ˆ nR V ` V (0) `w `z `y `z `x ; `x œ 0 and œ 1 1 œ1 œ (2x) `x `z (2y)(0) (2z)(1) At (0ß 1ß 1), `z `x `U `T œ (2x)(1) (2y)(0) (2z)(1)k Ð0ß1ß1Ñ œ 21 Î x œ x(yß z) Ñ y yœy Ä w Ê ˆ ``wz ‰y œ (b) Œ Ä z Ï zœz Ò œ (2x) `y `z y x) `` xz œ 2z. Now (sin z) Ê y cos z sin x (z cos `w `x `x `z `w `y `y `z cos z sin x (z cos x) 0 Ê `x `z œ y cos z sin x . z cos x `w `z `z `z `x `z `y `z œ 0 (!ß "ß 1), `` xz œ (11)(1)0 œ 0 and At œ " 1 Ê ˆ ``wz ‰Ck (!,"ß1Ñ œ 2(0) ˆ 1" ‰ 21 œ 21 5. w œ x# y# yz z$ and x# y# z# œ 6 Î xœx Ñ x yœy (a) Œ Ä Ä w Ê Š ``wy ‹ œ y x Ï z œ z(xß y) Ò `w `x `x `y `w `y `y `y `w `z `z `y Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 14.10 Partial Derivatives with Constrained Variables œ a2xy# b (0) a2x# y zb (1) ay 3z# b `x `y `z `y œ 0 Ê 2y (2z) `z `y œ0 Ê `z `y `z `y `x `y `w `x `x `y `x `y a2x# y zb (1) ay 3z# b (0) œ a2x# yb œ 0 Ê (2x) `x `y `x `y 2y œ 0 Ê `w `y `y `y `x `y Now (2x) `z `y œ yz . At (wß xß yß z) œ (4ß 2ß 1ß 1), œ c(2)(2)# (1) (1)d c1 3(1)# d (1) œ 5 Î x œ x(yß z) Ñ y yœy (b) Œ Ä Ä w Ê Š ``wy ‹ œ z z Ï zœz Ò œ a2xy# b `z `y . œ 2x# y z ay 3z# b 2y (2z) `z `y œ 0 and œ "1 œ 1 Ê Š ``wy ‹ ¹ x (4ß2ß1ßc1) `w `z `z `y 2x# y z. Now (2x) œ yx . At (wß xß yß z) œ (4ß 2ß 1ß 1), `x `y `x `y 2y (2z) œ "2 Ê Š ``wy ‹ ¹ z œ (2)(2)(1) ˆ "# ‰ (2)(2)# (1) (1) œ 5 `z `y œ 0 and (4ß2ß1ßc1) # 6. y œ uv Ê 1 œ v œv `u `y u Š uv `u `y u `u `y ‹ `v `y ; œ Šv # x œ u# v# and u v # ‹ `u `y Ê `u `y `x `y œ œ 0 Ê 0 œ 2u `u `y 2v `v `y At (uß v) œ ŠÈ2ß 1‹ , v v# u# . `v `y Ê `u `y œ ˆ uv ‰ " œ # 1# ŠÈ2‹ `u `y Ê 1 œ 1 Ê Š `` uy ‹ œ 1 x r x œ r cos ) 7. Œ Ä Œ Ê ˆ ``xr ‰) œ cos ); x# y# œ r# Ê 2x 2y ) y œ r sin ) Ê ``xr œ xr Ê ˆ ``xr ‰ œ È #x # `y `x œ 2r `r `x and `y `x 8. If x, y, and z are independent, then ˆ ``wx ‰y z œ ß `w `x `x `x `w `y `y `x `w `z `z `x `w `t `t `x œ (2x)(1) (2y)(0) (4)(0) (1) ˆ ``xt ‰ œ 2x ``xt . Thus x 2z t œ 25 Ê 1 0 Ê ˆ ``wx ‰ œ 2x 1. On the other hand, if x, y, and t are independent, then ˆ ``wx ‰ yßz œ Ê 1 `r `x x y y `w `x `x `x œ 0 Ê 2x œ 2r `t `x œ0 Ê `t `x œ 1 yßt ``wy `` yx ``wz `` xz ``wt ``xt œ (2x)(1) (2y)(0) 4 `` xz (1)(0) œ 2 `` xz 0 œ 0 Ê `` xz œ #" Ê ˆ ``wx ‰yßt œ 2x 4 ˆ #" ‰ œ 2x 2. 9. If x is a differentiable function of y and z, then f(xß yß z) œ 0 Ê `f `x `x `x 2x 4 `f `y `y `x `z `x . `f `z `z `x Thus, x 2z t œ 25 œ0 Ê `f `x `f `y `y `x œ0 Ê Š `` xy ‹ œ `` f/f/`` yz . Similarly, if y is a differentiable function of x and z, Š `` yz ‹ œ `` f/f/`` xz and if z is a z x differentiable function of x and y, ˆ `` xz ‰y œ `` f/f/`` xy . Then Š `` xy ‹ Š `` yz ‹ ˆ `` xz ‰y z œ Š ` f/` y ˆ ` f/` z ‰ ` f/` x ` f/` z ‹ ` f/` x Š ` f/` y ‹ 10. z œ z f(u) and u œ xy Ê œ x ˆ1 y df ‰ du y ˆx df ‰ du `z `x x œ 1. œ1 df ` u du ` x œ1y df du ; also `z `y œ0 df ` u du ` y œx df du so that x `z `x y œ 0 and `x `y œ0 Ê `g `y `z `y œx 11. If x and y are independent, then g(xß yß z) œ 0 Ê `g `x `x `y `g `y `y `y `g `z `z `y `y Ê Š `` yz ‹ œ `` g/ g/` z , as claimed. x 12. Let x and y be independent. Then f(xß yß zß w) œ 0, g(xß yß zß w) œ 0 and Ê `` xf `` xx `` yf `` yx `` zf `` xz ``wf ``wx œ `` xf `` zf `` xz ``wf ``wx `g `x `g `y `g `z `g `w `g `g `z `g `w `x `x `y `x `z `x `w `x œ `x `z `x `w `x œ 0 `y `x œ0 œ 0 and imply Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. `g `z `z `y œ0 861 862 Chapter 14 Partial Derivatives `f `z `g `z `z `x `z `x `f `w `g `w `w `x `w `x œ œ `f `x `g `x Ê ˆ `` xz ‰y œ c ``xf » c `g » `x `f `z `g `z `f `w `g » `w `f `w `g » `w œ `x `y œ 0 `g `g `z `y `z `y Likewise, f(xß yß zß w) œ 0, g(xß yß zß w) œ 0 and œ `f `y `f `z `g `z `z `y `z `y `f `z `z `y `f `w `g `w `w `y `w `y `f `w `w `y œ 0 and (similarly) œ `` yf œ `g `y Ê Š ``wy ‹ œ x `g `g `f `w `x `w `g `f `f `g `z `w `z `w ``xf `f `z » `g `z `f `z » `g `z c ``yf c `` gy » `f `w `g » `w œ œ `f `x `f `z `g `w `g `w `g `x `f `g `w `z ``wf `f `x `f `y `f `z `x `y `y `y `z `y `g `w ` w ` y œ 0 imply Ê `g `g `f `y `z `y `g `f `f `g `z `w `z `w `` fz œ `f `z `f `z `g `y `g `w `g `z `f `g `w `z ``yf , as claimed. `f `w `w `y , as claimed. CHAPTER 14 PRACTICE EXERCISES 1. Domain: All points in the xy-plane Range: z 0 Level curves are ellipses with major axis along the y-axis and minor axis along the x-axis. 2. Domain: All points in the xy-plane Range: 0 z _ Level curves are the straight lines x y œ ln z with slope 1, and z 0. 3. Domain: All (xß y) such that x Á 0 and y Á 0 Range: z Á 0 Level curves are hyperbolas with the x- and y-axes as asymptotes. 4. Domain: All (xß y) so that x# y Range: z 0 0 Level curves are the parabolas y œ x# c, c 0. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 14 Practice Exercises 5. Domain: All points (xß yß z) in space Range: All real numbers Level surfaces are paraboloids of revolution with the z-axis as axis. 6. Domain: All points (xß yß z) in space Range: Nonnegative real numbers Level surfaces are ellipsoids with center (0ß 0ß 0). 7. Domain: All (xß yß z) such that (xß yß z) Á (0ß !ß 0) Range: Positive real numbers Level surfaces are spheres with center (0ß 0ß 0) and radius r 0. 8. Domain: All points (xß yß z) in space Range: (0ß 1] Level surfaces are spheres with center (0ß 0ß 0) and radius r 0. 9. lim Ðxß yÑ Ä Ð1ß ln 2Ñ ey cos x œ eln 2 cos 1 œ (2)(1) œ 2 2y 10. lim Ðxß yÑ Ä Ð0ß 0Ñ x cos y 11. lim # # Ðxß yÑ Ä Ð1ß 1Ñ x y xÁ „y 12. 13. 14. xy x$ y$ 1 Ðxß yÑ Ä Ð1ß 1Ñ xy 1 lim lim P Ä Ð1ß 1ß eÑ lim œ œ 20 0 cos 0 œ2 xy lim Ðxß yÑ Ä Ð1ß 1Ñ (x y)(x y) xÁ „y œ œ (xy 1) ax# y# xy 1b xy 1 Ðx ß y Ñ Ä Ð 1 ß 1Ñ lim 1 lim Ðxß yÑ Ä Ð1ß 1Ñ x y œ lim œ Ðxß yÑ Ä Ð1ß 1Ñ " 11 œ " # ax# y# xy 1b œ 1# † 1# 1 † 1 1 œ 3 ln kx y zk œ ln k1 (1) ek œ ln e œ 1 P Ä Ð1 ß 1 ß 1 Ñ tan" (x y z) œ tan" (1 (1) (1)) œ tan" (1) œ 14 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 863 864 Chapter 14 Partial Derivatives 15. Let y œ kx# , k Á 1. Then kx# œ y lim # Ðxß yÑ Ä Ð0ß 0Ñ x y y Á x# lim # # axß kx# b Ä Ð0ß 0Ñ x kx œ k 1 k# which gives different limits for œ 1 k# k which gives different limits for different values of k Ê the limit does not exist. 16. Let y œ kx, k Á 0. Then x# y# xy Ðxß yÑ Ä Ð0ß 0Ñ lim x# (kx)# x(kx) (xß kxÑ Ä Ð0ß 0Ñ œ lim xy Á 0 different values of k Ê the limit does not exist. 17. Let y œ kx. Then x# y# œ lim # # Ðxß yÑ Ä Ð0ß 0Ñ x y x# k# x# x # k# x# 1 k# 1 k# œ which gives different limits for different values of k Ê the limit does not exist so f(0ß 0) cannot be defined in a way that makes f continuous at the origin. 18. Along the x-axis, y œ 0 and sin (x y) kxkkyk lim Ðxß yÑ Ä Ð0ß 0Ñ œ lim sin x k xk xÄ0 œœ 1, x 0 , so the limit fails to exist ", x 0 Ê f is not continuous at (0ß 0). 19. `g `r œ cos ) sin ), 20. `f `x œ 21. `f ` R" " # Š x# 2x y# ‹ œ R"# , " `f ` R# `g `) œ r sin ) r cos ) y ‹ x# y # 1 ˆx‰ Š œ œ R"# , x# `f ` R$ # x y# x# y y# œ xy x# y# `f `y , œ " # Š x# 2y y# ‹ Š 1x ‹ y # 1 ˆx‰ œ y x# y# x x# y# œ xy x# y# œ R"# $ 22. hx (xß yß z) œ 21 cos (21x y 3z), hy (xß yß z) œ cos (21x y 3z), hz (xß yß z) œ 3 cos (21x y 3z) 23. `P `n œ RT V , `P `R œ nT V `P `T , œ nR V , `P `V œ nRT V# 24. fr (rß jß Tß w) œ 2r"# j É 1Tw , fj (rß jß Tß w) œ #r"j# É 25. œ " 4rj É T1"w œ `g `x œ " y , `g `y " 4rjT œ1 , fT (rß jß Tß w) œ ˆ #"rj ‰ Š È"1w ‹ Š 2È" T ‹ T 1w É 1Tw , fw (rß jß Tß w) œ ˆ #"rj ‰ É T1 ˆ "# w$Î# ‰ œ 4r"jw É 1Tw Ê x y# ` #g ` x# œ 0, ` #g ` y# œ 2x y$ , ` #g ` y` x œ ` #g ` x` y œ y"# 26. gx (xß y) œ ex y cos x, gy (xß y) œ sin x Ê gxx (xß y) œ ex y sin x, gyy (xß y) œ 0, gxy (xß y) œ gyx (xß y) œ cos x 27. `f `x œ 1 y 15x# 2x x# 1 , `f `y œx Ê ` #f ` x# œ 30x 22x# ax# 1b# , ` #f ` y# œ 0, ` #f ` y` x œ ` #f ` x` y œ1 28. fx (xß y) œ 3y, fy (xß y) œ 2y 3x sin y 7ey Ê fxx (xß y) œ 0, fyy (xß y) œ 2 cos y 7ey , fxy (xß y) œ fyx (xß y) œ 3 29. `w `x Ê Ê 30. `w `x Ê Ê œ y cos (xy 1), `w `y œ x cos (xy 1), dx dt œ et , dy dt dw t ˆ " ‰ dt œ [y cos (xy 1)]e [x cos (xy 1)] t1 ; dw ¸ ˆ " ‰ dt tœ0 œ 0 † 1 [1 † (1)] 01 œ 1 œ ey , `w `y œ xey sin z, dw y "Î# axey dt œ e t dw ¸ dt tœ1 œ 1 † 1 (2 † 1 `w `z œ y cos z sin z, sin zb ˆ1 "‰ t dx dt œ " t1 t œ 0 Ê x œ 1 and y œ 0 œ t"Î# , dy dt œ 1 "t , dz dt œ1 (y cos z sin z)1; t œ 1 Ê x œ 2, y œ 0, and z œ 1 0)(2) (0 0)1 œ 5 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 14 Practice Exercises 31. `w `x Ê Ê 33. `w `u `w `v œ `x `u `x `v œ ˆ 1 x x# `f `x œ y z, `f `y œ x z, œ Ê `w `x dw dx dw dx œ ˆ 1 x x# `x `r `x `s œ 1, œ cos s, " ‰ u x# 1 a2e cos vb ; u œ v œ 0 Ê " ‰ `w ¸ u x# 1 a2e sin vb Ê ` v Ð0ß0Ñ œ `f `z œ y x, dx dt df dt œ (y z)(sin t) (x z)(cos df ¸ dt tœ1 œ (sin 1 cos 2)(sin 1) Ê 34. œ cos (2x y), `y `r `y `s œ s, œr `w ` r œ [2 cos (2x y)](1) [ cos (2x y)](s); r œ 1 and s œ 0 Ê x œ 1 and y œ 0 `w ¸ `w ` r Ð1ß0Ñ œ (2 cos 21) (cos 21 )(0) œ 2; ` s œ [2 cos (2x y)](cos s) [ cos (2x y)](r) `w ¸ ` s Ð1ß0Ñ œ (2 cos 21)(cos 0) (cos 21)(1) œ 2 1 Ê 32. `w `y œ 2 cos (2x y), œ dw ` s ds ` x œ (5) dw ds and `w `y œ dw ` s ds ` y œ sin t, dy dt `w ¸ ` u Ð0ß0Ñ xœ2 Ê ˆ 52 œ cos t, dz dt "‰ 5 (0) œ ˆ 52 5" ‰ (2) œ 1 y cos xy 2y x cos xy œ 2 sin 2t (cos 1 cos 2)(cos 1) 2(sin 1 cos 1)(sin 2) œ (1) dw ds œ `w `x Ê dw ds 5 `w `y œ5 œ dy dx ¹ Ð0ß1Ñ 1" 2 dw ds 5 dw ds dy dx ¹ Ð0ßln 2Ñ 1 y cos xy œ FFxy œ 2y x cos xy dy dx xby e œ FFxy œ 2y 2x exby ß 1‰ 4 # œ i j Ê f increases most rapidly in the direction u œ È2 # i Ê f increases most rapidly in the direction u œ u œ È12 i 1 È2 i 1 È2 " È2 œ È2 # and decreases most 38. ™ f œ 2xec2y i 2x# ec2y j Ê ™ f k Ð1ß0Ñ œ #i #j Ê k ™ f k œ È2# (2)# œ 2È2; u œ 1 È2 # œ "# i "# j Ê k ™ f k œ Ɉ "# ‰ ˆ "# ‰ œ È2 # j È È È È rapidly in the direction u œ #2 i #2 j ; (Du f)P! œ k ™ f k œ #2 and (Dcu f)P! œ #2 ; 7 u" œ kvvk œ È33i #4j4# œ 53 i 54 j Ê (Du" f)P! œ ™ f † u" œ ˆ "# ‰ ˆ 35 ‰ ˆ "# ‰ ˆ 45 ‰ œ 10 ™f k™f k È2 # dy dx 2 œ 2 ln0 2 2 œ (ln 2 1) 37. ™ f œ ( sin x cos y)i (cos x sin y)j Ê ™ f k ˆ 14 È2 # œ0 œ 1 36. F(xß y) œ 2xy exy 2 Ê Fx œ 2y exy and Fy œ 2x exy Ê uœ ; t) 2(y x)(sin 2t); t œ 1 Ê x œ cos 1, y œ sin 1, and z œ cos 2 Ê at (xß y) œ (!ß 1) we have Ê at (xß y) œ (!ß ln 2) we have 2 5 œ0 35. F(xß y) œ 1 x y# sin xy Ê Fx œ 1 y cos xy and Fy œ 2y x cos xy Ê œ 865 ™f k™f k œ 1 È2 i 1 È2 j j and decreases most rapidly in the direction j ; (Du f)P! œ k ™ f k œ 2È2 and (Dcu f)P! œ 2È2 ; u" œ v kv k œ ij È 1# 1# œ 1 È2 i 1 È2 j Ê (Du" f)P! œ ™ f † u" œ (2) Š È"2 ‹ (2) Š È"2 ‹ œ 0 2 3 6 39. ™ f œ Š 2x 3y 6z ‹ i Š 2x 3y 6z ‹ j Š 2x 3y 6z ‹ k Ê ™ f k Ð 1ß 1ß1Ñ œ 2i 3j 6k ; uœ ™f k™f k œ 2i 3j 6k È 2# 3# 6# œ 2 7 i 73 j 76 k Ê f increases most rapidly in the direction u œ 2 7 i 37 j 67 k and decreases most rapidly in the direction u œ 27 i 37 j 67 k ; (Du f)P! œ k ™ f k œ 7, (Du f)P! œ 7; u" œ v kv k œ 2 7 i 37 j 67 k Ê (Du" f)P! œ (Du f)P! œ 7 40. ™ f œ (2x 3y)i (3x 2)j (1 2z)k Ê ™ f k Ð0ß0ß0Ñ œ 2j k ; u œ rapidly in the direction u œ 2 È5 j " È5 ™f k™f k œ 2 È5 j " È5 k Ê f increases most k and decreases most rapidly in the direction u œ È25 j (Du f)P! œ k ™ f k œ È5 and (Du f)P! œ È5 ; u" œ v kvk œ ijk È 1# 1# 1# Ê (Du" f)P! œ ™ f † u" œ (0) Š È"3 ‹ (2) Š È"3 ‹ (1) Š È"3 ‹ œ 3 È3 œ " È3 i " È3 j " È3 k œ È3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " È5 k; ; 866 Chapter 14 Partial Derivatives 41. r œ (cos 3t)i (sin 3t)j 3tk Ê v(t) œ (3 sin 3t)i (3 cos 3t)j 3k Ê v ˆ 13 ‰ œ 3j 3k Ê u œ È"2 j " È2 k ; f(xß yß z) œ xyz Ê ™ f œ yzi xzj xyk ; t œ Ê ™ f k Ð 1ß0ß1Ñ œ 1j Ê ™ f † u œ (1j) † Š È"2 j " È2 k‹ œ 1 3 yields the point on the helix (1ß 0ß 1) 1 È2 42. f(xß yß z) œ xyz Ê ™ f œ yzi xzj xyk ; at (1ß 1ß 1) we get ™ f œ i j k Ê the maximum value of Du f k œ k ™ f k œ È3 Ð1ß1ß1Ñ 43. (a) Let ™ f œ ai bj at (1ß 2). The direction toward (2ß 2) is determined by v" œ (2 1)i (2 2)j œ i œ u so that ™ f † u œ 2 Ê a œ 2. The direction toward (1ß 1) is determined by v# œ (1 1)i (1 2)j œ j œ u so that ™ f † u œ 2 Ê b œ 2 Ê b œ 2. Therefore ™ f œ 2i 2j ; fx a1, 2b œ fy a1, 2b œ 2. (b) The direction toward (4ß 6) is determined by v$ œ (4 1)i (6 2)j œ 3i 4j Ê u œ 35 i 45 j Ê ™f†uœ 14 5 . 44. (a) True (b) False (c) True (d) True 45. ™ f œ 2xi j 2zk Ê ™ f k Ð0ß 1ß 1Ñ œ j 2k , ™ f k Ð0ß0ß0Ñ œ j , ™ f k Ð0ß 1ß1Ñ œ j 2k 46. ™ f œ 2yj 2zk Ê ™ f k Ð2ß2ß0Ñ œ 4j , ™ f k Ð2ß 2ß0Ñ œ 4j , ™ f k Ð2ß0ß2Ñ œ 4k , ™ f k Ð2ß0ß 2Ñ œ 4k 47. ™ f œ 2xi j 5k Ê ™ f k Ð2ß 1ß1Ñ œ 4i j 5k Ê Tangent Plane: 4(x 2) (y 1) 5(z 1) œ 0 Ê 4x y 5z œ 4; Normal Line: x œ 2 4t, y œ 1 t, z œ 1 5t 48. ™ f œ 2xi 2yj k Ê ™ f k Ð1ß1ß2Ñ œ 2i 2j k Ê Tangent Plane: 2(x 1) 2(y 1) (z 2) œ 0 Ê 2x 2y z 6 œ 0; Normal Line: x œ 1 2t, y œ 1 2t, z œ 2 t 49. `z `x œ 2x x# y# Ê `z ¸ ` x Ð0ß1ß0Ñ œ 0 and `z `y œ 2y x# y# Ê `z ` y ¹ Ð0ß1ß0Ñ œ 2; thus the tangent plane is 2(y 1) (z 0) œ 0 or 2y z 2 œ 0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 14 Practice Exercises 50. `z `x œ 2x ax# y# b # `z ¸ ` x ˆ1ß1ß 12 ‰ Ê œ #" and `z `y œ 2y ax# y# b # Ê `z ` y ¹ ˆ1ß1ß 1 ‰ 2 867 œ "# ; thus the tangent plane is "# (x 1) "# (y 1) ˆz "# ‰ œ 0 or x y 2z 3 œ 0 51. ™ f œ ( cos x)i j Ê ™ f k Ð1ß1Ñ œ i j Ê the tangent line is (x 1) (y 1) œ 0 Ê x y œ 1 1; the normal line is y 1 œ 1(x 1) Ê y œ x 1 1 52. ™ f œ xi yj Ê ™ f k Ð1ß2Ñ œ i 2j Ê the tangent line is (x 1) 2(y 2) œ 0 Ê y œ " # x #3 ; the normal line is y 2 œ 2(x 1) Ê y œ 2x 4 53. Let f(xß yß z) œ x# 2y 2z 4 and g(xß yß z) œ y 1. Then ™ f œ 2xi 2j 2kk a1 1 12 b œ 2i 2j 2k â â â i j kâ â â and ™ g œ j Ê ™ f ‚ ™ g œ â 2 2 2 â œ 2i 2k Ê the line is x œ 1 2t, y œ 1, z œ "# 2t â â â0 " 0â ß ß 54. Let f(xß yß z) œ x y# z 2 and g(xß yß z) œ y 1. Then ™ f œ i 2yj kk a 12 1 12 b œ i 2j k and â â â i j kâ â â ™ g œ j Ê ™ f ‚ ™ g œ â 1 2 1 â œ i k Ê the line is x œ "# t, y œ 1, z œ "# t â â â0 " 0â ß ß 55. f ˆ 14 ß 14 ‰ œ " # , fx ˆ 14 ß 14 ‰ œ cos x cos yk Ð1Î4ß1Î4Ñ œ Ê L(xß y) œ " # "# ˆx 14 ‰ "# ˆy 14 ‰ œ " # " # " # , fy ˆ 14 ß 14 ‰ œ sin x sin yk Ð1Î4ß1Î4Ñ œ "# x "# y; fxx (xß y) œ sin x cos y, fyy (xß y) œ sin x cos y, and fxy (xß y) œ cos x sin y. Thus an upper bound for E depends on the bound M used for kfxx k , kfxy k , and kfyy k . With M œ È2 # we have kE(xß y)k Ÿ with M œ 1, kE(xß y)k Ÿ " # " # Š È2 ˆ¸ # ‹ x # 14 ¸ ¸y 14 ¸‰ Ÿ # (1) ˆ¸x 14 ¸ ¸y 14 ¸‰ œ " # È2 4 (0.2)# Ÿ 0.0142; (0.2)# œ 0.02. 56. f(1ß 1) œ 0, fx (1ß 1) œ yk Ð1ß1Ñ œ 1, fy (1ß 1) œ x 6yk Ð1ß1Ñ œ 5 Ê L(xß y) œ (x 1) 5(y 1) œ x 5y 4; fxx (xß y) œ 0, fyy (xß y) œ 6, and fxy (xß y) œ 1 Ê maximum of kfxx k , kfyy k , and kfxy k is 6 Ê M œ 6 Ê kE(xß y)k Ÿ " # (6) akx 1k ky 1kb# œ " # (6)(0.1 0.2)# œ 0.27 57. f(1ß 0ß 0) œ 0, fx (1ß 0ß 0) œ y 3zk Ð1ß0ß0Ñ œ 0, fy (1ß 0ß 0) œ x 2zk Ð1ß0ß0Ñ œ 1, fz (1ß 0ß 0) œ 2y 3xk Ð1ß0ß0Ñ œ 3 Ê L(xß yß z) œ 0(x 1) (y 0) 3(z 0) œ y 3z; f(1ß 1ß 0) œ 1, fx (1ß 1ß 0) œ 1, fy (1ß 1ß 0) œ 1, fz ("ß "ß !) œ 1 Ê L(xß yß z) œ 1 (x 1) (y 1) 1(z 0) œ x y z 1 58. f ˆ0ß !ß 14 ‰ œ 1, fx ˆ!ß 0ß 14 ‰ œ È2 sin x sin (y z)¹ ˆ0ß0ß 1 ‰ œ 0, fy ˆ!ß 0ß 14 ‰ œ È2 cos x cos (y z)¹ 4 fz ˆ!ß 0ß 14 ‰ œ È2 cos x cos (y z)¹ ˆ0ß0ß 1 ‰ È2 # œ 1 Ê L(xß yß z) œ 1 1(y 0) 1 ˆz 14 ‰ œ 1 y z Ê L(xß yß z) œ È2 È2 È2 ˆ1 1 ‰ ˆ1 1 ‰ # , fy 4 ß 4 ß 0 œ # , fz 4 ß 4 ß 0 œ # È È È È È #2 ˆy 14 ‰ #2 (z 0) œ #2 #2 x #2 , fx ˆ 14 ß 14 ß 0‰ œ È2 # È2 # ˆx 14 ‰ œ 1, 4 4 f ˆ 14 ß 14 ß 0‰ œ ˆ0ß0ß 1 ‰ y È2 # z Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 4 ; 868 Chapter 14 Partial Derivatives 59. V œ 1r# h Ê dV œ 21rh dr 1r# dh Ê dVk Ð1Þ5ß5280Ñ œ 21(1.5)(5280) dr 1(1.5)# dh œ 15,8401 dr 2.251 dh. You should be more careful with the diameter since it has a greater effect on dV. 60. df œ (2x y) dx (x 2y) dy Ê df k Ð1ß2Ñ œ 3 dy Ê f is more sensitive to changes in y; in fact, near the point (1ß 2) a change in x does not change f. 61. dI œ " R dV V R# " 100 dR Ê dI¸ Ð24ß100Ñ œ dV 24 100# dR Ê dI¸ dVœ1ßdRœ20 œ 0.01 (480)(.0001) œ 0.038, " ‰ 20 ‰ or increases by 0.038 amps; % change in V œ (100) ˆ 24 ¸ 4.17%; % change in R œ ˆ 100 (100) œ 20%; Iœ 24 100 œ 0.24 Ê estimated % change in I œ dI I ‚ 100 œ 0.038 0.24 ‚ 100 ¸ 15.83% Ê more sensitive to voltage change. 62. A œ 1ab Ê dA œ 1b da 1a db Ê dAk Ð10ß16Ñ œ 161 da 101 db; da œ „ 0.1 and db œ „ 0.1 ¸ ¸ 2.61 ¸ Ê dA œ „ 261(0.1) œ „ 2.61 and A œ 1(10)(16) œ 1601 Ê ¸ dA A ‚ 100 œ 1601 ‚ 100 ¸ 1.625% 63. (a) y œ uv Ê dy œ v du u dv; percentage change in u Ÿ 2% Ê kduk Ÿ 0.02, and percentage change in v Ÿ 3% Ê kdvk Ÿ 0.03; dy y Ÿ 2% 3% œ 5% (b) z œ u v Ê dzz œ œ v du u dv uv du dv uv œ œ du uv Ê ¸ dzz ‚ 100¸ Ÿ ¸ du u ‚ 100 64. C œ Ê dv v du u dv uv Þ Þ Þ Þ Þ Þ Ÿ ¸ du Ê ¹ dy y ‚ 100¹ œ u ‚ 100 du u dv v dv v ¸ ¸ dv ¸ ‚ 100¸ Ÿ ¸ du u ‚ 100 v ‚ 100 (since u 0, v 0) ‚ 100¸ œ ¹ dy y ‚ 100¹ (0.425)(7) 7 71.84w0 425 h0 725 Ê Cw œ 71.84w1 425 h0 725 2.975 5.075 dC œ 71.84w 1 425 h0 725 dw 71.84w0 425 h1 725 Þ dv v Þ and Ch œ (0.725)(7) 71.84w0 425 h1 725 Þ Þ dh; thus when w œ 70 and h œ 180 we have dCk Ð70ß180Ñ ¸ (0.00000225) dw (0.00000149) dh Ê 1 kg error in weight has more effect 65. fx (xß y) œ 2x y 2 œ 0 and fy (xß y) œ x 2y 2 œ 0 Ê x œ 2 and y œ 2 Ê (2ß 2) is the critical point; # œ 3 0 and fxx 0 Ê local minimum value fxx (2ß 2) œ 2, fyy (#ß 2) œ 2, fxy (#ß 2) œ 1 Ê fxx fyy fxy of f(#ß 2) œ 8 66. fx (xß y) œ 10x 4y 4 œ 0 and fy (xß y) œ 4x 4y 4 œ 0 Ê x œ 0 and y œ 1 Ê (0ß 1) is the critical point; # œ 56 0 Ê saddle point with f(0ß 1) œ 2 fxx (0ß 1) œ 10, fyy (0ß 1) œ 4, fxy (0ß 1) œ 4 Ê fxx fyy fxy 67. fx (xß y) œ 6x# 3y œ 0 and fy (xß y) œ 3x 6y# œ 0 Ê y œ 2x# and 3x 6 a4x% b œ 0 Ê x a1 8x$ b œ 0 Ê x œ 0 and y œ 0, or x œ "# and y œ "# Ê the critical points are (0ß 0) and ˆ "# ß "# ‰ . For (!ß !): # fxx (!ß !) œ 12xk Ð0ß0Ñ œ 0, fyy (!ß !) œ 12yk Ð0ß0Ñ œ 0, fxy (!ß 0) œ 3 Ê fxx fyy fxy œ 9 0 Ê saddle point with # f(0ß 0) œ 0. For ˆ "# ß "# ‰: fxx œ 6, fyy œ 6, fxy œ 3 Ê fxx fyy fxy œ 27 0 and fxx 0 Ê local maximum " " " value of f ˆ # ß # ‰ œ 4 68. fx (xß y) œ 3x# 3y œ 0 and fy (xß y) œ 3y# 3x œ 0 Ê y œ x# and x% x œ 0 Ê x ax$ 1b œ 0 Ê the critical points are (0ß 0) and (1ß 1) . For (!ß !): fxx (!ß !) œ 6xk Ð0ß0Ñ œ 0, fyy (!ß !) œ 6yk Ð0ß0Ñ œ 0, fxy (!ß 0) œ 3 # Ê fxx fyy fxy œ 9 0 Ê saddle point with f(0ß 0) œ 15. For (1ß 1): fxx (1ß 1) œ 6, fyy (1ß 1) œ 6, fxy (1ß 1) œ 3 # Ê fxx fyy fxy œ 27 0 and fxx 0 Ê local minimum value of f(1ß 1) œ 14 69. fx (xß y) œ 3x# 6x œ 0 and fy (xß y) œ 3y# 6y œ 0 Ê x(x 2) œ 0 and y(y 2) œ 0 Ê x œ 0 or x œ 2 and y œ 0 or y œ 2 Ê the critical points are (0ß 0), (0ß 2), (2ß 0), and (2ß 2) . For (!ß !): fxx (!ß !) œ 6x 6k Ð0ß0Ñ # œ 6, fyy (!ß !) œ 6y 6k Ð0ß0Ñ œ 6, fxy (!ß 0) œ 0 Ê fxx fyy fxy œ 36 0 Ê saddle point with f(0ß 0) œ 0. For # (0ß 2): fxx (!ß 2) œ 6, fyy (0ß #) œ 6, fxy (!ß 2) œ 0 Ê fxx fyy fxy œ 36 0 and fxx 0 Ê local minimum value of Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 14 Practice Exercises 869 # f(!ß 2) œ 4. For (#ß 0): fxx (2ß 0) œ 6, fyy (#ß 0) œ 6, fxy (2ß 0) œ 0 Ê fxx fyy fxy œ 36 0 and fxx 0 Ê local maximum value of f(2ß 0) œ 4. For (2ß 2): fxx (2ß 2) œ 6, fyy (2ß 2) œ 6, fxy (2ß 2) œ 0 # Ê fxx fyy fxy œ 36 0 Ê saddle point with f(2ß 2) œ 0. 70. fx (xß y) œ 4x$ 16x œ 0 Ê 4x ax# 4b œ 0 Ê x œ 0, 2, 2; fy (xß y) œ 6y 6 œ 0 Ê y œ 1. Therefore the critical points are (0ß 1), (2ß 1), and (2ß 1). For (!ß 1): fxx (!ß 1) œ 12x# 16k Ð0ß1Ñ œ 16, fyy (!ß 1) œ 6, fxy (!ß 1) œ 0 # Ê fxx fyy fxy œ 96 0 Ê saddle point with f(0ß 1) œ 3. For (2ß 1): fxx (2ß 1) œ 32, fyy (2ß 1) œ 6, # fxy (2ß 1) œ 0 Ê fxx fyy fxy œ 192 0 and fxx 0 Ê local minimum value of f(2ß 1) œ 19. For (#ß 1): # fxx (2ß 1) œ 32, fyy (#ß 1) œ 6, fxy (2ß 1) œ 0 Ê fxx fyy fxy œ 192 0 and fxx 0 Ê local minimum value of f(2ß 1) œ 19. 71. (i) On OA, f(xß y) œ f(0ß y) œ y# 3y for 0 Ÿ y Ÿ 4 Ê f w (!ß y) œ 2y 3 œ 0 Ê y œ 3# . But ˆ!ß 3# ‰ is not in the region. Endpoints: f(0ß 0) œ 0 and f(0ß 4) œ 28. (ii) On AB, f(xß y) œ f(xß x 4) œ x# 10x 28 for 0 Ÿ x Ÿ 4 Ê f w (xß x 4) œ 2x 10 œ 0 Ê x œ 5, y œ 1. But (5ß 1) is not in the region. Endpoints: f(4ß 0) œ 4 and f(!ß 4) œ 28. (iii) On OB, f(xß y) œ f(xß 0) œ x# 3x for 0 Ÿ x Ÿ 4 Ê f w (xß 0) œ 2x 3 Ê x œ critical point with f ˆ 3# ß !‰ œ 94 . 3 # and y œ 0 Ê ˆ 3# ß 0‰ is a Endpoints: f(0ß 0) œ 0 and f(%ß 0) œ 4. (iv) For the interior of the triangular region, fx (xß y) œ 2x y 3 œ 0 and fy (xß y) œ x 2y 3 œ 0 Ê x œ 3 and y œ 3. But (3ß 3) is not in the region. Therefore the absolute maximum is 28 at (0ß 4) and the absolute minimum is 94 at ˆ 3# ß !‰ . On OA, f(xß y) œ f(0ß y) œ y# 4y 1 for 0 Ÿ y Ÿ 2 Ê f w (!ß y) œ 2y 4 œ 0 Ê y œ 2 and x œ 0. But (0ß 2) is not in the interior of OA. Endpoints: f(0ß 0) œ 1 and f(0ß 2) œ 5. (ii) On AB, f(xß y) œ f(xß 2) œ x# 2x 5 for 0 Ÿ x Ÿ 4 Ê f w (xß 2) œ 2x 2 œ 0 Ê x œ 1 and y œ 2 Ê (1ß 2) is an interior critical point of AB with f(1ß 2) œ 4. Endpoints: f(4ß 2) œ 13 and f(!ß 2) œ 5. (iii) On BC, f(xß y) œ f(4ß y) œ y# 4y 9 for 0 Ÿ y Ÿ 2 Ê f w (4ß y) œ 2y 4 œ 0 Ê y œ # and x œ 4. But (4ß 2) is not in the interior of BC. Endpoints: f(4ß 0) œ 9 and f(%ß 2) œ 13. (iv) On OC, f(xß y) œ f(xß 0) œ x# 2x 1 for 0 Ÿ x Ÿ 4 Ê f w (xß 0) œ 2x 2 œ 0 Ê x œ 1 and y œ 0 Ê (1ß 0) is an interior critical point of OC with f(1ß 0) œ 0. Endpoints: f(0ß 0) œ 1 and f(4ß 0) œ 9. (v) For the interior of the rectangular region, fx (xß y) œ 2x 2 œ 0 and fy (xß y) œ 2y 4 œ 0 Ê x œ 1 and y œ 2. But (1ß 2) is not in the interior of the region. Therefore the absolute maximum is 13 at (4ß 2) and the absolute minimum is 0 at (1ß 0). 72. (i) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 870 73. (i) Chapter 14 Partial Derivatives On AB, f(xß y) œ f(2ß y) œ y# y 4 for 2 Ÿ y Ÿ 2 Ê f w (2ß y) œ 2y 1 Ê y œ "# and x œ 2 Ê ˆ2ß "# ‰ is an interior critical point in AB with f ˆ2ß "# ‰ œ 17 4 . Endpoints: f(2ß 2) œ 2 and f(2ß 2) œ 2. On BC, f(xß y) œ f(xß 2) œ 2 for 2 Ÿ x Ÿ 2 Ê f w (xß 2) œ 0 Ê no critical points in the interior of BC. Endpoints: f(2ß 2) œ 2 and f(2ß 2) œ 2. (iii) On CD, f(xß y) œ f(2ß y) œ y# 5y 4 for 2 Ÿ y Ÿ 2 Ê f w (2ß y) œ 2y 5 œ 0 Ê y œ 5# and x œ 2. But ˆ#ß 5# ‰ is not in the region. (ii) Endpoints: f(2ß 2) œ 18 and f(2ß 2) œ 2. (iv) On AD, f(xß y) œ f(xß 2) œ 4x 10 for 2 Ÿ x Ÿ 2 Ê f w (xß 2) œ 4 Ê no critical points in the interior of AD. Endpoints: f(2ß 2) œ 2 and f(2ß 2) œ 18. (v) For the interior of the square, fx (xß y) œ y 2 œ 0 and fy (xß y) œ 2y x 3 œ 0 Ê y œ 2 and x œ 1 Ê (1ß 2) is an interior critical point of the square with f(1ß 2) œ 2. Therefore the absolute maximum "‰ ˆ is 18 at (2ß 2) and the absolute minimum is 17 4 at #ß # . On OA, f(xß y) œ f(0ß y) œ 2y y# for 0 Ÿ y Ÿ 2 Ê f w (!ß y) œ 2 2y œ 0 Ê y œ 1 and x œ 0 Ê (!ß 1) is an interior critical point of OA with f(0ß 1) œ 1. Endpoints: f(0ß 0) œ 0 and f(0ß 2) œ 0. (ii) On AB, f(xß y) œ f(xß 2) œ 2x x# for 0 Ÿ x Ÿ 2 Ê f w (xß 2) œ 2 2x œ 0 Ê x œ 1 and y œ 2 Ê (1ß 2) is an interior critical point of AB with f(1ß 2) œ 1. Endpoints: f(0ß 2) œ 0 and f(2ß 2) œ 0. (iii) On BC, f(xß y) œ f(2ß y) œ 2y y# for 0 Ÿ y Ÿ 2 Ê f w (2ß y) œ 2 2y œ 0 Ê y œ 1 and x œ 2 Ê (2ß 1) is an interior critical point of BC with f(2ß 1) œ 1. Endpoints: f(2ß 0) œ 0 and f(2ß 2) œ 0. (iv) On OC, f(xß y) œ f(xß 0) œ 2x x# for 0 Ÿ x Ÿ 2 Ê f w (xß 0) œ 2 2x œ 0 Ê x œ 1 and y œ 0 Ê (1ß 0) is an interior critical point of OC with f(1ß 0) œ 1. Endpoints: f(0ß 0) œ 0 and f(0ß 2) œ 0. (v) For the interior of the rectangular region, fx (xß y) œ 2 2x œ 0 and fy (xß y) œ 2 2y œ 0 Ê x œ 1 and y œ 1 Ê (1ß 1) is an interior critical point of the square with f(1ß 1) œ 2. Therefore the absolute maximum is 2 at (1ß 1) and the absolute minimum is 0 at the four corners (0ß 0), (0ß 2), (2ß 2), and (2ß 0). 74. (i) On AB, f(xß y) œ f(xß x 2) œ 2x 4 for 2 Ÿ x Ÿ 2 Ê f w (xß x 2) œ 2 œ 0 Ê no critical points in the interior of AB. Endpoints: f(2ß 0) œ 8 and f(2ß 4) œ 0. (ii) On BC, f(xß y) œ f(2ß y) œ y# 4y for 0 Ÿ y Ÿ 4 Ê f w (2ß y) œ 2y 4 œ 0 Ê y œ 2 and x œ 2 Ê (2ß 2) is an interior critical point of BC with f(2ß 2) œ 4. Endpoints: f(2ß 0) œ 0 and f(2ß 4) œ 0. (iii) On AC, f(xß y) œ f(xß 0) œ x# 2x for 2 Ÿ x Ÿ 2 Ê f w (xß 0) œ 2x 2 Ê x œ 1 and y œ 0 Ê (1ß 0) is an interior critical point of AC with f(1ß 0) œ 1. Endpoints: f(2ß 0) œ 8 and f(2ß 0) œ 0. (iv) For the interior of the triangular region, fx (xß y) œ 2x 2 œ 0 and fy (xß y) œ 2y 4 œ 0 Ê x œ 1 and y œ 2 Ê (1ß 2) is an interior critical point of the region with f(1ß 2) œ 3. Therefore the absolute maximum is 8 at (2ß 0) and the absolute minimum is 1 at (1ß 0). 75. (i) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 14 Practice Exercises 76. (i) (ii) 871 On AB, faxß yb œ faxß xb œ 4x# 2x% 16 for 2 Ÿ x Ÿ 2 Ê f w axß xb œ 8x 8x$ œ 0 Ê x œ 0 and y œ 0, or x œ 1 and y œ 1, or x œ 1 and y œ 1 Ê a0ß 0b, a1ß 1b, a1ß 1b are all interior points of AB with fa0ß 0b œ 16, fa1ß 1b œ 18, and fa1ß 1b œ 18. Endpoints: fa2ß 2b œ 0 and fa2ß 2b œ 0. On BC, faxß yb œ fa2ß yb œ 8y y% for 2 Ÿ y Ÿ 2 3 Ê f w a2ß yb œ 8 4y$ œ 0 Ê y œ È 2 and x œ 2 3 Ê Š2ß È 2‹ is an interior critical point of BC with 3 3 f Š2ß È 2‹ œ 6 È 2. Endpoints: fa2ß 2b œ 32 and fa2ß 2b œ 0. 3 (iii) On AC, faxß yb œ faxß 2b œ 8x x% for 2 Ÿ x Ÿ 2 Ê f w axß 2b œ 8 4x$ œ 0 Ê x œ È 2 and y œ 2 3 3 3 Ê ŠÈ 2ß 2‹ is an interior critical point of AC with f ŠÈ 2ß 2‹ œ 6 È 2. Endpoints: fa2ß 2b œ 0 and fa2ß 2b œ 32. (iv) For the interior of the triangular region, fx axß yb œ 4y 4x$ œ 0 and fy axß yb œ 4x 4y$ œ 0 Ê x œ 0 and y œ 0, or x œ 1 and y œ 1 or x œ 1 and y œ 1. But neither of the points a0ß 0b and a1ß 1b, or a1ß 1b are interior to the region. Therefore the absolute maximum is 18 at (1ß 1) and (1ß 1), and the absolute minimum is 32 at a2ß 2b. On AB, f(xß y) œ f(1ß y) œ y$ 3y# 2 for 1 Ÿ y Ÿ 1 Ê f w (1ß y) œ 3y# 6y œ 0 Ê y œ 0 and x œ 1, or y œ 2 and x œ 1 Ê (1ß 0) is an interior critical point of AB with f(1ß 0) œ 2; (1ß 2) is outside the boundary. Endpoints: f(1ß 1) œ 2 and f(1ß 1) œ 0. (ii) On BC, f(xß y) œ f(xß 1) œ x$ 3x# 2 for 1 Ÿ x Ÿ 1 Ê f w (xß 1) œ 3x# 6x œ 0 Ê x œ 0 and y œ 1, or x œ 2 and y œ 1 Ê (0ß 1) is an interior critical point of BC with f(!ß 1) œ 2; (2ß 1) is outside the boundary. Endpoints: f("ß 1) œ 0 and f("ß 1) œ 2. (iii) On CD, f(xß y) œ f("ß y) œ y$ 3y# 4 for 1 Ÿ y Ÿ 1 Ê f w ("ß y) œ 3y# 6y œ 0 Ê y œ 0 and x œ 1, or y œ 2 and x œ 1 Ê ("ß 0) is an interior critical point of CD with f("ß 0) œ 4; (1ß 2) is outside the boundary. Endpoints: f(1ß 1) œ 2 and f("ß 1) œ 0. (iv) On AD, f(xß y) œ f(xß 1) œ x$ 3x# 4 for 1 Ÿ x Ÿ 1 Ê f w (xß 1) œ 3x# 6x œ 0 Ê x œ 0 and y œ 1, or x œ 2 and y œ 1 Ê (0ß 1) is an interior point of AD with f(0ß 1) œ 4; (#ß 1) is outside the boundary. Endpoints: f(1ß 1) œ 2 and f("ß 1) œ 0. (v) For the interior of the square, fx (xß y) œ 3x# 6x œ 0 and fy (xß y) œ 3y# 6y œ 0 Ê x œ 0 or x œ 2, and y œ 0 or y œ 2 Ê (0ß 0) is an interior critical point of the square region with f(!ß 0) œ 0; the points (0ß 2), (2ß 0), and (2ß 2) are outside the region. Therefore the absolute maximum is 4 at (1ß 0) and the absolute minimum is 4 at (0ß 1). 77. (i) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 872 Chapter 14 Partial Derivatives On AB, f(xß y) œ f(1ß y) œ y$ 3y for 1 Ÿ y Ÿ 1 Ê f w (1ß y) œ 3y# 3 œ 0 Ê y œ „ 1 and x œ 1 yielding the corner points (1ß 1) and (1ß 1) with f(1ß 1) œ 2 and f(1ß 1) œ 2. (ii) On BC, f(xß y) œ f(xß 1) œ x$ 3x 2 for 1 Ÿ x Ÿ 1 Ê f w (xß 1) œ 3x# 3 œ 0 Ê no solution. Endpoints: f("ß 1) œ 2 and f("ß 1) œ 6. (iii) On CD, f(xß y) œ f("ß y) œ y$ 3y 2 for 1 Ÿ y Ÿ 1 Ê f w ("ß y) œ 3y# 3 œ 0 Ê no solution. Endpoints: f(1ß 1) œ 6 and f("ß 1) œ 2. (iv) On AD, f(xß y) œ f(xß 1) œ x$ 3x for 1 Ÿ x Ÿ 1 Ê f w (xß 1) œ 3x# 3 œ 0 Ê x œ „ 1 and y œ 1 yielding the corner points (1ß 1) and (1ß 1) with f(1ß 1) œ 2 and f(1ß 1) œ 2 (v) For the interior of the square, fx (xß y) œ 3x# 3y œ 0 and fy (xß y) œ 3y# 3x œ 0 Ê y œ x# and x% x œ 0 Ê x œ 0 or x œ 1 Ê y œ 0 or y œ 1 Ê (!ß 0) is an interior critical point of the square region with f(0ß 0) œ 1; (1ß 1) is on the boundary. Therefore the absolute maximum is 6 at ("ß 1) and the absolute minimum is 2 at (1ß 1) and (1ß 1). 78. (i) 79. ™ f œ 3x# i 2yj and ™ g œ 2xi 2yj so that ™ f œ - ™ g Ê 3x# i 2yj œ -(2xi 2yj) Ê 3x# œ 2x- and 2y œ 2y- Ê - œ 1 or y œ 0. CASE 1: - œ 1 Ê 3x# œ 2x Ê x œ 0 or x œ 23 ; x œ 0 Ê y œ „ 1 yielding the points (0ß 1) and (!ß 1); x œ Ê yœ „ È5 3 yielding the points Š 32 ß È5 3 ‹ and Š 32 ß 2 3 È5 3 ‹. CASE 2: y œ 0 Ê x# 1 œ 0 Ê x œ „ 1 yielding the points (1ß 0) and (1ß 0). Evaluations give f a!ß „ 1b œ 1, f Š 23 ß „ È5 3 ‹ œ 23 27 , f("ß 0) œ 1, and f("ß 0) œ 1. Therefore the absolute maximum is 1 at a!ß „ 1b and (1ß 0), and the absolute minimum is 1 at ("ß !). 80. ™ f œ yi xj and ™ g œ 2xi 2yj so that ™ f œ - ™ g Ê yi xj œ -(2xi 2yj) Ê y œ 2-x and xy œ 2-y Ê x œ 2-(2-x) œ 4-# x Ê x œ 0 or 4-# œ 1. CASE 1: x œ 0 Ê y œ 0 but (0ß 0) does not lie on the circle, so no solution. CASE 2: 4-# œ 1 Ê - œ "# or - œ "# . For - œ "# , y œ x Ê 1 œ x# y# œ 2x# Ê x œ C œ „ È"2 yielding the points Š È"2 ß È"2 ‹ and Š È"2 , È"2 ‹ . For - œ #" , y œ x Ê 1 œ x# y# œ 2x# Ê x œ „ " È2 and y œ x yielding the points Š È"2 ß È"2 ‹ and Š È"2 , È"2 ‹ . Evaluations give the absolute maximum value f Š È"2 ß È"2 ‹ œ f Š È"2 ß È"2 ‹ œ " # and the absolute minimum value f Š È"2 ß È"2 ‹ œ f Š È"2 ß È"2 ‹ œ #" . 81. (i) f(xß y) œ x# 3y# 2y on x# y# œ 1 Ê ™ f œ 2xi (6y 2)j and ™ g œ 2xi 2yj so that ™ f œ - ™ g Ê 2xi (6y 2)j œ -(2xi 2yj) Ê 2x œ 2x- and 6y 2 œ 2y- Ê - œ 1 or x œ 0. CASE 1: - œ 1 Ê 6y 2 œ 2y Ê y œ "# and x œ „ È3 # yielding the points Š „ È3 # ß #" ‹ . CASE 2: x œ 0 Ê y# œ 1 Ê y œ „ 1 yielding the points a!ß „ 1b . Evaluations give f Š „ È3 # ß "# ‹ œ " # , f(0ß 1) œ 5, and f(!ß 1) œ 1. Therefore " # and 5 are the extreme values on the boundary of the disk. (ii) For the interior of the disk, fx (xß y) œ 2x œ 0 and fy (xß y) œ 6y 2 œ 0 Ê x œ 0 and y œ "3 Ê ˆ!ß 13 ‰ is an interior critical point with f ˆ!ß 3" ‰ œ 3" . Therefore the absolute maximum of f on the disk is 5 at (0ß 1) and the absolute minimum of f on the disk is "3 at ˆ!ß 3" ‰ . Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 14 Practice Exercises 873 82. (i) f(xß y) œ x# y# 3x xy on x# y# œ 9 Ê ™ f œ (2x 3 y)i (2y x)j and ™ g œ 2xi 2yj so that ™ f œ - ™ g Ê (2x 3 y)i (2y x)j œ -(2xi 2yj) Ê 2x 3 y œ 2x- and 2y x œ 2yÊ 2x(" -) y œ 3 and x 2y(1 -) œ 0 Ê 1 - œ x 2y x and (2x) Š 2y ‹ y œ 3 Ê x# y# œ 3y Ê x# œ y# 3y. Thus, 9 œ x# y# œ y# 3y y# Ê 2y# 3y 9 œ 0 Ê (2y 3)(y 3) œ 0 Ê y œ 3, 3# . For y œ 3, x# y# œ 9 Ê x œ 0 yielding the point (0ß 3). For y œ 3# , x# y# œ 9 Ê x# 9 4 œ 9 Ê x# œ Ê xœ „ 27 4 È ¸ 20.691, and f Š 3 # 3 , 3# ‹ œ 9 27È3 4 3È 3 # È . Evaluations give f(0ß 3) œ 9, f Š 3 # 3 ß 3# ‹ œ 9 27È3 4 ¸ 2.691. (ii) For the interior of the disk, fx (xß y) œ 2x 3 y œ 0 and fy (xß y) œ 2y x œ 0 Ê x œ 2 and y œ 1 Ê (2ß 1) is an interior critical point of the disk with f(2ß 1) œ 3. Therefore, the absolute maximum of f on the disk is 9 27È3 4 È at Š 3 # 3 ß 3# ‹ and the absolute minimum of f on the disk is 3 at (2ß 1). 83. ™ f œ i j k and ™ g œ 2xi 2yj 2zk so that ™ f œ - ™ g Ê i j k œ -(2xi 2yj 2zk) Ê 1 œ 2x-, 1 œ 2y-, 1 œ 2z- Ê x œ y œ z œ -" . Thus x# y# z# œ 1 Ê 3x# œ 1 Ê x œ „ È"3 yielding the points Š È"3 ß È"3 , " È3 ‹ and Š È"3 , f Š È"3 ß È"3 ß È"3 ‹ œ 3 È3 " È3 , È"3 ‹ . Evaluations give the absolute maximum value of œ È3 and the absolute minimum value of f Š È"3 ß È"3 ß È"3 ‹ œ È3. 84. Let f(xß yß z) œ x# y# z# be the square of the distance to the origin and g(xß yß z) œ x# zy 4. Then ™ f œ 2xi 2yj 2zk and ™ g œ 2xi zj yk so that ™ f œ - ™ g Ê 2x œ 2-x, 2y œ -z, and 2z œ -y Ê x œ 0 or - œ 1. CASE 1: x œ 0 Ê zy œ 4 Ê z œ 4y and y œ 4z Ê 2 Š y4 ‹ œ -y and 2 ˆ 4z ‰ œ -z Ê 8 - 8 - œ y# and œ z# Ê y# œ z# Ê y œ „ z. But y œ x Ê z# œ 4 leads to no solution, so y œ z Ê z# œ 4 Ê z œ „ 2 yielding the points (0ß 2ß 2) and (0ß 2ß 2). CASE 2: - œ 1 Ê 2z œ y and 2y œ z Ê 2y œ ˆ y# ‰ Ê 4y œ y Ê y œ 0 Ê z œ 0 Ê x# 4 œ 0 Ê x œ „ 2 yielding the points (2ß 0ß 0) and (2ß !ß 0). Evaluations give f(0ß 2ß 2) œ f(0ß 2ß 2) œ 8 and f(2ß 0ß 0) œ f(2ß !ß 0) œ 4. Thus the points (2ß 0ß 0) and (2ß !ß 0) on the surface are closest to the origin. 85. The cost is f(xß yß z) œ 2axy 2bxz 2cyz subject to the constraint xyz œ V. Then ™ f œ - ™ g Ê 2ay 2bz œ -yz, 2ax 2cz œ -xz, and 2bx 2cy œ -xy Ê 2axy 2bxz œ -xyz, 2axy 2cyz œ -xyz, and 2bxz 2cyz œ -xyz Ê 2axy 2bxz œ 2axy 2cyz Ê y œ ˆ bc ‰ x. Also 2axy 2bxz œ 2bxz 2cyz Ê z œ ˆ ca ‰ x. Then x ˆ bc x‰ ˆ ca x‰ œ V Ê x$ œ # Height œ z œ ˆ ac ‰ Š cabV ‹ "Î$ # c# V ab œ Š abcV ‹ # Ê width œ x œ Š cabV ‹ "Î$ "Î$ # , Depth œ y œ ˆ bc ‰ Š cabV ‹ "Î$ # œ Š bacV ‹ "Î$ , and . 86. The volume of the pyramid in the first octant formed by the plane is V(aß bß c) œ " 3 ˆ "# ab‰ c œ " 6 abc. The point (2ß 1ß 2) on the plane Ê "b 2c œ 1. We want to minimize V subject to the constraint 2bc ac 2ab œ abc. ac ab Thus, ™ V œ bc 6 i 6 j 6 k and ™ g œ (c 2b bc)i (2c 2a ac)j (2b a ab)k so that ™ V œ ac ab abc Ê bc 6 œ -(c 2b bc), 6 œ -(2c 2a ac), and 6 œ -(2b a ab) Ê 6 œ -(ac 2ab abc), abc abc 6 œ -(2bc 2ab abc), and 6 œ -(2bc ac abc) Ê -ac œ 2-bc and 2-ab œ 2-bc. Now - Á 0 since 2 a a Á 0, b Á 0, and c Á 0 Ê ac œ 2bc and ab œ bc Ê a œ 2b œ c. Substituting into the constraint equation gives y 2 2 2 x z a a a œ 1 Ê a œ 6 Ê b œ 3 and c œ 6. Therefore the desired plane is 6 3 6 œ 1 or x 2y z œ 6. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ™g 874 Chapter 14 Partial Derivatives 87. ™ f œ (y z)i xj xk , ™ g œ 2xi 2yj , and ™ h œ zi xk so that ™ f œ - ™ g . ™ h Ê (y z)i xj xk œ -(2xi 2yj) .(zi xk) Ê y z œ 2-x .z, x œ 2-y, x œ .x Ê x œ 0 or . œ 1. CASE 1: x œ 0 which is impossible since xz œ 1. CASE 2: . œ 1 Ê y z œ 2-x z Ê y œ 2-x and x œ 2-y Ê y œ (2-)(2-y) Ê y œ 0 or 4-# œ 1. If y œ 0, then x# œ 1 Ê x œ „ 1 so with xz œ 1 we obtain the points (1ß 0ß 1) and (1ß 0ß 1). If 4-# œ 1, then - œ „ "# . For - œ "# , y œ x so x# y# œ 1 Ê x# œ "# Ê xœ „ " È2 with xz œ 1 Ê z œ „ È2, and we obtain the points Š È"2 ß È"2 ß È2‹ and Š È"2 ß È"2 ß È2‹ . For - œ " # , y œ x Ê x# œ " # Ê xœ „ " È2 with xz œ 1 Ê z œ „ È2, and we obtain the points Š È"2 ß È"2 , È2‹ and Š È"2 ß È"2 ß È2‹ . Evaluations give f(1ß 0ß 1) œ 1, f(1ß 0ß 1) œ 1, f Š È"2 ß È"2 ß È2‹ œ f Š È"2 ß È"2 ß È2‹ œ 3 # , and f Š È"2 ß È"2 ß È2‹ œ 3 # " # , f Š È"2 ß È"2 , È2‹ œ 3 # . Therefore the absolute maximum is Š È"2 ß È"2 ß È2‹ and Š È"2 ß È"2 ß È2‹ , and the absolute minimum is " # " # , at at Š È"2 ß È"2 ß È2‹ and Š È"2 ß È"2 ß È2‹ . 88. Let f(xß yß z) œ x# y# z# be the square of the distance to the origin. Then ™ f œ 2xi 2yj 2zk , ™ g œ i j k , and ™ h œ 4xi 4yj 2zk so that ™ f œ - ™ g . ™ h Ê 2x œ - 4x., 2y œ - 4y., and 2z œ - 2z. Ê - œ 2x(1 2.) œ 2y(1 2.) œ 2z(1 2.) Ê x œ y or . œ "# . CASE 1: x œ y Ê z# œ 4x# Ê z œ „ 2x so that x y z œ 1 Ê x x 2x œ 1 or x x 2x œ 1 (impossible) Ê x œ "4 Ê y œ "4 and z œ "# yielding the point ˆ "4 ß "4 ß "# ‰ . CASE 2: . œ " # Ê - œ 0 Ê 0 œ 2z(1 1) Ê z œ 0 so that 2x# 2y# œ 0 Ê x œ y œ 0. But the origin (!ß 0ß 0) fails to satisfy the first constraint x y z œ 1. Therefore, the point ˆ "4 ß 4" ß "# ‰ on the curve of intersection is closest to the origin. 89. (a) y, z are independent with w œ x# eyz and z œ x# y# Ê œ a2xeyz b `x `y `w `y `w `x `w `y `w `z `x `y `y `y `z `y œ 2x `` xy 2y Ê `` xy œ yx œ azx# eyz b (1) ayx# eyz b (0); z œ x# y# Ê 0 ; therefore, Š ``wy ‹ œ a2xeyz b ˆ xy ‰ zx# eyz œ a2y zx# b eyz z (b) z, x are independent with w œ x# eyz and z œ x# y# Ê œ a2xeyz b (0) azx# eyz b `y `z `w `z œ `w `x `x `z ayx# eyz b (1); z œ x# y# Ê 1 œ 0 2y 1 ˆ ``wz ‰ œ azx# eyz b Š 2y ‹ yx# eyz œ x# eyz Šy x `w `y `w `z `y `z `z `z `y `y " ` z Ê ` z œ #y ; therefore, z 2y ‹ (c) z, y are independent with w œ x# eyz and z œ x# y# Ê `w `z œ œ a2xeyz b `` xz azx# eyz b (0) ayx# eyz b (1); z œ x# y# Ê 1 1 ‰ ˆ ``wz ‰ œ a2xeyz b ˆ 2x yx# eyz œ a1 x# yb eyz `w `x `w `y `w `z `x `z `y `z `z `z œ 2x `` xz 0 Ê `` xz œ #"x ; therefore, y 90. (a) T, P are independent with U œ f(Pß Vß T) and PV œ nRT Ê ``UT œ ``UP `` TP ‰ ˆ ``VT ‰ ˆ ``UT ‰ (1); PV œ nRT Ê P ``VT œ nR Ê ``VT œ œ ˆ ``UP ‰ (0) ˆ `` U V ˆ ``UT ‰ œ ˆ `` U ‰ ˆ nR ‰ V P P `U `T `U `V `U `T `V `T `T `T nR P ; therefore, `U `P `U `V (b) V, T are independent with U œ f(Pß Vß T) and PV œ nRT Ê `` U V œ `P `V `V `V U‰ œ ˆ ``UP ‰ ˆ ``VP ‰ ˆ `` V (1) ˆ ``UT ‰ (0); PV œ nRT Ê V ``VP P œ (nR) ˆ ``VT ‰ œ 0 Ê ˆ `` U ‰ V T œ ˆ ``UP ‰ ˆ VP ‰ `U `V `U `T `T `V `P P `V œ V Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ; therefore, Chapter 14 Practice Exercises 875 91. Note that x œ r cos ) and y œ r sin ) Ê r œ Èx# y# and ) œ tan" ˆ yx ‰ . Thus, `w `x œ `w `r `r `x `w `) `) `x œ ˆ ``wr ‰ Š Èx#x y# ‹ ˆ ``w) ‰ Š x#yy# ‹ œ (cos )) `w `r ˆ sinr ) ‰ `w `) `w `y œ `w `r `r `y `w `) ` ) )y œ ˆ ``wr ‰ Š Èx#y y# ‹ ˆ ``w) ‰ Š x# x y# ‹ œ (sin )) `w `r ˆ cosr ) ‰ `w `) 92. zx œ fu 93. `u `y `v `x fv œ afu afv , and zy œ fu `u `x œ a " `w " `w a `x œ b `y œ b and Ê 94. `u `x `w `x œ and `w `z œ 2 rs œ Ê œ 2 x# y# 2z and `w `s œ `w dw ` x œ du b ``wx œ a " (r s)# `w `x `x `s `w `y `y `s Solving this system yields Ê ae cos vb `u `y `u `x ae sin vb u `v `y dw ` u du ` y œ 2(r s) 2 ar# 2rs s# b œ " rs œ `w `x `x `r `g `) œ Ê `f `x `x `) ` #g ` )# `f `y `y `) œ (r sin )) Š `` x) `y `) ‹ " rs rs (r s)# `w `y `w `z `z `r dw du œ œ Ê `f `x `v `y " rs œ dw du 2(r s) #(r s)# and " `w b `y œ rs (r s)# œ dw du , ’ (r " s)# “ (2s) œ 2r 2s (r s)# 2 rs y œ 0 Ê aeu sin vb `u `x aeu cos vb `v `x œ 0. Similarly, e cos v x œ 0 u `u `y œ eu cos v. Therefore Š `` ux i (r cos )) œ rs (r s)# ’ (r " s)# “ (2r) œ `v u ` x œ 1; e sin v `v u sin v. ` x œ e aeu cos vb `u `y `v `y j‹ † Š `` vx i œ 1. Solving this `v `y j‹ u cos vb jd œ 0 Ê the vectors are orthogonal Ê the angle `f `x (r cos )) Š ``x`fy sin vb i ae ` #f ` y ` y` x ` ) ‹ " `w a `x 2y x# y# 2z œ 0 and e sin v y œ 0 Ê aeu sin vb u `x `) `w `y `y `r , œb u u # œ cos v and œ eu sin v and œ (r sin )) Š `` xf# and aeu sin vb `u `y œ (r sin )) dw du `w `z `z `s œ cae cos vb i ae sin vb jd † cae between the vectors is the constant 1# . 96. œ bfu bfv œ `u `x u œe u second system yields `v `y fv `w `y œa `w `r Ê 95. eu cos v x œ 0 Ê aeu cos vb u `u `x `w `y 2(r s) (r s)# (r s)# 4rs - œ 2x x# y# 2z Ê `u `y ; `f `y (r cos )) (r cos )) (r cos )) Š `` x) `y `) ‹ # `x `) ` #f ` y ` y# ` ) ‹ (r sin )) `f `y (r sin )) œ (r sin ) r cos ))(r sin ) r cos )) (r cos ) r sin )) œ (2)(2) (0 2) œ 4 2 œ 2 at (rß )) œ ˆ2ß 1# ‰ . 97. (y z)# (z x)# œ 16 Ê ™ f œ 2(z x)i 2(y z)j 2(y 2z x)k ; if the normal line is parallel to the yz-plane, then x is constant Ê `` xf œ 0 Ê 2(z x) œ 0 Ê z œ x Ê (y z)# (z z)# œ 16 Ê y z œ „ 4. Let x œ t Ê z œ t Ê y œ t „ 4. Therefore the points are (tß t „ 4ß t), t a real number. 98. Let f(xß yß z) œ xy yz zx x z# œ 0. If the tangent plane is to be parallel to the xy-plane, then ™ f is perpendicular to the xy-plane Ê ™ f † i œ 0 and ™ f † j œ 0. Now ™ f œ (y z 1)i (x z)j (y x 2z)k so that ™ f † i œ y z 1 œ 0 Ê y z œ 1 Ê y œ 1 z, and ™ f † j œ x z œ 0 Ê x œ z. Then z(1 z) (" z)z z(z) (z) z# œ 0 Ê z 2z# œ 0 Ê z œ "# or z œ 0. Now z œ "# Ê x œ "# and y œ Ê ˆ "# ß "# ß "# ‰ is one desired point; z œ 0 Ê x œ 0 and y œ 1 Ê (0ß 1ß 0) is a second desired point. 99. ™ f œ -(xi yj zk) Ê `f `x œ -x Ê f(xß yß z) œ " # -x# g(yß z) for some function g Ê -y œ `f `y œ `g `y -y# h(z) for some function h Ê -z œ `` zf œ `` gz œ hw (z) Ê h(z) œ #" -z# C for some arbitrary constant C Ê g(yß z) œ "# -y# ˆ "# -z# C‰ Ê f(xß yß z) œ "# -x# "# -y# "# -z# C Ê f(0ß 0ß a) œ "# -a# C Ê g(yß z) œ " # and f(0ß 0ß a) œ " # -(a)# C Ê f(0ß 0ß a) œ f(0ß 0ß a) for any constant a, as claimed. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " # 876 Chapter 14 Partial Derivatives ß f(0 su" ß 0 su# ß 0 su$ )f(0ß 0ß 0) œ lim sÄ0 ‰ 100. ˆ df ds u (0 0 0) ß ß ,s0 s És# u#" s# u## s# u#$ 0 œ lim sÄ0 s ,s0 sÉu#" u## u#$ œ lim œ lim kuk œ 1; s sÄ0 sÄ0 however, ™ f œ Èx# xy# z# i Èx# yy# z# j Èx# zy# z# k fails to exist at the origin (0ß 0ß 0) 101. Let f(xß yß z) œ xy z 2 Ê ™ f œ yi xj k . At (1ß 1ß 1), we have ™ f œ i j k Ê the normal line is x œ 1 t, y œ 1 t, z œ 1 t, so at t œ 1 Ê x œ 0, y œ 0, z œ 0 and the normal line passes through the origin. 102. (b) f(xß yß z) œ x# y# z# œ 4 Ê ™ f œ 2xi 2yj 2zk Ê at (2ß 3ß 3) the gradient is ™ f œ 4i 6j 6k which is normal to the surface (c) Tangent plane: 4x 6y 6z œ 8 or 2x 3y 3z œ 4 Normal line: x œ 2 4t, y œ 3 6t, z œ 3 6t CHAPTER 14 ADDITIONAL AND ADVANCED EXERCISES fx (0ß h) fx (0ß 0) h 1. By definition, fxy (!ß 0) œ lim hÄ0 so we need to calculate the first partial derivatives in the numerator. For (xß y) Á (0ß 0) we calculate fx (xß y) by applying the differentiation rules to the formula for fy (xß y) œ 00 h œ lim hÄ0 2. `w `x x$ xy# x# y# x# y y$ x# y# ax# y# b (2x) ax# y# b (2x) ax # y # b # 4x# y$ Ê fx (0ß h) ax # y # b# f(0ß0) For (xß y) œ (0ß 0) we apply the definition: fx (!ß 0) œ lim f(hß 0) œ lim 0 h 0 œ h hÄ0 hÄ0 f (hß 0) fy (!ß 0) fxy (0ß 0) œ lim hh 0 œ 1. Similarly, fyx (0ß 0) œ lim y , so for (xß y) Á h hÄ0 hÄ0 f(xß y): fx (xß y) œ (xy) 4x$ y# ax# y# b# Ê fy (hß 0) œ h$ h# x# y y $ x# y# œ $ œ hh# œ h. 0. Then by definition (0ß 0) we have œ h; for (xß y) œ (0ß 0) we obtain fy (0ß 0) œ lim h0 h œ 0. Then by definition fyx (0ß 0) œ lim hÄ0 œ 1 ex cos y Ê w œ x ex cos y g(y); `w `y hÄ0 f(0ß h) f(!ß 0) h œ 1. Note that fxy (0ß 0) Á fyx (0ß 0) in this case. œ ex sin y gw (y) œ 2y ex sin y Ê gw (y) œ 2y Ê g(y) œ y# C; w œ ln 2 when x œ ln 2 and y œ 0 Ê ln 2 œ ln 2 eln 2 cos 0 0# C Ê 0 œ 2 C Ê C œ 2. Thus, w œ x ex cos y g(y) œ x ex cos y y# 2. 3. Substitution of u u(x) and v œ v(x) in g(uß v) gives g(u(x)ß v(x)) which is a function of the independent variable x. Then, g(uß v) œ 'u f(t) dt Ê v œ Š ``u # # fzz œ Š ddr#f ‹ ˆ ``zr ‰ ` #r ` y# œ ` g du ` u dx ` g dv ` v dx œ Š ``u # df ` # r dr ` x# 'uv f(t) dt‹ dxdu Š ``v 'uv f(t) dt‹ dxdv 'vu f(t) dt‹ dudx Š ``v 'uv f(t) dt‹ dvdx œ f(u(x)) dudx f(v(x)) dvdx œ f(v(x)) dvdx f(u(x)) dudx 4. Applying the chain rules, fx œ Ê dg dx œ # df ` r dr ` z# x# z# 3 ˆÈx# y# z# ‰ df ` r dr ` x # Ê fxx œ Š ddr#f ‹ ˆ ``xr ‰ . Moreover, ; and `r `z œ `r `x œ x È x # y # z# z È x # y # z# Ê ` #r ` z# Ê œ # ` r ` x# œ # # . Similarly, fyy œ Š ddr#f ‹ Š ``yr ‹ # # y z 3 ˆÈx# y# z# ‰ x# y# 3 ˆÈ x # y # z # ‰ ; `r `y œ y È x # y # z# . Next, fxx fyy fzz œ 0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. df ` # r dr ` y# and Chapter 14 Additional and Advanced Exercises # # df dr d dr x# (f w ) œ ˆ 2r ‰ f w , where f w œ œ Cr# Ê f(r) œ Cr b œ y # z# ‰ Ê df dr y# d# f x # y # z# ‰ x# y# # ‰ Š ddr#f ‹ Š x# yz # z# ‹ ˆ df dr Œ ˆÈ Ê y # z# # ‰ Ê Š ddr#f ‹ Š x# xy# z# ‹ ˆ df dr Œ ˆÈ 3 df f 3 877 x # z# Š dr# ‹ Š x# y# z# ‹ ˆ dr ‰ Œ ˆÈx# y# z# ‰3 d# f dr# œ0 Ê df Š Èx# 2y# z# ‹ d# f dr# œ0 Ê df dr 2 df r dr œ0 œ 2 rdr Ê ln f w œ 2 ln r ln C Ê f w œ Cr# , or w w b for some constants a and b (setting a œ C) a r 5. (a) Let u œ tx, v œ ty, and w œ f(uß v) œ f(u(tß x)ß v(tß y)) œ f(txß ty) œ tn f(xß y), where t, x, and y are independent variables. Then ntnc1 f(xß y) œ ``wt œ ``wu ``ut ``wv ``vt œ x ``wu y ``wv . Now, `w `w `u `w `v `w `w ˆ `w ‰ ˆ `w ‰ ˆ " ‰ ˆ ``wx ‰ . Likewise, ` x œ ` u ` x ` v ` x œ ` u (t) ` v (0) œ t ` u Ê ` u œ t `w `y œ `w `u `u `y ntnc1 f(xß y) œ x `w `x Ê œ `f `x `w `v `v `y `w `u `w `v y `w `y and œ ˆ ``wu ‰ (0) ˆ ``wv ‰ (t) Ê œ `f `x Ê nf(xß y) œ x Also from part (a), œ ` `y œ t# ˆt `w ‰ `v ` #w ` v` u œt ` #w ` x# ` `x œ x y ˆ ``wx ‰ ` `x `w ‰ `u t œ `f `x `w `v . ` w `v ` v` u ` t ` w `u ` u# ` t ` #w ` u ` u` v ` y Ê ˆ t"# ‰ `w `u # ` #w ` x# œ ˆ "t ‰ Š ``wy ‹ . Therefore, œ ˆ xt ‰ ˆ ``wx ‰ ˆ yt ‰ Š ``wy ‹. When t œ 1, u œ x, v œ y, and w œ f(xß y) (b) From part (a), ntnc1 f(xß y) œ x n(n 1)tnc2 f(xß y) œ x `w `v y ` #w ` v ` v# ` y ` #w ` u# ˆt ` #w ` v# œ t# , ˆ t"# ‰ ` #w ` y# `f `y , as claimed. Differentiating with respect to t again we obtain # œ y œ ` #w ` u ` u` v ` t œt , and ` #w ` v# ` #w ` v ` v# ` t y ` #w ` u ` u# ` x t ` #w ` y` x ` `y œ , and ˆ t"# ‰ œ x# ` #w ` u# 2xy ` #w ` v ` v` u ` x œ # t# `` uw# ˆ ``wx ‰ œ ` `y ˆt ` #w ` y` x œ `w ‰ `u , ` #w ` u` v ` #w ` y# œt œ y# ` `y ` #w ` v# . Š ``wy ‹ ` #w ` u ` u# ` y t ` #w ` v ` v` u ` y ` #w ` v` u ‰ Š ``y`wx ‹ Š yt# ‹ Š `` yw# ‹ for t Á 0. When t œ 1, w œ f(xß y) and Ê n(n 1)tnc2 f(xß y) œ Š xt# ‹ Š `` xw# ‹ ˆ 2xy t# # # # # # # # # we have n(n 1)f(xß y) œ x# Š `` xf# ‹ 2xy Š ``x`fy ‹ y# Š `` yf# ‹ as claimed. 6. (a) lim rÄ0 sin 6r 6r œ lim tÄ0 sin t t œ 1, where t œ 6r f(0 hß 0) f(0ß 0) h hÄ0 36 sin 6h lim œ0 12 hÄ0 (b) fr (0ß 0) œ lim œ f(rß ) h) f(rß )) h hÄ0 (c) f) (rß )) œ lim ˆ sin6h6h ‰ 1 h hÄ0 œ lim œ lim hÄ0 œ lim hÄ0 6 cos 6h 6 12h (applying l'Hopital's rule twice) s ˆ sin6r6r ‰ ˆ sin6r6r ‰ h hÄ0 œ lim œ lim 0 hÄ0 h 7. (a) r œ xi yj zk Ê r œ krk œ Èx# y# z# and ™ r œ (b) rn œ ˆÈx# y# z# ‰ sin 6h 6h 6h# œ0 x È x # y # z# i y È x # y # z# j z È x # y # z# kœ r r n ÐnÎ2Ñ 1 (d) dr œ dxi dyj dzk Ê r † dr œ x dx y dy z dz, and dr œ rx dx ry dy rz dz œ x r Ê ™ arn b œ nx ax# y# z# b (c) Let n œ 2 in part (b). Then " # ÐnÎ2Ñ 1 ÐnÎ2Ñ i ny ax# y# z# b j nz ax# y# z# b k œ nrn 2 r # ™ ar# b œ r Ê ™ ˆ "# r# ‰ œ r Ê r# œ #" ax# y# z# b is the function. 1 dx y r dy z r dz Ê r dr œ x dx y dy z dz œ r † dr (e) A œ ai bj ck Ê A † r œ ax by cz Ê ™ (A † r) œ ai bj ck œ A 8. f(g(t)ß h(t)) œ c Ê 0 œ df dt œ ` f dx ` x dt ` f dy ` y dt œ Š `` xf i `f `y j‹ † Š dx dt i dy dt j‹ , where dx dt i dy dt j is the tangent vector Ê ™ f is orthogonal to the tangent vector 9. f(xß yß z) œ xz# yz cos xy 1 Ê ™ f œ az# y sin xyb i (z x sin xy)j (2xz y)k Ê ™ f(0ß 0ß 1) œ i j Ê the tangent plane is x y œ 0; r œ (ln t)i (t ln t)j tk Ê rw œ ˆ "t ‰ i (ln t 1)j k ; x œ y œ 0, z œ 1 Ê t œ 1 Ê rw (1) œ i j k . Since (i j k) † (i j) œ rw (1) † ™ f œ 0, r is parallel to the plane, and r(1) œ 0i 0j k Ê r is contained in the plane. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 878 Chapter 14 Partial Derivatives 10. Let f(xß yß z) œ x$ y$ z$ xyz Ê ™ f œ a3x# yzb i a3y# xzb j a3z# xyb k Ê ™ f(0ß 1ß 1) œ i 3j 3k $ Ê the tangent plane is x 3y 3z œ 0; r œ Š t4 2‹ i ˆ 4t 3‰ j (cos (t 2)) k # Ê rw œ Š 3t4 ‹ i ˆ t4# ‰ j (sin (t 2)) k ; x œ 0, y œ 1, z œ 1 Ê t œ 2 Ê rw (2) œ 3i j . Since rw (2) † ™ f œ 0 Ê r is parallel to the plane, and r(2) œ i k Ê r is contained in the plane. 11. `z `x œ 3x# 9y œ 0 and `z `y œ 3y# 9x œ 0 Ê y œ " 3 # x# and 3 ˆ "3 x# ‰ 9x œ 0 Ê " 3 x% 9x œ 0 Ê x ax$ 27b œ 0 Ê x œ 0 or x œ 3. Now x œ 0 Ê y œ 0 or (!ß 0) and x œ 3 Ê y œ 3 or (3ß 3). Next ` #z ` x# œ 6x, ` #z ` y# œ 6y, and and for (3ß 3), ` #z ` #z ` x# ` y# ` #z ` x` y # ` #z ` #z ` x# ` y# œ 9. For (!ß 0), # ` #z ` x# Š ``x`zy ‹ œ 243 0 and # # Š ``x`zy ‹ œ 81 Ê no extremum (a saddle point), œ 18 0 Ê a local minimum. 12. f(xß y) œ 6xyeÐ2x3yÑ Ê fx (xß y) œ 6y(1 2x)eÐ2x3yÑ œ 0 and fy (xß y) œ 6x(1 3y)eÐ2x3yÑ œ 0 Ê x œ 0 and y œ 0, or x œ "# and y œ 3" . The value f(0ß 0) œ 0 is on the boundary, and f ˆ "# ß "3 ‰ œ e"2 . On the positive y-axis, f(0ß y) œ 0, and on the positive x-axis, f(xß 0) œ 0. As x Ä _ or y Ä _ we see that f(xß y) Ä 0. Thus the absolute maximum of f in the closed first quadrant is e"2 at the point ˆ #" ß 3" ‰ . 13. Let f(xß yß z) œ P! (x! ß y! ß y! ) is y# x# a# b# !‰ ˆ 2x a# x z# c# 1 !‰ ˆ 2y b# y Ê ™fœ ˆ 2zc#! ‰ z 2y 2x a# i b# j # 2y#! ! œ 2x a# b# # 2z c# k Ê an equation of the plane tangent 2z#! ˆ x! ‰ ˆ y! ‰ ˆ z! ‰ c# œ 2 or a# x b# y c# z œ 1. # at the point # The intercepts of the plane are Š xa! ß 0ß 0‹ , Š0ß by! ß 0‹ and Š!ß !ß zc! ‹ . The volume of the tetrahedron formed by the # # # plane and the coordinate planes is V œ ˆ "3 ‰ ˆ #" ‰ Š xa! ‹ Š by! ‹ Š cz! ‹ Ê we need to maximize V(xß yß z) œ subject to the constraint f(xß yß z) œ # " and ’ (abc) 6 “ Š xyz# ‹ œ 2z c# x# a# y# b# # z# c# " œ 1. Thus, ’ (abc) 6 “ Š x# yz ‹ œ 2x a# (abc)# 6 # " -, ’ (abc) 6 “ Š xy# z ‹ œ (xyz)" 2y b# -, -. Multiply the first equation by a# yz, the second by b# xz, and the third by c# xy. Then equate the first and second Ê a# y# œ b# x# Ê y œ substitute into f(xß yß z) œ 0 Ê x œ a È3 b a x, x 0; equate the first and third Ê a# z# œ c# x# Ê z œ ca x, x 0; Ê yœ Ê zœ b È3 c È3 Ê Vœ È3 # abc. 14. 2(x u) œ -, 2(y v) œ -, 2(x u) œ ., and 2(y v) œ 2.v Ê x u œ v y, x u œ .# , and y v œ .v Ê x u œ .v œ .# Ê v œ " # or . œ 0. CASE 1: . œ 0 Ê x œ u, y œ v, and - œ 0; then y œ x 1 Ê v œ u 1 and v# œ u Ê v œ v# 1 1 „ È1 4 Ê # " " " " # v œ # and u œ v Ê u œ 4 ; x 4 œ # Ê y œ 78 . Then f ˆ 8" ß 87 ß "4 ß "# ‰ œ ˆ 8" Ê v# v 1 œ 0 Ê v œ CASE 2: no real solution. " 4 œ # 2 ˆ 38 ‰ y and y œ x 1 Ê x # # "4 ‰ ˆ 78 #" ‰ œ Ê 2x œ 4" Ê x œ 8" Ê the minimum distance is 38 È2. x " # (Notice that f has no maximum value.) 15. Let (x! ß y! ) be any point in R. We must show lim Ðhß kÑ Ä Ð0ß 0Ñ lim Ðxß yÑ Ä Ðx! ß y! Ñ f(xß y) œ f(x! ß y! ) or, equivalently that kf(x! hß y! k) f(x! ß y! )k œ 0. Consider f(x! hß y! k) f(x! ß y! ) œ [f(x! hß y! k) f(x! ß y! k)] [f(x! ß y! k) f(x! ß y! )]. Let F(x) œ f(xß y! k) and apply the Mean Value Theorem: there exists 0 with x! 0 x! h such that Fw (0 )h œ F(x! h) F(x! ) Ê hfx (0ß y! k) œ f(x! hß y! k) f(x! ß y! k). Similarly, k fy (x! ß () œ f(x! ß y! k) f(x! ß y! ) for some ( with y! ( y! k. Then kf(x! hß y! k) f(x! ß y! )k Ÿ khfx (0ß y! k)k kkfy (x! ß ()k . If M, N are positive real numbers such that kfx k Ÿ M and kfy k Ÿ N for all (xß y) in the xy-plane, then kf(x! hß y! k) f(x! ß y! )k Ÿ M khk N kkk . As (hß k) Ä 0, kf(x! hß y! k) f(x! ß y! )k Ä 0 Ê lim kf(x! hß y! k) f(x! ß y! )k Ðhß kÑ Ä Ð0ß 0Ñ œ 0 Ê f is continuous at (x! ß y! ). Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 14 Additional and Advanced Exercises 16. At extreme values, ™ f and v œ dr dt df dt are orthogonal because œ ™f† 879 œ 0 by the First Derivative Theorem for dr dt Local Extreme Values. 17. `f `x œ 0 Ê f(xß y) œ h(y) is a function of y only. Also, Moreover, `f `y œ `g `x `g `y œ `f `x œ 0 Ê g(xß y) œ k(x) is a function of x only. Ê hw (y) œ kw (x) for all x and y. This can happen only if hw (y) œ kw (x) œ c is a constant. Integration gives h(y) œ cy c" and k(x) œ cx c# , where c" and c# are constants. Therefore f(xß y) œ cy c" and g(xß y) œ cx c# . Then f(1ß 2) œ g(1ß 2) œ 5 Ê 5 œ 2c c" œ c c# , and f(0ß 0) œ 4 Ê c" œ 4 Ê c œ Ê c# œ 9 # . Thus, f(xß y) œ " # y 4 and g(xß y) œ " # " # x #9 . 18. Let g(xß y) œ Du f(xß y) œ fx (xß y)a fy (xß y)b. Then Du g(xß y) œ gx (xß y)a gy (xß y)b œ fxx (xß y)a# fyx (xß y)ab fxy (xß y)ba fyy (xß y)b# œ fxx (xß y)a# 2fxy (xß y)ab fyy (xß y)b# . 19. Since the particle is heat-seeking, at each point (xß y) it moves in the direction of maximal temperature increase, that is in the direction of ™ T(xß y) œ aec2y sin xb i a2ec2y cos xb j . Since ™ T(xß y) is parallel to 2ec2y cos x ec2y sin x œ È œ 2 ln #2 the particle's velocity vector, it is tangent to the path y œ f(x) of the particle Ê f w (x) œ 2 cot x. Integration gives f(x) œ 2 ln ksin xk C and f ˆ 14 ‰ œ 0 Ê 0 œ 2 ln ¸sin 14 ¸ C Ê C œ ln Š È22 ‹ # œ ln 2. Therefore, the path of the particle is the graph of y œ 2 ln ksin xk ln 2. 20. The line of travel is x œ t, y œ t, z œ 30 5t, and the bullet hits the surface z œ 2x# 3y# when 30 5t œ 2t# 3t# Ê t# t 6 œ 0 Ê (t 3)(t 2) œ 0 Ê t œ 2 (since t 0). Thus the bullet hits the surface at the point (2ß 2ß 20). Now, the vector 4xi 6yj k is normal to the surface at any (xß yß z), so that n œ 8i 12j k is normal to the surface at (2ß 2ß 20). If v œ i j 5k , then the velocity of the particle †25 ‰ after the ricochet is w œ v 2 projn v œ v Š 2knvk†#n ‹ n œ v ˆ 2209 n œ (i j 5k) ˆ 400 209 i œ 191 209 i 391 209 j 995 209 600 209 j 50 209 k‰ k. 21. (a) k is a vector normal to z œ 10 x# y# at the point (!ß 0ß 10). So directions tangential to S at (!ß 0ß 10) will be unit vectors u œ ai bj . Also, ™ T(xß yß z) œ (2xy 4) i ax# 2yz 14b j ay# 1b k Ê ™ T(!ß 0ß 10) œ 4i 14j k . We seek the unit vector u œ ai bj such that Du T(0ß 0ß 10) œ (4i 14j k) † (ai bj) œ (4i 14j) † (ai bj) is a maximum. The maximum will occur when ai bj has the same direction as 4i 14j , or u œ È"53 (2i 7j). (b) A vector normal to S at (1ß 1ß 8) is n œ 2i 2j k . Now, ™ T(1ß 1ß 8) œ 6i 31j 2k and we seek the unit vector u such that Du T(1ß 1ß 8) œ ™ T † u has its largest value. Now write ™ T œ v w , where v is parallel to ™ T and w is orthogonal to ™ T. Then Du T œ ™ T † u œ (v w) † u œ v † u w † u œ w † u. Thus Du T(1ß 1ß 8) is a maximum when u has the same direction as w . Now, w œ ™ T Š ™knTk#†n ‹ n 62 2 ‰ œ (6i 31j 2k) ˆ 124 (2i 2j k) œ ˆ6 41 œ 98 9 i 127 9 j 58 9 k Ê uœ w kwk 152 ‰ i 9 ˆ31 152 ‰ j 9 ˆ2 76 ‰ 9 k " œ È29,097 (98i 127j 58k). 22. Suppose the surface (boundary) of the mineral deposit is the graph of z œ f(xß y) (where the z-axis points up into the air). Then `` xf i `` yf j k is an outer normal to the mineral deposit at (xß y) and `` xf i `` yf j points in the direction of steepest ascent of the mineral deposit. This is in the direction of the vector `f `x i `f `y j at (0ß 0) (the location of the 1st borehole) that the geologists should drill their fourth borehole. To approximate this vector we use the fact that (0ß 0ß 1000), (0ß 100ß 950), and (100ß !ß 1025) lie on the graph of z œ f(xß y). The plane containing these three points is a good â â j k â â i â â "00 50 â approximation to the tangent plane to z œ f(xß y) at the point (0ß 0ß 0). A normal to this plane is â 0 â â 25 â â "00 0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 880 Chapter 14 Partial Derivatives œ 2500i 5000j 10,000k, or i 2j 4k. So at (0ß 0) the vector geologists should drill their fourth borehole in the direction of " È5 `f `x `f `y i j is approximately i 2j . Thus the (i 2j) from the first borehole. 23. w œ ert sin 1x Ê wt œ rert sin 1x and wx œ 1ert cos 1x Ê wxx œ 1# ert sin 1x; wxx œ positive constant determined by the material of the rod Ê 1# ert sin 1x œ " c# " c# wt , where c# is the arert sin 1xb # # Ê ar c# 1# b ert sin 1x œ 0 Ê r œ c# 1# Ê w œ ec 1 t sin 1x 24. w œ ert sin kx Ê wt œ rert sin kx and wx œ kert cos kx Ê wxx œ k# ert sin kx; wxx œ Ê k# ert sin kx œ " c# " c# wt # # arert sin kxb Ê ar c# k# b ert sin kx œ 0 Ê r œ c# k# Ê w œ ec k t sin kx. # # Now, w(Lß t) œ 0 Ê ec k t sin kL œ 0 Ê kL œ n1 for n an integer Ê k œ n1 L # # # # Ê w œ ec n 1 tÎL sin ˆ nL1 x‰ . # # # # As t Ä _, w Ä 0 since ¸sin ˆ nL1 x‰¸ Ÿ 1 and ec n 1 tÎL Ä 0. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. CHAPTER 15 MULTIPLE INTEGRALS 15.1 DOUBLE AND ITERATED INTEGRALS OVER RECTANGLES 1. '12 '04 2xy dy dx œ '12 cx y# d 40 dx œ '12 16x dx œ c8 x# d 21 2. '02 'c11 ax yb dy dx œ '02 xy 12 y# ‘ "" 3. 'c01 'c11 (x y 1) dx dy œ 'c01 ’ x2 4. '01 '01 Š1 x 2 y ‹ dx dy œ '01 ’x x6 5. '03 '02 a4 y# b dy dx œ '03 ’4y y3 “ # dx œ '03 163 dx œ 163 x‘30 6. '03 'c02 ax# y 2xyb dy dx œ '03 ’ x 2y 7. '01 '01 1 yx y dx dy œ '01 clnl1 x yld"0 dy œ '01 lnl1 yldy œ cy lnl1 yl y lnl1 yld 10 œ 2 ln 2 1 8. '14 '04 ˆ 2x Èy‰ dx dy œ '14 41 x2 xÈy‘ !4 dy œ '14 ˆ4 4 y1/2 ‰dy œ 4y 38 y3/2 ‘41 9. '0ln 2 '1ln 5 e2x y dy dx œ '0ln 2 ce2x y dln" 5 dx œ '0ln 2 a5e2x e2x 1 b dx œ 52 e2x "# e2x 1 ‘0ln 2 10. '01 '12 x y ex dy dx œ '01 "# x y2 ex ‘2" dx œ '01 32 x ex dx œ 32 x ex 32 ex ‘10 11. 'c21 '01Î2 y sin x dx dy œ 'c21 cy cos xd10 Î2 dy œ 'c21 y dy œ "# y2 ‘2 1 œ 32 12. '121 '01 asin x cos yb dx dy œ '121 ccos x x cos yd01 dy œ '121 a2 1 cos yb dy œ c2y 1 sin yd121 13. ' ' a6 y# 2 xbdA œ ' ' a6 y# 2 xb dy dx œ ' c2 y3 2 x yd20 dx œ ' a16 4 xb dx œ c16 x 2 x2 d10 œ 14 0 0 0 0 # # dx œ '0 2x dx œ c x# d 0 œ 4 2 " yx x“ # 3 2 dy œ 'c1 (2y 2) dy œ cy# 2yd " œ 1 0 " " x y# 2 “0 dy œ '0 Š 65 1 $ ! # # 1 œ 24 ! xy# “ # ! y# 2 ‹dy œ ’ 56 y œ 2 3 œ 16 dx œ '0 a4x 2x# b dx œ ’2x# 3 2 1 y3 6 “0 œ 1 3 2x$ 3 “! œ0 œ 92 3 œ 32 a5 eb 3 2 œ 21 1 R 14. '' R Èx y2 dA œ '0 4 '12 Èy x dy dx œ '04 ’ Èyx “2 dx œ '04 "# x1Î2 dx œ 31 x3Î2 ‘40 2 1 8 3 ' ' x y cos y dA œ ' ' x y cos y dy dx œ ' cx y sin y x cos yd10 dx œ ' a2xb dx œ cx2 dc1 1 œ 0 c1 0 c1 c1 1 15. œ 1 1 1 R ' ' y sinax yb dA œ ' ' y sinax yb dy dx œ ' cy cosax yb sinax ybd10 dx c1 0 c1 0 16. 1 0 R œ 'c1 asinax 1b 1 cosax 1b sin xbdx œ ccosax 1b 1 sinax 1b cos xdc0 1 œ 4 0 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 882 Chapter 15 Multiple Integrals ' ' ex y dA œ ' ' ex y dy dx œ ' cex y dln0 2 dx œ ' aex ln 2 ex b dx œ cex ln 2 ex dln0 2 œ 0 0 0 0 ln 2 17. ln 2 ln 2 ln 2 R ' ' x y ex y2 dA œ ' ' x y ex y2 dy dx œ ' ’ "# ex y2 “ dx œ ' ˆ "# ex "# ‰ dx œ "# ex "# x‘20 œ "# ae2 3b 0 0 0 0 2 18. 1 1 2 '' R 20. '' R 2 0 R 19. " # x y3 x2 1 dA œ '0 y x2 y2 1 dA 1 '02 xx y 1 dy dx œ '01 ’ 4axx y 1b “2 dx œ '01 x 4x 1 dx œ c2 lnlx2 1ld10 3 4 2 2 2 0 œ '0 1 œ 2 ln 2 '01 ax yby 1 dx dy œ '01 ctan1 ax ybd10 dy œ '01 tan1 y dy œ y tan1 y "# lnl1 y2 l‘10 2 21. '12 '12 22. '01 '01 y cos xy dx dy œ '01 csin xyd 1! dy œ '01 sin 1y dy œ 1" cos 1y‘ "! œ 1" (1 1) œ 12 1 xy dy dx œ '1 2 " x (ln 2 ln 1) dx œ (ln 2) '1 2 " x œ 1 4 "# ln 2 dx œ (ln 2)# " " 23. V œ ' ' fax, yb dA œ 'c1 'c1 ax2 y2 b dy dx œ 'c1 x2 y 31 y3 ‘ 1 dx œ 'c1 ˆ2 x2 32 ‰ dx œ 32 x3 32 x‘ 1 œ 1 1 1 1 R 24. V œ ' ' fax, yb dA œ '0 2 R œ 8 3 '02 a16 x2 y2 b dy dx œ '02 16 y x2 y 13 y3 ‘20 dx œ '02 ˆ 883 2 x2 ‰ dx œ 883 x 23 x3 ‘20 160 3 25Þ V œ ' ' fax, yb dA œ '0 '01 a2 x yb dy dx œ '01 2 y x y "# y2 ‘ "! dx œ '01 ˆ 32 x‰ dx œ 32 x "# x2 ‘ "! œ 1 26Þ V œ ' ' fax, yb dA œ '0 '02 y2 dy dx œ '04 ’ y4 “2 dx œ '04 1 dx œ cxd40 œ 4 1 R 4 R 27Þ V œ ' ' fax, yb dA œ '0 2 0 1Î2 R '01Î4 2 sin x cos y dy dx œ '01Î2 c2 sin x sin yd01Î4 dx œ '01Î2 ŠÈ2 sin x‹ dx œ ’È2 cos x“1Î2 0 œ È2 28. V œ ' ' fax, yb dA œ '0 1 R '02 a4 y2 b dy dx œ '01 4 y 13 y3 ‘20 dx œ '01 ˆ 163 ‰ dx œ 163 x‘ "! œ 163 15.2 DOUBLE INTEGRALS OVER GENERAL REGIONS 1. 2. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 15.2 Double Integrals Over General Regions 3. 4. 5. 6. 7. 8. 9. (a) '!# 'x8 dy dx 3 (b) '!8 '0y 10. (a) '!3 '02x dy dx (b) '!6 'y3Î2 dx dy 11. (a) '!3 'x3x dy dx (b) '!9 'yÈÎ3y dx dy 12. (a) '!# '1e dy dx (b) '1e 'ln2 y dx dy 13. (a) '!9 '0 2 x 1Î3 dx dy 2 Èx (b) dy dx '0 'y dx dy 3 9 2 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 883 884 Chapter 15 Multiple Integrals 14. (a) '!1Î4 'tan1 x dy dx (b) 15. (a) '01 '0tan 16. (a) dx dy '!ln 3 'e1c dy dx x '1Î3 'ln y dx dy 1 (b) c1 y ln 3 '!1 '01 dy dx '1e 'ln1 x dy dx '01 '0e dx dy y (b) 17. (a) (b) 18. (a) '!1 'x3 2x dy dx '01 '0y dx dy '13 '0a3 ybÎ2 dx dy '21 'xx 2 dy dx 2 '0 'Èy dx dy '13 'yÈy2 dx dy 1 (b) 19. Èy '01 '0x (x sin y) dy dx œ '01 c x cos yd x! dx 1 1 œ '0 (x x cos x) dx œ ’ x2 (cos x x sin x)“ # œ 1# # ! 2 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 15.2 Double Integrals Over General Regions 20. '01 '0sin x y dy dx œ '01 ’ y2 “ sin x dx œ '01 "# sin# x dx # ! œ 21. " 4 '01 (1 cos 2x) dx œ "4 x "2 sin 2x‘ !1 œ 14 '1ln 8 '0ln yexby dx dy œ '1ln 8 cexbyd !ln y dy œ '1ln 8 ayey eyb dy œ c(y 1)ey ey d 1ln 8 œ 8(ln 8 1) 8 e œ 8 ln 8 16 e '12 'yy # 22. dx dy œ '1 ay# yb dy œ ’ y3 2 $ œ ˆ 83 2‰ ˆ "3 "# ‰ œ 7 3 œ 3 # 5 6 '01 '0y 3y$ exy dx dy œ '01 c3y# exy d 0y # 23. # y# # “" # dy œ '0 Š3y# ey 3y# ‹ dy œ ’ey y$ “ œ e 2 1 $ " $ ! 24. Èx '14 '0 œ 3 # 3 # eyÎÈx dy dx œ '14 32 Èx eyÎÈx ‘ 0Èx dx % (e 1) '1 Èx dx œ 23 (e 1) ˆ 32 ‰ x$Î# ‘ " œ 7(e 1) 4 25. '12 'x2x 26. '01 '01cx ax# y# b dy dx œ '01 ’x# y y3 “ " x y dy dx œ '1 cx ln yd x2x dx œ (ln 2) '1 x dx œ 2 2 $ x 0 $ œ ’ x3 27. x% 4 " (1x)% 1# “ ! œ ˆ "3 " 4 # œ '0 Š "# u 1 u# # vÈ u “ ln 2 dx œ '0 ’x# (1 x) 1 0‰ ˆ0 0 '01 '01cu ˆv Èu‰ dv du œ '01 ’ v2 3 # " u 0 u"Î# u$Î# ‹ du œ ’ u2 " ‰ 1# œ (1x)$ 3 “ dx œ '0 ’x# x$ 1 (1x)$ 3 “ dx " 6 du œ '0 ’ 12u# u Èu(1 u)“ du 1 u# # u$ 6 # " 32 u$Î# 25 u&Î# “ œ ! " # " # " 6 2 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 2 5 œ #" 2 5 " œ 10 885 886 28. Chapter 15 Multiple Integrals '12 '0ln t es ln t ds dt œ '12 ces ln td 0ln t dt œ '12 (t ln t ln t) dt œ ’ t2 # œ (2 ln 2 1 2 ln 2 2) ˆ "4 1‰ œ 29. " 4 ln t t# 4 t ln t t“ # " 'c02 'vcv 2 dp dv œ 2'c02 cpd vv dv œ 2'c02 2v dv œ 2 cv# d c2 œ 8 0 30. È1cs '01 '0 # È1cs 8t dt ds œ '0 c4t# d 0 1 œ '0 4 a1 s# b ds œ 4 ’s 1 31. # ds " s$ 3 “! œ 8 3 'c11ÎÎ33 '0sec t 3 cos t du dt œ ' 11ÎÎ33 c(3 cos t)ud 0sec t 1Î3 œ 'c1Î3 3 dt œ 21 32. '03Î2 '14 2u 4 v 2u dv du œ '03Î2 2u v 4 ‘ 14 2u du 3Î2 $Î2 œ '0 a3 2ub du œ c3u u# d ! œ 92 # 33. '24 '0Ð4 y)Î2 34. ' 02 '0x2 dy dx dx dy Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 15.2 Double Integrals Over General Regions 35. '01 'xx dy dx 36. '01 '1cy1cydx dy 37. '1e 'ln1ydx dy 38. '12 '0ln x dy dx 39. '09 '0 40. '04 '0 # È 1 2 È9cy È4cx 16x dx dy y dy dx Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 887 888 Chapter 15 Multiple Integrals È1cx 41. 'c11 '0 42. 'c22 '0 43. '01 'ee x y dx dy 44. '01Î2 '0sin 45. '1e 'ln3 x ax ybdy dx 46. '01Î3 'tan 3x Èx y dy dx È4cy # 3y dy dx # 6x dx dy y c1 y x y2 dx dy 3 È Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 15.2 Double Integrals Over General Regions 47. 48. '01 'x1 siny y dy dx œ '01 '0y siny y dx dy œ '01 sin y dy œ 2 '02 'x2 2y# sin xy dy dx œ '02 '0y2y# sin xy dx dy 2 2 œ '0 c2y cos xyd 0y dy œ '0 a2y cos y# 2yb dy # œ c sin y# y# d ! œ 4 sin 4 49. '01 'y1 x# exy dx dy œ '01 '0x x# exy dy dx œ '01 cxexyd 0x dx œ '0 axex xb dx œ ’ "2 ex 1 È4cy '02 '04cx 4xey dy dx œ '04 '0 # 50. 2y œ '0 ’ #x(4ey) “ 4 51. '02 # 2y Èln 3 Èln 3 'y/2 Èln 3 œ '0 52. " x# # “! # # È4cy 0 dy œ '0 4 2y e Èln 3 ex dx dy œ '0 # # # Èln 3 $ dy dx œ '0 1 '03y # e2 # dx dy 2y % dy œ ’ e4 “ œ # 2xex dx œ cex d 0 '03 'È1xÎ3 ey xe2y 4 y œ ! '02x ex # e) " 4 dy dx œ eln 3 1 œ 2 $ ey dx dy œ '0 3y# ey dy œ cey d ! œ e 1 1 53. $ $ " '01Î16 'y1Î2 cos a161x& b dx dy œ '01Î2 '0x "Î% % cos a161x& b dy dx 161x b œ '0 x% cos a161x& b dx œ ’ sin a80 “ 1 1Î2 & "Î# ! œ " 801 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 889 890 54. Chapter 15 Multiple Integrals '08 'È2x $ œ '0 2 55. dy dx œ '0 2 " y % 1 y$ y % 1 dy œ " 4 '0y y "1 dx dy $ % # cln ay% 1bd ! œ ln 17 4 ' ' ay 2x# b dA R xb1 œ 'c1 'cxc1 ay 2x# b dy dx '0 0 1 'x1cc1x ay 2x# b dy dx x " 1x œ 'c1 "2 y# 2x# y‘ x1 dx '0 2" y# 2x# y‘ x1 dx 0 1 œ 'c1 "# (x 1)# 2x# (x 1) "# (x 1)# 2x# (x 1)‘dx 0 '0 "# (1 x)# 2x# (1 x) "# (x 1)# 2x# (x 1)‘ dx 1 œ 4 'c1 ax$ x# b dx 4 '0 ax$ x# b dx 0 1 % œ 4 ’ x4 56. 0 x$ 3 “ c1 " x$ 3 “! % 4 ’ x4 % œ 4 ’ (41) (1)$ 3 “ 3 4 ˆ 4" 3" ‰ œ 8 ˆ 12 4 ‰ 12 8 œ 12 œ 32 ' ' xy dA œ ' ' xy dy dx ' ' xy dy dx 0 x 2Î3 x 2Î3 R 2x 2Î3 1 2x 2 œ '0 "2 xy# ‘ x dx '2Î3 2" xy# ‘ x 1 x 2 x dx œ '0 ˆ2x$ "# x$ ‰ dx '2Î3 "# x(2 x)# "# x$ ‘ dx 2Î3 1 œ '0 2Î3 3 # x$ dx '2Î3 a2x x# b dx 1 2Î3 " 2‰ 8 ‰‘ ‰ ˆ 4 ˆ 2 ‰ ˆ 27 œ 38 x% ‘ 0 x# 23 x$ ‘ #Î$ œ ˆ 38 ‰ ˆ 16 œ 81 1 3 9 3 57. V œ '0 1 'x2cx ax# y# b dy dx œ '01 ’x# y y3 “ 2cx dx œ '01 ’2x# 7x3 $ $ x œ ˆ 23 7 12 2cx# 58. V œ 'c2 'x 1 œ ˆ 23 " 5 " ‰ 12 ˆ0 0 4cx# 1 œ x# dy dx œ 'c2 cx# yd x 32 5 16 ‰ 4 (2x)$ 3 “ È 4 cx 40 œ ˆ 60 2 7x% 12 13 81 " (2x)% 12 “ ! 12 60 15 ‰ 60 ˆ 320 60 384 60 240 ‰ 60 œ 189 60 œ 63 20 4cx (x 4) dy dx œ 'c4 cxy 4yd 3x dx œ 'c4 cx a4 x# b 4 a4 x# b 3x# 12xd dx 1 1 # # (3 y) dy dx œ '0 ’3y 2 œ ’ 32 xÈ4 x# 6 sin" ˆ x# ‰ 2x 61. V œ '0 $ œ " " '0 16 ‰ 81 dx œ ’ 2x3 1 1 2 ˆ 36 81 dx œ 'c2 a2x# x% x$ b dx œ 23 x$ 15 x& 14 x% ‘ # œ 'c4 ax$ 7x# 8x 16b dx œ 41 x% 37 x$ 4x# 16x‘ % œ ˆ 4" 60. V œ '0 27 81 4 3 2cx# 1 4" ‰ ˆ 16 3 59. V œ 'c4 '3x 16 ‰ 12 6 81 È 4c x y# 2 “0 # x$ 6 “! # 7 3 ‰ 12‰ ˆ 64 3 64 œ dx œ '0 ’3È4 x# Š 4#x ‹“ dx 2 œ 6 ˆ 1# ‰ 4 # 8 6 œ 31 16 6 œ 918 3 '03 a4 y# b dx dy œ '02 c4x y# xd $! dy œ '02 a12 3y# b dy œ c12y y$ d !# œ 24 8 œ 16 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 157 3 " 4 œ 625 12 Section 15.2 Double Integrals Over General Regions 62. V œ '0 2 '04cx # 2 œ 8x 43 x$ 63. V œ '0 2 4cx# a4 x# yb dy dx œ '0 ’a4 x# b y " 10 # x& ‘ ! œ 16 32 3 32 10 œ y# 2 “! 48032096 30 œ " # a4 x# b dx œ '0 Š8 4x# 2 # ! xb1 1 1Îx 2 66. V œ 4 '0 1Î3 'x1cc1x (3 3x) dy dx œ 6 'c01 a1 x# b dx 6 '01 (1 x)# dx œ 4 2 œ 6 2 2 " x ˆ1 x" ‰‘dx œ 2 '1 ˆ1 x" ‰ dx œ 2 cx ln xd #" 2 '0sec x a1 y# b dy dx œ 4 '01Î3 ’y y3 “ sec x dx œ 4 '01Î3 Šsec x sec3 x ‹ dx $ $ 0 1Î$ c7 ln ksec x tan xk sec x tan xd ! œ ’7 ln Š2 È3‹ 2È3“ 2 3 67. 68. '1_ 'ec1 x"y dy dx œ '1_ ’ lnx y “ " x $ $ ec x _ dx œ '1 ˆ x$x ‰ dx œ lim bÄ_ 1/ ˆ1cx ‰ È1cx 1 70. 'c1 'c1/È1cx (2y 1) dy dx œ 'c1 cy# ydº 1 1/ # 1Î# # # c1/ a1c x# b1Î# œ 4 lim c csin" b 0d œ 21 bÄ1 71. dx 128 15 65. V œ '1 'c1Îx (x 1) dy dx œ '1 cxy yd 1Î1xÎx dx œ '1 1 œ 2(1 ln 2) 69. x% #‹ % 0 2 3 2 # 2 x '02cx a12 3y# b dy dx œ '02 c12y y$ d # dx œ '0 c24 12x (2 x)$ d dx œ ’24x 6x# (24x) “ œ 20 ! 64. V œ 'c1 'cxc1 (3 3x) dy dx '0 œ dx œ '0 _ _ 'c_ ' _ ax 1b"ay 1b -dx dy œ 2 '0_ Š y 21 ‹ Š # # # lim bÄ_ dx œ 'c1 È 2 x" ‘ b œ lim 1 1 1 x # bÄ_ ˆ "b 1‰ œ 1 dx œ 4 lim c csin" xd ! bÄ1 b tan" b tan" 0‹ dy œ 21 lim bÄ_ '0b y "1 dy # œ 21 Š lim tan" b tan" 0‹ œ (21) ˆ 1# ‰ œ 1# bÄ_ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 891 892 72. Chapter 15 Multiple Integrals '0_ '0_ xecÐx 2yÑ _ _ cxex ex d b0 dy œ '0 e2y lim bÄ_ œ '0 ec2y dy œ 73. _ dx dy œ '0 e2y lim " # b lim Ä_ abeb eb 1b dy bÄ_ aec2b 1b œ " # ' ' f(xß y) dA ¸ "4 f ˆ "# ß 0‰ 8" f(0ß 0) 8" f ˆ "4 ß 0‰ œ "4 ˆ "# ‰ 8" ˆ0 "4 ‰ œ 323 R 74. ' ' f(xß y) dA ¸ "4 ’f ˆ 47 ß 114 ‰ f ˆ 94 ß 114 ‰ f ˆ 74 ß 134 ‰ f ˆ 94 ß 134 ‰“ œ R 75. The ray ) œ 1 6 " 16 (29 31 33 35) œ 128 16 œ8 meets the circle x# y# œ 4 at the point ŠÈ3ß 1‹ Ê the ray is represented by the line y œ È È È $Î# 3 4cx 3 x# b ' ' f(xß y) dA œ ' ' È È4x# dy dx œ ' ’a4 x# b Èx3 È4 x# “ dx œ ”4x x3$ a4È 0 xÎ 3 0 3 3 • # R 76. '2_ '02 ax xb "(y1) # bÄ_ bÄ_ 77. V œ '0 1 0 cln (x 1) ln xd 2b œ 6 lim lim bÄ_ _ dx œ 6 '2 bÄ_ dx x(x1) [ln (b 1) ln b ln 1 ln 2] $ x 7x 3 œ ˆ 23 " ‰ 1# 7 12 $ (2x)$ 3 “ $ dx œ ’ 2x3 ˆ0 0 16 ‰ 12 œ œ '0 '2 œ 2 tan ˆ1 1" ‰ y 1y# dy 1 1 ˆ 21 ‰ ln 5 " 21 ˆ2 1 1 y # " " 21 2 tan y‰ 21 2 % 7x 12 " (2x)% 12 “ ! 4 3 '02 atan" 1x tan" xb dx œ '02 'x1x 1"y œ 2 tan 3 ‰ x # x 'x2cx ax# y# b dy dx œ '01 ’x# y y3 “ 2cx dx œ '0 ’2x# 2 2 "Î$ 0 ln ˆ1 "b ‰ ln 2“ œ 6 ln 2 1 78. _ 1) ' ˆ x#3x dy dx œ '2 ’ 3(y ax# xb “ dx œ 2 '2b ˆ x" 1 "x ‰ dx œ 6 œ 6 lim œ 6 ’ lim _ #Î$ È3 dy dx œ '0 2 # 'yyÎ1 " 1y # dx dy '2 21 # # " ‰ dy œ ˆ 12" y 1 cln a1 y bd ! 2 tan " 21 " 21 ln a1 41# b 2 tan" 2 # ln a1 41 b " #1 " #1 'y2Î1 1"y # dx dy 21 ln a1 y# b‘ 2 ln 5 ln 5 # 79. To maximize the integral, we want the domain to include all points where the integrand is positive and to exclude all points where the integrand is negative. These criteria are met by the points (xß y) such that 4 x# 2y# 0 or x# 2y# Ÿ 4, which is the ellipse x# 2y# œ 4 together with its interior. 80. To minimize the integral, we want the domain to include all points where the integrand is negative and to exclude all points where the integrand is positive. These criteria are met by the points (xß y) such that x# y# 9 Ÿ 0 or x# y# Ÿ 9, which is the closed disk of radius 3 centered at the origin. 81. No, it is not possible. By Fubini's theorem, the two orders of integration must give the same result. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. x È3 œ . Thus, 20È3 9 Section 15.2 Double Integrals Over General Regions 82. One way would be to partition R into two triangles with the line y œ 1. The integral of f over R could then be written as a sum of integrals that could be evaluated by integrating first with respect to x and then with respect to y: ' ' f(xß y) dA R œ '0 1 '22ccÐ2yyÎ2Ñ f(xß y) dx dy '12 'y2c1ÐyÎ2Ñ f(xß y) dx dy. Partitioning R with the line x œ 1 would let us write the integral of f over R as a sum of iterated integrals with order dy dx. 83. ' bb ' bb e x# y# dx dy œ ' b ' e b b b # y# e x# dx dy œ ' b e b # y# Œ' b e b x# dx dy œ Œ' b e b x# dx Œ' b e b y# dy # # # # œ Œ'cb ecx dx œ Œ2 '0 ecx dx œ 4 Œ'0 ecx dx ; taking limits as b Ä _ gives the stated result. b 84. '01 '03 (yx1) dy dx œ '0 3 # œ b #Î$ " 3 b lim Ä 1c '0 b dy (y1)#Î$ '01 (yx1) dx dy œ '0 3 # #Î$ " 3 b 'b 3 lim b Ä 1b dy (y1)#Î$ œ " (y1)#Î$ lim b Ä 1c $ " ’ x3 “ dy œ ! " 3 '03 (ydy1) #Î$ (y 1)"Î$ ‘ b lim (y 1)"Î$ ‘ 3 0 b b Ä 1b 3 3 œ ’ lim c (b 1)"Î$ (1)"Î$ “ ’ lim b (b 1)"Î$ (2)"Î$ “ œ (0 1) Š0 È 2‹ œ 1 È 2 bÄ1 bÄ1 85-88. Example CAS commands: Maple: f := (x,y) -> 1/x/y; q1 := Int( Int( f(x,y), y=1..x ), x=1..3 ); evalf( q1 ); value( q1 ); evalf( value(q1) ); 89-94. Example CAS commands: Maple: f := (x,y) -> exp(x^2); c,d := 0,1; g1 := y ->2*y; g2 := y -> 4; q5 := Int( Int( f(x,y), x=g1(y)..g2(y) ), y=c..d ); value( q5 ); plot3d( 0, x=g1(y)..g2(y), y=c..d, color=pink, style=patchnogrid, axes=boxed, orientation=[-90,0], scaling=constrained, title="#89 (Section 15.2)" ); r5 := Int( Int( f(x,y), y=0..x/2 ), x=0..2 ) + Int( Int( f(x,y), y=0..1 ), x=2..4 ); value( r5); value( q5-r5 ); 85-94. Example CAS commands: Mathematica: (functions and bounds will vary) You can integrate using the built-in integral signs or with the command Integrate. In the Integrate command, the integration begins with the variable on the right. (In this case, y going from 1 to x). Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 893 894 Chapter 15 Multiple Integrals Clear[x, y, f] f[x_, y_]:= 1 / (x y) Integrate[f[x, y], {x, 1, 3}, {y, 1, x}] To reverse the order of integration, it is best to first plot the region over which the integration extends. This can be done with ImplicitPlot and all bounds involving both x and y can be plotted. A graphics package must be loaded. Remember to use the double equal sign for the equations of the bounding curves. Clear[x, y, f] < y/(x^2+y^2); a,b := 0,1; f1 := x -> x; f2 := x -> 1; plot3d( f(x,y), y=f1(x)..f2(x), x=a..b, axes=boxed, style=patchnogrid, shading=zhue, orientation=[0,180], title="#47(a) (Section 15.4)" ); # (a) q1 := eval( x=a, [x=r*cos(theta),y=r*sin(theta)] ); # (b) q2 := eval( x=b, [x=r*cos(theta),y=r*sin(theta)] ); q3 := eval( y=f1(x), [x=r*cos(theta),y=r*sin(theta)] ); q4 := eval( y=f2(x), [x=r*cos(theta),y=r*sin(theta)] ); theta1 := solve( q3, theta ); Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 904 Chapter 15 Multiple Integrals theta2 := solve( q1, theta ); r1 := 0; r2 := solve( q4, r ); plot3d(0,r=r1..r2, theta=theta1..theta2, axes=boxed, style=patchnogrid, shading=zhue, orientation=[-90,0], title="#47(c) (Section 15.4)" ); fP := simplify(eval( f(x,y), [x=r*cos(theta),y=r*sin(theta)] )); # (d) q5 := Int( Int( fP*r, r=r1..r2 ), theta=theta1..theta2 ); value( q5 ); Mathematica: (functions and bounds will vary) For 47 and 48, begin by drawing the region of integration with the FilledPlot command. Clear[x, y, r, t] < x^2*y^2*z; q1 := Int( Int( Int( F(x,y,z), y=-sqrt(1-x^2)..sqrt(1-x^2) ), x=-1..1 ), z=0..1 ); value( q1 ); Mathematica: (functions and bounds will vary) Clear[f, x, y, z]; f:= x2 y2 z Integrate[f, {x,1,1}, {y,Sqrt[1 x2 ], Sqrt[1 x2 ]}, {z, 0, 1}] N[%] topolar={x Ä r Cos[t], y Ä r Sin[t]}; fp= f/.topolar //Simplify Integrate[r fp, {t, 0, 21}, {r, 0, 1},{z, 0, 1}] N[%] 15.6 MOMENTS AND CENTERS OF MASS 1. M œ '0 1 'x2cx 3 dy dx œ 3'01 a2 x# xb dx œ 7# ; My œ '01 'x2cx # œ 3'0 a2x x$ x# b dx œ 1 Ê xœ 2. M œ $ '0 3 Iy œ $ '0 3 3. M œ '0 2 œ " # and y œ 5 14 '03 '0 5 4 ; Mx œ '0 'x2cx # 3y dy dx œ 3x dy dx œ 3 '0 cxyd x2cx dx 1 '01 cy# d x2cx 3 # # dx œ 3 # # '01 a4 5x# x% b dx œ 195 38 35 dy dx œ $ '0 3 dx œ 9$ ; Ix œ $ '0 3 3 x dy dx œ $ '0 cx 3 1 # 3 # # $ yd ! '03 y# dy dx œ $ '03 ’ y3 “ 3 dx œ 27$ ; $ 0 dx œ $ '0 3x dx œ 27$ 3 # 'y4Î2ydx dy œ '02 Š4 y y# ‹ dy œ 143 ; My œ '02 'y4Î2y # # # 4cy x dx dy œ " # '02 cx# d y4 Îy2 dy # '0 Š16 8y y# y4 ‹ dy œ 128 ' 'y Î2 y dx dy œ '0 Š4y y# y# ‹ dy œ 103 15 ; Mx œ 0 2 2 % 2 $ # Ê xœ 4. M œ '0 3 64 35 and y œ 5 7 '03cx dy dx œ '03 (3 x) dx œ 9# ; My œ '03 '03cx x dy dx œ '03 cxyd 03cx dx œ '03 a3x x# b dx œ 9# Ê x œ 1 and y œ 1, by symmetry Èa cx 5. M œ '0 '0 a # Ê xœyœ # 4a 31 dy dx œ 1a# 4 ; My œ Èa cx '0a '0 # # a a È# # x dy dx œ '0 cxyd 0 a cx dx œ '0 xÈa# x# dx œ , by symmetry Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. a$ 3 909 910 Chapter 15 Multiple Integrals 6. M œ '0 '0sin x dy dx œ '01 sin x dx œ 2; Mx œ '01 '0sin x y dy dx œ "# '01 cy# d 0sin x dx œ "# '01 sin# x dx 1 œ " 4 '01 (1 cos 2x) dx œ 14 È4cx 1 # Ê xœ and y œ È4cx 7. Ix œ 'c2 'cÈ4cx# y# dy dx œ 'c2 ’ y3 “ dx œ cÈ4cx# I o œ I x I y œ 81 2 8. Iy œ '1 21 # 2 $ # # ˆ œ 'c22 a4 x# b$Î# dx œ 41; Iy œ 41, by symmetry; # ‰ ex 0 b Ä _ 'c_ e 0 2x _ 10. My œ '0 dx œ '0e 'b0 ex dx œ 1 0 'b0 xex dx œ lim " # 2 3 '0 sin x Îx x# dy dx œ '121 asin# x 0b dx œ "# '121 (1 cos 2x) dx œ 1# 9. M œ 'c_ '0 dy dx œ ' _ ex dx œ lim b Ä _ œ 1 8 x# Î2 cxex ex d b0 œ 1 lim b Ä _ " lim # bÄ _ 'b0 e2x dx œ "4 x dy dx œ lim bÄ_ ycy# '0b xe x# Î2 eb œ 1; My œ ' _ '0 x dy dx œ ' _ xex dx b Ä _ ex 0 abeb eb b œ 1; Mx œ 'c_ '0 y dy dx b Ä _ 2 Ê x œ 1 and y œ dx œ lim bÄ_ ycy# # " ex# Î2 " 4 b 1‘ 0 œ 1 ycy# 2 % ycy# & Ix œ '0 'cy y# (x y) dx dy œ '0 ’ x 2y xy$ “ dy œ '0 Š y2 2y& 2y% ‹ dy œ cy 2 È3Î2 2 È12 12. M œ 'cÈ3Î2 '4y# 4y# # # È3Î2 È12 5x dx dy œ 5 ' È3Î2 ’ x2 “ 4y# # 4y# ex 0 lim y 11. M œ '0 'cy (x y) dx dy œ '0 ’ x2 xy“ dy œ '0 Š y2 2y$ 2y# ‹ dy œ ’ 10 cy 2 0 lim 2 dy œ 5 # ' y% # 64 105 # 2y$ 3 “! œ 8 15 ; ; È ' È33ÎÎ22 a12 4y# 16y% b dy œ 23È3 'x2cx (6x 3y 3) dy dx œ '01 6xy 3# y# 3y‘ x2cx dx œ '01 a12 12x# b dx œ 8; 1 2cx 1 1 2cx My œ '0 'x x(6x 3y 3) dy dx œ '0 a12x 12x$ b dx œ 3; Mx œ '0 'x y(6x 3y 3) dy dx 1 3 17 œ '0 a14 6x 6x# 2x$ b dx œ 17 # Ê x œ 8 and y œ 16 13. M œ '0 1 14. M œ '0 1 'y2ycy (y 1) dx dy œ '01 a2y 2y$ b dy œ "# ; Mx œ '01 'y2ycy # # # My œ '0 1 # 2ycy# 'y # x(y 1) dx dy œ '0 a2y# 2y% b dy œ 1 œ 2 '0 ay$ y& b dy œ 1 4 15 Ê xœ 8 15 y(y 1) dx dy œ '0 a2y# 2y% b dy œ 1 and y œ 8 15 ; Ix œ '0 1 2ycy# 'y # 4 15 ; y# (y 1) dx dy " 6 15. M œ '0 '06 (x y 1) dx dy œ '01 (6y 24) dy œ 27; Mx œ '01 '06 y(x y 1) dx dy œ '01 y(6y 24) dy œ 14; 1 6 1 14 ' 1' 6 # My œ '0 '0 x(x y 1) dx dy œ '0 (18y 90) dy œ 99 Ê x œ 11 3 and y œ 27 ; Iy œ 0 0 x (x y 1) dx dy 1 ‰ œ 216 '0 ˆ y3 11 6 dy œ 432 1 16. M œ 'c1 'x# (y 1) dy dx œ 'c1 Š x# x# 3# ‹ dx œ 1 œ 48 35 1 1 % ; My œ 'c1 'x# x(y 1) dy dx œ 'c1 Š 3x # 1 œ 'c1 Š 3x2 1 # x' 2 1 1 x% ‹ dx œ x& # 32 15 ; Mx œ 'c1 'x# y(y 1) dy dx œ 'c1 Š 56 1 1 x$ ‹ dx œ 0 Ê x œ 0 and y œ 1 9 14 x' 3 x% #‹ dx ; Iy œ 'c1 'x# x# (y 1) dy dx 16 35 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 1 1 Section 15.6 Moments and Centers of Mass 17. M œ 'c1 '0 (7y 1) dy dx œ 'c1 Š 7x# x# ‹ dx œ x# 1 1 % 31 15 ; Mx œ 'c1 '0 y(7y 1) dy dx œ 'c1 Š 7x3 x# 1 1 My œ 'c1 '0 x(7y 1) dy dx œ 'c1 Š 7x# x$ ‹ dx œ 0 Ê x œ 0 and y œ 1 x # 1 œ 'c1 Š 7x# x% ‹ dx œ 1 ' 18. M œ '0 My œ '0 'c1 1 x ˆ1 x ‰ 20 dy dx œ '0 Š2x 20 y x# 10 ‹ dx œ Ê xœ 2000 3 1 1 y ; Iy œ '0 'cy x# (y 1) dx dy œ 1 1 y y " 3 1 3 # x and y œ 0; Ix œ '0 20 100 9 21. Ix œ '0 '0 a b œ 'c3 'c2 ’ 8y3 4 # œ 'c3 'c2 ’ (4 812y) 3 4 $ Ð4 2yÑÎ3 Iz œ 'c3 'c2 'c4Î3 3 4 23. M œ 4 '0 1 œ 2 '0 8(2 y)$ 81 x# (4 2y) 3 64 81 “ 4x# 3 11 30 aa# c# b and Iz œ M 3 y 4 1 $ c$ b 3 ‹ Ð4 2yÑÎ3 6 5 dx œ abc ab# c# b 3 ay# z# b dz dy dx 3 3 ax# y# b dz dy dx œ ' ' 3 4 16 15 aa# b# b , by symmetry dy dx œ 'c3 ˆ12x# 3 ; 1 Ê Io œ Ix Iy œ 3 64 81 “ 7 6 6 5 Ð4 2yÑÎ3 ' ' ' dy dx œ 'c3 104 3 dx œ 208; Iy œ c3 c2 c4Î3 dy dx ax# y# b ˆ 83 2 4 ax# z# b dz dy dx 32 ‰ 3 dx œ 280; 2y ‰ 3 dy dx œ 12 ' 3 ax# 2b dx œ 360 3 '01 '4y4 dz dy dx œ 4 '01 '01 a4 4y# b dy dx œ 16 '01 23 dx œ 323 ; Mxy œ 4 '01 '01 '4y4 # # z dz dy dx 12 '0 a16 16y% b dy dx œ 128 '0 dx œ 128 5 5 Ê z œ 5 , and x œ y œ 0, by symmetry; 1 1 4 1 1 64y 7904 % ' 1 1976 ‰ Ix œ 4 '0 '0 '4y ay# z# b dz dy dx œ 4 '0 '0 ’ˆ4y# 64 3 Š4y 3 ‹“ dy dx œ 4 0 105 dx œ 105 ; 1 1 1 ' # Iy œ 4 '0 1 œ 4832 63 '01 '4y4 ax# z# b dz dy dx œ 4 '01 '01 ’ˆ4x# 643 ‰ Š4x# y# 64y3 ‹“ dy dx œ 4 '01 ˆ 83 x# 128 ‰ dx 7 ' # ; Iz œ 4 '0 1 œ 16 '0 Š 2x3 1 # '01 '4y4 ax# y# b dz dy dx œ 16 '01 '01 ax# x# y# y# y% b dy dx 2 15 ‹ # dx œ ŠÈ4 x# ‹Î2 256 45 24. (a) M œ 'c2 'ŠcÈ4cx#‹Î2 '0 2 ŠÈ4 x# ‹Î2 2 x Myz œ 'c2 'ŠcÈ4cx#‹Î2 '0 2 dz dy dx œ ' 2 x 2 2 'ŠŠ È44 xx ‹‹ÎÎ22 (2 x) dy dx œ ' 22 (2 x) ŠÈ4 x# ‹ dx œ 41; x dz dy dx œ ' È # # 2 2 ŠÈ4 x# ‹Î2 'Š È4 x# ‹Î2 ; ; Ix œ '0 'cy y# a3x# 1b dx dy œ '0 a2y& 2y$ b dy œ 56 ; 32 45 3 2y$ 3 x ‰ 20 1 y is the top of the wedge Ê Ix œ 'c3 'c2 'c4Î3 4 2y 3 y Ê Io œ Ix Iy œ $ 22. The plane z œ 3 1 '0c ay# z# b dz dy dx œ '0a '0b Šcy# c3 ‹ dy dx œ '0a Š cb3 M 3 y# ˆ1 dx œ 0; ; Ix œ '0 'cy y# (y 1) dx dy œ '0 a2y% 2y$ b dy 1 1 ab# c# b where M œ abc; Iy œ " 1 1 Iy œ '0 'cy x# a3x# 1b dx dy œ 2 '0 ˆ 35 y& 3" y$ ‰ dy œ y 'c1 1 ; Mx œ '0 'cy y a3x# 1b dx dy œ '0 a2y% 2y# b dy œ y 1 7 10 '01 a2y% 2y$ b dy œ 103 My œ '0 'cy x a3x# 1b dx dy œ 0 Ê x œ 0 and y œ 1 M 3 1 y 1 20. M œ '0 'cy a3x# 1b dx dy œ '0 a2y$ 2yb dy œ œ ; Iy œ 'c1 '0 x# (7y 1) dy dx 13 31 ; Mx œ '0 'cy y(y 1) dx dy œ 2 ' ay$ y# b dy œ 0 5 3 My œ '0 'cy x(y 1) dx dy œ '0 0 dy œ 0 Ê x œ 0 and y œ 1 ; # '020 ˆ1 20x ‰ dx œ 20 1 9 10 13 15 7 5 19. M œ '0 'cy (y 1) dx dy œ '0 a2y# 2yb dy œ œ dx œ # 20 2 3 x% 2‹ 'c11 ˆ1 20x ‰ dy dx œ '020 ˆ2 10x ‰ dx œ 60; Mx œ '020 'c11 y ˆ1 20x ‰ dy dx œ '020 ’ˆ1 #x0 ‰ Š y# ‹“ " 20 œ & ' 911 x(2 x) dy dx œ ' 2 2 x(2 x) ŠÈ4 x# ‹ dx œ 21; Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 912 Chapter 15 Multiple Integrals ŠÈ4 x# ‹Î2 Mxz œ 'c2 'ŠcÈ4cx#‹Î2 '0 2 œ 2 x 'c2 (2 x) ’ 44x 2 " # # 4 x # 4 “ ŠÈ4 x# ‹Î2 (b) Mxy œ 'c2 'ŠcÈ4cx#‹Î2 '0 2 œ 51 Ê z œ 25. (a) M œ 4 '0 2 Mxy œ '0 2 x È4cx # È # y(2 x) dy dx # dx œ 0 Ê x œ "# and y œ 0 " # z dz dy dx œ ' 22 'ŠŠ È44 xx ‹‹ÎÎ22 È # # ' 22 (2 x)# ŠÈ4 x# ‹ dx " # (2 x)# dy dx œ 'x4 y dz dy dx œ 4 '01Î2 '02 'r 4 r dz dr d) œ 4 '01Î2 '02 a4r r$ b dr d) œ 4 '01Î2 4 d) œ 81; # # # '0 'r zr dz dr d) œ '0 '0 2 Š 4 x ‹Î2 ' 2 Š È4 x ‹Î2 2 5 4 '0 21 y dz dy dx œ ' 21 4 # (b) M œ 81 Ê 41 œ '0 21 Èc '0 'r c # 2 r # a16 r% b dr d) œ r dz dr d) œ '0 21 Èc '0 32 3 '021 d) œ 6431 acr r$ b dr d) œ '0 21 Ê zœ 8 3 c# 4 c# 1 # d) œ , and x œ y œ 0, by symmetry Ê c# œ 8 Ê c œ 2È2, since c 0 26. M œ 8; Mxy œ 'c1 '3 'c1 z dz dy dx œ 'c1 '3 ’ z2 “ dy dx œ 0; Myz œ 'c1 '3 'c1 x dz dy dx " 1 5 1 1 5 " # 1 5 1 œ 2 'c1 '3 x dy dx œ 4 'c1 x dx œ 0; Mxz œ 'c1 '3 'c1 y dz dy dx œ 2 'c1 '3 y dy dx œ 16 'c1 dx œ 32 1 5 1 1 5 1 Ê x œ 0, y œ 4, z œ 0; Ix œ ' ' ' ay# z# b dz dy dx œ ' ' ˆ2y# 23 ‰ dy dx œ 32 ' 100 dx œ 400 3 ; 1 5 1 1 c1 3 5 1 1 c1 c1 5 1 3 1 5 1 1 5 1 Iy œ 'c1 '3 'c1 ax# z# b dz dy dx œ 'c1 '3 ˆ2x# 23 ‰ dy dx œ 43 'c1 a3x# 1b dx œ 16 3 ; 1 5 1 1 5 1 400 ‰ Iz œ 'c1 '3 'c1 ax# y# b dz dy dx œ 2 'c1 '3 ax# y# b dy dx œ 2 'c1 ˆ2x# 98 3 dx œ 3 Ð2 yÑÎ2 27. The plane y 2z œ 2 is the top of the wedge Ê IL œ 'c2 'c2 'c1 2 œ 'c2 'c2 ’ (y 6)#(4 y) 2 Mœ " # 4 # (2 y)$ 24 4 4 $ 49 3 ‹ dt œ 1386; (3)(6)(4) œ 36 2 " # c(y 6)# z# d dz dy dx # "3 “ dy dx; let t œ 2 y Ê IL œ 4 'c2 Š 13t 24 5t 16t Ð2 yÑÎ2 28. The plane y 2z œ 2 is the top of the wedge Ê IL œ 'c2 'c2 'c1 œ c1 4 c(x 4)# y# d dz dy dx 'c22 'c42 ax# 8x 16 y# b (4 y) dy dx œ 'c22 a9x# 72x 162b dx œ 696; M œ "# (3)(6)(4) œ 36 '02cx '02cxcy 2x dz dy dx œ '02 '02cx a4x 2x# 2xyb dy dx œ '02 ax$ 4x# 4xb dx œ 43 2 2cx 2cxcy 2 2cx 2 8 8 Mxy œ '0 '0 '0 2xz dz dy dx œ '0 '0 x(2 x y)# dy dx œ '0 x(23 x) dx œ 15 ; Mxz œ 15 by 2 2cx 2cxcy 2 2cx 2 # symmetry; Myz œ '0 '0 '0 2x# dz dy dx œ '0 '0 2x# (2 x y) dy dx œ '0 a2x x# b dx œ 16 15 29. (a) M œ '0 2 (b) $ Ê xœ 30. (a) M œ '0 2 4 5 , and y œ z œ È '0 x '04cx (b) Myz œ '0 2 Ê xœ œ 256È2k 231 œ k 4 # È kxy dz dy dx œ k'0 '0 x '04cx 5 4 2 # 2 2 È '0 x '04cx 40È2 77 # 1 '01 '01 xy a4 x# b dy dx œ Èx '0 2 ; Mxy œ '0 2 È '0 x '04cx # Ê zœ (x y z 1) dz dy dx œ '0 1 '02 a4x# x% b dx œ 32k 15 k # x# y a4 x# b dy dx œ kxy# dz dy dx œ k'0 '02 a16x# 8x% x' b dx œ 256k 105 31. (a) M œ '0 Èx '0 kx# y dz dy dx œ k '0 ; Mxz œ '0 Ê yœ 2 5 Èx '0 k # '02 a4x$ x& b dx œ 8k3 xy# a4 x# b dy dx œ kxyz dz dy dx œ '0 2 Èx '0 k 3 '02 ˆ4x&Î# x*Î# ‰ dx # xy a4 x# b dy dx 8 7 '01 ˆx y 3# ‰ dy dx œ ' (x 2) dx œ 0 1 5 # Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 15.6 Moments and Centers of Mass (b) Mxy œ '0 1 '01 '01 z(x y z 1) dz dy dx œ "# '01 '01 ˆx y 53 ‰ dy dx œ "# '01 ˆx 136 ‰ dx œ 43 Ê Mxy œ Myz œ Mxz œ (c) Iz œ '0 1 4 3 , by symmetry Ê x œ y œ z œ 8 15 '01 '01 ax# y# b (x y z 1) dz dy dx œ '01 '01 ax# y# b ˆx y 3# ‰ dy dx œ '0 ˆx$ 2x# "3 x 43 ‰ dx œ 1 Ê I x œ Iy œ Iz œ 11 6 11 6 , by symmetry 32. The plane y 2z œ 2 is the top of the wedge. Ð2 yÑÎ2 (a) M œ 'c1 'c2 'c1 1 4 4 1 Ð2 yÑÎ2 (b) Myz œ 'c1 'c2 'c1 1 (x 1) dz dy dx œ 'c1 'c2 (x 1) ˆ2 y# ‰ dy dx œ 18 Ð2 yÑÎ2 Mxz œ 'c1 'c2 'c1 1 4 Ð2 yÑÎ2 Mxy œ 'c1 'c2 'c1 1 4 Ð2 yÑÎ2 (c) Ix œ 'c1 'c2 'c1 1 4 Ð2 yÑÎ2 Iy œ 'c1 'c2 'c1 1 4 Ð2 yÑÎ2 Iz œ 'c1 'c2 'c1 1 33. M œ '0 1 4 Èz 'zc1c1z '0 4 x(x 1) dz dy dx œ 'c1 'c2 x(x 1) ˆ2 y# ‰ dy dx œ 6; 1 4 y(x 1) dz dy dx œ 'c1 'c2 y(x 1) ˆ2 y# ‰ dy dx œ 0; 1 z(x 1) dz dy dx œ " # 4 'c11 'c42 (x 1) Š y4 # y‹ dy dx œ 0 Ê x œ (x 1) ay# z# b dz dy dx œ 'c1 'c2 (x 1) ’2y# 1 4 (x 1) ax# z# b dz dy dx œ 'c1 'c2 (x 1) ’2x# 1 4 1 3 , and y œ z œ 0 $ 3" ˆ" 2y ‰ “ dy dx œ 45; " 3 y$ # " 3 x# y # $ 3" ˆ" y2 ‰ “ dy dx œ 15; (x 1) ax# y# b dz dy dx œ 'c1 'c2 (x 1) ˆ2 y# ‰ ax# y# b dy dx œ 42 1 (2y 5) dy dx dz œ '0 1 4 'zc1c1z ˆz 5Èz‰ dx dz œ '01 2 ˆz 5Èz‰ (1 z) dz " $Î# œ 2 '0 ˆ5z"Î# z 5z$Î# z# ‰ dz œ 2 10 "# z# 2z&Î# 3" z$ ‘ ! œ 2 ˆ 93 3# ‰ œ 3 3 z 1 È4cx 16c2 ˆx# by# ‰ 34. M œ 'c2 'cÈ4cx# '2 ax#by# b 2 œ 4 '0 21 35. (a) x œ # 2 '02 r a4 r# b r dr d) œ 4 '021 ’ 4r3 $ Myz M œ0 Ê È4cx Èx# y# dz dy dx œ ' ' È # Èx# y# c16 4 ax# y# bd dy dx c2 c 4cx # r5 “ d) œ 4 '0 & # 21 ! 64 15 d) œ 5121 15 ' ' ' x$ (xß yß z) dx dy dz œ 0 Ê Myz œ 0 R (b) IL œ ' ' ' kv hik# dm œ ' ' ' k(x h) i yjk# dm œ ' ' ' ax# 2xh h# y# b dm D D D œ ' ' ' ax# y# b dm 2h ' ' ' x dm h# ' ' ' dm œ Ix 0 h# m œ Ic m h# m Þ D D 36. IL œ Ic m mh# œ Þ Þ 2 5 ma# ma# œ 7 5 ma# # 37. (a) (xß yß z) œ ˆ #a ß #b ß #c ‰ Ê Iz œ Ic m abc ŠÉ a4 Þ œ abc aa# b# b 3 abc aa# b# b 4 # (b) IL œ IcÞmÞ abc ŒÉ a4 œ abc aa# 7b# b 3 Ð4 3 4 Þ # b# 4‹ Ê IcÞmÞ œ Iz # b # abc aa# b# b ; RcÞmÞ œ É IcMÞmÞ œ É a 12 1# # # # # # ˆ b# 2b‰# œ abc aa12 b b abc aa 4 9b b abc aa# b# b 4 œ IL ; RL œ É M œ Éa 2yÑÎ3 38. M œ 'c3 'c2 'c4Î3 Þ D dz dy dx œ ' # œ abc a4a# 28b# b 1# 7b# 3 % 4 3 y 2 2 ' ' (4 y) dy dx œ 4y ’ “ 3 3 2 3 2 3 3 # # # dx œ 12 ' 3 dx œ 72; 3 x œ y œ z œ 0 from Exercise 22 Ê Ix œ IcÞmÞ 72 ŠÈ0# 0# ‹ œ IcÞmÞ Ê IL œ IcÞmÞ 72 ŠÉ16 ‰ œ 1488 œ 208 72 ˆ 160 9 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 16 9 ‹ # 913 914 Chapter 15 Multiple Integrals 15.7 TRIPLE INTEGRALS IN CYLINDRICAL AND SPHERICAL COORDINATES 1. '021 '01 'r È2cr # dz r dr d) œ '0 21 œ '0 Š 2 3 23 ‹ d) œ 21 2. È '021 '03 'r Î318cr 4. 21 24r# 1 '03 ’r a18 r# b"Î# r3 “ dr d) œ '021 ’ "3 a18 r# b$Î# 12r “ $ d) $ % ! $ ’ 12)1# 21 21 )& 201% “ ! È '01 '0 Î ' 3È44 rr ) 1 dz r dr d) œ '0 % ˆ #‰ '0 Î2 a3r 24r$ b dr d) œ '02 32 r# 6r% ‘ !Î2 ) "Î# ) Î1 ! 1 1 ) 1 d) œ '02 Š 4)1 1 3 # # # '0 Î ) 1 œ 4 '0 Š 21)# 1 # 3 dz r dr d) œ 3 '0 21 " # c9 a4 r# b a4 r# bd r dr d) œ 4 '0 )% 41 % ‹ 1 d) '0 Î a4r r$ b dr d) ) 1 371 15 d) œ '01 ’r a2 r# b"Î# r# “ dr d) œ 3 '021 ’ a2 r# b"Î# r3 “ " d) $ ! 21 œ 3 '0 ŠÈ2 43 ‹ d) œ 1 Š6È2 8‹ 6. '021 '01 'c11ÎÎ22 ar# sin# ) z# b dz r dr d) œ '021 '01 ˆr$ sin# ) 12r ‰ dr d) œ '021 Š sin4 ) 24" ‹ d) œ 13 7. '021 '03 '0zÎ3 8. 'c11 '021 '01bcos 9. '01 '0 z '021 ar# cos# ) z# b r d) dr dz œ '01 '0 # r$ dr dz d) œ '0 21 ) 21 z 3 '03 324 dz d) œ '0 20 d) œ 3101 % 4r dr d) dz œ 'c1 '0 2(1 cos ))# d) dz œ 'c1 61 d) œ 121 1 21 È 1 È 1 Èz œ '0 ’ 14r 1r# z# “ 10. 4) % 161% ‹ 171 5 1 1 '021 '01 'r 2cr œ z dz r dr d) œ '0 # # œ 4 '0 ’2r# r4 “ 5. 3 2 ) 3 # ! 91 Š8È2 7‹ '021 '0 Î2 '03 œ $ 41 ŠÈ2 "‹ dz r dr d) œ '0 # # œ 3. $Î# '01 ’r a2 r# b"Î# r# “ dr d) œ '021 ’ "3 a2 r# b$Î# r3 “ " d) % Èz ! 1 # $ È # $Î# r# sin 2) 4 dz œ '0 Š 14z 1z$ ‹ dz œ ’ 112z '02 'rc24cr '021 (r sin ) 1) r d) dz dr œ '02 'rc24cr œ 21 ’ "3 a4 r# b # ’ r2) r$ 3 # z# )“ " 1 z% 4 “! #1 ! r dr dz œ '0 1 Èz '0 a1r$ 21rz# b dr dz 1 3 œ 21r dz dr œ 21'0 ’r a4 r# b 2 "Î# r# 2r“ dr # r# “ œ 21 38 4 3" (4)$Î# ‘ œ 81 ! Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 15.7 Triple Integrals in Cylindrical and Spherical Coordinates È4cr '021 '01 '0 11. (a) È3 # dz r dr d) È4cz '021 '0 '01 r dr dz d) '021 'È23 '0 (b) È4cr '01 '0 (c) # # r dr dz d) '021 r d) dz dr '021 '01 'r 2cr dz r dr d) # 12. (a) È2cz (b) '021 '01 '0z r dr dz d) '021 '12 '0 (c) '0 'r '0 2cr# 1 21 r dr dz d) r d) dz dr 13. 'c11ÎÎ22 '0cos '03r 14. 'c11ÎÎ22 '01 '0r cos 15. '01 '02 sin '04cr sin 17. 'c1ÎÎ22 '11cos '04 19. '0 Î4 '0sec '02 21. '01 '01 '02 sin 9 3# sin 9 d3 d9 d) œ 83 '01 '01 sin% 9 d9 d) œ 83 '01 Š’ sin 94cos 9 “ 1 34 '01 sin# 9 d9‹ d) ) ) # ) 1 ) Î r$ dz dr d) œ ' 1Î2 '0 r% cos ) dr d) œ ) 1 f(rß )ß z) dz r dr d) 1 2 1 " 5 ' Î 1 2 1Î2 cos ) d) œ 2 5 f(rß )ß z) dz r dr d) 16. ' ÎÎ22 '03 cos '05 f(rß )ß z) dz r dr d) 18. ' 1ÎÎ22 'cos2 cos '03 20. ' ÎÎ42 '0csc '02 ) r sin ) f(rß )ß z) dz r dr d) 1 ) r cos ) 1 1 ) r sin ) ) 1 ) r sin ) 1 23. 24. f(rß )ß z) dz r dr d) f(rß )ß z) dz r dr d) $ ! 1 1 1 1 1 œ 2 '0 '0 sin# 9 d9 d) œ '0 ) sin#2) ‘ ! d) œ '0 1 d) œ 1# 22. f(rß )ß z) dz r dr d) '021 '01Î4 '02 (3 cos 9) 3# sin 9 d3 d9 d) œ '021 '01Î4 4 cos 9 sin 9 d9 d) œ '021 c2 sin# 9d 1! Î% d) œ '021 d) œ 21 '021 '01 '0Ð1 cos 9ÑÎ2 3# sin 9 d3 d9 d) œ 24" '021 '01 (1 cos 9)$ sin 9 d9 d) œ 96" '021 c(1 cos 9)% d 1! d) 21 " ' " 1 ' 21 œ 96 a2% 0b d) œ 16 96 0 d) œ 6 (21) œ 3 0 '031Î2 '01 '01 53$ sin$ 9 d3 d9 œ 5 6 d) œ 5 4 '031Î2 '01 sin$ 9 d9 d) œ 54 '031Î2 Š’ sin 93cos 9 “ 1 23 '01 sin 9 d9‹ d) '031Î2 c cos 9d 1! d) œ 53 '031Î2 d) œ 5#1 # ! Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 915 916 25. Chapter 15 Multiple Integrals '021 '01Î3 'sec2 9 33# sin 9 d3 d9 d) œ '0 21 œ '0 (4 2) ˆ8 "# ‰‘ d) œ 21 5 # '01Î3 a8 sec$ 9b sin 9 d9 d) œ '021 8 cos 9 "2 sec# 9‘ !1Î$ d) '021 d) œ 51 26. '021 '01Î4 '0sec 9 3$ sin 9 cos 9 d3 d9 d) œ "4 '021 '01Î4 tan 9 sec# 9 d9 d) œ "4 '021 "2 tan# 9‘ !1Î% d) œ "8 '021 d) œ 14 27. 2 0 '02 'c01 '11ÎÎ42 3$ sin 29 d9 d) d3 œ '02 ' 01 3$ cos229 ‘ 11Î# d) d3 œ '0 ' 1 3# Î% 28. '11ÎÎ63 'csc2 csc9 9 '021 3# sin 9 d) d3 d9 œ 21 '11ÎÎ63 'csc2 csc9 9 3# sin 9 d3 d9 œ 231 '11ÎÎ63 c3$ sin 9d csc2 csc9 9 d9 œ 1431 '11ÎÎ63 csc# 9 d9 œ 29. '01 '01 '01Î4 123 sin$ 9 d9 d) d3 œ '01 '01 Œ123 ’ sin 39 cos 9 “ 1Î% 83 '01Î4 sin 9 d9 d) d3 $ 2 $ 3 1 # % # d3 œ ’ 138 “ œ 21 ! # ! œ '0 1 œ 30. d) d3 œ '0 '0 Š È23 83 ccos 9d ! ‹ d) d3 œ '0 1 1 1Î% 2 '0 Š83 10È3 ‹ d) d3 œ 1'01 Š83 10È3 ‹ d3 œ 1 ’43# È53 1 # 2 “ 2 2 " ! Š4È2 5‹ 1 È2 '11ÎÎ62 ' 11ÎÎ22 'csc2 9 53% sin$ 9 d3 d) d9 œ '11ÎÎ62 ' 11ÎÎ22 a32 csc& 9b sin$ 9 d) d9 œ '11ÎÎ62 ' 11ÎÎ22 a32 sin$ 9 csc# 9b d) d9 œ 1 '1Î6 a32 sin$ 9 csc# 9b d9 œ 1 ’ 32 sin 39 cos 9 “ 1Î2 œ # È 1 Š 3224 3 ‹ 641 3 ccos 1Î# 9d 1Î' 1 ŠÈ 3‹ œ È3 3 1Î# 1Î' 1 ˆ 6431 ‰ Š 641 3 '11ÎÎ62 sin 9 d9 1 ccot 9d 11Î# Î' È3 # ‹ œ 331È3 3 œ 111È3 31. (a) x# y# œ 1 Ê 3# sin# 9 œ 1, and 3 sin 9 œ 1 Ê 3 œ csc 9; thus '021 '01Î6 '02 3# sin 9 d3 d9 d) '021 '11ÎÎ62 '0csc 9 3# sin 9 d3 d9 d) '021 '12 '1sinÎ6 (b) 3# sin 9 d9 d3 d) '0 21 '02 '01Î6 3# sin 9 d9 d3 d) '021 '01Î4 '0sec 9 3# sin 9 d3 d9 d) '021 '01 '01Î4 3# sin 9 d9 d3 d) 32. (a) (b) '0 21 33. V œ '0 21 œ " Ð1Î3Ñ " 3 È '1 2 'cos1Î4" Ð"Î3Ñ 3# sin 9 d9 d3 d) '01Î2 'cos2 9 3# sin 9 d3 d9 d) œ "3 '021 '01Î2 a8 cos$ 9b sin 9 d9 d) '021 ’8 cos 9 cos4 9 “ 1Î# d) œ 3" '021 ˆ8 4" ‰ d) œ ˆ 3112 ‰ (21) œ 3161 % ! '021 '01Î2 a3 cos 9 3 cos# 9 cos$ 9b sin 9 d9 d) 21 21 1Î# 111 ' 21 ˆ 11 ‰ œ 3" '0 3# cos# 9 cos$ 9 14 cos% 9‘ ! d) œ 3" '0 ˆ 32 1 "4 ‰ d) œ 11 12 0 d) œ 12 (21) œ 6 34. V œ '0 '01Î2 '11 35. V œ '0 1 9) '01 '01ccos 9 3# sin 9 d3 d9 d) œ "3 '021 '01 (1 cos 9)$ sin 9 d9 d) œ 3" '021 ’ (" cos “ d) 4 21 21 œ " 12 (2) cos 9 3# sin 9 d3 d9 d) œ " 3 % % '021 d) œ 34 (21) œ 831 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ! 281 3È 3 Section 15.7 Triple Integrals in Cylindrical and Spherical Coordinates 36. V œ '0 21 œ " 12 21 '11ÎÎ42 '02 cos 9 38. V œ '0 21 1Î2 (c) 8 '0 2 % ! 3# sin 9 d3 d9 d) œ 8 3 '021 '11ÎÎ42 cos$ 9 sin 9 d9 d) œ 83 '021 ’ cos4 9 “ 1Î# d) % 1Î% '01Î2 '02 3# sin 9 d3 d9 d) È4cx '0 # È4cx cy '0 È '01Î2 '03Î 2 'r # È9 r# (b) 8'0 1Î2 È4cr '02 '0 41. (a) V œ '0 21 È3cx dz r dr d) È4cx cy (c) V œ 'cÈ3 'cÈ3cx# '1 (d) V œ '0 21 œ È3 '0 (b) '01Î2 '01Î4 '03 3# sin 9 d3 d9 d) # # ’r a4 r# b (b) V œ '0 21 È È 1‹ d) œ 2 È4cr '0 3 '1 # 91 Š2 È2‹ 4 dz r dr d) # "Î# dz dy dx r“ dr d) œ '0 ” a4 3r b 21 # $Î# # r# • '021 d) œ 531 5 6 dz r dr d) dz dy dx '01Î3 'sec2 9 3# sin 9 d3 d9 d) È3 # # '01Î2 '01Î4 '03 3# sin 9 d3 d9 d) œ 9 '01Î2 '01Î4 sin 9 d9 d) œ 9 '01Î2 Š È" (c) È$ ! d) œ '0 Š 3" 21 3 # 4$Î# 3 ‹ d) '01 '0 1cr r# dz r dr d) 1Î2 21 1 Iz œ '0 '0 '0 a3# sin# 9b a3# sin 9b d3 d9 d), since r# œ x# y# œ 3# sin# 9 cos# ) 3# sin# 9 sin# ) œ 3# sin# 9 42. (a) Iz œ '0 21 (c) Iz œ '0 œ 2 15 # ! (21) œ 41 15 43. V œ 4 '0 '01 'r 4 14r 44. V œ 4'0 '01 ' 1Èr1 1Î2 œ 4 '0 ˆ "# 45. V œ '31Î2 '0 21 9 4 # % 1Î2 1Î2 # '01Î2 "5 sin$ 9 d9 d) œ "5 '021 Œ’ sin 93cos 9 “ 1Î# 32 '01Î2 sin 9 d9 d) œ 152 '021 c cos 9d !1Î# d) 21 œ 1Î# 9) '021 '01Î2 (1 cos 9)$ sin 9 d9 d) œ 3" '021 ’ (" cos d) “ 4 21 4 ' 81 '11ÎÎ32 '02 3# sin 9 d3 d9 d) œ 83 '021 '11ÎÎ32 sin 9 d9 d) œ 83 '021 c cos 9d 11Î# Î$ d) œ 3 0 d) œ 3 39. (a) 8'0 (b) " 3 3# sin 9 d3 d9 d) œ '021 d) œ "6 (21) œ 13 " ‰ ˆ 83 ‰ ˆ 16 40. (a) cos 9 '021 d) œ 12" (21) œ 16 37. V œ '0 œ '01Î2 '01 917 " 3 3 cos ) 0œ '01 a5r 4r$ r& b dr d) œ 4 '01Î2 ˆ 5# 1 "6 ‰ d) œ 4 '01Î2 d) œ 831 1 Î2 r# dz r dr d) œ 4 '0 "‰ 3 '0cr sin ) d) œ 2'0 d) œ 1Î2 '01 Šr r# rÈ1r# ‹ dr d) œ 4 '01Î2 ’ r2 # 2 ˆ 1# ‰ dz r dr d) œ '31Î2 '0 21 3 cos ) r$ 3 "3 a1 r# b c3 cos ) œ 18 Œ’ cos # '0r dz r dr d) œ 2 '1Î2 '0c3 cos 1 1 ) sin ) “ 3 1Î# 2 3 $Î# " “ d) ! œ1 r# sin ) dr d) œ '31Î2 a9 cos$ )b (sin )) d) œ 94 cos% )‘ $1Î# 21 9 4 46. V œ 2 '1Î2 '0 1 1Î2 dz r dr d) œ 4 '0 ) r# dr d) œ 2 3 '1Î2 27 cos$ ) d) 1 '11Î2 cos ) d) œ 12 csin )d 11Î# œ 12 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. #1 918 Chapter 15 Multiple Integrals 47. V œ '0 1Î2 È1 '0sin '0 ) r# 1 2 Î rÈ1r# dr d) œ '0 ’ "3 a1 r# b ) 1 2 $Î# sin ) “ ! d) # ! œ csin 2 9 48. V œ '0 1Î2 1Î# )d ! 1 6 '0cos '03 ) È1 œ 1Î# Î 1 2 1Î2 32 ccos )d ! 4 3 1 18 dz r dr d) œ '0 r# œ '0 ’ a1 cos# )b 1 # '0sin '01Î2 ’a1 sin# )b$Î# 1“ d) œ "3 '01Î2 acos$ ) 1b d) œ "3 Œ’ cos )3 sin ) “ 1Î# 32 '01Î2 cos ) d) 3) ‘ 1! Î# œ "3 œ Î dz r dr d) œ '0 $Î# 1 # œ '0cos ) Î 3rÈ1r# dr d) œ '0 ’ a1 r# b 1 2 1“ d) œ '0 a1 sin$ )b d) œ ’) 1Î2 2 3 œ '12Î13Î3 '0a 3# sin 9 d3 d9 d) œ '021 '12Î13Î3 50. V œ '0 '01Î2 '0a 3# sin 9 d3 d9 d) œ a3 '01Î6 '01Î2 51. V œ '0 '01Î3 'sec2 9 1Î6 21 “ ! d) '01Î2 sin ) d) 2 3 31 4 6 49. V œ '0 21 1Î# sin# ) cos ) “ 3 ! $Î# cos ) $ a$ 3 sin 9 d9 d) œ '021 c cos 9d #11Î$Î$ d) œ a3 '021 ˆ "# "# ‰ d) œ 213a a$ 3 sin 9 d9 d) œ a$ 3 $ '01Î6 d) œ a181 $ 3# sin 9 d3 d9 d) '021 '01Î3 a8 sin 9 tan 9 sec# 9b d9 d) 21 1Î$ œ "3 '0 8 cos 9 "2 tan# 9‘ ! d) 21 21 œ "3 '0 4 #" (3) 8‘ d) œ 3" '0 #5 d) œ 65 (21) œ 531 œ " 3 52. V œ 4 '0 1Î2 œ 28 3 '01Î4 'sec2 sec9 9 3# sin 9 d3 d9 d) œ 4 3 '01Î2 '01Î4 a8 sec$ 9 sec$ 9b sin 9 d9 d) '01Î2 '01Î4 sec$ 9 sin 9 d9 d) œ 283 '01Î2 '01Î4 tan 9 sec# 9 d9 d) œ 283 '01Î2 2" tan# 9‘ !1Î% d) œ 143 '01Î2 d) œ 731 53. V œ 4 '0 '01 '0r # 54. V œ 4 '0 '01 'r r # 55. V œ 8 '0 '1 2 '0r 56. V œ 8 '0 '1 2 '0 1Î2 1Î2 1Î2 1Î2 dz r dr d) œ 4 '0 1Î2 1 # È 1Î2 dz r dr d) œ 4 '0 dz r dr d) œ 8 '0 1Î2 È2 È r# 58. V œ '0 '02 '04cr cos cr sin 21 È2 '1 1Î2 '02 '04cr sin ) '01 r dr d) œ 2 '01Î2 d) œ 1 dz r dr d) œ 8 '0 57. V œ '0 21 '01 r$ dr d) œ '01Î2 d) œ 1# dz r dr d) œ '0 21 ) ) r# dr d) œ 8 Š 2 È2 '1 È2" ‹ 3 È '01Î2 d) œ 41 Š2 3 2"‹ 1Î2 rÈ2 r# dr d) œ 8 '0 ’ "3 a2 r# b $Î# 1Î2 '01 '4r5 # r# È# 1 d) œ 8 3 '01Î2 d) œ 431 '02 a4r r# sin )b dr d) œ 8 '02 ˆ1 sin3 ) ‰ d) œ 161 1 dz r dr d) œ '0 21 '02 c4r r# (cos ) sin ))d dr d) œ 83 '02 1 (3 cos ) sin )) d) œ 161 59. The paraboloids intersect when 4x# 4y# œ 5 x# y# Ê x# y# œ 1 and z œ 4 Ê V œ 4 '0 “ 1Î2 dz r dr d) œ 4 '0 '01 a5r 5r$ b dr d) œ 20 '01Î2 ’ r2 # 1Î2 r4 “ d) œ 5'0 % " ! Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. d) œ 51 # $ Section 15.7 Triple Integrals in Cylindrical and Spherical Coordinates 60. The paraboloid intersects the xy-plane when 9 x# y# œ 0 Ê x# y# œ 9 Ê V œ 4 '0 1Î2 œ 4 '0 1Î2 '1 3 61. V œ 8 '0 21 '0 # $ % 1Î2 17 ‰ 4 " È4cr '01 '0 21 œ 83 a9r r$ b dr d) œ 4 '0 ’ 9r2 r4 “ d) œ 4 '0 ˆ 81 4 1Î2 # dz r dr d) œ 8 '0 21 ˆ3$Î# 8‰ d) œ '13 '09cr # 919 dz r dr d) d) œ 64 '0 d) œ 321 1Î2 '01 r a4 r# b"Î# dr d) œ 8 '021 ’ "3 a4 r# b$Î# “ " d) ! 41 Š8 3È3‹ 3 62. The sphere and paraboloid intersect when x# y# z# œ 2 and z œ x# y# Ê z# z 2 œ 0 Ê (z 2)(z 1) œ 0 Ê z œ 1 or z œ 2 Ê z œ 1 since z 0. Thus, x# y# œ 1 and the volume is given by the triple integral V œ 4 '0 1Î2 œ 4 '0 ’ "3 a2 r# b 1Î2 63. average œ " #1 œ È2 r# # 1Î2 dz r dr d) œ 4 '0 r4 “ d) œ 4 '0 Š 2 3 2 $Î# % " 1Î2 È ! '021 '01 'c11 " #1 r# dz dr d) œ È '021 '01 'cÈ11ccrr " ˆ 431 ‰ 64. average œ '01 'r # # 7 12 ‹ '01 ’r a2 r# b"Î# r$ “ dr d) 1 Š8 È 2 7 ‹ d) œ 6 '021 '01 2r# dr d) œ 3"1 '021 d) œ 23 r# dz dr d) œ 3 41 '021 '01 2r# È1 r# dr d) '021 ’ "8 sin" r "8 rÈ1 r# a1 2r# b“ " d) œ 1631 '021 ˆ 1# 0‰ d) œ 323 '021 d) œ ˆ 323 ‰ (21) œ 3161 3 21 ! 65. average œ " ˆ 431 ‰ '021 '01 '01 3$ sin 9 d3 d9 d) œ 1631 '021 '01 sin 9 d9 d) œ 831 '021 d) œ 43 66. average œ " ˆ 231 ‰ '021 '01Î2 '01 3$ cos 9 sin 9 d3 d9 d) œ 831 '021 '01Î2 œ 3 161 cos 9 sin 9 d9 d) œ 3 81 '021 ’ sin2 9 “ 1Î# d) # ! '021 d) œ ˆ 1631 ‰ (21) œ 38 67. M œ 4 '0 '01 '0r dz r dr d) œ 4 '01Î2 '01 r# dr d) œ 43 '01Î2 d) œ 231 ; Mxy œ '021 '01 '0r z dz r dr d) 21 1 21 œ "# '0 '0 r$ dr d) œ 18 '0 d) œ 14 Ê z œ MM œ ˆ 14 ‰ ˆ 231 ‰ œ 38 , and x œ y œ 0, by symmetry 1Î2 xy 68. M œ '0 '02 '0r dz r dr d) œ '01Î2 '02 r# dr d) œ 83 '01Î2 d) œ 431 ; Myz œ '01Î2 '02 '0r x dz r dr d) 2 2 r 2 1Î2 1Î2 1Î2 1Î2 œ '0 '0 r$ cos ) dr d) œ 4 '0 cos ) d) œ 4; Mxz œ '0 '0 '0 y dz r dr d) œ '0 '0 r$ sin ) dr d) 2 r 2 1Î2 1Î2 1Î2 1Î2 M œ 4 '0 sin ) d) œ 4; Mxy œ '0 '0 '0 z dz r dr d) œ "# '0 '0 r$ dr d) œ 2 '0 d) œ 1 Ê x œ M 1Î2 yz yœ 69. M œ œ Mxz M , and z œ 3 1 ; Mxy œ '0 21 81 3 œ 4 '0 ’ sin2 9 “ 21 70. M œ '0 # 1Î# 1Î$ Mxy M œ 3 1 , 3 4 '11ÎÎ32 '02 z3# sin 9 d3 d9 d) œ '021 '11ÎÎ32 '02 3$ cos 9 sin 9 d3 d9 d) œ 4 '021 '11ÎÎ32 d) œ 4 '0 ˆ "# 38 ‰ d) œ 21 " # '021 d) œ 1 Ê zœ Mxy M œ (1) ˆ 831 ‰ œ 3 8 $ $ $ % % cos 9 sin 9 d9 d) , and x œ y œ 0, by symmetry È '01Î4 '0a 3# sin 9 d3 d9 d) œ a3 '021 '01Î4 sin 9 d9 d) œ a3 '021 2 #È2 d) œ 1a Š23 2‹ ; 1Î4 1Î4 21 a 21 21 a ' Mxy œ '0 '0 '0 3$ sin 9 cos 9 d3 d9 d) œ a4 '0 '0 sin 9 cos 9 d9 d) œ 16 d) œ 18a 0 21 œ % Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 920 Chapter 15 Multiple Integrals È2 ‰ 2 œ Š 18a ‹ – $ 3 È — œ ˆ 3a 8 Š # 1a Š2 2‹ % Mxy M Ê zœ ‹œ 3 Š2È2‹ a 16 , and x œ y œ 0, by symmetry È 71. M œ '0 È '04 '0 r dz r dr d) œ '021 '04 r$Î# dr d) œ 645 '021 d) œ 1285 1 ; Mxy œ '021 '04 '0 r z dz r dr d) 21 4 '021 d) œ 6431 Ê z œ MM œ 65 , and x œ y œ 0, by symmetry œ "# '0 '0 r# dr d) œ 32 3 21 xy 1Î3 È ' È11 rr dz r dr d) œ ' 11ÎÎ33 '01 2rÈ1 r# dr d) œ ' 11ÎÎ33 ’ 23 a1 r# b$Î# “ " d) ! È1 r 1 1 1Î3 1Î3 1 Î3 2 ' 2 2 1 4 1 # œ 3 c1Î3 d) œ ˆ 3 ‰ ˆ 3 ‰ œ 9 ; Myz œ ' 1Î3 '0 ' È1 r r cos ) dz dr d) œ 2 ' 1Î3 '0 r# È1 r# cos ) dr d) 72. M œ 'c1Î3 '0 1 # # # # 1 Î3 œ 2 'c1Î3 ’ 18 sin" r "8 rÈ1 r# a1 2r# b“ cos ) d) œ " Myz M Ê xœ œ ! 9È 3 32 1 8 ' 11ÎÎ33 cos ) d) œ 18 csin )d 1Î13Î3 œ ˆ 18 ‰ Š2 † È#3 ‹ œ 1È8 3 , and y œ z œ 0, by symmetry 73. We orient the cone with its vertex at the origin and axis along the z-axis Ê 9 œ which is through the vertex and parallel to the base of the cone Ê Ix œ '0 21 œ '0 . We use the the x-axis 1 '01 Šr$ sin# ) r% sin# ) 3r r3 ‹ dr d) œ '021 Š sin20 ) 10" ‹ d) œ 40) sin802) 10) ‘ #!1 œ #10 15 œ 14 21 % 74. Iz œ '0 21 œ 1 4 '0 'r ar# sin# ) z# b dz r dr d) 1 '0a Èa cr # # ' cÈa cr # # r$ dz dr d) œ '0 21 # '0a 2r$ Èa# r# dr d) œ 2 '021 ’Š r5 # 2a# # 15 ‹ aa “ d) œ 2 '0 ! 2 15 a& d) 81 a& 15 75. Iz œ '0 21 '0a ' h r ax# y# b dz r dr d) œ '021 '0a ˆh‰ a œ '0 h Š a4 21 % a& 5a ‹ 76. (a) M œ '0 '01 '0r 21 d) œ # ha% 20 '021 d) œ 110ha z dz r dr d) œ '0 21 21 '01 '0r # r# dz dr d) œ '0 21 " 2 hr a Šhr$ hr% a ‹ dr d) œ '0 21 # Ê zœ " # % h ’ r4 a r& 5a “ ! d) Ê zœ 5 14 z# dz r dr d) , and x œ y œ 0, by symmetry; Iz œ '0 21 '01 r% dr d) œ 5" '021 d) œ 215 ; Mxy œ '021 '01 '0r '021 '01 r' dr d) œ 14" '021 d) œ 17 21 1 21 œ '0 '0 r' dr d) œ 7" '0 d) œ 21 7 œ hr a ' h r$ dz dr d) œ '021 '0a '01 "# r& dr d) œ 12" '021 d) œ 16 ; Mxy œ '021 '01 '0r " 3 (b) M œ '0 h ' % '021 '01 r( dr d) œ 24" '021 d) œ 121 21 1 21 " ' œ "# '0 '0 r( dr d) œ 16 d) œ 18 0 œ # '01 '0r # zr$ dz dr d) zr# dz dr d) , and x œ y œ 0, by symmetry; Iz œ '0 21 '01 '0r 77. (a) M œ '0 # r% dz dr d) '01 'r 1 z dz r dr d) œ "# '021 '01 ar r$ b dr d) œ 8" '021 d) œ 14 ; Mxy œ '021 '01 'r 1 z# dz r dr d) 21 1 21 21 1 1 " ' œ 3" '0 '0 ar r% b dr d) œ 10 d) œ 15 Ê z œ 45 , and x œ y œ 0, by symmetry; Iz œ '0 '0 'r zr$ dz dr d) 0 21 1 21 1 " ' œ "# '0 '0 ar$ r& b dr d) œ 24 d) œ 12 0 21 1 1 21 1 1 21 1 M œ '0 '0 'r z# dz r dr d) œ 15 from part (a); Mxy œ '0 '0 'r z$ dz r dr d) œ 4" '0 '0 ar r& b dr d) 21 21 1 1 21 1 " ' œ 12 d) œ 16 Ê z œ 56 , and x œ y œ 0, by symmetry; Iz œ '0 '0 'r z# r$ dz dr d) œ "3 '0 '0 ar$ r' b dr d) 0 21 " ' 1 œ 28 d) œ 14 0 21 (b) 21 $Î# a r# b Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 15.7 Triple Integrals in Cylindrical and Spherical Coordinates 78. (a) M œ '0 '01 '0a 3% sin 9 d3 d9 d) œ a5 '021 '01 sin 9 d9 d) œ 2a5 '021 d) œ 415a ; Iz œ '021 '01 '0a '021 '01 a1 cos# 9b sin 9 d9 d) œ a7 '021 ’ cos 9 cos3 9 “ 1 d) œ 4a#1 '021 d) œ 8a211 21 a( 7 œ (b) & & & $ ( ( 3' sin$ 9 d3 d9 d) ( ! 21 a 21 21 1 1 29 ) M œ '0 '0 '0 3$ sin# 9 d3 d9 d) œ a4 '0 '0 (1cos d9 d) œ 18a '0 d) œ 1 4a ; # 1 1 21 a 21 Iz œ '0 '0 '0 3& sin% 9 d3 d9 d) œ a6 '0 '0 sin% 9 d9 d) 1 21 21 21 1 1 œ a6 '0 Š’ sin 49 cos 9 “ 43 '0 sin# 9 d9‹ d) œ a8 '0 9# sin429 ‘ ! d) œ 116a '0 d) œ a 81 % % # % ' $ ' ' ' ' # ! 79. M œ '0 21 '0a '0 h a Èa cr # # dz r dr d) œ '0 21 '0a h a rÈa# r# dr d) œ Èa cr '021 ’ 3" aa# r# b$Î# “ a d) h a ! h ' ' '0 3 d) œ 2ha3 1 ; Mxy œ '0 '0 '0 z dz r dr d) œ 2a aa# r r$ b dr d) 0 0 21 h ' œ 2a Š a# a4 ‹ d) œ a h4 1 Ê z œ Š 1a4h ‹ ˆ 2ha3 1 ‰ œ 83 h, and x œ y œ 0, by symmetry 0 œ 21 $ a h a 21 # h a a # # 21 # a # # % % # # # # # # 80. Let the base radius of the cone be a and the height h, and place the cone's axis of symmetry along the z-axis with the vertex at the origin. Then M œ œ h# # '021 ’ r2 # a r% 4a# “ ! d) œ h# # '021 Š a# # 1a# h 3 and Mxy œ '0 a# 4‹ d) œ 21 h # a# 8 '0a ' h r z dz r dr d) œ "# '021 '0a Šh# r ha # # ˆh‰ r$ ‹ dr d) a '021 d) œ h a4 1 # # Ê zœ Mxy M # # œ Š h a4 1 ‹ ˆ 1a3# h ‰ œ 3 4 h, and x œ y œ 0, by symmetry Ê the centroid is one fourth of the way from the base to the vertex 81. The density distribution function is linear so it has the form $ (3) œ k3 C, where 3 is the distance from the center of the planet. Now, $ (R) œ 0 Ê kR C œ 0, and $ (3) œ k3 kR. It remains to determine the constant k: M œ '0 21 œ' Ê 21 ' '01 '0R (k3 kR) 3# sin 9 d3 d9 d) œ '021 '01 ’k 34 % ' 1 $ R kR 33 “ sin 9 d9 d) 21 % % k Š R4 R3 ‹ sin 9 d9 d) œ 0 1k# R% c cos 9d 1! d) œ 0 0 $ (3) œ 13M 3 13M R . At the center of the planet 3 œ 0 Ê R% R% '0 21 ! % 6k R% d) œ k13R Ê k œ 13M R% ‰R œ $ (0) œ ˆ 13M R% 3M 1R$ . 82. The mass of the plant's atmosphere to an altitude h above the surface of the planet is the triple integral M(h) œ '0 '01 'Rh .! ecÐ3RÑ 3# sin 9 d3 d9 d) œ 'Rh '021 '01 .! ecÐ3RÑ 3# sin 9 d9 d) d3 h 21 h 21 h 1 œ 'R '0 .! ecÐ3RÑ 3# ( cos 9)‘ ! d) d3 œ 2 'R '0 .! ecR ec3 3# d) d3 œ 41.! ecR 'R ec3 3# d3 21 # œ 41.! ecR ’ 3 ec # c3 œ 41.! ecR Š h ec ch 23e c3 c# 2he ch c# h 2e c3 c$ “ R 2e ch c$ (by parts) R# e c cR 2Re cR c# 2e cR c$ ‹ . The mass of the planet's atmosphere is therefore M œ lim hÄ_ # M(h) œ 41.! Š Rc 2R c# 2 c$ ‹ . 83. (a) A plane perpendicular to the x-axis has the form x œ a in rectangular coordinates Ê r cos ) œ a Ê r œ Ê r œ a sec ), in cylindrical coordinates. (b) A plane perpendicular to the y-axis has the form y œ b in rectangular coordinates Ê r sin ) œ b Ê r œ Ê r œ b csc ), in cylindrical coordinates. 84. ax by œ c Ê aar cos )b bar sin )b œ c Ê raa cos ) b sin )b œ c Ê r œ c a cos ) b sin ) . Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 921 a cos ) b sin ) 922 Chapter 15 Multiple Integrals 85. The equation r œ fazb implies that the point ar, ), zb œ afazb, ), zb will lie on the surface for all ). In particular afazb, ) 1, zb lies on the surface whenever afazb, ), zb does Ê the surface is symmetric with respect to the z-axis. 86. The equation 3 œ fa9b implies that the point a3, 9, )b œ afa9b, 9, )b lies on the surface for all ). In particular, if afa9b, 9, )b lies on the surface, then afa9b, 9, ) 1b lies on the surface, so the surface is symmetric wiith respect to the z-axis. 15.8 SUBSTITUTIONS IN MULTIPLE INTEGRALS 1. (a) x y œ u and 2x y œ v Ê 3x œ u v and y œ x u Ê x œ ` (xßy) ` (ußv) œ " 3 » 2 3 " 3 " 3 »œ " 9 2 9 œ " 3 (u v) and y œ " 3 (2u v); " 3 (u v) and x œ " 3 (u 2v); " 3 (b) The line segment y œ x from (!ß 0) to (1ß 1) is x y œ 0 Ê u œ 0; the line segment y œ 2x from (0ß 0) to (1ß 2) is 2x y œ 0 Ê v œ 0; the line segment x œ 1 from (1ß 1) to ("ß 2) is (x y) (2x y) œ 3 Ê u v œ 3. The transformed region is sketched at the right. 2. (a) x 2y œ u and x y œ v Ê 3y œ u v and x œ v y Ê y œ ` (xßy) ` (ußv) œ» " 3 1 3 2 3 3" " »œ9 2 9 œ 3" (b) The triangular region in the xy-plane has vertices (0ß 0), (2ß 0), and ˆ 23 ß 23 ‰ . The line segment y œ x from (0ß 0) to ˆ 23 ß 23 ‰ is x y œ 0 Ê v œ 0; the line segment y œ 0 from (0ß 0) to (#ß 0) Ê u œ v; the line segment x 2y œ 2 from ˆ 23 ß 23 ‰ to (2ß 0) Ê u œ 2. The transformed region is sketched at the right. 3. (a) 3x 2y œ u and x 4y œ v Ê 5x œ 2u v and y œ ` (xßy) ` (ußv) œ» 2 5 1 10 15 3 10 »œ 6 50 1 50 œ " # (u 3x) Ê x œ " 5 (2u v) and y œ " 10 (b) The x-axis y œ 0 Ê u œ 3v; the y-axis x œ 0 Ê v œ 2u; the line x y œ 1 " Ê "5 (2u v) 10 (3v u) œ 1 Ê 2(2u v) (3v u) œ 10 Ê 3u v œ 10. The transformed region is sketched at the right. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. " 10 (3v u); Section 15.8 Substitutions in Multiple Integrals 4. (a) 2x 3y œ u and x y œ v Ê x œ u 3v and y œ v x Ê x œ u 3v and y œ u 2v; " 3 ` (xßy) ` (ußv) œ º 1 2 º œ 2 3 œ 1 (b) The line x œ 3 Ê u 3v œ 3 or u 3v œ 3; x œ 0 Ê u 3v œ 0; y œ x Ê v œ 0; y œ x 1 Ê v œ 1. The transformed region is the parallelogram sketched at the right. 5. '04 'yÐÎy2Î2Ñ " # œ 6. 1 ˆx y# ‰ dx dy œ ' ’ x2 0 4 # y xy 2 # “y " dy œ 2 " # '04 ’ˆ y# 1‰# ˆ y# ‰# ˆ y# 1‰ y ˆ y# ‰ y“ dy '04 (y 1 y) dy œ "# '04 dy œ "# (4) œ 2 ' ' a2x# xy y# b dx dy œ ' ' (x y)(2x y) dx dy R R ßy) " '' œ ' ' uv ¹ `` (x uv du dv; (ußv) ¹ du dv œ 3 G G We find the boundaries of G from the boundaries of R, shown in the accompanying figure: xy-equations for Corresponding uv-equations Simplified for the boundary of G uv-equations the boundary of R y œ 2x 4 " 3 (2u v) œ (u v) 4 vœ4 y œ 2x 7 " 3 (2u v) œ 32 (u v) 7 vœ7 yœx2 " 3 yœx1 " 3 Ê 7. " 3 2 3 (2u v) œ 1 3 (u v) 2 uœ2 (2u v) œ 1 3 (u v) 1 u œ 1 ' ' uv du dv œ "3 ' ' uv dv du œ "3 ' u ’ v2# “ du œ c1 4 c1 2 7 2 ( % G 11 # 'c21 u du œ ˆ 11# ‰ ’ u2 “ # # " ‰ œ ˆ 11 4 (4 1) œ ' ' a3x# 14xy 8y# b dx dy R œ ' ' (3x 2y)(x 4y) dx dy R ßy) œ ' ' uv ¹ `` (x (ußv) ¹ du dv œ G " 10 ' ' uv du dv; G We find the boundaries of G from the boundaries of R, shown in the accompanying figure: xy-equations for the boundary of R Corresponding uv-equations Simplified for the boundary of G uv-equations 3 # yœ x1 " 10 (3v u) œ (2u v) 1 uœ2 y œ 3# x 3 " 10 3 (3v u) œ 10 (2u v) 3 uœ6 y œ 4" x " 10 1 (3v u) œ 20 (2u v) vœ0 " 10 (3v u) œ vœ4 " 4 yœ x1 3 10 1 20 (2u v) 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 33 4 923 924 Chapter 15 Multiple Integrals " 10 Ê 8. ' ' uv du dv œ " 10 G '26 '04 uv dv du œ 10" '26 u ’ v2 “ % du œ 45 '26 u du œ ˆ 54 ‰ ’ u2 “ ' œ ˆ 54 ‰ (18 2) œ 645 # # ! # ' ' 2(x y) dx dy œ ' ' 2v ¹ `` (x(ußßy)v) ¹ du dv œ ' ' 2v du dv; the region G is sketched in Exercise 4 R G G 3c3v " ' ' 2v du dv œ ' ' 2v du dv œ '0 2v(3 3v 3v) dv œ '0 6v dv œ c3v# d ! œ 3 0 c3v 1 Ê 1 1 G 9. x œ v" uv# œ v" u v" u œ 2u v ; v u º Ê v œ 1, and y œ 4x Ê v œ 2; xy œ 1 Ê u œ 1, and xy œ 9 Ê u œ 3; thus and y œ uv Ê u v y œ x Ê uv œ u v œ v# and xy œ u# ; y x ` (xßy) ` (ußv) œ J(uß v) œ º ' ' ŠÉ yx Èxy‹ dx dy œ ' ' (v u) ˆ 2uv ‰ dv du œ ' ' Š2u 2uv # ‹ dv du œ ' c2uv 2u# ln vd #" du 1 1 1 1 1 3 2 3 2 3 R œ '1 a2u 2u# ln 2b du œ u# 23 u# ln 2‘ " œ 8 23 (26)(ln 2) œ 8 3 $ ` (xßy) ` (ußv) 10. (a) œ J(uß v) œ º 52 3 (ln 2) " 0 œ u, and v uº the region G is sketched at the right (b) x œ 1 Ê u œ 1, and x œ 2 Ê u œ 2; y œ 1 Ê uv œ 1 Ê v œ "u , and y œ 2 Ê uv œ 2 Ê v œ '1 '1 2 œ 2 3 # y x dy dx œ '1 2 '1Îu ˆ uvu ‰ u dv du œ '1 '1Îu uv dv du œ '1 2Îu R ` (xßy) ` (ußv) u ’ v2 “ 2Îu 1Îu du œ '1 u ˆ u2# 2 " ‰ 2u# ; thus, du 2 1 21 12. # # I! œ ' ' ax# y# b dA œ '0 œ 2 '12 u ˆ u" ‰ du œ 3# cln ud #" œ 3# ln 2; '12 '12 yx dy dx œ '12 ’ x1 † y2 “ 2 dx œ 3# '12 dxx œ 3# cln xd #" œ 3# ln 2 11. x œ ar cos ) and y œ ar sin ) Ê ab 4 2Îu 2 2 u ` (xßy) ` (rß)) œ J(rß )) œ º # # sin 2) 4 b# ) 2 21 b# sin 2) “ 4 ! œ ab1 aa# b# b 4 È1cu# 1 a 0 œ ab; A œ ' ' dy dx œ ' ' ab du dv œ 'c1 'cÈ1cu# ab dv du º 0 b R G œ 2ab 'c1 È1u# du œ 2ab ’ u2 È1 u# 1 ar sin ) œ abr cos# ) abr sin# ) œ abr; br cos ) º '01 r# aa# cos# ) b# sin# )b kJ(rß ))k dr d) œ '021 '01 abr$ aa# cos# ) b# sin# )b dr d) '021 aa# cos# ) b# sin# )b d) œ ab4 ’ a2) a œ J(uß v) œ º a cos ) b sin ) " # sin" u“ " " œ ab csin" 1 sin" (1)d œ ab 1# ˆ 1# ‰‘ œ ab1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 15.8 Substitutions in Multiple Integrals 13. The region of integration R in the xy-plane is sketched in the figure at the right. The boundaries of the image G are obtained as follows, with G sketched at the right: xy-equations for Corresponding uv-equations Simplified for the boundary of G uv-equations the boundary of R xœy " 3 (u 2v) œ x œ 2 2y " 3 (u 2v) œ 2 32 (u v) yœ0 0œ Also, from Exercise 2, ` (xßy) ` (ußv) 1 3 (u v) vœ0 uœ2 (u v) 1 3 vœu œ J(uß v) œ 3" Ê '02Î3 'y2 (x 2y) eÐy xÑ dx dy œ '0 2y 2 œ " 3 '02 u cecv d !u du œ 3" '02 u a1 ecu b du œ 3" ’u au ecu b u# œ " 3 a3ec2 1b ¸ 0.4687 # 14. x œ u ` (xßy) ` (ußv) v # # ecu “ œ ! " 3 '0u ue v ¸ 3" ¸ dv du c2 a2 ec2 b 2 ec2 1d and y œ v Ê 2x y œ (2u v) v œ 2u and " "# v º œ 1; next, u œ x # 0 " and v œ y, so the boundaries of the region of œ J(uß v) œ º œx y # integration R in the xy-plane are transformed to the boundaries of G: xy-equations for Corresponding uv-equations Simplified for the boundary of G uv-equations œ uœ0 the boundary of R xœ xœ u y # y # 2 u v # v # œ v # v # 2 uœ2 yœ0 vœ0 vœ0 yœ2 vœ2 vœ2 Ê '0 2 œ " 4 15. x œ 'yÐÎy2Î2Ñ ae 16 u v 2 y$ (2x y) eÐ2xyÑ dx dy œ '0 # % # 1b ’ v4 “ ! u v '02 v$ (2u) e4u # du dv œ '0 v$ ’ "4 e4u “ dv œ 2 # # ! " 4 '02 v$ ae16 1b dv œe 1 16 v" uv# œ v" u v" u œ 2u v ; v u º Ê v œ 1, and y œ 4x Ê v œ 2; xy œ 1 Ê u œ 1, and xy œ 4 Ê u œ 2; thus and y œ uv Ê y œ x Ê uv œ 2 y x œ v# and xy œ u# ; ` (xßy) ` (ußv) œ J(uß v) œ º '12 '1yÎyax2 y2 b dx dy '24 'y4ÎÎ4yax2 y2 b dx dy œ '12 '12 Š uv 2 2 ' ‰ u2 v2 ‹ ˆ 2u v du dv œ 1 2 '12 Š 2uv 3 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 2u3 v‹ du dv 925 926 Chapter 15 Multiple Integrals u 1 4 15 œ '1 ’ 2v dv œ '1 ˆ 2v 3 2 u v“ 3 2 # 4 2 " 16. x œ u2 v2 and y œ 2uv; ` (xßy) ` (ußv) 15v ‰ 2 15 dv œ ’ 4v 2 œ J(uß v) œ º 2 15v2 4 “" œ 225 16 2v œ 4u2 4v2 œ 4au2 v2 b ; 2u º 2u 2v y œ 2È1 x Ê y2 œ 4a1 xb Ê a2uvb2 œ 4a1 au2 v2 bb Ê u œ „ 1; y œ 0 Ê 2uv œ 0 Ê u œ 0 or v œ 0; x œ 0 Ê u2 v2 œ 0 Ê u œ v or u œ v; This gives us four triangular regions, but only the one in the quadrant where both u, v are positive maps into the region R in the xy-plane. È '01 '02 1 x Èx2 y2 dx dy œ '01 '0u Éau2 v2 b2 a2uvb2 † 4au2 v2 b dv du œ 4'01 '0u au2 v2 b2 dv du 2 u 112 1 6 ‘ 2 56 '2 5 œ 4'1 u4 v 23 u2 v3 15 v5 ‘0 du œ 112 15 1 u du œ 15 6 u " œ 45 17. (a) x œ u cos v and y œ u sin v Ê ` (xßy) ` (ußv) œº cos v u sin v œ u cos# v u sin# v œ u sin v u cos v º (b) x œ u sin v and y œ u cos v Ê ` (xßy) ` (ußv) œº sin v u cos v œ u sin# v u cos# v œ u cos v u sin v º 18. (a) x œ u cos v, y œ u sin v, z œ w Ê (b) x œ 2u 1, y œ 3v 4, z œ â â sin 9 cos ) â 19. â sin 9 sin ) â â cos 9 œ (cos 9) º 3 cos 9 cos ) 3 cos 9 sin ) 3 sin 9 3 cos 9 cos ) 3 cos 9 sin ) " # ` (xßyßz) ` (ußvßw) (w 4) Ê â â cos v â œ â sin v â â 0 ` (xßyßz) ` (ußvßw) u sin v u cos v 0 â â2 â œ â0 â â0 0 3 0 â 0â â 0 â œ u cos# v u sin# v œ u â "â â 0â 0 ââ œ (2)(3) ˆ #" ‰ œ 3 " â # â â 3 sin 9 sin ) â â 3 sin 9 cos ) â â 0 â 3 sin 9 sin ) sin 9 cos ) (3 sin 9) º 3 sin 9 cos ) º sin 9 sin ) 3 sin 9 sin ) 3 sin 9 cos ) º œ a3# cos 9b asin 9 cos 9 cos# ) sin 9 cos 9 sin# )b a3# sin 9b asin# 9 cos# ) sin# 9 sin# )b œ 3# sin 9 cos# 9 3# sin$ 9 œ a3# sin 9b acos# 9 sin# 9b œ 3# sin 9 20. Let u œ gaxb Ê Jaxb œ du dx œ gw axb Ê 'a faub du œ 'gaab fagaxbbgw axb dx in accordance with Theorem 7 in gabb b Section 5.6. Note that gw axb represents the Jacobian of the transformation u œ gaxb or x œ g" aub. 21. '03 '04 'y1Î2 ÐyÎ2Ñ ˆ 2x # y 3z ‰ dx dy dz œ '03 '04 ’ x2 # œ '0 ’ (y 4 1) 3 # y# 4 % yz 3 “! dz œ '0 ˆ 49 3 4z 3 xy # "ÐyÎ2Ñ xz 3 “ yÎ2 4" ‰ dz œ '0 ˆ2 3 dy dz œ '0 4z ‰ 3 3 '04 "# (y 1) y# 3z ‘ dy dz dz œ ’2z $ 2z# 3 “! œ 12 â â âa 0 0â # # # â â 22. J(uß vß w) œ â 0 b 0 â œ abc; the transformation takes the ellipsoid region xa# by# cz# Ÿ 1 in xyz-space â â â0 0 câ into the spherical region u# v# w# Ÿ 1 in uvw-space ˆwhich has volume V œ 43 1‰ Ê V œ ' ' ' dx dy dz œ ' ' ' abc du dv dw œ R G 41abc 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 15 Practice Exercises 927 â â âa 0 0â â â 23. J(uß vß w) œ â 0 b 0 â œ abc; for R and G as in Exercise 22, ' ' ' kxyzk dx dy dz â â R â0 0 câ œ ' ' ' a# b# c# uvw dw dv du œ 8a# b# c# G œ 4a# b# c# 3 '01Î2 '01Î2 '01Î2 '01Î2 '01 (3 sin 9 cos ))(3 sin 9 sin ))(3 cos 9) a3# sin 9b d3 d9 d) a # b # c# 3 sin ) cos ) sin$ 9 cos 9 d9 d) œ '01Î2 sin ) cos ) d) œ a b6 c # # # â 1 â â 24. u œ x, v œ xy, and w œ 3z Ê x œ u, y œ vu , and z œ "3 w Ê J(uß vß w) œ â uv# â â 0 0 " u 0 0 ââ 0 ââ œ " â â 3 " 3u ; ' ' ' ax# y 3xyzb dx dy dz œ ' ' ' u# ˆ vu ‰ 3u ˆ vu ‰ ˆ w3 ‰‘ kJ(uß vß w)k du dv dw œ "3 ' ' ' ˆv vw ‰ du dv dw u 0 0 1 3 D 2 2 G œ " 3 '0 '0 (v vw ln 2) dv dw œ 3" '03 (1 w ln 2) ’ v2 “ # dw œ 32 '03 (1 w ln 2) dw œ 32 ’w w2 œ 2 3 ˆ3 3 2 # # ! 9 # ln 2“ $ ! ln 2‰ œ 2 3 ln 2 œ 2 ln 8 25. The first moment about the xy-coordinate plane for the semi-ellipsoid, x# a# y# b# z# c# œ 1 using the transformation in Exercise 23 is, Mxy œ ' ' ' z dz dy dx œ ' ' ' cw kJ(uß vß w)k du dv dw D œ abc# G ' ' ' w du dv dw œ aabc# b † aMxy of the hemisphere x# y# z# œ 1, z G the mass of the semi-ellipsoid is # 2abc1 3 3 ‰ Ê z œ Š abc4 1 ‹ ˆ 2abc 1 œ 3 8 0b œ abc# 1 4 ; c 26. A solid of revolution is symmetric about the axis of revolution, therefore, the height of the solid is solely a function of r. That is, y œ faxb œ farb. Using cylindrical coordinates with x œ r cos ), y œ y and z œ r sin ), we have V œ ' ' ' r dy d) dr œ 'a G b '021 '0farb r dy d) dr œ 'a b '021 c r y df0arb d) dr œ 'ab '021 r farb d) dr œ 'ab c r)farb d201 dr 'ab 21rfarbdr. In the last integral, r is a dummy or stand-in variable and as such it can be replaced by any variable name. b Choosing x instead of r we have V œ 'a 21xfaxbdx, which is the same result obtained using the shell method. CHAPTER 15 PRACTICE EXERCISES 1. '110 '01Îyyexy dx dy œ '110 cexy d !"Îy dy 10 œ '1 (e 1) dy œ 9e 9 '01 '0x eyÎx dy dx œ '01 x eyÎx ‘ !x $ 2. $ œ '0 Šxex x‹ dx œ ’ "2 ex 1 # # dx " x# # “! œ e2 # Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 928 3. Chapter 15 Multiple Integrals È È9 '03Î2 ' È99 4t4t t ds dt œ '03Î2 ctsd È dt 9 4t 3Î2 $Î# $Î# œ '0 2tÈ9 4t# dt œ ’ "6 a9 4t# b “ # # œ 6" ˆ0$Î# 9$Î# ‰ œ 4. ! œ 27 6 9 # '01 'È2cy Èy xy dx dy œ '01 y ’ x2 “ 2cÈy # Èy œ " # dy '01 y ˆ4 4Èy y y‰ dy œ '0 ˆ2y 2y$Î# ‰ dy œ ’y# 1 'c02 '2x4 cb x4 " 4y&Î# 5 “! " 5 œ dy dx œ 'c2 ax# 2xb dx # 5. 4t# # 0 $ œ ’ x3 x# “ ! # œ ˆ 38 4‰ œ 4 3 '04 'c(Èy c4 c4)/2y dx dy œ '04 ˆ y c2 4 È4 y‰ dy 4 2 œ ’ y2 2y 32 a4 yb3/2 “ œ 4 8 2 3 0 œ 4 6. œ 16 3 † 43/2 4 3 '01 'yÈy Èx dx dy œ '01 23 x$Î# ‘ yÈy dy œ œ 2 3 2 3 '01 ˆy$Î% y$Î# ‰ dy œ 32 47 y(Î% 52 y&Î# ‘ "! ˆ 47 25 ‰ œ 4 35 '01 'xx Èx dy dx œ '01 x1/2 ax x2 b dx œ '01 ˆx3/2 x5/2 ‰ dx 2 1 œ 25 x5/2 27 x7/2 ‘0 œ 7. È9 'c33 '0Ð1Î2Ñ x# 2 5 œ 2 7 y dy dx œ 'c3 ’ y2 “ 3 # œ 'c3 8" a9 x# b dx œ ’ 9x 8 3 œ ˆ 27 8 27 ‰ 24 È '03Î2 'È99 4y4y # # 4 35 ˆ 27 8 ! dx $ x$ 24 “ $ œ 27 ‰ 24 È Ð1Î2Ñ 9 x# 3Î2 27 6 œ 9 # y dx dy œ '0 2yÈ94y# dy 3/2 œ "4 † 23 a94y# b3/2 º œ 0 " 6 † 93/2 œ 27 6 œ 9 # '02 '04 x 2x dy dx œ '02 c2xyd 04 x dx 2 2 œ '0 a2xa4 x2 bb dx œ '0 a8x 2x3 b dx 2 8. 2 œ ’4x2 È4 c y '04 '0 2 x4 2 “! œ 16 16 2 È4 c y 2x dx dy œ '0 cx2 d 0 4 œ '0 a4 yb dy œ ’ 4y 4 œ8 y2 2 4 dy “ œ 16 0 16 2 œ8 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 15 Practice Exercises 9. '01 '2y2 4 cos ax# b dx dy œ '02 '0x/2 4 cos ax# b dy dx œ '02 2x cos ax# b dx œ csin ax# bd #! œ sin 4 10. '02 'y1Î2 ex 11. '08 'È2x y% 12. '01 'È1y 21 sin a1x# b x# $ $ dx dy œ '0 1 # " 1 '02x ex dy dx œ '0 2 dy dx œ '0 2xex dx œ cex d ! œ e 1 1 # '0y $ " y% 1 dx dy œ '0 1 4 c x# # dx dy œ '02 y 4y 1 dy œ ln417 $ " 4 % '0x 21 sinx a1x b dy dx œ '01 21x sin a1x# b dx œ c cos a1x# bd "! œ (1) (1) œ 2 $ # # 13. A œ 'c2 '2x b 4 dy dx œ 'c2 ax# 2xb dx œ 0 15. V œ '0 1 0 4 '2Ècyy $ $ x " 12 6 c x# 16. V œ 'c3 'x 2 7 ‰ 12 18. average value œ È 'c11 'cÈ11ccxx 20. 'c11 'cÈ11ccyy '01 " ˆ1‰ 4 È # # 2 y # b2 dx œ 'c3 a6x# x% x$ b dx œ 6 c x# 2 xy dy dx œ '0 ’ xy2 “ dx œ '0 1 " # 1 ! È1 c x a1 x # dx dy œ '1 ˆÈy 2 y‰ dy œ 4 7x$ 3 “ $ dx œ ’ 2x3 (2x)% 12 # xy dy dx œ dy dx œ '0 21 '01 4 1 '01 ’ xy2 “ # 21 dx œ È1 c x # ! " 4 dx œ 2 1 '01 ax x$ b dx œ #"1 " dr d) œ '0 1 " r# ‘ ! d) œ 21 2r a1 r# b # ln ax# y# 1b dx dy œ '0 x 2 '01 r ln ar# 1b dr d) œ '021 '12 " # " # '021 d) œ 1 ln u du d) œ " # '021 cu ln u ud #" d) '021 (2 ln 2 1) d) œ [ln (4) 1] 1 1Î4 # 1Î4 œ 'c1Î4 ’ 2 a1 " r# b “ 22. (a) " # 1Î4 Ècos 2) Ècos 2) ! d) œ "# 1Î4 " " ' " ' 11ÎÎ44 ˆ1 1 cos ‰ ˆ1 # cos ‰ ) d) 2) d) œ # 1Î4 # 'c1Î4 Š1 sec# ) ‹ d) œ "# ) tan2 ) ‘ 1Î14Î4 œ 14 2 '' # " a1 x # y # b # R œ '0 ’ "# 1Î3 œ (b) " 7x% 12 “ ! 125 4 21. ax# y# b ax# y# b œ 0 Ê r% r# cos 2) œ 0 Ê r# œ cos 2) so the integral is 'c1Î4 '0 œ 37 6 4 3 '01 '0 # # œ 2 1 19. 2% 12 x# dy dx œ 'c3 cx# yd x 17. average value œ '0 " # 14. A œ '1 4 3 'x2 c x ax# y# b dy dx œ '01 ’x# y y3 “ 2cx dx œ '01 ’2x# (23x) œ ˆ 23 œ " # '' R " # " a1 x # y # b # œ '0 1Î3 " # a1 sec# )b “ ’ È"2 tan" 1Î2 dx dy œ '0 u È2 “ È$ ! d) œ È2 4 œ dx dy œ '0 1Î2 lim ’ " bÄ_ # '0sec ) dr d) œ '0 1Î3 r a1 r# b# '01Î3 1 secsec) ) d); ” # " # # " # a1 b# b “d) r a1 r# b# œ " # '0 dr d) œ '0 1Î2 Î 1 2 d) œ sec ) ! d) u œ tan ) Ä du œ sec# ) d) • tan" É #3 '0_ ’ 2 a1 " r# b “ " # È3 '0 du 2 u # b lim bÄ_ ’ 2 a1 " r# b “ d) 0 1 4 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. r a1 r# b# dr d) 929 930 23. Chapter 15 Multiple Integrals '01 '01 '01 cos (x y z) dx dy dz œ '01 '01 [sin (z y 1) sin (z y)] dy dz 1 œ '0 [ cos (z 21) cos (z 1) cos z cos (z 1)] dz œ 0 24. 'lnln67 '0ln 2 'lnln45 eÐxyzÑ dz dy dx œ 'lnln67 '0ln 2 eÐxyÑ dy dx œ 'lnln67 ex dx œ 1 25. '01 '0x '0xby (2x y z) dz dy dx œ '01 '0x Š 3x# 26. '1e '1x '0z 2yz dy dz dx œ '1e '1x "z dz dx œ '1e ln x dx œ cx ln x xd 1e œ 1 # # # 3y# # ‹ dy dx œ '0 Š 3x# 1 % x' #‹ dx œ 8 35 $ 27. V œ 2 '0 1Î2 28. V œ 4 '0 2 ' 0cos y '0 2x dz dx dy œ 2 '01Î2 ' 0cos y È4cx '0 œ ’x a4 x# b " 3 29. average œ # '04cx $Î# # dz dy dx œ 4 '0 2 È4cx '0 # 1 Î2 2x dx dy œ 2 '0 cos# y dy œ 2 ’ y2 a4 x# b dy dx œ 4 '0 a4 x# b 2 $Î# 1 Î2 sin 2y 4 “! œ 1 # dx # 6xÈ4 x# 24 sin" x2 “ œ 24 sin" 1 œ 121 ! '01 '03 '01 30xzÈx# y dz dy dx œ '01 '03 15xÈx# y dy dx œ 3" '03 '01 15xÈx# y dx dy " 3 œ " 3 '03 ’5 ax# yb$Î# “ " dy œ "3 '03 5(1 y)$Î# 5y$Î# ‘ dy œ "3 2(1 y)&Î# 2y&Î# ‘ $! œ "3 2(4)&Î# 2(3)&Î# 2‘ œ " 3 2 ˆ31 3&Î# ‰‘ 30. average œ 31. (a) 3 4 1 a$ È È ! '021 '01 '0a È 3$ sin 9 d3 d9 d) œ 3a 161 '021 '01 sin 9 d9 d) œ 83a1 '021 d) œ 3a4 'cÈ22 'cÈ22ccyy 'Èx4bcyx cy 3 dz dx dy # # # # # # (b) '021 '01Î4 '02 33# sin 9 d3 d9 d) (c) '021 '0 2 'r È È4cr # 3 dz r dr d) œ 3 '0 21 È2 '0 ’r a4 r# b "Î# r# “ dr d) œ 3 '0 ’ "3 a4 r# b 21 $Î# œ '0 ˆ2$Î# 2$Î# 4$Î# ‰ d) œ Š8 4È2‹'0 d) œ 21 Š8 4È2‹ 21 21 'c11ÎÎ22 '01 ' rr 1Î2 21(r cos ))(r sin ))# dz r dr d) œ ' 1Î2 '0 # # 32. (a) 'c11ÎÎ22 '01 ' rr # (b) 33. (a) (b) 34. (a) (c) (d) # 1Î2 21r$ cos ) sin# ) dz r dr d) œ 84 '0 1 ' rr # # $ r3 “ È# ! d) 21r$ cos ) sin# ) dz r dr d) '01 r' sin# ) cos ) dr d) œ 12'01Î2 sin# ) cos ) d) œ 4 '021 '01Î4 '0sec 9 3# sin 9 d3 d9 d) '021 '01Î4 '0sec 9 3# sin 9 d3 d9 d) œ 3" '021 '01Î4 (sec 9)(sec 9 tan 9) d9 d) œ 3" '021 2" tan# 9‘ !1Î4 d) œ 6" '021 d) œ 13 È È 1 r 1Î2 '01 '0 1cx '0 x y (6 4y) dz dy dx (b) '0 '0 '0 (6 4r sin )) dz r dr d) '01Î2 '11ÎÎ42 '0csc 9 (6 43 sin 9 sin )) a3# sin 9b d3 d9 d) # # # '01Î2 '01 '0r (6 4r sin )) dz r dr d) œ '01Î2 '01 a6r# 4r$ sin )b dr d) œ '01Î2 c2r$ r% sin )d "! d) 1Î2 1Î# œ '0 (2 sin )) d) œ c2) cos )d ! œ 1 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 15 Practice Exercises 35. È È3 È3cx È4cx cy '01 'È13ccxx '1 # # z# yx dz dy dx '1 # # '0 # È4cx cy '1 # # z# yx dz dy dx 36. (a) Bounded on the top and bottom by the sphere x# y# z# œ 4, on the right by the right circular cylinder (x 1)# y# œ 1, on the left by the plane y œ 0 È '01Î2 '02 cos 'cÈ44ccrr dz r dr d) ) (b) # # 37. (a) V œ '0 21 È8cr '02 '2 dz r dr d) œ '0 21 # '02 ŠrÈ8 r# 2r‹ dr d) œ '021 ’ "3 a8 r# b$Î# r# “ # d) ! œ '0 (4)$Î# 4 (8)$Î# ‘ d) œ '0 21 " 3 (b) V œ '0 21 œ œ Š2 3 2È8‹ d) œ '0 '2 sec 9 3# sin 9 d3 d9 d) œ 83 '0 '0 1Î4 21 1Î4 4 3 Š4È2 5‹ '0 d) œ 21 81 Š4È2 5‹ 3 Š2È2 sin 9 sec$ 9 sin 9‹ d9 d) '021 '01Î4 Š2È2 sin 9 tan 9 sec# 9‹ d9 d) œ 83 '021 ’2È2 cos 9 "# tan# 9“ 1Î% d) 8 3 '0 21 32 5 È8 4 3 8 3 38. Iz œ '0 œ 21 " 3 ! 21 " # Š2 2È2‹ d) œ 8 3 ' 21 È Š 5 #4 2 ‹ 0 d) œ 81 Š4È2 5‹ 3 '01Î3 '02 (3 sin 9)# a3# sin 9b d3 d9 d) œ '021 '01Î3 '02 3% sin$ 9 d3 d9 d) '021 '01Î3 asin 9 cos# 9 sin 9b d9 d) œ 325 '021 ’ cos 9 cos3 9 “ 1Î$ d) œ 831 $ ! 39. With the centers of the spheres at the origin, Iz œ '0 21 '01 'ab $(3 sin 9)# a3# sin 9b d3 d9 d) '021 '01 sin$ 9 d9 d) œ $ ab 5 a b '021 '01 asin 9 cos# 9 sin 9b d9 d) 1 21 21 œ $ ab 5 a b '0 ’ cos 9 cos3 9 “ d) œ 4$ ab15 a b '0 d) œ 81$ ab15 a b œ $ ab& a& b 5 & & & & & $ & & & ! '01 '01ccos (3 sin 9)# a3# sin 9b d3 d9 d) œ '02 '0 '01ccos 3% sin$ 9 d3 d9 d) 21 21 1 1 œ "5 '0 '0 (1 cos 9)& sin$ 9 d9 d) œ '0 '0 (1 cos 9)' (1 cos 9) sin 9 d9 d); 40. Iz œ '0 21 ) 1 u œ 1 cos 9 ” du œ sin 9 d9 • Ä œ " 5 '021 2 56†2 $ 41. M œ '1 2 & d) œ 32 35 " 5 '021 '02 u' (2 u) du d) œ 5" '021 ’ 2u7 2 ( # u) 8 “! d) œ " 5 '021 ˆ 7" 8" ‰ 2) d) '021 d) œ 64351 '22Îx y dy dx œ '1 ˆ2 2y c y# 2 2‰ x# dx œ 1 Ê x œ y œ 42. M œ '0 'c2y dx dy œ '0 a4y y# b dy œ 4 2y c y# 4 32 3 4 # # " # ln 4 2y c y# ; Mx œ '0 'c2y y dx dy œ '0 a4y# y$ b dy œ ’ 4y3 4 y My œ '0 'c2y x dx dy œ '0 ’ a2y#y b 2y# “ dy œ ’ 10 4 2 ) '22Îx dy dx œ '12 ˆ2 2x ‰ dx œ 2 ln 4; My œ '12 '22Îx x dy dx œ '12 x ˆ2 2x ‰ dx œ 1; Mx œ '1 43. Io œ '0 1 & % y% 2 “! 4 œ 128 5 Ê xœ $ My M œ 12 5 and y œ '2x4 ax# y# b (3) dy dx œ 3 '02 Š4x# 643 14x3 ‹ dx œ 104 44. (a) Io œ $ 'c22 'c11 ax# y# b dy dx œ 'c22 ˆ2x# 23 ‰ dx œ 403 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. % y% 4 “! Mx M œ œ2 64 3 ; 931 932 Chapter 15 Multiple Integrals (b) Ix œ 'ca 'cb y# dy dx œ 'ca $ 4ab ab# a# b 4a$ b œ 4ab 3 3 œ 3 a 45. M œ $ '0 3 46. M œ '0 b a 2b$ 3 dx œ 4ab$ 3 ; Iy œ 'cb 'ca x# dx dy œ 'cb b a b 2a$ 3 dy œ 4a$ b 3 Ê Io œ Ix Iy '02xÎ3 dy dx œ $ '03 2x3 dx œ 3$ ; Ix œ $ '03 '02xÎ3 y# dy dx œ 818$ '03 x$ dx œ ˆ 818$ ‰ Š 34 ‹ œ 2$ % "3 'xx (x 1) dy dx œ '01 ax x$ b dx œ "4 ; Mx œ '01 'xx y(x 1) dy dx œ #" '01 ax$ x& x# x% b dx œ 120 ; 1 x 1 1 x 2 8 13 My œ '0 'x x(x 1) dy dx œ '0 ax# x% b dx œ 15 Ê x œ 15 and y œ 30 ; Ix œ '0 'x y# (x 1) dy dx 1 1 x 1 I 17 17 1 œ "3 '0 ax% x( x$ x' b dx œ 280 Ê Rx œ É M œ É 70 ; Iy œ '0 'x x# (x 1) dy dx œ '0 ax$ x& b dx œ 12 1 # # # # x # 47. M œ 'c1 'c1 ˆx# y# 3" ‰ dy dx œ 'c1 ˆ2x# 34 ‰ dx œ 4; Mx œ 'c1 'c1 y ˆx# y# "3 ‰ dy dx œ 'c1 0 dx œ 0; 1 1 1 My œ ' ' x ˆx# y# "3 ‰ dy dx œ ' ˆ2x$ 34 x‰ dx œ 0 1 1 1 c1 c1 1 1 1 c1 48. Place the ?ABC with its vertices at A(0ß 0), B(bß 0) and C(aß h). The line through the points A and C is yœ h a x; the line through the points C and B is y œ œ b$ '0 ˆ1 yh ‰ dy œ h 1Î3 $ bh # 49. M œ ' 1Î3 '0 r dr d) œ 9# and y œ 0 by symmetry 50. M œ '0 1Î2 yœ 13 31 3 ; Ix œ '0 h (x b). Thus, M œ '0 h 'ayÐaÎh bÑyÎh b $ dx dy 'ayÐaÎh bÑyÎh b y# $ dx dy œ b$ '0h Šy# yh ‹ dy œ $1bh# $ $ ' 11ÎÎ33 d) œ 31; My œ ' 11ÎÎ33 '03 r# cos ) dr d) œ 9 ' 11ÎÎ33 cos ) d) œ 9È3 '13 r dr d) œ 4 '01Î2 d) œ 21; My œ '01Î2 '13 r# cos ) dr d) œ 26 3 '01Î2 cos ) d) œ 263 Ê xœ Ê xœ by symmetry 51. (a) M œ 2 '0 1Î2 '11bcos ) 1Î2 1Î2 My œ 'c1Î2 '1 1 cos ) 1 cos 2) ‰ # œ 'c1Î2 Šcos# ) cos$ ) Ê xœ d) œ 81 4 ; (r cos )) r dr d) 1Î2 32 151 24 (b) r dr d) œ '0 ˆ2 cos ) œ h ab 151 32 61 48 cos% ) 3 ‹ d) , and y œ 0 by symmetry 52. (a) M œ 'c! '0 r dr d) œ 'c! d) œ a# !; My œ 'c! '0 (r cos )) r dr d) œ 'c! ! 2a sin ! Ê x œ 2a 3sin œ0 ! , and y œ 0 by symmetry; lim c x œ lim c 3! ! (b) x œ 2a 51 ! a and y œ 0 ! a# # !Ä1 ! a a$ cos ) 3 d) œ 2a$ sin ! 3 !Ä1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 13 31 3È 3 1 , and , Chapter 15 Additional and Advanced Exercises 53. x œ u y and y œ v Ê x œ u v and y œ v " " Ê J(uß v) œ º œ 1; the boundary of the 0 "º image G is obtained from the boundary of R as follows: xy-equations for Corresponding uv-equations Simplified the boundary of R for the boundary of G uv-equations yœx yœ0 Ê vœuv uœ0 vœ0 _ _ _ '0 '0 esx f(x yß y) dy dx œ '0 '0 x vœ0 esÐuvÑ f(uß v) du dv $s "t !$ "# 54. If s œ !x " y and t œ # x $ y where (!$ "# )# œ ac b# , then x œ " (!$ "# )# and J(sß t) œ œ " Èac b# $ º # '021 '0_ rer # " œ ! º dr d) œ " !$ "# " #Èac b# _ _ 'c_ ' _ e as t b È # Ê '021 d) œ È 1 ac b# # " ac b# ,yœ , ds dt 1 Èac b# . Therefore, # s !t !$ "# œ 1 Ê ac b# œ 1# . CHAPTER 15 ADDITIONAL AND ADVANCED EXERCISES 6cx# 1. (a) V œ 'c3 'x 2 6cx# (c) V œ 'c3 'x 2 6cx# (b) V œ 'c3 'x 2 x# dy dx 6cx# x# dy dx œ 'c3 'x 2 a6x# x% x$ b dx œ ’2x$ & x 5 '0x % x 4 # “ dz dy dx # $ œ 125 4 2. Place the sphere's center at the origin with the surface of the water at z œ 3. Then 9 œ 25 x# y# Ê x# y# œ 16 is the projection of the volume of water onto the xy-plane Ê V œ '0 21 '04 'ccÈ325cr dz r dr d) œ '0 21 # '04 ŠrÈ25 r# 3r‹ dr d) œ '021 ’ "3 a25 r# b$Î# 3# r# “ % d) 21 21 œ '0 "3 (9)$Î# 24 3" (25)$Î# ‘ d) œ '0 3. Using cylindrical coordinates, V œ '0 21 œ '0 ˆ1 21 4. V œ 4 '0 1Î2 " 3 cos ) '01 'r È2 # œ 4 '0 Š 1Î2 " 3 " 4 r# " 3 '01 '02crÐcos sin )‰ d) œ ) 1Î2 dz r dr d) œ 4 '0 2È 2 3 ‹ d) œ ! 26 3 " 3 d) œ ) sin ) sin )Ñ " 3 521 3 dz r dr d) œ '0 21 '01 a2r r# cos ) r# sin )b dr d) #1 cos )‘ ! œ 21 '01 ŠrÈ2 r# r$ ‹ dr d) œ 4'01Î2 ’ "3 a2 r# b$Î# r4 “ " d) % ! ' 1Î2 È Š 8 327 ‹ 0 d) œ 1 Š8È2 7‹ 6 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 933 934 Chapter 15 Multiple Integrals 5. The surfaces intersect when 3 x# y# œ 2x# 2y# Ê x# y# œ 1. Thus the volume is V œ 4 '0 1 È1 c x '0 6. V œ 8 '0 1Î2 œ # '2x3cx2ycy # # # # 1Î2 dz dy dx œ 4 '0 '01 '2r3 1Î2 dz r dr d) œ 4 '0 r# # '01 a3r 3r$ b dr d) œ 3'01Î2 d) œ 31# '01Î2 '02 sin 9 3# sin 9 d3 d9 d) œ 643 '01Î2 '01Î2 sin% 9 d9 d) '01Î2 ” sin 94cos 9 ¹1Î# 43 '01Î2 sin# 9 d9• d) œ 16 '01Î2 92 sin429 ‘ 1! Î# d) œ 41 '01Î2 d) œ 21# $ 64 3 ! 7. (a) The radius of the hole is 1, and the radius of the sphere is 2. (b) V œ 2 '0 21 8. V œ '0 1 È4cz È '0 3 '1 È9cr '03 sin '0 ) r dr dz d) œ '0 21 # dz r dr d) œ '0 # '03 sin 1 œ '0 ’ "3 a9 9 sin# )b 1 $Î# ) È3 '0 a3 z# b dz d) œ 2È3 '0 d) œ 4È31 21 rÈ9 r# dr d) œ '0 ’ "3 a9 r# b 1 3" (9)$Î# “ d) œ 9'0 ’1 a1 sin# )b 1 œ '0 a1 cos ) sin# ) cos )b d) œ 9 ’) sin ) 1 9. The surfaces intersect when x# y# œ '01 'r r 1‰Î2 '12 '0r sin ) cos ) V œ 4 '0 1Î2 10. V œ '0 1Î2 œ 11. # # '0 1Î2 15 4 '0_ ec ax ˆ # _ dx œ '0 1 Î2 dz r dr d) œ 4 '0 dz r dr d) œ '0 1Î2 sin ) cos ) d) œ ecbx x x# y# 1 # 15 4 # ’ sin2 ) “ cxy tÄ_ d) 1 Ê x# y# œ 1. Thus the volume in cylindrical coordinates is $ # % " r8 “ d) œ ! " # '01Î2 d) œ 14 '12 r$ sin ) cos ) dr d) œ '0 Î2 ’ r4 “ # sin ) cos ) d) 1Î# ! 1 % " œ b tÄ_ ! ! œ 91 15 8 'ab exy dy dx œ 'ab '0_ exy dx dy œ 'ab Š t “ “ d) œ 9'0 a1 cos$ )b d) '01 Š #r r# ‹ dr d) œ 4'01Î2 ’ r4 œ 'a lim ’ e y “ dy œ 'a lim Š "y b 1 sin$ ) 3 “! $Î# $Î# 3 sin ) ecyt y ‹ dy œ 'a b " y lim tÄ_ '0t exy dx‹ dy dy œ cln yd ab œ ln ˆ ba ‰ 12. (a) The region of integration is sketched at the right Ê '0 a sin " œ '0 " È 'y cota "c y # # ln ax# y# b dx dy '0a r ln ar# b dr d); u œ r# ” du œ 2r dr • Ä " # '0" '0a ln u du d) # '0" [u ln u u] !a d) " œ "# '0 ’2a# ln a a# lim œ " # # t ln t“ d) œ a# # '0a cos " '0(tan ")x ln ax# y# b dy dx 'aacos " '0 # tÄ0 (b) '0" (2 ln a 1) d) œ a# " ˆln a "# ‰ Èa cx # ln ax# y# b dy dx Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 15 Additional and Advanced Exercises 13. '0x '0u emÐxtÑ f(t) dt du œ '0x 't x emÐxtÑ f(t) du dt œ '0x (x t)emÐxtÑ f(t) dt; also '0x '0v '0u emÐxtÑ f(t) dt du dv œ '0x 't x 't v emÐxtÑ f(t) du dv dt œ '0x 't x (v t)emÐxtÑ f(t) dv dt x x x œ '0 "2 (v t)# emÐxtÑ f(t)‘ t dt œ '0 (x # t) emÐxtÑ f(t) dt # 14. '01 f(x) Š'0x g(xy)f(y) dy‹ dx œ '01 '0x œ '0 1 g(xy)f(x)f(y) dy dx 'y1 g(xy)f(x)f(y) dx dy œ '01 f(y) Œ'y1 g(xy)f(x) dx dy; '01 '01 g akxykb f(x)f(y) dx dy œ '01 '0x g(xy)f(x)f(y) dy dx '01 'x1 g(yx)f(x)f(y) dy dx 1 1 1 1 œ '0 'y g(xy)f(x)f(y) dx dy '0 'x g(yx)f(x)f(y) dy dx œ '0 1 'y1 g(xy)f(x)f(y) dx dy '01 'y1 g(xy)f(y)f(x) dx dy ðóóóóóóóóóóóóñóóóóóóóóóóóóò simply interchange x and y variable names œ 2'0 1 'y1 g(xy)f(x)f(y) dx dy, and the statement now follows. 15. Io (a) œ '0 '0 xÎa# a œ a# 4 " 1# ax# y# b dy dx œ '0 ’x# y a a# ; Iow (a) œ " # dx œ '0 Š xa# xÎa# a y$ 3 “! a "6 a$ œ 0 Ê a% œ $ x$ 3a' ‹ Ê a œ %É "3 œ " 3 " % È 3 % x dx œ ’ 4a # a x% 12a' “ ! . Since Iwwo (a) œ " # #" a% 0, the value of a does provide a minimum for the polar moment of inertia Io (a). 16. Io œ '0 2 '2x4 ax# y# b (3) dy dx œ 3 '02 Š4x# 14x3 17. M œ 'c) 'b sec ) r dr d) œ ) a 'c Š a# ) # ) b# # $ 64 3 ‹ dx œ 104 sec# )‹ d) œ a# ) b# tan ) œ a# cos" ˆ ba ‰ b# Š È a# b# ‹ b œ a# cos" ˆ ba ‰ bÈa# b# ; Io œ 'c) 'b sec ) r$ dr d) ) a 'c aa% b% sec% )b d) œ "4 'c ca% b% a1 tan# )b asec# )bd d) œ ) " 4 ) ) ) ) b% tan$ ) “ 3 ) œ " 4 œ % $ a% ) b% tan ) ) b tan # # 6 " % " $È # " ˆ b ‰ a # a cos a # b œ % ’a ) b% tan ) 2 ˆy# Î2‰ b# 6" b$ aa# b# b 18. M œ 'c2 '1cay#Î4b dx dy œ ' 2 Š1 2 œ 'c2 ’ x2 “ 2 œ 19. 3 16 # 2c ˆy Î2‰ 1 ˆ32 64 3 y# 4‹ dy œ ’y Î4b 3 dy œ 'c2 32 a4 y# b dy œ 32 ‰ 5 # ay# 2 2 3 ‰ ˆ 32†8 ‰ œ ˆ 16 œ 15 48 15 '0a '0b emax ab x ßa y b dy dx œ '0a '0bxÎa eb x # # # # # # 3 32 $Î# # y$ 12 “ # œ 8 3 ; My œ ' ' 2 y Î2 2 1 y Î4 ˆ 2 a # # b ‰ x dx dy 'c22 a16 8y# y% b dy œ 163 ’16y 8y3 Ê xœ My M dy dx '0 b ‰ ˆ 83 ‰ œ œ ˆ 48 15 '0ayÎb ea y # # 6 5 $ # y& 5 “! , and y œ 0 by symmetry dx dy Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 935 936 Chapter 15 Multiple Integrals # # # # # # # # " " œ '0 ˆ ba x‰ eb x dx '0 ˆ ba y‰ ea y dy œ ’ 2ab eb x “ ’ 2ba ea y “ œ a " ab œ 20. b b ! ! " #ab # # Šeb a 1‹ " #ab # # Šea b 1‹ # # Šea b 1‹ ßy) 'yy 'xx ``F(x ' y ` F(xßy) x x ` y dx dy œ y ’ ` y “ " ! a # " " ! ! " ßy) dy œ 'y ’ ` F(x `y y" " ! x! ` F(x! ßy) `y “ dx œ cF(x" ß y) F(x! ß y)d yy!" œ F(x" ß y" ) F(x! ß y" ) F(x" ß y! ) F(x! ß y! ) 21. (a) (i) (ii) (iii) (iv) Fubini's Theorem Treating G(y) as a constant Algebraic rearrangement The definite integral is a constant number (b) '0ln 2 '01Î2 ex cos y dy dx œ Œ'0ln 2 ex dx Œ'01Î2 cos y dy œ aeln 2 e0 b ˆsin 1# sin 0‰ œ (1)(1) œ 1 (c) '12 'c11 yx # dx dy œ Œ'1 2 " y# dy Œ'c1 x dx œ ’ y" “ ’ x2 “ # 1 # " " " œ ˆ "# 1‰ ˆ "# "# ‰ œ 0 22. (a) ™ f œ xi yj Ê Du f œ u" x u# y; the area of the region of integration is Ê average œ 2'0 1 # œ 2 ’u" Š x2 " area (b) average œ _ _ 23. (a) I# œ '0 œ "# '0 '01Î2 _ e x$ 3‹ '01cx (u" x u# y) dy dx œ 2 '01 u" x(1 x) "# u# (1 x)# ‘ dx ˆ "# u# ‰ " (1x)$ 3 “! ' ' (u" x u# y) dA œ R ˆx# y# ‰ lim bÄ_ 1Î2 dx dy œ '0 # _ 21 œ 2 ˆ 6" u" 6" u# ‰ œ " # R È r# 1Î2 b r dr d) œ '0 ” lim bÄ_ '01Î2 d) œ 14 "Î# y# e Ê Iœ _ $ Èh 'cÈhh 'cÈhhccxx ah x# y# b dy dx œ '021 '0 # # '0b re È $ È r# dr• d) È1 # (2y) dy œ 2 '0 ey dy œ 2 Š '0R kr# (1 sin )) dr d) œ kR3 '021 (1 sin )) d) œ kR3 È (u" u# ) R 25. For a height h in the bowl the volume of water is V œ œ " 3 M u# ' ' ' ' x dA area y dA œ u" Š My ‹ u# ˆ MMx ‰ œ u" x u# y u" area '0_ ae aecb 1b d) œ (b) > ˆ "# ‰ œ '0 t"Î# et dt œ '0 ay# b 24. Q œ '0 " # # È1 # ‹ c) cos )d #!1 œ 'cÈhh 'cÈhhccxx 'xhby œ È1, where y œ Èt 21kR$ 3 # # # # dz dy dx ah r# b r dr d) œ '0 ’ hr2 r4 “ 21 # % Èh ! d) œ '0 21 h# 4 d) œ h# 1 # . Since the top of the bowl has area 101, then we calibrate the bowl by comparing it to a right circular cylinder whose cross sectional area is 101 from z œ 0 to z œ 10. If such a cylinder contains to a depth w then we have 101w œ rain, w œ 3 and h œ È60. h# 1 # Ê wœ h# 20 h# 1 # cubic inches of water . So for 1 inch of rain, w œ 1 and h œ È20; for 3 inches of Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Chapter 15 Additional and Advanced Exercises 26. (a) An equation for the satellite dish in standard position is z œ "# x# "# y# . Since the axis is tilted 30°, a unit vector v œ 0i aj bk normal to the plane of the È3 # È #3 water level satisfies b œ v † k œ cos ˆ 16 ‰ œ Ê a œ È1 b# œ "# Ê v œ "# j Ê "# (y 1) Ê zœ " È3 È3 # y Š "# k ˆz "# ‰ œ 0 " È3 ‹ is an equation of the plane of the water level. Therefore ' Èx byby c È dz dy dx, where R is the interior of the ellipse the volume of water is V œ ' ' 1 1 2 3 # 1 2 R 1 2 1 3 # È 3 Ê 3 4 Š È 3 1‹ 2 x# y# È 2 and " œ y1 2 È3 Ê 43 3 œ 0. When x œ 0, then y œ ! or y œ " , where ! œ 2 È3 Ê Vœ 3 # (b) x œ 0 Ê z œ " # y# and ! œ y; y œ 1 Ê dz dy "Î# Š yb1c È3 cy ‹ ' 'c " 4 Š È 1‹ 2 2 3 # 2 3 "Î# Š yb1c È3 cy# ‹ 2 3 2 yb ' Èb 1 1 2 x# 1 2 1 2 4 2 # c È3 1 1 dz dx dy y# œ 1 Ê the tangent line has slope 1 or a 45° slant dz dy Ê at 45° and thereafter, the dish will not hold water. 27. The cylinder is given by x# y# œ 1 from z œ 1 to _ Ê œ '0 21 _ '0 '1 1 z ar# z# b&Î# '0 '0 ' 21 dz r dr d) œ a lim Ä_ 1 ' ' ' z ar# z# b&Î# dV D a rz 1 ar# z# b&Î# dz dr d) œ a lim Ä_ '021 '01 ’ˆ "3 ‰ œ a lim Ä_ '021 ’ 3" ar# a# b"Î# 3" ar# 1b"Î# “ " d) œ a lim ' 21 ’ 3" a1 a# b"Î# 3" ˆ2"Î# ‰ 3" aa# b"Î# 3" “ d) Ä_ 0 œ a lim 21 ’ 3" a1 a# b Ä_ a r “ ar# z# b$Î# 1 "Î# 3" Š '021 '01 ’ˆ 3" ‰ dr d) œ a lim Ä_ È2 # ‹ ˆ "3 ‰ r ar# a# b$Î# ! r “ ar# 1b$Î# dr d) È2 # “. 3" ˆ "a ‰ 3" “ œ 21 ’ 3" ˆ 3" ‰ 28. Let's see? The length of the "unit" line segment is: L œ 2'0 dx œ 2. 1 The area of the unit circle is: A œ 4'0 1 È1 c x '0 The volume of the unit sphere is: V œ 8'0 1 2 dy dx œ 1. È1 c x '0 2 È1 c x c y '0 2 2 dz dy dx œ 43 1. Therefore, the hypervolume of the unit 4-sphere should be: Vhyper œ 16'0 1 È1cx '0 2 È1cx cy '0 2 2 È1cx cy cz '0 2 2 2 dw dz dy dx. Mathematica is able to handle this integral, but we'll use the brute force approach. Vhyper œ 16'0 1 È1cx œ 16'0 '0 œ 16'0 '0 œ 16'0 '0 1 1 1 È1cx È1cx È1cx '0 2 2 2 2 È1cx cy '0 È1cx cy '0 2 2 È1cx cy cz '0 2 2 2 dw dz dy dx œ 16'0 1 2 z2 È 1 x2 y2 É 1 1 c x2 c y2 dz dy dx œ – È1cx '0 dz œ a1 x2 y2 b'1/2 È1 cos2 ) sin ) d) dy dx œ 16'0 0 1 4 a1 1 2 È1cx cy '0 2 2 È 1 x 2 y 2 z2 z È1 x2 y2 œ cos ) È1 x2 y2 sin È1cx '0 2 ) d) — a1 x2 y2 b'1/2 sin2 ) d) dy dx 0 1 1 x3 $ ‘ dx œ 83 1' a1 x2 b3/2 dx œ ” 0 1 0 x œ cos ) œ 83 1'1/2 sin4 ) d) dx œ sin ) d) • 2 ) ‰2 œ 83 1'1/2 ˆ 1 cos d) œ 23 1'1/2 a1 2 cos 2) cos2 2)bd) œ 23 1'1/2 ˆ #3 2 cos 2) 2 0 dz dy dx 3/2 x2 y2 b dy dx œ 41'0 ŠÈ1 x2 x2 È1 x2 3" a1 x2 b ‹ dx œ 41'0 È1 x2 a1 x2 b 1 2 0 0 cos 4) ‰ d) 2 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. œ 12 2 937 938 Chapter 15 Multiple Integrals NOTES: Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. CHAPTER 16 INTEGRATION IN VECTOR FIELDS 16.1 LINE INTEGRALS 1. r œ ti a" tbj Ê x œ t and y œ 1 t Ê y œ 1 x Ê (c) 2. r œ i j tk Ê x œ 1, y œ 1, and z œ t Ê (e) 3. r œ a2 cos tbi a2 sin tbj Ê x œ 2 cos t and y œ 2 sin t Ê x# y# œ 4 Ê (g) 4. r œ ti Ê x œ t, y œ 0, and z œ 0 Ê (a) 5. r œ ti tj tk Ê x œ t, y œ t, and z œ t Ê (d) 6. r œ tj a2 2tbk Ê y œ t and z œ 2 2t Ê z œ 2 2y Ê (b) 7. r œ at# 1b j 2tk Ê y œ t# 1 and z œ 2t Ê y œ z# 4 1 Ê (f) 8. r œ a2 cos tbi a2 sin tbk Ê x œ 2 cos t and z œ 2 sin t Ê x# z# œ 4 Ê (h) 9. ratb œ ti a1 tbj , 0 Ÿ t Ÿ 1 Ê œ i j Ê ¸ ddtr ¸ œ È2 j ; x œ t and y œ 1 t Ê x y œ t (" t) œ 1 dr dt Ê 'C faxß yß zb ds œ '0 fatß 1 tß 0b ¸ ddtr ¸ dt œ '0 (1) ŠÈ2‹ dt œ ’È2 t“ œ È2 1 " 1 ! 10. r(t) œ ti (1 t)j k , 0 Ÿ t Ÿ 1 Ê œ t (1 t) 1 2 œ 2t 2 Ê dr dt œ i j Ê ¸ ddtr ¸ œ È2; x œ t, y œ 1 t, and z œ 1 Ê x y z 2 'C f(xß yß z) ds œ '01 (2t 2) È2 dt œ È2 ct# 2td "! œ È2 11. r(t) œ 2ti tj (2 2t)k , 0 Ÿ t Ÿ 1 Ê dr dt œ 2i j 2k Ê ¸ ddtr ¸ œ È4 1 4 œ 3; xy y z œ (2t)t t (2 2t) Ê 'C f(xß yß z) ds œ '0 a2t# t 2b 3 dt œ 3 23 t$ "# t# 2t‘ ! œ 3 ˆ 23 1 12. r(t) œ (4 cos t)i (4 sin t)j 3tk , 21 Ÿ t Ÿ 21 Ê Ê ¸ ddtr ¸ œ È16 sin# 1 œ c20td ## 1 œ 801 " dr dt dr dt Ê ¸ ddtr ¸ œ È1 9 4 œ È14 ; x y z œ (1 t) (2 3t) (3 2t) œ 6 6t Ê œ i 3 j 2k 'C f(xß yß z) ds œ '0 (6 6t) È14 dt œ 6È14 ’t t2 “ œ Š6È14‹ ˆ "# ‰ œ 3È14 " ! 14. r(t) œ ti tj tk , 1 Ÿ t Ÿ _ Ê _ dr dt 13 # 'C f(xß yß z) ds œ 'c2211 (4)(5) dt 13. r(t) œ (i 2j 3k) t(i 3j 2k) œ (1 t)i (2 3t)j (3 2t)k , 0 Ÿ t Ÿ 1 Ê # 2‰ œ œ (4 sin t)i (4 cos t)j 3k t 16 cos# t 9 œ 5; Èx# y# œ È16 cos# t 16 sin# t œ 4 Ê 1 " # œ i j k Ê ¸ ddtr ¸ œ È3 ; È3 x # y# z# _ Ê 'C f(xß yß z) ds œ '1 Š 3t#3 ‹ È3 dt œ 1t ‘ " œ lim ˆ b" 1‰ œ 1 œ È3 t# t# t# œ È3 3t# È bÄ_ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 940 Chapter 16 Integration in Vector Fields 15. C" : r(t) œ ti t# j , 0 Ÿ t Ÿ 1 Ê œ i 2tj Ê ¸ ddtr ¸ œ È1 4t# ; x Èy z# œ t Èt# 0 œ t ktk œ 2t dr dt $Î# 0 Ê 'C f(xß yß z) ds œ '0 2tÈ1 4t# dt œ ’ "6 a" 4t# b “ œ " 1 since t ! " C# : r(t) œ i j tk, 0 Ÿ t Ÿ 1 Ê dr dt 1 " # " 5 6 # 16. C" : r(t) œ tk , 0 Ÿ t Ÿ 1 Ê dr dt (5)$Î# " 6 " 6 œ Š5È5 1‹ ; œ k Ê ¸ ddtr ¸ œ 1; x Èy z# œ 1 È1 t# œ 2 t# Ê 'C f(xß yß z) ds œ '0 a2 t# b (1) dt œ 2t "3 t$ ‘ ! œ 2 œ 'C f(xß yß z) ds 'C f(xß yß z) ds œ " 6 È5 " 3 œ 5 3 ; therefore 'C f(xß yß z) ds 3 # œ k Ê ¸ ddtr ¸ œ 1; x Èy z# œ 0 È0 t# œ t# Ê 'C f(xß yß z) ds œ '0 at# b (1) dt œ ’ t3 “ œ 3" ; 1 " $ ! " C# : r(t) œ tj k, 0 Ÿ t Ÿ 1 Ê œ j Ê ¸ ddtr ¸ œ 1; x Èy z# œ 0 Èt 1 œ Èt 1 dr dt " Ê 'C f(xß yß z) ds œ '0 ˆÈt 1‰ (1) dt œ 23 t$Î# t‘ ! œ 1 # C$ : r(t) œ ti j k , 0 Ÿ t Ÿ 1 Ê dr dt # œ "6 17. r(t) œ ti tj tk , 0 a Ÿ t Ÿ b Ê Ê " ! $ dr dt 1 œ 3" ; œ i Ê ¸ ddtr ¸ œ 1; x Èy z# œ t È1 1 œ t Ê 'C f(xß yß z) ds œ '0 (t)(1) dt œ ’ t2 “ œ 1 2 3 " # Ê 'C f(xß yß z) ds œ 'C " œ i j k Ê ¸ ddtr ¸ œ È3 ; f ds 'C f ds 'C f ds œ 3" ˆ 3" ‰ # xyz x # y # z# œ 'C f(xß yß z) ds œ 'ab ˆ 1t ‰ È3 dt œ ’È3 ln ktk “ b œ È3 ln ˆ ba ‰ , since 0 a Ÿ b $ ttt t# t# t# œ " # 1 t a 18. r(t) œ aa cos tb j aa sin tb k , 0 Ÿ t Ÿ 21 Ê dr dt œ (a sin t) j (a cos t) k Ê ¸ ddtr ¸ œ Èa# sin# t a# cos# t œ kak ; 21 1 kak sin t, 0 Ÿ t Ÿ 1 Èx# z# œ È0 a# sin# t œ œ Ê 'C f(xß yß z) ds œ '0 kak# sin t dt '1 kak# sin t dt kak sin t, 1 Ÿ t Ÿ 21 1 #1 œ ca# cos td ! ca# cos td 1 œ ca# (1) a# d ca# a# (1)d œ 4a# Ê 'C x ds œ '0 t È5 2 4 È5 2 dt È5 2 '04 t dt œ ’ È45 t2 “ 4 œ 4È5 19. (a) ratb œ ti "# tj , 0 Ÿ t Ÿ 4 Ê dr dt œ i "# j Ê ¸ ddtr ¸ œ (b) ratb œ ti t j , 0 Ÿ t Ÿ 2 Ê dr dt œ i 2tj Ê ¸ ddtr ¸ œ È1 4t2 Ê 'C x ds œ '0 t È1 4t2 dt 2 3Î2 2 1 œ ’ 12 a1 4t2 b “ œ ! œ 2 17È17 " 12 20. (a) ratb œ ti 4tj , 0 Ÿ t Ÿ 1 Ê dr dt œ i 4j Ê ¸ ddtr ¸ œ È17 Ê 'C Èx 2y ds œ '0 Èt 2a4tb È17 dt 1 œ È17'0 È9t dt œ 3È17'0 Èt dt œ ’2È17 t2Î3 “ œ 2È17 1 1 1 ! (b) C" : ratb œ ti , 0 Ÿ t Ÿ 1 Ê 'C Èx 2y ds œ 'C 1 œ i Ê ¸ ddtr ¸ œ 1; C2 : ratb œ i tj, 0 Ÿ t Ÿ 1 Ê dr dt C2 œ '0 Èt dt '0 È1 2t dt œ 1 2 21. ratb œ 4ti 3tj , 1 Ÿ t Ÿ 2 Ê dr dt 2 16t œ 15'c1 t e16t dt œ ’ 15 “ 32 e 2 2 dr dt œ j Ê ¸ ddtr ¸ œ 1 Èx 2y ds ' Èx 2y ds œ ' Èt 2a0b dt ' È1 2atb dt 1 2 c1 23 t2Î3 ‘ 1 ! 2 0 0 2 ’ 13 a1 2tb2Î3 “ œ ! 2 3 È Š5 3 5 31 ‹ œ 5È 5 1 3 œ 4i 3j Ê ¸ ddtr ¸ œ 5 Ê 'C y ex ds œ 'c1 a3tb ea4tb † 5dt 2 64 œ 15 32 e 15 16 32 e œ 15 16 32 ae 2 2 e64 b Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ! Section 16.1 Line Integrals 22. ratb œ acos tbi asin tbj , 0 Ÿ t Ÿ 21 Ê 941 œ asin tbi acos tbj Ê ¸ ddtr ¸ œ Èsin2 t cos2 t œ 1 Ê 'C ax y 3b ds dr dt œ '0 acos t sin t 3b † 1 dt œ csin t cos t 3td 201 œ 61 21 23. ratb œ t2 i t3 j , 1 Ÿ t Ÿ 2 Ê œ '1 2 œ '1Î2 œ 2ti 3t2 j Ê ¸ ddtr ¸ œ Éa2tb2 a3t2 b2 œ tÈ4 9t2 Ê 'C 3Î2 1 a4 9t2 b “ œ † tÈ4 9t2 dt œ '1 t È4 9t2 dt œ ’ 27 ˆt2 ‰2 2 2 at3 b4Î3 ŸtŸ1Ê 1 2 dr dt 1 25. C" : ratb œ ti t2 j , 0 Ÿ t Ÿ 1 Ê Ê dr dt ds œ 3t2 i 4t3 j Ê ¸ ddtr ¸ œ Éa3t2 b2 a4t3 b2 œ t2 È9 16t2 Ê 'C 1 a9 16t2 b † t2 È9 16t2 dt œ '1Î2 t È9 16t2 dt œ ’ 48 Èt4 t3 x2 y4Î3 80È10 13È13 27 1 24. ratb œ t3 i t4 j , 1 dr dt 3 Î2 1 “ 1Î2 œ Èy x ds 125 13È13 48 œ i 2tj Ê ¸ ddtr ¸ œ È1 4t2 ; C2 : ratb œ a1 tbi a1 tbj, 0 Ÿ t Ÿ 1 dr dt œ i j Ê ¸ ddtr ¸ œ È2 Ê 'C ˆx Èy‰ds œ 'C ˆx Èy‰ds 'C ˆx Èy‰ds 1 2 œ '0 Št Èt2 ‹È1 4t2 dt '0 Ša1 tb È1 t‹ È2dt œ '0 2tÈ1 4t2 dt '0 Š1 t È1 t‹ È2dt 1 1 œ ’ 16 a1 4t2 b 1 3 Î2 1 1 0 0 Î “ È2’t "# t2 23 a1 tb3 2 “ œ 26. C" : ratb œ ti , 0 Ÿ t Ÿ 1 Ê 5È 5 1 6 7È 2 6 1 œ 5È 5 7È 2 1 6 œ i Ê ¸ ddtr ¸ œ 1; C2 : ratb œ i tj, 0 Ÿ t Ÿ 1 Ê ddtr œ j Ê ¸ ddtr ¸ œ 1; C3 : ratb œ a1 tbi j, 0 Ÿ t Ÿ 1 Ê ddtr œ i Ê ¸ ddtr ¸ œ 1; C4 : ratb œ a1 tbj, 0 Ÿ t Ÿ 1 Ê ddtr œ j Ê ¸ ddtr ¸ œ 1; Ê 'C œ '0 1 1 x2 y2 1 ds dt t2 1 '0 œ ctan1 td 0 1 1 œ 'C 1 x2 y2 1 ds 1 dt t2 2 dr dt '0 1 x# # 2 dt a1 tb2 2 1 t 1 È2 ’tan Š È2 ‹“ 27. r(x) œ xi yj œ xi 'C 1 0 '0 1 x2 y2 1 ds 1 'C œ '0 (2x)È1 x# dx œ ’ 23 a1 x# b 2 4 1 x2 y2 1 ds 1 0 ctan1 a1 tbd 0 œ 1 1 2 2 1 1 È2 tan Š È2 ‹ # “ œ ! 'C dr ¸ œ i xj Ê ¸ dx œ È1 x# ; f(xß y) œ f Šxß x# ‹ œ dr dx $Î# # 1 x2 y2 1 ds dt a1 tb2 1 1 1 t 1 È2 ’tan Š È2 ‹“ j, 0 Ÿ x Ÿ 2 Ê 3 2 3 ˆ5$Î# 1‰ œ # Š x# ‹ 10È5 2 3 28. r(t) œ a1 tbi #1 a1 tb2 j, 0 Ÿ t Ÿ 1 Ê ¸ ddtr ¸ œ É1 a1 tb# ; f(xß y) œ f Ša1 tbß #1 a1 tb2 ‹ œ Ê 'C f ds œ '01 a1 tb œ 0 ˆ "# 4 1 4 a1 tb # É1 a1 tb " ‰ #0 œ œ 2x Ê 'C f ds x$ É1 a1 tb# dt œ ' Ša1 tb 14 a1 tb4 ‹ dt œ ’ "# a1 tb2 0 1 a1 tb 14 a1 tb4 É1 a1 tb# 1 20 a1 tb5 “ " ! 11 #0 29. r(t) œ (2 cos t) i (2 sin t) j , 0 Ÿ t Ÿ 1 # Ê dr dt œ (2 sin t) i (2 cos t) j Ê ¸ ddtr ¸ œ 2; f(xß y) œ f(2 cos tß 2 sin t) œ 2 cos t 2 sin t Ê 'C f ds œ '0 (2 cos t 2 sin t)(2) dt œ c4 sin t 4 cos td ! 1Î2 30. r(t) œ (2 sin t) i (2 cos t) j , 0 Ÿ t Ÿ œ 4 sin# t 2 cos t Ê 1Î# 1 4 Ê dr dt œ 4 (4) œ 8 œ (2 cos t) i (2 sin t) j Ê ¸ ddtr ¸ œ 2; f(xß y) œ f(2 sin tß 2 cos t) 'C f ds œ '01Î4 a4 sin# t 2 cos t b (2) dt œ c4t 2 sin 2t 4 sin td 01Î% œ 1 2Š1 È2‹ 31. y œ x2 , 0 Ÿ x Ÿ 2 Ê ratb œ ti t2 j , 0 Ÿ t Ÿ 2 Ê dr dt œ i 2tj Ê ¸ ddtr ¸ œ È1 4t2 Ê A œ 'C fax, yb ds 3 Î2 œ 'C ˆx Èy‰ds œ '0 Št Èt2 ‹È1 4t2 dt œ '0 2tÈ1 4t2 dt œ ’ 16 a1 4t2 b “ œ 2 2 2 0 17È17 1 6 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 942 Chapter 16 Integration in Vector Fields 32. 2x 3y œ 6, 0 Ÿ x Ÿ 6 Ê ratb œ ti ˆ2 23 t‰j , 0 Ÿ t Ÿ 6 Ê œ 'C a4 3x 2ybds œ '0 ˆ4 3t 2ˆ2 23 t‰‰ 6 33. r(t) œ at# 1b j 2tk , 0 Ÿ t Ÿ 1 Ê dr dt È13 3 dt œ È13 3 dr dt È13 3 œ i 23 j Ê ¸ ddtr ¸ œ Ê A œ 'C fax, yb ds '06 ˆ8 35 t‰dt œ È313 8t 65 t2 ‘ 60 œ 26È13 œ 2tj 2k Ê ¸ ddtr ¸ œ 2Èt# 1; M œ 'C $ (xß yß z) ds œ '0 $ (t) Š2Èt# 1‹ dt 1 3/2 œ '0 ˆ 3# t‰ Š2Èt# 1‹ dt œ ’at# 1b “ œ 2$Î# 1 œ 2È2 1 " 1 ! 34. r(t) œ at# 1b j 2tk , 1 Ÿ t Ÿ 1 Ê ddtr œ 2tj 2k Ê ¸ dr ¸ œ 2Èt# 1; M œ ' $ (xß yß z) ds dt C œ 'c1 1 ˆ15Èat# 1b 2‰ Š2Èt# 1‹ dt œ 'c1 30 at# 1b dt œ ’30 Š t3 t‹“ 1 $ " " œ 60 ˆ 3" 1‰ œ 80; Mxz œ 'C y$ (xß yß z) ds œ 'c1 at# 1b c30 at# 1bd dt 1 œ 'c1 30 at% 1b dt œ ’30 Š t5 t‹“ 1 & œ 48 Ê y œ Mxz M " " œ 60 ˆ 5" 1‰ 48 œ 80 œ 53 ; Myz œ 'C x$ (xß yß z) ds œ 'C 0 $ ds œ 0 Ê x œ 0; z œ 0 by symmetry (since $ is independent of z) Ê (xß yß z) œ ˆ!ß 35 ß 0‰ 35. r(t) œ È2t i È2t j a4 t# b k , 0 Ÿ t Ÿ 1 Ê dr dt œ È2i È2j 2tk Ê ¸ ddtr ¸ œ È2 2 4t# œ 2È1 t# ; (a) M œ 'C $ ds œ '0 (3t) Š2È1 t# ‹ dt œ ’2 a1 t# b 1 $Î# " “ œ 2 ˆ2$Î# 1‰ œ 4È2 2 ! (b) M œ 'C $ ds œ '0 a1b Š2È1 t# ‹ dt œ ’tÈ1 t# ln Št È1 t# ‹“ œ ’È2 ln Š1 È2‹“ a0 ln 1b " 1 ! œ È2 ln Š1 È2‹ 36. r(t) œ ti 2tj 23 t$Î# k , 0 Ÿ t Ÿ 2 Ê dr dt œ i 2j t"Î# k Ê ¸ ddtr ¸ œ È1 4 t œ È5 t; # M œ 'C $ ds œ '0 ˆ3È5 t‰ ˆÈ5 t‰ dt œ '0 3(5 t) dt œ 32 (5 t)# ‘ ! œ 2 2 3 # a7# 5# b œ Myz œ 'C x$ ds œ '0 t[3(5 t)] dt œ '0 a15t 3t# b dt œ "25 t# t$ ‘ ! œ 30 8 œ 38; 2 2 2 2 # œ '0 ˆ10t$Î# 2t&Î# ‰ dt œ 4t&Î# 47 t(Î# ‘ ! œ 4(2)&Î# 47 (2)(Î# œ 16È2 2 œ 38 36 œ 19 18 ,yœ Mxz M œ 76 36 œ 19 9 , and z œ (24) œ 36; # Mxz œ 'C y$ ds œ '0 2t[3(5 t)] dt œ 2 '0 a15t 3t# b dt œ 76; Mxy œ 'C z$ ds œ '0 2 3 # Mxy M œ 144È2 7†36 37. Let x œ a cos t and y œ a sin t, 0 Ÿ t Ÿ 21. Then dx dt œ 4 7 32 7 È2 œ dz dt œ0 2 $Î# [3(5 3 t 144 7 t)] dt È2 Ê x œ Myz M È2 œ a sin t, dy dt œ a cos t, ‰ Š dy ˆ dz ‰ dt œ a dt; Iz œ ' ax# y# b $ ds œ ' aa# sin# t a# cos# tb a$ dt Ê Êˆ dx dt dt ‹ dt C 0 # # 21 # œ '0 a$ $ dt œ 21$ a$ . 21 38. r(t) œ tj (2 2t)k , 0 Ÿ t Ÿ 1 Ê dr dt œ j 2k Ê ¸ ddtr ¸ œ È5; M œ 'C $ ds œ '0 $ È5 dt œ $ È5; 1 " Ix œ 'C ay# z# b $ ds œ '0 ct# (2 2t)# d $ È5 dt œ '0 a5t# 8t 4b $ È5 dt œ $ È5 53 t$ 4t# 4t‘ ! œ 1 1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 5 3 $ È5 ; Section 16.1 Line Integrals " Iy œ 'C ax# z# b $ ds œ '0 c0# (2 2t)# d $ È5 dt œ '0 a4t# 8t 4b $ È5 dt œ $ È5 43 t$ 4t# 4t‘ ! œ 1 1 Iz œ 'C ax# y# b $ ds œ '0 a0# t# b $ È5 dt œ $ È5 ’ t3 “ œ 1 " $ ! 39. r(t) œ (cos t)i (sin t)j tk , 0 Ÿ t Ÿ 21 Ê " 3 4 3 $ È5 ; $ È5 œ ( sin t)i (cos t)j k Ê ¸ ddtr ¸ œ Èsin# t cos# t 1 œ È2; dr dt (a) Iz œ 'C ax# y# b $ ds œ '0 acos# t sin# tb $ È2 dt œ 21$ È2 21 (b) Iz œ 'C ax# y# b $ ds œ '0 $ È2 dt œ 41$ È2 41 40. r(t) œ (t cos t)i (t sin t)j 2È2 $Î# k, 3 t 0ŸtŸ1 Ê dr dt œ (cos t t sin t)i (sin t t cos t)j È2t k " Ê ¸ ddtr ¸ œ È(t 1)# œ t 1 for 0 Ÿ t Ÿ 1; M œ 'C $ ds œ '0 (t 1) dt œ "2 (t 1)# ‘ ! œ 1 Mxy œ 'C z$ ds œ ' È Š 2 3 2 t$Î# ‹ (t 0 œ 2È 2 3 ˆ 27 52 ‰ œ 1 2È 2 3 ˆ 24 ‰ 35 œ 1) dt œ 16È2 35 Ê zœ 2È 2 3 '0 ˆt&Î# t$Î# ‰ dt œ Mxy M œ Š 1635 2 ‹ ˆ 23 ‰ œ È 32È2 105 œ '0 at# cos# t t# sin# tb (t 1) dt œ '0 at$ t# b dt œ ’ t4 t3 “ œ 1 2È 2 3 1 1 % " $ ! " 4 " # a2# 1# b œ 3 # ; 27 t(Î# 25 t&Î# ‘ " ! ; Iz œ 'C ax# y# b $ ds " 3 œ 7 12 41. $ (xß yß z) œ 2 z and r(t) œ (cos t)j (sin t)k , 0 Ÿ t Ÿ 1 Ê M œ 21 2 as found in Example 3 of the text; also ¸ ddtr ¸ œ 1; Ix œ 'C ay# z# b $ ds œ '0 acos# t sin# tb (2 sin t) dt œ '0 (2 sin t) dt œ 21 2 1 42. r(t) œ ti 2È2 $Î# j 3 t t# # k, 0 Ÿ t Ÿ 2 Ê 1 dr dt œ i È2 t"Î# j tk Ê ¸ ddtr ¸ œ È1 2t t# œ È(1 t)# œ 1 t for 0 Ÿ t Ÿ 2; M œ 'C $ ds œ '0 ˆ t"1 ‰ (1 t) dt œ '0 dt œ 2; Myz œ 'C x$ ds œ '0 t ˆ t"1 ‰ (1 t) dt œ ’ t2 “ œ 2; 2 Mxz œ 'C y$ ds œ ' 2È2 $Î# 3 t 0 yœ Mxz M œ 16 15 2 , and z œ Mxy M œ 2 dt œ # 3 # È ’ 4152 t&Î# “ ! œ 2 2 $ œ '0 ˆt# 89 t$ ‰ dt œ ’ t3 29 t% “ œ $ ; Mxy œ 'C z$ ds œ '0 2 # t # dt œ # $ # ’ t6 “ ! ; Ix œ 'C ay# z# b $ ds œ '0 ˆ 98 t$ "4 t% ‰ dt œ ’ 92 t% Iy œ 'C ax# z# b $ ds œ '0 ˆt# 4" t% ‰ dt œ ’ t3 2 32 15 2 # ! 8 3 32 9 œ # t& 20 “ ! œ 8 3 32 20 œ 64 15 œ # t& 20 “ ! œ ; Iz œ 'C ax# y# b $ ds 56 9 43-46. Example CAS commands: Maple: f := (x,y,z) -> sqrt(1+30*x^2+10*y); g := t -> t; h := t -> t^2; k := t -> 3*t^2; a,b := 0,2; ds := ( D(g)^2 + D(h)^2 + D(k)^2 )^(1/2): 'ds' = ds(t)*'dt'; F := f(g,h,k): 'F(t)' = F(t); Int( f, s=C..NULL ) = Int( simplify(F(t)*ds(t)), t=a..b ); `` = value(rhs(%)); # ! % 3 # (a) # (b) # (c) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Ê xœ Myz M œ 32 9 32 20 œ 1, 232 45 ; 943 944 Chapter 16 Integration in Vector Fields Mathematica: (functions and domains may vary) Clear[x, y, z, r, t, f] f[x_,y_,z_]:= Sqrt[1 30x2 10y] {a,b}= {0, 2}; x[t_]:= t y[t_]:= t2 z[t_]:= 3t2 r[t_]:= {x[t], y[t], z[t]} v[t_]:= D[r[t], t] mag[vector_]:=Sqrt[vector.vector] Integrate[f[x[t],y[t],z[t]] mag[v[t]], {t, a, b}] N[%] 16.2 VECTOR FIELDS, WORK, CIRCULATION, AND FLUX 1. f(xß yß z) œ ax# y# z# b `f `y # # "Î# # $Î# œ y ax y z b and `f `y œ y x # y# z# and `f `z " # 2. f(xß yß z) œ ln Èx# y# z# œ similarly, `f `x Ê `f `z # $Î# # $Î# # œ z ax y z b ln ax# y# z# b Ê œ 3. g(xß yß z) œ ez ln ax# y# b Ê œ #" ax# y# z# b z x # y # z# `g `x Ê ™fœ œ x# 2x y# , `g `y `f `x (2x) œ x ax# y# z# b Ê ™fœ œ " # $Î# ; similarly, xi yj zk ax# y# z# b$Î# Š x# y"# z# ‹ (2x) œ x x# y# z# ; xi yj zk x # y# z# œ x# 2y y# and `g `z œ ez z Ê ™ g œ Š x#2xy# ‹ i Š x# 2y y# ‹ j e k `g `x 4. g(xß yß z) œ xy yz xz Ê œ y z, `g `y œ x z, and `g `z œ y x Ê ™ g œ (y z)i (B z)j (x y)k 5. kFk inversely proportional to the square of the distance from (xß y) to the origin Ê È(M(xß y))# (N(xß y))# œ k x# y# y x È x # y# i È x# y# j Then M(xß y) œ Èx#ax and N(xß y) œ Èx#ay y# y# ky k kx a œ x# y# Ê F œ # # $Î# i # # $Î# j , for any constant ax y b ax y b , k 0; F points toward the origin Ê F is in the direction of n œ Ê F œ an , for some constant a 0. Ê È(M(xß y))# (N(xß y))# œ a Ê k0 6. Given x# y# œ a# b# , let x œ Èa# b# cos t and y œ Èa# b# sin t. Then r œ ŠÈa# b# cos t‹ i ŠÈa# b# sin t‹ j traces the circle in a clockwise direction as t goes from 0 to 21 Ê v œ ŠÈa# b# sin t‹ i ŠÈa# b# cos t‹ j is tangent to the circle in a clockwise direction. Thus, let F œ v Ê F œ yi xj and F(0ß 0) œ 0 . 7. Substitute the parametric representations for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F , and calculate 'C F † dr dt . (a) F œ 3ti 2tj 4tk and dr dt œijk Ê F† (b) F œ 3t# i 2tj 4t% k and œ 7 3 2œ dr dt dr dt œ 9t Ê œ i 2tj 4t$ k Ê F † dr dt '01 9t dt œ 9# œ 7t# 16t( Ê '01 a7t# 16t( b dt œ 37 t$ 2t) ‘ "! 13 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 16.2 Vector Fields, Work, Circulation, and Flux (c) r" œ ti tj and r# œ i j tk ; F" œ 3ti 2tj and F# œ 3i 2j 4tk and œ k Ê F# † d r# dt d r# dt d r" dt œ i j Ê F" † '01 4t dt œ 2 œ 4t Ê Ê d r" dt 5 # '01 5t dt œ #5 ; œ 5t Ê 2œ 9 # 8. Substitute the parametric representation for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F, and calculate 'C F † dr dt . " ‰ (a) F œ ˆ t# 1 j and dr dt œijkÊF† " ‰ (b) F œ ˆ t# 1 j and dr dt œ i 2tj 4t$ k Ê F † dr dt " t# 1 œ dr dt " ‰ (c) r" œ ti tj and r# œ i j tk ; F" œ ˆ t# 1 j Ê F# † d r# dt œ 0 Ê '0 1 " t# 1 dt œ Ê '0 1 œ 2t t# 1 and ddtr" " t# 1 Ê '0 1 " dt œ ctan" td ! œ 2t t# 1 1 4 " dt œ cln at# 1bd ! œ ln 2 œ i j Ê F" † d r" dt œ " t# 1 ; F# œ " # j and d r# dt œk 1 4 9. Substitute the parametric representation for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F, and calculate 'C F † dr dt . '01 ˆ2Èt 2t‰ dt œ 43 t$Î# t# ‘ "! œ "3 1 " F œ t# i 2tj tk and ddtr œ i 2tj 4t$ k Ê F † ddtr œ 4t% 3t# Ê '0 a4t% 3t# b dt œ 45 t& t$ ‘ ! œ "5 1 r" œ ti tj and r# œ i j tk ; F" œ 2tj Èt k and ddtr œ i j Ê F" † ddtr œ 2t Ê '0 2t dt œ 1; 1 F# œ Èti 2j k and ddtr œ k Ê F# † ddtr œ 1 Ê '0 dt œ 1 Ê 1 1 œ 0 (a) F œ Èti 2tj Ètk and (b) (c) dr dt œijk Ê F† œ 2Èt 2t Ê dr dt " # " # 10. Substitute the parametric representation for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F, and calculate 'C F † dr dt . œ 3t# Ê '0 3t# dt œ 1 1 (a) F œ t# i t# j t# k and dr dt œijk Ê F† (b) F œ t$ i t' j t& k and dr dt œ i 2tj 4t$ k Ê F † % œ ’ t4 t) 4 " 94 t* “ œ ! dr dt œ t$ 2t( 4t) Ê '0 at$ 2t( 4t) b dt 1 17 18 (c) r" œ ti tj and r# œ i j tk ; F" œ t# i and F# œ i tj tk and dr dt d r# dt œ k Ê F# † d r# dt d r" dt œ i j Ê F" † œ t Ê '0 t dt œ 1 " # Ê d r" dt " 3 œ t# Ê '0 t# dt œ 1 " # œ " 3 ; 5 6 11. Substitute the parametric representation for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F, and calculate 'C F † dr dt . (a) F œ a3t# 3tb i 3tj k and † (b) F œ a3t# 3tb i 3t% j k Ê F† Ê dr dt œ i j k Ê F and ddtr œ i 2tj 4t$ k dr dt œ 3t# 1 Ê œ 6t& 4t$ 3t# 3t '0 a6t& 4t$ 3t# 3tb dt œ t' t% t$ 3# t# ‘ "! œ 3# 1 (c) r" œ ti tj and r# œ i j tk ; F" œ a3t# 3tb i k and Ê dr dt '01 a3t# 1b dt œ ct$ td "! œ 2 d r" dt œ i j Ê F" † d r" dt œ 3t# 3t œ k Ê F# † d r# dt œ1 Ê '0 a3t# 3tb dt œ t$ 32 t# ‘ "! œ "# ; F# œ 3tj k and ddtr 1 Ê "# 1 œ # '01 dt œ 1 1 2 12. Substitute the parametric representation for r(t) œ x(t)i y(t)j z(t)k representing each path into the vector field F, and calculate 'C F † dr dt . (a) F œ 2ti 2tj 2tk and dr dt œijk Ê F† dr dt œ 6t Ê '01 6t dt œ c3t# d "! œ 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 945 946 Chapter 16 Integration in Vector Fields (b) F œ at# t% b i at% tb j at t# b k and Ê '0 a6t& 5t% 3t# b dt œ ct' t& 1 dr dt œ i " t$ d ! œ 3 2tj 4t$ k Ê F † (c) r" œ ti tj and r# œ i j tk ; F" œ ti tj 2tk and F# œ (1 t)i (t 1)j 2k and d r# dt œ k Ê F# † d r# dt dr dt œ 6t& 5t% 3t# œ i j Ê F" † dr" dt œ 2t Ê '0 2t dt œ "; 1 d r" dt œ 2 Ê '0 2 dt œ 2 Ê " 2 œ 3 1 13. x œ t, y œ 2t 1, 0 Ÿ t Ÿ 3 Ê dx œ dt Ê 'C ax yb dx œ '0 at a2t 1bb dt œ '0 at 1b dt œ "# t2 t‘ ! œ 15 2 3 14. x œ t, y œ t2 , 1 Ÿ t Ÿ 2 Ê dy œ 2t dt Ê 'C x y dy œ '1 2 t t2 a2tb dt 3 3 œ '1 2 dt œ c2td21 œ 2 2 15. C1 : x œ t, y œ 0, 0 Ÿ t Ÿ 3 Ê dy œ 0; C2 : x œ 3, y œ t, 0 Ÿ t Ÿ 3 Ê dy œ dt Ê 'C ax2 y2 b dy œ 'C ax2 y2 b dx 'C ax2 y2 b dx œ '0 at2 02 b † 0 '0 a32 t2 b dt œ '0 a9 t2 bdt œ 9t 13 t3 ‘ ! œ 36 3 1 3 3 3 2 16. C1 : x œ t, y œ 3t, 0 Ÿ t Ÿ 1 Ê dx œ dt; C2 : x œ 1 t, y œ 3, 0 Ÿ t Ÿ 1 Ê dx œ dt; C3 : x œ 0, y œ 3 t, 0 Ÿ t Ÿ 3 Ê dx œ 0 Ê 'C Èx y dx œ 'C Èx y dx 'C Èx y dx 'C Èx y dx 1 2 3 œ '0 Èt 3t dt '0 Èa1 tb 3 a1bdt '0 È0 a3 tb † 0 œ '0 2Èt dt '0 È4 t dt 1 1 3 1 œ 43 t2Î3 ‘ ! ’ 23 a4 tb2Î3 “ œ 1 4 3 ! Š2È3 16 3 ‹ 1 1 œ 2È3 4 17. ratb œ ti j t2 k , 0 Ÿ t Ÿ 1 Ê dx œ dt, dy œ 0, dz œ 2t dt (a) (b) (c) 'C ax y zb dx œ '01 at 1 t2 b dt œ 12 t2 t 13 t3 ‘ 1! œ 56 'C ax y zb dy œ '01 at 1 t2 b † 0 œ 0 'C ax y zb dz œ '01 at 1 t2 b 2t dt œ '01 a2t2 2t 2t3 b dt œ 1 œ 23 t3 t2 12 t4 ‘ ! œ 56 18. ratb œ acos tbi asin tbj acos tbk , 0 Ÿ t Ÿ 1 Ê dx œ sin t dt, dy œ cos t dt, dz œ sin t dt (a) 'C x z dx œ '01 acos tb acos tbasin tbdt œ '01 cos2 t sin tdt œ ’ 13 acos tb3 “ 1 œ 23 (b) 'C x z dy œ '01 acos tb acos tbacos tbdt œ '01 cos3 t dt œ '01 a1 sin2 tb cos t dt œ ’ 13 asin tb3 sin t“ 1 œ 0 (c) ! 'C x y z dz œ '0 acos tbasin tb acos tbasin tbdt œ '0 1 1 1 œ 18 '0 a1 cos 4tb dt œ 18 t 32 sin 4t‘ ! œ 18 1 1 cos t sin t dt œ 2 2 14 '0 1 19. r œ ti t# j tk , 0 Ÿ t Ÿ 1, and F œ xyi yj yzk Ê F œ t$ i t# j t$ k and Ê F† dr dt œ 2t$ Ê work œ '0 2t$ dt œ 1 sin 2t dt œ dr dt 2 41 œ i 2tj k " # 20. r œ (cos t)i (sin t)j 6t k , 0 Ÿ t Ÿ 21, and F œ 2yi 3xj (x y)k Ê F œ (2 sin t)i (3 cos t)j (cos t sin t)k and œ 3 cos# t 2sin2 t œ 32 t 3 4 " 6 sin 2t t cos t sin 2t 2 " 6 " 6 dr dt œ ( sin t)i (cos t)j 6" k Ê F † sin t Ê work œ '0 ˆ3 cos# t 2 sin2 t sin t " 6 cos #1 t‘ ! 21 " 6 cos t " 6 dr dt sin t‰ dt œ1 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. ' 1 ! 1 cos 4t 2 0 dt Section 16.2 Vector Fields, Work, Circulation, and Flux 21. r œ (sin t)i (cos t)j tk , 0 Ÿ t Ÿ 21, and F œ zi xj yk Ê F œ ti (sin t)j (cos t)k and dr dt œ (cos t)i (sin t)j k Ê F † œ cos t t sin t t 2 sin 2t 4 dr dt œ t cos t sin# t cos t Ê work œ '0 at cos t sin# t cos tb dt 21 #1 sin t‘ ! œ 1 22. r œ (sin t)i (cos t)j 6t k , 0 Ÿ t Ÿ 21, and F œ 6zi y# j 12xk Ê F œ ti acos# tbj (12 sin t)k and dr dt œ (cos t)i (sin t)j 6" k Ê F † dr dt œ t cos t sin t cos# t 2 sin t Ê work œ '0 at cos t sin t cos# t 2 sin tb dt œ cos t t sin t 21 1 3 #1 cos$ t 2 cos t‘ ! œ 0 23. x œ t and y œ x# œ t# Ê r œ ti t# j , 1 Ÿ t Ÿ 2, and F œ xyi (x y)j Ê F œ t$ i at t# b j and dr dt œ i 2tj Ê F † dr dt œ t$ a2t# 2t$ b œ 3t$ 2t# Ê 'C xy dx (x y) dy œ 'C F † # œ 34 t% 32 t$ ‘ " œ ˆ12 16 ‰ 3 ˆ 34 23 ‰ œ 45 4 18 3 œ dr dt dt œ 'c" a3t$ 2t# b dt # 69 4 24. Along (0ß 0) to (1ß 0): r œ ti , 0 Ÿ t Ÿ 1, and F œ (x y)i (x y)j Ê F œ ti tj and dr dt œi Ê F† dr dt œ t; Along (1ß 0) to (0ß 1): r œ (1 t)i tj , 0 Ÿ t Ÿ 1, and F œ (x y)i (x y)j Ê F œ (1 2t)i j and dr dr dt œ i j Ê F † dt œ 2t; Along (0ß 1) to (0ß 0): r œ (1 t)j , 0 Ÿ t Ÿ 1, and F œ (x y)i (x y)j Ê F œ (t 1)i (1 t)j and dr dt œ j Ê F † dr dt œ t 1 Ê 'C (x y) dx (x y) dy œ '0 t dt '0 2t dt '0 (t 1) dt œ '0 (4t 1) dt 1 1 1 1 dr dy œ 2yi j and F † " œ c2t# td ! œ 2 1 œ 1 25. r œ xi yj œ y# i yj , 2 Ê 1, and F œ x# i yj œ y% i yj Ê y dr dy œ 2y& y 4‰ 3 63 39 'C F † T ds œ '2c1 F † dydr dy œ '2c1 a2y& yb dy œ 3" y' "# y# ‘ " œ ˆ 3" #" ‰ ˆ 64 3 # œ # 3 œ # # 26. r œ (cos t)i (sin t)j , 0 Ÿ t Ÿ ÊF† dr dt 1 # , and F œ yi xj Ê F œ (sin t)i (cos t)j and œ sin# t cos# t œ 1 Ê 'C F † dr œ '0 1Î2 dr dt œ ( sin t)i (cos t)j (1) dt œ 1# 27. r œ (i j) t(i 2j) œ (1 t)i (1 2t)j , 0 Ÿ t Ÿ 1, and F œ xyi (y x)j Ê F œ a1 3t 2t# b i tj and dr dt œ i 2j Ê F † dr dt œ 1 5t 2t# Ê work œ 'C F † dr dt dt œ '0 a1 5t 2t# b dt œ t 25 t# 23 t$ ‘ ! œ 1 " 28. r œ (2 cos t)i (2 sin t)j , 0 Ÿ t Ÿ 21, and F œ ™ f œ 2(x y)i 2(x y)j Ê F œ 4(cos t sin t)i 4(cos t sin t)j and ddtr œ (2 sin t)i (2 cos t)j Ê F † 25 6 dr dt œ 8 asin t cos t sin# tb 8 acos# t cos t sin tb œ 8 acos# t sin# tb œ 8 cos 2t Ê work œ 'C ™ f † dr œ 'C F † dr dt dt œ '0 8 cos 2t dt œ c4 sin 2td #!1 œ 0 21 29. (a) r œ (cos t)i (sin t)j , 0 Ÿ t Ÿ 21, F" œ xi yj , and F# œ yi xj Ê F" œ (cos t)i (sin t)j , and F# œ ( sin t)i (cos t)j Ê F" † dr dt dr dt œ ( sin t)i (cos t)j , œ 0 and F# † dr dt œ sin# t cos# t œ 1 Ê Circ" œ '0 0 dt œ 0 and Circ# œ '0 dt œ 21; n œ (cos t)i (sin t)j Ê F" † n œ cos# t sin# t œ 1 and 21 21 F# † n œ 0 Ê Flux" œ '0 dt œ 21 and Flux# œ '0 0 dt œ 0 21 21 (b) r œ (cos t)i (4 sin t)j , 0 Ÿ t Ÿ 21 Ê F# œ (4 sin t)i (cos t)j Ê F" † dr dt dr dt œ ( sin t)i (4 cos t)j , F" œ (cos t)i (4 sin t)j , and œ 15 sin t cos t and F# † dr dt œ 4 Ê Circ" œ '0 15 sin t cos t dt 21 œ "25 sin# t‘ ! œ 0 and Circ# œ '0 4 dt œ 81; n œ Š È417 cos t‹ i Š È"17 sin t‹ j Ê F" † n #1 21 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 947 948 Chapter 16 Integration in Vector Fields œ 4 È17 cos# t sin# t and F# † n œ È1517 sin t cos t Ê Flux" œ '0 (F" † n) kvk dt œ '0 Š È417 ‹ È17 dt 21 4 È17 21 # ‘ œ 81 and Flux# œ '0 (F# † n) kvk dt œ '0 Š È1517 sin t cos t‹ È17 dt œ 15 2 sin t ! œ 0 21 21 #1 30. r œ (a cos t)i (a sin t)j , 0 Ÿ t Ÿ 21, F" œ 2xi 3yj , and F# œ 2xi (x y)j Ê œ (a sin t)i (a cos t)j , dr dt F" œ (2a cos t)i (3a sin t)j , and F# œ (2a cos t)i (a cos t a sin t)j Ê n kvk œ (a cos t)i (a sin t)j , F" † n kvk œ 2a# cos# t 3a# sin# t, and F# † n kvk œ 2a# cos# t a# sin t cos t a# sin# t Ê Flux" œ '0 a2a# cos# t 3a# sin# tb dt œ 2a# 2t 21 sin 2t ‘ #1 4 ! Flux# œ '0 a2a# cos# t a# sin t cos t a# sin# tb dt œ 2a# 2t 21 31. F" œ (a cos t)i (a sin t)j , d r" dt sin 2t ‘ #1 4 ! œ 1a# , and a# # #1 3a# 2t œ (a sin t)i (a cos t)j Ê F" † sin 2t ‘ #1 4 ! d r" dt csin# td ! a# 2t sin 2t ‘ #1 4 ! œ 1a# œ 0 Ê Circ" œ 0; M" œ a cos t, N" œ a sin t, dx œ a sin t dt, dy œ a cos t dt Ê Flux" œ 'C M" dy N" dx œ '0 aa# cos# t a# sin# tb dt œ '0 a# dt œ a# 1; 1 1 F # œ ti , d r# dt œ i Ê F# † d r# dt œ t Ê Circ# œ 'ca t dt œ 0; M# œ t, N# œ 0, dx œ dt, dy œ 0 Ê Flux# a œ 'C M# dy N# dx œ 'ca 0 dt œ 0; therefore, Circ œ Circ" Circ# œ 0 and Flux œ Flux" Flux# œ a# 1 a 32. F" œ aa# cos# tb i aa# sin# tb j , d r" dt œ (a sin t)i (a cos t)j Ê F" † d r" dt œ a$ sin t cos# t a$ cos t sin# t Ê Circ" œ '0 aa$ sin t cos# t a$ cos t sin# tb dt œ 2a3 ; M" œ a# cos# t, N" œ a# sin# t, dy œ a cos t dt, 1 $ dx œ a sin t dt Ê Flux" œ 'C M" dy N" dx œ '0 aa$ cos$ t a$ sin$ tb dt œ 1 F # œ t# i , d r# dt œ i Ê F# † d r# dt œ t# Ê Circ# œ 'ca t# dt œ a 2a$ 3 4 3 a$ ; ; M# œ t# , N# œ 0, dy œ 0, dx œ dt Ê Flux# œ 'C M# dy N# dx œ 0; therefore, Circ œ Circ" Circ# œ 0 and Flux œ Flux" Flux# œ 33. F" œ (a sin t)i (a cos t)j , d r" dt œ (a sin t)i (a cos t)j Ê F" † d r" dt 4 3 a$ œ a# sin# t a# cos# t œ a# Ê Circ" œ '0 a# dt œ a# 1 ; M" œ a sin t, N" œ a cos t, dx œ a sin t dt, dy œ a cos t dt 1 Ê Flux" œ 'C M" dy N" dx œ '0 aa# sin t cos t a# sin t cos tb dt œ 0; F# œ tj , 1 dr# dt œ i Ê F# † d r# dt œ0 Ê Circ# œ 0; M# œ 0, N# œ t, dx œ dt, dy œ 0 Ê Flux# œ 'C M# dy N# dx œ 'ca t dt œ 0; therefore, a Circ œ Circ" Circ# œ a# 1 and Flux œ Flux" Flux# œ 0 34. F" œ aa# sin# tb i aa# cos# tb j , d r" dt œ (a sin t)i (a cos t)j Ê F" † Ê Circ" œ '0 aa$ sin$ t a$ cos$ tb dt œ 1 4 3 d r" dt œ a$ sin$ t a$ cos$ t a$ ; M" œ a# sin# t, N" œ a# cos# t, dy œ a cos t dt, dx œ a sin t dt Ê Flux" œ 'C M" dy N" dx œ '0 aa$ cos t sin# t a$ sin t cos# tb dt œ 1 2 3 a$ ; F# œ t# j , d r# dt œ i Ê F# † d r# dt œ0 Ê Circ# œ 0; M# œ 0, N# œ t# , dy œ 0, dx œ dt Ê Flux# œ 'C M# dy N# dx œ 'ca t# dt œ 23 a$ ; therefore, a Circ œ Circ" Circ# œ 4 3 a$ and Flux œ Flux" Flux# œ 0 35. (a) r œ (cos t)i (sin t)j , 0 Ÿ t Ÿ 1, and F œ (x y)i ax# y# b j Ê F œ (cos t sin t)i acos# t sin# tb j Ê F † dr dt (b) r œ (1 2t)i , 0 Ÿ t Ÿ 1, and F œ (x y)i F† dr dt œ 4t 2 Ê 'C F † T ds œ '0 (4t 1 œ (sin t)i (cos t)j and œ sin t cos t sin# t cos t Ê 'C F † T ds œ '0 a sin t cos t sin# t cos tb dt œ 2" sin# t 1 dr dt sin 2t 1 ‘1 4 sin t ! œ # ax# y# b j Ê ddtr œ 2i and F œ (1 " 2) dt œ c2t# 2td ! œ 0 t # 2t)i (1 2t)# j Ê Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 16.2 Vector Fields, Work, Circulation, and Flux (c) r" œ (1 t)i tj , 0 Ÿ t Ÿ 1, and F œ (x y)i ax# y# b j Ê Ê F† d r" dt œ (2t 1) a1 2t 2t# b œ 2t# Ê Flow" œ 'C F † d r" dt " # # 0 Ÿ t Ÿ 1, and F œ (x y)i ax y b j Ê œ i a2t# 2t 1b j Ê F † " œ t# 23 t$ ‘ ! œ " 3 d r# dt œ i j and F œ (1 2t)i a1 2t 2t# b j d r" dt œ '0 2t# dt œ 1 # 2 3 ; r# œ ti (t 1)j , # œ i j and F œ i at t 2t 1b j œ 1 a2t# 2t 1b œ 2t 2t# Ê Flow# œ 'C F † dr # dt 949 # Ê Flow œ Flow" Flow# œ 2 3 " 3 dr # dt œ '0 a2t 2t# b dt 1 œ1 36. From (1ß 0) to (0ß 1): r" œ (1 t)i tj , 0 Ÿ t Ÿ 1, and F œ (x y)i ax# y# b j Ê d r" dt œ i j , F œ i a1 2t 2t# b j , and n" kv" k œ i j Ê F † n" kv" k œ 2t 2t# Ê Flux" œ '0 a2t 2t# b dt 1 " œ t# 23 t$ ‘ ! œ " 3 ; From (0ß 1) to (1ß 0): r# œ ti (1 t)j , 0 Ÿ t Ÿ 1, and F œ (x y)i ax# y# b j Ê d r# dt œ i j , # F œ (1 2t)i a1 2t 2t b j , and n# kv# k œ i j Ê F † n# kv# k œ (2t 1) a1 2t 2t# b œ 2 4t 2t# Ê Flux# œ '0 a2 4t 2t# b dt œ 2t 2t# 23 t$ ‘ ! œ 23 ; 1 " From (1ß 0) to (1ß 0): r$ œ (1 2t)i , 0 Ÿ t Ÿ 1, and F œ (x y)i ax# y# b j Ê # d r$ dt œ 2i , # F œ (1 2t)i a1 4t 4t b j , and n$ kv$ k œ 2j Ê F † n$ kv$ k œ 2 a1 4t 4t b Ê Flux$ œ 2 '0 a1 4t 4t# b dt œ 2 t 2t# 43 t$ ‘ ! œ 1 " 37. (a) y œ 2x, 0 Ÿ x Ÿ 2 Ê ratb œ ti 2tj , 0 Ÿ t Ÿ 2 Ê œ 4t2 8t2 œ 12t2 Ê Flow œ 'C F † dr dt 2 3 2 3 œ œ Ša2tb2 i 2atba2tbj‹ † ai 2jb 2 dr dt œ Šat2 b i 2atbat2 bj‹ † ai 2tjb dr dt œ i 2tj Ê F † 2 dt œ '0 5t4 dt œ ct5 d ! œ 32 2 dr dt 2 œ Šˆ "# t3 ‰ i 2atbˆ "# t3 ‰j‹ † ai 3t2 jb œ 14 t6 32 t6 œ 74 t6 Ê Flow œ 'C F † 2 dr dt dr dt œ i 3t2 j dt œ '0 74 t6 dt œ 14 t7 ‘ ! 2 2 œ 32 38. (a) C1 : ratb œ a1 tbi j , 0 Ÿ t Ÿ 2 Ê C4 : ratb œ i at 1bj , 0 Ÿ t Ÿ 2 Ê Ê Flow œ 'C F † dr dt dt œ 'C F † 1 dr dt œ i Ê F † dr dt C2 : ratb œ i a1 tbj , 0 Ÿ t Ÿ 2 Ê C3 : ratb œ at 1bi j , 0 Ÿ t Ÿ 2 Ê dr dt dr dt dr dt dr dt œ j Ê F † œiÊF† œjÊF† dt 'C F † dr dt 2 dr dt dr dt œ aa1bi aa1 tb 2a1bbjb † aib œ 1; dr dt œ aa1 tbi aa1b 2a1 tbbjb † ajb œ 2t 1; œ aa1bi aat 1b 2a1bbjb † aib œ 1; œ aat 1bi aa1b 2at 1bbjb † ajb œ 2t 1; dt 'C F † 3 dr dt dt 'C F † 4 dr dt dt œ '0 a1b dt '0 a2t 1b dt '0 a1b dt '0 a2t 1b dt œ ctd 2! ct2 td ! ctd !2 ct2 td ! 2 2 2 2 2 œ 2 2 2 2 œ 0 (b) x2 y2 œ 4 Ê ratb œ a2cos tbi a2sin tbj , 0 Ÿ t Ÿ 21 Ê ÊF† dr dt dr dt 2 œ a2sin tbi a2cos tbj œ aa2sin tbi a2cos t 2a2sin tbbjb † aa2sin tbi a2cos tbjb œ 4sin2 t 4cos2 t 8sin t cos t œ 4cos 2t 4sin 2t Ê Flow œ 'C F † dr dt (c) answers will vary, one possible path is: C1 : ratb œ ti , 0 Ÿ t Ÿ 1 Ê ddtr œ i Ê F † C2 : ratb œ a1 tbi tj , 0 Ÿ t Ÿ 1 Ê C3 : ratb œ a1 tbj , 0 Ÿ t Ÿ 1 Ê dr dt " 3 2 (c) answers will vary, one possible path is y œ 12 x3 , 0 Ÿ x Ÿ 2 Ê ratb œ ti "# t3 j , 0 Ÿ t Ÿ 2 Ê ÊF† dr dt œ i 2tj Ê F † dr dt " 3 dt œ '0 12t2 dt œ c4t3 d ! œ 32 dr dt (b) y œ x2 , 0 Ÿ x Ÿ 2 Ê ratb œ ti t2 j , 0 Ÿ t Ÿ 2 Ê œ t4 4t4 œ 5t4 Ê Flow œ 'C F † Ê Flux œ Flux" Flux# Flux$ œ 2 3 dr dt dt œ '0 a4cos 2t 4sin 2tb dt œ c2sin 2t 2cos 2td 2!1 œ 0 21 dr dt œ aa0bi at 2a1bbjb † aib œ 0; œ i j Ê F † œ j Ê F † dr dt dr dt œ ati aa1 tb 2tbjb † ai jb œ 1; œ aa1 tbi a0 2a1 tbbjb † ajb œ 2t 1; Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 950 Chapter 16 Integration in Vector Fields Ê Flow œ 'C F † dt œ 'C F † dr dt 1 dr dt dt 'C F † 2 dr dt dt 'C F † 3 dr dt dt œ '0 a0b dt '0 a1b dt '0 a2t 1b dt 1 1 1 1 œ 0 ctd 1! ct2 td ! œ 1 a1b œ 0 39. F œ Èx#y y# i j on x# y# œ 4; x È x# y# at (2ß 0), F œ j ; at (0ß 2), F œ i ; at (2ß 0), È F œ j ; at (!ß 2), F œ i ; at ŠÈ2ß È2‹ , F œ #3 i #" j ; at ŠÈ2ß È2‹ , F œ Fœ È3 # È3 # i #" j ; at ŠÈ2ß È2‹ , i #" j ; at ŠÈ2ß È2‹ , F œ È3 # i #" j 40. F œ xi yj on x# y# œ 1; at (1ß 0), F œ i ; at (1ß 0), F œ i ; at (0ß 1), F œ j ; at (0ß 1), F œ j ; at Š "# ß at Š "# ß È3 # ‹, at Š "# ß È3 # ‹, at Š "# ß È3 # ‹, Fœ " # F œ "# i Fœ È3 # ‹, " # i i È3 # È3 # È3 # j; j; j; F œ "# i È3 # j. 41. (a) G œ P(xß y)i Q(xß y)j is to have a magnitude Èa# b# and to be tangent to x# y# œ a# b# in a counterclockwise direction. Thus x# y# œ a# b# Ê 2x 2yyw œ 0 Ê yw œ xy is the slope of the tangent line at any point on the circle Ê yw œ ba at (aß b). Let v œ bi aj Ê kvk œ Èa# b# , with v in a counterclockwise direction and tangent to the circle. Then let P(xß y) œ y and Q(xß y) œ x Ê G œ yi xj Ê for (aß b) on x# y# œ a# b# we have G œ bi aj and kGk œ Èa# b# . (b) G œ ˆÈx# y# ‰ F œ ŠÈa# b# ‹ F . 42. (a) From Exercise 41, part a, yi xj is a vector tangent to the circle and pointing in a counterclockwise direction Ê yi xj is a vector tangent to the circle pointing in a clockwise direction Ê G œ Èyxi #xjy# is a unit vector tangent to the circle and pointing in a clockwise direction. (b) G œ F 43. The slope of the line through (xß y) and the origin is pointing away from the origin Ê F œ xi yj È x# y# y x Ê v œ xi yj is a vector parallel to that line and is the unit vector pointing toward the origin. 44. (a) From Exercise 43, Èxxi #yjy# is a unit vector through (xß y) pointing toward the origin and we want kFk to have magnitude Èx# y# Ê F œ Èx# y# Š Èxxi #yjy# ‹ œ xi yj . (b) We want kFk œ C È x# y# where C Á 0 is a constant Ê F œ C È x# y# yj Š Èxxi #yjy# ‹ œ C Š xx#i y# ‹. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 16.2 Vector Fields, Work, Circulation, and Flux 951 45. Yes. The work and area have the same numerical value because work œ 'C F † dr œ 'C yi † dr œ 'b [f(t)i] † i a df dt j‘ dt [On the path, y equals f(t)] œ 'a f(t) dt œ Area under the curve b 46. r œ xi yj œ xi f(x)j Ê from the origin Ê F † 'C Ê dr dx dr dx œ F † T ds œ 'C F † [because f(t) 0] œ i f w (x)j ; F œ k†y†f (x) È x# y# w kx È x# y# dx œ 'a k b dr dx d dx k È x# y# œ (xi yj) has constant magnitude k and points away kx k†f(x)†f (x) Èx# [f(x)]# w œk d dx Èx# [f(x)]# , by the chain rule Èx# [f(x)]# dx œ k Èx# [f(x)]# ‘ b a œ k ˆÈb# [f(b)]# Èa# [f(a)]# ‰ , as claimed. 47. F œ 4t$ i 8t# j 2k and 48. F œ 12t# j 9t# k and dr dt œ i 2tj Ê F † dr dt œ 3j 4k Ê F † 49. F œ (cos t sin t)i (cos t)k and dr dt dr dt œ 12t$ Ê Flow œ '0 12t$ dt œ c3t% d ! œ 48 2 œ 72t# Ê Flow œ '0 72t# dt œ c24t$ d ! œ 24 1 œ ( sin t)i (cos t)k Ê F † dr dt # dr dt " œ sin t cos t 1 Ê Flow œ '0 ( sin t cos t 1) dt œ 2" cos# t t‘ ! œ ˆ #" 1‰ ˆ #" 0‰ œ 1 1 1 50. F œ (2 sin t)i (2 cos t)j 2k and dr dt œ (2 sin t)i (2 cos t)j 2k Ê F † dr dt œ 4 sin# t 4 cos# t 4 œ 0 Ê Flow œ 0 1 # 51. C" : r œ (cos t)i (sin t)j tk , 0 Ÿ t Ÿ Ê F† dr dt Ê F œ (2 cos t)i 2tj (2 sin t)k and 1Î2 C# : r œ j 1 # 1Î# ( sin 2t 2t cos t 2 sin t) dt œ 2" cos 2t 2t sin t 2 cos t 2 cos t‘ ! (1 t)k , 0 Ÿ t Ÿ 1 Ê F œ 1(1 t)j 2k and Ê Flow# œ '0 1 dt œ 1 c1td "! Ê Flow$ œ '0 2t dt œ 1 œx dx dt y dy dt z " ct# d ! dz dt dr dt œ 1# k Ê F † dr dt œ 1 1; œ 1 œ 1 ; C$ : r œ ti (1 t)j , 0 Ÿ t Ÿ 1 Ê F œ 2ti 2(1 t)k and dr dt œ ( sin t)i (cos t)j k œ 2 cos t sin t 2t cos t 2 sin t œ sin 2t 2t cos t 2 sin t Ê Flow" œ '0 52. F † dr dt dr dt œij Ê F† dr dt œ 2t œ 1 Ê Circulation œ (1 1) 1 1 œ 0 œ ` f dx ` x dt ` f dy ` y dt by the chain rule Ê Circulation œ 'C F † dr dt ` f dz ` z dt dt œ 'a , where f(xß yß z) œ b d dt afaratbbb " # ax# y# x# b Ê F † dr dt œ d dt afaratbbb dt œ farabbb faraabb. Since C is an entire ellipse, rabb œ raab, thus the Circulation œ 0. 53. Let x œ t be the parameter Ê y œ x# œ t# and z œ x œ t Ê r œ ti t# j tk , 0 Ÿ t Ÿ 1 from (0ß 0ß 0) to (1ß 1ß 1) Ê œ dr dt œ i 2tj k and F œ xyi yj yzk œ t$ i t# j t$ k Ê F † œ t$ 2t$ t$ œ 2t$ Ê Flow œ '0 2t$ dt 1 " # 54. (a) F œ ™ axy# z$ b Ê F † œ 'a (b) dr dt b d dt afaratbbb dr dt œ ` f dx ` x dt ` f dy ` y dt ` z dz ` z dt œ df dt , where f(xß yß z) œ xy# z$ Ê )C F † dr dt dt œ farabbb faraabb œ 0 since C is an entire ellipse. Ð2ß1ß 1Ñ 'C F † ddtr œ 'Ð1ß1ß1Ñ d dt Ð#ß"ß"Ñ axy# z$ b dt œ cxy# z$ d Ð"ß"ß"Ñ œ (2)(1)# (1)$ (1)(1)# (1)$ œ 2 1 œ 3 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. dt 952 Chapter 16 Integration in Vector Fields 55-60. Example CAS commands: Maple: with( LinearAlgebra );#55 F := r -> < r[1]*r[2]^6 | 3*r[1]*(r[1]*r[2]^5+2) >; r := t -> < 2*cos(t) | sin(t) >; a,b := 0,2*Pi; dr := map(diff,r(t),t); # (a) F(r(t)); # (b) q1 := simplify( F(r(t)) . dr ) assuming t::real; # (c) q2 := Int( q1, t=a..b ); value( q2 ); Mathematica: (functions and bounds will vary): Exercises 55 and 56 use vectors in 2 dimensions Clear[x, y, t, f, r, v] f[x_, y_]:= {x y6 , 3x (x y5 2)} {a, b}={0, 21}; x[t_]:= 2 Cos[t] y[t_]:= Sin[t] r[t_]:={x[t], y[t]} v[t_]:= r'[t] integrand= f[x[t], y[t]] . v[t] //Simplify Integrate[integrand,{t, a, b}] N[%] If the integration takes too long or cannot be done, use NIntegrate to integrate numerically. This is suggested for exercises 57 - 60 that use vectors in 3 dimensions. Be certain to leave spaces between variables to be multiplied. Clear[x, y, z, t, f, r, v] f[x_, y_, z_]:= {y y z Cos[x y z], x2 x z Cos[x y z], z x y Cos[x y z]} {a, b}={0, 21}; x[t_]:= 2 Cos[t] y[t_]:= 3 Sin[t] z[t_]:= 1 r[t_]:={x[t], y[t], z[t]} v[t_]:= r'[t] integrand= f[x[t], y[t],z[t]] . v[t] //Simplify NIntegrate[integrand,{t, a, b}] 16.3 PATH INDEPENDENCE, POTENTIAL FUNCTIONS, AND CONSERVATIVE FIELDS 1. `P `y œxœ `N `z 2. `P `y œ x cos z œ 3. `P `y œ 1 Á 1 œ 5. `N `x œ0Á1œ 6. `P `y œ0œ `N `z , , `M `z `N `z œyœ , `N `z `M `y `M `z `M `z `P `x , `N `x `M `y œzœ œ y cos z œ `P `x , `N `x Ê Conservative œ sin z œ Ê Not Conservative `M `y 4. Ê Conservative `N `x œ 1 Á 1 œ `M `y Ê Not Conservative Ê Not Conservative œ0œ `P `x , `N `x œ ex sin y œ `M `y Ê Conservative Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 16.3 Path Independence, Potential Functions, and Conservative Fields 7. `f `x `f `z Ê 8. `f `x `f `y œ 2x Ê f(xß yß z) œ x# g(yß z) Ê `f `z œ xe `f `x h(z) Ê `f `z œ 2xe y2z `f `y œ y2z `f `y œ y sin z Ê f(xß yß z) œ xy sin z g(yß z) Ê `f `z œ Ê f(xß yß z) œ z y # z# " # œ y 1 x# y# `g `y œ z È 1 y # z# Ê `f `z œ y È 1 y # z# `g `y œxz Ê œ z Ê g(yß z) œ zy h(z) w `g `y `g `y œ xey2z Ê œ 0 Ê f(xß yß z) w Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ xey2z C œ x sin z `g `y `g `y œ x sin z Ê œ 0 Ê g(yß z) œ h(z) w `f `x ln ay# z# b g(xß y) Ê " # `g `x œ # œ ln x sec# (x y) Ê g(xß y) ln ay# z b (x ln x x) tan (x y) h(y) y) Ê f(xß yß z) œ tan" (xy) g(yß z) Ê Ê h(z) œ xy cos z h (z) œ xy cos z Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z) Ê `` yf œ y# y z# sec# (x y) hw (y) œ sec# (x œ "# ln ay# z# b (x ln x x) tan (x y) C `f `x 3y# # 2z# C w œ (x ln x x) tan (x y) h(y) Ê f(xß yß z) œ 12. `g `y xey2z h (z) œ 2xe œ xy sin z C `f `z œx h(z) Ê f(xß yß z) œ x# œ x y h (z) œ x y Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z) w Ê f(xß yß z) œ xy sin z h(z) Ê 11. `f `y 3y # # 3y# # w œ ey2z Ê f(xß yß z) œ xey2z g(yß z) Ê y2z 10. œ 3y Ê g(yß z) œ œ y z Ê f(xß yß z) œ (y z)x g(yß z) Ê œ (y z)x zy C `f `x `g `y œ hw (z) œ 4z Ê h(z) œ 2z# C Ê f(xß yß z) œ x# Ê f(xß yß z) œ (y z)x zy h(z) Ê 9. œ 953 `f `y y y# z# œ Ê hw (y) œ 0 Ê h(y) œ C Ê f(xß yß z) x 1 x# y# `g `y œ x 1 x# y# z È1 y# z# Ê g(yß z) œ sin" (yz) h(z) Ê f(xß yß z) œ tan" (xy) sin" (yz) h(z) hw (z) œ y È 1 y # z# " z Ê hw (z) œ " z Ê h(z) œ ln kzk C Ê f(xß yß z) œ tan" (xy) sin" (yz) ln kzk C 13. Let F(xß yß z) œ 2xi 2yj 2zk Ê exact; Ê `f `x `f `z `P `y `N `z `M `P `N `M `z œ 0 œ `x , `x œ 0 œ `y `g `f # ` y œ ` y œ 2y Ê g(yß z) œ y œ0œ # œ 2x Ê f(xß yß z) œ x g(yß z) Ê œ f(2ß 3ß 6) f(!ß !ß !) œ 2# 3# (6)# œ 49 exact; `f `x `N `z œxœ œ yz Ê f(xß yß z) œ xyz g(yß z) Ê œ xyz h(z) Ê Ê `P `y Ð3ß5ß0Ñ 'Ð1ß1ß2Ñ `f `z w , `f `y `M `z œyœ œ xz `g `y `P `x , `N `x œzœ œ xz Ê `g `y h(z) Ê f(xß yß z) œ x# y# œ h(z) 'Ð0Ð2ß0ß3ß0ßÑ 6Ñ 2x dx 2y dy 2z dz œ hw (z) œ 2z Ê h(z) œ z# C Ê f(xß yß z) œ x# y# z# C Ê 14. Let F(xß yß z) œ yzi xzj xyk Ê Ê M dx N dy P dz is , `M `y Ê M dx N dy P dz is œ 0 Ê g(yß z) œ h(z) Ê f(xß yß z) w œ xy h (z) œ xy Ê h (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ xyz C yz dx xz dy xy dz œ f(3ß 5ß 0) f(1ß 1ß 2) œ 0 2 œ 2 15. Let F(xß yß z) œ 2xyi ax# z# b j 2yzk Ê Ê M dx N dy P dz is exact; `f `x `P `y œ 2z œ `N `z , `M `z œ0œ `P `x œ 2xy Ê f(xß yß z) œ x# y g(yß z) Ê Ê g(yß z) œ yz# h(z) Ê f(xß yß z) œ x# y yz# h(z) Ê `f `z , `N `x `f `y w œ 2x œ œ x# `g `y `M `y œ x# z# Ê `g `y œ z# œ 2yz h (z) œ 2yz Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ x# y yz# C Ê 'Ð0ß0ß0Ñ 2xy dx ax# z# b dy 2yz dz œ f("ß #ß $) f(!ß !ß !) œ 2 2(3)# œ 16 Ð1ß2ß3Ñ 16. Let F(xß yß z) œ 2xi y# j ˆ 1 4 z# ‰ k Ê Ê M dx N dy P dz is exact; `f `x `P `y œ0œ `N `z , `M `z œ0œ `P `x , `N `x œ 2x Ê f(xß yß z) œ x# g(yß z) Ê œ0œ `f `y œ `M `y `g `y $ œ y# Ê g(yß z) œ y3 h(z) Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 954 Chapter 16 Integration in Vector Fields Ê f(xß yß z) œ x# y$ 3 `f `z h(z) Ê œ hw (z) œ 1 4 z# Ê h(z) œ 4 tan" z C Ê f(xß yß z) œ x# y$ 3 4 tan" z C Ê 'Ð0ß0ß0Ñ 2x dx y# dy œ ˆ9 27 3 4 † 14 ‰ (! ! 0) œ 1 Ð3ß3ß1Ñ 17. Let F(xß yß z) œ (sin y cos x)i (cos y sin x)j k Ê Ê M dx N dy P dz is exact; `g `y œ cos y sin x Ê `f `x 4 1 z# `P `y dz œ f(3ß 3ß 1) f(!ß !ß !) œ0œ `N `z `M `z , `P `x œ0œ , `N `x œ cos y cos x œ `f `y œ sin y cos x Ê f(xß yß z) œ sin y sin x g(yß z) Ê `f `z œ 0 Ê g(yß z) œ h(z) Ê f(xß yß z) œ sin y sin x h(z) Ê `M `y œ cos y sin x `g `y œ hw (z) œ 1 Ê h(z) œ z C Ê f(xß yß z) œ sin y sin x z C Ê 'Ð1ß0ß0Ñ sin y cos x dx cos y sin x dy dz œ f(0ß 1ß 1) f(1ß !ß !) Ð0ß1ß1Ñ œ (0 1) (0 0) œ 1 18. Let F(xß yß z) œ (2 cos y)i Š "y 2x sin y‹ j ˆ "z ‰ k Ê Ê M dx N dy P dz is exact; " y œ `g `y 2x sin y Ê " y œ `f `x `P `y `N `z œ0œ `M `z , œ0œ `P `x œ 2 cos y Ê f(xß yß z) œ 2x cos y g(yß z) Ê , `f `y `N `x œ 2 sin y œ œ 2x sin y `f `z Ê g(yß z) œ ln kyk h(z) Ê f(xß yß z) œ 2x cos y ln kyk h(z) Ê `M `y `g `y œ hw (z) œ " z Ê h(z) œ ln kzk C Ê f(xß yß z) œ 2x cos y ln kyk ln kzk C Ê 'Ð0ß2ß1Ñ Ð1ß1Î2ß2Ñ 2 cos y dx Š "y 2x sin y‹ dy œ ˆ2 † 0 ln 1 # " z dz œ f ˆ1ß 1# ß 2‰ f(!ß #ß ") ln 2‰ (0 † cos 2 ln 2 ln 1) œ ln # `P `y 19. Let F(xß yß z) œ 3x# i Š zy ‹ j (2z ln y)k Ê Ê M dx N dy P dz is exact; `f `x œ 2z y 1 # `N `z œ `M `z , œ0œ `P `x `f `y œ 3x# Ê f(xß yß z) œ x$ g(yß z) Ê Ê f(xß yß z) œ x$ z# ln y h(z) Ê œ x$ z# ln y C Ê 'Ð1ß1ß1Ñ 3x# dx Ð1ß2ß3Ñ `N `x , œ0œ œ `g `y œ `M `y z# y Ê g(yß z) œ z# ln y h(z) `f `z œ 2z ln y hw (z) œ 2z ln y Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) z# y dy 2z ln y dz œ f(1ß 2ß 3) f("ß "ß ") œ (1 9 ln 2 C) (1 0 C) œ 9 ln 2 # `P `y 20. Let F(xß yß z) œ (2x ln y yz)i Š xy xz‹ j (xy)k Ê Ê M dx N dy P dz is exact; x# y œ xz Ê `g `y `f `x œ x œ `N `z , `M `z œ y œ `P `x , `N `x œ 2x ln y yz Ê f(xß yß z) œ x# ln y xyz g(yß z) Ê `f `z œ 0 Ê g(yß z) œ h(z) Ê f(xß yß z) œ x# ln y xyz h(z) Ê œ 2x y `f `y œ zœ x# y `M `y xz `g `y œ xy hw (z) œ xy Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ x# ln y xyz C Ê 'Ð1ß2ß1Ñ (2x ln y yz) dx Š xy xz‹ dy xy dz Ð2ß1ß1Ñ # œ f(2ß 1ß 1) f("ß 2ß 1) œ (4 ln 1 2 C) (ln 2 2 C) œ ln 2 21. Let F(xß yß z) œ Š "y ‹ i Š 1z x y# ‹ j Ê M dx N dy P dz is exact; Ê `g `y œ " z Ê g(yß z) œ Ê f(xß yß z) œ x y y z y z ˆ zy# ‰ k Ê `f `x œ " y Ð2ß2ß2Ñ " y œ z"# œ Ê f(xß yß z) œ h(z) Ê f(xß yß z) œ C Ê 'Ð1ß1ß1Ñ `P `y x y dx Š 1z y z x y# ‹ x y `N `z `M `z , œ0œ `f `y zy# g(yß z) Ê `f `z h(z) Ê dy y z# œ `P `x , `N `x œ y1# œ œ yx# `g `y œ " z Ê `f `x œ `P `y 2xi 2yj 2zk x # y # z# œ 4yz œ 3% 2x x # y # z# `N `z , `M `z Šand let 3# œ x# y# z# Ê œ 4xz œ 3% # `P `x # , `N `x œ 4xy œ 3% # `3 `x dz œ f(2ß 2ß 2) f("ß 1ß 1) œ ˆ 2# `M `y Ê f(xß yß z) œ ln ax y z b g(yß z) Ê œ x 3 , `3 `y œ y 3 , `3 `z œ 3z ‹ Ê M dx N dy P dz is exact; `f `y œ 2y x # y # z# x y# hw (z) œ zy# Ê hw (z) œ 0 Ê h(z) œ C œ0 22. Let F(xß yß z) œ `M `y `g `y œ 2y x # y # z# Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 2 # C‰ ˆ "1 " 1 C‰ Section 16.3 Path Independence, Potential Functions, and Conservative Fields Ê œ `g `y œ 0 2z x # y # z# `f `z Ê g(yß z) œ h(z) Ê f(xß yß z) œ ln ax# y# z# b h(z) Ê Ð2ß2ß2Ñ Ê 'Ð 1ß 1ß 1Ñ œ 955 hw (z) 2z x # y# z# Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ ln ax# y# z# b C 2x dx 2y dy 2z dz x # y # z# œ f(2ß 2ß 2) f("ß 1ß 1) œ ln 12 ln 3 œ ln 4 23. r œ (i j k) t(i 2j 2k) œ (1 t)i (1 2t)j (1 2t)k, 0 Ÿ t Ÿ 1 Ê dx œ dt, dy œ 2 dt, dz œ 2 dt Ð2ß3ß 1Ñ Ê 'Ð1ß1ß1Ñ y dx x dy 4 dz œ '0 (2t 1) dt (t 1)(2 dt) 4(2) dt œ '0 (4t 5) dt œ c2t# 5td ! œ 3 1 1 24. r œ t(3j 4k), 0 Ÿ t Ÿ 1 Ê dx œ 0, dy œ 3 dt, dz œ 4 dt Ê ' 000304 Ð ß ß Ñ Ð ß ß Ñ " # x# dx yz dy Š y# ‹ dz œ '0 a12t# b (3 dt) Š 9t# ‹ (4 dt) œ '0 54t# dt œ c18t# d ! œ 18 1 25. `P `y 1 # œ0œ `N `z , `M `z œ 2z œ `P `x , `N `x , `M `z " `M `y œ0œ Ê M dx N dy P dz is exact Ê F is conservative Ê path independence 26. `P `y œ ˆÈ yz x # y# z# ‰ œ $ `N `z œ ˆÈ xz $ x # y# z# ‰ œ `P `x , `N `x œ ˆÈ xy x # y# z# ‰ $ œ `M `y Ê M dx N dy P dz is exact Ê F is conservative Ê path independence 27. `P `y `f `x œ0œ œ 2x y `N `z , œ0œ Ê f(xß y) œ Ê f(xß y) œ 28. `M `z x# y " y `N `z , `M `z # x y `P `x `N `x , œ 2x y# œ œ xy# gw (y) œ C Ê F œ ™ Šx `P `x `N `x # œ cos z œ `f `x œ ex ln y Ê f(xß yß z) œ ex ln y g(yß z) Ê , œ ex y 1 x# y# " y# Ê gw (y) œ Ê g(y) œ "y C 1 y ‹ `P `y œ0œ Ê F is conservative Ê there exists an f so that F œ ™ f; # `f `y g(y) Ê `M `y œ `M `y Ê F is conservative Ê there exists an f so that F œ ™ f; `f `y œ ex y œ y sin z h(z) Ê f(xß yß z) œ e ln y y sin z h(z) Ê x `g ex `y œ y `f `z œ y x `g `y sin z Ê œ sin z Ê g(yß z) w cos z h (z) œ y cos z Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ ex ln y y sin z C Ê F œ ™ ae ln y y sin zb 29. `P `y `f `x œ0œ `N `z , `M `z # `P `x œ x y Ê f(xß yß z) œ Ê f(xß yß z) œ œ œ0œ " 3 x$ xy " $ 3 x xy " $ z 3 y ze (a) work œ 'A F † B dr dt , " 3 " 3 `N `x œ1œ `M `y Ê F is conservative Ê there exists an f so that F œ ™ f; `f `y $ x xy g(yß z) Ê y$ h(z) Ê œx `g `y œ y# x Ê `f `z `g `y z œ y# Ê g(yß z) œ " 3 y$ h(z) œ hw (z) œ zez Ê h(z) œ zez e C Ê f(xß yß z) ez C Ê F œ ™ ˆ "3 x$ xy 3" y$ zez ez ‰ dt œ 'A F † dr œ 3" x$ xy 3" y$ zez ez ‘ Ð"ß!ß!Ñ œ ˆ 3" 0 0 e e‰ ˆ 3" 0 0 1‰ B Ð"ß!ß"Ñ œ1 (b) work œ 'A F † dr œ "3 x$ xy 3" y$ zez ez ‘ Ð"ß!ß!Ñ œ 1 B Ð"ß!ß"Ñ (c) work œ 'A F † dr œ "3 x$ xy 3" y$ zez ez ‘ Ð"ß!ß!Ñ œ 1 B Ð"ß!ß"Ñ Note: Since F is conservative, 'A F † dr is independent of the path from (1ß 0ß 0) to (1ß 0ß 1). B 30. `P `y œ xeyz xyzeyz cos y œ that F œ ™ f; `f `x œe yz `N `z , `M `z œ yeyz œ `P `x , `N `x œ zeyz œ Ê f(xß yß z) œ xe g(yß z) Ê yz `f `y `M `y œ xze Ê g(yß z) œ z sin y h(z) Ê f(xß yß z) œ xe z sin y h(z) Ê yz Ê F is conservative Ê there exists an f so yz `f `z `g `y œ xzeyz z cos y Ê w `g `y œ z cos y œ xye sin y h (z) œ xyeyz sin y yz Ê hw (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ xeyz z sin y C Ê F œ ™ axeyz z sin yb Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 956 Chapter 16 Integration in Vector Fields (a) work œ 'A F † dr œ cxeyz z sin yd Ð"ß!ß"Ñ B Ð"ß1Î#ß!Ñ œ (1 0) (1 0) œ 0 (b) work œ 'A F † dr œ cxeyz z sin yd Ð"ß!ß"Ñ B Ð"ß1Î#ß!Ñ (c) work œ 'A F † dr œ cxeyz z sin yd Ð"ß!ß"Ñ B Ð"ß1Î#ß!Ñ œ0 œ0 Note: Since F is conservative, 'A F † dr is independent of the path from (1ß 0ß 1) to ˆ1ß 1# ß 0‰ . B 31. (a) F œ ™ ax$ y# b Ê F œ 3x# y# i 2x$ yj ; let C" be the path from (1ß 1) to (0ß 0) Ê x œ t 1 and y œ t 1, 0 Ÿ t Ÿ 1 Ê F œ 3(t 1)# (t 1)# i 2(t 1)$ (t 1)j œ 3(t 1)% i 2(t 1)% j and r" œ (t 1)i (t 1)j Ê dr" œ dt i dt j Ê 'C " F † dr" œ '0 c3(t 1)% 2(t 1)% d dt 1 1 " œ '0 5(t 1)% dt œ c(t 1)& d ! œ 1; let C# be the path from (0ß 0) to (1ß 1) Ê x œ t and y œ t, 1 0 Ÿ t Ÿ 1 Ê F œ 3t% i 2t% j and r# œ ti tj Ê dr# œ dt i dt j Ê 'C F † dr# œ '0 a3t% 2t% b dt 1 œ '0 5t% dt œ 1 Ê 'C F † dr œ 'C F † dr" 'C " # # F † dr# œ 2 Ð1ß1Ñ (b) Since f(xß y) œ x$ y# is a potential function for F, 'Ð 1ß1Ñ F † dr œ f(1ß 1) f(1ß 1) œ 2 32. `P `y `f `x œ0œ `N `z , `M `z œ0œ `P `x , `N `x œ 2x sin y œ # œ 2x cos y Ê f(xß yß z) œ x cos y g(yß z) Ê # Ê f(xß yß z) œ x cos y h(z) Ê (a) (b) (c) (d) `M `y `f `z Ê F is conservative Ê there exists an f so that F œ ™ f; `f `y œ x# sin y w `g `y œ x# sin y Ê `g `y œ 0 Ê g(yß z) œ h(z) # œ h (z) œ 0 Ê h(z) œ C Ê f(xß yß z) œ x cos y C Ê F œ ™ ax# cos yb 'C 2x cos y dx x# sin y dy œ cx# cos yd Ð!ß"Ñ Ð"ß!Ñ œ 0 1 œ 1 'C 2x cos y dx x# sin y dy œ cx# cos yd Ð"ß!Ñ Ð"ß1Ñ œ 1 (1) œ 2 'C 2x cos y dx x# sin y dy œ cx# cos yd Ð"ß!Ñ Ð"ß!Ñ œ 1 1 œ 0 'C 2x cos y dx x# sin y dy œ cx# cos yd Ð"ß!Ñ Ð"ß!Ñ œ 1 1 œ 0 33. (a) If the differential form is exact, then all x, and `N `x œ `M `y `P `y œ `N `z Ê 2ay œ cy for all y Ê 2a œ c, `M `z œ `P `x Ê 2cx œ 2cx for Ê by œ 2ay for all y Ê b œ 2a and c œ 2a (b) F œ ™ f Ê the differential form with a œ 1 in part (a) is exact Ê b œ 2 and c œ 2 34. F œ ™ f Ê g(xß yß z) œ 'Ð0ß0ß0Ñ F † dr œ 'Ð0ß0ß0Ñ ™ f † dr œ f(xß yß z) f(0ß 0ß 0) Ê ÐxßyßzÑ `g `z œ `f `z ÐxßyßzÑ `g `x œ `f `x 0, `g `y œ `f `y 0, and 0 Ê ™ g œ ™ f œ F, as claimed 35. The path will not matter; the work along any path will be the same because the field is conservative. 36. The field is not conservative, for otherwise the work would be the same along C" and C# . 37. Let the coordinates of points A and B be axA , yA , zA b and axB , yB , zB b, respectively. The force F œ ai bj ck is conservative because all the partial derivatives of M, N, and P are zero. Therefore, the potential function is fax, y, zb œ ax by cz C, and the work done by the force in moving a particle along any path from A to B is faBb faAb œ f axB , yB , zB b faxA , yA , zA b œ aaxB byB czB Cb aaxA byA czA Cb Ä œ aaxB xA b bayB yA b cazB zA b œ F † BA Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 16.4 Green's Theorem in the Plane 38. (a) Let GmM œ C Ê F œ C ’ `P `y Ê œ 3yzC ax# y# z# b&Î# `f `x œ xC ax# y# z# b$Î# yC Ê `` gy œ ax# y# z# b$Î# some f; œ œ `N `z , x ax# y# z# b$Î# `M `z œ i y ax# y# z# b$Î# 3xzC ax# y# z# b&Î# Ê f(xß yß z) œ œ , C ax# y# z# b"Î# 0 Ê g(yß z) œ h(z) Ê Ê h(z) œ C" Ê f(xß yß z) œ `P `x C ax# y# z# b"Î# `f `z œ j `N `x œ z ax# y# z# b$Î# 3xyC ax# y# z# b&Î# g(yß z) Ê `f `y k“ `M `y œ œ hw (z) œ zC ax# y# z# b$Î# Ê F œ ™ f for yC ax# y# z# b$Î# C" . Let C" œ 0 Ê f(xß yß z) œ `g `y zC ax# y# z# b$Î# GmM ax# y# z# b"Î# is a potential function for F. (b) If s is the distance of (xß yß z) from the origin, then s œ Èx# y# z# . The work done by the gravitational field F is work œ 'P F † dr œ ’ Èx#GmM “ y # z# P# T# " T" œ GmM s# GmM s" œ GmM Š s"# " s" ‹ , as claimed. 16.4 GREEN'S THEOREM IN THE PLANE 1. M œ y œ a sin t, N œ x œ a cos t, dx œ a sin t dt, dy œ a cos t dt Ê `N `y `M `x œ 0, `M `y œ 1, `N `x œ 1, and œ 0; Equation (3): )C M dy N dx œ '021 [(a sin t)(a cos t) (a cos t)(a sin t)] dt œ '021 0 dt œ 0; ' ' Š ``Mx ``Ny ‹ dx dy œ ' ' 0 dx dy œ 0, Flux R R Equation (4): )C M dx N dy œ '021 [(a sin t)(a sin t) (a cos t)(a cos t)] dt œ '021 a# dt œ 21a# ; Èa c x ' ' Š ``Nx ``My ‹ dx dy œ ' ' ca cc a R # œ 2a ˆ 1# 1‰ # # # 2 dy dx œ 'ca 4Èa# x# dx œ 4 ’ x2 Èa# x# a sin" xa “ a ca # œ 2a 1, Circulation 2. M œ y œ a sin t, N œ 0, dx œ a sin t dt, dy œ a cos t dt Ê Equation (3): a# # )C M dy N dx œ '0 21 `M `x œ 0, `M `y œ 1, `N `x œ 0, and `N `y œ 0; #1 a# sin t cos t dt œ a# 2" sin# t‘ ! œ 0; ' ' 0 dx dy œ 0, Flux R 21 #1 Equation (4): )C M dx N dy œ '0 aa# sin# tb dt œ a# 2t sin4 2t ‘ ! œ 1a# ; ' ' Š ``Nx ``My ‹ dx dy œ ' ' 1 dx dy œ '0 21 R '0 a r dr d) œ '0 21 R a# # d) œ 1a# , Circulation 3. M œ 2x œ 2a cos t, N œ 3y œ 3a sin t, dx œ a sin t dt, dy œ a cos t dt Ê `N `y `M `x œ 2, `M `y `N `x œ 0, œ 0, and œ 3; Equation (3): )C M dy N dx œ '021 [(2a cos t)(a cos t) (3a sin t)(a sin t)] dt œ '0 a2a# cos# t 3a# sin# tb dt œ 2a# 2t 21 sin 2t ‘ #1 4 ! 3a# 2t sin 2t ‘ #1 4 ! œ 21a# 31a# œ 1a# ; ' ' Š ``Mx ``Ny ‹ œ ' ' 1 dx dy œ ' ' r dr d) œ ' a## d) œ 1a# , Flux 0 0 0 21 R a 21 R Equation (4): )C M dx N dy œ '021 [(2a cos t)(a sin t) (3a sin t)(a cos t)] dt #1 œ '0 a2a# sin t cos t 3a# sin t cos tb dt œ 5a# 12 sin# t‘ ! œ 0; ' ' 0 dx dy œ 0, Circulation 21 R 4. M œ x# y œ a$ cos# t, N œ xy# œ a$ cos t sin# t, dx œ a sin t dt, dy œ a cos t dt Ê ``Mx œ 2xy, ``My œ x2 , ``Nx œ y# , and ``Ny œ 2xy; Equation (3): )C M dy N dx œ '021 aa% cos$ t sin t a% cos t sin$ tb œ ’ a4 % cos% t a% 4 sin% t“ Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. #1 ! œ 0; 957 958 Chapter 16 Integration in Vector Fields ' ' Š ``Mx ``Ny ‹ dx dy œ ' ' (2xy 2xy) dx dy œ 0, Flux R R 21 21 Equation (4): )C M dx N dy œ '0 aa% cos# t sin# t a% cos# t sin# tb dt œ '0 a2a% cos# t sin# tb dt 21 41 %1 œ '0 "# a% sin# 2t dt œ a4 '0 sin# u du œ a4 u2 sin42u ‘ ! œ 1#a ; ' ' Š ``Nx ``My ‹ dx dy œ ' ' ay# x# b dx dy % % R 21 a 21 œ '0 '0 r# † r dr d) œ '0 a4 % `M `x 5. M œ x y, N œ y x Ê Circ œ ' ' % d) œ 1 a% # , Circulation œ 1, `M `y œ 1, `N `x `N `y œ 1, R œ 1 Ê Flux œ ' ' 2 dx dy œ '0 1 R '01 2 dx dy œ 2; [1 (1)] dx dy œ 0 R `M `x 6. M œ x# 4y, N œ x y# Ê `M `y œ 2x, œ 4, `N `x œ 1, `N `y œ 2y Ê Flux œ ' ' (2x 2y) dx dy R 1 1 1 1 " " œ '0 '0 (2x 2y) dx dy œ '0 cx# 2xyd ! dy œ '0 (1 2y) dy œ cy y# d ! œ 2; Circ œ ' ' œ '0 1 '01 3 dx dy œ 3 `M `x 7. M œ y# x# , N œ x# y# Ê œ '0 3 œ 2x, '0 (2x 2y) dy dx œ '0 a2x x 3 # `M `y œ 2y, `N `x # x b dx œ " 3 œ 2x, $ x$ ‘ ! `N `y œ 2y Ê Flux œ ' ' (2x 2y) dx dy R œ 9; Circ œ ' ' (2x 2y) dx dy R 3 x 3 œ '0 '0 (2x 2y) dy dx œ '0 x# dx œ 9 8. M œ x y, N œ ax# y# b Ê `M `x `M `y œ 1, œ 1, `N `x œ 2x, 1 x 1 œ '0 '0 (1 2y) dy dx œ '0 ax x# b dx œ "6 ; Circ œ ' ' œ '0 a2x xb dx œ 1 # R œ '0 œ '0 1 Èx 'x 2 `M `x `M `y œ y, œ x 2y, `N `x œ 1, `N `y œ 1 Ê Flux œ ' ' ay a1bb dy dx R ' ' a1 ax 2ybb dy dx ay 1b dy dx œ '0 ˆ "# x Èx "# x4 x# ‰ dx œ 11 60 ; Circ œ 2 7 a1 x 2yb dy dx œ '0 ˆÈx x3Î2 x x# x3 x4 ‰ dx œ 60 Circ œ ' ' R 1 `M `x œ 1, `M `y œ 3, `N `x œ 2, `N `y œ 1 Ê Flux œ ' ' a1 a1bb dy dx œ 0 R È2 È2 2 x Î2 a2 3b dy dx œ 'cÈ2 'È 2 c x Î2 a1b dy dx œ È22 'cÈ2 È2 x2 dx œ 1È2 Èa 2b a 11. M œ x3 y2 , N œ "# x4 y Ê 2 R 1 x (2x 1) dx dy œ '0 '0 (2x 1) dy dx 1 10. M œ x 3y, N œ 2x y Ê œ '0 œ 2y Ê Flux œ ' ' (1 2y) dx dy R Èx 'x `N `y 7 6 9. M œ xy y2 , N œ x y Ê 1 (1 4) dx dy R `M `x œ 3x2 y2 , 2b `M `y œ 2x3 y, `N `x œ 2x3 y, `N `y œ "# x4 Ê Flux œ ' ' ˆ3x2 y2 "# x4 ‰ dy dx 'xx x ˆ3x2 y2 "# x4 ‰ dy dx œ '02 ˆ3x5 72 x6 3x7 x8 ‰ dx œ 649 ; Circ œ ' ' 2 R a2x3 y 2x3 yb dy dx œ 0 R Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 16.4 Green's Theorem in the Plane 12. M œ x 1 y2 , È1 y2 œ 'c1 'È1 y2 1 `M `x N œ tan1 y Ê 2 1 y2 1 `M 1 y2 , ` y œ 2x y , `N a 1 y 2 b2 ` x œ œ 0, `N `y œ Ê Flux œ ' ' Š 1 1 y2 1 1 y2 R 1 1 y2 ‹ dx dy dx dy œ 'c1 4 1 1 y2y dx œ 41È2 41 ; Circ œ ' ' Š0 Š a12xy2yb2 ‹‹ dy dx È 1 2 R È1 y2 y œ 'c1 'È1 y2 Š a1 2x ‹ dy dx œ 'c1 a0b dx œ 0 y 2 b2 1 1 `M `x 13. M œ x ex sin y, N œ x ex cos y Ê Ècos 2) 1Î4 Ê Flux œ ' ' dx dy œ 'c1Î4 '0 R œ 1 ex sin y, Î `M `y œ ex cos y, 1 4 1Î% Ècos 2) 1Î4 R R y x , N œ ln ax# y# b Ê Ê Flux œ ' ' Š x#yy# R Circ œ ' ' Š x# 2x y# x x# y# ‹ R `M `x 15. M œ xy, N œ y# Ê œ '0 Š 3x# 1 # 3x% # ‹ 2y x# y# ‹ dx œ `M `x dx dy œ '0 1 dx dy œ '0 1 `M `y œ y, y x# y# œ Ê Flux œ ' ' (x sin y) dx dy œ '0 R œ 0, '0 1Î2 1Î2 R `M `x , N œ ex tan " y Ê R `N `y " 1 y# 1 3cx œ 'c1 'x b 1 % # Ê œ '0 '0 x$ 2y x# y# 'x # `N `x , `M `y 2xy dy dx œ ' # 1 2 0 3 x œ 6xy# , `N `x "! 2 33 20. M œ 4x 2y, N œ 2x 4y Ê dx œ `M `y œ 2, x dy dx œ '0 ax# x$ b dx œ 1"# `N `y œ cos y, œ x sin y # # œ 3y " 1 y# , `N `y œ " 1 y# `N `x œ ex y #1 ! '0aÐ1 cos )Ñ (3r sin )) r dr d) œ 4a$ a4a$ b œ 0 Ê Circ œ ' ' ’ ey Š1 x R ex y ‹“ dx dy œ ' ' (1) dx dy R œ 8xy# Ê work œ )C 2xy$ dx 4x# y# dy œ ' ' a8xy# 6xy# b dx dy R `N `x œ 2 Ê work œ )C (4x 2y) dx (2x 4y) dy œ ' ' [2 (2)] dx dy œ 4 ' ' dx dy œ 4(Area of the circle) œ 4(1 † 4) œ 161 R # '01Î2 2 cos y dx dy œ '01Î2 1 cos y dy œ c1 sin yd 1Î# œ1 ! R ex y 'xx 3y dy dx 1 21 œ1 œ 1 1 dy dx œ 'c1 ca3 x# b ax% 1bd dx œ 'c1 ax% x# 2b dx œ 44 15 19. M œ 2xy$ , N œ 4x# y# Ê 1 `M `y `N `y (x sin y) dx dy œ '0 Š 18 sin y‹ dy œ 18 ; $ ex y , R x 1Î2 œ '0 a$ (1 cos ))$ (sin )) d) œ ’ a4 (1 cos ))% “ 18. M œ y ex ln y, N œ 2x x# y# 1 dx dy œ ' ' 3y dx dy œ '0 " 1 y# ‹ 21 œ œ 2y Ê Flux œ ' ' (y 2y) dy dx œ '0 œ cos y, Circ œ ' ' [cos y ( cos y)] dx dy œ '0 Ê Flux œ ' ' Š3y `N `x " # # `M `y œ 0, , Î 1 4 # R `M `x x x# y# ; r dr d) œ ' 1Î4 ˆ "# cos 2)‰ d) œ '12 ˆ r sinr ) ‰ r dr d) œ '01 sin ) d) œ 2; ; Circ œ ' ' x dy dx œ '0 " 5 1Î2 x 1 y# œ 1 16. M œ sin y, N œ x cos y Ê 17. M œ 3xy `M `y " # œ ex sin y '12 ˆ r cosr ) ‰ r dr d) œ '01 cos ) d) œ 0 `N `x œ x, , `N `y œ 1 ex cos y, r dr d) œ ' 1Î4 ˆ "# cos 2)‰ d) œ 4" sin 2)‘ 1Î% œ Circ œ ' ' a1 ex cos y ex cos yb dx dy œ ' ' dx dy œ 'c1Î4 '0 14. M œ tan" `N `x R Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 959 960 Chapter 16 Integration in Vector Fields `M `y 21. M œ y# , N œ x# Ê œ '0 1 1cx '0 œ 2y, œ 2x Ê )C y# dx x# dy œ ' ' (2x 2y) dy dx `N `x R (2x 2y) dy dx œ '0 a3x 4x 1b dx œ cx 2x# xd ! œ 1 2 1 œ 0 1 22. M œ 3y, N œ 2x Ê `M `y œ 3, # `N `x œ 2 Ê )C 3y dx 2x dy œ ' ' a2 3b dx dy œ '0 `M `y œ 6, 1 R 1 œ '0 sin x dx œ 2 23. M œ 6y x, N œ y 2x Ê " $ '0sin x a1bdy dx œ 2 Ê )C (6y x) dx (y 2x) dy œ ' ' (2 6) dy dx `N `x R œ 4(Area of the circle) œ 161 24. M œ 2x y# , N œ 2xy 3y Ê `M `y œ 2y, `N `x œ 2y Ê )C a2x y# b dx (2xy 3y) dy œ ' ' (2y 2y) dx dy œ 0 R 25. M œ x œ a cos t, N œ y œ a sin t Ê dx œ a sin t dt, dy œ a cos t dt Ê Area œ œ '0 21 " # '0 21 " # aa# cos# t a# sin# tb dt œ '021 aab cos# t ab sin# tb dt œ "# '021 ab dt œ 1ab " # )C " # )C x dy y dx x dy y dx a# dt œ 1a# 26. M œ x œ a cos t, N œ y œ b sin t Ê dx œ a sin t dt, dy œ b cos t dt Ê Area œ œ " # )C x dy y dx 41 3 ' œ "# '0 a3 sin# t cos# tb acos# t sin# tb dt œ "# '0 a3 sin# t cos# tb dt œ 38 '0 sin# 2t dt œ 16 sin# u du 0 27. M œ x œ cos$ t, N œ y œ sin$ t Ê dx œ 3 cos# t sin t dt, dy œ 3 sin# t cos t dt Ê Area œ 21 œ 3 16 u2 21 sin 2u ‘ %1 4 ! œ 3 8 21 " # 1 28. C1 : M œ x œ t, N œ y œ 0 Ê dx œ dt, dy œ 0; C2 : M œ x œ a21 tb sina21 tb œ 21 t sin t, N œ y œ 1 cosa21 tb œ 1 cos t Ê dx œ acos t 1b dt, dy œ sin t dt Ê Area œ œ " # " # )C x dy y dx œ "# )C " x dy y dx " # )C 2 x dy y dx '021 a0bdt "# '021 ca21 t sin tbasin tb a1 cos tb acos t 1bd dt œ "# '021 a2 cos t t sin t 2 21 sin tb dt œ 12 c3 sin t t cos t 2t 21 cos td20 1 œ 31 29. (a) M œ f(x), N œ g(y) Ê (b) M œ ky, N œ hx Ê `M `y `M `y œ 0, œ k, `N `x `N `x œ 0 Ê )C f(x) dx g(y) dy œ ' ' Š ``Nx R œh `M `y ‹ dx dy œ ' ' 0 dx dy œ 0 R Ê )C ky dx hx dy œ ' ' Š ``Nx ``My ‹ dx dy œ ' ' (h k) dx dy œ (h k)(Area of the region) R R 30. M œ xy# , N œ x# y 2x Ê `M `y œ 2xy, `N `x œ 2xy 2 Ê )C xy# dx ax# y 2xb dy œ ' ' Š ``Nx œ ' ' (2xy 2 2xy) dx dy œ 2 ' ' dx dy œ 2 times the area of the square R R R Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. `M `y ‹ dx dy Section 16.4 Green's Theorem in the Plane 961 31. The integral is 0 for any simple closed plane curve C. The reasoning: By the tangential form of Green's Theorem, with M œ 4x$ y and N œ x% , )C 4x$ y dx x% dy œ ' ' ’ ``x ax% b ` `y R œ ' ' ðóóñóóò a4x$ 4x$ b dx dy œ 0. a4x$ yb“ dx dy R 0 32. The integral is 0 for any simple closed curve C. The reasoning: By the normal form of Green's theorem, with ` ` $ $ M œ x$ and N œ y$ , )C y$ dy x$ dx œ ' ' ”ðñò ` x ay b ï ` y ax b • dx dy œ 0. R 0 `M `x 33. Let M œ x and N œ 0 Ê œ 1 and `N `y œ0 Ê 0 )C M dy N dx œ ' ' Š ``Mx ``Ny ‹ dx dy œ ' ' (1 0) dx dy Ê Area of R œ ' ' dx dy œ )C x dy; similarly, M œ y and N œ 0 Ê R `N `x R œ 0 Ê )C M dx N dy œ ' ' Š ``Nx R œ ' ' dx dy œ Area of R Ê )C x dy R `M `y ‹ `M `y œ 1 and dy dx Ê )C y dx œ ' ' (0 1) dy dx Ê )C y dx R R 34. 'ab f(x) dx œ Area of R œ )C y dx, from Exercise 33 35. Let $ (xß y) œ 1 Ê x œ My M ' ' x $ (xßy) dA œ 'R ' $ (xßy) dA ' ' x dA œ 'R ' R dA ' ' x dA œ Ê Ax œ ' ' x dA œ ' ' (x 0) dx dy R A R R R œ )C x# dy, Ax œ ' ' x dA œ ' ' (0 x) dx dy œ ) xy dx, and Ax œ ' ' x dA œ ' ' ˆ 23 x "3 x‰ dx dy œ) # # " C 3 R R " 3 " # x dy xy dx Ê )C x C dy œ )C xy dx œ # " 3 )C x dy xy dx œ Ax 36. If $ (xß y) œ 1, then Iy œ ' ' x# $ (xß y) dA œ ' ' x# dA œ ' ' ax# 0b dy dx œ R R R R # R " 3 )C x$ dy, ' ' x# dA œ ' ' a0 x# b dy dx œ ) x# y dx, and ' ' x# dA œ ' ' ˆ 34 x# 4" x# ‰ dy dx C R R œ) " C 4 37. M œ 38. M œ `f `y " 4 ellipse $ " 4 # x dy x y dx œ , N œ `` xf Ê `M `y " 4 œ x# y "3 y$ , N œ x Ê " 4 )C x ` #f ` y# `M `y , R $ # dy x y dx Ê `N `x œ 1 4 " 3 œ `` xf# Ê )C # x# y# , `N `x )C x `f `y R $ dy œ )C x# y dx œ dx `f `x œ 1 Ê Curl œ " 4 )C dy œ ' ' Š `` xf# # R `N `x `M `y x$ dy x# y dx œ Iy ` #f ` y# ‹ dx dy œ 0 for such curves C œ 1 ˆ "4 x# y# ‰ 0 in the interior of the x# y# œ 1 Ê work œ 'C F † dr œ ' ' ˆ1 4" x# y# ‰ dx dy will be maximized on the region R R œ {(xß y) | curl F} 0 or over the region enclosed by 1 œ 2y 39. (a) ™ f œ Š x# 2x y# ‹ i Š x# y# ‹ j Ê M œ 2x x# y# ,Nœ " 4 x# y# 2y x# y# ; since M, N are discontinuous at (0ß 0), we compute 'C ™ f † n ds directly since Green's Theorem does not apply. Let x œ a cos t, y œ a sin t Ê dx œ a sin t dt, dy œ a cos t dt, M œ 2 a cos t, N œ 2 a sin t, 0 Ÿ t Ÿ 21, so 'C ™ f † n ds œ 'C M dy N dx œ '0 ˆ 2a cos t‰aa cos tb ˆ 2a sin t‰aa sin tb ‘dt œ '0 2acos2 t sin2 tbdt œ 41. Note that this holds for any 21 21 Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. 962 Chapter 16 Integration in Vector Fields a 0, so 'C ™ f † n ds œ 41 for any circle C centered at a0, 0b traversed counterclockwise and 'C ™ f † n ds œ 41 if C is traversed clockwise. (b) If K does not enclose the point (0ß 0) we may apply Green's Theorem: 'C ™ f † n ds œ 'C M dy N dx œ ' ' Š ``Mx R `N `y ‹ dx dy œ ' ' Š ax2 y2 b2 2 ˆy 2 x 2 ‰ R 2 ˆx 2 y 2 ‰ ‹ ax2 y2 b2 dx dy œ ' ' 0 dx dy œ 0. If K does enclose the point R (0ß 0) we proceed as follows: Choose a small enough so that the circle C centered at (0ß 0) of radius a lies entirely within K. Green's Theorem applies to the region R that lies between K and C. Thus, as before, 0 œ ' ' Š ``Mx R `N `y ‹ dx dy œ 'K M dy N dx 'C M dy N dx where K is traversed counterclockwise and C is traversed clockwise. Hence by part (a) 0 œ ’ ' M dy N dx “ 41 Ê 41 œ K 'K ™ f † n ds œ œ 0 'K M dy N dx œ 'K ™ f † n ds. We have shown: if (0ß 0) lies inside K if (0ß 0) lies outside K 41 40. Assume a particle has a closed trajectory in R and let C" be the path Ê C" encloses a simply connected region R" Ê C" is a simple closed curve. Then the flux over R" is )C F † n ds œ 0, since the velocity vectors F are " tangent to C" . But 0 œ )C F † n ds œ )C M dy N dx œ ' ' Š ``Mx " " R" `N `y ‹ dx dy Ê Mx Ny œ 0, which is a contradiction. Therefore, C" cannot be a closed trajectory. 41. 'gg yy #Ð Ñ "Ð Ñ `N `x dx dy œ N(g# (y)ß y) N(g" (y)ß y) Ê 'cd 'gg yy ˆ ``Nx dx‰ dy œ 'cd [N(g# (y)ß y) N(g" (y)ß y)] dy #Ð Ñ "Ð Ñ œ 'c N(g# (y)ß y) dy 'c N(g" (y)ß y) dy œ 'c N(g# (y)ß y) dy 'd N(g" (y)ß y) dy œ 'C N dy 'C N dy d œ )C dy d Ê )C N dy œ ' ' R d c # `N `x " dx dy 42. The curl of a conservative two-dimensional field is zero. The reasoning: A two-dimensional field F œ Mi Nj can be considered to be the restriction to the xy-plane of a three-dimensional field whose k component is zero, and whose i and j components are independent of z. For such a field to be conservative, we must have `N `M `N `M ` x œ ` y by the component test in Section 16.3 Ê curl F œ ` x ` y œ 0. 43-46. Example CAS commands: Maple: with( plots );#43 M := (x,y) -> 2*x-y; N := (x,y) -> x+3*y; C := x^2 + 4*y^2 = 4; implicitplot( C, x=-2..2, y=-2..2, scaling=constrained, title="#43(a) (Section 16.4)" ); curlF_k := D[1](N) - D[2](M): # (b) 'curlF_k' = curlF_k(x,y); top,bot := solve( C, y ); # (c) left,right := -2, 2; q1 := Int( Int( curlF_k(x,y), y=bot..top ), x=left..right ); value( q1 ); Mathematica: (functions and bounds will vary) The ImplicitPlot command will be useful for 43 and 44, but is not needed for 43 and 44. In 44, the equation of the line from (0, 4) to (2, 0) must be determined first. Copyright © 2010 Pearson Education Inc. Publishing as Addison-Wesley. Section 16.5 Surfaces and Area 963 Clear[x, y, f] <
Source Exif Data:File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.6 Linearized : Yes Encryption : Standard V4.4 (128-bit) User Access : Print, Extract, Print high-res Author : Bill Ardis Create Date : 2009:12:21 14:39:58+05:30 Modify Date : 2010:01:08 09:49:17-05:00 Has XFA : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Producer : Acrobat Distiller 6.0 (Windows) Metadata Date : 2010:01:08 09:49:17-05:00 Creator Tool : PScript5.dll Version 5.2.2 Document ID : uuid:c26874ad-773c-4fae-b29e-24bff859293f Instance ID : uuid:8dd97f60-b29a-cd44-94f4-126d983e4937 Format : application/pdf Title : ISM_T12_PRE_VII Creator : Bill Ardis Page Count : 439EXIF Metadata provided by EXIF.tools